Science.gov

Sample records for mammalian cc motif

  1. Evidence of positive selection at codon sites localized in extracellular domains of mammalian CC motif chemokine receptor proteins

    PubMed Central

    2010-01-01

    Background CC chemokine receptor proteins (CCR1 through CCR10) are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted trafficking of white blood cells. In addition, some of these receptors have been identified as fusion proteins for viral pathogens: for example, HIV-1 strains utilize CCR5, CCR2 and CCR3 proteins to obtain cellular entry in humans. The extracellular domains of these receptor proteins are involved in ligand-binding specificity as well as pathogen recognition interactions. In mammals, the majority of chemokine receptor genes are clustered together; in humans, seven of the ten genes are clustered in the 3p21-24 chromosome region. Gene conversion events, or exchange of DNA sequence between genes, have been reported in chemokine receptor paralogs in various mammalian lineages, especially between the cytogenetically closely located pairs CCR2/5 and CCR1/3. Datasets of mammalian orthologs for each gene were analyzed separately to minimize the potential confounding impact of analyzing highly similar sequences resulting from gene conversion events. Molecular evolution approaches and the software package Phylogenetic Analyses by Maximum Likelihood (PAML) were utilized to investigate the signature of selection that has acted on the mammalian CC chemokine receptor (CCR) gene family. The results of neutral vs. adaptive evolution (positive selection) hypothesis testing using Site Models are reported. In general, positive selection is defined by a ratio of nonsynonymous/synonymous nucleotide changes (dN/dS, or ω) >1. Results Of the ten mammalian CC motif chemokine receptor sequence datasets analyzed, only CCR2 and CCR3 contain amino acid codon sites that exhibit evidence of positive selection using site based hypothesis testing in PAML. Nineteen of the twenty codon sites putatively indentified as likely to be under positive selection code for amino acid

  2. Epilepsy, Seizures, and Inflammation: Role of the C-C Motif Ligand 2 Chemokine.

    PubMed

    Bozzi, Yuri; Caleo, Matteo

    2016-06-01

    Epilepsy is a chronic disorder characterized by spontaneous recurrent seizures. Several lines of evidence demonstrate that inflammatory processes within the brain parenchyma contribute to recurrence and precipitation of seizures. In both epileptic patients and animal models, seizures upregulate inflammatory mediators, which in turn may enhance brain excitability. We recently showed that the C-C motif ligand 2 (CCL2) chemokine (also known as monocyte chemoattractant protein-1 [MCP-1]) mediates the seizure-promoting effects of inflammation. Systemic inflammatory challenge in chronically epileptic mice markedly enhanced seizure frequency and upregulated CCL2 expression in the brain. Selective pharmacological blockade of CCL2 synthesis or C-C chemokine receptor type 2 (CCR2) significantly suppressed inflammation-induced seizures. These results have important implications for the development of novel anticonvulsant therapies: drugs interfering with CCL2 signaling are used clinically for several human disorders and might be redirected for use in pharmacoresistant epilepsy. Here we review the role of CCL2/CCR2 signaling in linking systemic inflammation with seizure susceptibility and discuss some open questions that arise from our recent studies. PMID:27167681

  3. The role of chemokine C-C motif ligand 2 genotype and cerebrospinal fluid chemokine C-C motif ligand 2 in neurocognition among HIV-infected patients

    PubMed Central

    Thames, April D.; Briones, Marisa S.; Magpantay, Larry I.; Martinez-Maza, Otoniel; Singer, Elyse J.; Hinkin, Charles H.; Morgello, Susan; Gelman, Benjamin B.; Moore, David J.; Heizerling, Keith; Levine, Andrew J.

    2015-01-01

    Objectives We examined interrelationships between chemokine C-C motif ligand 2 (CCL2) genotype and expression of inflammatory markers in the cerebrospinal fluid (CSF), plasma viral load, CD4+ cell count and neurocognitive functioning among HIV-infected adults. We hypothesized that HIV-positive carriers of the ‘risk’ CCL2 −2578G allele, caused by a single nucleotide polymorphism (SNP) at rs1024611, would have a higher concentration of CCL2 in CSF, and that CSF CCL2 would be associated with both higher concentrations of other proinflammatory markers in CSF and worse neurocognitive functioning. Design A cross-sectional study of 145 HIV-infected individuals enrolled in the National NeuroAIDS Tissue Consortium cohort for whom genotyping, CSF and neurocognitive data were available. Methods Genomic DNA was extracted from peripheral blood mononuclear cells and/or frozen tissue specimens. CSF levels of CCL2, interleukin (IL)-2, IL-6, tumour necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), soluble tumor necrosis factor receptor 2, sIL-6Rα, sIL-2, sCD14 and B-cell activating factor were quantified. Neurocognitive functioning was measured using a comprehensive battery of neuropsychological tests. Results Carriers of the CCL2 −2578G allele had a significantly higher concentration of CCL2 in CSF. CSF CCL2 level was positively and significantly associated with other CSF neuroinflammatory markers and worse cognitive functioning. There was a significant association between genotype and plasma viral load, such that carriers of the CCL2 −2578G allele with high viral load expressed greater levels of CCL2 and had higher neurocognitive deficit scores than other genotype/viral load groups. Conclusion Individuals with the CCL2 −2578G allele had higher levels of CCL2 in CSF, which was associated with increased pro-inflammatory markers in CSF and worse neurocognitive functioning. The results highlight the potential role of intermediate phenotypes in studies of

  4. Discovery of mammalian target of rapamycin (mTOR) kinase inhibitor CC-223.

    PubMed

    Mortensen, Deborah S; Perrin-Ninkovic, Sophie M; Shevlin, Graziella; Zhao, Jingjing; Packard, Garrick; Bahmanyar, Sogole; Correa, Matthew; Elsner, Jan; Harris, Roy; Lee, Branden G S; Papa, Patrick; Parnes, Jason S; Riggs, Jennifer R; Sapienza, John; Tehrani, Lida; Whitefield, Brandon; Apuy, Julius; Bisonette, René R; Gamez, James C; Hickman, Matt; Khambatta, Godrej; Leisten, Jim; Peng, Sophie X; Richardson, Samantha J; Cathers, Brian E; Canan, Stacie S; Moghaddam, Mehran F; Raymon, Heather K; Worland, Peter; Narla, Rama Krishna; Fultz, Kimberly E; Sankar, Sabita

    2015-07-01

    We report here the synthesis and structure-activity relationship (SAR) of a novel series of mammalian target of rapamycin (mTOR) kinase inhibitors. A series of 4,6- or 1,7-disubstituted-3,4-dihydropyrazino[2,3-b]pyrazine-2(1H)-ones were optimized for in vivo efficacy. These efforts resulted in the identification of compounds with excellent mTOR kinase inhibitory potency, with exquisite kinase selectivity over the related lipid kinase PI3K. The improved PK properties of this series allowed for exploration of in vivo efficacy and ultimately the selection of CC-223 for clinical development. PMID:26083478

  5. Induction of chemokine (C-C motif) ligand 2 by sphingosine-1-phosphate signaling in neuroblastoma

    PubMed Central

    Li, Mei-Hong; Harel, Miriam; Hla, Timothy; Ferrer, Fernando

    2014-01-01

    Background/Purpose Neuroblastoma (NB) is the most common extracranial solid tumor of childhood. Preliminary data derived from a human angiogenesis array in NB showed that the bioactive lipid sphingosine-1-phosphate (S1P) induced the secretion of several angiogenesis-related proteins including the important inflammatory factor chemokine (C-C motif) ligand 2 (CCL2). In the present study, we investigated the mechanism of S1P-induced CCL2 expression in NB. Methods Quantitative real-time PCR and CCL2 ELISA were conducted to detect the mRNA expression and protein secretion of CCL2 in NB cells. Gain and loss of function studies were performed by using specific S1PR antagonists, adenoviral transduction and siRNA transfection. Macrophage F4/80 receptor in NB xenografts was detected by quantitative real-time PCR and immunohistochemistry staining. Results S1P induced CCL2 mRNA expression and protein secretion in a time- and concentration-dependent manner in NB cells. Blockade of S1P2 signaling using the selective S1P2 antagonist JTE-013 inhibited S1P-induced CCL2 expression. Overexpression of S1P2 by adenoviral transduction increased CCL2 secretion while knockdown of S1P2 by siRNA transfection decreased S1P-induced CCL2 secretion in NB cells. Macrophage infiltration, as detected by F4/80 staining, was significantly decreased in JTE-013-treated NB xenografts. Conclusions Taken together, our data for the first time demonstrate that S1P induced the macrophage-recruiting factor CCL2 expression in NB cells via S1P2, providing new insights into the complicated functions of S1P2 in cancer. PMID:25092091

  6. Short sequence motifs, overrepresented in mammalian conservednon-coding sequences

    SciTech Connect

    Minovitsky, Simon; Stegmaier, Philip; Kel, Alexander; Kondrashov,Alexey S.; Dubchak, Inna

    2007-02-21

    Background: A substantial fraction of non-coding DNAsequences of multicellular eukaryotes is under selective constraint. Inparticular, ~;5 percent of the human genome consists of conservednon-coding sequences (CNSs). CNSs differ from other genomic sequences intheir nucleotide composition and must play important functional roles,which mostly remain obscure.Results: We investigated relative abundancesof short sequence motifs in all human CNSs present in the human/mousewhole-genome alignments vs. three background sets of sequences: (i)weakly conserved or unconserved non-coding sequences (non-CNSs); (ii)near-promoter sequences (located between nucleotides -500 and -1500,relative to a start of transcription); and (iii) random sequences withthe same nucleotide composition as that of CNSs. When compared tonon-CNSs and near-promoter sequences, CNSs possess an excess of AT-richmotifs, often containing runs of identical nucleotides. In contrast, whencompared to random sequences, CNSs contain an excess of GC-rich motifswhich, however, lack CpG dinucleotides. Thus, abundance of short sequencemotifs in human CNSs, taken as a whole, is mostly determined by theiroverall compositional properties and not by overrepresentation of anyspecific short motifs. These properties are: (i) high AT-content of CNSs,(ii) a tendency, probably due to context-dependent mutation, of A's andT's to clump, (iii) presence of short GC-rich regions, and (iv) avoidanceof CpG contexts, due to their hypermutability. Only a small number ofshort motifs, overrepresented in all human CNSs are similar to bindingsites of transcription factors from the FOX family.Conclusion: Human CNSsas a whole appear to be too broad a class of sequences to possess strongfootprints of any short sequence-specific functions. Such footprintsshould be studied at the level of functional subclasses of CNSs, such asthose which flank genes with a particular pattern of expression. Overallproperties of CNSs are affected by patterns in

  7. Chemokine (C-C Motif) Receptor 1 Is Required for Efficient Recruitment of Neutrophils during Respiratory Infection with Modified Vaccinia Virus Ankara

    PubMed Central

    Price, Philip J. R.; Luckow, Bruno; Torres-Domínguez, Lino E.; Brandmüller, Christine; Zorn, Julia; Kirschning, Carsten J.; Sutter, Gerd

    2014-01-01

    ABSTRACT Modified vaccinia virus Ankara (MVA) serves as a versatile platform in vaccine development. This highly attenuated orthopoxvirus, which cannot replicate in mammalian cells, triggers strong innate immune responses, including cell migration. Previously, we have shown that induction of chemokine (C-C motif) ligand 2 (CCL2) by MVA is necessary for the recruitment of monocytes and T cells, but not neutrophils, to the lung. Here, we identified neutrophil-attracting chemokines produced by MVA-infected primary murine lung fibroblasts and murine bone marrow-derived macrophages. We demonstrate that MVA, but not vaccinia virus (VACV) strain WR, induces chemokine expression, which is independent of Toll-like receptor 2 (TLR2) signaling. Additionally, we show that both chemokine (C-C motif) receptor 1 (CCR1) and chemokine (C-X-C motif) receptor 2 (CXCR2) are involved in MVA-induced neutrophil chemotaxis in vitro. Finally, intranasal infection of Ccr1−/− mice with MVA, as well as application of the CCR1 antagonist J-113863, revealed a role for CCR1 in leukocyte recruitment, including neutrophils, into the lung. IMPORTANCE Rapid attraction of leukocytes to the site of inoculation is unique to MVA in comparison to other VACV strains. The findings here extend current knowledge about the regulation of MVA-induced leukocyte migration, particularly regarding neutrophils, which could potentially be exploited to improve other VACV strains currently in development as oncolytic viruses and viral vectors. Additionally, the data presented here indicate that the inflammatory response may vary depending on the cell type infected by MVA, highlighting the importance of the site of vaccine application. Moreover, the rapid recruitment of neutrophils and other leukocytes can directly contribute to the induction of adaptive immune responses elicited by MVA inoculation. Thus, a better understanding of leukocyte migration upon MVA infection is particularly relevant for further

  8. Emerging role of chemokine CC motif ligand 4 related mechanisms in diabetes mellitus and cardiovascular disease: friends or foes?

    PubMed

    Chang, Ting-Ting; Chen, Jaw-Wen

    2016-01-01

    Chemokines are critical components in pathology. The roles of chemokine CC motif ligand 4 (CCL4) and its receptor are associated with diabetes mellitus (DM) and atherosclerosis cardiovascular diseases. However, due to the complexity of these diseases, the specific effects of CCL4 remain unclear, although recent reports have suggested that multiple pathways are related to CCL4. In this review, we provide an overview of the role and potential mechanisms of CCL4 and one of its major receptors, fifth CC chemokine receptor (CCR5), in DM and cardiovascular diseases. CCL4-related mechanisms, including CCL4 and CCR5, might provide potential therapeutic targets in DM and/or atherosclerosis cardiovascular diseases. PMID:27553774

  9. Induction of heat-labile sites in DNA of mammalian cells by the antitumor alkylating drug CC-1065

    SciTech Connect

    Zsido, T.J.; Woynarowski, J.M.; Baker, R.M.; Gawron, L.S.; Beerman, T.A. )

    1991-04-16

    CC-1065 is a very potent antitumor antibiotic capable of covalent and noncovalent binding to the minor groove of naked DNA. Upon thermal treatment, covalent adducts formed between CC-1065 and DNA generate strand break. The authors have shown that this molecular damage can be detected following CC-1065 treatment of mammalian whole cells. Using alkaline sucrose gradient analysis, They observe thermally induced breakage of ({sup 14}C)thymidine-prelabeled DNA from drug-treated African green monkey kidney BSC-1 cells. Very little damage to cellular DNA by CC-1065 can be detected without first heating the drug-treated samples. CC-1065 can also generate heat-labile sites within DNA during cell lysis and heating, subsequent to the exposure of cells to drug, suggesting that a pool of free and noncovalently bound drug is available for posttreatment adduct formation. This effect was controlled for by mixing ({sup 3}H)thymidine-labeled untreated cells with the ({sup 14}C)thymidine-labeled drug-treated samples. The lowest drug dose at which heat-labile sites were detected was 3 nM CC-1065 (3 single-stranded breaks/10{sup 6} base pairs). This concentration reduced survival of BSC-1 cells to 0.1% in cytotoxicity assays. The generation of CC-1065-induced lesions in cellular DNA is time dependent (the frequency of lesions caused by a 60 nM treatment reaching a plateau at 2 h) and is not readily reversible. The results of this study demonstrate that CC-1065 does generate heat-labile sites with the cellular DNA of intact cells and suggest that a mechanism of cytotoxic action of CC-1065 involves formation of covalent adducts to DNA.

  10. Inhibition of Chemokine (C-C Motif) Receptor 7 Sialylation Suppresses CCL19-Stimulated Proliferation, Invasion and Anti-Anoikis

    PubMed Central

    Su, Mei-Lin; Chang, Tsung-Ming; Chiang, Chi-Hsiang; Chang, Han-Chen; Hou, Ming-Feng; Li, Wen-Shan; Hung, Wen-Chun

    2014-01-01

    Chemokine (C-C motif) receptor 7 (CCR7) is involved in lymph-node homing of naive and regulatory T cells and lymphatic metastasis of cancer cells. Sialic acids comprise a group of monosaccharide units that are added to the terminal position of the oligosaccharide chain of glycoproteins by sialyation. Recent studies suggest that aberrant sialylation of receptor proteins contributes to proliferation, motility, and drug resistance of cancer cells. In this study, we addressed whether CCR7 is a sialylated receptor protein and tried to elucidate the effect of sialylation in the regulation of signal transduction and biological function of CCR7. Our results demonstrated that α-2, 3-sialyltransferase which catalyze sialylation reaction in vivo was overexpressed in breast tumor tissues and cell lines. Lectin blot analysis clearly demonstrated that CCR7 receptor was sialyated in breast cancer cells. Chemokine (C-C motif) ligand 19 (CCL19), the cognate ligand for CCR7, induced the activation of extracellular signal-regulated kinase (ERK) and AKT signaling and increased the expression of cell cycle regulatory proteins and proliferation of breast cancer cells. When cells were pre-treated with a sialyltransferase inhibitor AL10 or sialidase, CCL19-induced cell growth was significantly suppressed. CCL19 also increased invasion and prevented anoikis by up-regulating pro-survival proteins Bcl-2 and Bcl-xL. Inhibition of sialylation by AL10 totally abolished these effects. Finally, we showed that AL10 inhibited tumorigenicity of breast cancer in experimental animals. Taken together, we demonstrate for the first time that CCR7 receptor is a sialylated protein and sialylation is important for the paracrine stimulation by its endogenous ligand CCL19. In addition, inhibition of aberrant sialylation of CCR7 suppresses proliferation and invasion and triggers anoikis in breast cancer cells. Targeting of sialylation enzymes may be a novel strategy for breast cancer treatment. PMID:24915301

  11. Bone Marrow-Derived Cell-Specific Chemokine (C-C motif) Receptor-2 Expression is Required for Arteriolar Remodeling

    PubMed Central

    Nickerson, Meghan M.; Song, Ji; Meisner, Joshua K.; Bajikar, Sameer; Burke, Caitlin W.; Shuptrine, Casey W.; Owens, Gary K.; Skalak, Thomas C.; Price, Richard J.

    2009-01-01

    Objective Bone marrow-derived cells (BMCs) and inflammatory chemokine receptors regulate arteriogenesis and angiogenesis. Here, we tested whether arteriolar remodeling in response to an inflammatory stimulus is dependent on BMC-specific chemokine (C-C motif) receptor 2 (CCR2) expression and whether this response involves BMC transdifferentiation into smooth muscle. Methods and Results Dorsal skinfold window chambers were implanted into C57Bl/6 wild-type (WT) mice, as well as the following bone marrow chimeras (donor-host): WT-WT, CCR2−/−-WT, WT-CCR2−/−, and EGFP+-WT. One day after implantation, tissue MCP-1 levels rose from “undetectable” to 463pg/mg, and the number of EGFP+ cells increased more than 4-fold, indicating marked inflammation. A 66% (28μm) increase in maximum arteriolar diameter was observed over 7 days in WT-WT mice. This arteriolar remodeling response was completely abolished in CCR2−/−-WT mice but largely rescued in WT-CCR2−/− mice. EGFP+ BMCs were numerous throughout the tissue, but we found no evidence that EGFP+ BMCs transdifferentiate into smooth muscle, based on examination of >800 arterioles and venules. Conclusions BMC-specific CCR2 expression is required for injury/inflammation-associated arteriolar remodeling, but this response is not characterized by the differentiation of BMCs into smooth muscle. PMID:19734197

  12. A pharmacogenetic study of risperidone on chemokine (C-C motif) ligand 2 (CCL2) in Chinese Han schizophrenia patients.

