Science.gov

Sample records for mammalian ancestor reconstruction

  1. Virtual ancestor reconstruction: Revealing the ancestor of modern humans and Neandertals.

    PubMed

    Mounier, Aurélien; Mirazón Lahr, Marta

    2016-02-01

    The timing and geographic origin of the common ancestor of modern humans and Neandertals remain controversial. A poor Pleistocene hominin fossil record and the evolutionary complexities introduced by dispersals and regionalisation of lineages have fuelled taxonomic uncertainty, while new ancient genomic data have raised completely new questions. Here, we use maximum likelihood and 3D geometric morphometric methods to predict possible morphologies of the last common ancestor of modern humans and Neandertals from a simplified, fully resolved phylogeny. We describe the fully rendered 3D shapes of the predicted ancestors of humans and Neandertals, and assess their similarity to individual fossils or populations of fossils of Pleistocene age. Our results support models of an Afro-European ancestral population in the Middle Pleistocene (Homo heidelbergensis sensu lato) and further predict an African origin for this ancestral population. PMID:26852813

  2. Reconstructing the ancestor of Mycobacterium leprae: The dynamics of gene loss and genome reduction

    PubMed Central

    Gómez-Valero, Laura; Rocha, Eduardo P.C.; Latorre, Amparo; Silva, Francisco J.

    2007-01-01

    We have reconstructed the gene content and order of the last common ancestor of the human pathogens Mycobacterium leprae and Mycobacterium tuberculosis. During the reductive evolution of M. leprae, 1537 of 2977 ancestral genes were lost, among which we found 177 previously unnoticed pseudogenes. We find evidence that a massive gene inactivation took place very recently in the M. leprae lineage, leading to the loss of hundreds of ancestral genes. A large proportion of their nucleotide content (∼89%) still remains in the genome, which allowed us to characterize and date them. The age of the pseudogenes was computed using a new methodology based on the rates and patterns of substitution in the pseudogenes and functional orthologous genes of closely related genomes. The position of the genes that were lost in the ancestor’s genome revealed that the process of function loss and degradation mainly took place through a gene-to-gene inactivation process, followed by the gradual loss of their DNA. This suggests a scenario of massive genome reduction through many nearly simultaneous pseudogenization events, leading to a highly specialized pathogen. PMID:17623808

  3. Ancestors of modern plant crops.

    PubMed

    Salse, Jérôme

    2016-04-01

    Recent accumulation of plant genomic resources offers the opportunity to compare modern genomes and model their evolutionary history from their reconstructed Most Recent Common Ancestors (MRCAs) that can be used as a guide to unveil the forces driving the evolutionary success of angiosperms and ultimately to perform applied translational research from models to crops. This article reviews the current state of art of recent structural comparative genomics studies through ancestral genome reconstruction, that is, the field of in silico paleogenomics. PMID:26985732

  4. Algorithms for improved 3-D reconstruction of live mammalian embryo vasculature from optical coherence tomography data

    PubMed Central

    Kulkarni, Prathamesh M.; Rey-Villamizar, Nicolas; Merouane, Amine; Sudheendran, Narendran; Wang, Shang; Garcia, Monica; Larina, Irina V.; Roysam, Badrinath

    2015-01-01

    Background Robust reconstructions of the three-dimensional network of blood vessels in developing embryos imaged by optical coherence tomography (OCT) are needed for quantifying the longitudinal development of vascular networks in live mammalian embryos, in support of developmental cardiovascular research. Past computational methods [such as speckle variance (SV)] have demonstrated the feasibility of vascular reconstruction, but multiple challenges remain including: the presence of vessel structures at multiple spatial scales, thin blood vessels with weak flow, and artifacts resulting from bulk tissue motion (BTM). Methods In order to overcome these challenges, this paper introduces a robust and scalable reconstruction algorithm based on a combination of anomaly detection algorithms and a parametric dictionary based sparse representation of blood vessels from structural OCT data. Results Validation results using confocal data as the baseline demonstrate that the proposed method enables the detection of vessel segments that are either partially missed or weakly reconstructed using the SV method. Finally, quantitative measurements of vessel reconstruction quality indicate an overall higher quality of vessel reconstruction with the proposed method. Conclusions Results suggest that sparsity-integrated speckle anomaly detection (SSAD) is potentially a valuable tool for performing accurate quantification of the progression of vascular development in the mammalian embryonic yolk sac as imaged using OCT. PMID:25694962

  5. Identification of Teleost Skin CD8α+ Dendritic-like Cells, Representing a Potential Common Ancestor for Mammalian Cross-Presenting Dendritic Cells.

    PubMed

    Granja, Aitor G; Leal, Esther; Pignatelli, Jaime; Castro, Rosario; Abós, Beatriz; Kato, Goshi; Fischer, Uwe; Tafalla, Carolina

    2015-08-15

    Although fish constitute the most ancient animal group in which an acquired immune system is present, the presence of dendritic cells (DCs) in teleosts has been addressed only briefly, and the identification of a specific DC subset in teleosts remained elusive because of the lack of specific Abs. In mice, DCs expressing CD8α(+) in lymphoid tissues have the capacity to cross-present extracellular Ags to T cells through MHC I, similarly to tissue-derived CD103(+) DCs and the human CD141(+) DC population. In the current study, we identified a large and highly complex subpopulation of leukocytes coexpressing MHC class II and CD8α. This CD8α(+) MHC II(+) DC-like subpopulation constituted ∼1.2% of the total leukocyte population in the skin, showing phenotypical and functional characteristics of semimature DCs that seem to locally regulate mucosal immunity and tolerance in a species lacking lymph nodes. Furthermore, we identified trout homologs for CD141 and CD103 and demonstrated that, in trout, this skin CD8(+) DC-like subpopulation expresses both markers. To our knowledge, these results provide the first evidence of a specific DC-like subtype in nonimmune tissue in teleosts and support the hypothesis of a common origin for all mammalian cross-presenting DCs. PMID:26179908

  6. The last common bilaterian ancestor

    NASA Technical Reports Server (NTRS)

    Erwin, Douglas H.; Davidson, Eric H.

    2002-01-01

    Many regulatory genes appear to be utilized in at least superficially similar ways in the development of particular body parts in Drosophila and in chordates. These similarities have been widely interpreted as functional homologies, producing the conventional view of the last common protostome-deuterostome ancestor (PDA) as a complex organism that possessed some of the same body parts as modern bilaterians. Here we discuss an alternative view, in which the last common PDA had a less complex body plan than is frequently conceived. This reconstruction alters expectations for Neoproterozoic fossil remains that could illustrate the pathways of bilaterian evolution.

  7. The Universal Ancestor

    NASA Astrophysics Data System (ADS)

    Woese, Carl

    1998-06-01

    A genetic annealing model for the universal ancestor of all extant life is presented; the name of the model derives from its resemblance to physical annealing. The scenario pictured starts when ``genetic temperatures'' were very high, cellular entities (progenotes) were very simple, and information processing systems were inaccurate. Initially, both mutation rate and lateral gene transfer levels were elevated. The latter was pandemic and pervasive to the extent that it, not vertical inheritance, defined the evolutionary dynamic. As increasingly complex and precise biological structures and processes evolved, both the mutation rate and the scope and level of lateral gene transfer, i.e., evolutionary temperature, dropped, and the evolutionary dynamic gradually became that characteristic of modern cells. The various subsystems of the cell ``crystallized,'' i.e., became refractory to lateral gene transfer, at different stages of ``cooling,'' with the translation apparatus probably crystallizing first. Organismal lineages, and so organisms as we know them, did not exist at these early stages. The universal phylogenetic tree, therefore, is not an organismal tree at its base but gradually becomes one as its peripheral branchings emerge. The universal ancestor is not a discrete entity. It is, rather, a diverse community of cells that survives and evolves as a biological unit. This communal ancestor has a physical history but not a genealogical one. Over time, this ancestor refined into a smaller number of increasingly complex cell types with the ancestors of the three primary groupings of organisms arising as a result.

  8. The universal ancestor

    NASA Technical Reports Server (NTRS)

    Woese, C.

    1998-01-01

    A genetic annealing model for the universal ancestor of all extant life is presented; the name of the model derives from its resemblance to physical annealing. The scenario pictured starts when "genetic temperatures" were very high, cellular entities (progenotes) were very simple, and information processing systems were inaccurate. Initially, both mutation rate and lateral gene transfer levels were elevated. The latter was pandemic and pervasive to the extent that it, not vertical inheritance, defined the evolutionary dynamic. As increasingly complex and precise biological structures and processes evolved, both the mutation rate and the scope and level of lateral gene transfer, i.e., evolutionary temperature, dropped, and the evolutionary dynamic gradually became that characteristic of modern cells. The various subsystems of the cell "crystallized," i.e., became refractory to lateral gene transfer, at different stages of "cooling," with the translation apparatus probably crystallizing first. Organismal lineages, and so organisms as we know them, did not exist at these early stages. The universal phylogenetic tree, therefore, is not an organismal tree at its base but gradually becomes one as its peripheral branchings emerge. The universal ancestor is not a discrete entity. It is, rather, a diverse community of cells that survives and evolves as a biological unit. This communal ancestor has a physical history but not a genealogical one. Over time, this ancestor refined into a smaller number of increasingly complex cell types with the ancestors of the three primary groupings of organisms arising as a result.

  9. The placentation of eulipotyphla-reconstructing a morphotype of the Mammalian placenta.

    PubMed

    Ferner, Kirsten; Siniza, Swetlana; Zeller, Ulrich

    2014-10-01

    Placentation determines the developmental status of the neonate, which can be considered as the most vulnerable stage in the mammalian life cycle. In this respect, the different evolutionary and ecological adaptations of marsupial and placental mammals have most likely been associated with the different reproductive strategies of the two therian clades. The morphotypes of marsupial and placental neonates, as well as the placental stem species pattern of Marsupialia, have already been reconstructed. To contribute to a better understanding of the evolution of Placentalia, a histological and ultrastructural investigation of the placenta in three representatives of Eulipotyphla, that is, core insectivores, has been carried out in this study. We studied the Musk shrew (Suncus murinus), the four-toed hedgehog (Atelerix albiventris), and the Iberian mole (Talpa occidentalis). As a result, a eulipotyphlan placental morphotype consisting of a compact and invasive placenta was reconstructed. This supports the widely accepted hypothesis that the stem lineage of Placentalia is characterized by an invasive, either endothelio- or hemochorial placenta. Evolutionary transformations toward a diffuse, noninvasive placenta occurred in the stem lineages of lower primates and cetartiodactyles and were associated with prolonged gestation and the production of few and highly precocial neonates. Compared to the choriovitelline placenta of Marsupialia, the chorioallantoic placenta of Placentalia allows for a more intimate contact and is associated with more advanced neonates. PMID:24797275

  10. Pleistocene paleoenvironmental reconstructions and mammalian evolution in South-East Asia: focus on fossil faunas from Thailand

    NASA Astrophysics Data System (ADS)

    Tougard, C.; Montuire, S.

    2006-01-01

    Mammalian faunal studies have provided various clues for a better reconstruction of hominid Quaternary paleoenvironments. In this work, two methods were used: (1) the cenogram method, based on a graphical representation of the mammalian community structure, and (2) the species richness of murine rodents to estimate climatic parameters. These methods were applied to Middle and Late Pleistocene mammalian faunas of South-East Asia, from South China to Indonesia. Special emphasis was laid on a fauna from north-east Thailand dated back to approximately 170,000 years (i.e. a glacial period). This Thai fauna seems characteristic of a slightly open forested environment intermediate between those of present-day central Myanmar and the northern part of South China. In the Thai fauna, the occurrence of both cool-loving mammalian taxa, currently living further north, and species of larger body size than their living counterparts, indicates cooler and probably drier climatic conditions than present-day climates in Thailand. These results are quite consistent with Middle Pleistocene palynological records from South China and eastern Java. From other less well-documented Pleistocene faunas, taken into account in this work, humid climatic conditions of interglacial periods were revealed from large mammalian taxa.

  11. The galaxy ancestor problem

    NASA Astrophysics Data System (ADS)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  12. Genomic evidence for large, long-lived ancestors to placental mammals.

    PubMed

    Romiguier, J; Ranwez, V; Douzery, E J P; Galtier, N

    2013-01-01

    It is widely assumed that our mammalian ancestors, which lived in the Cretaceous era, were tiny animals that survived massive asteroid impacts in shelters and evolved into modern forms after dinosaurs went extinct, 65 Ma. The small size of most Mesozoic mammalian fossils essentially supports this view. Paleontology, however, is not conclusive regarding the ancestry of extant mammals, because Cretaceous and Paleocene fossils are not easily linked to modern lineages. Here, we use full-genome data to estimate the longevity and body mass of early placental mammals. Analyzing 36 fully sequenced mammalian genomes, we reconstruct two aspects of the ancestral genome dynamics, namely GC-content evolution and nonsynonymous over synonymous rate ratio. Linking these molecular evolutionary processes to life-history traits in modern species, we estimate that early placental mammals had a life span above 25 years and a body mass above 1 kg. This is similar to current primates, cetartiodactyls, or carnivores, but markedly different from mice or shrews, challenging the dominant view about mammalian origin and evolution. Our results imply that long-lived mammals existed in the Cretaceous era and were the most successful in evolution, opening new perspectives about the conditions for survival to the Cretaceous-Tertiary crisis. PMID:22949523

  13. Unbiased reconstruction of a mammalian transcriptional network mediating the differential response to pathogens

    PubMed Central

    Amit, Ido; Garber, Manuel; Chevrier, Nicolas; Leite, Ana Paula; Donner, Yoni; Eisenhaure, Thomas; Guttman, Mitchell; Grenier, Jennifer K.; Li, Weibo; Zuk, Or; Schubert, Lisa A.; Birditt, Brian; Shay, Tal; Goren, Alon; Zhang, Xiaolan; Smith, Zachary; Deering, Raquel; McDonald, Rebecca C.; Cabili, Moran; Bernstein, Bradley E; Rinn, John L.; Meissner, Alex; Root, David E.; Hacohen, Nir; Regev, Aviv

    2010-01-01

    Models of mammalian regulatory networks controlling gene expression have been inferred from genomic data, yet have largely not been validated. We present an unbiased strategy to systematically perturb candidate regulators and monitor cellular transcriptional responses. We apply this approach to derive regulatory networks that control the transcriptional response of mouse primary dendritic cells (DCs) to pathogens. Our approach revealed the regulatory functions of 125 transcription factors, chromatin modifiers, and RNA binding proteins and constructed a network model consisting of two dozen core regulators and 76 fine-tuners that help explain how pathogen-sensing pathways achieve specificity. This study establishes a broadly-applicable, comprehensive and unbiased approach to reveal the wiring and functions of a regulatory network controlling a major transcriptional response in primary mammalian cells. PMID:19729616

  14. The costs of breed reconstruction from cryopreserved material in mammalian livestock species

    PubMed Central

    Gandini, Gustavo; Pizzi, Flavia; Stella, Alessandra; Boettcher, Paul J

    2007-01-01

    The aim of this work was to compare costs, in the horse, cattle, sheep, swine, and rabbit species, for the creation of gene banks for reconstruction of an extinct breed, using different strategies: embryos-only, embryos in combination with semen, and semen-only. Three cost measures were used: time required for population reconstruction, cost for creation of the gene bank, number of years-keeping-female to reach reconstruction. Semen costs were estimated across four scenarios: the presence or absence of a commercial market for semen, purchase of semen donors, and semen extracted from the epididymus. The number of cells were doubled to take into account the creation of two storage sites. The strategy embryos-only required the shortest time to reach reconstruction. With the strategy embryos + semen, time increased with decreasing proportions of embryos. With semen-only, reconstruction time varied from 2 to 21 years. A high variation of costs was observed across species and strategies, from 360 Euros in the rabbit to 1 092 300 in the horse. In all species, the embryos-only strategy was about 10% more expensive than using 90% embryos + semen. Decreasing the percentage of embryos further diminished costs. The number of years-keeping-female ranged across strategies, from 2 in the rabbit, to a maximum of 12 878 in the horse. PMID:17612484

  15. Assessing the prediction fidelity of ancestral reconstruction by a library approach.

    PubMed

    Bar-Rogovsky, Hagit; Stern, Adi; Penn, Osnat; Kobl, Iris; Pupko, Tal; Tawfik, Dan S

    2015-11-01

    Ancestral reconstruction is a powerful tool for studying protein evolution as well as for protein design and engineering. However, in many positions alternative predictions with relatively high marginal probabilities exist, and thus the prediction comprises an ensemble of near-ancestor sequences that relate to the historical ancestor. The ancestral phenotype should therefore be explored for the entire ensemble, rather than for the sequence comprising the most probable amino acid at all positions [the most probable ancestor (mpa)]. To this end, we constructed libraries that sample ensembles of near-ancestor sequences. Specifically, we identified positions where alternatively predicted amino acids are likely to affect the ancestor's structure and/or function. Using the serum paraoxonases (PONs) enzyme family as a test case, we constructed libraries that combinatorially sample these alternatives. We next characterized these libraries, reflecting the vertebrate and mammalian PON ancestors. We found that the mpa of vertebrate PONs represented only one out of many different enzymatic phenotypes displayed by its ensemble. The mammalian ancestral library, however, exhibited a homogeneous phenotype that was well represented by the mpa. Our library design strategy that samples near-ancestor ensembles at potentially critical positions therefore provides a systematic way of examining the robustness of inferred ancestral phenotypes. PMID:26275856

  16. Using Isotopes to Reconstruct Mammalian Diet, Migration and Paleoenvironment for Hominin Sites in Indonesia

    NASA Astrophysics Data System (ADS)

    Wershow, H.; Janssen, R.; Vonhof, H.; Lubbe, J. V. D.; Joordens, J. J.; Koutamanis, D. S.; Puspaningrum, M. R.; de Vos, J.; Reijmer, J.

    2015-12-01

    Climate plays a prominent role in ecosystem development in the biodiversity hotspot Sundaland (Malaysia and western Indonesia) throughout the Quaternary. Recurrent isolation and connection of the islands to mainland Asia due to sea level fluctuations has enabled repeated biotic migrations and encouraged genetic speciation. These migration waves also brought Homo erectus to Java. Together with extensive and well-documented collections of other terrestrial species, these hominin fossils form faunal assemblages of which the paleoenvironmental and paleogeographical background is poorly known. Using carbon, oxygen and strontium isotopes, we have reconstructed the paleoenvironmental and paleoecological conditions of several Holocene and Pleistocene fossil sites on Sumatra and Java, Indonesia. Carbon (∂13C) and oxygen (∂18O) isotope analysis of well-preserved herbivore teeth enamel reveals a marked contrast between C3-dominated diets in warmer periods, and C4-dominated diets in cooler periods, reflecting the distinct changes in Sundaland vegetation cover between glacials and interglacials. These isotope patterns allow us to assign the appropriate climatic background to some of the older fossil assemblages from Java, for which dating uncertainty does not allow direct assignment to glacial or interglacial conditions. The stable isotope signatures of herbivores from Trinil and Sangiran, sites well-known for the fossil occurrence of Homo erectus, indicate glacial conditions. The isotope data of several H. erectus fossils from these sites seem to be in line with such an interpretation. Furthermore, we applied strontium (87Sr/86Sr) isotope analyses to a sample subset. The preliminary data show distinct Sr-isotope ratios for different sites, providing clues for the applicability of this isotope technique in detecting climate-related mobility of Sundaland fossil faunas.

  17. Non-Darwinian estimation: My ancestors, my genes' ancestors

    PubMed Central

    Weiss, Kenneth M.; Long, Jeffrey C.

    2009-01-01

    There is widespread interest in characterizing the organization of human genetic variation around the world from a population perspective. Related to this are attempts to describe the pattern of genetic variation in the human species generally, including “recreational” genomics, the genome-based estimation of the ancestry of individuals. These approaches rest on subtle concepts of variation, time, and ancestry that are perhaps not widely appreciated. They share the idea that there are, or were, discrete panmictic human populations such that every person is either a member of such a population or is an admixed descendant of them. Ancestry fraction estimation is biased by assumptions about past and present human population structure, as when we trace ancestry to hypothetical unmixed ancestral populations, or assign an individual's ancestry to continental populations that are indistinguishable from classical “races.” Attempts to identify even individuals' local subpopulations are less precise than most (geneticists included) expect, because that is usually based on a small portion of a person's ancestry, relative to the much larger pool of comparably related ancestors. It is easier to show that two people have some relationship than to show who or where the actual ancestor was. There is an important distinction between individuals' demographic ancestry and the ancestry of their genes. Despite superficial appearances, these interpretations of genetic data are often based on typological rather than Darwinian thinking, raising important issues about the questions that are actually being asked. PMID:19411595

  18. Yeast Ancestral Genome Reconstructions: The Possibilities of Computational Methods

    NASA Astrophysics Data System (ADS)

    Tannier, Eric

    In 2006, a debate has risen on the question of the efficiency of bioinformatics methods to reconstruct mammalian ancestral genomes. Three years later, Gordon et al. (PLoS Genetics, 5(5), 2009) chose not to use automatic methods to build up the genome of a 100 million year old Saccharomyces cerevisiae ancestor. Their manually constructed ancestor provides a reference genome to test whether automatic methods are indeed unable to approach confident reconstructions. Adapting several methodological frameworks to the same yeast gene order data, I discuss the possibilities, differences and similarities of the available algorithms for ancestral genome reconstructions. The methods can be classified into two types: local and global. Studying the properties of both helps to clarify what we can expect from their usage. Both methods propose contiguous ancestral regions that come very close (> 95% identity) to the manually predicted ancestral yeast chromosomes, with a good coverage of the extant genomes.

  19. Technical comment on "The placental mammal ancestor and the post-K-Pg radiation of placentals".

    PubMed

    Springer, Mark S; Meredith, Robert W; Teeling, Emma C; Murphy, William J

    2013-08-01

    O'Leary et al. (Research Article, 8 February 2013, p. 662) examined mammalian relationships and divergence times and concluded that a single placental ancestor crossed the Cretaceous-Paleogene (K-Pg) boundary. This conclusion relies on phylogenetic analyses that fail to discriminate between homology and homoplasy and further implies virus-like rates of nucleotide substitution in early Paleocene placentals. PMID:23929967

  20. What did our ancestors eat?

    PubMed

    Garn, S M; Leonard, W R

    1989-11-01

    Over the millennia various hominoids and hominids have subsisted on very different dietaries, depending on climate, hunting proficiency, food-processing technology, and available foods. The Australopithecines were not browsers and fruit-eaters with very high intakes of vitamin C; rather they were scavengers of kills made by other animals. The hominids who followed did include some cold-climate hunters of large game, but the amount of animal protein decreased with the advent of grain-gathering and decreased further with the introduction of cereal agriculture, with a concomitant decrease in body size. From what we know about food adequacy, preparation, and storage, the notion that the postulated "primitive" diet was generally adequate, safe, and prudent can be rejected. Over evolutionary time, many of our ancestors ate poorly, especially during climate extremes, and they were often at risk for vitamin deficiencies, food-borne diseases, and neurotoxins. Until the advent of modern processing technologies, dirt, grit, and fiber constituted a large part of most early diets. PMID:2689923

  1. Apparatus Named After Our Academic Ancestors, III

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2014-09-01

    My academic ancestors in physics have called on me once more to tell you about the apparatus that they devised, and that many of you have used in your demonstrations and labs. This article is about apparatus named after François Arago, Heinrich Helmholtz, Leon Foucault, and James Watt.

  2. Apparatus Named after Our Academic Ancestors, III

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2014-01-01

    My academic ancestors in physics have called on me once more to tell you about the apparatus that they devised, and that many of you have used in your demonstrations and labs. This article is about apparatus named after François Arago, Heinrich Helmholtz, Leon Foucault, and James Watt.

  3. The Five Ancestors--Book 1: Tiger

    ERIC Educational Resources Information Center

    Stone, Jeff

    2004-01-01

    Losing a job is an awfully low point--until it turns into the opportunity to pursue writing full time, and a book like "The Five Ancestors: Tiger" results. Jeff Stone looks back to his own experience as a young reader and taps that experience to help frame his own writing. An intriguing snapshot of his new book follows.

  4. Mammalian development in space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  5. Markov-chain approach to the distribution of ancestors in species of biparental reproduction

    NASA Astrophysics Data System (ADS)

    Caruso, M.; Jarne, C.

    2014-08-01

    We studied how to obtain a distribution for the number of ancestors in species of sexual reproduction. Present models concentrate on the estimation of distributions repetitions of ancestors in genealogical trees. It has been shown that it is not possible to reconstruct the genealogical history of each species along all its generations by means of a geometric progression. This analysis demonstrates that it is possible to rebuild the tree of progenitors by modeling the problem with a Markov chain. For each generation, the maximum number of possible ancestors is different. This presents huge problems for the resolution. We found a solution through a dilation of the sample space, although the distribution defined there takes smaller values with respect to the initial problem. In order to correct the distribution for each generation, we introduced the invariance under a gauge (local) group of dilations. These ideas can be used to study the interaction of several processes and provide a new approach on the problem of the common ancestor. In the same direction, this model also provides some elements that can be used to improve models of animal reproduction.

  6. The physiology and habitat of the last universal common ancestor.

    PubMed

    Weiss, Madeline C; Sousa, Filipa L; Mrnjavac, Natalia; Neukirchen, Sinje; Roettger, Mayo; Nelson-Sathi, Shijulal; Martin, William F

    2016-01-01

    The concept of a last universal common ancestor of all cells (LUCA, or the progenote) is central to the study of early evolution and life's origin, yet information about how and where LUCA lived is lacking. We investigated all clusters and phylogenetic trees for 6.1 million protein coding genes from sequenced prokaryotic genomes in order to reconstruct the microbial ecology of LUCA. Among 286,514 protein clusters, we identified 355 protein families (∼0.1%) that trace to LUCA by phylogenetic criteria. Because these proteins are not universally distributed, they can shed light on LUCA's physiology. Their functions, properties and prosthetic groups depict LUCA as anaerobic, CO2-fixing, H2-dependent with a Wood-Ljungdahl pathway, N2-fixing and thermophilic. LUCA's biochemistry was replete with FeS clusters and radical reaction mechanisms. Its cofactors reveal dependence upon transition metals, flavins, S-adenosyl methionine, coenzyme A, ferredoxin, molybdopterin, corrins and selenium. Its genetic code required nucleoside modifications and S-adenosyl methionine-dependent methylations. The 355 phylogenies identify clostridia and methanogens, whose modern lifestyles resemble that of LUCA, as basal among their respective domains. LUCA inhabited a geochemically active environment rich in H2, CO2 and iron. The data support the theory of an autotrophic origin of life involving the Wood-Ljungdahl pathway in a hydrothermal setting. PMID:27562259

  7. The existence and abundance of ghost ancestors in biparental populations.

    PubMed

    Gravel, Simon; Steel, Mike

    2015-05-01

    In a randomly-mating biparental population of size N there are, with high probability, individuals who are genealogical ancestors of every extant individual within approximately log2(N) generations into the past. We use this result of J. Chang to prove a curious corollary under standard models of recombination: there exist, with high probability, individuals within a constant multiple of log2(N) generations into the past who are simultaneously (i) genealogical ancestors of each of the individuals at the present, and (ii) genetic ancestors to none of the individuals at the present. Such ancestral individuals-ancestors of everyone today that left no genetic trace-represent 'ghost' ancestors in a strong sense. In this short note, we use simple analytical argument and simulations to estimate how many such individuals exist in finite Wright-Fisher populations. PMID:25703300

  8. The Hunt for Dwarf Galaxies' Ancestors

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Dwarf galaxies are typically very faint, and are therefore hard to find. Given that, what are our chances of finding their distant ancestors, located billions of light-years away? A recent study aims to find out.Ancient CounterpartsDwarf galaxies are a hot topic right now, especially as we discover more and more of them nearby. Besides being great places to investigate a variety of astrophysical processes, local group dwarf galaxies are also representative of the most common type of galaxy in the universe. For many of these dwarf galaxies, their low masses and typically old stellar populations suggest that most of their stars were formed early in the universes history, and further star formation was suppressed when the universe was reionized at redshifts of z ~ 610. If this is true, most dwarf galaxies are essentially fossils: theyve evolved little since that point.To test this theory, wed like to find counterparts to our local group dwarf galaxies at these higher redshifts of z = 6 or 7. But dwarf galaxies, since they dont exhibit lots of active star formation, have very low surface brightnesses making them very difficult to detect. What are the chances that current or future telescope sensitivities will allow us to detect these? Thats the question Anna Patej and Abraham Loeb, two theorists at Harvard University, have addressed in a recent study.Entering a New RegimeThe surface brightness vs. size for 73 local dwarf galaxies scaled back to redshifts of z=6 (top) and z=7 (bottom). So far weve been able to observe high-redshift galaxies within the boxed region of the parameter space. JWST will open the shaded region of the parameter space, which includes some of the dwarf galaxies. [Patej Loeb 2015]Starting from observational data for 87 Local-Group dwarf galaxies, Patej and Loeb used a stellar population synthesis code to evolve the galaxies backward in time to redshifts of z = 6 and 7. Next, they narrowed this sample to only those dwarfs for which most star

  9. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  10. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  11. Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record.

    PubMed

    Finarelli, John A; Flynn, John J

    2006-04-01

    A recent molecular phylogeny of the mammalian order Carnivora implied large body size as the ancestral condition for the caniform subclade Arctoidea using the distribution of species mean body sizes among living taxa. "Extant taxa-only" approaches such as these discount character state observations for fossil members of living clades and completely ignore data from extinct lineages. To more rigorously reconstruct body sizes of ancestral forms within the Caniformia, body size and first appearance data were collected for 149 extant and 367 extinct taxa. Body sizes were reconstructed for four ancestral nodes using weighted squared-change parsimony on log-transformed body mass data. Reconstructions based on extant taxa alone favored large body sizes (on the order of 10 to 50 kg) for the last common ancestors of both the Caniformia and Arctoidea. In contrast, reconstructions incorporating fossil data support small body sizes (< 5 kg) for the ancestors of those clades. When the temporal information associated with fossil data was discarded, body size reconstructions became ambiguous, demonstrating that incorporating both character state and temporal information from fossil taxa unambiguously supports a small ancestral body size, thereby falsifying hypotheses derived from extant taxa alone. Body size reconstructions for Caniformia, Arctoidea, and Musteloidea were not sensitive to potential errors introduced by uncertainty in the position of extinct lineages relative to the molecular topology, or to missing body size data for extinct members of an entire major clade (the aquatic Pinnipedia). Incorporating character state observations and temporal information from the fossil record into hypothesis testing has a significant impact on the ability to reconstruct ancestral characters and constrains the range of potential hypotheses of character evolution. Fossil data here provide the evidence to reliably document trends of both increasing and decreasing body size in several

  12. The extended Price equation quantifies species selection on mammalian body size across the Palaeocene/Eocene Thermal Maximum.

    PubMed

    Rankin, Brian D; Fox, Jeremy W; Barrón-Ortiz, Christian R; Chew, Amy E; Holroyd, Patricia A; Ludtke, Joshua A; Yang, Xingkai; Theodor, Jessica M

    2015-08-01

    Species selection, covariation of species' traits with their net diversification rates, is an important component of macroevolution. Most studies have relied on indirect evidence for its operation and have not quantified its strength relative to other macroevolutionary forces. We use an extension of the Price equation to quantify the mechanisms of body size macroevolution in mammals from the latest Palaeocene and earliest Eocene of the Bighorn and Clarks Fork Basins of Wyoming. Dwarfing of mammalian taxa across the Palaeocene/Eocene Thermal Maximum (PETM), an intense, brief warming event that occurred at approximately 56 Ma, has been suggested to reflect anagenetic change and the immigration of small bodied-mammals, but might also be attributable to species selection. Using previously reconstructed ancestor-descendant relationships, we partitioned change in mean mammalian body size into three distinct mechanisms: species selection operating on resident mammals, anagenetic change within resident mammalian lineages and change due to immigrants. The remarkable decrease in mean body size across the warming event occurred through anagenetic change and immigration. Species selection also was strong across the PETM but, intriguingly, favoured larger-bodied species, implying some unknown mechanism(s) by which warming events affect macroevolution. PMID:26224712

  13. The Ancestor Project: Aboriginal Computer Education through Storytelling

    ERIC Educational Resources Information Center

    Weston, Marla; Biin, Dianne

    2013-01-01

    The goal of the ANCESTOR program is to use digital storytelling as a means of promoting an interest in technology careers for Aboriginal learners, as well as increasing cultural literacy. A curriculum was developed and first tested with Aboriginal students at the LÁU,WELNEW Tribal School near Victoria, British Columbia, Canada. Based on feedback…

  14. A proposal of the proteome before the last universal common ancestor (LUCA)

    NASA Astrophysics Data System (ADS)

    de Farias, Sávio Torres; Rêgo, Thais Gaudêncio; José, Marco V.

    2016-01-01

    The search for understanding the biological nature of the last universal common ancestor (LUCA) has been a theoretical challenge and has sparked intense debate in the scientific community. We reconstructed the ancestral sequences of tRNAs in order to test the hypothesis that these molecules originated the first genes. The results showed that the proteome before LUCA may have been composed of basal energy metabolism, namely, compounds with three carbons in the glycolytic pathway, which operated as a distribution centre of substrates for the development of metabolic pathways of nucleotides, lipids and amino acids. Thus, we present a proposal for metabolism in organisms before LUCA that was the initial core for the assembly of further metabolic pathways.

  15. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  16. Deciding Termination for Ancestor Match- Bounded String Rewriting Systems

    NASA Technical Reports Server (NTRS)

    Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes

    2005-01-01

    Termination of a string rewriting system can be characterized by termination on suitable recursively defined languages. This kind of termination criteria has been criticized for its lack of automation. In an earlier paper we have shown how to construct an automated termination criterion if the recursion is aligned with the rewrite relation. We have demonstrated the technique with Dershowitz's forward closure criterion. In this paper we show that a different approach is suitable when the recursion is aligned with the inverse of the rewrite relation. We apply this idea to Kurth's ancestor graphs and obtain ancestor match-bounded string rewriting systems. Termination is shown to be decidable for this class. The resulting method improves upon those based on match-boundedness or inverse match-boundedness.

  17. A Universal Trend among Proteomes Indicates an Oily Last Common Ancestor

    PubMed Central

    Mannige, Ranjan V.; Brooks, Charles L.; Shakhnovich, Eugene I.

