Science.gov

Sample records for malayi infective larvae

  1. Genes expressed in Brugia malayi infective third stage larvae.

    PubMed

    Blaxter, M L; Raghavan, N; Ghosh, I; Guiliano, D; Lu, W; Williams, S A; Slatko, B; Scott, A L

    1996-04-01

    We have used a tag sequencing approach to survey genes expressed in the third stage infective larvae of the human filarial nematode parasite Brugia malayi. RNA was isolated from late vector-stage L3 larvae after days 9 or 10 of infection in mosquitos, and converted to cDNA by reverse transcriptase. Double-stranded cDNA was produced by either conventional methods (non-SL cDNA library) or by PCR using the nematode spliced leader (SLI) and oligo(dT) primers (SL cDNA library). Two clone libraries (one from SL and one from non-SL cDNAs) were constructed in lambda ZapII. A set of these full-length clones was selected and 596 inserts were sequenced from the 5' end. We have identified 364 B. malayi genes (the majority of which are new) that encode housekeeping proteins, structural proteins, proteins of immediate immunological or drug-discovery interest as well as a large class of novel sequences which may prove to have significant involvement in host invasion. Extensive, genome-wide approaches to the analysis of larval gene expression are now possible for B. malayi. We present several examples of this approach. PMID:8784774

  2. A simple technique for the in vitro cultivation of nocturnally subperiodic Brugia malayi infective larvae.

    PubMed

    Tippawangkosol, Pongsri; Choochote, Wej; Riyong, Doungrat; Jitpakdi, Atchariya; Pitasawat, Benjawan

    2002-01-01

    A simple system for the in vitro cultivation of nocturnally subperiodic Brugia malayi was developed. The manner of cultivation consisted of a 1:1 (v/v) mixture of Iscove's Modified Dulbecco's medium and NCTC-135 medium supplemented with 20% fetal bovine serum by using candle jar incubation at 37 degrees C instead of CO2 incubator. Changing the media: every 2 days, 3 days and changing media on day 7, then every 2 days produced a larval survival rate of 50% (70/140) on day 10, 49% (82/166) on day 6, and 53% (105/200) on day 9. With this technique, up to 50% of the infective stage larvae (L3) survived for up to 10 days and had long life for at least 27 days in all experiments with low larval survival rate in the fourth week. In addition, the culture system promoted molting L3 to fourth stage larvae (L4) after 7 days, as shown by light microscope. PMID:12971468

  3. Transcriptomes and pathways associated with infectivity, survival and immunogenicity in Brugia malayi L3

    PubMed Central

    Li, Ben-Wen; Rush, Amy C; Mitreva, Makedonka; Yin, Yong; Spiro, David; Ghedin, Elodie; Weil, Gary J

    2009-01-01

    Background Filarial nematode parasites cause serious diseases such as elephantiasis and river blindness in humans, and heartworm infections in dogs. Third stage filarial larvae (L3) are a critical stage in the life cycle of filarial parasites, because this is the stage that is transmitted by arthropod vectors to initiate infections in mammals. Improved understanding of molecular mechanisms associated with this transition may provide important leads for development of new therapies and vaccines to prevent filarial infections. This study explores changes in gene expression associated with the transition of Brugia malayi third stage larvae (BmL3) from mosquitoes into mammalian hosts and how these changes are affected by radiation. Radiation effects are especially interesting because irradiated L3 induce partial immunity to filarial infections. The underlying molecular mechanisms responsible for the efficacy of such vaccines are unkown. Results Expression profiles were obtained using a new filarial microarray with 18, 104 64-mer elements. 771 genes were identified as differentially expressed in two-way comparative analyses of the three L3 types. 353 genes were up-regulated in mosquito L3 (L3i) relative to cultured L3 (L3c). These genes are important for establishment of filarial infections in mammalian hosts. Other genes were up-regulated in L3c relative to L3i (234) or irradiated L3 (L3ir) (22). These culture-induced transcripts include key molecules required for growth and development. 165 genes were up-regulated in L3ir relative to L3c; these genes encode highly immunogenic proteins and proteins involved in radiation repair. L3ir and L3i have similar transcription profiles for genes that encode highly immunogenic proteins, antioxidants and cuticle components. Conclusion Changes in gene expression that normally occur during culture under conditions that support L3 development and molting are prevented or delayed by radiation. This may explain the enhanced

  4. Cross reactive molecules of human lymphatic filaria Brugia malayi inhibit Leishmania donovani infection in hamsters.

    PubMed

    Verma, Richa; Joseph, Sujith K; Kushwaha, Vikas; Kumar, Vikash; Siddiqi, M I; Vishwakarma, Preeti; Shivahare, Rahul; Gupta, Suman; Murthy, P K

    2015-12-01

    Coinfections are common in natural populations and the outcome of their interactions depends on the immune responses of the host elicited by the parasites. Earlier we showed that immunization with BmAFII (Sephadex G-200 eluted) fraction of human lymphatic filaria Brugia malayi inhibited progression of Leishmania donovani infection in golden hamsters. In the present study we identified cross reactive molecules of B. malayi, and investigated their effect on L. donovani infection and associated immune responses in the host. The sequence alignment and sharing of linear T- and B-cell epitopes in protein molecules of B. malayi and L. donovani counterparts were studied in silico. Hamsters were immunized with robustly cross reactive SDS-PAGE resolved fractions F6 (54.2-67.8kDa) and F9 (41.3-45.0kDa) of B. malayi and subsequently inoculated with amastigotes of L. donovani intracardially. F6 inhibited (∼72%) L. donovani infection and upregulated Th1 cytokine expression, lymphoproliferation, IgG2, IgG2/3 levels and NO production, and downregulated Th2 cytokine expression. Sequences in HSP60 and EF-2 of F6 and L. donovani counterparts were conserved and B- and T-cell epitopes in the proteins shared antigenic regions. In conclusion, leishmania-cross reactive molecules of filarial parasite considerably inhibited leishmanial infection via Th1-mediated immune responses and NO production. Common B- and T-cell epitope regions in HSP60 and EF-2 of the parasites might have contributed to the inhibitory effect on the L. donovani infection. Thus, leishmania-cross reactive filarial parasite molecules may help in designing prophylactic(s) against L. donovani. PMID:26341753

  5. Comparative susceptibility of five strains of Mansonia uniformis (Diptera:Culicidae) in Malaysia to infection with subperiodic Brugia malayi.

    PubMed

    Chiang, G L; Loong, K P; Eng, K L

    1989-06-01

    Five strains of Ma. uniformis from Malaysia were tested for their susceptibility to infection with subperiodic B. malayi. All were found to be susceptible with infection rates ranging from 62% to 100%. The susceptibility rates were directly related to the microfilarial densities of the cat at the time of feeding. Statistical analysis showed no significant difference (p greater than 0.05) among the means of the indices of experimental infection as well as the percentage of infective mosquitoes of the five strains and an old laboratory colony. They were all equally susceptible to subperiodic B. malayi. PMID:2575285

  6. Identification of Brugia malayi in vectors with a species-specific DNA probe.

    PubMed

    Sim, B K; Mak, J W; Cheong, W H; Sutanto, I; Kurniawan, L; Marwoto, H A; Franke, E; Campell, J R; Wirth, D F; Piessens, W F

    1986-05-01

    We evaluated the potential value of a cloned sequence of genomic DNA of Brugia malayi as a species-specific probe. Clone pBm 15 reacted with all stages of 8 different geographic isolates of B. malayi and cross-hybridized with microfilariae of B. timori. It did not hybridize with Wuchereria bancrofti or with B. pahangi, W. kalimantani, Dirofilaria repens, Breinlia booliati or Cardiofilaria species, animal filariids that can be sympatric with B. malayi. P32-labeled clone pBm 15 correctly identified mosquitoes infected even with 1 infective larva of B. malayi. This specific DNA probe should be an invaluable tool to monitor control programs of Brugian filariasis. PMID:3518507

  7. Canine Filarial Infections in a Human Brugia malayi Endemic Area of India

    PubMed Central

    Ravindran, Reghu; Varghese, Sincy; Nair, Suresh N.; Balan, Vimalkumar M.; Lakshmanan, Bindu; Ashruf, Riyas M.; Kumar, Swaroop S.; Gopalan, Ajith Kumar K.; Nair, Archana S.; Malayil, Aparna; Chandrasekhar, Leena; Juliet, Sanis; Kopparambil, Devada; Ramachandran, Rajendran; Kunjupillai, Regu; Kakada, Showkath Ali M.

    2014-01-01

    A very high prevalence of microfilaremia of 42.68 per cent out of 164 canine blood samples examined was observed in Cherthala (of Alappuzha district of Kerala state), a known human Brugia malayi endemic area of south India. The species of canine microfilariae were identified as Dirofilaria repens, Brugia malayi, and Acanthocheilonema reconditum. D. repens was the most commonly detected species followed by B. pahangi. D. immitis was not detected in any of the samples examined. Based on molecular techniques, microfilariae with histochemical staining pattern of “local staining at anal pore and diffuse staining at central body” was identified as D. repens in addition to those showing acid phosphatase activity only at the anal pore. Even though B. malayi like acid phosphatase activity was observed in few dogs examined, they were identified as genetically closer to B. pahangi. Hence, the possibility of dogs acting as reservoirs of human B. malayi in this area was ruled out. PMID:24971339

  8. Canine filarial infections in a human Brugia malayi endemic area of India.

    PubMed

    Ravindran, Reghu; Varghese, Sincy; Nair, Suresh N; Balan, Vimalkumar M; Lakshmanan, Bindu; Ashruf, Riyas M; Kumar, Swaroop S; Gopalan, Ajith Kumar K; Nair, Archana S; Malayil, Aparna; Chandrasekhar, Leena; Juliet, Sanis; Kopparambil, Devada; Ramachandran, Rajendran; Kunjupillai, Regu; Kakada, Showkath Ali M

    2014-01-01

    A very high prevalence of microfilaremia of 42.68 per cent out of 164 canine blood samples examined was observed in Cherthala (of Alappuzha district of Kerala state), a known human Brugia malayi endemic area of south India. The species of canine microfilariae were identified as Dirofilaria repens, Brugia malayi, and Acanthocheilonema reconditum. D. repens was the most commonly detected species followed by B. pahangi. D. immitis was not detected in any of the samples examined. Based on molecular techniques, microfilariae with histochemical staining pattern of "local staining at anal pore and diffuse staining at central body" was identified as D. repens in addition to those showing acid phosphatase activity only at the anal pore. Even though B. malayi like acid phosphatase activity was observed in few dogs examined, they were identified as genetically closer to B. pahangi. Hence, the possibility of dogs acting as reservoirs of human B. malayi in this area was ruled out. PMID:24971339

  9. Vaccination of Gerbils with Bm-103 and Bm-RAL-2 Concurrently or as a Fusion Protein Confers Consistent and Improved Protection against Brugia malayi Infection

    PubMed Central

    Arumugam, Sridhar; Wei, Junfei; Liu, Zhuyun; Abraham, David; Bell, Aaron; Bottazzi, Maria Elena; Hotez, Peter J.; Zhan, Bin; Lustigman, Sara; Klei, Thomas R.

    2016-01-01

    Background The Brugia malayi Bm-103 and Bm-RAL-2 proteins are orthologous to Onchocerca volvulus Ov-103 and Ov-RAL-2, and which were selected as the best candidates for the development of an O. volvulus vaccine. The B. malayi gerbil model was used to confirm the efficacy of these Ov vaccine candidates on adult worms and to determine whether their combination is more efficacious. Methodology and Principle Findings Vaccine efficacy of recombinant Bm-103 and Bm-RAL-2 administered individually, concurrently or as a fusion protein were tested in gerbils using alum as adjuvant. Vaccination with Bm-103 resulted in worm reductions of 39%, 34% and 22% on 42, 120 and 150 days post infection (dpi), respectively, and vaccination with Bm-RAL-2 resulted in worm reductions of 42%, 22% and 46% on 42, 120 and 150 dpi, respectively. Vaccination with a fusion protein comprised of Bm-103 and Bm-RAL-2 resulted in improved efficacy with significant reduction of worm burden of 51% and 49% at 90 dpi, as did the concurrent vaccination with Bm-103 and Bm-RAL-2, with worm reduction of 61% and 56% at 90 dpi. Vaccination with Bm-103 and Bm-RAL-2 as a fusion protein or concurrently not only induced a significant worm reduction of 61% and 42%, respectively, at 150 dpi, but also significantly reduced the fecundity of female worms as determined by embryograms. Elevated levels of antigen-specific IgG were observed in all vaccinated gerbils. Serum from gerbils vaccinated with Bm-103 and Bm-RAL-2 individually, concurrently or as a fusion protein killed third stage larvae in vitro when combined with peritoneal exudate cells. Conclusion Although vaccination with Bm-103 and Bm-RAL-2 individually conferred protection against B. malayi infection in gerbils, a more consistent and enhanced protection was induced by vaccination with Bm-103 and Bm-RAL-2 fusion protein and when they were used concurrently. Further characterization and optimization of these filarial vaccines are warranted. PMID:27045170

  10. Microsporidium Infecting Anopheles supepictus (Diptera: Culicidae) Larvae

    PubMed Central

    Omrani, Seyed-Mohammad; Moosavi, Seyedeh-Fatemeh; Manouchehri, Kourosh

    2016-01-01

    Background: Microsporidia are known to infect a wide variety of animals including mosquitoes (Diptera: Culicidae). In a recent study on the mosquito fauna of Chahar Mahal and Bakhtiari Province, at the central western part of Iran, a few larvae of Anopheles superpictus were infected with a microsporidium-resembled microorganism. Current investigation deals with the identification of the responsible microorganism at the genus level. Methods: Fresh infected larvae were collected from the field. After determining the species identity they were dissected to extract their infective contents. Wet preparations were checked for general appearance and the size of the pathogenic microorganism. Fixed preparations were stained with Geimsa and Ryan-Blue modified Trichrome techniques to visualize further morphological characters. The obtained light microscopy data were used in the identification process. Results: The infected larvae were bulged by a whitish material filling the involved segments corresponding to a microsporidium infection. Bottle-shaped semioval spores ranged 4.33±0.19×2.67±0.12 and 4.18±0.43×2.45±0.33 micron in wet and fixed preparations, respectively. They were mostly arranged in globular structures comprised of 8 spores. These data was in favor of a species from the genus Parathelohania in the family Ambliosporidae. Conclusion: This is the first report of a microsporidium infection in An. superpictus. The causative agent is diagnosed as a member of the genus Parathelohania. Further identification down to the species level needs to determine its ultrastructural characteristics and the comparative analysis of ss rRNA sequence data. It is also necessary to understand the detail of the components of the transmission cycle. PMID:27308299

  11. Metalloprotease production by Paenibacillus larvae during the infection of honeybee larvae.

    PubMed

    Antúnez, Karina; Arredondo, Daniela; Anido, Matilde; Zunino, Pablo

    2011-05-01

    American foulbrood is a bacterial disease of worldwide distribution that affects larvae of the honeybee Apis mellifera. The causative agent is the Gram-positive, spore-forming bacterium Paenibacillus larvae. Several authors have proposed that P. larvae secretes metalloproteases that are involved in the larval degradation that occurs after infection. The aim of the present work was to evaluate the production of a metalloprotease by P. larvae during larval infection. First, the complete gene encoding a metalloprotease was identified in the P. larvae genome and its distribution was evaluated by PCR in a collection of P. larvae isolates from different geographical regions. Then, the complete gene was amplified, cloned and overexpressed, and the recombinant metalloprotease was purified and used to generate anti-metalloprotease antibodies. Metalloprotease production was evaluated by immunofluorescence and fluorescence in situ hybridization. The gene encoding a P. larvae metalloprotease was widely distributed in isolates from different geographical origins in Uruguay and Argentina. Metalloprotease was detected inside P. larvae vegetative cells, on the surface of P. larvae spores and secreted to the external growth medium. Its production was also confirmed in vivo, during the infection of honeybee larvae. This protein was able to hydrolyse milk proteins as described for P. larvae, suggesting that could be involved in larval degradation. This work contributes to the knowledge of the pathogenicity mechanisms of a bacterium of great economic significance and is one step in the characterization of potential P. larvae virulence factors. PMID:21330433

  12. Transcriptional response of honey bee larvae infected with the bacterial pathogen Paenibacillus larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    American foulbrood disease of honey bees is caused by the bacterium Paenibacillus larvae. Infection occurs per os in larvae and systemic infection requires a breaching of the host peritrophic matrix and midgut epithelium. Genetic variation exists for both bacterial virulence and host resistance, and...

  13. Streptococcus agalactiae infection in zebrafish larvae

    PubMed Central

    Kim, Brandon J; Hancock, Bryan M; Cid, Natasha Del; Bermudez, Andres; Traver, David; Doran, Kelly S

    2015-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) is an encapsulated, Gram-positive bacterium that is a leading cause of neonatal pneumonia, sepsis and meningitis, and an emerging aquaculture pathogen. The zebrafish (Danio rerio) is a genetically tractable model vertebrate that has been used to analyze the pathogenesis of both aquatic and human bacterial pathogens. We have developed a larval zebrafish model of GBS infection to study bacterial and host factors that contribute to disease progression. GBS infection resulted in dose dependent larval death, and GBS serotype III, ST-17 strain was observed as the most virulent. Virulence was dependent on the presence of the GBS capsule, surface anchored lipoteichoic acid (LTA) and toxin production, as infection with GBS mutants lacking these factors resulted in little to no mortality. Additionally, interleukin-1β il1b and CXCL-8 (cxcl8a) were significantly induced following GBS infection compared to controls. We also visualized GBS outside the brain vasculature, suggesting GBS penetration into the brain during the course of infection. Our data demonstrate that zebrafish larvae are a valuable model organism to study GBS pathogenesis. PMID:25617657

  14. Moxidectin causes adult worm mortality of human lymphatic filarial parasite Brugia malayi in rodent models.

    PubMed

    Verma, Meenakshi; Pathak, Manisha; Shahab, Mohd; Singh, Kavita; Mitra, Kalyan; Misra-Bhattacharya, Shailja

    2014-12-01

    Moxidectin is a macrocyclic lactone belonging to milbemycin family closely related to ivermectin and is currently progressing towards Phase III clinical trial against human infection with the filaria Onchocerca volvulus (Leuckart, 1894). There is a single report on the microfilaricidal and embryostatic activity of moxidectin in case of the human lymphatic filarial parasite Brugia malayi (Brug, 1927) in Mastomys coucha (Smith) but without any adulticidal action. In the present study, the in vitro and in vivo antifilarial efficacy of moxidectin was evaluated on, B. malayi. In vitro moxidectin showed 100% reduction in adult female worm motility at 0.6 μM concentration within 7 days with 68% inhibition in the reduction of MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide dye) (which is used to detect viability of worms). A 50% inhibitory concentration (IC50) of moxidectin for adult female parasite was 0.242 μM, for male worm 0.186 μM and for microfilaria IC50 was 0.813 μM. In adult B. malayi-transplanted primary screening model (Meriones unguiculatus Milne-Edwards), moxidectin at a single optimal dose of 20 mg/kg by oral and subcutaneous route was found effective on both adult parasites and microfilariae. In secondary screening (M coucha, subcutaneously inoculated with infective larvae), moxidectin at the same dose by subcutaneous route brought about death of 49% of adult worms besides causing sterilisation in 54% of the recovered live female worms. The treated animals exhibited a continuous and sustained reduction in peripheral blood microfilaraemia throughout the observation period of 90 days. The mechanism of action of moxidectin is suggested to be similar to avermectins. The in silico studies were also designed to explore the interaction of moxidectin with glutamate-gated chloride channels of B. malayi. The docking results revealed a close interaction of moxidectin with various GluCl ligand sites of B. malayi. PMID:25651699

  15. Protection against filarial infection by 45-49 kDa molecules of Brugia malayi via IFN-γ-mediated iNOS induction.

    PubMed

    Verma, Shiv K; Joseph, Sujith K; Verma, Richa; Kushwaha, Vikas; Parmar, Naveen; Yadav, Pawan K; Thota, Jagadeshwar Reddy; Kar, Susanta; Murthy, P Kalpana

    2015-01-15

    Nitric oxide (NO) mediated mechanisms have been implicated in killing of some life-stages of Brugia malayi/Wuchereria bancrofti and protect the host through type 1 responses and IFN-γ stimulated toxic mediators' release. However, the identity of NO stimulating molecules of the parasites is not known. Three predominantly NO-stimulating SDS-PAGE resolved fractions F8 (45.24-48.64 kDa), F11 (33.44-38.44 kDa) and F12 (28.44-33.44 kDa) from B. malayi were identified and their proteins were analyzed by 2-DE and MALDI-TOF/TOF. Tropomyosin, calponin and de novo peptides were identified by 2-DE and MALDI-TOF/TOF in F8 and immunization with F8 conferred most significant protection against L3-initiated infection in Mastomys coucha. Immunized animals showed upregulated F8-induced NO, IFN-γ, TNF-α, IL-1β, IL-10, TGF-β release, cellular proliferative responses and specific IgG and IgG1. Anti-IFN-γ, anti-TNF-α, and anti-IL-1β significantly reduced F8-mediated NO generation and iNOS induction at protein levels. Anti-IFN-γ treated cells showed maximum reduction (>74%) in NO generation suggesting a predominant role of IFN-γ in iNOS induction. In conclusion, the findings suggest that F8 which contains tropomyosin, calponin and de novo peptides protects the host via IFN-γ mediated iNOS induction and may hold promise as vaccine candidate(s). This is also the first report of identification of tropomyosin and calponin in B. malayi. PMID:25454090

  16. Larva migrans in squirrel monkeys experimentally infected with Baylisascaris potosis.

    PubMed

    Tokiwa, Toshihiro; Tsugo, Kosuke; Nakamura, Shohei; Taira, Kensuke; Une, Yumi

    2015-10-01

    Roundworms of the genus Baylisascaris are natural parasites primarily of wild carnivores, and they can occasionally cause infection in humans and animals. Infection results in visceral larva migrans and/or neural larva migrans, which can be severe or fatal in some animals. Recently, Baylisascaris nematodes isolated from kinkajous (Potos flavus) and previously referred to as Baylisascaris procyonis were renamed as Baylisascaris potosis; however, data regarding the pathogenicity of B. potosis towards animals and humans are lacking. In the present study, we experimentally infected squirrel monkeys (Saimiri sciureus) with B. potosis to determine the suitability of the monkey as a primate model. We used embryonated eggs of B. potosis at two different doses (10,000 eggs and 100,000 eggs) and examined the animals at 30 days post-infection. Histopathological examination showed the presence of B. potosis larvae and infiltration of inflammatory cells around a central B. potosis larvae in the brain, intestines, and liver. Nevertheless, the monkeys showed no clinical signs associated with infection. Parasitological examination revealed the presence of B. potosis larvae in the intestines, liver, lung, muscles, brain, kidney, and diaphragm. Our findings extend the range of species that are susceptible to B. potosis and provide evidence for the zoonotic potential of larva migrans in high dose infections. PMID:25796550

  17. On the escape of infective filarial larvae from the mosquitoes.

    PubMed

    Zielke, E

    1977-12-01

    Experimentally infected females of Culex pipiens fatigans carrying infective larvae of Wuchereria bancrofti were fed, on the 16th day p.i., on four different solutions, which were offered "cold" (24 degrees C) or "warm" (34 degrees C) in Petri dishes as open fluids. Thus the sucking mosquitoes did not have to bend their labia. Only the "warm" human serum stimulated any considerable number of infective larvae (24.8%) to leave the mouthparts of the mosquitoes. 1289 infective C. fatigens females lost only an estimated 6.4% of their infective larvae of W. bancrofti, when they were maintained on sugar-water until their natural death. Most of the more heavily infected mosquitoes died relatively soon after the filarial larvae had reached maturity (15-20 days p.i.). The main stimulus provoking the filarial larvae to migrate into the labium is believed to be the movement of the muscles of the pharyngeal pump. Mature larvae protrude their anterior ends from the tip of the labellum. There they seem able to distinguish between suitable and unsuitable external conditions and accordingly they will either leave the proboscis completely or retract into the labium. PMID:601855

  18. Arthropod larvae misidentified as parasitic worm infection.

    PubMed

    Munisamy, Sreetharan; Kilner, Rachael

    2011-01-01

    A healthy, asymptomatic man living in London, presented with seeing 'worms' in his toilet for two successive summer seasons. Repeated microscopic examination and cultures of both his faeces and urine were normal. He was empirically treated with multiple courses of antihelminthics without resolution of this problem. A sample of the worms was obtained, and positively identified as arthropod larvae under microscopic examination. These larvae do not parasitically colonise humans. It was subsequently deduced that a flying arthropod (most likely Culex pipiens mosquito) had laid eggs in standing toilet water, and the hatched larvae had been mistaken for parasitic worms. The patient was declared free of parasites and remains healthy. This case illustrates the dangers of starting empirical treatment without positive confirmation of causative organisms, which can result in unnecessary and potentially harmful treatment. PMID:22675109

  19. Transcriptional response of honey bee larvae infected with the bacterial pathogen Paenibacillus larvae.

    PubMed

    Cornman, Robert Scott; Lopez, Dawn; Evans, Jay D

    2013-01-01

    American foulbrood disease of honey bees is caused by the bacterium Paenibacillus larvae. Infection occurs per os in larvae and systemic infection requires a breaching of the host peritrophic matrix and midgut epithelium. Genetic variation exists for both bacterial virulence and host resistance, and a general immunity is achieved by larvae as they age, the basis of which has not been identified. To quickly identify a pool of candidate genes responsive to P. larvae infection, we sequenced transcripts from larvae inoculated with P. larvae at 12 hours post-emergence and incubated for 72 hours, and compared expression levels to a control cohort. We identified 75 genes with significantly higher expression and six genes with significantly lower expression. In addition to several antimicrobial peptides, two genes encoding peritrophic-matrix domains were also up-regulated. Extracellular matrix proteins, proteases/protease inhibitors, and members of the Osiris gene family were prevalent among differentially regulated genes. However, analysis of Drosophila homologs of differentially expressed genes revealed spatial and temporal patterns consistent with developmental asynchrony as a likely confounder of our results. We therefore used qPCR to measure the consistency of gene expression changes for a subset of differentially expressed genes. A replicate experiment sampled at both 48 and 72 hours post infection allowed further discrimination of genes likely to be involved in host response. The consistently responsive genes in our test set included a hymenopteran-specific protein tyrosine kinase, a hymenopteran specific serine endopeptidase, a cytochrome P450 (CYP9Q1), and a homolog of trynity, a zona pellucida domain protein. Of the known honey bee antimicrobial peptides, apidaecin was responsive at both time-points studied whereas hymenoptaecin was more consistent in its level of change between biological replicates and had the greatest increase in expression by RNA-seq analysis

  20. Disorganized muscle protein-1 (DIM-1) of filarial parasite Brugia malayi: cDNA cloning, expression, purification, structural modeling and its potential as vaccine candidate for human filarial infection.

    PubMed

    Kushwaha, Vikas; Kumar, Vikash; Verma, Shiv K; Sharma, Rolee; Siddiqi, M I; Murthy, P K

    2014-03-26

    We have recently identified disorganized muscle protein-1 (DIM-1) in one of the proinflammatory fractions of the human filaria Brugia malayi adult worm. The present study was undertaken to characterize B. malayi DIM-1 (DIM-1bm) and explore its vaccine potential. In this study we cloned and expressed the DIM-1bm gene, investigated its sequence homology with other nematodes, constructed in silico structural model, purified the recombinant DIM-1bm (rDIM-1bm) protein, and studied the effect of immunization with rDIM-1bm on the establishment of B. malayi infection in Mastomys coucha. DIM-1bm showed similarity with DIM-1 of Caenorhabditis elegans, Ascaris suum and Loa loa. Structural modeling revealed three immunoglobulin domains in DIM-1bm indicating that it is a member of immunoglobulin superfamily (IgSF) and 'blastn' results showed that DIM-1bm coding sequence (CDS) have almost no homology with human and mouse nucleotide sequences. Immunization with rDIM-1bm partially protected M. coucha against establishment of infection as inferred by a low recovery of microfilariae (37-64%) and parasite burden (∼50%). The enhanced activity of macrophages, and IFN-γ and NO responses, and elevated levels of specific IgG, IgG1, IgG2a and IgG2b correlated with parasitological findings. This is the first report on cloning, expression, structural modeling and purification of rDIM-1bm and its ability to partially prevent establishment of B. malayi infection. DIM-1bm's almost complete lack of homology with the human counterpart makes it an attractive protein for exploring its vaccine potential. PMID:24513011

  1. Lipid and fatty acid analysis of uninfected and granulosis virus-infected Plodia interpunctella larvae

    NASA Technical Reports Server (NTRS)

    Shastri-Bhalla, K.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A comparative study on the lipid and fatty acid composition of the uninfected and GV-infected Plodia interpunctella larvae was performed. Higher levels of free fatty acids were found in GV-infected larvae compared to those of the uninfected larvae, while the latter had more triacylglycerol compared to the former. The known identified phospholipids were fewer in the GV-infected larvae compared to those in the uninfected larvae. However, an unidentified phospholipid was found to be approximately two times higher in GV-infected larvae. The total lipid of both larvae had palmitic, oleic, and linoleic as the major fatty acids. The fatty acid composition of the GV-infected larval phospholipid differed considerably compared to that of the uninfected larvae, in that the ratio of unsaturated fatty acid to saturated fatty acid was 3.5 times less in the GV-infected larvae.

  2. Differential immunological responses induced by infection with female muscle larvae and newborn larvae of Trichinella pseudospiralis.

    PubMed

    Wu, Z; Nagano, I; Asano, K; Liu, M Y; Takahashi, Y

    2013-05-20

    Trichinella pseudospiralis infection can modulate the immunological response of autoimmune and allergic diseases leading to the amelioration of these diseases. The present study was undertaken to compare immunity induced by adult worms and muscle larvae. Higher eosinophilia was observed from newborn larva (NBL) infection than from adult females while higher levels of IgE were observed in adult female infections over those induced by NBL. The IgG1 response to ES antigen was more prominent in infections with adult females. The IgG2 responses to larval crude antigen were prominent against NBL. The Th2 cytokine, IL-4 cytokine was elevated in adult female infection following re-stimulation with adult crude antigen and ES. Both infections induced strong IFN-γ responses. The present study demonstrates that adult female worms induced stronger Th2 responses (IgG1, IgE and IL-4 responses) than NBL. Further examination of the mechanisms involved in immune modulation may be helpful for identifying Trichinella-derived molecules responsible for regulating autoimmune and allergic diseases. PMID:23433605

  3. An improved method for nematode infection assays in Drosophila larvae

    PubMed Central

    Dobes, Pavel; Wang, Zhi; Markus, Robert; Theopold, Ulrich; Hyrsl, Pavel

    2012-01-01

    The infective juveniles (IJs) of entomopathogenic nematodes (EPNs) seek out host insects and release their symbiotic bacteria into their body cavity causing septicaemia, which eventually leads to host death. The interaction between EPNs and their hosts are only partially understood, in particular the host immune responses appears to involve pathways other than phagocytosis and the canonical transcriptional induction pathways. These pathways are genetically tractable and include for example clotting factors and lipid mediators. The aim of this study was to optimize the nematode infections in Drosophila melanogaster larvae, a well-studied and genetically tractable model organism. Here we show that two nematode species namely Steinernema feltiae and Heterorhabditis bacteriophora display different infectivity toward Drosophila larvae with the latter being less pathogenic. The effects of supporting media and IJ dosage on the mortality of the hosts were assessed and optimized. Using optimum conditions, a faster and efficient setup for nematode infections was developed. This newly established infection model in Drosophila larvae will be applicable in large scale screens aimed at identifying novel genes/pathways involved in innate immune responses. PMID:22614785

  4. Gedunin and photogedunin of Xylocarpus granatum possess antifilarial activity against human lymphatic filarial parasite Brugia malayi in experimental rodent host.

    PubMed

    Misra, Sweta; Verma, Meenakshi; Mishra, Sunil Kumar; Srivastava, Shishir; Lakshmi, Vijai; Misra-Bhattacharya, Shailja

    2011-11-01

    The present study is aimed to evaluate antifilarial activity of Xylocarpus granatum (fruit from Andaman) against human lymphatic filarial parasite Brugia malayi in vivo. The in vitro antifilarial activity has already been reported earlier for this mangrove plant which has traditionally been used against several ailments. Aqueous ethanolic crude extract, four fractions (ethyl acetate fraction, n-butanol fraction, water-soluble fraction and water-insoluble fraction) and pure molecule/s of X. granatum (fruit) were tested in vitro on adult worms and microfilariae (mf) of B. malayi and the active samples were further evaluated in vivo in B. malayi (intraperitoneally) i.p. transplanted in the jird model (Meriones unguiculatus) and Mastomys coucha subcutaneously infected with infective larvae (L3). The crude aqueous ethanolic extract was active in vitro (IC50: adult = 15.46 μg/ml; mf = 13.17 μg/ml) and demonstrated 52.8% and 62.7% adulticidal and embryostatic effect on B. malayi, respectively, in Mastomys at a dose of 5 × 50 mg/kg by oral route. The antifilarial activity was primarily localized in the ethyl acetate-soluble fraction which revealed IC50 of 8.5 and 6.9 μg/ml in adult and mf, respectively. This fraction possessed moderate adulticidal and embryostatic action in vivo in Mastomys. Out of eight pure molecules isolated from the active fraction, two compounds gedunin (IC50 = 0.239 μg/ml, CC50 = 212.5 μg/ml, SI = 889.1) and photogedunin (IC50 = 0.213 μg/ml, CC50 = 262.3 μg/ml, SI = 1231.4) at 5 × 100 mg/kg by subcutaneous route revealed excellent adulticidal efficacy resulting in to the death of 80% and 70% transplanted adult B. malayi in the peritoneal cavity of jirds respectively in addition to noticeable microfilaricidalo action on the day of autopsy. The findings reveal that the extract from the fruit X. granatum contains promising in vitro and in vivo antifilarial activity against human lymphatic filarial parasite B. malayi which could be attributed to

  5. Characterization of secreted proteases of Paenibacillus larvae, potential virulence factors in honeybee larval infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Paenibacillus larvae is the causative agent of American Foulbrood (AFB), the most severe bacterial disease that affects honeybee larvae. AFB causes a significant decrease in the honeybee population affecting the beekeeping industry and agricultural production. After infection of larvae, P. larvae se...

  6. Susceptibility of some vertebrate hosts to infection with early third-stage larvae of Gnathostoma hispidum.

    PubMed

    Sohn, W M; Lee, S H

    1997-09-01

    Susceptibility of some vertebrates was examined to the early third-stage larvae (EL3) of Gnathostoma hispidum. The larvae collected from the Chinese loaches were infected to 4 silk carps, 3 snake heads, 3 bullfrogs, 5 mice and 9 albino rats. No worms were detected in fish, silk carps and snake heads. In 3 bullfrogs fed 30 larvae, a total of 9 EL3 was recovered in the gastrointestinal tract (8 larvae) and liver (one). In 5 mice infected with 50 larvae, a total of 37 (74.0%) advanced third-stage larvae (AdL3) was recovered from the muscle (31 larvae), liver (5 larvae) and kidney at 4 weeks after infection. In 9 albino rats infected with 115 larvae, a total of 40 (34.8%) AdL3 was found in the muscle. The mammalian hosts were found susceptible to the EL3 of G. hispidum from Chinese loaches. PMID:9335187

  7. Comparative proteomic analysis of surface proteins of Trichinella spiralis muscle larvae and intestinal infective larvae.

    PubMed

    Liu, Ruo Dan; Cui, Jing; Liu, Xiao Lin; Jiang, Peng; Sun, Ge Ge; Zhang, Xi; Long, Shao Rong; Wang, Li; Wang, Zhong Quan

    2015-10-01

    The critical step for Trichinella spiralis infection is that muscle larvae (ML) are activated to intestinal infective larvae (IIL) and invade intestinal epithelium to further develop. The IIL is its first invasive stage, surface proteins are directly exposed to host environment and are crucial for larval invasion and development. In this study, shotgun LC-MS/MS was used to analyze surface protein profiles of ML and IIL. Totally, 41 proteins common to both larvae, and 85 ML biased and 113 IIL biased proteins. Some proteins (e.g., putative scavenger receptor cysteine-rich domain protein and putative onchocystatin) were involved in host-parasite interactions. Gene ontology analysis revealed that proteins involved in generation of precursor metabolites and energy; and nucleobase, nucleoside, nucleotide and nucleic acid metabolic process were enriched in IIL at level 4. Some IIL biased proteins might play important role in larval invasion and development. qPCR results confirmed the high expression of some genes in IIL. Our study provides new insights into larval invasion, host-Trichinella interaction and for screening vaccine candidate antigens. PMID:26184560

  8. Loss of surface coat by Strongyloides ratti infective larvae during skin penetration: evidence using larvae radiolabelled with /sup 67/gallium

    SciTech Connect

    Grove, D.I.; Northern, C.; Warwick, A.; Lovegrove, F.T.

    1984-10-01

    The optimal conditions for labelling infective larvae of Strongyloides ratti with /sup 67/Ga citrate were determined. Radiolabelled larvae were injected s.c. into normal and previously infected rats. The distribution of radioactivity in these animals was compared with that in rats infected subcutaneously with a similar dose of free /sup 67/Ga by using a gamma camera linked to a computer system. Whereas free /sup 67/Ga was distributed throughout the body and excreted via the hepatobiliary system, the bulk of radioactivity in rats injected with radiolabelled larvae remained at the injection sites. Direct microscopical examination of these sites, however, revealed only minimal numbers of worms. When rats were infected percutaneously with radiolabelled larvae, it was found that most radioactivity remained at the surface, despite penetration of worms. When infective larvae were exposed to CO/sub 2/ in vitro and examined carefully by light microscopy, loss of an outer coat was observed. It was concluded that infective larvae lose an outer coat on skin penetration.

  9. Innate Immune Response to Streptococcus iniae Infection in Zebrafish Larvae

    PubMed Central

    Harvie, Elizabeth A.; Green, Julie M.; Neely, Melody N.

    2013-01-01

    Streptococcus iniae causes systemic infection characterized by meningitis and sepsis. Here, we report a larval zebrafish model of S. iniae infection. Injection of wild-type S. iniae into the otic vesicle induced a lethal infection by 24 h postinfection. In contrast, an S. iniae mutant deficient in polysaccharide capsule (cpsA mutant) was not lethal, with greater than 90% survival at 24 h postinfection. Live imaging demonstrated that both neutrophils and macrophages were recruited to localized otic infection with mutant and wild-type S. iniae and were able to phagocytose bacteria. Depletion of neutrophils and macrophages impaired host survival following infection with wild-type S. iniae and the cpsA mutant, suggesting that leukocytes are critical for host survival in the presence of both the wild-type and mutant bacteria. However, zebrafish larvae with impaired neutrophil function but normal macrophage function had increased susceptibility to wild-type bacteria but not the cpsA mutant. Taking these findings together, we have developed a larval zebrafish model of S. iniae infection and have found that although neutrophils are important for controlling infection with wild-type S. iniae, neutrophils are not necessary for host defense against the cpsA mutant. PMID:23090960

  10. The effect of chitin synthesis inhibitors on the development of Brugia malayi in Aedes aegypti.

    PubMed

    Mohapatra, R; Ranjit, M R; Dash, A P

    1996-09-01

    Two chitin synthesis inhibitors (CSIs) viz., triflumuron and hexaflumuron interfere++ with the development of Brugia malayi in Aedes aegypti (a black-eyed Liverpool strain). The development of B. malayi was slow in both the treated populations and the infection rate, infectivity rate and L3 load per mosquito decreased significantly (P < 0.001) in comparison with untreated controls. Hexaflumuron was found to be more inhibiting than triflumuron. PMID:8984113

  11. Detection and quantification of Wuchereria bancrofti and Brugia malayi DNA in blood samples and mosquitoes using duplex droplet digital polymerase chain reaction.

    PubMed

    Jongthawin, Jurairat; Intapan, Pewpan M; Lulitanond, Viraphong; Sanpool, Oranuch; Thanchomnang, Tongjit; Sadaow, Lakkhana; Maleewong, Wanchai

    2016-08-01

    Lymphatic filariasis, a mosquito-borne disease, is still a major public health problem in tropical and sub-tropical countries. Effective diagnostic tools are required for identification of infected individuals, for epidemiological assessment, and for monitoring of control programs. A duplex droplet digital polymerase chain reaction (ddPCR) was conducted to differentiate and quantify Wuchereria bancrofti DNA by targeting the long DNA repeat (LDR) element and Brugia malayi DNA by targeting the HhaI element in blood samples and mosquito vectors. The analytical sensitivity and specificity were evaluated. Our results indicated that the duplex ddPCR assay could differentiate and quantify W. bancrofti and B. malayi DNA from blood samples and mosquitoes. DNA from a single larva in 50 μl of a blood sample, or in one mosquito vector, could be detected. The analytical sensitivity and specificity for W. bancrofti are both 100 %. Corresponding values for B. malayi are 100 and 98.3 %, respectively. Therefore, duplex ddPCR is a potential tool for simultaneous diagnosis and monitoring of bancroftian and brugian filariasis in endemic areas. PMID:27085707

  12. Transcriptional Response of Musca domestica Larvae to Bacterial Infection

    PubMed Central

    Tang, Ting; Li, Xiang; Yang, Xue; Yu, Xue; Wang, Jianhui; Liu, Fengsong; Huang, Dawei

    2014-01-01

    The house fly Musca domestica, a cosmopolitan dipteran insect, is a significant vector for human and animal bacterial pathogens, but little is known about its immune response to these pathogens. To address this issue, we inoculated the larvae with a mixture of Escherichia coli and Staphylococcus aureus and profiled the transcriptome 6, 24, and 48 h thereafter. Many genes known to controlling innate immunity in insects were induced following infection, including genes encoding pattern recognition proteins (PGRPs), various components of the Toll and IMD signaling pathways and of the proPO-activating and redox systems, and multiple antimicrobial peptides. Interestingly, we also uncovered a large set of novel immune response genes including two broad-spectrum antimicrobial peptides (muscin and domesticin), which might have evolved to adapt to house-fly's unique ecological environments. Finally, genes mediating oxidative phosphorylation were repressed at 48 h post-infection, suggesting disruption of energy homeostasis and mitochondrial function at the late stages of infection. Collectively, our data reveal dynamic changes in gene expression following bacterial infection in the house fly, paving the way for future in-depth analysis of M. domestica's immune system. PMID:25137050

  13. Transcriptional response of Musca domestica larvae to bacterial infection.

    PubMed

    Tang, Ting; Li, Xiang; Yang, Xue; Yu, Xue; Wang, Jianhui; Liu, Fengsong; Huang, Dawei

    2014-01-01

    The house fly Musca domestica, a cosmopolitan dipteran insect, is a significant vector for human and animal bacterial pathogens, but little is known about its immune response to these pathogens. To address this issue, we inoculated the larvae with a mixture of Escherichia coli and Staphylococcus aureus and profiled the transcriptome 6, 24, and 48 h thereafter. Many genes known to controlling innate immunity in insects were induced following infection, including genes encoding pattern recognition proteins (PGRPs), various components of the Toll and IMD signaling pathways and of the proPO-activating and redox systems, and multiple antimicrobial peptides. Interestingly, we also uncovered a large set of novel immune response genes including two broad-spectrum antimicrobial peptides (muscin and domesticin), which might have evolved to adapt to house-fly's unique ecological environments. Finally, genes mediating oxidative phosphorylation were repressed at 48 h post-infection, suggesting disruption of energy homeostasis and mitochondrial function at the late stages of infection. Collectively, our data reveal dynamic changes in gene expression following bacterial infection in the house fly, paving the way for future in-depth analysis of M. domestica's immune system. PMID:25137050

  14. Parasitic infection protects wasp larvae against a bacterial challenge.

    PubMed

    Manfredini, Fabio; Beani, Laura; Taormina, Mauro; Vannini, Laura

    2010-09-01

    Host antibacterial defense after Strepsiptera parasitization is a complex and rather unexplored topic. The way how these parasites interact with bacteria invading into the host insect during an infection is completely unknown. In the present study we demonstrate that larvae of the paper wasp Polistes dominulus are more efficient at eliminating bacteria when they are parasitized by the strepsipteran insect Xenos vesparum. We looked at the expression levels of the antimicrobial peptide defensin and we screened for the activity of other hemolymph components by using a zone of inhibition assay. Transcription of defensin is triggered by parasitization, but also by mechanical injury (aseptic injection). Inhibitory activity in vitro against the Gram positive bacterium Staphylococcus aureus is not influenced by the presence of the parasite in the wasp or by a previous immune challenge, suggesting a constitutive power of killing this bacterium by wasp hemolymph. Our results suggest either direct involvement of the parasite or that defensin and further immune components not investigated in this paper, for example other antimicrobial peptides, could play a role in fighting off bacterial infections in Polistes. PMID:20546915

  15. Biological Control of the Nematode Infective larvae of Trichostrongylidae Family With Filamentous Fungi

    PubMed Central

    Zarrin, Majid; Rahdar, Mahmoud; Gholamian, Abbas

    2015-01-01

    Background: Biological control of parasitic nematodes by microorganisms is a promising approach to control such parasites. Microorganisms such as fungi, viruses and bacteria are recognized as biocontrol agents of nematodes. Objectives: The current study mainly aimed to evaluate the in vitro Potential of various saprophyte soil-fungi in reducing the infective larvae stage of parasitic nematode Trichostrongylidae family. Materials and Methods: Sheep feces were employed to provide the required third stage larvae source for the experiments. The nematode infective larvae of Trichostrongylidae family including three species of Ostertagia circumcincta, Marshalgia marshali and Heamonchos contortus were collected by Berman apparatus. Fifteen isolates of filamentous fungi were tested in the current study. One milliliter suspension containing 200 third stage larvae of Trichostrongylidae family was separately added to the fungal cultures in 2% water-agar medium Petri-dishes. Every day the live larvae were counted with light microscope (10X) and the number of captured larvae was recorded on different days. Results: Significant differences were observed in the results of co-culture of nematodes larva and fungi after seven days. The most effective fungi against the nematodes larvae were Cladosporium sp., Trichoderma sp., Fusarium equisetti, after seven days of incubation. Conclusions: The studies on fungi could be applied as suitable tools in biocontrol of nematode infections. However, additional surveys are required to select efficient with the ability to reduce the nematode larvae in the environment. PMID:25893084

  16. Effects of the ant Formica fusca on the transmission of microsporidia infecting gypsy moth larvae.

    PubMed

    Goertz, Dörte; Hoch, Gernot

    2013-06-01

    Transmission plays an integral part in the intimate relationship between a host insect and its pathogen that can be altered by abiotic or biotic factors. The latter include other pathogens, parasitoids, or predators. Ants are important species in food webs that act on various levels in a community structure. Their social behavior allows them to prey on and transport larger prey, or they can dismember the prey where it was found. Thereby they can also influence the horizontal transmission of a pathogen in its host's population. We tested the hypothesis that an ant species like Formica fusca L. (Hymenoptera: Formicidae) can affect the horizontal transmission of two microsporidian pathogens, Nosema lymantriae Weiser (Microsporidia: Nosematidae) and Vairimorpha disparis (Timofejeva) (Microsporidia: Burenellidae), infecting the gypsy moth, Lymantria dispar L. (Lepidoptera: Erebidae: Lymantriinae). Observational studies showed that uninfected and infected L. dispar larvae are potential prey items for F. fusca. Laboratory choice experiments led to the conclusion that F. fusca did not prefer L. dispar larvae infected with N. lymantriae and avoided L. dispar larvae infected with V. disparis over uninfected larvae when given the choice. Experiments carried out on small potted oak, Quercus petraea (Mattuschka) Liebl. (Fagaceae), saplings showed that predation of F. fusca on infected larvae did not significantly change the transmission of either microsporidian species to L. dispar test larvae. Microscopic examination indicated that F. fusca workers never became infected with N. lymantriae or V. disparis after feeding on infected prey. PMID:23926361

  17. Brugia malayi Antigen (BmA) Inhibits HIV-1 Trans-Infection but Neither BmA nor ES-62 Alter HIV-1 Infectivity of DC Induced CD4+ Th-Cells

    PubMed Central

    Mouser, Emily E. I. M.; Pollakis, Georgios; Yazdanbakhsh, Maria; Harnett, William

    2016-01-01

    One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA) and excretory-secretory product 62 (ES-62) from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th) cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs. PMID:26808476

  18. Nematode larvae infecting Priacanthus arenatus Cuvier, 1829 (Pisces: Teleostei) in Brazil.

    PubMed

    Kuraiem, Bianca P; Knoff, Marcelo; Felizardo, Nilza N; Gomes, Delir C; Clemente, Sérgio C São

    2016-05-31

    From July to December, 2013, thirty Priacanthus arenatus specimens commercialized in the cities of Niterói and Rio de Janeiro, State of Rio de Janeiro, were acquired. The fish were necropsied and filleted to investigate the presence of nematode larvae. Twenty fish (66.7%) out of the total were parasitized by nematode larvae. A total of 2024 larvae were collected; among them, 30 third-instar larvae of Anisakis sp. showed prevalence (P) = 20%, mean abundance (MA) = 1, and the mean intensity (MI) = 5, and infection sites (IS) = caecum, stomach, liver, and mesentery; and 1,994 third-instar larvae (1,757 encysted and 237 free) of Hysterothylacium deardorffoverstreetorum with P = 66.7%, MA = 66.5, and MI = 99.7, and IS = spleen, caecum, stomach, liver, mesentery, and abdominal muscle. This is the first study to report H. deardorffoverstreetorum and Anisakis sp. larvae parasitizing P. arenatus. PMID:27254444

  19. Diversity and Expression of MicroRNAs in the Filarial Parasite, Brugia malayi

    PubMed Central

    Poole, Catherine B.; Gu, Weifeng; Kumar, Sanjay; Jin, Jingmin; Davis, Paul J.; Bauche, David; McReynolds, Larry A.

    2014-01-01

    Human filarial parasites infect an estimated 120 million people in 80 countries worldwide causing blindness and the gross disfigurement of limbs and genitals. An understanding of RNA-mediated regulatory pathways in these parasites may open new avenues for treatment. Toward this goal, small RNAs from Brugia malayi adult females, males and microfilariae were cloned for deep-sequencing. From ∼30 million sequencing reads, 145 miRNAs were identified in the B. malayi genome. Some microRNAs were validated using the p19 RNA binding protein and qPCR. B. malayi miRNAs segregate into 99 families each defined by a unique seed sequence. Sixty-one of the miRNA families are highly conserved with homologues in arthropods, vertebrates and helminths. Of those miRNAs not highly conserved, homologues of 20 B. malayi miRNA families were found in vertebrates. Nine B. malayi miRNA families appear to be filarial-specific as orthologues were not found in other organisms. The miR-2 family is the largest in B. malayi with 11 members. Analysis of the sequences shows that six members result from a recent expansion of the family. Library comparisons found that 1/3 of the B. malayi miRNAs are differentially expressed. For example, miR-71 is 5–7X more highly expressed in microfilariae than adults. Studies suggest that in C.elegans, miR-71 may enhance longevity by targeting the DAF-2 pathway. Characterization of B. malayi miRNAs and their targets will enhance our understanding of their regulatory pathways in filariads and aid in the search for novel therapeutics. PMID:24824352

  20. Phage Therapy as an Approach to Prevent Vibrio anguillarum Infections in Fish Larvae Production

    PubMed Central

    Silva, Yolanda J.; Costa, Liliana; Pereira, Carla; Mateus, Cristiana; Cunha, Ângela; Calado, Ricardo; Gomes, Newton C. M.; Pardo, Miguel A.; Hernandez, Igor; Almeida, Adelaide

    2014-01-01

    Fish larvae in aquaculture have high mortality rates due to pathogenic bacteria, especially the Vibrio species, and ineffective prophylactic strategies. Vaccination is not feasible in larvae and antibiotics have reduced efficacy against multidrug resistant bacteria. A novel approach to controlling Vibrio infections in aquaculture is needed. The potential of phage therapy to combat vibriosis in fish larvae production has not yet been examined. We describe the isolation and characterization of two bacteriophages capable of infecting pathogenic Vibrio and their application to prevent bacterial infection in fish larvae. Two groups of zebrafish larvae were infected with V. anguillarum (∼106 CFU mL−1) and one was later treated with a phage lysate (∼108 PFU mL−1). A third group was only added with phages. A fourth group received neither bacteria nor phages (fish control). Larvae mortality, after 72 h, in the infected and treated group was similar to normal levels and significantly lower than that of the infected but not treated group, indicating that phage treatment was effective. Thus, directly supplying phages to the culture water could be an effective and inexpensive approach toward reducing the negative impact of vibriosis in larviculture. PMID:25464504

  1. [Studies on the histochemistry of Culex tritaeniorhynchus larvae infected with Coelomomyces indica].

    PubMed

    Sun, J H; Wang, Z Y; Lian, W N; Liu, S L

    1993-01-01

    A sectional survey with histochemical technique was carried out on Culex tritaeniorhynchus larvae infected with Coelomomyces indica in comparison to the noninfected larvae. Studies were pursued by using micrograph and imaging analysis. The results showed that the glycogen, protein and nucleic acid (RNA and DNA) reaction in the infected group were less than those of the control group. The gray level assessment in tissue imaging showed marked difference between the two groups. It is suggested that C. indica has significant effect on the above biochemical elements of the mosquito larvae, which might be considered an important mechanism in the pathogenicity of the fungus. PMID:8168236

  2. Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions

    PubMed Central

    Ross, Perran A.; Endersby, Nancy M.; Hoffmann, Ary A.

    2016-01-01

    The mosquito Aedes aegypti, the principal vector of dengue virus, has recently been infected experimentally with Wolbachia: intracellular bacteria that possess potential as dengue biological control agents. Wolbachia depend on their hosts for nutrients they are unable to synthesize themselves. Consequently, competition between Wolbachia and their host for resources could reduce host fitness under the competitive conditions commonly experienced by larvae of Ae. aegypti in the field, hampering the invasion of Wolbachia into natural mosquito populations. We assess the survival and development of Ae. aegypti larvae under starvation conditions when infected with each of three experimentally-generated Wolbachia strains: wMel, wMelPop and wAlbB, and compare their fitness to wild-type uninfected larvae. We find that all three Wolbachia infections reduce the survival of larvae relative to those that are uninfected, and the severity of the effect is concordant with previously characterized fitness costs to other life stages. We also investigate the ability of larvae to recover from extended food deprivation and find no effect of Wolbachia on this trait. Aedes aegypti larvae of all infection types were able to resume their development after one month of no food, pupate rapidly, emerge at a large size, and exhibit complete cytoplasmic incompatibility and maternal transmission. A lowered ability of Wolbachia-infected larvae to survive under starvation conditions will increase the threshold infection frequency required for Wolbachia to establish in highly competitive natural Ae. aegypti populations and will also reduce the speed of invasion. This study also provides insights into survival strategies of larvae when developing in stressful environments. PMID:26745630

  3. Storage of gastrointestinal nematode infective larvae for species preservation and experimental infections.

    PubMed

    Chylinski, C; Cortet, J; Sallé, G; Jacquiet, P; Cabaret, J

    2015-02-01

    Techniques to preserve the infective third-stage larvae (L3) of gastrointestinal nematodes are of considerable interest to preserve rare species and to maintain a stable source for routine experimental infections. This study compares the relative pros and cons of the two most common techniques, cryopreservation and refrigeration by comparing how they influence consequent infection outcome parameters in terms of life-history traits and fitness as a function of time using the gastrointestinal nematode of sheep Haemonchus contortus as a study species. Establishment capacity was found to be significantly reduced in cryopreserved stocks of L3 compared to refrigerated stocks, but this was followed by significant increases in their fecundity. Refrigeration did not affect L3 stocks consequent fitness by 16 months (the maximum examined) although they did incur a significant reduction in establishment, followed once again by an augmentation in fecundity. The study highlights potential areas for bias in comparing studies using L3 larvae maintained for different periods of time under different techniques. PMID:25468381

  4. Nosema ceranae Can Infect Honey Bee Larvae and Reduces Subsequent Adult Longevity

    PubMed Central

    Eiri, Daren M.; Suwannapong, Guntima; Endler, Matthew; Nieh, James C.

    2015-01-01

    Nosema ceranae causes a widespread disease that reduces honey bee health but is only thought to infect adult honey bees, not larvae, a critical life stage. We reared honey bee (Apis mellifera) larvae in vitro and provide the first demonstration that N. ceranae can infect larvae and decrease subsequent adult longevity. We exposed three-day-old larvae to a single dose of 40,000 (40K), 10,000 (10K), zero (control), or 40K autoclaved (control) N. ceranae spores in larval food. Spores developed intracellularly in midgut cells at the pre-pupal stage (8 days after egg hatching) of 41% of bees exposed as larvae. We counted the number of N. ceranae spores in dissected bee midguts of pre-pupae and, in a separate group, upon adult death. Pre-pupae exposed to the 10K or 40K spore treatments as larvae had significantly elevated spore counts as compared to controls. Adults exposed as larvae had significantly elevated spore counts as compared to controls. Larval spore exposure decreased longevity: a 40K treatment decreased the age by which 75% of adult bees died by 28%. Unexpectedly, the low dose (10K) led to significantly greater infection (1.3 fold more spores and 1.5 fold more infected bees) than the high dose (40K) upon adult death. Differential immune activation may be involved if the higher dose triggered a stronger larval immune response that resulted in fewer adult spores but imposed a cost, reducing lifespan. The impact of N. ceranae on honey bee larval development and the larvae of naturally infected colonies therefore deserve further study. PMID:26018139

  5. Nosema ceranae Can Infect Honey Bee Larvae and Reduces Subsequent Adult Longevity.

    PubMed

    Eiri, Daren M; Suwannapong, Guntima; Endler, Matthew; Nieh, James C

    2015-01-01

    Nosema ceranae causes a widespread disease that reduces honey bee health but is only thought to infect adult honey bees, not larvae, a critical life stage. We reared honey bee (Apis mellifera) larvae in vitro and provide the first demonstration that N. ceranae can infect larvae and decrease subsequent adult longevity. We exposed three-day-old larvae to a single dose of 40,000 (40K), 10,000 (10K), zero (control), or 40K autoclaved (control) N. ceranae spores in larval food. Spores developed intracellularly in midgut cells at the pre-pupal stage (8 days after egg hatching) of 41% of bees exposed as larvae. We counted the number of N. ceranae spores in dissected bee midguts of pre-pupae and, in a separate group, upon adult death. Pre-pupae exposed to the 10K or 40K spore treatments as larvae had significantly elevated spore counts as compared to controls. Adults exposed as larvae had significantly elevated spore counts as compared to controls. Larval spore exposure decreased longevity: a 40K treatment decreased the age by which 75% of adult bees died by 28%. Unexpectedly, the low dose (10K) led to significantly greater infection (1.3 fold more spores and 1.5 fold more infected bees) than the high dose (40K) upon adult death. Differential immune activation may be involved if the higher dose triggered a stronger larval immune response that resulted in fewer adult spores but imposed a cost, reducing lifespan. The impact of N. ceranae on honey bee larval development and the larvae of naturally infected colonies therefore deserve further study. PMID:26018139

  6. A survey of infective larvae of Gnathostoma in eels sold in Ho Chi Minh City.

    PubMed

    Le, T X; Rojekittikhun, W

    2000-03-01

    To investigate the distribution of Gnathostoma spp in Ho Chi Minh City (HCM city), 1,081 eels were purchased from a local market twice a month from March 1998 to February 1999. Infective larvae of Gnathostoma spp detected from the flesh and liver of eels by the press preparation technique were examined and identified. Three hundred and fifty advanced third-stage larvae were recovered from liver, none from the flesh. The average rate of infection was 0.11; a high rate of infection was found from August to November and a low rate of infection from February to May. The average number of larvae/eel was 2.9; the greatest number of larvae/eel was in January whereas the lowest was in March and April. There was a marked decrease in both prevalence and intensity of infection from February to May, followed by a rise from June. The finding suggests that in HCM city, the infection rate abruptly decreases soon after the end of the rainy season and starts to rise when the rain comes and reaches its peak at the end of the rainy season. All recovered larvae were identified as G. spinigerum. PMID:11023080

  7. Eicosanoids mediate melantoic nodulation reactions to viral infection in larvae of the parasitic wasp, Pimpla turionellae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nodulation is the predominant insect cellular immune response to bacterial and fungal infections and it can also be induced by viral infection. Treating seventh instar larvae of greater wax moth Galleria mellonella with Bovine herpes simplex virus-1 (BHSV-1) induced nodulation reactions in a dose-d...

  8. Nucleopolyhedrovirus infection and/or parasitism by Microplitis pallidipes Szepligeti affect hemocyte apoptosis of Spodoptera exigua (Hübner) larvae.

    PubMed

    Wan, Nian-Feng; Ji, Xiang-Yun; Zhang, Hao; Yang, Jun-Hua; Jiang, Jie-Xian

    2015-11-01

    We determined the effects of parasitism by the endoparasitoid Microplitis pallidipes Szepligeti and/or nucleopolyhedrovirus (NPV) infection on hemocyte apoptosis of Spodoptera exigua (Hübner) larvae. Compared to healthy (control) larvae, larvae that were parasitized, virus-infected, or both all showed a significant increase in hemocyte apoptosis during 48-h observation period. The peaks of hemocyte apoptosis in parasitized, virus-infected and parasitized+infected larvae were at 12, 24 and 48 h after treatment, and were 86.7±1.9, 87.4±3.6 and 76.5±1.6%, respectively. Meanwhile, compared to parasitized larvae, hemocyte apoptosis in jointly parasitized and infected larvae increased by 12.9%, 18.7% and 2.8% at 8, 36 and 48 h respectively, and decreased by 39.0% and 9.1% at 12 and 24h. Compared to virus-infected larvae, hemocyte apoptosis in jointly parasitized and infected larvae increased by 13.4%, 2.4% and 15.3% at 8, 36 and 48 h, respectively, and decreased by 4.0% and 29.9% at 12 and 24h. Our study found that joint and separate parasitism and SeNPV infection induced hemocyte apoptosis of S. exigua larvae. It also revealed that NPV infection promoted host hemocyte apoptosis induced by parasitism at early egg and larval stages of M. pallidipes in host larvae, but inhibited the same effect at late egg stage of M. pallidipes in host larvae, and that parasitism promoted host hemocyte apoptosis induced by NPV infection at early egg and larval stages of M. pallidipes in host larvae, but inhibited the same effect at late egg stage of M. pallidipes in host larvae. PMID:26470677

  9. Radiolabeling of infective third-stage larvae of Strongyloides stercoralis by feeding ( sup 75 Se)selenomethionine-labeled Escherichia coli to first- and second-stage larvae

    SciTech Connect

    Aikens, L.M.; Schad, G.A. )

    1989-10-01

    A technique is described for radiolabeling Strongyloides stercoralis larvae with ({sup 75}Se)selenomethionine. Cultures of an auxotrophic methionine-dependent stain of Escherichia coli were grown in a medium containing Dulbecco's modified Eagle's medium supplemented with 5% nutrient broth, amino acids, and ({sup 75}Se)selenomethionine. When the {sup 75}Se-labeled bacterial populations were in the stationary phase of growth, cultures were harvested and the bacteria dispersed on agar plates to serve as food for S. stercoralis larvae. Use of nondividing bacteria is important for successful labeling because the isotope is not diluted by cell division and death of larvae attributable to overgrowth by bacteria is prevented. First-stage S. stercoralis larvae were recovered from feces of infected dogs and reared in humid air at 30 C on agar plates seeded with bacteria. After 7 days, infective third-stage larvae were harvested. The mean specific activity of 6 different batches of larvae ranged from 75 to 330 counts per min/larva with 91.8 +/- 9.5% of the population labeled sufficiently to produce an autoradiographic focus during a practicable, 6-wk period of exposure. Labeled infective larvae penetrated the skin of 10-day-old puppies and migrated to the small intestine, where the developed to adulthood.

  10. Distribution patterns and predilection muscles of Trichinella zimbabwensis larvae in experimentally infected Nile crocodiles (Crocodylus niloticus Laurenti).

    PubMed

    La Grange, Louis J; Mukaratirwa, Samson

    2014-01-01

    No controlled studies have been conducted to determine the predilection muscles of Trichinella zimbabwensis larvae in Nile crocodiles (Crocodylus niloticus) or the influence of infection intensity on the distribution of the larvae in crocodiles. The distribution of larvae in muscles of naturally infected Nile crocodiles and experimentally infected caimans (Caiman crocodilus) and varans (Varanus exanthematicus) have been reported in literature. To determine the distribution patterns of T. zimbabwensis larvae and predilection muscles, 15 crocodiles were randomly divided into three cohorts of five animals each, representing high infection (642 larvae/kg of bodyweight average), medium infection (414 larvae/kg of bodyweight average) and low infection (134 larvae/kg of bodyweight average) cohorts. In the high infection cohort, high percentages of larvae were observed in the triceps muscles (26%) and hind limb muscles (13%). In the medium infection cohort, high percentages of larvae were found in the triceps muscles (50%), sternomastoid (18%) and hind limb muscles (13%). In the low infection cohort, larvae were mainly found in the intercostal muscles (36%), longissimus complex (27%), forelimb muscles (20%) and hind limb muscles (10%). Predilection muscles in the high and medium infection cohorts were similar to those reported in naturally infected crocodiles despite changes in infection intensity. The high infection cohort had significantly higher numbers of larvae in the sternomastoid, triceps, intercostal, longissimus complex, external tibial flexor, longissimus caudalis and caudal femoral muscles (p < 0.05) compared with the medium infection cohort. In comparison with the low infection cohort, the high infection cohort harboured significantly higher numbers of larvae in all muscles (p < 0.05) except for the tongue. The high infection cohort harboured significantly higher numbers of larvae (p < 0.05) in the sternomastoid, triceps, intercostal, longissimus complex

  11. Integrative Study of Physiological Changes Associated with Bacterial Infection in Pacific Oyster Larvae

    PubMed Central

    Genard, Bertrand; Miner, Philippe; Nicolas, Jean-Louis; Moraga, Dario; Boudry, Pierre; Pernet, Fabrice; Tremblay, Réjean

    2013-01-01

    Background Bacterial infections are common in bivalve larvae and can lead to significant mortality, notably in hatcheries. Numerous studies have identified the pathogenic bacteria involved in such mortalities, but physiological changes associated with pathogen exposure at larval stage are still poorly understood. In the present study, we used an integrative approach including physiological, enzymatic, biochemical, and molecular analyses to investigate changes in energy metabolism, lipid remodelling, cellular stress, and immune status of Crassostrea gigas larvae subjected to experimental infection with the pathogenic bacteria Vibrio coralliilyticus. Findings Our results showed that V. coralliilyticus exposure induced (1) limited but significant increase of larvae mortality compared with controls, (2) declined feeding activity, which resulted in energy status changes (i.e. reserve consumption, β-oxidation, decline of metabolic rate), (3) fatty acid remodeling of polar lipids (changes in phosphatidylinositol and lysophosphatidylcholine composition`, non-methylene–interrupted fatty acids accumulation, lower content of major C20 polyunsaturated fatty acids as well as activation of desaturases, phospholipase and lipoxygenase), (4) activation of antioxidant defenses (catalase, superoxide dismutase, peroxiredoxin) and cytoprotective processes (heat shock protein 70, pernin), and (5) activation of the immune response (non-self recognition, NF-κκ signaling pathway, haematopoiesis, eiconosoids and lysophosphatidyl acid synthesis, inhibitor of metalloproteinase and antimicrobial peptides). Conclusion Overall, our results allowed us to propose an integrative view of changes induced by a bacterial infection in Pacific oyster larvae, opening new perspectives on the response of marine bivalve larvae to infections. PMID:23704993

  12. Characterization of secreted proteases of Paenibacillus larvae, potential virulence factors involved in honeybee larval infection.

    PubMed

    Antúnez, Karina; Anido, Matilde; Schlapp, Geraldine; Evans, Jay D; Zunino, Pablo

    2009-10-01

    Paenibacillus larvae is the causative agent of American Foulbrood (AFB), the most severe bacterial disease that affects honeybee larvae. AFB causes a significant decrease in the honeybee population affecting the beekeeping industry and agricultural production. After infection of larvae, P. larvae secretes proteases that could be involved in the pathogenicity. In the present article, we present the secretion of different proteases by P. larvae. Inhibition assays confirmed the presence of metalloproteases. Two different proteases patterns (PP1 and PP2) were identified in a collection of P. larvae isolates from different geographic origin. Forty nine percent of P. larvae isolates showed pattern PP1 while 51% exhibited pattern PP2. Most isolates belonging to genotype ERIC I - BOX A presented PP2, most isolates belonging to ERIC I - BOX C presented PP1 although relations were not significant. Isolates belonging to genotypes ERIC II and ERIC III presented PP2. No correlation was observed between the secreted proteases patterns and geographic distribution, since both patterns are widely distributed in Uruguay. According to exposure bioassays, isolates showing PP2 are more virulent than those showing PP1, suggesting that difference in pathogenicity could be related to the secretion of proteases. PMID:19638278

  13. Complete Genome Sequences of Nine Phages Capable of Infecting Paenibacillus larvae, the Causative Agent of American Foulbrood Disease in Honeybees

    PubMed Central

    Yost, Diane G.; Krohn, Andrew; LeBlanc, Lucy; Zhang, Anna; Stamereilers, Casey; Amy, Penny S.

    2015-01-01

    We present here the complete genome sequences of nine phages that infect Paenibacillus larvae, the causative agent of American foulbrood disease in honeybees. The phages were isolated from soil, propolis, and infected bees from three U.S. states. This is the largest number of P. larvae phage genomes sequenced in a single publication to date. PMID:26472825

  14. Complete Genome Sequences of Nine Phages Capable of Infecting Paenibacillus larvae, the Causative Agent of American Foulbrood Disease in Honeybees.

    PubMed

    Tsourkas, Philippos K; Yost, Diane G; Krohn, Andrew; LeBlanc, Lucy; Zhang, Anna; Stamereilers, Casey; Amy, Penny S

    2015-01-01

    We present here the complete genome sequences of nine phages that infect Paenibacillus larvae, the causative agent of American foulbrood disease in honeybees. The phages were isolated from soil, propolis, and infected bees from three U.S. states. This is the largest number of P. larvae phage genomes sequenced in a single publication to date. PMID:26472825

  15. Localization of Ascaridia galli larvae in the jejunum of chickens 3 days post infection.

    PubMed

    Luna-Olivares, Luz Adilia; Ferdushy, Tania; Kyvsgaard, Niels Christian; Nejsum, Peter; Thamsborg, Stig Milan; Roepstorff, Allan; Iburg, Tine Moesgaard

    2012-04-30

    The normal habitat of the parasitic stages of Ascaridia galli is in the small intestine of poultry but the exact localization is poorly understood. Therefore, a histological study was conducted in order to localize the larvae during the early phase of infection. Six layer pullets seven-week old were infected orally with 20,000 embryonated A. galli eggs each, whereas four chickens were left as un-infected controls. At necropsy 3 days after infection the first half of jejunum/ileum was divided into two equally sized sections (J1 and J2). After taking samples for histology from the middle of J1 and J2 and the junction between these determined JX, the two sections were subjected to parasitological examination. A higher number of A. galli larvae were recovered from section J2 than J1 and the majority of larvae were recovered from the most profound layers. Based on histology 144 larvae were identified and their location was noted. The highest number of larvae was observed in the JX sample as compared to J1 and J2 (P<0.001). Most of them were located in the profound crypt zone of the mucosa (51%) as compared to the other zones (P<0.05). The number of larvae was higher in the lumen (63%) compared to the epithelium (32%) and lamina propria (5%) (P<0.001). A significantly higher number of eosinophils were found in lamina propria of the infected group compared to the control group (P<0.001). This experiment clearly showed that only few larvae had penetrated the epithelium and were positioned in the lamina propria at 3 days post infection. It was far more common that the larvae were localized within the epithelium or in the lumen of the crypts. It is therefore suggested that at least in this early phase "mucosal phase" is a more appropriate term to be used for the A. galli larval localization as compared to the term "histotrophic phase" currently used in many textbooks. PMID:22133491

  16. Infection of Anisakids Larvae in Long Tail Tuna (Thunnus tonggol) In North Persian Gulf

    PubMed Central

    Eslami, A; Sabokroo, H; Ranjbar- Bahadori, SH

    2011-01-01

    Background The aim of this paper was to study the prevalence and intensity of Anisakids larvae in the long tail tuna fish captured from Iranian shores of Persian Gulf. Methods Different organs including skin, abdominal cavity, stomach and intestinal contents, stomach sub serous tissues, liver, spleen, gonads and 20 grams of muscles of 100 long tail tuna fish (Thannus tonggol) caught from waters of the north parts of Persian Gulf were searched for anisakid nematodes larvae. Twenty grams of around the body cavity muscles were digested in artificial gastric juice. Different organs and digested muscles were examined with naked eyes for the presence of anisakids larvae. The collected larvae were preserved in 70% alcohol containing 5% glycerin, and cleared in lactophenol for identification. Results Our findings revealed that 89% of fish harbored 3rd stage larvae of Anisakis sp. of which 2% were infected with both Anisakis and Raphidascaris. All inspected organs except that of skin were found to be infected, while stomach sub serous tissues were the most infected organ (80%) followed by abdominal cavity (10%), liver (4%), testicle (3%), stomach contents and spleen (2%) and intestinal contents (1%). Intestine and abdominal cavity were the organs harbored Raphidascaris sp. Digested muscles were free of parasite. Mean intensity was low for both species and ranged between 1.5 for Raphidascaris sp. and 3.67 for Anisaki sp. Conclusion Anisakids larvae especially Anisakis are very prevalent in some fish including tunas of Persian Gulf, and consumption of infected fish if it is not properly cooked may lead to human anisakiasis. PMID:22347303

  17. Changes in trace metals in hemolymph of baculovirus infected noctuid larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied how biologically relevant trace metals (i.e., micronutrients) in the plasma of larvae of Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae) changed in response to per os baculovirus infection, larval development, and injection of heat-killed bacteria. Concentrations of plas...

  18. Severe mortality in mesocosm-reared sharpsnout sea bream Diplodus puntazzo larvae due to epitheliocystis infection.

    PubMed

    Katharios, Pantelis; Papadaki, Maria; Papandroulakis, Nikos; Divanach, Pascal

    2008-10-16

    This paper describes severe mortalities recorded in sharpsnout sea bream Diplodus puntazzo larvae reared in mesocosms. The mortalities were attributed to epitheliocystis infection. The pathology associated with the disease is described using histological techniques. Microscopical examination showed a massive infection of the skin, fins, and oral cavity, with impaired feeding, respiration, and osmoregulation being the most likely cause of death. This is the first report of epitheliocystis disease in sharpsnout sea bream and in fish at such an early developmental stage. PMID:19062753

  19. DNA hybridization assay for detection of gypsy moth nuclear polyhedrosis virus in infected gypsy moth (Lymantria dispar L. ) larvae

    SciTech Connect

    Keating, S.T.; Burand, J.P.; Elkinton, J.S. )

    1989-11-01

    Radiolabeled Lymantria dispar nuclear polyhedrosis virus DNA probes were used in a DNA hybridization assay to detect the presence of viral DNA in extracts from infected larvae. Total DNA was extracted from larvae, bound to nitrocellulose filters, and assayed for the presence of viral DNA by two methods: slot-blot vacuum filtration and whole-larval squashes. The hybridization results were closely correlated with mortality observed in reared larvae. Hybridization of squashes of larvae frozen 4 days after receiving the above virus treatments also produced accurate measures of the incidence of virus infection.

  20. Establishment of Infection Models in Zebrafish Larvae (Danio rerio) to Study the Pathogenesis of Aeromonas hydrophila.