    PubMed

    Xiong, Yuyu; Wei, Zhiyun; Huo, Ran; Wu, Xi; Shen, Lu; Li, Yang; Gong, Xueli; Wu, Zhenqiang; Feng, Guoyin; Li, Wenqiang; He, Lin; Xing, Qinghe; Qin, Shengying

    2014-06-01

    Previous observations of the pathophysiological distribution and pharmacological profile of the chemokine (C-C motif) ligand 2 (CCL2) have indicated its potential role in antipsychotic drug actions. More information on the pharmacogenetics of CCL2 may therefore be useful in developing individualized therapy. However, to our knowledge, rare studies have been reported in this area. This investigation was attempted to clarify whether CCL2 polymorphism could affect risperidone efficacy. We genotyped four SNPs (rs4795893, rs1024611, rs4586 and rs2857657) distributed throughout the CCL2 gene and examined them for association using the Positive and Negative Syndrome Scale (PANSS) score in two independent cohorts of Chinese schizophrenic patients (n = 208) from two different geographic areas, following an 8-week period of risperidone monotherapy. We found that all genotyped SNPs were significantly associated with risperidone treatment (rs4795893: p = 1.66E-04, rs4586: p = 0.001, rs2857657: p = 0.004, at week 4, in ANOVA). Our results indicate that there may be some effect of variations in the CCL2 gene on therapeutic efficacy of risperidone, and the associated polymorphisms may be a potential genetic marker for predicting the therapeutic effect of risperidone. PMID:24495780

  13. Increased expression of C-C motif ligand 2 associates with poor prognosis in patients with gastric cancer after gastrectomy.

    PubMed

    Liu, Hao; Shen, Zhenbin; Wang, Xuefei; Zhang, Heng; Qin, Jing; Qin, Xinyu; Xu, Jiejie; Sun, Yihong

    2016-03-01

    Previous studies have demonstrated the clinical significance of polarized tumor-associated macrophages (TAMs) in gastric cancer whereas the cytokines orchestrating TAM polarization remain elusive. This study aims to evaluate the prognostic value of C-C motif ligand 2 (CCL2) expression in gastric cancer patients after surgery. We examined CCL2 expression in tumor tissues by immunohistochemical staining in retrospectively enrolled 414 gastric cancer patients receiving gastrectomy at Zhongshan Hospital during 2008. We used Kaplan-Meier analysis and Cox regression models to assess the prognostic value of CCL2 expression. We generated a predictive nomogram from integrating CCL2 expression with the TNM staging system to evaluate 3- and 5-year overall survival. High intratumor CCL2 expression associated with adverse clinical outcome. Intratumor CCL2 expression provided additional prognostic value in gastric cancer patients. CCL2 expression, as well as well-established TNM staging parameters, was identified as independent prognostic factor for overall survival. The generated nomogram corresponded well with the ideal model in predicting the 3- and 5-year overall survival of gastric cancer patients. CCL2, an identified potential independent adverse prognosticator, could be integrated with TNM staging system to improve the predictive accuracy for overall survival in gastric cancer patients especially with advanced stages. PMID:26438062

  14. Positive intratumoral chemokine (C-C motif) receptor 8 expression predicts high recurrence risk of post-operation clear-cell renal cell carcinoma patients

    PubMed Central

    Zhou, Lin; An, Huimin; Zhu, Yu; Xu, Le; Zhang, Weijuan; Xu, Jiejie

    2016-01-01

    Chemokine (C-C motif) receptor 8 (CCR8) could drive cancer progress through recruiting certain immune cells. Recent evidences revealed the chemotaxis of CCR8+ human malignant tumor cells towards lymph node, and a significantly increased CCR8 expression in renal carcinomas patients. To assess the clinical association between CCR8 expression and the risk of post-surgery recurrence in patients with clear-cell renal cell carcinoma (ccRCC), we detected intratumoral CCR8 expression in 472 post-nephrectomy ccRCC patients retrospectively enrolled. Positive CCR8 staining tumor cell occurred in 26.1% (123 of 472) non-metastatic ccRCC cases, and the positive expression was associated with increased risks of recurrence (Log-Rank P < 0.001). In multivariate analyses, CCR8 expression was identified as an independent prognostic factor (P = 0.008) and entered into a newly-built nomogram together with T stage, Fuhrman grade, tumor size, necrosis and lymphovascular invasion. Calibration curves showed optimal agreement between predictions and observations, while its C-index was higher than that of Leibovich score for predicting recurrence-free survival (RFS) of localised RCC patients (0.854 vs 0.836, respectively; P = 0.044). The practical prognostic nomogram model may help clinicians in decision making and design of clinical studies. PMID:26716905

  15. Vascular Stem/Progenitor Cell Migration Induced by Smooth Muscle Cell-Derived Chemokine (C-C Motif) Ligand 2 and Chemokine (C-X-C motif) Ligand 1 Contributes to Neointima Formation.

    PubMed

    Yu, Baoqi; Wong, Mei Mei; Potter, Claire M F; Simpson, Russell M L; Karamariti, Eirini; Zhang, Zhongyi; Zeng, Lingfang; Warren, Derek; Hu, Yanhua; Wang, Wen; Xu, Qingbo

    2016-09-01

    Recent studies have shown that Sca-1(+) (stem cell antigen-1) stem/progenitor cells within blood vessel walls may contribute to neointima formation, but the mechanism behind their recruitment has not been explored. In this work Sca-1(+) progenitor cells were cultivated from mouse vein graft tissue and found to exhibit increased migration when cocultured with smooth muscle cells (SMCs) or when treated with SMC-derived conditioned medium. This migration was associated with elevated levels of chemokines, CCL2 (chemokine (C-C motif) ligand 2) and CXCL1 (chemokine (C-X-C motif) ligand 1), and their corresponding receptors on Sca-1(+) progenitors, CCR2 (chemokine (C-C motif) receptor 2) and CXCR2 (chemokine (C-X-C motif) receptor 2), which were also upregulated following SMC conditioned medium treatment. Knockdown of either receptor in Sca-1(+) progenitors significantly inhibited cell migration. The GTPases Cdc42 and Rac1 were activated by both CCL2 and CXCL1 stimulation and p38 phosphorylation was increased. However, only Rac1 inhibition significantly reduced migration and p38 phosphorylation. After Sca-1(+) progenitors labeled with green fluorescent protein (GFP) were applied to the adventitial side of wire-injured mouse femoral arteries, a large proportion of GFP-Sca-1(+) -cells were observed in neointimal lesions, and a marked increase in neointimal lesion formation was seen 1 week post-operation. Interestingly, Sca-1(+) progenitor migration from the adventitia to the neointima was abrogated and neointima formation diminished in a wire injury model using CCL2(-/-) mice. These findings suggest vascular stem/progenitor cell migration from the adventitia to the neointima can be induced by SMC release of chemokines which act via CCR2/Rac1/p38 and CXCR2/Rac1/p38 signaling pathways. Stem Cells 2016;34:2368-2380. PMID:27300479

  16. The chemokine (C-C motif) ligand protein synthesis inhibitor bindarit prevents cytoskeletal rearrangement and contraction of human mesangial cells.

    PubMed

    Paccosi, Sara; Giachi, Matelda; Di Gennaro, Paola; Guglielmotti, Angelo; Parenti, Astrid

    2016-09-01

    Intraglomerular mesangial cells (MCs) maintain structural and functional integrity of renal glomerular microcirculation and homeostasis of mesangial matrix. Following different types of injury, MCs change their phenotype upregulating the expression of α-smooth muscle actin (α-SMA), changing contractile abilities and increasing the production of matrix proteins, chemokines and cytokines. CCL2 is a chemokine known to be involved in the pathogenesis of renal diseases. Its glomerular upregulation correlates with the extent of renal damage. Bindarit is an indazolic derivative endowed with anti-inflammatory activity when tested in experimental diseases. It selectively inhibits the synthesis of inflammatory C-C chemokines including CCL2, CCL7 and CCL8. This work aims to analyse bindarit effects on ET1-, AngII- and TGFβ-induced mesangial cell dysfunction. Bindarit significantly reduced AngII-, ET1- and TGFβ-induced α-SMA upregulation. In a collagen contraction assay, bindarit reduced AngII-, ET1- and TGFβ-induced HRMC contraction. Within 3-6h stimulation, vinculin organization and phosphorylation was significantly impaired by bindarit in AngII-, ET1- and TGFβ-stimulated cells without any effect on F-actin distribution. Conversely, p38 phosphorylation was not significantly inhibited by bindarit. Our data strengthen the importance of CCL2 on ET-1, AngII- and TGFβ-induced mesangial cell dysfunction, adding new insights into the cellular mechanisms responsible of bindarit protective effects in human MC dysfunction. PMID:27309675

  17. Urinary chemokine (C-C motif) ligand 2 (monocyte chemotactic protein-1) as a tubular injury marker for early detection of cisplatin-induced nephrotoxicity

    PubMed Central

    Nishihara, Kumiko; Masuda, Satohiro; Shinke, Haruka; Ozawa, Aiko; Ichimura, Takaharu; Yonezawa, Atsushi; Nakagawa, Shunsaku; Inui, Ken-ichi; Bonventre, Joseph V.; Matsubara, Kazuo

    2014-01-01

    Because of the difficulty in detecting segment-specific response in the kidney, we investigated the molecular events underlying acute kidney injury in the proximal tubules of rats with cisplatin (cis-diamminedichloroplatinum II)-induced nephrotoxicity. Microarray analysis revealed that mRNA levels of several cytokines and chemokines, such as interleukin-1beta, chemokine (C-C motif) ligand (CCL) 2, CCL20, chemokine (C-X-C motif) ligand (CXCL) 1, and CXCL10 were significantly increased after cisplatin treatment in both isolated proximal tubules and whole kidney. Interestingly, tubular CCL2 mRNA levels increased soon after cisplatin administration, whereas CCL2 mRNA levels in whole kidney first decreased and then increased. Levels of both CCL2 and kidney injury molecule-1 (KIM-1) in the whole kidney increased after cisplatin administration. Immunofluorescence analysis revealed CCL2 changes in the proximal tubular cells initially and then in the medullary interstitium. Urinary CCL2 excretion significantly increased approximately 3-fold compared with controls the day after cisplatin administration (5 mg/kg), when no changes were observed plasma creatinine and blood urea nitrogen levels. Urinary levels of KIM-1 also increased 3-fold after cisplatin administration. In addition, urinary CCL2 rather than KIM-1 increased in chronic renal failure rats after administration of low-dose cisplatin (2 mg/kg), suggesting that urinary CCL2 was selective for cisplatin-induced nephrotoxicity in renal impairment. These results indicated that the increase in cytokine and chemokine expression in renal epithelial cells might be responsible for kidney deterioration in cisplatin-induced nephrotoxicity, and that urinary CCL2 is associated with tubular injury and serves as a sensitive and noninvasive marker for the early detection of cisplatin-induced tubular injury. PMID:23291264

  18. Luteolin inhibits recruitment of monocytes and migration of Lewis lung carcinoma cells by suppressing chemokine (C-C motif) ligand 2 expression in tumor-associated macrophage.

    PubMed

    Choi, Hee-Jin; Choi, Hee-Jung; Chung, Tae-Wook; Ha, Ki-Tae

    2016-01-29

    Tumor-associated macrophages (TAMs) play pivotal roles in the progression of cancer. In order to investigate a novel candidate that inhibits the tumor-supporting M2-like phenotype of TAMs, a murine macrophage cell line RAW 264.7 cells were treated with interleukin (IL)-4. Luteolin inhibited phosphorylation of signal transducer and activator of transcription 6 (STAT6), a main downstream signal of IL-4, and reduced the expression of the M2-associated genes. In addition, Luminex multiplex analysis for secreted cytokines revealed that IL-4-enhanced secretion of chemokine (C-C motif) ligand 2 (CCL2) was reduced by luteolin treatment. IL-4-stimulated migration of monocyte, THP-1 cells, was inhibited by luteolin treatment and recovered by recombinant CCL2 supplement. Moreover, luteolin decreased migration of Lewis lung carcinoma cells in a CCL2-dependent manner. Given the important role of the TAM phenotype in the tumor microenvironment, inhibitory effect of luteolin on the monocyte recruitment and cancer migration via suppression of the TAM-secreted CCL2 may suggest a novel therapeutic approach to treat malignant tumors. PMID:26766793

  19. Functional Interaction between Angiotensin II Receptor Type 1 and Chemokine (C-C Motif) Receptor 2 with Implications for Chronic Kidney Disease

    PubMed Central

    Kelly, Robyn S.; See, Heng B.; Johnstone, Elizabeth K. M.; McCall, Elizabeth A.; Williams, James H.; Kelly, Darren J.; Pfleger, Kevin D. G.

    2015-01-01

    Understanding functional interactions between G protein-coupled receptors is of great physiological and pathophysiological importance. Heteromerization provides one important potential mechanism for such interaction between different signalling pathways via macromolecular complex formation. Previous studies suggested a functional interplay between angiotensin II receptor type 1 (AT1) and Chemokine (C-C motif) Receptor 2 (CCR2). However the molecular mechanisms are not understood. We investigated AT1-CCR2 functional interaction in vitro using bioluminescence resonance energy transfer in HEK293 cells and in vivo using subtotal-nephrectomized rats as a well-established model for chronic kidney disease. Our data revealed functional heteromers of these receptors resulting in CCR2-Gαi1 coupling being sensitive to AT1 activation, as well as apparent enhanced β-arrestin2 recruitment with agonist co-stimulation that is synergistically reversed by combined antagonist treatment. Moreover, we present in vivo findings where combined treatment with AT1- and CCR2-selective inhibitors was synergistically beneficial in terms of decreasing proteinuria, reducing podocyte loss and preventing renal injury independent of blood pressure in the subtotal-nephrectomized rat model. Our findings further support a role for G protein-coupled receptor functional heteromerization in pathophysiology and provide insights into previous observations indicating the importance of AT1-CCR2 functional interaction in inflammation, renal and hypertensive disorders. PMID:25807547

  20. Targeting of TGF-β-activated protein kinase 1 inhibits chemokine (C-C motif) receptor 7 expression, tumor growth and metastasis in breast cancer

    PubMed Central

    Hung, Wen-Chun; Hou, Ming-Feng

    2015-01-01

    TGF-β-activated protein kinase 1 (TAK1) is a critical mediator in inflammation, immune response and cancer development. Our previous study demonstrated that activation of TAK1 increases the expression of chemokine (C-C motif) receptor 7 (CCR7) and promotes lymphatic invasion ability of breast cancer cells. However, the expression and association of activated TAK1 and CCR7 in breast tumor tissues is unknown and the therapeutic effect by targeting TAK1 is also unclear. We showed that activated TAK1 (as indicated by phospho-TAK1) and its binding protein TAB1 are strongly expressed in breast tumor tissues (77% and 74% respectively). In addition, increase of phospho-TAK1 or TAB1 is strongly associated with over-expression of CCR7. TAK1 inhibitor 5Z-7-Oxozeaenol (5Z-O) inhibited TAK1 activity, suppressed downstream signaling pathways including p38, IκB kinase (IKK) and c-Jun N-terminal kinase (JNK) and reduced CCR7 expression in metastatic MDA-MB-231 cells. In addition, 5Z-O repressed NF-κB- and c-JUN-mediated transcription of CCR7 gene. Knockdown of TAB1 attenuated CCR7 expression and tumor growth in an orthotopic animal study. More importantly, lymphatic invasion and lung metastasis were suppressed. Collectively, our results demonstrate that constitutive activation of TAK1 is frequently found in human breast cancer and this kinase is a potential therapeutic target for this cancer. PMID:25557171

  1. Osteolytic lesions, cytogenetic features and bone marrow levels of cytokines and chemokines in multiple myeloma patients: Role of chemokine (C-C motif) ligand 20.

    PubMed

    Palma, B Dalla; Guasco, D; Pedrazzoni, M; Bolzoni, M; Accardi, F; Costa, F; Sammarelli, G; Craviotto, L; De Filippo, M; Ruffini, L; Omedè, P; Ria, R; Aversa, F; Giuliani, N

    2016-02-01

    The relationship between bone marrow (BM) cytokine and chemokine levels, cytogenetic profiles and skeletal involvement in multiple myeloma (MM) patients is not yet defined. This study investigated a cohort of 455 patients including monoclonal gammopathy of uncertain significance (MGUS), smoldering MM and symptomatic MM patients. Skeletal surveys, positron emission tomography (PET)/computerized tomography (CT) and magnetic resonance imaging (MRI) were used to identify myeloma bone disease. Significantly higher median BM levels of both C-C motif Ligand (CCL)3 and CCL20 were found in MM patients with radiographic evidence of osteolytic lesions as compared with those without, and in all MM patients with positive PET/CT scans. BM levels of CCL3, CCL20, Activin-A and Dickkopf-1 (DKK-1) were significantly higher in patients with high bone disease as compared with patients with low bone disease. Moreover, CCL20 BM levels were significant predictors of osteolysis on X-rays by multivariate logistic analysis. On the other hand, DKK-1 levels were related to the presence of MRI lesions independently of the osteolysis at the X-rays. Our data define the relationship between bone disease and the BM cytokine and chemokine patterns highlighting the tight relationship between CCL20 BM levels and osteolysis in MM. PMID:26419509

  2. The B7-1 Cytoplasmic Tail Enhances Intracellular Transport and Mammalian Cell Surface Display of Chimeric Proteins in the Absence of a Linear ER Export Motif

    PubMed Central

    Lin, Yi-Chieh; Chen, Bing-Mae; Lu, Wei-Cheng; Su, Chien-I; Prijovich, Zeljko M.; Chung, Wen-Chuan; Wu, Pei-Yu; Chen, Kai-Chuan; Lee, I-Chiao; Juan, Ting-Yi; Roffler, Steve R.