    2012-01-01

    Despite progresses in ancestral protein sequence reconstruction, much needs to be unraveled about the nature of the putative last common ancestral proteome that served as the prototype of all extant lifeforms. Here, we present data that indicate a steady decline (oil escape) in proteome hydrophobicity over species evolvedness (node number) evident in 272 diverse proteomes, which indicates a highly hydrophobic (oily) last common ancestor (LCA). This trend, obtained from simple considerations (free from sequence reconstruction methods), was corroborated by regression studies within homologous and orthologous protein clusters as well as phylogenetic estimates of the ancestral oil content. While indicating an inherent irreversibility in molecular evolution, oil escape also serves as a rare and universal reaction-coordinate for evolution (reinforcing Darwin's principle of Common Descent), and may prove important in matters such as (i) explaining the emergence of intrinsically disordered proteins, (ii) developing composition- and speciation-based “global” molecular clocks, and (iii) improving the statistical methods for ancestral sequence reconstruction. PMID:23300421

  18. Evolutionary paths to mammalian cochleae.

    PubMed

    Manley, Geoffrey A

    2012-12-01

    Evolution of the cochlea and high-frequency hearing (>20 kHz; ultrasonic to humans) in mammals has been a subject of research for many years. Recent advances in paleontological techniques, especially the use of micro-CT scans, now provide important new insights that are here reviewed. True mammals arose more than 200 million years (Ma) ago. Of these, three lineages survived into recent geological times. These animals uniquely developed three middle ear ossicles, but these ossicles were not initially freely suspended as in modern mammals. The earliest mammalian cochleae were only about 2 mm long and contained a lagena macula. In the multituberculate and monotreme mammalian lineages, the cochlea remained relatively short and did not coil, even in modern representatives. In the lineage leading to modern therians (placental and marsupial mammals), cochlear coiling did develop, but only after a period of at least 60 Ma. Even Late Jurassic mammals show only a 270 ° cochlear coil and a cochlear canal length of merely 3 mm. Comparisons of modern organisms, mammalian ancestors, and the state of the middle ear strongly suggest that high-frequency hearing (>20 kHz) was not realized until the early Cretaceous (~125 Ma). At that time, therian mammals arose and possessed a fully coiled cochlea. The evolution of modern features of the middle ear and cochlea in the many later lineages of therians was, however, a mosaic and different features arose at different times. In parallel with cochlear structural evolution, prestins in therian mammals evolved into effective components of a new motor system. Ultrasonic hearing developed quite late-the earliest bat cochleae (~60 Ma) did not show features characteristic of those of modern bats that are sensitive to high ultrasonic frequencies. PMID:22983571

  19. Photochemical etiology of promising ancestors of the RNA nucleobases.

    PubMed

    Brister, M M; Pollum, M; Crespo-Hernández, C E

    2016-07-27

    RNA is a product of chemical and biological evolution and the identification of its heterocyclic ancestors is essential for understanding the molecular origins of life. Among a diverse array of selection pressures thought to have shaped the composition of the nucleobases on prebiotic Earth, protection against intense ultraviolet radiation must have been essential. In this contribution, a detailed spectroscopic and photophysical investigation of barbituric acid and 2,4,6-triaminopyrimidine, two promising candidates for the prebiotic ancestors of RNA nucleobases, is presented in aqueous solution. It is shown that although these pyrimidine derivatives absorb ultraviolet radiation strongly, both compounds possess efficient electronic relaxation mechanisms for dissipating most of the absorbed ultraviolet energy to their aqueous environment as heat within hundreds of femtoseconds, thus safeguarding their chemical integrity. In fact, these two heterocyclic compounds rival the photostability observed in the canonical nucleobases in aqueous solution, thus supporting the recent proposal that both barbituric acid and 2,4,6-triaminopyrimidine are promising ancestors of the RNA nucleobases. PMID:26898746

  20. Mammalian aromatases.

    PubMed

    Conley, A; Hinshelwood, M

    2001-05-01

    Aromatase is the enzyme complex that catalyses the synthesis of oestrogens from androgens, and therefore it has unique potential to influence the physiological balance between the sex steroid hormones. Both aromatase cytochrome P450 (P450arom) and NADPH-cytochrome P450 reductase (reductase), the two essential components of the enzyme complex, are highly conserved among mammals and vertebrates. Aromatase expression occurs in the gonads and brain, and is essential for reproductive development and fertility. Of interest are the complex mechanisms involving alternative promoter utilization that have evolved to control tissue-specific expression in these tissues. In addition, in a number of species, including humans, expression of aromatase has a broader tissue distribution, including placenta, adipose and bone. The relevance of oestrogen synthesis and possibly androgen metabolism in these peripheral sites of expression is now becoming clear from studies in P450arom knockout (ArKO) mice and from genetic defects recognized recently in both men and women. Important species differences in the physiological roles of aromatase expression are also likely to emerge, despite the highly conserved nature of the enzyme system. The identification of functionally distinct, tissue-specific isozymes of P450arom in at least one mammal, pigs, and several species of fish indicates that there are additional subtle, but physiologically significant, species-specific roles for aromatase. Comparative studies of mammalian and other vertebrate aromatases will expand understanding of the role played by this ancient enzyme system in the evolution of reproduction and the adaptive influence of oestrogen synthesis on general health and well being. PMID:11427156

  1. Reconstruction of the ancestral marsupial karyotype from comparative gene maps

    PubMed Central

    2013-01-01

    Background The increasing number of assembled mammalian genomes makes it possible to compare genome organisation across mammalian lineages and reconstruct chromosomes of the ancestral marsupial and therian (marsupial and eutherian) mammals. However, the reconstruction of ancestral genomes requires genome assemblies to be anchored to chromosomes. The recently sequenced tammar wallaby (Macropus eugenii) genome was assembled into over 300,000 contigs. We previously devised an efficient strategy for mapping large evolutionarily conserved blocks in non-model mammals, and applied this to determine the arrangement of conserved blocks on all wallaby chromosomes, thereby permitting comparative maps to be constructed and resolve the long debated issue between a 2n = 14 and 2n = 22 ancestral marsupial karyotype. Results We identified large blocks of genes conserved between human and opossum, and mapped genes corresponding to the ends of these blocks by fluorescence in situ hybridization (FISH). A total of 242 genes was assigned to wallaby chromosomes in the present study, bringing the total number of genes mapped to 554 and making it the most densely cytogenetically mapped marsupial genome. We used these gene assignments to construct comparative maps between wallaby and opossum, which uncovered many intrachromosomal rearrangements, particularly for genes found on wallaby chromosomes X and 3. Expanding comparisons to include chicken and human permitted the putative ancestral marsupial (2n = 14) and therian mammal (2n = 19) karyotypes to be reconstructed. Conclusions Our physical mapping data for the tammar wallaby has uncovered the events shaping marsupial genomes and enabled us to predict the ancestral marsupial karyotype, supporting a 2n = 14 ancestor. Futhermore, our predicted therian ancestral karyotype has helped to understand the evolution of the ancestral eutherian genome. PMID:24261750

  2. Fossil hominin shoulders support an African ape-like last common ancestor of humans and chimpanzees

    PubMed Central

    Young, Nathan M.; Capellini, Terence D.; Roach, Neil T.; Alemseged, Zeresenay

    2015-01-01

    Reconstructing the behavioral shifts that drove hominin evolution requires knowledge of the timing, magnitude, and direction of anatomical changes over the past ∼6–7 million years. These reconstructions depend on assumptions regarding the morphotype of the Homo–Pan last common ancestor (LCA). However, there is little consensus for the LCA, with proposed models ranging from African ape to orangutan or generalized Miocene ape-like. The ancestral state of the shoulder is of particular interest because it is functionally associated with important behavioral shifts in hominins, such as reduced arboreality, high-speed throwing, and tool use. However, previous morphometric analyses of both living and fossil taxa have yielded contradictory results. Here, we generated a 3D morphospace of ape and human scapular shape to plot evolutionary trajectories, predict ancestral morphologies, and directly test alternative evolutionary hypotheses using the hominin fossil evidence. We show that the most parsimonious model for the evolution of hominin shoulder shape starts with an African ape-like ancestral state. We propose that the shoulder evolved gradually along a single morphocline, achieving modern human-like configuration and function within the genus Homo. These data are consistent with a slow, progressive loss of arboreality and increased tool use throughout human evolution. PMID:26351685

  3. Fossil hominin shoulders support an African ape-like last common ancestor of humans and chimpanzees.

    PubMed

    Young, Nathan M; Capellini, Terence D; Roach, Neil T; Alemseged, Zeresenay

    2015-09-22

    Reconstructing the behavioral shifts that drove hominin evolution requires knowledge of the timing, magnitude, and direction of anatomical changes over the past ∼6-7 million years. These reconstructions depend on assumptions regarding the morphotype of the Homo-Pan last common ancestor (LCA). However, there is little consensus for the LCA, with proposed models ranging from African ape to orangutan or generalized Miocene ape-like. The ancestral state of the shoulder is of particular interest because it is functionally associated with important behavioral shifts in hominins, such as reduced arboreality, high-speed throwing, and tool use. However, previous morphometric analyses of both living and fossil taxa have yielded contradictory results. Here, we generated a 3D morphospace of ape and human scapular shape to plot evolutionary trajectories, predict ancestral morphologies, and directly test alternative evolutionary hypotheses using the hominin fossil evidence. We show that the most parsimonious model for the evolution of hominin shoulder shape starts with an African ape-like ancestral state. We propose that the shoulder evolved gradually along a single morphocline, achieving modern human-like configuration and function within the genus Homo. These data are consistent with a slow, progressive loss of arboreality and increased tool use throughout human evolution. PMID:26351685

  4. Origin and Evolution of Water Oxidation before the Last Common Ancestor of the Cyanobacteria

    PubMed Central

    Cardona, Tanai; Murray, James W.; Rutherford, A. William

    2015-01-01

    Photosystem II, the water oxidizing enzyme, altered the course of evolution by filling the atmosphere with oxygen. Here, we reconstruct the origin and evolution of water oxidation at an unprecedented level of detail by studying the phylogeny of all D1 subunits, the main protein coordinating the water oxidizing cluster (Mn4CaO5) of Photosystem II. We show that D1 exists in several forms making well-defined clades, some of which could have evolved before the origin of water oxidation and presenting many atypical characteristics. The most ancient form is found in the genome of Gloeobacter kilaueensis JS-1 and this has a C-terminus with a higher sequence identity to D2 than to any other D1. Two other groups of early evolving D1 correspond to those expressed under prolonged far-red illumination and in darkness. These atypical D1 forms are characterized by a dramatically different Mn4CaO5 binding site and a Photosystem II containing such a site may assemble an unconventional metal cluster. The first D1 forms with a full set of ligands to the Mn4CaO5 cluster are grouped with D1 proteins expressed only under low oxygen concentrations and the latest evolving form is the dominant type of D1 found in all cyanobacteria and plastids. In addition, we show that the plastid ancestor had a D1 more similar to those in early branching Synechococcus. We suggest each one of these forms of D1 originated from transitional forms at different stages toward the innovation and optimization of water oxidation before the last common ancestor of all known cyanobacteria. PMID:25657330

  5. Reptiles and Mammals Have Differentially Retained Long Conserved Noncoding Sequences from the Amniote Ancestor

    PubMed Central

    Janes, D.E.; Chapus, C.; Gondo, Y.; Clayton, D.F.; Sinha, S.; Blatti, C.A.; Organ, C.L.; Fujita, M.K.; Balakrishnan, C.N.; Edwards, S.V.

    2011-01-01

    Many noncoding regions of genomes appear to be essential to genome function. Conservation of large numbers of noncoding sequences has been reported repeatedly among mammals but not thus far among birds and reptiles. By searching genomes of chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and green anole (Anolis carolinensis), we quantified the conservation among birds and reptiles and across amniotes of long, conserved noncoding sequences (LCNS), which we define as sequences ≥500 bp in length and exhibiting ≥95% similarity between species. We found 4,294 LCNS shared between chicken and zebra finch and 574 LCNS shared by the two birds and Anolis. The percent of genomes comprised by LCNS in the two birds (0.0024%) is notably higher than the percent in mammals (<0.0003% to <0.001%), differences that we show may be explained in part by differences in genome-wide substitution rates. We reconstruct a large number of LCNS for the amniote ancestor (ca. 8,630) and hypothesize differential loss and substantial turnover of these sites in descendent lineages. By contrast, we estimated a small role for recruitment of LCNS via acquisition of novel functions over time. Across amniotes, LCNS are significantly enriched with transcription factor binding sites for many developmental genes, and 2.9% of LCNS shared between the two birds show evidence of expression in brain expressed sequence tag databases. These results show that the rate of retention of LCNS from the amniote ancestor differs between mammals and Reptilia (including birds) and that this may reflect differing roles and constraints in gene regulation. PMID:21183607

  6. Diet and the evolution of the earliest human ancestors.

    PubMed

    Teaford, M F; Ungar, P S

    2000-12-01

    Over the past decade, discussions of the evolution of the earliest human ancestors have focused on the locomotion of the australopithecines. Recent discoveries in a broad range of disciplines have raised important questions about the influence of ecological factors in early human evolution. Here we trace the cranial and dental traits of the early australopithecines through time, to show that between 4.4 million and 2.3 million years ago, the dietary capabilities of the earliest hominids changed dramatically, leaving them well suited for life in a variety of habitats and able to cope with significant changes in resource availability associated with long-term and short-term climatic fluctuations. PMID:11095758

  7. Ontogeny of the maxilla in Neanderthals and their ancestors.

    PubMed

    Lacruz, Rodrigo S; Bromage, Timothy G; O'Higgins, Paul; Arsuaga, Juan-Luis; Stringer, Chris; Godinho, Ricardo Miguel; Warshaw, Johanna; Martínez, Ignacio; Gracia-Tellez, Ana; de Castro, José María Bermúdez; Carbonell, Eudald

    2015-01-01

    Neanderthals had large and projecting (prognathic) faces similar to those of their putative ancestors from Sima de los Huesos (SH) and different from the retracted modern human face. When such differences arose during development and the morphogenetic modifications involved are unknown. We show that maxillary growth remodelling (bone formation and resorption) of the Devil's Tower (Gibraltar 2) and La Quina 18 Neanderthals and four SH hominins, all sub-adults, show extensive bone deposition, whereas in modern humans extensive osteoclastic bone resorption is found in the same regions. This morphogenetic difference is evident by ∼5 years of age. Modern human faces are distinct from those of the Neanderthal and SH fossils in part because their postnatal growth processes differ markedly. The growth remodelling identified in these fossil hominins is shared with Australopithecus and early Homo but not with modern humans suggesting that the modern human face is developmentally derived. PMID:26639346

  8. Ontogeny of the maxilla in Neanderthals and their ancestors

    PubMed Central

    Lacruz, Rodrigo S.; Bromage, Timothy G.; O'Higgins, Paul; Arsuaga, Juan-Luis; Stringer, Chris; Godinho, Ricardo Miguel; Warshaw, Johanna; Martínez, Ignacio; Gracia-Tellez, Ana; de Castro, José María Bermúdez; Carbonell, Eudald

    2015-01-01

    Neanderthals had large and projecting (prognathic) faces similar to those of their putative ancestors from Sima de los Huesos (SH) and different from the retracted modern human face. When such differences arose during development and the morphogenetic modifications involved are unknown. We show that maxillary growth remodelling (bone formation and resorption) of the Devil's Tower (Gibraltar 2) and La Quina 18 Neanderthals and four SH hominins, all sub-adults, show extensive bone deposition, whereas in modern humans extensive osteoclastic bone resorption is found in the same regions. This morphogenetic difference is evident by ∼5 years of age. Modern human faces are distinct from those of the Neanderthal and SH fossils in part because their postnatal growth processes differ markedly. The growth remodelling identified in these fossil hominins is shared with Australopithecus and early Homo but not with modern humans suggesting that the modern human face is developmentally derived. PMID:26639346

  9. Diet and the evolution of the earliest human ancestors

    PubMed Central

    Teaford, Mark F.; Ungar, Peter S.

    2000-01-01

    Over the past decade, discussions of the evolution of the earliest human ancestors have focused on the locomotion of the australopithecines. Recent discoveries in a broad range of disciplines have raised important questions about the influence of ecological factors in early human evolution. Here we trace the cranial and dental traits of the early australopithecines through time, to show that between 4.4 million and 2.3 million years ago, the dietary capabilities of the earliest hominids changed dramatically, leaving them well suited for life in a variety of habitats and able to cope with significant changes in resource availability associated with long-term and short-term climatic fluctuations. PMID:11095758

  10. Looking for the Last Universal Common Ancestor (LUCA)

    PubMed Central

    Koskela, Minna; Annila, Arto

    2012-01-01

    Genomic sequences across diverse species seem to align towards a common ancestry, eventually implying that eons ago some universal antecedent organism would have lived on the face of Earth. However, when evolution is understood not only as a biological process but as a general thermodynamic process, it becomes apparent that the quest for the last universal common ancestor is unattainable. Ambiguities in alignments are unavoidable because the driving forces and paths of evolution cannot be separated from each other. Thus tracking down life’s origin is by its nature a non-computable task. The thermodynamic tenet clarifies that evolution is a path-dependent process of least-time consumption of free energy. The natural process is without a demarcation line between animate and inanimate. PMID:24704844

  11. Chemostratigraphic reconstruction of biofacies: Molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors

    NASA Astrophysics Data System (ADS)

    Moldowan, J. Michael; Dahl, Jeremy; Jacobson, Stephen R.; Huizinga, Bradley J.; Fago, Frederick J.; Shetty, Rupa; Watt, David S.; Peters, Kenneth E.

    1996-02-01

    New data from numerous detailed mass-spectrometric studies have detected triaromatic dinosteroids in Precambrian to Cenozoic rock samples. Triaromatic dinosteroids are organic geochemicals derived from dinosterols, compounds known in modern organisms to be the nearly exclusive widely occurring products of dinoflagellates. We observed the ubiquitous occurrence of these dinosteroids in 49 Late Triassic through Cretaceous marine source rocks and the absence of them in 13 Permian-Carboniferous source rocks synergistic with the dinoflagellate cyst record. However, finding dinosteroids in lower Paleozoic and Precambrian strata presents challenging results for molecular paleontologists, evolutionary biologists, palynologists, and especially for those concerned with the food web at various times of biological crisis. Other than the few species known as parasites and symbionts, many other dinoflagellate species are important as primary producers. The presence of Precambrian to Devonian triaromatic dinosteroids gives chemostratigraphic evidence of dinoflagellates (or other organisms with similar chemosynthetic capabilities) in rocks significantly older than the oldest undisputed dinoflagellate fossils (dinoflagellate cysts from the Middle Triassic, ˜ 240 Ma), and older than the putative Silurian ˜ 420 Ma) dinocyst,Arpylorus antiquus (Calandra) Sargent, from Tunisia. This systematic chemostratigraphic approach can shed light not only on lineages of dinoflagellates and their precursors, but potentially on many other lineages, especially bacteria, algae, plants, and possibly some metazoans.

  12. Evolutionary tree reconstruction

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Kanefsky, Bob

    1990-01-01

    It is described how Minimum Description Length (MDL) can be applied to the problem of DNA and protein evolutionary tree reconstruction. If there is a set of mutations that transform a common ancestor into a set of the known sequences, and this description is shorter than the information to encode the known sequences directly, then strong evidence for an evolutionary relationship has been found. A heuristic algorithm is described that searches for the simplest tree (smallest MDL) that finds close to optimal trees on the test data. Various ways of extending the MDL theory to more complex evolutionary relationships are discussed.

  13. Mammalian phylogeny reveals recent diversification rate shifts.

    PubMed

    Stadler, Tanja

    2011-04-12

    Phylogenetic trees of present-day species allow investigation of the rate of evolution that led to the present-day diversity. A recent analysis of the mammalian phylogeny challenged the view of explosive mammalian evolution after the Cretaceous-Tertiary (K/T) boundary (65 Mya). However, due to lack of appropriate methods, the diversification (speciation minus extinction) rates in the more recent past of mammalian evolution could not be determined. In this paper, I provide a method that reveals that the tempo of mammalian evolution did not change until ∼ 33 Mya. This constant period was followed by a peak of diversification rates between 33 and 30 Mya. Thereafter, diversification rates remained high and constant until 8.55 Mya. Diversification rates declined significantly at 8.55 and 3.35 Mya. Investigation of mammalian subgroups (marsupials, placentals, and the six largest placental subgroups) reveals that the diversification rate peak at 33-30 Mya is mainly driven by rodents, cetartiodactyla, and marsupials. The recent diversification rate decrease is significant for all analyzed subgroups but eulipotyphla, cetartiodactyla, and primates. My likelihood approach is not limited to mammalian evolution. It provides a robust framework to infer diversification rate changes and mass extinction events in phylogenies, reconstructed from, e.g., present-day species or virus data. In particular, the method is very robust toward noise and uncertainty in the phylogeny and can account for incomplete taxon sampling. PMID:21444816

  14. The backbone of the post-synaptic density originated in a unicellular ancestor of choanoflagellates and metazoans

    PubMed Central

    2010-01-01

    Background Comparative genomics of the early diverging metazoan lineages and of their unicellular sister-groups opens new window to reconstructing the genetic changes which preceded or accompanied the evolution of multicellular body plans. A recent analysis found that the genome of the nerve-less sponges encodes the homologues of most vertebrate post-synaptic proteins. In vertebrate excitatory synapses, these proteins assemble to form the post-synaptic density, a complex molecular platform linking membrane receptors, components of their signalling pathways, and the cytoskeleton. Newly available genomes from Monosiga brevicollis (a member of Choanoflagellata, the closest unicellular relatives of animals) and Trichoplax adhaerens (a member of Placozoa: besides sponges, the only nerve-less metazoans) offer an opportunity to refine our understanding of post-synaptic protein evolution. Results Searches for orthologous proteins and reconstruction of gene gains/losses based on the taxon phylogeny indicate that post-synaptic proteins originated in two main steps. The backbone scaffold proteins (Shank, Homer, DLG) and some of their partners were acquired in a unicellular ancestor of choanoflagellates and metazoans. A substantial additional set appeared in an exclusive ancestor of the Metazoa. The placozoan genome contains most post-synaptic genes but lacks some of them. Notably, the master-scaffold protein Shank might have been lost secondarily in the placozoan lineage. Conclusions The time of origination of most post-synaptic proteins was not concomitant with the acquisition of synapses or neural-like cells. The backbone of the scaffold emerged in a unicellular context and was probably not involved in cell-cell communication. Based on the reconstructed protein composition and potential interactions, its ancestral function could have been to link calcium signalling and cytoskeleton regulation. The complex later became integrated into the evolving synapse through the

  15. Crops gone wild: evolution of weeds and invasives from domesticated ancestors

    PubMed Central

    Ellstrand, Norman C; Heredia, Sylvia M; Leak-Garcia, Janet A; Heraty, Joanne M; Burger, Jutta C; Yao, Li; Nohzadeh-Malakshah, Sahar; Ridley, Caroline E

    2010-01-01

    The evolution of problematic plants, both weeds and invasives, is a topic of increasing interest. Plants that have evolved from domesticated ancestors have certain advantages for study. Because of their economic importance, domesticated plants are generally well-characterized and readily available for ecogenetic comparison with their wild descendants. Thus, the evolutionary history of crop descendants has the potential to be reconstructed in some detail. Furthermore, growing crop progenitors with their problematic descendants in a common environment allows for the identification of significant evolutionary differences that correlate with weediness or invasiveness. We sought well-established examples of invasives and weeds for which genetic and/or ethnobotanical evidence has confirmed their evolution from domesticates. We found surprisingly few cases, only 13. We examine our list for generalizations and then some selected cases to reveal how plant pests have evolved from domesticates. Despite their potential utility, crop descendants remain underexploited for evolutionary study. Promising evolutionary research opportunities for these systems are abundant and worthy of pursuit. PMID:25567942

  16. The facial skeleton of the chimpanzee-human last common ancestor

    PubMed Central

    Cobb, Samuel N

    2008-01-01

    This review uses the current morphological evidence to evaluate the facial morphology of the hypothetical last common ancestor (LCA) of the chimpanzee/bonobo (panin) and human (hominin) lineages. Some of the problems involved in reconstructing ancestral morphologies so close to the formation of a lineage are discussed. These include the prevalence of homoplasy and poor phylogenetic resolution due to a lack of defining derived features. Consequently the list of hypothetical features expected in the face of the LCA is very limited beyond its hypothesized similarity to extant Pan. It is not possible to determine with any confidence whether the facial morphology of any of the current candidate LCA taxa (Ardipithecus kadabba, Ardipithecus ramidus, Orrorin tugenensis and Sahelanthropus tchadensis) is representative of the LCA, or a stem hominin, or a stem panin or, in some cases, a hominid predating the emergence of the hominin lineage. The major evolutionary trends in the hominin lineage subsequent to the LCA are discussed in relation to the dental arcade and dentition, subnasal morphology and the size, position and prognathism of the facial skeleton. PMID:18380866

  17. DUPCAR: Reconstructing Contiguous Ancestral Regions with Duplications

    PubMed Central

    Ratan, Aakrosh; Raney, Brian J.; Suh, Bernard B.; Zhang, Louxin; Miller, Webb; Haussler, David

    2008-01-01

    Abstract Accurately reconstructing the large-scale gene order in an ancestral genome is a critical step to better understand genome evolution. In this paper, we propose a heuristic algorithm, called DUPCAR, for reconstructing ancestral genomic orders with duplications. The method starts from the order of genes in modern genomes and predicts predecessor and successor relationships in the ancestor. Then a greedy algorithm is used to reconstruct the ancestral orders by connecting genes into contiguous regions based on predicted adjacencies. Computer simulation was used to validate the algorithm. We also applied the method to reconstruct the ancestral chromosome X of placental mammals and the ancestral genomes of the ciliate Paramecium tetraurelia. PMID:18774902

  18. Scapular shape of extant hominoids and the African ape/modern human last common ancestor.

    PubMed

    Green, David J; Spiewak, Ted A; Seitelman, Brielle; Gunz, Philipp

    2016-05-01

    Newly discovered early hominin fossil scapulae have bolstered investigations of scapular shape, which have long been used to interpret behavioral variation among primates. However, unexpected similarities between Pongo and Homo - particularly in scapular spine orientation - have raised questions about the functional utility of scapular morphology and its phylogenetic context in the hominin lineage. Not surprisingly, significant disagreement surrounds disparate morphological reconstructions of the modern human/African ape last common ancestor (LCA). Our study utilizes geometric morphometric (GM) approaches - two employing homologous, anatomical landmarks and a "spine-free" alternative using 98 sliding semilandmarks along the boundary of the subscapular fossa. The landmark-based "wireframe" GM analysis principally sorted groups by spine orientation: Homo and Pongo were similar to one another with more transversely-oriented spines as compared to Hylobates and the African apes. In contrast, Homo and Gorilla clustered together in our semilandmark analysis with superoinferiorly broad blades. Pan scapulae were similar, but had more mediolaterally compressed blades and laterally-positioned superior angles. Hylobates was superoinferiorly narrow, yet obliquely expanded relative to the vertebral border. Pongo scapulae were unique among hominoids in being nearly as broad as they were long. Previously documented 'convergence' of Homo and Pongo scapulae appears to be principally driven by similarities in spine orientation, rather than overall blade shape. Therefore, we contend that it is more parsimonious to reconstruct the African ape/Homo LCA scapula as being Gorilla-like, especially in light of similar characterizations of certain fossil hominin scapulae. Accordingly, the evolution of Pan (highly oblique spine and laterally-situated superior angle) and Homo (transversely-oriented spine) scapular morphology would have involved relatively minor shifts from this ancestral

  19. Cassava genome from a wild ancestor to cultivated varieties

    PubMed Central

    Wang, Wenquan; Feng, Binxiao; Xiao, Jingfa; Xia, Zhiqiang; Zhou, Xincheng; Li, Pinghua; Zhang, Weixiong; Wang, Ying; Møller, Birger Lindberg; Zhang, Peng; Luo, Ming-Cheng; Xiao, Gong; Liu, Jingxing; Yang, Jun; Chen, Songbi; Rabinowicz, Pablo D.; Chen, Xin; Zhang, Hong-Bin; Ceballos, Henan; Lou, Qunfeng; Zou, Meiling; Carvalho, Luiz J.C.B.; Zeng, Changying; Xia, Jing; Sun, Shixiang; Fu, Yuhua; Wang, Haiyan; Lu, Cheng; Ruan, Mengbin; Zhou, Shuigeng; Wu, Zhicheng; Liu, Hui; Kannangara, Rubini Maya; Jørgensen, Kirsten; Neale, Rebecca Louise; Bonde, Maya; Heinz, Nanna; Zhu, Wenli; Wang, Shujuan; Zhang, Yang; Pan, Kun; Wen, Mingfu; Ma, Ping-An; Li, Zhengxu; Hu, Meizhen; Liao, Wenbin; Hu, Wenbin; Zhang, Shengkui; Pei, Jinli; Guo, Anping; Guo, Jianchun; Zhang, Jiaming; Zhang, Zhengwen; Ye, Jianqiu; Ou, Wenjun; Ma, Yaqin; Liu, Xinyue; Tallon, Luke J.; Galens, Kevin; Ott, Sandra; Huang, Jie; Xue, Jingjing; An, Feifei; Yao, Qingqun; Lu, Xiaojing; Fregene, Martin; López-Lavalle, L. Augusto Becerra; Wu, Jiajie; You, Frank M.; Chen, Meili; Hu, Songnian; Wu, Guojiang; Zhong, Silin; Ling, Peng; Chen, Yeyuan; Wang, Qinghuang; Liu, Guodao; Liu, Bin; Li, Kaimian; Peng, Ming

    2014-01-01

    Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology. PMID:25300236

  20. Algal ancestor of land plants was preadapted for symbiosis.

    PubMed

    Delaux, Pierre-Marc; Radhakrishnan, Guru V; Jayaraman, Dhileepkumar; Cheema, Jitender; Malbreil, Mathilde; Volkening, Jeremy D; Sekimoto, Hiroyuki; Nishiyama, Tomoaki; Melkonian, Michael; Pokorny, Lisa; Rothfels, Carl J; Sederoff, Heike Winter; Stevenson, Dennis W; Surek, Barbara; Zhang, Yong; Sussman, Michael R; Dunand, Christophe; Morris, Richard J; Roux, Christophe; Wong, Gane Ka-Shu; Oldroyd, Giles E D; Ané, Jean-Michel

    2015-10-27

    Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis. PMID:26438870

  1. Algal ancestor of land plants was preadapted for symbiosis

    PubMed Central

    Delaux, Pierre-Marc; Radhakrishnan, Guru V.; Jayaraman, Dhileepkumar; Cheema, Jitender; Malbreil, Mathilde; Volkening, Jeremy D.; Sekimoto, Hiroyuki; Nishiyama, Tomoaki; Melkonian, Michael; Pokorny, Lisa; Rothfels, Carl J.; Sederoff, Heike Winter; Stevenson, Dennis W.; Surek, Barbara; Zhang, Yong; Sussman, Michael R.; Dunand, Christophe; Morris, Richard J.; Roux, Christophe; Wong, Gane Ka-Shu; Oldroyd, Giles E. D.; Ané, Jean-Michel

    2015-01-01

    Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis. PMID:26438870

  2. Structure–Function Relationships of Glycoprotein Hormones and Their Subunits’ Ancestors

    PubMed Central

    Cahoreau, Claire; Klett, Danièle; Combarnous, Yves

    2015-01-01

    Glycoprotein hormones (GPHs) are the most complex molecules with hormonal activity. They exist only in vertebrates but the genes encoding their subunits’ ancestors are found in most vertebrate and invertebrate species although their roles are still unknown. In the present report, we review the available structural and functional data concerning GPHs and their subunits’ ancestors. PMID:25767463

  3. The Malthusian parameter of ascents: What prevents the exponential increase of one’s ancestors?

    PubMed Central

    Ohno, Susumu

    1996-01-01

    The reason that the indefinite exponential increase in the number of one’s ancestors does not take place is found in the law of sibling interference, which can be expressed by the following simple equation:\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\begin{matrix}{\\mathit{N}}_{{\\mathit{n}}} \\enskip & \\\\ {\\mathit{{\\blacksquare}}} \\enskip & \\\\ {\\mathit{ASZ}} \\enskip & \\end{matrix} {\\mathrm{\\hspace{.167em}{\\times}\\hspace{.167em}2\\hspace{.167em}=\\hspace{.167em}}}{\\mathit{N_{n+1},}}\\end{equation*}\\end{document} where Nn is the number of ancestors in the nth generation, ASZ is the average sibling size of these ancestors, and Nn+1 is the number of ancestors in the next older generation (n + 1). Accordingly, the exponential increase in the number of one’s ancestors is an initial anomaly that occurs while ASZ remains at 1. Once ASZ begins to exceed 1, the rate of increase in the number of ancestors is progressively curtailed, falling further and further behind the exponential increase rate. Eventually, ASZ reaches 2, and at that point, the number of ancestors stops increasing for two generations. These two generations, named AN SA and AN SA + 1, are the most critical in the ancestry, for one’s ancestors at that point come to represent all the progeny-produced adults of the entire ancestral population. Thereafter, the fate of one’s ancestors becomes the fate of the entire population. If the population to which one belongs is a successful, slowly expanding one, the number of ancestors would slowly decline as you move toward the remote past. This is because ABZ would exceed 2. Only when ABZ is less than 2 would the number of ancestors increase beyond the AN SA and AN SA + 1 generations. Since the above is an indication of a failing population on the way to

  4. Accelerated Evolution of Enhancer Hotspots in the Mammal Ancestor

    PubMed Central

    Holloway, Alisha K.; Bruneau, Benoit G.; Sukonnik, Tatyana; Rubenstein, John L.; Pollard, Katherine S.