    PubMed

    Saraceni, Paolo R; Romero, Alejandro; Figueras, Antonio; Novoa, Beatriz

    2016-01-01

    Aeromonas hydrophila is a Gram-negative opportunistic pathogen of fish and terrestrial animals. In humans, A. hydrophila mainly causes gastroenteritis, septicaemia, and tissue infections. The mechanisms of infection, the main virulence factors and the host immune response triggered by A. hydrophila have been studied in detail using murine models and adult fish. However, the great limitation of studying adult animals is that the animal must be sacrificed and its tissues/organs extracted, which prevents the study of the infectious processes in the whole living animal. Zebrafish larvae are being used for the analysis of several infectious diseases, but their use for studying the pathogenesis of A. hydrophila has never been explored. The great advantage of zebrafish larvae is their transparency during the first week after fertilization, which allows detailed descriptions of the infectious processes using in vivo imaging techniques such as differential interferential contrast (DIC) and fluorescence microscopy. Moreover, the availability of fluorescent pathogens and transgenic reporter zebrafish lines expressing fluorescent immune cells, immune marker genes or cytokines/chemokines allows the host-pathogen interactions to be characterized. The present study explores the suitability of zebrafish larvae to study the pathogenesis of A. hydrophila and the interaction mechanisms between the bacterium and the innate immune responses through an infection model using different routes for infection. We used an early-embryo infection model at 3 days post-fertilization (dpf) through the microinjection of A. hydrophila into the duct of Cuvier, caudal vein, notochord, or muscle and two bath infection models using 4 dpf healthy and injured larvae. The latter resembled the natural conditions under which A. hydrophila produces infectious diseases in animals. We compared the cellular processes after infection in each anatomical site by confocal fluorescence imaging and determined the

  1. Establishment of Infection Models in Zebrafish Larvae (Danio rerio) to Study the Pathogenesis of Aeromonas hydrophila

    PubMed Central

    Saraceni, Paolo R.; Romero, Alejandro; Figueras, Antonio; Novoa, Beatriz

    2016-01-01

    Aeromonas hydrophila is a Gram-negative opportunistic pathogen of fish and terrestrial animals. In humans, A. hydrophila mainly causes gastroenteritis, septicaemia, and tissue infections. The mechanisms of infection, the main virulence factors and the host immune response triggered by A. hydrophila have been studied in detail using murine models and adult fish. However, the great limitation of studying adult animals is that the animal must be sacrificed and its tissues/organs extracted, which prevents the study of the infectious processes in the whole living animal. Zebrafish larvae are being used for the analysis of several infectious diseases, but their use for studying the pathogenesis of A. hydrophila has never been explored. The great advantage of zebrafish larvae is their transparency during the first week after fertilization, which allows detailed descriptions of the infectious processes using in vivo imaging techniques such as differential interferential contrast (DIC) and fluorescence microscopy. Moreover, the availability of fluorescent pathogens and transgenic reporter zebrafish lines expressing fluorescent immune cells, immune marker genes or cytokines/chemokines allows the host–pathogen interactions to be characterized. The present study explores the suitability of zebrafish larvae to study the pathogenesis of A. hydrophila and the interaction mechanisms between the bacterium and the innate immune responses through an infection model using different routes for infection. We used an early-embryo infection model at 3 days post-fertilization (dpf) through the microinjection of A. hydrophila into the duct of Cuvier, caudal vein, notochord, or muscle and two bath infection models using 4 dpf healthy and injured larvae. The latter resembled the natural conditions under which A. hydrophila produces infectious diseases in animals. We compared the cellular processes after infection in each anatomical site by confocal fluorescence imaging and determined the

  2. Infection, transfection, and co-transfection of baculoviruses by microprojectile bombardment of larvae.

    PubMed

    Obregón-Barboza, Verónica; Del Rincón-Castro, Ma Cristina; Cabrera-Ponce, José L; Ibarra, Jorge E

    2007-03-01

    The use of baculoviruses as expression vectors for heterologous proteins has been practically limited to the use of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). In this work, infection, transfection and co-transfection events with the baculoviruses AcMNPV and Trichoplusia ni granulovirus (TnGV) were accomplished by bombardment of T. ni first-instar larvae with microprojectiles coated with virions, viral DNA, and viral DNA and a transfer vector, respectively. A series of shooting conditions were tested until positive results were obtained. The use of 1.6 microm gold particles at 900 psi shooting pressure, 400 Torr vacuum, 7 cm distance to target, on sets of 20 first-instar larvae held in a 16 mm diameter container, proved to be the best shooting conditions. Typical infection symptoms were shown by larvae when shot with viruses or viral DNA from AcMNPV or TnGV. Co-transfected recombinant AcMNPV and TnGV were identified by the formation of occlusion bodies and GFP, respectively, in bombarded larvae. This technique opens a wide range of possibilities, not only to use an extensive number of baculoviruses as expression vectors for heterologous proteins, but also be used to infect, transfect or co-transfect a wide variety of viruses into animal cells. PMID:17184851

  3. Infection of Melissococcus plutonius clonal complex 12 strain in European honeybee larvae is essentially confined to the digestive tract

    PubMed Central

    TAKAMATSU, Daisuke; SATO, Masumi; YOSHIYAMA, Mikio

    2015-01-01

    Melissococcus plutonius is an important pathogen that causes European foulbrood (EFB) in honeybee larvae. Recently, we discovered a group of M. plutonius strains that are phenotypically and genetically distinct from other strains. These strains belong to clonal complex (CC) 12, as determined by multilocus sequence typing analysis, and show atypical cultural and biochemical characteristics in vitro compared with strains of other CCs tested. Although EFB is considered to be a purely intestinal infection according to early studies, it is unknown whether the recently found CC12 strains cause EFB by the same pathomechanism. In this study, to obtain a better understanding of EFB, we infected European honeybee (Apis mellifera) larvae per os with a well-characterized CC12 strain, DAT561, and analyzed the larvae histopathologically. Ingested DAT561 was mainly localized in the midgut lumen surrounded by the peritrophic matrix (PM) in the larvae. In badly affected larvae, the PM and midgut epithelial cells degenerated, and some bacterial cells were detected outside of the midgut. However, they did not proliferate in the deep tissues actively. By immunohistochemical analysis, the PM was stained with anti-M. plutonius serum in most of the DAT561-infected larvae. In some larvae, luminal surfaces of the PM were more strongly stained than the inside. These results suggest that infection of CC12 strain in honeybee larvae is essentially confined to the intestine. Moreover, our results imply the presence of M. plutonius-derived substances diffusing into the larval tissues in the course of infection. PMID:26256232

  4. New Paenibacillus larvae bacterial isolates from honey bee colonies infected with American foulbrood disease in Egypt

    PubMed Central

    Masry, Saad Hamdy Daif; Kabeil, Sanaa Soliman; Hafez, Elsayed Elsayed

    2014-01-01

    The American foulbrood disease is widely distributed all over the world and causes a serious problem for the honeybee industry. Different infected larvae were collected from different apiaries, ground in phosphate saline buffer (PSB) and bacterial isolation was carried out on nutrient agar medium. Different colonies were observed and were characterized biologically. Two bacterial isolates (SH11 and SH33) were subjected to molecular identification using 16S rRNA gene and the sequence analysis revealed that the two isolates are Paenibacillus larvae with identity not exceeding 83%. The DNA sequence alignment between the other P. larvae bacterial strains and the two identified bacterial isolates showed that all the examined bacterial strains have the same ancestor, i.e. they have the same origin. The SH33 isolate was closely related to the P. larvae isolated from Germany, whereas the isolate SH11 was close to the P. larvae isolated from India. The phylogenetic tree constructed for 20 different Bacillus sp. and the two isolates SH11 and SH33 demonstrated that the two isolates are Bacillus sp. and they are new isolates. The bacterial isolates will be subjected to more tests for more confirmations. PMID:26740757

  5. Following the infection process of vibriosis in Manila clam (Ruditapes philippinarum) larvae through GFP-tagged pathogenic Vibrio species.

    PubMed

    Dubert, Javier; Nelson, David R; Spinard, Edward J; Kessner, Linda; Gomez-Chiarri, Marta; da Costa, Fiz; Prado, Susana; Barja, Juan L

    2016-01-01

    Vibriosis represents the main bottleneck for the larval production process in shellfish aquaculture. While the signs of this disease in bivalve larvae are well known, the infection process by pathogenic Vibrio spp. during episodes of vibriosis has not been elucidated. To investigate the infection process in bivalves, the pathogens of larvae as V. tubiashii subsp. europaensis, V. neptunius and V. bivalvicida were tagged with green fluorescent protein (GFP). Larvae of Manila clam (Ruditapes philippinarum) were inoculated with the GFP-labeled pathogens in different infection assays and monitored by microscopy. Manila clam larvae infected by distinct GFP-tagged Vibrio spp. in different challenges showed the same progression in the infection process, defining three infection stages. GFP-tagged Vibrio spp. were filtered by the larvae through the vellum and entered in the digestive system through the esophagus and stomach and colonized the digestive gland and particularly the intestine, where they proliferated during the first 2h of contact (Stage I), suggesting a chemotactic response. Then, GFP-tagged Vibrio spp. expanded rapidly to the surrounding organs in the body cavity from the dorsal to ventral region (Stage II; 6-8h), colonizing the larvae completely at the peak of infection (Stage III) (14-24h). Results demonstrated for the first time that the vibriosis is asymptomatic in Manila clam larvae during the early infection stages. Thus, the early colonization and the rapid proliferation of Vibrio pathogens within the body cavity supported the sudden and fatal effect of the vibriosis, since the larvae exhibited the first signs of disease when the infection process is advanced. As a first step in the elucidation of the potential mechanisms of bacterial pathogenesis in bivalve larvae the enzymatic activities of the extracellular products released from the wild type V. neptunius, V. tubiashii subsp. europaensis and V. bivalvicida were determined and their cytotoxicity was

  6. Experimental bacteriophage treatment of honeybees (Apis mellifera) infected with Paenibacillus larvae, the causative agent of American Foulbrood Disease

    PubMed Central

    Yost, Diane G.; Tsourkas, Philippos; Amy, Penny S.

    2016-01-01

    ABSTRACT American Foulbrood Disease (AFB) is an infection of honeybees caused by the bacterium Paenibacillus larvae. One potential remedy involves using biocontrol, such as bacteriophages (phages) to lyse P. larvae. Therefore, bacteriophages specific for P. larvae were isolated to determine their efficacy in lysing P. larvae cells. Samples from soil, beehive materials, cosmetics, and lysogenized P. larvae strains were screened; of 157 total samples, 28 were positive for at least one P. larvae bacteriophage, with a total of 30. Newly isolated bacteriophages were tested for the ability to lyse each of 11 P. larvae strains. Electron microscopy demonstrated that the phage isolates were from the family Siphoviridae. Seven phages with the broadest host ranges were combined into a cocktail for use in experimental treatments of infected bee larvae; both prophylactic and post-infection treatments were conducted. Results indicated that although both pre- and post-treatments were effective, prophylactic administration of the phages increased the survival of larvae more than post-treatment experiments. These preliminary experiments demonstrate the likelihood that phage therapy could be an effective method to control AFB. PMID:27144085

  7. The histopathology of the infection of Tilapia rendalli and Hypostomus regani (Osteichthyes) by lasidium larvae of Anodontites trapesialis (Mollusca, Bivalvia).

    PubMed

    Silva-Souza, Angela Teresa; Eiras, Jorge C

    2002-04-01

    It is described the histopathology of the infection of Tilapia rendalli (Osteichthyes, Perciformes, Cichlidae) and Hypostomus regani (Osteichthyes, Siluriformes, Loricariidae) by lasidium larvae of Anodontites trapesialis (Mollusca, Bivalvia, Mycetopodidae). The larvae were encysted within the epidermis of the host, being surrounded by a thin hyaline membrane, 3-6 microm thick, of parasite origin. A proliferative host cell reaction did not occur. The histopathology of the infection shows that the lesions induced by the parasites are minimal. However, the numerous small lesions produced by the release of the larvae may provide optimal conditions for the infection by opportunistic pathogens, namely fungus, which may eventually cause the death of the host. PMID:12048579

  8. Wolbachia endosymbiont of Brugia malayi elicits a T helper type 17-mediated pro-inflammatory immune response through Wolbachia surface protein

    PubMed Central

    Pathak, Manisha; Verma, Meenakshi; Srivastava, Mrigank; Misra-Bhattacharya, Shailja

    2015-01-01

    Wolbachia is an endosymbiotic bacterium of the filarial nematode Brugia malayi. The symbiotic relationship between Wolbachia and its filarial host is dependent on interactions between the proteins of both organisms. However, little is known about Wolbachia proteins that are involved in the inflammatory pathology of the host during lymphatic filariasis. In the present study, we cloned, expressed and purified Wolbachia surface protein (r-wsp) from Wolbachia and administered it to mice, either alone or in combination with infective larvae of B. malayi (Bm-L3) and monitored the developing immune response in infected animals. Our results show that spleens and mesenteric lymph nodes of mice immunized with either r-wsp or infected with Bm-L3 show increased percentages of CD4+ T helper type 17 (Th17) cells and Th1 cytokines like interferon-γ and interleukin-2 (IL-2) along with decreased percentages of regulatory T cells, Th2 cytokines like IL-4 and IL-10 and transforming growth factor β (TGF-β) levels in culture supernatants of splenocytes. These observations were stronger in mice immunized with r-wsp alone. Interestingly, when mice were first immunized with r-wsp and subsequently infected with Bm-L3, percentages of CD4+ Th17 cells and Th1 cytokines increased even further while that of regulatory T cells, Th2 cytokines and TGF-β levels decreased. These results for the first time show that r-wsp acts synergistically with Bm-L3 in promoting a pro-inflammatory response by increasing Th17 cells and at the same time diminishes host immunological tolerance by decreasing regulatory T cells and TGF-β secretion. PMID:25059495

  9. Defense reactions by larvae of Aedes aegypti during infection by the aquatic fungus Lagenidium giganteum (Oomycete).

    PubMed

    Brey, P T; Lebrun, R A; Papierok, B; Ohayon, H; Vennavalli, S; Hafez, J

    1988-07-01

    The adherence of zoospores of Lagenidium giganteum to the cuticle of mosquito larvae is the initial step in the infection process. Subsequently, a germ tube penetrates the integument, inducing a rapid melanization of the injured cuticle and epidermis. After entering the hemocoel the developing hyphae are occasionally encapsulated locally. This process is slow (6 to 12 h postincubation) and most frequently cell-free, although it can be mediated by circulating hemocytes. Sporadic hemocyte mediation of the humoral encapsulation process in larval stages of Culicidae adds a previously unreported dimension to this unusual type of defense reaction. The defense reactions of larvae of Aedes aegypti were ineffective against observed infection by Lagenidium giganteum. PMID:3416342

  10. Eosinophilic Myocarditis Associated with Visceral Larva Migrans Caused by Toxocara Canis Infection

    PubMed Central

    Kim, Ji Hee; Chang, Kyung-Yoon; Ko, Sun-Young; Park, Mi-Hee; Sa, Young-Kyoung; Choi, Yun-Seok; Park, Chul-Soo; Lee, Man-Young

    2012-01-01

    A 41-year-old woman who was diagnosed with myocarditis presented eosinophilia. Since the antibody against Toxocara canis (T. canis) was positive, we diagnosed that she had visceral larva migrans due to T. canis associated with myocarditis. She was treated with oral albendazole and prednisolone for two weeks, eosinophil count and hepatic enzymes were normalized after completion of treatment. This is the first report of myocarditis caused by T. canis infection in Korea. PMID:23185659

  11. CHARACTERIZATION OF THE GLYCOSYLATED ECDYSTEROIDS IN THE HEMOLYMPH OF BACULOVIRUS-INFECTED GYPSY MOTH LARVAE AND CELLS IN CULTURE

    EPA Science Inventory

    Fourth-instar gypsy moth (Lymantria dispar; Lepidoptera: Lymantriidae) larvae, infected with the gypsy moth baculovirus (LdNPV), show an elevated and prolonged extension of the hemolymph ecdysteroid titer peak associated with molting. The ecdysteroid immunoreactivity associated w...

  12. Identification of Ecdysone Hormone Receptor Agonists as a Therapeutic Approach for Treating Filarial Infections

    PubMed Central

    Mhashilkar, Amruta S.; Vankayala, Sai L.; Liu, Canhui; Kearns, Fiona; Mehrotra, Priyanka; Tzertzinis, George; Palli, Subba R.; Woodcock, H. Lee; Unnasch, Thomas R.

    2016-01-01

    Background A homologue of the ecdysone receptor has previously been identified in human filarial parasites. As the ecdysone receptor is not found in vertebrates, it and the regulatory pathways it controls represent attractive potential chemotherapeutic targets. Methodology/ Principal Findings Administration of 20-hydroxyecdysone to gerbils infected with B. malayi infective larvae disrupted their development to adult stage parasites. A stable mammalian cell line was created incorporating the B. malayi ecdysone receptor ligand-binding domain, its heterodimer partner and a secreted luciferase reporter in HEK293 cells. This was employed to screen a series of ecdysone agonist, identifying seven agonists active at sub-micromolar concentrations. A B. malayi ecdysone receptor ligand-binding domain was developed and used to study the ligand-receptor interactions of these agonists. An excellent correlation between the virtual screening results and the screening assay was observed. Based on both of these approaches, steroidal ecdysone agonists and the diacylhydrazine family of compounds were identified as a fruitful source of potential receptor agonists. In further confirmation of the modeling and screening results, Ponasterone A and Muristerone A, two compounds predicted to be strong ecdysone agonists stimulated expulsion of microfilaria and immature stages from adult parasites. Conclusions The studies validate the potential of the B. malayi ecdysone receptor as a drug target and provide a means to rapidly evaluate compounds for development of a new class of drugs against the human filarial parasites. PMID:27300294

  13. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae

    PubMed Central

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-01-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host–pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp. PMID:22673627

  14. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae.

    PubMed

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-12-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host-pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp. PMID:22673627

  15. [Effects of temperature on the viability and infectivity of preparasitic larvae of Romanomermis yuanenesis].

    PubMed

    Peng, Y; Song, J; Platzer, E G

    1996-03-01

    Romanomermis yuanenesis (Mermithidae: Nematoda) was found in Henan, China (Song and Peng, 1987), which has a broad host range in Culicinae mosquito and has been used successfully in field test for control of culex tritaeniorhynchus, culex fatigans and Aedes albopictus in Sichuan, Yunnan, Guangxi and Henan Provinces. This study was attempted to determine the viability and infectivity of preparasitic larvae in various temperatures. The cultures containing R. yuanenesis eggs were flooded 2h with distilled water, filtered and blocked with 1% agarose. Put the filter paper into water, then the motile preparasites separated from the unhatched eggs and got through the agarose membrane into water. About 200ml water containing preparasites free from eggs were held at 26 degrees C-28 degrees C, 16 degrees C-18 degrees C and -2 degrees C to 2 degrees C for test. The motility or lack of motility was used as the criterion to distinguish the living and dead nematodes. The rate of infection of mosquitoes and the rate of parasitism of nematodes were used to show the infectivity of the preserved preparasites. The results showed that at -2 degrees C to 2 degrees C, more than 90% of preparasitic larvae of R. yuanenesis survived for 8 days and the rate of mosquito infection was 87.5% to 100%, but at 26 degrees C-28 degrees C and 16 degrees C-18 degrees C the survival times of 90% preparasites were only 24 hours and 48 hours respectively. It indicates the low temperature preservation may prolong the survival time and keep the infectivity of these preparasitic larvae. PMID:9208610

  16. Anguilla anguilla intestinal immune response to natural infection with Contracaecum rudolphii A larvae.

    PubMed

    Dezfuli, B S; Manera, M; Bosi, G; DePasquale, J A; D'Amelio, S; Castaldelli, G; Giari, L

    2016-10-01

    The European eel, Anguilla anguilla, is a major warm-water fish species cultured in North and South Europe. Seventy-one A. anguilla collected between 2010 and 2015 from the Comacchio lagoons were examined. Fish were infected and damaged by larvae (L3) of the nematode Contracaecum rudolphii A, which were encapsulated within the thickness of the intestinal wall and within the external visceral peritoneum (serosa). Conspicuous granulomas, visible at sites of infection, were arranged in a trilayer, formed by a series of concentric whorls. The cells involved in the immune response and their distribution in the granuloma layers were assessed by immunohistochemical, immunofluorescence, and ultrastructural techniques. The outer part of the granuloma contained macrophages, macrophage aggregates, and mast cells (MCs) scattered among fibroblasts. This layer was vascularized, with degranulation of MCs occurring in close proximity to the capillaries. The middle layer was rich in MCs and fibroblasts. The inner layer, closest to the parasite larva, consisted mainly of dark epithelioid cells, some of which were necrotic. Non-necrotic epithelioid cells formed desmosomes between themselves or with fibroblasts. Within the granulomas, numerous cells of different types were positive to proliferative cell nuclear antigen antibody, indicating a high degree of cellular proliferation around the larvae. PMID:26814373

  17. A revised method of examining fish for infection with zoonotic nematode larvae.

    PubMed

    Shamsi, Shokoofeh; Suthar, Jaydipbhai

    2016-06-16

    The infection of fish with zoonotic nematodes, particularly anisakid nematodes is of great interest to many researchers who study food safety, human or animal health or who use them as biological tags for stock assessment studies. Accurate examination of fish for infection with anisakid larvae is crucial in making accurate estimates of their occurrence, abundance and prevalence in their fish hosts. Here we describe a new method of examining fish for infection with these parasites. In 2015, a total of 261 fish were purchased from a fish market in New South Wales, Australia. All fish were first examined by routine visual examination for infection with zoonotic nematode larvae and all data were recorded. Subsequently all internal organs were placed in a container and filled with water and incubated in the room temperature overnight. The prevalence, mean intensity and mean abundance of anisakids were significantly higher (p<0.05) when the revised method of examination, i.e., combining visual examination and overnight incubation in room temperature, was employed (63.98, 8.23 and 5.27, respectively) compared to routine visual examination with or without the aid of a microscope (8.81, 3.78 and 0.33, respectively). The proposed method is effective and has several advantages, such as: not using UV or HCl for fish examination, allowing the examination of a larger number of fish in shorter time; larval specimens collected being suitable for both morphological and DNA sequencing; and being simple and inexpensive. The disadvantages would be the odour of the specimens after overnight incubation as well as not being suitable for use with frozen fish. We suggest that results, conclusions or recommendations made in studies that claim no anisakid/ascaridoid larvae were found in a fish should be approached carefully if it is only based on visual examination of the fish. PMID:27043384

  18. Effects of Doxycycline on gene expression in Wolbachia and Brugia malayi adult female worms in vivo

    PubMed Central

    2012-01-01

    Background Most filarial nematodes contain Wolbachia symbionts. The purpose of this study was to examine the effects of doxycycline on gene expression in Wolbachia and adult female Brugia malayi. Methods Brugia malayi infected gerbils were treated with doxycycline for 6-weeks. This treatment largely cleared Wolbachia and arrested worm reproduction. RNA recovered from treated and control female worms was labeled by random priming and hybridized to the Version 2- filarial microarray to obtain expression profiles. Results and discussion Results showed significant changes in expression for 200 Wolbachia (29% of Wolbachia genes with expression signals in untreated worms) and 546 B. malayi array elements after treatment. These elements correspond to known genes and also to novel genes with unknown biological functions. Most differentially expressed Wolbachia genes were down-regulated after treatment (98.5%). In contrast, doxycycline had a mixed effect on B. malayi gene expression with many more genes being significantly up-regulated after treatment (85% of differentially expressed genes). Genes and processes involved in reproduction (gender-regulated genes, collagen, amino acid metabolism, ribosomal processes, and cytoskeleton) were down-regulated after doxycycline while up-regulated genes and pathways suggest adaptations for survival in response to stress (energy metabolism, electron transport, anti-oxidants, nutrient transport, bacterial signaling pathways, and immune evasion). Conclusions Doxycycline reduced Wolbachia and significantly decreased bacterial gene expression. Wolbachia ribosomes are believed to be the primary biological target for doxycycline in filarial worms. B. malayi genes essential for reproduction, growth and development were also down-regulated; these changes are consistent with doxycycline effects on embryo development and reproduction. On the other hand, many B. malayi genes involved in energy production, electron-transport, metabolism, anti

  19. Ancylostoma caninum: the finger cell neurons mediate thermotactic behavior by infective larvae of the dog hookworm.

    PubMed

    Bhopale, V M; Kupprion, E K; Ashton, F T; Boston, R; Schad, G A

    2001-02-01

    Bhopale, V. M., Kupprion, E. K., Ashton, F. T., Boston, R., and Schad, G. A. 2001. Ancylostoma caninum: The finger cell neurons mediate thermotactic behavior by infective larvae of the dog hookworm. Experimental Parasitology 97, 70-76. In the amphids (anteriorly positioned, paired sensilla) of the free-living nematode Caenorhabditis elegans, the so-called finger cells (AFD), a pair of neurons, each of which ends in a cluster of microvilli-like projections, are known to be the primary thermoreceptors. A similar neuron pair in the amphids of the parasitic nematode Haemonchus contortus is also known to be thermoreceptive. The hookworm of dogs, Ancylostoma caninum, has apparent structural homologs of finger cells in its amphids. The neuroanatomy of the amphids of A. caninum and H. contortus is strikingly similar, and the amphidial cell bodies in the lateral ganglia of the latter nematode have been identified and mapped. When the lateral ganglia of first-stage larvae (L1) of A. caninum are examined with differential interference contrast microscopy, positional homologs of the recognized amphidial cell bodies in the lateral ganglia of H. contortus L1 are readily identified in A. caninum. The amphidial neurons in A. caninum were consequently given the same names as those of their apparent homologs in H. contortus. It was hypothesized that the finger cell neurons (AFD) might mediate thermotaxis by the skin-penetrating infective larvae (L3) of A. caninum. Laser microbeam ablation experiments with A. caninum were conducted, using the H. contortus L1 neuronal map as a guide. A. caninum L1 were anesthetized and the paired AFD class neurons were ablated. The larvae were then cultured to L3 and assayed for thermotaxis on a thermal gradient. L3 with ablated AFD-class neuron pairs showed significantly reduced thermotaxis compared to control groups. The thermoreceptive function of the AFD-class neurons associates this neuron pair with the host-finding process of the A. caninum

  20. Identification and methods for prevention of Enterococcus mundtii infection in silkworm larvae, Bombyx mori, reared on artificial diet.

    PubMed

    Nwibo, Don Daniel; Matsumoto, Yasuhiko; Sekimizu, Kazuhisa

    2015-06-01

    Previously, it was reported that Enterococcus mundtii (E. mundtii) was associated with flacherie disease of silkworm larvae reared on artificial diet. In this study, we report that E. mundtii was isolated from diseased silkworm larvae, and validated as a pathogenic bacterium of the animal. When silkworm larva was infected with 1.04 × 10⁶ colony-forming units of E. mundtii via oral administration of diet, half population died within six days, indicating that the bacterium is pathogenic to silkworm. Less severe infection was found to cause anorexia and hamper the development of larvae. This pathogen was found to proliferate in both time- and dose-dependent manner in the gastrointestinal tract of the animal. The bacterium was isolated from powder of artificial diet made from mulberry leaves, and from mulberry leaves growing at a field. Minimum inhibitory concentration determination revealed that this bacterium was susceptible to tested antibiotics. Vancomycin treatment of diet significantly decreased the number of E. mundtii in intestine of silkworm larvae infected with the bacteria, compared to control. Furthermore, autoclaving or gamma ray irradiation of diet was also effective for exclusion of E. mundtii from the diet without the loss of its nutrient capacities. These results suggest that mulberry leaves used in making artificial diet for silkworm larvae is one of the sources of E. mundtii infection; and that antibiotic treatment, autoclaving or gamma ray irradiation of artificial diet can exclude the bacteria. PMID:26193940

  1. Transcriptome analysis of Ophiocordyceps sinensis before and after infection of Thitarodes larvae.

    PubMed

    Zhong, Xin; Gu, Li; Li, Shao-Song; Kan, Xu-Tian; Zhang, Gu-Ren; Liu, Xin

    2016-01-01

    Ophiocordyceps sinensis, also referred to as the Chinese caterpillar fungus, is a rare entomopathogenic fungus found in the Qinghai-Tibetan Plateau that is used as a traditional Chinese medicine. O. sinensis parasitizes the larvae of the ghost moth Thitarodes. Characterization of the transcriptome of O. sinensis before and after host infection may provide novel insight into the process by which the fungus interacts with Thitarodes and may help researchers understand how to sustain this valuable resource. In this study, we performed RNA-sequencing (RNA-seq) using Illumina HiSeqTM 2000 technology to generate gene expression profiles of two developmental stages of O. sinensis. Thread-like hyphae before infection and yeast-like hyphal bodies after infection of host larvae were collected for transcriptome analysis. We found that 1640 genes were differentially expressed (q-value < 0.05), of which 818 were upregulated (49.878 %) and 822 were downregulated (50.122 %). Gene ontology (GO) analysis revealed that the differentially expressed genes (DEGs) were especially enriched in terms associated with Biological Process and Molecular Function. Several genes encoding transporter and permease proteins, three glycoside hydrolases, two mycotoxin-related proteins, an antigen protein, and an allergen were identified as being significantly up- or downregulated. Collectively, our findings provide a novel resource for understanding O. sinensis during two critical developmental stages, and offer the opportunity to further investigate the functional mechanisms underlying these stage-specific molecular differences. PMID:27268242

  2. Stage-specific proteomic expression patterns of the human filarial parasite Brugia malayi and its endosymbiont Wolbachia

    PubMed Central

    Bennuru, Sasisekhar; Meng, Zhaojing; Ribeiro, José M. C.; Semnani, Roshanak Tolouei; Ghedin, Elodie; Chan, King; Lucas, David A.; Veenstra, Timothy D.; Nutman, Thomas B.

    2011-01-01

    Global proteomic analyses of pathogens have thus far been limited to unicellular organisms (e.g., protozoa and bacteria). Proteomic analyses of most eukaryotic pathogens (e.g., helminths) have been restricted to specific organs, specific stages, or secretomes. We report here a large-scale proteomic characterization of almost all the major mammalian stages of Brugia malayi, a causative agent of lymphatic filariasis, resulting in the identification of more than 62% of the products predicted from the Bm draft genome. The analysis also yielded much of the proteome of Wolbachia, the obligate endosymbiont of Bm that also expressed proteins in a stage-specific manner. Of the 11,610 predicted Bm gene products, 7,103 were definitively identified from adult male, adult female, blood-borne and uterine microfilariae, and infective L3 larvae. Among the 4,956 gene products (42.5%) inferred from the genome as “hypothetical,” the present study was able to confirm 2,336 (47.1%) as bona fide proteins. Analysis of protein families and domains coupled with stage-specific expression highlight the important pathways that benefit the parasite during its development in the host. Gene set enrichment analysis identified extracellular matrix proteins and those with immunologic effects as enriched in the microfilarial and L3 stages. Parasite sex- and stage-specific protein expression identified those pathways related to parasite differentiation and demonstrates stage-specific expression by the Bm endosymbiont Wolbachia as well. PMID:21606368

  3. Stage-specific proteomic expression patterns of the human filarial parasite Brugia malayi and its endosymbiont Wolbachia.

    PubMed

    Bennuru, Sasisekhar; Meng, Zhaojing; Ribeiro, José M C; Semnani, Roshanak Tolouei; Ghedin, Elodie; Chan, King; Lucas, David A; Veenstra, Timothy D; Nutman, Thomas B

    2011-06-01

    Global proteomic analyses of pathogens have thus far been limited to unicellular organisms (e.g., protozoa and bacteria). Proteomic analyses of most eukaryotic pathogens (e.g., helminths) have been restricted to specific organs, specific stages, or secretomes. We report here a large-scale proteomic characterization of almost all the major mammalian stages of Brugia malayi, a causative agent of lymphatic filariasis, resulting in the identification of more than 62% of the products predicted from the Bm draft genome. The analysis also yielded much of the proteome of Wolbachia, the obligate endosymbiont of Bm that also expressed proteins in a stage-specific manner. Of the 11,610 predicted Bm gene products, 7,103 were definitively identified from adult male, adult female, blood-borne and uterine microfilariae, and infective L3 larvae. Among the 4,956 gene products (42.5%) inferred from the genome as "hypothetical," the present study was able to confirm 2,336 (47.1%) as bona fide proteins. Analysis of protein families and domains coupled with stage-specific expression highlight the important pathways that benefit the parasite during its development in the host. Gene set enrichment analysis identified extracellular matrix proteins and those with immunologic effects as enriched in the microfilarial and L3 stages. Parasite sex- and stage-specific protein expression identified those pathways related to parasite differentiation and demonstrates stage-specific expression by the Bm endosymbiont Wolbachia as well. PMID:21606368

  4. Induction of an IAP antagonist in Culex quinquefasciatus larvae in response to infection by the baculovirus CuniNPV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CuniNPV is a member of the Dipteran–specific baculoviruses in the genus Deltabaculovirus that specifically infects mosquito larvae within the genus Culex while species of Aedes and Anopheles are refractory. Infections are restricted to the nuclei of larval midgut epithelial cells with transmission...

  5. Distribution of infective gastrointestinal helminth larvae in tropical erect grass under different feeding systems for lambs.

    PubMed

    Tontini, Jalise Fabíola; Poli, Cesar Henrique Espírito Candal; Bremm, Carolina; de Castro, Juliane Machado; Fajardo, Neuza Maria; Sarout, Bruna Nunes Marsiglio; Castilhos, Zélia Maria de Souza

    2015-08-01

    This study examined tropical pasture contamination dynamics under different feeding systems for finishing lambs. The experiment aimed to evaluate the vertical distribution of gastrointestinal helminth infective larvae (L3) in erect grass subjected to grazing and to assess the parasite load and its impact on lamb performance in three production systems. Three treatments based on Aruana grass (Panicum maximum cv. IZ-5) were as follows: T1, grass only; T2, grass with 1.5% of body weight (BW) nutrient concentrate supplementation; and T3, grass with 2.5% BW concentrate supplementation. The randomized block design had three replicates of three treatments, with six lambs per replicate. L3 were recovered from three pasture strata (upper, middle, and bottom), each representing one third of the sward height, and correlated with microclimatic data. Significant differences (P < 0.05) were observed among treatments in the L3 recovery. Despite different grass heights between treatments and microclimates within the sward, the L3 concentration generally did not differ significantly among the three strata within a treatment (P > 0.05). Pasture microclimate did not correlate with larval recovery. At the end of the experiment, the animal fecal egg count was similar among treatments (P > 0.05). The results indicated that different lamb feeding systems in a tropical erect grassland caused differences in grass height but did not affect the distribution of infective larvae among strata. Larvae were found from the base to the top of the grass sward. PMID:26003429

  6. Efficacy of Clonostachys rosea and Duddingtonia flagrans in Reducing the Haemonchus contortus Infective Larvae

    PubMed Central

    da Silva, Manoel Eduardo; Braga, Fabio Ribeiro; de Gives, Pedro Mendoza; Uriostegui, Miguel Angel Mercado; Reyes, Manuela; Soares, Filippe Elias de Freitas; de Carvalho, Lorendane Millena; Rodrigues, Francielle Bosi; de Araújo, Jackson Victor

    2015-01-01

    The biocontrol is proven effective in reducing in vitro and in situ free-living stages of major gastrointestinal helminths, allowing progress in reducing losses by parasitism, maximizing production, and productivity. This study aimed at evaluating the predatory activity of fungal isolates of Duddingtonia flagrans and Clonostachys rosea species and its association on infective larvae (L3) of H. contortus in microplots formed by grasses and maintained in a protected environment. All groups were added with 10 mL of an aqueous suspension with 618 H. contortus L3 approximately. Group 1 was used as control and only received the infective larvae. Groups 2 and 3 received D. flagrans chlamydospores and C. rosea conidia at doses of 5 × 106. Group 4 received the combination of 5 × 106 D. flagrans chlamydospores + 5 × 106 C. rosea conidia. D. flagrans and C. rosea showed nematicidal effectiveness reducing by 91.5 and 88.9%, respectively, the population of H. contortus L3. However, when used in combination efficiency decreased to 74.5% predation of H. contortus L3. These results demonstrate the need for further studies to determine the existence of additive effects, synergistic or antagonistic, between these species. PMID:26504809

  7. Immunogenicity and Protective Efficacy of Brugia malayi Heavy Chain Myosin as Homologous DNA, Protein and Heterologous DNA/Protein Prime Boost Vaccine in Rodent Model.

    PubMed

    Gupta, Jyoti; Pathak, Manisha; Misra, Sweta; Misra-Bhattacharya, Shailja

    2015-01-01

    We earlier demonstrated the immunoprophylactic efficacy of recombinant heavy chain myosin (Bm-Myo) of Brugia malayi (B. malayi) in rodent models. In the current study, further attempts have been made to improve this efficacy by employing alternate approaches such as homologous DNA (pcD-Myo) and heterologous DNA/protein prime boost (pcD-Myo+Bm-Myo) in BALB/c mouse model. The gene bm-myo was cloned in a mammalian expression vector pcDNA 3.1(+) and protein expression was confirmed in mammalian Vero cell line. A significant degree of protection (79.2%±2.32) against L3 challenge in pcD-Myo+Bm-Myo immunized group was observed which was much higher than that exerted by Bm-Myo (66.6%±2.23) and pcD-Myo (41.6%±2.45). In the heterologous immunized group, the percentage of peritoneal leukocytes such as macrophages, neutrophils, B cells and T cells marginally increased and their population augmented further significantly following L3 challenge. pcD-Myo+Bm-Myo immunization elicited robust cellular and humoral immune responses as compared to pcD-Myo and Bm-Myo groups as evidenced by an increased accumulation of CD4+, CD8+ T cells and CD19+ B cells in the mouse spleen and activation of peritoneal macrophages. Though immunized animals produced antigen-specific IgG antibodies and isotypes, sera of mice receiving pcD-Myo+Bm-Myo or Bm-Myo developed much higher antibody levels than other groups and there was profound antibody-dependent cellular adhesion and cytotoxicity (ADCC) to B. malayi infective larvae (L3). pcD-Myo+Bm-Myo as well as Bm-Myo mice generated a mixed T helper cell phenotype as evidenced by the production of both pro-inflammatory (IL-2, IFN-γ) and anti-inflammatory (IL-4, IL-10) cytokines. Mice receiving pcD-Myo on contrary displayed a polarized pro-inflammatory immune response. The findings suggest that the priming of animals with DNA followed by protein booster generates heightened and mixed pro- and anti-inflammatory immune responses that are capable of providing

  8. Immunogenicity and Protective Efficacy of Brugia malayi Heavy Chain Myosin as Homologous DNA, Protein and Heterologous DNA/Protein Prime Boost Vaccine in Rodent Model

    PubMed Central

    Gupta, Jyoti; Pathak, Manisha; Misra, Sweta; Misra-Bhattacharya, Shailja

    2015-01-01

    We earlier demonstrated the immunoprophylactic efficacy of recombinant heavy chain myosin (Bm-Myo) of Brugia malayi (B. malayi) in rodent models. In the current study, further attempts have been made to improve this efficacy by employing alternate approaches such as homologous DNA (pcD-Myo) and heterologous DNA/protein prime boost (pcD-Myo+Bm-Myo) in BALB/c mouse model. The gene bm-myo was cloned in a mammalian expression vector pcDNA 3.1(+) and protein expression was confirmed in mammalian Vero cell line. A significant degree of protection (79.2%±2.32) against L3 challenge in pcD-Myo+Bm-Myo immunized group was observed which was much higher than that exerted by Bm-Myo (66.6%±2.23) and pcD-Myo (41.6%±2.45). In the heterologous immunized group, the percentage of peritoneal leukocytes such as macrophages, neutrophils, B cells and T cells marginally increased and their population augmented further significantly following L3 challenge. pcD-Myo+Bm-Myo immunization elicited robust cellular and humoral immune responses as compared to pcD-Myo and Bm-Myo groups as evidenced by an increased accumulation of CD4+, CD8+ T cells and CD19+ B cells in the mouse spleen and activation of peritoneal macrophages. Though immunized animals produced antigen-specific IgG antibodies and isotypes, sera of mice receiving pcD-Myo+Bm-Myo or Bm-Myo developed much higher antibody levels than other groups and there was profound antibody-dependent cellular adhesion and cytotoxicity (ADCC) to B. malayi infective larvae (L3). pcD-Myo+Bm-Myo as well as Bm-Myo mice generated a mixed T helper cell phenotype as evidenced by the production of both pro-inflammatory (IL-2, IFN-γ) and anti-inflammatory (IL-4, IL-10) cytokines. Mice receiving pcD-Myo on contrary displayed a polarized pro-inflammatory immune response. The findings suggest that the priming of animals with DNA followed by protein booster generates heightened and mixed pro- and anti-inflammatory immune responses that are capable of providing

  9. Ascaridia galli in chickens: intestinal localization and comparison of methods to isolate the larvae within the first week of infection.

    PubMed

    Ferdushy, Tania; Nejsum, Peter; Roepstorff, Allan; Thamsborg, Stig M; Kyvsgaard, Niels C

    2012-12-01

    This study was conducted to observe the localization and to compare methods for isolation of minute Ascaridia galli larvae in chicken intestine. Firstly, six 7-week-old layer pullets were orally infected with 2,000 embryonated A. galli eggs and necropsied either at 3, 5 or 7 days post infection (dpi). More than 95 % of the recovered larvae were obtained from the anterior half of the jejunoileum, suggesting this part as the initial predilection site for A. galli larvae. Secondly, the intestinal wall of one layer pullet infected with 20,000 A. galli eggs 3 days earlier was digested in pepsin-HCl for 90 min. The initial 10 min of digestion released 51 % of the totally recovered larvae and the last 30 min of continuous digestion yielded only 5 %. This indicates that the majority of larvae were located superficially in the intestinal mucosa. Thirdly, 48 7-week-old layer pullets were infected with 500 A. galli eggs and necropsied at 3 dpi to compare three different larval isolation methods from the intestinal wall, viz., EDTA incubation, agar-gel incubation and pepsin-HCl digestion, resulting in mean percentages of the recovered larvae: 14.4, 18.2 and 20.0 %, respectively (P = 0.15). As conclusion, we recommended Pepsin-HCl digestion as the method of choice for larval recovery from the intestinal wall in future population dynamics study due to high efficiency and quick and simple detection. The agar-gel method was considered to be a prerequisite for molecular and immunological investigations as the larvae were more active and fully intact. PMID:22915270

  10. Development by injection in Simulium damnosum s.l. of two Onchocerca species from the wart hog to infective larvae resembling type D larvae (Duke, 1967).

    PubMed

    Wahl, G; Bain, O

    1995-03-01

    Four wart hogs (Phacochoerus aethiopicus) examined in the Sudan savanna of North-Cameroon were all found infected with two types of skin microfilariae. One was O. ramachandrini Bain, Wahl and Renz, 1993, the adult worms of which live in the subcutaneous tissues of the feet. The other, smaller type belongs to a new Onchocerca species, the adult worms of which were not yet found. O. ramachandrini-microfilariae were evenly distributed across the whole body surface, those of Onchocerca sp. were concentrated on the back. The two species of microfilariae were isolated from an infected hide separated under the dissecting microscope and injected into the thorax of pupae-hatched S. squamosum and S. damnosum s.slr. females. Both filariae developed in both flies at high rates (33-47% of injected microfilariae) and without pathological forms to infective larvae L3). Both L3-species had a caudal tip, were long, slender and very motile and had a conspicuous glandular oesophagus. L3 from O. ramachandrini-microfilariae had a long glandular oesophagus (55% of total L3 length), a round head and measured an average of 955 microns long and 19.2 microns wide. L3 from the other microfilaria-species were shorter (845 microns, P < 0.001) and thinner (16.7 microns, P < 0.001) and had a shorter glandular oesophagus (36%, P < 0.001), a shorter tail (P < 0.01) and a conical head. Both L3-species, by their caudal tip, their long and slender silhouette, their great motility and their conspicuous glandular oesophagus resemble non-O. volvulus filarial L3 known, since many years, to occur in "wild" S. damnosum s.l. in Cameroon (Type D larvae, Duke, 1967) and in Liberia (Agamofilaria Type VI, Voelker and Garms, 1972). During our study, L3 such larvae were found in 12 wild S. damnosum s.l. from two geographically different areas of North Cameroon and all identified as O. ramachandrini. The excellent development of the two Onchocerca species from the wart hog in S. damnosum s.l. after artificial

  11. Effect of Thai 'koi-hoi' food flavoring on the viability and infectivity of the third-stage larvae of Angiostrongylus cantonensis (Nematoda: Angiostrongylidae).

    PubMed

    Eamsobhana, Praphathip; Yoolek, Adisak; Yong, Hoi-Sen

    2010-03-01

    The effect of the food flavoring of 'koi-hoi', a popular Thai snail dish, on the viability and infectivity of Angiostrongylus (=Parastrongylus) cantonensis third-stage larvae was assessed in a mouse model. Groups of 50 each of actively moving, non-motile coiled, and extended larvae were obtained from experimentally infected snail meat, after one-hour exposure to standard 'koi-hoi' flavoring. These larvae and groups of 50 unexposed moving larvae (control) were individually fed to each group of three experimental BALB/c mice. The effect on Angiostrongylus worm burden was measured after 3 weeks of infection. Infectivity of the motile larvae after exposure to 'koi-hoi' food flavoring was 38 + or - 5.29%. This was highly significantly lower than the infectivity (62 + or - 7.21%) of the control (unexposed) third-stage larvae (chi(2) = 17.28, P < 0.001). In the non-motile larvae resulting from exposure to the food flavoring, no adult worm was recovered from the extended larvae, indicating that they were no longer alive and unable to cause infection. A small proportion (3.33 + or - 2.31%) of the coiled larvae developed into young adult worms, indicating that mobility alone is not a definitive indicator of viability. The present study confirms that the food flavoring components of 'koi-hoi' dish adversely affect the viability and infectivity of A. cantonensis larvae. Exposure of the third-stage larvae to 'koi-hoi' food flavoring resulted in decreased viability and eventually death. Prolonged treatment with food flavoring to inactivate/immobilize and then kill the infective, third-stage larvae of A. cantonensis in snail meat prior to consumption may be one of the possible economical means of reducing human infection. PMID:19931504

  12. In-situ Hybridization for the Detection of Sacbrood Virus in Infected Larvae of the Honey Bee (Apis cerana).

    PubMed

    Park, C; Kang, H S; Jeong, J; Kang, I; Choi, K; Yoo, M-S; Kim, Y-H; Kang, S-W; Lim, H-Y; Yoon, B-S; Chae, C

    2016-01-01

    The aim of this study was to develop and use in-situ hybridization (ISH) for the detection and localization of the sacbrood virus (SBV) in Korean honey bee (Apis cerana) larvae that were infected naturally with SBV. A 258 base pair cDNA probe for SBV was generated by polymerase chain reaction. Cells positive for viral genome typically showed a dark brown reaction in the cytoplasm. SBV was detected consistently in trophocytes and urocytes. The ISH was successfully applied to routinely fixed and processed tissues and thus should prove helpful in the diagnosis and characterization of viral distribution in infected larvae. PMID:26852344

  13. A rapidly progressing, deadly disease of Actias selene (Indianmoonmoth) larvae associated with a mixed bacterial and baculoviral infection.

    PubMed

    Skowron, Marta A; Guzow-Krzemińska, Beata; Barańska, Sylwia; Jędrak, Paulina; Węgrzyn, Grzegorz

    2015-09-01

    The outbreak of an infectious disease in captive-bred Lepidoptera can cause death of all the caterpillars within days. A mixed baculoviral-bacterial infection observed among Actias selene (Hubner 1807), the Indian moon moth (Insecta: Lepidoptera: Saturniidae), larvae was characterized and followed by a photographic documentation of the disease progression. The etiological agents were determined using mass spectrometry and polymerase chain reaction (PCR). It appeared that the disease was caused by a mixed infection of larvae with a baculovirus and Morganella morganii. A molecular phylogenetic analysis of the virus and microbiological description of the pathogenic bacterium are presented. PMID:26333395

  14. Anisakis simplex larvae: infection status in marine fish and cephalopods purchased from the Cooperative Fish Market in Busan, Korea.

    PubMed

    Choi, Seon Hee; Kim, Jung; Jo, Jin Ok; Cho, Min Kyung; Yu, Hak Sun; Cha, Hee Jae; Ock, Mee Sun

    2011-03-01

    The infection status of marine fish and cephalopods with Anisakis simplex third stage larva (L3) was studied over a period of 1 year. A total of 2,537 specimens, which consisted of 40 species of fish and 3 species of cephalopods, were purchased from the Cooperative Fish Market in Busan, Korea, from August 2006 to July 2007. They were examined for A. simplex L3 from the whole body cavity, viscera, and muscles. A. simplex L3 were confirmed by light microscopy. The overall infection rate reached 34.3%, and average 17.1 larvae were parasitized per infected fish. Fish that recorded the highest infection rate was Lophiomus setigerus (100%), followed by Liparis tessellates (90%), Pleurogrammus azonus (90%), and Scomber japonicus (88.7%). The intensity of infection was the highest in Gadus macrocephalus (117.7 larvae per fish), followed by S. japonicus (103.9 larvae) and L. setigerus (54.2 larvae). Although abundance of A. simplex L3 was not seasonal in most of the fish species, 10 of the 16 selected species showed the highest abundance in February and April. A positive correlation between the intensity of L3 infection and the fish length was obvious in S. japonicus and G. macrocephalus. It was likely that A. simplex L3 are more frequently infected during the spring season in some species of fish. Our study revealed that eating raw or undercooked fish or cephalopods could still be a source of human infection with A. simplex L3 in Korea. PMID:21461267

  15. Mortality of Cutworm Larvae Is Not Enhanced by Agrotis segetum Granulovirus and Agrotis segetum Nucleopolyhedrovirus B Coinfection Relative to Single Infection by Either Virus

    PubMed Central

    Wennmann, Jörg T.; Köhler, Tim; Gueli Alletti, Gianpiero

    2015-01-01

    Mixed infections of insect larvae with different baculoviruses are occasionally found. They are of interest from an evolutionary as well as from a practical point of view when baculoviruses are applied as biocontrol agents. Here, we report mixed-infection studies of neonate larvae of the common cutworm, Agrotis segetum, with two baculoviruses, Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) and Agrotis segetum granulovirus (AgseGV). By applying quantitative PCR (qPCR) analysis, coinfections of individual larvae were demonstrated, and occlusion body (OB) production within singly infected and coinfected larvae was determined in individual larvae. Mixtures of viruses did not lead to changes in mortality rates compared with rates of single-virus treatments, indicating an independent action within host larvae under our experimental conditions. AgseNPV-B-infected larvae showed an increase in OB production during 2 weeks of infection, whereas the number of AgseGV OBs did not change from the first week to the second week. Fewer OBs of both viruses were produced in coinfections than in singly infected larvae, suggesting a competition of the two viruses for larval resources. Hence, no functional or economic advantage could be inferred from larval mortality and OB production from mixed infections of A. segetum larvae with AgseNPV-B and AgseGV. PMID:25681187

  16. Prevalence and intensity of infection with third stage larvae of Angiostrongylus cantonensis in mollusks from Northeast Thailand.

    PubMed

    Tesana, Smarn; Srisawangwong, Tuanchai; Sithithaworn, Paiboon; Laha, Thewarach; Andrews, Ross

    2009-06-01

    Prevalences and intensity of infection with Angiostrongylus cantonensis third stage larvae were examined in mollusks to determine whether they are potential intermediate hosts in eight provinces, northeast Thailand. Mollusk samples were collected from 24 reservoirs (3 reservoirs/province) in close to human cases during the previous year. Six out of 24 localities and 9 (3 new record species) out of 27 species were found with the infection. The highest intensity in infected species was found to be only one or two snails, whereas the majority had very low or no infection. The highest density was found in Pila pesmei and the lowest in Pila polita. The edible snails, P. polita, P. pesmei, and Hemiplecta distincta have the potential to transmit A. cantonensis to man. The varying density levels of larvae in infected snails may reflect observed variation in symptoms of people who traditionally eat a raw snail dish. PMID:19478262

  17. Odorants that induce hygienic behavior in honeybees: identification of volatile compounds in chalkbrood-infected honeybee larvae.

    PubMed

    Swanson, Jodi A I; Torto, Baldwyn; Kells, Stephen A; Mesce, Karen A; Tumlinson, James H; Spivak, Marla

    2009-09-01

    Social insects that live in large colonies are vulnerable to disease transmission due to relatively high genetic relatedness among individuals and high rates of contact within and across generations. While individual insects rely on innate immune responses, groups of individuals also have evolved social immunity. Hygienic behavior, in which individual honeybees detect chemical stimuli from diseased larvae and subsequently remove the diseased brood from the nest, is one type of social immunity that reduces pathogen transmission. Three volatile compounds, collected from larvae infected with the fungal pathogen Ascosphaera apis and detected by adult honey bees, were identified by coupled gas chromatography-electroantennographic detection and gas chromatography-mass spectrometry. These three compounds, phenethyl acetate, 2-phenylethanol, and benzyl alcohol, were present in volatile collections from infected larvae but were absent from collections from healthy larvae. Two field bioassays revealed that one of the compounds, phenethyl acetate is a key compound associated with Ascosphaera apis-infected larvae that induces hygienic behavior. PMID:19816752

  18. Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection

    PubMed Central

    Ihalainen, Teemu O.; Vanha-aho, Leena-Maija; Andó, István; Rämet, Mika

    2016-01-01

    Cellular immune responses require the generation and recruitment of diverse blood cell types that recognize and kill pathogens. In Drosophila melanogaster larvae, immune-inducible lamellocytes participate in recognizing and killing parasitoid wasp eggs. However, the sequence of events required for lamellocyte generation remains controversial. To study the cellular immune system, we developed a flow cytometry approach using in vivo reporters for lamellocytes as well as for plasmatocytes, the main hemocyte type in healthy larvae. We found that two different blood cell lineages, the plasmatocyte and lamellocyte lineages, contribute to the generation of lamellocytes in a demand-adapted hematopoietic process. Plasmatocytes transdifferentiate into lamellocyte-like cells in situ directly on the wasp egg. In parallel, a novel population of infection-induced cells, which we named lamelloblasts, appears in the circulation. Lamelloblasts proliferate vigorously and develop into the major class of circulating lamellocytes. Our data indicate that lamellocyte differentiation upon wasp parasitism is a plastic and dynamic process. Flow cytometry with in vivo hemocyte reporters can be used to study this phenomenon in detail. PMID:27414410

  19. Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection.

    PubMed

    Anderl, Ines; Vesala, Laura; Ihalainen, Teemu O; Vanha-Aho, Leena-Maija; Andó, István; Rämet, Mika; Hultmark, Dan

    2016-07-01

    Cellular immune responses require the generation and recruitment of diverse blood cell types that recognize and kill pathogens. In Drosophila melanogaster larvae, immune-inducible lamellocytes participate in recognizing and killing parasitoid wasp eggs. However, the sequence of events required for lamellocyte generation remains controversial. To study the cellular immune system, we developed a flow cytometry approach using in vivo reporters for lamellocytes as well as for plasmatocytes, the main hemocyte type in healthy larvae. We found that two different blood cell lineages, the plasmatocyte and lamellocyte lineages, contribute to the generation of lamellocytes in a demand-adapted hematopoietic process. Plasmatocytes transdifferentiate into lamellocyte-like cells in situ directly on the wasp egg. In parallel, a novel population of infection-induced cells, which we named lamelloblasts, appears in the circulation. Lamelloblasts proliferate vigorously and develop into the major class of circulating lamellocytes. Our data indicate that lamellocyte differentiation upon wasp parasitism is a plastic and dynamic process. Flow cytometry with in vivo hemocyte reporters can be used to study this phenomenon in detail. PMID:27414410

  20. Neurotropic mesomycetozoean-like infection in larvae of the southern toad Anaxyrus terrestris in Florida, USA.

    PubMed

    Kiryu, Yasunari; Landsberg, Jan H

    2015-03-01

    As part of a state-wide multispecies survey of amphibian diseases, sampling was conducted at Archbold Biological Station, Venus, Florida, USA, on 15 April 2011. Gross examination of southern toad (Anaxyrus terrestris) larvae was unremarkable, but infections by a mesomycetozoean-like organism were observed in longitudinally sectioned routine haematoxylin and eosin-stained histologic slides. In 100% of the sectioned specimens examined (n = 5), a high density of the organism, representing several developmental stages, was found in the central nervous system, mainly in the spinal cord, brain, retina and optic nerve. No host inflammatory responses were found to be associated with the parasitic infection. Free, mature schizonts were occasionally found in the gill chamber and, more commonly, in the dorsal roof area. No organisms were found in other organs examined histologically, i.e. liver, kidney, heart, alimentary tract, exocrine pancreas and skeletal muscles. Presumptive mesomycetozoean ichthyophonids in anurans are usually reported to be pathogenic, especially affecting skeletal muscle tissue and causing death. To our knowledge, this is the first report of a similar organism infecting primarily the central nervous system in an amphibian. PMID:25751858

  1. Interaction between the nematode-destroying fungus Arthrobotrys robusta (Hyphomycetales) and Haemonchus contortus infective larvae in vitro.

    PubMed

    Mendoza-de Gives, P; Zavaleta-Mejia, E; Quiroz-Romero, H; Herrera-Rodriguez, D; Perdomo-Roldan, F

    1992-02-01

    In an in vitro trial, the effect of the nematode-destroying fungus Arthrobotrys robusta on Haemonchus contortus infective larvae was evaluated in petri dishes containing corn meal agar. After seven days incubation at 25 degrees C, 92.33% (+/- 4.1) predation was recorded. PMID:1561755

  2. Screening and characterization of early diagnostic antigens in excretory-secretory proteins from Trichinella spiralis intestinal infective larvae by immunoproteomics.

    PubMed

    Liu, Ruo Dan; Jiang, Peng; Wen, Hui; Duan, Jiang Yang; Wang, Li Ang; Li, Jie Feng; Liu, Chun Ying; Sun, Ge Ge; Wang, Zhong Quan; Cui, Jing

    2016-02-01

    The excretory-secretory (ES) antigens from Trichinella spiralis muscle larvae are the most commonly used diagnostic antigens for trichinellosis, but specific IgG antibodies were not detected in early stage of infection. The aim of this study was to identify early diagnostic antigens from ES proteins of intestinal infective larvae (IIL), the first invasive stage of T. spiralis. Six bands (92, 52, 45, 35, 32, and 29 kDa) of IIL ES proteins were recognized by infection sera in Western blotting as early as 10 days post infection. Total of 54 T. spiralis proteins in six bands were identified by shotgun LC-MS/MS, 30 proteins were annotated, and 27 had hydrolase activity. Several proteins (serine protease, putative trypsin, deoxyribonuclease II family protein, etc.) could be considered as the potential early diagnostic antigens for trichinellosis. Our study provides new insights for screening early diagnostic antigens from intestinal worms of T. spiralis. PMID:26468148

  3. The Effect of In Vitro Cultivation on the Transcriptome of Adult Brugia malayi

    PubMed Central

    O’Neill, Maeghan; Burkman, Erica; Zaky, Weam I.; Xia, Jianguo; Moorhead, Andrew; Williams, Steven A.; Geary, Timothy G.

    2016-01-01

    Background Filarial nematodes cause serious and debilitating infections in human populations of tropical countries, contributing to an entrenched cycle of poverty. Only one human filarial parasite, Brugia malayi, can be maintained in rodents in the laboratory setting. It has been a widely used model organism in experiments that employ culture systems, the impact of which on the worms is unknown. Methodology/Principal Findings Using Illumina RNA sequencing, we characterized changes in gene expression upon in vitro maintenance of adult B. malayi female worms at four time points: immediately upon removal from the host, immediately after receipt following shipment, and after 48 h and 5 days in liquid culture media. The dramatic environmental change and the 24 h time lapse between removal from the host and establishment in culture caused a globally dysregulated gene expression profile. We found a maximum of 562 differentially expressed genes based on pairwise comparison between time points. After an initial shock upon removal from the host and shipping, a few stress fingerprints remained after 48 h in culture and until the experiment was stopped. This was best illustrated by a strong and persistent up-regulation of several genes encoding cuticle collagens, as well as serpins. Conclusions/Significance These findings suggest that B. malayi can be maintained in culture as a valid system for pharmacological and biological studies, at least for several days after removal from the host and adaptation to the new environment. However, genes encoding several stress indicators remained dysregulated until the experiment was stopped. PMID:26727204

  4. Analysis of Genes Expression of Spodoptera exigua Larvae upon AcMNPV Infection

    PubMed Central

    Wang, Yong; Zhen, Zou; Tao, Xue Ying; Lee, Joo Hyun; Liu, Qin; Kim, Jae Su; Shin, Sang Woon; Je, Yeon Ho

    2012-01-01

    Background The impact of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) infection on host gene expression in Spodoptera exigua 4th instar larvae was investigated through the use of 454 sequencing-based RNA-seq of cDNA libraries developed from insects challenged with active AcMNPV or heat-inactivated AcMNPV. Methodology/Principal Findings By comparing the two cDNA libraries, we show that 201 host genes are significantly up-regulated and 234 genes are significantly down-regulated by active AcMNPV infection. Down-regulated host genes included genes encoding antimicrobial peptides, namely three gloverin isoforms and an attacin, indicating that the viral infection actively repressed the expression of a portion of the host immune gene repertoire. Another interesting group of down-regulated host genes included genes encoding two juvenile hormone binding proteins and a hexamerin, all of which are involved in juvenile hormone regulation. The expression of these genes was enhanced by the topical application of Juvenile Hormone III (JHIII) in the insects challenged with heat-inactivated AcMNPV. However, infection with the active virus strongly suppresses the expression of these three genes, regardless of the absence or presence of JHIII. Conclusions/Significance Using RNA-seq, we have identified groups of immune-regulated and juvenile hormone-regulated genes that are suppressed by infection with active AcMNPV. This information and further studies on the regulation of host gene expression by AcMNPV will provide the tools needed to enhance the utility of the virus as an effective protein expression system and as an insecticide. PMID:22860129

  5. Pathological Changes Associated with Eggs and Larvae of Unionicola sp. (Acari: Unionicolidae) Infecting Strophitus connasaugaensis (Bivalvia: Unionidae) from Alabama Creeks.

    PubMed

    McElwain, Andrew; Fleming, Ryan; Lajoie, Megan; Maney, Colleen; Springall, Brian; Bullard, Stephen A

    2016-02-01

    We detail gross and histopathological changes associated with infection by the eggs, larvae, and cuticular remnants of Unionicola sp. in the mantle, gill, and visceral mass of 25 Alabama creekmussels, Strophitus connasaugaensis, collected during May 2010 through July 2012 from 2 Alabama streams. A multitude (estimated mean intensity >100) of mite eggs and larvae typically infected mantle, gill, and visceral mass integument. Pathology associated with eggs (prevalence = 0.57) and larvae (prevalence = 0.39) typically consisted of localized distension of the infection site; a host response to these infections was indeterminate. However, larval mites embedded in suprabranchial connective tissues were typically encapsulated (prevalence = 0.89). Mite remnants (prevalence = 0.5) occurred in mantle, gill, visceral mass integument, foot, heart, pericardial gland, intestinal lamina propria, and were typically encapsulated. We speculate that S. connasaugaensis clears some infections but is recolonized by autoinfection or horizontal dispersal of mites in the stream. Noteworthy is that high-intensity infections seemingly do not markedly impact the histological picture of mussel tissues, indicating that mites are relatively benign symbionts that are of little concern to mussels under normal environmental conditions. PMID:26535859

  6. Kinetics of capture and infection of infective larvae of trichostrongylides and free-living nematodes Panagrellus sp. by Duddingtonia flagrans.

    PubMed

    da Cruz, Daniela Guedes; Araújo, Flávia Biasoli; Molento, Marcelo Beltrão; Damatta, Renato Augusto; de Paula Santos, Clóvis

    2011-10-01

    Duddingtonia flagrans, a nematode-trapping fungus, has been investigated as an agent for biological control against infective larvae of gastrointestinal nematode parasites of production animals. The initial process of nematode-trapping fungi infection is based on an interaction between the trap structure of the fungus and the surface of the nematode cuticle. This report investigates by light and scanning electron microscopy the kinetics of capture and infection during the interaction of D. flagrans with the infective larvae (L(3)) of trichostrongylides and the free-living nematode Panagrellus sp. D. flagrans was cultivated for 7 days in a Petri dish containing agar-water. L(3) and Panagrellus sp. were inoculated in the Petri dishes and the samples consisting of agar-L(3)-fungi and agar-Panagrellus sp.-fungi were collected after 10, 20, 30, 40, 50, 60, and 70 min and 3, 4, 5, 10, 15, 20, and 25 h of interaction. All samples were observed by light microscopy. The samples with 1, 5, 15, and 25 h of interaction were also analyzed by scanning electron microscopy. The interaction was monitored up to 25 h. An initial differentiation of predation structures was observed after 30 min of interaction. The presence of traps and of captured L(3) or Panagrellus sp. occurred after 70 min. The live captured nematodes were observed up to 3 h of interaction. However, after 4 h, all Panagrellus sp. were dead. It took 15 h of interaction for the fungus to invade the L(3), and the presence of hyphae inside the nematode near the region of penetration was evident. At this time, the hyphae had filled the whole body of Panagrellus sp. The complete occupation of the body of L(3) occurred at 20 h of interaction and with 25 h the nematode was completely damaged except for the cuticle. Although the double cuticle of L(3) slows the penetration of D. flagrans, it was possible to verify that the process of trap formation and capture occurs quickly when both nematodes were tested, suggesting that

  7. Honey bee larval peritrophic matrix degradation during infection with Paenibacillus larvae, the aetiological agent of American foulbrood of honey bees, is a key step in pathogenesis.

    PubMed

    Garcia-Gonzalez, Eva; Genersch, Elke

    2013-11-01

    Paenibacillus larvae, the aetiological agent of American foulbrood (AFB) of honey bees, causes a fatal intestinal infection in larvae and invades the haemocoel by breaching the midgut. The peritrophic matrix lining the midgut epithelium in insects constitutes an effective barrier against abrasive food particles, xenobiotics, toxins and pathogens. Pathogens like P. larvae entering the host through the gut first need to overcome this barrier. To better understand AFB pathogenesis, we analysed the fate of the peritrophic matrix in honey bee larvae during P. larvae infection. Using histochemical techniques, we first established that chitin is a major component of the honey bee larval peritrophic matrix. Rearing larvae on a diet containing a fluorochrome blocking formation of the peritrophic matrix or a bacterial endochitinase revealed that a fully formed peritrophic matrix is essential for larval survival. Larvae infected by P. larvae showed total degradation of the peritrophic matrix enabling the bacteria to directly attack the epithelial cells. Carbon source utilization tests confirmed that P. larvae is able to metabolize colloidal chitin. We propose that P. larvae degrades the peritrophic matrix to allow direct access of the bacteria or of bacterial toxins to the epithelium to prepare the breakthrough of the epithelial layer. PMID:23809335

  8. Radiation inactivation of Paenibacillus larvae and sterilization of American Foul Brood (AFB) infected hives using Co-60 gamma rays.

    PubMed

    De Guzman, Zenaida M; Cervancia, Cleofas R; Dimasuay, Kris Genelyn B; Tolentino, Mitos M; Abrera, Gina B; Cobar, Ma Lucia C; Fajardo, Alejandro C; Sabino, Noel G; Manila-Fajardo, Analinda C; Feliciano, Chitho P

    2011-10-01

    The effectiveness of gamma radiation in inactivating the Philippine isolate of Paenibacillus larvae was investigated. Spores of P. larvae were irradiated at incremental doses (0.1, 0.2, 0.4, 0.8 and 1.6 kGy) of gamma radiation emitted by a ⁶⁰Co source. Surviving spores were counted and used to estimate the decimal reduction (D₁₀) value. A dose of 0.2 kGy was sufficient to inactivate 90% of the total recoverable spores from an initial count of 10⁵- 9 × 10³ spores per glass plate. The sterilizing effect of high doses of gamma radiation on the spores of P. larvae in infected hives was determined. In this study, a minimum dose (D(min)) of 15 kGy was tested. Beehives with sub-clinical infections of AFB were irradiated and examined for sterility. All the materials were found to be free of P. larvae indicating its susceptibility to γ-rays. After irradiation, there were no visible changes in the physical appearance of the hives' body, wax and frames. Thus, a dose of 15 kGy is effective enough for sterilization of AFB-infected materials. PMID:21683605

  9. Bacterial Infection and Immune Responses in Lutzomyia longipalpis Sand Fly Larvae Midgut.

    PubMed

    Heerman, Matthew; Weng, Ju-Lin; Hurwitz, Ivy; Durvasula, Ravi; Ramalho-Ortigao, Marcelo

    2015-01-01

    The midgut microbial community in insect vectors of disease is crucial for an effective immune response against infection with various human and animal pathogens. Depending on the aspects of their development, insects can acquire microbes present in soil, water, and plants. Sand flies are major vectors of leishmaniasis, and shown to harbor a wide variety of Gram-negative and Gram-positive bacteria. Sand fly larval stages acquire microorganisms from the soil, and the abundance and distribution of these microorganisms may vary depending on the sand fly species or the breeding site. Here, we assess the distribution of two bacteria commonly found within the gut of sand flies, Pantoea agglomerans and Bacillus subtilis. We demonstrate that these bacteria are able to differentially infect the larval digestive tract, and regulate the immune response in sand fly larvae. Moreover, bacterial distribution, and likely the ability to colonize the gut, is driven, at least in part, by a gradient of pH present in the gut. PMID:26154607

  10. Bacterial Infection and Immune Responses in Lutzomyia longipalpis Sand Fly Larvae Midgut

    PubMed Central

    Heerman, Matthew; Weng, Ju-Lin; Hurwitz, Ivy; Durvasula, Ravi; Ramalho-Ortigao, Marcelo

    2015-01-01

    The midgut microbial community in insect vectors of disease is crucial for an effective immune response against infection with various human and animal pathogens. Depending on the aspects of their development, insects can acquire microbes present in soil, water, and plants. Sand flies are major vectors of leishmaniasis, and shown to harbor a wide variety of Gram-negative and Gram-positive bacteria. Sand fly larval stages acquire microorganisms from the soil, and the abundance and distribution of these microorganisms may vary depending on the sand fly species or the breeding site. Here, we assess the distribution of two bacteria commonly found within the gut of sand flies, Pantoea agglomerans and Bacillus subtilis. We demonstrate that these bacteria are able to differentially infect the larval digestive tract, and regulate the immune response in sand fly larvae. Moreover, bacterial distribution, and likely the ability to colonize the gut, is driven, at least in part, by a gradient of pH present in the gut. PMID:26154607

  11. Effect of plant trichomes on the vertical migration of Haemonchus contortus infective larvae on five tropical forages.

    PubMed

    Oliveira, Aruaque L F; Costa, Ciniro; Rodella, Roberto A; Silva, Bruna F; Amarante, Alessandro F T

    2009-06-01

    The influence of trichomes on vertical migration and survival of Haemonchus contortus infective larvae (L3) on different forages was investigated. Four different forages showing different distributions of trichomes (Brachiaria brizantha cv. Marandu, Brachiaria brizantha cv. Xaraes, Andropogon gayanus, and Stylosanthes spp.), and one forage species without trichomes (Panicum maximum cv. Tanzania), were used. Forages cut at the post-grazing height were contaminated with faeces containing L3. Samples of different grass strata (0-10, 10-20, >20 cm) and faeces were collected for L3 quantification once per week over four weeks. In all forages studied, the highest L3 recovery occurred seven days after contamination, with the lowest recovery on A. gayanus. In general, larvae were found on all forages' strata. However, most of the larvae were at the lower stratum. There was no influence of trichomes on migration and survival of H. contortus L3 on the forages. PMID:18975119

  12. [Larva migrans].

    PubMed

    Chabasse, D; Le Clec'h, C; de Gentile, L; Verret, J L

    1995-01-01

    Larbish, cutaneous larva migrans or creeping eruption, is a serpiginous cutaneous eruption caused by skin penetration of infective larva from various animal nematodes. Hookworms (Ancylostoma brasiliense, A. caninum) are the most common causative parasites. They live in the intestines of dogs and cats where their ova are deposited in the animal feces. In sandy and shady soil, when temperature and moisture are elevated, the ova hatch and mature into infective larva. Infection occurs when humans have contact with the infected soil. Infective larva penetrate the exposed skin of the body, commonly around the feet, hands and buttocks. In humans, the larva are not able to complete their natural cycle and remain trapped in the upper dermis of the skin. The disease is widespread in tropical or subtropical regions, especially along the coast on sandy beaches. The diagnosis is easy for the patient who is returning from a tropical or subtropical climate and gives a history of beach exposure. The characteristic skin lesion is a fissure or erythematous cord which is displaced a few millimeters each day in a serpiginous track. Scabies, the larva currens syndrome due to Strongyloides stercoralis, must be distinguished from other creeping eruptions and subcutaneous swelling lesions caused by other nematodes or myiasis. Medical treatments are justified because it shortens the duration of the natural evolution of the disease. Topical tiabendazole is safe for localized invasions, but prolonged treatment may be necessary. Oral thiabendazole treatment for three days is effective, but sometimes is associated with adverse effects. Trials using albendazole for one or four consecutive days appear more efficacious. More recent trials using ivermectine showed that a single oral dose can cure 100% of the patients; thus, this drug looks very promising as a new form of therapy. Individual prophylaxis consists of avoiding skin contact with soil which has been contaminated with dog or cat feces

  13. Effect of flavan-3-ols on in vitro egg hatching, larval development and viability of infective larvae of Trichostrongylus colubriformis.

    PubMed

    Molan, A L; Meagher, L P; Spencer, P A; Sivakumaran, S

    2003-12-01

    The effects of flavan-3-ols (the monomer units of condensed tannins (CT)) and their galloyl derivatives on the viability of eggs, the development of first stage (L1) larvae, and the viability of the infective larvae of Trichostrongylus colubriformis were investigated under in vitro conditions. Each of the flavan-3-ol gallates showed some inhibition of egg hatching at 100 microg/ml, and 100% inhibition at 1000 microg/ml, with epigallocatechin gallate being the most effective in the egg hatch (EH) assay. In contrast, none of the flavan-3-ols were able to completely inhibit egg hatching. The flavan-3-ols and galloyl derivatives dose-dependently inhibited the development of infective larvae as assessed by the larval development (LD) assay. A larval migration inhibition (LMI) assay was used to assess the effect of flavan-3-ols and their galloyl derivatives on the motility of the infective third-stage (L3) larvae of T. colubriformis. In general, the flavan-3-ol gallates were more effective than the flavan-3-ols at immobilising the infective larvae as evidenced by their ability to inhibit more (P<0.05-0.01) larvae from passing through the LMI sieves. At 500 microg/ml, epigallocatechin gallate inhibited significantly more (P<0.1) larvae from passing through the sieves than did catechin gallate, epicatechin gallate, or gallocatechin gallate. Comparisons were made between the flavan-3-ols and their galloyl derivatives with the in vitro effects of CT extracts from several forage legumes, which have exhibited effects on parasites in vivo. The forage legumes tested at 200-500 microg/ml reduced the proportion of eggs that hatch, with comparable results to those obtained using the flavan-3-ols. The activities may be influenced by the prodelphinidin: procyanidin (PD:PC) ratios: CT extracts from Lotus pendunculatus and sainfoin have PD:PC ratios of 70:30 and 77:23, respectively, whereas the less active CT extract from Lotus corniculatus has a PD:PC ratio of 27:73. The active CT

  14. Galleria mellonella larvae as an infection model for group A streptococcus.

    PubMed

    Loh, Jacelyn M S; Adenwalla, Nazneen; Wiles, Siouxsie; Proft, Thomas

    2013-07-01

    Group A streptococcus is a strict human pathogen that can cause a wide range of diseases, such as tonsillitis, impetigo, necrotizing fasciitis, toxic shock, and acute rheumatic fever. Modeling human diseases in animals is complicated, and rapid, simple, and cost-effective in vivo models of GAS infection are clearly lacking. Recently, the use of non-mammalian models to model human disease is starting to re-attract attention. Galleria mellonella larvae, also known as wax worms, have been investigated for modeling a number of bacterial pathogens, and have been shown to be a useful model to study pathogenesis of the M3 serotype of GAS. In this study we provide further evidence of the validity of the wax worm model by testing different GAS M-types, as well as investigating the effect of bacterial growth phase and incubation temperature on GAS virulence in this model. In contrast to previous studies, we show that the M-protein, among others, is an important virulence factor that can be effectively modeled in the wax worm. We also highlight the need for a more in-depth investigation of the effects of experimental design and wax worm supply before we can properly vindicate the wax worm model for studying GAS pathogenesis. PMID:23652836

  15. Predatory activity of the nematophagous fungus Duddingtonia flagrans on horse cyathostomin infective larvae.

    PubMed

    Braga, Fabio R; Araújo, Jackson V; Silva, André R; Carvalho, Rogério O; Araujo, Juliana M; Ferreira, Sebastião R; Benjamin, Laércio A

    2010-08-01

    This work was performed to determine the predatory capacity in vitro of the nematophagous fungus Duddingtonia flagrans (isolate AC001) on cyathostomin infective larvae of horse (L(3)). The experimental assay was carried out on plates with 2% water-agar (2% WA). In the treated group, each plate contained 1.000 L(3) and 1.000 conidia of the fungus. The control group without fungus only contained 1.000 L(3) in the plates. Ten random fields (4 mm diameter) were examined per plate of treated and control groups, every 24 h for seven days under an optical microscope (10x and 40x objective lens) for non-predated L(3) counts. After 7 days, the non-predated L(3) were recovered from the Petri dishes using the Baermann method. The interaction there was a significant reduction (p < 0.01) of 93.64% in the cyathostomin L(3) recovered. The results showed that the D. flagrans is a potential candidate to the biological control of horse cyathostomin L(3). PMID:20213221

  16. Nematocidal activity of extracellular enzymes produced by the nematophagous fungus Duddingtonia flagrans on cyathostomin infective larvae.

    PubMed

    Braga, Fabio Ribeiro; Soares, Filippe Elias Freitas; Giuberti, Thais Zanotti; Lopes, Aline Del Carmen Garcias; Lacerda, Tracy; Ayupe, Tiago de Hollanda; Queiroz, Paula Viana; Gouveia, Angélica de Souza; Pinheiro, Larissa; Araújo, Andreia Luíza; Queiroz, José Humberto; Araújo, Jackson Victor

    2015-09-15

    Duddingtonia flagrans produces chitinases, however, optimization of the production of these enzymes still needs to be explored, and its nematocidal activity should still be the subject of studies. The objective of the present study was to optimize chitinase production, and evaluate the nematocidal activity of extracellular enzymes produced by the nematophagous fungus D. flagrans on cyathostomin infective larvae. An isolate from D. flagrans (AC001) was used in this study. For the production of enzymes (protease and chitinase), two different culture media were inoculated with AC001 conidia. Both enzymes were purified. The statistical Plackett-Burman factorial design was used to investigate some variables and their effect on the production of chitinases by D. flagrans. After that, the design central composite (CCD) was used in order to determine the optimum levels and investigate the interactions of these variables previously observed. Only two variables (moisture and incubation time), in the evaluated levels, had a significant effect (p<0.05) on chitinase production. The conditions of maximum chitinase activity were calculated, with the following values: incubation time 2 days, and moisture 511%. The protease and chitinase derived from D. flagrans, individually or together (after 24h), led to a significant reduction (p<0.01) in the number of intact cyathostomin L3, when compared to the control, with following reduction percentage values: 19.4% (protease), 15.5% (chitinase), and 20.5% (protease+chitinase). Significant differences were observed (p<0.05) between the group treated with proteases in relation to the group treated with proteases+chitinases. In this study, the assay with the cyathostomins showed that chitinase had a nematocidal effect, suggesting that this enzyme acts on the "fungus versus nematodes" infection process. It is known that nematode eggs are rich in chitin, and in this case, we could think of a greater employability for this chitinase. PMID

  17. EVALUATION OF THE THERAPEUTIC EFFICACY OF LEVAMISOLE HYDROCHLORIDE ON THIRD-STAGE LARVAE OF Lagochilascaris minor IN EXPERIMENTALLY INFECTED MICE

    PubMed Central

    CAMPOS, Dulcinéa Maria Barbosa; BARBOSA, Alverne Passos; OLIVEIRA, Jayrson Araújo; BARBOSA, Carlos Augusto Lopes; LOBO, Tamara Flavia Correa; SILVA, Luana Gabriella; THOMAZ, Douglas Vieira; PEIXOTO, Josana de Castro

    2016-01-01

    Lagochilascariosis, a disease caused by Lagochilascaris minor, affects the neck, sinuses, tonsils, lungs, the sacral region, dental alveoli, eyeballs and the central nervous system of humans. A cycle of autoinfection may occur in human host tissues characterized by the presence of eggs, larvae and adult worms. This peculiarity of the cycle hinders therapy, since there are no drugs that exhibit ovicidal, larvicidal and vermicidal activity. Given these facts, we studied the action of levamisole hydrochloride on third-stage larvae in the migration phase (G1) and on encysted larvae (G3) of L. minor. To this end, 87 inbred mice of the C57BL/6 strain were divided into test groups comprising 67 animals (G1-37; G3-30) and a control group (G2-10; G4-10) with 20 animals. Each animal was inoculated orally with 2,000 infective eggs of the parasite. The animals of the test groups were treated individually with a single oral dose of levamisole hydrochloride at a concentration of 0.075 mg. The drug was administered either 30 minutes prior to the parasite inoculation (G1 animals) or 120 days after the inoculation (G3 animals). The mice in the control groups were not treated with the drug. After the time required for the migration and the encysting of L. minor larvae, all the animals were euthanized and their tissues examined. The data were analyzed using the Student's unpaired t-test and the Levene test. The groups showed no statistically significant difference. Levamisole hydrochloride was ineffective on third-stage larvae of L. minor. These findings explain the massive expulsion of live adult worms, as well as the use of long treatment schemes, owing to the persistence of larvae and eggs in human parasitic lesions. PMID:27253745

  18. EVALUATION OF THE THERAPEUTIC EFFICACY OF LEVAMISOLE HYDROCHLORIDE ON THIRD-STAGE LARVAE OF Lagochilascaris minor IN EXPERIMENTALLY INFECTED MICE.