    2013-01-01

    Membrane-tethered proteins (mammalian surface display) are increasingly being used for novel therapeutic and biotechnology applications. Maximizing surface expression of chimeric proteins on mammalian cells is important for these applications. We show that the cytoplasmic domain from the B7-1 antigen, a commonly used element for mammalian surface display, can enhance the intracellular transport and surface display of chimeric proteins in a Sar1 and Rab1 dependent fashion. However, mutational, alanine scanning and deletion analysis demonstrate the absence of linear ER export motifs in the B7 cytoplasmic domain. Rather, efficient intracellular transport correlated with the presence of predicted secondary structure in the cytoplasmic tail. Examination of the cytoplasmic domains of 984 human and 782 mouse type I transmembrane proteins revealed that many previously identified ER export motifs are rarely found in the cytoplasmic tail of type I transmembrane proteins. Our results suggest that efficient intracellular transport of B7 chimeric proteins is associated with the structure rather than to the presence of a linear ER export motif in the cytoplasmic tail, and indicate that short (less than ~ 10-20 amino acids) and unstructured cytoplasmic tails should be avoided to express high levels of chimeric proteins on mammalian cells. PMID:24073236

  3. Characterization of a conserved C-terminal motif (RSPRR) in ribosomal protein S6 kinase 1 required for its mammalian target of rapamycin-dependent regulation.

    PubMed

    Schalm, Stefanie S; Tee, Andrew R; Blenis, John

    2005-03-25

    The mammalian target of rapamycin, mTOR, is a Ser/Thr kinase that promotes cell growth and proliferation by activating ribosomal protein S6 kinase 1 (S6K1). We previously identified a conserved TOR signaling (TOS) motif in the N terminus of S6K1 that is required for its mTOR-dependent activation. Furthermore, our data suggested that the TOS motif suppresses an inhibitory function associated with the C terminus of S6K1. Here, we have characterized the mTOR-regulated inhibitory region within the C terminus. We have identified a conserved C-terminal "RSPRR" sequence that is responsible for an mTOR-dependent suppression of S6K1 activation. Deletion or mutations within this RSPRR motif partially rescue the kinase activity of the S6K1 TOS motif mutant (S6K1-F5A), and this rescued activity is rapamycin resistant. Furthermore, we have shown that the RSPRR motif significantly suppresses S6K1 phosphorylation at two phosphorylation sites (Thr-389 and Thr-229) that are crucial for S6K1 activation. Importantly, introducing both the Thr-389 phosphomimetic and RSPRR motif mutations into the catalytically inactive S6K1 mutant S6K1-F5A completely rescues its activity and renders it fully rapamycin resistant. These data show that the N-terminal TOS motif suppresses an inhibitory function mediated by the C-terminal RSPRR motif. We propose that the RSPRR motif interacts with a negative regulator of S6K1 that is normally suppressed by mTOR. PMID:15659381

  4. Chemokine (C-C motif) ligand 3 detection in the serum of persons exposed to asbestos: A patient-based study.

    PubMed

    Xu, Jiegou; Alexander, David B; Iigo, Masaaki; Hamano, Hirokazu; Takahashi, Satoru; Yokoyama, Takako; Kato, Munehiro; Usami, Ikuji; Tokuyama, Takeshi; Tsutsumi, Masahiro; Tamura, Mouka; Oguri, Tetsuya; Niimi, Akio; Hayashi, Yoshimitsu; Yokoyama, Yoshifumi; Tonegawa, Ken; Fukamachi, Katsumi; Futakuchi, Mitsuru; Sakai, Yuto; Suzui, Masumi; Kamijima, Michihiro; Hisanaga, Naomi; Omori, Toyonori; Nakae, Dai; Hirose, Akihiko; Kanno, Jun; Tsuda, Hiroyuki

    2015-07-01

    Exposure to asbestos results in serious risk of developing lung and mesothelial diseases. Currently, there are no biomarkers that can be used to diagnose asbestos exposure. The purpose of the present study was to determine whether the levels or detection rate of chemokine (C-C motif) ligand 3 (CCL3) in the serum are elevated in persons exposed to asbestos. The primary study group consisted of 76 healthy subjects not exposed to asbestos and 172 healthy subjects possibly exposed to asbestos. The secondary study group consisted of 535 subjects possibly exposed to asbestos and diagnosed with pleural plaque (412), benign hydrothorax (10), asbestosis (86), lung cancer (17), and malignant mesothelioma (10). All study subjects who were possibly exposed to asbestos had a certificate of asbestos exposure issued by the Japanese Ministry of Health, Labour and Welfare. For the primary study group, levels of serum CCL3 did not differ between the two groups. However, the detection rate of CCL3 in the serum of healthy subjects possibly exposed to asbestos (30.2%) was significantly higher (P < 0.001) than for the control group (6.6%). The pleural plaque, benign hydrothorax, asbestosis, and lung cancer groups had serum CCL3 levels and detection rates similar to that of healthy subjects possibly exposed to asbestos. The CCL3 chemokine was detected in the serum of 9 of the 10 patients diagnosed with malignant mesothelioma. Three of the patients with malignant mesothelioma had exceptionally high CCL3 levels. Malignant mesothelioma cells from four biopsy cases and an autopsy case were positive for CCL3, possibly identifying the source of the CCL3 in the three malignant mesothelioma patients with exceptionally high serum CCL3 levels. In conclusion, a significantly higher percentage of healthy persons possibly exposed to asbestos had detectable levels of serum CCL3 compared to healthy unexposed control subjects. PMID:25940505

  5. Chemokine-like receptor 1 (CMKLR1) and chemokine (C-C motif) receptor-like 2 (CCRL2); two multifunctional receptors with unusual properties.

    PubMed

    Yoshimura, Teizo; Oppenheim, Joost J

    2011-03-10

    Chemokine-like receptor 1 (CMKLR1), also known as ChemR23, and chemokine (C-C motif) receptor-like 2 (CCRL2) are 7-transmembrane receptors that were cloned in the late 1990s based on their homology to known G-protein-coupled receptors. They were previously orphan receptors without any known biological roles; however, recent studies identified ligands for these receptors and their functions have begun to be unveiled. The plasma protein-derived chemoattractant chemerin is a ligand for CMKLR1 and activation of CMKLR1 with chemerin induces the migration of macrophages and dendritic cells (DCs) in vitro, suggesting a proinflammatory role. However, in vivo studies using CMKLR-deficient mice suggest an anti-inflammatory role for this receptor, possibly due to the recruitment of tolerogenic plasmacytoid DCs. Chemerin/CMKLR1 interaction also promotes adipogenesis and angiogenesis. The anti-inflammatory lipid mediator, resolving E1, is another CMKLR1 ligand and it inhibits leukocyte infiltration and proinflammatory gene expression. These divergent results suggest that CMKLR1 is a multifunctional receptor. The chemokine CCL5 and CCL19 are reported to bind to CCRL2. Like Duffy antigen for chemokine receptor (DARC), D6 and CCX-CKR, CCRL2 does not signal, but it constitutively recycles, potentially reducing local concentration of CCL5 and CCL19 and subsequent immune responses. Surprisingly, chemerin, a ligand for CMKLR1, is a ligand for CCRL2. CCRL2 binds chemerin and increases local chemerin concentration to efficiently present it to CMKLR1 on nearby cells, providing a link between CCRL2 and CMKLR1. Although these findings suggest an anti-inflammatory role, a recent study using CCRL2-deficient mice indicates a proinflammatory role; thus, CCRL2 may also be multifunctional. Further studies using CMKLR1- or CCRL2-deficient mice are needed to further define the role of these receptors in immune responses and other cellular processes. PMID:21056554

  6. Preliminary study on serum paraoxonase-1 status and chemokine (C-C motif) ligand 2 in hospitalized elderly patients with catheter-associated asymptomatic bacteriuria.

    PubMed

    Iftimie, S; García-Heredia, A; Pujol, I; Ballester, F; Fort-Gallifa, I; Simó, J M; Joven, J; Camps, J; Castro, A

    2016-09-01

    Urinary tract infections (UTI) are common among elderly patients in residential care facilities, as well as in the hospital setting. Identifying new biochemical markers of UTI is an active line of research since UTI management is resource intensive. Paraoxonase-1 (PON1) forms part of the patient's immune system, the response-to-injury and inflammation. Our study sought to evaluate alterations in inflammation-related paraoxonase-1 (PON1) and chemokine (C-C motif) ligand 2 (CCL2) in patients with an indwelling catheter to assess their potential usefulness as biomarkers of infection. Patients (n = 142) who had had the urinary catheter removed and 100 healthy volunteers were recruited. In all participants we measured serum PON1 activity, PON1 concentration, CCL2, procalcitonin and C-reactive protein (CRP). Results indicated that patients had higher CCL2, CRP and procalcitonin concentrations than the control group, and lower paraoxonase activity. There were no significant differences in PON1 concentrations. When comparing the diagnostic accuracy of CRP, procalcitonin, CCL2 and the PON1-related variables in discriminating between patients with and those without UTI, we found a considerable degree of overlap between groups, i.e., a low diagnostic accuracy. However, there were significant inverse logarithmic correlations between serum paraoxonase activity and the number of days the urinary catheter had been in situ. Our results suggest that measurement of these biochemical variables may be useful in investigating complications of long-term use of these devices and help to improve the economic and clinical investment required in the management of the often-associated infection. PMID:27334497

  7. Regulated C-C motif ligand 2 (CCL2) in luteal cells contributes to macrophage infiltration into the human corpus luteum during luteolysis.

    PubMed

    Nio-Kobayashi, Junko; Kudo, Masataka; Sakuragi, Noriaki; Kimura, Shunsuke; Iwanaga, Toshihiko; Duncan, W Colin

    2015-08-01

    Intense macrophage infiltration is observed during luteolysis in various animals including women; however, we still do not know how macrophage infiltration into the human corpus luteum (CL) during luteolysis is regulated. In this study, we examined the expression, localization and regulation of an important chemokine for the recruitment of monocyte/macrophage lineages, C-C motif ligand 2 (CCL2), in the human CL across the luteal phase and in cultured human luteinized granulosa cells (LGCs), with special reference to the number of infiltrating macrophages and luteal cell function. CCL2 mRNA increased in the non-functional regressing CL during menstruation (P < 0.01), corresponding to an elevated mRNA expression of a macrophage-derived cytokine, tumor necrosis factor (TNF), and an increased number of infiltrating macrophages positively stained with a macrophage marker, CD68. CCL2 protein was immunohistochemically localized to the cytoplasm of granulosa-lutein and theca-lutein cells, and CCL2 mRNA was significantly reduced by hCG both in vivo (P < 0.05) and in vitro (P < 0.01). CCL2 was also down-regulated by luteotrophic prostaglandin (PG) E (P < 0.0001), but up-regulated by luteolytic PGF (P < 0.05) in vitro. Administration of TNF significantly enhanced the CCL2 mRNA expression in cultured LGCs (P < 0.01). A greater abundance of infiltrating macrophages were found around granulosa-lutein cells lacking 3β-HSD or PGE synthase (PGES) immunostaining. CCL2 mRNA expression was negatively correlated with both HSD3B1 and PGES, suggesting that locally produced progesterone and PGE suppress macrophage infiltration into the CL. Taken together, the infiltration of macrophages in the human CL is regulated by endocrine and paracrine molecules via regulation of the CCL2 expression in luteal cells. PMID:26003810

  8. Optimization of a Series of Triazole Containing Mammalian Target of Rapamycin (mTOR) Kinase Inhibitors and the Discovery of CC-115.

    PubMed

    Mortensen, Deborah S; Perrin-Ninkovic, Sophie M; Shevlin, Graziella; Elsner, Jan; Zhao, Jingjing; Whitefield, Brandon; Tehrani, Lida; Sapienza, John; Riggs, Jennifer R; Parnes, Jason S; Papa, Patrick; Packard, Garrick; Lee, Branden G S; Harris, Roy; Correa, Matthew; Bahmanyar, Sogole; Richardson, Samantha J; Peng, Sophie X; Leisten, Jim; Khambatta, Godrej; Hickman, Matt; Gamez, James C; Bisonette, René R; Apuy, Julius; Cathers, Brian E; Canan, Stacie S; Moghaddam, Mehran F; Raymon, Heather K; Worland, Peter; Narla, Rama Krishna; Fultz, Kimberly E; Sankar, Sabita

    2015-07-23

    We report here the synthesis and structure-activity relationship (SAR) of a novel series of triazole containing mammalian target of rapamycin (mTOR) kinase inhibitors. SAR studies examining the potency, selectivity, and PK parameters for a series of triazole containing 4,6- or 1,7-disubstituted-3,4-dihydropyrazino[2,3-b]pyrazine-2(1H)-ones resulted in the identification of triazole containing mTOR kinase inhibitors with improved PK properties. Potent compounds from this series were found to block both mTORC1(pS6) and mTORC2(pAktS473) signaling in PC-3 cancer cells, in vitro and in vivo. When assessed in efficacy models, analogs exhibited dose-dependent efficacy in tumor xenograft models. This work resulted in the selection of CC-115 for clinical development. PMID:26102506

  9. The Mammalian Orthologs of Drosophila Lgd, CC2D1A and CC2D1B, Function in the Endocytic Pathway, but Their Individual Loss of Function Does Not Affect Notch Signalling

    PubMed Central

    Drusenheimer, Nadja; Migdal, Bernhard; Jäckel, Sandra; Tveriakhina, Lena; Scheider, Kristina; Schulz, Katharina; Gröper, Jieny; Köhrer, Karl; Klein, Thomas

    2015-01-01

    CC2D1A and CC2D1B belong to the evolutionary conserved Lgd protein family with members in all multi-cellular animals. Several functions such as centrosomal cleavage, involvement in signalling pathways, immune response and synapse maturation have been described for CC2D1A. Moreover, the Drosophila melanogaster ortholog Lgd was shown to be involved in the endosomal trafficking of the Notch receptor and other transmembrane receptors and physically interacts with the ESCRT-III component Shrub/CHMP4. To determine if this function is conserved in mammals we generated and characterized Cc2d1a and Cc2d1b conditional knockout mice. While Cc2d1b deficient mice displayed no obvious phenotype, we found that Cc2d1a deficient mice as well as conditional mutants that lack CC2D1A only in the nervous system die shortly after birth due to respiratory distress. This finding confirms the suspicion that the breathing defect is caused by the central nervous system. However, an involvement in centrosomal function could not be confirmed in Cc2d1a deficient MEF cells. To analyse an influence on Notch signalling, we generated intestine specific Cc2d1a mutant mice. These mice did not display any alterations in goblet cell number, proliferating cell number or expression of the Notch reporter Hes1-emGFP, suggesting that CC2D1A is not required for Notch signalling. However, our EM analysis revealed that the average size of endosomes of Cc2d1a mutant cells, but not Cc2d1b mutant cells, is increased, indicating a defect in endosomal morphogenesis. We could show that CC2D1A and its interaction partner CHMP4B are localised on endosomes in MEF cells, when the activity of the endosomal protein VPS4 is reduced. This indicates that CC2D1A cycles between the cytosol and the endosomal membrane. Additionally, in rescue experiments in D. melanogaster, CC2D1A and CC2D1B were able to functionally replace Lgd. Altogether our data suggest a functional conservation of the Lgd protein family in the ESCRT

  10. Identification of C-terminal motifs responsible for transmission of inhibition by ATP of mammalian phosphofructokinase, and their contribution to other allosteric effects.

    PubMed Central

    Martínez-Costa, Oscar H; Hermida, Carmen; Sánchez-Martínez, Cristina; Santamaría, Belén; Aragón, Juan J

    2004-01-01

    Systematic deletions and point mutations in the C-terminal extension of mammalian PFK (phosphofructokinase) led us to identify Leu-767 and Glu-768 of the M-type isoform (PFK-M) as the motifs responsible for the role of this region in inhibition by MgATP. These amino acids are the only residues of the C-terminus that are conserved in all mammalian isoforms, and were found to have a similar function in the C-type isoenzyme. Both residues in PFK-C and Leu-767 in PFK-M were also observed to be critical for inhibition by citrate, which is synergistic with that by MgATP. Binding studies utilizing titration of intrinsic protein fluorescence indicated that the C-terminal part of the enzyme participates in the signal transduction route from the MgATP inhibitory site to the catalytic site, but does not contribute to the binding of this inhibitor, whereas it is essential for the binding of citrate. Mutations of the identified structural motifs did not alter either the action of other allosteric effectors that also interact with MgATP, such as the inhibitor phosphoenolpyruvate and the strong activator fructose 2,6-bisphosphate, or the co-operative effect of fructose 6-phosphate. The latter data provide evidence that activation by fructose 2,6-bisphosphate and fructose 6-phosphate co-operativity are not linked to the same allosteric transition as that mediating inhibition by MgATP. PMID:12974670

  11. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain

    SciTech Connect

    Lechner, Mark S. . E-mail: msl27@drexel.edu; Schultz, David C.; Negorev, Dmitri; Maul, Gerd G.; Rauscher, Frank J.

    2005-06-17

    The HP1 proteins regulate epigenetic gene silencing by promoting and maintaining chromatin condensation. The HP1 chromodomain binds to methylated histone H3. More enigmatic is the chromoshadow domain (CSD), which mediates dimerization, transcription repression, and interaction with multiple nuclear proteins. Here we show that KAP-1, CAF-1 p150, and NIPBL carry a canonical amino acid motif, PxVxL, which binds directly to the CSD with high affinity. We also define a new class of variant PxVxL CSD-binding motifs in Sp100A, LBR, and ATRX. Both canonical and variant motifs recognize a similar surface of the CSD dimer as demonstrated by a panel of CSD mutants. These in vitro binding results were confirmed by the analysis of polypeptides found associated with nuclear HP1 complexes and we provide the first evidence of the NIPBL/delangin protein in human cells, a protein recently implicated in the developmental disorder, Cornelia de Lange syndrome. NIPBL is related to Nipped-B, a factor participating in gene activation by remote enhancers in Drosophila melanogaster. Thus, this spectrum of direct binding partners suggests an expanded role for HP1 as factor participating in promoter-enhancer communication, chromatin remodeling/assembly, and sub-nuclear compartmentalization.

  12. hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: Structural and functional studies

    PubMed Central

    Drakou, Christina E.; Malekkou, Anna; Hayes, Joseph M.; Lederer, Carsten W.; Leonidas, Demetres D.; Lamond, Angus I.; Santama, Niovi; Zographos, Spyros E.

    2013-01-01

    Human coilin interacting nuclear ATPase protein (hCINAP) directly interacts with coilin, a marker protein of Cajal Bodies (CBs), nuclear organelles involved in the maturation of small nuclear ribonucleoproteins UsnRNPs and snoRNPs. hCINAP has previously been designated as an adenylate kinase (AK6), but is very atypical as it exhibits unusually broad substrate specificity, structural features characteristic of ATPase/GTPase proteins (Walker motifs A and B) and also intrinsic ATPase activity. Despite its intriguing structure, unique properties and cellular localization, the enzymatic mechanism and biological function of hCINAP have remained poorly characterized. Here, we offer the first high-resolution structure of hCINAP in complex with the substrate ADP (and dADP), the structure of hCINAP with a sulfate ion bound at the AMP binding site, and the structure of the ternary complex hCINAP-Mg2+ADP-Pi. Induced fit docking calculations are used to predict the structure of the hCINAP-Mg2+ATP-AMP ternary complex. Structural analysis suggested a functional role for His79 in the Walker B motif. Kinetic analysis of mutant hCINAP-H79G indicates that His79 affects both AK and ATPase catalytic efficiency and induces homodimer formation. Finally, we show that in vivo expression of hCINAP-H79G in human cells is toxic and drastically deregulates the number and appearance of CBs in the cell nucleus. Our findings suggest that hCINAP may not simply regulate nucleotide homeostasis, but may have broader functionality, including control of CB assembly and disassembly in the nucleus of human cells. PMID:22038794

  13. hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: structural and functional studies.