    2016-01-01

    Mammals have evolved remarkably different sensory, reproductive, metabolic, and skeletal systems. To explore the genetic basis for these differences, we developed a comparative genomics approach to scan whole-genome multiple sequence alignments to identify regions that evolved rapidly in an ancestral lineage but are conserved within extant species. This pattern suggests that ancestral changes in function were maintained in descendants. After applying this test to therian mammals, we identified 4,797 accelerated regions, many of which are noncoding and located near developmental transcription factors. We then used mouse transgenic reporter assays to test if noncoding accelerated regions are enhancers and to determine how therian-specific substitutions affect their activity in vivo. We discovered enhancers with expression specific to the therian version in brain regions involved in the hormonal control of milk ejection, uterine contractions, blood pressure, temperature, and visual processing. This work underscores the idea that changes in developmental gene expression are important for mammalian evolution, and it pinpoints candidate genes for unique aspects of mammalian biology. PMID:26715627

  5. Accelerated Evolution of Enhancer Hotspots in the Mammal Ancestor.

    PubMed

    Holloway, Alisha K; Bruneau, Benoit G; Sukonnik, Tatyana; Rubenstein, John L; Pollard, Katherine S

    2016-04-01

    Mammals have evolved remarkably different sensory, reproductive, metabolic, and skeletal systems. To explore the genetic basis for these differences, we developed a comparative genomics approach to scan whole-genome multiple sequence alignments to identify regions that evolved rapidly in an ancestral lineage but are conserved within extant species. This pattern suggests that ancestral changes in function were maintained in descendants. After applying this test to therian mammals, we identified 4,797 accelerated regions, many of which are noncoding and located near developmental transcription factors. We then used mouse transgenic reporter assays to test if noncoding accelerated regions are enhancers and to determine how therian-specific substitutions affect their activity in vivo. We discovered enhancers with expression specific to the therian version in brain regions involved in the hormonal control of milk ejection, uterine contractions, blood pressure, temperature, and visual processing. This work underscores the idea that changes in developmental gene expression are important for mammalian evolution, and it pinpoints candidate genes for unique aspects of mammalian biology. PMID:26715627

  6. Reconstructing the Auditory Apparatus of Therapsids by Means of Neutron Tomography

    NASA Astrophysics Data System (ADS)

    Laaß, Michael; Schillinger, Burkhard

    The internal cranial structure of mammalian ancestors, i.e. the therapsids or "mammal-like reptiles", is crucial for understanding the early mammalian evolution. In the past therapsid skulls were investigated by mechanical sectioning or serial grinding, which was a very time-consuming and destructive process and could only be applied to non-valuable or poorly preserved specimens. As most therapsid skulls are embedded in terrestrial iron-rich sediments of Late Permian or Triassic age, i.e. so called "Red beds", a successful investigation with X-Rays is often not possible. We successfully investigated therapsid skulls by means of neutron tomography at the facility ANTARES at FRM II in Munich using cold neutron radiation. This kind of radiation is able to penetrate iron-rich substances in the range between 5 and 15 cm and produces a good contrast between matrix and bones, which enables segmentation of internal cranial structures such as bones, cavities and canals of nerves and blood vessels. In particular, neutron tomography combined with methods of 3D modeling was used here for the investigation and reconstruction of the auditory apparatus of therapsids.

  7. Experimental evolution of a facultative thermophile from a mesophilic ancestor.

    PubMed

    Blaby, Ian K; Lyons, Benjamin J; Wroclawska-Hughes, Ewa; Phillips, Grier C F; Pyle, Tyler P; Chamberlin, Stephen G; Benner, Steven A; Lyons, Thomas J; Crécy-Lagard, Valérie de; Crécy, Eudes de

    2012-01-01

    Experimental evolution via continuous culture is a powerful approach to the alteration of complex phenotypes, such as optimal/maximal growth temperatures. The benefit of this approach is that phenotypic selection is tied to growth rate, allowing the production of optimized strains. Herein, we demonstrate the use of a recently described long-term culture apparatus called the Evolugator for the generation of a thermophilic descendant from a mesophilic ancestor (Escherichia coli MG1655). In addition, we used whole-genome sequencing of sequentially isolated strains throughout the thermal adaptation process to characterize the evolutionary history of the resultant genotype, identifying 31 genetic alterations that may contribute to thermotolerance, although some of these mutations may be adaptive for off-target environmental parameters, such as rich medium. We undertook preliminary phenotypic analysis of mutations identified in the glpF and fabA genes. Deletion of glpF in a mesophilic wild-type background conferred significantly improved growth rates in the 43-to-48°C temperature range and altered optimal growth temperature from 37°C to 43°C. In addition, transforming our evolved thermotolerant strain (EVG1064) with a wild-type allele of glpF reduced fitness at high temperatures. On the other hand, the mutation in fabA predictably increased the degree of saturation in membrane lipids, which is a known adaptation to elevated temperature. However, transforming EVG1064 with a wild-type fabA allele had only modest effects on fitness at intermediate temperatures. The Evolugator is fully automated and demonstrates the potential to accelerate the selection for complex traits by experimental evolution and significantly decrease development time for new industrial strains. PMID:22020511

  8. Phylogenetic analysis of a newfound bat-borne hantavirus supports a laurasiatherian host association for ancestral mammalian hantaviruses.

    PubMed

    Witkowski, Peter T; Drexler, Jan F; Kallies, René; Ličková, Martina; Bokorová, Silvia; Mananga, Gael D; Szemes, Tomáš; Leroy, Eric M; Krüger, Detlev H; Drosten, Christian; Klempa, Boris

    2016-07-01

    Until recently, hantaviruses (family Bunyaviridae) were believed to originate from rodent reservoirs. However, genetically distinct hantaviruses were lately found in shrews and moles, as well as in bats from Africa and Asia. Bats (order Chiroptera) are considered important reservoir hosts for emerging human pathogens. Here, we report on the identification of a novel hantavirus, provisionally named Makokou virus (MAKV), in Noack's Roundleaf Bat (Hipposideros ruber) in Gabon, Central Africa. Phylogenetic analysis of the genomic l-segment showed that MAKV was the most closely related to other bat-borne hantaviruses and shared a most recent common ancestor with the Asian hantaviruses Xuan Son and Laibin. Breakdown of the virus load in a bat animal showed that MAKV resembles rodent-borne hantaviruses in its organ distribution in that it predominantly occurred in the spleen and kidney; this provides a first insight into the infection pattern of bat-borne hantaviruses. Ancestral state reconstruction based on a tree of l gene sequences of all relevant hantavirus lineages was combined with phylogenetic fossil host hypothesis testing, leading to a statistically significant rejection of the mammalian superorder Euarchontoglires (including rodents) but not the superorder Laurasiatheria (including shrews, moles, and bats) as potential hosts of ancestral hantaviruses at most basal tree nodes. Our data supports the emerging concept of bats as previously overlooked hantavirus reservoir hosts. PMID:27051047

  9. Molecular paleontology and complexity in the last eukaryotic common ancestor

    PubMed Central

    Koumandou, V. Lila; Wickstead, Bill; Ginger, Michael L.; van der Giezen, Mark; Dacks, Joel B.

    2013-01-01

    Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself. PMID:23895660

  10. Opossum carboxylesterases: sequences, phylogeny and evidence for CES gene duplication events predating the marsupial-eutherian common ancestor

    PubMed Central

    2008-01-01

    residues previously reported for human CES1 involved in catalysis, ligand binding, tertiary structure and organelle localization. Phylogenetic studies indicated the gene duplication events which generated ancestral mammalian CES genes predated the common ancestor for marsupial and eutherian mammals, and appear to coincide with the early diversification of tetrapods. PMID:18289373

  11. The proteomic complexity and rise of the primordial ancestor of diversified life

    PubMed Central

    2011-01-01

    Background The last universal common ancestor represents the primordial cellular organism from which diversified life was derived. This urancestor accumulated genetic information before the rise of organismal lineages and is considered to be either a simple 'progenote' organism with a rudimentary translational apparatus or a more complex 'cenancestor' with almost all essential biological processes. Recent comparative genomic studies support the latter model and propose that the urancestor was similar to modern organisms in terms of gene content. However, most of these studies were based on molecular sequences, which are fast evolving and of limited value for deep evolutionary explorations. Results Here we engage in a phylogenomic study of protein domain structure in the proteomes of 420 free-living fully sequenced organisms. Domains were defined at the highly conserved fold superfamily (FSF) level of structural classification and an iterative phylogenomic approach was used to reconstruct max_set and min_set FSF repertoires as upper and lower bounds of the urancestral proteome. While the functional make up of the urancestral sets was complex, they represent only 5-11% of the 1,420 FSFs of extant proteomes and their make up and reuse was at least 5 and 3 times smaller than proteomes of free-living organisms, repectively. Trees of proteomes reconstructed directly from FSFs or from molecular functions, which included the max_set and min_set as articial taxa, showed that urancestors were always placed at their base and rooted the tree of life in Archaea. Finally, a molecular clock of FSFs suggests the min_set reflects urancestral genetic make up more reliably and confirms diversified life emerged about 2.9 billion years ago during the start of planet oxygenation. Conclusions The minimum urancestral FSF set reveals the urancestor had advanced metabolic capabilities, was especially rich in nucleotide metabolism enzymes, had pathways for the biosynthesis of membrane sn1

  12. 76 FR 20802 - Culturally Significant Objects Imported for Exhibition Determinations: “Ancestors of the Lake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Sentani and Humboldt Bay'' SUMMARY: Notice is hereby given of the following determinations: Pursuant to... the exhibition ``Ancestors of the Lake: Art from Lake Sentani and Humboldt Bay,'' imported from...

  13. The Dispersed Archaeal Eukaryome and the Complex Archaeal Ancestor of Eukaryotes

    PubMed Central

    Koonin, Eugene V.; Yutin, Natalya

    2014-01-01

    The ancestral set of eukaryotic genes is a chimera composed of genes of archaeal and bacterial origins thanks to the endosymbiosis event that gave rise to the mitochondria and apparently antedated the last common ancestor of the extant eukaryotes. The proto-mitochondrial endosymbiont is confidently identified as an α-proteobacterium. In contrast, the archaeal ancestor of eukaryotes remains elusive, although evidence is accumulating that it could have belonged to a deep lineage within the TACK (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) superphylum of the Archaea. Recent surveys of archaeal genomes show that the apparent ancestors of several key functional systems of eukaryotes, the components of the archaeal “eukaryome,” such as ubiquitin signaling, RNA interference, and actin-based and tubulin-based cytoskeleton structures, are identifiable in different archaeal groups. We suggest that the archaeal ancestor of eukaryotes was a complex form, rooted deeply within the TACK superphylum, that already possessed some quintessential eukaryotic features, in particular, a cytoskeleton, and perhaps was capable of a primitive form of phagocytosis that would facilitate the engulfment of potential symbionts. This putative group of Archaea could have existed for a relatively short time before going extinct or undergoing genome streamlining, resulting in the dispersion of the eukaryome. This scenario might explain the difficulty with the identification of the archaeal ancestor of eukaryotes despite the straightforward detection of apparent ancestors to many signature eukaryotic functional systems. PMID:24691961

  14. Sources of variation in ancestral sequence reconstruction for HIV-1 envelope genes

    PubMed Central

    Ross, Howard A.; Nickle, David C.; Liu, Yi; Heath, Laura; Jensen, Mark A.; Rodrigo, Allen G.; Mullins, James I.

    2007-01-01

    We characterized the variation in the reconstructed ancestor of 118 HIV-1 envelope gene sequences arising from the methods used for (a) estimating and (b) rooting the phylogenetic tree, and (c) reconstructing the ancestor on that tree, from (d) the sequence format, and from (e) the number of input sequences. The method of rooting the tree was responsible for most of the sequence variation both among the reconstructed ancestral sequences and between the ancestral and observed sequences. Variation in predicted 3-D structural properties of the ancestors mirrored their sequence variation. The observed sequence consensus and ancestral sequences from center-rooted trees were most similar in all predicted attributes. Only for the predicted number of N-glycosylation sites was there a difference between MP and ML methods of reconstruction. Taxon sampling effects were observed only for outgroup-rooted trees, not center-rooted, reflecting the occurrence of several divergent basal sequences. Thus, for sequences exhibiting a radial phylogenetic tree, as does HIV-1, most of the variation in the estimated ancestor arises from the method of rooting the phylogenetic tree. Those investigating the ancestors of genes exhibiting such a radial tree should pay particular attention to alternate rooting methods in order to obtain a representative sample of ancestors. PMID:19455202

  15. Mammalian cardiolipin biosynthesis.

    PubMed

    Mejia, Edgard M; Nguyen, Hieu; Hatch, Grant M

    2014-04-01

    Cardiolipin is a major phospholipid in mitochondria and is involved in the generation of cellular energy in the form of ATP. In mammalian and eukaryotic cells it is synthesized via the cytidine-5'-diphosphate-1,2-diacyl-sn-glycerol phosphate pathway. This brief review will describe some of the more recent studies on mammalian cardiolipin biosynthesis and provide an overview of regulation of cardiolipin biosynthesis. In addition, the important role that this key phospholipid plays in disease processes including heart failure, diabetes, thyroid hormone disease and the genetic disease Barth Syndrome will be discussed. PMID:24144810

  16. Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species

    PubMed Central

    Rosselló, Ricardo Antonio; Chen, Chun-Chun; Dai, Rui; Howard, Jason T; Hochgeschwender, Ute; Jarvis, Erich D

    2013-01-01

    Cells are fundamental units of life, but little is known about evolution of cell states. Induced pluripotent stem cells (iPSCs) are once differentiated cells that have been re-programmed to an embryonic stem cell-like state, providing a powerful platform for biology and medicine. However, they have been limited to a few mammalian species. Here we found that a set of four mammalian transcription factor genes used to generate iPSCs in mouse and humans can induce a partially reprogrammed pluripotent stem cell (PRPSCs) state in vertebrate and invertebrate model organisms, in mammals, birds, fish, and fly, which span 550 million years from a common ancestor. These findings are one of the first to show cross-lineage stem cell-like induction, and to generate pluripotent-like cells for several of these species with in vivo chimeras. We suggest that the stem-cell state may be highly conserved across a wide phylogenetic range. DOI: http://dx.doi.org/10.7554/eLife.00036.001 PMID:24015354

  17. Comparative analysis of the primate X-inactivation center region and reconstruction of the ancestral primate XIST locus

    PubMed Central

    Horvath, Julie E.; Sheedy, Christina B.; Merrett, Stephanie L.; Diallo, Abdoulaye Banire; Swofford, David L.; NISC Comparative Sequencing Program; Green, Eric D.; Willard, Huntington F.

    2011-01-01

    Here we provide a detailed comparative analysis across the candidate X-Inactivation Center (XIC) region and the XIST locus in the genomes of six primates and three mammalian outgroup species. Since lemurs and other strepsirrhine primates represent the sister lineage to all other primates, this analysis focuses on lemurs to reconstruct the ancestral primate sequences and to gain insight into the evolution of this region and the genes within it. This comparative evolutionary genomics approach reveals significant expansion in genomic size across the XIC region in higher primates, with minimal size alterations across the XIST locus itself. Reconstructed primate ancestral XIC sequences show that the most dramatic changes during the past 80 million years occurred between the ancestral primate and the lineage leading to Old World monkeys. In contrast, the XIST locus compared between human and the primate ancestor does not indicate any dramatic changes to exons or XIST-specific repeats; rather, evolution of this locus reflects small incremental changes in overall sequence identity and short repeat insertions. While this comparative analysis reinforces that the region around XIST has been subject to significant genomic change, even among primates, our data suggest that evolution of the XIST sequences themselves represents only small lineage-specific changes across the past 80 million years. PMID:21518738

  18. Globin-coupled sensors, protoglobins, and the last universal common ancestor.

    PubMed

    Freitas, Tracey Allen K; Saito, Jennifer A; Hou, Shaobin; Alam, Maqsudul

    2005-01-01

    The strategy for detecting oxygen, carbon monoxide, nitric oxide, and sulfides is predominantly through heme-based sensors utilizing either a globin domain or a PAS domain. Whereas PAS domains bind various cofactors, globins bind only heme. Globin-coupled sensors (GCSs) were first described as regulators of the aerotactic responses in Bacillus subtilis and Halobacterium salinarum. GCSs were also identified in diverse microorganisms that appear to have roles in regulating gene expression. Functional and evolutionary analyses of the GCSs, their protoglobin ancestor, and their relationship to the last universal common ancestor (LUCA) are discussed in the context of globin-based signal transduction. PMID:15598488

  19. The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals

    PubMed Central

    LaRue, Rebecca S; Jónsson, Stefán R; Silverstein, Kevin AT; Lajoie, Mathieu; Bertrand, Denis; El-Mabrouk, Nadia; Hötzel, Isidro; Andrésdóttir, Valgerdur; Smith, Timothy PL; Harris, Reuben S

    2008-01-01

    Background APOBEC3 (A3) proteins deaminate DNA cytosines and block the replication of retroviruses and retrotransposons. Each A3 gene encodes a protein with one or two conserved zinc-coordinating motifs (Z1, Z2 or Z3). The presence of one A3 gene in mice (Z2–Z3) and seven in humans, A3A-H (Z1a, Z2a-Z1b, Z2b, Z2c-Z2d, Z2e-Z2f, Z2g-Z1c, Z3), suggests extraordinary evolutionary flexibility. To gain insights into the mechanism and timing of A3 gene expansion and into the functional modularity of these genes, we analyzed the genomic sequences, expressed cDNAs and activities of the full A3 repertoire of three artiodactyl lineages: sheep, cattle and pigs. Results Sheep and cattle have three A3 genes, A3Z1, A3Z2 and A3Z3, whereas pigs only have two, A3Z2 and A3Z3. A comparison between domestic and wild pigs indicated that A3Z1 was deleted in the pig lineage. In all three species, read-through transcription and alternative splicing also produced a catalytically active double domain A3Z2-Z3 protein that had a distinct cytoplasmic localization. Thus, the three A3 genes of sheep and cattle encode four conserved and active proteins. These data, together with phylogenetic analyses, indicated that a similar, functionally modular A3 repertoire existed in the common ancestor of artiodactyls and primates (i.e., the ancestor of placental mammals). This mammalian ancestor therefore possessed the minimal A3 gene set, Z1-Z2-Z3, required to evolve through a remarkable series of eight recombination events into the present day eleven Z domain human repertoire. Conclusion The dynamic recombination-filled history of the mammalian A3 genes is consistent with the modular nature of the locus and a model in which most of these events (especially the expansions) were selected by ancient pathogenic retrovirus infections. PMID:19017397

  20. Mammalian Septins Nomenclature

    PubMed Central

    Macara, Ian G.; Baldarelli, Richard; Field, Christine M.; Glotzer, Michael; Hayashi, Yasuhide; Hsu, Shu-Chan; Kennedy, Mary B.; Kinoshita, Makoto; Longtine, Mark; Low, Claudia; Maltais, Lois J.; McKenzie, Louise; Mitchison, Timothy J.; Nishikawa, Toru; Noda, Makoto; Petty, Elizabeth M.; Peifer, Mark; Pringle, John R.; Robinson, Phillip J.; Roth, Dagmar; Russell, S.E. Hilary; Stuhlmann, Heidi; Tanaka, Manami; Tanaka, Tomoo; Trimble, William S.; Ware, Jerry; Zeleznik-Le, Nancy J.; Zieger, Barbara

    2002-01-01

    There are 10 known mammalian septin genes, some of which produce multiple splice variants. The current nomenclature for the genes and gene products is very confusing, with several different names having been given to the same gene product and distinct names given to splice variants of the same gene. Moreover, some names are based on those of yeast or Drosophila septins that are not the closest homologues. Therefore, we suggest that the mammalian septin field adopt a common nomenclature system, based on that adopted by the Mouse Genomic Nomenclature Committee and accepted by the Human Genome Organization Gene Nomenclature Committee. The human and mouse septin genes will be named SEPT1–SEPT10 and Sept1–Sept10, respectively. Splice variants will be designated by an underscore followed by a lowercase “v” and a number, e.g., SEPT4_v1. PMID:12475938

  1. Mammalian sweet taste receptors.

    PubMed

    Nelson, G; Hoon, M A; Chandrashekar, J; Zhang, Y; Ryba, N J; Zuker, C S

    2001-08-10

    The sense of taste provides animals with valuable information about the quality and nutritional value of food. Previously, we identified a large family of mammalian taste receptors involved in bitter taste perception (the T2Rs). We now report the characterization of mammalian sweet taste receptors. First, transgenic rescue experiments prove that the Sac locus encodes T1R3, a member of the T1R family of candidate taste receptors. Second, using a heterologous expression system, we demonstrate that T1R2 and T1R3 combine to function as a sweet receptor, recognizing sweet-tasting molecules as diverse as sucrose, saccharin, dulcin, and acesulfame-K. Finally, we present a detailed analysis of the patterns of expression of T1Rs and T2Rs, thus providing a view of the representation of sweet and bitter taste at the periphery. PMID:11509186

  2. Rheotaxis guides mammalian sperm

    PubMed Central

    Miki, Kiyoshi; Clapham, David E

    2013-01-01

    Background In sea urchins, spermatozoan motility is altered by chemotactic peptides, giving rise to the assumption that mammalian eggs also emit chemotactic agents that guide spermatozoa through the female reproductive tract to the mature oocyte. Mammalian spermatozoa indeed undergo complex adaptations within the female (the process of capacitation) that are initiated by agents ranging from pH to progesterone, but these factors are not necessarily taxic. Currently, chemotaxis, thermotaxis, and rheotaxis have not been definitively established in mammals. Results Here, we show that positive rheotaxis, the ability of organisms to orient and swim against the flow of surrounding fluid, is a major taxic factor for mouse and human sperm. This flow is generated within 4 hours of sexual stimulation and coitus in female mice; prolactin-triggered oviductal fluid secretion clears the oviduct of debris, lowers viscosity, and generates the stream that guides sperm migration in the oviduct. Rheotaxic movement is demonstrated in capacitated and uncapacitated spermatozoa in low and high viscosity medium. Finally, we show that a unique sperm motion we quantify using the sperm head's rolling rate reflects sperm rotation that generates essential force for positioning the sperm in the stream. Rotation requires CatSper channels, presumably by enabling Ca2+ influx. Conclusions We propose that rheotaxis is a major determinant of sperm guidance over long distances in the mammalian female reproductive tract. Coitus induces fluid flow to guide sperm in the oviduct. Sperm rheotaxis requires rotational motion during CatSper channel-dependent hyperactivated motility. PMID:23453951

  3. No known hominin species matches the expected dental morphology of the last common ancestor of Neanderthals and modern humans

    PubMed Central

    Gómez-Robles, Aida; Bermúdez de Castro, José María; Arsuaga, Juan-Luis; Carbonell, Eudald; Polly, P. David

    2013-01-01

    A central problem in paleoanthropology is the identity of the last common ancestor of Neanderthals and modern humans ([N-MH]LCA). Recently developed analytical techniques now allow this problem to be addressed using a probabilistic morphological framework. This study provides a quantitative reconstruction of the expected dental morphology of the [N-MH]LCA and an assessment of whether known fossil species are compatible with this ancestral position. We show that no known fossil species is a suitable candidate for being the [N-MH]LCA and that all late Early and Middle Pleistocene taxa from Europe have Neanderthal dental affinities, pointing to the existence of a European clade originated around 1 Ma. These results are incongruent with younger molecular divergence estimates and suggest at least one of the following must be true: (i) European fossils and the [N-MH]LCA selectively retained primitive dental traits; (ii) molecular estimates of the divergence between Neanderthals and modern humans are underestimated; or (iii) phenotypic divergence and speciation between both species were decoupled such that phenotypic differentiation, at least in dental morphology, predated speciation. PMID:24145426

  4. Analyzing the Rate at Which Languages Lose the Influence of a Common Ancestor

    ERIC Educational Resources Information Center

    Rafferty, Anna N.; Griffiths, Thomas L.; Klein, Dan

    2014-01-01

    Analyzing the rate at which languages change can clarify whether similarities across languages are solely the result of cognitive biases or might be partially due to descent from a common ancestor. To demonstrate this approach, we use a simple model of language evolution to mathematically determine how long it should take for the distribution over…

  5. Integration of Morphological Data into Molecular Phylogenetic Analysis: Toward the Identikit of the Stylasterid Ancestor.

    PubMed

    Puce, Stefania; Pica, Daniela; Schiaparelli, Stefano; Negrisolo, Enrico

    2016-01-01

    Stylasteridae is a hydroid family including 29 worldwide-distributed genera, all provided with a calcareous skeleton. They are abundant in shallow and deep waters and represent an important component of marine communities. In the present paper, we studied the evolution of ten morphological characters, currently used in stylasterid taxonomy, using a phylogenetic approach. Our results indicate that stylasterid morphology is highly plastic and that many events of independent evolution and reversion have occurred. Our analysis also allows sketching a possible identikit of the stylasterid ancestor. It had calcareous skeleton, reticulate-granular coenosteal texture, polyps randomly arranged, gastrostyle, and dactylopore spines, while lacking a gastropore lip and dactylostyles. If the ancestor had single or double/multiple chambered gastropore tube is uncertain. These data suggest that the ancestor was similar to the extant genera Cyclohelia and Stellapora. Our investigation is the first attempt to integrate molecular and morphological information to clarify the stylasterid evolutionary scenario and represents the first step to infer the stylasterid ancestor morphology. PMID:27537333

  6. Integration of Morphological Data into Molecular Phylogenetic Analysis: Toward the Identikit of the Stylasterid Ancestor

    PubMed Central

    Puce, Stefania; Pica, Daniela; Schiaparelli, Stefano; Negrisolo, Enrico

    2016-01-01

    Stylasteridae is a hydroid family including 29 worldwide-distributed genera, all provided with a calcareous skeleton. They are abundant in shallow and deep waters and represent an important component of marine communities. In the present paper, we studied the evolution of ten morphological characters, currently used in stylasterid taxonomy, using a phylogenetic approach. Our results indicate that stylasterid morphology is highly plastic and that many events of independent evolution and reversion have occurred. Our analysis also allows sketching a possible identikit of the stylasterid ancestor. It had calcareous skeleton, reticulate-granular coenosteal texture, polyps randomly arranged, gastrostyle, and dactylopore spines, while lacking a gastropore lip and dactylostyles. If the ancestor had single or double/multiple chambered gastropore tube is uncertain. These data suggest that the ancestor was similar to the extant genera Cyclohelia and Stellapora. Our investigation is the first attempt to integrate molecular and morphological information to clarify the stylasterid evolutionary scenario and represents the first step to infer the stylasterid ancestor morphology. PMID:27537333

  7. Genome sequence and annotation of Trichoderma parareesei, the ancestor of the cellulase producer Trichoderma reesei

    DOE PAGESBeta

    Yang, Dongqing; Pomraning, Kyle; Kopchinskiy, Alexey; Karimi, Aghcheh Razieh; Atanasova, Lea; Chenthamara, Komal; Baker, Scott E.; Zhang, Ruifu; Shen, Qirong; Freitag, Michael; et al

    2015-08-13

    The filamentous fungus Trichoderma parareesei is the asexually reproducing ancestor of Trichoderma reesei, the holomorphic industrial producer of cellulase and hemicellulase. Here, we present the genome sequence of the T. parareesei type strain CBS 125925, which contains genes for 9,318 proteins.

  8. Sugarcane yellow leaf virus: an emerging virus that has evolved by recombination between luteoviral and poleroviral ancestors.

    PubMed

    Moonan, F; Molina, J; Mirkov, T E

    2000-03-30

    We have derived the genomic nucleotide sequence of an emerging virus, the Sugarcane yellow leaf virus (ScYLV), and shown that it produces one to two subgenomic RNAs. The family Luteoviridae currently includes the Luteovirus, Polerovirus, and Enamovirus genera. With the new ScYLV nucleotide sequence and existing Luteoviridae sequence information, we have utilized new phylogenetic and evolutionary methodologies to identify homologous regions of Luteoviridae genomes, which have statistically significant altered nucleotide substitution ratios and have produced a reconstructed phylogeny of the Luteoviridae. The data indicate that Pea enation mosaic virus-1 (PEMV-1), Soybean dwarf virus (SbDV), and ScYLV exhibit spatial phylogenetic variation (SPV) consistent with recombination events that have occurred between poleroviral and luteoviral ancestors, after the divergence of these two progenitor groups. The reconstructed phylogeny confirms a contention that a continuum in the derived sequence evolution of the Luteoviridae has been established by intrafamilial as well as extrafamilial RNA recombination and expands the database of recombinant Luteoviridae genomes that are currently needed to resolve better defined means for generic discrimination in the Luteoviridae (D'Arcy, C. J. and Mayo, M. 1997. Arch. Virol. 142, 1285-1287). The analyses of the nucleotide substitution ratios from a nucleotide alignment of Luteoviridae genomes substantiates the hypothesis that hot spots for RNA recombination in this virus family are associated with the known sites for the transcription of subgenomic RNAs (Miller et al. 1995. Crit. Rev. Plant Sci. 14, 179-211), and provides new information that might be utilized to better design more effective means to generate transgene-mediated host resistance. PMID:10725208

  9. The evolutionary history of the hominin hand since the last common ancestor of Pan and Homo

    PubMed Central

    Tocheri, Matthew W; Orr, Caley M; Jacofsky, Marc C; Marzke, Mary W

    2008-01-01

    Molecular evidence indicates that the last common ancestor of the genus Pan and the hominin clade existed between 8 and 4 million years ago (Ma). The current fossil record indicates the Pan-Homo last common ancestor existed at least 5 Ma and most likely between 6 and 7 Ma. Together, the molecular and fossil evidence has important consequences for interpreting the evolutionary history of the hand within the tribe Hominini (hominins). Firstly, parsimony supports the hypothesis that the hand of the last common ancestor most likely resembled that of an extant great ape overall (Pan, Gorilla, and Pongo), and that of an African ape in particular. Second, it provides a context for interpreting the derived changes to the hand that have evolved in various hominins. For example, the Australopithecus afarensis hand is likely derived in comparison with that of the Pan–Homo last common ancestor in having shorter fingers relative to thumb length and more proximo-distally oriented joints between its capitate, second metacarpal, and trapezium. This evidence suggests that these derived features evolved prior to the intensification of stone tool-related hominin behaviors beginning around 2.5 Ma. However, a majority of primitive features most likely present in the Pan-Homo last common ancestor are retained in the hands of Australopithecus, Paranthropus/early Homo, and Homo floresiensis. This evidence suggests that further derived changes to the hands of other hominins such as modern humans and Neandertals did not evolve until after 2.5 Ma and possibly even later than 1.5 Ma, which is currently the earliest evidence of Acheulian technology. The derived hands of modern humans and Neandertals may indicate a morphological commitment to tool-related manipulative behaviors beyond that observed in other hominins, including those (e.g. H. floresiensis) which may be descended from earlier tool-making species. PMID:18380869

  10. The evolutionary history of the hominin hand since the last common ancestor of Pan and Homo.

    PubMed

    Tocheri, Matthew W; Orr, Caley M; Jacofsky, Marc C; Marzke, Mary W

    2008-04-01

    Molecular evidence indicates that the last common ancestor of the genus Pan and the hominin clade existed between 8 and 4 million years ago (Ma). The current fossil record indicates the Pan-Homo last common ancestor existed at least 5 Ma and most likely between 6 and 7 Ma. Together, the molecular and fossil evidence has important consequences for interpreting the evolutionary history of the hand within the tribe Hominini (hominins). Firstly, parsimony supports the hypothesis that the hand of the last common ancestor most likely resembled that of an extant great ape overall (Pan, Gorilla, and Pongo), and that of an African ape in particular. Second, it provides a context for interpreting the derived changes to the hand that have evolved in various hominins. For example, the Australopithecus afarensis hand is likely derived in comparison with that of the Pan-Homo last common ancestor in having shorter fingers relative to thumb length and more proximo-distally oriented joints between its capitate, second metacarpal, and trapezium. This evidence suggests that these derived features evolved prior to the intensification of stone tool-related hominin behaviors beginning around 2.5 Ma. However, a majority of primitive features most likely present in the Pan-Homo last common ancestor are retained in the hands of Australopithecus, Paranthropus/early Homo, and Homo floresiensis. This evidence suggests that further derived changes to the hands of other hominins such as modern humans and Neandertals did not evolve until after 2.5 Ma and possibly even later than 1.5 Ma, which is currently the earliest evidence of Acheulian technology. The derived hands of modern humans and Neandertals may indicate a morphological commitment to tool-related manipulative behaviors beyond that observed in other hominins, including those (e.g. H. floresiensis) which may be descended from earlier tool-making species. PMID:18380869

  11. Mammalian Evolution May not Be Strictly Bifurcating

    PubMed Central

    Hallström, Björn M.; Janke, Axel

    2010-01-01

    The massive amount of genomic sequence data that is now available for analyzing evolutionary relationships among 31 placental mammals reduces the stochastic error in phylogenetic analyses to virtually zero. One would expect that this would make it possible to finally resolve controversial branches in the placental mammalian tree. We analyzed a 2,863,797 nucleotide-long alignment (3,364 genes) from 31 placental mammals for reconstructing their evolution. Most placental mammalian relationships were resolved, and a consensus of their evolution is emerging. However, certain branches remain difficult or virtually impossible to resolve. These branches are characterized by short divergence times in the order of 1–4 million years. Computer simulations based on parameters from the real data show that as little as about 12,500 amino acid sites could be sufficient to confidently resolve short branches as old as about 90 million years ago (Ma). Thus, the amount of sequence data should no longer be a limiting factor in resolving the relationships among placental mammals. The timing of the early radiation of placental mammals coincides with a period of climate warming some 100–80 Ma and with continental fragmentation. These global processes may have triggered the rapid diversification of placental mammals. However, the rapid radiations of certain mammalian groups complicate phylogenetic analyses, possibly due to incomplete lineage sorting and introgression. These speciation-related processes led to a mosaic genome and conflicting phylogenetic signals. Split network methods are ideal for visualizing these problematic branches and can therefore depict data conflict and possibly the true evolutionary history better than strictly bifurcating trees. Given the timing of tectonics, of placental mammalian divergences, and the fossil record, a Laurasian rather than Gondwanan origin of placental mammals seems the most parsimonious explanation. PMID:20591845

  12. Common circuit design in fly and mammalian motion vision.

    PubMed

    Borst, Alexander; Helmstaedter, Moritz

    2015-08-01

    Motion-sensitive neurons have long been studied in both the mammalian retina and the insect optic lobe, yet striking similarities have become obvious only recently. Detailed studies at the circuit level revealed that, in both systems, (i) motion information is extracted from primary visual information in parallel ON and OFF pathways; (ii) in each pathway, the process of elementary motion detection involves the correlation of signals with different temporal dynamics; and (iii) primary motion information from both pathways converges at the next synapse, resulting in four groups of ON-OFF neurons, selective for the four cardinal directions. Given that the last common ancestor of insects and mammals lived about 550 million years ago, this general strategy seems to be a robust solution for how to compute the direction of visual motion with neural hardware. PMID:26120965