    PubMed

    Campos, Dulcinéa Maria Barbosa; Barbosa, Alverne Passos; Oliveira, Jayrson Araújo; Barbosa, Carlos Augusto Lopes; Lobo, Tamara Flavia Correa; Silva, Luana Gabriella; Thomaz, Douglas Vieira; Peixoto, Josana de Castro

    2016-01-01

    Lagochilascariosis, a disease caused by Lagochilascaris minor, affects the neck, sinuses, tonsils, lungs, the sacral region, dental alveoli, eyeballs and the central nervous system of humans. A cycle of autoinfection may occur in human host tissues characterized by the presence of eggs, larvae and adult worms. This peculiarity of the cycle hinders therapy, since there are no drugs that exhibit ovicidal, larvicidal and vermicidal activity. Given these facts, we studied the action of levamisole hydrochloride on third-stage larvae in the migration phase (G1) and on encysted larvae (G3) of L. minor. To this end, 87 inbred mice of the C57BL/6 strain were divided into test groups comprising 67 animals (G1-37; G3-30) and a control group (G2-10; G4-10) with 20 animals. Each animal was inoculated orally with 2,000 infective eggs of the parasite. The animals of the test groups were treated individually with a single oral dose of levamisole hydrochloride at a concentration of 0.075 mg. The drug was administered either 30 minutes prior to the parasite inoculation (G1 animals) or 120 days after the inoculation (G3 animals). The mice in the control groups were not treated with the drug. After the time required for the migration and the encysting of L. minor larvae, all the animals were euthanized and their tissues examined. The data were analyzed using the Student's unpaired t-test and the Levene test. The groups showed no statistically significant difference. Levamisole hydrochloride was ineffective on third-stage larvae of L. minor. These findings explain the massive expulsion of live adult worms, as well as the use of long treatment schemes, owing to the persistence of larvae and eggs in human parasitic lesions. PMID:27253745

  19. Ultrastructural changes in the muscles, midgut, hemopoietic organ, imaginal discs and Malpighian tubules of the mosquito Aedes aegypti larvae infected by the fungus Coelomomyces stegomyiae.

    PubMed

    Shoulkamy, M A; Abdelzaher, H M; Shahin, A A

    2001-01-01

    Fungi belonging to the genus Coelomomyces can infect mosquito larvae and develop within the larval hemocoel. To examine fungal development, Aedes aegypti larvae infected with Coelomomyces stegomyiae Keilin were fixed, embedded and sectioned for both light and electron microscopy. While fungal hyphae of C. stegomyiae did not invade cells other than the cuticular epithelial cells, they did penetrate a number of tissues including muscles, midgut, hemopoietic organ, imaginal discs, and Malpighian tubules. PMID:11265168

  20. Proteolytic activity of extracellular products from Arthrobotrys musiformis and their effect in vitro against Haemonchus contortus infective larvae

    PubMed Central

    Acevedo-Ramírez, Perla María del Carmen; Figueroa-Castillo, Juan Antonio; Ulloa-Arvizú, Raúl; Martínez-García, Luz Gisela; Guevara-Flores, Alberto; Rendón, Juan Luis; Valero-Coss, Rosa Ofelia; Mendoza-de Gives, Pedro; Quiroz-Romero, Héctor

    2015-01-01

    Arthrobotrys musiformis is a nematophagous fungus with potential for the biological control of Haemonchus contortus larvae. This study aimed to identify and demonstrate the proteolytic activity of extracellular products from A musiformis cultured in a liquid medium against H contortus infective larvae. A musiformis was cultured on a solid medium and further grown in a liquid medium, which was then processed through ion exchange and hydrophobic interaction chromatography. The proteolytic activity of the purified fraction was assayed with either gelatin or bovine serum albumin as substrate. Optimum proteolytic activity was observed at pH 8 and a temperature of 37°C. Results obtained with specific inhibitors suggest the enzyme belongs to the serine-dependent protease family. The purified fraction concentrate from A musiformis was tested against H contortus infective larvae. A time-dependent effect was observed with 77 per cent immobility after 48 hours incubation, with alteration of the sheath. It is concluded that A musiformis is a potential candidate for biological control because of its resistant structures and also because of its excretion of extracellular products such as proteases. The present study contributes to the identification of one of the in vitro mechanisms of action of Amusiformis, namely the extracellular production of proteases against H contortus infective larvae. More investigations should be undertaken into how these products could be used to decrease the nematode population in sheep flocks under field conditions, thereby improving animal health while simultaneously diminishing the human and environmental impact of chemical-based drugs. PMID:26392902

  1. Tissue and Stage-Specific Distribution of Wolbachia in Brugia malayi

    PubMed Central

    Fischer, Kerstin; Beatty, Wandy L.; Jiang, Daojun; Weil, Gary J.; Fischer, Peter U.

    2011-01-01

    Background Most filarial parasite species contain Wolbachia, obligatory bacterial endosymbionts that are crucial for filarial development and reproduction. They are targets for alternative chemotherapy, but their role in the biology of filarial nematodes is not well understood. Light microscopy provides important information on morphology, localization and potential function of these bacteria. Surprisingly, immunohistology and in situ hybridization techniques have not been widely used to monitor Wolbachia distribution during the filarial life cycle. Methods/Principal Findings A monoclonal antibody directed against Wolbachia surface protein and in situ hybridization targeting Wolbachia 16S rRNA were used to monitor Wolbachia during the life cycle of B. malayi. In microfilariae and vector stage larvae only a few cells contain Wolbachia. In contrast, large numbers of Wolbachia were detected in the lateral chords of L4 larvae, but no endobacteria were detected in the genital primordium. In young adult worms (5 weeks p.i.), a massive expansion of Wolbachia was observed in the lateral chords adjacent to ovaries or testis, but no endobacteria were detected in the growth zone of the ovaries, uterus, the growth zone of the testis or the vas deferens. Confocal laser scanning and transmission electron microscopy showed that numerous Wolbachia are aligned towards the developing ovaries and single endobacteria were detected in the germline. In inseminated females (8 weeks p.i.) Wolbachia were observed in the ovaries, embryos and in decreasing numbers in the lateral chords. In young males Wolbachia were found in distinct zones of the testis and in large numbers in the lateral chords in the vicinity of testicular tissue but never in mature spermatids or spermatozoa. Conclusions Immunohistology and in situ hybridization show distinct tissue and stage specific distribution patterns for Wolbachia in B. malayi. Extensive multiplication of Wolbachia occurs in the lateral chords of L4

  2. Description, microhabitat selection and infection patterns of sealworm larvae (Pseudoterranova decipiens species complex, nematoda: ascaridoidea) in fishes from Patagonia, Argentina

    PubMed Central

    2013-01-01

    Background Third-stage larvae of the Pseudoterranova decipiens species complex (also known as sealworms) have been reported in at least 40 marine fish species belonging to 21 families and 10 orders along the South American coast. Sealworms are a cause for concern because they can infect humans who consume raw or undercooked fish. However, despite their economic and zoonotic importance, morphological and molecular characterization of species of Pseudoterranova in South America is still scarce. Methods A total of 542 individual fish from 20 species from the Patagonian coast of Argentina were examined for sealworms. The body cavity, the muscles, internal organs, and the mesenteries were examined to detect nematodes. Sealworm larvae were removed from their capsules and fixed in 70% ethanol. For molecular identification, partial fragments of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) were amplified for 10 isolates from 4 fish species. Morphological and morphometric data of sealworms were also obtained. Results A total of 635 larvae were collected from 12 fish species. The most infected fish was Prionotus nudigula, followed by Percophis brasiliensis, Acanthistius patachonicus, Paralichthys isosceles, and Pseudopercis semifasciata. Sequences obtained for the cox1 of sealworms from A. patachonicus, P. isosceles, P. brasiliensis and P. nudigula formed a reciprocally monophyletic lineage with published sequences of adult specimens of Pseudoterranova cattani from the South American sea lion Otaria flavescens, and distinct from the remaining 5 species of Pseudoterranova. A morphological description, including drawings and scanning electron microscopy photomicrographs of these larvae is provided. Sealworms collected from Argentinean fishes did not differ in their diagnostic traits from the previously described larvae of P. cattani. However a discriminant analysis suggests that specimens from P. nudigula were significantly larger than those from other fishes

  3. Larva migrans syndrome caused by Toxocara and Ascaris roundworm infections in Japanese patients.

    PubMed

    Yoshida, A; Hombu, A; Wang, Z; Maruyama, H

    2016-09-01

    Larva migrans syndrome (LMS) caused by Toxocara and Ascaris roundworms is generally believed to be more common in children, while a report from Japan suggests that it is more common in adults. We conducted a large-scale retrospective study to confirm these findings and to clarify what caused the difference between Japan and other countries, to reveal overlooked aspects of this disease. The clinical information of 911 cases which we diagnosed as Toxocara or Ascaris LMS during 2001 and 2015 was analysed. Information used included age, sex, address (city or county), chief complaint, present history, dietary history, overseas travelling history, medical imaging findings and laboratory data (white blood cell count, peripheral blood eosinophil number and total IgE). The sex ratio of the disease was 2.37 (male/female = 641/270). The number of patients not younger than 20 years old were 97.8 and 95.1 % among males and females, respectively. Major disease types were visceral, ocular, neural and asymptomatic. The visceral type was more prevalent in older patients, while younger patients were more vulnerable to ocular symptoms. More than two-thirds of the patients whose dietary habits were recorded had a history of ingesting raw or undercooked animal meat. LMS caused by Toxocara or Ascaris is primarily a disease of adult males in Japan, who probably acquired infections by eating raw or undercooked animal meat/liver. Healthcare specialists should draw public attention to the risk of raw or undercooked animal meat in Europe as well. PMID:27272122

  4. Whole-Body Analysis of a Viral Infection: Vascular Endothelium is a Primary Target of Infectious Hematopoietic Necrosis Virus in Zebrafish Larvae

    PubMed Central

    Torhy, Corinne; Briolat, Valérie; Colucci-Guyon, Emma; Brémont, Michel; Herbomel, Philippe; Boudinot, Pierre; Levraud, Jean-Pierre

    2011-01-01

    The progression of viral infections is notoriously difficult to follow in whole organisms. The small, transparent zebrafish larva constitutes a valuable system to study how pathogens spread. We describe here the course of infection of zebrafish early larvae with a heat-adapted variant of the Infectious Hematopoietic Necrosis Virus (IHNV), a rhabdovirus that represents an important threat to the salmonid culture industry. When incubated at 24°C, a permissive temperature for virus replication, larvae infected by intravenous injection died within three to four days. Macroscopic signs of infection followed a highly predictable course, with a slowdown then arrest of blood flow despite continuing heartbeat, followed by a loss of reactivity to touch and ultimately by death. Using whole-mount in situ hybridization, patterns of infection were imaged in whole larvae. The first infected cells were detectable as early as 6 hours post infection, and a steady increase in infected cell number and staining intensity occurred with time. Venous endothelium appeared as a primary target of infection, as could be confirmed in fli1:GFP transgenic larvae by live imaging and immunohistochemistry. Disruption of the first vessels took place before arrest of blood circulation, and hemorrhages could be observed in various places. Our data suggest that infection spread from the damaged vessels to underlying tissue. By shifting infected fish to a temperature of 28°C that is non-permissive for viral propagation, it was possible to establish when virus-generated damage became irreversible. This stage was reached many hours before any detectable induction of the host response. Zebrafish larvae infected with IHNV constitute a vertebrate model of an hemorrhagic viral disease. This tractable system will allow the in vivo dissection of host-virus interactions at the whole organism scale, a feature unrivalled by other vertebrate models. PMID:21304884

  5. Temperature and water quality effects in simulated woodland pools on the infection of Culex mosquito larvae by Lagenidium giganteum (Oomycetes: Lagenidiales) in North Carolina

    SciTech Connect

    Guzman, D.R.; Axtell, R.C.

    1987-06-01

    Asexual stages of the California (CA) isolate of Lagenidium giganteum cultured on sunflower seed extract (SFE)-agar, were applied to outdoor pools containing Culex larvae near Raleigh, NC in August and September 1984. Infection rates among the larvae ranged from 19 to 74% at 2-4 days posttreatment and subsequent epizootics eliminated most of the newly hatched larvae for at least 10 days posttreatment. Substantial reductions in numbers of larvae and adult emergence were achieved from a single application of the fungus. Water quality and temperature data are presented. From laboratory assays of organically polluted water, the percent infection of Culex quinquefasciatus by the fungus was correlated with water quality and temperature. A logistic model of water quality (COD and NH/sub 3/-N) effects on infectivity rates by the CA isolate is described.

  6. Genetic and Biochemical Diversity of Paenibacillus larvae Isolated from Tunisian Infected Honey Bee Broods

    PubMed Central

    Hamdi, Chadlia; Essanaa, Jihène; Sansonno, Luigi; Crotti, Elena; Abdi, Khaoula; Barbouche, Naima; Balloi, Annalisa; Gonella, Elena; Alma, Alberto; Daffonchio, Daniele; Boudabous, Abdellatif; Cherif, Ameur

    2013-01-01

    Paenibacillus larvae is the causative agent of American foulbrood (AFB), a virulent disease of honeybee (Apis mellifera) larvae. In Tunisia, AFB has been detected in many beekeeping areas, where it causes important economic losses, but nothing is known about the diversity of the causing agent. Seventy-five isolates of P. larvae, identified by biochemical tests and 16S rRNA gene sequencing, were obtained from fifteen contaminated broods showing typical AFB symptoms, collected in different locations in the northern part of the country. Using BOX-PCR, a distinct profile of P. larvae with respect to related Paenibacillus species was detected which may be useful for its identification. Some P. larvae-specific bands represented novel potential molecular markers for the species. BOX-PCR fingerprints indicated a relatively high intraspecific diversity among the isolates not described previously with several molecular polymorphisms identifying six genotypes on polyacrylamide gel. Polymorphisms were also detected in several biochemical characters (indol production, nitrate reduction, and methyl red and oxidase tests). Contrary to the relatively high intraspecies molecular and phenotypic diversity, the in vivo virulence of three selected P. larvae genotypes did not differ significantly, suggesting that the genotypic/phenotypic differences are neutral or related to ecological aspects other than virulence. PMID:24073406

  7. Genetic and biochemical diversity of Paenibacillus larvae isolated from Tunisian infected honey bee broods.

    PubMed

    Hamdi, Chadlia; Essanaa, Jihène; Sansonno, Luigi; Crotti, Elena; Abdi, Khaoula; Barbouche, Naima; Balloi, Annalisa; Gonella, Elena; Alma, Alberto; Daffonchio, Daniele; Boudabous, Abdellatif; Cherif, Ameur

    2013-01-01

    Paenibacillus larvae is the causative agent of American foulbrood (AFB), a virulent disease of honeybee (Apis mellifera) larvae. In Tunisia, AFB has been detected in many beekeeping areas, where it causes important economic losses, but nothing is known about the diversity of the causing agent. Seventy-five isolates of P. larvae, identified by biochemical tests and 16S rRNA gene sequencing, were obtained from fifteen contaminated broods showing typical AFB symptoms, collected in different locations in the northern part of the country. Using BOX-PCR, a distinct profile of P. larvae with respect to related Paenibacillus species was detected which may be useful for its identification. Some P. larvae-specific bands represented novel potential molecular markers for the species. BOX-PCR fingerprints indicated a relatively high intraspecific diversity among the isolates not described previously with several molecular polymorphisms identifying six genotypes on polyacrylamide gel. Polymorphisms were also detected in several biochemical characters (indol production, nitrate reduction, and methyl red and oxidase tests). Contrary to the relatively high intraspecies molecular and phenotypic diversity, the in vivo virulence of three selected P. larvae genotypes did not differ significantly, suggesting that the genotypic/phenotypic differences are neutral or related to ecological aspects other than virulence. PMID:24073406

  8. Isolation and purification of a granulosis virus from infected larvae of the Indian meal moth, Plodia interpunctella.

    PubMed Central

    Tweeten, K A; Bulla, L A; Consigli, R A

    1977-01-01

    A procedure was developed for purification of a granulosis virus inclusion body produced in vivo in the Indian meal moth, Plodia interpunctella (Hübner). Purification was accomplished by differential centrifugation, treatment with sodium deoxycholate, and velocity sedimentation in sucrose gradients. The adequacy of the procedure was confirmed by mixing experiments in which uninfected, radioactively labeled larvae were mixed with infected, unlabeled larvae. After purification, the virus was shown to be free of host tissue, to retain its physical integrity, and to be highly infectious per os. Preparations of purified virus consisted of homogeneous populations of intact inclusion bodies (210 by 380 nm) whose buoyant density was 1.271 g/cm3 when centrifuged to equilibrium in sucrose gradients. Electron microscopy of thin-sectioned virus or of virus sequentially disrupted on electron microscope grids demonstrated three components: protein matrix, envelope, and nucleocapsid. Images PMID:334076

  9. [Infection with opistorchis larvae in the fish family cyprinidae in the Ob-Irtysh River basin in the Tyumen region].

    PubMed

    2012-01-01

    Fishes, such as ide (Leuciscus idus), dace (Leuciscus leuciscus), carpbream (Abramis brama), roach (Rutilus rutilus), and muvarica (Alburnus alburnus), with different frequency and rate of invasion and abundance index were infested with larvae of O. felineus, M. bilis, and P. truncatum. There were the highest rates of fish infection with P. truncatum larvae in the subtaiga zone (the south of the region) and with O. felineus metacercariae in the northern subtaiga and taiga zones. In research, experimental, and clinical studies, the nosological entity opisthorchiasis is a parasitic cenosis consisting of 2-3 co-members requiring their specific identification, which allows therapeutic measures to be more effectively implemented among the population of a hyperendemic focus. PMID:23437717

  10. Effective immunosuppression with dexamethasone phosphate in the Galleria mellonella larva infection model resulting in enhanced virulence of Escherichia coli and Klebsiella pneumoniae.

    PubMed

    Torres, Miquel Perez; Entwistle, Frances; Coote, Peter J

    2016-08-01

    The aim was to evaluate whether immunosuppression with dexamethasone 21-phosphate could be applied to the Galleria mellonella in vivo infection model. Characterised clinical isolates of Escherichia coli or Klebsiella pneumoniae were employed, and G. mellonella larvae were infected with increasing doses of each strain to investigate virulence in vivo. Virulence was then compared with larvae exposed to increasing doses of dexamethasone 21-phosphate. The effect of dexamethasone 21-phosphate on larval haemocyte phagocytosis in vitro was determined via fluorescence microscopy and a burden assay measured the growth of infecting bacteria inside the larvae. Finally, the effect of dexamethasone 21-phosphate treatment on the efficacy of ceftazidime after infection was also noted. The pathogenicity of K. pneumoniae or E. coli in G. mellonella larvae was dependent on high inoculum numbers such that virulence could not be attributed specifically to infection by live bacteria but also to factors associated with dead cells. Thus, for these strains, G. mellonella larvae do not constitute an ideal infection model. Treatment of larvae with dexamethasone 21-phosphate enhanced the lethality induced by infection with E. coli or K. pneumoniae in a dose- and inoculum size-dependent manner. This correlated with proliferation of bacteria in the larvae that could be attributed to dexamethasone inhibiting haemocyte phagocytosis and acting as an immunosuppressant. Notably, prior exposure to dexamethasone 21-phosphate reduced the efficacy of ceftazidime in vivo. In conclusion, demonstration of an effective immunosuppressant regimen can improve the specificity and broaden the applications of the G. mellonella model to address key questions regarding infection. PMID:26920133

  11. New diagnostic antigens for early trichinellosis: the excretory-secretory antigens of Trichinella spiralis intestinal infective larvae.

    PubMed

    Sun, Ge Ge; Liu, Ruo Dan; Wang, Zhong Quan; Jiang, Peng; Wang, Li; Liu, Xiao Lin; Liu, Chun Yin; Zhang, Xi; Cui, Jing

    2015-12-01

    The excretory-secretory (ES) antigens from Trichinella spiralis muscle larvae (ML) are the most commonly used diagnostic antigens for trichinellosis, but anti-Trichinella IgG antibodies cannot be detected until 2-3 weeks after infection; there is an obvious window period between Trichinella infection and antibody positivity. Intestinal infective larvae (IIL) are the first invasive stage during Trichinella infection, and their ES antigens are firstly exposed to the immune system and might be the early diagnostic markers of trichinellosis. The aim of this study was to evaluate the early diagnostic values of IIL ES antigens for trichinellosis. The IIL were collected from intestines of infected mice at 6 h postinfection (hpi), and IIL ES antigens were prepared by incubation for 18 h. Anti-Trichinella IgG antibodies in mice infected with 100 ML were detectable by ELISA with IIL ES antigens as soon as 10 days postinfection (dpi), but ELISA with ML ES antigens did not permit detection of infected mice before 12 dpi. When the sera of patients with trichinellosis at 19 dpi were assayed, the sensitivity (100 %) of ELISA with IIL ES antigens was evidently higher than 75 % of ELISA with ML ES antigens (P < 0.05) The specificity (96.86 %) of ELISA with IIL ES antigens was also higher than 89.31 % of ELISA with ML ES antigens (P < 0.05). The IIL ES antigens provided a new source of diagnostic antigens and could be considered as a potential early diagnostic antigen for trichinellosis. PMID:26342828

  12. Predation of Ancylostoma spp. dog infective larvae by nematophagous fungi in different conidial concentrations.

    PubMed

    Maciel, A S; Araújo, J V; Campos, A K; Lopes, E A; Freitas, L G

    2009-05-12

    In the present work, it was evaluated the in vitro effect of 12 isolates from the fungal species Arthrobotrys, Duddingtonia, Nematoctonus and Monacrosporium genera in different conidial concentrations on the capture of Ancylostoma spp. dog infective larvae (L(3)), on 2% water-agar medium at 25 degrees C, at the end of a period of 7 days. The concentrations used for each nematophagous fungus were 1000, 5000, 10,000, 15,000 and 20,000conidia/Petri dish plated with 1000 Ancylostoma spp. L(3). All nematode-trapping fungi isolates tested reduced the averages of the uncaptured Ancylostoma spp. L(3) recovered, with the increase of the fungal inoculum concentration, in comparison to the fungus-free control (p<0.05). The adhesive network producing species were better predators than the constricting ring or adhesive knob producing species. Duddingtonia flagrans (Isolate CG768) was the most effective, reducing the averages of the uncaptured Ancylostoma spp. L(3) recovered in 92.8%, 96.3%, 97.5%, 98.3% and 98.9%, respectively in five fungal inoculum concentrations established. Other effective nematophagous fungi were Arthrobotrys robusta (Isolate I31), which reduced the averages of the uncaptured Ancylostoma spp. L(3) recovered in 85.4%, 88.3%, 90.7%, 92.5% and 95.2%, and Arthrobotrys oligospora (Isolate A183), with reductions of 66.6%, 79.8%, 86.8%, 89.5% and 90.8%, respectively for both, in the five fungal inoculum concentrations established. No difference was found between Isolates A183 and I31 in the conidial concentrations of 15,000/Petri dish. Nematoctonus robustus (Isolate D1) and Arthrobotrys bronchophaga (Isolate AB) had the smallest percentages of reduction among the tested isolates and showed the lowest predacious activity. The Isolates CG768, I31 and A183 were considered potential biological control agents of Ancylostoma spp. dog free-living stages, being directly influenced by the fungal inoculum concentration. PMID:19243889

  13. Positivity and Intensity of Gnathostoma spinigerum Infective Larvae in Farmed and Wild-Caught Swamp Eels in Thailand

    PubMed Central

    Saksirisampant, Wilai

    2012-01-01

    From July 2008 to June 2009, livers of the swamp eels (Monopterus alba) were investigated for advanced third-stage larvae (AL3) of Gnathostoma spinigerum. Results revealed that 10.2% (106/1,037) and 20.4% (78/383) of farmed eels from Aranyaprathet District, Sa Kaeo Province and those of wild-caught eels obtained from a market in Min Buri District of Bangkok, Thailand were infected, respectively. The prevalence was high during the rainy and winter seasons. The infection rate abruptly decreased in the beginning of summer. The highest infection rate (13.7%) was observed in September and absence of infection (0%) in March-April in the farmed eels. Whereas, in the wild-caught eels, the highest rate (30.7%) was observed in November, and the rate decreased to the lowest at 6.3% in March. The average no. (mean±SE) of AL3 per investigated liver in farmed eels (1.1±0.2) was significantly lower (P=0.040) than those in the caught eels (0.2±0.03). In addition, the intensity of AL3 recovered from each infected liver varied from 1 to 18 (2.3±0.3) in the farmed eels and from 1 to 47 (6.3±1.2) in the caught eels, respectively. The AL3 intensity showed significant difference (P=0.011) between these 2 different sources of eels. This is the first observation that farmed eels showed positive findings of G. spinigerum infective larvae. This may affect the standard farming of the culture farm and also present a risk of consuming undercooked eels from the wild-caught and farmed eels. PMID:22711921

  14. DEPENDENCE OF ECDYSTEROID METABOLISM AND DEVELOPMENT IN HOST LARVAE ON THE TIME OF BACULOVIRUS INFECTION AND THE ACTIVITY OF THE UDP-GLUCOSYL TRANSFERASE GENE.

    EPA Science Inventory

    Infection of fourth-instar gypsy moth (Lymantria dispar, Lepidoptera: Lymantriidae) larvae with the wild-type (Wt) gypsy moth baculovirus, LdNPV on the first day post-molt, or infection of fifth instars on the fifth day post-molt, results in elevated ecdysteroid levels in both he...

  15. Tyramine functions as a toxin in honey bee larvae during Varroa-transmitted infection by Melissococcus pluton.

    PubMed

    Kanbar, G; Engels, W; Nicholson, G J; Hertle, R; Winkelmann, G

    2004-05-01

    From wounds of honey bee pupae, caused by the mite Varroa destructor, coccoid bacteria were isolated and identified as Melissococcus pluton. The bacterial isolate was grown anaerobically in sorbitol medium to produce a toxic compound that was purified on XAD columns, gelfiltration and preparative HPLC. The toxic agent was identified by GC-MS and FTICR-MS as tyramine. The toxicity of the isolated tyramine was tested by a novel mobility test using the protozoon Stylonychia lemnae. A concentration of 0.2 mg/ml led to immediate inhibition of mobility. In addition the toxicity was studied on honey bee larvae by feeding tyramine/water mixtures added to the larval jelly. The lethal dosis of tyramine on 4-5 days old bee larvae was determined as 0.3 mg/larvae when added as a volume of 20 microl to the larval food in brood cells. Several other biogenic amines, such as phenylethylamine, histamine, spermine, cadaverine, putrescine and trimethylamine, were tested as their hydrochloric salts for comparison and were found to be inhibitory in the Stylonychia mobility test at similar concentrations. A quantitative hemolysis test with human red blood cells revealed that tyramine and histamine showed the highest membranolytic activity, followed by the phenylethylamine, trimethylamine and spermine, while the linear diamines, cadaverine and putrescine, showed a significantly lower hemolysis when calculated on a molar amine basis. The results indicate that tyramine which is a characteristic amine produced by M. pluton in culture, is the causative agent of the observed toxic symptoms in bee larvae. Thus this disease, known as European foulbrood, is possibly an infection transmitted by the Varroa destructor mite. PMID:15109733

  16. Viability and infectivity of Trichinella spiralis muscle larvae in frozen horse tissue.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The freeze tolerance of T. spiralis in horse meat stored at 5, -5, and -18oC for 1 day to 24 weeks has been assessed. Results demonstrate a steady reduction in the number of live ML recovered from the cold stored meat samples. On Day 1, recovery of larvae had been reduced by 18.6%, 50.1%, and 37....

  17. Comparative infectivity of homologous and heterologous nucleopolyhedroviruses against beet armyworm larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Homologous and heterologous nucleopolyhedroviruses (NPVs) were assayed to determine the most effective NPV against beet armyworm larvae, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae)(SeMNPV). Included were three isolates from S. exigua, one isolate each from S. littoralis Boisduval, S. litura...

  18. Trichinella spiralis: monoclonal antibody against the muscular larvae for the detection of circulating and fecal antigens in experimentally infected rats.

    PubMed

    Zumaquero-Ríos, José-Lino; García-Juarez, Jazmín; de-la-Rosa-Arana, Jorge-Luis; Marcet, Ricardo; Sarracent-Pérez, Jorge

    2012-12-01

    In this work we search for antigens of Trichinella spiralis in sera and stool of rats experimentally infected. The kinetic of antibodies to excretory and secretory (ES) antigens of muscle larvae (ML) was also determined. Wistar rats were infected with 15 ML per gram of body weight and blood samples were collected weekly for 10 weeks. Antibodies were studied using an indirect ELISA. For detection of circulating antigens and coproantigens, a sandwich ELISA was developed with the use of polyclonal rabbit antibodies obtained against the total extract of ML and an IgM monoclonal antibody (Mab) against ES antigens of ML. No reactivity was observed between Mab and the total worm antigens of Angiostrongylus cantonensis, Ascaris suum, Echinococcus granulosus, Fasciola hepatica, Strongyloides stercoralis, Taenia solium, Toxocara canis and Trichuris trichiura. The IgM Mab recognized antigens of 45, 49, and 55 kDa in ES antigens and was unable to bind ES antigens deglycosylated with trifluoromethanesulphonic acid (TFMS) indicating that a glycan structure is present in the epitope recognized by this Mab. The sensitivity of sandwich ELISA was 1 ng/mL. Circulating antigens were detected in all infected rats between 3 and 8 weeks post infection and coproantigens were found during the first two days post infection. Antibodies were detected since the third week post infection through the end of experiment. These results suggested that antigen detection by our sandwich ELISA could be a useful complementary laboratory test for antibody detection. PMID:23026455

  19. One hundred years of research on the natural infection of freshwater snails by trematode larvae in Europe.

    PubMed

    Zbikowska, Elzbieta; Nowak, Anna

    2009-08-01

    Research on the infection of snails by trematodes has been conducted in Europe for over a hundred years. The initial poor knowledge of the intra-molluscan stages of these parasites together with the difficulty of classifying them constituted a serious obstacle to the undertaking of integrated parasitological and malacological efforts to gain a better understanding of the phenomenon. The compilation of morphological and anatomical results of research on trematode larvae resulted in the publication of keys to designate species of parasites, but was not sufficient to encourage malacologists to collaborate with parasitologists. This paper undertakes to collect data published over the last hundred years on the natural infection of European populations of freshwater snails by trematode larvae. The aim of this undertaking is to make researchers of malacofauna and, above all, experts on freshwater snails aware of the scale of the problem of molluscs being exploited as intermediate hosts of trematodes and, consequently, to encourage parasitologists and malacologists to collaborate on this phenomenon that is crucial for both parasites and hosts. PMID:19437040

  20. Yeast-Based High-Throughput Screens to Identify Novel Compounds Active against Brugia malayi

    PubMed Central

    Bilsland, Elizabeth; Bean, Daniel M.; Devaney, Eileen; Oliver, Stephen G.

    2016-01-01

    Background Lymphatic filariasis is caused by the parasitic worms Wuchereria bancrofti, Brugia malayi or B. timori, which are transmitted via the bites from infected mosquitoes. Once in the human body, the parasites develop into adult worms in the lymphatic vessels, causing severe damage and swelling of the affected tissues. According to the World Health Organization, over 1.2 billion people in 58 countries are at risk of contracting lymphatic filariasis. Very few drugs are available to treat patients infected with these parasites, and these have low efficacy against the adult stages of the worms, which can live for 7–15 years in the human body. The requirement for annual treatment increases the risk of drug-resistant worms emerging, making it imperative to develop new drugs against these devastating diseases. Methodology/Principal Findings We have developed a yeast-based, high-throughput screening system whereby essential yeast genes are replaced with their filarial or human counterparts. These strains are labeled with different fluorescent proteins to allow the simultaneous monitoring of strains with parasite or human genes in competition, and hence the identification of compounds that inhibit the parasite target without affecting its human ortholog. We constructed yeast strains expressing eight different Brugia malayi drug targets (as well as seven of their human counterparts), and performed medium-throughput drug screens for compounds that specifically inhibit the parasite enzymes. Using the Malaria Box collection (400 compounds), we identified nine filarial specific inhibitors and confirmed the antifilarial activity of five of these using in vitro assays against Brugia pahangi. Conclusions/Significance We were able to functionally complement yeast deletions with eight different Brugia malayi enzymes that represent potential drug targets. We demonstrated that our yeast-based screening platform is efficient in identifying compounds that can discriminate between

  1. Cellular Visualization of Macrophage Pyroptosis and Interleukin-1β Release in a Viral Hemorrhagic Infection in Zebrafish Larvae

    PubMed Central

    Varela, Mónica; Romero, Alejandro; Dios, Sonia; van der Vaart, Michiel; Figueras, Antonio; Meijer, Annemarie H.

    2014-01-01

    ABSTRACT Hemorrhagic viral diseases are distributed worldwide with important pathogens, such as dengue virus or hantaviruses. The lack of adequate in vivo infection models has limited the research on viral pathogenesis and the current understanding of the underlying infection mechanisms. Although hemorrhages have been associated with the infection of endothelial cells, other cellular types could be the main targets for hemorrhagic viruses. Our objective was to take advantage of the use of zebrafish larvae in the study of viral hemorrhagic diseases, focusing on the interaction between viruses and host cells. Cellular processes, such as transendothelial migration of leukocytes, virus-induced pyroptosis of macrophages. and interleukin-1β (Il-1β) release, could be observed in individual cells, providing a deeper knowledge of the immune mechanisms implicated in the disease. Furthermore, the application of these techniques to other pathogens will improve the current knowledge of host-pathogen interactions and increase the potential for the discovery of new therapeutic targets. IMPORTANCE Pathogenic mechanisms of hemorrhagic viruses are diverse, and most of the research regarding interactions between viruses and host cells has been performed in cell lines that might not be major targets during natural infections. Thus, viral pathogenesis research has been limited because of the lack of adequate in vivo infection models. The understanding of the relative pathogenic roles of the viral agent and the host response to the infection is crucial. This will be facilitated by the establishment of in vivo infection models using organisms such as zebrafish, which allows the study of the diseases in the context of a complete individual. The use of this animal model with other pathogens could improve the current knowledge on host-pathogen interactions and increase the potential for the discovery of new therapeutic targets against diverse viral diseases. PMID:25100833

  2. Radiolabeling of infective larvae of Haemonchus contortus (Nematoda: Trichostrongyloidea) with /sup 75/Se-methionine and their performance as tracers in sheep

    SciTech Connect

    Georgi, J.R.; Le Jambre, L.F.

    1983-10-01

    Haemonchus contortus infective larvae incorporated between 5 and 12 pCi/larva for each muCi of /sup 75/Se-methionine added per gram of fecal sediment. Thorough admixture of /sup 75/Se-methionine and fecal sediment was necessary to obtain approximately normal distribution and low variance of individual larval radioactivities. Ecdysis induced by treatment with 0.025% HClO in vitro resulted in loss of approximately 40% of the /sup 75/Se label of infective larvae. Loss of /sup 75/Se by parasitic larvae and adult H. contortus in vivo conformed to a two-component negative exponential function with half lives of 3.1 and 56 days acting on compartments representing 90% and 10%, respectively, of the /sup 75/Se label remaining after ecdysis. Labeled and unlabeled worms were readily distinguished by autoradiography 37 days after infection. No effect of gamma radiation arising from decay of /sup 75/Se in the range 130 to 1,300 pCi/larva could be measured in terms of survival or sex ratio of worms recovered at 17 days PI.

  3. Viability and nematophagous activity of the freeze-dried fungus Arthrobotrys robusta against Ancylostoma spp. infective larvae in dogs.

    PubMed

    Carvalho, Rogério Oliva; Braga, Fabio Ribeiro; Araújo, Jackson Victor

    2011-03-10

    Viability and in vitro and in vivo activities of freeze-dried conidia of the predatory fungus Arthrobotrys robusta (I-31) were evaluated against infective larvae (L(3)) of Ancylostoma spp. in dogs. A. robusta conidia were lyophilized and stored at 4°C for a month. Freeze-dried conidia were diluted to 1×10(3)conidia/ml and tested in vivo. The treated group consisted of a solution containing conidia (1ml) and 1000 Ancylostoma spp. (L(3)) placed on Petri dishes plated with 2% water-agar (2% WA), at 25°C, in the dark for 10 days. The control group consisted of 1000 Ancylostoma spp. L(3), plated on 2% WA. After 10 days, Ancylostoma spp. L(3) from both the treated and the control groups were recovered and counted. The in vivo test was performed on two dogs by administering a single oral dose of freeze-dried conidia (1.5×10(5)) in aqueous solution to one animal and only water to the other. Fecal samples were collected at 12, 24 and 48h after the treatments, plated 2% WA plates and incubated at 25°C for 15 days. A thousand Ancylostoma spp. L(3) larvae were spread on these plates. At day 15, infective L(3) recovered from the treated and control groups were counted. In the in vitro test, A. robusta was able to survive the freeze-drying process, grow in the plates, form traps and capture Ancylostoma spp. L(3). There was a 75.38% decrease in the number of infective larvae recovered from the treated group. The in vivo test showed that freeze-dried A. robusta conidia survived the passage through the gastrointestinal tract of the treated dog, was able to grow in the plates and capture Ancylostoma spp. L(3), reducing the number of recovered L(3) (p<0.01). Freeze-drying can be an alternative method for conservation of conidia of nematophagous fungi. PMID:21111535

  4. An abundantly expressed mucin-like protein from Toxocara canis infective larvae: the precursor of the larval surface coat glycoproteins.

    PubMed Central

    Gems, D; Maizels, R M

    1996-01-01

    Evasion of host immunity by Toxocara canis infective larvae is mediated by the nematode surface coat, which is shed in response to binding by host antibody molecules or effector cells. The major constituent of the coat is the TES-120 glycoprotein series. We have isolated a 730-bp cDNA from the gene encoding the apoprotein precursor of TES-120. The mRNA is absent from T. canis adults but hyperabundant in larvae, making up approximately 10% of total mRNA, and is trans-spliced with the nematode 5' leader sequence SL1. It encodes a 15.8-kDa protein (after signal peptide removal) containing a typical mucin domain: 86 amino acid residues, 72.1% of which are Ser or Thr, organized into an array of heptameric repeats, interspersed with proline residues. At the C-terminal end of the putative protein are two 36-amino acid repeats containing six Cys residues, in a motif that can also be identified in several genes in Caenorhabditis elegans. Although TES-120 displays size and charge heterogeneity, there is a single copy gene and a homogeneous size of mRNA. The association of overexpression of some membrane-associated mucins with immunosuppression and tumor metastasis suggests a possible model for the role of the surface coat in immune evasion by parasitic nematodes. Images Fig. 1 Fig. 4 PMID:8643687

  5. Og4C3 circulating antigen, anti-Brugia malayi IgG and IgG4 titers in Wuchereria bancrofti infected patients, according to their parasitological status.

    PubMed

    Chanteau, S; Glaziou, P; Luquiaud, P; Plichart, C; Moulia-Pelat, J P; Cartel, J L

    1994-09-01

    This study involved 221 microfilaremic (Mf+), 302 amicrofilaremic (Mf-) antigen positive (AG+) and 1454 Mf-antigen negative (AG-) individuals living in endemic villages. Whatever the group considered, antigen and antibody titers were widely distributed. Og4C3 antigen, detected both in Mf- and Mf+ patients, was significantly higher in Mf+ patients. The Mf parasitological status did not significantly influence the antifilarial antibodies levels in the infected AG+ individuals, although IgG4 was more discriminant. In the supposedly uninfected individuals (Mf-AG-), anti-filarial IgG and IgG4 could be detected in a large proportion of the group. Og4C3 circulating antigen test was confirmed to be a good marker of active Wuchereria bancrofti infection. PMID:7899800

  6. Morphological and morphometric differentiation of dorsal-spined first stage larvae of lungworms, (Nematoda: Protostrongylidae) infecting muskoxen (Ovibos moschatus) in the Central Canadian Arctic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Umingmakstrongylus pallikuukensis and Varestrongylus eleguneniensis are the two most common protostrongylid nematodes infecting muskoxen in the North American Arctic and Subarctic. First stage larvae (L1) of both these lungworms have a characteristic dorsal spine originating at the level of proxima...

  7. First Insights into the Genome of Fructobacillus sp. EFB-N1, Isolated from Honey Bee Larva Infected with European Foulbrood

    PubMed Central

    Djukic, Marvin; Poehlein, Anja

    2015-01-01

    European foulbrood is a worldwide disease affecting the honey bee brood. Here, we report the draft genome sequence of Fructobacillus sp. EFB-N1, which was isolated from an infected honey bee larva derived from a Swiss European foulbrood outbreak. The genome consists of 68 contigs and harbors 1,629 predicted protein-encoding genes. PMID:26227611

  8. Early Detection of Baculovirus Expression and Infection in Lepidopteran Larvae Fed Occlusion Bodies of an AcMNPV Recombinant Carrying a Red Fluorescent Protein Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method has been devised utilizing a baculovirus recombinant (AcMNPV hsp70Red) carrying a red fluorescent protein (RFP) gene under the early heat shock promoter (hsp70) to assess potential infectivity of larvae fed occlusion bodies. A time study was employed whereby first and third instars of Trich...

  9. The relationship between numbers of larvae recovered from the brain of Toxocara canis-infected mice and social behaviour and anxiety in the host.

    PubMed

    Cox, D M; Holland, C V

    1998-06-01

    The effect of the nematode Toxocara canis on social behaviour and anxiety levels of adult male outbred (LACA) mice was examined following infection with a single dose of 2000 ova. The actual number of larvae recovered from the brain of each individual mouse was determined after behavioural testing. The effect of the parasite on mouse behaviour was analysed by both the initial dose administered (i.e. infected versus control) and the degree of infection in the brain. There was substantial variation in the number of larvae recovered from the brains of the individual mice and the magnitude of behavioural change was associated with the level of infection. Examination of social behaviour for both analyses revealed that the infection reduced levels of aggressive behaviour and increased levels of flight and defensive behaviours. High infection in the brain induced the greatest degree of behavioural change which decreased in mice with lower infections. In contrast the analysis of anxiety levels in mice by initial dose administered revealed no difference between infected and control mice. Mice with low infection in the brain, however, displayed a greater level of risk behaviour by spending more time in the vicinity of a predator odour and in the light area of a light/dark paradigm than control or high infection mice. The results suggest that the behaviour of mice infected with T. canis is influenced by the number of larvae accumulated in the brain. This may have important consequences for the conclusions drawn on the effect of this parasite on murine behaviour. PMID:9651941

  10. Identification of an antagonistic probiotic combination protecting ornate spiny lobster (Panulirus ornatus) larvae against Vibrio owensii infection.

    PubMed

    Goulden, Evan F; Hall, Michael R; Pereg, Lily L; Høj, Lone

    2012-01-01

    Vibrio owensii DY05 is a serious pathogen causing epizootics in the larviculture of ornate spiny lobster Panulirus ornatus. In the present study a multi-tiered probiotic screening strategy was used to identify a probiotic combination capable of protecting P. ornatus larvae (phyllosomas) from experimental V. owensii DY05 infection. From a pool of more than 500 marine bacterial isolates, 91 showed definitive in vitro antagonistic activity towards the pathogen. Antagonistic candidates were shortlisted based on phylogeny, strength of antagonistic activity, and isolate origin. Miniaturized assays used a green fluorescent protein labelled transconjugant of V. owensii DY05 to assess pathogen growth and biofilm formation in the presence of shortlisted candidates. This approach enabled rapid processing and selection of candidates to be tested in a phyllosoma infection model. When used in combination, strains Vibrio sp. PP05 and Pseudoalteromonas sp. PP107 significantly and reproducibly protected P. ornatus phyllosomas during vectored challenge with V. owensii DY05, with survival not differing significantly from unchallenged controls. The present study has shown the value of multispecies probiotic treatment and demonstrated that natural microbial communities associated with wild phyllosomas and zooplankton prey support antagonistic bacteria capable of in vivo suppression of a pathogen causing epizootics in phyllosoma culture systems. PMID:22792184

  11. In vivo expression of genes in the entomopathogenic fungus Beauveria bassiana during infection of lepidopteran larvae.

    PubMed

    Galidevara, Sandhya; Reineke, Annette; Koduru, Uma Devi

    2016-05-01

    The entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin is commercially available as a bio insecticide. The expression of three genes previously identified to have a role in pathogenicity in in vitro studies was validated in vivo in three lepidopteran insects infected with B. bassiana. Expression of all three genes was observed in all the tested insects starting from 48 or 72h to 10d post infection corroborating their role in pathogenicity. We suggest that it is essential to test the expression of putative pathogenicity genes both in vitro and in vivo to understand their role in different insect species. PMID:26945772

  12. The Wolbachia Genome of Brugia malayi: Endosymbiont Evolution within a Human Pathogenic Nematode

    PubMed Central

    2005-01-01

    Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide riboflavin, flavin adenine dinucleotide, heme, and nucleotides is likely to be Wolbachia's principal contribution to the mutualistic relationship, whereas the host nematode likely supplies amino acids required for Wolbachia growth. Genome comparison of the Wolbachia endosymbiont of B. malayi (wBm) with the Wolbachia endosymbiont of Drosophila melanogaster (wMel) shows that they share similar metabolic trends, although their genomes show a high degree of genome shuffling. In contrast to wMel, wBm contains no prophage and has a reduced level of repeated DNA. Both Wolbachia have lost a considerable number of membrane biogenesis genes that apparently make them unable to synthesize lipid A, the usual component of proteobacterial membranes. However, differences in their peptidoglycan structures may reflect the mutualistic lifestyle of wBm in contrast to the parasitic lifestyle of wMel. The smaller genome size of wBm, relative to wMel, may reflect the loss of genes required for infecting host cells and avoiding host defense systems. Analysis of this first sequenced endosymbiont genome from a filarial nematode provides insight into endosymbiont evolution and additionally provides new potential targets for elimination of cutaneous and lymphatic human filarial disease. PMID:15780005

  13. Protective immune responses to biolistic DNA vaccination of Brugia malayi abundant larval transcript-2.

    PubMed

    Joseph, S K; Sambanthamoorthy, S; Dakshinamoorthy, G; Munirathinam, G; Ramaswamy, K

    2012-10-01

    Biolistic vaccination using gene gun is developed as a safer tool for delivery of DNA vaccines, a technique that combines high vaccine efficiency with lower antigen dosage and lower cost per vaccine dose. In this study, we compared the protective responses in mice after delivering the Brugia malayi abundant larval transcript-2 (BmALT-2) DNA vaccine using the conventional intradermal approach or with the needleless gene gun delivery approach. BmALT-2 is a leading vaccine candidate against B. malayi, a lymphatic filarial parasite of human. After optimizing the DNA dose and gene gun parameters for delivery into mouse skin, groups of mice were biolistically vaccinated with 5 μg of BmALT-2pVAX. Groups of mice vaccinated intradermally with 5 μg or 100 μg of BmALT-2pVAX was used for comparison of vaccine efficacy. Results demonstrated that gene gun vaccination with 5 μg of BmALT-2pVAX conferred significant protection against challenge infection that was comparable to the degree of protection conferred by intradermal vaccination with 100 μg of BmALT-2pVAX. This observation was further supported by an in vitro antibody dependent cellular cytotoxicity (ADCC) assay. Analysis of the immune response showed that the gene gun vaccination predominantly induced an IgG1 antibody response and significantly high Th2 cytokine response (IL-4) from spleen cells compared to intradermal BmALT-2 DNA delivery that induced predominantly an IgG2a and Th1 cytokine response (IFN-γ, IL-12 and TNF-α). These findings show that host protective responses could be achieved with 20 fold decrease in DNA dose using a gene gun and could prove to be an efficient delivery method in BmALT-2 DNA vaccination against lymphatic filariasis. PMID:22885273

  14. Fungal Antagonism Assessment of Predatory Species and Producers Metabolites and Their Effectiveness on Haemonchus contortus Infective Larvae

    PubMed Central

    Silva, Manoel Eduardo; Braga, Fabio Ribeiro; de Gives, Pedro Mendoza; Millán-Orozco, Jair; Uriostegui, Miguel Angel Mercado; Marcelino, Liliana Aguilar; Soares, Filippe Elias de Freitas; Araújo, Andréia Luiza; Vargas, Thainá Souza; Aguiar, Anderson Rocha; Senna, Thiago; Rodrigues, Maria Gorete; Froes, Frederico Vieira; de Araújo, Jackson Victor

    2015-01-01

    The objective of this study was to assess antagonism of nematophagous fungi and species producers metabolites and their effectiveness on Haemonchus contortus infective larvae (L3). Assay A assesses the synergistic, additive, or antagonistic effect on the production of spores of fungal isolates of the species Duddingtonia flagrans, Clonostachys rosea, Trichoderma esau, and Arthrobotrys musiformis; Assay B evaluates in vitro the effect of intercropping of these isolates grown in 2% water-agar (2% WA) on L3 of H. contortus. D. flagrans (Assay A) produced 5.3 × 106 spores and associated with T. esau, A. musiformis, or C. rosea reduced its production by 60.37, 45.28, and 49.05%, respectively. T. esau produced 7.9 × 107 conidia and associated with D. flagrans, A. musiformis, or C. rosea reduced its production by 39.24, 82.27, and 96.96%, respectively. A. musiformis produced 7.3 × 109 spores and associated with D. flagrans, T. esau, or C. rosea reduced its production by 99.98, 99.99, and 99.98%, respectively. C. rosea produced 7.3 × 108 conidia and associated with D. flagrans, T. esau, or A. musiformis reduced its production by 95.20, 96.84, and 93.56%, respectively. These results show evidence of antagonism in the production of spores between predators fungi. PMID:26504791

  15. Ultrastructural changes in the third-stage, infective larvae of ruminant nematodes treated with sainfoin (Onobrychis viciifolia) extract.

    PubMed

    Brunet, S; Fourquaux, I; Hoste, H

    2011-12-01

    Plants rich in condensed tannins are an alternative to chemical anthelmintics to control gastrointestinal nematodes (GINs) in ruminants. Previous functional studies have shown that sainfoin extracts affect the two forms of infective larvae (L3), ensheathed and exsheathed. However, the mechanisms of action remain unknown. The aim of this study was thus to compare ultrastructural changes in ensheathed and exsheathed L3 of two GIN species after in vitro contact with sainfoin extracts using transmission electron microscopy. The main changes identified were an alteration of the hypodermis, the presence of numerous vesicles in the cytoplasm and degeneration and/or death of muscular and intestinal cells. The changes suggested similar and nonspecies-specific lesions in the two nematode species. Comparison of the modifications found in the ensheathed vs. exsheathed L3s revealed different locations of the main cellular changes depending on the larval form. It is hypothesized that these spatial differences in lesions are mainly influenced by the presence of the sheath which favors contact between the active compounds and either the cuticle or the digestive tract. Overall, our observations suggest that the functional changes observed in the biology of GIN L3s after contact with sainfoin extracts are mediated through a direct mode of action, i.e. different interactions between the bioactive plant metabolites and the nematode structure depending on the route of contact. PMID:21787880

  16. In vitro anthelmintic activity of five tropical legumes on the exsheathment and motility of Haemonchus contortus infective larvae.

    PubMed

    von Son-de Fernex, Elke; Alonso-Díaz, Miguel Angel; Valles-de la Mora, Braulio; Capetillo-Leal, Concepción M

    2012-08-01

    This study investigated the in vitro anthelmintic (AH) activity of five tropical legume plants [Arachis pintoi CIAT 22160 (A.p. 22160), Gliricidia sepium, Cratylia argentea (C.a. Yacapani), C. argentea CIAT 22386 (C.a. 22386), C. argentea Veranera (C.a. Veranera)] against Haemonchus contortus infective larvae and the role of tannins/polyphenolic compounds in the AH effect. Lyophilized leaf extracts of each plant were evaluated using the Larval Exsheathment Inhibition Assay (LEIA) and the larval migration inhibition assay (LMIA). The role of tannins/polyphenolic compounds in the AH effect was evaluated in both assays using polyethylene glycol (PEG) to remove tannins from the solutions. At the highest concentration (1200μg of extract/ml), A. pintoi 22160, C.a. Yacapani, C.a. Veranera and C.a. 22386 completely inhibited the exsheathment process of H. contortus (P<0.01). At the same concentration (1200μg of extract/ml), the inhibition of larval migration for C.a. 22386, C.a. Veranera and G. sepium was 66.0%, 35.9% and 39.2% (relative to the PBS control), respectively. In both bioassays (LEIA and LMIA), the AH effect shown by each plant was blocked after the addition of polyethylene glycol (PEG), corroborating the role of tannins/polyphenolic compounds. PMID:22652531

  17. Candida parapsilosis Resistance to Fluconazole: Molecular Mechanisms and In Vivo Impact in Infected Galleria mellonella Larvae.

    PubMed

    Souza, Ana Carolina R; Fuchs, Beth Burgwyn; Pinhati, Henrique M S; Siqueira, Ricardo A; Hagen, Ferry; Meis, Jacques F; Mylonakis, Eleftherios; Colombo, Arnaldo L

    2015-10-01

    Candida parapsilosis is the main non-albicans Candida species isolated from patients in Latin America. Mutations in the ERG11 gene and overexpression of membrane transporter proteins have been linked to fluconazole resistance. The aim of this study was to evaluate the molecular mechanisms in fluconazole-resistant strains of C. parapsilosis isolated from critically ill patients. The identities of the nine collected C. parapsilosis isolates at the species level were confirmed through molecular identification with a TaqMan qPCR assay. The clonal origin of the strains was checked by microsatellite typing. The Galleria mellonella infection model was used to confirm in vitro resistance. We assessed the presence of ERG11 mutations, as well as the expression of ERG11 and two additional genes that contribute to antifungal resistance (CDR1 and MDR1), by using real-time quantitative PCR. All of the C. parapsilosis (sensu stricto) isolates tested exhibited fluconazole MICs between 8 and 16 μg/ml. The in vitro data were confirmed by the failure of fluconazole in the treatment of G. mellonella infected with fluconazole-resistant strains of C. parapsilosis. Sequencing of the ERG11 gene revealed a common mutation leading to a Y132F amino acid substitution in all of the isolates, a finding consistent with their clonal origin. After fluconazole exposure, overexpression was noted for ERG11, CDR1, and MDR1 in 9/9, 9/9, and 2/9 strains, respectively. We demonstrated that a combination of molecular mechanisms, including the presence of point mutations in the ERG11 gene, overexpression of ERG11, and genes encoding efflux pumps, are involved in fluconazole resistance in C. parapsilosis. PMID:26259795

  18. Candida parapsilosis Resistance to Fluconazole: Molecular Mechanisms and In Vivo Impact in Infected Galleria mellonella Larvae

    PubMed Central

    Souza, Ana Carolina R.; Fuchs, Beth Burgwyn; Pinhati, Henrique M. S.; Siqueira, Ricardo A.; Hagen, Ferry; Meis, Jacques F.; Mylonakis, Eleftherios

    2015-01-01

    Candida parapsilosis is the main non-albicans Candida species isolated from patients in Latin America. Mutations in the ERG11 gene and overexpression of membrane transporter proteins have been linked to fluconazole resistance. The aim of this study was to evaluate the molecular mechanisms in fluconazole-resistant strains of C. parapsilosis isolated from critically ill patients. The identities of the nine collected C. parapsilosis isolates at the species level were confirmed through molecular identification with a TaqMan qPCR assay. The clonal origin of the strains was checked by microsatellite typing. The Galleria mellonella infection model was used to confirm in vitro resistance. We assessed the presence of ERG11 mutations, as well as the expression of ERG11 and two additional genes that contribute to antifungal resistance (CDR1 and MDR1), by using real-time quantitative PCR. All of the C. parapsilosis (sensu stricto) isolates tested exhibited fluconazole MICs between 8 and 16 μg/ml. The in vitro data were confirmed by the failure of fluconazole in the treatment of G. mellonella infected with fluconazole-resistant strains of C. parapsilosis. Sequencing of the ERG11 gene revealed a common mutation leading to a Y132F amino acid substitution in all of the isolates, a finding consistent with their clonal origin. After fluconazole exposure, overexpression was noted for ERG11, CDR1, and MDR1 in 9/9, 9/9, and 2/9 strains, respectively. We demonstrated that a combination of molecular mechanisms, including the presence of point mutations in the ERG11 gene, overexpression of ERG11, and genes encoding efflux pumps, are involved in fluconazole resistance in C. parapsilosis. PMID:26259795

  19. Baylisascaris larva migrans

    USGS Publications Warehouse

    Kazacos, Kevin R.

    2016-01-01

    SummaryBaylisascaris procyonis, the common raccoon roundworm, is the most commonly recognized cause of clinical larva migrans (LM) in animals, a condition in which an immature parasitic worm or larva migrates in a host animal’s tissues, causing obvious disease. Infection with B. procyonis is best known as a cause of fatal or severe neurologic disease that results when the larvae invade the brain, the spinal cord, or both; this condition is known as neural larva migrans (NLM). Baylisascariasis is a zoonotic disease, that is, one that is transmissible from animals to humans. In humans, B. procyonis can cause damaging visceral (VLM), ocular (OLM), and neural larva migrans. Due to the ubiquity of infected raccoons around humans, there is considerable human exposure and risk of infection with this parasite. The remarkable disease-producing capability of B. procyonis in animals and humans is one of the most significant aspects of the biology of ascarids (large roundworms) to come to light in recent years. Infection with B. procyonis has important health implications for a wide variety of free-ranging and captive wildlife, zoo animals, domestic animals, as well as human beings, on both an individual and population level. This report, eighth in the series of U.S. Geological Survey Circulars on zoonotic diseases, will help us to better understand the routes of Baylisascaris procyonis infections and how best to adequately monitor this zoonotic disease.

  20. Molecular Characterization of an rsmD-Like rRNA Methyltransferase from the Wolbachia Endosymbiont of Brugia malayi and Antifilarial Activity of Specific Inhibitors of the Enzyme

    PubMed Central

    Rana, Ajay Kumar; Chandra, Sharat; Siddiqi, Mohammad Imran

    2013-01-01

    The endosymbiotic organism Wolbachia is an attractive antifilarial drug target. Here we report on the cloning and expression of an rsmD-like rRNA methyltransferase from the Wolbachia endosymbiont of Brugia malayi, its molecular properties, and assays for specific inhibitors. The gene was found to be expressed in all the major life stages of B. malayi. The purified enzyme expressed in Escherichia coli was found to be in monomer form in its native state. The activities of the specific inhibitors (heteroaryl compounds) against the enzyme were tested with B. malayi adult and microfilariae for 7 days in vitro at various concentrations, and NSC-659390 proved to be the most potent compound (50% inhibitory concentration [IC50], 0.32 μM), followed by NSC-658343 (IC50, 4.13 μM) and NSC-657589 (IC50, 7.5 μM). On intraperitoneal administration at 5 mg/kg of body weight for 7 days to adult jirds into which B. malayi had been transplanted intraperitoneally, all the compounds killed a significant proportion of the implanted worms. A very similar result was observed in infected mastomys when inhibitors were administered. Docking studies of enzyme and inhibitors and an in vitro tryptophan quenching experiment were also performed to understand the binding mode and affinity. The specific inhibitors of the enzyme showed a higher affinity for the catalytic site of the enzyme than the nonspecific inhibitors and were found to be potent enough to kill the worm (both adults and microfilariae) in vitro as well as in vivo in a matter of days at micromolar concentrations. The findings suggest that these compounds be evaluated against other pathogens possessing a methyltransferase with a DPPY motif and warrant the design and synthesis of more such inhibitors. PMID:23733469

  1. First record of Hysterothylacium sp. Moravec, Kohn et Fernandes, 1993 larvae (Nematoda: Anisakidae) infecting the ornamental fish Hyphessobrycon eques Steindachner, 1882 (Characiformes, Characidae).

    PubMed

    Acosta, A A; Silva, R J

    2015-08-01

    This study reports for the first time infection with Hysterothylacium sp. larvae in the ornamental fish Hyphessobrycon eques from the Paranapanema River, Jurumirim Reservoir, São Paulo State, Brazil. A sample of 33 specimens of H. eques was collected in October, 2011. Four specimens of H. eques were parasitized by Hysterothylacium sp. larvae in the intestine and coelomic cavity, with prevalence of 12.1%, mean intensity of infection of 1, and mean abundance of 0.121 ± 0.05. A total of 40 unidentified free-living nematodes were found in the stomach content of 17 fish. This fish species is introduced in the Paranapanema River. Invasive species may affect the native fauna given the introduction of pathogens and parasites. This study also complements data on the diet of H. eques due to the records of free-living nematode as part of the stomach content. Infections with Hysterothylacium sp. larvae may affect the biology of this fish and bring about profit losses to aquarists. PMID:26421773

  2. [Effects of aqueous extracts of Mentha piperita L. and Chenopodium ambrosioides L. leaves in infective larvae cultures of gastrointestinal nematodes of goats].

    PubMed

    De Almeida, Maria Angela O; Domingues, Luciana F; Almeida, Gisele N; Simas, Mônica Mattos Dos S; Botura, Mariana B; Da Cruz, Ana Carla Ferreira G; Da Silva, Ana Valéria Araújo F; Menezes, Taise P; Batatinha, Maria José M

    2007-01-01

    Phitotherapy has been frequently utilized in parasitism control for numerous animal species. The aim of this experiment was to evaluate the in vitro effects of aqueous extracts of Mentha piperita L. and Chenopodium ambrosioides L. leaves in larvae cultures of gastrointestinal nematodes of goats. Six different concentrations of M. piperita extracts (196; 150.7; 115.9; 89.1; 68.5 e 52.7 mg/mL) and C. ambrosioides extracts (110,6; 85; 65,3; 50,2; 38,6 e 29,6 mg/mL) were used for the treatment of larvae cultures, in triple assays. Distilled water and doramectin were used in larvae cultures as negative and positive controls, respectively. The results revealed a reduction of more than 95% of the infective larvae when M. piperita extracts were used in the concentrations of 115.9 and 196 mg/mL, and C. ambrosioides extract in the concentration of 110.6 mg/mL, supporting the effect of these extracts in the in vitro treatment of gastrointestinal nematodes of goats. PMID:17588325

  3. Brugia malayi Excreted/Secreted Proteins at the Host/Parasite Interface: Stage- and Gender-Specific Proteomic Profiling

    PubMed Central

    Bennuru, Sasisekhar; Semnani, Roshanak; Meng, Zhaojing; Ribeiro, Jose M. C.; Veenstra, Timothy D.; Nutman, Thomas B.

    2009-01-01

    Relatively little is known about the filarial proteins that interact with the human host. Although the filarial genome has recently been completed, protein profiles have been limited to only a few recombinants or purified proteins of interest. Here, we describe a large-scale proteomic analysis using microcapillary reverse-phase liquid chromatography-tandem-mass spectrometry to identify the excretory-secretory (ES) products of the L3, L3 to L4 molting ES, adult male, adult female, and microfilarial stages of the filarial parasite Brugia malayi. The analysis of the ES products from adult male, adult female, microfilariae (Mf), L3, and molting L3 larvae identified 852 proteins. Annotation suggests that the functional and component distribution was very similar across each of the stages studied; however, the Mf contributed a higher proportion to the total number of identified proteins than the other stages. Of the 852 proteins identified in the ES, only 229 had previous confirmatory expressed sequence tags (ESTs) in the available databases. Moreover, this analysis was able to confirm the presence of 274 “hypothetical” proteins inferred from gene prediction algorithms applied to the B. malayi (Bm) genome. Not surprisingly, the majority (160/274) of these “hypothetical” proteins were predicted to be secreted by Signal IP and/or SecretomeP 2.0 analysis. Of major interest is the abundance of previously characterized immunomodulatory proteins such as ES-62 (leucyl aminopeptidase), MIF-1, SERPIN, glutathione peroxidase, and galectin in the ES of microfilariae (and Mf-containing adult females) compared to the adult males. In addition, searching the ES protein spectra against the Wolbachia database resulted in the identification of 90 Wolbachia-specific proteins, most of which were metabolic enzymes that have not been shown to be immunogenic. This proteomic analysis extends our knowledge of the ES and provides insight into the host–parasite interaction. PMID:19352421

  4. Immunization with Wuchereria bancrofti Glutathione-S-transferase Elicits a Mixed Th1/Th2 Type of Protective Immune Response Against Filarial Infection in Mastomys.

    PubMed

    Andure, Dhananjay; Pote, Kiran; Khatri, Vishal; Amdare, Nitin; Padalkar, Ramchandra; Reddy, Maryada Venkata Rami

    2016-10-01

    Lymphatic filariasis is a mosquito borne parasitic infection and can severely affect the normal working ability of an individual. Currently there is no vaccine available to prevent this infection and the development of a potential vaccine could effectively support the on-going mass drug administration program by World Health Organization (WHO). Filarial parasites have complex mechanisms to modulate the host immune responses against them. The glutathione-S-transferases (GST) are the important enzymes effectively involved to counteract the oxidative free radicals produced by the host. In the present study, we have shown that the mastomys which are fully permissible rodents for Brugia malayi when immunized with Wuchereria bancrofti recombinant GST (rWbGST) could induce 65.5 % in situ cytotoxicity against B. malayi infective (L3) larvae. There was a balanced Th1/Th2 immune response in the vaccinated animals, characterized by higher levels of WbGST-specific IgG1 and IgG2a antibodies and pronounced IFN-γ, IL-10 and IL-4 cytokines production by the spleen cells. PMID:27605739

  5. Annual Survey of Horsehair Worm Cysts in Northern Taiwan, with Notes on a Single Seasonal Infection Peak in Chironomid Larvae (Diptera: Chironomidae).

    PubMed

    Chiu, Ming-Chung; Huang, Chin-Gi; Wu, Wen-Jer; Shiao, Shiuh-Feng

    2016-06-01

    The life cycle of the freshwater horsehair worm typically includes a free-living phase (adult, egg, larva) and a multiple-host parasitic phase (aquatic paratenic host, terrestrial definitive host). Such a life cycle involving water and land can improve energy flow in riparian ecosystems; however, its temporal dynamics in nature have rarely been investigated. This study examined seasonal infection with cysts in larval Chironominae (Diptera: Chironomidae) in northern Taiwan. In the larval chironomids, cysts of 3 horsehair worm species were identified. The cysts of the dominant species were morphologically similar to those of Chordodes formosanus. Infection with these cysts increased suddenly and peaked 2 mo after the reproductive season of the adult horsehair worms. Although adult C. formosanus emerged several times in a year, only 1 distinct infection peak was detected in September in the chironomid larvae. Compared with the subfamily Chironominae, samples from the subfamilies Tanypodinae and Orthocladiinae were less parasitized. This indicates that the feeding behavior of the chironomid host likely affects horsehair worm cyst infections; however, bioconcentration in predatory chironomids was not detected. PMID:26885875

  6. Development of cellular immune response of mice to infection with low doses of Trichinella spiralis, Trichinella britovi and Trichinella pseudospiralis larvae.

    PubMed

    Dvorožňáková, Emília; Hurníková, Zuzana; Kołodziej-Sobocińska, Marta

    2011-01-01

    The murine cellular immune response to the infection with ten larvae of encapsulating (Trichinella spiralis, Trichinella britovi) and non-encapsulating species (Trichinella pseudospiralis) was studied. Both T. spiralis and T. britovi stimulated the proliferation of splenic T and B lymphocytes during the intestinal phase of infection, but T. spiralis activated the proliferative response also at the muscle phase, particularly in B cells. Non-encapsulating T. pseudospiralis stimulated the proliferation of T and B cells only on day 10 post-infection (p.i.) and later at the muscle phase. The numbers of splenic CD4 and CD8 T cells of T. spiralis infected mice were significantly increased till day 10 p.i., i.e., at the intestinal phase, and then at the late muscle phase, on day 60 p.i. T. britovi infection increased the CD4 and CD8 T cell numbers only on day 30 p.i. Decreased numbers of CD4 and CD8 T cells after T. pseudospiralis infection suggest a suppression of cellular immunity. Both encapsulating Trichinella species induced the Th2 response (cytokines interleukin-5 (IL-5) and interleukin-10) at the intestinal phase and the Th2 dominant response at the advanced muscle phase. Interferon-γ (IFN-γ) production (Th1 type) started to increase with migrating newborn larvae from day 15 p.i. till the end of the experiment. IL-5 production was suppressed during the intestinal phase of T. pseudospiralis infection. The immune response to T. pseudospiralis was directed more to the Th1 response at the muscle phase, the high IFN-γ production was found on day 10 p.i. and it peaked on days 45 and 60 p.i. PMID:20967464

  7. Release of Small RNA-containing Exosome-like Vesicles from the Human Filarial Parasite Brugia malayi

    PubMed Central

    Agbedanu, Prince N; Harischandra, Hiruni; Moorhead, Andrew R; Day, Tim A; Bartholomay, Lyric C; Kimber, Michael J

    2015-01-01

    Lymphatic filariasis (LF) is a socio-economically devastating mosquito-borne Neglected Tropical Disease caused by parasitic filarial nematodes. The interaction between the parasite and host, both mosquito and human, during infection, development and persistence is dynamic and delicately balanced. Manipulation of this interface to the detriment of the parasite is a promising potential avenue to develop disease therapies but is prevented by our very limited understanding of the host-parasite relationship. Exosomes are bioactive small vesicles (30–120 nm) secreted by a wide range of cell types and involved in a wide range of physiological processes. Here, we report the identification and partial characterization of exosome-like vesicles (ELVs) released from the infective L3 stage of the human filarial parasite Brugia malayi. Exosome-like vesicles were isolated from parasites in culture media and electron microscopy and nanoparticle tracking analysis were used to confirm that vesicles produced by juvenile B. malayi are exosome-like based on size and morphology. We show that loss of parasite viability correlates with a time-dependent decay in vesicle size specificity and rate of release. The protein cargo of these vesicles is shown to include common exosomal protein markers and putative effector proteins. These Brugia-derived vesicles contain small RNA species that include microRNAs with host homology, suggesting a potential role in host manipulation. Confocal microscopy shows J774A.1, a murine macrophage cell line, internalize purified ELVs, and we demonstrate that these ELVs effectively stimulate a classically activated macrophage phenotype in J774A.1. To our knowledge, this is the first report of exosome-like vesicle release by a human parasitic nematode and our data suggest a novel mechanism by which human parasitic nematodes may actively direct the host responses to infection. Further interrogation of the makeup and function of these bioactive vesicles could seed

  8. Neutropenic Mice Provide Insight into the Role of Skin-Infiltrating Neutrophils in the Host Protective Immunity against Filarial Infective Larvae

    PubMed Central

    Pionnier, Nicolas; Brotin, Emilie; Karadjian, Gregory; Hemon, Patrice; Gaudin-Nomé, Françoise; Vallarino-Lhermitte, Nathaly; Nieguitsila, Adélaïde; Fercoq, Frédéric; Aknin, Marie-Laure; Marin-Esteban, Viviana; Chollet-Martin, Sylvie; Schlecht-Louf, Géraldine

    2016-01-01

    Our knowledge and control of the pathogenesis induced by the filariae remain limited due to experimental obstacles presented by parasitic nematode biology and the lack of selective prophylactic or curative drugs. Here we thought to investigate the role of neutrophils in the host innate immune response to the infection caused by the Litomosoides sigmodontis murine model of human filariasis using mice harboring a gain-of-function mutation of the chemokine receptor CXCR4 and characterized by a profound blood neutropenia (Cxcr4+/1013). We provided manifold evidence emphasizing the major role of neutrophils in the control of the early stages of infection occurring in the skin. Firstly, we uncovered that the filarial parasitic success was dramatically decreased in Cxcr4+/1013 mice upon subcutaneous delivery of the infective stages of filariae (infective larvae, L3). This protection was linked to a larger number of neutrophils constitutively present in the skin of the mutant mice herein characterized as compared to wild type (wt) mice. Indeed, the parasitic success in Cxcr4+/1013 mice was normalized either upon depleting neutrophils, including the pool in the skin, or bypassing the skin via the intravenous infection of L3. Second, extending these observations to wt mice we found that subcutaneous delivery of L3 elicited an increase of neutrophils in the skin. Finally, living L3 larvae were able to promote in both wt and mutant mice, an oxidative burst response and the release of neutrophil extracellular traps (NET). This response of neutrophils, which is adapted to the large size of the L3 infective stages, likely directly contributes to the anti-parasitic strategies implemented by the host. Collectively, our results are demonstrating the contribution of neutrophils in early anti-filarial host responses through their capacity to undertake different anti-filarial strategies such as oxidative burst, degranulation and NETosis. PMID:27111140

  9. Neutropenic Mice Provide Insight into the Role of Skin-Infiltrating Neutrophils in the Host Protective Immunity against Filarial Infective Larvae.

    PubMed

    Pionnier, Nicolas; Brotin, Emilie; Karadjian, Gregory; Hemon, Patrice; Gaudin-Nomé, Françoise; Vallarino-Lhermitte, Nathaly; Nieguitsila, Adélaïde; Fercoq, Frédéric; Aknin, Marie-Laure; Marin-Esteban, Viviana; Chollet-Martin, Sylvie; Schlecht-Louf, Géraldine; Bachelerie, Françoise; Martin, Coralie

    2016-04-01

    Our knowledge and control of the pathogenesis induced by the filariae remain limited due to experimental obstacles presented by parasitic nematode biology and the lack of selective prophylactic or curative drugs. Here we thought to investigate the role of neutrophils in the host innate immune response to the infection caused by the Litomosoides sigmodontis murine model of human filariasis using mice harboring a gain-of-function mutation of the chemokine receptor CXCR4 and characterized by a profound blood neutropenia (Cxcr4(+/1013)). We provided manifold evidence emphasizing the major role of neutrophils in the control of the early stages of infection occurring in the skin. Firstly, we uncovered that the filarial parasitic success was dramatically decreased in Cxcr4(+/1013) mice upon subcutaneous delivery of the infective stages of filariae (infective larvae, L3). This protection was linked to a larger number of neutrophils constitutively present in the skin of the mutant mice herein characterized as compared to wild type (wt) mice. Indeed, the parasitic success in Cxcr4(+/1013) mice was normalized either upon depleting neutrophils, including the pool in the skin, or bypassing the skin via the intravenous infection of L3. Second, extending these observations to wt mice we found that subcutaneous delivery of L3 elicited an increase of neutrophils in the skin. Finally, living L3 larvae were able to promote in both wt and mutant mice, an oxidative burst response and the release of neutrophil extracellular traps (NET). This response of neutrophils, which is adapted to the large size of the L3 infective stages, likely directly contributes to the anti-parasitic strategies implemented by the host. Collectively, our results are demonstrating the contribution of neutrophils in early anti-filarial host responses through their capacity to undertake different anti-filarial strategies such as oxidative burst, degranulation and NETosis. PMID:27111140

  10. Investigating the Effect of Different Treatments with Lactic Acid Bacteria on the Fate of Listeria monocytogenes and Staphylococcus aureus Infection in Galleria mellonella Larvae.

    PubMed

    Grounta, Athena; Harizanis, Paschalis; Mylonakis, Eleftherios; Nychas, George-John E; Panagou, Efstathios Z

    2016-01-01

    The use of Galleria mellonella as a model host to elucidate microbial pathogenesis and search for novel drugs and therapies has been well appreciated over the past years. However, the effect of microorganisms with functional appeal in the specific host remains scarce. The present study investigates the effect of treatment with selected lactic acid bacteria (LAB) with probiotic potential, as potential protective agents by using live or heat-killed cells at 6 and 24 h prior to infection with Listeria monocytogenes and Staphylococcus aureus or as potential therapeutic agents by using cell-free supernatants (CFS) after infection with the same pathogens. The employed LAB strains were Lactobacillus pentosus B281 and Lactobacillus plantarum B282 (isolated from table olive fermentations) along with Lactobacillus rhamnosus GG (inhabitant of human intestinal tract). Kaplan-Meier survival curves were plotted while the pathogen's persistence in the larval hemolymph was determined by microbiological analysis. It was observed that the time (6 or 24 h) and type (live or heat-killed cells) of challenge period with LAB prior to infection greatly affected the survival of infected larvae. The highest decrease of L. monocytogenes population in the hemolymph was observed in groups challenged for 6 h with heat-killed cells by an average of 1.8 log units compared to non challenged larvae for strains B281 (p 0.0322), B282 (p 0.0325), and LGG (p 0.0356). In the case of S. aureus infection, the population of the pathogen decreased in the hemolymph by 1 log units at 8 h post infection in the groups challenged for 6 h with heat-killed cells of strains B281 (p 0.0161) and B282 (p 0.0096) and by 1.8 log units in groups challenged with heat-killed cells of LGG strain (p 0.0175). Further use of CFS of each LAB strain did not result in any significant prolonged survival but interestingly it resulted in pronounced decrease of L. monocytogenes in the hemolymph at 24 h and 48 h after infection by

  11. Strongyloides stercoralis: Amphidial neuron pair ASJ triggers significant resumption of development by infective larvae under host-mimicking in vitro conditions

    PubMed Central

    Ashton, Francis T.; Zhu, Xiaodong; Boston, Ray; Lok, James B.; Schad, Gerhard A.