    PubMed

    Drakou, Christina E; Malekkou, Anna; Hayes, Joseph M; Lederer, Carsten W; Leonidas, Demetres D; Oikonomakos, Nikos G; Lamond, Angus I; Santama, Niovi; Zographos, Spyros E

    2012-01-01

    Human coilin interacting nuclear ATPase protein (hCINAP) directly interacts with coilin, a marker protein of Cajal Bodies (CBs), nuclear organelles involved in the maturation of small nuclear ribonucleoproteins UsnRNPs and snoRNPs. hCINAP has previously been designated as an adenylate kinase (AK6), but is very atypical as it exhibits unusually broad substrate specificity, structural features characteristic of ATPase/GTPase proteins (Walker motifs A and B) and also intrinsic ATPase activity. Despite its intriguing structure, unique properties and cellular localization, the enzymatic mechanism and biological function of hCINAP have remained poorly characterized. Here, we offer the first high-resolution structure of hCINAP in complex with the substrate ADP (and dADP), the structure of hCINAP with a sulfate ion bound at the AMP binding site, and the structure of the ternary complex hCINAP-Mg(2+) ADP-Pi. Induced fit docking calculations are used to predict the structure of the hCINAP-Mg(2+) ATP-AMP ternary complex. Structural analysis suggested a functional role for His79 in the Walker B motif. Kinetic analysis of mutant hCINAP-H79G indicates that His79 affects both AK and ATPase catalytic efficiency and induces homodimer formation. Finally, we show that in vivo expression of hCINAP-H79G in human cells is toxic and drastically deregulates the number and appearance of CBs in the cell nucleus. Our findings suggest that hCINAP may not simply regulate nucleotide homeostasis, but may have broader functionality, including control of CB assembly and disassembly in the nucleus of human cells. PMID:22038794

  14. CpG island erosion, polycomb occupancy and sequence motif enrichment at bivalent promoters in mammalian embryonic stem cells

    PubMed Central

    Mantsoki, Anna; Devailly, Guillaume; Joshi, Anagha

    2015-01-01

    In embryonic stem (ES) cells, developmental regulators have a characteristic bivalent chromatin signature marked by simultaneous presence of both activation (H3K4me3) and repression (H3K27me3) signals and are thought to be in a ‘poised’ state for subsequent activation or silencing during differentiation. We collected eleven pairs (H3K4me3 and H3K27me3) of ChIP sequencing datasets in human ES cells and eight pairs in murine ES cells, and predicted high-confidence (HC) bivalent promoters. Over 85% of H3K27me3 marked promoters were bivalent in human and mouse ES cells. We found that (i) HC bivalent promoters were enriched for developmental factors and were highly likely to be differentially expressed upon transcription factor perturbation; (ii) murine HC bivalent promoters were occupied by both polycomb repressive component classes (PRC1 and PRC2) and grouped into four distinct clusters with different biological functions; (iii) HC bivalent and active promoters were CpG rich while H3K27me3-only promoters lacked CpG islands. Binding enrichment of distinct sets of regulators distinguished bivalent from active promoters. Moreover, a ‘TCCCC’ sequence motif was specifically enriched in bivalent promoters. Finally, this analysis will serve as a resource for future studies to further understand transcriptional regulation during embryonic development. PMID:26582124

  15. Capillary arterialization requires the bone marrow-derived cell (BMC)-specific expression of chemokine (C-C motif) receptor-2, but BMCs do not transdifferentiate into microvascular smooth muscle

    PubMed Central

    Nickerson, Meghan M.; Burke, Caitlin W.; Meisner, Joshua K.; Shuptrine, Casey W.; Song, Ji

    2009-01-01

    Chemokine (C-C motif) receptor-2 (CCR2) regulates arteriogenesis and angiogenesis, facilitating the MCP-1-dependent recruitment of growth factor-secreting bone marrow-derived cells (BMCs). Here, we tested the hypothesis that the BMC-specific expression of CCR2 is also required for new arteriole formation via capillary arterialization. Following non-ischemic saphenous artery occlusion, we measured the following in gracilis muscles: monocyte chemotactic protein-1 (MCP-1) in wild-type (WT) C57Bl/6J mice by ELISA, and capillary arterialization in WT–WT and CCR2−/−–WT (donor–host) bone marrow chimeric mice, as well as BMC transdifferentiation in EGFP+–WT mice, by smooth muscle (SM) α-actin immunochemistry. MCP-1 levels were significantly elevated 1 day after occlusion in WT mice. In WT–WT mice at day 7, compared to sham controls, arterial occlusion induced a 34% increase in arteriole length density, a 46% increase in SM α-actin+ vessels, and a 45% increase in the fraction of vessels coated with SM α-actin, indicating significant capillary arterialization. However, in CCR2−/−–WT mice, no differences were observed between arterial occlusion and sham surgery. In EGFP+–WT mice, EGFP and SM α-actin never colocalized. We conclude that BMC-specific CCR2 expression is required for skeletal muscle capillary arterialization following arterial occlusion; however, BMCs do not transdifferentiate into smooth muscle. PMID:19777360

  16. Tracheal Smooth Muscle Cells Stimulated by Stem Cell Factor-c-Kit Coordinate the Production of Transforming Growth Factor-β1 and Fibroblast Growth Factor-2 Mediated by Chemokine (C-C Motif) Ligand 3.

    PubMed

    Oliveira, Luis Cezar Farias de; Danilucci, Taís Marolato; Chaves-Neto, Antonio Hernandes; Campanelli, Ana Paula; Silva, Tereza Cristina Cardoso da; Oliveira, Sandra Helena Penha

    2016-06-01

    The aim of this study was to evaluate the mechanism involved in the stem cell factor (SCF)-induced production of fibroblast growth factor-2 (FGF-2), transforming growth factor-β1 (TGF-β1), and chemokine (C-C motif) ligand 3 (CCL3) in tracheal smooth muscle cells (tSMCs) and the signaling pathway involved in the process. tSMC primary cultures were stimulated with SCF and evaluated at 24 h. Cells treated with specific antibodies did not show any immunolabeling for cytokeratin or fibroblast activation protein, but were positive for α-smooth muscle actin, indicating the purity of the primary cell line. Western blot analysis showed constitutive phosphorylation of c-Kit, as well as increased total protein and phosphorylated c-Kit levels in tSMCs after SCF stimulation. Flow cytometry analysis also showed an increase in cell-surface c-Kit expression in the presence of SCF. SCF induced TGF-β mRNA expression in tSMCs, as well as the production of TGF-β1, CCL3, and FGF-2. Pretreatment with anti-CCL3 antibody blocked TGF-β1 expression and partially inhibited FGF-2 production. On the other hand, anti-c-Kit antibody blocked TGF-β1 expression and FGF-2 production. Thus, TGF-β1 and FGF-2 production were mediated by CCL3 production through c-Kit. Pretreatment with mitogen-activated protein kinase kinase 1, p38, and Jun N-terminal kinase inhibitors showed that the effects mediated by SCF were involved with the modulation of mitogen-activated protein kinase (MAPK) pathways. Development of inhibitors targeting CCL3 through MAPK activation could thus be an attractive strategy to inhibit tSMC activation during asthma. PMID:27123814

  17. Human Axonal Survival of Motor Neuron (a-SMN) Protein Stimulates Axon Growth, Cell Motility, C-C Motif Ligand 2 (CCL2), and Insulin-like Growth Factor-1 (IGF1) Production*

    PubMed Central

    Locatelli, Denise; Terao, Mineko; Fratelli, Maddalena; Zanetti, Adriana; Kurosaki, Mami; Lupi, Monica; Barzago, Maria Monica; Uggetti, Andrea; Capra, Silvia; D'Errico, Paolo; Battaglia, Giorgio S.; Garattini, Enrico

    2012-01-01

    Spinal muscular atrophy is a fatal genetic disease of motoneurons due to loss of full-length survival of motor neuron protein, the main product of the disease gene SMN1. Axonal SMN (a-SMN) is an alternatively spliced isoform of SMN1, generated by retention of intron 3. To study a-SMN function, we generated cellular clones for the expression of the protein in mouse motoneuron-like NSC34 cells. The model was instrumental in providing evidence that a-SMN decreases cell growth and plays an important role in the processes of axon growth and cellular motility. In our conditions, low levels of a-SMN expression were sufficient to trigger the observed biological effects, which were not modified by further increasing the amounts of the expressed protein. Differential transcriptome analysis led to the identification of novel a-SMN-regulated factors, i.e. the transcripts coding for the two chemokines, C-C motif ligands 2 and 7 (CCL2 and CCL7), as well as the neuronal and myotrophic factor, insulin-like growth factor-1 (IGF1). a-SMN-dependent induction of CCL2 and IGF1 mRNAs resulted in increased intracellular levels and secretion of the respective protein products. Induction of CCL2 contributes to the a-SMN effects, mediating part of the action on axon growth and random cell motility, as indicated by chemokine knockdown and re-addition studies. Our results shed new light on a-SMN function and the underlying molecular mechanisms. The data provide a rational framework to understand the role of a-SMN deficiency in the etiopathogenesis of spinal muscular atrophy. PMID:22669976

  18. Effect of repeated alcohol exposure during the third trimester-equivalent on messenger RNA levels for interleukin-1β, chemokine (C-C motif) ligand 2, and interleukin 10 in the developing rat brain after injection of lipopolysaccharide.

    PubMed

    Topper, Lauren A; Valenzuela, C Fernando

    2014-12-01

    Microglia undergo maturation during the third trimester of human development (equivalent to the first 1-2 weeks of postnatal life in rodents), during which these cells may be particularly sensitive to insult. Alcohol exposure during this period can activate the neuroimmune system, an effect that may contribute to the pathophysiology of fetal alcohol spectrum disorders. Here, we investigated whether repeated alcohol exposure during the third trimester-equivalent in rats has a priming effect on the neuroimmune response to injection of bacterial lipopolysaccharide (LPS). Pups were exposed to alcohol in vapor chambers for 4 h daily from postnatal day (PD)2 to PD16 (peak blood alcohol concentrations ∼150 mg/dL). On PD17, rats were injected with either saline or LPS (50 μg/kg) and the frontal cortex, cerebellar vermis, and dentate gyrus were collected 2 h later. Messenger RNA (mRNA) levels for the pro-inflammatory agents interleukin 1β (IL-1β) and chemokine (C-C) motif ligand 2 (CCL2), as well as levels of the anti-inflammatory cytokine interleukin 10 (IL-10), were measured using reverse transcriptase polymerase chain reaction. LPS consistently increased IL-1β and CCL2 mRNA levels in the dentate gyrus, frontal cortex, and cerebellum of both male and female rats. Furthermore, the LPS-induced increase of IL-1β mRNA levels was significantly blunted in the frontal cortex of alcohol-exposed female rats. Conversely, LPS only minimally affected IL-10 mRNA expression and there were no significant differences between air- and alcohol-exposed rats. Taken together with the literature regarding the effect of third-trimester alcohol exposure on the neuroimmune system, our findings suggest that chronic exposure to lower levels is less disruptive to the neuroimmune system than binge-like exposure to high doses of alcohol. PMID:25446642

  19. Long non-coding RNA-GAS5 acts as a tumor suppressor in bladder transitional cell carcinoma via regulation of chemokine (C-C motif) ligand 1 expression

    PubMed Central

    CAO, QIFENG; WANG, NING; QI, JUAN; GU, ZHENGQIN; SHEN, HAIBO

    2016-01-01

    Long non-coding RNAs (lncRNAs) have important roles in diverse biological processes, including transcriptional regulation, cell growth and tumorigenesis. The present study aimed to investigate whether lncRNA-growth arrest-specific (GAS)5 regulated bladder cancer progression via regulation of chemokine (C-C) ligand (CCL)1 expression. The viability of BLX bladder cancer cells was detected using a Cell Counting kit-8 assay, and cell apoptosis was assessed by annexin V-propidium iodide double-staining. The expression levels of specific genes and proteins were analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. In addition, cells were transfected with small interfering (si)RNAs or recombinant GAS5 in order to silence or overexpress GAS5, respectively. The results of the present study demonstrated that knockdown of GAS5 expression promoted bladder cancer cell proliferation, whereas overexpression of GAS5 suppressed cell proliferation. Furthermore, knockdown of GAS5 resulted in an increased percentage of cells in S and G2 phase, and a decreased percentage of cells in G1 phase. In addition, the present study performed a hierarchical cluster analysis of differentially expressed lncRNAs in bladder cancer cells and detected that CCL1 overexpression resulted in an upregulation of GAS5, which may improve the ability of cells to regulate a stress response in vitro. Furthermore, knockdown of GAS5 expression increased the mRNA and protein expression of CCL1 in bladder cancer cells. Gain-of-function and loss-of-function studies demonstrated that GAS5 was able to inhibit bladder cancer cell proliferation, at least in part, by suppressing the expression of CCL1. The results of the present study demonstrated that GAS5 was able to suppress bladder cancer cell proliferation, at least partially, by suppressing the expression of CCL1. The results of the present study may provide a basis for developing novel effective treatment

  20. OASIS-CC presentation

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Operations and Science Instrument Support (OASIS) project is a long-term effort to help produce operations capabilities that can support space science missions of the next century. Portions of the OASIS concept in software have been implemented under the general name OASIS-R/T. OASIS-CC is the OASIS Command and Control, for monitoring and controlling science instruments and spacecraft during test, integration, launch and on-orbit operations. Viewgraphs are presented on the OASIS-CC functionality description, OASIS-CC support, and OASIS-CC as a tool.

  1. Reversible DNA i-motif to hairpin switching induced by copper(ii) cations† †Electronic supplementary information (ESI) available: Experimental, preliminary experiments, data fitting and supporting data. See DOI: 10.1039/c5cc05111h Click here for additional data file.

    PubMed Central

    Day, Henry Albert; Wright, Elisé Patricia; MacDonald, Colin John; Gates, Andrew James

    2015-01-01

    i-Motif DNA structures have previously been utilised for many different nanotechnological applications, but all have used changes in pH to fold the DNA. Herein we describe how copper(ii) cations can alter the conformation of i-motif DNA into an alternative hairpin structure which is reversible by chelation with EDTA. PMID:26252811

  2. Evidence for a conserved binding motif of the dinuclear metal site in mammalian and plant purple acid phosphatases: 1H NMR studies of the di-iron derivative of the Fe(III)Zn(II) enzyme from kidney bean.

    PubMed Central

    Battistuzzi, G; Dietrich, M; Löcke, R; Witzel, H

    1997-01-01

    The di-iron core of mammalian purple acid phosphatases has been reproduced in the plant enzyme from kidney bean (Mr 111000) upon insertion of an Fe(II) ion in place of the native zinc(II) in the dinuclear Fe(III)Zn(II) core. The shortening of the electronic relaxation time of the metal centre allows detection of hyperfine-shifted 1H NMR resonances, although severe broadening due to Curie relaxation prevents independent signal assignment. Nevertheless, comparison of the spectral features of the structurally characterized plant enzyme with those of the mammalian species, which were previously extensively assigned, is consistent with a close similarity of the metal-binding sites, also suggested by previous sequence-alignment studies. Some differences appear to be mainly localized at the M(II) site. Spectral comparison was also carried out on the Fe(III)Co(II) derivatives. PMID:9169589

  3. Mining Conditional Phosphorylation Motifs.

    PubMed

    Liu, Xiaoqing; Wu, Jun; Gong, Haipeng; Deng, Shengchun; He, Zengyou

    2014-01-01

    Phosphorylation motifs represent position-specific amino acid patterns around the phosphorylation sites in the set of phosphopeptides. Several algorithms have been proposed to uncover phosphorylation motifs, whereas the problem of efficiently discovering a set of significant motifs with sufficiently high coverage and non-redundancy still remains unsolved. Here we present a novel notion called conditional phosphorylation motifs. Through this new concept, the motifs whose over-expressiveness mainly benefits from its constituting parts can be filtered out effectively. To discover conditional phosphorylation motifs, we propose an algorithm called C-Motif for a non-redundant identification of significant phosphorylation motifs. C-Motif is implemented under the Apriori framework, and it tests the statistical significance together with the frequency of candidate motifs in a single stage. Experiments demonstrate that C-Motif outperforms some current algorithms such as MMFPh and Motif-All in terms of coverage and non-redundancy of the results and efficiency of the execution. The source code of C-Motif is available at: https://sourceforge. net/projects/cmotif/. PMID:26356863

  4. MODIFICATION OF CC WHITEFLY TRAPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modifications of CC whitefly traps are in progress to improve their potential for adult whitefly control in greenhouses. Adult catches in the modified CC traps have been increased by 50% by coating trap tops with Tanglefoot and removing the deflector plates. In laboratory studies, installation of ...

  5. CC Pressure Test

    SciTech Connect

    Dixon, K.; /Fermilab

    1990-07-12

    The inner vessel heads including bypass and beam tubes had just been welded into place and dye penetrant checked. The vacuum heads were not on at this time but the vacuum shell was on covering the piping penetrating into the inner vessel. Signal boxes with all feed through boards, the instrumentation box, and high voltage boxes were all installed with their pump outs capped. All 1/4-inch instrumentation lines were terminated at their respective shutoff valves. All vacuum piping used for pumping down the inner vessel was isolated using o-ring sealed blind flanges. PV215A (VAT Series 12), the 4-inch VRC gate valve isolating the cyropump, and the rupture disk had to be removed and replaced with blind flanges before pressurizing due to their pressure limitations. Stresses in plates used as blind flanges were checked using Code calcualtions. Before the CC test, vacuum style blanks and clamps were hydrostatically pressure tested to 150% of the maximum test pressure, 60 psig. The Code inspector and Research Division Safety had all given their approval to the test pressure and procedure prior to filling the vessel with argon. The test was a major success. Based on the lack of any distinguishable pressure drop indicated on the pressure gages, the vessel appeared to be structurally sound throughout the duration of the test (approx. 3 hrs.). A major leak in the instrumentation tubing was discovered at half of the maximum test pressure and was quickly isolated by crimping and capping with a compression fitting. There were some slight deviations in the actual procedure used. The 44 psig relief valve located just outside the cleanroom had to be capped until the pressure in the vessel indicated 38 psi. This was to allow higher supply pressures and hence, higher flows through the pressurizing line. Also, in order to get pressure readings at the cryostat without exposing any personnel to the potentially dangerous stored energy near the maximum test pressure, a camera was installed

  6. Molecular cloning, characterization and expression analysis of a CC chemokine gene from miiuy croaker (Miichthys miiuy).