  13. One ancestor for two codes viewed from the perspective of two complementary modes of tRNA aminoacylation

    PubMed Central

    Rodin, Andrei S; Szathmáry, Eörs; Rodin, Sergei N

    2009-01-01

    Background The genetic code is brought into action by 20 aminoacyl-tRNA synthetases. These enzymes are evenly divided into two classes (I and II) that recognize tRNAs from the minor and major groove sides of the acceptor stem, respectively. We have reported recently that: (1) ribozymic precursors of the synthetases seem to have used the same two sterically mirror modes of tRNA recognition, (2) having these two modes might have helped in preventing erroneous aminoacylation of ancestral tRNAs with complementary anticodons, yet (3) the risk of confusion for the presumably earliest pairs of complementarily encoded amino acids had little to do with anticodons. Accordingly, in this communication we focus on the acceptor stem. Results Our main result is the emergence of a palindrome structure for the acceptor stem's common ancestor, reconstructed from the phylogenetic trees of Bacteria, Archaea and Eukarya. In parallel, for pairs of ancestral tRNAs with complementary anticodons, we present updated evidence of concerted complementarity of the second bases in the acceptor stems. These two results suggest that the first pairs of "complementary" amino acids that were engaged in primordial coding, such as Gly and Ala, could have avoided erroneous aminoacylation if and only if the acceptor stems of their adaptors were recognized from the same, major groove, side. The class II protein synthetases then inherited this "primary preference" from isofunctional ribozymes. Conclusion Taken together, our results support the hypothesis that the genetic code per se (the one associated with the anticodons) and the operational code of aminoacylation (associated with the acceptor) diverged from a common ancestor that probably began developing before translation. The primordial advantage of linking some amino acids (most likely glycine and alanine) to the ancestral acceptor stem may have been selective retention in a protocell surrounded by a leaky membrane for use in nucleotide and coenzyme

  14. Mammalian Endogenous Retroviruses.

    PubMed

    Mager, Dixie L; Stoye, Jonathan P

    2015-02-01

    Over 40% of mammalian genomes comprise the products of reverse transcription. Among such retrotransposed sequences are those characterized by the presence of long terminal repeats (LTRs), including the endogenous retroviruses (ERVs), which are inherited genetic elements closely resembling the proviruses formed following exogenous retrovirus infection. Sequences derived from ERVs make up at least 8 to 10% of the human and mouse genomes and range from ancient sequences that predate mammalian divergence to elements that are currently still active. In this chapter we describe the discovery, classification and origins of ERVs in mammals and consider cellular mechanisms that have evolved to control their expression. We also discuss the negative effects of ERVs as agents of genetic disease and cancer and review examples of ERV protein domestication to serve host functions, as in placental development. Finally, we address growing evidence that the gene regulatory potential of ERV LTRs has been exploited multiple times during evolution to regulate genes and gene networks. Thus, although recently endogenized retroviral elements are often pathogenic, those that survive the forces of negative selection become neutral components of the host genome or can be harnessed to serve beneficial roles. PMID:26104559

  15. RNase MRP and the RNA processing cascade in the eukaryotic ancestor

    PubMed Central

    Woodhams, Michael D; Stadler, Peter F; Penny, David; Collins, Lesley J

    2007-01-01

    Background Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. Results We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. Conclusion We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches. PMID:17288571

  16. Mammalian phospholipase C.

    PubMed

    Kadamur, Ganesh; Ross, Elliott M

    2013-01-01

    Phospholipase C (PLC) converts phosphatidylinositol 4,5-bisphosphate (PIP(2)) to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol (DAG). DAG and IP(3) each control diverse cellular processes and are also substrates for synthesis of other important signaling molecules. PLC is thus central to many important interlocking regulatory networks. Mammals express six families of PLCs, each with both unique and overlapping controls over expression and subcellular distribution. Each PLC also responds acutely to its own spectrum of activators that includes heterotrimeric G protein subunits, protein tyrosine kinases, small G proteins, Ca(2+), and phospholipids. Mammalian PLCs are autoinhibited by a region in the catalytic TIM barrel domain that is the target of much of their acute regulation. In combination, the PLCs act as a signaling nexus that integrates numerous signaling inputs, critically governs PIP(2) levels, and regulates production of important second messengers to determine cell behavior over the millisecond to hour timescale. PMID:23140367

  17. The mammalian blastocyst.

    PubMed

    Frankenberg, Stephen R; de Barros, Flavia R O; Rossant, Janet; Renfree, Marilyn B

    2016-01-01

    The blastocyst is a mammalian invention that carries the embryo from cleavage to gastrulation. For such a simple structure, it exhibits remarkable diversity in its mode of formation, morphology, longevity, and intimacy with the uterine endometrium. This review explores this diversity in the light of the evolution of viviparity, comparing the three main groups of mammals: monotremes, marsupials, and eutherians. The principal drivers in blastocyst evolution were loss of yolk coupled with evolution of the placenta. An important outcome of blastocyst development is differentiation of two extraembryonic lineages (trophoblast and hypoblast) that contribute to the placenta. While in many species trophoblast segregation is often coupled with blastocyst formation, in marsupials and at least some Afrotherians, these events do not coincide. Thus, many questions regarding the conservation of molecular mechanisms controlling these events are of great interest but currently unresolved. For further resources related to this article, please visit the WIREs website. PMID:26799266

  18. Heterokont Predator Develorapax marinus gen. et sp. nov. – A Model of the Ochrophyte Ancestor

    PubMed Central

    Aleoshin, Vladimir V.; Mylnikov, Alexander P.; Mirzaeva, Gulnara S.; Mikhailov, Kirill V.; Karpov, Sergey A.

    2016-01-01

    Heterotrophic lineages of Heterokonta (or stramenopiles), in contrast to a single monophyletic group of autotrophs, Ochrophyta, form several clades that independently branch off the heterokont stem lineage. The nearest neighbors of Ochrophyta in the phylogenetic tree appear to be almost exclusively bacterivorous, whereas the hypothesis of plastid acquisition by the ancestors of the ochrophyte lineage suggests an ability to engulf eukaryotic alga. In line with this hypothesis, the heterotrophic predator at the base of the ochrophyte lineage may be regarded as a model for the ochrophyte ancestor. Here, we present a new genus and species of marine free-living heterotrophic heterokont Develorapax marinus, which falls into an isolated heterokont cluster, along with the marine flagellate Developayella elegans, and is able to engulf eukaryotic cells. Together with environmental sequences D. marinus and D. elegans form a class-level clade Developea nom. nov. represented by species adapted to different environmental conditions and with a wide geographical distribution. The position of Developea among Heterokonta in large-scale phylogenetic tree is discussed. We propose that members of the Developea clade represent a model for transition from bacterivory to a predatory feeding mode by selection for larger prey. Presumably, such transition in the grazing strategy is possible in the presence of bacterial biofilms or aggregates expected in eutrophic environment, and has likely occurred in the ochrophyte ancestor. PMID:27536283

  19. Heterokont Predator Develorapax marinus gen. et sp. nov. - A Model of the Ochrophyte Ancestor.

    PubMed

    Aleoshin, Vladimir V; Mylnikov, Alexander P; Mirzaeva, Gulnara S; Mikhailov, Kirill V; Karpov, Sergey A

    2016-01-01

    Heterotrophic lineages of Heterokonta (or stramenopiles), in contrast to a single monophyletic group of autotrophs, Ochrophyta, form several clades that independently branch off the heterokont stem lineage. The nearest neighbors of Ochrophyta in the phylogenetic tree appear to be almost exclusively bacterivorous, whereas the hypothesis of plastid acquisition by the ancestors of the ochrophyte lineage suggests an ability to engulf eukaryotic alga. In line with this hypothesis, the heterotrophic predator at the base of the ochrophyte lineage may be regarded as a model for the ochrophyte ancestor. Here, we present a new genus and species of marine free-living heterotrophic heterokont Develorapax marinus, which falls into an isolated heterokont cluster, along with the marine flagellate Developayella elegans, and is able to engulf eukaryotic cells. Together with environmental sequences D. marinus and D. elegans form a class-level clade Developea nom. nov. represented by species adapted to different environmental conditions and with a wide geographical distribution. The position of Developea among Heterokonta in large-scale phylogenetic tree is discussed. We propose that members of the Developea clade represent a model for transition from bacterivory to a predatory feeding mode by selection for larger prey. Presumably, such transition in the grazing strategy is possible in the presence of bacterial biofilms or aggregates expected in eutrophic environment, and has likely occurred in the ochrophyte ancestor. PMID:27536283

  20. Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor.

    PubMed

    Garg, Sriram G; Martin, William F

    2016-01-01

    Theories for the origin of sex traditionally start with an asexual mitosing cell and add recombination, thereby deriving meiosis from mitosis. Though sex was clearly present in the eukaryote common ancestor, the order of events linking the origin of sex and the origin of mitosis is unknown. Here, we present an evolutionary inference for the origin of sex starting with a bacterial ancestor of mitochondria in the cytosol of its archaeal host. We posit that symbiotic association led to the origin of mitochondria and gene transfer to host's genome, generating a nucleus and a dedicated translational compartment, the eukaryotic cytosol, in which-by virtue of mitochondria-metabolic energy was not limiting. Spontaneous protein aggregation (monomer polymerization) and Adenosine Tri-phosphate (ATP)-dependent macromolecular movement in the cytosol thereby became selectable, giving rise to continuous microtubule-dependent chromosome separation (reduction division). We propose that eukaryotic chromosome division arose in a filamentous, syncytial, multinucleated ancestor, in which nuclei with insufficient chromosome numbers could complement each other through mRNA in the cytosol and generate new chromosome combinations through karyogamy. A syncytial (or coenocytic, a synonym) eukaryote ancestor, or Coeca, would account for the observation that the process of eukaryotic chromosome separation is more conserved than the process of eukaryotic cell division. The first progeny of such a syncytial ancestor were likely equivalent to meiospores, released into the environment by the host's vesicle secretion machinery. The natural ability of archaea (the host) to fuse and recombine brought forth reciprocal recombination among fusing (syngamy and karyogamy) progeny-sex-in an ancestrally meiotic cell cycle, from which the simpler haploid and diploid mitotic cell cycles arose. The origin of eukaryotes was the origin of vertical lineage inheritance, and sex was required to keep vertically

  1. A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations.

    PubMed

    Zhou, Chang-Fu; Wu, Shaoyuan; Martin, Thomas; Luo, Zhe-Xi

    2013-08-01

    The earliest evolution of mammals and origins of mammalian features can be traced to the mammaliaforms of the Triassic and Jurassic periods that are extinct relatives to living mammals. Here we describe a new fossil from the Middle Jurassic that has a mandibular middle ear, a gradational transition of thoracolumbar vertebrae and primitive ankle features, but highly derived molars with a high crown and multiple roots that are partially fused. The upper molars have longitudinal cusp rows that occlude alternately with those of the lower molars. This specialization for masticating plants indicates that herbivory evolved among mammaliaforms, before the rise of crown mammals. The new species shares the distinctive dental features of the eleutherodontid clade, previously represented only by isolated teeth despite its extensive geographic distribution during the Jurassic. This eleutherodontid was terrestrial and had ambulatory gaits, analogous to extant terrestrial mammals such as armadillos or rock hyrax. Its fur corroborates that mammalian integument had originated well before the common ancestor of living mammals. PMID:23925238

  2. Evolutionary history and metabolic insights of ancient mammalian uricases

    PubMed Central

    Kratzer, James T.; Lanaspa, Miguel A.; Murphy, Michael N.; Cicerchi, Christina; Graves, Christina L.; Tipton, Peter A.; Ortlund, Eric A.; Johnson, Richard J.; Gaucher, Eric A.

    2014-01-01

    Uricase is an enzyme involved in purine catabolism and is found in all three domains of life. Curiously, uricase is not functional in some organisms despite its role in converting highly insoluble uric acid into 5-hydroxyisourate. Of particular interest is the observation that apes, including humans, cannot oxidize uric acid, and it appears that multiple, independent evolutionary events led to the silencing or pseudogenization of the uricase gene in ancestral apes. Various arguments have been made to suggest why natural selection would allow the accumulation of uric acid despite the physiological consequences of crystallized monosodium urate acutely causing liver/kidney damage or chronically causing gout. We have applied evolutionary models to understand the history of primate uricases by resurrecting ancestral mammalian intermediates before the pseudogenization events of this gene family. Resurrected proteins reveal that ancestral uricases have steadily decreased in activity since the last common ancestor of mammals gave rise to descendent primate lineages. We were also able to determine the 3D distribution of amino acid replacements as they accumulated during evolutionary history by crystallizing a mammalian uricase protein. Further, ancient and modern uricases were stably transfected into HepG2 liver cells to test one hypothesis that uricase pseudogenization allowed ancient frugivorous apes to rapidly convert fructose into fat. Finally, pharmacokinetics of an ancient uricase injected in rodents suggest that our integrated approach provides the foundation for an evolutionarily-engineered enzyme capable of treating gout and preventing tumor lysis syndrome in human patients. PMID:24550457

  3. Evolutionary history and metabolic insights of ancient mammalian uricases.

    PubMed

    Kratzer, James T; Lanaspa, Miguel A; Murphy, Michael N; Cicerchi, Christina; Graves, Christina L; Tipton, Peter A; Ortlund, Eric A; Johnson, Richard J; Gaucher, Eric A

    2014-03-11

    Uricase is an enzyme involved in purine catabolism and is found in all three domains of life. Curiously, uricase is not functional in some organisms despite its role in converting highly insoluble uric acid into 5-hydroxyisourate. Of particular interest is the observation that apes, including humans, cannot oxidize uric acid, and it appears that multiple, independent evolutionary events led to the silencing or pseudogenization of the uricase gene in ancestral apes. Various arguments have been made to suggest why natural selection would allow the accumulation of uric acid despite the physiological consequences of crystallized monosodium urate acutely causing liver/kidney damage or chronically causing gout. We have applied evolutionary models to understand the history of primate uricases by resurrecting ancestral mammalian intermediates before the pseudogenization events of this gene family. Resurrected proteins reveal that ancestral uricases have steadily decreased in activity since the last common ancestor of mammals gave rise to descendent primate lineages. We were also able to determine the 3D distribution of amino acid replacements as they accumulated during evolutionary history by crystallizing a mammalian uricase protein. Further, ancient and modern uricases were stably transfected into HepG2 liver cells to test one hypothesis that uricase pseudogenization allowed ancient frugivorous apes to rapidly convert fructose into fat. Finally, pharmacokinetics of an ancient uricase injected in rodents suggest that our integrated approach provides the foundation for an evolutionarily-engineered enzyme capable of treating gout and preventing tumor lysis syndrome in human patients. PMID:24550457

  4. Evolution and development of the mammalian cerebral cortex

    PubMed Central

    Molnár, Zoltán; Kaas, Jon H.; de Carlos, Juan A.; Hevner, Robert F.; Lein, Ed; Němec, Pavel

    2014-01-01

    Comparative developmental studies of the mammalian brain can identify key changes that can generate the diverse structures and functions of brains. We have studied how the neocortex of early mammals became organized into functionally distinct areas, and how the current level of cortical cellular and laminar specialization arose from the simpler premammalian cortex. We demonstrate the neocortical organization in early mammals that is most informative for an understanding of how the large, complex human brain evolved from a long line of ancestors. The radial and tangential enlargement of the cortex was driven by changes in the patterns of cortical neurogenesis, including alterations in the proportions of distinct progenitor types. Some cortical cell populations travel to the cortex through tangential migration, others migrate radially. A number of recent studies have begun to characterize the chick, mouse, human and non-human primate cortical transcriptome to help us understand how gene expression relates to the development, and to the anatomical and functional organization of the adult neocortex. Although all mammalian forms share the basic layout of cortical areas, the areal proportions and distributions are driven by distinct evolutionary pressures acting on sensory and motor experiences during the individual ontogenies. PMID:24776993

  5. Penile Reconstruction

    PubMed Central

    Salgado, Christopher J.; Chim, Harvey; Tang, Jennifer C.; Monstrey, Stan J.; Mardini, Samir

    2011-01-01

    A variety of surgical options exists for penile reconstruction. The key to success of therapy is holistic management of the patient, with attention to the psychological aspects of treatment. In this article, we review reconstructive modalities for various types of penile defects inclusive of partial and total defects as well as the buried penis, and also describe recent basic science advances, which may promise new options for penile reconstruction. PMID:22851914

  6. Mammalian Wax Biosynthesis

    PubMed Central

    Cheng, Jeffrey B.; Russell, David W.

    2009-01-01

    Wax monoesters are synthesized by the esterification of fatty alcohols and fatty acids. A mammalian enzyme that catalyzes this reaction has not been isolated. We used expression cloning to identify cDNAs encoding a wax synthase in the mouse preputial gland. The wax synthase gene is located on the X chromosome and encodes a member of the acyltransferase family of enzymes that synthesize neutral lipids. Expression of wax synthase in cultured cells led to the formation of wax monoesters from straight chain saturated, unsaturated, and polyunsaturated fatty alcohols and acids. Polyisoprenols also were incorporated into wax monoesters by the enzyme. The wax synthase had little or no ability to synthesize cholesteryl esters, diacylglycerols, or triacylglycerols, whereas other acyltransferases, including the acyl-CoA:monoacylglycerol acyltransferase 1 and 2 enzymes and the acyl-CoA:diacylglycerol acyltransferase 1 and 2 enzymes, exhibited modest wax monoester synthesis activities. Confocal light microscopy indicated that the wax synthase was localized in membranes of the endoplasmic reticulum. Wax synthase mRNA was abundant in tissues rich in sebaceous glands such as the preputial gland and eyelid and was present at lower levels in other tissues. Coexpression of cDNAs specifying fatty acyl-CoA reductase 1 and wax synthase led to the synthesis of wax monoesters. The data suggest that wax monoester synthesis in mammals involves a two step biosynthetic pathway catalyzed by fatty acyl-CoA reductase and wax synthase enzymes. PMID:15220349

  7. Structure of mammalian metallothionein

    SciTech Connect

    Kaegi, J.H.R.; Vasak, M.; Lerch, K.; Gilg, D.E.O.; Hunziker, P.; Bernhard, W.R.; Good, M.

    1984-03-01

    All mammalian metallothioneins characterized contain a single polypeptide chain of 61 amino acid residues, among them 20 cysteines providing the ligands for seven metal-binding sites. Native metallothioneins are usually heterogeneous in metal composition, with Zn, Cd, and Cu occurring in varying proportions. However, forms containing only a single metal species, i.e., Zn, Cd, Ni, Co, Hg, Pb, Bi, have now been prepared by in vitro reconstitution from the metal-free apoprotein. By spectroscopic analysis of such derivatives it was established that all cysteine residues participate in metal binding, that each metal ion is bound to four thiolate ligands, and that the symmetry of each complex is close to that of a tetrahedron. To satisfy the requirements of the overall Me/sub 7/(Cys/sup -/)/sub 20/ stoichiometry, the complexes must be combined to form metal-thiolate cluster structures. The actual spatial organization of the clusters and the polypeptide chain remains to be established. An attractive possibility is the arrangement of the tetrahedral metal-thiolates in adamantane-like structures surrounded by properly folded segments of the chain providing the ligands. /sup 1/H-NMR data and infrared absorption measurements are consistent with a tightly folded structure rich in ..beta..-type conformation. 79 references, 11 figures, 4 tables.

  8. Mammalian Sirtuins and Energy Metabolism

    PubMed Central

    Li, Xiaoling; Kazgan, Nevzat

    2011-01-01

    Sirtuins are highly conserved NAD+-dependent protein deacetylases and/or ADP-ribosyltransferases that can extend the lifespan of several lower model organisms including yeast, worms and flies. The seven mammalian sirtuins, SIRT1 to SIRT7, have emerged as key metabolic sensors that directly link environmental signals to mammalian metabolic homeostasis and stress response. Recent studies have shed light on the critical roles of sirtuins in mammalian energy metabolism in response to nutrient signals. This review focuses on the involvement of two nuclear sirtuins, SIRT1 and SIRT6, and three mitochondrial sirtuins, SIRT3, SIRT4, and SIRT5, in regulation of diverse metabolic processes. PMID:21614150

  9. A Comparative Study of Airflow and Odorant Deposition in the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Richter, Joseph; Rumple, Christopher; Ranslow, Allison; Quigley, Andrew; Pang, Benison; Neuberger, Thomas; Krane, Michael; van Valkenburgh, Blaire; Craven, Brent

    2013-11-01

    The complex structure of the mammalian nasal cavity provides a tortuous airflow path and a large surface area for respiratory air conditioning, filtering of inspired contaminants, and olfaction. Due to the small and contorted structure of the nasal turbinals, nasal anatomy and function remains poorly understood in most mammals. Here, we utilize high-resolution MRI scans to reconstruct anatomically-accurate models of the mammalian nasal cavity. These data are used to compare the form and function of the mammalian nose. High-fidelity computational fluid dynamics (CFD) simulations of nasal airflow and odorant deposition are presented and used to compare olfactory function across species (primate, rodent, canine, feline, ungulate).

  10. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes

    PubMed Central

    Rozema, Jelte; Cornelisse, Danny; Zhang, Yuancheng; Li, Hongxiu; Bruning, Bas; Katschnig, Diana; Broekman, Rob; Ji, Bin; van Bodegom, Peter

    2015-01-01

    Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved salt tolerance of sugar beet cultivars has not been effective. PMID:25492122

  11. Mammalian DNA Repair. Final Report

    SciTech Connect

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  12. Ether-à-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian–bilaterian ancestor

    PubMed Central

    Li, Xiaofan; Martinson, Alexandra S.; Layden, Michael J.; Diatta, Fortunay H.; Sberna, Anna P.; Simmons, David K.; Martindale, Mark Q.; Jegla, Timothy J.

    2015-01-01

    We examined the evolutionary origins of the ether-à-go-go (EAG) family of voltage-gated K+ channels, which have a strong influence on the excitability of neurons. The bilaterian EAG family comprises three gene subfamilies (Eag, Erg and Elk) distinguished by sequence conservation and functional properties. Searches of genome sequence indicate that EAG channels are metazoan specific, appearing first in ctenophores. However, phylogenetic analysis including two EAG family channels from the ctenophore Mnemiopsis leidyi indicates that the diversification of the Eag, Erg and Elk gene subfamilies occurred in a cnidarian/bilaterian ancestor after divergence from ctenophores. Erg channel function is highly conserved between cnidarians and mammals. Here we show that Eag and Elk channels from the sea anemone Nematostella vectensis (NvEag and NvElk) also share high functional conservation with mammalian channels. NvEag, like bilaterian Eag channels, has rapid kinetics, whereas NvElk activates at extremely hyperpolarized voltages, which is characteristic of Elk channels. Potent inhibition of voltage activation by extracellular protons is conserved between mammalian and Nematostella EAG channels. However, characteristic inhibition of voltage activation by Mg2+ in Eag channels and Ca2+ in Erg channels is reduced in Nematostella because of mutation of a highly conserved aspartate residue in the voltage sensor. This mutation may preserve sub-threshold activation of Nematostella Eag and Erg channels in a high divalent cation environment. mRNA in situ hybridization of EAG channels in Nematostella suggests that they are differentially expressed in distinct cell types. Most notable is the expression of NvEag in cnidocytes, a cnidarian-specific stinging cell thought to be a neuronal subtype. PMID:25696816

  13. A hominid from the lower Pleistocene of Atapuerca, Spain: possible ancestor to Neandertals and modern humans.

    PubMed

    Bermúdez de Castro, J M; Arsuaga, J L; Carbonell, E; Rosas, A; Martínez, I; Mosquera, M

    1997-05-30

    Human fossil remains recovered from the TD6 level (Aurora stratum) of the lower Pleistocene cave site of Gran Dolina, Sierra de Atapuerca, Spain, exhibit a unique combination of cranial, mandibular, and dental traits and are suggested as a new species of Homo-H. antecessor sp. nov. The fully modern midfacial morphology of the fossils antedates other evidence of this feature by about 650, 000 years. The midfacial and subnasal morphology of modern humans may be a retention of a juvenile pattern that was not yet present in H. ergaster. Homo antecessor may represent the last common ancestor for Neandertals and modern humans. PMID:9162001

  14. Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea?

    PubMed Central

    2013-01-01

    Background Two theories for the origin of animal life cycles with planktotrophic larvae are now discussed seriously: The terminal addition theory proposes a holopelagic, planktotrophic gastraea as the ancestor of the eumetazoans with addition of benthic adult stages and retention of the planktotrophic stages as larvae, i.e. the ancestral life cycles were indirect. The intercalation theory now proposes a benthic, deposit-feeding gastraea as the bilaterian ancestor with a direct development, and with planktotrophic larvae evolving independently in numerous lineages through specializations of juveniles. Results Information from the fossil record, from mapping of developmental types onto known phylogenies, from occurrence of apical organs, and from genetics gives no direct information about the ancestral eumetazoan life cycle; however, there are plenty of examples of evolution from an indirect development to direct development, and no unequivocal example of evolution in the opposite direction. Analyses of scenarios for the two types of evolution are highly informative. The evolution of the indirect spiralian life cycle with a trochophora larva from a planktotrophic gastraea is explained by the trochophora theory as a continuous series of ancestors, where each evolutionary step had an adaptational advantage. The loss of ciliated larvae in the ecdysozoans is associated with the loss of outer ciliated epithelia. A scenario for the intercalation theory shows the origin of the planktotrophic larvae of the spiralians through a series of specializations of the general ciliation of the juvenile. The early steps associated with the enhancement of swimming seem probable, but the following steps which should lead to the complicated downstream-collecting ciliary system are without any advantage, or even seem disadvantageous, until the whole structure is functional. None of the theories account for the origin of the ancestral deuterostome (ambulacrarian) life cycle. Conclusions All

  15. Ancestor-descendant relationships in evolution: origin of the extant pygmy right whale, Caperea marginata.

    PubMed

    Tsai, Cheng-Hsiu; Fordyce, R Ewan

    2015-01-01

    Ancestor-descendant relationships (ADRs), involving descent with modification, are the fundamental concept in evolution, but are usually difficult to recognize. We examined the cladistic relationship between the only reported fossil pygmy right whale, †Miocaperea pulchra, and its sole living relative, the enigmatic pygmy right whale Caperea marginata, the latter represented by both adult and juvenile specimens. †Miocaperea is phylogenetically bracketed between juvenile and adult Caperea marginata in morphologically based analyses, thus suggesting a possible ADR-the first so far identified within baleen whales (Cetacea: Mysticeti). The †Miocaperea-Caperea lineage may show long-term morphological stasis and, in turn, punctuated equilibrium. PMID:25589485

  16. Mammalian Interphase Cdks

    PubMed Central

    2012-01-01

    Cyclin-dependent kinases (Cdks) drive cell cycle progression in all eukaryotes. Yeasts have a single major Cdk that mediates distinct cell cycle transitions via association with different cyclins. The closest homolog in mammals, Cdk1, drives mitosis. Mammals have additional Cdks—Cdk2, Cdk4, and Cdk6—that represent the major Cdks activated during interphase (iCdks). A large body of evidence has accrued that suggests that activation of iCdks dictates progression though interphase. In apparent contradiction, deficiency in each individual iCdk, respectively, in knockout mice proved to be compatible with live birth and in some instances fertility. Moreover, murine embryos could be derived with Cdk1 as the only functional Cdk. Thus, none of the iCdks is strictly essential for mammalian cell cycle progression, raising the possibility that Cdk1 is the dominant regulator in interphase. However, an absence of iCdks has been accompanied by major shifts in cyclin association to Cdk1, suggesting gain in function. After considerable tweaking, a chemical genetic approach has recently been able to examine the impact of acute inhibition of Cdk2 activity without marked distortion of cyclin/Cdk complex formation. The results suggest that, when expressed at its normal levels, Cdk2 performs essential roles in driving human cells into S phase and maintaining genomic stability. These new findings appear to have restored order to the cell cycle field, bringing it full circle to the view that iCdks indeed play important roles. They also underscore the caveat in knockdown and knockout approaches that protein underexpression can significantly perturb a protein interaction network. We discuss the implications of the new synthesis for future cell cycle studies and anti–Cdk-based therapy of cancer and other diseases. PMID:23634250

  17. Isotope Labeling in Mammalian Cells

    PubMed Central

    Dutta, Arpana; Saxena, Krishna; Klein-Seetharaman, Judith

    2011-01-01

    Isotope labeling of proteins represents an important and often required tool for the application of nuclear magnetic resonance (NMR) spectroscopy to investigate the structure and dynamics of proteins. Mammalian expression systems have conventionally been considered to be too weak and inefficient for protein expression. However, recent advances have significantly improved the expression levels of these systems. Here, we provide an overview of some of the recent developments in expression strategies for mammalian expression systems in view of NMR investigations. PMID:22167668

  18. Penile reconstruction

    PubMed Central

    Garaffa, Giulio; Sansalone, Salvatore; Ralph, David J

    2013-01-01

    During the most recent years, a variety of new techniques of penile reconstruction have been described in the literature. This paper focuses on the most recent advances in male genital reconstruction after trauma, excision of benign and malignant disease, in gender reassignment surgery and aphallia with emphasis on surgical technique, cosmetic and functional outcome. PMID:22426595

  19. Image reconstruction

    SciTech Connect

    Defrise, Michel; Gullberg, Grant T.

    2006-04-05

    We give an overview of the role of Physics in Medicine andBiology in development of tomographic reconstruction algorithms. We focuson imaging modalities involving ionizing radiation, CT, PET and SPECT,and cover a wide spectrum of reconstruction problems, starting withclassical 2D tomogra tomography in the 1970s up to 4D and 5D problemsinvolving dynamic imaging of moving organs.

  20. Duplication of the gamma-globin gene mediated by L1 long interspersed repetitive elements in an early ancestor of simian primates.

    PubMed Central

    Fitch, D H; Bailey, W J; Tagle, D A; Goodman, M; Sieu, L; Slightom, J L

    1991-01-01

    Regions surrounding the single gamma-globin gene of galago and the duplicated gamma 1- and gamma 2-globin genes of gibbon, rhesus monkey, and spider monkey were sequenced and aligned with those from humans. Contrary to previous studies, spider monkey was found to have not one but two gamma-globin genes, only one of which (gamma 2) is functional. The reconstructed evolutionary history of the gamma-globin genes and their flanking sequences traces their origin to a tandem duplication of a DNA segment approximately 5.5 kilobases long that occurred before catarrhine primates (humans, apes, and Old World monkeys) diverged from platyrrhines (New World monkeys), much earlier than previously thought. This reconstructed molecular history also reveals that the duplication resulted from an unequal homologous crossover between two related L1 long interspersed repetitive elements, one upstream and one downstream of the single ancestral gamma-globin gene. Perhaps facilitated by the redundancy resulting from the duplication, the gamma-globin genes escaped the selective constraints of embryonically functioning genes and evolved into fetally functioning genes. This view is supported by the finding that a burst of nonsynonymous substitutions occurred in the gamma-globin genes while they became restructured for fetal expression in the common ancestor of platyrrhines and catarrhines. PMID:1908094

  1. Did Viruses Evolve As a Distinct Supergroup from Common Ancestors of Cells?

    PubMed

    Harish, Ajith; Abroi, Aare; Gough, Julian; Kurland, Charles

    2016-01-01

    The evolutionary origins of viruses according to marker gene phylogenies, as well as their relationships to the ancestors of host cells remains unclear. In a recent article Nasir and Caetano-Anollés reported that their genome-scale phylogenetic analyses based on genomic composition of protein structural-domains identify an ancient origin of the "viral supergroup" (Nasir et al. 2015. A phylogenomic data-driven exploration of viral origins and evolution. Sci Adv. 1(8):e1500527.). It suggests that viruses and host cells evolved independently from a universal common ancestor. Examination of their data and phylogenetic methods indicates that systematic errors likely affected the results. Reanalysis of the data with additional tests shows that small-genome attraction artifacts distort their phylogenomic analyses, particularly the location of the root of the phylogenetic tree of life that is central to their conclusions. These new results indicate that their suggestion of a distinct ancestry of the viral supergroup is not well supported by the evidence. PMID:27497315

  2. Did Viruses Evolve As a Distinct Supergroup from Common Ancestors of Cells?

    PubMed Central

    Harish, Ajith; Abroi, Aare; Gough, Julian; Kurland, Charles

    2016-01-01

    The evolutionary origins of viruses according to marker gene phylogenies, as well as their relationships to the ancestors of host cells remains unclear. In a recent article Nasir and Caetano-Anollés reported that their genome-scale phylogenetic analyses based on genomic composition of protein structural-domains identify an ancient origin of the “viral supergroup” (Nasir et al. 2015. A phylogenomic data-driven exploration of viral origins and evolution. Sci Adv. 1(8):e1500527.). It suggests that viruses and host cells evolved independently from a universal common ancestor. Examination of their data and phylogenetic methods indicates that systematic errors likely affected the results. Reanalysis of the data with additional tests shows that small-genome attraction artifacts distort their phylogenomic analyses, particularly the location of the root of the phylogenetic tree of life that is central to their conclusions. These new results indicate that their suggestion of a distinct ancestry of the viral supergroup is not well supported by the evidence. PMID:27497315

  3. Breast reconstruction.

    PubMed

    DellaCroce, Frank J; Wolfe, Emily T

    2013-04-01

    As diagnostic technology has progressed and the understanding of the disease process has evolved, the number of mastectomies performed in the United States has increased. Breast reconstructive techniques have commensurately become more sophisticated along the same timeline. The result is that those facing mastectomy have the potential to simultaneously retain physical beauty and wholeness. Only 33% of women who are otherwise candidates for immediate reconstruction at the time of mastectomy choose reconstruction. Patients generally have a high level of satisfaction with the option they choose, contributing to a feeling of overall recovery and physical and emotional wholeness. PMID:23464695

  4. Lung development of monotremes: evidence for the mammalian morphotype.

    PubMed

    Ferner, Kirsten; Zeller, Ulrich; Renfree, Marilyn B

    2009-02-01

    The reproductive strategies and the extent of development of neonates differ markedly between the three extant mammalian groups: the Monotremata, Marsupialia, and Eutheria. Monotremes and marsupials produce highly altricial offspring whereas the neonates of eutherian mammals range from altricial to precocial. The ability of the newborn mammal to leave the environment in which it developed depends highly on the degree of maturation of the cardio-respiratory system at the time of birth. The lung structure is thus a reflection of the metabolic capacity of neonates. The lung development in monotremes (Ornithorhynchus anatinus, Tachyglossus aculeatus), in one marsupial (Monodelphis domestica), and one altricial eutherian (Suncus murinus) species was examined. The results and additional data from the literature were integrated into a morphotype reconstruction of the lung structure of the mammalian neonate. The lung parenchyma of monotremes and marsupials was at the early terminal air sac stage at birth, with large terminal air sacs. The lung developed slowly. In contrast, altricial eutherian neonates had more advanced lungs at the late terminal air sac stage and postnatally, lung maturation proceeded rapidly. The mammalian lung is highly conserved in many respects between monotreme, marsupial, and eutherian species and the structural differences in the neonatal lungs can be explained mainly by different developmental rates. The lung structure of newborn marsupials and monotremes thus resembles the ancestral condition of the mammalian lung at birth, whereas the eutherian newborns have a more mature lung structure. PMID:19051249

  5. ACL reconstruction

    MedlinePlus

    ... Tissue taken from a donor is called an allograft. The procedure is usually performed with the help ... This increases the chance you may have a meniscus tear. ACL reconstruction may be used for these ...