    2011-01-01

    Resumption of development by infective larvae (L3i) of parasitic nematodes upon entering a host is a critical first step in establishing a parasitic relationship with a definitive host. It is also considered equivalent to exit from the dauer stage by the free-living nematode Caenorhabditis elegans. Initiation of feeding, an early event in this process, is induced in vitro in L3i of Strongyloides stercoralis, a parasite of humans, other primates and dogs, by culturing the larvae in DMEM with 10% canine serum and 5 mM glutathione at 37 °C with 5% CO2. Based on the developmental neurobiology of C. elegans, resumption of development by S. stercoralis L3i should be mediated, in part at least, by neurons homologous to the ASJ pair of C. elegans. To test this hypothesis, the ASJ neurons in S. stercoralis first-stage larvae (L1) were ablated with a laser microbeam. This resulted in a statistically significant (33%) reduction in the number of L3i that resumed feeding in culture. In a second expanded investigation, the thermosensitive ALD neurons, along with the ASJ neurons, were ablated, but there was no further decrease in the initiation of feeding by these worms compared to those in which only the ASJ pair was ablated. PMID:17067579

  12. Brugia malayi Asparaginyl - tRNA Synthetase Stimulates Endothelial Cell Proliferation, Vasodilation and Angiogenesis

    PubMed Central

    D, Jeeva Jothi; Dhanraj, Muthu; Solaiappan, Shanmugam; Sivanesan, Sanjana; Kron, Michael; Dhanasekaran, Anuradha

    2016-01-01

    A hallmark of chronic infection with lymphatic filarial parasites is the development of lymphatic disease which often results in permanent vasodilation and lymphedema, but all of the mechanisms by which filarial parasites induce pathology are not known. Prior work showed that the asparaginyl-tRNA synthetase (BmAsnRS) of Brugia malayi, an etiological agent of lymphatic filariasis, acts as a physiocrine that binds specifically to interleukin-8 (IL-8) chemokine receptors. Endothelial cells are one of the many cell types that express IL-8 receptors. IL-8 also has been reported previously to induce angiogenesis and vasodilation, however, the effect of BmAsnRS on endothelial cells has not been reported. Therefore, we tested the hypothesis that BmAsnRS might produce physiological changes in endothelial by studying the in vitro effects of BmAsnRS using a human umbilical vein cell line EA.hy926 and six different endothelial cell assays. Our results demonstrated that BmAsnRS produces consistent and statistically significant effects on endothelial cells that are identical to the effects of VEGF, vascular endothelial growth factor. This study supports the idea that new drugs or immunotherapies that counteract the adverse effects of parasite-derived physiocrines may prevent or ameliorate the vascular pathology observed in patients with lymphatic filariasis. PMID:26751209

  13. Identification of a highly immunoreactive epitope of Brugia malayi TPx recognized by the endemic sera.

    PubMed

    Madhumathi, Jayaprakasam; Prince, Prabhu Rajaiah; Gayatri, Subash Chellam; Aparnaa, Ramanathan; Kaliraj, Perumal

    2010-12-01

    Filarial thiordoxin peroxidase is a major antioxidant that plays a crucial role in parasite survival. Although Brugia malayi TPx has been shown to be a potential vaccine candidate, it shares 63% homology with its mammalian counterpart, limiting its use as a vaccine or drug target. In silico analysis of TPx sequence revealed a linear B epitope in the host's nonhomologous region. The peptide sequence (TPx peptide(27-48)) was synthesized, and its reactivity with clinical sera from an endemic region was analyzed. The peptide showed significantly high reactivity (P < 0.05) against the sera of putatively immune individuals compared to the nonendemic control sera. It also showed high reactivity against the sera of patients with chronic pathology and patent infection. The high reactivity of the peptide with endemic immune sera equivalent to that of whole protein shows that it forms a dominant B epitope of TPx protein and thus could be utilized for incorporation into a multiepitope vaccine construct for filariasis. PMID:21158641

  14. Glucose and Glycogen Metabolism in Brugia malayi Is Associated with Wolbachia Symbiont Fitness

    PubMed Central

    Voronin, Denis; Bachu, Saheed; Shlossman, Michael; Unnasch, Thomas R.; Ghedin, Elodie; Lustigman, Sara

    2016-01-01

    Wolbachia are endosymbiotic bacteria found in the majority of arthropods and filarial nematodes of medical and veterinary importance. They have evolved a wide range of symbiotic associations. In filarial nematodes that cause human lymphatic filariasis (Wuchereria bancrofti, Brugia malayi) or onchocerciasis (Onchocerca volvulus), Wolbachia are important for parasite development, reproduction and survival. The symbiotic bacteria rely in part on nutrients and energy sources provided by the host. Genomic analyses suggest that the strain of Wolbachia found in B. malayi (wBm) lacks the genes for two glycolytic enzymes—6-phosphofructokinase and pyruvate kinase—and is thus potentially unable to convert glucose into pyruvate, an important substrate for energy generation. The Wolbachia surface protein, wBm00432, is complexed to six B. malayi glycolytic enzymes, including aldolase. In this study we characterized two B. malayi aldolase isozymes and found that their expression is dependent on Wolbachia fitness and number. We confirmed by immuno-transmission electron microscopy that aldolase is associated with the Wolbachia surface. RNAi experiments suggested that aldolase-2 plays a significant role in both Wolbachia survival and embryogenesis in B. malayi. Treatment with doxycycline reduced Wolbachia fitness and increased the amount of both glucose and glycogen detected in the filarial parasite, indicating that glucose metabolism and glycogen storage in B. malayi are associated with Wolbachia fitness. This metabolic co-dependency between Wolbachia and its filarial nematode indicates that glycolysis could be a shared metabolic pathway between the bacteria and B. malayi, and thus a potential new target for anti-filarial therapy. PMID:27078260

  15. Mining Predicted Essential Genes of Brugia malayi for Nematode Drug Targets

    PubMed Central

    Kumar, Sanjay; Chaudhary, Kshitiz; Foster, Jeremy M.; Novelli, Jacopo F.; Zhang, Yinhua; Wang, Shiliang; Spiro, David; Ghedin, Elodie; Carlow, Clotilde K. S.

    2007-01-01

    We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression. PMID:18000556

  16. Glucose and Glycogen Metabolism in Brugia malayi Is Associated with Wolbachia Symbiont Fitness.

    PubMed

    Voronin, Denis; Bachu, Saheed; Shlossman, Michael; Unnasch, Thomas R; Ghedin, Elodie; Lustigman, Sara

    2016-01-01

    Wolbachia are endosymbiotic bacteria found in the majority of arthropods and filarial nematodes of medical and veterinary importance. They have evolved a wide range of symbiotic associations. In filarial nematodes that cause human lymphatic filariasis (Wuchereria bancrofti, Brugia malayi) or onchocerciasis (Onchocerca volvulus), Wolbachia are important for parasite development, reproduction and survival. The symbiotic bacteria rely in part on nutrients and energy sources provided by the host. Genomic analyses suggest that the strain of Wolbachia found in B. malayi (wBm) lacks the genes for two glycolytic enzymes--6-phosphofructokinase and pyruvate kinase--and is thus potentially unable to convert glucose into pyruvate, an important substrate for energy generation. The Wolbachia surface protein, wBm00432, is complexed to six B. malayi glycolytic enzymes, including aldolase. In this study we characterized two B. malayi aldolase isozymes and found that their expression is dependent on Wolbachia fitness and number. We confirmed by immuno-transmission electron microscopy that aldolase is associated with the Wolbachia surface. RNAi experiments suggested that aldolase-2 plays a significant role in both Wolbachia survival and embryogenesis in B. malayi. Treatment with doxycycline reduced Wolbachia fitness and increased the amount of both glucose and glycogen detected in the filarial parasite, indicating that glucose metabolism and glycogen storage in B. malayi are associated with Wolbachia fitness. This metabolic co-dependency between Wolbachia and its filarial nematode indicates that glycolysis could be a shared metabolic pathway between the bacteria and B. malayi, and thus a potential new target for anti-filarial therapy. PMID:27078260

  17. α-Amanitin-Resistant Viral RNA Synthesis in Nuclei Isolated from Nuclear Polyhedrosis Virus-Infected Heliothis zea Larvae and Spodoptera frugiperda Cells

    PubMed Central

    Grula, Marjori A.; Buller, Patricia L.; Weaver, Robert F.

    1981-01-01

    [3H]RNA was synthesized in nuclei isolated at various times postinfection from the fat bodies of Heliothis zea larvae infected with H. zea nuclear polyhedrosis virus and from cultured Spodoptera frugiperda cells infected with Autographa californica nuclear polyhedrosis virus. To detect virus-specific RNA synthesis, the [3H]RNA was hybridized to denatured viral DNA immobilized on nitrocellulose filters. Nuclear polyhedrosis virus-specific RNA synthesis in the infected nuclei isolated from H. zea larval fat bodies and S. frugiperda cells was only inhibited 20 to 25% by concentrations of α-amanitin sufficient to inhibit the host RNA polymerase II. In addition, a productive nuclear polyhedrosis virus infection was obtained in S. frugiperda cells grown in the presence of an α-amanitin concentration that inhibited 90% of the cellular RNA polymerase II activity. The cellular RNA polymerase II enzyme remained sensitive to α-amanitin during infection, and there was no evidence that a virus-coded, α-amanitin-resistant enzyme was synthesized after the onset of infection. The data suggest that the bulk of nuclear polyhedrosis virus-specific RNA synthesis in isolated nuclei is transcribed by an enzyme other than the host RNA polymerase II. PMID:16789208

  18. A novel 95-kilodalton antigen of Wuchereria bancrofti infective larvae identified by species-specific monoclonal antibodies.

    PubMed Central

    Burkot, T R; Kwan-Lim, G E; Maizels, R M

    1996-01-01

    CBA and BALB/c mice produced polyspecific and monospecific polyclonal antibody responses, respectively, following immunization with Wuchereria bancrofti stage-3 larvae. Two monoclonal antibodies (MAbs) were produced from the immunized BALB/c mouse. These MAbs (both isotype M) recognized a previously undescribed highly expressed W. bancrofti antigen present in stage-3 larvae. The epitopes bound by the MAbs appear to be species specific for W. bancrofti since the MAbs did not bind to antigens of either nine other nematode species or two vector species in Western blots (immunoblots). Phosphorylcholine epitopes, responsible for immunological cross-reactivity among nematodes, were identified only on a 200-kDa antigen and not on the 95-kDa molecule. The targets of these immunoglobulin M MAbs are not carbohydrate epitopes. PMID:8550196

  19. IgG subclass responses to proinflammatory fraction of Brugia malayi in human filariasis

    PubMed Central

    Joseph, S.K.; Verma, S.K.; Sahoo, M.K.; Sharma, A.; Srivastava, M.; Reddy, M.V.R.; Murthy, P.K.

    2012-01-01

    Background & objectives: Earlier we demonstrated that immunization with F6, a proinflammatory molecular fraction isolated from the human filarial parasite Brugia malayi, protected the host and eliminated the infection in Mastomys coucha by a Th1/Th2 response including IgG2a antibody response. Whether F6 molecules become accessible to human host during natural course of infection and elicit similar response is not known. The present study was undertaken to determine the profile of IgG subclasses specifically reactive to F6 in different categories of bancroftian filariasis cases to infer any relationship between the levels of a particular F6-specific IgG subclass and the infection or disease status. Methods: Serum samples of normal individuals from filariasis non-endemic regions of India like Jammu & Kashmir, Uttarakhand, and Chandigarh [(NEN-W; n=10), healthy subjects from USA (NEN-U; n=10) and three categories of bancroftian filariasis cases from endemic areas: endemic normals (EN; n=10) with no symptoms and no microfilariae, asymptomatic microfilaremics (ASM; n=10) and chronic symptomatic amicrofilaremics (CL; n=10) were assayed for F6-specific IgG1, IgG2, IgG3 and IgG4 by ELISA using SDS-PAGE-isolated F6 fraction of B. malayi adult worms. Results: Significantly high levels of F6-specific IgG1, IgG2 and IgG3 were found in CL (P<0.001) and EN (P<0.01-0.001) bancroftian filariasis cases compared to NEN-U. Significant levels of F6-specific IgG1 (P<0.01) and IgG2 (P<0.01) but not IgG3 were found in ASM cases compared to NEN-U. The most abundant was IgG2 which when compared to NEN-U, was significantly high in CL (P<0.001) and EN cases (P<0.001), followed by ASM (P<0.01). F6-specific IgG4 response in EN, ASM and CL subjects was not significantly different from the levels of NEN-U. Among the non-endemic normals, the NEN-W subjects showed significant reactivity with IgG2 (P<0.001) but not with IgG1, IgG3 and IgG4 as compared to NEN-U subjects. IgG subclass levels were

  20. Construction of bacterial artificial chromosome libraries from the parasitic nematode Brugia malayi and physical mapping of the genome of its Wolbachia endosymbiont.

    PubMed

    Foster, Jeremy M; Kumar, Sanjay; Ganatra, Mehul B; Kamal, Ibrahim H; Ware, Jennifer; Ingram, Jessica; Pope-Chappell, Jesse; Guiliano, David; Whitton, Claire; Daub, Jennifer; Blaxter, Mark L; Slatko, Barton E

    2004-05-01

    The parasitic nematode, Brugia malayi, causes lymphatic filariasis in humans, which in severe cases leads to the condition known as elephantiasis. The parasite contains an endosymbiotic alpha-proteobacterium of the genus Wolbachia that is required for normal worm development and fecundity and is also implicated in the pathology associated with infections by these filarial nematodes. Bacterial artificial chromosome libraries were constructed from B. malayi DNA and provide over 11-fold coverage of the nematode genome. Wolbachia genomic fragments were simultaneously cloned into the libraries giving over 5-fold coverage of the 1.1 Mb bacterial genome. A physical framework for the Wolbachia genome was developed by construction of a plasmid library enriched for Wolbachia DNA as a source of sequences to hybridise to high-density bacterial artificial chromosome colony filters. Bacterial artificial chromosome end sequencing provided additional Wolbachia probe sequences to facilitate assembly of a contig that spanned the entire genome. The Wolbachia sequences provided a marker approximately every 10 kb. Four rare-cutting restriction endonucleases were used to restriction map the genome to a resolution of approximately 60 kb and demonstrate concordance between the bacterial artificial chromosome clones and native Wolbachia genomic DNA. Comparison of Wolbachia sequences to public databases using BLAST algorithms under stringent conditions allowed confident prediction of 69 Wolbachia peptide functions and two rRNA genes. Comparison to closely related complete genomes revealed that while most sequences had orthologs in the genome of the Wolbachia endosymbiont from Drosophila melanogaster, there was no evidence for long-range synteny. Rather, there were a few cases of short-range conservation of gene order extending over regions of less than 10 kb. The molecular scaffold produced for the genome of the Wolbachia from B. malayi forms the basis of a genomic sequencing effort for

  1. [Visceral and cutaneous larva migrans].

    PubMed

    Petithory, Jean-Claude

    2007-11-30

    The syndrome of visceral larva migrans was described for the first time in 1952 by Beaver. He demonstrated that the presence of nematodes larvae, particularly in the liver, were those of Toxocara canis and T. cati. Baylisascaris procyonis, the common racoon ascarid in the U.S.A. can also cause serious diseases in human. Digestive and respiratory clinical symptoms are usually moderate, however severe disease resulting from invasion of the myocardium or the brain has been reported. A blood hypereosinophilia is usually present the first few years after infection. Diagnosis uses serological methods, among them the ELISA test. Ocular larva is also possible with in that case, immunological modifications of the aqueous. Cutaneous larva migrans characterized by a linear, progressing, serpigenous eruption and intense itching is easy to diagnose. Larva migrans is due to dogs, cats and horses helminths. Dogs and cats (referred here as pets) now receive antihelmintitic treatments and parasites are now in decrease. PMID:18326429

  2. Stage- and Gender-Specific Proteomic Analysis of Brugia malayi Excretory-Secretory Products

    PubMed Central

    Moreno, Yovany; Geary, Timothy G.

    2008-01-01

    Introduction While we lack a complete understanding of the molecular mechanisms by which parasites establish and achieve protection from host immune responses, it is accepted that many of these processes are mediated by products, primarily proteins, released from the parasite. Parasitic nematodes occur in different life stages and anatomical compartments within the host. Little is known about the composition and variability of products released at different developmental stages and their contribution to parasite survival and progression of the infection. Methodology/Principal Findings To gain a deeper understanding on these aspects, we collected and analyzed through 1D-SDS PAGE and LC-MS/MS the Excretory-Secretory Products (ESP) of adult female, adult male and microfilariae of the filarial nematode Brugia malayi, one of the etiological agents of human lymphatic filariasis. This proteomic analysis led to the identification of 228 proteins. The list includes 76 proteins with unknown function as well as also proteins with potential immunoregulatory properties, such as protease inhibitors, cytokine homologues and carbohydrate-binding proteins. Larval and adult ESP differed in composition. Only 32 proteins were shared between all three stages/genders. Consistent with this observation, different gene ontology profiles were associated with the different ESP. Conclusions/Significance A comparative analysis of the proteins released in vitro by different forms of a parasitic nematode dwelling in the same host is presented. The catalog of secreted proteins reflects different stage- and gender-specific related processes and different strategies of immune evasion, providing valuable insights on the contribution of each form of the parasite for establishing the host–parasite interaction. PMID:18958170

  3. Potential involvement of Brugia malayi cysteine proteases in the maintenance of the endosymbiotic relationship with Wolbachia

    PubMed Central

    Lustigman, Sara; Melnikow, Elena; Anand, Setty Balakrishnan; Contreras, Aroha; Nandi, Vijay; Liu, Jing; Bell, Aaron; Unnasch, Thomas R.; Rogers, Mathew B.; Ghedin, Elodie

    2014-01-01

    Brugia malayi, a parasitic nematode that causes lymphatic filariasis, harbors endosymbiotic intracellular bacteria, Wolbachia, that are required for the development and reproduction of the worm. The essential nature of this endosymbiosis led to the development of anti-Wolbachia chemotherapeutic approaches for the treatment of human filarial infections. Our study is aimed at identifying specific proteins that play a critical role in this endosymbiotic relationship leading to the identification of potential targets in the adult worms. Filarial cysteine proteases are known to be involved in molting and embryogenesis, processes shown to also be Wolbachia dependent. Based on the observation that cysteine protease transcripts are differentially regulated in response to tetracycline treatment, we focused on defining their role in symbiosis. We observe a bimodal regulation pattern of transcripts encoding cysteine proteases when in vitro tetracycline treated worms were examined. Using tetracycline-treated infertile female worms and purified embryos we established that the first peak of the bimodal pattern corresponds to embryonic transcripts while the second takes place within the hypodermis of the adult worms. Localization studies of the native proteins corresponding to Bm-cpl-3 and Bm-cpl-6 indicate that they are present in the area surrounding Wolbachia, and, in some cases, the proteins appear localized within the bacteria. Both proteins were also found in the inner bodies of microfilariae. The possible role of these cysteine proteases during development and endosymbiosis was further characterized using RNAi. Reduction in Bm-cpl-3 and Bm-cpl-6 transcript levels was accompanied by hindered microfilarial development and release, and reduced Wolbachia DNA levels, making these enzymes strong drug target candidates. PMID:25516837

  4. Thai koi-hoi snail dish and angiostrongyliasis due to Angiostrongylus cantonensis: Effects of food flavoring and alcoholic drink on the third-stage larvae in infected snail meat.

    PubMed

    Eamsobhana, Praphathip; Yoolek, Adisak; Punthuprapasa, Paibulaya; Yong, Hoi-Sen

    2009-04-01

    Human infection with the rat lungworm Angiostrongylus cantonensis (Parastrongylus cantonensis) in Thailand, especially in the northeastern region, is associated with the habit of eating koi-hoi, which contains raw snail meat. Infection results from the snails being carriers of the larval parasite. The present study was conducted to assess the effect of food flavorings in koi-hoi, alcohol, and exposure time of the two variable on the infective larvae of A. cantonensis. Infected Biomphalaria glabrata snails were used for koi-hoi preparation. Raw snail meat was mixed with koi-hoi flavoring and left at room temperature for various time periods ranging from 5 to 60 minutes. At a predetermined time, two pieces of snail meat were removed at random and examined for viability (as determined by motility) of the parasitic third-stage larvae. At the same time, two random pieces of snail meat were removed and treated with 10 mL of a local 40% alcoholic drink for 30 minutes before examination of larval viability. Exposure of infected snail meat for 10 minutes or more to koi-hoi food flavoring resulted in significantly more nonmotile (dying or dead) larvae. Addition of the local alcoholic drink after exposure to the flavoring exerted an additional killing effect on the larvae. Despite long exposure time, both the koi-hoi flavoring and addition of alcoholic drink were not completely effective in killing the infective larvae in the snail meat. Thorough cooking of the food intended for human consumption should still be practiced. PMID:19272010

  5. Differences in shell shape of naturally infected Lymnaea stagnalis (L.) individuals as the effect of the activity of digenetic trematode larvae.

    PubMed

    Zbikowska, Elzbieta; Zbikowski, Janusz

    2005-10-01

    The shells of Lymnaea stagnalis show great morphological variability. This phenomenon has been described as the result of an environmental influence. The main object of the present study was to compare some biometric data from shells of naturally infected and uninfected snails from 25 different lakes in the central part of Poland. The height of the shell, the height of the spiral, and the width of the shell were measured. Some inter- and intrapopulation differences among individuals were found. Greater variability of shell shape was observed among snails parasitized with digenean larvae than in nonparasitized ones. Snails infected with Echinoparyphium aconiatum, Echinostoma revolutum, Diplostomum pseudospathaceum, and Opisthioglyphe ranae differed in shell shape compared with uninfected individuals. Snails infected with Plagiorchis elegans did not differ from uninfected individuals. The same was true of snails in which the commensal oligochaete, Chaetogaster limnei, was found. The results of the present study support the assumption that the deformation of shells of the snails under study was in some way influenced by the presence of certain species of digenetic trematodes. PMID:16419747

  6. Regulation of Life Cycle Checkpoints and Developmental Activation of Infective Larvae in Strongyloides stercoralis by Dafachronic Acid

    PubMed Central

    Pilgrim, Adeiye A.; Nolan, Thomas J.; Wang, Zhu; Kliewer, Steven A.; Mangelsdorf, David J.; Lok, James B.

    2016-01-01

    The complex life cycle of the parasitic nematode Strongyloides stercoralis leads to either developmental arrest of infectious third-stage larvae (iL3) or growth to reproductive adults. In the free-living nematode Caenorhabditis elegans, analogous determination between dauer arrest and reproductive growth is governed by dafachronic acids (DAs), a class of steroid hormones that are ligands for the nuclear hormone receptor DAF-12. Biosynthesis of DAs requires the cytochrome P450 (CYP) DAF-9. We tested the hypothesis that DAs also regulate S. stercoralis development via DAF-12 signaling at three points. First, we found that 1 μM Δ7-DA stimulated 100% of post-parasitic first-stage larvae (L1s) to develop to free-living adults instead of iL3 at 37°C, while 69.4±12.0% (SD) of post-parasitic L1s developed to iL3 in controls. Second, we found that 1 μM Δ7-DA prevented post-free-living iL3 arrest and stimulated 85.2±16.9% of larvae to develop to free-living rhabditiform third- and fourth-stages, compared to 0% in the control. This induction required 24–48 hours of Δ7-DA exposure. Third, we found that the CYP inhibitor ketoconazole prevented iL3 feeding in host-like conditions, with only 5.6±2.9% of iL3 feeding in 40 μM ketoconazole, compared to 98.8±0.4% in the positive control. This inhibition was partially rescued by Δ7-DA, with 71.2±16.4% of iL3 feeding in 400 nM Δ7-DA and 35 μM ketoconazole, providing the first evidence of endogenous DA production in S. stercoralis. We then characterized the 26 CYP-encoding genes in S. stercoralis and identified a homolog with sequence and developmental regulation similar to DAF-9. Overall, these data demonstrate that DAF-12 signaling regulates S. stercoralis development, showing that in the post-parasitic generation, loss of DAF-12 signaling favors iL3 arrest, while increased DAF-12 signaling favors reproductive development; that in the post-free-living generation, absence of DAF-12 signaling is crucial for iL3 arrest

  7. Regulation of Life Cycle Checkpoints and Developmental Activation of Infective Larvae in Strongyloides stercoralis by Dafachronic Acid.

    PubMed

    Albarqi, Mennatallah M Y; Stoltzfus, Jonathan D; Pilgrim, Adeiye A; Nolan, Thomas J; Wang, Zhu; Kliewer, Steven A; Mangelsdorf, David J; Lok, James B

    2016-01-01

    The complex life cycle of the parasitic nematode Strongyloides stercoralis leads to either developmental arrest of infectious third-stage larvae (iL3) or growth to reproductive adults. In the free-living nematode Caenorhabditis elegans, analogous determination between dauer arrest and reproductive growth is governed by dafachronic acids (DAs), a class of steroid hormones that are ligands for the nuclear hormone receptor DAF-12. Biosynthesis of DAs requires the cytochrome P450 (CYP) DAF-9. We tested the hypothesis that DAs also regulate S. stercoralis development via DAF-12 signaling at three points. First, we found that 1 μM Δ7-DA stimulated 100% of post-parasitic first-stage larvae (L1s) to develop to free-living adults instead of iL3 at 37°C, while 69.4±12.0% (SD) of post-parasitic L1s developed to iL3 in controls. Second, we found that 1 μM Δ7-DA prevented post-free-living iL3 arrest and stimulated 85.2±16.9% of larvae to develop to free-living rhabditiform third- and fourth-stages, compared to 0% in the control. This induction required 24-48 hours of Δ7-DA exposure. Third, we found that the CYP inhibitor ketoconazole prevented iL3 feeding in host-like conditions, with only 5.6±2.9% of iL3 feeding in 40 μM ketoconazole, compared to 98.8±0.4% in the positive control. This inhibition was partially rescued by Δ7-DA, with 71.2±16.4% of iL3 feeding in 400 nM Δ7-DA and 35 μM ketoconazole, providing the first evidence of endogenous DA production in S. stercoralis. We then characterized the 26 CYP-encoding genes in S. stercoralis and identified a homolog with sequence and developmental regulation similar to DAF-9. Overall, these data demonstrate that DAF-12 signaling regulates S. stercoralis development, showing that in the post-parasitic generation, loss of DAF-12 signaling favors iL3 arrest, while increased DAF-12 signaling favors reproductive development; that in the post-free-living generation, absence of DAF-12 signaling is crucial for iL3 arrest

  8. The solution structure of the forkhead box-O DNA binding domain of Brugia malayi DAF-16a.

    PubMed

    Casper, Sarah K; Schoeller, Scott J; Zgoba, Danielle M; Phillips, Andrew J; Morien, Thomas J; Chaffee, Gary R; Sackett, Peter C; Peterson, Francis C; Crossgrove, Kirsten; Veldkamp, Christopher T

    2014-12-01

    Brugia malayi is a parasitic nematode that causes lymphatic filariasis in humans. Here the solution structure of the forkhead DNA binding domain of Brugia malayi DAF-16a, a putative ortholog of Caenorhabditis elegans DAF-16, is reported. It is believed to be the first structure of a forkhead or winged helix domain from an invertebrate. C. elegans DAF-16 is involved in the insulin/IGF-I signaling pathway and helps control metabolism, longevity, and development. Conservation of sequence and structure with human FOXO proteins suggests that B. malayi DAF-16a is a member of the FOXO family of forkhead proteins. PMID:25297652

  9. UDP-galactopyranose mutase, a potential drug target against human pathogenic nematode Brugia malayi.

    PubMed

    Misra, Sweta; Valicherla, Guru R; Mohd Shahab; Gupta, Jyoti; Gayen, Jiaur R; Misra-Bhattacharya, Shailja

    2016-08-01

    Lymphatic filariasis, a vector-borne neglected tropical disease affects millions of population in tropical and subtropical countries. Vaccine unavailability and emerging drug resistance against standard antifilarial drugs necessitate search of novel drug targets for developing alternate drugs. Recently, UDP-galactopyranose mutases (UGM) have emerged as a promising drug target playing an important role in parasite virulence and survival. This study deals with the cloning and characterization of Brugia malayi UGM and further exploring its antifilarial drug target potential. The recombinant protein was actively involved in conversion of UDP-galactopyranose (substrate) to UDP-galactofuranose (product) revealing Km and Vmax to be ∼51.15 μM and ∼1.27 μM/min, respectively. The purified protein appeared to be decameric in native state and its 3D homology modeling using Aspergillus fumigatus UGM enzyme as template revealed conservation of active site residues. Two specific prokaryotic inhibitors (compounds A and B) of the enzyme inhibited B. malayi UGM enzymatic activity competitively depicting Ki values ∼22.68 and ∼23.0 μM, respectively. These compounds were also active in vitro and in vivo against B. malayi The findings suggest that B. malayi UGM could be a potential antifilarial therapeutic drug target. PMID:27465638

  10. Experimental bacteriophage therapy increases survival of Galleria mellonella larvae infected with clinically relevant strains of the Burkholderia cepacia complex.

    PubMed

    Seed, Kimberley D; Dennis, Jonathan J

    2009-05-01

    The Burkholderia cepacia complex (BCC) is a group of bacterial pathogens that are highly antibiotic resistant and associated with debilitating respiratory infections. Although bacteriophages of the BCC have been isolated and characterized, no studies have yet examined phage therapy against the BCC in vivo. In a caterpillar infection model, we show that BCC phage therapy is an alternative treatment possibility and is highly effective under specific conditions. PMID:19223640

  11. Detection of Brugia malayi in laboratory and wild-caught Mansonioides mosquitoes (Diptera: Culicidae) using Hha I PCR assay.

    PubMed

    Hoti, S L; Vasuki, V; Lizotte, M W; Patra, K P; Ravi, G; Vanamail, P; Manonmani, A; Sabesan, S; Krishnamoorthy, K; Williams, S A

    2001-04-01

    An Hha 1 based polymerase chain reaction (PCR) assay developed for the detection of Brugia malayi, the causative agent of Brugian lymphatic filariasis, was evaluated for its sensitivity in the laboratory and for its usefulness in measuring changes in transmission of the disease in the field. Laboratory studies showed that the new assay was highly sensitive in comparison with the standard dissection and microscopy technique. The assay can detect as little as 4 pg of parasite DNA or a single microfilaria in pools of up to 100 mosquitoes. The optimum pool size for convenience was found to be 50 mosquitoes per pool. The efficacy of PCR assay was evaluated in filariasis control programmes in operation in endemic areas of Kerala State, South India. The infection rates obtained by the Hha I PCR assay and the conventional dissection and microscopy technique were 1.2% and 1.7% respectively in operational areas and 8.3% and 4.4% respectively, in check areas, which were not significantly different (P < 0.05). Thus, the Hha I PCR assay was found to be as sensitive as the conventional technique and hence it can be used as a new epidemiological tool for assessing parasite infection in field-collected mosquitoes. PMID:11260722

  12. Brugia malayi Microfilariae Induce a Regulatory Monocyte/Macrophage Phenotype That Suppresses Innate and Adaptive Immune Responses

    PubMed Central

    Venugopal, Gopinath; Rao, Gopala B.; Lucius, Richard; Srikantam, Aparna; Hartmann, Susanne

    2014-01-01

    Background Monocytes and macrophages contribute to the dysfunction of immune responses in human filariasis. During patent infection monocytes encounter microfilariae in the blood, an event that occurs in asymptomatically infected filariasis patients that are immunologically hyporeactive. Aim To determine whether blood microfilariae directly act on blood monocytes and in vitro generated macrophages to induce a regulatory phenotype that interferes with innate and adaptive responses. Methodology and principal findings Monocytes and in vitro generated macrophages from filaria non-endemic normal donors were stimulated in vitro with Brugia malayi microfilarial (Mf) lysate. We could show that monocytes stimulated with Mf lysate develop a defined regulatory phenotype, characterised by expression of the immunoregulatory markers IL-10 and PD-L1. Significantly, this regulatory phenotype was recapitulated in monocytes from Wuchereria bancrofti asymptomatically infected patients but not patients with pathology or endemic normals. Monocytes from non-endemic donors stimulated with Mf lysate directly inhibited CD4+ T cell proliferation and cytokine production (IFN-γ, IL-13 and IL-10). IFN-γ responses were restored by neutralising IL-10 or PD-1. Furthermore, macrophages stimulated with Mf lysate expressed high levels of IL-10 and had suppressed phagocytic abilities. Finally Mf lysate applied during the differentiation of macrophages in vitro interfered with macrophage abilities to respond to subsequent LPS stimulation in a selective manner. Conclusions and significance Conclusively, our study demonstrates that Mf lysate stimulation of monocytes from healthy donors in vitro induces a regulatory phenotype, characterized by expression of PD-L1 and IL-10. This phenotype is directly reflected in monocytes from filarial patients with asymptomatic infection but not patients with pathology or endemic normals. We suggest that suppression of T cell functions typically seen in lymphatic

  13. Factor Associated with Neutral Sphingomyelinase Activity Mediates Navigational Capacity of Leukocytes Responding to Wounds and Infection: Live Imaging Studies in Zebrafish Larvae

    PubMed Central

    Boecke, Alexandra; Sieger, Dirk; Neacsu, Cristian Dan; Kashkar, Hamid

    2012-01-01

    Factor associated with neutral sphingomyelinase activity (FAN) is an adaptor protein that specifically binds to the p55 receptor for TNF (TNF-RI). Our previous investigations demonstrated that FAN plays a role in TNF-induced actin reorganization by connecting the plasma membrane with actin cytoskeleton, suggesting that FAN may impact on cellular motility in response to TNF and in the context of immune inflammatory conditions. In this study, we used the translucent zebrafish larvae for in vivo analysis of leukocyte migration after morpholino knockdown of FAN. FAN-deficient zebrafish leukocytes were impaired in their migration toward tail fin wounds, leading to a reduced number of cells reaching the wound. Furthermore, FAN-deficient leukocytes show an impaired response to bacterial infections, suggesting that FAN is generally required for the directed chemotactic response of immune cells independent of the nature of the stimulus. Cell-tracking analysis up to 3 h after injury revealed that the reduced number of leukocytes is not due to a reduction in random motility or speed of movement. Leukocytes from FAN-deficient embryos protrude pseudopodia in all directions instead of having one clear leading edge. Our results suggest that FAN-deficient leukocytes exhibit an impaired navigational capacity, leading to a disrupted chemotactic response. PMID:22802420

  14. Characterization and cloning of metallo-proteinase in the excretory/secretory products of the infective-stage larva of Trichinella spiralis.

    PubMed

    Lun, H M; Mak, C H; Ko, R C

    2003-05-01

    Inhibitor sensitivity assays using azocaesin and FTC-caesin as substrates showed that the excretory/secretory (E/S) products of the infective-stage larvae of Trichinella spiralis contained serine, metallo-, cysteine and aspartic proteinases. The activity of the metallo-proteinase was zinc ion dependent (within a range of ZnSO(4) concentrations). Gelatin-substrate gel electrophoresis revealed two bands of molecular mass 48 and 58 kDa which were sensitive to the metallo-proteinase inhibitor EDTA. The former peptide was probably a cleavage product of the latter. The authenticity of the 58 kDa metallo-proteinase as an E/S product was confirmed by immunoprecipitation. Using PCR and RACE reactions, a complete nucleotide sequence of the metallo-proteinase gene was obtained. It comprised 2,223 bp with an open reading frame encoding 604 amino acid residues. The 3' untranslated region consisted of 352 bp, including a polyadenylation signal AATAA. A consensus catalytic zinc-binding motif was present. The conserved domains suggest that the cloned metallo-proteinase belongs to the astacin family and occurs as a single copy gene with 11 introns and 10 exons. Cluster analysis showed that the sequence of the metallo-proteinase gene of T. spiralis resembles those of Caenorhabdites elegans and Strongyloides stercoralis. PMID:12743801

  15. Functional and phenotypic characteristics of alternative activation induced in human monocytes by interleukin-4 or the parasitic nematode Brugia malayi.

    PubMed

    Semnani, Roshanak Tolouei; Mahapatra, Lily; Moore, Vanessa; Sanprasert, Vivornpun; Nutman, Thomas B

    2011-10-01

    Human monocytes from patients with patent filarial infections are studded with filarial antigen and express markers associated with alternative activation of macrophages (MΦ). To explore the role of filaria-derived parasite antigen in differentiation of human monocytes, cells were exposed to microfilariae (mf) of Brugia malayi, and their phenotypic and functional characteristics were compared with those of monocytes exposed to factors known to generate either alternatively (interleukin-4 [IL-4]) or classically (macrophage colony-stimulating factor [MCSF]) activated MΦ. IL-4 upregulated mRNA expression of CCL13, CCL15, CCL17, CCL18, CCL22, CLEC10A, MRC1, CADH1, CD274, and CD273 associated with alternative activation of MΦ but not arginase 1. IL-4-cultured monocytes had a diminished ability to promote proliferation of both CD4(+) and CD8(+) T cells compared to that of unexposed monocytes. Similar to results with IL-4, exposure of monocytes to live mf induced upregulation of CCL15, CCL17, CCL18, CCL22, CD274, and CD273 and downregulation of Toll-like receptor 3 (TLR3), TLR5, and TLR7. In contrast to results with MCSF-cultured monocytes, exposure of monocytes to mf resulted in significant inhibition of the phagocytic ability of these cells to the same degree as that seen with IL-4. Our data suggest that short exposure of human monocytes to IL-4 induces a phenotypic characteristic of alternative activation and that secreted filarial products skew monocytes similarly. PMID:21788379

  16. An In Vitro/In Vivo Model to Analyze the Effects of Flubendazole Exposure on Adult Female Brugia malayi

    PubMed Central

    O’Neill, Maeghan; Mansour, Abdelmoneim; DiCosty, Utami; Geary, James; Dzimianski, Michael; McCall, Scott D.; McCall, John W.; Mackenzie, Charles D.; Geary, Timothy G.

    2016-01-01

    Current control strategies for onchocerciasis and lymphatic filariasis (LF) rely on prolonged yearly or twice-yearly mass administration of microfilaricidal drugs. Prospects for near-term elimination or eradication of these diseases would be improved by availability of a macrofilaricide that is highly effective in a short regimen. Flubendazole (FLBZ), a benzimidazole anthelmintic registered for control of human gastrointestinal nematode infections, is a potential candidate for this role. FLBZ has profound and potent macrofilaricidal effects in many experimental animal models of filariases and in one human trial for onchocerciasis after parental administration. Unfortunately, the marketed formulation of FLBZ provides very limited oral bioavailability and parenteral administration is required for macrofilaricidal efficacy. A new formulation that provided sufficient oral bioavailability could advance FLBZ as an effective treatment for onchocerciasis and LF. Short-term in vitro culture experiments in adult filariae have shown that FLBZ damages tissues required for reproduction and survival at pharmacologically relevant concentrations. The current study characterized the long-term effects of FLBZ on adult Brugia malayi by maintaining parasites in jirds for up to eight weeks following brief drug exposure (6–24 hr) to pharmacologically relevant concentrations (100 nM—10 μM) in culture. Morphological damage following exposure to FLBZ was observed prominently in developing embryos and was accompanied by a decrease in microfilarial output at 4 weeks post-exposure. Although FLBZ exposure clearly damaged the parasites, exposed worms recovered and were viable 8 weeks after treatment. PMID:27145083

  17. An In Vitro/In Vivo Model to Analyze the Effects of Flubendazole Exposure on Adult Female Brugia malayi.

    PubMed

    O'Neill, Maeghan; Mansour, Abdelmoneim; DiCosty, Utami; Geary, James; Dzimianski, Michael; McCall, Scott D; McCall, John W; Mackenzie, Charles D; Geary, Timothy G

    2016-05-01

    Current control strategies for onchocerciasis and lymphatic filariasis (LF) rely on prolonged yearly or twice-yearly mass administration of microfilaricidal drugs. Prospects for near-term elimination or eradication of these diseases would be improved by availability of a macrofilaricide that is highly effective in a short regimen. Flubendazole (FLBZ), a benzimidazole anthelmintic registered for control of human gastrointestinal nematode infections, is a potential candidate for this role. FLBZ has profound and potent macrofilaricidal effects in many experimental animal models of filariases and in one human trial for onchocerciasis after parental administration. Unfortunately, the marketed formulation of FLBZ provides very limited oral bioavailability and parenteral administration is required for macrofilaricidal efficacy. A new formulation that provided sufficient oral bioavailability could advance FLBZ as an effective treatment for onchocerciasis and LF. Short-term in vitro culture experiments in adult filariae have shown that FLBZ damages tissues required for reproduction and survival at pharmacologically relevant concentrations. The current study characterized the long-term effects of FLBZ on adult Brugia malayi by maintaining parasites in jirds for up to eight weeks following brief drug exposure (6-24 hr) to pharmacologically relevant concentrations (100 nM-10 μM) in culture. Morphological damage following exposure to FLBZ was observed prominently in developing embryos and was accompanied by a decrease in microfilarial output at 4 weeks post-exposure. Although FLBZ exposure clearly damaged the parasites, exposed worms recovered and were viable 8 weeks after treatment. PMID:27145083

  18. A TaqMan-based multiplex real-time PCR assay for the simultaneous detection of Wuchereria bancrofti and Brugia malayi.

    PubMed

    Pilotte, N; Torres, M; Tomaino, F R; Laney, S J; Williams, S A

    2013-05-01

    With the Global Program for the Elimination of Lymphatic Filariasis continuing to make strides towards disease eradication, many locations endemic for the causative parasites of lymphatic filariasis are realizing a substantial decrease in levels of infection and rates of disease transmission. However, with measures of disease continuing to decline, the need for time-saving and economical molecular diagnostic assays capable of detecting low levels of parasite presence is increasing. This need is greatest in locations co-endemic for both Wuchereria bancrofti and Brugia parasites because testing for both causative agents individually results in significant increases in labor and reagent costs. Here we describe a multiplex, TaqMan-based, real-time PCR assay capable of simultaneously detecting W. bancrofti and Brugia malayi DNA extracted from human bloodspots or vector mosquito pools. With comparable sensitivity to established singleplex assays, this assay provides significant cost and labor savings for disease monitoring efforts in co-endemic locations. PMID:23669148

  19. Computational prediction of essential genes in an unculturable endosymbiotic bacterium, Wolbachia of Brugia malayi

    PubMed Central

    2009-01-01

    Background Wolbachia (wBm) is an obligate endosymbiotic bacterium of Brugia malayi, a parasitic filarial nematode of humans and one of the causative agents of lymphatic filariasis. There is a pressing need for new drugs against filarial parasites, such as B. malayi. As wBm is required for B. malayi development and fertility, targeting wBm is a promising approach. However, the lifecycle of neither B. malayi nor wBm can be maintained in vitro. To facilitate selection of potential drug targets we computationally ranked the wBm genome based on confidence that a particular gene is essential for the survival of the bacterium. Results wBm protein sequences were aligned using BLAST to the Database of Essential Genes (DEG) version 5.2, a collection of 5,260 experimentally identified essential genes in 15 bacterial strains. A confidence score, the Multiple Hit Score (MHS), was developed to predict each wBm gene's essentiality based on the top alignments to essential genes in each bacterial strain. This method was validated using a jackknife methodology to test the ability to recover known essential genes in a control genome. A second estimation of essentiality, the Gene Conservation Score (GCS), was calculated on the basis of phyletic conservation of genes across Wolbachia's parent order Rickettsiales. Clusters of orthologous genes were predicted within the 27 currently available complete genomes. Druggability of wBm proteins was predicted by alignment to a database of protein targets of known compounds. Conclusion Ranking wBm genes by either MHS or GCS predicts and prioritizes potentially essential genes. Comparison of the MHS to GCS produces quadrants representing four types of predictions: those with high confidence of essentiality by both methods (245 genes), those highly conserved across Rickettsiales (299 genes), those similar to distant essential genes (8 genes), and those with low confidence of essentiality (253 genes). These data facilitate selection of wBm genes

  20. Susceptibility of Apple Clearwing Moth Larvae, Synanthedon myopaeformis (Lepidoptera: Sesiidae) to Beauveria basiana and Metarhizium brunneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apple clearwing moth larvae, Synanthedon myopaeformis (Lepidoptera: Sessidae) collected from orchards in British Columbia, Canada, were naturally infected with the entomopathogenic fungus, Metarhizium brunneum (Petch). In laboratory bioassays, larvae were susceptible to infection and dose related mo...

  1. Insights into the structure-function relationship of Brugia malayi thymidylate kinase (BmTMK).

    PubMed

    Doharey, Pawan Kumar; Singh, Sudhir Kumar; Verma, Pravesh; Verma, Anita; Rathaur, Sushma; Saxena, Jitendra Kumar

    2016-07-01

    Lymphatic filariasis is a debilitating disease caused by lymph dwelling nematodal parasites like Wuchereria bancrofti, Brugia malayi and Brugia timori. Thymidylate kinase of B. malayi is a key enzyme in the de novo and salvage pathways for thymidine 5'-triphosphate (dTTP) synthesis. Therefore, B. malayi thymidylate kinase (BmTMK) is an essential enzyme for DNA biosynthesis and an important drug target to rein in filariasis. In the present study, the structural and functional changes associated with recombinant BmTMK, in the presence of protein denaturant GdnHCl, urea and pH were studied. GdnHCl and urea induced unfolding of BmTMK is non-cooperative and influence the functional property of the enzyme much lower than their Cm values. The study delineate that BmTMK is more prone to ionic perturbation. The dimeric assembly of BmTMK is an absolute requirement for enzymatic acitivity and any subtle change in dimeric conformation due to denaturation leads to loss of enzymatic activity. The pH induced changes on structure and activity suggests that selective modification of active site microenvironment pertains to difference in activity profile. This study also envisages that chemical moieties which acts by modulating oligomeric assembly, could be used for better designing of inhibitors against BmTMK enzyme. PMID:27044348

  2. Complete Genome Sequence of Paenibacillus larvae MEX14, Isolated from Honey Bee Larvae from the Xochimilco Quarter in Mexico City.

    PubMed

    Peréz de la Rosa, D; Pérez de la Rosa, J J; Cossio-Bayugar, R; Miranda-Miranda, E; Lozano, L; Bravo-Díaz, M A; Rocha-Martínez, M K; Sachman-Ruiz, B

    2015-01-01

    Paenibacillus larvae strain MEX14 is a facultative anaerobic endospore-forming bacterium that infects Apis mellifera larvae. Strain MEX14 was isolated from domestic bee larvae collected in a backyard in Mexico City. The estimated genome size was determined to be 4.18 Mb, and it harbors 4,806 protein coding genes (CDSs). PMID:26316636

  3. Complete Genome Sequence of Paenibacillus larvae MEX14, Isolated from Honey Bee Larvae from the Xochimilco Quarter in Mexico City

    PubMed Central

    Peréz de la Rosa, D.; Pérez de la Rosa, J. J.; Cossio-Bayugar, R.; Miranda-Miranda, E.; Lozano, L.; Bravo-Díaz, M. A.; Rocha-Martínez, M. K.

    2015-01-01

    Paenibacillus larvae strain MEX14 is a facultative anaerobic endospore-forming bacterium that infects Apis mellifera larvae. Strain MEX14 was isolated from domestic bee larvae collected in a backyard in Mexico City. The estimated genome size was determined to be 4.18 Mb, and it harbors 4,806 protein coding genes (CDSs). PMID:26316636

  4. Concerted Activity of IgG1 Antibodies and IL-4/IL-25-Dependent Effector Cells Trap Helminth Larvae in the Tissues following Vaccination with Defined Secreted Antigens, Providing Sterile Immunity to Challenge Infection

    PubMed Central

    Hewitson, James P.; Filbey, Kara J.; Esser-von Bieren, Julia; Camberis, Mali; Schwartz, Christian; Murray, Janice; Reynolds, Lisa A.; Blair, Natalie; Robertson, Elaine; Harcus, Yvonne; Boon, Louis; Huang, Stanley Ching-Cheng; Yang, Lihua; Tu, Yizheng; Miller, Mark J.; Voehringer, David; Le Gros, Graham; Harris, Nicola; Maizels, Rick M.

    2015-01-01

    Over 25% of the world's population are infected with helminth parasites, the majority of which colonise the gastrointestinal tract. However, no vaccine is yet available for human use, and mechanisms of protective immunity remain unclear. In the mouse model of Heligmosomoides polygyrus infection, vaccination with excretory-secretory (HES) antigens from adult parasites elicits sterilising immunity. Notably, three purified HES antigens (VAL-1, -2 and -3) are sufficient for effective vaccination. Protection is fully dependent upon specific IgG1 antibodies, but passive transfer confers only partial immunity to infection, indicating that cellular components are also required. Moreover, immune mice show greater cellular infiltration associated with trapping of larvae in the gut wall prior to their maturation. Intra-vital imaging of infected intestinal tissue revealed a four-fold increase in extravasation by LysM+GFP+ myeloid cells in vaccinated mice, and the massing of these cells around immature larvae. Mice deficient in FcRγ chain or C3 complement component remain fully immune, suggesting that in the presence of antibodies that directly neutralise parasite molecules, the myeloid compartment may attack larvae more quickly and effectively. Immunity to challenge infection was compromised in IL-4Rα- and IL-25-deficient mice, despite levels of specific antibody comparable to immune wild-type controls, while deficiencies in basophils, eosinophils or mast cells or CCR2-dependent inflammatory monocytes did not diminish immunity. Finally, we identify a suite of previously uncharacterised heat-labile vaccine antigens with homologs in human and veterinary parasites that together promote full immunity. Taken together, these data indicate that vaccine-induced immunity to intestinal helminths involves IgG1 antibodies directed against secreted proteins acting in concert with IL-25-dependent Type 2 myeloid effector populations. PMID:25816012

  5. Exome and transcriptome sequencing of Aedes aegypti identifies a locus that confers resistance to Brugia malayi and alters the immune response.

    PubMed

    Juneja, Punita; Ariani, Cristina V; Ho, Yung Shwen; Akorli, Jewelna; Palmer, William J; Pain, Arnab; Jiggins, Francis M

    2015-03-01

    Many mosquito species are naturally polymorphic for their abilities to transmit parasites, a feature which is of great interest for controlling vector-borne disease. Aedes aegypti, the primary vector of dengue and yellow fever and a laboratory model for studying lymphatic filariasis, is genetically variable for its capacity to harbor the filarial nematode Brugia malayi. The genome of Ae. aegypti is large and repetitive, making genome resequencing difficult and expensive. We designed exome captures to target protein-coding regions of the genome, and used association mapping in a wild Kenyan population to identify a single, dominant, sex-linked locus underlying resistance. This falls in a region of the genome where a resistance locus was previously mapped in a line established in 1936, suggesting that this polymorphism has been maintained in the wild for the at least 80 years. We then crossed resistant and susceptible mosquitoes to place both alleles of the gene into a common genetic background, and used RNA-seq to measure the effect of this locus on gene expression. We found evidence for Toll, IMD, and JAK-STAT pathway activity in response to early stages of B. malayi infection when the parasites are beginning to die in the resistant genotype. We also found that resistant mosquitoes express anti-microbial peptides at the time of parasite-killing, and that this expression is suppressed in susceptible mosquitoes. Together, we have found that a single resistance locus leads to a higher immune response in resistant mosquitoes, and we identify genes in this region that may be responsible for this trait. PMID:25815506

  6. Exome and Transcriptome Sequencing of Aedes aegypti Identifies a Locus That Confers Resistance to Brugia malayi and Alters the Immune Response

    PubMed Central

    Juneja, Punita; Ariani, Cristina V.; Ho, Yung Shwen; Akorli, Jewelna; Palmer, William J.; Pain, Arnab; Jiggins, Francis M.

    2015-01-01

    Many mosquito species are naturally polymorphic for their abilities to transmit parasites, a feature which is of great interest for controlling vector-borne disease. Aedes aegypti, the primary vector of dengue and yellow fever and a laboratory model for studying lymphatic filariasis, is genetically variable for its capacity to harbor the filarial nematode Brugia malayi. The genome of Ae. aegypti is large and repetitive, making genome resequencing difficult and expensive. We designed exome captures to target protein-coding regions of the genome, and used association mapping in a wild Kenyan population to identify a single, dominant, sex-linked locus underlying resistance. This falls in a region of the genome where a resistance locus was previously mapped in a line established in 1936, suggesting that this polymorphism has been maintained in the wild for the at least 80 years. We then crossed resistant and susceptible mosquitoes to place both alleles of the gene into a common genetic background, and used RNA-seq to measure the effect of this locus on gene expression. We found evidence for Toll, IMD, and JAK-STAT pathway activity in response to early stages of B. malayi infection when the parasites are beginning to die in the resistant genotype. We also found that resistant mosquitoes express anti-microbial peptides at the time of parasite-killing, and that this expression is suppressed in susceptible mosquitoes. Together, we have found that a single resistance locus leads to a higher immune response in resistant mosquitoes, and we identify genes in this region that may be responsible for this trait. PMID:25815506

  7. A Proteomic Analysis of the Body Wall, Digestive Tract, and Reproductive Tract of Brugia malayi.

    PubMed

    Morris, C Paul; Bennuru, Sasisekhar; Kropp, Laura E; Zweben, Jesse A; Meng, Zhaojing; Taylor, Rebekah T; Chan, King; Veenstra, Timothy D; Nutman, Thomas B; Mitre, Edward

    2015-01-01

    Filarial worms are parasitic nematodes that cause devastating diseases such as lymphatic filariasis (LF) and onchocerciasis. Filariae are nematodes with complex anatomy including fully developed digestive tracts and reproductive organs. To better understand the basic biology of filarial parasites and to provide insights into drug targets and vaccine design, we conducted a proteomic analysis of different anatomic fractions of Brugia malayi, a causative agent of LF. Approximately 500 adult female B. malayi worms were dissected, and three anatomical fractions (body wall, digestive tract, and reproductive tract) were obtained. Proteins from each anatomical fraction were extracted, desalted, trypsinized, and analyzed by microcapillary reverse-phase liquid chromatography-tandem-mass spectrometry. In total, we identified 4,785 B. malayi proteins. While 1,894 were identified in all three anatomic fractions, 396 were positively identified only within the digestive tract, 114 only within the body wall, and 1,011 only within the reproductive tract. Gene set enrichment analysis revealed a bias for transporters to be present within the digestive tract, suggesting that the intestine of adult filariae is functional and important for nutrient uptake or waste removal. As expected, the body wall exhibited increased frequencies of cytoskeletal proteins, and the reproductive tract had increased frequencies of proteins involved in nuclear regulation and transcription. In assessing for possible vaccine candidates, we focused on proteins sequestered within the digestive tract, as these could possibly represent "hidden antigens" with low risk of prior allergic sensitization. We identified 106 proteins that are enriched in the digestive tract and are predicted to localize to the surface of cells in the the digestive tract. It is possible that some of these proteins are on the luminal surface and may be accessible by antibodies ingested by the worm. A subset of 27 of these proteins appear

  8. In vitro antifilarial effects of three plant species against adult worms of subperiodic Brugia malayi.

    PubMed

    Zaridah, M Z; Idid, S Z; Omar, A W; Khozirah, S

    2001-11-01

    Five aqueous extracts from three plant species, i.e., dried husks (HX), dried seeds (SX) and dried leaves (LX) of Xylocarpus granatum (Meliaceae), dried stems (ST) of Tinospora crispa (Menispermaceae) and dried leaves (LA) of Andrographis paniculata (Acanthaceae) were tested in vitro against adult worms of subperiodic Brugia malayi. The relative movability (RM) value of the adult worms over the 24-h observation period was used as a measure of the antifilarial activity of the aqueous extracts. SX extract of X. granatum demonstrated the strongest activity, followed by the LA extract of A. paniculata, ST extract of T. crispa, HX extract and LX extract of X. granatum. PMID:11585692

  9. Coadministration of sodium alginate pellets containing the fungi Duddingtonia flagrans and Monacrosporium thaumasium on cyathostomin infective larvae after passing through the gastrointestinal tract of horses.

    PubMed

    Tavela, Alexandre de Oliveira; de Araújo, Jackson Victor; Braga, Fábio Ribeiro; da Silveira, Wendeo Ferreira; Dornelas e Silva, Vinicius Herold; Carretta Júnior, Moacir; Borges, Luana Alcântara; Araujo, Juliana Milani; Benjamin, Laércio dos Anjos; Carvalho, Giovanni Ribeiro; de Paula, Alessandra Teixeira

    2013-06-01

    The predatory nematophagous fungi have been used as an alternative control of gastrointestinal nematodes of domestic animals in natural and laboratory conditions. However, it is unclear if the association of some of these species could bring some kind of advantage, from a biological standpoint. In this context, this study consisted of two tests in vitro: in assay A, the assessment of the viability of the association of pellets in sodium alginate matrix containing the fungus Duddingtonia flagrans (AC001) and Monacrosporium thaumasium (NF34) and its predatory activity on infective larvae (L3) of cyathostomin after passing through the gastrointestinal tract of horses and assay B, assessment of the cyathostomin L3 reduction percentage in coprocultures. Twelve crossbred horses, females, with a mean weight of 356 kg and previously dewormed were divided in three groups with four animals each: group 1, each animal received 50 g of pellets containing mycelial mass of the fungus D. flagrans and 50 g of pellets of the fungus M. thaumasium, associated and in a single oral dose; group 2, 100 g of pellets containing D. flagrans and 100 g of pellets containing M. thaumasium, associated and in a single oral dose; group 3, control. Faecal samples were collected from animals in the treated and control groups at time intervals of 12, 24, 36, 48, 60 and 72 h after the administration of treatments and placed in Petri dishes containing 2% water-agar (assay A) and cups for coprocultures (assay B). Subsequently, 1000 cyathostomin L3 were added to each Petri dish (assay A) and 1000 cyathostomin eggs were added to each coproculture (assay B) of fungi-treated and control groups. At the end of 15 days, there was observed that the two associations of pellets containing the fungi tested showed predatory activity after passing through the gastrointestinal tract of horses (assay A). In assay B, all the intervals studied showed reduction rate in the number of L3 recovered from coprocultures

  10. Microfilariae of Brugia malayi Inhibit the mTOR Pathway and Induce Autophagy in Human Dendritic Cells.

    PubMed

    Narasimhan, Prakash Babu; Bennuru, Sasisekhar; Meng, Zhaojing; Cotton, Rachel N; Elliott, Kathleen R; Ganesan, Sundar; McDonald-Fleming, Renee; Veenstra, Timothy D; Nutman, Thomas B; Tolouei Semnani, Roshanak

    2016-09-01

    Immune modulation is a hallmark of patent filarial infection, including suppression of antigen-presenting cell function and downmodulation of filarial antigen-specific T cell responses. The mammalian target of rapamycin (mTOR) signaling pathway has been implicated in immune regulation, not only by suppressing T cell responses but also by regulating autophagy (through mTOR sensing amino acid availability). Global proteomic analysis (liquid chromatography-tandem mass spectrometry) of microfilaria (mf)-exposed monocyte-derived dendritic cells (DC) indicated that multiple components of the mTOR signaling pathway, including mTOR, eIF4A, and eIF4E, are downregulated by mf, suggesting that mf target this pathway for immune modulation in DC. Utilizing Western blot analysis, we demonstrate that similar to rapamycin (a known mTOR inhibitor), mf downregulate the phosphorylation of mTOR and its regulatory proteins, p70S6K1 and 4E-BP1, a process essential for DC protein synthesis. As active mTOR signaling regulates autophagy, we examined whether mf exposure alters autophagy-associated processes. mf-induced autophagy was reflected in marked upregulation of phosphorylated Beclin 1, known to play an important role in both autophagosome formation and autolysosome fusion, in induction of LC3II, a marker of autophagosome formation, and in induced degradation of p62, a ubiquitin-binding protein that aggregates protein in autophagosomes and is degraded upon autophagy that was reduced significantly by mf exposure and by rapamycin. Together, these results suggest that Brugia malayi mf employ mechanisms of metabolic modulation in DC to influence the regulation of the host immune response by downregulating mTOR signaling, resulting in increased autophagy. Whether this is a result of the parasite-secreted rapamycin homolog is currently under study. PMID:27297394

  11. Phage Therapy is Effective in Protecting Honeybee Larvae from American Foulbrood Disease.

    PubMed

    Ghorbani-Nezami, Sara; LeBlanc, Lucy; Yost, Diane G; Amy, Penny S

    2015-01-01

    American foulbrood disease has a major impact on honeybees (Apis melifera) worldwide. It is caused by a Gram-positive, spore-forming bacterium, Paenibacillus larvae. The disease can only affect larval honeybees, and the bacterial endospores are the infective unit of the disease. Antibiotics are not sufficient to combat the disease due to increasing resistance among P. larvae strains. Because of the durability and virulence of P. larvae endospores, infections spread rapidly, and beekeepers are often forced to burn beehives and equipment. To date, very little information is available on the use of bacteriophage therapy in rescuing and preventing American foulbrood disease, therefore the goal of this study was to test the efficacy of phage therapy against P. larvae infection. Out of 32 previously isolated P. larvae phages, three designated F, WA, and XIII were tested on artificially reared honeybee larvae infected with P. larvae strain NRRL B-3650 spores. The presence of P. larvae DNA in dead larvae was confirmed by 16S rRNA gene-specific polymerase chain reaction amplification. Survival rates for phage-treated larvae were approximately the same as for larvae never infected with spores (84%), i.e., the phages had no deleterious effect on the larvae. Additionally, prophylactic treatment of larvae with phages before spore infection was more effective than administering phages after infection, although survival in both cases was higher than spores alone (45%). Further testing to determine the optimal combination and concentration of phages, and testing in actual hive conditions are needed. PMID:26136497

  12. Phage Therapy is Effective in Protecting Honeybee Larvae from American Foulbrood Disease

    PubMed Central

    Ghorbani-Nezami, Sara; LeBlanc, Lucy; Yost, Diane G.; Amy, Penny S.

    2015-01-01

    American foulbrood disease has a major impact on honeybees (Apis melifera) worldwide. It is caused by a Gram-positive, spore-forming bacterium, Paenibacillus larvae. The disease can only affect larval honeybees, and the bacterial endospores are the infective unit of the disease. Antibiotics are not sufficient to combat the disease due to increasing resistance among P. larvae strains. Because of the durability and virulence of P. larvae endospores, infections spread rapidly, and beekeepers are often forced to burn beehives and equipment. To date, very little information is available on the use of bacteriophage therapy in rescuing and preventing American foulbrood disease, therefore the goal of this study was to test the efficacy of phage therapy against P. larvae infection. Out of 32 previously isolated P. larvae phages, three designated F, WA, and XIII were tested on artificially reared honeybee larvae infected with P. larvae strain NRRL B-3650 spores. The presence of P. larvae DNA in dead larvae was confirmed by 16S rRNA gene-specific polymerase chain reaction amplification. Survival rates for phage-treated larvae were approximately the same as for larvae never infected with spores (84%), i.e., the phages had no deleterious effect on the larvae. Additionally, prophylactic treatment of larvae with phages before spore infection was more effective than administering phages after infection, although survival in both cases was higher than spores alone (45%). Further testing to determine the optimal combination and concentration of phages, and testing in actual hive conditions are needed. PMID:26136497

  13. Brugia pahangi in nude mice: protective immunity to infective larvae is Thy 1.2+ cell dependent and cyclosporin A resistant.

    PubMed

    Vickery, A C; Nayar, J K

    1987-03-01

    Mechanisms of protective immunity to larvae of Brugia pahangi were studied in congenitally athymic nude C3H/HeN mice and their syngeneic heterozygous littermates. An average 11% of subcutaneous larval inocula was recovered from control nudes 28 days after inoculation. No worms were recovered from nude recipients of viable splenic Thy 1.2+ T lymphocytes from heterozygotes which had killed a priming dose of B. pahangi larvae. Primed T lymphocytes, depleted of either Lyt 1.1+ or Lyt 2.1+ cells or incubated with anti-Thy 1.2 monoclonal antibody and complement, failed to protect nude mice against a larval challenge. Nor were primed B lymphocytes depleted by Thy 1.2+ T cell contaminants protective. Treatment with cyclosporin A (CsA) did not increase the numbers of worms recovered from heterozygotes nor did CsA treatment of heterozygous cell donors abolish the ability of primed Thy 1.2+ T lymphocytes to transfer protection to nude mice. IgG but not IgM antibody titres to B. pahangi antigens were depressed in all CsA-treated mice. CsA treatment of nude mice had no direct effect upon development of B. pahangi larvae. These results show that protective immunity to larvae of B. pahangi in mice depends upon small numbers of Thy 1.2+ T cells which are CsA-resistant. PMID:3494759

  14. First records of Armigeres malayi and Armigeres milnensis in Timor-Leste.

    PubMed

    Anderson, Esther M; Davis, Jennifer A

    2014-03-01

    Larval Armigeres malayi and larval Ar. milnensis were first collected from rainwater-filled broken coconut shells in the district of Manufahi, subdistrict Same, in southwest Timor-Leste in September 2010. In subsequent surveys, Ar. malayi and Ar. milnensis were frequently observed in water-filled coconut shells either as the sole culicid species, or coexisting with each other, or with larval Aedes albopictus or Culex spp. Although there have been a number of published surveys of Culicidae in Timor-Leste, these Armigeres species have not previously been recorded in this country. Little is known about the status of these species as potential vectors of human or animal disease; however, it has been suggested that Ar. milnensis is a potential vector of Dirofilaria immitis and other filariae, so they may merit further study from a human and veterinary health perspective, as well as for their role in local ecosystems, particularly their competitive impact on other mosquito species that oviposit in the same container habitats. PMID:24772677

  15. A Proteomic Analysis of the Body Wall, Digestive Tract, and Reproductive Tract of Brugia malayi

    PubMed Central

    Morris, C. Paul; Bennuru, Sasisekhar; Kropp, Laura E.; Zweben, Jesse A.; Meng, Zhaojing; Taylor, Rebekah T.; Chan, King; Veenstra, Timothy D.; Nutman, Thomas B.; Mitre, Edward

    2015-01-01

    Filarial worms are parasitic nematodes that cause devastating diseases such as lymphatic filariasis (LF) and onchocerciasis. Filariae are nematodes with complex anatomy including fully developed digestive tracts and reproductive organs. To better understand the basic biology of filarial parasites and to provide insights into drug targets and vaccine design, we conducted a proteomic analysis of different anatomic fractions of Brugia malayi, a causative agent of LF. Approximately 500 adult female B. malayi worms were dissected, and three anatomical fractions (body wall, digestive tract, and reproductive tract) were obtained. Proteins from each anatomical fraction were extracted, desalted, trypsinized, and analyzed by microcapillary reverse-phase liquid chromatography-tandem-mass spectrometry. In total, we identified 4,785 B. malayi proteins. While 1,894 were identified in all three anatomic fractions, 396 were positively identified only within the digestive tract, 114 only within the body wall, and 1,011 only within the reproductive tract. Gene set enrichment analysis revealed a bias for transporters to be present within the digestive tract, suggesting that the intestine of adult filariae is functional and important for nutrient uptake or waste removal. As expected, the body wall exhibited increased frequencies of cytoskeletal proteins, and the reproductive tract had increased frequencies of proteins involved in nuclear regulation and transcription. In assessing for possible vaccine candidates, we focused on proteins sequestered within the digestive tract, as these could possibly represent “hidden antigens” with low risk of prior allergic sensitization. We identified 106 proteins that are enriched in the digestive tract and are predicted to localize to the surface of cells in the the digestive tract. It is possible that some of these proteins are on the luminal surface and may be accessible by antibodies ingested by the worm. A subset of 27 of these proteins

  16. A Madurella mycetomatis Grain Model in Galleria mellonella Larvae.

    PubMed

    Kloezen, Wendy; van Helvert-van Poppel, Marilyn; Fahal, Ahmed H; van de Sande, Wendy W J

    2015-01-01

    Eumycetoma is a chronic granulomatous subcutaneous infectious disease, endemic in tropical and subtropical regions and most commonly caused by the fungus Madurella mycetomatis. Interestingly, although grain formation is key in mycetoma, its formation process and its susceptibility towards antifungal agents are not well understood. This is because grain formation cannot be induced in vitro; a mammalian host is necessary to induce its formation. Until now, invertebrate hosts were never used to study grain formation in M. mycetomatis. In this study we determined if larvae of the greater wax moth Galleria mellonella could be used to induce grain formation when infected with M. mycetomatis. Three different M. mycetomatis strains were selected and three different inocula for each strain were used to infect G. mellonella larvae, ranging from 0.04 mg/larvae to 4 mg/larvae. Larvae were monitored for 10 days. It appeared that most larvae survived the lowest inoculum, but at the highest inoculum all larvae died within the 10 day observation period. At all inocula tested, grains were formed within 4 hours after infection. The grains produced in the larvae resembled those formed in human and in mammalian hosts. In conclusion, the M. mycetomatis grain model in G. mellonella larvae described here could serve as a useful model to study the grain formation and therapeutic responses towards antifungal agents in the future. PMID:26173126

  17. A Madurella mycetomatis Grain Model in Galleria mellonella Larvae

    PubMed Central

    Kloezen, Wendy; van Helvert-van Poppel, Marilyn; Fahal, Ahmed H.; van de Sande, Wendy W. J.

    2015-01-01

    Eumycetoma is a chronic granulomatous subcutaneous infectious disease, endemic in tropical and subtropical regions and most commonly caused by the fungus Madurella mycetomatis. Interestingly, although grain formation is key in mycetoma, its formation process and its susceptibility towards antifungal agents are not well understood. This is because grain formation cannot be induced in vitro; a mammalian host is necessary to induce its formation. Until now, invertebrate hosts were never used to study grain formation in M. mycetomatis. In this study we determined if larvae of the greater wax moth Galleria mellonella could be used to induce grain formation when infected with M. mycetomatis. Three different M. mycetomatis strains were selected and three different inocula for each strain were used to infect G. mellonella larvae, ranging from 0.04 mg/larvae to 4 mg/larvae. Larvae were monitored for 10 days. It appeared that most larvae survived the lowest inoculum, but at the highest inoculum all larvae died within the 10 day observation period. At all inocula tested, grains were formed within 4 hours after infection. The grains produced in the larvae resembled those formed in human and in mammalian hosts. In conclusion, the M. mycetomatis grain model in G. mellonella larvae described here could serve as a useful model to study the grain formation and therapeutic responses towards antifungal agents in the future. PMID:26173126

  18. In Silico and In Vitro Studies on the Protein-Protein Interactions between Brugia malayi Immunomodulatory Protein Calreticulin and Human C1q

    PubMed Central

    Yadav, Sunita; Gupta, Smita; Selvaraj, Chandrabose; Doharey, Pawan Kumar; Verma, Anita; Singh, Sanjeev Kumar; Saxena, Jitendra Kumar

    2014-01-01

    Filarial parasites modulate effective immune response of their host by releasing a variety of immunomodulatory molecules, which help in the long persistence of the parasite within the host. The present study was aimed to characterize an immunomodulatory protein of Brugia malayi and its interaction with the host immune component at the structural and functional level. Our findings showed that Brugia malayi Calreticulin (BmCRT) is responsible for the prevention of classical complement pathway activation via its interaction with the first component C1q of the human host. This was confirmed by inhibition of C1q dependent lysis of immunoglobulin-sensitized Red Blood Cells (S-RBCs). This is possibly the first report which predicts CRT-C1q interaction on the structural content of proteins to explain how BmCRT inhibits this pathway. The molecular docking of BmCRT-C1q complex indicated that C1qB chain (IgG/M and CRP binding sites on C1q) played a major role in the interaction with conserved and non-conserved regions of N and P domain of BmCRT. Out of 37 amino acids of BmCRT involved in the interaction, nine amino acids (Pro126, Glu132, His147, Arg151, His153, Met154, Lys156, Ala196 and Lys212) are absent in human CRT. Both ELISA and in silico analysis showed the significant role of Ca+2 in BmCRT-HuC1q complex formation and deactivation of C1r2–C1s2. Molecular dynamics studies of BmCRT-HuC1q complex showed a deviation from ∼0.4 nm to ∼1.0 nm. CD analyses indicated that BmCRT is composed of 49.6% α helix, 9.6% β sheet and 43.6% random coil. These findings provided valuable information on the architecture and chemistry of BmCRT-C1q interaction and supported the hypothesis that BmCRT binds with huC1q at their targets (IgG/M, CRP) binding sites. This interaction enables the parasite to interfere with the initial stage of host complement activation, which might be helpful in parasites establishment. These results might be utilized for help in blocking the C1q

  19. Functional and Phenotypic Characteristics of Alternative Activation Induced in Human Monocytes by Interleukin-4 or the Parasitic Nematode Brugia malayi ▿ †

    PubMed Central

    Semnani, Roshanak Tolouei; Mahapatra, Lily; Moore, Vanessa; Sanprasert, Vivornpun; Nutman, Thomas B.

    2011-01-01

    Human monocytes from patients with patent filarial infections are studded with filarial antigen and express markers associated with alternative activation of macrophages (MΦ). To explore the role of filaria-derived parasite antigen in differentiation of human monocytes, cells were exposed to microfilariae (mf) of Brugia malayi, and their phenotypic and functional characteristics were compared with those of monocytes exposed to factors known to generate either alternatively (interleukin-4 [IL-4]) or classically (macrophage colony-stimulating factor [MCSF]) activated MΦ. IL-4 upregulated mRNA expression of CCL13, CCL15, CCL17, CCL18, CCL22, CLEC10A, MRC1, CADH1, CD274, and CD273 associated with alternative activation of MΦ but not arginase 1. IL-4-cultured monocytes had a diminished ability to promote proliferation of both CD4+ and CD8+ T cells compared to that of unexposed monocytes. Similar to results with IL-4, exposure of monocytes to live mf induced upregulation of CCL15, CCL17, CCL18, CCL22, CD274, and CD273 and downregulation of Toll-like receptor 3 (TLR3), TLR5, and TLR7. In contrast to results with MCSF-cultured monocytes, exposure of monocytes to mf resulted in significant inhibition of the phagocytic ability of these cells to the same degree as that seen with IL-4. Our data suggest that short exposure of human monocytes to IL-4 induces a phenotypic characteristic of alternative activation and that secreted filarial products skew monocytes similarly. PMID:21788379

  20. Efficient in vitro RNA interference and immunofluorescence-based phenotype analysis in a human parasitic nematode, Brugia malayi

    PubMed Central

    2012-01-01

    Background RNA interference (RNAi) is an efficient reverse genetics technique for investigating gene function in eukaryotes. The method has been widely used in model organisms, such as the free-living nematode Caenorhabditis elegans, where it has been deployed in genome-wide high throughput screens to identify genes involved in many cellular and developmental processes. However, RNAi techniques have not translated efficiently to animal parasitic nematodes that afflict humans, livestock and companion animals across the globe, creating a dependency on data tentatively inferred from C. elegans. Results We report improved and effective in vitro RNAi procedures we have developed using heterogeneous short interfering RNA (hsiRNA) mixtures that when coupled with optimized immunostaining techniques yield detailed analysis of cytological defects in the human parasitic nematode, Brugia malayi. The cellular disorganization observed in B. malayi embryos following RNAi targeting the genes encoding γ-tubulin, and the polarity determinant protein, PAR-1, faithfully phenocopy the known defects associated with gene silencing of their C. elegans orthologs. Targeting the B. malayi cell junction protein, AJM-1 gave a similar but more severe phenotype than that observed in C. elegans. Cellular phenotypes induced by our in vitro RNAi procedure can be observed by immunofluorescence in as little as one week. Conclusions We observed cytological defects following RNAi targeting all seven B. malayi transcripts tested and the phenotypes mirror those documented for orthologous genes in the model organism C. elegans. This highlights the reliability, effectiveness and specificity of our RNAi and immunostaining procedures. We anticipate that these techniques will be widely applicable to other important animal parasitic nematodes, which have hitherto been mostly refractory to such genetic analysis. PMID:22243803

  1. Requirements for in vitro germination of Paenibacillus larvae spores.

    PubMed

    Alvarado, Israel; Phui, Andy; Elekonich, Michelle M; Abel-Santos, Ernesto

    2013-03-01

    Paenibacillus larvae is the causative agent of American foulbrood (AFB), a disease affecting honey bee larvae. First- and second-instar larvae become infected when they ingest food contaminated with P. larvae spores. The spores then germinate into vegetative cells that proliferate in the midgut of the honey bee. Although AFB affects honey bees only in the larval stage, P. larvae spores can be distributed throughout the hive. Because spore germination is critical for AFB establishment, we analyzed the requirements for P. larvae spore germination in vitro. We found that P. larvae spores germinated only in response to l-tyrosine plus uric acid under physiologic pH and temperature conditions. This suggests that the simultaneous presence of these signals is necessary for spore germination in vivo. Furthermore, the germination profiles of environmentally derived spores were identical to those of spores from a biochemically typed strain. Because l-tyrosine and uric acid are the only required germinants in vitro, we screened amino acid and purine analogs for their ability to act as antagonists of P. larvae spore germination. Indole and phenol, the side chains of tyrosine and tryptophan, strongly inhibited P. larvae spore germination. Methylation of the N-1 (but not the C-3) position of indole eliminated its ability to inhibit germination. Identification of the activators and inhibitors of P. larvae spore germination provides a basis for developing new tools to control AFB. PMID:23264573

  2. [Stereotactic aspiration of Spirometra mansonides larvae].

    PubMed

    Caballero, Joel; Morales, Losmill; García, Diana; Alarcón, Idelmys; Torres, Anay; Sáez, Gladys

    2015-08-01

    Brain sparganosis is a non-common parasite infection by Diphyllobothrium or Spirometra mansonoides larvae. This last one is responsible for most of the infestations in humans. We report a 19 years male patient bearer of a brain sparganosis. The patient presented with headache and left hemiparesis. CT diagnosis of right thalamic lesions was made and aspiration biopsy was performed using stereotactic system, obtaining a whole and death larvae. Histopathology confirms a CNS parasitism and it was treated initially with albendazol. ELISA test confirmed Spirometra spp. infestation. The patient developed asymptomatic with total remission of the lesions. It constitutes the second report in Cuba of brain sparganosis. PMID:26436792

  3. Expression of five acetylcholine receptor subunit genes in Brugia malayi adult worms

    PubMed Central

    Li, Ben-Wen; Rush, Amy C.; Weil, Gary J.

    2015-01-01

    Acetylcholine receptors (AChRs) are required for body movement in parasitic nematodes and are targets of “classical” anthelmintic drugs such as levamisole and pyrantel and of newer drugs such as tribendimidine and derquantel. While neurotransmission explains the effects of these drugs on nematode movement, their effects on parasite reproduction are unexplained. The levamisole AChR type (L-AChRs) in Caenorhabditis elegans is comprised of five subunits: Cel-UNC-29, Cel-UNC-38, Cel-UNC-63, Cel-LEV-1 and Cel-LEV-8. The genome of the filarial parasite Brugia malayi contains nine AChRs subunits including orthologues of Cel-unc-29, Cel-unc-38, and Cel-unc-63. We performed in situ hybridization with RNA probes to localize the expression of five AChR genes (Bm1_35890-Bma-unc-29, Bm1_20330-Bma-unc-38, Bm1_38195-Bma-unc-63, Bm1_48815-Bma-acr-26 and Bm1_40515-Bma-acr-12) in B. malayi adult worms. Four of these genes had similar expression patterns with signals in body muscle, developing embryos, spermatogonia, uterine wall adjacent to stretched microfilariae, wall of Vas deferens, and lateral cord. Three L-AChR subunit genes (Bma-unc-29, Bma-unc-38 and Bma-unc-63) were expressed in body muscle, which is a known target of levamisole. Bma-acr-12 was co-expressed with these levamisole subunit genes in muscle, and this suggests that its protein product may form receptors with other alpha subunits. Bma-acr-26 was expressed in male muscle but not in female muscle. Strong expression signals of these genes in early embryos and gametes in uterus and testis suggest that AChRs may have a role in nervous system development of embryogenesis and spermatogenesis. This would be consistent with embryotoxic effects of drugs that target these receptors in filarial worms. Our data show that the expression of these receptor genes is tightly regulated with regard to localization in adult worms and developmental stage in embryos and gametes. These results may help to explain the broad effects

  4. Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation.