    PubMed

    Cheng, Yuanzhi; Sun, Yuena; Shi, Ge; Wang, Rixin; Xu, Tianjun

    2012-12-01

    Chemokines are a family of structurally related chemotactic cytokines that regulate the migration of leukocytes, under both physiological and inflammatory conditions. A partial cDNA of CC chemokine gene designed as Mimi-CC3 was isolated from miiuy croaker (Miichthys miiuy) spleen cDNA library. Unknown 3' part of the cDNA was amplified by 3'-RACE. The complete cDNA of Mimi-CC3 contains an 89-nt 5'-UTR, a 303-nt open reading frame and a 441-nt 3'-UTR. Three exons and two introns were identified in Mimi-CC3. The deduced Mimi-CC3 protein sequences contain a 22 amino acids signal peptide and a 78 amino acids mature polypeptide, which possesses the typical arrangement of four cysteines as found in other known CC chemokines. It shares low amino acid sequence identities with most other fish and mammalian CC chemokines (less than 54.1 %), but shares very high identities with large yellow croaker CC chemokine (94.6 %). Phylogenetic analysis showed that Mimi-CC3 gene may have an orthologous relationship with mammalian/amphibian CCL25 gene. Tissue expression distributed analysis showed that Mimi-CC3 gene was constitutively expressed in all nine tissues examined, although at different levels. Upon stimulated with Vibrio anguillarum, the time-course analysis using a real-time PCR showed that Mimi-CC3 transcript in kidney and liver was obviously up-regulated and reached the peak levels, followed by a recovery. Mimi-CC3 expression in kidney was more strongly increased than in liver. However, down-regulation was observed in spleen. These results indicated that Mimi-CC3 plays important roles in miiuy croaker immune response as well as in homeostatic mechanisms. PMID:22736236

  7. Fast approximate motif statistics.

    PubMed

    Nicodème, P

    2001-01-01

    We present in this article a fast approximate method for computing the statistics of a number of non-self-overlapping matches of motifs in a random text in the nonuniform Bernoulli model. This method is well suited for protein motifs where the probability of self-overlap of motifs is small. For 96% of the PROSITE motifs, the expectations of occurrences of the motifs in a 7-million-amino-acids random database are computed by the approximate method with less than 1% error when compared with the exact method. Processing of the whole PROSITE takes about 30 seconds with the approximate method. We apply this new method to a comparison of the C. elegans and S. cerevisiae proteomes. PMID:11535175

  8. Toward predictive models of mammalian cells.

    PubMed

    Ma'ayan, Avi; Blitzer, Robert D; Iyengar, Ravi

    2005-01-01

    Progress in experimental and theoretical biology is likely to provide us with the opportunity to assemble detailed predictive models of mammalian cells. Using a functional format to describe the organization of mammalian cells, we describe current approaches for developing qualitative and quantitative models using data from a variety of experimental sources. Recent developments and applications of graph theory to biological networks are reviewed. The use of these qualitative models to identify the topology of regulatory motifs and functional modules is discussed. Cellular homeostasis and plasticity are interpreted within the framework of balance between regulatory motifs and interactions between modules. From this analysis we identify the need for detailed quantitative models on the basis of the representation of the chemistry underlying the cellular process. The use of deterministic, stochastic, and hybrid models to represent cellular processes is reviewed, and an initial integrated approach for the development of large-scale predictive models of a mammalian cell is presented. PMID:15869393

  9. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  10. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  11. Efficient exact motif discovery

    PubMed Central

    Marschall, Tobias; Rahmann, Sven

    2009-01-01

    Motivation: The motif discovery problem consists of finding over-represented patterns in a collection of biosequences. It is one of the classical sequence analysis problems, but still has not been satisfactorily solved in an exact and efficient manner. This is partly due to the large number of possibilities of defining the motif search space and the notion of over-representation. Even for well-defined formalizations, the problem is frequently solved in an ad hoc manner with heuristics that do not guarantee to find the best motif. Results: We show how to solve the motif discovery problem (almost) exactly on a practically relevant space of IUPAC generalized string patterns, using the p-value with respect to an i.i.d. model or a Markov model as the measure of over-representation. In particular, (i) we use a highly accurate compound Poisson approximation for the null distribution of the number of motif occurrences. We show how to compute the exact clump size distribution using a recently introduced device called probabilistic arithmetic automaton (PAA). (ii) We define two p-value scores for over-representation, the first one based on the total number of motif occurrences, the second one based on the number of sequences in a collection with at least one occurrence. (iii) We describe an algorithm to discover the optimal pattern with respect to either of the scores. The method exploits monotonicity properties of the compound Poisson approximation and is by orders of magnitude faster than exhaustive enumeration of IUPAC strings (11.8 h compared with an extrapolated runtime of 4.8 years). (iv) We justify the use of the proposed scores for motif discovery by showing our method to outperform other motif discovery algorithms (e.g. MEME, Weeder) on benchmark datasets. We also propose new motifs on Mycobacterium tuberculosis. Availability and Implementation: The method has been implemented in Java. It can be obtained from http://ls11-www

  12. [Personal motif in art].

    PubMed

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy. PMID:26202617

  13. Identification of high-molecular-weight proteins with multiple EGF-like motifs by motif-trap screening.

    PubMed

    Nakayama, M; Nakajima, D; Nagase, T; Nomura, N; Seki, N; Ohara, O

    1998-07-01

    To identify large proteins with an EGF-like-motif in a systematic manner, we developed a computer-assisted method called motif-trap screening. The method exploits 5'-end single-pass sequence data obtained from a pool of cDNAs whose sizes exceed 5 kb. Using this screening procedure, we were able to identify five known and nine new genes for proteins with multiple EGF-like-motifs from 8000 redundant human brain cDNA clones. These new genes were found to encode a novel mammalian homologue of Drosophila fat protein, two seven-transmembrane proteins containing multiple cadherin and EGF-like motifs, two mammalian homologues of Drosophila slit protein, an unidentified LDL receptor-like protein, and three totally uncharacterized proteins. The organization of the domains in the proteins, together with their expression profiles and fine chromosomal locations, has indicated their biological significance, demonstrating that motif-trap screening is a powerful tool for the discovery of new genes that have been difficult to identify by conventional methods. PMID:9693030

  14. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  15. Mining protein sequences for motifs.

    PubMed

    Narasimhan, Giri; Bu, Changsong; Gao, Yuan; Wang, Xuning; Xu, Ning; Mathee, Kalai

    2002-01-01

    We use methods from Data Mining and Knowledge Discovery to design an algorithm for detecting motifs in protein sequences. The algorithm assumes that a motif is constituted by the presence of a "good" combination of residues in appropriate locations of the motif. The algorithm attempts to compile such good combinations into a "pattern dictionary" by processing an aligned training set of protein sequences. The dictionary is subsequently used to detect motifs in new protein sequences. Statistical significance of the detection results are ensured by statistically determining the various parameters of the algorithm. Based on this approach, we have implemented a program called GYM. The Helix-Turn-Helix motif was used as a model system on which to test our program. The program was also extended to detect Homeodomain motifs. The detection results for the two motifs compare favorably with existing programs. In addition, the GYM program provides a lot of useful information about a given protein sequence. PMID:12487759

  16. Mammalian aromatases.

    PubMed

    Conley, A; Hinshelwood, M

    2001-05-01

    Aromatase is the enzyme complex that catalyses the synthesis of oestrogens from androgens, and therefore it has unique potential to influence the physiological balance between the sex steroid hormones. Both aromatase cytochrome P450 (P450arom) and NADPH-cytochrome P450 reductase (reductase), the two essential components of the enzyme complex, are highly conserved among mammals and vertebrates. Aromatase expression occurs in the gonads and brain, and is essential for reproductive development and fertility. Of interest are the complex mechanisms involving alternative promoter utilization that have evolved to control tissue-specific expression in these tissues. In addition, in a number of species, including humans, expression of aromatase has a broader tissue distribution, including placenta, adipose and bone. The relevance of oestrogen synthesis and possibly androgen metabolism in these peripheral sites of expression is now becoming clear from studies in P450arom knockout (ArKO) mice and from genetic defects recognized recently in both men and women. Important species differences in the physiological roles of aromatase expression are also likely to emerge, despite the highly conserved nature of the enzyme system. The identification of functionally distinct, tissue-specific isozymes of P450arom in at least one mammal, pigs, and several species of fish indicates that there are additional subtle, but physiologically significant, species-specific roles for aromatase. Comparative studies of mammalian and other vertebrate aromatases will expand understanding of the role played by this ancient enzyme system in the evolution of reproduction and the adaptive influence of oestrogen synthesis on general health and well being. PMID:11427156

  17. Structural alphabet motif discovery and a structural motif database.

    PubMed

    Ku, Shih-Yen; Hu, Yuh-Jyh

    2012-01-01

    This study proposes a general framework for structural motif discovery. The framework is based on a modular design in which the system components can be modified or replaced independently to increase its applicability to various studies. It is a two-stage approach that first converts protein 3D structures into structural alphabet sequences, and then applies a sequence motif-finding tool to these sequences to detect conserved motifs. We named the structural motif database we built the SA-Motifbase, which provides the structural information conserved at different hierarchical levels in SCOP. For each motif, SA-Motifbase presents its 3D view; alphabet letter preference; alphabet letter frequency distribution; and the significance. SA-Motifbase is available at http://bioinfo.cis.nctu.edu.tw/samotifbase/. PMID:22099701

  18. Energy Materials Coordinating Committee (EMaCC)

    SciTech Connect

    Not Available

    1991-05-31

    This report summarizes EMaCC activities for fiscal year 1990 and describes the materials research programs of various offices and divisions within the department. The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the department. (JL)

  19. Molecular characterization, functional analysis, and defense mechanisms of two CC chemokines in Nile tilapia (Oreochromis niloticus) in response to severely pathogenic bacteria.

    PubMed

    Nakharuthai, Chatsirin; Areechon, Nontawith; Srisapoome, Prapansak

    2016-06-01

    Two full-length cDNAs encoding CC chemokine genes in Nile tilapia (Oreochromis niloticus) (On-CC1 and On-CC2) were cloned and characterized. On-CC1 and On-CC2 showed signature cysteine motifs consisting of four cysteines. The expression levels of On-CC1 and On-CC2 were analyzed by RT-PCR, which showed that low expression of these two genes was only observed in the peripheral blood leukocytes (PBLs) and spleen of normal fish. Expression levels of these two molecules were quantified in 13 tissues of fish infected with virulent strains of Streptococcus agalactiae and Flavobacterium columnare. Most tissues, especially PBLs, the spleen and the liver, expressed significantly higher mRNA levels than the controls, particularly at 12 and 24 h after infection (P < 0.05). The current study strongly indicates that CC chemokine genes in Nile tilapia are crucially involved in the early immune responses to pathogens. Functional analyses clearly demonstrated that 10 and 100 μg/ml of recombinant rOn-CC1 and rOn-CC2 proteins efficiently enhanced the phagocytic activity (in vitro) of Nile tilapia phagocytes. Finally, Southern blot analysis and searching in Ensembl databases demonstrated that two different functional CC chemokine genes and other pseudogene fragments were discovered in the Nile tilapia genome. PMID:26853931

  20. Chemistry and the 10cc Syringe

    ERIC Educational Resources Information Center

    Tatton, Hyrum W.

    1973-01-01

    The use of 10cc. syringes in high school chemistry experiments can reduce the expense of equipment and lead to imaginative experimental designs. Describes the equipment and experimental procedures for four experiments utilizing syringes. (JR)

  1. DNA containing CpG motifs induces angiogenesis

    NASA Astrophysics Data System (ADS)

    Zheng, Mei; Klinman, Dennis M.; Gierynska, Malgorzata; Rouse, Barry T.

    2002-06-01

    New blood vessel formation in the cornea is an essential step in the pathogenesis of a blinding immunoinflammatory reaction caused by ocular infection with herpes simplex virus (HSV). By using a murine corneal micropocket assay, we found that HSV DNA (which contains a significant excess of potentially bioactive "CpG" motifs when compared with mammalian DNA) induces angiogenesis. Moreover, synthetic oligodeoxynucleotides containing CpG motifs attract inflammatory cells and stimulate the release of vascular endothelial growth factor (VEGF), which in turn triggers new blood vessel formation. In vitro, CpG DNA induces the J774A.1 murine macrophage cell line to produce VEGF. In vivo CpG-induced angiogenesis was blocked by the administration of anti-mVEGF Ab or the inclusion of "neutralizing" oligodeoxynucleotides that specifically oppose the stimulatory activity of CpG DNA. These findings establish that DNA containing bioactive CpG motifs induces angiogenesis, and suggest that CpG motifs in HSV DNA may contribute to the blinding lesions of stromal keratitis.

  2. PERI-CC2: A Polarizable Embedded RI-CC2 Method.

    PubMed

    Schwabe, Tobias; Sneskov, Kristian; Haugaard Olsen, Jógvan Magnus; Kongsted, Jacob; Christiansen, Ove; Hättig, Christof

    2012-09-11

    We present a combination of the polarizable embedding (PE) method with the resolution-of-the-identity implementation of the approximate coupled-cluster singles and doubles method CC2. The new approach, termed PERI-CC2, allows one to study excited state phenomena of large solvated molecular systems with an accurate correlated wave function method. Central to the PE approach is the advanced description of the environmental electrostatic potential and inclusion of polarization, and the quintessence of RI-CC2 is efficient access to excited state properties while retaining the accuracy associated with CC theory. To maintain efficiency, an approximate truncated CC2 density is introduced to calculate the PE contributions. Explicitly, we derive the central equations and outline an implementation of polarizable embedding for the RI-CC2 approach. The new method is tested against previous PE-CC2 and PE-CCSD results for solvatochromic shifts, demonstrating how the important effects of polarization are incorporated well with PERI-CC2 but with a dramatically reduced overall computational cost. A follow-up investigation of the solvatochromic shift of uracil in aqueous solution further illustrates the potential of PERI-CC2. We discuss the need to explicitly incorporate several water molecules into the region treated by quantum mechanics in order to obtain a reliable and accurate description of the physical effects when specific solute/solvent interactions as, e.g., hydrogen-bonds are involved. PMID:26605734

  3. A promoter-level mammalian expression atlas

    PubMed Central

    2015-01-01

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research. PMID:24670764

  4. The Annotation of RNA Motifs

    PubMed Central

    2002-01-01

    The recent deluge of new RNA structures, including complete atomic-resolution views of both subunits of the ribosome, has on the one hand literally overwhelmed our individual abilities to comprehend the diversity of RNA structure, and on the other hand presented us with new opportunities for comprehensive use of RNA sequences for comparative genetic, evolutionary and phylogenetic studies. Two concepts are key to understanding RNA structure: hierarchical organization of global structure and isostericity of local interactions. Global structure changes extremely slowly, as it relies on conserved long-range tertiary interactions. Tertiary RNA–RNA and quaternary RNA–protein interactions are mediated by RNA motifs, defined as recurrent and ordered arrays of non-Watson–Crick base-pairs. A single RNA motif comprises a family of sequences, all of which can fold into the same three-dimensional structure and can mediate the same interaction(s). The chemistry and geometry of base pairing constrain the evolution of motifs in such a way that random mutations that occur within motifs are accepted or rejected insofar as they can mediate a similar ordered array of interactions. The steps involved in the analysis and annotation of RNA motifs in 3D structures are: (a) decomposition of each motif into non-Watson–Crick base-pairs; (b) geometric classification of each basepair; (c) identification of isosteric substitutions for each basepair by comparison to isostericity matrices; (d) alignment of homologous sequences using the isostericity matrices to identify corresponding positions in the crystal structure; (e) acceptance or rejection of the null hypothesis that the motif is conserved. PMID:18629252

  5. Redox active motifs in selenoproteins.

    PubMed

    Li, Fei; Lutz, Patricia B; Pepelyayeva, Yuliya; Arnér, Elias S J; Bayse, Craig A; Rozovsky, Sharon

    2014-05-13

    Selenoproteins use the rare amino acid selenocysteine (Sec) to act as the first line of defense against oxidants, which are linked to aging, cancer, and neurodegenerative diseases. Many selenoproteins are oxidoreductases in which the reactive Sec is connected to a neighboring Cys and able to form a ring. These Sec-containing redox motifs govern much of the reactivity of selenoproteins. To study their fundamental properties, we have used (77)Se NMR spectroscopy in concert with theoretical calculations to determine the conformational preferences and mobility of representative motifs. This use of (77)Se as a probe enables the direct recording of the properties of Sec as its environment is systematically changed. We find that all motifs have several ring conformations in their oxidized state. These ring structures are most likely stabilized by weak, nonbonding interactions between the selenium and the amide carbon. To examine how the presence of selenium and ring geometric strain governs the motifs' reactivity, we measured the redox potentials of Sec-containing motifs and their corresponding Cys-only variants. The comparisons reveal that for C-terminal motifs the redox potentials increased between 20-25 mV when the selenenylsulfide bond was changed to a disulfide bond. Changes of similar magnitude arose when we varied ring size or the motifs' flanking residues. This suggests that the presence of Sec is not tied to unusually low redox potentials. The unique roles of selenoproteins in human health and their chemical reactivities may therefore not necessarily be explained by lower redox potentials, as has often been claimed. PMID:24769567

  6. [Prediction of Promoter Motifs in Virophages].

    PubMed

    Gong, Chaowen; Zhou, Xuewen; Pan, Yingjie; Wang, Yongjie

    2015-07-01

    Virophages have crucial roles in ecosystems and are the transport vectors of genetic materials. To shed light on regulation and control mechanisms in virophage--host systems as well as evolution between virophages and their hosts, the promoter motifs of virophages were predicted on the upstream regions of start codons using an analytical tool for prediction of promoter motifs: Multiple EM for Motif Elicitation. Seventeen potential promoter motifs were identified based on the E-value, location, number and length of promoters in genomes. Sputnik and zamilon motif 2 with AT-rich regions were distributed widely on genomes, suggesting that these motifs may be associated with regulation of the expression of various genes. Motifs containing the TCTA box were predicted to be late promoter motif in mavirus; motifs containing the ATCT box were the potential late promoter motif in the Ace Lake mavirus . AT-rich regions were identified on motif 2 in the Organic Lake virophage, motif 3 in Yellowstone Lake virophage (YSLV)1 and 2, motif 1 in YSLV3, and motif 1 and 2 in YSLV4, respectively. AT-rich regions were distributed widely on the genomes of virophages. All of these motifs may be promoter motifs of virophages. Our results provide insights into further exploration of temporal expression of genes in virophages as well as associations between virophages and giant viruses. PMID:26524912

  7. Sequential visibility-graph motifs

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Lacasa, Lucas

    2016-04-01

    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of sequential visibility-graph motifs, smaller substructures of n consecutive nodes that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated with general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable of distinguishing among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification and description of physical, biological, and financial time series.