  6. [Eyebrow reconstruction].

    PubMed

    Baraër, F; Darsonval, V; Lejeune, F; Bochot-Hermouet, B; Rousseau, P

    2013-10-01

    The eyebrow is an essential anatomical area, from a social point of view, so its reconstruction, in case of skin defect, must be as meticulous as possible, with the less residual sequela. Capillary density extremely varies from one person to another and the different methods of restoration of this area should absolutely take this into consideration. We are going to review the various techniques of reconstruction, according to the sex and the surface to cover. PMID:23896574

  7. Electroporation into Cultured Mammalian Embryos

    NASA Astrophysics Data System (ADS)

    Nomura, Tadashi; Takahashi, Masanori; Osumi, Noriko

    Over the last century, mammalian embryos have been used extensively as a common animal model to investigate fundamental questions in the field of developmental biology. More recently, the establishment of transgenic and gene-targeting systems in laboratory mice has enabled researchers to unveil the genetic mechanisms under lying complex developmental processes (Mak, 2007). However, our understanding of cell—cell interactions and their molecular basis in the early stages of mammalian embryogenesis is still very fragmentary. One of the major problems is the difficulty of precise manipulation and limited accessibility to mammalian embryos via uterus wall. Unfortunately, existing tissue and organotypic culture systems per se do not fully recapitulate three-dimensional, dynamic processes of organogenesis observed in vivo. Although transgenic animal technology and virus-mediated gene delivery are useful to manipulate gene expression, these techniques take much time and financial costs, which limit their use.

  8. Sirtuins: Guardians of Mammalian Healthspan

    PubMed Central

    Giblin, William; Skinner, Mary E.; Lombard, David B.

    2014-01-01

    The first link between sirtuins and longevity was made 15 years ago in yeast. These initial studies sparked efforts by many laboratories working in diverse model organisms to elucidate the relationships between sirtuins, lifespan, and age-associated dysfunction. Here we discuss the current understanding of how sirtuins relate to aging. We focus primarily on mammalian sirtuins SIRT1, SIRT3, and SIRT6, the three sirtuins for which the most relevant data are available. Strikingly, a large body of evidence now indicates that these and other mammalian sirtuins suppress a variety of age-related pathologies and promote healthspan. Moreover, increased expression of SIRT1 or SIRT6 extends mouse lifespan. Overall, these data point to important roles for sirtuins in promoting mammalian health, and perhaps in modulating the aging process. PMID:24877878

  9. Mammalian development does not recapitulate suspected key transformations in the evolutionary detachment of the mammalian middle ear.

    PubMed

    Ramírez-Chaves, Héctor E; Wroe, Stephen W; Selwood, Lynne; Hinds, Lyn A; Leigh, Chris; Koyabu, Daisuke; Kardjilov, Nikolay; Weisbecker, Vera

    2016-01-13

    The ectotympanic, malleus and incus of the developing mammalian middle ear (ME) are initially attached to the dentary via Meckel's cartilage, betraying their origins from the primary jaw joint of land vertebrates. This recapitulation has prompted mostly unquantified suggestions that several suspected--but similarly unquantified--key evolutionary transformations leading to the mammalian ME are recapitulated in development, through negative allometry and posterior/medial displacement of ME bones relative to the jaw joint. Here we show, using µCT reconstructions, that neither allometric nor topological change is quantifiable in the pre-detachment ME development of six marsupials and two monotremes. Also, differential ME positioning in the two monotreme species is not recapitulated. This challenges the developmental prerequisites of widely cited evolutionary scenarios of definitive mammalian middle ear (DMME) evolution, highlighting the requirement for further fossil evidence to test these hypotheses. Possible association between rear molar eruption, full ME ossification and ME detachment in marsupials suggests functional divergence between dentary and ME as a trigger for developmental, and possibly also evolutionary, ME detachment. The stable positioning of the dentary and ME supports suggestions that a 'partial mammalian middle ear' as found in many mammaliaforms--probably with a cartilaginous Meckel's cartilage--represents the only developmentally plausible evolutionary DMME precursor. PMID:26763693

  10. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut.

    PubMed

    Bertioli, David John; Cannon, Steven B; Froenicke, Lutz; Huang, Guodong; Farmer, Andrew D; Cannon, Ethalinda K S; Liu, Xin; Gao, Dongying; Clevenger, Josh; Dash, Sudhansu; Ren, Longhui; Moretzsohn, Márcio C; Shirasawa, Kenta; Huang, Wei; Vidigal, Bruna; Abernathy, Brian; Chu, Ye; Niederhuth, Chad E; Umale, Pooja; Araújo, Ana Cláudia G; Kozik, Alexander; Kim, Kyung Do; Burow, Mark D; Varshney, Rajeev K; Wang, Xingjun; Zhang, Xinyou; Barkley, Noelle; Guimarães, Patrícia M; Isobe, Sachiko; Guo, Baozhu; Liao, Boshou; Stalker, H Thomas; Schmitz, Robert J; Scheffler, Brian E; Leal-Bertioli, Soraya C M; Xun, Xu; Jackson, Scott A; Michelmore, Richard; Ozias-Akins, Peggy

    2016-04-01

    Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanut's A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanut's subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut. PMID:26901068

  11. The effect of inbreeding constraints and offspring distribution on time to the most recent common ancestor.

    PubMed

    Campbell, R B

    2015-10-01

    The expected time to the most recent common ancestor (MRCA) of two alleles in a diploid individual is 4N+2 under random mating with a Poisson progeny distribution, but 8N-2 under maximum avoidance of inbreeding, which entails two progeny per mating pair. (N is the number of mating pairs, hence 2N is the number of individuals, hence 4N is the number of alleles.) The interrelationship of inbreeding constraints and offspring distribution is investigated by varying the level of sib mating: prohibiting sib mating increases the time to MRCA by four generations and decreases the variance of the offspring distribution by 2/N. With two progeny per mating pair, the expected time to the MRCA is 8N-2 under both random mating and sib mating prohibited, as well as under maximum avoidance of inbreeding, but this result does not hold for all mating structures with two progeny per mating pair. PMID:26144024

  12. Age of the last common ancestor of extant Plasmodium parasite lineages.

    PubMed

    Hayakawa, Toshiyuki; Tachibana, Shin-Ichiro; Hikosaka, Kenji; Arisue, Nobuko; Matsui, Atsushi; Horii, Toshihiro; Tanabe, Kazuyuki

    2012-07-01

    Parasites of the genus Plasmodium infect all classes of amniotes (mammals, birds and reptiles) and display host specificity in their infections. It is therefore generally believed that Plasmodium parasites co-evolved intimately with their hosts. Here, we report that based on an evolutionary analysis using 22 genes in the nuclear genome, extant lineages of Plasmodium parasites originated roughly in the Oligocene epoch after the emergence of their hosts. This timing on the age of the common ancestor of extant Plasmodium parasites suggest the importance of host switches and lends support to the evolutionary scenario of a "malaria big bang" that was proposed based on the evolutionary analysis using the mitochondrial genome. PMID:22555021

  13. Upd3--an ancestor of the four-helix bundle cytokines.

    PubMed

    Oldefest, Mirja; Nowinski, Jana; Hung, Chien-Wen; Neelsen, Denis; Trad, Ahmad; Tholey, Andreas; Grötzinger, Joachim; Lorenzen, Inken

    2013-06-21

    The unpaired-like protein 3 (Upd3) is one of the three cytokines of Drosophila melanogaster supposed to activate the JAK/STAT signaling pathway (Janus tyrosine kinases/signal transducer and activator of transcription). This activation occurs via the type-I cytokine receptor domeless, an orthologue of gp130, the common signal transducer of all four-helix bundle interleukin-6 (IL-6) type cytokines. Both receptors are known to exist as preformed dimers in the plasma membrane and initiate the acute-phase response. These facts indicate an evolutionary relation between vertebrate IL-6 and the Drosophila protein Upd3. Here we presented data which strengthen this notion. Upd3 was recombinantly expressed, a renaturation and purification protocol was established which allows to obtain high amounts of biological active protein. This protein is, like human IL-6, a monomeric-α helical cytokine, implicating that Upd3 is an "ancestor" of the four-helix bundle cytokines. PMID:23707937

  14. Mobile elements reveal small population size in the ancient ancestors of Homo sapiens

    PubMed Central

    Huff, Chad D.; Xing, Jinchuan; Rogers, Alan R.; Witherspoon, David; Jorde, Lynn B.

    2010-01-01

    The genealogies of different genetic loci vary in depth. The deeper the genealogy, the greater the chance that it will include a rare event, such as the insertion of a mobile element. Therefore, the genealogy of a region that contains a mobile element is on average older than that of the rest of the genome. In a simple demographic model, the expected time to most recent common ancestor (TMRCA) is doubled if a rare insertion is present. We test this expectation by examining single nucleotide polymorphisms around polymorphic Alu insertions from two completely sequenced human genomes. The estimated TMRCA for regions containing a polymorphic insertion is two times larger than the genomic average (P < <10−30), as predicted. Because genealogies that contain polymorphic mobile elements are old, they are shaped largely by the forces of ancient population history and are insensitive to recent demographic events, such as bottlenecks and expansions. Remarkably, the information in just two human DNA sequences provides substantial information about ancient human population size. By comparing the likelihood of various demographic models, we estimate that the effective population size of human ancestors living before 1.2 million years ago was 18,500, and we can reject all models where the ancient effective population size was larger than 26,000. This result implies an unusually small population for a species spread across the entire Old World, particularly in light of the effective population sizes of chimpanzees (21,000) and gorillas (25,000), which each inhabit only one part of a single continent. PMID:20133859

  15. Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor

    PubMed Central

    Crompton, R H; Vereecke, E E; Thorpe, S K S

    2008-01-01

    Based on our knowledge of locomotor biomechanics and ecology we predict the locomotion and posture of the last common ancestors of (a) great and lesser apes and their close fossil relatives (hominoids); (b) chimpanzees, bonobos and modern humans (hominines); and (c) modern humans and their fossil relatives (hominins). We evaluate our propositions against the fossil record in the context of a broader review of evolution of the locomotor system from the earliest hominoids of modern aspect (crown hominoids) to early modern Homo sapiens. While some early East African stem hominoids were pronograde, it appears that the adaptations which best characterize the crown hominoids are orthogrady and an ability to abduct the arm above the shoulder – rather than, as is often thought, manual suspension sensu stricto. At 7–9 Ma (not much earlier than the likely 4–8 Ma divergence date for panins and hominins, see Bradley, 2008) there were crown hominoids in southern Europe which were adapted to moving in an orthograde posture, supported primarily on the hindlimb, in an arboreal, and possibly for Oreopithecus, a terrestrial context. By 7 Ma, Sahelanthropus provides evidence of a Central African hominin, panin or possibly gorilline adapted to orthogrady, and both orthogrady and habitually highly extended postures of the hip are evident in the arboreal East African protohominin Orrorin at 6 Ma. If the traditional idea that hominins passed through a terrestrial ‘knuckle-walking’ phase is correct, not only does it have to be explained how a quadrupedal gait typified by flexed postures of the hindlimb could have preadapted the body for the hominin acquisition of straight-legged erect bipedality, but we would have to accept a transition from stem-hominoid pronogrady to crown hominoid orthogrady, back again to pronogrady in the African apes and then back to orthogrady in hominins. Hand-assisted arboreal bipedality, which is part of a continuum of orthograde behaviours, is used by

  16. DNA repair in mammalian embryos.

    PubMed

    Jaroudi, Souraya; SenGupta, Sioban

    2007-01-01

    Mammalian cells have developed complex mechanisms to identify DNA damage and activate the required response to maintain genome integrity. Those mechanisms include DNA damage detection, DNA repair, cell cycle arrest and apoptosis which operate together to protect the conceptus from DNA damage originating either in parental gametes or in the embryo's somatic cells. DNA repair in the newly fertilized preimplantation embryo is believed to rely entirely on the oocyte's machinery (mRNAs and proteins deposited and stored prior to ovulation). DNA repair genes have been shown to be expressed in the early stages of mammalian development. The survival of the embryo necessitates that the oocyte be sufficiently equipped with maternal stored products and that embryonic gene expression commences at the correct time. A Medline based literature search was performed using the keywords 'DNA repair' and 'embryo development' or 'gametogenesis' (publication dates between 1995 and 2006). Mammalian studies which investigated gene expression were selected. Further articles were acquired from the citations in the articles obtained from the preliminary Medline search. This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages. PMID:17141556

  17. Evolution of mammalian sensorimotor cortex: thalamic projections to parietal cortical areas in Monodelphis domestica

    PubMed Central

    Dooley, James C.; Franca, João G.; Seelke, Adele M. H.; Cooke, Dylan F.; Krubitzer, Leah A.

    2015-01-01

    The current experiments build upon previous studies designed to reveal the network of parietal cortical areas present in the common mammalian ancestor. Understanding this ancestral network is essential for highlighting the basic somatosensory circuitry present in all mammals, and how this basic plan was modified to generate species specific behaviors. Our animal model, the short-tailed opossum (Monodelphis domestica), is a South American marsupial that has been proposed to have a similar ecological niche and morphology to the earliest common mammalian ancestor. In this investigation, we injected retrograde neuroanatomical tracers into the face and body representations of primary somatosensory cortex (S1), the rostral and caudal somatosensory fields (SR and SC), as well as a multimodal region (MM). Projections from different architectonically defined thalamic nuclei were then quantified. Our results provide further evidence to support the hypothesized basic mammalian plan of thalamic projections to S1, with the lateral and medial ventral posterior thalamic nuclei (VPl and VPm) projecting to S1 body and S1 face, respectively. Additional strong projections are from the medial division of posterior nucleus (Pom). SR receives projections from several midline nuclei, including the medial dorsal, ventral medial nucleus, and Pom. SC and MM show similar patterns of connectivity, with projections from the ventral anterior and ventral lateral nuclei, VPm and VPl, and the entire posterior nucleus (medial and lateral). Notably, MM is distinguished from SC by relatively dense projections from the dorsal division of the lateral geniculate nucleus and pulvinar. We discuss the finding that S1 of the short-tailed opossum has a similar pattern of projections as other marsupials and mammals, but also some distinct projections not present in other mammals. Further we provide additional support for a primitive posterior parietal cortex which receives input from multiple modalities. PMID

  18. How difficult is inference of mammalian causal gene regulatory networks?

    PubMed

    Djordjevic, Djordje; Yang, Andrian; Zadoorian, Armella; Rungrugeecharoen, Kevin; Ho, Joshua W K

    2014-01-01

    Gene regulatory networks (GRNs) play a central role in systems biology, especially in the study of mammalian organ development. One key question remains largely unanswered: Is it possible to infer mammalian causal GRNs using observable gene co-expression patterns alone? We assembled two mouse GRN datasets (embryonic tooth and heart) and matching microarray gene expression profiles to systematically investigate the difficulties of mammalian causal GRN inference. The GRNs were assembled based on > 2,000 pieces of experimental genetic perturbation evidence from manually reading > 150 primary research articles. Each piece of perturbation evidence records the qualitative change of the expression of one gene following knock-down or over-expression of another gene. Our data have thorough annotation of tissue types and embryonic stages, as well as the type of regulation (activation, inhibition and no effect), which uniquely allows us to estimate both sensitivity and specificity of the inference of tissue specific causal GRN edges. Using these unprecedented datasets, we found that gene co-expression does not reliably distinguish true positive from false positive interactions, making inference of GRN in mammalian development very difficult. Nonetheless, if we have expression profiling data from genetic or molecular perturbation experiments, such as gene knock-out or signalling stimulation, it is possible to use the set of differentially expressed genes to recover causal regulatory relationships with good sensitivity and specificity. Our result supports the importance of using perturbation experimental data in causal network reconstruction. Furthermore, we showed that causal gene regulatory relationship can be highly cell type or developmental stage specific, suggesting the importance of employing expression profiles from homogeneous cell populations. This study provides essential datasets and empirical evidence to guide the development of new GRN inference methods for

  19. Reconstruction and Function of Ancestral Center-of-Tree Human Immunodeficiency Virus Type 1 Proteins▿

    PubMed Central

    Rolland, Morgane; Jensen, Mark A.; Nickle, David C.; Yan, Jian; Learn, Gerald H.; Heath, Laura; Weiner, David; Mullins, James I.

    2007-01-01

    The extensive diversity of human immunodeficiency virus type 1 (HIV-1) and its capacity to mutate and escape host immune responses are major challenges for AIDS vaccine development. Ancestral sequences, which minimize the genetic distance to circulating strains, provide an opportunity to design immunogens with the potential to elicit broad recognition of HIV epitopes. We developed a phylogenetics-informed algorithm to reconstruct ancestral HIV sequences, called Center of Tree (COT). COT sequences have potentially significant benefits over isolate-based strategies, as they minimize the evolutionary distances to circulating strains. COT sequences are designed to surmount the potential pitfalls stemming from sampling bias with the consensus method and outlier bias with the most-recent-common-ancestor approach. We computationally derived COT sequences from circulating HIV-1 subtype B sequences for the genes encoding the major viral structural protein (Gag) and two regulatory proteins, Tat and Nef. COT genes were synthesized de novo and expressed in mammalian cells, and the proteins were characterized. COT Gag was shown to generate virus-like particles, while COT Tat transactivated gene expression from the HIV-1 long terminal repeat and COT Nef mediated downregulation of cell surface major histocompatibility complex class I. Thus, retrodicted ancestral COT proteins can retain the biological functions of extant HIV-1 proteins. Additionally, COT proteins were immunogenic, as they elicited antigen-specific cytotoxic T-lymphocyte responses in mice. These data support the utility of the COT approach to create novel and biologically active ancestral proteins as a starting point for studies of the structure, function, and biological fitness of highly variable genes, as well as for the rational design of globally relevant vaccine candidates. PMID:17537854

  20. Amplification of an ancestral mammalian L1 family of long interspersed repeated DNA occurred just before the murine radiation

    SciTech Connect

    Pascale, E.; Valle, E.; Furano, A.V. )

    1990-12-01

    Each mammalian genus examined so far contains 50,000-100,000 members of an L1 (LINE 1) family of long interspersed repeated DNA elements. Current knowledge on the evolution of L1 families presents a paradox because, although L1 families have been in mammalian genomes since before the mammalian radiation {approximately}80 million years ago, most members of the L1 families are only a few million years old. Accordingly it has been suggested either that the extensive amplification that characterizes present-day L1 families did not occur in the past or that old members were removed as new one were generated. However, the authors show here that an ancestral rodent L1 family was extensively amplified {approximately}10 million years ago and that the relics of this amplification have persisted in modern murine genomes. This amplification occurred just before the divergence of modern murine genera from their common ancestor and identifies the murine node in the lineage of modern muroid rodents The results suggest that repeated amplification of L1 elements is a feature of the evaluation of mammalian genomes and that ancestral amplification events could provide a useful tool for determining mammalian lineages.

  1. Amplification of an ancestral mammalian L1 family of long interspersed repeated DNA occurred just before the murine radiation.

    PubMed Central

    Pascale, E; Valle, E; Furano, A V

    1990-01-01

    Each mammalian genus examined so far contains 50,000-100,000 members of an L1 (LINE 1) family of long interspersed repeated DNA elements. Current knowledge on the evolution of L1 families presents a paradox because, although L1 families have been in mammalian genomes since before the mammalian radiation approximately 80 million years ago, most members of the L1 families are only a few million years old. Accordingly it has been suggested either that the extensive amplification that characterizes present-day L1 families did not occur in the past or that old members were removed as new ones were generated. However, we show here that an ancestral rodent L1 family was extensively amplified approximately 10 million years ago and that the relics (approximately 60,000 copies) of this amplification have persisted in modern murine genomes (Old World rats and mice). This amplification occurred just before the divergence of modern murine genera from their common ancestor and identifies the murine node in the lineage of modern muroid rodents. Our results suggest that repeated amplification of L1 elements is a feature of the evolution of mammalian genomes and that ancestral amplification events could provide a useful tool for determining mammalian lineages. Images PMID:2251288

  2. Reconstructing Validity

    ERIC Educational Resources Information Center

    Moss, Pamela A.

    2007-01-01

    In response to Lissitz and Samuelsen (2007), the author reconstructs the historical arguments for the more comprehensive unitary concept of validity and the principles of scientific inquiry underlying it. Her response is organized in terms of four questions: (a) How did validity in educational measurement come to be conceptualized as unitary, and…

  3. Vaginal reconstruction

    SciTech Connect

    Lesavoy, M.A.

    1985-05-01

    Vaginal reconstruction can be an uncomplicated and straightforward procedure when attention to detail is maintained. The Abbe-McIndoe procedure of lining the neovaginal canal with split-thickness skin grafts has become standard. The use of the inflatable Heyer-Schulte vaginal stent provides comfort to the patient and ease to the surgeon in maintaining approximation of the skin graft. For large vaginal and perineal defects, myocutaneous flaps such as the gracilis island have been extremely useful for correction of radiation-damaged tissue of the perineum or for the reconstruction of large ablative defects. Minimal morbidity and scarring ensue because the donor site can be closed primarily. With all vaginal reconstruction, a compliant patient is a necessity. The patient must wear a vaginal obturator for a minimum of 3 to 6 months postoperatively and is encouraged to use intercourse as an excellent obturator. In general, vaginal reconstruction can be an extremely gratifying procedure for both the functional and emotional well-being of patients.

  4. Project Reconstruct.

    ERIC Educational Resources Information Center

    Helisek, Harriet; Pratt, Donald

    1994-01-01

    Presents a project in which students monitor their use of trash, input and analyze information via a database and computerized graphs, and "reconstruct" extinct or endangered animals from recyclable materials. The activity was done with second-grade students over a period of three to four weeks. (PR)

  5. ACL reconstruction - discharge

    MedlinePlus

    Anterior cruciate ligament reconstruction - discharge; ACL reconstruction - discharge ... had surgery to reconstruct your anterior cruciate ligament (ACL). The surgeon drilled holes in the bones of ...

  6. Studies in Historical Replication in Psychology VII: The Relative Utility of "Ancestor Analysis" from Scientific and Educational Vantages

    ERIC Educational Resources Information Center

    Ranney, Michael Andrew

    2008-01-01

    This article discusses, from various vantages, Ryan Tweney's (this issue) pedagogical technique of employing historical replications of psychological experiments with graduate students in psychology. A "prima facie" perspective suggests great promise for this sort of academic "ancestor analysis," particularly given the enthusiasm and skill…

  7. The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner

    PubMed Central

    Glansdorff, Nicolas; Xu, Ying; Labedan, Bernard

    2008-01-01

    Background Since the reclassification of all life forms in three Domains (Archaea, Bacteria, Eukarya), the identity of their alleged forerunner (Last Universal Common Ancestor or LUCA) has been the subject of extensive controversies: progenote or already complex organism, prokaryote or protoeukaryote, thermophile or mesophile, product of a protracted progression from simple replicators to complex cells or born in the cradle of "catalytically closed" entities? We present a critical survey of the topic and suggest a scenario. Results LUCA does not appear to have been a simple, primitive, hyperthermophilic prokaryote but rather a complex community of protoeukaryotes with a RNA genome, adapted to a broad range of moderate temperatures, genetically redundant, morphologically and metabolically diverse. LUCA's genetic redundancy predicts loss of paralogous gene copies in divergent lineages to be a significant source of phylogenetic anomalies, i.e. instances where a protein tree departs from the SSU-rRNA genealogy; consequently, horizontal gene transfer may not have the rampant character assumed by many. Examining membrane lipids suggest LUCA had sn1,2 ester fatty acid lipids from which Archaea emerged from the outset as thermophilic by "thermoreduction," with a new type of membrane, composed of sn2,3 ether isoprenoid lipids; this occurred without major enzymatic reconversion. Bacteria emerged by reductive evolution from LUCA and some lineages further acquired extreme thermophily by convergent evolution. This scenario is compatible with the hypothesis that the RNA to DNA transition resulted from different viral invasions as proposed by Forterre. Beyond the controversy opposing "replication first" to metabolism first", the predictive arguments of theories on "catalytic closure" or "compositional heredity" heavily weigh in favour of LUCA's ancestors having emerged as complex, self-replicating entities from which a genetic code arose under natural selection. Conclusion Life

  8. Mechanisms of mammalian iron homeostasis

    PubMed Central

    Pantopoulos, Kostas; Porwal, Suheel Kumar; Tartakoff, Alan; Devireddy, L.

    2012-01-01

    Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in acquisition or distribution of the metal causes anemia; whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways, as well as in mechanisms underlying intracellular iron trafficking, an important but less-studied area of mammalian iron homeostasis. PMID:22703180

  9. An overview of mammalian pluripotency.

    PubMed

    Wu, Jun; Yamauchi, Takayoshi; Izpisua Belmonte, Juan Carlos

    2016-05-15

    Mammalian pluripotency is the ability to give rise to all somatic cells as well as the germ cells of an adult mammal. It is a unique feature of embryonic epiblast cells, existing only transiently, as cells pass through early developmental stages. By contrast, pluripotency can be captured and stabilized indefinitely in cell culture and can also be reactivated in differentiated cells via nuclear reprogramming. Pluripotent stem cells (PSCs) are the in vitro carriers of pluripotency and they can inhabit discrete pluripotent states depending on the stage at which they were derived and their culture conditions. Here, and in the accompanying poster, we provide a summary of mammalian pluripotency both in vivo and in vitro, and highlight recent and future applications of PSCs for basic and translational research. PMID:27190034

  10. Olfactory sensitivity in mammalian species.

    PubMed

    Wackermannová, M; Pinc, L; Jebavý, L

    2016-07-18

    Olfaction enables most mammalian species to detect and discriminate vast numbers of chemical structures called odorants and pheromones. The perception of such chemical compounds is mediated via two major olfactory systems, the main olfactory system and the vomeronasal system, as well as minor systems, such as the septal organ and the Grueneberg ganglion. Distinct differences exist not only among species but also among individuals in terms of their olfactory sensitivity; however, little is known about the mechanisms that determine these differences. In research on the olfactory sensitivity of mammals, scientists thus depend in most cases on behavioral testing. In this article, we reviewed scientific studies performed on various mammalian species using different methodologies and target chemical substances. Human and non-human primates as well as rodents and dogs are the most frequently studied species. Olfactory threshold studies on other species do not exist with the exception of domestic pigs. Olfactory testing performed on seals, elephants, and bats focused more on discriminative abilities than on sensitivity. An overview of olfactory sensitivity studies as well as olfactory detection ability in most studied mammalian species is presented here, focusing on comparable olfactory detection thresholds. The basics of olfactory perception and olfactory sensitivity factors are also described. PMID:27070753

  11. The Distribution and Most Recent Common Ancestor of the 17q21 Inversion in Humans

    PubMed Central

    Donnelly, Michael P.; Paschou, Peristera; Grigorenko, Elena; Gurwitz, David; Mehdi, Syed Qasim; Kajuna, Sylvester L.B.; Barta, Csaba; Kungulilo, Selemani; Karoma, N.J.; Lu, Ru-Band; Zhukova, Olga V.; Kim, Jong-Jin; Comas, David; Siniscalco, Marcello; New, Maria; Li, Peining; Li, Hui; Manolopoulos, Vangelis G.; Speed, William C.; Rajeevan, Haseena; Pakstis, Andrew J.; Kidd, Judith R.; Kidd, Kenneth K.

    2010-01-01

    The polymorphic inversion on 17q21, sometimes called the microtubular associated protein tau (MAPT) inversion, is an ∼900 kb inversion found primarily in Europeans and Southwest Asians. We have identified 21 SNPs that act as markers of the inverted, i.e., H2, haplotype. The inversion is found at the highest frequencies in Southwest Asia and Southern Europe (frequencies of ∼30%); elsewhere in Europe, frequencies vary from < 5%, in Finns, to 28%, in Orcadians. The H2 inversion haplotype also occurs at low frequencies in Africa, Central Asia, East Asia, and the Americas, though the East Asian and Amerindian alleles may be due to recent gene flow from Europe. Molecular evolution analyses indicate that the H2 haplotype originally arose in Africa or Southwest Asia. Though the H2 inversion has many fixed differences across the ∼900 kb, short tandem repeat polymorphism data indicate a very recent date for the most recent common ancestor, with dates ranging from 13,600 to 108,400 years, depending on assumptions and estimation methods. This estimate range is much more recent than the 3 million year age estimated by Stefansson et al. in 2005.1 PMID:20116045

  12. Buoyancy differences among two deepwater ciscoes from the Great Lakes and their putative ancestor

    USGS Publications Warehouse

    Krause, A.E.; Eshenroder, R.L.; Begnoche, L.J.

    2002-01-01

    We analyzed buoyancy in two deepwater ciscoes, Coregonus hoyi and C. kiyi, and in C. artedi, their putative ancestor, and also analyzed how variations in fish weight, water content, and lipid content affected buoyancy. Buoyancy was significantly different among the three species (p < 0.0001). Estimates of percent buoyancy (neutral buoyancy = 0.0%) were: kiyi, 3.8%; hoyi, 4.7%; and artedi, 5.7%. Buoyancy did not change with fish weight alone (p = 0.38). Fish weight was negatively related to water content for all three species (p = 0.037). Lipid content was not significantly different between hoyi and kiyi, but artedi had significantly fewer lipids than hoyi and kiyi (p < 0.10). When artedi was removed from the analysis, fish weight and lipids accounted for 48% of the variation in buoyancy (p = 0.003), fatter hoyi were less dense than leaner hoyi, but fatter and leaner kiyi were no different in density. Our findings provide additional evidence that buoyancy regulation was a speciating mechanism in deepwater ciscoes and that kiyi is more specialized than hoyi for diel-vertical migration in deep water.

  13. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors.

    PubMed

    Shah, Firoz; Nicolás, César; Bentzer, Johan; Ellström, Magnus; Smits, Mark; Rineau, Francois; Canbäck, Björn; Floudas, Dimitrios; Carleer, Robert; Lackner, Gerald; Braesel, Jana; Hoffmeister, Dirk; Henrissat, Bernard; Ahrén, Dag; Johansson, Tomas; Hibbett, David S; Martin, Francis; Persson, Per; Tunlid, Anders

    2016-03-01

    Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi decompose SOM and the mechanism by which they do so remain unclear, considering that they have lost many genes encoding lignocellulose-degrading enzymes that are present in their saprotrophic ancestors. Spectroscopic analyses and transcriptome profiling were used to examine the mechanisms by which five species of ectomycorrhizal fungi, representing at least four origins of symbiosis, decompose SOM extracted from forest soils. In the presence of glucose and when acquiring nitrogen, all species converted the organic matter in the SOM extract using oxidative mechanisms. The transcriptome expressed during oxidative decomposition has diverged over evolutionary time. Each species expressed a different set of transcripts encoding proteins associated with oxidation of lignocellulose by saprotrophic fungi. The decomposition 'toolbox' has diverged through differences in the regulation of orthologous genes, the formation of new genes by gene duplications, and the recruitment of genes from diverse but functionally similar enzyme families. The capacity to oxidize SOM appears to be common among ectomycorrhizal fungi. We propose that the ancestral decay mechanisms used primarily to obtain carbon have been adapted in symbiosis to scavenge nutrients instead. PMID:26527297

  14. Structural Similarities between Thiamin-Binding Protein and Thiaminase-I Suggest a Common Ancestor

    SciTech Connect

    Soriano, Erika V.; Rajashankar, Kanagalaghatta R.; Hanes, Jeremiah W.; Bale, Shridhar; Begley, Tadhg P.; Ealick, Steven E.

    2008-06-30

    ATP-binding cassette (ABC) transporters are responsible for the transport of a wide variety of water-soluble molecules and ions into prokaryotic cells. In Gram-negative bacteria, periplasmic-binding proteins deliver ions or molecules such as thiamin to the membrane-bound ABC transporter. The gene for the thiamin-binding protein tbpA has been identified in both Escherichia coli and Salmonella typhimurium. Here we report the crystal structure of TbpA from E. coli with bound thiamin monophosphate. The structure was determined at 2.25 {angstrom} resolution using single-wavelength anomalous diffraction experiments, despite the presence of nonmerohedral twinning. The crystal structure shows that TbpA belongs to the group II periplasmic-binding protein family. Equilibrium binding measurements showed similar dissociation constants for thiamin, thiamin monophosphate, and thiamin pyrophosphate. Analysis of the binding site by molecular modeling demonstrated how TbpA binds all three forms of thiamin. A comparison of TbpA and thiaminase-I, a thiamin-degrading enzyme, revealed structural similarity between the two proteins, especially in domain 1, suggesting that the two proteins evolved from a common ancestor.