    PubMed

    Genersch, Elke; Forsgren, Eva; Pentikäinen, Jaana; Ashiralieva, Ainura; Rauch, Sandra; Kilwinski, Jochen; Fries, Ingemar

    2006-03-01

    A polyphasic taxonomic study of the two subspecies of Paenibacillus larvae, Paenibacillus larvae subsp. larvae and Paenibacillus larvae subsp. pulvifaciens, supported the reclassification of the subspecies into one species, Paenibacillus larvae, without subspecies separation. Our conclusions are based on the analysis of six reference strains of P. larvae subsp. pulvifaciens and three reference strains and 44 field isolates of P. larvae. subsp. larvae. The latter originated from brood or honey of clinically diseased honey bee colonies or from honey of both clinically diseased and asymptomatic colonies from Sweden, Finland and Germany. Colony and spore morphology, as well as the metabolism of mannitol and salicin, did not allow a clear identification of the two subspecies and SDS-PAGE of whole-cell proteins did not support the subspecies differentiation. For genomic fingerprinting, repetitive element-PCR fingerprinting using ERIC primers and PFGE of bacterial DNA were performed. The latter method is a high-resolution DNA fingerprinting method proven to be superior to most other methods for biochemical and molecular typing and has not previously been used to characterize P. larvae. ERIC-PCR identified four different genotypes, while PFGE revealed two main clusters. One cluster included most of the P. larvae subsp. larvae field isolates, as well as all P. larvae subsp. pulvifaciens reference strains. The other cluster comprised the pigmented variants of P. larvae subsp. larvae. 16S rRNA gene sequences were determined for some strains. Finally, exposure bioassays demonstrated that reference strains of P. larvae subsp. pulvifaciens were pathogenic for honey bee larvae, producing symptoms similar to reference strains of P. larvae subsp. larvae. In comparison with the type strain for P. larvae subsp. larvae, ATCC 9545T, the P. larvae subsp. pulvifaciens strains tested were even more virulent, since they showed a shorter LT100. An emended description of the species is given

  5. [Larva migrans cutanea].

    PubMed

    Nevoralová, Z

    2006-01-01

    A case of rare skin disease in Czech Republic caused by nematode larva is presented. The disease is most frequently caused by Ankylostoma brasiliensis and was imported from Brazil. It was successfully treated by peroral therapy with albendazol. PMID:16639935

  6. Low-molecular-weight metabolites secreted by Paenibacillus larvae as potential virulence factors of American foulbrood.

    PubMed

    Schild, Hedwig-Annabell; Fuchs, Sebastian W; Bode, Helge B; Grünewald, Bernd

    2014-04-01

    The spore-forming bacterium Paenibacillus larvae causes a severe and highly infective bee disease, American foulbrood (AFB). Despite the large economic losses induced by AFB, the virulence factors produced by P. larvae are as yet unknown. To identify such virulence factors, we experimentally infected young, susceptible larvae of the honeybee, Apis mellifera carnica, with different P. larvae isolates. Honeybee larvae were reared in vitro in 24-well plates in the laboratory after isolation from the brood comb. We identified genotype-specific differences in the etiopathology of AFB between the tested isolates of P. larvae, which were revealed by differences in the median lethal times. Furthermore, we confirmed that extracts of P. larvae cultures contain low-molecular-weight compounds, which are toxic to honeybee larvae. Our data indicate that P. larvae secretes metabolites into the medium with a potent honeybee toxic activity pointing to a novel pathogenic factor(s) of P. larvae. Genome mining of P. larvae subsp. larvae BRL-230010 led to the identification of several biosynthesis gene clusters putatively involved in natural product biosynthesis, highlighting the potential of P. larvae to produce such compounds. PMID:24509920

  7. Baylisascaris larva migrans.

    PubMed

    Kazacos, Kevin R; Jelicks, Linda A; Tanowitz, Herbert B

    2013-01-01

    Baylisascaris procyonis is a roundworm of the raccoon found primarily in North America but also known to occur in other parts of the world including South America, Europe, and Japan. Migration of the larvae of this parasite is recognized as a cause of clinical neural larva migrans (NLM) in humans, primarily children. It is manifested as meningoencephalitis associated with marked eosinophilia of the cerebrospinal fluid and peripheral blood. Diagnosis is made by recovering and identifying larvae in or from the tissues, epidemiological history, serology, and imaging of the central nervous system. Treatment is with albendazole and steroids, although the prognosis is generally poor. This parasite can also cause ocular larva migrans (OLM) which usually presents as diffuse unilateral subacute neuroretinitis (DUSN). The ocular diagnosis can be made by visualizing the larva in the eye and by serology. Intraocular larvae can be destroyed by photocoagulation although albendazole and steroids may also be used. However, once visual disturbance is established the prognosis for improved vision is poor. Related Baylisascaris species occur in skunks, badgers, and certain other carnivores, although most cases of NLM are caused by B. procyonis. Baylisascaris procyonis has also been found in kinkajous in the USA and South America and may also occur in related procyonids (coatis, olingos, etc.). PMID:23829916

  8. Differentiation of Paenibacillus larvae subsp. larvae, the Cause of American Foulbrood of Honeybees, by Using PCR and Restriction Fragment Analysis of Genes Encoding 16S rRNA

    PubMed Central

    Alippi, Adriana M.; López, Ana Claudia; Aguilar, O. Mario

    2002-01-01

    A rapid procedure for the identification of Paenibacillus larvae subsp. larvae, the causal agent of American foulbrood (AFB) disease of honeybees (Apis mellifera L.), based on PCR and restriction fragment analysis of the 16S rRNA genes (rDNA) is described. Eighty-six bacterial strains belonging to 39 species of the genera Paenibacillus, Bacillus, Brevibacillus, and Virgibacillus were characterized. Amplified rDNA was digested with seven restriction endonucleases. The combined data from restriction analysis enabled us to distinguish 35 profiles. Cluster analysis revealed that P. larvae subsp. larvae and Paenibacillus larvae subsp. pulvifaciens formed a group with about 90% similarity; however, the P. larvae subsp. larvae restriction fragment length polymorphism pattern produced by endonuclease HaeIII was found to be unique and distinguishable among other closely related bacteria. This pattern was associated with DNA extracted directly from honeybee brood samples showing positive AFB clinical signs that yielded the restriction profile characteristic of P. larvae subsp. larvae, while no amplification product was obtained from healthy larvae. The method described here is particularly useful because of the short time required to carry it out and because it allows the differentiation of P. larvae subsp. larvae-infected larvae from all other species found in apiarian sources. PMID:12089057

  9. The genome of Brugia malayi - all worms are not created equal.

    PubMed

    Scott, Alan L; Ghedin, Elodie

    2009-03-01

    Filarial nematode parasites, the causative agents of elephantiasis and river blindness, undermine the livelihoods of over one hundred million people in the developing world. Recently, the Filarial Genome Project reported the draft sequence of the ~95 Mb genome of the human filarial parasite Brugia malayi - the first parasitic nematode genome to be sequenced. Comparative genome analysis with the prevailing model nematode Caenorhabditis elegans revealed similarities and differences in genome structure and organization that will prove useful as additional nematode genomes are completed. The Brugia genome provides the first opportunity to comprehensively compare the full gene repertoire of a free-living nematode species and one that has evolved as a human pathogen. The Brugia genome also provides an opportunity to gain insight into genetic basis for mutualism, as Brugia, like a majority of filarial species, harbors an endosybiotic bacterium (Wolbachia). The goal of this review is to provide an overview of the results of genomic analysis and how these observations provide new insights into the biology of filarial species. PMID:18952001

  10. NADP(+) binding effects tryptophan accessibility, folding and stability of recombinant B. malayi G6PD.

    PubMed

    Verma, Anita; Chandra, Sharat; Suthar, Manish Kumar; Doharey, Pawan Kumar; Siddiqi, Mohammad Imran; Saxena, Jitendra Kumar

    2016-04-01

    Brugia malayi Glucose 6-phosphate dehydrogenase apoenzyme (BmG6PD) was expressed and purified by affinity chromatography to study the differences in kinetic properties of enzyme and the effect of the cofactor NADP(+) binding on enzyme stability. The presence of cofactor NADP(+) influenced the tertiary structure of enzyme due to significant differences in the tryptophan microenvironment. However, NADP(+) binding have no effect on secondary structure of the enzyme. Quenching with acrylamide indicated that two or more tryptophan residues became accessible upon cofactor binding. Unfolding and cross linking study of BmG6PD showed that NADP(+) stabilized the protein in presence of high concentration of urea/GdmCl. A homology model of BmG6PD constructed using human G6PD (PDB id: 2BH9) as a template indicated 34% α-helix, 19% β-sheet and 47% random coil conformations in the predicted model of the enzyme. In the predicted model binding of NADP(+) to BmG6PD was less tight with the structural sites (-10.96kJ/mol binding score) as compared with the coenzyme site (-15.47kJ/mol binding score). PMID:26763177

  11. Brugia malayi abundant larval transcript 2 protein treatment attenuates experimentally-induced colitis in mice.

    PubMed

    Khatri, Vishal; Amdare, Nitin; Yadav, Ravi Shankar; Tarnekar, Aaditya; Goswami, Kalyan; Reddy, Maryada Venkata Rami

    2015-11-01

    Helminths are known to modulate host's immunity by suppressing host protective pro-inflammatory responses. Such immunomodulatory effects have been experimentally shown to have therapeutic implications in immune mediated disorders. In the present study, we have explored a filarial protein i.e. Brugia malayi recombinant abundant larval transcript 2 (rBmALT2) for its therapeutic effect in dextran sodium sulfate (DSS) induced colitis in mouse model. The immunomodulatory activity of rBmALT-2 was initially confirmed by demonstrating that it suppressed the lipopolysaccharide (LPS) induced nitric oxide synthesis and down-regulated the expression of pro-inflammatory cytokines in vitro by peritoneal exudate cells of mice. Treatment with rBmALT2 reduced severity of colitis associated with significant reduction in weight loss, disease activity, colon damage, mucosal edema and histopathological score including myeloperoxidase activity in colon tissues. rBmALT2 was comparatively more effective in attenuation of colitis when used in the preventive mode than when used for curative purpose. The therapeutic effect of rBmALT2 was found to be associated with downregulation of IFN-γ, IL-6, IL-17 and upregulation of IL-10 cytokines. These results provide strong experimental evidence that BmALT2 could be a potential alternative therapeutic agent in colitis. PMID:26669016

  12. The comparative efficacy of abamectin, monepantel and an abamectin/derquantel combination against fourth-stage larvae of a macrocyclic lactone-resistant Teladorsagia spp. isolate infecting sheep.

    PubMed

    George, S D; George, A J; Stein, P A; Rolfe, P F; Hosking, B C; Seewald, W

    2012-08-13

    Anthelmintic resistance by gastrointestinal nematodes of sheep continues to be an issue of global interest. While the recent introduction in some countries of one or two new anthelmintic classes (amino-acetonitrile derivatives [AAD] and spiroindoles [SI]) has been welcomed, it is important that there is no relaxation in parasite control and the management of drug resistance. Monepantel (an AAD) was the first new anthelmintic to be approved for use (New Zealand, 2009) and was followed a year later in the same country by a combination of derquantel (a SI) and abamectin. The present study determined the efficacy of the new anthelmintic products and abamectin against fourth-stage larvae of macrocyclic lactone-resistant Teladorsagia spp. in lambs. Efficacies were calculated by comparing post-mortem nematode burdens of treated animals with those of untreated control sheep, and were 98.5, 86.3 and 34.0% for monepantel, abamectin/derquantel and abamectin, respectively. The nematode burdens of monepantel- and abamectin/derquantel-treated sheep were significantly lower than those sheep treated with abamectin and the untreated controls. Similarly, the burden of the monepantel group was significantly lower than that of the abamectin/derquantel group. These findings provide an opportunity to reinforce the recommendation that farmers and animal health advisors need to know the resistance status of nematode populations on subject farms to ensure effective control programs are designed and implemented. Such control programs should include an appropriate choice of anthelmintic(s), monitoring parasite burdens for correct timing of treatments, and pasture management to reduce larval challenge balanced with the maintenance of drug-susceptible populations in refugia. PMID:22459111

  13. Influence of the preservation period in silica-gel on the predatory activity of the isolates of Duddingtonia flagrans on infective larvae of cyathostomins (Nematoda: Cyathostominae).

    PubMed

    Braga, Fabio Ribeiro; Araújo, Jackson Victor; Araujo, Juliana Milani; Tavela, Alexandre de Oliveira; Ferreira, Sebastião Rodrigo; Freitas Soares, Filippe E; Benjamin, Laércio dos Anjos; Frassy, Luiza Neme

    2011-08-01

    The continued maintenance of nematophagous fungi predatory activity under laboratory conditions is one of the basic requirements for a successful biological control. The purpose of this study was to evaluate the influence of time on the preservation of the fungus Duddingtonia flagrans (AC001 and CG722) stored in silica-gel for 7 years and their subsequent predatory activity on cyathostomin L(3) larvae in 2% water-agar medium (2% WA). Samples of the isolates AC001 and CG722, originating from vials containing grains of silica-gel sterilized and stored for 7 years, were used. After obtaining fungal conidia, the predation test was conducted over 7 days on the surface of 9.0 cm Petri dishes filled with 2% WA. In the treated groups each Petri dish contained 500 cyathostomin L(3) and conidia of fungal isolates in 2% WA. In the control group (without fungi) the plates contained 500 L(3) in 2% WA. The experimental results showed that isolated AC001 and CG722 were efficient in preying on cyathostomin L(3) (p<0.01) compared to control (without fungus). However, no difference was observed (p>0.01) in the predatory activity of the fungal isolates tested. Comparing the groups, there was a significant reductions of cyathostomin L(3) (p<0.01) of 88.6% and 78.4% on average recovered from the groups treated with the isolates AC001 and CG722, respectively, after 7 days. The results of this test showed that the fungus D. flagrans (AC001 and CG722) stored in silica-gel for at least 7 years maintained its predatory activity on cyathostomin L(3). PMID:21627962

  14. Synthesis, molecular docking and Brugia malayi thymidylate kinase (BmTMK) enzyme inhibition study of novel derivatives of [6]-shogaol.

    PubMed

    Singh, Vinay Kr; Doharey, Pawan K; Kumar, Vikash; Saxena, J K; Siddiqi, M I; Rathaur, Sushma; Narender, Tadigoppula

    2015-03-26

    [6]-Shogaol (1) was isolated from Zingiber officinale. Twelve novel compounds have been synthesized and evaluated for their Brugia malayi thymidylate kinase (BmTMK) inhibition activity, which plays important role for the DNA synthesis in parasite. [6]-Shogaol (1) and shogaol with thymine head group (2), 5-bromouracil head group (3), adenine head group (4) and 2-amino-3-methylpyridine head group (5) showed potential inhibitory effect on BmTMK activity. Further molecular docking studies were carried out to explore the putative binding mode of compounds 1-5. PMID:25659753

  15. Hepatic visceral larva migrans

    PubMed Central

    Rohilla, Seema; Jain, Nitin; Yadav, Rohtas; Dhaulakhandi, Dhara Ballabh

    2013-01-01

    Visceral larva migrans (VLM) is a systemic manifestation of migration of second stage larvae of nematodes through the tissue of human viscera. It is not uncommon but is underdiagnosed in developing countries. The liver is the most common organ to be involved due to its portal venous blood supply. The imaging findings are subtle and differentiation from hepatocellular carcinoma (HCC), metastases, cystic mesenchymal hamartoma and granulomatous diseases is difficult. This case report highlights the imaging features of hepatic lesions of VLM along with clinical and laboratory data which help in clinching the diagnosis. PMID:23853189

  16. Neural larva migrans caused by the raccoon roundworm Baylisascaris procyonis.

    PubMed

    Gavin, Patrick J; Kazacos, Kevin R; Tan, Tina Q; Brinkman, William B; Byrd, Sharon E; Davis, A Todd; Mets, Marilyn B; Shulman, Stanford T

    2002-10-01

    Baylisascaris procyonis, the common raccoon roundworm, is a rare cause of devastating or fatal neural larva migrans in infants and young children. We describe the clinical features of two children from suburban Chicago who developed severe, nonfatal B. procyonis neural larva migrans. Despite treatment with albendazole and high dose corticosteroids, both patients are neurologically devastated. In many regions of North America, large populations of raccoons with high rates of endemic B. procyonis infection live in proximity to humans, which suggests that the risk of human infection is probably substantial. In the absence of effective treatment, prevention of infection remains the most important public health strategy. PMID:12394823

  17. The Effects of Ivermectin on Brugia malayi Females In Vitro: A Transcriptomic Approach

    PubMed Central

    O’Neill, Maeghan; Burkman, Erica; Zaky, Weam I.; Xia, Jianguo; Moorhead, Andrew; Williams, Steven A.; Geary, Timothy G.

    2016-01-01

    Background Lymphatic filariasis and onchocerciasis are disabling and disfiguring neglected tropical diseases of major importance in developing countries. Ivermectin is the drug of choice for mass drug administration programs for the control of onchocerciasis and lymphatic filariasis in areas where the diseases are co-endemic. Although ivermectin paralyzes somatic and pharyngeal muscles in many nematodes, these actions are poorly characterized in adult filariae. We hypothesize that paralysis of pharyngeal pumping by ivermectin in filariae could result in deprivation of essential nutrients, especially iron, inducing a wide range of responses evidenced by altered gene expression, changes in metabolic pathways, and altered developmental states in embryos. Previous studies have shown that ivermectin treatment significantly reduces microfilariae release from females within four days of exposure in vivo, while not markedly affecting adult worms. However, the mechanisms responsible for reduced production of microfilariae are poorly understood. Methodology/Principal Findings We analyzed transcriptomic profiles from Brugia malayi adult females, an important model for other filariae, using RNAseq technology after exposure in culture to ivermectin at various concentrations (100 nM, 300 nM and 1 μM) and time points (24, 48, 72 h, and 5 days). Our analysis revealed drug-related changes in expression of genes involved in meiosis, as well as oxidative phosphorylation, which were significantly down-regulated as early as 24 h post-exposure. RNA interference phenotypes of the orthologs of these down-regulated genes in C. elegans include “maternal sterile”, “embryonic lethal”, “larval arrest”, “larval lethal” and “sick”. Conclusion/Significance These changes provide insight into the mechanisms involved in ivermectin-induced reduction in microfilaria output and impaired fertility, embryogenesis, and larval development. PMID:27529747

  18. Purification and characterization of a novel transglutaminase from filarial nematode Brugia malayi.

    PubMed

    Singh, R N; Mehta, K

    1994-10-15

    A transglutaminase (pTGase) was purified from filarial nematode, Brugia malayi. The steps used for purification were thermoprecipitation, ammonium sulfate precipitation, gel filtration on Superose 12 HR 10/30, ion-exchange chromatography on a Mono-Q column and further gel filtration on Superose 12 HR 10/30. The last step yielded an electrophoretically homogenous enzyme protein with 2200-fold purification and a reproducible yield of approximately 20%. The purified enzyme had a molecular mass of 56 kDa, specific activity of 2.25 U/mg protein and an isoelectric point of 7.2. The enzyme was active in the basic pH range with an optimum activity at pH 8.5. The pTGase activity was Ca(2+)-dependent and was inhibited by ammonia, primary amines, EDTA, and -SH group blocking reagents. The enzyme activity was also inhibited by high salt (NaCl and KCl) concentrations, detergents, metal ions, and organic solvents. Ampholine (pH 6-8) at 1% (by vol.) caused about 20% inhibition of pTGase activity but at 3% (by vol.) the inhibition increased up to 80%. Similarly, the micromolar concentrations of GTP inhibited the enzyme activity only moderately but at millimolar concentration a significant inhibition was observed. The stability of the pTGase was not affected by 0.1% SDS or other physical parameters such as freezing and thawing. Further, the pTGase was found to be highly thermostable (stable at 60 degrees C for several hours) with optimum activity observed at 55 degrees C. The distinct substrate specificity, unique N-terminal sequence along with the other physico-chemical properties studied, suggested that pTGase is a novel member of transglutaminase family. PMID:7957177

  19. Cloning and characterization of high mobility group box protein 1 (HMGB1) of Wuchereria bancrofti and Brugia malayi.

    PubMed

    Thirugnanam, Sivasakthivel; Munirathinam, Gnanasekar; Veerapathran, Anandharaman; Dakshinamoorthy, Gajalakshmi; Reddy, Maryada V; Ramaswamy, Kalyanasundaram

    2012-08-01

    A human homologue of high mobility group box 1 (HMGB1) protein was cloned and characterized from the human filarial parasites Wuchereria bancrofti and Brugia malayi. Sequence analysis showed that W. bancrofti HMGB1 (WbHMGB1) and B. malayi HMGB1 (BmHMGB1) proteins share 99 % sequence identity. Filarial HMGB1 showed typical architectural sequence characteristics of HMGB family of proteins and consisted of only a single HMG box domain that had significant sequence similarity to the pro-inflammatory B box domain of human HMGB1. When incubated with mouse peritoneal macrophages and human promyelocytic leukemia cells, rBmHMGB1 induced secretion of significant levels of pro-inflammatory cytokines such as TNF-α, GM-CSF, and IL-6. Functional analysis also showed that the filarial HMGB1 proteins can bind to supercoiled DNA similar to other HMG family of proteins. BmHMGB1 protein is expressed in the adult and microfilarial stages of the parasite and is found in the excretory secretions of the live parasites. These findings suggest that filarial HMGB1 may have a significant role in lymphatic pathology associated with lymphatic filariasis. PMID:22402610

  20. Phenotypic and molecular analysis of the effect of 20-hydroxyecdysone on the human filarial parasite Brugia malayi.

    PubMed

    Mhashilkar, Amruta S; Adapa, Swamy R; Jiang, Rays H Y; Williams, Steven A; Zaky, Weam; Slatko, Barton E; Luck, Ashley N; Moorhead, Andrew R; Unnasch, Thomas R

    2016-05-01

    A homologue of the ecdysone receptor has been identified and shown to be responsive to 20-hydroxyecdysone in Brugia malayi. However, the role of this master regulator of insect development has not been delineated in filarial nematodes. Gravid adult female B. malayi cultured in the presence of 20-hydroxyecdysone produced significantly more microfilariae and abortive immature progeny than control worms, implicating the ecdysone receptor in regulation of embryogenesis and microfilarial development. Transcriptome analyses identified 30 genes whose expression was significantly up-regulated in 20-hydroxyecdysone-treated parasites compared with untreated controls. Of these, 18% were identified to be regulating transcription. A comparative proteomic analysis revealed 932 proteins to be present in greater amounts in extracts of 20-hydroxyecdysone-treated adult females than in extracts prepared from worms cultured in the absence of the hormone. Of the proteins exhibiting a greater than two-fold difference in the 20-hydroxyecdysone-treated versus untreated parasite extracts, 16% were involved in transcriptional regulation. RNA interference (RNAi) phenotype analysis of Caenorhabditis elegans orthologs revealed that phenotypes involved in developmental processes associated with embryogenesis were significantly over-represented in the transcripts and proteins that were up-regulated by exposure to 20-hydroxyecdysone. Taken together, the transcriptomic, proteomic and phenotypic data suggest that the filarial ecdysone receptor may play a role analogous to that in insects, where it serves as a regulator of egg development. PMID:26896576

  1. Assessing protection against OP pesticides and nerve agents provided by wild-type HuPON1 purified from Trichoplusia ni larvae or induced via adenoviral infection.

    PubMed

    Hodgins, Sean M; Kasten, Shane A; Harrison, Joshua; Otto, Tamara C; Oliver, Zeke P; Rezk, Peter; Reeves, Tony E; Chilukuri, Nageswararao; Cerasoli, Douglas M

    2013-03-25

    Human paraoxonase-1 (HuPON1) has been proposed as a catalytic bioscavenger of organophosphorus (OP) pesticides and nerve agents. We assessed the potential of this enzyme to protect against OP poisoning using two different paradigms. First, recombinant HuPON1 purified from cabbage loopers (iPON1; Trichoplusia ni) was administered to guinea pigs, followed by exposure to at least 2 times the median lethal dose (LD(50)) of the OP nerve agents tabun (GA), sarin (GB), soman (GD), and cyclosarin (GF), or chlorpyrifos oxon, the toxic metabolite of the OP pesticide chlorpyrifos. In the second model, mice were infected with an adenovirus that induced expression of HuPON1 and then exposed to sequential doses of GD, VX, or (as reported previously) diazoxon, the toxic metabolite of the OP pesticide diazinon. In both animal models, the exogenously added HuPON1 protected animals against otherwise lethal doses of the OP pesticides but not against the nerve agents. Together, the results support prior modeling and in vitro activity data which suggest that wild-type HuPON1 does not have sufficient catalytic activity to provide in vivo protection against nerve agents. PMID:23123254

  2. The kinetics of exsheathment of infective nematode larvae is disturbed in the presence of a tannin-rich plant extract (sainfoin) both in vitro and in vivo.

    PubMed

    Brunet, S; Aufrere, J; El Babili, F; Fouraste, I; Hoste, H

    2007-08-01

    The mode of action of bioactive plants on gastrointestinal nematodes remains obscure. Previous in vitro studies showed that exsheathment was significantly disturbed after contact with tannin-rich extracts. However, the role of important factors (extract concentration, parasite species) has not been assessed and no information is available on the occurrence in vivo. These questions represent the objectives of this study. The model incorporated the parasites Haemonchus contortus and Trichostrongylus colubriformis with sainfoin as the bioactive plant. A set of in vitro assays was performed, measuring the changes observed, after 3 h of contact with increasing concentrations of sainfoin, on the rate of artificial exsheathment. The results indicated that sainfoin extracts interfered with exsheathment in a dose-dependent manner and the process overall was similar for both nematodes. The restoration of control values observed after adding PEG to extracts confirms a major role for tannins. A second study was performed in vivo on rumen-cannulated sheep fed with different proportions of sainfoin in the diet to verify these in vitro results. The consumption of a higher proportion of sainfoin was indeed associated with significant delays in Haemonchus exsheathment. Overall, the results confirmed that interference with the early step of nematode infection might be one of the modes of action that contributes to the anthelmintic properties of tanniniferous plants. PMID:17346358

  3. First detection of Paenibacillus larvae the causative agent of American Foulbrood in a Ugandan honeybee colony.

    PubMed

    Chemurot, Moses; Brunain, Marleen; Akol, Anne M; Descamps, Tine; de Graaf, Dirk C

    2016-01-01

    Paenibacillus larvae is a highly contagious and often lethal widely distributed pathogen of honeybees, Apis mellifera but has not been reported in eastern Africa to date. We investigated the presence of P. larvae in the eastern and western highland agro-ecological zones of Uganda by collecting brood and honey samples from 67 honeybee colonies in two sampling occasions and cultivated them for P. larvae. Also, 8 honeys imported and locally retailed in Uganda were sampled and cultivated for P. larvae. Our aim was to establish the presence and distribution of P. larvae in honeybee populations in the two highland agro-ecological zones of Uganda and to determine if honeys that were locally retailed contained this lethal pathogen. One honeybee colony without clinical symptoms for P. larvae in an apiary located in a protected area of the western highlands of Uganda was found positive for P. larvae. The strain of this P. larvae was genotyped and found to be ERIC I. In order to compare its virulence with P. larvae reference strains, in vitro infection experiments were conducted with carniolan honeybee larvae from the research laboratory at Ghent University, Belgium. The results show that the virulence of the P. larvae strain found in Uganda was at least equally high. The epidemiological implication of the presence of P. larvae in a protected area is discussed. PMID:27468390

  4. [Visceral larva migrans. A rare cause of eosinophilia in adults].

    PubMed

    Lund-Tønnesen, S

    1996-09-20

    Toxocariasis is a cosmopolitan infection of dogs and cats with a roundworm resembling Ascaris. Man becomes infected by ingesting eggs from the environment. The infection occurs mainly in children. There are two distinct syndromes: visceral larva migrans and ocular toxocariasis. The author describes the case of a 70 year old Norwegian female with visceral larva migrans. One month after a visit to Spain she developed fever, hepatomegaly and marked eosinophilia. Liver biopsy revealed subacute hepatitis with eosinophilic leucocyte infiltration. Toxocara ELISA was strongly positive. Treatment with albendazol 400 mg b.i.d. and prednisone 10 mg daily for three weeks was successful. A clinical relapse after three months was treated in the same way for one month. Prolonged treatment is recommended. To our knowledge, this is the first reported case of visceral larva migrans in an adult Norwegian. Epidemiology, diagnosis and treatment are discussed. PMID:8928142

  5. Vertical and horizontal transmission of tilapia larvae encephalitis virus: the bad and the ugly.

    PubMed

    Sinyakov, Michael S; Belotsky, Sandro; Shlapobersky, Mark; Avtalion, Ramy R

    2011-02-01

    Impairment of innate immunity in tilapia larvae after vertical and horizontal infection with the newly characterized tilapia larvae encephalitis virus (TLEV) was accessed by evaluation of cell-mediated reactive oxygen species (ROS) production in affected fish with the use of horseradish peroxidase-amplified luminol-dependent chemiluminescence assay. The priming in-vivo infection with TLEV resulted in downregulation of ROS response in both vertically- and horizontally-infected fish; this suppression was further exacerbated by specific in-vitro booster infection with the same virus. Application of Ca ionophore and phorbol myristate acetate as alternative nonspecific boosters enabled restoration of ROS release in vertically-infected but not in horizontally-infected larvae. The results indicate severe TLEV-imposed phagocyte dysfunction in affected larvae. The difference in restoration potential of ROS production after vertical and horizontal virus transmission is interpreted in the frame of principal distinctions between the two modes. PMID:21131016

  6. Strongyloides stercoralis larvae excretion patterns before and after treatment.

    PubMed

    Schär, F; Hattendorf, J; Khieu, V; Muth, S; Char, M C; Marti, H P; Odermatt, P

    2014-06-01

    The variability of larval excretion impedes the parasitological diagnosis of Strongyloides stercoralis in infected individuals. We assessed the number of larvae excreted per gram (LPG) stool in 219 samples from 38 infected individuals over 7 consecutive days before and in 470 samples from 44 persons for 21 consecutive days after ivermectin treatment (200 μg kg-1 BW). The diagnostic sensitivity of a single stool sample was about 75% for individuals with low-intensity infections (⩽1 LPG) and increased to 95% for those with high-intensity infections (⩾10 LPG). Doubling the number of samples examined per person increased sensitivity to more than 95%, even for low-intensity infections. There was no indication of a cyclic excretion of larvae. After treatment, all individuals stopped excreting larvae within 3 days. Larvae were not detected during any of the following 18 days (total 388 Baermann and 388 Koga Agar tests). Two stool samples, collected on consecutive days, are recommended in settings where low or heterogeneous infection intensities are likely. In this way, taking into account the possible biological variability in excretion, the efficacy of ivermectin treatment can be assessed as soon as 4 days after treatment. PMID:24534076

  7. Parasitism of Western Corn Rootworm Larvae and Pupae by Steinernema carpocapsae.

    PubMed

    Jackson, J J; Brooks, M A

    1995-03-01

    Virulence and development of the insect-parasitic nematode, Steinernema carpocapsae (Weiser) (Mexican strain), were evaluated for the immature stages of the western corn rootworm, Diabrotica virgifera virgifera LeConte. Third instar rootworm larvae were five times more susceptible to nematode infection than second instar larvae and 75 times more susceptible than first instar larvae and pupae, based on laboratory bioassays. Rootworm eggs were not susceptible. Nematode development was observed in all susceptible rootworm stages, but a complete life cycle was observed only in second and third instar larvae and pupae. Nematode size was affected by rootworm stage; the smallest infective-stage nematodes were recovered from second instar rootworm larvae. Results of this study suggest that S. carpocapsae should be applied when second and third instar rootworm larvae are predominant in the field. PMID:19277256

  8. Encysted parasitic larvae in the mouth.

    PubMed

    Hansen, L S; Allard, R H

    1984-04-01

    Oral appearances of intestinal parasitic disease are rare. One such appearance is the presence in oral tissues of encysted or encapsulated larvae of organisms from the classes Cestoidea and Nematoda. Cestode larvae form cyst-like lesions that are often clinically diagnosed as mucoceles. In these lesions, the cyst cavity is lined by fibrous tissue with inflammatory cells, and contains fluid and the larval stage of a parasite. The diagnosis of these parasitic cysts is more frequently made in younger persons. The cysts may be treated by simple excision, but care must be taken that the cyst does not rupture, as in some parasites this may result in new cyst formation. Nematode infection in the oral cavity, the most common of which appears to be trichinosis, is rarely reported. Patients with oral or maxillofacial (or both) parasitic disease must undergo a thorough medical investigation to exclude possible life-threatening involvement in other parts of the body. PMID:6586809

  9. Production of the Catechol Type Siderophore Bacillibactin by the Honey Bee Pathogen Paenibacillus larvae

    PubMed Central

    Garcia-Gonzalez, Eva; Poppinga, Lena; Süssmuth, Roderich D.; Genersch, Elke

    2014-01-01

    The Gram-positive bacterium Paenibacillus larvae is the etiological agent of American Foulbrood. This bacterial infection of honey bee brood is a notifiable epizootic posing a serious threat to global honey bee health because not only individual larvae but also entire colonies succumb to the disease. In the recent past considerable progress has been made in elucidating molecular aspects of host pathogen interactions during pathogenesis of P. larvae infections. Especially the sequencing and annotation of the complete genome of P. larvae was a major step forward and revealed the existence of several giant gene clusters coding for non-ribosomal peptide synthetases which might act as putative virulence factors. We here present the detailed analysis of one of these clusters which we demonstrated to be responsible for the biosynthesis of bacillibactin, a P. larvae siderophore. We first established culture conditions allowing the growth of P. larvae under iron-limited conditions and triggering siderophore production by P. larvae. Using a gene disruption strategy we linked siderophore production to the expression of an uninterrupted bacillibactin gene cluster. In silico analysis predicted the structure of a trimeric trithreonyl lactone (DHB-Gly-Thr)3 similar to the structure of bacillibactin produced by several Bacillus species. Mass spectrometric analysis unambiguously confirmed that the siderophore produced by P. larvae is identical to bacillibactin. Exposure bioassays demonstrated that P. larvae bacillibactin is not required for full virulence of P. larvae in laboratory exposure bioassays. This observation is consistent with results obtained for bacillibactin in other pathogenic bacteria. PMID:25237888

  10. Production of the catechol type siderophore bacillibactin by the honey bee pathogen Paenibacillus larvae.

    PubMed

    Hertlein, Gillian; Müller, Sebastian; Garcia-Gonzalez, Eva; Poppinga, Lena; Süssmuth, Roderich D; Genersch, Elke

    2014-01-01

    The Gram-positive bacterium Paenibacillus larvae is the etiological agent of American Foulbrood. This bacterial infection of honey bee brood is a notifiable epizootic posing a serious threat to global honey bee health because not only individual larvae but also entire colonies succumb to the disease. In the recent past considerable progress has been made in elucidating molecular aspects of host pathogen interactions during pathogenesis of P. larvae infections. Especially the sequencing and annotation of the complete genome of P. larvae was a major step forward and revealed the existence of several giant gene clusters coding for non-ribosomal peptide synthetases which might act as putative virulence factors. We here present the detailed analysis of one of these clusters which we demonstrated to be responsible for the biosynthesis of bacillibactin, a P. larvae siderophore. We first established culture conditions allowing the growth of P. larvae under iron-limited conditions and triggering siderophore production by P. larvae. Using a gene disruption strategy we linked siderophore production to the expression of an uninterrupted bacillibactin gene cluster. In silico analysis predicted the structure of a trimeric trithreonyl lactone (DHB-Gly-Thr)3 similar to the structure of bacillibactin produced by several Bacillus species. Mass spectrometric analysis unambiguously confirmed that the siderophore produced by P. larvae is identical to bacillibactin. Exposure bioassays demonstrated that P. larvae bacillibactin is not required for full virulence of P. larvae in laboratory exposure bioassays. This observation is consistent with results obtained for bacillibactin in other pathogenic bacteria. PMID:25237888

  11. Visceral and Neural Larva Migrans in Rhesus Macaques

    PubMed Central

    Gozalo, Alfonso S; Maximova, Olga A; StClaire, Marisa C; Montali, Richard J; Ward, Jerrold M; Cheng, Lily I; Elkins, William R; Kazacos, Kevin R

    2008-01-01

    Large ascarid larvae within granulomas were noted histologically in the mesenteric and pancreatic lymph nodes of 13 of 21 rhesus macaques (Macaca mulatta) euthanized as part of an experimental viral pathogenesis study. In addition, 7 of the 13 monkeys had cerebral granulomas, which in 4 animals contained nematode larvae similar to those within the lymph nodes. Despite the lesions, the animals did not show clinical signs associated with the parasitic infections. Characteristics of the larvae included, on cross-section, a midbody diameter of approximately 60 to 80 µm, a centrally located and slightly compressed intestine flanked on either side by large triangular excretory columns, and prominent single lateral cuticular alae. The morphology of the larvae was compatible with Baylisascaris spp. Baylisascariasis is a well-described infection of animals and humans that is caused by migrating larvae of the raccoon roundworm, Baylisascaris procyonis. A similar species, B. columnaris, is found in skunks and can cause cerebrospinal nematodiasis, but most reported cases of baylisascariasis have been due to B. procyonis. Our macaques were born free-ranging on an island in the southeastern United States where raccoons, but not skunks, were found to be common inhabitants, indicating that B. procyonis was the most likely parasite involved. These cases are similar to the low-level or covert cases of Baylisascaris infection described to occur in humans and provide further evidence of the existence of this parasite in the southeastern United States. PMID:18702454

  12. Visceral and neural larva migrans in rhesus macaques.

    PubMed

    Gozalo, Alfonso S; Maximova, Olga A; StClaire, Marisa C; Montali, Richard J; Ward, Jerrold M; Cheng, Lily I; Elkins, William R; Kazacos, Kevin R

    2008-07-01

    Large ascarid larvae within granulomas were noted histologically in the mesenteric and pancreatic lymph nodes of 13 of 21 rhesus macaques (Macaca mulatta) euthanized as part of an experimental viral pathogenesis study. In addition, 7 of the 13 monkeys had cerebral granulomas, which in 4 animals contained nematode larvae similar to those within the lymph nodes. Despite the lesions, the animals did not show clinical signs associated with the parasitic infections. Characteristics of the larvae included, on cross-section, a midbody diameter of approximately 60 to 80 mum, a centrally located and slightly compressed intestine flanked on either side by large triangular excretory columns, and prominent single lateral cuticular alae. The morphology of the larvae was compatible with Baylisascaris spp. Baylisascariasis is a well-described infection of animals and humans that is caused by migrating larvae of the raccoon roundworm, Baylisascaris procyonis. A similar species, B. columnaris, is found in skunks and can cause cerebrospinal nematodiasis, but most reported cases of baylisascariasis have been due to B. procyonis. Our macaques were born free-ranging on an island in the southeastern United States where raccoons, but not skunks, were found to be common inhabitants, indicating that B. procyonis was the most likely parasite involved. These cases are similar to the low-level or covert cases of Baylisascaris infection described to occur in humans and provide further evidence of the existence of this parasite in the southeastern United States. PMID:18702454

  13. Structure of the Trehalose-6-phosphate Phosphatase from Brugia malayi Reveals Key Design Principles for Anthelmintic Drugs

    PubMed Central

    Farelli, Jeremiah D.; Galvin, Brendan D.; Li, Zhiru; Liu, Chunliang; Aono, Miyuki; Garland, Megan; Hallett, Olivia E.; Causey, Thomas B.; Ali-Reynolds, Alana; Saltzberg, Daniel J.; Carlow, Clotilde K. S.; Dunaway-Mariano, Debra; Allen, Karen N.

    2014-01-01

    Parasitic nematodes are responsible for devastating illnesses that plague many of the world's poorest populations indigenous to the tropical areas of developing nations. Among these diseases is lymphatic filariasis, a major cause of permanent and long-term disability. Proteins essential to nematodes that do not have mammalian counterparts represent targets for therapeutic inhibitor discovery. One promising target is trehalose-6-phosphate phosphatase (T6PP) from Brugia malayi. In the model nematode Caenorhabditis elegans, T6PP is essential for survival due to the toxic effect(s) of the accumulation of trehalose 6-phosphate. T6PP has also been shown to be essential in Mycobacterium tuberculosis. We determined the X-ray crystal structure of T6PP from B. malayi. The protein structure revealed a stabilizing N-terminal MIT-like domain and a catalytic C-terminal C2B-type HAD phosphatase fold. Structure-guided mutagenesis, combined with kinetic analyses using a designed competitive inhibitor, trehalose 6-sulfate, identified five residues important for binding and catalysis. This structure-function analysis along with computational mapping provided the basis for the proposed model of the T6PP-trehalose 6-phosphate complex. The model indicates a substrate-binding mode wherein shape complementarity and van der Waals interactions drive recognition. The mode of binding is in sharp contrast to the homolog sucrose-6-phosphate phosphatase where extensive hydrogen-bond interactions are made to the substrate. Together these results suggest that high-affinity inhibitors will be bi-dentate, taking advantage of substrate-like binding to the phosphoryl-binding pocket while simultaneously utilizing non-native binding to the trehalose pocket. The conservation of the key residues that enforce the shape of the substrate pocket in T6PP enzymes suggest that development of broad-range anthelmintic and antibacterial therapeutics employing this platform may be possible. PMID:24992307

  14. Influence of the forest caterpillar hunter Calosoma sycophanta on the transmission of microsporidia in larvae of the gypsy moth Lymantria dispar

    PubMed Central

    Goertz, Dörte; Hoch, Gernot

    2013-01-01

    The behaviour of predators can be an important factor in the transmission success of an insect pathogen. We studied how Calosoma sycophanta influences the interaction between its prey [Lymantria dispar (L.) (Lepidoptera, Lymantriidae)] and two microsporidian pathogens [Nosema lymantriae (Microsporidia, Nosematidae) and Vairimorpha disparis (Microsporidia, Burellenidae)] infecting the prey. Using laboratory experiments, C. sycophanta was allowed to forage on infected and uninfected L. dispar larvae and to disseminate microsporidian spores when preying or afterwards with faeces. The beetle disseminated spores of N. lymantriae and V. disparis when preying upon infected larvae, as well as after feeding on such prey. Between 45% and 69% of test larvae became infected when C. sycophanta was allowed to disseminate spores of either microsporidium. Laboratory choice experiments showed that C. sycophanta did not discriminate between Nosema-infected and uninfected gypsy moth larvae. Calosoma sycophanta preferred Vairimorpha-infected over uninfected gypsy moth larvae and significantly influenced transmission. When C. sycophanta was allowed to forage during the latent period on infected and uninfected larvae reared together on caged, potted oak saplings, the percentage of V. disparis infection among test larvae increased by more than 70%. The transmission of N. lymantriae was not affected significantly in these experiments. Beetles never became infected with either microsporidian species after feeding on infected prey. We conclude that the transmission of N. lymantriae is not affected. Because no V. disparis spores are released from living larvae, feeding on infected larvae might enhance transmission by reducing the time to death and therefore the latent period. PMID:23794950

  15. TIME management by medicinal larvae.

    PubMed

    Pritchard, David I; Čeřovský, Václav; Nigam, Yamni; Pickles, Samantha F; Cazander, Gwendolyn; Nibbering, Peter H; Bültemann, Anke; Jung, Wilhelm

    2016-08-01

    Wound bed preparation (WBP) is an integral part of the care programme for chronic wounds. The acronym TIME is used in the context of WBP and describes four barriers to healing in chronic wounds; namely, dead Tissue, Infection and inflammation, Moisture imbalance and a non-migrating Edge. Larval debridement therapy (LDT) stems from observations that larvae of the blowfly Lucilia sericata clean wounds of debris. Subsequent clinical studies have proven debriding efficacy, which is likely to occur as a result of enzymatically active alimentary products released by the insect. The antimicrobial, anti-inflammatory and wound healing activities of LDT have also been investigated, predominantly in a pre-clinical context. This review summarises the findings of investigations into the molecular mechanisms of LDT and places these in context with the clinical concept of WBP and TIME. It is clear from these findings that biotherapy with L. sericata conforms with TIME, through the enzymatic removal of dead tissue and its associated biofilm, coupled with the secretion of defined antimicrobial peptides. This biotherapeutic impact on the wound serves to reduce inflammation, with an associated capacity for an indirect effect on moisture imbalance. Furthermore, larval serine proteinases have the capacity to alter fibroblast behaviour in a manner conducive to the formation of granulation tissue. PMID:26179750

  16. Transmission of a Gammabaculovirus within Cohorts of Balsam Fir Sawfly (Neodiprion abietis) Larvae

    PubMed Central

    Graves, Roger; Quiring, Dan T.; Lucarotti, Christopher J.

    2012-01-01

    Nucleopolyhedroviruses (NPV: Gammabaculovirus: Baculoviridae) of diprionid sawflies (Diprionidae: Hymenoptera) are highly host specific and only infect the midgut epithelium. While still alive, infected sawfly larvae excrete NPV-laden diarrhea that contaminates food sources. The diarrhea can then be consumed by conspecific larvae, resulting in rapid horizontal transmission of the virus. To better understand the efficacy of Gammabaculovirus-based biological control products, the horizontal spread of such a virus (NeabNPV) within cohorts of balsam fir sawfly (Neodiprion abietis) larvae was studied by introducing NeabNPV-treated larvae into single-cohort groups at densities similar to those observed during the increasing (field study) and peak (laboratory study) phases of an outbreak. In field studies (~200 N. abietis larvae/m2 of balsam fir (Abies balsamea) foliage), NeabNPV-induced mortality increased positively in a density-dependent manner, from 23% (in control groups) to 51% with the addition of one first-instar NeabNPV-treated larva, to 84% with 10 first–instar-treated larvae. Mortality was 60% and 63% when one or 10 NeabNPV-treated third-instar larva(e), respectively, were introduced into groups. Slightly higher levels of NeabNPV-induced mortality occurring when NeabNPV-treated larvae were introduced into first- rather than third-instar cohorts suggests that early instars are more susceptible to the virus. In the laboratory (~1330 N. abietis larvae/ m2 of foliage), NeabNPV-caused mortality increased from 20% in control groups to over 80% with the introduction of one, five or 10 NeabNPV-treated larvae into treatment groups of first-instar larvae. PMID:26466722

  17. Pathology of Yersinia entomophaga MH96 towards Costelytra zealandica (Coleoptera; Scarabaeidae) larvae.

    PubMed

    Hurst, Mark Robin Holmes; van Koten, Chikako; Jackson, Trevor Anthony

    2014-01-01

    The bacterium Yersinia entomophaga was isolated from larvae of the New Zealand grass grub, Costelytra zealandica (Coleoptera: Scarabaeidae), found in soil. Following ingestion of a lethal dose of bacteria, larvae of C. zealandica reduced feeding activity and movement. After approximately 4h infected larvae convulsed and regurgitated dark digestive fluid and expelled frass pellets leaving the midgut empty and the larva amber in appearance. In the initial stages of infection, ingested bacteria were mostly contained within the peritrophic membrane and expelled with the gut fluid or transferred into the hind gut. While few Y. entomophaga were associated with the midgut epithelial cells, by 24h cells were swelling and bursting with vesicles being expelled into the midgut lumen. By 48h, bacteria had entered the haemocoel and the midgut cells had further deteriorated. After 72h, the cellular remnants were totally detached from the basal membrane the infected insects were filled with bacteria and moribund or dead with septicaemia. Mortality was directly proportional to dose and time after infection. By applying a range of doses, the LD50 was determined as 2.9×10(4)Y. entomophaga per C. zealandica larva, with an LT50 of 2.94days for doses of>1×10(5) per larva. Ingestion of low doses of bacteria did not inhibit feeding activity but led more slowly to death. By time of death, Y. entomophaga had multiplied, approximately 500 fold, in the cadavers of the infected larvae. PMID:24291403

  18. Are C. elegans receptors useful targets for drug discovery: Pharmacological comparison of tyramine receptors with high identity from Caenorhabditis elegans (TYRA-2) and Brugia malayi (Bm4)

    PubMed Central

    Smith, Katherine A.; Rex, Elizabeth B.; Komuniecki, Richard W.

    2012-01-01

    The biogenic amine, tyramine (TA), modulates a number of key processes in nematodes and a number of TA-specific receptors have been identified. In the present study we have identified a putative TA receptor (Bm4) in the recently completed Brugia malayi genome and compared its pharmacology to its putative C. elegans orthologue, TYRA-2, under identical expression and assay conditions. TYRA-2 and Bm4 are the most closely related C. elegans and B. malayi BA receptors and differ by only 14 aa in the TM regions directly involved in ligand binding. Membranes from HEK-293 cells stably expressing Bm4 exhibited specific, saturable, high-affinity, [3H]LSD and [3H]TA binding with Kds of 18.1 ± 0.93 nM and 15.1 ± 0.2 nM, respectively. More importantly, both TYRA-2 and Bm4 TA exhibited similar rank orders of potencies for a number of potential tyraminergic ligands. However, some significant differences were noted. For example, chloropromazine exhibited an order of magnitude higher affinity for Bm4 than TYRA-2 (pKis of 7.6 ± 0.2 and 6.49 ± 0.1, respectively). In contrast, TYRA-2 had significantly higher affinity for phentolamine than Bm4. These results highlight the utility of the nearly completed B. malayi genome and the importance of using receptors from individual parasitic nematodes for drug discovery. PMID:17537528

  19. Larva migrans in India: veterinary and public health perspectives.

    PubMed

    Sharma, Rajnish; Singh, B B; Gill, J P S

    2015-12-01

    Despite an important public health problem in developing world like India, larva migrans remains a neglected zoonosis. Cutaneous larva migrans, Visceral larva migrans, and Ocular larva migrans are the important clinical manifestations seen in humans in India. Although many nematode parasites have the ability to cause the infection, the disease primarily occurs due to Ancylostoma caninum and Toxocara canis. Presence of the infection in dogs is an indirect indication of its incidence in humans in endemic regions. In India, sporadic cases of this neglected but important parasitic zoonosis are the main implications of lack of diagnostic methods and under-reporting of human cases. Tropical climate in addition to overcrowding, poor hygiene and sanitation problems, stray dogs, open defecation by dogs and improper faecal disposal are the important factors for persistence of this disease in the country. Sanitary and hygienic measures, improved diagnostic techniques and surveillance programme in dogs as well as humans should be adopted for its effective control. Comprehensive collaborative efforts by physicians and veterinarians are required to tackle this problem in order to attain optimal health for humans, animals and the environment. Moreover, recognition of larva migrans as an important public health problem is the most important step to combat this neglected disease in developing countries like India. PMID:26688621

  20. Visceral larva migrans

    MedlinePlus

    ... Eggs produced by these worms are in the feces of the infected animals. The feces mix with soil. Humans can get sick if ... which contain soil contaminated by dog or cat feces. After the worm eggs are swallowed, they break ...

  1. Investigating the significance of the role of Ostrea edulis larvae in the transmission and transfer of Bonamia ostreae.

    PubMed

    Flannery, Grace; Lynch, Sharon A; Culloty, Sarah C

    2016-05-01

    In this study, the ability of oyster larvae, brooded in the pallial cavity of the parent oyster, to become infected in the pallial fluid, which is influenced by the brooding oyster and surrounding environment, was investigated. Larvae were collected over three summers from three areas around Ireland. Samples were screened for the presence of Bonamia ostreae DNA using PCR analysis. Four samples of larvae were found to be positive for B. ostreae DNA, though the parent oysters were negative for infection. Larvae may be able to acquire the pathogen from the water column during filter feeding or elimination of pseudo-faeces by the brooding adult. PMID:26880159

  2. American Foulbrood in honeybees and its causative agent, Paenibacillus larvae.

    PubMed

    Genersch, Elke

    2010-01-01

    After more than a century of American Foulbrood (AFB) research, this fatal brood infection is still among the most deleterious bee diseases. Its etiological agent is the Gram-positive, spore-forming bacterium Paenibacillus larvae. Huge progress has been made, especially in the last 20 years, in the understanding of the disease and of the underlying host-pathogen interactions. This review will place these recent developments in the study of American Foulbrood and of P. larvae into the general context of AFB research. PMID:19909971

  3. Large-scale expression of recombinant cardiac sodium-calcium exchange in insect larvae.

    PubMed

    Hale, C C; Zimmerschied, J A; Bliler, S; Price, E M

    1999-02-01

    Recombinant bovine cardiac sodium-calcium exchange (NCX1) in a baculovirus construct was used to infect cabbage looper larvae (Trichoplusia ni). Infected larvae were homogenized and larvae membrane vesicles were purified. Western blot analysis indicated the presence of recombinant NCX1 protein in vesicles from infected larvae but not in controls. Vesicles from infected larvae expressed high levels of NCX1 activity (1.7 nmol Ca2+/mg protein/s) while vesicles from control larvae had no activity. NCX1 in larvae vesicles was bidirectional. Kinetic analysis yielded a Vmax of 3.6 nmol Ca2+/mg protein/s and a Km for Ca of 4.2 microM. NCX1 activity was inhibited by the exchange inhibitory peptide with an IC50 of 4 microM. These data demonstrate a novel and efficient method for the expression of large amounts of active recombinant NCX1 protein that has general application for expression and analysis of recombinant membrane proteins. PMID:10024479

  4. Microgavage of zebrafish larvae.

    PubMed

    Cocchiaro, Jordan L; Rawls, John F

    2013-01-01

    The zebrafish has emerged as a powerful model organism for studying intestinal development(1-5), physiology(6-11), disease(12-16), and host-microbe interactions(17-25). Experimental approaches for studying intestinal biology often require the in vivo introduction of selected materials into the lumen of the intestine. In the larval zebrafish model, this is typically accomplished by immersing fish in a solution of the selected material, or by injection through the abdominal wall. Using the immersion method, it is difficult to accurately monitor or control the route or timing of material delivery to the intestine. For this reason, immersion exposure can cause unintended toxicity and other effects on extraintestinal tissues, limiting the potential range of material amounts that can be delivered into the intestine. Also, the amount of material ingested during immersion exposure can vary significantly between individual larvae(26). Although these problems are not encountered during direct injection through the abdominal wall, proper injection is difficult and causes tissue damage which could influence experimental results. We introduce a method for microgavage of zebrafish larvae. The goal of this method is to provide a safe, effective, and consistent way to deliver material directly to the lumen of the anterior intestine in larval zebrafish with controlled timing. Microgavage utilizes standard embryo microinjection and stereomicroscopy equipment common to most laboratories that perform zebrafish research. Once fish are properly positioned in methylcellulose, gavage can be performed quickly at a rate of approximately 7-10 fish/ min, and post-gavage survival approaches 100% depending on the gavaged material. We also show that microgavage can permit loading of the intestinal lumen with high concentrations of materials that are lethal to fish when exposed by immersion. To demonstrate the utility of this method, we present a fluorescent dextran microgavage assay that can be

  5. Characterization of Transcription Factors That Regulate the Type IV Secretion System and Riboflavin Biosynthesis in Wolbachia of Brugia malayi

    PubMed Central

    Li, Zhiru; Carlow, Clotilde K. S.

    2012-01-01

    The human filarial parasite Brugia malayi harbors an endosymbiotic bacterium Wolbachia (wBm) that is required for parasite survival. Consequently, targeting wBm is a promising approach for anti-filarial drug development. The Type IV secretion system (T4SS) plays an important role in bacteria-host interactions and is under stringent regulation by transcription factors. In wBm, most T4SS genes are contained in two operons. We show the wBm is active since the essential assembly factor virB8-1, is transcribed in adult worms and larval stages, and VirB8-1 is present in parasite lysates. We also identify two transcription factors (wBmxR1 and wBmxR2) that bind to the promoter region of several genes of the T4SS. Gel shift assays show binding of wBmxR1 to regions upstream of the virB9-2 and wBmxR2 genes, whereas wBmxR2 binds to virB4-2 and wBmxR1 promoter regions. Interestingly, both transcription factors bind to the promoter of the ribA gene that precedes virB8-1, the first gene in operon 1 of the wBm T4SS. RT-PCR reveals ribA and virB8-1 genes are co-transcribed as one operon, indicating the ribA gene and T4SS operon 1 are co-regulated by both wBmxR1 and wBmxR2. RibA encodes a bi-functional enzyme that catalyzes two essential steps in riboflavin (Vitamin B2) biosynthesis. Importantly, the riboflavin pathway is absent in B. malayi. We demonstrate the pathway is functional in wBm, and observe vitamin B2 supplementation partially rescues filarial parasites treated with doxycycline, indicating Wolbachia may supply the essential vitamin to its worm host. This is the first characterization of a transcription factor(s) from wBm and first report of co-regulation of genes of the T4SS and riboflavin biosynthesis pathway. In addition, our results demonstrate a requirement of vitamin B2 for worm health and fertility, and imply a nutritional role of the symbiont for the filarial parasite host. PMID:23251587

  6. Infection.

    PubMed

    Saigal, Gaurav; Nagornaya, Natalya; Post, M Judith D

    2016-01-01

    Imaging is useful in the diagnosis and management of infections of the central nervous system. Typically, imaging findings at the outset of the disease are subtle and nonspecific, but they often evolve to more definite imaging patterns in a few days, with less rapidity than for stroke but faster than for neoplastic lesions. This timing is similar to that of noninfectious inflammatory brain disease, such as multiple sclerosis. Fortunately, imaging patterns help to distinguish the two kinds of processes. Other than for sarcoidosis, the meninges are seldom involved in noninfectious inflammation; in contrast, many infectious processes involve the meninges, which then enhance with contrast on computed tomography (CT) or magnetic resonance imaging (MRI). However, brain infection causes a vast array of imaging patterns. Although CT is useful when hemorrhage or calcification is suspected or bony detail needs to be determined, MRI is the imaging modality of choice in the investigation of intracranial infections. Imaging sequences such as diffusion-weighted imaging help in accurately depicting the location and characterizing pyogenic infections and are particularly useful in differentiating bacterial infections from other etiologies. Susceptibility-weighted imaging is extremely useful for the detection of hemorrhage. Although MR spectroscopy findings can frequently be nonspecific, certain conditions such as bacterial abscesses show a relatively specific spectral pattern and are useful in diagnosing and constituting immediate therapy. In this chapter we review first the imaging patterns associated with involvement of various brain structures, such as the epidural and subdural spaces, the meninges, the brain parenchyma, and the ventricles. Involvement of these regions is illustrated with bacterial infections. Next we illustrate the patterns associated with viral and prion diseases, followed by mycobacterial and fungal infections, to conclude with a review of imaging findings

  7. DNA hybridization assay for detection of nucleopolyhedrovirus in whitemarked tussock moth (Orgyia leucostigma) larvae.

    PubMed

    Ebling, P M; Smith, P A; van Frankenhuyzen, K

    2001-01-01

    DNA dot-blot hybridization assays utilizing a horseradish peroxidase-labelled whole genomic DNA probe and enhanced chemiluminescence were conducted to quantify detection thresholds of nucleopolyhedrovirus (NPV) in whitemarked tussock moth (Orgyia leucostigma) larvae. The minimum detection thresholds for an aqueous suspension of occlusion bodies (OBs), OBs added to macerates of non-infected larvae and OBs in macerates of diseased larvae were 7.8 x 10(3), 7.8 x 10(3), and 1.5 x 10(3) OBs, respectively. Purified viral DNA was detected at a concentration of 1.6 x 10(-1) ng in a 20 microliters volume. The presence of pre-occluded viral nucleocapsids and DNA, inherent to infected larvae, improved the detection threshold five-fold compared with OBs alone. Larval tissues did not block the detection system utilized, nor did they bind non-specifically to the probe. Detection thresholds, upon sequential hybridization of the same membrane, on average deteriorated two-fold between the first and second hybridization and an additional six-fold between the second and third hybridization. NPV infection was detected two days post-inoculation (pi) in about one-third of the larvae examined and in almost all larvae three days pi. Microscopic analysis of stained larval smears missed NPV infection in almost all larvae two days pi and about two-thirds of the larvae three days pi. Results from the two methods of analysis were not comparable until four days pi. The detection system utilized is a reliable, efficient and simple method for the early detection of NPV infection in large numbers of larvae and may be used for further studies quantifying the role of this baculovirus in the ecology of whitemarked tussock moth populations. PMID:11455634

  8. Hookworm-related cutaneous larva migrans acquired in the UK.

    PubMed

    Baple, Katy; Clayton, James

    2015-01-01

    Hookworm-related cutaneous larva migrans (HrCLM) is a skin disease caused by infection with the larvae of animal hookworms. With conditions for infection more favourable in tropical climates, HrCLM in the UK is classically diagnosed in the returning traveller. We present two cases of clinically diagnosed UK-acquired HrCLM from a district general hospital in the south of England. A 68-year-old woman presented with a pruritic serpiginous tract on the right hand. She was a keen gardener and had been handling compost. A 50-year-old man, a long distance runner, presented with a similar lesion on the dorsum of his foot. Both patients were treated with a single dose of albendazole. These cases may represent an emerging infection in the UK. In the absence of a suggestive travel history, early recognition followed by efficient access to therapy is vital for treating HrCLM transmitted in the UK. PMID:26567237

  9. Culturing larvae of marine invertebrates.

    PubMed

    Strathmann, Richard R

    2014-01-01

    Larvae of marine invertebrates cultured in the laboratory experience conditions that they do not encounter in nature, but development and survival to metamorphic competence can be obtained in such cultures. This protocol emphasizes simple methods suitable for a wide variety of larvae. Culturing larvae requires seawater of adequate quality and temperature within the tolerated range. Beyond that, feeding larvae require appropriate food, but a few kinds of algae and animals are sufficient as food for diverse larvae. Nontoxic materials include glass, many plastics, hot-melt glue, and some solvents, once evaporated. Cleaners that do not leave toxic residues after rinsing include dilute hydrochloric or acetic acid, sodium hypochlorite (commercial bleach), and ethanol. Materials that can leave toxic residues, such as formaldehyde, glutaraldehyde, detergents, and hand lotions, should be avoided, especially with batch cultures that lack continuously renewed water. Reverse filtration can be used to change water gently at varying frequencies, depending on temperature and the kinds of food that are provided. Bacterial growth can be limited by antibiotics, but antibiotics are often unnecessary. Survival and growth are increased by low concentrations of larvae and stirring of large or dense cultures. One method of stirring large numbers of containers is a rack of motor-driven paddles. Most of the methods and materials are inexpensive and portable. If necessary, a room within a few hours of the sea could be temporarily equipped for larval culture. PMID:24567204

  10. Radiolabeling and autoradiographic tracing of Toxocara canis larvae in male mice

    SciTech Connect

    Wade, S.E.; Georgi, J.R.

    1987-02-01

    Artificially hatched infective larvae of Toxocara canis were labeled with /sup 75/Se in Medium 199 (Gibco) containing /sup 75/Se-methionine. Male CD-1 mice were infected with radiolabeled larvae by intragastric intubation or by intraperitoneal injection. At intervals of 3-56 days mice were killed and the organs prepared for compressed organ autoradiography. Radioactivity of parasitic larvae showed an exponential decrease with time, reflecting catabolism of label with a biological half life of 26 days (effective half life of 21 days) making possible experiments lasting several months. Total body larva counts, estimated by total body autoradiography, displayed an overall downward trend, but the rate of reduction was probably not constant because no significant positive or negative trends were noted from day 14 onward in the numbers of larvae. The carcass accumulated the greatest number of larvae followed by the central nervous system, liver, and lung in that order. When the numbers of larvae were considered in relationship to the mass of tissue, there were 4 groupings: central nervous system, liver, lung, carcass, and kidney, and genito-urinary organ, pelt, and intestine. No significant difference between intragastric and intraperitoneal administration was observed in the larval distribution after the larvae had left the initial site of deposition.

  11. Differentiation of Larva Migrans Caused by Baylisascaris procyonis and Toxocara Species by Western Blotting▿

    PubMed Central

    Dangoudoubiyam, Sriveny; Kazacos, Kevin R.

    2009-01-01

    Baylisascaris procyonis and Toxocara species are two important causes of larva migrans in humans. Larva migrans caused by Toxocara spp. is well known and is diagnosed serologically by enzyme immunoassay. Over a dozen cases of larva migrans and associated eosinophilic encephalitis caused by B. procyonis have also been reported, and at least a dozen additional cases are known. An enzyme-linked immunosorbent assay (ELISA) using the excretory-secretory (ES) antigen of B. procyonis larvae is currently being used in our laboratory as an aid in the diagnosis of this infection in humans. Clinically affected individuals show very high reactivity (measured as the optical density) on this ELISA; however, a one-way cross-reactivity with Toxocara spp. has been observed. As an approach to differentiate these two infections based on serology, we performed Western blots, wherein the B. procyonis ES antigen was reacted with serum samples from individuals known to be positive for either Toxocara spp. or B. procyonis larva migrans. Western blot results showed that B. procyonis antigens of between 30 and 45 kDa were specifically identified only by the sera from individuals with Baylisascaris larva migrans, thus allowing for differentiation between the two infections. This included human patient serum samples submitted for serologic testing, as well as sera from rabbits experimentally infected with B. procyonis. When used in conjunction with the ELISA, Western blotting could be an efficient tool for diagnosis of this infection in humans. PMID:19741091

  12. Differentiation of larva migrans caused by Baylisascaris procyonis and Toxocara species by Western blotting.

    PubMed

    Dangoudoubiyam, Sriveny; Kazacos, Kevin R

    2009-11-01

    Baylisascaris procyonis and Toxocara species are two important causes of larva migrans in humans. Larva migrans caused by Toxocara spp. is well known and is diagnosed serologically by enzyme immunoassay. Over a dozen cases of larva migrans and associated eosinophilic encephalitis caused by B. procyonis have also been reported, and at least a dozen additional cases are known. An enzyme-linked immunosorbent assay (ELISA) using the excretory-secretory (ES) antigen of B. procyonis larvae is currently being used in our laboratory as an aid in the diagnosis of this infection in humans. Clinically affected individuals show very high reactivity (measured as the optical density) on this ELISA; however, a one-way cross-reactivity with Toxocara spp. has been observed. As an approach to differentiate these two infections based on serology, we performed Western blots, wherein the B. procyonis ES antigen was reacted with serum samples from individuals known to be positive for either Toxocara spp. or B. procyonis larva migrans. Western blot results showed that B. procyonis antigens of between 30 and 45 kDa were specifically identified only by the sera from individuals with Baylisascaris larva migrans, thus allowing for differentiation between the two infections. This included human patient serum samples submitted for serologic testing, as well as sera from rabbits experimentally infected with B. procyonis. When used in conjunction with the ELISA, Western blotting could be an efficient tool for diagnosis of this infection in humans. PMID:19741091

  13. Thermal and physical stresses induce a short-term immune priming effect in Galleria mellonella larvae.

    PubMed

    Browne, Niall; Surlis, Carla; Kavanagh, Kevin

    2014-04-01

    Exposure of larvae of Galleria mellonella larvae to mild physical (i.e. shaking) or thermal stress for 24h increased their ability to survive infection with Aspergillus fumigatus conidia however larvae stressed in a similar manner but incubated for 72h prior to infection showed no elevation in their resistance to infection with A. fumigatus. Stressed larvae demonstrated an elevated haemocyte density 24h after initiation of the stress event but this declined at 48 and 72h. Larval proteins such as apolipophorin, arylophorin and prophenoloxidase demonstrated elevated expression at 24h but not at 72h. Larvae maintained at 37°C showed increased expression of a range of antimicrobial and immune-related proteins at 24h but these decreased in expression thereafter. The results presented here indicate that G. mellonella larvae are capable of altering their immune response following exposure to mild thermal or physical stress to mount a response capable of counteracting microbial infection which reaches a peak 24h after the initiation of the priming event and then declines by 72h. A short-term immune priming effect may serve to prevent infection but maintaining an immune priming effect for longer periods may be metabolically costly and unnecessary while living within the colony of another insect. PMID:24561359

  14. In vitro flubendazole-induced damage to vital tissues in adult females of the filarial nematode Brugia malayi.

    PubMed

    O'Neill, Maeghan; Geary, James F; Agnew, Dalen W; Mackenzie, Charles D; Geary, Timothy G

    2015-12-01

    The use of a microfilaricidal drug for the control of onchocerciasis and lymphatic filariasis necessitates prolonged yearly dosing. Prospects for elimination or eradication of these diseases would be enhanced by availability of a macrofilaricidal drug. Flubendazole (FLBZ), a benzimidazole anthelmintic, is an appealing candidate macrofilaricide. FLBZ has demonstrated profound and potent macrofilaricidal effects in a number of experimental filarial rodent models and one human trial. Unfortunately, FLBZ was deemed unsatisfactory for use in mass drug administration (MDA) campaigns due to its markedly limited oral bioavailability. However, a new formulation that provided sufficient bioavailability following oral administration could render FLBZ an effective treatment for onchocerciasis and LF. This study characterized the effects of FLBZ and its reduced metabolite (FLBZ-R) on filarial nematodes in vitro to determine the exposure profile which results in demonstrable damage. Adult female Brugia malayi were exposed to varying concentrations of FLBZ or FLBZ-R (100 nM-10 μM) for up to five days, after which worms were fixed for histology. Morphological damage following exposure to FLBZ was observed prominently in the hypodermis and developing embryos at concentrations as low as 100 nM following 24 h exposure. The results indicate that damage to tissues required for reproduction and survival can be achieved at pharmacologically relevant concentrations. PMID:26288741

  15. In vitro flubendazole-induced damage to vital tissues in adult females of the filarial nematode Brugia malayi

    PubMed Central

    O'Neill, Maeghan; Geary, James F.; Agnew, Dalen W.; Mackenzie, Charles D.; Geary, Timothy G.

    2015-01-01

    The use of a microfilaricidal drug for the control of onchocerciasis and lymphatic filariasis necessitates prolonged yearly dosing. Prospects for elimination or eradication of these diseases would be enhanced by availability of a macrofilaricidal drug. Flubendazole (FLBZ), a benzimidazole anthelmintic, is an appealing candidate macrofilaricide. FLBZ has demonstrated profound and potent macrofilaricidal effects in a number of experimental filarial rodent models and one human trial. Unfortunately, FLBZ was deemed unsatisfactory for use in mass drug administration (MDA) campaigns due to its markedly limited oral bioavailability. However, a new formulation that provided sufficient bioavailability following oral administration could render FLBZ an effective treatment for onchocerciasis and LF. This study characterized the effects of FLBZ and its reduced metabolite (FLBZ-R) on filarial nematodes in vitro to determine the exposure profile which results in demonstrable damage. Adult female Brugia malayi were exposed to varying concentrations of FLBZ or FLBZ-R (100 nM–10 μM) for up to five days, after which worms were fixed for histology. Morphological damage following exposure to FLBZ was observed prominently in the hypodermis and developing embryos at concentrations as low as 100 nM following 24 h exposure. The results indicate that damage to tissues required for reproduction and survival can be achieved at pharmacologically relevant concentrations. PMID:26288741

  16. Secreted and immunogenic proteins produced by the honeybee bacterial pathogen, Paenibacillus larvae.

    PubMed

    Antúnez, Karina; Anido, Matilde; Evans, Jay D; Zunino, Pablo

    2010-03-24

    American Foulbrood is a severe disease affecting larvae of honeybee Apis mellifera, causing significant decrease in the honeybee population, beekeeping industries and agricultural production. In spite of its importance, little is known about the virulence factors secreted by Paenibacillus larvae during larval infection. The aim of the present work was to perform a first approach to the identification and characterization of P. larvae secretome. P. larvae secreted proteins were analyzed by SDS-PAGE and identified by MALDI-TOF. Protein toxicity was evaluated using an experimental model based on feeding of A. mellifera larvae and immunogenicity was evaluated by Western blot, using an antiserum raised against cells and spores of P. larvae. Ten different proteins were identified among P. larvae secreted proteins, including proteins involved in transcription, metabolism, translation, cell envelope, transport, protein folding, degradation of polysaccharides and motility. Although most of these proteins are cytosolic, many of them have been previously detected in the extracellular medium of different Bacillus spp. cultures and have been related to virulence. The secreted proteins resulted highly toxic and immunogenic when larvae were exposed using an experimental model. This is the first description of proteins secreted by the honeybee pathogen P. larvae. This information may be relevant for the elucidation of bacterial pathogenesis mechanisms. PMID:19781868

  17. Paenibacillus larvae-Directed Bacteriophage HB10c2 and Its Application in American Foulbrood-Affected Honey Bee Larvae

    PubMed Central

    Beims, Hannes; Wittmann, Johannes; Bunk, Boyke; Spröer, Cathrin; Rohde, Christine; Günther, Gabi; Rohde, Manfred; von der Ohe, Werner

    2015-01-01

    Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious honey bee brood bacterial disease. We isolated and characterized P. larvae-directed bacteriophages and developed criteria for safe phage therapy. Whole-genome analysis of a highly lytic virus of the family Siphoviridae (HB10c2) provided a detailed safety profile and uncovered its lysogenic nature and a putative beta-lactamase-like protein. To rate its antagonistic activity against the pathogens targeted and to specify potentially harmful effects on the bee population and the environment, P. larvae genotypes ERIC I to IV, representatives of the bee gut microbiota, and a broad panel of members of the order Bacillales were analyzed for phage HB10c2-induced lysis. Breeding assays with infected bee larvae revealed that the in vitro phage activity observed was not predictive of the real-life scenario and therapeutic efficacy. On the basis of the disclosed P. larvae-bacteriophage coevolution, we discuss the future prospects of AFB phage therapy. PMID:26048941

  18. Paenibacillus larvae-Directed Bacteriophage HB10c2 and Its Application in American Foulbrood-Affected Honey Bee Larvae.

    PubMed

    Beims, Hannes; Wittmann, Johannes; Bunk, Boyke; Spröer, Cathrin; Rohde, Christine; Günther, Gabi; Rohde, Manfred; von der Ohe, Werner; Steinert, Michael

    2015-08-15

    Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious honey bee brood bacterial disease. We isolated and characterized P. larvae-directed bacteriophages and developed criteria for safe phage therapy. Whole-genome analysis of a highly lytic virus of the family Siphoviridae (HB10c2) provided a detailed safety profile and uncovered its lysogenic nature and a putative beta-lactamase-like protein. To rate its antagonistic activity against the pathogens targeted and to specify potentially harmful effects on the bee population and the environment, P. larvae genotypes ERIC I to IV, representatives of the bee gut microbiota, and a broad panel of members of the order Bacillales were analyzed for phage HB10c2-induced lysis. Breeding assays with infected bee larvae revealed that the in vitro phage activity observed was not predictive of the real-life scenario and therapeutic efficacy. On the basis of the disclosed P. larvae-bacteriophage coevolution, we discuss the future prospects of AFB phage therapy. PMID:26048941

  19. First Record of Anisakis simplex Third-Stage Larvae (Nematoda, Anisakidae) in European Hake Merluccius merluccius lessepsianus in Egyptian Water

    PubMed Central

    Abou-Rahma, Yasmin; Abdel-Gaber, Rewaida; Kamal Ahmed, Amira

    2016-01-01

    The prevalence of infection and the identification of anisakid larvae in European hake Merluccius merluccius lessepsianus from Hurghada City, Red Sea Governorate, Egypt, were investigated. Fish samples were collected during the period of February and November 2014. Twenty-two (36.66%) out of sixty examined fish specimens were found to be naturally infected with Anisakis type I larvae mostly found as encapsulated larvae in visceral organs. There was a positive relationship between host length/weight and prevalence of infection. Based on morphological, morphometric, and molecular analyses, these nematodes were identified as third-stage larvae of Anisakis simplex. The present study was considered as the first report of anisakid larvae from European hake in the Egyptian water. PMID:26925257

  20. Nematodes parasitic in fishes of cenotes (= sinkholes) of the Peninsula of Yucatan, Mexico. Part 2. Larvae.

    PubMed

    Moravec, F; Vivas-Rodríguez, C; Scholz, T; Vargas-Vázquez, J; Mendoza-Franco, E; Schmitter-Soto, J J; González-Solís, D

    1995-01-01

    This paper comprises a systematic survey of larval nematodes collected from fishes from cenotes (= sinkholes) of the Peninsula of Yucatan, southern Mexico, in 1993-1994. Larvae of the following nine species were recorded: Physocephalus sexalatus, Acuariidae gen. sp., Spiroxys sp., Falcaustra sp., Hysterothylacium cenotae, Contracaecum sp. Type 1, Contracaecum sp. Type 2, Goezia sp., and Eustrongylides sp. Larvae of P. sexalatus are recorded from fishes (Rhamdia guatemalensis) for the first time. The larvae are briefly described and illustrated and problems concerning their morphology, taxonomy, hosts and geographical distribution are discussed. Adults of these larvae are parasitic in piscivorous fishes, reptiles, birds and mammals (definitive hosts). Fishes harbouring the larvae of these parasites serve as paratenic hosts, being mostly an important source of infection for the definitive hosts. PMID:8774773

  1. Analysis of somatic and salivary gland antigens of third stage larvae of Rhinoestrus spp. (Diptera, Oestridae).

    PubMed

    Milillo, Piermarino; Traversa, Donato; Elia, Gabriella; Otranto, Domenico

    2010-04-01

    Larvae of Rhinoestrus spp. (Diptera, Oestridae) infect nasal and sinus cavities of horses, causing a nasal myiasis characterized by severe respiratory distress. Presently, the diagnosis of horse nasal botfly relies on the observation of clinical signs, on the post mortem retrieval of larvae or on molecular assays performed using pharyngeal swabs. The present study was carried out to characterize larval somatic proteins and salivary glands of Rhinoestrus spp. in a preliminary assessment towards the immunodiagnosis of equine rhinoestrosis. Out of the 212 necropsied horses 13 were positive for the presence of Rhinoestrus spp. larvae. The analysis of the sera from the infected animals by Western blotting assay showed the presence of a specific host humoral immune response against Rhinoestrus spp. larvae and proved that the salivary glands are the major immunogens in horse nasal botflies. PMID:19948170

  2. Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor).