  8. Grout Analysis for EC and CC Calorimeters

    SciTech Connect

    Engstrom, L.L.; /Fermilab

    1987-01-06

    The EC and CC calorimeters roll on Two parallel hardened steel ways which reside on the top of the D0 platform's center beam. The ways will be grouted to the center beam once their correct elevation has been established. The purpose of this report is to evaluate and compare three different epoxy grouts and their properties for this application.

  9. ASME Code Calculations for the CC Cryostat

    SciTech Connect

    Luther, R.D.; /Fermilab

    1987-11-04

    This engineering note contains the ASHE Code calculations for the CC Cryostat prepared by the manufacturer, Richmond-Lox Equipment Company. Most of these were taken from calculations initially prepared by Fermilab personne1and pub1ished in Eng. Note 68.

  10. Cloning of two chemokine receptor homologs (CXC-R4 and CC-R7) in rainbow trout Oncorhynchus mykiss.

    PubMed

    Daniels, G D; Zou, J; Charlemagne, J; Partula, S; Cunningham, C; Secombes, C J

    1999-05-01

    Two rainbow trout chemokine receptors have been sequenced, with homology to CXC-R4 and CC-R7 molecules. The CXC-R4 sequence consisted of 1681 nucleotides, which translated into a mature protein of 357 amino acids, with 80.7% similarity to human CXC-R4. The CC-R7 sequence consisted of 2287 nucleotides, which translated into a 368-amino acid mature protein with 64.5% similarity to human CC-R7. Both sequences contained seven hydrophobic regions, representing the seven transmembrane domains (TM) typical of G-protein-coupled receptors. Extracellular cysteines, transmembrane prolines, and the DRY motif immediately following TM3 were conserved. Phylogenetic tree analysis revealed a tight clustering of trout CXC-R4 with CXC-R3-5 genes. Trout CC-R7 clustered with CC-R6-7 and CXC-R1-2. Reverse transcriptase-polymerase chain reaction analysis demonstrated a wide tissue distribution of CXC-R4 and CC-R7 message in trout, being present in head-kidney leukocytes, blood, gill, brain, spleen, and liver. PMID:10331499

  11. Redox active motifs in selenoproteins

    PubMed Central

    Li, Fei; Lutz, Patricia B.; Pepelyayeva, Yuliya; Arnér, Elias S. J.; Bayse, Craig A.; Rozovsky, Sharon

    2014-01-01

    Selenoproteins use the rare amino acid selenocysteine (Sec) to act as the first line of defense against oxidants, which are linked to aging, cancer, and neurodegenerative diseases. Many selenoproteins are oxidoreductases in which the reactive Sec is connected to a neighboring Cys and able to form a ring. These Sec-containing redox motifs govern much of the reactivity of selenoproteins. To study their fundamental properties, we have used 77Se NMR spectroscopy in concert with theoretical calculations to determine the conformational preferences and mobility of representative motifs. This use of 77Se as a probe enables the direct recording of the properties of Sec as its environment is systematically changed. We find that all motifs have several ring conformations in their oxidized state. These ring structures are most likely stabilized by weak, nonbonding interactions between the selenium and the amide carbon. To examine how the presence of selenium and ring geometric strain governs the motifs’ reactivity, we measured the redox potentials of Sec-containing motifs and their corresponding Cys-only variants. The comparisons reveal that for C-terminal motifs the redox potentials increased between 20–25 mV when the selenenylsulfide bond was changed to a disulfide bond. Changes of similar magnitude arose when we varied ring size or the motifs’ flanking residues. This suggests that the presence of Sec is not tied to unusually low redox potentials. The unique roles of selenoproteins in human health and their chemical reactivities may therefore not necessarily be explained by lower redox potentials, as has often been claimed. PMID:24769567

  12. QGRS-Conserve: a computational method for discovering evolutionarily conserved G-quadruplex motifs

    PubMed Central

    2014-01-01

    Background Nucleic acids containing guanine tracts can form quadruplex structures via non-Watson-Crick base pairing. Formation of G-quadruplexes is associated with the regulation of important biological functions such as transcription, genetic instability, DNA repair, DNA replication, epigenetic mechanisms, regulation of translation, and alternative splicing. G-quadruplexes play important roles in human diseases and are being considered as targets for a variety of therapies. Identification of functional G-quadruplexes and the study of their overall distribution in genomes and transcriptomes is an important pursuit. Traditional computational methods map sequence motifs capable of forming G-quadruplexes but have difficulty in distinguishing motifs that occur by chance from ones which fold into G-quadruplexes. Results We present Quadruplex forming ‘G’-rich sequences (QGRS)-Conserve, a computational method for calculating motif conservation across exomes and supports filtering to provide researchers with more precise methods of studying G-quadruplex distribution patterns. Our method quantitatively evaluates conservation between quadruplexes found in homologous nucleotide sequences based on several motif structural characteristics. QGRS-Conserve also efficiently manages overlapping G-quadruplex sequences such that the resulting datasets can be analyzed effectively. Conclusions We have applied QGRS-Conserve to identify a large number of G-quadruplex motifs in the human exome conserved across several mammalian and non-mammalian species. We have successfully identified multiple homologs of many previously published G-quadruplexes that play post-transcriptional regulatory roles in human genes. Preliminary large-scale analysis identified many homologous G-quadruplexes in the 5′- and 3′-untranslated regions of mammalian species. An expectedly smaller set of G-quadruplex motifs was found to be conserved across larger phylogenetic distances. QGRS-Conserve provides means

  13. Identification of Novel N-Glycosylation Sites at Noncanonical Protein Consensus Motifs.

    PubMed

    Lowenthal, Mark S; Davis, Kiersta S; Formolo, Trina; Kilpatrick, Lisa E; Phinney, Karen W

    2016-07-01

    N-glycosylation of proteins is well known to occur at asparagine residues that fall within the canonical consensus sequence N-X-S/T but has also been identified at a small number of asparagine residues within N-X-C motifs, including the N491 residue of human serotransferrin. Here we report novel glycosylation sites within noncanonical consensus motifs, in the conformation N-X-C, based on mass spectrometry analysis of partially deglycosylated glycopeptide targets. Alpha-1-acid glycoprotein (A1AG) and serotransferrin (Tf) were observed for the first time to be N-glycosylated on asparagine residues within a total of six unique noncanonical motifs. N-glycosylation was initially predicted in silico based on the evolutionary conservation of the N-X-C motif among related mammalian species and demonstrated experimentally in A1AG from porcine, canine, and feline sources and in human serotransferrin. High-resolution liquid chromatography-tandem mass spectrometry was employed to collect fragmentation data of predicted GlcNAcylated peptides and to assign modification sites within N-X-C motifs. A combination of targeted analytical techniques that includes complementary mass spectrometry platforms, enzymatic digestions, and partial-deglycosylation procedures was developed to confirm the novel observations. Additionally, we found that A1AG in porcine and canine sources is highly N-glycosylated at a noncanonical motif (N-Q-C) based on semiquantitative multiple reaction monitoring analysis-the first report of an N-X-C motif exhibiting substantial N-glycosylation. Although reports of N-X-C motif N-glycosylation are relatively uncommon in the literature, this work adds to a growing list of glycoproteins reported with glycosylation at various forms of noncanonical motifs. PMID:27246700

  14. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, P.; Ciszak, E.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits and two catalytic centers. Each catalytic center (PP:PYR) is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and amhopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core (PP:PYR)(sub 2) within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GXPhiX(sub 4)(G)PhiXXGQ and GDGX(sub 25-30)NN in the PP-domain, and the EX(sub 4)(G)PhiXXGPhi in the PYR-domain, where Phi corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  15. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, Paulina M.; Ciszak, Ewa M.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits, two catalytic centers, common amino acid sequence, and specific contacts to provide a flip-flop, or alternate site, mechanism of action. Each catalytic center [PP:PYR] is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and aminopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core [PP:PYR]* within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GX@&(G)@XXGQ, and GDGX25-30 within the PP- domain, and the E&(G)@XXG@ within the PYR-domain, where Q, corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  16. Comprehensive discovery of DNA motifs in 349 human cells and tissues reveals new features of motifs

    PubMed Central

    Zheng, Yiyu; Li, Xiaoman; Hu, Haiyan

    2015-01-01

    Comprehensive motif discovery under experimental conditions is critical for the global understanding of gene regulation. To generate a nearly complete list of human DNA motifs under given conditions, we employed a novel approach to de novo discover significant co-occurring DNA motifs in 349 human DNase I hypersensitive site datasets. We predicted 845 to 1325 motifs in each dataset, for a total of 2684 non-redundant motifs. These 2684 motifs contained 54.02 to 75.95% of the known motifs in seven large collections including TRANSFAC. In each dataset, we also discovered 43 663 to 2 013 288 motif modules, groups of motifs with their binding sites co-occurring in a significant number of short DNA regions. Compared with known interacting transcription factors in eight resources, the predicted motif modules on average included 84.23% of known interacting motifs. We further showed new features of the predicted motifs, such as motifs enriched in proximal regions rarely overlapped with motifs enriched in distal regions, motifs enriched in 5′ distal regions were often enriched in 3′ distal regions, etc. Finally, we observed that the 2684 predicted motifs classified the cell or tissue types of the datasets with an accuracy of 81.29%. The resources generated in this study are available at http://server.cs.ucf.edu/predrem/. PMID:25505144

  17. Molecular sled sequences are common in mammalian proteins

    PubMed Central

    Xiong, Kan; Blainey, Paul C.

    2016-01-01

    Recent work revealed a new class of molecular machines called molecular sleds, which are small basic molecules that bind and slide along DNA with the ability to carry cargo along DNA. Here, we performed biochemical and single-molecule flow stretching assays to investigate the basis of sliding activity in molecular sleds. In particular, we identified the functional core of pVIc, the first molecular sled characterized; peptide functional groups that control sliding activity; and propose a model for the sliding activity of molecular sleds. We also observed widespread DNA binding and sliding activity among basic polypeptide sequences that implicate mammalian nuclear localization sequences and many cell penetrating peptides as molecular sleds. These basic protein motifs exhibit weak but physiologically relevant sequence-nonspecific DNA affinity. Our findings indicate that many mammalian proteins contain molecular sled sequences and suggest the possibility that substantial undiscovered sliding activity exists among nuclear mammalian proteins. PMID:26857546

  18. Molecular sled sequences are common in mammalian proteins.

    PubMed

    Xiong, Kan; Blainey, Paul C

    2016-03-18

    Recent work revealed a new class of molecular machines called molecular sleds, which are small basic molecules that bind and slide along DNA with the ability to carry cargo along DNA. Here, we performed biochemical and single-molecule flow stretching assays to investigate the basis of sliding activity in molecular sleds. In particular, we identified the functional core of pVIc, the first molecular sled characterized; peptide functional groups that control sliding activity; and propose a model for the sliding activity of molecular sleds. We also observed widespread DNA binding and sliding activity among basic polypeptide sequences that implicate mammalian nuclear localization sequences and many cell penetrating peptides as molecular sleds. These basic protein motifs exhibit weak but physiologically relevant sequence-nonspecific DNA affinity. Our findings indicate that many mammalian proteins contain molecular sled sequences and suggest the possibility that substantial undiscovered sliding activity exists among nuclear mammalian proteins. PMID:26857546

  19. The Distribution of Mobile Genetic Elements (MGEs) in MRSA CC398 Is Associated with Both Host and Country

    PubMed Central

    McCarthy, Alex J.; Witney, Adam A.; Gould, Katherine A.; Moodley, Arshnee; Guardabassi, Luca; Voss, Andreas; Denis, Olivier; Broens, Els M.; Hinds, Jason; Lindsay, Jodi A.

    2011-01-01

    Methicillin-resistant Staphylococcus aureus clonal complex (CC) 398 has emerged from pigs to cause human infections in Europe and North America. We used a new 62-strain S. aureus microarray (SAM-62) to compare genomes of isolates from three geographical areas (Belgium, Denmark, and Netherlands) to understand how CC398 colonizes different mammalian hosts. The core genomes of 44 pig isolates and 32 isolates from humans did not vary. However, mobile genetic element (MGE) distribution was variable including SCCmec. φ3 bacteriophage and human specificity genes (chp, sak, scn) were found in invasive human but not pig isolates. SaPI5 and putative ruminant specificity gene variants (vwb and scn) were common but not pig specific. Virulence and resistance gene carriage was host associated but country specific. We conclude MGE exchange is frequent in CC398 and greatest among populations in close contact. This feature may help determine epidemiological associations among isolates of the same lineage. PMID:21920902

  20. Conservation defines functional motifs in the squint/nodal-related 1 RNA dorsal localization element

    PubMed Central

    Gilligan, Patrick C.; Kumari, Pooja; Lim, Shimin; Cheong, Albert; Chang, Alex; Sampath, Karuna

    2011-01-01

    RNA localization is emerging as a general principle of sub-cellular protein localization and cellular organization. However, the sequence and structural requirements in many RNA localization elements remain poorly understood. Whereas transcription factor-binding sites in DNA can be recognized as short degenerate motifs, and consensus binding sites readily inferred, protein-binding sites in RNA often contain structural features, and can be difficult to infer. We previously showed that zebrafish squint/nodal-related 1 (sqt/ndr1) RNA localizes to the future dorsal side of the embryo. Interestingly, mammalian nodal RNA can also localize to dorsal when injected into zebrafish embryos, suggesting that the sequence motif(s) may be conserved, even though the fish and mammal UTRs cannot be aligned. To define potential sequence and structural features, we obtained ndr1 3′-UTR sequences from approximately 50 fishes that are closely, or distantly, related to zebrafish, for high-resolution phylogenetic footprinting. We identify conserved sequence and structural motifs within the zebrafish/carp family and catfish. We find that two novel motifs, a single-stranded AGCAC motif and a small stem-loop, are required for efficient sqt RNA localization. These findings show that comparative sequencing in the zebrafish/carp family is an efficient approach for identifying weak consensus binding sites for RNA regulatory proteins. PMID:21149265

  1. Detecting correlations among functional-sequence motifs

    NASA Astrophysics Data System (ADS)

    Pirino, Davide; Rigosa, Jacopo; Ledda, Alice; Ferretti, Luca

    2012-06-01

    Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation. Identification of such words proceeds through rejection of Markov models on the expected motif frequency along the genome. Additional biological information can be extracted from the correlation structure among patterns of motif occurrences. In this paper a log-linear multivariate intensity Poisson model is estimated via expectation maximization on a set of motifs along the genome of E. coli K12. The proposed approach allows for excitatory as well as inhibitory interactions among motifs and between motifs and other genomic features like gene occurrences. Our findings confirm previous stylized facts about such types of interactions and shed new light on genome-maintenance functions of some particular motifs. We expect these methods to be applicable to a wider set of genomic features.

  2. Detecting correlations among functional-sequence motifs.

    PubMed

    Pirino, Davide; Rigosa, Jacopo; Ledda, Alice; Ferretti, Luca

    2012-06-01

    Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation. Identification of such words proceeds through rejection of Markov models on the expected motif frequency along the genome. Additional biological information can be extracted from the correlation structure among patterns of motif occurrences. In this paper a log-linear multivariate intensity Poisson model is estimated via expectation maximization on a set of motifs along the genome of E. coli K12. The proposed approach allows for excitatory as well as inhibitory interactions among motifs and between motifs and other genomic features like gene occurrences. Our findings confirm previous stylized facts about such types of interactions and shed new light on genome-maintenance functions of some particular motifs. We expect these methods to be applicable to a wider set of genomic features. PMID:23005179

  3. A survey of DNA motif finding algorithms

    PubMed Central

    Das, Modan K; Dai, Ho-Kwok

    2007-01-01

    Background Unraveling the mechanisms that regulate gene expression is a major challenge in biology. An important task in this challenge is to identify regulatory elements, especially the binding sites in deoxyribonucleic acid (DNA) for transcription factors. These binding sites are short DNA segments that are called motifs. Recent advances in genome sequence availability and in high-throughput gene expression analysis technologies have allowed for the development of computational methods for motif finding. As a result, a large number of motif finding algorithms have been implemented and applied to various motif models over the past decade. This survey reviews the latest developments in DNA motif finding algorithms. Results Earlier algorithms use promoter sequences of coregulated genes from single genome and search for statistically overrepresented motifs. Recent algorithms are designed to use phylogenetic footprinting or orthologous sequences and also an integrated approach where promoter sequences of coregulated genes and phylogenetic footprinting are used. All the algorithms studied have been reported to correctly detect the motifs that have been previously detected by laboratory experimental approaches, and some algorithms were able to find novel motifs. However, most of these motif finding algorithms have been shown to work successfully in yeast and other lower organisms, but perform significantly worse in higher organisms. Conclusion Despite considerable efforts to date, DNA motif finding remains a complex challenge for biologists and computer scientists. Researchers have taken many different approaches in developing motif discovery tools and the progress made in this area of research is very encouraging. Performance comparison of different motif finding tools and identification of the best tools have proven to be a difficult task because tools are designed based on algorithms and motif models that are diverse and complex and our incomplete understanding of

  4. 40 CFR Appendix to Subpart Cc of... - Tables

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 CFR part 63, subpart CC. 63.428(h)(1) through (h)(3) Excess emissions report loading rack information Required to be submitted with the Periodic Report required under 40 CFR part 63, subpart CC. a... required under 40 CFR part 63, subpart CC. 63.565(b) Performance test data requirements 63.567(a)...

  5. 40 CFR Appendix to Subpart Cc of... - Tables

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 CFR part 63, subpart CC. 63.428(h)(1) through (h)(3) Excess emissions report loading rack information Required to be submitted with the Periodic Report required under 40 CFR part 63, subpart CC. a... required under 40 CFR part 63, subpart CC. 63.565(b) Performance test data requirements 63.567(a)...

  6. 40 CFR Appendix to Subpart Cc of... - Tables

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 CFR part 63, subpart CC. 63.428(h)(1) through (h)(3) Excess emissions report loading rack information Required to be submitted with the Periodic Report required under 40 CFR part 63, subpart CC. a... required under 40 CFR part 63, subpart CC. 63.565(b) Performance test data requirements 63.567(a)...

  7. 40 CFR Appendix to Subpart Cc of... - Tables

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 CFR part 63, subpart CC. 63.428(h)(1) through (h)(3) Excess emissions report loading rack information Required to be submitted with the Periodic Report required under 40 CFR part 63, subpart CC. a... required under 40 CFR part 63, subpart CC. 63.565(b) Performance test data requirements 63.567(a)...

  8. 40 CFR Appendix to Subpart Cc of... - Tables

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 CFR part 63, subpart CC. 63.428(h)(1) through (h)(3) Excess emissions report loading rack information Required to be submitted with the Periodic Report required under 40 CFR part 63, subpart CC. a... required under 40 CFR part 63, subpart CC. 63.565(b) Performance test data requirements 63.567(a)...