  15. Wild mallards have more "goose-like" bills than their ancestors: a case of anthropogenic influence?

    PubMed

    Söderquist, Pär; Norrström, Joanna; Elmberg, Johan; Guillemain, Matthieu; Gunnarsson, Gunnar

    2014-01-01

    Wild populations of the world's most common dabbling duck, the mallard (Anas platyrhynchos), run the risk of genetic introgression by farmed conspecifics released for hunting purposes. We tested whether bill morphology of free-living birds has changed since large-scale releases of farmed mallards started. Three groups of mallards from Sweden, Norway and Finland were compared: historical wild (before large-scale releases started), present-day wild, and present-day farmed. Higher density of bill lamellae was observed in historical wild mallards (only males). Farmed mallards had wider bills than present-day and historical wild ones. Present-day wild and farmed mallards also had higher and shorter bills than historical wild mallards. Present-day mallards thus tend to have more "goose-like" bills (wider, higher, and shorter) than their ancestors. Our study suggests that surviving released mallards affect morphological traits in wild population by introgression. We discuss how such anthropogenic impact may lead to a maladapted and genetically compromised wild mallard population. Our study system has bearing on other taxa where large-scale releases of conspecifics with 'alien genes' may cause a cryptic invasive process that nevertheless has fitness consequences for individual birds. PMID:25514789

  16. Hybrid apomicts trapped in the ecological niches of their sexual ancestors.

    PubMed

    Mau, Martin; Lovell, John T; Corral, José M; Kiefer, Christiane; Koch, Marcus A; Aliyu, Olawale M; Sharbel, Timothy F

    2015-05-01

    Asexual reproduction is expected to reduce the adaptive potential to novel or changing environmental conditions, restricting or altering the ecological niche of asexual lineages. Asexual lineages of plants and animals are typically polyploid, an attribute that may influence their genetic variation, plasticity, adaptive potential, and niche breadth. The genus Boechera (Brassicaceae) represents an ideal model to test the relative ecological and biogeographic impacts of reproductive mode and ploidy because it is composed of diploid sexual and both diploid and polyploid asexual (i.e., apomictic) lineages. Here, we demonstrate a strong association between a transcriptionally conserved allele and apomictic seed formation. We then use this allele as a proxy apomixis marker in 1,649 accessions to demonstrate that apomixis is likely to be a common feature across the Boechera phylogeny. Phylogeographic analyses of these data demonstrate (i) species-specific niche differentiation in sexuals, (ii) extensive niche conservation between differing reproductive modes of the same species, (iii) ploidy-specific niche differentiation within and among species, and (iv) occasional niche drift between apomicts and their sexual ancestors. We conclude that ploidy is a substantially stronger and more common driver of niche divergence within and across Boechera species although variation in both traits may not necessarily lead to niche evolution on the species scale. PMID:25902513

  17. Hybrid apomicts trapped in the ecological niches of their sexual ancestors

    PubMed Central

    Mau, Martin; Lovell, John T.; Corral, José M.; Kiefer, Christiane; Koch, Marcus A.; Aliyu, Olawale M.; Sharbel, Timothy F.

    2015-01-01

    Asexual reproduction is expected to reduce the adaptive potential to novel or changing environmental conditions, restricting or altering the ecological niche of asexual lineages. Asexual lineages of plants and animals are typically polyploid, an attribute that may influence their genetic variation, plasticity, adaptive potential, and niche breadth. The genus Boechera (Brassicaceae) represents an ideal model to test the relative ecological and biogeographic impacts of reproductive mode and ploidy because it is composed of diploid sexual and both diploid and polyploid asexual (i.e., apomictic) lineages. Here, we demonstrate a strong association between a transcriptionally conserved allele and apomictic seed formation. We then use this allele as a proxy apomixis marker in 1,649 accessions to demonstrate that apomixis is likely to be a common feature across the Boechera phylogeny. Phylogeographic analyses of these data demonstrate (i) species-specific niche differentiation in sexuals, (ii) extensive niche conservation between differing reproductive modes of the same species, (iii) ploidy-specific niche differentiation within and among species, and (iv) occasional niche drift between apomicts and their sexual ancestors. We conclude that ploidy is a substantially stronger and more common driver of niche divergence within and across Boechera species although variation in both traits may not necessarily lead to niche evolution on the species scale. PMID:25902513

  18. Polyploids with different origins and ancestors form a single sexual polyploid species.

    PubMed

    Holloway, Alisha K; Cannatella, David C; Gerhardt, H Carl; Hillis, David M

    2006-04-01

    Polyploidization is one of the few mechanisms that can produce instantaneous speciation. Multiple origins of tetraploid lineages from the same two diploid progenitors are common, but here we report the first known instance of a single tetraploid species that originated repeatedly from at least three diploid ancestors. Parallel evolution of advertisement calls in tetraploid lineages of gray tree frogs has allowed these lineages to interbreed, resulting in a single sexually interacting polyploid species despite the separate origins of polyploids from different diploids. Speciation by polyploidization in these frogs has been the source of considerable debate, but the various published hypotheses have assumed that polyploids arose through either autopolyploidy or allopolyploidy of extant diploid species. We utilized molecular markers and advertisement calls to infer the origins of tetraploid gray tree frogs. Previous hypotheses did not sufficiently account for the observed data. Instead, we found that tetraploids originated multiple times from extant diploid gray tree frogs and two other, apparently extinct, lineages of tree frogs. Tetraploid lineages then merged through interbreeding to result in a single species. Thus, polyploid species may have complex origins, especially in systems in which isolating mechanisms (such as advertisement calls) are affected directly through hybridization and polyploidy. PMID:16670990

  19. An early modern human from Romania with a recent Neanderthal ancestor

    PubMed Central

    Fu, Qiaomei; Hajdinjak, Mateja; Moldovan, Oana Teodora; Constantin, Silviu; Mallick, Swapan; Skoglund, Pontus; Patterson, Nick; Rohland, Nadin; Lazaridis, Iosif; Nickel, Birgit; Viola, Bence; Prüfer, Kay; Meyer, Matthias; Kelso, Janet; Reich, David; Pääbo, Svante

    2015-01-01

    Neanderthals are thought to have disappeared in Europe ~39,000–41,000 years ago but they have contributed one to three percent of the DNA of present-day people in Eurasia1. Here, we analyze DNA from a 37,000–42,000-year-old2 modern human from Peştera cu Oase, Romania. Although the specimen contains small amounts of human DNA, we use an enrichment strategy to isolate sites that are informative about its relationship to Neanderthals and present-day humans. We find that on the order of six to nine percent of the genome of the Oase individual is derived from Neanderthals, more than any other modern human sequenced to date. Three chromosomal segments of Neanderthal ancestry are over 50 centimorgans in size, indicating that this individual had a Neanderthal ancestor as recently as four to six generations back. However, the Oase individual does not share more alleles with later Europeans than with East Asians, suggesting that the Oase population did not contribute substantially to later humans in Europe. PMID:26098372

  20. How Old Is the Most Recent Ancestor of Two Copies of an Allele?

    PubMed Central

    Patterson, Nick J.

    2005-01-01

    An important clue to the evolutionary history of an allele is the structure of the neighboring region of the genome, which we term the genomic background of the allele. Consider two copies of the allele. How similar we expect their genomic background to be is strongly influenced by the age of their most recent common ancestor (MRCA). We apply diffusion theory, first used by Motoo Kimura as a tool for predicting the changes in allele frequencies over time and developed by him in many articles in this journal, to prove a variety of new results on the age of the MRCA under the simplest demographic assumptions. In particular, we show that the expected age of the MRCA of two copies of an allele with population frequency f is just 2Nf generations, where N is the effective population size. Our results are a first step in running exact coalescent simulations, where we also simulate the history of the population frequency of an allele. PMID:15520271

  1. Estimating time to the most recent common ancestor (TMRCA): comparison and application of eight methods.

    PubMed

    Zhou, Jin; Teo, Yik-Ying

    2016-08-01

    Investigating how an ancestral population diverges to give rise to distinct subpopulations remains a fundamental pursuit in population genetics. There is broad consensus for the 'Out-of-Africa' hypothesis that states that modern humans arose ∼200 000 years ago in Africa and spread throughout the continent ∼100 000 years ago. This was followed by several waves of major population dispersals across the globe, although the exact nature of the population divergence remains debatable. Existing methods to estimate population divergence time differ in their methodological frameworks and demographic assumptions, and require different types of genetic data as input. These fundamental differences often result in the methods producing inconsistent estimates of the population divergence time, further confounding attempts to robustly uncover the history of human migration, especially when most population genetic studies do not employ multiple methods to estimate the time to the most recent common ancestor (TMRCA). Here, we chose eight popular methods for estimating TMRCA and evaluated their robustness and accuracy in correctly identifying the true TMRCA through a series of simulations that mimicked different evolutionary scenarios. We subsequently applied all eight methods to estimate the population divergence time between Southeast Asian Malays and South Asian Indians using deep whole-genome sequencing data. PMID:26669663

  2. The evolution of air resonance power efficiency in the violin and its ancestors

    PubMed Central

    Nia, Hadi T.; Jain, Ankita D.; Liu, Yuming; Alam, Mohammad-Reza; Barnas, Roman; Makris, Nicholas C.

    2015-01-01

    The fact that acoustic radiation from a violin at air-cavity resonance is monopolar and can be determined by pure volume change is used to help explain related aspects of violin design evolution. By determining the acoustic conductance of arbitrarily shaped sound holes, it is found that air flow at the perimeter rather than the broader sound-hole area dominates acoustic conductance, and coupling between compressible air within the violin and its elastic structure lowers the Helmholtz resonance frequency from that found for a corresponding rigid instrument by roughly a semitone. As a result of the former, it is found that as sound-hole geometry of the violin's ancestors slowly evolved over centuries from simple circles to complex f-holes, the ratio of inefficient, acoustically inactive to total sound-hole area was decimated, roughly doubling air-resonance power efficiency. F-hole length then slowly increased by roughly 30% across two centuries in the renowned workshops of Amati, Stradivari and Guarneri, favouring instruments with higher air-resonance power, through a corresponding power increase of roughly 60%. By evolution-rate analysis, these changes are found to be consistent with mutations arising within the range of accidental replication fluctuations from craftsmanship limitations with subsequent selection favouring instruments with higher air-resonance power. PMID:25792964

  3. Ascomatal morphogenesis in Myxotrichum arcticum supports the derivation of the Myxotrichaceae from a discomycetous ancestor.

    PubMed

    Tsuneda, A; Currah, R S

    2004-01-01

    Electron microscopy shows that ascomata of Myxotricum arcticum bear a striking resemblance to discocarps in morphogenesis and in previously overlooked aspects of gross morphology. Although mature ascomata of M. arcticum superficially resemble reticuloperidial cleistothecia common in the Onygenales, the bramble-like aggregation of thick-walled hyphae, previously considered to represent a closed peridium, forms a basket-like apothecium that overarches a distinct hymenium of stipitate, protunicate asci interspersed with paraphyses. There is no evidence of asci developing in chains and at different levels as is characteristic of the centrum of many Eurotiomycetes. Instead, more or less globose, stipitate and evanescent asci arise individually from penultimate cells of croziers and develop almost synchronously across a distinct hymenial layer derived from a richly branched network of crozier-bearing hyphae. After dissolution of the ascus wall, ascospores adhere to a membranous sheath that underlies the hymenium. These observations provide strong support for prior suggestions based on molecular phylogenetic comparisons that the Myxotrichaceae recently are derived from a helotialean ancestor. Observations of conidiogenesis show that the typical Oidiodendron anamorph is accompanied by a second conidiogenous form with ampullae and botryose clusters of blastic conidia. PMID:21148882

  4. Punctuated Emergences of Genetic and Phenotypic Innovations in Eumetazoan, Bilaterian, Euteleostome, and Hominidae Ancestors

    PubMed Central

    Wenger, Yvan; Galliot, Brigitte

    2013-01-01

    Phenotypic traits derive from the selective recruitment of genetic materials over macroevolutionary times, and protein-coding genes constitute an essential component of these materials. We took advantage of the recent production of genomic scale data from sponges and cnidarians, sister groups from eumetazoans and bilaterians, respectively, to date the emergence of human proteins and to infer the timing of acquisition of novel traits through metazoan evolution. Comparing the proteomes of 23 eukaryotes, we find that 33% human proteins have an ortholog in nonmetazoan species. This premetazoan proteome associates with 43% of all annotated human biological processes. Subsequently, four major waves of innovations can be inferred in the last common ancestors of eumetazoans, bilaterians, euteleostomi (bony vertebrates), and hominidae, largely specific to each epoch, whereas early branching deuterostome and chordate phyla show very few innovations. Interestingly, groups of proteins that act together in their modern human functions often originated concomitantly, although the corresponding human phenotypes frequently emerged later. For example, the three cnidarians Acropora, Nematostella, and Hydra express a highly similar protein inventory, and their protein innovations can be affiliated either to traits shared by all eumetazoans (gut differentiation, neurogenesis); or to bilaterian traits present in only some cnidarians (eyes, striated muscle); or to traits not identified yet in this phylum (mesodermal layer, endocrine glands). The variable correspondence between phenotypes predicted from protein enrichments and observed phenotypes suggests that a parallel mechanism repeatedly produce similar phenotypes, thanks to novel regulatory events that independently tie preexisting conserved genetic modules. PMID:24065732

  5. Convergent evolution of Hawaiian and Australo-Pacific honeyeaters from distant songbird ancestors.

    PubMed

    Fleischer, Robert C; James, Helen F; Olson, Storrs L

    2008-12-23

    The Hawaiian "honeyeaters," five endemic species of recently extinct, nectar-feeding songbirds in the genera Moho and Chaetoptila, looked and acted like Australasian honeyeaters (Meliphagidae), and no taxonomist since their discovery on James Cook's third voyage has classified them as anything else. We obtained DNA sequences from museum specimens of Moho and Chaetoptila collected in Hawaii 115-158 years ago. Phylogenetic analysis of these sequences supports monophyly of the two Hawaiian genera but, surprisingly, reveals that neither taxon is a meliphagid honeyeater, nor even in the same part of the songbird radiation as meliphagids. Instead, the Hawaiian species are divergent members of a passeridan group that includes deceptively dissimilar families of songbirds (Holarctic waxwings, neotropical silky flycatchers, and palm chats). Here we designate them as a new family, the Mohoidae. A nuclear-DNA rate calibration suggests that mohoids diverged from their closest living ancestor 14-17 mya, coincident with the estimated earliest arrival in Hawaii of a bird-pollinated plant lineage. Convergent evolution, the evolution of similar traits in distantly related taxa because of common selective pressures, is illustrated well by nectar-feeding birds, but the morphological, behavioral, and ecological similarity of the mohoids to the Australasian honeyeaters makes them a particularly striking example of the phenomenon. PMID:19084408

  6. An early modern human from Romania with a recent Neanderthal ancestor.

    PubMed

    Fu, Qiaomei; Hajdinjak, Mateja; Moldovan, Oana Teodora; Constantin, Silviu; Mallick, Swapan; Skoglund, Pontus; Patterson, Nick; Rohland, Nadin; Lazaridis, Iosif; Nickel, Birgit; Viola, Bence; Prüfer, Kay; Meyer, Matthias; Kelso, Janet; Reich, David; Pääbo, Svante

    2015-08-13

    Neanderthals are thought to have disappeared in Europe approximately 39,000-41,000 years ago but they have contributed 1-3% of the DNA of present-day people in Eurasia. Here we analyse DNA from a 37,000-42,000-year-old modern human from Peştera cu Oase, Romania. Although the specimen contains small amounts of human DNA, we use an enrichment strategy to isolate sites that are informative about its relationship to Neanderthals and present-day humans. We find that on the order of 6-9% of the genome of the Oase individual is derived from Neanderthals, more than any other modern human sequenced to date. Three chromosomal segments of Neanderthal ancestry are over 50 centimorgans in size, indicating that this individual had a Neanderthal ancestor as recently as four to six generations back. However, the Oase individual does not share more alleles with later Europeans than with East Asians, suggesting that the Oase population did not contribute substantially to later humans in Europe. PMID:26098372

  7. Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors

    PubMed Central

    Zhang, Wenheng; Steinmann, Victor W.; Nikolov, Lachezar; Kramer, Elena M.; Davis, Charles C.

    2013-01-01

    Malpighiaceae possess flowers with a unique bilateral symmetry (zygomorphy), which is a hypothesized adaptation associated with specialization on neotropical oil bee pollinators. Gene expression of two representatives of the CYC2 lineage of floral symmetry TCP genes, CYC2A and CYC2B, demarcate the adaxial (dorsal) region of the flower in the characteristic zygomorphic flowers of most Malpighiaceae. Several clades within the family, however, have independently lost their specialized oil bee pollinators and reverted to radial flowers (actinomorphy) like their ancestors. Here, we investigate CYC2 expression associated with four independent reversals to actinomorphy. We demonstrate that these reversals are always associated with alteration of the highly conserved CYC2 expression pattern observed in most New World (NW) Malpighiaceae. In NW Lasiocarpus and Old World (OW) Microsteria, the expression of CYC2-like genes has expanded to include the ventral region of the corolla. Thus, the pattern of gene expression in these species has become radialized, which is comparable to what has been reported in the radial flowered legume clade Cadia. In striking contrast, in NW Psychopterys and OW Sphedamnocarpus, CYC2-like expression is entirely absent or at barely detectable levels. This is more similar to the pattern of CYC2 expression observed in radial flowered Arabidopsis. These results collectively indicate that, regardless of geographic distribution, reversals to similar floral phenotypes in this large tropical angiosperm clade have evolved via different genetic changes from an otherwise highly conserved developmental program. PMID:23970887

  8. In search of the last common ancestor: new findings on wild chimpanzees

    PubMed Central

    McGrew, W. C.

    2010-01-01

    Modelling the behaviour of extinct hominins is essential in order to devise useful hypotheses of our species' evolutionary origins for testing in the palaeontological and archaeological records. One approach is to model the last common ancestor (LCA) of living apes and humans, based on current ethological and ecological knowledge of our closest living relations. Such referential modelling is based on rigorous, ongoing field studies of the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). This paper reviews recent findings from nature, focusing on those with direct implications for hominin evolution, e.g. apes, using elementary technology to access basic resources such as food and water, or sheltering in caves or bathing as thermoregulatory adaptations. I give preference to studies that directly address key issues, such as whether stone artefacts are detectible before the Oldowan, based on the percussive technology of hammer and anvil use by living apes. Detailed comparative studies of chimpanzees living in varied habitats, from rainforest to savannah, reveal that some behavioural patterns are universal (e.g. shelter construction), while others show marked (e.g. extractive foraging) or nuanced (e.g. courtship) cross-populational variation. These findings allow us to distinguish between retained, primitive traits of the LCA versus derived ones in the human lineage. PMID:20855301

  9. Progress Towards Mammalian Whole-Brain Cellular Connectomics

    PubMed Central

    Mikula, Shawn

    2016-01-01

    Neurons are the fundamental structural units of the nervous system—i.e., the Neuron Doctrine—as the pioneering work of Santiago Ramón y Cajal in the 1880’s clearly demonstrated through careful observation of Golgi-stained neuronal morphologies. However, at that time sample preparation, imaging methods and computational tools were either nonexistent or insufficiently developed to permit the precise mapping of an entire brain with all of its neurons and their connections. Some measure of the “mesoscopic” connectional organization of the mammalian brain has been obtained over the past decade by alignment of sparse subsets of labeled neurons onto a reference atlas or via MRI-based diffusion tensor imaging. Neither method, however, provides data on the complete connectivity of all neurons comprising an individual brain. Fortunately, whole-brain cellular connectomics now appears within reach due to recent advances in whole-brain sample preparation and high-throughput electron microscopy (EM), though substantial obstacles remain with respect to large volume electron microscopic acquisitions and automated neurite reconstructions. This perspective examines the current status and problems associated with generating a mammalian whole-brain cellular connectome and argues that the time is right to launch a concerted connectomic attack on a small mammalian whole-brain. PMID:27445704

  10. Progress Towards Mammalian Whole-Brain Cellular Connectomics.

    PubMed

    Mikula, Shawn

    2016-01-01

    Neurons are the fundamental structural units of the nervous system-i.e., the Neuron Doctrine-as the pioneering work of Santiago Ramón y Cajal in the 1880's clearly demonstrated through careful observation of Golgi-stained neuronal morphologies. However, at that time sample preparation, imaging methods and computational tools were either nonexistent or insufficiently developed to permit the precise mapping of an entire brain with all of its neurons and their connections. Some measure of the "mesoscopic" connectional organization of the mammalian brain has been obtained over the past decade by alignment of sparse subsets of labeled neurons onto a reference atlas or via MRI-based diffusion tensor imaging. Neither method, however, provides data on the complete connectivity of all neurons comprising an individual brain. Fortunately, whole-brain cellular connectomics now appears within reach due to recent advances in whole-brain sample preparation and high-throughput electron microscopy (EM), though substantial obstacles remain with respect to large volume electron microscopic acquisitions and automated neurite reconstructions. This perspective examines the current status and problems associated with generating a mammalian whole-brain cellular connectome and argues that the time is right to launch a concerted connectomic attack on a small mammalian whole-brain. PMID:27445704

  11. Breast Reconstruction After Mastectomy

    MedlinePlus

    ... around the cancer removed (lumpectomy or breast-conserving surgery) might not need reconstruction, but sometimes they do. Breast reconstruction is done by a plastic surgeon. Should I have breast reconstruction? Breast reconstruction ...

  12. Comparative Genomic Evidence for a Complete Nuclear Pore Complex in the Last Eukaryotic Common Ancestor

    PubMed Central

    Neumann, Nadja; Lundin, Daniel; Poole, Anthony M.

    2010-01-01

    Background The Nuclear Pore Complex (NPC) facilitates molecular trafficking between nucleus and cytoplasm and is an integral feature of the eukaryote cell. It exhibits eight-fold rotational symmetry and is comprised of approximately 30 nucleoporins (Nups) in different stoichiometries. Nups are broadly conserved between yeast, vertebrates and plants, but few have been identified among other major eukaryotic groups. Methodology/Principal Findings We screened for Nups across 60 eukaryote genomes and report that 19 Nups (spanning all major protein subcomplexes) are found in all eukaryote supergroups represented in our study (Opisthokonts, Amoebozoa, Viridiplantae, Chromalveolates and Excavates). Based on parsimony, between 23 and 26 of 31 Nups can be placed in LECA. Notably, they include central components of the anchoring system (Ndc1 and Gp210) indicating that the anchoring system did not evolve by convergence, as has previously been suggested. These results significantly extend earlier results and, importantly, unambiguously place a fully-fledged NPC in LECA. We also test the proposal that transmembrane Pom proteins in vertebrates and yeasts may account for their variant forms of mitosis (open mitoses in vertebrates, closed among yeasts). The distribution of homologues of vertebrate Pom121 and yeast Pom152 is not consistent with this suggestion, but the distribution of fungal Pom34 fits a scenario wherein it was integral to the evolution of closed mitosis in ascomycetes. We also report an updated screen for vesicle coating complexes, which share a common evolutionary origin with Nups, and can be traced back to LECA. Surprisingly, we find only three supergroup-level differences (one gain and two losses) between the constituents of COPI, COPII and Clathrin complexes. Conclusions/Significance Our results indicate that all major protein subcomplexes in the Nuclear Pore Complex are traceable to the Last Eukaryotic Common Ancestor (LECA). In contrast to previous screens

  13. The vertebral formula of the last common ancestor of African apes and humans.

    PubMed

    McCollum, Melanie A; Rosenman, Burt A; Suwa, Gen; Meindl, Richard S; Lovejoy, C Owen

    2010-03-15

    The modal number of lumbar vertebrae in modern humans is five. It varies between three and four in extant African apes (mean=3.5). Because both chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) possess the same distributions of thoracic, lumbar, and sacral vertebrae, it has been assumed from parsimony that the last common ancestor (LCA) of African apes and humans possessed a similarly short lower back. This "short-backed LCA" scenario has recently been viewed favorably in an analysis of the intra- and interspecific variation in axial formulas observed among African apes and humans (Pilbeam, 2004. J Exp Zool 302B:241-267). However, the number of bonobo (Pan paniscus) specimens in that study was small (N=17). Here we reconsider vertebral type and number in the LCA in light of an expanded P. paniscus sample as well as evidence provided by the human fossil record. The precaudal (pre-coccygeal) axial column of bonobos differs from those of chimpanzees and gorillas in displaying one additional vertebra as well as significantly different combinations of sacral, lumbar, and thoracic vertebrae. These findings, along with the six-segmented lumbar column of early Australopithecus and early Homo, suggest that the LCA possessed a long axial column and long lumbar spine and that reduction in the lumbar column occurred independently in humans and in each ape clade, and continued after separation of the two species of Pan as well. Such an explanation is strongly congruent with additional details of lumbar column reduction and lower back stabilization in African apes. PMID:19688850

  14. The compact Brachypodium genome conserves centromeric regions of a common ancestor with wheat and rice.

    PubMed

    Qi, Lili; Friebe, Bernd; Wu, Jiajie; Gu, Yongqiang; Qian, Chen; Gill, Bikram S

    2010-11-01

    The evolution of five chromosomes of Brachypodium distachyon from a 12-chromosome ancestor of all grasses by dysploidy raises an interesting question about the fate of redundant centromeres. Three independent but complementary approaches were pursued to study centromeric region homologies among the chromosomes of Brachypodium, wheat, and rice. The genes present in pericentromeres of the basic set of seven chromosomes of wheat and the Triticeae, and the 80 rice centromeric genes spanning the CENH3 binding domain of centromeres 3, 4, 5, 7, and 8 were used as "anchor" markers to identify centromere locations in the B. distachyon chromosomes. A total of 53 B. distachyon bacterial artificial chromosome (BAC) clones anchored by wheat pericentromeric expressed sequence tags (ESTs) were used as probes for BAC-fluorescence in situ hybridization (FISH) analysis of B. distachyon mitotic chromosomes. Integrated sequence alignment and BAC-FISH data were used to determine the approximate positions of active and inactive centromeres in the five B. distachyon chromosomes. The following syntenic relationships of the centromeres for Brachypodium (Bd), rice (R), and wheat (W) were evident: Bd1-R6, Bd2-R5-W1, Bd3-R10, Bd4-R11-W4, and Bd5-R4. Six rice centromeres syntenic to five wheat centromeres were inactive in Brachypodium chromosomes. The conservation of centromere gene synteny among several sets of homologous centromeres of three species indicates that active genes can persist in ancient centromeres with more than 40 million years of shared evolutionary history. Annotation of a BAC contig spanning an inactive centromere in chromosome Bd3 which is syntenic to rice Cen8 and W7 pericentromeres, along with BAC FISH data from inactive centromeres revealed that the centromere inactivation was accompanied by the loss of centromeric retrotransposons and turnover of centromere-specific satellites during Bd chromosome evolution. PMID:20842403

  15. Molecular Epidemiology of Helicobacter pylori Infection in Nepal: Specific Ancestor Root

    PubMed Central

    Miftahussurur, Muhammad; Sharma, Rabi Prakash; Shrestha, Pradeep Krishna; Suzuki, Rumiko; Uchida, Tomohisa; Yamaoka, Yoshio

    2015-01-01

    Prevalence of Helicobacter pylori infection in Nepal, a low-risk country for gastric cancer, is debatable. To our knowledge, no studies have examined H. pylori virulence factors in Nepal. We determined the prevalence of H. pylori infection by using three different tests, and the genotypes of virulence factors were determined by PCR followed by sequencing. Multilocus sequence typing was used to analyze the population structure of the Nepalese strains. The prevalence of H. pylori infection in dyspeptic patients was 38.4% (56/146), and was significantly related with source of drinking water. In total, 51 strains were isolated and all were cagA-positive. Western-type-cagA (94.1%), cagA pre-EPIYA type with no deletion (92.2%), vacA s1a (74.5%), and m1c (54.9%) were the predominant genotypes. Antral mucosal atrophy levels were significantly higher in patients infected with vacA s1 than in those infected with s2 genotypes (P = 0.03). Several Nepalese strains were H. pylori recombinants with genetic features of South Asian and East Asian genotypes. These included all East-Asian-type-cagA strains, with significantly lesser activity and inflammation in the corpus than the strains of the specific South Asian genotype (P = 0.03 and P = 0.005, respectively). Although the population structure confirmed that most Nepalese strains belonged to the hpAsia2 population, some strains shared hpEurope- and Nepalese-specific components. Nepalese patients infected with strains belonging to hpEurope showed higher inflammation in the antrum than strains from the Nepalese specific population (P = 0.05). These results support that ancestor roots of Kathmandu`s people not only connected with India alone. PMID:26226153

  16. Evidence of a chimeric genome in the cyanobacterial ancestor of plastids

    PubMed Central

    2008-01-01

    Background Horizontal gene transfer (HGT) is a vexing fact of life for microbial phylogeneticists. Given the substantial rates of HGT observed in modern-day bacterial chromosomes, it is envisaged that ancient prokaryotic genomes must have been similarly chimeric. But where can one find an ancient prokaryotic genome that has maintained its ancestral condition to address this issue? An excellent candidate is the cyanobacterial endosymbiont that was harnessed over a billion years ago by a heterotrophic protist, giving rise to the plastid. Genetic remnants of the endosymbiont are still preserved in plastids as a highly reduced chromosome encoding 54 – 264 genes. These data provide an ideal target to assess genome chimericism in an ancient cyanobacterial lineage. Results Here we demonstrate that the origin of the plastid-encoded gene cluster for menaquinone/phylloquinone biosynthesis in the extremophilic red algae Cyanidiales contradicts a cyanobacterial genealogy. These genes are relics of an ancestral cluster related to homologs in Chlorobi/Gammaproteobacteria that we hypothesize was established by HGT in the progenitor of plastids, thus providing a 'footprint' of genome chimericism in ancient cyanobacteria. In addition to menB, four components of the original gene cluster (menF, menD, menC, and menH) are now encoded in the nuclear genome of the majority of non-Cyanidiales algae and plants as the unique tetra-gene fusion named PHYLLO. These genes are monophyletic in Plantae and chromalveolates, indicating that loci introduced by HGT into the ancestral cyanobacterium were moved over time into the host nucleus. Conclusion Our study provides unambiguous evidence for the existence of genome chimericism in ancient cyanobacteria. In addition we show genes that originated via HGT in the cyanobacterial ancestor of the plastid made their way to the host nucleus via endosymbiotic gene transfer (EGT). PMID:18433492

  17. The eukaryotic ancestor had a complex ubiquitin signaling system of archaeal origin.

    PubMed

    Grau-Bové, Xavier; Sebé-Pedrós, Arnau; Ruiz-Trillo, Iñaki

    2015-03-01

    The origin of the eukaryotic cell is one of the most important transitions in the history of life. However, the emergence and early evolution of eukaryotes remains poorly understood. Recent data have shown that the last eukaryotic common ancestor (LECA) was much more complex than previously thought. The LECA already had the genetic machinery encoding the endomembrane apparatus, spliceosome, nuclear pore, and myosin and kinesin cytoskeletal motors. It is unclear, however, when the functional regulation of these cellular components evolved. Here, we address this question by analyzing the origin and evolution of the ubiquitin (Ub) signaling system, one of the most important regulatory layers in eukaryotes. We delineated the evolution of the whole Ub, Small-Ub-related MOdifier (SUMO), and Ub-fold modifier 1 (Ufm1) signaling networks by analyzing representatives from all major eukaryotic, bacterial, and archaeal lineages. We found that the Ub toolkit had a pre-eukaryotic origin and is present in three extant archaeal groups. The pre-eukaryotic Ub toolkit greatly expanded during eukaryogenesis, through massive gene innovation and diversification of protein domain architectures. This resulted in a LECA with essentially all of the Ub-related genes, including the SUMO and Ufm1 Ub-like systems. Ub and SUMO signaling further expanded during eukaryotic evolution, especially labeling and delabeling enzymes responsible for substrate selection. Additionally, we analyzed protein domain architecture evolution and found that multicellular lineages have the most complex Ub systems in terms of domain architectures. Together, we demonstrate that the Ub system predates the origin of eukaryotes and that a burst of innovation during eukaryogenesis led to a LECA with complex posttranslational regulation. PMID:25525215

  18. Molecular Epidemiology of Helicobacter pylori Infection in Nepal: Specific Ancestor Root.

    PubMed

    Miftahussurur, Muhammad; Sharma, Rabi Prakash; Shrestha, Pradeep Krishna; Suzuki, Rumiko; Uchida, Tomohisa; Yamaoka, Yoshio

    2015-01-01

    Prevalence of Helicobacter pylori infection in Nepal, a low-risk country for gastric cancer, is debatable. To our knowledge, no studies have examined H. pylori virulence factors in Nepal. We determined the prevalence of H. pylori infection by using three different tests, and the genotypes of virulence factors were determined by PCR followed by sequencing. Multilocus sequence typing was used to analyze the population structure of the Nepalese strains. The prevalence of H. pylori infection in dyspeptic patients was 38.4% (56/146), and was significantly related with source of drinking water. In total, 51 strains were isolated and all were cagA-positive. Western-type-cagA (94.1%), cagA pre-EPIYA type with no deletion (92.2%), vacA s1a (74.5%), and m1c (54.9%) were the predominant genotypes. Antral mucosal atrophy levels were significantly higher in patients infected with vacA s1 than in those infected with s2 genotypes (P = 0.03). Several Nepalese strains were H. pylori recombinants with genetic features of South Asian and East Asian genotypes. These included all East-Asian-type-cagA strains, with significantly lesser activity and inflammation in the corpus than the strains of the specific South Asian genotype (P = 0.03 and P = 0.005, respectively). Although the population structure confirmed that most Nepalese strains belonged to the hpAsia2 population, some strains shared hpEurope- and Nepalese-specific components. Nepalese patients infected with strains belonging to hpEurope showed higher inflammation in the antrum than strains from the Nepalese specific population (P = 0.05). These results support that ancestor roots of Kathmandu`s people not only connected with India alone. PMID:26226153

  19. [The saga of aspirin: centuries-old ancestors of an old lady who doesn't deserve to die].