    PubMed

    Gregorc, Aleš; Evans, Jay D; Scharf, Mike; Ellis, James D

    2012-08-01

    Honey bee (Apis mellifera) larvae reared in vitro were exposed to one of nine pesticides and/or were challenged with the parasitic mite, Varroa destructor. Total RNA was extracted from individual larvae and first strand cDNAs were generated. Gene-expression changes in larvae were measured using quantitative PCR (qPCR) targeting transcripts for pathogens and genes involved in physiological processes, bee health, immunity, and/or xenobiotic detoxification. Transcript levels for Peptidoglycan Recognition Protein (PGRPSC), a pathogen recognition gene, increased in larvae exposed to Varroa mites (P<0.001) and were not changed in pesticide treated larvae. As expected, Varroa-parasitized brood had higher transcripts of Deformed Wing Virus than did control larvae (P<0.001). Varroa parasitism, arguably coupled with virus infection, resulted in significantly higher transcript abundances for the antimicrobial peptides abaecin, hymenoptaecin, and defensin1. Transcript levels for Prophenoloxidase-activating enzyme (PPOact), an immune end product, were elevated in larvae treated with myclobutanil and chlorothalonil (both are fungicides) (P<0.001). Transcript levels for Hexameric storage protein (Hsp70) were significantly upregulated in imidacloprid, fluvalinate, coumaphos, myclobutanil, and amitraz treated larvae. Definitive impacts of pesticides and Varroa parasitism on honey bee larval gene expression were demonstrated. Interactions between larval treatments and gene expression for the targeted genes are discussed. PMID:22497859

  3. Sediment bioassays with oyster larvae

    SciTech Connect

    Chapman, P.M.; Morgan, J.D.

    1983-10-01

    Tests with naturally-occurring sediments are rare and sediment testing methodology is not standardized. The authors present a simple methodology for undertaking sediment bioassays with oyster larvae, and present data from a recent study to prove the utility of this method.

  4. Involvement of secondary metabolites in the pathogenesis of the American foulbrood of honey bees caused by Paenibacillus larvae.

    PubMed

    Müller, Sebastian; Garcia-Gonzalez, Eva; Genersch, Elke; Süssmuth, Roderich D

    2015-06-01

    The Gram-positive, spore-forming bacterium Paenibacillus larvae (P. larvae) is the causative agent of the epizootic American Foulbrood (AFB), a fatal brood disease of the western honey bee (Apis mellifera). AFB is one of the most destructive honey bee diseases since it is not only lethal for infected larvae but also for the diseased colonies. Due to the high impact of honey bees on ecology and economy this epizootic is a severe and pressing problem. Knowledge about virulence mechanisms and the underlying molecular mechanisms remain largely elusive. Recent genome sequencing of P. larvae revealed its potential to produce unknown secondary metabolites, like nonribosomal peptides and peptide-polyketide hybrids. This article highlights recent findings on secondary metabolites synthesized by P. larvae and discusses their role in virulence and pathogenicity towards the bee larvae. PMID:25904391

  5. Strain- and genotype-specific differences in virulence of Paenibacillus larvae subsp. larvae, a bacterial pathogen causing American foulbrood disease in honeybees.

    PubMed

    Genersch, Elke; Ashiralieva, Ainura; Fries, Ingemar

    2005-11-01

    Virulence variations of Paenibacillus larvae subsp. larvae, the causative agent of American foulbrood disease of honeybees, were investigated by analysis of 16 field isolates of this pathogen, belonging to three previously characterized genotypes, as well as the type strain (ATCC 9545) of P. larvae subsp. larvae, with exposure bioassays. We demonstrated that the strain-specific 50% lethal concentrations varied within an order of magnitude and that differences in amount of time for the pathogen to kill 100% of the infected hosts (LT100) correlated with genotype. One genotype killed rather quickly, with a mean LT100 of 7.8 +/- 1.7 days postinfection, while the other genotypes acted more slowly, with mean LT100s of 11.2 +/- 0.8 and 11.6 +/- 0.6 days postinfection. PMID:16269801

  6. Strain- and Genotype-Specific Differences in Virulence of Paenibacillus larvae subsp. larvae, a Bacterial Pathogen Causing American Foulbrood Disease in Honeybees

    PubMed Central

    Genersch, Elke; Ashiralieva, Ainura; Fries, Ingemar

    2005-01-01

    Virulence variations of Paenibacillus larvae subsp. larvae, the causative agent of American foulbrood disease of honeybees, were investigated by analysis of 16 field isolates of this pathogen, belonging to three previously characterized genotypes, as well as the type strain (ATCC 9545) of P. larvae subsp. larvae, with exposure bioassays. We demonstrated that the strain-specific 50% lethal concentrations varied within an order of magnitude and that differences in amount of time for the pathogen to kill 100% of the infected hosts (LT100) correlated with genotype. One genotype killed rather quickly, with a mean LT100 of 7.8 ± 1.7 days postinfection, while the other genotypes acted more slowly, with mean LT100s of 11.2 ± 0.8 and 11.6 ± 0.6 days postinfection. PMID:16269801

  7. How the pilidium larva feeds

    PubMed Central

    2013-01-01

    Introduction The nemertean pilidium is a long-lived feeding larva unique to the life cycle of a single monophyletic group, the Pilidiophora, which is characterized by this innovation. That the pilidium feeds on small planktonic unicells seems clear; how it does so is unknown and not readily inferred, because it shares little morphological similarity with other planktotrophic larvae. Results Using high-speed video of trapped lab-reared pilidia of Micrura alaskensis, we documented a multi-stage feeding mechanism. First, the external ciliation of the pilidium creates a swimming and feeding current which carries suspended prey past the primary ciliated band spanning the posterior margins of the larval body. Next, the larva detects prey that pass within reach, then conducts rapid and coordinated deformations of the larval body to re-direct passing cells and surrounding water into a vestibular space between the lappets, isolated from external currents but not quite inside the larva. Once a prey cell is thus captured, internal ciliary bands arranged within this vestibule prevent prey escape. Finally, captured cells are transported by currents within a buccal funnel toward the stomach entrance. Remarkably, we observed that the prey of choice – various cultured cryptomonads – attempt to escape their fate. Conclusions The feeding mechanism deployed by the pilidium larva coordinates local control of cilia-driven water transport with sensorimotor behavior, in a manner clearly distinct from any other well-studied larval feeding mechanisms. We hypothesize that the pilidium’s feeding strategy may be adapted to counter escape responses such as those deployed by cryptomonads, and speculate that similar needs may underlie convergences among disparate planktotrophic larval forms. PMID:23927417

  8. Rapid detection and identification of Wuchereria bancrofti, Brugia malayi, B. pahangi, and Dirofilaria immitis in mosquito vectors and blood samples by high resolution melting real-time PCR.

    PubMed

    Thanchomnang, Tongjit; Intapan, Pewpan M; Tantrawatpan, Chairat; Lulitanond, Viraphong; Chungpivat, Sudchit; Taweethavonsawat, Piyanan; Kaewkong, Worasak; Sanpool, Oranuch; Janwan, Penchom; Choochote, Wej; Maleewong, Wanchai

    2013-12-01

    A simple, rapid, and high-throughput method for detection and identification of Wuchereria bancrofti, Brugia malayi, Brugia pahangi, and Dirofilaria immitis in mosquito vectors and blood samples was developed using a real-time PCR combined with high-resolution melting (HRM) analysis. Amplicons of the 4 filarial species were generated from 5S rRNA and spliced leader sequences by the real-time PCR and their melting temperatures were determined by the HRM method. Melting of amplicons from W. bancrofti, B. malayi, D. immitis, and B. pahangi peaked at 81.5±0.2℃, 79.0±0.3℃, 76.8±0.1℃, and 79.9±0.1℃, respectively. This assay is relatively cheap since it does not require synthesis of hybridization probes. Its sensitivity and specificity were 100%. It is a rapid and technically simple approach, and an important tool for population surveys as well as molecular xenomonitoring of parasites in vectors. PMID:24516268

  9. Rapid Detection and Identification of Wuchereria bancrofti, Brugia malayi, B. pahangi, and Dirofilaria immitis in Mosquito Vectors and Blood Samples by High Resolution Melting Real-Time PCR

    PubMed Central

    Thanchomnang, Tongjit; Intapan, Pewpan M.; Tantrawatpan, Chairat; Lulitanond, Viraphong; Chungpivat, Sudchit; Taweethavonsawat, Piyanan; Kaewkong, Worasak; Sanpool, Oranuch; Janwan, Penchom; Choochote, Wej

    2013-01-01

    A simple, rapid, and high-throughput method for detection and identification of Wuchereria bancrofti, Brugia malayi, Brugia pahangi, and Dirofilaria immitis in mosquito vectors and blood samples was developed using a real-time PCR combined with high-resolution melting (HRM) analysis. Amplicons of the 4 filarial species were generated from 5S rRNA and spliced leader sequences by the real-time PCR and their melting temperatures were determined by the HRM method. Melting of amplicons from W. bancrofti, B. malayi, D. immitis, and B. pahangi peaked at 81.5±0.2℃, 79.0±0.3℃, 76.8±0.1℃, and 79.9±0.1℃, respectively. This assay is relatively cheap since it does not require synthesis of hybridization probes. Its sensitivity and specificity were 100%. It is a rapid and technically simple approach, and an important tool for population surveys as well as molecular xenomonitoring of parasites in vectors. PMID:24516268

  10. Workbook on the Identification of Mosquito Larvae.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; And Others

    This self-instructional booklet is designed to enable public health workers identify larvae of some important North American mosquito species. The morphological features of larvae of the various genera and species are illustrated in a programed booklet, which also contains illustrated taxonomic keys to the larvae of 11 North American genera and to…

  11. Tapeworm infection - beef or pork

    MedlinePlus

    ... are infected when they pass segments of the worm in their stool, especially if the segments are ... In rare cases, worms can cause a blockage in the intestine. If pork tapeworm larvae move out of the intestine, they can cause ...

  12. Ability of experimentally infected chickens to infect ticks with the Lyme disease spirochete, Borrelia burgdorferi.

    PubMed

    Piesman, J; Dolan, M C; Schriefer, M E; Burkot, T R

    1996-03-01

    Chickens were used as a laboratory model to determine the conditions affecting the ability of birds to infect ticks with Lyme disease spirochetes. Chicks (Gallus gallus) were exposed to 12 nymphal Ixodes scapularis at one week or three weeks of age. Xenodiagnostic larval ticks fed these birds at weekly intervals thereafter. Chicks exposed to infected nymphs at one week of age infected 87% of larvae at three weeks of age, but only infected 3% of larvae at four weeks and 0% of larvae at five weeks. Chicks exposed to nymphs at three weeks of age infected only 12% of larvae at four weeks, and 0% thereafter. Thus, experimentally infected chicks can infect larval ticks, but only for a brief interval after exposure. Young chicks are more infectious than older chickens. The immune response of infected chicks was rapid and directed against diverse antigens. PMID:8600769

  13. Influence of the forest caterpillar hunter Calosoma sycophanta on the transmission of microsporidia in larvae of the gypsy moth Lymantria dispar.

    PubMed

    Goertz, Dörte; Hoch, Gernot

    2013-05-01

    The behaviour of predators can be an important factor in the transmission success of an insect pathogen. We studied how Calosoma sycophanta influences the interaction between its prey [Lymantria dispar (L.) (Lepidoptera, Lymantriidae)] and two microsporidian pathogens [Nosema lymantriae (Microsporidia, Nosematidae) and Vairimorpha disparis (Microsporidia, Burellenidae)] infecting the prey.Using laboratory experiments, C. sycophanta was allowed to forage on infected and uninfected L. dispar larvae and to disseminate microsporidian spores when preying or afterwards with faeces.The beetle disseminated spores of N. lymantriae and V. disparis when preying upon infected larvae, as well as after feeding on such prey. Between 45% and 69% of test larvae became infected when C. sycophanta was allowed to disseminate spores of either microsporidium.Laboratory choice experiments showed that C. sycophanta did not discriminate between Nosema-infected and uninfected gypsy moth larvae. Calosoma sycophanta preferred Vairimorpha-infected over uninfected gypsy moth larvae and significantly influenced transmission.When C. sycophanta was allowed to forage during the latent period on infected and uninfected larvae reared together on caged, potted oak saplings, the percentage of V. disparis infection among test larvae increased by more than 70%. The transmission of N. lymantriae was not affected significantly in these experiments.Beetles never became infected with either microsporidian species after feeding on infected prey.We conclude that the transmission of N. lymantriae is not affected. Because no V. disparis spores are released from living larvae, feeding on infected larvae might enhance transmission by reducing the time to death and therefore the latent period. PMID:23794950

  14. Proinflammatory Cytokine Gene Expression by Murine Macrophages in Response to Brugia malayi Wolbachia Surface Protein

    PubMed Central

    Porksakorn, Chantima; Nuchprayoon, Surang; Park, Kiwon; Scott, Alan L.

    2007-01-01

    Wolbachia, an endosymbiotic bacterium found in most species of filarial parasites, is thought to play a significant role in inducing innate inflammatory responses in lymphatic filariasis patients. However, the Wolbachia-derived molecules that are recognized by the innate immune system have not yet been identified. In this study, we exposed the murine macrophage cell line RAW 264.7 to a recombinant form of the major Wolbachia surface protein (rWSP) to determine if WSP is capable of innately inducing cytokine transcription. Interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF) mRNAs were all upregulated by the rWSP stimulation in a dose-dependant manner. TNF transcription peaked at 3 hours, whereas IL-1β and IL-6 transcription peaked at 6 hours post-rWSP exposure. The levels of innate cytokine expression induced by a high-dose (9.0 μg/mL) rWSP in the RAW 264.7 cells were comparable to the levels induced by 0.1 μg/mL E. coli-derived lipopolysaccharides. Pretreatment of the rWSP with proteinase-K drastically reduced IL-1β, IL-6, and TNF transcription. However, the proinflammatory response was not inhibited by polymyxin B treatment. These results strongly suggest that the major Wolbachia surface protein molecule WSP is an important inducer of innate immune responses during filarial infections. PMID:17641731

  15. Determination of genomic DNA sequences for beta-tubulin isotype 1 from multiple species of cyathostomin and detection of resistance alleles in third-stage larvae from horses with naturally acquired infections

    PubMed Central

    Lake, Sarah L; Matthews, Jacqueline B; Kaplan, Ray M; Hodgkinson, Jane E

    2009-01-01

    Background Genetic resistance against benzimidazole (BZ) anthelmintics is widespread in cyathostomins, the commonest group of intestinal parasitic nematodes of horses. Studies of BZ-resistant nematodes of sheep, particularly Haemonchus contortus, have indicated that an anthelmintic resistance-conferring T/A polymorphism, encoding an F (phenylalanine) to Y (tyrosine) substitution, in beta-tubulin isotype 1 is present at two loci, codons 167 and 200 (F167Y, F200Y). Recent studies using complementary (c) DNA derived from BZ-susceptible and -resistant cyathostomins identified statistical differences in the frequency of the BZ-resistant A allele at these loci. However, the lack of high-throughput genomic DNA-based detection of polymorphisms limits the study of eggs or larvae from field isolates. In the present study, we report genomic DNA sequences for beta-tubulin isotype 1 from multiple cyathostomin species, thus facilitating the development of pyrosequencing assays to genetically characterize third-stage larvae (L3s) of cyathostomins from mixed-species field isolates. Results Sequence analysis of the beta-tubulin isotype 1 gene in a common species, Cylicocyclus nassatus, indicates a revised genomic structure to published data, revealing that codons 167 and 200 are located on separate exons. A consensus sequence was generated from 91 and 76 individual cyathostomins for the regions spanning codons 167 and 200, respectively. A multi-species genomic DNA-based assay was established to directly pyrosequence individual L3 from field samples of unknown species and BZ sensitivity in a 96-well plate. In this format, the assay to detect F167Y gave a 50-90% success rate. The optimisation of the assay at codon 200 is currently underway. Subsequently, the genotype at F167Y was determined for 241 L3s, collected prior to and after BZ treatment. These results demonstrated a reduction in the heterozygous genotype, TTC/TAC, and an increase in the homozygous resistant genotype TAC

  16. Treatment of cutaneous larva migrans.

    PubMed

    Caumes, E

    2000-05-01

    Cutaneous larva migrans caused by the larvae of animal hookworms is the most frequent skin disease among travelers returning from tropical countries. Complications (impetigo and allergic reactions), together with the intense pruritus and the significant duration of the disease, make treatment mandatory. Freezing the leading edge of the skin track rarely works. Topical treatment of the affected area with 10%-15% thiabendazole solution or ointment has limited value for multiple lesions and hookworm folliculitis, and requires applications 3 times a day for at least 15 days. Oral thiabendazole is poorly effective when given as a single dose (cure rate, 68%-84%) and is less well tolerated than either albendazole or ivermectin. Treatment with a single 400-mg oral dose of albendazole gives cure rates of 46%-100%; a single 12-mg oral dose of ivermectin gives cure rates of 81%-100%. PMID:10816151

  17. ERIC-PCR genotyping of paenibacillus larvae in southern Italian honey and brood combs.

    PubMed

    Di Pinto, Angela; Novello, Lucia; Terio, Valentina; Tantillo, Giuseppina

    2011-11-01

    Given the considerable economic loss to beekeepers worldwide and the possible public health implications related to the presence of antibiotics in honey, an American Foulbrood (AFB) monitoring/prevention program for Paenibacillus larvae is regarded as essential. This study investigates the occurrence and distribution of P. larvae genotypes in honey and brood combs from Apulia (Italy). Genotyping of P. larvae isolates using ERIC-PCR generated a total of four different ERIC banding patterns (ERIC-A, ERIC-B, ERIC-C, ERIC-D), including fragments ranging from 200 to 3000 bp. Considering that the genotype has an influence on P. larvae infections and multi-genotype infections of colonies or apiaries may increase the complexity of P. larvae infections by influencing the type and speed of the development of clinical symptoms, the findings of the present study could be helpful for training veterinarians, bee inspector's extension staff, and beekeepers, thus improving the detection of AFB infections in the field. PMID:21853316

  18. How the pilidium larva grows

    PubMed Central

    2014-01-01

    Background For animal cells, ciliation and mitosis appear to be mutually exclusive. While uniciliated cells can resorb their cilium to undergo mitosis, multiciliated cells apparently can never divide again. Nevertheless, many multiciliated epithelia in animals must grow or undergo renewal. The larval epidermis in a number of marine invertebrate larvae, such as those of annelids, mollusks and nemerteans, consists wholly or in part of multiciliated epithelial cells, generally organized into a swimming and feeding apparatus. Many of these larvae must grow substantially to reach metamorphosis. Do individual epithelial cells simply expand to accommodate an increase in body size, or are there dividing cells amongst them? If some cells divide, where are they located? Results We show that the nemertean pilidium larva, which is almost entirely composed of multiciliated cells, retains pockets of proliferative cells in certain regions of the body. Most of these are found near the larval ciliated band in the recesses between the larval lobes and lappets, which we refer to as axils. Cells in the axils contribute both to the growing larval body and to the imaginal discs that form the juvenile worm inside the pilidium. Conclusions Our findings not only explain how the almost-entirely multiciliated pilidium can grow, but also demonstrate direct coupling of larval and juvenile growth in a maximally-indirect life history. PMID:24690541

  19. Larval viability and serological response in horses with long term Trichinella infection.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, 35 horses were infected with 1000, 5000, or 10,000 T. spiralis muscle larvae and the course of infection was followed for 1 year. Larval burdens in selected muscles, the condition and infectivity of larvae in tissue, and the serological response of infected horses were assessed. The ...

  20. Spread of equine lungworm (Dictyocaulus arnfieldi) larvae from faeces by Pilobolus fungi.

    PubMed

    Jørgensen, R J; Andersen, S

    1984-01-01

    Between 10 and 25% of the Dictyocaulus arnfieldi larvae excreted in faeces from a naturally infected donkey were harvested as infective stages from faecal cultures by means of Pilobolus fungi. The faeces were collected between 24 and 56 hours after drenching the donor animal with Pilobolus spores and kept at 16 +/- 2 degrees C. Most larvae were collected between the 5th and the 8th day of culturing during which period fructification and sporangium discharge also peaked. The sporangia and the adhering larvae were collected in Petri dishes inserted between the faecal mass and a light source. All recovered larvae were viable. A mean larval length of 368 microns (range 312-440 microns) and width of 14.6 microns (range 12-20 microns) was recorded for the infective stage. The method was found suitable for the recovery of infective stages for experimental purposes. The authors suggest that the Pilobolus mechanism play an important part in the spread of equine lungworm infection under field conditions similar to the situation in bovine lungworm (Dictyocaulus viviparus) infection. PMID:6235481

  1. Identification of Nanopillars on the Cuticle of the Aquatic Larvae of the Drone Fly (Diptera: Syrphidae).

    PubMed

    Hayes, Matthew J; Levine, Timothy P; Wilson, Roger H

    2016-01-01

    Here, we describe a nano-scale surface structure on the rat-tailed maggot, the aquatic larva of the Drone fly Eristalis tenax(L.). Larvae of this syrphid hover fly live in stagnant, anaerobic water-courses that are rich in organic matter. The larvae burrow into fetid slurry and feed on microorganisms which they filter out from the organic material. This environment is rich in bacteria, fungi and algae with the capacity to form biofilms that might develop on the larval surface and harm them. Using transmission and scanning electron microscopy we have identified an array of slender (typically < 100 nm in diameter) nanopillars that cover the surface of the larvae. The high density and dimensions of these spine-like projections appear to make it difficult for bacteria to colonize the surface of the animal. This may interfere with the formation of biofilms and potentially act as a defence against bacterial infection. PMID:27030395

  2. Identification of Nanopillars on the Cuticle of the Aquatic Larvae of the Drone Fly (Diptera: Syrphidae)

    PubMed Central

    Hayes, Matthew J.; Levine, Timothy P.; Wilson, Roger H.

    2016-01-01

    Here, we describe a nano-scale surface structure on the rat-tailed maggot, the aquatic larva of the Drone fly Eristalis tenax (L.). Larvae of this syrphid hover fly live in stagnant, anaerobic water-courses that are rich in organic matter. The larvae burrow into fetid slurry and feed on microorganisms which they filter out from the organic material. This environment is rich in bacteria, fungi and algae with the capacity to form biofilms that might develop on the larval surface and harm them. Using transmission and scanning electron microscopy we have identified an array of slender (typically < 100 nm in diameter) nanopillars that cover the surface of the larvae. The high density and dimensions of these spine-like projections appear to make it difficult for bacteria to colonize the surface of the animal. This may interfere with the formation of biofilms and potentially act as a defence against bacterial infection. PMID:27030395

  3. Immunity to Trichinella spiralis muscle infection

    PubMed Central

    Fabre, M.V.; Beiting, D.P.; Bliss, S.K.; Appleton, J.A.

    2009-01-01

    Trichinella spiralis larvae establish chronic infections in skeletal muscles of immunocompetent hosts. Muscle infection is crucial to transmission and survival of the parasite in nature. Chronic infections by this highly immunogenic parasite are associated with modulation or escape from potentially destructive immune responses. This review summarizes our current knowledge of immunity to muscle infection with T. spiralis. PMID:19070961

  4. Low positive predictive value of anti-Brugia malayi IgG and IgG4 serology for the diagnosis of Wuchereria bancrofti.

    PubMed

    Chanteau, S; Glaziou, P; Moulia-Pelat, J P; Plichart, C; Luquiaud, P; Cartel, J L

    1994-01-01

    Enzyme-linked immunosorbent assays (ELISAs) for anti-Brugia malayi immunoglobulin (Ig) G and IgG4 were evaluated on sera from 1561 subjects in French Polynesia for the serodiagnosis of Wuchereria bancrofti filariasis, compared with the test for Onchocerca gibsoni circulating antigen (Og4C3) as a 'gold standard'. The sensitivity of the ELISA-IgG and ELISA-IgG4 assays was 90.8% and 94.5%, and the specificity was 45.9% and 50.7%. The positive predictive values were 41% and 45% respectively for an antigen prevalence rate of 30%. Thus antibody prevalences exceeded by two-fold the antigen prevalence, which itself exceeded by two-fold the prevalence of microfilaraemia. PMID:7886763

  5. Molecular identification of anisakid nematodes third stage larvae isolated from common squid ( Todarodes pacificus) in Korea

    NASA Astrophysics Data System (ADS)

    Setyobudi, Eko; Jeon, Chan-Hyeok; Choi, Kwangho; Lee, Sung Il; Lee, Chung Il; Kim, Jeong-Ho

    2013-06-01

    The occurrence of Genus Anisakis nematode larvae in marine fishes and cephalopods is epidemiologically important because Anisakis simplex larval stage can cause a clinical disease in humans when infected hosts are consumed raw. Common squid ( Todarodes pacificus) from Korean waters were investigated for anisakid nematodes infection during 2009˜2011. In total, 1,556 larvae were collected from 615 common squids and 732 of them were subsequently identified by PCR-RFLP analysis of ITS rDNA. Depending on the sampling locations, the nematode larvae from common squid showed different prevalence, intensity and species distribution. A high prevalence (P) and mean intensity (MI) of infection were observed in the Yellow Sea (n = 250, P = 86.0%, MI = 5.99 larvae/host) and the southern sea of Korea (n = 126, P = 57.1%, MI = 3.36 larvae/host). Anisakis pegreffii was dominantly found in common squid from the southern sea (127/ 140, 90.7%) and the Yellow Sea (561/565, 98.9%). In contrast, the P and MI of infection were relatively low in the East Sea (n = 239, P = 8.37%, MI = 1.25 larvae/host). A. pegreffii was not found from the East Sea and 52.0% (13/25) of the nematodes were identified as A. simplex. Most of them were found in the body cavity or digestive tract of common squid, which are rarely consumed raw by humans. Considering the differenences in anisakid nematode species distribution and their microhabitat in common squid, it remains unclear whether common squid plays an important role in the epidemiology of human anisakis infection in Korea. Further extensive identification of anisakid nematodes in common squid, with geographical and seasonal information will be necessary.

  6. Homology Modeling of NAD+-Dependent DNA Ligase of the Wolbachia Endosymbiont of Brugia malayi and Its Drug Target Potential Using Dispiro-Cycloalkanones

    PubMed Central

    Shrivastava, Nidhi; Nag, Jeetendra K.; Pandey, Jyoti; Tripathi, Rama Pati; Shah, Priyanka; Siddiqi, Mohammad Imran

    2015-01-01

    Lymphatic filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia. Depletion of Wolbachia produces profound defects in nematode development, fertility, and viability and thus has great promise as a novel approach for treating filarial diseases. NAD+-dependent DNA ligase is an essential enzyme of DNA replication, repair, and recombination. Therefore, in the present study, the antifilarial drug target potential of the NAD+-dependent DNA ligase of the Wolbachia symbiont of Brugia malayi (wBm-LigA) was investigated using dispiro-cycloalkanone compounds. Dispiro-cycloalkanone specifically inhibited the nick-closing and cohesive-end ligation activities of the enzyme without inhibiting human or T4 DNA ligase. The mode of inhibition was competitive with the NAD+ cofactor. Docking studies also revealed the interaction of these compounds with the active site of the target enzyme. The adverse effects of these inhibitors were observed on adult and microfilarial stages of B. malayi in vitro, and the most active compounds were further monitored in vivo in jirds and mastomys rodent models. Compounds 1, 2, and 5 had severe adverse effects in vitro on the motility of both adult worms and microfilariae at low concentrations. Compound 2 was the best inhibitor, with the lowest 50% inhibitory concentration (IC50) (1.02 μM), followed by compound 5 (IC50, 2.3 μM) and compound 1 (IC50, 2.9 μM). These compounds also exhibited the same adverse effect on adult worms and microfilariae in vivo (P < 0.05). These compounds also tremendously reduced the wolbachial load, as evident by quantitative real-time PCR (P < 0.05). wBm-LigA thus shows great promise as an antifilarial drug target, and dispiro-cycloalkanone compounds show great promise as antifilarial lead candidates. PMID:25845868

  7. Cloning, expression and characterization of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from Wolbachia endosymbiont of human lymphatic filarial parasite Brugia malayi.

    PubMed

    Shahab, Mohd; Verma, Meenakshi; Pathak, Manisha; Mitra, Kalyan; Misra-Bhattacharya, Shailja

    2014-01-01

    Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for treatment of lymphatic filariasis. Although functional characterization of the Wolbachia peptidoglycan assembly has not been fully explored, the Wolbachia genome provides evidence for coding all of the genes involved in lipid II biosynthesis, a part of peptidoglycan biosynthesis pathway. UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is one of the lipid II biosynthesis pathway enzymes and it has inevitably been recognized as an antibiotic target. In view of the vital role of MurA in bacterial viability and survival, MurA ortholog from Wolbachia endosymbiont of Brugia malayi (wBm-MurA) was cloned, expressed and purified for further molecular characterization. The enzyme kinetics and inhibition studies were undertaken using fosfomycin. wBm-MurA was found to be expressed in all the major life stages of B. malayi and was immunolocalized in Wolbachia within the microfilariae and female adults by the confocal microscopy. Sequence analysis suggests that the amino acids crucial for enzymatic activity are conserved. The purified wBm-MurA was shown to possess the EPSP synthase (3-phosphoshikimate 1-carboxyvinyltransferase) like activity at a broad pH range with optimal activity at pH 7.5 and 37°C temperature. The apparent affinity constant (Km) for the substrate UDP-N-acetylglucosamine was found to be 0.03149 mM and for phosphoenolpyruvate 0.009198 mM. The relative enzymatic activity was inhibited ∼2 fold in presence of fosfomycin. Superimposition of the wBm-MurA homology model with the structural model of Haemophilus influenzae (Hi-MurA) suggests binding of fosfomycin at the same active site. The findings suggest wBm-MurA to be a putative antifilarial drug target for screening of novel compounds. PMID:24941309

  8. Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae.

    PubMed

    Ebeling, Julia; Knispel, Henriette; Hertlein, Gillian; Fünfhaus, Anne; Genersch, Elke

    2016-09-01

    The gram-positive bacterium Paenibacillus larvae is the etiological agent of American Foulbrood of honey bees, a notifiable disease in many countries. Hence, P. larvae can be considered as an entomopathogen of considerable relevance in veterinary medicine. P. larvae is a highly specialized pathogen with only one established host, the honey bee larva. No other natural environment supporting germination and proliferation of P. larvae is known. Over the last decade, tremendous progress in the understanding of P. larvae and its interactions with honey bee larvae at a molecular level has been made. In this review, we will present the recent highlights and developments in P. larvae research and discuss the impact of some of the findings in a broader context to demonstrate what we can learn from studying "exotic" pathogens. PMID:27394713

  9. Taste processing in Drosophila larvae

    PubMed Central

    Apostolopoulou, Anthi A.; Rist, Anna; Thum, Andreas S.

    2015-01-01

    The sense of taste allows animals to detect chemical substances in their environment to initiate appropriate behaviors: to find food or a mate, to avoid hostile environments and predators. Drosophila larvae are a promising model organism to study gustation. Their simple nervous system triggers stereotypic behavioral responses, and the coding of taste can be studied by genetic tools at the single cell level. This review briefly summarizes recent progress on how taste information is sensed and processed by larval cephalic and pharyngeal sense organs. The focus lies on several studies, which revealed cellular and molecular mechanisms required to process sugar, salt, and bitter substances. PMID:26528147

  10. Single stimulus learning in zebrafish larvae.

    PubMed

    O'Neale, Ashley; Ellis, Joseph; Creton, Robbert; Colwill, Ruth M

    2014-02-01

    Learning about a moving visual stimulus was examined in zebrafish larvae using an automated imaging system and a t1-t2 design. In three experiments, zebrafish larvae were exposed to one of two inputs at t1 (either a gray bouncing disk or an identical but stationary disk) followed by a common test at t2 (the gray bouncing disk). Using 7days post-fertilization (dpf) larvae and 12 stimulus exposures, Experiment 1 established that these different treatments produced differential responding to the moving disk during testing. Larvae familiar with the moving test stimulus were significantly less likely to be still in its presence than larvae that had been exposed to the identical but stationary stimulus. Experiment 2 confirmed this result in 7dpf larvae and extended the finding to 5 and 6dpf larvae. Experiment 3 found differential responding to the moving test stimulus with 4 or 8 stimulus exposures but not with just one exposure in 7dpf larvae. These results provide evidence for learning in very young zebrafish larvae. The merits and challenges of the t1-t2 framework to study learning are discussed. PMID:24012906

  11. Evaluation of recombinant CXCL8(3-73)K11R/G31P in muscle fibrosis and Trichinella larvae encapsulation in a murine model of trichinellosis.

    PubMed

    Yan, Wenhui; Li, Fang; Qin, Yuanhua; Ren, Yixin; Zheng, Lili; Dai, Xiaodong; Mao, Weifeng; Cui, Yu

    2016-06-01

    Trichinella spiralis (T. spiralis) larvae in raw or inadequately cooked meat can cause chronic infections in a wide range of hosts including humans. During the development inside the skeletal muscles, T. spiralis larvae infect muscle cells accompanying with the infiltration of host inflammatory cells, eventually create a new type of cell known as nurse cell developing a surrounding vascular network to support the larvae development. Controlling of host inflammatory responses and angiogenesis influences both the nurse cell differentiation and the parasite larvae development. CXCL8 is a chemokine that acts on G-protein coupled receptors, of which activation contributes to fibrosis and angiogenesis. CXCL8(3-73)K11R/G31P (G31P) has been reported as a CXCL8 analogue. The aim of this study is to investigate the effect of G31P in inflammatory responses and the development of T. spiralis larvae in muscle tissues of mice infected with T. spiralis. The level of inflammatory factors and the morphology of T. spiralis larvae in infected tissues were investigated through ELISA and electron-microscopy analysis. G31P up-regulated IFN-γ and down-regulated CXCL8 level, and impaired the encapsulation of T. spiralis larvae in vivo. The results showed that G31P influenced the development of T. spiralis larvae in muscle tissues. PMID:27089392

  12. Ganzfeld ERG in zebrafish larvae.

    PubMed

    Seeliger, Mathias W; Rilk, Albrecht; Neuhauss, Stephan C F

    2002-01-01

    In developmental biology, zebrafish are widely used to study the impact of mutations. The fast pace of development allows for a definitive morphological evaluation of the phenotype usually 5 days post fertilization (dpf). At that age, a functional analysis is already feasible using electroretinographic (ERG) methods. Corneal Ganzfeld ERGs were recorded with a glass microelectrode in anaesthetized, dark-adapted larvae aged 5 dpf, using a platinum wire beneath a moist paper towel as reference. ERG protocols included flash, flicker, and ON/OFF stimuli, both under scotopic and photopic conditions. Repetitive, isoluminant stimuli were used to assess the dynamic effect of pharmacological agents on the ERG. Single flash, flicker, and ON/OFF responses had adequately matured at this point to be informative. Typical signs of the cone dominance were the small scotopic a-wave and the large OFF responses. The analysis of consecutive single traces was possible because of the lack of EKG, breathing, and blink artefacts. After application of APB, which selectively blocks the ON channel via the mGluR6 receptor, the successive loss of the b-wave could be observed, which was quite different from the deterioration of the ERG after a circulatory arrest. The above techniques allowed to reliably obtain Ganzfeld ERGs in larvae aged 5 dpf. This underlines the important role of the zebrafish as a model for the functional analysis of mutations disrupting the visual system. PMID:11949809

  13. Bacterial, but not Baculoviral Infections Stimulate Hemolin Expression in Noctuid Moths

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lepidopteran larvae are regularly infected by baculoviruses during feeding on infected plants. The differences in sensitivity to these infections can be substantial, even among closely related species. For example, the noctuids Cotton bollworm (Helicoverpa zea) and Tobacco budworm (Heliothis vires...

  14. Bacterial but not Baculoviral Infections Stimulate Hemolin Expression in Helicoverpa zea and Heliothis virescens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lepidopteran larvae are regularly infected by baculoviruses during feeding on infected plants. The differences in sensitivity to these infections can be substantial, even among closely related species. For example, the noctuids Cotton bollworm (Helicoverpa zea) and budworm (Heliothis virescens), whi...

  15. Larval migration of the ascarid nematode Toxocara canis following infection and re-infection in the gerbil Meriones unguiculatus.

    PubMed

    Flecher, M C; Musso, C; Martins, I V F; Pereira, F E L

    2016-09-01

    A morphological and immunohistochemical study of larval migration patterns was performed in gerbils that were infected once (primary infected group) or twice (secondary infected group) with 1500 eggs of Toxocara canis. Animals from the primary infected and the re-infected group were killed at different times after infection, and larvae were counted in the intestines, liver, lungs and brain. Fragments of all organs were formalin fixed and paraffin embedded for histology and immunohistochemistry analyses (using polyclonal anti-Toxocara serum raised in rabbits infected with T. canis). In the primary infected group, larvae were more abundant in the intestine at 24 h, in the liver and lungs between 24 and 72 h and in the brain after 96 h; larvae predominated in the brain for up to 60 days after infection. In the re-infected group, an increase in the number of larvae in the liver and a reduction in the number of larvae in the brain was observed up to 60 days after re-infection. Inflammatory reactions were absent or limited. Eosinophils and loose granulomata were observed around the larvae and their antigens in the primary infected group and were more severe. Many eosinophils and typical epithelioid granulomata were observed around larvae in the re-infected group. These results demonstrate that the migration pattern of T. canis larvae in gerbils is similar to that in mice and rats, exhibiting a late neurotropic stage. In the re-infected group, there was histological evidence of an adaptive T-helper 2 (Th-2) response, and larvae were apparently retained within granulomata in the liver, without obvious signs of destruction. PMID:26337823

  16. Lobesia botrana larvae develop faster in the presence of parasitoids.

    PubMed

    Vogelweith, Fanny; Moret, Yannick; Thiery, Denis; Moreau, Jérôme

    2013-01-01

    To combat parasitism hosts often rely on their immune system, which is the last line of defense. However, the immune system may not always be effective, and other non-immunological defenses might be favored to reduce the cost of parasite infection. Here we report that larvae of the moth Lobesia botrana can rapidly accelerate their development and reach maturity earlier in response to cues perceived at a distance from parasitoids. Such a phenotypically plastic life history shift, induced by the perception of deadly enemies in the environment, is likely to be an adaptive defensive strategy to prevent parasitoid attack, and has important implications in host-parasite dynamics. PMID:24015260

  17. Workbook on Identification of Aedes Aegypti Larvae.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; And Others

    This self-instructional booklet is designed to enable yellow fever control workers to identify the larvae of "Aedes aegypti." The morphological features of mosquito larvae are illustrated in this partially programed text, and the distinguishing features of "A. aegypti" indicated. A glossary is included. (AL)

  18. Molecular Genotyping of Anisakis Larvae in Middle Eastern Japan and Endoscopic Evidence for Preferential Penetration of Normal over Atrophic Mucosa

    PubMed Central

    Arai, Toshio; Akao, Nobuaki; Seki, Takenori; Kumagai, Takashi; Ishikawa, Hirofumi; Ohta, Nobuo; Hirata, Nobuto; Nakaji, So; Yamauchi, Kenji; Hirai, Mitsuru; Shiratori, Toshiyasu; Kobayashi, Masayoshi; Fujii, Hiroyuki; Ishii, Eiji; Naito, Mikio; Saitoh, Shin-ichi; Yamaguchi, Toshikazu; Shibata, Nobumitsu; Shimo, Masamune; Tokiwa, Toshihiro

    2014-01-01

    Background Anisakiasis is a parasitic disease caused primarily by Anisakis spp. larvae in Asia and in Western countries. The aim of this study was to investigate the genotype of Anisakis larvae endoscopically removed from Middle Eastern Japanese patients and to determine whether mucosal atrophy affects the risk of penetration in gastric anisakiasis. Methods In this study, 57 larvae collected from 44 patients with anisakiasis (42 gastric and 2 colonic anisakiasis) were analyzed retrospectively. Genotyping was confirmed by restriction fragment length polymorphism (RFLP) analysis of ITS regions and by sequencing the mitochondrial small subunit (SSU) region. In the cases of gastric anisakiasis, correlation analyses were conducted between the frequency of larval penetration in normal/atrophic area and the manifestation of clinical symptoms. Results Nearly all larvae were A. simplex seusu stricto (s.s.) (99%), and one larva displayed a hybrid genotype. The A. simplex larvae penetrated normal mucosa more frequently than atrophic area (p = 0.005). Finally, patients with normal mucosa infection were more likely to exhibit clinical symptoms than those with atrophic mucosa infection (odds ratio, 6.96; 95% confidence interval, 1.52–31.8). Conclusions In Japan, A. simplex s.s. is the main etiological agent of human anisakiasis and tends to penetrate normal gastric mucosa. Careful endoscopic examination of normal gastric mucosa, particularly in the greater curvature of the stomach will improve the detection of Anisakis larvae. PMID:24586583

  19. Recombinant antigen-based enzyme-linked immunosorbent assay for diagnosis of Baylisascaris procyonis larva migrans.

    PubMed

    Dangoudoubiyam, Sriveny; Vemulapalli, Ramesh; Ndao, Momar; Kazacos, Kevin R

    2011-10-01

    Baylisascaris larva migrans is an important zoonotic disease caused by Baylisascaris procyonis, the raccoon roundworm, and is being increasingly considered in the differential diagnosis of eosinophilic meningoencephalitis in children and young adults. Although a B. procyonis excretory-secretory (BPES) antigen-based enzyme-linked immunosorbent assay (ELISA) and a Western blot assay are useful in the immunodiagnosis of this infection, cross-reactivity remains a major problem. Recently, a recombinant B. procyonis antigen, BpRAG1, was reported for use in the development of improved serological assays for the diagnosis of Baylisascaris larva migrans. In this study, we tested a total of 384 human patient serum samples in a BpRAG1 ELISA, including samples from 20 patients with clinical Baylisascaris larva migrans, 137 patients with other parasitic infections (8 helminth and 4 protozoan), and 227 individuals with unknown/suspected parasitic infections. A sensitivity of 85% and a specificity of 86.9% were observed with the BpRAG1 ELISA, compared to only 39.4% specificity with the BPES ELISA. In addition, the BpRAG1 ELISA had a low degree of cross-reactivity with antibodies to Toxocara infection (25%), while the BPES antigen showed 90.6% cross-reactivity. Based on these results, the BpRAG1 antigen has a high degree of sensitivity and specificity and should be very useful and reliable in the diagnosis and seroepidemiology of Baylisascaris larva migrans by ELISA. PMID:21832102

  20. Recirculating elutriator for extracting gastrointestinal nematode larvae from pasture herbage samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gastrointestinal nematode parasites present an important limitation to ruminant production worldwide. Methods for quantifying infective larvae of GIN on pastures are generally tedious, time-consuming, and require bulky equipment set-ups. This limitation to expedient data collection is a bottleneck...

  1. Occurrence of viral pathogens in Penaeus monodon post-larvae from aquaculture hatcheries.

    PubMed

    Joseph, Toms C; James, Roswin; Anbu Rajan, L; Surendran, P K; Lalitha, K V

    2015-09-01

    Viral pathogens appear to exert the most significant constraints on the growth and survival of crustaceans under culture conditions. The prevalence of viral pathogens White Spot Syndrome Virus (WSSV), Hepatopancreatic Parvo Virus (HPV), Monodon Baculo Virus (MBV) and Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV) in Penaeus monodon post-larvae was studied. Samples collected from different hatcheries and also samples submitted by farmers from Kerala were analyzed. Out of 104 samples collected, WSSV was detected in 12.5% of the post-larvae samples. Prevalence of concurrent infections by HPV, MBV and WSSV (either dual or triple infection) was present in 60.6% of the total post-larvae tested. Out of the 51 double positives, 98% showed either HPV or IHHNV infection. HPV or IHHNV was detected in 11 post-larval samples showing triple viral infection. This is the first report of IHHNV from India. Result of this study reveals the lack of efficient screening strategies to eradicate viruses in hatchery reared post-larvae. PMID:26217783

  2. Occurrence of viral pathogens in Penaeus monodon post-larvae from aquaculture hatcheries

    PubMed Central

    Joseph, Toms C.; James, Roswin; Anbu Rajan, L.; Surendran, P.K.; Lalitha, K.V.

    2015-01-01

    Viral pathogens appear to exert the most significant constraints on the growth and survival of crustaceans under culture conditions. The prevalence of viral pathogens White Spot Syndrome Virus (WSSV), Hepatopancreatic Parvo Virus (HPV), Monodon Baculo Virus (MBV) and Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV) in Penaeus monodon post-larvae was studied. Samples collected from different hatcheries and also samples submitted by farmers from Kerala were analyzed. Out of 104 samples collected, WSSV was detected in 12.5% of the post-larvae samples. Prevalence of concurrent infections by HPV, MBV and WSSV (either dual or triple infection) was present in 60.6% of the total post-larvae tested. Out of the 51 double positives, 98% showed either HPV or IHHNV infection. HPV or IHHNV was detected in 11 post-larval samples showing triple viral infection. This is the first report of IHHNV from India. Result of this study reveals the lack of efficient screening strategies to eradicate viruses in hatchery reared post-larvae. PMID:26217783

  3. Molecular Identification of Zoonotic Tissue-Invasive Tapeworm Larvae Other than Taenia solium in Suspected Human Cysticercosis Cases.

    PubMed

    Tappe, Dennis; Berkholz, Jörg; Mahlke, Uwe; Lobeck, Hartmut; Nagel, Thomas; Haeupler, Alexandra; Muntau, Birgit; Racz, Paul; Poppert, Sven

    2016-01-01

    Rarely, zoonotic Taenia species other than Taenia solium cause human cysticercosis. The larval stages are morphologically often indistinguishable. We therefore investigated 12 samples of suspected human cysticercosis cases at the molecular level and surprisingly identified one Taenia crassiceps and one Taenia serialis (coenurosis) infection, which were caused by tapeworm larvae normally infecting rodents and sheep via eggs released from foxes and dogs. PMID:26491175

  4. Molecular Identification of Zoonotic Tissue-Invasive Tapeworm Larvae Other than Taenia solium in Suspected Human Cysticercosis Cases

    PubMed Central

    Tappe, Dennis; Berkholz, Jörg; Mahlke, Uwe; Lobeck, Hartmut; Nagel, Thomas; Haeupler, Alexandra; Muntau, Birgit; Racz, Paul

    2015-01-01

    Rarely, zoonotic Taenia species other than Taenia solium cause human cysticercosis. The larval stages are morphologically often indistinguishable. We therefore investigated 12 samples of suspected human cysticercosis cases at the molecular level and surprisingly identified one Taenia crassiceps and one Taenia serialis (coenurosis) infection, which were caused by tapeworm larvae normally infecting rodents and sheep via eggs released from foxes and dogs. PMID:26491175

  5. Larva migrans by Baylisascaris transfuga: fatal neurological diseases in Mongolian jirds, but not in mice.

    PubMed

    Sato, Hiroshi; Matsuo, Kayoko; Osanai, Arihiro; Kamiya, Haruo; Akao, Nobuaki; Owaki, Shigeo; Furuoka, Hidefumi

    2004-08-01

    Raccoon roundworms (Baylisascaris procyonis) and other Baylisascaris species cause patent or latent larva migrans (LM) in a variety of mammals and birds, including humans. It is not clear whether LM by Baylisascaris transfuga, roundworms of bears, is associated with clinical neurological disorders. To clarify this issue, ICR and BALB/c mice as well as Mongolian jirds (Meriones unguiculatus) were orally inoculated with 2,000-5,000 embryonated eggs of B. transfuga. In mice, the ascarid caused symptomatic LM of limited extent and duration, whereas the infection was fatal in jirds; i.e., they exhibited general signs such as severe depression and emaciation on days 8-11 postinfection (PI) and died, or they developed progressive and fatal neurological disorders after day 14 PI. Histological examination showed B. transfuga larvae in the brain of all mice and jirds examined, and the larvae collected from them developed to a size comparable with that of B. procyonis. There existed, however, critical differences in host reactions against larvae localized in the brain of mice and jirds; B. transfuga larvae found in mice were surrounded by granulomatous reactions and immobilized, whereas larvae found in jirds were free from any host reaction and mobile, causing extensive malacia. PMID:15357068

  6. First Case Report of Canthariasis in an Infant Caused by the Larvae of Lasioderma serricorne (Coleoptera: Anobiidae)

    PubMed Central

    Mokhtar, Aida Syafinaz; Sridhar, Ganiga Srinivasaiah; Mahmud, Rohela; Jeffery, John; Lau, Yee Ling; Wilson, John-James; Abdul-Aziz, Noraishah Mydin

    2016-01-01

    We report an unusual cause of gastrointestinal infection occurring in a 1-year-old infant patient who was brought to a public hospital in Kuala Lumpur, Malaysia. Larvae passed out in the patient’s feces were confirmed by DNA barcoding as belonging to the species, Lasioderma serricorne (F.), known as the cigarette beetle. We postulate that the larvae were acquired from contaminated food and were responsible for gastrointestinal symptoms in the patient. To our knowledge, this the first report of human canthariasis caused by larvae of L. serricorne. PMID:27208008

  7. Isolation and characterization of a novel phage lysin active against Paenibacillus larvae, a honeybee pathogen

    PubMed Central

    LeBlanc, Lucy; Nezami, Sara; Yost, Diane; Tsourkas, Philippos; Amy, Penny S

    2015-01-01

    Paenibacillus larvae is the causative agent of American foulbrood (AFB) disease which affects early larval stages during honeybee development. Due to its virulence, transmissibility, capacity to develop antibiotic resistance, and the inherent resilience of its endospores, Paenibacillus larvae is extremely difficult to eradicate from infected hives which often must be burned. AFB contributes to the worldwide decline of honeybee populations, which are crucial for pollination and the food supply. We have isolated a novel bacteriophage lysin, PlyPalA, from the genome of a novel Paenibacillus larvae bacteriophage originally extracted from an environmental sample. PlyPalA has an N-terminal N-acetylmuramoyl-L-alanine amidase catalytic domain and possesses lytic activity against infectious strains of Paenibacillus larvae without harming commensal bacteria known to compose the honeybee larval microbiota. A single dose of PlyPalA rescued 75% of larvae infected with endospores, showing that it represents a powerful tool for future treatment of AFB. This represents the first time that lysins have been tested for therapeutic use in invertebrates. PMID:26904379

  8. Mass Death of Predatory Carp, Chanodichthys erythropterus, Induced by Plerocercoid Larvae of Ligula intestinalis (Cestoda: Diphyllobothriidae).

    PubMed

    Sohn, Woon-Mok; Na, Byoung-Kuk; Jung, Soo Gun; Kim, Koo Hwan

    2016-06-01

    We describe here the mass death of predatory carp, Chanodichthys erythropterus, in Korea induced by plerocercoid larvae of Ligula intestinalis as a result of host manipulation. The carcasses of fish with ligulid larvae were first found in the river-edge areas of Chilgok-bo in Nakdong-gang (River), Korea at early February 2016. This ecological phenomena also occurred in the adjacent areas of 3 dams of Nakdong-gang, i.e., Gangjeong-bo, Dalseong-bo, and Hapcheon-Changnyeong-bo. Total 1,173 fish carcasses were collected from the 4 regions. To examine the cause of death, we captured 10 wondering carp in the river-edge areas of Hapcheon-Changnyeong-bo with a landing net. They were 24.0-28.5 cm in length and 147-257 g in weight, and had 2-11 plerocercoid larvae in the abdominal cavity. Their digestive organs were slender and empty, and reproductive organs were not observed at all. The plerocercoid larvae occupied almost all spaces of the abdominal cavity under the air bladders. The proportion of larvae per fish was 14.6-32.1% of body weight. The larvae were ivory-white, 21.5-63.0 cm long, and 6.0-13.8 g in weight. We suggest that the preference for the river-edge in infected fish during winter is a modified behavioral response by host manipulation of the tapeworm larvae. The life cycle of this tapeworm seems to be successfully continued as the infected fish can be easily eaten by avian definitive hosts. PMID:27417095

  9. Mass Death of Predatory Carp, Chanodichthys erythropterus, Induced by Plerocercoid Larvae of Ligula intestinalis (Cestoda: Diphyllobothriidae)

    PubMed Central

    Sohn, Woon-Mok; Na, Byoung-Kuk; Jung, Soo Gun; Kim, Koo Hwan

    2016-01-01

    We describe here the mass death of predatory carp, Chanodichthys erythropterus, in Korea induced by plerocercoid larvae of Ligula intestinalis as a result of host manipulation. The carcasses of fish with ligulid larvae were first found in the river-edge areas of Chilgok-bo in Nakdong-gang (River), Korea at early February 2016. This ecological phenomena also occurred in the adjacent areas of 3 dams of Nakdong-gang, i.e., Gangjeong-bo, Dalseong-bo, and Hapcheon-Changnyeong-bo. Total 1,173 fish carcasses were collected from the 4 regions. To examine the cause of death, we captured 10 wondering carp in the river-edge areas of Hapcheon-Changnyeong-bo with a landing net. They were 24.0-28.5 cm in length and 147-257 g in weight, and had 2-11 plerocercoid larvae in the abdominal cavity. Their digestive organs were slender and empty, and reproductive organs were not observed at all. The plerocercoid larvae occupied almost all spaces of the abdominal cavity under the air bladders. The proportion of larvae per fish was 14.6-32.1% of body weight. The larvae were ivory-white, 21.5-63.0 cm long, and 6.0-13.8 g in weight. We suggest that the preference for the river-edge in infected fish during winter is a modified behavioral response by host manipulation of the tapeworm larvae. The life cycle of this tapeworm seems to be successfully continued as the infected fish can be easily eaten by avian definitive hosts. PMID:27417095

  10. Utility of Greater Wax Moth Larva (Galleria mellonella) for Evaluating the Toxicity and Efficacy of New Antimicrobial Agents.

    PubMed

    Desbois, Andrew P; Coote, Peter J

    2012-01-01

    There is an urgent need for new antimicrobial agents to combat infections caused by drug-resistant pathogens. Once a compound is shown to be effective in vitro, it is necessary to evaluate its efficacy in an animal infection model. Typically, this is achieved using a mammalian model, but such experiments are costly, time consuming, and require full ethical consideration. Hence, cheaper and ethically more acceptable invertebrate models of infection have been introduced, including the larvae of the greater wax moth Galleria mellonella. Invertebrates have an immune system that is functionally similar to the innate immune system of mammals, and often identical virulence and pathogenicity factors are used by human pathogenic microbes to infect wax moth larvae and mammals. Moreover, the virulence of many human pathogens is comparable in wax moth larvae and mammals. Using key examples from the literature, this chapter highlights the benefits of using the wax moth larva model to provide a rapid, inexpensive, and reliable evaluation of the toxicity and efficacy of new antimicrobial agents in vivo and prior to the use of more expensive mammalian models. This simple insect model can bridge the gap between in vitro studies and mammalian experimentation by screening out compounds with a low likelihood of success, while providing greater justification for further studies in mammalian systems. Thus, broader implementation of the wax moth larva model into anti-infective drug discovery and development programs could reduce the use of mammals during preclinical assessments and the overall cost of drug development. PMID:22305092

  11. ELEVATED TRANS-MAMMARY TRANSMISSION OF Toxocara canis LARVAE IN BALB/c MICE

    PubMed Central

    Telmo, Paula de Lima; de Avila, Luciana Farias da Costa; dos Santos, Cristina Araújo; de Aguiar, Patrícia de Souza; Martins, Lourdes Helena Rodrigues; Berne, Maria Elisabeth Aires; Scaini, Carlos James

    2015-01-01

    Toxocariasis is a widespread zoonosis and is considered an important worldwide public health problem. The aim of this study was to investigate the frequency of trans-mammary Toxocara canis infection in newborn BALB/c mice nursed by females experimentally infected with 1,200 eggs after delivery. After 50 days of age, the presence of larvae in different organs of the offspring was investigated. Trans-mammary infection was confirmed in 73.9% of the mice that had been nursed by infected females. These data show a high trans-mammary transmission of T. canis and confirm the significance of this transmission route in paratenic hosts. PMID:25651332

  12. [Cutanous myiasis caused by Sarcophaga spp. larvae in a diabetic patient].

    PubMed

    Demirel Kaya, Filiz; Orkun, Omer; Cakmak, Ayşe; Inkaya, Ahmet Cağkan; Erguven, Sibel

    2014-04-01

    Myiasis is defined as a parasitic infestation of tissues and organs in living vertebrates with dipterous larvae. Infestation with dipterous larvae can occur when flies deposit their eggs or first stage larvae on the host's tissues. Myiasis is seen more frequently in tropical and subtropical countries, especially in rural regions where people are in close contact with animals. Diagnosis of myiasis depends on the demonstration of larvae on the host's tissues or organs. Correct identification of the larvae is important for the initiation of appropriate treatment and establishment of preventive measures. In this report, a case of diabetic wound ulcer complicated with myiasis was presented. A 68 years old male patient with a diabetic wound was admitted to the Hacettepe University Department of Infectious Diseases and Clinical Microbiology, Ankara in July 2013. The patient had a history of insulin-dependent diabetes mellitus over 10 years and hypertension, coronary artery disease and chronic renal failure for several years. His left leg under the knee and his right toe were amputated because of diabetic foot. The infection on his right heel had started as a single, painless ulcer 5 months ago. He had medical advice from a health care provider and used ampicilin-sulbactam for 3 months. However, the wound progressed in spite of the treatment and upon admission to our hospital, he was hospitalized with the diagnosis of diabetic foot ulcer. The C-reactive protein, sedimentation rate, white blood cell count and HbA1c values were found to be high. Piperacillin-tazobactam therapy was started and debridement of necrotic tissue was planned. During the debridement prosedure larvae were observed under the necrotic tissue. Two larvae were collected and delivered to the parasitology laboratory. After morphological examination the larvae washed in distilled water and killed in 70% alcohol and they were taken to the Ankara University Veterinary Faculty, Department of Parasitology for

  13. Mortality Caused by Bath Exposure of Zebrafish (Danio rerio) Larvae to Nervous Necrosis Virus Is Limited to the Fourth Day Postfertilization.

    PubMed

    Morick, Danny; Faigenbaum, Or; Smirnov, Margarita; Fellig, Yakov; Inbal, Adi; Kotler, Moshe

    2015-05-15

    Nervous necrosis virus (NNV) is a member of the Betanodavirus genus that causes fatal diseases in over 40 species of fish worldwide. Mortality among NNV-infected fish larvae is almost 100%. In order to elucidate the mechanisms responsible for the susceptibility of fish larvae to NNV, we exposed zebrafish larvae to NNV by bath immersion at 2, 4, 6, and 8 days postfertilization (dpf). Here, we demonstrate that developing zebrafish embryos are resistant to NNV at 2 dpf due to the protection afforded by the egg chorion and, to a lesser extent, by the perivitelline fluid. The zebrafish larvae succumbed to NNV infection during a narrow time window around the 4th dpf, while 6- and 8-day-old larvae were much less sensitive, with mortalities of 24% and 28%, respectively. PMID:25746990

  14. Mortality Caused by Bath Exposure of Zebrafish (Danio rerio) Larvae to Nervous Necrosis Virus Is Limited to the Fourth Day Postfertilization

    PubMed Central

    Morick, Danny; Faigenbaum, Or; Smirnov, Margarita; Fellig, Yakov; Inbal, Adi

    2015-01-01

    Nervous necrosis virus (NNV) is a member of the Betanodavirus genus that causes fatal diseases in over 40 species of fish worldwide. Mortality among NNV-infected fish larvae is almost 100%. In order to elucidate the mechanisms responsible for the susceptibility of fish larvae to NNV, we exposed zebrafish larvae to NNV by bath immersion at 2, 4, 6, and 8 days postfertilization (dpf). Here, we demonstrate that developing zebrafish embryos are resistant to NNV at 2 dpf due to the protection afforded by the egg chorion and, to a lesser extent, by the perivitelline fluid. The zebrafish larvae succumbed to NNV infection during a narrow time window around the 4th dpf, while 6- and 8-day-old larvae were much less sensitive, with mortalities of 24% and 28%, respectively. PMID:25746990

  15. Directional flow sensing by passively stable larvae.

    PubMed

    Fuchs, Heidi L; Christman, Adam J; Gerbi, Gregory P; Hunter, Elias J; Diez, F Javier

    2015-09-01

    Mollusk larvae have a stable, velum-up orientation that may influence how they sense and react to hydrodynamic signals applied in different directions. Directional sensing abilities and responses could affect how a larva interacts with anisotropic fluid motions, including those in feeding currents and in boundary layers encountered during settlement. Oyster larvae (Crassostrea virginica) were exposed to simple shear in a Couette device and to solid-body rotation in a single rotating cylinder. Both devices were operated in two different orientations, one with the axis of rotation parallel to the gravity vector, and one with the axis perpendicular. Larvae and flow were observed simultaneously with near-infrared particle-image velocimetry, and behavior was quantified as a response to strain rate, vorticity and centripetal acceleration. Only flows rotating about a horizontal axis elicited the diving response observed previously for oyster larvae in turbulence. The results provide strong evidence that the turbulence-sensing mechanism relies on gravity-detecting organs (statocysts) rather than mechanosensors (cilia). Flow sensing with statocysts sets oyster larvae apart from zooplankters such as copepods and protists that use external mechanosensors in sensing spatial velocity gradients generated by prey or predators. Sensing flow-induced changes in orientation, rather than flow deformation, would enable more efficient control of vertical movements. Statocysts provide larvae with a mechanism of maintaining their upward swimming when rotated by vortices and initiating dives toward the seabed in response to the strong turbulence associated with adult habitats. PMID:26333930

  16. Behavior of Settling Marine Larvae in Flow

    NASA Astrophysics Data System (ADS)

    Hernandez, J.; Koehl, M. A.

    2012-12-01

    Many bottom-dwelling marine animals produce microscopic larvae that are dispersed by ambient water currents. These larvae can only recruit to habitats on which they have landed if they can resist being washed away by ambient water flow. We found that larvae on marine surfaces do not experience steady water flow, but rather are exposed to brief pulses of water movement as turbulent eddies sweep across them. We made video recordings of larvae of the tube worm, Hydroides elegans, (important members of the community of organisms growing on docks and ships) on surfaces subjected to measured realistic flow pulses to study factors that might affect their dislodgement from surfaces in nature. We found that the response of a larva of H. elegans to a realistic pulse of water flow depended on its behavior at the time of the pulse and on its recent history of exposure to flow pulses, and that stationary larvae were less likely than locomoting larvae to be blown away when hit by the first pulse of water flow.; ;

  17. Efficiency of bacteriophage therapy against Cronobacter sakazakii in Galleria mellonella (greater wax moth) larvae.

    PubMed

    Abbasifar, Reza; Kropinski, Andrew M; Sabour, Parviz M; Chambers, James R; MacKinnon, Joanne; Malig, Thomas; Griffiths, Mansel W

    2014-09-01

    Cronobacter sakazakii, an opportunistic pathogen found in milk-based powdered infant formulae, has been linked to meningitis in infants, with high fatality rates. A set of phages from various environments were purified and tested in vitro against strains of C. sakazakii. Based on host range and lytic activity, the T4-like phage vB_CsaM_GAP161, which belongs to the family Myoviridae, was selected for evaluation of its efficacy against C. sakazakii. Galleria mellonella larvae were used as a whole-animal model for pre-clinical testing of phage efficiency. Twenty-one Cronobacter strains were evaluated for lethality in G. mellonella larvae. Different strains of C. sakazakii caused 0 to 98% mortality. C. sakazakii 3253, with an LD50 dose of ~2.0×10(5) CFU/larva (24 h, 37 °C) was selected for this study. Larvae infected with a dose of 5×LD50 were treated with phage GAP161 (MOI=8) at various time intervals. The mortality rates were as high as 100% in the groups injected with bacteria only, compared to 16.6% in the group infected with bacteria and treated with phage. Phage GAP161 showed the best protective activity against C. sakazakii when the larvae were treated prior to or immediately after infection. The results obtained with heat-inactivated phage proved that the survival of the larvae is not due to host immune stimulation. These results suggest that phage GAP161 is potentially a useful control agent against C. sakazakii. In addition, G. mellonella may be a useful whole-animal model for pre-screening phages for efficacy and safety prior to clinical evaluation in mammalian models. PMID:24705602

  18. Comparison of two techniques used for the recovery of third-stage strongylid nematode larvae from herbage.

    PubMed

    Krecek, R C; Maingi, N

    2004-07-14

    A laboratory trial to determine the efficacy of two methods in recovering known numbers of third-stage (L3) strongylid nematode larvae from herbage was carried out. Herbage samples consisting almost entirely of star grass (Cynodon aethiopicus) that had no L3 nematode parasitic larvae were collected at Onderstepoort, South Africa. Two hundred grams samples were placed in fibreglass fly gauze bags and seeded with third-stage strongylid nematode larvae at 11 different levels of herbage infectivity ranging from 50 to 8000 L3/kg. Eight replicates were prepared for each of the 11 levels of herbage infectivity. Four of these were processed using a modified automatic Speed Queen heavy-duty washing machine at a regular normal cycle, followed by isolation of larvae through centrifugation-flotation in saturated sugar solution. Larvae in the other four samples were recovered after soaking the herbage in water overnight and the larvae isolated with the Baermann technique of the washing. There was a strong correlation between the number of larvae recovered using both methods and the number of larvae in the seeded samples, indicating that the two methods give a good indication of changes in the numbers of larvae on pasture if applied in epidemiological studies. The washing machine method recovered higher numbers of larvae than the soaking and Baermann method at all levels of pasture seeding, probably because the machine washed the samples more thoroughly and a sugar centrifugation-flotation step was used. Larval suspensions obtained using the washing machine method were therefore cleaner and thus easier to examine under the microscope. In contrast, the soaking and Baermann method may be more suitable in field-work, especially in places where resources and equipment are scarce, as it is less costly in equipment and less labour intensive. Neither method recovered all the larvae from the seeded samples. The recovery rates for the washing machine method ranged from 18 to 41% while

  19. Cutaneous Larva Migrans in Early Infancy.

    PubMed

    Siddalingappa, Karjigi; Murthy, Sambasiviah Chidambara; Herakal, Kallappa; Kusuma, Marganahalli Ramachandra

    2015-01-01

    Cutaneous larva migrans or creeping eruptions is a cutaneous dermatosis caused by hookworm larvae, Ancylostoma braziliense. A 2-month-old female child presented with a progressive rash over the left buttock of 4 days duration. Cutaneous examination showed an urticarial papule progressing to erythematous, tortuous, thread-like tract extending a few centimeters from papule over the left gluteal region. A clinical diagnosis of cutaneous larva migrans was considered. Treatment with albendazole led to complete resolution, confirming the diagnosis. This is to the best of our knowledge, the youngest age at which this condition is being reported. PMID:26538729

  20. Cutaneous Larva Migrans in Early Infancy

    PubMed Central

    Siddalingappa, Karjigi; Murthy, Sambasiviah Chidambara; Herakal, Kallappa; Kusuma, Marganahalli Ramachandra

    2015-01-01

    Cutaneous larva migrans or creeping eruptions is a cutaneous dermatosis caused by hookworm larvae, Ancylostoma braziliense. A 2-month-old female child presented with a progressive rash over the left buttock of 4 days duration. Cutaneous examination showed an urticarial papule progressing to erythematous, tortuous, thread-like tract extending a few centimeters from papule over the left gluteal region. A clinical diagnosis of cutaneous larva migrans was considered. Treatment with albendazole led to complete resolution, confirming the diagnosis. This is to the best of our knowledge, the youngest age at which this condition is being reported. PMID:26538729

  1. Efficacy of maslinic acid and fenbendazole on muscle larvae of Trichinella zimbabwensis in laboratory rats.

    PubMed

    Mukaratirwa, S; Gcanga, L; Kamau, J

    2016-01-01

    Trichinellosis is a zoonotic disease caused by nematode species of the genus Trichinella. Anthelmintics targeting the intestinal adults and muscle-dwelling larvae of Trichinella spp. have been tested, with limited success. This study was aimed at determining the efficacy of maslinic acid and fenbendazole on muscle larvae of Trichinella zimbabwensis in laboratory rats. Forty-two Sprague-Dawley rats, with an average weight of 270 g and 180 g for males and females respectively, were infected with T. zimbabwensis larvae. Infected rats were randomly assigned to three groups which were subjected to single treatments with each of maslinic acid, fenbendazole and a combination of both on day 25 post-infection (pi), and three groups which were subjected to double treatments with each of these drugs and a combination on days 25 and 32 pi. The untreated control group received a placebo. In single-treatment groups, the efficacy of each treatment, measured by rate of reduction in muscle larvae, was significant (P0.05). We conclude that the efficacy of maslinic acid against larval stages of T. zimbabwensis in rats was comparable to that of fenbendazole, with no side-effects observed, making maslinic acid a promising anthelmintic against larval stages of Trichinella species. PMID:26693889

  2. Pilot project to investigate over-wintering of free-living gastrointestinal nematode larvae of sheep in Ontario, Canada.

    PubMed

    Falzon, Laura C; Menzies, Paula I; VanLeeuwen, John; Shakya, Krishna P; Jones-Bitton, Andria; Avula, Jacob; Jansen, Jocelyn T; Peregrine, Andrew S

    2014-08-01

    This study investigated the overwintering survival and infectivity of free-living gastrointestinal nematode (GIN) stages on pasture. The presence of GIN larvae was assessed on 3 sheep farms in Ontario with a reported history of clinical haemonchosis, by collecting monthly pasture samples over the winter months of 2009/2010. The infectivity of GIN larvae on spring pastures was evaluated using 16 tracer lambs. Air and soil temperature and moisture were recorded hourly. Free-living stages of Trichostrongylus spp. and Nematodirus spp. were isolated from herbage samples. Gastrointestinal nematodes were recovered from all tracer lambs on all farms; Teladorsagia sp. was the predominant species. Very low levels of Haemonchus contortus were recovered from 1 animal on 1 farm. The results suggest that Haemonchus larvae do not survive well on pasture, while Teladorsagia sp., Trichostrongylus spp. and Nematodirus spp. are able to overwinter on pasture in Ontario and are still infective for sheep in the spring. PMID:25082990

  3. Pilot project to investigate over-wintering of free-living gastrointestinal nematode larvae of sheep in Ontario, Canada

    PubMed Central

    Falzon, Laura C.; Menzies, Paula I.; VanLeeuwen, John; Shakya, Krishna P.; Jones-Bitton, Andria; Avula, Jacob; Jansen, Jocelyn T.; Peregrine, Andrew S.

    2014-01-01

    This study investigated the overwintering survival and infectivity of free-living gastrointestinal nematode (GIN) stages on pasture. The presence of GIN larvae was assessed on 3 sheep farms in Ontario with a reported history of clinical haemonchosis, by collecting monthly pasture samples over the winter months of 2009/2010. The infectivity of GIN larvae on spring pastures was evaluated using 16 tracer lambs. Air and soil temperature and moisture were recorded hourly. Free-living stages of Trichostrongylus spp. and Nematodirus spp. were isolated from herbage samples. Gastrointestinal nematodes were recovered from all tracer lambs on all farms; Teladorsagia sp. was the predominant species. Very low levels of Haemonchus contortus were recovered from 1 animal on 1 farm. The results suggest that Haemonchus larvae do not survive well on pasture, while Teladorsagia sp., Trichostrongylus spp. and Nematodirus spp. are able to overwinter on pasture in Ontario and are still infective for sheep in the spring. PMID:25082990

  4. Image-based automatic recognition of larvae

    NASA Astrophysics Data System (ADS)

    Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai

    2010-08-01

    As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.

  5. What's eating you? Cutaneous larva migrans.

    PubMed

    Prickett, Kyle A; Ferringer, Tammie C

    2015-03-01

    This article provides a focused update and clinical review on cutaneous larva migrans (CLM), including atypical clinical presentations and newer management recommendations. The results and recommendations are subject to modification based on future studies. PMID:25844779

  6. First evidence of fish larvae producing sounds

    PubMed Central

    Staaterman, Erica; Paris, Claire B.; Kough, Andrew S.

    2014-01-01

    The acoustic ecology of marine fishes has traditionally focused on adults, while overlooking the early life-history stages. Here, we document the first acoustic recordings of pre-settlement stage grey snapper larvae (Lutjanus griseus). Through a combination of in situ and unprovoked laboratory recordings, we found that L. griseus larvae are acoustically active during the night, producing ‘knock’ and ‘growl’ sounds that are spectrally and temporally similar to those of adults. While the exact function and physiological mechanisms of sound production in fish larvae are unknown, we suggest that these sounds may enable snapper larvae to maintain group cohesion at night when visual cues are reduced. PMID:25274018

  7. Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae.

    PubMed

    Brennan, Marc; Thomas, David Y; Whiteway, Malcolm; Kavanagh, Kevin

    2002-10-11

    Candida albicans is a dimorphic human pathogen in which the yeast to hyphal switch may be an important factor in virulence in mammals. This pathogen has recently been shown to also kill insects such as the Greater Wax Moth Galleria mellonella when injected into the haemocoel of the insect larvae. We have investigated the effect of previously characterised C. albicans mutations that influence the yeast to hyphal transition on virulence in G. mellonella larvae. There is a good correlation between the virulence of these mutants in the insect host and the virulence measured through systemic infection of mice. Although the predominant cellular species detected in G. mellonella infections is the yeast form of C. albicans, mutations that influence the hyphal transition also reduce pathogenicity in the insect. The correlation with virulence measured in the mouse infection system suggests that Galleria may provide a convenient and inexpensive model for the in vivo screening of mutants of C. albicans. PMID:12381467

  8. Virulence Differences among Melissococcus plutonius Strains with Different Genetic Backgrounds in Apis mellifera Larvae under an Improved Experimental Condition.

    PubMed

    Nakamura, Keiko; Yamazaki, Yuko; Shiraishi, Akiyo; Kobayashi, Sota; Harada, Mariko; Yoshiyama, Mikio; Osaki, Makoto; Okura, Masatoshi; Takamatsu, Daisuke

    2016-01-01

    European foulbrood (EFB) caused by Melissococcus plutonius is an important bacterial disease of honeybee larvae. M. plutonius strains can be grouped into three genetically distinct groups (CC3, CC12 and CC13). Because EFB could not be reproduced in artificially reared honeybee larvae by fastidious strains of CC3 and CC13 previously, we investigated a method to improve experimental conditions using a CC3 strain and found that infection with a potassium-rich diet enhanced proliferation of the fastidious strain in larvae at the early stage of infection, leading to the appearance of clear clinical symptoms. Further comparison of M. plutonius virulence under the conditions revealed that the representative strain of CC12 was extremely virulent and killed all tested bees before pupation, whereas the CC3 strain was less virulent than the CC12 strain, and a part of the infected larvae pupated. In contrast, the tested CC13 strain was avirulent, and as with the non-infected control group, most of the infected brood became adult bees, suggesting differences in the insect-level virulence among M. plutonius strains with different genetic backgrounds. These strains and the improved experimental infection method to evaluate their virulence will be useful tools for further elucidation of the pathogenic mechanisms of EFB. PMID:27625313

  9. Coral Larvae Move toward Reef Sounds

    PubMed Central

    Vermeij, Mark J. A.; Marhaver, Kristen L.; Huijbers, Chantal M.; Nagelkerken, Ivan; Simpson, Stephen D.

    2010-01-01

    Free-swimming larvae of tropical corals go through a critical life-phase when they return from the open ocean to select a suitable settlement substrate. During the planktonic phase of their life cycle, the behaviours of small coral larvae (<1 mm) that influence settlement success are difficult to observe in situ and are therefore largely unknown. Here, we show that coral larvae respond to acoustic cues that may facilitate detection of habitat from large distances and from upcurrent of preferred settlement locations. Using in situ choice chambers, we found that settling coral larvae were attracted to reef sounds, produced mainly by fish and crustaceans, which we broadcast underwater using loudspeakers. Our discovery that coral larvae can detect and respond to sound is the first description of an auditory response in the invertebrate phylum Cnidaria, which includes jellyfish, anemones, and hydroids as well as corals. If, like settlement-stage reef fish and crustaceans, coral larvae use reef noise as a cue for orientation, the alleviation of noise pollution in the marine environment may gain further urgency. PMID:20498831

  10. Coral larvae move toward reef sounds.

    PubMed

    Vermeij, Mark J A; Marhaver, Kristen L; Huijbers, Chantal M; Nagelkerken, Ivan; Simpson, Stephen D

    2010-01-01

    Free-swimming larvae of tropical corals go through a critical life-phase when they return from the open ocean to select a suitable settlement substrate. During the planktonic phase of their life cycle, the behaviours of small coral larvae (<1 mm) that influence settlement success are difficult to observe in situ and are therefore largely unknown. Here, we show that coral larvae respond to acoustic cues that may facilitate detection of habitat from large distances and from upcurrent of preferred settlement locations. Using in situ choice chambers, we found that settling coral larvae were attracted to reef sounds, produced mainly by fish and crustaceans, which we broadcast underwater using loudspeakers. Our discovery that coral larvae can detect and respond to sound is the first description of an auditory response in the invertebrate phylum Cnidaria, which includes jellyfish, anemones, and hydroids as well as corals. If, like settlement-stage reef fish and crustaceans, coral larvae use reef noise as a cue for orientation, the alleviation of noise pollution in the marine environment may gain further urgency. PMID:20498831

  11. Automated analysis of behavior in zebrafish larvae.

    PubMed

    Creton, Robbert

    2009-10-12

    Zebrafish larvae have become a popular model system to examine genetic and environmental factors that affect behavior. However, studying complex behavior in large numbers of fish larvae can be challenging. The present study describes a novel high-resolution imaging system that is unique in its ability to automatically analyze the location and orientation of zebrafish larvae in multiwell plates. The system revealed behaviors in zebrafish larvae that would have been missed by more manual approaches, including a preference to face a threatening stimulus from a distance and a clockwise orientation in a two-fish assay. The clockwise orientation of the larvae correlates with a clockwise orientation of molecular structures during early development. Larvae with reversed embryonic asymmetries display a counter-clockwise orientation in the two-fish assay, suggesting that embryonic asymmetry and chiral behavior are regulated by the same developmental mechanisms. The developed imaging techniques may be used in large-scale screens to identify genes, pharmaceuticals, and environmental toxicants that influence complex behaviors. PMID:19409932

  12. Galleria mellonella larvae are capable of sensing the extent of priming agent and mounting proportionatal cellular and humoral immune responses.