  9. Mammalian cardiolipin biosynthesis.

    PubMed

    Mejia, Edgard M; Nguyen, Hieu; Hatch, Grant M

    2014-04-01

    Cardiolipin is a major phospholipid in mitochondria and is involved in the generation of cellular energy in the form of ATP. In mammalian and eukaryotic cells it is synthesized via the cytidine-5'-diphosphate-1,2-diacyl-sn-glycerol phosphate pathway. This brief review will describe some of the more recent studies on mammalian cardiolipin biosynthesis and provide an overview of regulation of cardiolipin biosynthesis. In addition, the important role that this key phospholipid plays in disease processes including heart failure, diabetes, thyroid hormone disease and the genetic disease Barth Syndrome will be discussed. PMID:24144810

  10. [Radiological diagnosis and intervention of cholangiocarcinomas (CC)].

    PubMed

    Vogl, T J; Zangos, S; Eichler, K; Gruber-Rouh, T; Hammerstingl, R M; Trojan, J; Weisser, P

    2012-10-01

    To present current data on diagnosis, indication and different therapy options in patients with cholangiocarcinoma (CC) based on an analysis of the current literature and clinical experience. The diagnostic routine includes laboratory investigations with parameters of cholestasis and also serum tumor markers CA19 - 9 and CEA. After ultrasound for clarifying a tumor and/or dilated bile ducts, contrast-enhanced magnetic resonance imaging (MRI) should be performed with magnetic resonance cholangiography (MRCP). The accuracy (positive predictive value) for diagnosing a CC is 37-84% (depending on the location) for ultrasound, 79-94% for computed tomography (CT), and 95% for MRI and MRCP. An endoscopic retrograde cholangiography (ERCP) can then be planned, especially if biliary drainage or cytological or histological specimen sampling is intended. A curative approach can be achieved by surgical resection, rarely by liver transplantation. However, many patients are not eligible for surgery. In addition to systemic chemotherapy, locoregional therapies such as transarterial chemoembolization (TACE), hepatic arterial infusion (HAI)--also known as chemoperfusion--, drug eluting beads-therapy (DEB) as well as thermoablative procedures, such as laser-induced thermotherapy (LITT), microwave ablation (MWA) and radiofrequency ablation (RFA) can be provided with a palliative intention. PMID:22711249

  11. The GoLoco motif: heralding a new tango between G protein signaling and cell division.

    PubMed

    Kimple, Randall J; Willard, Francis S; Siderovski, David P

    2002-04-01

    The Galpha and Gbetagamma components of heterotrimeric G proteins, typically associated with cell-surface receptor signaling, also partake in the macromolecular interactions that underlie cell polarity and cell division. Proteins with Galpha-binding GoLoco motifs, such as Drosophila melanogaster Pins (for Partner of Inscuteable) and its mammalian counterpart LGN, participate in multi-protein complexes that maintain cellular asymmetry and orderly segregation of chromosomal content and daughter cell bodies. The GoLoco motif was recently identified as a selective Galpha-binding partner: the GoLoco-Galpha interaction can displace Gbetagamma and inhibit guanine nucleotide release from the bound Galpha subunit. Recent x-ray crystallographic studies suggest ways in which GoLoco-motif peptides may modulate heterotrimeric G protein signaling. Such peptides could be exploited to help dissect the signals that underpin cell polarity and cell division processes. PMID:14993354

  12. CC5 and CC8, two homologous disintegrins from Cerastes cerastes venom, inhibit in vitro and ex vivo angiogenesis.

    PubMed

    Ben-Mabrouk, Hazem; Zouari-Kessentini, Raoudha; Montassar, Fadoua; Koubaa, Zeineb Abdelkefi-; Messaadi, Erij; Guillonneau, Xavier; ElAyeb, Mohamed; Srairi-Abid, Najet; Luis, José; Micheau, Olivier; Marrakchi, Naziha

    2016-05-01

    Angiogenesis constitutes a fundamental step in tumor progression. Thus, targeting tumour angiogenesis has been identified to be promising in cancer treatment. In this work, CC5 and CC8, two highly homologous disintegrins isolated from the venom Cerastes cerastes viper from the south of Tunisia, were assessed for their anti-angiogenic effect by testing their ability to interfere with viability, adhesion, migration and angiogenesis of Human Microvascular Endothelial Cells, HMEC-1 and HBMEC. We found that CC5 and CC8 displayed pro-apoptotic potential in HMEC-1 cells. Anoïkis like induced by these two disintegrins was evidenced by cell detachment, down regulation of FAK/AKT/PI3K axis and caspase activation. In addition, both CC5 and CC8 exhibited in vitro anti-adhesive, anti-migratory and anti-proliferative effects on endothelial cells HBMEC. These effects appeared to require RGD and/or WGD loops disintegrin. CC5 and CC8 also inhibited tube-formation on matrigel and displayed potent anti-angiogenic activities as assessed ex vivo, using both the embryo chick chorioallantoic membrane model (CAM) and rat aortic ring assay. Altogether our results demonstrate that CC5 and CC8, are potent inhibitors of angiogenesis, by disrupting αvβ3 and α5β1 binding. The use of CC5 and/or CC8 could provide a beneficial tool to inhibit abnormal angiogenesis and to induce cancer regression. PMID:26853827

  13. The Thiamine-Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Dominiak, Paulina

    2004-01-01

    Thiamin pyrophosphate (TPP), a derivative of vitamin B1, is a cofactor for enzymes performing catalysis in pathways of energy production including the well known decarboxylation of a-keto acid dehydrogenases followed by transketolation. TPP-dependent enzymes constitute a structurally and functionally diverse group exhibiting multimeric subunit organization, multiple domains and two chemically equivalent catalytic centers. Annotation of functional TPP-dependcnt enzymes, therefore, has not been trivial due to low sequence similarity related to this complex organization. Our approach to analysis of structures of known TPP-dependent enzymes reveals for the first time features common to this group, which we have termed the TPP-motif. The TPP-motif consists of specific spatial arrangements of structural elements and their specific contacts to provide for a flip-flop, or alternate site, enzymatic mechanism of action. Analysis of structural elements entrained in the flip-flop action displayed by TPP-dependent enzymes reveals a novel definition of the common amino acid sequences. These sequences allow for annotation of TPP-dependent enzymes, thus advancing functional proteomics. Further details of three-dimensional structures of TPP-dependent enzymes will be discussed.

  14. Synthetic biology with RNA motifs.

    PubMed

    Saito, Hirohide; Inoue, Tan

    2009-02-01

    Structural motifs in naturally occurring RNAs and RNPs can be employed as new molecular parts for synthetic biology to facilitate the development of novel devices and systems that modulate cellular functions. In this review, we focus on the following: (i) experimental evolution techniques of RNA molecules in vitro and (ii) their applications for regulating gene expression systems in vivo. For experimental evolution, new artificial RNA aptamers and RNA enzymes (ribozymes) have been selected in vitro. These functional RNA molecules are likely to be applicable in the reprogramming of existing gene regulatory systems. Furthermore, they may be used for designing hypothetical RNA-based living systems in the so-called RNA world. For the regulation of gene expressions in living cells, the development of new riboswitches allows us to modulate the target gene expression in a tailor-made manner. Moreover, recently RNA-based synthetic genetic circuits have been reported by employing functional RNA molecules, expanding the repertory of synthetic biology with RNA motifs. PMID:18775792

  15. Mammalian development in space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  16. Autoproteolysis and intramolecular dissociation of Yersinia YscU precedes secretion of its C-terminal polypeptide YscU(CC).

    PubMed

    Frost, Stefan; Ho, Oanh; Login, Frédéric H; Weise, Christoph F; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2012-01-01

    Type III secretion system mediated secretion and translocation of Yop-effector proteins across the eukaryotic target cell membrane by pathogenic Yersinia is highly organized and is dependent on a switching event from secretion of early structural substrates to late effector substrates (Yops). Substrate switching can be mimicked in vitro by modulating the calcium levels in the growth medium. YscU that is essential for regulation of this switch undergoes autoproteolysis at a conserved N↑PTH motif, resulting in a 10 kDa C-terminal polypeptide fragment denoted YscU(CC). Here we show that depletion of calcium induces intramolecular dissociation of YscU(CC) from YscU followed by secretion of the YscU(CC) polypeptide. Thus, YscU(CC) behaved in vivo as a Yop protein with respect to secretion properties. Further, destabilized yscU mutants displayed increased rates of dissociation of YscU(CC)in vitro resulting in enhanced Yop secretion in vivo at 30°C relative to the wild-type strain.These findings provide strong support to the relevance of YscU(CC) dissociation for Yop secretion. We propose that YscU(CC) orchestrates a block in the secretion channel that is eliminated by calcium depletion. Further, the striking homology between different members of the YscU/FlhB family suggests that this protein family possess regulatory functions also in other bacteria using comparable mechanisms. PMID:23185318

  17. DILIMOT: discovery of linear motifs in proteins.

    PubMed

    Neduva, Victor; Russell, Robert B

    2006-07-01

    Discovery of protein functional motifs is critical in modern biology. Small segments of 3-10 residues play critical roles in protein interactions, post-translational modifications and trafficking. DILIMOT (DIscovery of LInear MOTifs) is a server for the prediction of these short linear motifs within a set of proteins. Given a set of sequences sharing a common functional feature (e.g. interaction partner or localization) the method finds statistically over-represented motifs likely to be responsible for it. The input sequences are first passed through a set of filters to remove regions unlikely to contain instances of linear motifs. Motifs are then found in the remaining sequence and ranked according to a statistic that measure over-representation and conservation across homologues in related species. The results are displayed via a visual interface for easy perusal. The server is available at http://dilimot.embl.de. PMID:16845024

  18. Bridge and brick motifs in complex networks

    NASA Astrophysics Data System (ADS)

    Huang, Chung-Yuan; Sun, Chuen-Tsai; Cheng, Chia-Ying; Hsieh, Ji-Lung

    2007-04-01

    Acknowledging the expanding role of complex networks in numerous scientific contexts, we examine significant functional and topological differences between bridge and brick motifs for predicting network behaviors and functions. After observing similarities between social networks and their genetic, ecological, and engineering counterparts, we identify a larger number of brick motifs in social networks and bridge motifs in the other three types. We conclude that bridge and brick motif content analysis can assist researchers in understanding the small-world and clustering properties of network structures when investigating network functions and behaviors.

  19. First North American 50 cc Total Artificial Heart Experience: Conversion from a 70 cc Total Artificial Heart.

    PubMed

    Khalpey, Zain; Kazui, Toshinobu; Ferng, Alice S; Connell, Alana; Tran, Phat L; Meyer, Mark; Rawashdeh, Badi; Smith, Richard G; Sweitzer, Nancy K; Friedman, Mark; Lick, Scott; Slepian, Marvin J; Copeland, Jack G

    2016-01-01

    The 70 cc total artificial heart (TAH) has been utilized as bridge to transplant (BTT) for biventricular failure. However, the utilization of 70 cc TAH has been limited to large patients for the low output from the pulmonary as well as systemic vein compression after chest closure. Therefore, the 50 cc TAH was developed by SynCardia (Tucson, AZ) to accommodate smaller chest cavity. We report the first TAH exchange from a 70 to 50 cc due to a fit difficulty. The patient failed to be closed with a 70 cc TAH, although the patient met the conventional 70 cc TAH fit criteria. We successfully closed the chest with a 50 cc TAH. PMID:26809081

  20. Structure of transcribing mammalian RNA polymerase II.

    PubMed

    Bernecky, Carrie; Herzog, Franz; Baumeister, Wolfgang; Plitzko, Jürgen M; Cramer, Patrick

    2016-01-28

    RNA polymerase (Pol) II produces messenger RNA during transcription of protein-coding genes in all eukaryotic cells. The Pol II structure is known at high resolution from X-ray crystallography for two yeast species. Structural studies of mammalian Pol II, however, remain limited to low-resolution electron microscopy analysis of human Pol II and its complexes with various proteins. Here we report the 3.4 Å resolution cryo-electron microscopy structure of mammalian Pol II in the form of a transcribing complex comprising DNA template and RNA transcript. We use bovine Pol II, which is identical to the human enzyme except for seven amino-acid residues. The obtained atomic model closely resembles its yeast counterpart, but also reveals unknown features. Binding of nucleic acids to the polymerase involves 'induced fit' of the mobile Pol II clamp and active centre region. DNA downstream of the transcription bubble contacts a conserved 'TPSA motif' in the jaw domain of the Pol II subunit RPB5, an interaction that is apparently already established during transcription initiation. Upstream DNA emanates from the active centre cleft at an angle of approximately 105° with respect to downstream DNA. This position of upstream DNA allows for binding of the general transcription elongation factor DSIF (SPT4-SPT5) that we localize over the active centre cleft in a conserved position on the clamp domain of Pol II. Our results define the structure of mammalian Pol II in its functional state, indicate that previous crystallographic analysis of yeast Pol II is relevant for understanding gene transcription in all eukaryotes, and provide a starting point for a mechanistic analysis of human transcription. PMID:26789250

  1. Mammalian Septins Nomenclature

    PubMed Central

    Macara, Ian G.; Baldarelli, Richard; Field, Christine M.; Glotzer, Michael; Hayashi, Yasuhide; Hsu, Shu-Chan; Kennedy, Mary B.; Kinoshita, Makoto; Longtine, Mark; Low, Claudia; Maltais, Lois J.; McKenzie, Louise; Mitchison, Timothy J.; Nishikawa, Toru; Noda, Makoto; Petty, Elizabeth M.; Peifer, Mark; Pringle, John R.; Robinson, Phillip J.; Roth, Dagmar; Russell, S.E. Hilary; Stuhlmann, Heidi; Tanaka, Manami; Tanaka, Tomoo; Trimble, William S.; Ware, Jerry; Zeleznik-Le, Nancy J.; Zieger, Barbara

    2002-01-01

    There are 10 known mammalian septin genes, some of which produce multiple splice variants. The current nomenclature for the genes and gene products is very confusing, with several different names having been given to the same gene product and distinct names given to splice variants of the same gene. Moreover, some names are based on those of yeast or Drosophila septins that are not the closest homologues. Therefore, we suggest that the mammalian septin field adopt a common nomenclature system, based on that adopted by the Mouse Genomic Nomenclature Committee and accepted by the Human Genome Organization Gene Nomenclature Committee. The human and mouse septin genes will be named SEPT1–SEPT10 and Sept1–Sept10, respectively. Splice variants will be designated by an underscore followed by a lowercase “v” and a number, e.g., SEPT4_v1. PMID:12475938

  2. Mammalian sweet taste receptors.

    PubMed

    Nelson, G; Hoon, M A; Chandrashekar, J; Zhang, Y; Ryba, N J; Zuker, C S

    2001-08-10

    The sense of taste provides animals with valuable information about the quality and nutritional value of food. Previously, we identified a large family of mammalian taste receptors involved in bitter taste perception (the T2Rs). We now report the characterization of mammalian sweet taste receptors. First, transgenic rescue experiments prove that the Sac locus encodes T1R3, a member of the T1R family of candidate taste receptors. Second, using a heterologous expression system, we demonstrate that T1R2 and T1R3 combine to function as a sweet receptor, recognizing sweet-tasting molecules as diverse as sucrose, saccharin, dulcin, and acesulfame-K. Finally, we present a detailed analysis of the patterns of expression of T1Rs and T2Rs, thus providing a view of the representation of sweet and bitter taste at the periphery. PMID:11509186

  3. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data.

    PubMed

    Tran, Ngoc Tam L; Huang, Chun-Hsi

    2014-01-01

    ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data. PMID:24555784

  4. Rheotaxis guides mammalian sperm

    PubMed Central

    Miki, Kiyoshi; Clapham, David E

    2013-01-01

    Background In sea urchins, spermatozoan motility is altered by chemotactic peptides, giving rise to the assumption that mammalian eggs also emit chemotactic agents that guide spermatozoa through the female reproductive tract to the mature oocyte. Mammalian spermatozoa indeed undergo complex adaptations within the female (the process of capacitation) that are initiated by agents ranging from pH to progesterone, but these factors are not necessarily taxic. Currently, chemotaxis, thermotaxis, and rheotaxis have not been definitively established in mammals. Results Here, we show that positive rheotaxis, the ability of organisms to orient and swim against the flow of surrounding fluid, is a major taxic factor for mouse and human sperm. This flow is generated within 4 hours of sexual stimulation and coitus in female mice; prolactin-triggered oviductal fluid secretion clears the oviduct of debris, lowers viscosity, and generates the stream that guides sperm migration in the oviduct. Rheotaxic movement is demonstrated in capacitated and uncapacitated spermatozoa in low and high viscosity medium. Finally, we show that a unique sperm motion we quantify using the sperm head's rolling rate reflects sperm rotation that generates essential force for positioning the sperm in the stream. Rotation requires CatSper channels, presumably by enabling Ca2+ influx. Conclusions We propose that rheotaxis is a major determinant of sperm guidance over long distances in the mammalian female reproductive tract. Coitus induces fluid flow to guide sperm in the oviduct. Sperm rheotaxis requires rotational motion during CatSper channel-dependent hyperactivated motility. PMID:23453951

  5. Return of the GDI: the GoLoco motif in cell division.

    PubMed

    Willard, Francis S; Kimple, Randall J; Siderovski, David P

    2004-01-01

    The GoLoco motif is a 19-amino-acid sequence with guanine nucleotide dissociation inhibitor activity against G-alpha subunits of the adenylyl-cyclase-inhibitory subclass. The GoLoco motif is present as an independent element within multidomain signaling regulators, such as Loco, RGS12, RGS14, and Rap1GAP, as well as in tandem arrays in proteins, such as AGS3, G18, LGN, Pcp-2/L7, and Partner of Inscuteable (Pins/Rapsynoid). Here we discuss the biochemical mechanisms of GoLoco motif action on G-alpha subunits in light of the recent crystal structure of G-alpha-i1 bound to the RGS14 GoLoco motif. Currently, there is sparse evidence for GoLoco motif regulation of canonical G-protein-coupled receptor signaling. Rather, studies of asymmetric cell division in Drosophila and Caenorhabditis elegans, as well as mammalian mitosis, implicate GoLoco proteins, such as Pins, GPR-1/GPR-2, LGN, and RGS14, in mitotic spindle organization and force generation. We discuss potential mechanisms by which GoLoco/Galpha complexes might modulate spindle dynamics. PMID:15189163