    PubMed

    Queneau, P

    2001-01-01

    Where do analgics come from? If their ancestors are many centuries old, we observe that the four main drugs of modern analgesia, morphine (1816), codeine (1832), paracetamol (1893) and aspirin (1897) were discovered during the 19th century. And through what 'sagas'! The first known prescriptions, written on earthenware shelves in Mesopotamia 3 centuries BC, already mentioned medications derived from willow to cure headaches. The Greeks dedicated to Asclepios, god of therapeutics, a statue carved in a willow trunk as a symbol! Thus, before becoming a drug, aspirin was born from the willow, which grows with its feet in water 'without suffering', as the ancestors put it. But before it walked on the moon with Neil Armstrong in 1969, the discovery of aspirin as a drug was the consequence of the filial love of a young researcher, Felix Hoffmann, who wanted to decrease the resistant pain of his rheumatic old father. PMID:11878097

  20. The origin of life and the last universal common ancestor: do we need a change of perspective?

    PubMed

    Glansdorff, Nicolas; Xu, Ying; Labedan, Bernard

    2009-09-01

    A complete tree with roots, trunk and crown remains an appropriate model to represent all steps of life's development, from the emergence of a unique genetic code up to the last universal common ancestor and its further radiation. Catalytic closure of a mixture of prebiotic polymers is a heuristic alternative to the RNA world. Conjectures about emergence of life in an infinite multiverse should not confuse probability with possibility. PMID:19524037

  1. Tracheal reconstructions.

    PubMed

    Srikrishna, S V; Shekar, P S; Shetty, N

    1998-12-01

    Surgical reconstruction of the trachea is a relatively complex procedure. We had 20 cases of tracheal stenosis. We have a modest experience of 16 tracheal reconstructions for acquired tracheal stenosis. Two patients underwent laser treatment while another two died before any intervention. The majority of these cases were a result of prolonged ventilation (14 cases), following organophosphorous poisoning (11 cases), Guillain-Barré syndrome, bullet injury, fat embolism and surprisingly only one tumor, a case of mucoepidermoid carcinoma, who had a very unusual presentation. There were 12 males and 4 females in this series, age ranging from 12-35 years. The duration of ventilation ranged from 1-21 days and the interval from decannulation to development of stridor was between 5-34 days. Six of them were approached by the cervical route, 5 by thoracotomy and cervical approach, 2 via median sternotomy and 3 by thoracotomy alone. Five of them required an additional laryngeal drop and 1 required pericardiotomy and release of pulmonary veins to gain additional length. The excised segments of trachea measured 3 to 5 cms in length. All were end to end anastomosis with interrupted Vicryl sutures. We have had no experience with stents or prosthetic tubes. Three patients developed anastomotic leaks which were controlled conservatively. Almost all of them required postoperative tracheo-bronchial suctioning with fibreoptic bronchoscope. We had one death in this series due to sepsis. PMID:9914459

  2. Mast cells in mammalian brain.

    PubMed

    Dropp, J J

    1976-01-01

    Mast cells, which had until recently been believed to be not present in the mammalian brain, were studied in the brains of 29 mammalian species. Although there was considerable intraspecific and interspecific variation, mast cells were most numerous within the leptomeninges (especially in those overlying the cerebrum and the dorsal thalamus - most rodents, most carnivores, chimpanzees, squirrel monkeys and elephant), the cerebral cortex (most rodents, tiger, fox, chimpanzee, tarsier, and elephant) and in many nuclei of the dorsal thalamus (most rodents, tiger, lion, and fox). In some mammals, mast cells were also numerous in the stroma of the telencephalic choroid plexuses (chimpanzee, squirrel monkey), the putamen and the claustrum (chimpanzee), the subfornical organ (pack rat, tiger, chimpanzee), the olfactory peduncles (hooded rat, albino rat), the stroma of the diencephalic choroid plexus (lion, chimpanzee, squirrel monkey), the pineal organ (chimpanzee, squirrel monkey), some nuclei of the hypothalamus (tiger), the infundibulum (hooded rat, tiger, fox) the area postrema (pack rat, chinchilla, lion, spider monkey, chimpanzee, fox) and some nuclei and tracts of the metencephalon and the myelencephalon (tiger). Neither the sex of the animal nor electrolytic lesions made in the brains of some of the animals at various times prior to sacrifice appeared to effect the number and the distribution of mast cells. Age-related changes in mast cell number and distribution were detected in the albino rat. PMID:961335

  3. DNA modifications in the mammalian brain

    PubMed Central

    Shin, Jaehoon; Ming, Guo-li; Song, Hongjun

    2014-01-01

    DNA methylation is a crucial epigenetic mark in mammalian development, genomic imprinting, X-inactivation, chromosomal stability and suppressing parasitic DNA elements. DNA methylation in neurons has also been suggested to play important roles for mammalian neuronal functions, and learning and memory. In this review, we first summarize recent discoveries and fundamental principles of DNA modifications in the general epigenetics field. We then describe the profiles of different DNA modifications in the mammalian brain genome. Finally, we discuss roles of DNA modifications in mammalian brain development and function. PMID:25135973

  4. Dynamic Ising model: reconstruction of evolutionary trees

    NASA Astrophysics Data System (ADS)

    de Oliveira, P. M. C.

    2013-09-01

    An evolutionary tree is a cascade of bifurcations starting from a single common root, generating a growing set of daughter species as time goes by. ‘Species’ here is a general denomination for biological species, spoken languages or any other entity which evolves through heredity. From the N currently alive species within a clade, distances are measured through pairwise comparisons made by geneticists, linguists, etc. The larger is such a distance that, for a pair of species, the older is their last common ancestor. The aim is to reconstruct the previously unknown bifurcations, i.e. the whole clade, from knowledge of the N(N - 1)/2 quoted distances, which are taken for granted. A mechanical method is presented and its applicability is discussed.

  5. Genomic and Proteomic Analyses Indicate that Banchine and Campoplegine Polydnaviruses Have Similar, if Not Identical, Viral Ancestors

    PubMed Central

    Béliveau, Catherine; Cohen, Alejandro; Stewart, Don; Periquet, Georges; Djoumad, Abdelmadjid; Kuhn, Lisa; Stoltz, Don; Boyle, Brian; Volkoff, Anne-Nathalie; Herniou, Elisabeth A.; Drezen, Jean-Michel

    2015-01-01

    ABSTRACT Polydnaviruses form a group of unconventional double-stranded DNA (dsDNA) viruses transmitted by endoparasitic wasps during egg laying into caterpillar hosts, where viral gene expression is essential to immature wasp survival. A copy of the viral genome is present in wasp chromosomes, thus ensuring vertical transmission. Polydnaviruses comprise two taxa, Bracovirus and Ichnovirus, shown to have distinct viral ancestors whose genomes were “captured” by ancestral wasps. While evidence indicates that bracoviruses derive from a nudivirus ancestor, the identity of the ichnovirus progenitor remains unknown. In addition, ichnoviruses are found in two ichneumonid wasp subfamilies, Campopleginae and Banchinae, where they constitute morphologically and genomically different virus types. To address the question of whether these two ichnovirus subgroups have distinct ancestors, we used genomic, proteomic, and transcriptomic analyses to characterize particle proteins of the banchine Glypta fumiferanae ichnovirus and the genes encoding them. Several proteins were found to be homologous to those identified earlier for campoplegine ichnoviruses while the corresponding genes were located in clusters of the wasp genome similar to those observed previously in a campoplegine wasp. However, for the first time in a polydnavirus system, these clusters also revealed sequences encoding enzymes presumed to form the replicative machinery of the progenitor virus and observed to be overexpressed in the virogenic tissue. Homology searches pointed to nucleocytoplasmic large DNA viruses as the likely source of these genes. These data, along with an analysis of the chromosomal form of five viral genome segments, provide clear evidence for the relatedness of the banchine and campoplegine ichnovirus ancestors. IMPORTANCE Recent work indicates that the two recognized polydnavirus taxa, Bracovirus and Ichnovirus, are derived from distinct viruses whose genomes integrated into the genomes

  6. Genome sequence of the brown Norway rat yields insights into mammalian evolution

    SciTech Connect

    Gibbs, Richard A.; Weinstock, George M.; Metzker, Michael L.; Muzny, Donna M.; Sodergren, Erica J.; Scherer, Steven; Scott, Graham; Steffen, David; Worley, Kim C.; Burch, Paula E.; Okwuonu, Geoffrey; Hines, Sandra; Lewis, Lora; DeRamo, Christine; Delgado, Oliver; Dugan-Rocha, Shannon; Miner, George; Morgan, Margaret; Hawes, Alicia; Gill, Rachel; Holt, Robert A.; Adams, Mark D.; Amanatides, Peter G.; Baden-Tillson, Holly; Barnstead, Mary; Chin, Soo; Evans, Cheryl A.; Ferriera, Steven; Fosler, Carl; Glodek, Anna; Gu, Zhiping; Jennings, Don; Kraft, Cheryl L.; Nguyen, Trixie; Pfannkoch, Cynthia M.; Sitter, Cynthia; Sutton, Granger G.; Venter, J. Craig; Woodage, Trevor; Smith, Douglas; Lee, Hong-Maei; Gustafson, Erik; Cahill, Patrick; Kana, Arnold; Doucette-Stamm, Lynn; Weinstock, Keith; Fechtel, Kim; Weiss, Robert B.; Dunn, Diane M.; Green, Eric D.; Blakesley, Robert W.; Bouffard, Gerard G.; de Jong, Pieter J.; Osoegawa, Kazutoyo; Zhu, Baoli; Marra, Marco; Schein, Jacqueline; Bosdet, Ian; Fjell, Chris; Jones, Steven; Krzywinski, Martin; Mathewson, Carrie; Siddiqui, Asim; Wye, Natasja; McPherson, John; Zhao, Shaying; Fraser, Claire M.; Shetty, Jyoti; Shatsman, Sofiya; Geer, Keita; Chen, Yixin; Abramzon, Sofyia; Nierman, William C.; Havlak, Paul H.; Chen, Rui; Durbin, K. James; Egan, Amy; Ren, Yanru; Song, Xing-Zhi; Li, Bingshan; Liu, Yue; Qin, Xiang; Cawley, Simon; Cooney, A.J.; D'Souza, Lisa M.; Martin, Kirt; Wu, Jia Qian; Gonzalez-Garay, Manuel L.; Jackson, Andrew R.; Kalafus, Kenneth J.; McLeod, Michael P.; Milosavljevic, Aleksandar; Virk, Davinder; Volkov, Andrei; Wheeler, David A.; Zhang, Zhengdong; Bailey, Jeffrey A.; Eichler, Evan E.; Tuzun, Eray; Birney, Ewan; Mongin, Emmanuel; Ureta-Vidal, Abel; Woodwark, Cara; Zdobnov, Evgeny; Bork, Peer; Suyama, Mikita; Torrents, David; Alexandersson, Marina; Trask, Barbara J.; Young, Janet M.; et al.

    2004-02-02

    The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90 percent of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.

  7. Producing Newborn Synchronous Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  8. Body Size in Mammalian Paleobiology

    NASA Astrophysics Data System (ADS)

    Damuth, John; MacFadden, Bruce J.

    1990-11-01

    This valuable collection of essays presents and evaluates techniques of body-mass estimation and reviews current and potential applications of body-size estimates in paleobiology. Papers discuss explicitly the errors and biases of various regression techniques and predictor variables, and the identification of functionally similar groups of species for improving the accuracy of estimates. At the same time other chapters review and discuss the physiological, ecological, and behavioral correlates of body size in extant mammals; the significance of body-mass distributions in mammalian faunas; and the ecology and evolution of body size in particular paleofaunas. Coverage is particularly detailed for carnivores, primates, and ungulates, but information is also presented on marsupials, rodents, and proboscideans.

  9. Determinants of Mammalian Nucleolar Architecture

    PubMed Central

    Farley, Katherine I.; Surovtseva, Yulia; Merkel, Janie; Baserga, Susan J.

    2015-01-01

    The nucleolus is responsible for the production of ribosomes, essential machines which synthesize all proteins needed by the cell. The structure of human nucleoli is highly dynamic and is directly related to its functions in ribosome biogenesis. Despite the importance of this organelle, the intricate relationship between nucleolar structure and function remains largely unexplored. How do cells control nucleolar formation and function? What are the minimal requirements for making a functional nucleolus? Here we review what is currently known regarding mammalian nucleolar formation at nucleolar organizer regions (NORs), which can be studied by observing the dissolution and reformation of the nucleolus during each cell division. Additionally, the nucleolus can be examined by analyzing how alterations in nucleolar function manifest in differences in nucleolar architecture. Furthermore, changes in nucleolar structure and function are correlated with cancer, highlighting the importance of studying the determinants of nucleolar formation. PMID:25670395

  10. Development of the Mammalian Kidney.

    PubMed

    McMahon, Andrew P

    2016-01-01

    The basic unit of kidney function is the nephron. In the mouse, around 14,000 nephrons form in a 10-day period extending into early neonatal life, while the human fetus forms the adult complement of nephrons in a 32-week period completed prior to birth. This review discusses our current understanding of mammalian nephrogenesis: the contributing cell types and the regulatory processes at play. A conceptual developmental framework has emerged for the mouse kidney. This framework is now guiding studies of human kidney development enabled in part by in vitro systems of pluripotent stem cell-seeded nephrogenesis. A near future goal will be to translate our developmental knowledge-base to the productive engineering of new kidney structures for regenerative medicine. PMID:26969971

  11. Evolutionary history of mammalian sucking lice (Phthiraptera: Anoplura)

    PubMed Central

    2010-01-01

    Background Sucking lice (Phthiraptera: Anoplura) are obligate, permanent ectoparasites of eutherian mammals, parasitizing members of 12 of the 29 recognized mammalian orders and approximately 20% of all mammalian species. These host specific, blood-sucking insects are morphologically adapted for life on mammals: they are wingless, dorso-ventrally flattened, possess tibio-tarsal claws for clinging to host hair, and have piercing mouthparts for feeding. Although there are more than 540 described species of Anoplura and despite the potential economical and medical implications of sucking louse infestations, this study represents the first attempt to examine higher-level anopluran relationships using molecular data. In this study, we use molecular data to reconstruct the evolutionary history of 65 sucking louse taxa with phylogenetic analyses and compare the results to findings based on morphological data. We also estimate divergence times among anopluran taxa and compare our results to host (mammal) relationships. Results This study represents the first phylogenetic hypothesis of sucking louse relationships using molecular data and we find significant conflict between phylogenies constructed using molecular and morphological data. We also find that multiple families and genera of sucking lice are not monophyletic and that extensive taxonomic revision will be necessary for this group. Based on our divergence dating analyses, sucking lice diversified in the late Cretaceous, approximately 77 Ma, and soon after the Cretaceous-Paleogene boundary (ca. 65 Ma) these lice proliferated rapidly to parasitize multiple mammalian orders and families. Conclusions The diversification time of sucking lice approximately 77 Ma is in agreement with mammalian evolutionary history: all modern mammal orders are hypothesized to have diverged by 75 Ma thus providing suitable habitat for the colonization and radiation of sucking lice. Despite the concordant timing of diversification events

  12. Recent advances in mammalian protein production

    PubMed Central

    Bandaranayake, Ashok D.; Almo, Steven C.

    2014-01-01

    Mammalian protein production platforms have had a profound impact in many areas of basic and applied research, and an increasing number of blockbuster drugs are recombinant mammalian proteins. With global sales of these drugs exceeding US$120 billion per year, both industry and academic research groups continue to develop cost effective methods for producing mammalian proteins to support preclinical and clinical evaluations of potential therapeutics. While a wide range of platforms have been successfully exploited for laboratory use, the bulk of recent biologics have been produced in mammalian cell lines due to the requirement for post translational modification and the biosynthetic complexity of the target proteins. In this review we highlight the range of mammalian expression platforms available for recombinant protein production, as well as advances in technologies for the rapid and efficient selection of highly productive clones. PMID:24316512

  13. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  14. The society of our “out of Africa” ancestors (I)

    PubMed Central

    2011-01-01

    The “out of Africa” hypothesis proposes that a small group of Homo sapiens left Africa 80,000 years ago, spreading the mitochondrial haplotype L3 throughout the Earth.1–10 Little effort has been made to try to reconstruct the society and culture of the tribe that left Africa to populate the rest of the world.1 Here, I find that hunter-gatherers that belong to mitochondrial haplotypes L0, L1 and L2 do not have a culture of ritualized fights. In contrast to this, almost all L3 derived hunter-gatherers have a more belligerent culture that includes ritualized fights such as wrestling, stick fights or headhunting expeditions. This appears to be independent of their environment because ritualized fights occur in all climates, from the tropics to the arctic. There is also a correlation between mitochondrial haplotypes and warfare propensity or the use of murder and suicide to resolve conflicts. The data implicate that the original human population outside Africa is descended from only two closely related sub-branches that practiced ritual fighting and had a higher propensity towards warfare and the use of murder for conflict resolution. This warfare culture may have given the out of Africa migrants a competitive advantage to colonize the world. But it could also have crucially influenced the subsequent history of The Earth. In the future, it would be interesting to see how we could further reconstruct the society and culture of the “Out of Africa Tribe.” PMID:21655430

  15. Phylogenomic reconstruction supports supercontinent origins for Leishmania.

    PubMed

    Harkins, Kelly M; Schwartz, Rachel S; Cartwright, Reed A; Stone, Anne C

    2016-03-01

    Leishmania, a genus of parasites transmitted to human hosts and mammalian/reptilian reservoirs by an insect vector, is the causative agent of the human disease complex leishmaniasis. The evolutionary relationships within the genus Leishmania and its origins are the source of ongoing debate, reflected in conflicting phylogenetic and biogeographic reconstructions. This study employs a recently described bioinformatics method, SISRS, to identify over 200,000 informative sites across the genome from newly sequenced and publicly available Leishmania data. This dataset is used to reconstruct the evolutionary relationships of this genus. Additionally, we constructed a large multi-gene dataset, using it to reconstruct the phylogeny and estimate divergence dates for species. We conclude that the genus Leishmania evolved at least 90-100 million years ago, supporting a modified version of the Multiple Origins hypothesis that we call the Supercontinent hypothesis. According to this scenario, separate Leishmania clades emerged prior to, and during, the breakup of Gondwana. Additionally, we confirm that reptile-infecting Leishmania are derived from mammalian forms and that the species that infect porcupines and sloths form a clade long separated from other species. Finally, we firmly place the guinea-pig infecting species, Leishmaniaenriettii, the globally dispersed Leishmaniasiamensis, and the newly identified Australian species from a kangaroo, as sibling species whose distribution arises from the ancient connection between Australia, Antarctica, and South America. PMID:26708057

  16. Maize Domestication and Anti-Herbivore Defences: Leaf-Specific Dynamics during Early Ontogeny of Maize and Its Wild Ancestors

    PubMed Central

    Maag, Daniel; Erb, Matthias; Bernal, Julio S.; Wolfender, Jean-Luc; Turlings, Ted C. J.; Glauser, Gaétan

    2015-01-01

    As a consequence of artificial selection for specific traits, crop plants underwent considerable genotypic and phenotypic changes during the process of domestication. These changes may have led to reduced resistance in the cultivated plant due to shifts in resource allocation from defensive traits to increased growth rates and yield. Modern maize (Zea mays ssp. mays) was domesticated from its ancestor Balsas teosinte (Z. mays ssp. parviglumis) approximately 9000 years ago. Although maize displays a high genetic overlap with its direct ancestor and other annual teosintes, several studies show that maize and its ancestors differ in their resistance phenotypes with teosintes being less susceptible to herbivore damage. However, the underlying mechanisms are poorly understood. Here we addressed the question to what extent maize domestication has affected two crucial chemical and one physical defence traits and whether differences in their expression may explain the differences in herbivore resistance levels. The ontogenetic trajectories of 1,4-benzoxazin-3-ones, maysin and leaf toughness were monitored for different leaf types across several maize cultivars and teosinte accessions during early vegetative growth stages. We found significant quantitative and qualitative differences in 1,4-benzoxazin-3-one accumulation in an initial pairwise comparison, but we did not find consistent differences between wild and cultivated genotypes during a more thorough examination employing several cultivars/accessions. Yet, 1,4-benzoxazin-3-one levels tended to decline more rapidly with plant age in the modern maize cultivars. Foliar maysin levels and leaf toughness increased with plant age in a leaf-specific manner, but were also unaffected by domestication. Based on our findings we suggest that defence traits other than the ones that were investigated are responsible for the observed differences in herbivore resistance between teosinte and maize. Furthermore, our results indicate

  17. DNA INTERSTRAND CROSSLINK REPAIR IN MAMMALIAN CELLS: STEP BY STEP

    PubMed Central

    Muniandy, Parameswary; Liu, Jia; Majumdar, Alokes; Liu, Su-ting; Seidman, Michael M.

    2009-01-01

    Interstrand DNA crosslinks (ICLs) are formed by natural products of metabolism and by chemotherapeutic reagents. Work in E. coli identified a two cycle repair scheme involving incisions on one strand on either side of the ICL (unhooking) producing a gapped intermediate with the incised oligonucleotide attached to the intact strand. The gap is filled by recombinational repair or lesion bypass synthesis. The remaining monoadduct is then removed by Nucleotide Excision Repair (NER). Despite considerable effort, our understanding of each step in mammalian cells is still quite limited. In part this reflects the variety of crosslinking compounds, each with distinct structural features, used by different investigators. Also, multiple repair pathways are involved, variably operative during the cell cycle. G1 phase repair requires functions from NER, although the mechanism of recognition has not been determined. Repair can be initiated by encounters with the transcriptional apparatus, or a replication fork. In the case of the latter, the reconstruction of a replication fork, stalled or broken by collision with an ICL, adds to the complexity of the repair process. The enzymology of unhooking, the identity of the lesion bypass polymerases required to fill the first repair gap, and the functions involved in the second repair cycle are all subjects of active inquiry. Here we will review current understanding of each step in ICL repair in mammalian cells. PMID:20039786

  18. Mammalian reproduction: an ecological perspective.

    PubMed

    Bronson, F H

    1985-02-01

    The objectives of this paper are to organize our concepts about the environmental regulation of reproduction in mammals and to delineate important gaps in our knowledge of this subject. The environmental factors of major importance for mammalian reproduction are food availability, ambient temperature, rainfall, the day/night cycle and a variety of social cues. The synthesis offered here uses as its core the bioenergetic control of reproduction. Thus, for example, annual patterns of breeding are viewed as reflecting primarily the caloric costs of the female's reproductive effort as they relate to the energetic costs and gains associated with her foraging effort. Body size of the female is an important consideration since it is correlated with both potential fat reserves and life span. Variation in nutrient availability may or may not be an important consideration. The evolutionary forces that have shaped the breeding success of males usually are fundamentally different from those acting on females and, by implication, the environmental controls governing reproduction probably also often differ either qualitatively or quantitatively in the two sexes. Mammals often live in habitats where energetic and nutrient challenges vary seasonally, even in the tropics. When seasonal breeding is required, a mammal may use a predictor such as photoperiod or a secondary plant compound to prepare metabolically for reproduction. A reasonable argument can be made, however, that opportunistic breeding, unenforced by a predictor, may be the most prevalent strategy extant among today's mammals. Social cues can have potent modulating actions. They can act either via discrete neural and endocrine pathways to alter specific processes such as ovulation, or they can induce nonspecific emotional states that secondarily affect reproduction. Many major gaps remain in our knowledge about the environmental regulation of mammalian reproduction. For one, we have a paucity of information about the

  19. Mammalian Carboxylesterase 5: Comparative Biochemistry and Genomics

    PubMed Central

    Holmes, Roger S; Cox, Laura A; VandeBerg, John L

    2008-01-01

    Carboxylesterase 5 (CES5) (also called cauxin or CES7) is one of at least five mammalian CES gene families encoding enzymes of broad substrate specificity and catalysing hydrolytic and transesterification reactions. In silico methods were used to predict the amino acid sequences, secondary structures and gene locations for CES5 genes and gene products. Amino acid sequence alignments of mammalian CES5 enzymes enabled identification of key CES sequences previously reported for human CES1, as well as other sequences that are specific to the CES5 gene family, which were consistent with being monomeric in subunit structure and available for secretion into body fluids. Predicted secondary structures for mammalian CES5 demonstrated significant conservation with human CES1 as well as distinctive mammalian CES5 like structures. Mammalian CES5 genes are located in tandem with the CES1 gene(s), are transcribed on the reverse strand and contained 13 exons. CES5 has been previously reported in high concentrations in the urine (cauxin) of adult male cats, and within a protein complex of mammalian male epididymal fluids. Roles for CES5 may include regulating urinary levels of male cat pheromones; catalysing lipid transfer reactions within mammalian male reproductive fluids; and protecting neural tissue from drugs and xenobiotics. PMID:19727319

  20. Mammalian mitochondrial beta-oxidation.

    PubMed Central

    Eaton, S; Bartlett, K; Pourfarzam, M

    1996-01-01

    The enzymic stages of mammalian mitochondrial beta-oxidation were elucidated some 30-40 years ago. However, the discovery of a membrane-associated multifunctional enzyme of beta-oxidation, a membrane-associated acyl-CoA dehydrogenase and characterization of the carnitine palmitoyl transferase system at the protein and at the genetic level has demonstrated that the enzymes of the system itself are incompletely understood. Deficiencies of many of the enzymes have been recognized as important causes of disease. In addition, the study of these disorders has led to a greater understanding of the molecular mechanism of beta-oxidation and the import, processing and assembly of the beta-oxidation enzymes within the mitochondrion. The tissue-specific regulation, intramitochondrial control and supramolecular organization of the pathway is becoming better understood as sensitive analytical and molecular techniques are applied. This review aims to cover enzymological and organizational aspects of mitochondrial beta-oxidation together with the biochemical aspects of inherited disorders of beta-oxidation and the intrinsic control of beta-oxidation. PMID:8973539

  1. Cell death in mammalian development.

    PubMed

    Penaloza, C; Orlanski, S; Ye, Y; Entezari-Zaher, T; Javdan, M; Zakeri, Z

    2008-01-01

    During embryogenesis there is an exquisite orchestration of cellular division, movement, differentiation, and death. Cell death is one of the most important aspects of organization of the developing embryo, as alteration in timing, level, or pattern of cell death can lead to developmental anomalies. Cell death shapes the embryo and defines the eventual functions of the organs. Cells die using different paths; understanding which path a dying cell takes helps us define the signals that regulate the fate of the cell. Our understanding of cell death in development stems from a number of observations indicating genetic regulation of the death process. With today's increased knowledge of the pathways of cell death and the identification of the genes whose products regulate the pathways we know that, although elimination of some of these gene products has no developmental phenotype, alteration of several others has profound effects. In this review we discuss the types and distributions of cell death seen in developing mammalian embryos as well as the gene products that may regulate the process. PMID:18220829

  2. Fate Mapping Mammalian Corneal Epithelia.

    PubMed

    Richardson, Alexander; Wakefield, Denis; Di Girolamo, Nick

    2016-04-01

    The anterior aspect of the cornea consists of a stratified squamous epithelium, thought to be maintained by a rare population of stem cells (SCs) that reside in the limbal transition zone. Although migration of cells that replenish the corneal epithelium has been studied for over a century, the process is still poorly understood and not well characterized. Numerous techniques have been employed to examine corneal epithelial dynamics, including visualization by light microscopy, the incorporation of vital dyes and DNA labels, and transplantation of genetically marked cells that have acted as cell and lineage beacons. Modern-day lineage tracing utilizes molecular methods to determine the fate of a specific cell and its progeny over time. Classically employed in developmental biology, lineage tracing has been used more recently to track the progeny of adult SCs in a number of organs to pin-point their location and understand their movement and influence on tissue regeneration. This review highlights key discoveries that have led researchers to develop cutting-edge genetic tools to effectively and more accurately monitor turnover and displacement of cells within the mammalian corneal epithelium. Collating information on the basic biology of SCs will have clinical ramifications in furthering our knowledge of the processes that govern their role in homeostasis, wound-healing, transplantation, and how we can improve current unsatisfactory SC-based therapies for patients suffering blinding corneal disease. PMID:26774909

  3. Mammalian cell cultivation in space

    NASA Astrophysics Data System (ADS)

    Gmünder, Felix K.; Suter, Robert N.; Kiess, M.; Urfer, R.; Nordau, C.-G.; Cogoli, A.

    Equipment used in space for the cultivation of mammalian cells does not meet the usual standard of earth bound bioreactors. Thus, the development of a space worthy bioreactor is mandatory for two reasons: First, to investigate the effect on single cells of the space environment in general and microgravity conditions in particular, and second, to provide researchers on long term missions and the Space Station with cell material. However, expertise for this venture is not at hand. A small and simple device for animal cell culture experiments aboard Spacelab (Dynamic Cell Culture System; DCCS) was developed. It provides 2 cell culture chambers, one is operated as a batch system, the other one as a perfusion system. The cell chambers have a volume of 200 μl. Medium exchange is achieved with an automatic osmotic pump. The system is neither mechanically stirred nor equipped with sensors. Oxygen for cell growth is provided by a gas chamber that is adjacent to the cell chambers. The oxygen gradient produced by the growing cells serves to maintain the oxygen influx by diffusion. Hamster kidney cells growing on microcarriers were used to test the biological performance of the DCCS. On ground tests suggest that this system is feasible.

  4. Possible mechanisms of mammalian immunocontraception.

    PubMed

    Barber, M R; Fayrer-Hosken, R A

    2000-03-01

    Ecological and conservation programs in ecosystems around the world have experienced varied success in population management. One of the greatest problems is that human expansion has led to the shrinking of wildlife habitat and, as a result, the overpopulation of many different species has occurred. The pressures exerted by the increased number of animals has caused environmental damage. The humane and practical control of these populations has solicited the scientific community to arrive at a safe, effective, and cost-efficient means of population control. Immunocontraception using zona pellucida antigens, specifically porcine zona pellucida (pZP), has become one of the most promising population control tools in the world today, with notable successes in horses and elephants. A conundrum has risen where pZP, a single vaccine, successfully induces an immunocontraceptive effect in multiple species of mammals. This review describes the most current data pertaining to the mammalian zona pellucida and immunocontraception, and from these studies, we suggest several potential mechanisms of immunocontraception. PMID:10706942

  5. Ghrelin Receptors in Non-Mammalian Vertebrates

    PubMed Central

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2012-01-01

    The growth hormone secretagogue-receptor (GHS-R) was discovered in humans and pigs in 1996. The endogenous ligand, ghrelin, was discovered 3 years later, in 1999, and our understanding of the physiological significance of the ghrelin system in vertebrates has grown steadily since then. Although the ghrelin system in non-mammalian vertebrates is a subject of great interest, protein sequence data for the receptor in non-mammalian vertebrates has been limited until recently, and related biological information has not been well organized. In this review, we summarize current information related to the ghrelin receptor in non-mammalian vertebrates. PMID:23882259

  6. Spatial and temporal arrival patterns of Madagascar's vertebrate fauna explained by distance, ocean currents, and ancestor type

    PubMed Central

    Samonds, Karen E.; Godfrey, Laurie R.; Ali, Jason R.; Goodman, Steven M.; Vences, Miguel; Sutherland, Michael R.; Irwin, Mitchell T.; Krause, David W.

    2012-01-01

    How, when, and from where Madagascar's vertebrates arrived on the island is poorly known, and a comprehensive explanation for the distribution of its organisms has yet to emerge. We begin to break that impasse by analyzing vertebrate arrival patterns implied by currently existing taxa. For each of 81 clades, we compiled arrival date, source, and ancestor type (obligate freshwater, terrestrial, facultative swimmer, or volant). We analyzed changes in arrival rates, with and without adjusting for clade extinction. Probability of successful transoceanic dispersal is negatively correlated with distance traveled and influenced by ocean currents and ancestor type. Obligate rafters show a decrease in probability of successful transoceanic dispersal from the Paleocene onward, reaching the lowest levels after the mid-Miocene. This finding is consistent with a paleoceanographic model [Ali JR, Huber M (2010) Nature 463:653–656] that predicts Early Cenozoic surface currents periodically conducive to rafting or swimming from Africa, followed by a reconfiguration to present-day flow 15–20 million years ago that significantly diminished the ability for transoceanic dispersal to Madagascar from the adjacent mainland. PMID:22431643

  7. Clonal Species Trichoderma parareesei sp. nov. Likely Resembles the Ancestor of the Cellulase Producer Hypocrea jecorina/T. reesei▿ †

    PubMed Central

    Atanasova, Lea; Jaklitsch, Walter M.; Komoń-Zelazowska, Monika; Kubicek, Christian P.; Druzhinina, Irina S.

    2010-01-01

    We have previously reported that the prominent industrial enzyme producer Trichoderma reesei (teleomorph Hypocrea jecorina; Hypocreales, Ascomycota, Dikarya) has a genetically isolated, sympatric sister species devoid of sexual reproduction and which is constituted by the majority of anamorphic strains previously attributed to H. jecorina/T. reesei. In this paper we present the formal taxonomic description of this new species, T. parareesei, complemented by multivariate phenotype profiling and molecular evolutionary examination. A phylogenetic analysis of relatively conserved loci, such as coding fragments of the RNA polymerase B subunit II (rpb2) and GH18 chitinase (chi18-5), showed that T. parareesei is genetically invariable and likely resembles the ancestor which gave raise to H. jecorina. This and the fact that at least one mating type gene of T. parareesei has previously been found to be essentially altered compared to the sequence of H. jecorina/T. reesei indicate that divergence probably occurred due to the impaired functionality of the mating system in the hypothetical ancestor of both species. In contrast, we show that the sexually reproducing and correspondingly more polymorphic H. jecorina/T. reesei is essentially evolutionarily derived. Phenotype microarray analyses performed at seven temperature regimens support our previous speculations that T. parareesei possesses a relatively high opportunistic potential, which probably ensured the survival of this species in ancient and sustainable environment such as tropical forests. PMID:20817800

  8. Mammalian Response to Cenozoic Climatic Change

    NASA Astrophysics Data System (ADS)

    Blois, Jessica L.; Hadly, Elizabeth A.

    2009-05-01

    Multiple episodes of rapid and gradual climatic changes influenced the evolution and ecology of mammalian species and communities throughout the Cenozoic. Climatic change influenced the abundance, genetic diversity, morphology, and geographic ranges of individual species. Within communities these responses interacted to catalyze immigration, speciation, and extinction. Combined they affected long-term patterns of community stability, functional turnover, biotic turnover, and diversity. Although the relative influence of climate on particular evolutionary processes is oft debated, an understanding of processes at the root of biotic change yields important insights into the complexity of mammalian response. Ultimately, all responses trace to events experienced by populations. However, many such processes emerge as patterns above the species level, where shared life history traits and evolutionary history allow us to generalize about mammalian response to climatic change. These generalizations provide the greatest power to understand and predict mammalian responses to current and future global change.