    PubMed

    Wu, Gongqing; Xu, Li; Yi, Yunhong

    2016-06-01

    Larvae of Galleria mellonella are useful models for studying the innate immunity of invertebrates or for evaluating the virulence of microbial pathogens. In this work, we demonstrated that prior exposure of G. mellonella larvae to high doses (1×10(4), 1×10(5) or 1×10(6) cells/larva) of heat-killed Photorhabdus luminescens TT01 increases the resistance of larvae to a lethal dose (50 cells/larva) of viable P. luminescens TT01 infection administered 48h later. We also found that the changes in immune protection level were highly correlated to the changes in levels of cellular and humoral immune parameters when priming the larvae with different doses of heat-killed P. luminescens TT01. Priming the larvae with high doses of heat-killed P. luminescens TT01 resulted in significant increases in the hemocytes activities of phagocytosis and encapsulation. High doses of heat-killed P. luminescens TT01 also induced an increase in total hemocyte count and a reduction in bacterial density within the larval hemocoel. Quantitative real-time PCR analysis showed that genes coding for cecropin and gallerimycin and galiomycin increased in expression after priming G. mellonella with heat-killed P. luminescens TT01. All the immune parameters changed in a dose-dependent manner. These results indicate that the insect immune system is capable of sensing the extent of priming agent and mounting a proportionate immune response. PMID:27107784

  13. Molecular analysis of Anisakis type I larvae in marine fish from three different sea areas in Korea.

    PubMed

    Sohn, Woon-Mok; Kang, Jung-Mi; Na, Byoung-Kuk

    2014-08-01

    Anisakiasis, a human infection of Anisakis L3 larvae, is one of the common foodborne parasitic diseases in Korea. Studies on the identification of anisakid larvae have been performed in the country, but most of them have been focused on morphological identification of the larvae. In this study, we analyzed the molecular characteristics of 174 Anisakis type I larvae collected from 10 species of fish caught in 3 different sea areas in Korea. PCR-RFLP and sequence analyses of rDNA ITS and mtDNA cox1 revealed that the larvae showed interesting distribution patterns depending on fish species and geographical locations. Anisakis pegreffii was predominant in fish from the Yellow Sea and the South Sea. Meanwhile, both A. pegreffii and A. simplex sensu stricto (A. simplex s.str.) larvae were identified in fish from the East Sea, depending on fish species infected. These results suggested that A. pegreffii was primarily distributed in a diverse species of fish in 3 sea areas around Korea, but A. simplex s.str. was dominantly identified in Oncorhynchus spp. in the East Sea. PMID:25246717

  14. Comparative Efficacy of Ivermectin and Levamisole for Reduction of Migrating and Encapsulated Larvae of Baylisascaris transfuga in Mice

    PubMed Central

    Fu, Yan; Nie, Hua-Ming; Niu, Li-Li; Xie, Yue; Deng, Jia-Bo; Wang, Qiang; Gu, Xiao-Bin; Wang, Shu-Xian

    2011-01-01

    The comparative efficacy of 2 anthelmintics (ivermectin and levamisole) against Baylisascaris transfuga migrating and encapsulated larvae was studied in mice. A total of 60 BALB/c mice inoculated each with about 1,000 embryonated B. transfuga eggs were equally divided into 6 groups (A-F) randomly. Mice of groups A and B were treated with ivermectin and levamisole, respectively, on day 3 post-infection (PI). Mice of groups A-C were killed on day 13 PI. Similarly, groups D and E were treated with ivermectin and levamisole, respectively, on day 14 PI, and all mice of groups D-F were treated on day 24 PI. The groups C and F were controls. Microexamination was conducted to count the larvae recovering from each mouse. The percentages of reduction in the number of migrating larvae recovered from group A (ivermectin) and B (levamisole) were 88.3% and 81.1%, respectively. In addition, the reduction in encapsulated larvae counts achieved by ivermectin (group D) and levamisole (group E) was 75.0% and 49.2%, respectively. The results suggested that, to a certain extent, both anthelmintics appeared to be more effective against migrating larvae than encapsulated larvae. However, in the incipient stage of infection, ivermectin may be more competent than levamisole as a larvicidal drug for B. transfuga. PMID:21738270

  15. Isolation and characterization of pathogenic Vibrio parahaemolyticus from diseased post-larvae of abalone Haliotis diversicolor supertexta.

    PubMed

    Cai, Junpeng; Li, Juan; Thompson, Kim D; Li, Chuanxia; Han, Hongcao

    2007-02-01

    Mass mortality among the post-larvae of cultured abalone Haliotis diversicolor supertexta has occurred on the south coast of China since 2002. The diseased abalone are generally 10 to 30 days old, and typical signs of the disease include them turning white in colour and falling off the diatom films on which they were cultured. Among sixteen different motile bacteria isolated from the diseased post-larvae, four were identified as Vibrio parahaemolyticus on the basis of biochemical characteristics when compared with those of a V. parahaemolyticus type strain ATCC 17802(T). Isolate 25, a representative isolate of V. parahaemolyticus recovered from diseased abalone, was virulent for the post-larvae with an LD(50) value of 3.5 x 10(5) CFU (colony forming units)/ml. All moribund post-larvae artificially infected with the bacterium turned white and fell off the diatom films on which they were cultured as seen to occur during natural outbreaks of the disease, and it was possible to recover the bacterium from artificially infected post-larvae. The results of the study indicate that V. parahaemolyticus is a pathogenic bacterium to abalone post-larvae. PMID:17304623

  16. New morphological data on the first-stage larvae of two Procamallanus species (Nematoda: Camallanidae) based on SEM studies.

    PubMed

    Masová, Sárka; Barus, Vlastimil; Moravec, Frantisek

    2011-11-01

    First-stage larvae of camallanid nematodes Procamallanus (Procamallanus) laeviconchus (Wedl, 1862) and Procamallanus (Procamallanus) sp. from naturally infected Distichodus niloticus (Hasselquist) and Clarias gariepinus (Burchell), respectively, from Lake Turkana, Kenya (new geographical records) are described, being for the first time studied by scanning electron microscopy. Larvae of both species are characterised by the presence of a dorsal cephalic tooth, four submedian cephalic papillae and a pair of amphids, and by the elongate tail with several terminal digit-like processes. The latter formations probably serve for the attachment of larvae to the substrate in water when the larvae attract copepod intermediate hosts by their movements; these structures, especially their numbers, may be of taxonomic importance in camallanid nematodes. PMID:22263313

  17. Paenilamicin: structure and biosynthesis of a hybrid nonribosomal peptide/polyketide antibiotic from the bee pathogen Paenibacillus larvae.

    PubMed

    Müller, Sebastian; Garcia-Gonzalez, Eva; Mainz, Andi; Hertlein, Gillian; Heid, Nina C; Mösker, Eva; van den Elst, Hans; Overkleeft, Herman S; Genersch, Elke; Süssmuth, Roderich D

    2014-09-26

    The spore-forming bacterium Paenibacillus larvae is the causative agent of American Foulbrood (AFB), a fatal disease of honey bees that occurs worldwide. Previously, we identified a complex hybrid nonribosomal peptide/polyketide synthesis (NRPS/PKS) gene cluster in the genome of P. larvae. Herein, we present the isolation and structure elucidation of the antibacterial and antifungal products of this gene cluster, termed paenilamicins. The unique structures of the paenilamicins give deep insight into the underlying complex hybrid NRPS/PKS biosynthetic machinery. Bee larval co-infection assays reveal that the paenilamicins are employed by P. larvae in fighting ecological niche competitors and are not directly involved in killing the bee larvae. Their antibacterial and antifungal activities qualify the paenilamicins as attractive candidates for drug development. PMID:25080172

  18. Finding ancient parasite larvae in a sample from a male living in late 17th century Korea.

    PubMed

    Shin, D H; Chai, J Y; Park, E A; Lee, W; Lee, H; Lee, J S; Choi, Y M; Koh, B J; Park, J B; Oh, C S; Bok, G D; Kim, W L; Lee, E; Lee, E J; Seo, M

    2009-06-01

    Parasitological examination of samples from tombs of the Korean Joseon Dynasty (1392-1910) could be helpful to researchers in understanding parasitic infection prevalence in pre-industrial Korean society. Whereas most of our previous parasitological studies revealed the presence of ancient parasite eggs in coprolites of Korean mummies, a sample from a man living in late 17th century Korea proved to be relatively unique in possessing what appeared to be several species of parasite larvae. The larvae identified included Strongyloides stercoralis and Trichostrongylus spp., along with eggs of Ascaris lumbricoides, Trichuris trichiura, and Paragonimus westermani. Since ancient parasite larvae retain enough morphology to make proper species identification possible, even after long burial times, the examination of parasite larvae within ancient samples will be conducted more carefully in our future work. PMID:19071966

  19. Ultra-rapid real-time PCR for the detection of Paenibacillus larvae, the causative agent of American Foulbrood (AFB).

    PubMed

    Han, Sang-Hoon; Lee, Do-Bu; Lee, Dong-Woo; Kim, Eul-Hwan; Yoon, Byoung-Su

    2008-09-01

    A novel micro-PCR-based detection method, termed ultra-rapid real-time PCR, was applied to the development of a rapid detection for Paenibacillus larvae (P. larvae) which is the causative agent of American Foulbrood (AFB). This method was designed to detect the 16S rRNA gene of P. larvae with a micro-scale chip-based real-time PCR system, GenSpector TMC-1000, which has uncommonly fast heating and cooling rates (10 degrees C per second) and small reaction volume (6microl). In the application of ultra-rapid real-time PCR detection to an AFB-infected larva, the minimum detection time was 7 min and 54s total reaction time (30 cycles), including the melting temperature analysis. To the best of our knowledge, this novel detection method is one of the most rapid real-time PCR-based detection tools. PMID:18571197

  20. Pathogenicity of Isolates of Serratia Marcescens towards Larvae of the Scarab Phyllophaga Blanchardi (Coleoptera)

    PubMed Central

    Pineda-Castellanos, Mónica L.; Rodríguez-Segura, Zitlhally; Villalobos, Francisco J.; Hernández, Luciano; Lina, Laura; Nuñez-Valdez, M. Eugenia

    2015-01-01

    Serratia marcescens is a Gram negative bacterium (Enterobacteriaceae) often associated with infection of insects. In order to find pathogenic bacteria with the potential to control scarab larvae, several bacterial strains were isolated from the hemocoel of diseased Phyllophaga spp (Coleoptera:Scarabaeidae) larvae collected from cornfields in Mexico. Five isolates were identified as Serratia marcescens by 16S rRNA gene sequencing and biochemical tests. Oral and injection bioassays using healthy Phyllophaga blanchardi larvae fed with the S. marcescens isolates showed different degrees of antifeeding effect and mortality. No insecticidal activity was observed for Spodoptera frugiperda larvae (Lepidoptera: Noctuidae) by oral inoculation. S. marcescens (Sm81) cell-free culture supernatant caused significant antifeeding effect and mortality to P. blanchardi larvae by oral bioassay and also mortality by injection bioassay. Heat treated culture broths lost the ability to cause disease symptoms, suggesting the involvement of proteins in the toxic activity. A protein of 50.2 kDa was purified from the cell-free broth and showed insecticidal activity by injection bioassay towards P. blanchardi. Analysis of the insecticidal protein by tandem- mass spectrometry (LC-MS/MS) showed similarity to a Serralysin-like protein from S. marcescens spp. This insecticidal protein could have applications in agricultural biotechnology. PMID:25984910

  1. Fascioliasis Control: In Vivo and In Vitro Phytotherapy of Vector Snail to Kill Fasciola Larva

    PubMed Central

    Sunita, Kumari; Singh, D. K.

    2011-01-01

    Snail is one of the important components of an aquatic ecosystem, it acts as intermediate host of Fasciola species. Control of snail population below a certain threshold level is one of the important methods in the campaign to reduce the incidence of fascioliasis. Life cycle of the parasite can be interrupted by killing the snail or Fasciola larva redia and cercaria in the snail body. In vivo and in vitro toxicity of the plant products and their active component such as citral, ferulic acid, umbelliferone, azadirachtin, and allicin against larva of Fasciola in infected snail Lymnaea acuminata were tested. Mortality of larvae were observed at 2 h, 4 h, 6 h, and 8 h, of treatment. In in vivo treatment, azadirachtin caused highest mortality in redia and cercaria larva (8 h, LC50 0.11, and 0.05 mg/L) whereas in in vitro condition allicin was highly toxic against redia and cercaria (8 h, LC50 0.01, and 0.009 mg/L). Toxicity of citral was lowest against redia and cercaria larva. PMID:22132306

  2. Standardization of a method for the detection of helminth eggs and larvae in lettuce.

    PubMed

    Matosinhos, F C; Valenzuela, V C; Silveira, J A; Rabelo, E M

    2016-05-01

    Despite reports that food-borne parasitic infections have been increasing worldwide, the methodologies employed to detect food contamination by helminths are still largely based on methodologies used to detect these pathogens in feces and water. This study sought to improve the diagnosis of parasitic contaminants in lettuce by standardizing a method for detecting helminth eggs and larvae and estimating their percentage of recovery. Sanitized lettuces were artificially contaminated with different amounts of Ascaris suum and hookworm eggs and larvae. To standardize the method, we tested liquid extractors, vegetable washing steps, and spontaneous sedimentation times. Higher percentages of egg and larvae recovery were obtained using 1 M glycine as the liquid extractor, manual shaking for 3 min and 2 h of sedimentation. Five different levels of artificial contamination (ten replicates each; n = 50) were tested using these standardized conditions, yielding an average recovery of 62.6 % (±20.2), 51.9 % (±20.0), and 50.0 % (±27.3) for A. suum eggs, hookworm eggs, and larvae, respectively. Tests were performed with a different matrix to evaluate the performance of the method. Furthermore, collaborative analytical studies performed by different laboratories produced satisfactory results. The method for the identification of helminth eggs and larvae proposed in this study proved to be simpler and more efficient than previously published procedures, thereby demonstrating its potential contribution to health surveillance and epidemiological studies. PMID:26786833

  3. Proteomic Analysis of Apis cerana and Apis mellifera Larvae Fed with Heterospecific Royal Jelly and by CSBV Challenge

    PubMed Central

    Huang, Xiu; Han, Richou

    2014-01-01

    Chinese honeybee Apis cerana (Ac) is one of the major Asian honeybee species for local apiculture. However, Ac is frequently damaged by Chinese sacbrood virus (CSBV), whereas Apis mellifera (Am) is usually resistant to it. Heterospecific royal jelly (RJ) breeding in two honeybee species may result in morphological and genetic modification. Nevertheless, knowledge on the resistant mechanism of Am to this deadly disease is still unknown. In the present study, heterospecific RJ breeding was conducted to determine the effects of food change on the larval mortality after CSBV infection at early larval stage. 2-DE and MALDI-TOF/TOF MS proteomic technology was employed to unravel the molecular event of the bees under heterospecific RJ breeding and CSBV challenge. The change of Ac larval food from RJC to RJM could enhance the bee resistance to CSBV. The mortality rate of Ac larvae after CSBV infection was much higher when the larvae were fed with RJC compared with the larvae fed with RJM. There were 101 proteins with altered expressions after heterospecific RJ breeding and viral infection. In Ac larvae, 6 differential expression proteins were identified from heterospecific RJ breeding only, 21 differential expression proteins from CSBV challenge only and 7 differential expression proteins from heterospecific RJ breeding plus CSBV challenge. In Am larvae, 17 differential expression proteins were identified from heterospecific RJ breeding only, 26 differential expression proteins from CSBV challenge only and 24 differential expression proteins from heterospecific RJ breeding plus CSBV challenge. The RJM may protect Ac larvae from CSBV infection, probably by activating the genes in energy metabolism pathways, antioxidation and ubiquitin-proteasome system. The present results, for the first time, comprehensively descript the molecular events of the viral infection of Ac and Am after heterospecific RJ breeding and are potentially useful for establishing CSBV resistant

  4. Transmission of a pathogenic virus (Iridoviridae) of Culex pipiens larvae mediated by the mermithid Strelkovimermis spiculatus (Nematoda).

    PubMed

    Muttis, Evangelina; Micieli, María Victoria; Urrutia, María Inés; García, Juan José

    2015-07-01

    Little progress been made in elucidating the transmission pathway of the invertebrate iridescent virus (MIV). It has been proposed that the MIV has no active means to enter the mosquito larva. We have previously found that the presence of the mermithid nematode Strelkovimermis spiculatus is associated with MIV infection in Culex pipiens under field conditions. In the present study, we evaluated the transmission of MIV to C. pipiens larvae mediated by S. spiculatus and several factors involved in this pathway (mosquito instars, nematode:mosquito larva ratio, amount of viral inoculum). Our results indicate that S. spiculatus functions as an MIV vector to C. pipiens larvae and seems to be an important pathway of virus entry into this system. Moreover, TEM images of S. spiculatus exposed to the viral suspension showed no infections inside the nematode but showed that viral particles are carried over the cuticle of this mermithid. This explains the correspondence between MIV infection and the factors that affect the parasitism of S. spiculatus in C. pipiens larvae. PMID:26031563

  5. Metarhizium anisopliae pathogenesis of mosquito larvae: a verdict of accidental death.

    PubMed

    Butt, Tariq M; Greenfield, Bethany P J; Greig, Carolyn; Maffeis, Thierry G G; Taylor, James W D; Piasecka, Justyna; Dudley, Ed; Abdulla, Ahmed; Dubovskiy, Ivan M; Garrido-Jurado, Inmaculada; Quesada-Moraga, Enrique; Penny, Mark W; Eastwood, Daniel C

    2013-01-01

    Metarhizium anisopliae, a fungal pathogen of terrestrial arthropods, kills the aquatic larvae of Aedes aegypti, the vector of dengue and yellow fever. The fungus kills without adhering to the host cuticle. Ingested conidia also fail to germinate and are expelled in fecal pellets. This study investigates the mechanism by which this fungus adapted to terrestrial hosts kills aquatic mosquito larvae. Genes associated with the M. anisopliae early pathogenic response (proteinases Pr1 and Pr2, and adhesins, Mad1 and Mad2) are upregulated in the presence of larvae, but the established infection process observed in terrestrial hosts does not progress and insecticidal destruxins were not detected. Protease inhibitors reduce larval mortality indicating the importance of proteases in the host interaction. The Ae. aegypti immune response to M. anisopliae appears limited, whilst the oxidative stress response gene encoding for thiol peroxidase is upregulated. Cecropin and Hsp70 genes are downregulated as larval death occurs, and insect mortality appears to be linked to autolysis through caspase activity regulated by Hsp70 and inhibited, in infected larvae, by protease inhibitors. Evidence is presented that a traditional host-pathogen response does not occur as the species have not evolved to interact. M. anisopliae retains pre-formed pathogenic determinants which mediate host mortality, but unlike true aquatic fungal pathogens, does not recognise and colonise the larval host. PMID:24349111

  6. Metarhizium anisopliae Pathogenesis of Mosquito Larvae: A Verdict of Accidental Death

    PubMed Central

    Butt, Tariq M.; Greenfield, Bethany P. J.; Greig, Carolyn; Maffeis, Thierry G. G.; Taylor, James W. D.; Piasecka, Justyna; Dudley, Ed; Abdulla, Ahmed; Dubovskiy, Ivan M.; Garrido-Jurado, Inmaculada; Quesada-Moraga, Enrique; Penny, Mark W.; Eastwood, Daniel C.

    2013-01-01

    Metarhizium anisopliae, a fungal pathogen of terrestrial arthropods, kills the aquatic larvae of Aedes aegypti, the vector of dengue and yellow fever. The fungus kills without adhering to the host cuticle. Ingested conidia also fail to germinate and are expelled in fecal pellets. This study investigates the mechanism by which this fungus adapted to terrestrial hosts kills aquatic mosquito larvae. Genes associated with the M. anisopliae early pathogenic response (proteinases Pr1 and Pr2, and adhesins, Mad1 and Mad2) are upregulated in the presence of larvae, but the established infection process observed in terrestrial hosts does not progress and insecticidal destruxins were not detected. Protease inhibitors reduce larval mortality indicating the importance of proteases in the host interaction. The Ae. aegypti immune response to M. anisopliae appears limited, whilst the oxidative stress response gene encoding for thiol peroxidase is upregulated. Cecropin and Hsp70 genes are downregulated as larval death occurs, and insect mortality appears to be linked to autolysis through caspase activity regulated by Hsp70 and inhibited, in infected larvae, by protease inhibitors. Evidence is presented that a traditional host-pathogen response does not occur as the species have not evolved to interact. M. anisopliae retains pre-formed pathogenic determinants which mediate host mortality, but unlike true aquatic fungal pathogens, does not recognise and colonise the larval host. PMID:24349111

  7. [Identification of serological antigens in excretory-secretory antigens of Trichinella spiralis muscle larvae].

    PubMed

    Huang, Xuegui; He, Lifang; Yuan, Shishan; Liu, Hui; Wang, Xin

    2016-05-01

    Objective To isolate and identify serological antigens in the excretory-secretory antigens of Trichinella spiralis muscle larvae by the combination of co-immunoprecipitation and mass spectrometric technology. Methods The serum IgG of New Zealand rabbits infected with Trichinella spiralis was isolated by ammonium sulfate precipitation. Muscle larvaes were isolated from the infected muscle, and then purified and cultured to collect excretory-secretory antigens. Serological antigens in excretory-secretory antigens were isolated by co-immunoprecipitation and SDS-PAGE, and analyzed by Western blotting. Moreover, the protein bands in New Zealand rabbit sera infected with Trichinella spiralis were identified by mass spectrometric technology. Results Indirect ELISA showed that the titer of serum antibody of New Zealand rabbits infected with Trichinella spiralis was 1:6400. The rabbit serum IgG was effectively isolated by ammonium sulfate precipitation. A total of four clear protein bands of the excretory-secretory antigens of Trichinella spiralis were obtained by electrophoresis. Among them, three clear protein bands with relative molecular mass (Mr) being 40 kDa, 50 kDa and 83 kDa were recognized by the rabbit sera infected with Trichinella spiralis but not recognized by the normal rabbit sera. The obtained four protein molecules were confirmed as serine protease, specific serine protease of muscle larvae, 43 kDa secreted glycoprotein and 53 kDa excretory-secretory antigen. Conclusion Four proteins were obtained from the excretory-secretory antigens of Trichinella spiralis muscle larvae by combination of co-immunoprecipitation and mass spectrometric technique analysis, which provided new sources and insights for the diagnosis and vaccine candidates of Trichinellosis. PMID:27126943

  8. Transcriptional responses in honey bee larvae infected with chalkbrood fungus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diseases and other stress factors working synergistically weaken honey bee health and may play a major role in the losses of bee populations in recent years. Among a large number of bee diseases, chalkbrood has been on the rise. We present here the experimental identification of honey bee genes that...

  9. The Effect of an Eextremely Low Frequency Magnetic Field on Larvae Production in the Parasite-Host System: Fasciola hepatica-Galba truncatula: a Preliminary Study.

    PubMed

    Kołodziejczyk, Lidia; Podraza, Wojciech; Gonet, Bolesław; Dzika, Ewa; Kosik-Bogacka, Danuta I

    2016-01-01

    The aim of this study was to determine the effect of an extremely low-frequency magnetic field (ELFMF) on the production of liver fluke larvae in a parasite-host system: Fasciola hepatica--Galba truncatula. Both F. hepatica eggs and F. hepatica-infected snails were exposed to an ELFMF (50 Hz, 2.0 mT) for 14 days and 36 days, respectively. F. hepatica-infected snails were divided into 4 groups, 10 specimens each. The snails of groups I and II were infected with F. hepatica larvae--miracidia obtained from control cultures, while the snails of groups III and IV were infected with miracidia reared from eggs that had been incubated in an ELFMF. After infection, the snails of groups II and IV were placed in an ELFMF, while those of groups I (control) and III were housed outside the ELFMF. At 36 days post-infection (dpi) there were no statistically significant differences between the number of F. hepatica larvae--cercariae and metacercariae, obtained from G. truncatula snails in the control group (group I) and the snail groups exposed to ELFMF (groups II, III and IV). However, a statistically significant difference between the average number of F. hepatica larvae in snail groups III and IV may indicate that the duration of exposure to ELFMF, i.e. embryogenesis period vs. the entire larval development, played a role in the production of F. hepatica larvae, and resulted in a reduction of their number. PMID:27172713

  10. Quantifying and predicting Drosophila larvae crawling phenotypes.

    PubMed

    Günther, Maximilian N; Nettesheim, Guilherme; Shubeita, George T

    2016-01-01

    The fruit fly Drosophila melanogaster is a widely used model for cell biology, development, disease, and neuroscience. The fly's power as a genetic model for disease and neuroscience can be augmented by a quantitative description of its behavior. Here we show that we can accurately account for the complex and unique crawling patterns exhibited by individual Drosophila larvae using a small set of four parameters obtained from the trajectories of a few crawling larvae. The values of these parameters change for larvae from different genetic mutants, as we demonstrate for fly models of Alzheimer's disease and the Fragile X syndrome, allowing applications such as genetic or drug screens. Using the quantitative model of larval crawling developed here we use the mutant-specific parameters to robustly simulate larval crawling, which allows estimating the feasibility of laborious experimental assays and aids in their design. PMID:27323901

  11. Quantifying and predicting Drosophila larvae crawling phenotypes

    PubMed Central

    Günther, Maximilian N.; Nettesheim, Guilherme; Shubeita, George T.

    2016-01-01

    The fruit fly Drosophila melanogaster is a widely used model for cell biology, development, disease, and neuroscience. The fly’s power as a genetic model for disease and neuroscience can be augmented by a quantitative description of its behavior. Here we show that we can accurately account for the complex and unique crawling patterns exhibited by individual Drosophila larvae using a small set of four parameters obtained from the trajectories of a few crawling larvae. The values of these parameters change for larvae from different genetic mutants, as we demonstrate for fly models of Alzheimer’s disease and the Fragile X syndrome, allowing applications such as genetic or drug screens. Using the quantitative model of larval crawling developed here we use the mutant-specific parameters to robustly simulate larval crawling, which allows estimating the feasibility of laborious experimental assays and aids in their design. PMID:27323901

  12. Sensorimotor structure of Drosophila larva phototaxis

    PubMed Central

    Kane, Elizabeth A.; Gershow, Marc; Afonso, Bruno; Larderet, Ivan; Klein, Mason; Carter, Ashley R.; de Bivort, Benjamin L.; Sprecher, Simon G.; Samuel, Aravinthan D. T.

    2013-01-01

    The avoidance of light by fly larvae is a classic paradigm for sensorimotor behavior. Here, we use behavioral assays and video microscopy to quantify the sensorimotor structure of phototaxis using the Drosophila larva. Larval locomotion is composed of sequences of runs (periods of forward movement) that are interrupted by abrupt turns, during which the larva pauses and sweeps its head back and forth, probing local light information to determine the direction of the successive run. All phototactic responses are mediated by the same set of sensorimotor transformations that require temporal processing of sensory inputs. Through functional imaging and genetic inactivation of specific neurons downstream of the sensory periphery, we have begun to map these sensorimotor circuits into the larval central brain. We find that specific sensorimotor pathways that govern distinct light-evoked responses begin to segregate at the first relay after the photosensory neurons. PMID:24043822

  13. Recombinant Antigen-Based Enzyme-Linked Immunosorbent Assay for Diagnosis of Baylisascaris procyonis Larva Migrans ▿

    PubMed Central

    Dangoudoubiyam, Sriveny; Vemulapalli, Ramesh; Ndao, Momar; Kazacos, Kevin R.

    2011-01-01

    Baylisascaris larva migrans is an important zoonotic disease caused by Baylisascaris procyonis, the raccoon roundworm, and is being increasingly considered in the differential diagnosis of eosinophilic meningoencephalitis in children and young adults. Although a B. procyonis excretory-secretory (BPES) antigen-based enzyme-linked immunosorbent assay (ELISA) and a Western blot assay are useful in the immunodiagnosis of this infection, cross-reactivity remains a major problem. Recently, a recombinant B. procyonis antigen, BpRAG1, was reported for use in the development of improved serological assays for the diagnosis of Baylisascaris larva migrans. In this study, we tested a total of 384 human patient serum samples in a BpRAG1 ELISA, including samples from 20 patients with clinical Baylisascaris larva migrans, 137 patients with other parasitic infections (8 helminth and 4 protozoan), and 227 individuals with unknown/suspected parasitic infections. A sensitivity of 85% and a specificity of 86.9% were observed with the BpRAG1 ELISA, compared to only 39.4% specificity with the BPES ELISA. In addition, the BpRAG1 ELISA had a low degree of cross-reactivity with antibodies to Toxocara infection (25%), while the BPES antigen showed 90.6% cross-reactivity. Based on these results, the BpRAG1 antigen has a high degree of sensitivity and specificity and should be very useful and reliable in the diagnosis and seroepidemiology of Baylisascaris larva migrans by ELISA. PMID:21832102

  14. Evaluation of high pressure processing, freezing, and fermentation/drying on viability of Trichinella spiralis larvae in raw pork and in Genoa salami

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated high pressure processing (HPP), freezing, and fermentation/drying to inactivate Trichinella spiralis larvae in both infected pig muscle and in Genoa salami produced with trichinae infected pork. In part A, in each of two trials 10 gram portions (2 replicates per treatment) of fresh pig ...

  15. Molecular typing of Paenibacillus larvae strains isolated from Bulgarian apiaries based on repetitive element polymerase chain reaction (Rep-PCR).

    PubMed

    Rusenova, Nikolina; Parvanov, Parvan; Stanilova, Spaska

    2013-06-01

    The aim of the present study was to perform molecular typing of Paenibacillus larvae (P. larvae) isolates from Bulgarian apiaries with repetitive element polymerase chain reaction (rep-PCR) using BOX A1R, MBO REP1, and ERIC primers. A total of 96 isolates collected from brood combs with clinical symptoms of American foulbrood originating from apiaries located in different geographical regions of Bulgaria, a reference strain P. larvae NBIMCC 8478 and 30 commercial honey samples with Bulgarian origin were included in the study. Rep-PCR fingerprinting analysis revealed two genotypes ab and AB of P. larvae isolates from brood combs and honey samples. A combination of genotypes ab/AB was detected in one apiary and honey sample. The prevailing genotype ab was found in 78.1 % of brood combs isolates as well as in the reference strain whereas genotype AB was determined in 21.9 % of isolates. The examination of honey samples confirmed the preponderance of ab genotype which was demonstrated in 20 of 30 samples analyzed. In conclusion, the genetic epidemiology of P. larvae revealed two genotypes--ab and AB for Bulgarian strains. Developed protocols for molecular typing of P. larvae are reliable and may be used to trace the source of infection. PMID:23361165

  16. Detection of Gnathostoma spinigerum Third-Stage Larvae in Snakeheads Purchased from a Central Part of Myanmar

    PubMed Central

    Jung, Bong-Kwang; Lee, Jin-Ju; Pyo, Kyoung-Ho; Kim, Hyeong-Jin; Jeong, Hoo-Gn; Yoon, Cheong-Ha; Lee, Soon-Hyung; Shin, Eun-Hee

    2008-01-01

    To examine the infection status of freshwater fish with Gnathostoma spp. larvae in Myanmar, we purchased 15 snakeheads, Channa striatus, from a local market in a suburban area of Naypyidaw, the new capital city. Two larval gnathostomes were collected using an artificial digestion technique, and observed by a light microscope and a scanning electron microscope. The size of an intact larva was 2.65 mm long and 0.32 mm wide. The characteristic morphology of the larvae included the presence of a long esophagus (0.80 mm long), 2 pairs of cervical sacs (0.43 mm long), and a characteristic head bulb with 4 rows of hooklets. The number of hooklets in the 1st, 2nd, 3rd, and 4th row was 45, 48, 50, and 52, respectively. Based on these morphological characters, the larvae were identified as the advanced 3rd-stage larvae of Gnathostoma spinigerum. This is the first report of detection of G. spinigerum 3rd-stage larvae in the central part of Myanmar. Our study suggests that intake of raw meat of snakehead fish in Myanmar may result in human gnathostomiasis. PMID:19127338

  17. EFFECTS OF THERMAL POLLUTION OF PELAGIC LARVAE OF CRUSTACEA

    EPA Science Inventory

    Larvae of six species, Cancer irroratus, C. borealis and Homarus americanus of coastal waters (high salinity), and Palaemonetes pugio, Pagurus longicarpus and Rhithropanopeus harrisii, from the estuarine region (variable salinity) were studied. Larvae were cultured at various com...

  18. A Systems Biology Approach to the Characterization of Stress Response in Dermacentor reticulatus Tick Unfed Larvae

    PubMed Central

    Villar, Margarita; Popara, Marina; Ayllón, Nieves; Fernández de Mera, Isabel G.; Mateos-Hernández, Lourdes; Galindo, Ruth C.; Manrique, Marina; Tobes, Raquel; de la Fuente, José

    2014-01-01

    Background Dermacentor reticulatus (Fabricius, 1794) is distributed in Europe and Asia where it infests and transmits disease-causing pathogens to humans, pets and other domestic and wild animals. However, despite its role as a vector of emerging or re-emerging diseases, very little information is available on the genome, transcriptome and proteome of D. reticulatus. Tick larvae are the first developmental stage to infest hosts, acquire infection and transmit pathogens that are transovarially transmitted and are exposed to extremely stressing conditions. In this study, we used a systems biology approach to get an insight into the mechanisms active in D. reticulatus unfed larvae, with special emphasis on stress response. Principal Findings The results support the use of paired end RNA sequencing and proteomics informed by transcriptomics (PIT) for the analysis of transcriptomics and proteomics data, particularly for organisms such as D. reticulatus with little sequence information available. The results showed that metabolic and cellular processes involved in protein synthesis were the most active in D. reticulatus unfed larvae, suggesting that ticks are very active during this life stage. The stress response was activated in D. reticulatus unfed larvae and a Rickettsia sp. similar to R. raoultii was identified in these ticks. Significance The activation of stress responses in D. reticulatus unfed larvae likely counteracts the negative effect of temperature and other stress conditions such as Rickettsia infection and favors tick adaptation to environmental conditions to increase tick survival. These results show mechanisms that have evolved in D. reticulatus ticks to survive under stress conditions and suggest that these mechanisms are conserved across hard tick species. Targeting some of these proteins by vaccination may increase tick susceptibility to natural stress conditions, which in turn reduce tick survival and reproduction, thus reducing tick populations and

  19. Paenibacillus larvae Chitin-Degrading Protein PlCBP49 Is a Key Virulence Factor in American Foulbrood of Honey Bees

    PubMed Central

    Garcia-Gonzalez, Eva; Poppinga, Lena; Fünfhaus, Anne; Hertlein, Gillian; Hedtke, Kati; Jakubowska, Agata; Genersch, Elke

    2014-01-01

    Paenibacillus larvae, the etiological agent of the globally occurring epizootic American Foulbrood (AFB) of honey bees, causes intestinal infections in honey bee larvae which develop into systemic infections inevitably leading to larval death. Massive brood mortality might eventually lead to collapse of the entire colony. Molecular mechanisms of host-microbe interactions in this system and of differences in virulence between P. larvae genotypes are poorly understood. Recently, it was demonstrated that the degradation of the peritrophic matrix lining the midgut epithelium is a key step in pathogenesis of P. larvae infections. Here, we present the isolation and identification of PlCBP49, a modular, chitin-degrading protein of P. larvae and demonstrate that this enzyme is crucial for the degradation of the larval peritrophic matrix during infection. PlCBP49 contains a module belonging to the auxiliary activity 10 (AA10, formerly CBM33) family of lytic polysaccharide monooxygenases (LPMOs) which are able to degrade recalcitrant polysaccharides. Using chitin-affinity purified PlCBP49, we provide evidence that PlCBP49 degrades chitin via a metal ion-dependent, oxidative mechanism, as already described for members of the AA10 family. Using P. larvae mutants lacking PlCBP49 expression, we analyzed in vivo biological functions of PlCBP49. In the absence of PlCBP49 expression, peritrophic matrix degradation was markedly reduced and P. larvae virulence was nearly abolished. This indicated that PlCBP49 is a key virulence factor for the species P. larvae. The identification of the functional role of PlCBP49 in AFB pathogenesis broadens our understanding of this important family of chitin-binding and -degrading proteins, especially in those bacteria that can also act as entomopathogens. PMID:25080221

  20. Paenibacillus larvae chitin-degrading protein PlCBP49 is a key virulence factor in American Foulbrood of honey bees.

    PubMed

    Garcia-Gonzalez, Eva; Poppinga, Lena; Fünfhaus, Anne; Hertlein, Gillian; Hedtke, Kati; Jakubowska, Agata; Genersch, Elke

    2014-07-01

    Paenibacillus larvae, the etiological agent of the globally occurring epizootic American Foulbrood (AFB) of honey bees, causes intestinal infections in honey bee larvae which develop into systemic infections inevitably leading to larval death. Massive brood mortality might eventually lead to collapse of the entire colony. Molecular mechanisms of host-microbe interactions in this system and of differences in virulence between P. larvae genotypes are poorly understood. Recently, it was demonstrated that the degradation of the peritrophic matrix lining the midgut epithelium is a key step in pathogenesis of P. larvae infections. Here, we present the isolation and identification of PlCBP49, a modular, chitin-degrading protein of P. larvae and demonstrate that this enzyme is crucial for the degradation of the larval peritrophic matrix during infection. PlCBP49 contains a module belonging to the auxiliary activity 10 (AA10, formerly CBM33) family of lytic polysaccharide monooxygenases (LPMOs) which are able to degrade recalcitrant polysaccharides. Using chitin-affinity purified PlCBP49, we provide evidence that PlCBP49 degrades chitin via a metal ion-dependent, oxidative mechanism, as already described for members of the AA10 family. Using P. larvae mutants lacking PlCBP49 expression, we analyzed in vivo biological functions of PlCBP49. In the absence of PlCBP49 expression, peritrophic matrix degradation was markedly reduced and P. larvae virulence was nearly abolished. This indicated that PlCBP49 is a key virulence factor for the species P. larvae. The identification of the functional role of PlCBP49 in AFB pathogenesis broadens our understanding of this important family of chitin-binding and -degrading proteins, especially in those bacteria that can also act as entomopathogens. PMID:25080221

  1. Release of Lungworm Larvae from Snails in the Environment: Potential for Alternative Transmission Pathways

    PubMed Central

    Giannelli, Alessio; Colella, Vito; Abramo, Francesca; do Nascimento Ramos, Rafael Antonio; Falsone, Luigi; Brianti, Emanuele; Varcasia, Antonio; Dantas-Torres, Filipe; Knaus, Martin; Fox, Mark T.; Otranto, Domenico

    2015-01-01

    Background Gastropod-borne parasites may cause debilitating clinical conditions in animals and humans following the consumption of infected intermediate or paratenic hosts. However, the ingestion of fresh vegetables contaminated by snail mucus and/or water has also been proposed as a source of the infection for some zoonotic metastrongyloids (e.g., Angiostrongylus cantonensis). In the meantime, the feline lungworms Aelurostrongylus abstrusus and Troglostrongylus brevior are increasingly spreading among cat populations, along with their gastropod intermediate hosts. The aim of this study was to assess the potential of alternative transmission pathways for A. abstrusus and T. brevior L3 via the mucus of infected Helix aspersa snails and the water where gastropods died. In addition, the histological examination of snail specimens provided information on the larval localization and inflammatory reactions in the intermediate host. Methodology/Principal Findings Twenty-four specimens of H. aspersa received ~500 L1 of A. abstrusus and T. brevior, and were assigned to six study groups. Snails were subjected to different mechanical and chemical stimuli throughout 20 days in order to elicit the production of mucus. At the end of the study, gastropods were submerged in tap water and the sediment was observed for lungworm larvae for three consecutive days. Finally, snails were artificially digested and recovered larvae were counted and morphologically and molecularly identified. The anatomical localization of A. abstrusus and T. brevior larvae within snail tissues was investigated by histology. L3 were detected in the snail mucus (i.e., 37 A. abstrusus and 19 T. brevior) and in the sediment of submerged specimens (172 A. abstrusus and 39 T. brevior). Following the artificial digestion of H. aspersa snails, a mean number of 127.8 A. abstrusus and 60.3 T. brevior larvae were recovered. The number of snail sections positive for A. abstrusus was higher than those for T. brevior

  2. Infectivity and egg production of Nematospiroides dubius as affected by space flight and ultraviolet irradiation

    NASA Technical Reports Server (NTRS)

    Long, R. A.; Ellis, W. L.; Taylor, G. R.

    1973-01-01

    Nematospiroides dubius was tested to determine the infective potential of the third stage larvae and the egg-production and egg-viability rates of the resulting adults after they are exposed to space flight and solar ultraviolet irradiation. The results are indicative that space-flown larvae exposed to solar ultraviolet irradiation were rendered noninfective in C57 mice, whereas flight control larvae that received no solar ultraviolet irradiation matured at the same rate as the ground control larvae. However, depressed egg viability was evident in the flight control larvae.

  3. Evolution of foraging behavior in Drosophilid larvae

    NASA Astrophysics Data System (ADS)

    Rivera-Alba, Marta; Kabra, Mayank; Branson, Kristin; Mirth, Christen

    2015-03-01

    Drosophilids, like other insects, go through a larval phase before metamorphosing into adults. Larvae increase their body weight by several orders of magnitude in a few days. We therefore hypothesized that foraging behavior is under strong evolutionary pressure to best fit the larval environment. To test our hypothesis we used a multidisciplinary approach to analyze foraging behavior across species and larval stages. First, we recorded several videos of larvae foraging for each of 47 Drosophilid species. Then, using a supervised machine learning approach, we automatically annotated the video collection for the foraging sub-behaviors, including crawling, turning, head casting or burrowing. We also computed over 100 features to describe the posture and dynamics of each animal in each video frame. From these data, we fit models to the behavior of each species. The models each had the same parametric form, but differed in the exact parameters. By simulating larva behavior in virtual arenas we can infer which properties of the environments are better for each species. Comparisons between these inferred environments and the actual environments where these animals live will give us a deeper understanding about the evolution of foraging behavior in Drosophilid larvae.

  4. An Introduction to the Identification of Chironomid Larvae.

    ERIC Educational Resources Information Center

    Mason, William T., Jr.

    This publication is an introductory guide to the identification of Chironomid (Midge) larvae. The larvae of these small flies are an important link in the food chain between algae and microinvertebrates. As a family, the larvae exhibit a wide range of tolerance to environmental factors such as amounts and types of pollutants. Much of this…

  5. Workbook on the Identification of Anopheles Larvae. Preliminary Issue.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; Stojanovich, Chester J.

    This self-instructional booklet is designed to enable malarial control workers to identify the larvae of "Anopheles" species that are important malaria vectors. The morphological features of the larvae are illustrated in a programed booklet, which also contains an illustrated taxonomic key to 25 species of anopheline larvae. A glossary and a short…

  6. A multicenter evaluation of a new antibody test kit for lymphatic filariasis employing recombinant Brugia malayi antigen Bm-14.

    PubMed

    Weil, Gary J; Curtis, Kurt C; Fischer, Peter U; Won, Kimberly Y; Lammie, Patrick J; Joseph, Hayley; Melrose, Wayne D; Brattig, Norbert W

    2011-09-01

    Antibody tests are useful for mapping the distribution of lymphatic filariasis (LF) in countries and regions and for monitoring progress in elimination programs based on mass drug administration (MDA). Prior antibody tests have suffered from poor sensitivity and/or specificity or from a lack of standardization. We conducted a multicenter evaluation of a new commercial ELISA that detects IgG4 antibodies to the recombinant filarial antigen Bm14. Four laboratories tested a shared panel of coded serum or plasma samples that included 55 samples from people with microfilaremic Wuchereria bancrofti or Brugia infections and 26 control samples. Qualitative results were identical in all four test sites. In addition, each laboratory tested samples from their own serum banks. The test detected antibodies in 32 of 36 samples (91%) from people with Brugian filariasis and in 96 of 98 samples (98%) from people with Bancroftian filariasis. Specificity testing showed that many serum or plasma samples from patients with other filarial infections such as onchocerciasis had positive antibody tests. Specificity was otherwise excellent, although 3 of 30 samples from patients with ascariasis and 4 of 51 with strongyloidiasis had positive antibody tests; it is likely that some or all of these people had previously lived in filariasis-endemic areas. Antibody test results obtained with eluates from blood dried on filter paper were similar to those obtained with plasma tested at the same dilution. This test may be helpful for diagnosing LF in patients with clinical signs of filariasis. It may also be a useful tool for use in LF endemic countries to monitor the progress of filariasis elimination programs and for post-MDA surveillance. PMID:20430004

  7. Hookworm infection

    MedlinePlus

    ... have hookworm. The larvae (immature form of the worm) enter the skin. The larvae move to the ... via the bloodstream and enter the airways. The worms are about one half inch long. After traveling ...

  8. Larva of Palaemnema brasiliensis Machado (Odonata: Platystictidae), from Amazonas, Brazil.

    PubMed

    Neiss, Ulisses Gaspar; Hamada, Neusa

    2016-01-01

    The larva of Palaemnema brasiliensis Machado, 2009 is described and illustrated based on last-instar larvae and exuviae of reared larvae collected in a blackwater stream in Barcelos and Presidente Figueiredo municipalities, Amazonas state, Brazil. The larva of P. brasiliensis can be distinguished from the two South American species of the genus with described larvae (P. clementia Selys and P. mutans Calvert), mainly by presence of a single obtuse cusp on the labial palp, the presence and configuration of setae in the caudal lamellae, and the proportional length of terminal filaments of the caudal lamellae. The family is recorded here for the first time in Brazilian state of Amazonas. PMID:27395963

  9. Toxicity of dissolved ozone to fish eggs and larvae

    SciTech Connect

    Asbury, C.; Coler, R.

    1980-07-01

    To find levels of dissolved residual ozone lethal to fish eggs and larvae during brief exposures, continuous-flow toxicity tests were performed with eggs and larvae of yellow perch (Perca flavescens), and fathead minnow (Pimephales promelas), eggs of white sucker (Catastomus commersoni), and larvae of bluegill sunfish (Lepomis macrochirus). The 50 and 99% lethal concentrations with confidence limits were calculated. Eggs of the species tested were more tolerant than larvae, which were destroyed by very brief exposures (less than 2 minutes) to residuals less than 0.1 mg/1. Because of the sensitivity of the larvae, residual ozone concentrations in natural waters should remain well below 50 ..mu..g/1.

  10. Use of liposomized tetracycline in elimination of Wolbachia endobacterium of human lymphatic filariid Brugia malayi in a rodent model.

    PubMed

    Bajpai, Preeti; Vedi, Satish; Owais, Mohammad; Sharma, Sharad K; Saxena, Prabh N; Misra-Bhattacharya, Shailja

    2005-07-01

    Wolbachia bacteria, being filarial parasite symbiont have been implicated in a variety of roles, including development, fecundity and the pathogenesis of the filarial infections. Among various strategies used in the treatment of experimental filariasis, the elimination of symbiont Wolbachia seem to offer an efficient means of curing the disease. The antiwolbachial property of tetracycline has been well worked out; however, treatment needs to be continued for a prolonged period of time to achieve complete elimination of Wolbachia from the filarial parasites and their subsequent killing. This results in acute toxicity, thus limiting its practical utility for clinical implementation. In order to increase efficacy of the antibiotic with minimal toxic manifestations, we developed liposomized formulation of the tetracycline. The liposomized tetracycline was found to be significantly more effective when compared to the free form of the drug. In contrast to the 90/120 days oral administration of the drug, the treatment schedule using the liposomized form of the drug was reduced to 12 alternate days with better efficacy of the treatment. PMID:16278157

  11. Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality.

    PubMed

    Alkhaibari, Abeer M; Carolino, Aline T; Yavasoglu, Sare I; Maffeis, Thierry; Mattoso, Thalles C; Bull, James C; Samuels, Richard I; Butt, Tariq M

    2016-07-01

    Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world's population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti larvae

  12. Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality

    PubMed Central

    Alkhaibari, Abeer M.; Carolino, Aline T.; Yavasoglu, Sare I.; Maffeis, Thierry; Mattoso, Thalles C.; Bull, James C.; Samuels, Richard I.; Butt, Tariq M.

    2016-01-01

    Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world’s population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti

  13. Anisakiasis: Report of 15 Gastric Cases Caused by Anisakis Type I Larvae and a Brief Review of Korean Anisakiasis Cases

    PubMed Central

    Sohn, Woon-Mok; Na, Byoung-Kuk; Kim, Tae Hyo; Park, Tae-Joon

    2015-01-01

    The present study was performed to report 15 anisakiasis cases in Korea and to review the Korean cases reported in the literature. Total 32 Anisakis type I larvae were detected in the stomach of 15 patients by the endoscopy. Single worm was detected from 12 cases, and even 9 larvae were found from 2 cases. Epigastric pain was most commonly manifested in almost all cases, and hemoptysis and hematemesis were seen in 1 case each. Symptom manifestations began at 10-12 hr after eating fish in 73.3% cases. Endoscopy was performed 1-2 days after the symptom onset in most cases. The common conger, Conger myriaster, was the probable infection source in 7 cases. In the review of Korean anisakiasis cases, thus far, total 645 cases have been reported in 64 articles. Anisakis type I larva was the most frequently detected (81.3%). The favorable infection site of larvae was the stomach (82.4%). The common conger was the most probable source of human infections (38.6%). Among the total 404 cases which revealed the age and sex of patients, 185 (45.8%) were males, and the remaining 219 (54.2%) were female patients. The age prevalence was the highest in forties (34.7%). The seasonal prevalence was highest in winter (38.8%). By the present study, 15 cases of gastric anisakiasis are added as Korean cases, and some epidemiological characteristics of Korean anisakiasis were clarified. PMID:26323845

  14. Toxocara canis: potential activity of natural products against second-stage larvae in vitro and in vivo.

    PubMed

    Reis, Mariana; Trinca, Alcione; Ferreira, Maria José U; Monsalve-Puello, Ana R; Grácio, Maria Amélia A

    2010-10-01

    The anthelmintic activity of extracts from Chenopodiumambrosioides, Pycnanthusangolensis and Nutridesintox was in vitro and in vivo investigated, against Toxocaracanis larvae. The in vitro assays results showed that the aqueous extract of Nutridesintox was the most effective, followed by C. ambrosioides extracts, hexane, dichloromethane and the infusion. P. angolensis extracts showed a lower anthelmintic activity compared to the other natural products. For the in vivo assays, Nutridesintox, the hexane extract and the infusion of C. ambrosioides were administered orally to T. canis-infected mice, in single doses, during three consecutive days. The efficacy was evaluated on the 17th day post-infection, not only by counting T. canis larvae in the tissues but also by ELISA detection of IgM and IgG antibodies and histological analysis of liver and lungs. The different treatments did not reduce the larvae burden and had no influence on the antibodies dynamic. Interestingly, a reduction on the inflammatory infiltrates was observed in the liver and lung sections of the group treated with the hexane extract of C. ambrosioides. In conclusion, the hexane extract of C. ambrosioides is of further research interest, as it showed an anthelmintic activity in vitro and a reduction on the inflammatory reaction produced by the infection of T. canis larvae in vivo. PMID:20447397

  15. Larvae of gryporhynchid cestodes (Cyclophyllidea) from fish: a review.

    PubMed

    Scholz, Tomás; Bray, Rodney A; Kuchta, Roman; Repová, Radmila

    2004-06-01

    Larvae (metacestodes) of tapeworms of the cyclophyllidean family Gryporhynchidae (previously included in the Dilepididae) occur in different internal organs of fresh- and brackish water fish (110 fish species of 27 families in 12 orders reported), which serve as the second intermediate hosts. The species composition, spectrum of fish hosts, sites of infection, and geographical distribution of gryporhynchids recorded from fish are reviewed here on the basis of literary data and examination of extensive material from helminthological collections. Metacestodes of the following genera have been found in fish: Amirthalingamia Bray, 1974 (1 species), Ascodilepis Guildal, 1960 (1), Cyclustera Fuhrmann, 1901 (4), Dendrouterina Fuhrmann, 1912 (1), Glossocercus Chandler, 1935 (3), Neogryporhynchus Baer et Bona, 1960 (1), Paradilepis Hsü, 1935 (5), Parvitaenia Burt, 1940 (2), and Valipora Linton, 1927 (3). However, most published records concern only three species, namely Neogryporhynchus cheilancristrotus (Wedl, 1855) from the intestinal lumen, Paradilepis scolecina (Rudolphi, 1819) from the liver and mesenteries, and Valipora campylancristrota (Wedl, 1855) from the gall bladder of cyprinids and other fish in the Palaearctic Region. Data on other species as well as reports from other regions are very scarce and almost no information is available from Australia, tropical Asia and South America. A recent study of gryporhynchid metacestodes from Mexico (Scholz and Salgado-Maldonado 2001), which reported 13 species, suggested that they may be more common than indicated by records in the literature. Although only a few cases of pathogenic influence of larvae on fish hosts have been reported, the veterinary importance of gryporhynchids remains to be assessed on the basis of more detailed studies. The data available indicate a strict host and site specificity of some species whereas others occur in a wide spectrum of fish hosts and are not strictly site-specific. Evaluation of

  16. Visceral larva migrans (toxocariasis) in Toronto.

    PubMed Central

    Fanning, M; Hill, A; Langer, H M; Keystone, J S

    1981-01-01

    A 7-year-old child was admitted to Toronto's Hospital for Sick Children in 1976 with symptoms and laboratory findings compatible with visceral larva migrans, a disease usually caused by Toxocara canis. This prompted a search for other cases seen at the hospital during the period 1952 through 1978. Only 18 cases were discovered that met at least three of six criteria and thus were considered possible or probably cases of the disease. Three possible cases of ocular toxocariasis during the same period were also uncovered. Fever was the commonest presenting symptom. Eosinophilia, leukocytosis and hyperglobulinemia were the most frequent laboratory findings. In view of the small number of cases found in 27 years at this large pediatric hospital with a broad referral base, it is concluded that visceral larva migrans poses little risk to the health of children in the Toronto area. PMID:7459767

  17. Exposure of gnotobiotic Artemia franciscana larvae to abiotic stress promotes heat shock protein 70 synthesis and enhances resistance to pathogenic Vibrio campbellii

    PubMed Central

    Pineda, Carlos; MacRae, Thomas H.; Sorgeloos, Patrick; Bossier, Peter

    2008-01-01

    Larvae of the brine shrimp Artemia franciscana serve as important feed in fish and shellfish larviculture; however, they are subject to bacterial diseases that devastate entire populations and consequently hinder their use in aquaculture. Exposure to abiotic stress was shown previously to shield Artemia larvae against infection by pathogenic Vibrio, with the results suggesting a mechanistic role for heat shock protein 70. In the current report, combined hypothermic/hyperthermic shock followed by recovery at ambient temperature induced Hsp70 synthesis in Artemia larvae. Thermotolerance was also increased as was protection against infection by Vibrio campbellii, the latter indicated by reduced mortality and lower bacterial load in challenge tests. Resistance to Vibrio improved in the face of declining body mass as demonstrated by measurement of ash-free dry weight. Hypothermic stress only and acute osmotic insult did not promote Hsp70 expression and thermotolerance in Artemia larvae nor was resistance to Vibrio challenge augmented. The data support a causal link between Hsp70 accumulation induced by abiotic stress and enhanced resistance to infection by V. campbellii, perhaps via stimulation of the Artemia immune system. This possibility is now under investigation, and the work may reveal fundamental properties of crustacean immunity. Additionally, the findings are important in aquaculture where development of procedures to prevent bacterial infection of feed stock such as Artemia larvae is a priority. PMID:18347942

  18. The early stress responses in fish larvae.

    PubMed

    Pederzoli, Aurora; Mola, Lucrezia

    2016-05-01

    During the life cycle of fish the larval stages are the most interesting and variable. Teleost larvae undergo a daily increase in adaptability and many organs differentiate and become active. These processes are concerted and require an early neuro-immune-endocrine integration. In larvae communication among the nervous, endocrine and immune systems utilizes several known signal molecule families which could be different from those of the adult fish. The immune-neuroendocrine system was studied in several fish species, among which in particular the sea bass (Dicentrarchus labrax), that is a species of great commercial interest, very important in aquaculture and thus highly studied. Indeed the immune system of this species is the best known among marine teleosts. In this review the data on main signal molecules of stress carried out on larvae of fish are considered and discussed. For sea bass active roles in the early immunological responses of some well-known molecules involved in the stress, such as ACTH, nitric oxide, CRF, HSP-70 and cortisol have been proposed. These molecules and/or their receptors are biologically active mainly in the gut before complete differentiation of gut-associated lymphoid tissue (GALT), probably acting in an autocrine/paracrine way. An intriguing idea emerges from all results of these researches; the molecules involved in stress responses, expressed in the adult cells of the hypothalamic-pituitary axis, during the larval life of fish are present in several other localizations, where they perform probably the same role. It may be hypothesized that the functions performed by hypothalamic-pituitary system are particularly important for the survival of the larva and therefore they comprises several other localizations of body. Indeed the larval stages of fish are very crucial phases that include many physiological changes and several possible stress both internal and environmental. PMID:26968620

  19. Caffeine Taste Signaling in Drosophila Larvae

    PubMed Central

    Apostolopoulou, Anthi A.; Köhn, Saskia; Stehle, Bernhard; Lutz, Michael; Wüst, Alexander; Mazija, Lorena; Rist, Anna; Galizia, C. Giovanni; Lüdke, Alja; Thum, Andreas S.

    2016-01-01

    The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal, and ventral organ). However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative co-receptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s). This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviors. PMID:27555807

  20. Caffeine Taste Signaling in Drosophila Larvae.

    PubMed

    Apostolopoulou, Anthi A; Köhn, Saskia; Stehle, Bernhard; Lutz, Michael; Wüst, Alexander; Mazija, Lorena; Rist, Anna; Galizia, C Giovanni; Lüdke, Alja; Thum, Andreas S

    2016-01-01

    The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal, and ventral organ). However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative co-receptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s). This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviors. PMID:27555807

  1. Molecular detection of marine invertebrate larvae.

    PubMed

    Goffredi, Shana K; Jones, William J; Scholin, Christopher A; Marin, Roman; Vrijenhoek, Robert C

    2006-01-01

    The ecological patterns of many invertebrate larvae remain an ongoing mystery, in large part owing to the difficult task of detecting them in the water column. The development of nucleic-acid-based technology has the potential to resolve this issue by direct identification and monitoring of embryonic and larval forms in situ. We report herein on the successful development and application of nucleic-acid-based sandwich hybridization assays that detect barnacles using rRNA-targeted probes with both group-(order Thoracica) and species-(Balanus glandula) specificity. Primary results include the determination of target 18S rRNA sequences and the construction of "capture" probes for detection of larvae using hybridization techniques. In addition, we modified existing protocols for whole cell hybridization of invertebrate larvae as confirmation of the sandwich hybridization results. We used both hybridization techniques successfully in the laboratory on a plankton time series collected over 3 months, as well as a week-long in situ deployment of the technique in Monterey Bay, CA. The adaptability of this technology promises to be further applicable to various organisms and could be used to enhance our understanding of larval presence in the world's oceans. PMID:16380809

  2. Evaluation of inflammatory responses against muscle larvae of different Trichinella species by an image analysis system.

    PubMed

    Bruschi, F; Marucci, G; Pozio, E; Masetti, M

    2009-02-23

    The aim of this study was to evaluate the inflammatory response in the muscle tissue against Trichinella larvae of encapsulated (T. spiralis, T. britovi) and non-encapsulated (T. pseudospiralis) species. The inflammatory response was estimated in histological sections of muscle tissues from Trichinella-infected CD1 mice by a newly developed method. Nuclei were stained with one fluorescent probe, which binds nucleic acids with high affinity, and fluorescence was analysed by a software program. Evaluation of the relative fluorescence units was performed in both peri-capsular (close to the nurse cell-parasite complex) and extra-capsular (where the parasite was not visible) areas. The increase in the number of nuclei in the muscle tissues of Trichinella-infected mice was considered an inflammation marker, since uninfected muscles show low nucleus density. In order to evaluate differences in the nitrosylation pattern between encapsulated (T. spiralis, T. britovi) and non-encapsulated (T. pseudospiralis, Trichinella papuae, Trichinella zimbabwensis) species, L(1) larvae were tested by immunoblotting with an anti-nitrotyrosine polyclonal antibody. Inflammation induced by T. spiralis larvae in muscle tissues is statistically higher than that elicited by the other species, both in peri- and extra-capsular areas. Nitrosylation occurs at a higher level in encapsulated than in non-encapsulated species. The method developed in this work allows demonstration of differences in the host inflammatory response against encapsulated and non-encapsulated Trichinella species. PMID:19046814

  3. Biochemical characterization of different genotypes of Paenibacillus larvae subsp. larvae, a honey bee bacterial pathogen.

    PubMed

    Neuendorf, Sandra; Hedtke, Kati; Tangen, Gerhard; Genersch, Elke

    2004-07-01

    Paenibacillus larvae subsp. larvae (P. l. larvae) is the aetiological agent of American foulbrood (AFB), the most virulent bacterial disease of honey bee brood worldwide. In many countries AFB is a notifiable disease since it is highly contagious, in most cases incurable and able to kill affected colonies. Genotyping of field isolates of P. l. larvae revealed at least four genotypes (AB, Ab, ab and alpha B) present in Germany which are genotypically different from the reference strain DSM 7030. Therefore, based on these data, five different genotypes of P. l. larvae are now identified with genotype AB standing out with a characteristic brown-orange and circled two-coloured colony morphology. Analysing the metabolic profiles of three German genotypes (AB, Ab and ab) as well as of the reference strain using the Biolog system, a characteristic biochemical fingerprint could be obtained for each strain. Cluster analysis showed that while genotypes Ab, ab and the reference strain DSM 7030 are rather similar, genotype AB is clearly different from the others. Analysis of all isolates for plasmid DNA revealed two different plasmids present only in isolates belonging to genotype AB. Therefore, genotype AB is remarkable in all aspects analysed so far. Future analysis will show whether or not these differences will expand to differences in virulence. PMID:15256579

  4. Heterologous expression of an orphan NRPS gene cluster from Paenibacillus larvae in Escherichia coli revealed production of sevadicin.

    PubMed

    Tang, Ying; Frewert, Simon; Harmrolfs, Kirsten; Herrmann, Jennifer; Karmann, Lisa; Kazmaier, Uli; Xia, Liqiu; Zhang, Youming; Müller, Rolf

    2015-01-20

    The Gram-positive bacterium Paenibacillus larvae is the causative agent of the fateful honey bee disease American Foulbrood (AFB). Sequence analysis of P. larvae genomic DNA showed the presence of numerous nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) encoding gene clusters, not correlating with secondary metabolite production. As NRPS and PKS derived metabolites are known to exhibit diverse biological activities, their identification is of particular interest for infection and drug research. Here an 11.6kb orphan NRPS gene cluster was directly cloned from the genomic DNA of P. larvae and expressed in Escherichia coli resulting in the production of sevadicin. Isolation of the metabolite was followed by structural characterization, synthesis and bioactivity studies. PMID:25529345

  5. Circulating hemocytes from larvae of Melipona scutellaris (Hymenoptera, Apidae, Meliponini): cell types and their role in phagocytosis.

    PubMed

    Amaral, Isabel Marques Rodrigues; Moreira Neto, João Felipe; Pereira, Gustavo Borges; Franco, Mariani Borges; Beletti, Marcelo Emílio; Kerr, Warwick Estevam; Bonetti, Ana Maria; Ueira-Vieira, Carlos

    2010-02-01

    Infection in insects stimulates a complex defensive response. Recognition of pathogens may be accomplished by plasma or hemocyte proteins that bind specifically to bacterial or fungal polysaccharides. Several morphologically distinct hemocyte cell types cooperate in the immune response. Hemocytes attach to invading organisms and then isolate them by phagocytosis, by trapping them in hemocyte aggregates called nodules, or by forming an organized multicellular capsule around large parasites. In the current investigation the cellular in the hemolymph third instar larvae of M. scutellaris has been characterized by means of light microscopy analysis and phagocytosis assays were performed in vivo by injection of 0.5 microm fluorescence beads in order to identify the hemocyte types involved in phagocytosis. Four morphotypes of circulating hemocytes were found in 3rd instar larvae: prohemocytes, plasmatocytes, granulocytes and oenocytoids. The results presented plasmatocytes and granulocytes involved in phagocytic response of foreign particles in 3rd instar larvae of M. scutellaris. PMID:19914078

  6. Philornis sp. bot fly larvae in free living scarlet macaw nestlings and a new technique for their extraction.

    PubMed

    Olah, George; Vigo, Gabriela; Ortiz, Lizzie; Rozsa, Lajos; Brightsmith, Donald J

    2013-09-01

    Bot fly larvae (Philornis genus) are obligate subcutaneous blood-feeding parasites of Neotropical birds including psittacines. We analyze twelve years of data on scarlet macaw (Ara macao) nestlings in natural and artificial nests in the lowland forests of southeastern Peru and report prevalence and intensity of Philornis parasitism. Bot fly prevalence was 28.9% while mean intensity was 5.0 larvae per infected chick. Prevalence in natural nests (11%, N=90 nestlings) was lower than in wooden nest-boxes (39%, N=57) and PVC boxes (39%, N=109). We describe a new technique of removing Philornis larvae using a reverse syringe design snake bite extractor. We compare this new technique to two other methods for removing bots from macaw chicks and find the new method the most suitable. PMID:23384580

  7. [Microbiological diagnosis of gastrointestinal infections].

    PubMed

    Vila, Jordi; Alvarez-Martínez, Miriam J; Buesa, Javier; Castillo, Javier

    2009-01-01

    Acute gastrointestinal tract infections are among the most common infectious diseases. In the present review, the different methods of diagnosing gastrointestinal infections caused by bacteria, viruses, and parasites are examined. Stool culture is the method of choice for diagnosing bacterial intestinal infections; however, infections caused by Clostridium difficile can be diagnosed by detection of toxins A and B in stools, and infections caused by diarrheagenic Escherichia coli by PCR detection of specific virulence factor genes harbored by several E. coli pathotypes. The techniques used to diagnose viral gastrointestinal infections include detection of viral antigens and nucleic acids. Finally, gastrointestinal infections caused by parasites can be diagnosed by testing for trophozoites and cysts of protozoa, or larvae and eggs of helminths in stools by direct microscopic examination, with concentration techniques, or by specific stains. PMID:19477556

  8. Drosophila larvae: Thermal ecology in changing environments

    NASA Astrophysics Data System (ADS)

    Wang, George

    Temperature affects almost all aspects of life. Although much work has been done to assess the impact of temperature on organismal performance, relatively little is known about how organisms behaviorally regulate temperature, how these behaviors effect population fitness, or how changing climate may interact with these behaviors. I explore these questions with the model system Drosophila larvae. Larvae are small, with a low thermal mass and limited capacity for physiological thermoregulation. Mortality is generally high in larvae, with large potential impacts on population growth rate. Thus behavioral thermoregulation in larvae should be of critical selective importance. I present a review of the current knowledge of Drosophila thermal preference. I describe quantifiable thermoregulatory behaviors ( TMV and TW) unique to larvae. I show interspecific variation of these behaviors in Drosophila melanogaster and several close relatives, and intraspecific variation between populations collected from different environments. I also investigate these behaviors in two mutant lines, ssa and biz, to investigate the genetic basis of these behaviors. I show that larval thermoregulatory systems are independent of those of adults. Further these thermoregulatory behaviors differ between two sister species, D. yakuba and D. santomea. Although these two species readily hybridize in laboratory conditions, very few hybrids are observed in the field. The surprising result that hybrids of D. yakuba and D. santomea seem to inherit TMV from D. yakuba suggests a novel extrinsic isolation mechanism between the two species. I explore how fitness is the result of the interaction between genetics and the environment. I utilize Monte Carlo simulation to show how non-linear norms of reaction generate variation in populations even in the absence of behavior or epigenetic evolutionary mechanisms. Finally I investigate the global distribution of temperatures in which these organisms exist using

  9. Interactions among Drosophila larvae before and during collision.

    PubMed

    Otto, Nils; Risse, Benjamin; Berh, Dimitri; Bittern, Jonas; Jiang, Xiaoyi; Klämbt, Christian

    2016-01-01

    In populations of Drosophila larvae, both, an aggregation and a dispersal behavior can be observed. However, the mechanisms coordinating larval locomotion in respect to other animals, especially in close proximity and during/after physical contacts are currently only little understood. Here we test whether relevant information is perceived before or during larva-larva contacts, analyze its influence on behavior and ask whether larvae avoid or pursue collisions. Employing frustrated total internal reflection-based imaging (FIM) we first found that larvae visually detect other moving larvae in a narrow perceptive field and respond with characteristic escape reactions. To decipher larval locomotion not only before but also during the collision we utilized a two color FIM approach (FIM(2c)), which allowed to faithfully extract the posture and motion of colliding animals. We show that during collision, larval locomotion freezes and sensory information is sampled during a KISS phase (german: Kollisions Induziertes Stopp Syndrom or english: collision induced stop syndrome). Interestingly, larvae react differently to living, dead or artificial larvae, discriminate other Drosophila species and have an increased bending probability for a short period after the collision terminates. Thus, Drosophila larvae evolved means to specify behaviors in response to other larvae. PMID:27511760

  10. Interactions among Drosophila larvae before and during collision

    PubMed Central

    Otto, Nils; Risse, Benjamin; Berh, Dimitri; Bittern, Jonas; Jiang, Xiaoyi; Klämbt, Christian

    2016-01-01

    In populations of Drosophila larvae, both, an aggregation and a dispersal behavior can be observed. However, the mechanisms coordinating larval locomotion in respect to other animals, especially in close proximity and during/after physical contacts are currently only little understood. Here we test whether relevant information is perceived before or during larva-larva contacts, analyze its influence on behavior and ask whether larvae avoid or pursue collisions. Employing frustrated total internal reflection-based imaging (FIM) we first found that larvae visually detect other moving larvae in a narrow perceptive field and respond with characteristic escape reactions. To decipher larval locomotion not only before but also during the collision we utilized a two color FIM approach (FIM2c), which allowed to faithfully extract the posture and motion of colliding animals. We show that during collision, larval locomotion freezes and sensory information is sampled during a KISS phase (german: Kollisions Induziertes Stopp Syndrom or english: collision induced stop syndrome). Interestingly, larvae react differently to living, dead or artificial larvae, discriminate other Drosophila species and have an increased bending probability for a short period after the collision terminates. Thus, Drosophila larvae evolved means to specify behaviors in response to other larvae. PMID:27511760

  11. From trochophore to pilidium and back again - a larva's journey.

    PubMed

    Maslakova, Svetlana A; Hiebert, Terra C

    2014-01-01

    Nemerteans, a phylum of marine lophotrochozoan worms, have a biphasic life history with benthic adults and planktonic larvae. Nemertean larval development is traditionally categorized into direct and indirect. Indirect development via a long-lived planktotrophic pilidium larva is thought to have evolved in one clade of nemerteans, the Pilidiophora, from an ancestor with a uniformly ciliated planuliform larva. Planuliform larvae in a member of a basal nemertean group, the Palaeonemertea, have been previously shown to possess a vestigial prototroch, homologous to the primary larval ciliated band in the trochophores of other spiralian phyla, such as annelids and mollusks. We review literature on nemertean larval development, and include our own unpublished observations. We highlight recent discoveries of numerous pilidiophoran species with lecithotrophic larvae. Some of these larvae superficially resemble uniformly ciliated planuliform larvae of other nemerteans. Others possess one or two transverse ciliary bands, which superficially resemble the prototroch and telotroch of some spiralian trochophores. We also summarize accumulating evidence for planktotrophic feeding by larvae of the order Hoplonemertea, which until now were considered to be lecithotrophic. We suggest that 1) non-feeding pilidiophoran larval forms are derived from a feeding pilidium; 2) such forms have likely evolved many times independently within the Pilidiophora; 3) any resemblance of such larvae to the trochophores of other spiralians is a result of convergence and that 4) the possibility of planktotrophy in hoplonemertean larvae may influence estimates of pelagic larval duration, dispersal, and population connectivity in this group. PMID:25690972

  12. Antioxidant, antifungal and antiviral activities of chitosan from the larvae of housefly, Musca domestica L.

    PubMed

    Ai, Hui; Wang, Furong; Xia, Yuqian; Chen, Xiaomin; Lei, Chaoliang

    2012-05-01

    Antioxidant activity of the chitosan from the larvae of Musca domestica L. was evaluated in two different reactive oxygen species assays, and inhibitory effects against seven fungi were also tested. The results showed that the chitosan had scavenging activity for hydroxyl and superoxide radicals which were similar to that of ascorbic acid. Also the chitosan exhibited excellent antifungal activity, especially in the low concentration, it could significantly inhibit the growth of Rhizopus stolonifer. Besides, antiviral results demonstrated that the chitosan could effectively inhibit the infection of AcMNPV and BmNPV. These results suggested that the chitosan from the larvae of housefly could be effectively used as a natural antioxidant to protect the human body from free radicals and retard the progress of many chronic diseases. Furthermore, the chitosan with antiviral and antifungal activity might provide useful information for antiviral breeding technology of economic insect and development of plant pathological control. PMID:26434321

  13. Antihelmintic effects of nutmeg (Myristica fragans) on Anisakis simplex L3 larvae obtained from Micromesistius potassou.