  9. Enhancer Evolution across 20 Mammalian Species

    PubMed Central

    Villar, Diego; Berthelot, Camille; Aldridge, Sarah; Rayner, Tim F.; Lukk, Margus; Pignatelli, Miguel; Park, Thomas J.; Deaville, Robert; Erichsen, Jonathan T.; Jasinska, Anna J.; Turner, James M.A.; Bertelsen, Mads F.; Murchison, Elizabeth P.; Flicek, Paul; Odom, Duncan T.

    2015-01-01

    Summary The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution. PMID:25635462

  10. Mammalian synthetic biology: emerging medical applications

    PubMed Central

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob

    2015-01-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  11. Bats and Rodents Shape Mammalian Retroviral Phylogeny.

    PubMed

    Cui, Jie; Tachedjian, Gilda; Wang, Lin-Fa

    2015-01-01

    Endogenous retroviruses (ERVs) represent past retroviral infections and accordingly can provide an ideal framework to infer virus-host interaction over their evolutionary history. In this study, we target high quality Pol sequences from 7,994 Class I and 8,119 Class II ERVs from 69 mammalian genomes and surprisingly find that retroviruses harbored by bats and rodents combined occupy the major phylogenetic diversity of both classes. By analyzing transmission patterns of 30 well-defined ERV clades, we corroborate the previously published observation that rodents are more competent as originators of mammalian retroviruses and reveal that bats are more capable of receiving retroviruses from non-bat mammalian origins. The powerful retroviral hosting ability of bats is further supported by a detailed analysis revealing that the novel bat gammaretrovirus, Rhinolophus ferrumequinum retrovirus, likely originated from tree shrews. Taken together, this study advances our understanding of host-shaped mammalian retroviral evolution in general. PMID:26548564

  12. Bats and Rodents Shape Mammalian Retroviral Phylogeny

    PubMed Central

    Cui, Jie; Tachedjian, Gilda; Wang, Lin-Fa

    2015-01-01

    Endogenous retroviruses (ERVs) represent past retroviral infections and accordingly can provide an ideal framework to infer virus-host interaction over their evolutionary history. In this study, we target high quality Pol sequences from 7,994 Class I and 8,119 Class II ERVs from 69 mammalian genomes and surprisingly find that retroviruses harbored by bats and rodents combined occupy the major phylogenetic diversity of both classes. By analyzing transmission patterns of 30 well-defined ERV clades, we corroborate the previously published observation that rodents are more competent as originators of mammalian retroviruses and reveal that bats are more capable of receiving retroviruses from non-bat mammalian origins. The powerful retroviral hosting ability of bats is further supported by a detailed analysis revealing that the novel bat gammaretrovirus, Rhinolophus ferrumequinum retrovirus, likely originated from tree shrews. Taken together, this study advances our understanding of host-shaped mammalian retroviral evolution in general. PMID:26548564

  13. Mammalian synthetic biology: emerging medical applications.

    PubMed

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  14. The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi.

    PubMed

    Krishnan, Arunkumar; Almén, Markus Sällman; Fredriksson, Robert; Schiöth, Helgi B

    2012-01-01

    G protein-coupled receptors (GPCRs) in humans are classified into the five main families named Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin according to the GRAFS classification. Previous results show that these mammalian GRAFS families are well represented in the Metazoan lineages, but they have not been shown to be present in Fungi. Here, we systematically mined 79 fungal genomes and provide the first evidence that four of the five main mammalian families of GPCRs, namely Rhodopsin, Adhesion, Glutamate and Frizzled, are present in Fungi and found 142 novel sequences between them. Significantly, we provide strong evidence that the Rhodopsin family emerged from the cAMP receptor family in an event close to the split of Opisthokonts and not in Placozoa, as earlier assumed. The Rhodopsin family then expanded greatly in Metazoans while the cAMP receptor family is found in 3 invertebrate species and lost in the vertebrates. We estimate that the Adhesion and Frizzled families evolved before the split of Unikonts from a common ancestor of all major eukaryotic lineages. Also, the study highlights that the fungal Adhesion receptors do not have N-terminal domains whereas the fungal Glutamate receptors have a broad repertoire of mammalian-like N-terminal domains. Further, mining of the close unicellular relatives of the Metazoan lineage, Salpingoeca rosetta and Capsaspora owczarzaki, obtained a rich group of both the Adhesion and Glutamate families, which in particular provided insight to the early emergence of the N-terminal domains of the Adhesion family. We identified 619 Fungi specific GPCRs across 79 genomes and revealed that Blastocladiomycota and Chytridiomycota phylum have Metazoan-like GPCRs rather than the GPCRs specific for Fungi. Overall, this study provides the first evidence of the presence of four of the five main GRAFS families in Fungi and clarifies the early evolutionary history of the GPCR superfamily. PMID:22238661

  15. The Origin of GPCRs: Identification of Mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in Fungi

    PubMed Central

    Fredriksson, Robert; Schiöth, Helgi B.

    2012-01-01

    G protein-coupled receptors (GPCRs) in humans are classified into the five main families named Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin according to the GRAFS classification. Previous results show that these mammalian GRAFS families are well represented in the Metazoan lineages, but they have not been shown to be present in Fungi. Here, we systematically mined 79 fungal genomes and provide the first evidence that four of the five main mammalian families of GPCRs, namely Rhodopsin, Adhesion, Glutamate and Frizzled, are present in Fungi and found 142 novel sequences between them. Significantly, we provide strong evidence that the Rhodopsin family emerged from the cAMP receptor family in an event close to the split of Opisthokonts and not in Placozoa, as earlier assumed. The Rhodopsin family then expanded greatly in Metazoans while the cAMP receptor family is found in 3 invertebrate species and lost in the vertebrates. We estimate that the Adhesion and Frizzled families evolved before the split of Unikonts from a common ancestor of all major eukaryotic lineages. Also, the study highlights that the fungal Adhesion receptors do not have N-terminal domains whereas the fungal Glutamate receptors have a broad repertoire of mammalian-like N-terminal domains. Further, mining of the close unicellular relatives of the Metazoan lineage, Salpingoeca rosetta and Capsaspora owczarzaki, obtained a rich group of both the Adhesion and Glutamate families, which in particular provided insight to the early emergence of the N-terminal domains of the Adhesion family. We identified 619 Fungi specific GPCRs across 79 genomes and revealed that Blastocladiomycota and Chytridiomycota phylum have Metazoan-like GPCRs rather than the GPCRs specific for Fungi. Overall, this study provides the first evidence of the presence of four of the five main GRAFS families in Fungi and clarifies the early evolutionary history of the GPCR superfamily. PMID:22238661

  16. Reverse genetics for mammalian reovirus.

    PubMed

    Boehme, Karl W; Ikizler, Miné; Kobayashi, Takeshi; Dermody, Terence S

    2011-10-01

    Mammalian orthoreoviruses (reoviruses) are highly tractable models for studies of viral replication and pathogenesis. The versatility of reovirus as an experimental model has been enhanced by development of a plasmid-based reverse genetics system. Infectious reovirus can be recovered from cells transfected with plasmids encoding cDNAs of each reovirus gene segment using a strategy that does not require helper virus and is independent of selection. In this system, transcription of each gene segment is driven by bacteriophage T7 RNA polymerase, which can be supplied transiently by recombinant vaccinia virus (rDIs-T7pol) or by cells that constitutively express the enzyme. Reverse genetics systems have been developed for two prototype reovirus strains, type 1 Lang (T1L) and type 3 Dearing (T3D). Each reovirus cDNA was encoded on an independent plasmid for the first-generation rescue system. The efficiency of virus recovery was enhanced in a second-generation system by combining the cDNAs for multiple reovirus gene segments onto single plasmids to reduce the number of plasmids from 10 to 4. The reduction in plasmid number and the use of baby hamster kidney cells that express T7 RNA polymerase increased the efficiency of viral rescue, reduced the incubation time required to recover infectious virus, and eliminated potential biosafety concerns associated with the use of recombinant vaccinia virus. Reovirus reverse genetics has been used to introduce mutations into viral capsid and nonstructural components to study viral protein-structure activity relationships and can be exploited to engineer recombinant reoviruses for vaccine and oncolytic applications. PMID:21798351

  17. Chemosignals, Hormones and Mammalian Reproduction

    PubMed Central

    Petrulis, Aras

    2013-01-01

    Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as “pheromones” but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking. PMID:23545474

  18. Simplified Bioreactor For Growing Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F.

    1995-01-01

    Improved bioreactor for growing mammalian cell cultures developed. Designed to support growth of dense volumes of mammalian cells by providing ample, well-distributed flows of nutrient solution with minimal turbulence. Cells relatively delicate and, unlike bacteria, cannot withstand shear forces present in turbulent flows. Bioreactor vessel readily made in larger sizes to accommodate greater cell production quantities. Molding equipment presently used makes cylinders up to 30 centimeters long. Alternative sintered plastic techniques used to vary pore size and quantity, as necessary.

  19. Hacking the genetic code of mammalian cells.

    PubMed

    Schwarzer, Dirk

    2009-07-01

    A genetic shuttle: The highlighted article, which was recently published by Schultz, Geierstanger and co-workers, describes a straightforward scheme for enlarging the genetic code of mammalian cells. An orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for a new amino acid can be evolved in E. coli and subsequently transferred into mammalian cells. The feasibility of this approach was demonstrated by adding a photocaged lysine derivative to the genetic repertoire of a human cell line. PMID:19533721

  20. Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size

    PubMed Central

    Koyabu, Daisuke; Werneburg, Ingmar; Morimoto, Naoki; Zollikofer, Christoph P. E.; Forasiepi, Analia M.; Endo, Hideki; Kimura, Junpei; Ohdachi, Satoshi D.; Truong Son, Nguyen; Sánchez-Villagra, Marcelo R.

    2014-01-01

    The multiple skeletal components of the skull originate asynchronously and their developmental schedule varies across amniotes. Here we present the embryonic ossification sequence of 134 species, covering all major groups of mammals and their close relatives. This comprehensive data set allows reconstruction of the heterochronic and modular evolution of the skull and the condition of the last common ancestor of mammals. We show that the mode of ossification (dermal or endochondral) unites bones into integrated evolutionary modules of heterochronic changes and imposes evolutionary constraints on cranial heterochrony. However, some skull-roof bones, such as the supraoccipital, exhibit evolutionary degrees of freedom in these constraints. Ossification timing of the neurocranium was considerably accelerated during the origin of mammals. Furthermore, association between developmental timing of the supraoccipital and brain size was identified among amniotes. We argue that cranial heterochrony in mammals has occurred in concert with encephalization but within a conserved modular organization. PMID:24704703

  1. Neuromagnetic source reconstruction

    SciTech Connect

    Lewis, P.S.; Mosher, J.C.; Leahy, R.M.

    1994-12-31

    In neuromagnetic source reconstruction, a functional map of neural activity is constructed from noninvasive magnetoencephalographic (MEG) measurements. The overall reconstruction problem is under-determined, so some form of source modeling must be applied. We review the two main classes of reconstruction techniques-parametric current dipole models and nonparametric distributed source reconstructions. Current dipole reconstructions use a physically plausible source model, but are limited to cases in which the neural currents are expected to be highly sparse and localized. Distributed source reconstructions can be applied to a wider variety of cases, but must incorporate an implicit source, model in order to arrive at a single reconstruction. We examine distributed source reconstruction in a Bayesian framework to highlight the implicit nonphysical Gaussian assumptions of minimum norm based reconstruction algorithms. We conclude with a brief discussion of alternative non-Gaussian approachs.

  2. Bats host major mammalian paramyxoviruses.

    PubMed

    Drexler, Jan Felix; Corman, Victor Max; Müller, Marcel Alexander; Maganga, Gael Darren; Vallo, Peter; Binger, Tabea; Gloza-Rausch, Florian; Cottontail, Veronika M; Rasche, Andrea; Yordanov, Stoian; Seebens, Antje; Knörnschild, Mirjam; Oppong, Samuel; Adu Sarkodie, Yaw; Pongombo, Célestin; Lukashev, Alexander N; Schmidt-Chanasit, Jonas; Stöcker, Andreas; Carneiro, Aroldo José Borges; Erbar, Stephanie; Maisner, Andrea; Fronhoffs, Florian; Buettner, Reinhard; Kalko, Elisabeth K V; Kruppa, Thomas; Franke, Carlos Roberto; Kallies, René; Yandoko, Emmanuel R N; Herrler, Georg; Reusken, Chantal; Hassanin, Alexandre; Krüger, Detlev H; Matthee, Sonja; Ulrich, Rainer G; Leroy, Eric M; Drosten, Christian

    2012-01-01

    The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data. PMID:22531181

  3. Bats host major mammalian paramyxoviruses

    PubMed Central

    Drexler, Jan Felix; Corman, Victor Max; Müller, Marcel Alexander; Maganga, Gael Darren; Vallo, Peter; Binger, Tabea; Gloza-Rausch, Florian; Rasche, Andrea; Yordanov, Stoian; Seebens, Antje; Oppong, Samuel; Sarkodie, Yaw Adu; Pongombo, Célestin; Lukashev, Alexander N.; Schmidt-Chanasit, Jonas; Stöcker, Andreas; Carneiro, Aroldo José Borges; Erbar, Stephanie; Maisner, Andrea; Fronhoffs, Florian; Buettner, Reinhard; Kalko, Elisabeth K.V.; Kruppa, Thomas; Franke, Carlos Roberto; Kallies, René; Yandoko, Emmanuel R.N.; Herrler, Georg; Reusken, Chantal; Hassanin, Alexandre; Krüger, Detlev H.; Matthee, Sonja; Ulrich, Rainer G.; Leroy, Eric M.; Drosten, Christian

    2012-01-01

    The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data. PMID:22531181

  4. Wnt signalling pathway parameters for mammalian cells.

    PubMed

    Tan, Chin Wee; Gardiner, Bruce S; Hirokawa, Yumiko; Layton, Meredith J; Smith, David W; Burgess, Antony W

    2012-01-01

    Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated with the parameters

  5. Newcastle Disease Virus in Madagascar: Identification of an Original Genotype Possibly Deriving from a Died Out Ancestor of Genotype IV

    PubMed Central

    Maminiaina, Olivier F.; Gil, Patricia; Briand, François-Xavier; Albina, Emmanuel; Keita, Djénéba; Andriamanivo, Harentsoaniaina Rasamoelina; Chevalier, Véronique; Lancelot, Renaud; Martinez, Dominique; Rakotondravao, R.; Rajaonarison, Jean-Joseph; Koko, M.; Andriantsimahavandy, Abel A.; Jestin, Véronique; Servan de Almeida, Renata

    2010-01-01

    In Madagascar, Newcastle disease (ND) has become enzootic after the first documented epizootics in 1946, with recurrent annual outbreaks causing mortality up to 40%. Four ND viruses recently isolated in Madagascar were genotypically and pathotypically characterised. By phylogenetic inference based on the F and HN genes, and also full-genome sequence analyses, the NDV Malagasy isolates form a cluster distant enough to constitute a new genotype hereby proposed as genotype XI. This new genotype is presumably deriving from an ancestor close to genotype IV introduced in the island probably more than 50 years ago. Our data show also that all the previously described neutralising epitopes are conserved between Malagasy and vaccine strains. However, the potential implication in vaccination failures of specific amino acid substitutions predominantly found on surface-exposed epitopes of F and HN proteins is discussed. PMID:21085573

  6. A molecular palaeobiological hypothesis for the origin of aplacophoran molluscs and their derivation from chiton-like ancestors

    PubMed Central

    Vinther, Jakob; Sperling, Erik A.; Briggs, Derek E. G.; Peterson, Kevin J.

    2012-01-01

    Aplacophorans have long been argued to be basal molluscs. We present a molecular phylogeny, including the aplacophorans Neomeniomorpha (Solenogastres) and Chaetodermomorpha (Caudofoveata), which recovered instead the clade Aculifera (Aplacophora + Polyplacophora). Our relaxed Bayesian molecular clock estimates an Early Ordovician appearance of the aculiferan crown group consistent with the presence of chiton-like molluscs with seven or eight dorsal shell plates by the Late Cambrian (approx. 501–490 Ma). Molecular, embryological and palaeontological data indicate that aplacophorans, as well as chitons, evolved from a paraphyletic assemblage of chiton-like ancestors. The recovery of cephalopods as a sister group to aculiferans suggests that the plesiomorphic condition in molluscs might be a morphology similar to that found in monoplacophorans. PMID:21976685

  7. Ancestors of two-spirits: Historical depictions of Native North American gender-crossing women through critical discourse analysis.

    PubMed

    Hemmilä, Anita

    2016-01-01

    Letters written by Christian men of European origin during the sixteenth-nineteenth centuries contain brief descriptions of gender-crossing individuals among indigenous Americans. Although now considered ethnocentrically biased because of the etic positioning of their authors, these historical sources are invaluable because they offer a glimpse of the ancestors of modern-day two-spirits. An application of critical discourse analysis to three depictions of gender-crossing females from the eighteenth and nineteenth centuries demonstrates that such women were favorably portrayed. These results differ dramatically from those obtained from my similar analysis of depictions of gender-crossing males. It also became evident that the three descriptions of gender-crossing women were not based on actual observations, but only on hearsay, which makes their use as primary sources questionable. PMID:27254764

  8. Buds from the tree of life: linking compartmentalized prokaryotes and eukaryotes by a non-hyperthermophile common ancestor and implications for understanding Archaean microbial communities

    NASA Astrophysics Data System (ADS)

    Fuerst, John A.; Nisbet, Euan G.

    2004-07-01

    The origin of the first nucleated eukaryote and the nature of the last common ancestor of the three domains of life are major questions in the evolutionary biology of cellular life on Earth, the solutions to which may be linked. Planctomycetes are unusual compartmentalized bacteria that include a membrane-bounded nucleoid. The possibility that they constitute a very deep branch of the domain Bacteria suggests a model for the evolution of the three domains of life from a last common ancestor that was a mesophile or moderate thermophile with a compartmentalized eukaryote-like cell plan. Planctomycetes and some members of the domain Archaea may have retained cell compartmentalization present in an original eukaryote-like last common ancestor of the three domains of life. The implications of this model for possible habitats of the early evolution of domains of cellular life and for interpretation of geological evidence relating to those habitats and the early emergence of life are examined here.

  9. Head and face reconstruction

    MedlinePlus

    ... Birth defects and deformities from conditions such as cleft lip or palate , craniosynostosis , Apert syndrome Deformities caused by ... Orbital-craniofacial surgery; Facial reconstruction Images Skull Skull Cleft lip repair - series Craniofacial reconstruction - series References Baker SR. ...

  10. Breast Reconstruction after Mastectomy

    PubMed Central

    Schmauss, Daniel; Machens, Hans-Günther; Harder, Yves

    2016-01-01

    Breast cancer is the leading cause of cancer death in women worldwide. Its surgical approach has become less and less mutilating in the last decades. However, the overall number of breast reconstructions has significantly increased lately. Nowadays, breast reconstruction should be individualized at its best, first of all taking into consideration not only the oncological aspects of the tumor, neo-/adjuvant treatment, and genetic predisposition, but also its timing (immediate versus delayed breast reconstruction), as well as the patient’s condition and wish. This article gives an overview over the various possibilities of breast reconstruction, including implant- and expander-based reconstruction, flap-based reconstruction (vascularized autologous tissue), the combination of implant and flap, reconstruction using non-vascularized autologous fat, as well as refinement surgery after breast reconstruction. PMID:26835456

  11. Head and face reconstruction

    MedlinePlus

    Head and face reconstruction is surgery to repair or reshape deformities of the head and face (craniofacial). ... How surgery for head and face deformities (craniofacial reconstruction) ... and the person's condition. Surgical repairs involve the ...

  12. Mammalian Cell-Based Sensor System

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.

    Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

  13. A Comparative Study of Mammalian Diversification Pattern

    PubMed Central

    Yu, Wenhua; Xu, Junxiao; Wu, Yi; Yang, Guang

    2012-01-01

    Although mammals have long been regarded as a successful radiation, the diversification pattern among the clades is still poorly known. Higher-level phylogenies are conflicting and comprehensive comparative analyses are still lacking. Using a recently published supermatrix encompassing nearly all extant mammalian families and a novel comparative likelihood approach (MEDUSA), the diversification pattern of mammalian groups was examined. Both order- and family-level phylogenetic analyses revealed the rapid radiation of Boreoeutheria and Euaustralidelphia in the early mammalian history. The observation of a diversification burst within Boreoeutheria at approximately 100 My supports the Long Fuse model in elucidating placental diversification progress, and the rapid radiation of Euaustralidelphia suggests an important role of biogeographic dispersal events in triggering early Australian marsupial rapid radiation. Diversification analyses based on family-level diversity tree revealed seven additional clades with exceptional diversification rate shifts, six of which represent accelerations in net diversification rate as compared to the background pattern. The shifts gave origin to the clades Muridae+Cricetidae, Bovidae+Moschidae+Cervidae, Simiiformes, Echimyidae, Odontoceti (excluding Physeteridae+Kogiidae+Platanistidae), Macropodidae, and Vespertilionidae. Moderate to high extinction rates from background and boreoeutherian diversification patterns indicate the important role of turnovers in shaping the heterogeneous taxonomic richness observed among extant mammalian groups. Furthermore, the present results emphasize the key role of extinction on erasing unusual diversification signals, and suggest that further studies are needed to clarify the historical radiation of some mammalian groups for which MEDUSA did not detect exceptional diversification rates. PMID:22457604

  14. Methods of Voice Reconstruction

    PubMed Central

    Chen, Hung-Chi; Kim Evans, Karen F.; Salgado, Christopher J.; Mardini, Samir

    2010-01-01

    This article reviews methods of voice reconstruction. Nonsurgical methods of voice reconstruction include electrolarynx, pneumatic artificial larynx, and esophageal speech. Surgical methods of voice reconstruction include neoglottis, tracheoesophageal puncture, and prosthesis. Tracheoesophageal puncture can be performed in patients with pedicled flaps such as colon interposition, jejunum, or gastric pull-up or in free flaps such as perforator flaps, jejunum, and colon flaps. Other flaps for voice reconstruction include the ileocolon flap and jejunum. Laryngeal transplantation is also reviewed. PMID:22550443

  15. Reoperative midface reconstruction.

    PubMed

    Acero, Julio; García, Eloy

    2011-02-01

    Reoperative reconstruction of the midface is a challenging issue because of the complexity of this region and the severity of the aesthetic and functional sequela related to the absence or failure of a primary reconstruction. The different situations that can lead to the indication of a reoperative reconstructive procedure after previous oncologic ablative procedures in the midface are reviewed. Surgical techniques, anatomic problems, and limitations affecting the reoperative reconstruction in this region of the head and neck are discussed. PMID:21126882

  16. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Knight, C.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization.The Astronauts will be exposed to microgravity environment for a long duration of time during these flights.Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system.We did our preliminary investigations by exposing mammalian lymphocytes to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon Inc (USA).Our initial results showed no significant change in cytokine expression in these cells for a time period of forty eight hours exposure.Our future experiments will involve exposure for a longer period of time.

  17. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization. The Astronauts will be exposed to microgravity environment for a long duration of time during these flights. Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system and nervous system. We did our preliminary investigations by exposing mammalian lymphocytes and astrocyte cells to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon, Inc. (USA).Our initial results showed no significant change in cytokine expression in these cells up to a time period of 120 hours exposure. Our future experiments will involve exposure for a longer period of time.

  18. Involvement of opsins in mammalian sperm thermotaxis

    PubMed Central

    Pérez-Cerezales, Serafín; Boryshpolets, Sergii; Afanzar, Oshri; Brandis, Alexander; Nevo, Reinat; Kiss, Vladimir; Eisenbach, Michael

    2015-01-01

    A unique characteristic of mammalian sperm thermotaxis is extreme temperature sensitivity, manifested by the capacity of spermatozoa to respond to temperature changes of <0.0006 °C as they swim their body-length distance. The identity of the sensing system that confers this exceptional sensitivity on spermatozoa is not known. Here we show that the temperature-sensing system of mammalian spermatozoa involves opsins, known to be G-protein-coupled receptors that act as photosensors in vision. We demonstrate by molecular, immunological, and functional approaches that opsins are present in human and mouse spermatozoa at specific sites, which depend on the species and the opsin type, and that they are involved in sperm thermotaxis via two signalling pathways—the phospholipase C and the cyclic-nucleotide pathways. Our results suggest that, depending on the context and the tissue, mammalian opsins act not only as photosensors but also as thermosensors. PMID:26537127

  19. Toward predictive models of mammalian cells.

    PubMed

    Ma'ayan, Avi; Blitzer, Robert D; Iyengar, Ravi

    2005-01-01

    Progress in experimental and theoretical biology is likely to provide us with the opportunity to assemble detailed predictive models of mammalian cells. Using a functional format to describe the organization of mammalian cells, we describe current approaches for developing qualitative and quantitative models using data from a variety of experimental sources. Recent developments and applications of graph theory to biological networks are reviewed. The use of these qualitative models to identify the topology of regulatory motifs and functional modules is discussed. Cellular homeostasis and plasticity are interpreted within the framework of balance between regulatory motifs and interactions between modules. From this analysis we identify the need for detailed quantitative models on the basis of the representation of the chemistry underlying the cellular process. The use of deterministic, stochastic, and hybrid models to represent cellular processes is reviewed, and an initial integrated approach for the development of large-scale predictive models of a mammalian cell is presented. PMID:15869393

  20. Capacitation-Associated Glycocomponents of Mammalian Sperm.

    PubMed

    Liu, Min

    2016-05-01

    Mammalian fertilization is a series of events that are mostly carbohydrate mediated. The male gamete glycocomponents are extensively synthesized and modified during sperm development and sperm transport in the reproductive tracts. Freshly ejaculated mammalian sperm are required to undergo capacitation, which takes place in the female reproductive system, in order to become fully fertilizable. Several lines of evidence reveal changes in glycosylated sperm constituents during capacitation. Although the contributions of these molecular changes to capacitation are not completely understood, the presence, rearrangement, and/or modification of these sperm glycocomponents have been demonstrated to be important for fertilization. The following review summarizes mammalian sperm glycoconstituents, with emphasis on their molecular changes during capacitation. PMID:26363036

  1. Particle Image Velocimetry Measurements in an Anatomically-Accurate Scaled Model of the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Rumple, Christopher; Krane, Michael; Richter, Joseph; Craven, Brent

    2013-11-01

    The mammalian nose is a multi-purpose organ that houses a convoluted airway labyrinth responsible for respiratory air conditioning, filtering of environmental contaminants, and chemical sensing. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of respiratory airflow and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture an anatomically-accurate transparent model for stereoscopic particle image velocimetry (SPIV) measurements. Challenges in the design and manufacture of an index-matched anatomical model are addressed. PIV measurements are presented, which are used to validate concurrent computational fluid dynamics (CFD) simulations of mammalian nasal airflow. Supported by the National Science Foundation.

  2. Red Light-Regulated Reversible Nuclear Localization of Proteins in Mammalian Cells and Zebrafish.

    PubMed

    Beyer, Hannes M; Juillot, Samuel; Herbst, Kathrin; Samodelov, Sophia L; Müller, Konrad; Schamel, Wolfgang W; Römer, Winfried; Schäfer, Eberhard; Nagy, Ferenc; Strähle, Uwe; Weber, Wilfried; Zurbriggen, Matias D

    2015-09-18

    Protein trafficking in and out of the nucleus represents a key step in controlling cell fate and function. Here we report the development of a red light-inducible and far-red light-reversible synthetic system for controlling nuclear localization of proteins in mammalian cells and zebrafish. First, we synthetically reconstructed and validated the red light-dependent Arabidopsis phytochrome B nuclear import mediated by phytochrome-interacting factor 3 in a nonplant environment and support current hypotheses on the import mechanism in planta. On the basis of this principle we next regulated nuclear import and activity of target proteins by the spatiotemporal projection of light patterns. A synthetic transcription factor was translocated into the nucleus of mammalian cells and zebrafish to drive transgene expression. These data demonstrate the first in vivo application of a plant phytochrome-based optogenetic tool in vertebrates and expand the repertoire of available light-regulated molecular devices. PMID:25803699

  3. The mammalian blastema: regeneration at our fingertips

    PubMed Central

    Simkin, Jennifer; Sammarco, Mimi C.; Dawson, Lindsay A.; Schanes, Paula P.; Yu, Ling

    2015-01-01

    Abstract In the mouse, digit tip regeneration progresses through a series of discrete stages that include inflammation, histolysis, epidermal closure, blastema formation, and redifferentiation. Recent studies reveal how each regenerative stage influences subsequent stages to establish a blastema that directs the successful regeneration of a complex mammalian structure. The focus of this review is on early events of healing and how an amputation wound transitions into a functional blastema. The stepwise formation of a mammalian blastema is proposed to provide a model for how specific targeted treatments can enhance regenerative performance in humans.

  4. Epigenetic Regulation of Mammalian Stem Cells

    PubMed Central

    Li, Xuekun

    2008-01-01

    Two critical properties of stem cells are self-renewal and multipotency. The maintenance of their “stemness” state and commitment to differentiation are therefore tightly controlled by intricate molecular networks. Epigenetic mechanisms, including DNA methylation, chromatin remodeling and the noncoding RNA-mediated process, have profound regulatory roles in mammalian gene expression. Recent studies have shown that epigenetic regulators are key players in stem cell biology and their dysfunction can result in human diseases such as cancer and neurodevelopmental disorders. Here, we review the recent evidences that advance our knowledge in epigenetic regulations of mammalian stem cells, with focus on embryonic stem cells and neural stem cells. PMID:18393635

  5. Detection of apoptosis in mammalian development.

    PubMed

    Lin, Lin; Penaloza, Carlos; Ye, Yixia; Lockshin, Richard A; Zakeri, Zahra

    2009-01-01

    Mammalian development is dependent on an intricate orchestration of cell proliferation and death. Deregulation in the levels, localization, and type of cell death can lead to disease and even death of the developing embryo. The mechanisms involved in such deregulation are many; alterations and or manipulations of these can aid in the detection, prevention and possible treatments of any effects this de-regulation may have. Here we describe how cell death can be detected during mammalian development, using diverse staining and microscopy methods, while taking advantage of the advancements in cell death mechanisms, derived from biochemical and teratological studies in the field. PMID:19609762

  6. Autologous Microvascular Breast Reconstruction

    PubMed Central

    Ramakrishnan, Venkat

    2013-01-01

    Autologous microvascular breast reconstruction is widely accepted as a key component of breast cancer treatment. There are two basic donor sites; the anterior abdominal wall and the thigh/buttock region. Each of these regions provides for a number of flaps that are successfully utilised in breast reconstruction. Refinement of surgical technique and the drive towards minimising donor site morbidity whilst maximising flap vascularity in breast reconstruction has seen an evolution towards perforator based flap reconstructions, however myocutaneous flaps are still commonly practiced. We review herein the current methods of autologous microvascular breast reconstruction. PMID:23362474

  7. Isolation of genomic DNA from mammalian cells.

    PubMed

    Koh, Cheryl M

    2013-01-01

    The isolation of genomic DNA from mammalian cells is a routine molecular biology laboratory technique with numerous downstream applications. The isolated DNA can be used as a template for PCR, cloning, and genotyping and to generate genomic DNA libraries. It can also be used for sequencing to detect mutations and other alterations, and for DNA methylation analyses. PMID:24011044

  8. [Placental developmental defects in cloned mammalian animals].

    PubMed

    Ao, Zheng; Liu, Dewu; Cai, Gengyuan; Wu, Zhenfang; Li, Zicong

    2016-05-01

    The cloning technique, also called somatic cell nuclear transfer (SCNT), has been successfully established and gradually applied to various mammalian species. However, the developmental rate of SCNT mammalian embryos is very low, usually at 1% to 5%, which limits the application of SCNT. Placental developmental defects are considered as the main cause of SCNT embryo development inhibition. Almost all of SCNT-derived mammalian placentas exhibit various abnormalities, such as placental hyperplasia, vascular defects and umbilical cord malformation. Mechanistically, these abnormalities result from failure of establishment of correct epigenetic modification in the trophectoderm genome, which leads to erroneous expression of important genes for placenta development-related, particularly imprinted genes. Consequently, aberrant imprinted gene expression gives rise to placental morphologic abnormalities and functional defects, therefore decreases developmental competence of cloned embryos. Currently, although numerous methods that can improve the developmental ability of SCNT-derived embryos have been reported, most of them are unable to substantially enhance the success rate of SCNT due to failure to eliminate the placental development defects. In this review, we summarize placental abnormalities and imprinted gene expression in mammalian cloning, and propose directions for the future research aiming to improve the cloning efficiency. PMID:27232488

  9. MAMMALIAN CELL MUTAGENESIS, BANBURY CONFERENCE (JOURNAL VERSION)

    EPA Science Inventory

    A conference on mammalian cell mutagenesis was held at the Banbury Center, Cold Spring Harbor, NY, USA, March 22-25, 1987. The objective of the conference was to provide a forum for discussions concerning the genetic, biochemical, and molecular basis of induced mutations in stand...

  10. Structure of mammalian respiratory complex I.

    PubMed

    Zhu, Jiapeng; Vinothkumar, Kutti R; Hirst, Judy

    2016-08-18

    Complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in the cell, powers ATP synthesis in mammalian mitochondria by using the reducing potential of NADH to drive protons across the inner mitochondrial membrane. Mammalian complex I (ref. 1) contains 45 subunits, comprising 14 core subunits that house the catalytic machinery (and are conserved from bacteria to humans) and a mammalian-specific cohort of 31 supernumerary subunits. Knowledge of the structures and functions of the supernumerary subunits is fragmentary. Here we describe a 4.2-Å resolution single-particle electron cryomicroscopy structure of complex I from Bos taurus. We have located and modelled all 45 subunits, including the 31 supernumerary subunits, to provide the entire structure of the mammalian complex. Computational sorting of the particles identified different structural classes, related by subtle domain movements, which reveal conformationally dynamic regions and match biochemical descriptions of the 'active-to-de-active' enzyme transition that occurs during hypoxia. Our structures therefore provide a foundation for understanding complex I assembly and the effects of mutations that cause clinically relevant complex I dysfunctions, give insights into the structural and functional roles of the supernumerary subunits and reveal new information on the mechanism and regulation of catalysis. PMID:27509854