    PubMed

    López, Víctor; Gerique, Javier; Langa, Elisa; Berzosa, César; Valero, Marta Sofía; Gómez-Rincón, Carlota

    2015-06-01

    Anisakis simplex is a foodborne pathogen that can produce human infections and allergic reactions due to the high consumption of raw fish. The seeds of Myristica fragans (Myristicaceae), popularly known as nutmeg, are worldwide used as a culinary spice due to its flavour and properties in food preservation. A nutmeg extract was prepared, analyzed, screened for cytotoxicity and tested against Anisakis simplex L3 larvae. In order to detect the biologically active constituents of the extract, myristicin was tested on the larvae. An acetylcholinesterase inhibition bioassay was also carried out to investigate the antihelmintic mechanism of action. Our results demonstrate that nutmeg exerts antihelmintic effects on Anisakis simplex, being myristicin one of the active compounds. The extract induced a high rate of dead anisakis at concentrations between 0.5 and 0.7 mg/ml without being considered cytotoxic; however, an inhibition of acetylcholinesterase was discarded as the molecular mechanism involved in the activity. PMID:25890576

  14. Phaeobacter gallaeciensis Reduces Vibrio anguillarum in Cultures of Microalgae and Rotifers, and Prevents Vibriosis in Cod Larvae

    PubMed Central

    D’Alvise, Paul W.; Lillebø, Siril; Prol-Garcia, Maria J.; Wergeland, Heidrun I.; Nielsen, Kristian F.; Bergh, Øivind; Gram, Lone

    2012-01-01

    Phaeobacter gallaeciensis can antagonize fish-pathogenic bacteria in vitro, and the purpose of this study was to evaluate the organism as a probiont for marine fish larvae and their feed cultures. An in vivo mechanism of action of the antagonistic probiotic bacterium is suggested using a non-antagonistic mutant. P. gallaeciensis was readily established in axenic cultures of the two microalgae Tetraselmis suecica and Nannochloropsis oculata, and of the rotifer Brachionus plicatilis. P. gallaeciensis reached densities of 107 cfu/ml and did not adversely affect growth of algae or rotifers. Vibrio anguillarum was significantly reduced by wild-type P. gallaeciensis, when introduced into these cultures. A P. gallaeciensis mutant that did not produce the antibacterial compound tropodithietic acid (TDA) did not reduce V. anguillarum numbers, suggesting that production of the antibacterial compound is important for the antagonistic properties of P. gallaeciensis. The ability of P. gallaeciensis to protect fish larvae from vibriosis was determined in a bath challenge experiment using a multidish system with 1 larva per well. Unchallenged larvae reached 40% accumulated mortality which increased to 100% when infected with V. anguillarum. P. gallaeciensis reduced the mortality of challenged cod larvae (Gadus morhua) to 10%, significantly below the levels of both the challenged and the unchallenged larvae. The TDA mutant reduced mortality of the cod larvae in some of the replicates, although to a much lesser extent than the wild type. It is concluded that P. gallaeciensis is a promising probiont in marine larviculture and that TDA production likely contributes to its probiotic effect. PMID:22928051

  15. The Identification of Congeners and Aliens by Drosophila Larvae

    PubMed Central

    Del Pino, Francisco; Jara, Claudia; Pino, Luis; Medina-Muñoz, María Cristina; Alvarez, Eduardo; Godoy-Herrera, Raúl

    2015-01-01

    We investigated the role of Drosophila larva olfactory system in identification of congeners and aliens. We discuss the importance of these activities in larva navigation across substrates, and the implications for allocation of space and food among species of similar ecologies. Wild type larvae of cosmopolitan D. melanogaster and endemic D. pavani, which cohabit the same breeding sites, used species-specific volatiles to identify conspecifics and aliens moving toward larvae of their species. D. gaucha larvae, a sibling species of D. pavani that is ecologically isolated from D. melanogaster, did not respond to melanogaster odor cues. Similar to D. pavani larvae, the navigation of pavani female x gaucha male hybrids was influenced by conspecific and alien odors, whereas gaucha female x pavani male hybrid larvae exhibited behavior similar to the D. gaucha parent. The two sibling species exhibited substantial evolutionary divergence in processing the odor inputs necessary to identify conspecifics. Orco (Or83b) mutant larvae of D. melanogaster, which exhibit a loss of sense of smell, did not distinguish conspecific from alien larvae, instead moving across the substrate. Syn97CS and rut larvae of D. melanogaster, which are unable to learn but can smell, moved across the substrate as well. The Orco (Or83b), Syn97CS and rut loci are necessary to orient navigation by D. melanogaster larvae. Individuals of the Trana strain of D. melanogaster did not respond to conspecific and alien larval volatiles and therefore navigated randomly across the substrate. By contrast, larvae of the Til-Til strain used larval volatiles to orient their movement. Natural populations of D. melanogaster may exhibit differences in identification of conspecific and alien larvae. Larval locomotion was not affected by the volatiles. PMID:26313007

  16. The Identification of Congeners and Aliens by Drosophila Larvae.

    PubMed

    Del Pino, Francisco; Jara, Claudia; Pino, Luis; Medina-Muñoz, María Cristina; Alvarez, Eduardo; Godoy-Herrera, Raúl

    2015-01-01

    We investigated the role of Drosophila larva olfactory system in identification of congeners and aliens. We discuss the importance of these activities in larva navigation across substrates, and the implications for allocation of space and food among species of similar ecologies. Wild type larvae of cosmopolitan D. melanogaster and endemic D. pavani, which cohabit the same breeding sites, used species-specific volatiles to identify conspecifics and aliens moving toward larvae of their species. D. gaucha larvae, a sibling species of D. pavani that is ecologically isolated from D. melanogaster, did not respond to melanogaster odor cues. Similar to D. pavani larvae, the navigation of pavani female x gaucha male hybrids was influenced by conspecific and alien odors, whereas gaucha female x pavani male hybrid larvae exhibited behavior similar to the D. gaucha parent. The two sibling species exhibited substantial evolutionary divergence in processing the odor inputs necessary to identify conspecifics. Orco (Or83b) mutant larvae of D. melanogaster, which exhibit a loss of sense of smell, did not distinguish conspecific from alien larvae, instead moving across the substrate. Syn97CS and rut larvae of D. melanogaster, which are unable to learn but can smell, moved across the substrate as well. The Orco (Or83b), Syn97CS and rut loci are necessary to orient navigation by D. melanogaster larvae. Individuals of the Trana strain of D. melanogaster did not respond to conspecific and alien larval volatiles and therefore navigated randomly across the substrate. By contrast, larvae of the Til-Til strain used larval volatiles to orient their movement. Natural populations of D. melanogaster may exhibit differences in identification of conspecific and alien larvae. Larval locomotion was not affected by the volatiles. PMID:26313007

  17. In vitro culture of Parascaris equorum larvae and initial investigation of parasite excretory-secretory products.

    PubMed

    Burk, Steffanie V; Dangoudoubiyam, Sriveny; Brewster-Barnes, Tammy; Bryant, Uneeda K; Howe, Daniel K; Carter, Craig N; Vanzant, Eric S; Harmon, Robert J; Kazacos, Kevin R; Rossano, Mary G

    2014-11-01

    Currently, diagnosis of Parascaris equorum infection in equids is limited to patent infections. The goals of this study were to culture P. equorum larvae in vitro and identify excretory-secretory (ES) products for prepatent diagnostic testing. Parascaris equorum L2/L3 larvae were hatched and cultured for up to 3 weeks for ES product collection. Fifth stage (L5) P. equorum were also cultured for ES product collection. Examination of ES fractions by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and silver stain revealed L2/L3 products ranging from 12-94 kDa and L5 products ranging from 12-189 kDa. Western blot analyses were conducted using polyclonal antibodies produced against P. equorum or Baylisascaris procyonis L2/L3 ES products, sera from rabbits inoculated with B. procyonis or Toxocara canis eggs, and sera from animals naturally infected with P. equorum or T. canis. Western blot results indicated parasite antigens migrating at 19 and 34 kDa may be useful for specifically detecting P. equorum infections. PMID:25209615

  18. Delayed metamorphosis of amphibian larvae facilitates Batrachochytrium dendrobatidis transmission and persistence.

    PubMed

    Medina, Daniel; Garner, Trenton W J; Carrascal, Luis María; Bosch, Jaime

    2015-12-01

    Highly virulent pathogens that cause host population declines confront the risk of fade-out, but if pathogen transmission dynamics are age-structured, pathogens can persist. Among other features of amphibian biology, variable larval developmental rates generate age-structured larval populations, which in theory can facilitate pathogen persistence. We investigated this possibility empirically in a population of Salamandra salamandra in Spain affected by Batrachochytrium dendrobatidis (Bd) at breeding sites that lacked alternative amphibian hosts. None of the adults presented infection by Bd. However, for the larvae, while environmental heterogeneity was the most important predictor of infection, the effect on infection dynamics was mediated by transmission from overwintered larvae to new larval recruits, which occurred only in permanent larval habitats. We suggest that interannual Bd maintenance in a host population that experiences mass mortality associated with infection can occur without an environmental reservoir or direct involvement of an alternative host in our study system. However the 2 aquatic habitat types that support intraspecific reservoirs, permanent streams and ponds, are not ideal habitats for long-term Bd maintenance, either due to poor transmission probability or low host survival, respectively. While intraspecific pathogen maintenance due to larval plasticity might be possible at our study sites, this transmission pattern is not without significant risk to the pathogen. The availability of alternative hosts nearby does indicate that permanent Bd fade-out is unlikely. PMID:26648101

  19. Electrophoretic pattern of Linguatula serrata larva isolated goat mesenteric lymph node.

    PubMed

    Youssefi, Mohammad Reza; Tabaripour, Rabeeh; Gerami, Abbas; Omrani, Vahid Fallah

    2016-06-01

    Linguatula serrata, one of the parasitic zoonoses, inhabits the canid and felid respiratory system. The parasite is tongue-shaped, lightly convex dorsally and flattened ventrally. Males measure 1.8-2 cm, while females measure 8-13 cm in length. Disease due to infection with this parasite in humans is more likely to cause pharyngitis, nausea and vomiting, sore and itchy throat, cough, phlegm and runny nose. Present study aimed to determine linguatula's larva somatic antigens in lymph nodes of infected goats and also reveal the major component of antigenic protein. To determine the electrophoretic pattern of L. serrata's larvae, 50 samples were taken from goat's referred to the slaughter house of Amol, Mazandaran, Iran. After performing SDS-PAGE on somatic antigens, 6 bands (19, 20, 36, 48, 75,100 KDa) were seen in which the 36, 48 and 75 KDa bands were more prominent. In conclusion, it is recommended to determine the most important antigenic protein of this parasite could be used an experimental model in infection up to determine the most significant component of this parasite's antigen and use of that in immunogenicity and detection of infection. PMID:27413296

  20. Trichinella spiralis: killing of newborn larvae by lung cells.

    PubMed

    Falduto, Guido H; Vila, Cecilia C; Saracino, María P; Calcagno, Marcela A; Venturiello, Stella M

    2015-02-01

    The migratory stage of Trichinella spiralis, the newborn larva (NBL), travels along the pulmonary microvascular system on its way to the skeletal muscle cells. The present work studies the capability of lung cells to kill NBL. For this purpose, in vitro cytotoxicity assays were performed using NBL, lung cell suspensions from Wistar rats, rat anti-NBL surface sera, and fresh serum as complement source. The cytotoxic activity of lung cells from rats infected on day 6 p.i. was compared with that from noninfected rats. Two and 20 h-old NBL (NBL2 and NBL20) were used as they had shown to exhibit different surface antigens altering their biological activity. Sera antibodies were analyzed by indirect immunofluorescence assay, and cell populations used in each assay were characterized by histological staining. The role of IgE in the cytotoxic attack against NBL was analyzed using heated serum. The FcεRI expression on cell suspensions was examined by flow cytometry. Results showed that lung cells were capable of killing NBL by antibody-dependent cell-mediated cytotoxicity (ADCC). Lung cells from infected animals yielded the highest mortality percentages of NBL, with NBL20 being the most susceptible to such attack. IgE yielded a critical role in the cytotoxic attack. Regarding the analysis of cell suspensions, cells from infected rats showed an increase in the percentage of eosinophils, neutrophils, and the number of cells expressing the FcεRI receptor. We conclude that lung cells are capable of killing NBL in the presence of specific antibodies, supporting the idea that the lung is one of the sites where the NBL death occurs due to ADCC. PMID:25416332

  1. Development of a bacterial challenge test for gnotobiotic Nile tilapia Oreochromis niloticus larvae.

    PubMed

    Situmorang, Magdalena Lenny; Dierckens, Kristof; Mlingi, Frank Thomas; Van Delsen, Bart; Bossier, Peter

    2014-04-23

    Gastrointestinal microbiota have an important impact on fish health and disease, stimulating interest in a better understanding of how these gastrointestinal microbial communities are composed and consequently affect host fitness. In this respect, probiotic microorganisms have been extensively used in recent aquaculture production. To study the use of probiotics in the treatment of infectious diseases, the establishment of a method of experimental infection to obtain consistent results for mortality and infection in challenge tests is important. In pathogen-screening tests, 4 candidate pathogenic bacteria strains (Edwardsiella ictaluri gly09, E. ictaluri gly10, E. tarda LMG2793 and Streptococcus agalactiae LMG15977) were individually tested on xenic Nile tilapia larvae. Only Edwardsiella strains delivered via Artemia nauplii, with or without additional pathogen delivery via the culture water, led to increased mortality in fish larvae. A gnotobiotic Nile tilapia larvae model system was developed to provide a research tool to investigate the effects and modes-of-action of probiotics under controlled conditions. A double disinfection procedure using hydrogen peroxide and sodium hypochlorite solution was applied to the fish eggs, which were subsequently incubated in a cocktail of antibiotic and antifungal agents. In the gnotobiotic challenge test, E. ictaluri gly09R was added to the model system via Artemia nauplii and culture water, resulting in a significant mortality of the gnotobiotic fish larvae. The developed gnotobiotic Nile tilapia model can be used as a tool to extend understanding of the mechanisms involved in host-microbe interactions and to evaluate new methods of disease control. PMID:24781794

  2. Expanded Numbers of Circulating Myeloid Dendritic Cells in Patent Human Filarial Infection Reflect Lower CCR1 Expression

    PubMed Central

    Semnani, Roshanak Tolouei; Mahapatra, Lily; Dembele, Benoit; Konate, Siaka; Metenou, Simon; Dolo, Housseini; Coulibaly, Michel E.; Soumaoro, Lamine; Coulibaly, Siaka Y.; Sanogo, Dramane; Doumbia, Salif Seriba; Diallo, Abdallah A.; Traoré, Sekou F.; Klion, Amy; Nutman, Thomas B.; Mahanty, Siddhartha

    2012-01-01

    APC dysfunction has been postulated to mediate some of the parasite-specific T cell unresponsiveness seen in patent filarial infection. We have shown that live microfilariae of Brugia malayi induce caspase-dependent apoptosis in human monocyte-derived dendritic cells (DCs) in vitro. This study addresses whether apoptosis observed in vitro extends to patent filarial infections in humans and is reflected in the number of circulating myeloid DCs (mDCs; CD11c−CD123lo) in peripheral blood of infected microfilaremic individuals. Utilizing flow cytometry to identify DC subpopulations (mDCs and plasmacytoid DCs [pDCs]) based on expression of CD11c and CD123, we found a significant increase in numbers of circulating mDCs (CD11c+CD123lo) in filaria-infected individuals compared with uninfected controls from the same filaria-endemic region of Mali. Total numbers of pDCs, monocytes, and lymphocytes did not differ between the two groups. To investigate potential causes of differences in mDC numbers between the two groups, we assessed chemokine receptor expression on mDCs. Our data indicate that filaria-infected individuals had a lower percentage of circulating CCR1+ mDCs and a higher percentage of circulating CCR5+ mDCs and pDCs. Finally, live microfilariae of B. malayi were able to downregulate cell-surface expression of CCR1 on monocyte-derived DCs and diminish their calcium flux in response to stimulation by a CCR1 ligand. These findings suggest that microfilaria are capable of altering mDC migration through downregulation of expression of some chemokine receptors and their signaling functions. These observations have major implications for regulation of immune responses to these long-lived parasites. PMID:20956349

  3. Expanded numbers of circulating myeloid dendritic cells in patent human filarial infection reflect lower CCR1 expression.

    PubMed

    Semnani, Roshanak Tolouei; Mahapatra, Lily; Dembele, Benoit; Konate, Siaka; Metenou, Simon; Dolo, Housseini; Coulibaly, Michel E; Soumaoro, Lamine; Coulibaly, Siaka Y; Sanogo, Dramane; Seriba Doumbia, Salif; Diallo, Abdallah A; Traoré, Sekou F; Klion, Amy; Nutman, Thomas B; Mahanty, Siddhartha

    2010-11-15

    APC dysfunction has been postulated to mediate some of the parasite-specific T cell unresponsiveness seen in patent filarial infection. We have shown that live microfilariae of Brugia malayi induce caspase-dependent apoptosis in human monocyte-derived dendritic cells (DCs) in vitro. This study addresses whether apoptosis observed in vitro extends to patent filarial infections in humans and is reflected in the number of circulating myeloid DCs (mDCs; CD11c(-)CD123(lo)) in peripheral blood of infected microfilaremic individuals. Utilizing flow cytometry to identify DC subpopulations (mDCs and plasmacytoid DCs [pDCs]) based on expression of CD11c and CD123, we found a significant increase in numbers of circulating mDCs (CD11c(+)CD123(lo)) in filaria-infected individuals compared with uninfected controls from the same filaria-endemic region of Mali. Total numbers of pDCs, monocytes, and lymphocytes did not differ between the two groups. To investigate potential causes of differences in mDC numbers between the two groups, we assessed chemokine receptor expression on mDCs. Our data indicate that filaria-infected individuals had a lower percentage of circulating CCR1(+) mDCs and a higher percentage of circulating CCR5(+) mDCs and pDCs. Finally, live microfilariae of B. malayi were able to downregulate cell-surface expression of CCR1 on monocyte-derived DCs and diminish their calcium flux in response to stimulation by a CCR1 ligand. These findings suggest that microfilaria are capable of altering mDC migration through downregulation of expression of some chemokine receptors and their signaling functions. These observations have major implications for regulation of immune responses to these long-lived parasites. PMID:20956349

  4. [Serological demonstration of experimental round worm infections-Ascaris suum, Toxocara canis--in swine by means of the indirect immunofluorescence antibody test].

    PubMed

    Buchwalder, R; Matthes, H F; Hiepe, T

    1981-11-01

    By means of indirect immunofluorescent antibody reaction (IFAR), using serum of experimentally infected pigs, various antigens were studied with regard to their usefulness for serological verification of prepatent Ascaris suum and Toxocara canis infections. Eggs, egg larvae, larvae received from livers, lungs and brains of experimentally infected white mice and sections of adult T. canis as well as eggs, egg larvae, liver larvae and sections of frozen adult A. suum proved to be not suitable for the reliable serum diagnosis of the infections. On the other hand, A. suum larvae, isolated from lungs of white mice or guinea pigs days after experimental infection, represent an antigen applicable to IFAR for the evidence of prepatent A. suum infections in pigs. The antigen, stored at -20 degree C, is durable without substantial impairment of its reactivity at least 7 months. PMID:7039425

  5. Equipment for transporting live black fly larvae (Diptera: Simuliiae)

    USGS Publications Warehouse

    Tarshis, I.B.; Adkins, T.R.

    1971-01-01

    In studies relating to the biology and ecology of black flies, live larvae of at least 70 species of Simuliidae have been collected from their natural breeding sites and transported in containers with nonagitated water for short distances to the laboratory. One of us (Tarshis 1966) found, however, that even small numbers of simuliid larvae cannot survive in containers with nonagitated water for more than 6 hr. Additionally, when massive numbers of larvae are introduced into transport containers in which the water is not agitated, the larvae perish because they become entangled within the masses of silken threads they emit whenever disturbed (Tarshis and Neil 1970). Therefore, when transporting larvae long distances or when transporting large numbers of larvae any distance, it is essential to agitate the water in the transport containers.

  6. Validation of daily increments in otoliths of northern squawfish larvae

    USGS Publications Warehouse

    Wertheimer, R.H.; Barfoot, C.A.

    1998-01-01

    Otoliths from laboratory-reared northern squawfish, Ptychocheilus oregonensis, larvae were examined to determine the periodicity of increment deposition. Increment deposition began in both sagittae and lapilli after hatching. Reader counts indicated that increment formation was daily in sagittae of 1-29-day-old larvae. However, increment counts from lapilli were significantly less than the known ages of northern squawfish larvae, possibly because some increments were not detectable. Otolith readability and age agreement among readers were greatest for young (<11 days) northern squawfish larvae. This was primarily because a transitional zone of low-contrast material began forming in otoliths of 8-11-day-old larvae and persisted until approximately 20 days after hatching. Formation of the transition zone appeared to coincide with the onset of exogenous feeding and continued through yolk sac absorption. Our results indicate that aging wild-caught northern squawfish larvae using daily otolith increment counts is possible.

  7. Fate of pharmaceuticals and pesticides in fly larvae composting.

    PubMed

    Lalander, C; Senecal, J; Gros Calvo, M; Ahrens, L; Josefsson, S; Wiberg, K; Vinnerås, B

    2016-09-15

    A novel and efficient organic waste management strategy currently gaining great attention is fly larvae composting. High resource recovery efficiency can be achieved in this closed-looped system, but pharmaceuticals and pesticides in waste could potentially accumulate in every loop of the treatment system and spread to the environment. This study evaluated the fate of three pharmaceuticals (carbamazepine, roxithromycin, trimethoprim) and two pesticides (azoxystrobin, propiconazole) in a fly larvae composting system and in a control treatment with no larvae. It was found that the half-life of all five substances was shorter in the fly larvae compost (<10% of control) and no bioaccumulation was detected in the larvae. Fly larvae composting could thus impede the spread of pharmaceuticals and pesticides into the environment. PMID:27177134

  8. Evaluation of Baermann apparatus sedimentation time on recovery of Strongylus vulgaris and S. edentatus third stage larvae from equine coprocultures.

    PubMed

    Bellaw, Jennifer L; Nielsen, Martin K

    2015-06-30

    Traditional methods of diagnosing equine Strongylinae infections require culturing feces, sedimenting the culture media in Baermann apparatuses, collecting the sediment, and morphologically identifying recovered third stage larvae. However, this method is plagued by low negative predictive values. This study evaluated sedimentation time within the Baermann apparatus by comparing larval recovery from the traditionally collected sediment, "sediment 1", and from the usually discarded remaining fluid contents, "sediment 2", of the Baermann apparatus after 12, 24, and 48 h. A grand total of 147,482 larvae were recovered and examined. Sedimentation time did not significantly influence total larval recovery. At all three durations, significantly more Cyathostominae and Strongylus vulgaris larvae were covered from sediment 1 than from sediment 2. However, less than 60% of all recovered Strongylus edentatus were recovered from sediment 1. As 95% of S. vulgaris larvae were always recovered from sediment 1, the need for collection and examination of the remaining fluid contents of the Baermann apparatus is obviated when performing coprocultures for diagnosis of S. vulgaris infections, and sedimentation for 12h is adequate. Approximately 70% of Cyathostominae were recovered in sediment 1 at all durations, suggesting that 12h of sedimentation is adequate, although there is a need for future research to evaluate the risk of selection bias at differing sedimentation times among individual cyathostomin species. In contrast to S. vulgaris, collecting and examining the entire contents of the Baermann apparatus may be necessary when an increased diagnostic sensitivity and negative predictive value is desired in diagnosing S. edentatus infections as only 38-61% of larvae were recovered from sediment 1 portion of the Baermann apparatus. This information will allow researchers and practitioners to make more informed decisions in choosing appropriate larval recovery techniques, balancing

  9. Molecular cloning and characterization of transgelin-like proteins mainly transcribed in newborn larvae of Trichinella spp.

    PubMed

    Nagano, Isao; Wu, Zhiliang; Asano, Kazunobu; Takahashi, Yuzo

    2011-05-31

    A cDNA library was constructed from Trichinella pseudospiralis muscle larvae. One cDNA clone, designated Tp4, contained a cDNA transcript of 783 bp in length, with a single open reading frame that encoded 153 amino acids (16,793 Da as the estimated molecular mass). The predicted amino acid sequence of Tp4 showed that the clone had a calponin homology domain and was approximately 50% identical to the transgelin-like proteins (calponin-family members) present in Bombyx mori or Tribolium castaneum. A homologue of the Tp4 clone was also present in cDNA from Trichinella spiralis, and this clone was designated Ts4. A comparison of the amino acid sequence of the transgelin-like proteins from T. spiralis (Ts4 protein) with the Tp4 protein indicated that the two proteins are very similar (about 94% homology). Real time quantitative polymerase chain reaction results showed that the transcription level of the Tp4 and Ts4 genes was highest in newborn larvae. On Western blot, the recombinant Tp4 and Ts4 proteins migrated at 20 kDa when reacted to an antibody against the recombinant Tp4 and Ts4 proteins, respectively. An antibody against the recombinant Tp4 and Ts4 proteins strongly stained two bands migrating at approximately 9 and 8 kDa in the crude extracts from adult worms and newborn larvae, but only weakly stained proteins in muscle larvae. However, an immunocytochemical study showed that the Tp4 protein was present within the muscle of the muscle larvae of T. pseudospiralis. The antibody level against the recombinant Tp4 antigens in infected mice began to increase from 8 days post-infection, was highest in 13 days post-infection, and then slowly decreased. PMID:21242032

  10. Anisakidae and Raphidascarididae larvae parasitizing Selene setapinnis (Mitchill, 1815) in the State of Rio de Janeiro, Brazil.

    PubMed

    Fontenelle, Gabrielle; Knoff, Marcelo; Felizardo, Nilza Nunes; Torres, Eduardo José Lopes; Lopes, Leila Maria da Silva; Gomes, Delir Corrêa; Clemente, Sérgio Carmona de São

    2015-01-01

    Between February and August, 2012, thirty specimens of Atlantic moonfish, Selene setapinnis, were purchased in local markets in Niterói, State of Rio de Janeiro, Brazil, with the aim of analyzing the presence of anisakid nematodes, establishing their rates of parasitism and infection sites, due to importance in the sanitary inspection. A total of sixty nematode larvae, belonging to at least two species were found: nine larvae of Terranova sp., Anisakidae, with prevalence (P) of 13.3%, mean intensity (MI) of 2.25, mean abundance (MA) of 0.30 and range of infection intensity (RI) from 1 to 6; and 51 larvae of Hysterothylacium fortalezae, Raphidascarididae, with P = 26.7%, MI = 6.40, MA = 1.70, and RI = 1-17. The infection sites for Terranova sp. were the mesentery and liver serosa; and for H. fortalezae, the infection sites were the mesentery, abdominal cavity and liver serosa. New morphological data from scanning electron microscopy, on the external structures of H. fortalezae (mainly at the posterior end), are presented. This is the first report of H. fortalezae parasitizing S. setapinnis. PMID:25909256

  11. Ascaris and hookworm transmission in preschool children from rural Panama: role of yard environment, soil eggs/larvae and hygiene and play behaviours.

    PubMed

    Krause, Rachel J; Koski, Kristine G; Pons, Emérita; Sandoval, Nidia; Sinisterra, Odalis; Scott, Marilyn E

    2015-10-01

    This study explored whether the yard environment and child hygiene and play behaviours were associated with presence and intensity of Ascaris and hookworm in preschool children and with eggs and larvae in soil. Data were collected using questionnaires, a visual survey of the yard, soil samples and fecal samples collected at baseline and following re-infection. The presence of eggs/larvae in soil was associated negatively with water storage (eggs) but positively with dogs (eggs) and distance from home to latrine (larvae). Baseline and re-infection prevalences were: hookworm (28.0%, 3.4%); Ascaris (16.9%, 9.5%); Trichuris (0.9%, 0.7%). Zero-inflated negative binomial regression models revealed a higher baseline hookworm infection if yards had eggs or larvae, more vegetation or garbage, and if the child played with soil. Baseline Ascaris was associated with dirt floor, dogs, exposed soil in yard, open defecation and with less time playing outdoors, whereas Ascaris re-infection was associated with water storage, vegetation cover and garbage near the home and not playing with animals. Our results show complex interactions between infection, the yard environment and child behaviours, and indicate that transmission would be reduced if latrines were closer to the home, and if open defecation and water spillage were reduced. PMID:26302902

  12. Learning and memory in zebrafish larvae

    PubMed Central

    Roberts, Adam C.; Bill, Brent R.; Glanzman, David L.

    2013-01-01

    Larval zebrafish possess several experimental advantages for investigating the molecular and neural bases of learning and memory. Despite this, neuroscientists have only recently begun to use these animals to study memory. However, in a relatively short period of time a number of forms of learning have been described in zebrafish larvae, and significant progress has been made toward their understanding. Here we provide a comprehensive review of this progress; we also describe several promising new experimental technologies currently being used in larval zebrafish that are likely to contribute major insights into the processes that underlie learning and memory. PMID:23935566

  13. Dichloromethane attracts diabroticite larvae in a laboratory behavioral bioassay.

    PubMed

    Jewett, D K; Bjostad, L B

    1996-07-01

    A two-choice laboratory behavioral bioassay was used to demonstrate that dichloromethane elicits the dose-dependent attraction of secondinstar western and southern corn rootworms. Preliminary data suggest that second-instar banded cucumber beetles are also attracted to dichloromethane. An eluotropic series of 10 materials, including distilled water, ethanol, methanol, acetone, ethyl dichloroacetate, dichloromethane, diethyl ether, benzene, hexadecane, and hexane, was tested for attraction of western corn rootworm larvae. Dichloromethane was the only one attractive at all doses tested, and orthogonal comparisons revealed a quadratic trend (convex) for responses of larvae to increasing dose. Benzene and hexadecane also attracted larvae, but significantly fewer than dichloromethane, and only at three doses and one dose, respectively. Orthogonal comparisons revealed no linear or quadratic trend for responses of larvae to increasing doses of either compound. Dichloromethane is the first organic compound demonstrated to attract western corn rootworm larvae in the absence of carbon dioxide. Carbon dioxide has previously been reported to attract western corn rootworm larvae either independently or when combined with other organic compounds, and the sensitivity of our bioassay was tested by demonstrating the dose-dependent attraction of western corn rootworm larvae to carbonated water as a carbon dioxide source. We have also demonstrated the attraction of southern corn rootworm larvae to carbon dioxide and propose that carbon dioxide and dichloromethane behave analogously when they interact with chemoreceptor sites on larvae. PMID:24226089

  14. Necropsies of eight horses infected with Strongylus equinus and Strongylus edentatus.

    PubMed

    Petty, D P; Lange, A L; Verster, A; Hattingh, J

    1992-06-01

    Ponies (n = 8) approximately 18 months old, were infected with 20,000 to 30,000 infective larvae of Strongylus equinus with less than 10% contamination with Strongylus edentatus larvae and necropsied 7 months post-infection. Lesions were present in the omentum, liver, pancreas, ventral colon, caecum and occasionally in the lungs. There were numerous intraabdominal adhesions and severe multiple granulomatous omentitis. Pancreatic damage, which characterises S. equinus, was exceptionally mild and was manifested mainly by slight periductular infiltration of eosinophils. Granulomas associated with larvae were found in the connective tissue associated with the pancreas. Larvae were recovered from the flanks, the peritoneum, the caecum and the kidney. Larval recovery was low, with a high percentage of the total number of larvae recovered in some of the carcasses being S. edentatus. PMID:1501210

  15. Toxicity of phenol on Macrobrachium rosenbergii (de Man) eggs, larvae, and post-larvae

    SciTech Connect

    Law, A.T.; Yeo, M.E.

    1997-03-01

    Literature on the toxicities of phenol on aquatic organisms is very limited. USEPA reported that the acute and chronic toxicities of phenol to freshwater aquatic life occur at concentrations as low as 10.2 mg/L and 2.56 mg/L, respectively. While for the saltwater aquatic life the acute toxicity occurs at concentrations as low as 5.8 mg/L. No data are available for the chronic toxicity of phenol to saltwater aquatic life. Sublethal concentrations of phenol have significant effects on the physiological and histological processes of the aquatic organisms: such as gill necrosis; destruction of erythrocyte cells; inhibition of sexual activities; suppression on growth and reduction of resistance to diseases. Macrobrachium rosenbergii(de Man) is the sole freshwater prawn cultured in Malaysia. Occasionally, the hatcheries are unable to produce the post-larvae because of undefined pollutants present in the water supplies. It has been observed that the use of cracked fiberglass tanks for larvae rearing is correlated with high mortality. This high mortality is probably due to the toxicity of the phenolic compounds which are leached out from the fiber glass tank into the water. This study was undertaken to evaluate the toxicity of phenol on eggs, larvae and post-larvae of M. rosenbergii and to set the water quality criteria of phenol for the said species. 16 refs., 3 tabs.

  16. Occurrence of Glugea pimephales in planktonic larvae of fathead minnow in Algonquin Park, Ontario.

    PubMed

    Forest, Jonathon J H; King, Stanley D; Cone, David K

    2009-09-01

    The microsporidian Glugea pimephales was found parasitizing larval fathead minnow Pimephales promelas in Scott Lake, Algonquin Park, Ontario. These fish were estimated to be 2-3 weeks posthatch and, given the development time of the parasite, must have acquired infection soon after commencement of exogenous feeding. Histological sections revealed that the parasite typically developed in loose connective tissue between the peritoneum and the dermis of the abdominal cavity, with protruding xenomas of up to 2.6 mm in diameter forming near the vent. Prevalence was estimated at 1% by divers performing snorkel surveys along the lake shoreline. Divers following schools of fathead minnow consistently reported that larvae with the obvious cysts wobbled during swimming and that infected fish were typically located at the back of the dispersing school. This case history joins a growing list of studies suggesting that fish can become infected with parasites soon after hatch, the potential importance of which has not been critically studied. PMID:20043401

  17. Occurrence and abundance of anisakid nematode larvae in five species of fish from southern Australian waters.

    PubMed

    Shamsi, Shokoofeh; Eisenbarth, Albert; Saptarshi, Shruti; Beveridge, Ian; Gasser, Robin B; Lopata, Andreas L

    2011-04-01

    The aim of the present study was to conduct, in southern Australian waters, a preliminary epidemiological survey of five commercially significant species of fish (yellow-eye mullet, tiger flathead, sand flathead, pilchard and king fish) for infections with anisakid nematodes larvae using a combined morphological-molecular approach. With the exception of king fish, which was farmed and fed commercial pellets, all other species were infected with at least one species of anisakid nematode, with each individual tiger flathead examined being infected. Five morphotypes, including Anisakis, Contracaecum type I and II and Hysterothylacium type IV and VIII, were defined genetically using mutation scanning and targeted sequencing of the second internal transcribed spacer of nuclear ribosomal DNA. The findings of the present study provide a basis for future investigations of the genetic composition of anisakid populations in a wide range of fish hosts in Australia and for assessing their public health significance. PMID:21057811

  18. Sensitivity of Mytilus galloprovincialis larvae to ammonia

    SciTech Connect

    Gardiner, W.W.; Antrim, L.D.; Word, J.Q.

    1994-12-31

    Free ammonia is a constituent of some marine effluents and sediments. The authors evaluated the sensitivity of the larval stage of the marine bivalve, Mytilus galloprovincialis, to concentrations of ammonium sulfate, as well as to suspended-particulate-phase (SPP) preparations of marine sediments and petroleum-based marine effluents. Mytilus larvae are commonly used test organisms because of their sensitivity to toxicants and their use in evaluation of water-column impacts of dredged material disposal. Ammonia-only EC{sub 50} values were between 3 mg/L NH{sub 3} and 8 mg/L NH{sub 3}; LC{sub 50} values ranged from 66 mg/L NH{sub 3} to 100 mg/L NH{sub 3}. Abnormalities included exogastrulation and arrested development at early gastrulation. The EC{sub 50} values for ammonia in SPP and effluents were within similar ranges, which indicates that ammonia may contribute significantly to toxicity of these materials. Exposure of larvae during different developmental stages and time periods will also be discussed.

  19. A Model of Drosophila Larva Chemotaxis

    PubMed Central

    Davies, Alex; Louis, Matthieu; Webb, Barbara

    2015-01-01

    Detailed observations of larval Drosophila chemotaxis have characterised the relationship between the odour gradient and the runs, head casts and turns made by the animal. We use a computational model to test whether hypothesised sensorimotor control mechanisms are sufficient to account for larval behaviour. The model combines three mechanisms based on simple transformations of the recent history of odour intensity at the head location. The first is an increased probability of terminating runs in response to gradually decreasing concentration, the second an increased probability of terminating head casts in response to rapidly increasing concentration, and the third a biasing of run directions up concentration gradients through modulation of small head casts. We show that this model can be tuned to produce behavioural statistics comparable to those reported for the larva, and that this tuning results in similar chemotaxis performance to the larva. We demonstrate that each mechanism can enable odour approach but the combination of mechanisms is most effective, and investigate how these low-level control mechanisms relate to behavioural measures such as the preference indices used to investigate larval learning behaviour in group assays. PMID:26600460

  20. Gnathostoma larva migrans among guests of a New Year party.

    PubMed

    Migasena, S; Pitisuttithum, P; Desakorn, V

    1991-12-01

    An outbreak of Gnathostoma larva migrans occurred among guests of a New Year's party in Chachoengsao, Thailand. Nine people who consumed a raw fish dish called 'Hu-sae' contracted the disease. Five of them developed gastro-intestinal symptoms consisting of nausea, vomiting, abdominal cramps and diarrhea as early as within the first 24 hours, while in the other four, symptoms started on the following day. After the initial symptoms pertaining to the gut, malaise, chest discomfort, cough, myalgia, weakness, itching and migratory swellings were experienced. Eosinophilia was demonstrated in every patient with a mean (+/- SE) count of 5,516 +/- 1,010 cells/cu mm. Detection of antibody against aqueous extracts of G. spinigerum adult antigen using an enzyme-linked immunosorbent assay showed a titer of 1:1,600 or greater in every patients except one who had a titer of 1:400 (positive greater than or equal to 1:400). This outbreak illustrates the high attack rate when heavily infected fish are consumed. PMID:1822891

  1. Evaluation of Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) for Control of Japanese Beetle Larvae in Turfgrass.

    PubMed

    Behle, Robert W; Richmond, Douglas S; Jackson, Mark A; Dunlap, Christopher A

    2015-08-01

    Experimental and commercial preparations of Metarhizium brunneum (Petch) strain F52 were evaluated for control of Japanese beetle, Popillia japonica Newman (Coleoptera: Scarbaeidae), larvae (white grubs) in the laboratory and under field conditions. Experimental preparations consisted of granule and liquid formulations made using in vitro produced microsclerotia, which are intended to produce infective conidial spores after application. These formulations were compared against commercial insecticides (imidacloprid and trichlorfon), and commercial formulations of M. brunneum F52 (Met 52) containing only conidia. Field-collected grubs were susceptible to infection in a dosage-dependent relationship when exposed to potting soil treated with experimental microsclerotia granules in the laboratory. The LC(50) for field-collected larvae was 14.2 mg of granules per cup (∼15 g granules/m(2)). Field plots treated with experimental and commercial formulations of M. brunneum F52 after 10 September (targeting second and third instar grubs) had significantly lower grub densities compared with untreated plots, providing 38.6-69.2% control, which sometimes equaled levels of control with chemical insecticides. Fungal treatments made prior to 21 August provided 14.3-69.3% control, although grub densities resulting from these treatments were often not significantly lower than those in untreated control plots. By comparison, chemical insecticide treatments provide 68-100% grub control, often providing better control when applied earlier in the season. In conclusion, P. japonica larvae are susceptible to infection by M. brunneum, and grub densities were reduced most consistently by fall applications targeting later instars. PMID:26470299

  2. Application of Giemsa stain for easy detection of Trichinella spiralis muscle larvae.

    PubMed

    Ramírez-Melgar, Carmen; Gómez-Priego, Alberto; De-la-Rosa, Jorge-Luis

    2007-03-01

    The application of Giemsa technique to stain compressed diaphragm samples obtained from rodents experimentally infected with Trichinella spiralis is described. Diaphragm samples from rats heavily infected with 20 muscle larvae per gram of body weight (20 ML/gbw) were cut into several pieces and stained with Giemsa; on the other hand, whole diaphragms from slightly infected mice (1 ML/gbw) were also stained with Giemsa. Besides, muscle samples were also stained with Giemsa. Observation at 10 x magnification revealed that both ML and nurse cells (NC) look as bluish structures clearly contrasting with the pinkish color of the non-infected muscle fibers. NC in the diaphragms of mice could be easily observed at naked eye as blue points contrasting with the pink surrounding areas formed by the non-infected muscle fibers. Among NC observed in the diaphragms of rats infected with 20 ML/gbw, 4.4% was multiple infection. These findings were confirmed in sectioned and hematoxylin-eosin stained specimens. This data could be usefulness for a rapid diagnosis of trichinellosis in post-mortem mammals without magnification procedures. PMID:17374981

  3. [Ectoparasites. Part 2: Bed bugs, Demodex, sand fleas and cutaneous larva migrans].

    PubMed

    Nenoff, P; Handrick, W; Krüger, C; Herrmann, J; Schmoranzer, B; Paasch, U

    2009-09-01

    Ectoparasites or epidermal parasites include a very heterogenous group of infections of the outer layers of the skin. Worldwide the most common are scabies, lice, tungiasis, and hookworm-induced cutaneous larva migrans. In recent years, bed bug infestations in hotels or vacation homes seem to have become more frequent. Demodex folliculorum and Demodex brevis are found in the facial and scalp hair follicles in 95% of individuals. Classic Demodex folliculitis is often overlooked in differential diagnostic considerations. This inflammatory sebaceous gland disease as well as Demodex blepharitis both provide a diagnostic and therapeutic challenge. Permethrin can be used topically against demodicosis. Vacationers who go barefoot on beaches in tropical Africa, South America and subtropical Asia risk infestations from female sand fleas. The lesions can be curetted or removed with a punch biopsy, then treated with antiseptics or even systemic antibiotics if a secondary infection develops. Cutaneous larva migrans is one of the most common imported ectoparasite infections from the tropics. Topical treatment measures include thiabendazole or cryotherapy. If the infestation is severe, systemic antihelminthics or ivermectin can be employed. PMID:19701614

  4. Dose-dependent establishment of Trichuris suis larvae in Göttingen minipigs.

    PubMed

    Vejzagić, Nermina; Roepstorff, Allan; Kringel, Helene; Thamsborg, Stig Milan; Nielsen, Mads Pårup; Kapel, Christian M O

    2015-03-15

    Embryonated eggs of the pig whipworm Trichuris suis (TSOee) constitute the active pharmaceutical ingredient (API) in a medicinal product explored in human clinical trials against several immune-mediated diseases. The measurement of TSO biological potency (hatchability and infectivity) is a requirement for the assessment of TSO's pharmacological potency in human clinical trials. The present study aims to validate the dose-dependent establishment of T. suis larvae in Göttingen minipigs and eventual clinical implication of a dose range (1000-10,000 TSO). Four groups of 5 minipigs were inoculated with doses of 1000, 2500, 7500, and 10,000 TSOee, respectively, to evaluate a range of concentrations of TSOee in a minipig infectivity model. Unembryonated eggs (TSOue) were added to keep the total egg number in the inoculum constant at 10,000 eggs. Two groups received 2500 and 7500 TSOee per pig without the addition of TSOue as controls. The intestinal larval establishment at 21 days post inoculation (dpi) demonstrated a clear positive linear dose-response relationship between numbers of inoculated TSOee and recovered larvae. There was a low level of variation in larval counts in all study groups. Thus, the infectivity model in minipigs within the tested dose range offers a reliable, sensitive and accurate assay for testing biological potency of TSO. PMID:25700937

  5. ANTHELMINTIC ACTIVITY OF LAPACHOL, β-LAPACHONE AND ITS DERIVATIVES AGAINST Toxocara canis LARVAE

    PubMed Central

    MATA-SANTOS, Taís; PINTO, Nitza França; MATA-SANTOS, Hilton Antônio; DE MOURA, Kelly Gallan; CARNEIRO, Paula Fernandes; CARVALHO, Tatiane dos Santos; DEL RIO, Karina Pena; PINTO, Maria do Carmo Freire Ribeiro; MARTINS, Lourdes Rodrigues; FENALTI, Juliana Montelli; DA SILVA, Pedro Eduardo Almeida; SCAINI, Carlos James

    2015-01-01

    Anthelmintics used for intestinal helminthiasis treatment are generally effective; however, their effectiveness in tissue parasitosis (i.e. visceral toxocariasis) is moderate. The aim of this study was to evaluate the in vitroactivity of lapachol, β-lapachone and phenazines in relation to the viability of Toxocara canis larvae. A concentration of 2 mg/mL (in duplicate) of the compounds was tested using microculture plates containing Toxocara canis larvae in an RPMI-1640 environment, incubated at 37 °C in 5% CO2 tension for 48 hours. In the 2 mg/mL concentration, four phenazines, lapachol and three of its derivatives presented a larvicide/larvistatic activity of 100%. Then, the minimum larvicide/larvistatic concentration (MLC) test was conducted. The compounds that presented the best results were nor-lapachol (MLC, 1 mg/mL), lapachol (MLC 0.5 mg/mL), β-lapachone, and β-C-allyl-lawsone (MLC, 0.25 mg/mL). The larvae exposed to the compounds, at best MLC with 100% in vitro activity larvicide, were inoculated into healthy BALB/c mice and were not capable of causing infection, confirming the larvicide potential in vitro of these compounds. PMID:26200958

  6. Larvicidal Activity of Nerium oleander against Larvae West Nile Vector Mosquito Culex pipiens (Diptera: Culicidae).

    PubMed

    El-Akhal, Fouad; Guemmouh, Raja; Ez Zoubi, Yassine; El Ouali Lalami, Abdelhakim

    2015-01-01

    Background. Outbreaks of the West Nile virus infection were reported in Morocco in 1996, 2003, and 2010. Culex pipiens was strongly suspected as the vector responsible for transmission. In the North center of Morocco, this species has developed resistance to synthetic insecticides. There is an urgent need to find alternatives to the insecticides as natural biocides. Objective. In this work, the insecticidal activity of the extract of the local plant Nerium oleander, which has never been tested before in the North center of Morocco, was studied on larval stages 3 and 4 of Culex pipiens. Methods. Biological tests were realized according to a methodology inspired from standard World Health Organization protocol. The mortality values were determined after 24 h of exposure and LC50 and LC90 values were calculated. Results. The extract had toxic effects on the larvae of culicid mosquitoes. The ethanolic extract of Nerium oleander applied against the larvae of Culex pipiens has given the lethal concentrations LC50 and LC90 in the order of 57.57 mg/mL and 166.35 mg/mL, respectively. Conclusion. This investigation indicates that N. oleander could serve as a potential larvicidal, effective natural biocide against mosquito larvae, particularly Culex pipiens. PMID:26640701

  7. Leptospiral outer membrane protein LipL32 induces inflammation and kidney injury in zebrafish larvae

    PubMed Central

    Chang, Ming-Yang; Cheng, Yi-Chuan; Hsu, Shen-Hsing; Ma, Tsu-Lin; Chou, Li-Fang; Hsu, Hsiang-Hao; Tian, Ya-Chung; Chen, Yung-Chang; Sun, Yuh-Ju; Hung, Cheng-Chieh; Pan, Rong-Long; Yang, Chih-Wei

    2016-01-01

    Leptospirosis is an often overlooked cause of acute kidney injury that can lead to multiple organ failure and even death. The principle protein that conserved in many pathogenic leptospires is the outer membrane protein LipL32. However, the role of LipL32 in the pathogenesis of renal injury in leptospirosis is not entirely clear. Here we studied the effects of LipL32 on the developing kidney in zebrafish larvae. Incubation of zebrafish larvae with Leptospira santarosai serovar Shermani induced acute tubular injury predominantly in the proximal pronephric ducts. Furthermore, microinjection of lipl32 mRNA or recombinant LipL32 protein into zebrafish larvae increased macrophage accumulation and disrupted the basolateral location of NA-K-ATPase in pronephric ducts. These changes led to substantial impairment of the pronephric kidney structure. We further demonstrated that morpholino knockdown of tlr2, but not tlr4, reduced the LipL32-induced leukocyte infiltration and kidney injury. These data demonstrate that LipL32 contributes to the renal pathology in leptospirosis and gives some clues to the potential virulence of LipL32. Our results support the use of zebrafish as a model organism for studying the disease mechanism of leptospiral infection. This model might permit the future exploration of the virulence and molecular pathways of different leptospiral outer membrane proteins. PMID:27278903

  8. Leptospiral outer membrane protein LipL32 induces inflammation and kidney injury in zebrafish larvae.

    PubMed

    Chang, Ming-Yang; Cheng, Yi-Chuan; Hsu, Shen-Hsing; Ma, Tsu-Lin; Chou, Li-Fang; Hsu, Hsiang-Hao; Tian, Ya-Chung; Chen, Yung-Chang; Sun, Yuh-Ju; Hung, Cheng-Chieh; Pan, Rong-Long; Yang, Chih-Wei

    2016-01-01

    Leptospirosis is an often overlooked cause of acute kidney injury that can lead to multiple organ failure and even death. The principle protein that conserved in many pathogenic leptospires is the outer membrane protein LipL32. However, the role of LipL32 in the pathogenesis of renal injury in leptospirosis is not entirely clear. Here we studied the effects of LipL32 on the developing kidney in zebrafish larvae. Incubation of zebrafish larvae with Leptospira santarosai serovar Shermani induced acute tubular injury predominantly in the proximal pronephric ducts. Furthermore, microinjection of lipl32 mRNA or recombinant LipL32 protein into zebrafish larvae increased macrophage accumulation and disrupted the basolateral location of NA-K-ATPase in pronephric ducts. These changes led to substantial impairment of the pronephric kidney structure. We further demonstrated that morpholino knockdown of tlr2, but not tlr4, reduced the LipL32-induced leukocyte infiltration and kidney injury. These data demonstrate that LipL32 contributes to the renal pathology in leptospirosis and gives some clues to the potential virulence of LipL32. Our results support the use of zebrafish as a model organism for studying the disease mechanism of leptospiral infection. This model might permit the future exploration of the virulence and molecular pathways of different leptospiral outer membrane proteins. PMID:27278903

  9. Larvicidal Activity of Nerium oleander against Larvae West Nile Vector Mosquito Culex pipiens (Diptera: Culicidae)

    PubMed Central

    El-Akhal, Fouad; Guemmouh, Raja; Ez Zoubi, Yassine; El Ouali Lalami, Abdelhakim

    2015-01-01

    Background. Outbreaks of the West Nile virus infection were reported in Morocco in 1996, 2003, and 2010. Culex pipiens was strongly suspected as the vector responsible for transmission. In the North center of Morocco, this species has developed resistance to synthetic insecticides. There is an urgent need to find alternatives to the insecticides as natural biocides. Objective. In this work, the insecticidal activity of the extract of the local plant Nerium oleander, which has never been tested before in the North center of Morocco, was studied on larval stages 3 and 4 of Culex pipiens. Methods. Biological tests were realized according to a methodology inspired from standard World Health Organization protocol. The mortality values were determined after 24 h of exposure and LC50 and LC90 values were calculated. Results. The extract had toxic effects on the larvae of culicid mosquitoes. The ethanolic extract of Nerium oleander applied against the larvae of Culex pipiens has given the lethal concentrations LC50 and LC90 in the order of 57.57 mg/mL and 166.35 mg/mL, respectively. Conclusion. This investigation indicates that N. oleander could serve as a potential larvicidal, effective natural biocide against mosquito larvae, particularly Culex pipiens. PMID:26640701

  10. Complete Genome Sequences of Five Paenibacillus larvae Bacteriophages.

    PubMed

    Sheflo, Michael A; Gardner, Adam V; Merrill, Bryan D; Fisher, Joshua N B; Lunt, Bryce L; Breakwell, Donald P; Grose, Julianne H; Burnett, Sandra H

    2013-01-01

    Paenibacillus larvae is a pathogen of honeybees that causes American foulbrood (AFB). We isolated bacteriophages from soil containing bee debris collected near beehives in Utah. We announce five high-quality complete genome sequences, which represent the first completed genome sequences submitted to GenBank for any P. larvae bacteriophage. PMID:24233582

  11. Trail marking by larvae of the eastern tent caterpillar.

    PubMed

    Fitzgerald, T D

    1976-11-26

    Eastern tent caterpillars that are successful foragers deposit trails as they return to the tent that are more attractive than the exploratory trails of the unfed larvae. The trails of these fed returning larvae attract unfed tentmates to food finds anre chemical factors account for the attractiveness of these trails. PMID:982055

  12. Early detection of non-native fishes using fish larvae

    EPA Science Inventory

    Our objective was to evaluate the use of fish larvae for early detection of non-native fishes, comparing traditional and molecular taxonomy approaches to investigate potential efficiencies. Fish larvae present an interesting opportunity for non-native fish early detection. First,...

  13. Selenium impacts on razorback sucker, Colorado: Colorado River: III. Larvae

    USGS Publications Warehouse

    Hamilton, S.J.; Holley, K.M.; Buhl, K.J.; Bullard, F.A.

    2005-01-01

    Razorback sucker (Xyrauchen texanus) larvae from adults exposed to selenium at three sites near Grand Junction, Colorado, for 9 months were used in a 30-day waterborne and dietary selenium study. Selenium concentrations in water averaged <1.6 ??g/L from 24-Road, 0.9 ??g/L from Horsethief, 5.5 ??g/L from Adobe Creek, and 10.7 ??g/L from the North Pond. Selenium in dietary items averaged 2.7 ??g/g in brine shrimp, 5.6 ??g/g in zooplankton from Horsethief east wetland, 20 ??g/g in zooplankton from Adobe Creek, and 39 ??g/g in zooplankton from North Pond. The lowest survival occurred in larvae fed zooplankton rather than brine shrimp. Survival of larvae at Adobe Creek and North Pond was lower in site water than in reference water. Survival of brood stock larvae was higher than Horsethief larvae even though they received the same water and dietary treatments. Arsenic concentrations in brine shrimp may have resulted in an antagonistic interaction with selenium and reduced adverse effects in larvae. Deformities in larvae from North Pond were similar to those reported for selenium-induced teratogenic deformities in other fish species. Selenium concentrations of ???4.6 ??g/g in food resulted in rapid mortality of larvae from Horsethief, Adobe Creek, and North Pond, and suggested that selenium toxicity in the Colorado River could limit recovery of this endangered fish.

  14. Rapid bioassay to screen potential biopesticides in Tenebrio molitor larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simplified assay was devised to evaluate the response of Tenebrio molitor larvae to potential insect control products. The assay incorporates punched disks of flattened whole-grain bread placed in 96-well plates, with treatments applied topically, and neonate larvae added to each well. To evalua...

  15. Selenium impacts on razorback sucker, Colorado: Colorado River III. Larvae.

    PubMed

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A

    2005-06-01

    Razorback sucker (Xyrauchen texanus) larvae from adults exposed to selenium at three sites near Grand Junction, Colorado, for 9 months were used in a 30-day waterborne and dietary selenium study. Selenium concentrations in water averaged <1.6 microg/L from 24-Road, 0.9 microg/L from Horsethief, 5.5 microg/L from Adobe Creek, and 10.7 microg/L from the North Pond. Selenium in dietary items averaged 2.7 microg/g in brine shrimp, 5.6 microg/g in zooplankton from Horsethief east wetland, 20 microg/g in zooplankton from Adobe Creek, and 39 microg/g in zooplankton from North Pond. The lowest survival occurred in larvae fed zooplankton rather than brine shrimp. Survival of larvae at Adobe Creek and North Pond was lower in site water than in reference water. Survival of brood stock larvae was higher than Horsethief larvae even though they received the same water and dietary treatments. Arsenic concentrations in brine shrimp may have resulted in an antagonistic interaction with selenium and reduced adverse effects in larvae. Deformities in larvae from North Pond were similar to those reported for selenium-induced teratogenic deformities in other fish species. Selenium concentrations of 4.6 microg/g in food resulted in rapid mortality of larvae from Horsethief, Adobe Creek, and North Pond, and suggested that selenium toxicity in the Colorado River could limit recovery of this endangered fish. PMID:15883090

  16. The effects of dissolved gas supersaturation on white sturgeon larvae

    USGS Publications Warehouse

    Counihan, T.D.; Miller, A.I.; Mesa, M.G.; Parsley, M.J.

    2000-01-01

    Spill at dams has caused supersaturation of atmospheric gas in waters of the Columbia and Snake rivers and raised concerns about the effects of dissolved gas supersaturation (DGS) on white sturgeons Acipenser transmontanus. The timing and location of white sturgeon spawning and the dispersal of white sturgeon larvae from incubation areas makes the larval stage potentially vulnerable to the effects of DGS. To assess the effects of DGS on white sturgeon larvae, we exposed larvae to mean total dissolved gas (TDG) levels of 118% and 131% saturation in laboratory bioassay tests. Gas bubble trauma (GBT) was manifested as a gas bubble in the buccal cavity, nares, or both and it first occurred at developmental stages characterized by the formation of the mouth and gills. Exposure times of 15 min were sufficient to elicit these signs in larvae in various stages of development. No mortality was observed in larvae exposed to 118% TDG for 10 d, but 50% mortality occurred after a 13-d exposure to 131% TDG. The signs of GBT we observed resulted in positive buoyancy and alterations in behavior that may affect the dispersal and predation vulnerability of white sturgeon larvae. The exact depth distribution of dispersing white sturgeon larvae in the Columbia River currently is unknown. Thus, our results may represent a worst-case scenario if white sturgeon larvae are dispersed at depths with insufficient hydrostatic pressure to compensate for high TDG levels.

  17. Loeffler's Syndrome Following Cutaneous Larva Migrans: An Uncommon Sequel

    PubMed Central

    Podder, Indrashis; Chandra, Somodyuti; Gharami, Ramesh Chandra

    2016-01-01

    Cutaneous larva migrans (CLM) is characterized by the formation of distinctive, tortuous, and serpentine skin lesions occurring as a result of epidermal burrowing by certain helminthic larvae. Although this condition is usually uneventful, rarely it may result in patchy pulmonary infiltration with peripheral eosinophilia, also called Loeffler's syndrome. This association is fairly uncommon and is thus being reported. PMID:27057020

  18. Loeffler's Syndrome Following Cutaneous Larva Migrans: An Uncommon Sequel.

    PubMed

    Podder, Indrashis; Chandra, Somodyuti; Gharami, Ramesh Chandra

    2016-01-01

    Cutaneous larva migrans (CLM) is characterized by the formation of distinctive, tortuous, and serpentine skin lesions occurring as a result of epidermal burrowing by certain helminthic larvae. Although this condition is usually uneventful, rarely it may result in patchy pulmonary infiltration with peripheral eosinophilia, also called Loeffler's syndrome. This association is fairly uncommon and is thus being reported. PMID:27057020

  19. Cadmium and zinc reversibly arrest development of Artemia larvae

    SciTech Connect

    Bagshaw, J.C.; Rafiee, P.; Matthews, C.O.; MacRae, T.H.

    1986-08-01

    Despite the widespread distribution of heavy metals such as cadmium and zinc in the environment and their well-known cytotoxicity and embryotoxicity in mammals, comparatively little is known about their effect on aquatic organisms, particularly invertebrates. Post-gastrula and early larval development of the brine shrimp, Artemia, present some useful advantages for studies of developmental aspects of environmental toxicology. Dormant encysted gastrulae, erroneously called brine shrimp eggs, can be obtained commercially and raised in the laboratory under completely defined conditions. Following a period of post-gastrula development within the cyst, pre-nauplius larvae emerge through a crack in the cyst shell. A few hours later, free-swimming nauplius larvae hatch. Cadmium is acutely toxic to both adults and nauplius larvae of Artemia, but the reported LC50s are as high as 10 mM, depending on larval age. In this paper the authors show that pre-nauplius larvae prior to hatching are much more sensitive to cadmium than are hatched nauplius larvae. At 0.1 ..mu..m, cadmium retards development and hatching of larvae; higher concentrations block hatching almost completely and thus are lethal. However, the larvae arrested at the emergence stage survive for 24 hours or more before succumbing to the effects of cadmium, and during this period the potentially lethal effect is reversible if the larvae are placed in cadmium-free medium. The effects of zinc parallel those of cadmium, although zinc is somewhat less toxic than cadmium at equal concentrations.

  20. The efficacy of monepantel against naturally acquired inhibited and developing fourth-stage larvae of Teladorsagia circumcincta in sheep in the United Kingdom.

    PubMed

    Ramage, C; Bartley, D J; Jackson, F; Cody, R; Hosking, B C

    2012-05-25

    The inhibition of Teladorsagia and other nematode genera at the early fourth-stage is a biological process that allows the parasites to survive in their host in a dormant state when prevailing conditions may otherwise kill them or prevent their progeny from surviving in the external environment. A study was conducted in Scotland to evaluate the efficacy of monepantel, an amino-acetonitrile derivative, against natural infections of inhibited fourth-stage Teladorsagia spp. larvae. At necropsy it was determined that the untreated control sheep were additionally infected with developing fourth-stage Teladorsagia spp. larvae and this is the first published evidence on the efficacy of monepantel against natural infections of this parasite and stage. The study sheep, which had grazed on naturally contaminated pastures since birth, were transferred to indoor housing after a subset of animals was examined to confirm the presence of inhibited larvae within the study population prior to the experiment. After 14 days of housing, monepantel was orally administered at 2.5 mg/kg to half of the animals. The sheep were necropsied seven days later and their parasite burdens recovered for the determination of efficacy, which was 99.7% for the inhibited stages and 99.3% for the developing fourth-stages. In conclusion, monepantel dosed orally at 2.5 mg/kg is a highly effective treatment against naturally acquired infections of inhibited and developing fourth-stage larvae of Teladorsagia spp. PMID:22177334

  1. External Ophthalmomyiasis Caused by a Rare Infesting Larva, Sarcophaga argyrostoma

    PubMed Central

    Graffi, Shmuel; Peretz, Avi; Wilamowski, Amos; Schnur, Heather; Akad, Fouad; Naftali, Modi

    2013-01-01

    Purpose. External ophthalmomyiasis (EO) is caused by infesting larvae belonging to various species of flies. Most documented cases result from sheep (Oestrus ovis) and Russian (Rhinoestrus purpureus) botfly larvae, but we recently discovered a rare case of EO caused by flesh fly (Sarcophaga argyrostoma) larvae. Here, we report the case of a patient with EO who had been hospitalized and sedated for 1 week because of unrelated pneumonia. Methods. Case report. Results. A total of 32 larvae were removed from the adnexae of both eyes. Larvae identification was confirmed through DNA analysis. Treatment with topical tobramycin resulted in complete resolution of EO. Conclusion. EO can be caused by S. argyrostoma, and the elderly and debilitated may require extra ocular protection against flies during sedation. PMID:24455366

  2. Bacteria Present in Comadia redtenbacheri Larvae (Lepidoptera: Cossidae).

    PubMed

    Hernández-Flores, L; Llanderal-Cázares, C; Guzmán-Franco, A W; Aranda-Ocampo, S

    2015-09-01

    The external and internal culturable bacterial community present in the larvae of Comadia redtenbacheri Hammerschmidt, an edible insect, was studied. Characterization of the isolates determined the existence of 18 morphotypes and phylogenetic analysis of the 16S rRNA gene revealed the existence of Paenibacillus sp., Bacillus safensis, Pseudomonas sp., Bacillus pseudomycoides, Corynebacterium variabile, Enterococcus sp., Gordonia sp., Acinetobacter calcoaceticus, Arthrobacter sp., Micrococcus sp., and Bacillus cereus. Greater diversity of bacteria was found in those larvae obtained from vendors than in those directly taken from Agave plants in nature. Many of the larvae obtained from vendors presented signs of potential disease, and after the analysis, results showed a greater bacterial community compared with the larvae with a healthy appearance. This indicates that bacterial flora can vary in accordance with how the larvae are handled during extraction, collection, and transport. PMID:26336239

  3. Gnathostomiasis in Thailand: a survey on intermediate hosts of Gnathostoma spp. with special reference to a new type of larvae found in Fluta alba.

    PubMed

    Setasuban, P; Nuamtanong, S; Rojanakittikoon, V; Yaemput, S; Dekumyoy, P; Akahane, H; Kojima, S

    1991-12-01

    To clarify current status of gnathostomiasis in Thailand, a survey on intermediate hosts has been carried out at various localities since 1987. It was found that Fluta alba (Fresh water eel) as well as Channa striata (snake-headed fish) might be important in playing a role of transmitting the infection either among humans or reservoir animals. During the three years from 1987 to 1989, larvae of Gnathostoma spinigerum were found in 80-100% of F. alba obtained from markets in Nakhon Nayok, with a maximum recovery of 2,582 larvae per eel. Among larvae found in these eels, five were peculiar in possessing four rows of hooklets with complicated branches at the base. Epithelial cells of the intestine of these larvae contained 1-2 nuclei. These observations indicate that the larvae are different from those of reported species of Gnathostoma from Thailand including G. spinigerum, suggesting a possibility of the advanced third-stage larvae of G. malaysiae. PMID:1822890

  4. Histological patterns in healing chronic wounds using Cochliomyia macellaria (Diptera: Calliphoridae) larvae and other therapeutic measures.

    PubMed

    de Masiero, Franciéle Souza; Nassu, Mariana Prado; Soares, Mauro Pereira; Thyssen, Patricia Jacqueline

    2015-08-01

    The healing process occurs due to the interaction of cellular, molecular, and biochemical events. Regarding lesions difficult to heal, especially in immunocompromised patients, monitoring and intervention to promote healing is a constant focus of research. Another aggravating factor is the increase in the number of reported cases of microbial resistance, indicating that various dressings and drugs have been increasingly inefficient. Larval therapy (LT) involves the application of sterile fly larvae on chronic and/or infected wounds, and it is an area emerging as an alternative therapy. Before the 1940s, the LT was widely used, but fell into disuse after the appearance of antibiotics. High cost and the development of resistance by certain groups of pathogenic bacteria to these drugs encouraged the resurgence of LT, currently used in approximately 20 countries and more recently in Brazil. However, many mechanisms of action of the larvae in this system remain poorly understood. Thus, the aim of the study was to investigate histopathological findings and to evaluate possible mechanisms of action of dipteran larvae during tissue repair. Lesions were induced in 24 male Wistar rats, to evaluate the effect of the type of treatment applied. The animals were divided into four groups: larval therapy (LT), LT associated with foam dressing with silver release (LTSIL), mechanical debridement and silver foam dressing (DEBSIL), and no treatment (CONT). Skin samples were collected for histopathological analysis. In LT, inflammatory response and angiogenesis were abundant; in LTSIL, inflammatory response with neutrophil infiltration was observed; in DEBSIL, scarce inflammatory response, small numbers of macrophages and lymphocytes, and bacterial colonization in depth; and in CONT, there was bacterial colonization in deeper tissues. The observed histological events show that the larvae had an important role in promoting the inflammatory response in the wound bed, drawing the

  5. Neuromechanics of crawling in D. melanogaster larvae

    NASA Astrophysics Data System (ADS)

    Pehlevan, Cengiz; Paoletti, Paolo; Mahadevan, L.

    2015-03-01

    Nervous system, body and environment interact in non-trivial ways to generate locomotion and thence behavior in an organism. Here we present a minimal integrative mathematical model to describe the simple behavior of forward crawling in Drosophila larvae. Our model couples the excitation-inhibition circuits in the nervous system to force production in the muscles and body movement in a frictional environment, which in turn leads to a proprioceptive signal that feeds back to the nervous system. Our results explain the basic observed phenomenology of crawling with or without proprioception, and elucidate the stabilizing role of proprioception in crawling with respect to external and internal perturbations. Our integrated approach allows us to make testable predictions on the effect of changing body-environment interactions on crawling, and serves as a substrate for the development of hierarchical models linking cellular processes to behavior.

  6. Eicosanoids mediate Galaleria mellonella cellular immune response to viral infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nodulation is the predominant insect cellular immune response to bacterial and fungal infections and it can also be induced by viral infection. Treating seventh instar larvae of greater wax moth Galleria mellonella with Bovine herpes simplex virus-1 (BHSV-1) induced nodulation reactions in a dose-d...

  7. Population dynamics of Ascaridia galli following single infection in young chickens.

    PubMed

    Ferdushy, Tania; Luna-Olivares, Luz Adilia; Nejsum, Peter; Roepstorff, Allan Knud; Thamsborg, Stig Milan; Kyvsgaard, Niels Christian

    2013-08-01

    The population dynamics of Ascaridia galli was studied in 70 ISA Brown layer pullets, 42 of them were each experimentally infected with 500 embryonated A. galli eggs and 28 chickens were kept as uninfected controls. Six chickens from the infected group and 4 from the control group were necropsied at 3, 7, 10, 14, 21, 28 and 42 days post-infection (d.p.i.). The mean worm recovery varied from 11-20% of the infection dose with the highest recovery at 3 d.p.i. and the lowest at 21 and 42 d.p.i. (P < 0·05). More larvae were recovered from the intestinal wall than from the content (P < 0·0001) and intestinal content larvae were longer than those from the wall (mean length 1·6 and 1 mm, respectively, P < 0·0001). Although larvae were growing over time, a population of small-sized larvae (length < 1 mm) was recovered at all d.p.i. During the first week of infection most of the larvae were located in the anterior half of the jejunoileum but they moved posteriorly with the age of infection. Thus, a subpopulation of larvae mainly in the lumen grew with time while another subpopulation remained small and associated with the mucosa. During the infection both subpopulations moved to a more posterior localization in the gastrointestinal (GI) tract. PMID:23673198

  8. Decrease in establishment of Haemonchus contortus caused by inoculation of a Taenia hydatigena larvae vesicular concentrate.

    PubMed

    Cuenca-Verde, C; Buendía-Jiménez, J A; Valdivia-Anda, G; Cuéllar-Ordaz, J A; Muñoz-Guzmán, M A; Alba-Hurtado, F

    2011-05-11

    The effect of Taenia hydatigena larvae vesicular concentrate (ThLVC) on the establishment of an experimental infection by Haemonchus contortus was evaluated. The lambs that received ThLVC showed a greater (P<0.05) average of blood eosinophils (BE) than the lambs that did not receive ThLVC. Lambs that were only infected with H. contortus larvae showed a fecal egg count (FEC) and an adult phase (AP) number greater (P<0.05) than lambs that received ThLVC prior to infection. No effect was observed in size and prolificacy of AP after the administration of ThLVC. The infection with H. contortus caused an increase (P<0.05) in CD4+ lymphocytes in abomasal lymph node (ALN) and the combination of ThLVC plus the infection with H. contortus caused an increase (P<0.05) in CD4+ lymphocytes in the abomasal wall (AW). In addition, a positive correlation between gamma-delta lymphocytes of ALN (r=0.73, P<0.05) with the presence of AP in the abomasum was observed. The quantity of plasma cells in ALN and AW was not affected by the administration of ThLVC nor related to the resistance observed. The results shown in this work leave no doubt that ThLVC administration prior to inoculation produces eosinophilia and partially protects against the establishment of H. contortus. However, this protection is not only attributable to the role of eosinophils, since ThLVC can function stimulating other immune response cells, such as T lymphocytes, both contributing to prevent the presence of worms. PMID:21216105

  9. How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae.

    PubMed

    Djukic, Marvin; Brzuszkiewicz, Elzbieta; Fünfhaus, Anne; Voss, Jörn; Gollnow, Kathleen; Poppinga, Lena; Liesegang, Heiko; Garcia-Gonzalez, Eva; Genersch, Elke; Daniel, Rolf

    2014-01-01

    Paenibacillus larvae, a Gram positive bacterial pathogen, causes American Foulbrood (AFB), which is the most serious infectious disease of honey bees. In order to investigate the genomic potential of P. larvae, two strains belonging to two different genotypes were sequenced and used for comparative genome analysis. The complete genome sequence of P. larvae strain DSM 25430 (genotype ERIC II) consisted of 4,056,006 bp and harbored 3,928 predicted protein-encoding genes. The draft genome sequence of P. larvae strain DSM 25719 (genotype ERIC I) comprised 4,579,589 bp and contained 4,868 protein-encoding genes. Both strains harbored a 9.7 kb plasmid and encoded a large number of virulence-associated proteins such as toxins and collagenases. In addition, genes encoding large multimodular enzymes producing nonribosomally peptides or polyketides were identified. In the genome of strain DSM 25719 seven toxin associated loci were identified and analyzed. Five of them encoded putatively functional toxins. The genome of strain DSM 25430 harbored several toxin loci that showed similarity to corresponding loci in the genome of strain DSM 25719, but were non-functional due to point mutations or disruption by transposases. Although both strains cause AFB, significant differences between the genomes were observed including genome size, number and composition of transposases, insertion elements, predicted phage regions, and strain-specific island-like regions. Transposases, integrases and recombinases are important drivers for genome plasticity. A total of 390 and 273 mobile elements were found in strain DSM 25430 and strain DSM 25719, respectively. Comparative genomics of both strains revealed acquisition of virulence factors by horizontal gene transfer and provided insights into evolution and pathogenicity. PMID:24599066

  10. How to Kill the Honey Bee Larva: Genomic Potential and Virulence Mechanisms of Paenibacillus larvae

    PubMed Central

    Fünfhaus, Anne; Voss, Jörn; Gollnow, Kathleen; Poppinga, Lena; Liesegang, Heiko; Garcia-Gonzalez, Eva; Genersch, Elke; Daniel, Rolf

    2014-01-01

    Paenibacillus larvae, a Gram positive bacterial pathogen, causes American Foulbrood (AFB), which is the most serious infectious disease of honey bees. In order to investigate the genomic potential of P. larvae, two strains belonging to two different genotypes were sequenced and used for comparative genome analysis. The complete genome sequence of P. larvae strain DSM 25430 (genotype ERIC II) consisted of 4,056,006 bp and harbored 3,928 predicted protein-encoding genes. The draft genome sequence of P. larvae strain DSM 25719 (genotype ERIC I) comprised 4,579,589 bp and contained 4,868 protein-encoding genes. Both strains harbored a 9.7 kb plasmid and encoded a large number of virulence-associated proteins such as toxins and collagenases. In addition, genes encoding large multimodular enzymes producing nonribosomally peptides or polyketides were identified. In the genome of strain DSM 25719 seven toxin associated loci were identified and analyzed. Five of them encoded putatively functional toxins. The genome of strain DSM 25430 harbored several toxin loci that showed similarity to corresponding loci in the genome of strain DSM 25719, but were non-functional due to point mutations or disruption by transposases. Although both strains cause AFB, significant differences between the genomes were observed including genome size, number and composition of transposases, insertion elements, predicted phage regions, and strain-specific island-like regions. Transposases, integrases and recombinases are important drivers for genome plasticity. A total of 390 and 273 mobile elements were found in strain DSM 25430 and strain DSM 25719, respectively. Comparative genomics of both strains revealed acquisition of virulence factors by horizontal gene transfer and provided insights into evolution and pathogenicity. PMID:24599066

  11. Use of suppression subtractive hybridization to identify genetic differences between differentially virulent genotypes of Paenibacillus larvae, the etiological agent of American Foulbrood of honeybees.

    PubMed

    Fünfhaus, Anne; Ashiralieva, Ainura; Borriss, Rainer; Genersch, Elke

    2009-08-01

    Paenibacillus larvae is the causative agent of American Foulbrood of honeybees, a fatal brood disease not only killing infected larvae but also lethal to infected colonies. Recently four different genotypes of P. larvae (enterobacterial repetitive intergenic consensus I-IV) have been described and it was shown that these genotypes also differ in phenotype, especially in virulence. To unravel the genetic differences between these four genotypes, suppression subtractive hybridization was used. From 106 analysed clones, 92 represented genotype-specific sequences, whereas 14 sequences turned out to be specific only for the particular strain used as tester in the subtraction. Nearly half of the sequences (46%) could only be annotated based on poorly characterized sequences. The remaining sequences corresponded to categories related to metabolism, especially secondary metabolite biosynthesis, transport and catabolism, to information storage and processing, and to cellular processes. In particular, we could show that the P. larvae genome contains genes and/or giant gene clusters coding for antibiotics, and we identified the first P. larvae toxin, a member of the family of adenosine diphosphate-ribosyltransferases. PMID:23765853

  12. Effect of fungal colonization of wheat grains with Fusarium spp. on food choice, weight gain and mortality of meal beetle larvae (Tenebrio molitor).

    PubMed

    Guo, Zhiqing; Döll, Katharina; Dastjerdi, Raana; Karlovsky, Petr; Dehne, Heinz-Wilhelm; Altincicek, Boran

    2014-01-01

    Species of Fusarium have significant agro-economical and human health-related impact by infecting diverse crop plants and synthesizing diverse mycotoxins. Here, we investigated interactions of grain-feeding Tenebrio molitor larvae with four grain-colonizing Fusarium species on wheat kernels. Since numerous metabolites produced by Fusarium spp. are toxic to insects, we tested the hypothesis that the insect senses and avoids Fusarium-colonized grains. We found that only kernels colonized with F. avenaceum or Beauveria bassiana (an insect-pathogenic fungal control) were avoided by the larvae as expected. Kernels colonized with F. proliferatum, F. poae or F. culmorum attracted T. molitor larvae significantly more than control kernels. The avoidance/preference correlated with larval feeding behaviors and weight gain. Interestingly, larvae that had consumed F. proliferatum- or F. poae-colonized kernels had similar survival rates as control. Larvae fed on F. culmorum-, F. avenaceum- or B. bassiana-colonized kernels had elevated mortality rates. HPLC analyses confirmed the following mycotoxins produced by the fungal strains on the kernels: fumonisins, enniatins and beauvericin by F. proliferatum, enniatins and beauvericin by F. poae, enniatins by F. avenaceum, and deoxynivalenol and zearalenone by F. culmorum. Our results indicate that T. molitor larvae have the ability to sense potential survival threats of kernels colonized with F. avenaceum or B. bassiana, but not with F. culmorum. Volatiles potentially along with gustatory cues produced by these fungi may represent survival threat signals for the larvae resulting in their avoidance. Although F. proliferatum or F. poae produced fumonisins, enniatins and beauvericin during kernel colonization, the larvae were able to use those kernels as diet without exhibiting increased mortality. Consumption of F. avenaceum-colonized kernels, however, increased larval mortality; these kernels had higher enniatin levels than F

  13. Muscle distribution of sylvatic and domestic Trichinella larvae in production animals and wildlife.

    PubMed

    Kapel, C M O; Webster, P; Gamble, H R

    2005-09-01

    Only a few studies have compared the muscle distribution of the different Trichinella genotypes. In this study, data were obtained from a series of experimental infections in pigs, wild boars, foxes and horses, with the aim of evaluating the predilection sites of nine well-defined genotypes of Trichinella. Necropsy was performed at 5, 10, 20 and 40 weeks post inoculation. From all host species, corresponding muscles/muscle groups were examined by artificial digestion. In foxes where all Trichinella species established in high numbers, the encapsulating species were found primarily in the tongue, extremities and diaphragm, whereas the non-encapsulating species were found primarily in the diaphragm. In pigs and wild boars, only Trichinella spiralis, Trichinella pseudospiralis and Trichinella nelsoni showed extended persistency of muscle larvae (ML), but for all genotypes the tongue and the diaphragm were found to be predilection sites. This tendency was most obvious in light infections. In the horses, T. spiralis, Trichinella britovi, and T. pseudospiralis all established at high levels with predilection sites in the tongue, the masseter and the diaphragm. For all host species, high ML burdens appeared to be more evenly distributed with less obvious predilection than in light infections; predilection site muscles harbored a relatively higher percent of the larval burden in light infections than in heavy infections. This probably reflects increasing occupation of available muscle fibers as larger numbers of worms accumulate. Predilection sites appear to be influenced primarily by host species and secondarily by the age and level of infection. PMID:15979801

  14. Identification of Differentially Expressed Genes of Trichinella spiralis Larvae after Exposure to Host Intestine Milieu

    PubMed Central

    Ren, Hui Jun; Cui, Jing; Yang, Wei; Liu, Ruo Dan; Wang, Zhong Quan

    2013-01-01

    Although it has been known for many years that T. spiralis muscle larvae (ML) can not invade intestinal epithelial cells unless they are exposed to the intestinal milieu and activated into intestinal infective larvae (IIL), which genes in IIL are involved in the process of invasion is still unknown. In this study, suppression subtractive hybridization (SSH) was performed to identify differentially expressed genes between IIL and ML. SSH library was constructed using cDNA generated from IIL as the ‘tester’. About 110 positive clones were randomly selected from the library and sequenced, of which 33 T. spiralis genes were identified. Thirty encoded proteins were annotated according to Gene Ontology Annotation in terms of molecular function, biological process, and cellular localization. Out of 30 annotated proteins, 16 proteins (53.3%) had binding activity and 12 proteins (40.0%) had catalytic activity. The results of real-time PCR showed that the expression of nine genes (Ts7, Ndr family protein; Ts8, serine/threonine-protein kinase polo; Ts11, proteasome subunit beta type-7; Ts17, nudix hydrolase; Ts19, ovochymase-1; Ts22, fibronectin type III domain protein; Ts23, muscle cell intermediate filament protein OV71; Ts26, neutral and basic amino acid transport protein rBAT and Ts33, FACT complex subunit SPT16) from 33 T. spiralis genes in IIL were up-regulated compared with that of ML. The present study provide a group of the potential invasion-related candidate genes and will be helpful for further studies of mechanisms by which T. spiralis infective larvae recognize and invade the intestinal epithelial cells. PMID:23840742

  15. [Migration and transposition of Oesophagostomum quadrispinulatum larvae from feces].

    PubMed

    Barutzki, D; Gothe, R

    1998-05-01

    Investigations on the migration and translation of free-living stages of Oesophagostomum quadrispinulatum, using faeces containing eggs as starting material, revealed that mostly third stage larvae and very few second stage larvae migrated out of faeces, whereas first stage larvae remained in the faeces. The emigration rates depended on ambient relative humidity. Compared with the control, third stage larvae emigrated out of faeces at rates of 0.3%, 1.6% and 12.2% at 50%, 75% and 100% relative humidity, respectively. Offering helminth-free faeces, emigrated third stage larvae returned into faces at rates of 0.4-1.2%, 5.8-17.7%, 39.0-52.7%, and 45.2-60.7% after 1 h, 24 h, 5 days and 14 days, respectively. After a period of 1, 2, 3 or 4 weeks staying out of faeces, emigrated third stage larvae returned into faeces at rates of 23.3%, 8.8%, 22.1% and 6.0%, respectively. An examination of the horizontal translation revealed that most of the third stage larvae migrated distances up to 80 cm and a few even up to 150 cm returning into helminth-free faeces. PMID:9640103

  16. Nociceptive neurons protect Drosophila larvae from parasitoid wasps

    PubMed Central

    Xu, Yifan; Johnson, Trevor; Zhang, Feng; Deisseroth, Karl

    2008-01-01

    Summary Background Natural selection has resulted in a complex and fascinating repertoire of innate behaviors that are produced by insects. One puzzling example occurs in fruitfly larvae that have been subjected to a noxious mechanical or thermal sensory input. In response, the larvae “roll” using a motor pattern that is completely distinct from the style of locomotion that is used for foraging. Results We have precisely mapped the sensory neurons that are used by the Drosophila larvae to detect nociceptive stimuli. Using complementary optogenetic activation and targeted silencing of sensory neurons, we have demonstrated that a single class of neuron (Class IV multidendritic neuron) is sufficient and necessary for triggering the unusual rolling behavior. In addition, we find that larvae have an innately encoded directional preference in the directionality of rolling. Surprisingly, the initial direction of rolling locomotion is towards the side of the body that has been stimulated. We propose that directional rolling might provide a selective advantage in escape from parasitoid wasps that are ubiquitously present in the natural environment of Drosophila. Consistent with this hypothesis, we have documented that larvae can escape attack of Leptopilina boulardi parasitoid wasps by rolling, occasionally flipping the attacker onto its back. Conclusions The Class IV multidendritic neurons of Drosophila larvae are nociceptive. The nociception behavior of Drosophila melanagaster larvae includes an innately encoded directional preference. Nociception behavior is elicited by the ecologically relevant sensory stimulus of parasitoid wasp attack. PMID:18060782

  17. [Toxicity and influencing factors of liquid chlorine on chironomid larvae].

    PubMed

    Sun, Xing-Bin; Cui, Fu-Yi; Zhang, Jin-Song; Guo, Zhao-Hai; Xu, Feng; Liu, Li-Jun

    2005-09-01

    The excessive propagation of Chironomid larvae (red worm) in the sedimentation tanks is a difficult problem for the normal function of waterworks. The toxic effect of liquid