  6. DXD motif-dependent and -independent effects of the chlamydia trachomatis cytotoxin CT166.

    PubMed

    Bothe, Miriam; Dutow, Pavel; Pich, Andreas; Genth, Harald; Klos, Andreas

    2015-02-01

    The Gram-negative, intracellular bacterium Chlamydia trachomatis causes acute and chronic urogenital tract infection, potentially leading to infertility and ectopic pregnancy. The only partially characterized cytotoxin CT166 of serovar D exhibits a DXD motif, which is important for the enzymatic activity of many bacterial and mammalian type A glycosyltransferases, leading to the hypothesis that CT166 possess glycosyltransferase activity. CT166-expressing HeLa cells exhibit actin reorganization, including cell rounding, which has been attributed to the inhibition of the Rho-GTPases Rac/Cdc42. Exploiting the glycosylation-sensitive Ras(27H5) antibody, we here show that CT166 induces an epitope change in Ras, resulting in inhibited ERK and PI3K signaling and delayed cell cycle progression. Consistent with the hypothesis that these effects strictly depend on the DXD motif, CT166 with the mutated DXD motif causes neither Ras-ERK inhibition nor delayed cell cycle progression. In contrast, CT166 with the mutated DXD motif is still capable of inhibiting cell migration, suggesting that CT166 with the mutated DXD motif cannot be regarded as inactive in any case. Taken together, CT166 affects various fundamental cellular processes, strongly suggesting its importance for the intracellular survival of chlamydia. PMID:25690695

  7. DXD Motif-Dependent and -Independent Effects of the Chlamydia trachomatis Cytotoxin CT166

    PubMed Central

    Bothe, Miriam; Dutow, Pavel; Pich, Andreas; Genth, Harald; Klos, Andreas

    2015-01-01

    The Gram-negative, intracellular bacterium Chlamydia trachomatis causes acute and chronic urogenital tract infection, potentially leading to infertility and ectopic pregnancy. The only partially characterized cytotoxin CT166 of serovar D exhibits a DXD motif, which is important for the enzymatic activity of many bacterial and mammalian type A glycosyltransferases, leading to the hypothesis that CT166 possess glycosyltransferase activity. CT166-expressing HeLa cells exhibit actin reorganization, including cell rounding, which has been attributed to the inhibition of the Rho-GTPases Rac/Cdc42. Exploiting the glycosylation-sensitive Ras(27H5) antibody, we here show that CT166 induces an epitope change in Ras, resulting in inhibited ERK and PI3K signaling and delayed cell cycle progression. Consistent with the hypothesis that these effects strictly depend on the DXD motif, CT166 with the mutated DXD motif causes neither Ras-ERK inhibition nor delayed cell cycle progression. In contrast, CT166 with the mutated DXD motif is still capable of inhibiting cell migration, suggesting that CT166 with the mutated DXD motif cannot be regarded as inactive in any case. Taken together, CT166 affects various fundamental cellular processes, strongly suggesting its importance for the intracellular survival of chlamydia. PMID:25690695

  8. Imogene: identification of motifs and cis-regulatory modules underlying gene co-regulation

    PubMed Central

    Rouault, Hervé; Santolini, Marc; Schweisguth, François; Hakim, Vincent

    2014-01-01

    Cis-regulatory modules (CRMs) and motifs play a central role in tissue and condition-specific gene expression. Here we present Imogene, an ensemble of statistical tools that we have developed to facilitate their identification and implemented in a publicly available software. Starting from a small training set of mammalian or fly CRMs that drive similar gene expression profiles, Imogene determines de novo cis-regulatory motifs that underlie this co-expression. It can then predict on a genome-wide scale other CRMs with a regulatory potential similar to the training set. Imogene bypasses the need of large datasets for statistical analyses by making central use of the information provided by the sequenced genomes of multiple species, based on the developed statistical tools and explicit models for transcription factor binding site evolution. We test Imogene on characterized tissue-specific mouse developmental CRMs. Its ability to identify CRMs with the same specificity based on its de novo created motifs is comparable to that of previously evaluated ‘motif-blind’ methods. We further show, both in flies and in mammals, that Imogene de novo generated motifs are sufficient to discriminate CRMs related to different developmental programs. Notably, purely relying on sequence data, Imogene performs as well in this discrimination task as a previously reported learning algorithm based on Chromatin Immunoprecipitation (ChIP) data for multiple transcription factors at multiple developmental stages. PMID:24682824

  9. A duplicated motif controls assembly of zona pellucida domain proteins

    NASA Astrophysics Data System (ADS)

    Jovine, Luca; Qi, Huayu; Williams, Zev; Litscher, Eveline S.; Wassarman, Paul M.

    2004-04-01

    Many secreted eukaryotic glycoproteins that play fundamental roles in development, hearing, immunity, and cancer polymerize into filaments and extracellular matrices through zona pellucida (ZP) domains. ZP domain proteins are synthesized as precursors containing C-terminal propeptides that are cleaved at conserved sites. However, the consequences of this processing and the mechanism by which nascent proteins assemble are unclear. By microinjection of mutated DNA constructs into growing oocytes and mammalian cell transfection, we have identified a conserved duplicated motif [EHP (external hydrophobic patch)/IHP (internal hydrophobic patch)] regulating the assembly of mouse ZP proteins. Whereas the transmembrane domain (TMD) of ZP3 can be functionally replaced by an unrelated TMD, mutations in either EHP or IHP do not hinder secretion of full-length ZP3 but completely abolish its assembly. Because mutants truncated before the TMD are not processed, we conclude that the conserved TMD of mammalian ZP proteins does not engage them in specific interactions but is essential for C-terminal processing. Cleavage of ZP precursors results in loss of the EHP, thereby activating secreted polypeptides to assemble by using the IHP within the ZP domain. Taken together, these findings suggest a general mechanism for assembly of ZP domain proteins.

  10. Mammalian non-CG methylations are conserved and cell-type specific and may have been involved in the evolution of transposon elements.

    PubMed

    Guo, Weilong; Zhang, Michael Q; Wu, Hong

    2016-01-01

    Although non-CG methylations are abundant in several mammalian cell types, their biological significance is sparsely characterized. We gathered 51 human and mouse DNA methylomes from brain neurons, embryonic stem cells and induced pluripotent stem cells, primordial germ cells and oocytes. We utilized an unbiased sub-motif prediction method and reported CW as the representative non-CG methylation context, which is distinct from CC methylation in terms of sequence context and genomic distribution. A two-dimensional comparison of non-CG methylations across cell types and species was performed. Unambiguous studies of sequence preferences and genomic region enrichment showed that CW methylation is cell-type specific and is also conserved between humans and mice. In brain neurons, it was found that active long interspersed nuclear element-1 (LINE-1) lacked CW methylations but not CG methylations. Coincidentally, both human Alu and mouse B1 elements preferred high CW methylations at specific loci during their respective evolutionary development. Last, the strand-specific distributions of CW methylations in introns and long interspersed nuclear elements are also cell-type specific and conserved. In summary, our results illustrate that CW methylations are highly conserved among species, are dynamically regulated in each cell type, and are potentially involved in the evolution of transposon elements. PMID:27573482

  11. Mammalian non-CG methylations are conserved and cell-type specific and may have been involved in the evolution of transposon elements

    PubMed Central

    Guo, Weilong; Zhang, Michael Q.; Wu, Hong

    2016-01-01

    Although non-CG methylations are abundant in several mammalian cell types, their biological significance is sparsely characterized. We gathered 51 human and mouse DNA methylomes from brain neurons, embryonic stem cells and induced pluripotent stem cells, primordial germ cells and oocytes. We utilized an unbiased sub-motif prediction method and reported CW as the representative non-CG methylation context, which is distinct from CC methylation in terms of sequence context and genomic distribution. A two-dimensional comparison of non-CG methylations across cell types and species was performed. Unambiguous studies of sequence preferences and genomic region enrichment showed that CW methylation is cell-type specific and is also conserved between humans and mice. In brain neurons, it was found that active long interspersed nuclear element-1 (LINE-1) lacked CW methylations but not CG methylations. Coincidentally, both human Alu and mouse B1 elements preferred high CW methylations at specific loci during their respective evolutionary development. Last, the strand-specific distributions of CW methylations in introns and long interspersed nuclear elements are also cell-type specific and conserved. In summary, our results illustrate that CW methylations are highly conserved among species, are dynamically regulated in each cell type, and are potentially involved in the evolution of transposon elements. PMID:27573482

  12. Structural Basis for WDR5 Interaction (Win) Motif Recognition in Human SET1 Family Histone Methyltransferases*

    PubMed Central

    Dharmarajan, Venkatasubramanian; Lee, Jeong-Heon; Patel, Anamika; Skalnik, David G.; Cosgrove, Michael S.

    2012-01-01

    Translocations and amplifications of the mixed lineage leukemia-1 (MLL1) gene are associated with aggressive myeloid and lymphocytic leukemias in humans. MLL1 is a member of the SET1 family of histone H3 lysine 4 (H3K4) methyltransferases, which are required for transcription of genes involved in hematopoiesis and development. MLL1 associates with a subcomplex containing WDR5, RbBP5, Ash2L, and DPY-30 (WRAD), which together form the MLL1 core complex that is required for sequential mono- and dimethylation of H3K4. We previously demonstrated that WDR5 binds the conserved WDR5 interaction (Win) motif of MLL1 in vitro, an interaction that is required for the H3K4 dimethylation activity of the MLL1 core complex. In this investigation, we demonstrate that arginine 3765 of the MLL1 Win motif is required to co-immunoprecipitate WRAD from mammalian cells, suggesting that the WDR5-Win motif interaction is important for the assembly of the MLL1 core complex in vivo. We also demonstrate that peptides that mimic SET1 family Win motif sequences inhibit H3K4 dimethylation by the MLL1 core complex with varying degrees of efficiency. To understand the structural basis for these differences, we determined structures of WDR5 bound to six different naturally occurring Win motif sequences at resolutions ranging from 1.9 to 1.2 Å. Our results reveal that binding energy differences result from interactions between non-conserved residues C-terminal to the Win motif and to a lesser extent from subtle variation of residues within the Win motif. These results highlight a new class of methylation inhibitors that may be useful for the treatment of MLL1-related malignancies. PMID:22665483

  13. Structural basis for the binding of tryptophan-based motifs by δ-COP

    PubMed Central

    Suckling, Richard J.; Poon, Pak Phi; Travis, Sophie M.; Majoul, Irina V.; Hughson, Frederick M.; Evans, Philip R.; Duden, Rainer; Owen, David J.

    2015-01-01

    Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding βγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αβ’ε-COP B-subcomplex. We present the structure of the C-terminal μ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP μ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1–6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing. PMID:26578768

  14. Temporal motifs in time-dependent networks

    NASA Astrophysics Data System (ADS)

    Kovanen, Lauri; Karsai, Márton; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2011-11-01

    Temporal networks are commonly used to represent systems where connections between elements are active only for restricted periods of time, such as telecommunication, neural signal processing, biochemical reaction and human social interaction networks. We introduce the framework of temporal motifs to study the mesoscale topological-temporal structure of temporal networks in which the events of nodes do not overlap in time. Temporal motifs are classes of similar event sequences, where the similarity refers not only to topology but also to the temporal order of the events. We provide a mapping from event sequences to coloured directed graphs that enables an efficient algorithm for identifying temporal motifs. We discuss some aspects of temporal motifs, including causality and null models, and present basic statistics of temporal motifs in a large mobile call network.

  15. Sampling Motif-Constrained Ensembles of Networks

    NASA Astrophysics Data System (ADS)

    Fischer, Rico; Leitão, Jorge C.; Peixoto, Tiago P.; Altmann, Eduardo G.

    2015-10-01

    The statistical significance of network properties is conditioned on null models which satisfy specified properties but that are otherwise random. Exponential random graph models are a principled theoretical framework to generate such constrained ensembles, but which often fail in practice, either due to model inconsistency or due to the impossibility to sample networks from them. These problems affect the important case of networks with prescribed clustering coefficient or number of small connected subgraphs (motifs). In this Letter we use the Wang-Landau method to obtain a multicanonical sampling that overcomes both these problems. We sample, in polynomial time, networks with arbitrary degree sequences from ensembles with imposed motifs counts. Applying this method to social networks, we investigate the relation between transitivity and homophily, and we quantify the correlation between different types of motifs, finding that single motifs can explain up to 60% of the variation of motif profiles.

  16. 7α-Hydroxycholesterol induces inflammation by enhancing production of chemokine (C-C motif) ligand 2.

    PubMed

    Kim, Sun-Mi; Kim, Bo-Young; Son, Yonghae; Jung, Young-Suk; Eo, Seong-Kug; Park, Young Chul; Kim, Koanhoi

    2015-11-27

    We investigated pro-inflammatory activity of 7-oxygenated cholesterol derivatives present in atherosclerotic lesions. Treatment of THP-1 monocyte/macrophage with 7α-hydroxycholesterol (7αOHChol) resulted in increased gene transcription of CCL2 and production of its corresponding protein. The conditioned medium isolated from THP-1 cells treated with 7αOHChol enhanced migration of monocytic cells, and migration was inhibited in the presence of CCL2-neutralizing antibody. In contrast, 7β-hydroxycholesterol (7βOHChol) or 7-ketocholesterol (7K) did not induce expression of CCL2, and the conditioned medium isolated from THP-1 cells exposed to 7βOHChol or 7K did not affect migration of monocytic cells. 7αOHChol also enhanced production of MMP-9. Inhibition of MEK or PI3K resulted in significantly attenuated expression of CCL2, along with that of MMP-9, induced by 7αOHChol. We propose that elevated concentration of a certain type of 7-oxygenated cholesterol derivative, like 7αOHChol, leads to inflammation via upregulation of CCL2 and MMP-9 in macrophages in the artery, thereby promoting progression of atherosclerosis, and the ERK and the PI3K pathways are involved in the process. PMID:26474699

  17. Autyomatic Differentiation of C/C++

    Energy Science and Technology Software Center (ESTSC)

    2005-11-14

    Automatic differentiation (AD) tools mechanize the process of developing code for the computation of derivatives. AD avoids the inaccuracies inherent in numerical approximations. Furthermore, sophisticated AD algoirthms can often produce c ode that is more reliable and more efficient than code written by an expert programmer. ADIC is the first and only AD tool for C and C++ based on compiler technology. This compiler foundation makes possible analyses and optimizations not available in toos basedmore » on operator overloading. The earliest implementations of ADIC included support for ANSI C applications, ADIC 2.0 lverages EDG, a commercial C/C++ parser, to provide robust C++ differentiation support. Modern AD tools, including ADIC are implemented in a modular way, aiming to isolate language-dependent program analyses and semantic transformations. The component design leads to much higher implementation quality because the different components can be implemented by experts in each of the different domains involved. For example, a compiler expert can focus on parsing, canonicalizing, and unparising C and C++, while an expert in graph theory and algorithms can produce new differentiation modules without having to worry about the complexity of parsing and generating C++ code. Thsi separation of concerns was achieved through the use of language-independent program analysis interfaces (in collaboration with researcgers at Rice University) and a language-independent XML representation of the computational portions of programs (XAIF). In addition to improved robustness and faster development times, this design naturally enables the reuse of program analysis algorithms and differentiation modules in compiler-based AD tools for other languages. In fact, the analysis and differention components are used in both ADIC and the Open AD Fortran front-end (based on Rice's Open64 compiler.« less

  18. Autyomatic Differentiation of C/C++

    SciTech Connect

    Beata Winnicka, Boyana Norris

    2005-11-14

    Automatic differentiation (AD) tools mechanize the process of developing code for the computation of derivatives. AD avoids the inaccuracies inherent in numerical approximations. Furthermore, sophisticated AD algoirthms can often produce c ode that is more reliable and more efficient than code written by an expert programmer. ADIC is the first and only AD tool for C and C++ based on compiler technology. This compiler foundation makes possible analyses and optimizations not available in toos based on operator overloading. The earliest implementations of ADIC included support for ANSI C applications, ADIC 2.0 lverages EDG, a commercial C/C++ parser, to provide robust C++ differentiation support. Modern AD tools, including ADIC are implemented in a modular way, aiming to isolate language-dependent program analyses and semantic transformations. The component design leads to much higher implementation quality because the different components can be implemented by experts in each of the different domains involved. For example, a compiler expert can focus on parsing, canonicalizing, and unparising C and C++, while an expert in graph theory and algorithms can produce new differentiation modules without having to worry about the complexity of parsing and generating C++ code. Thsi separation of concerns was achieved through the use of language-independent program analysis interfaces (in collaboration with researcgers at Rice University) and a language-independent XML representation of the computational portions of programs (XAIF). In addition to improved robustness and faster development times, this design naturally enables the reuse of program analysis algorithms and differentiation modules in compiler-based AD tools for other languages. In fact, the analysis and differention components are used in both ADIC and the Open AD Fortran front-end (based on Rice's Open64 compiler.

  19. Stochastic motif extraction using hidden Markov model

    SciTech Connect

    Fujiwara, Yukiko; Asogawa, Minoru; Konagaya, Akihiko

    1994-12-31

    In this paper, we study the application of an HMM (hidden Markov model) to the problem of representing protein sequences by a stochastic motif. A stochastic protein motif represents the small segments of protein sequences that have a certain function or structure. The stochastic motif, represented by an HMM, has conditional probabilities to deal with the stochastic nature of the motif. This HMM directive reflects the characteristics of the motif, such as a protein periodical structure or grouping. In order to obtain the optimal HMM, we developed the {open_quotes}iterative duplication method{close_quotes} for HMM topology learning. It starts from a small fully-connected network and iterates the network generation and parameter optimization until it achieves sufficient discrimination accuracy. Using this method, we obtained an HMM for a leucine zipper motif. Compared to the accuracy of a symbolic pattern representation with accuracy of 14.8 percent, an HMM achieved 79.3 percent in prediction. Additionally, the method can obtain an HMM for various types of zinc finger motifs, and it might separate the mixed data. We demonstrated that this approach is applicable to the validation of the protein databases; a constructed HMM b as indicated that one protein sequence annotated as {open_quotes}lencine-zipper like sequence{close_quotes} in the database is quite different from other leucine-zipper sequences in terms of likelihood, and we found this discrimination is plausible.

  20. Automated Motif Discovery from Glycan Array Data

    PubMed Central

    Cholleti, Sharath R.; Agravat, Sanjay; Morris, Tim; Saltz, Joel H.; Song, Xuezheng

    2012-01-01

    Abstract Assessing interactions of a glycan-binding protein (GBP) or lectin with glycans on a microarray generates large datasets, making it difficult to identify a glycan structural motif or determinant associated with the highest apparent binding strength of the GBP. We have developed a computational method, termed GlycanMotifMiner, that uses the relative binding of a GBP with glycans within a glycan microarray to automatically reveal the glycan structural motifs recognized by a GBP. We implemented the software with a web-based graphical interface for users to explore and visualize the discovered motifs. The utility of GlycanMotifMiner was determined using five plant lectins, SNA, HPA, PNA, Con A, and UEA-I. Data from the analyses of the lectins at different protein concentrations were processed to rank the glycans based on their relative binding strengths. The motifs, defined as glycan substructures that exist in a large number of the bound glycans and few non-bound glycans, were then discovered by our algorithm and displayed in a web-based graphical user interface (http://glycanmotifminer.emory.edu). The information is used in defining the glycan-binding specificity of GBPs. The results were compared to the known glycan specificities of these lectins generated by manual methods. A more complex analysis was also carried out using glycan microarray data obtained for a recombinant form of human galectin-8. Results for all of these lectins show that GlycanMotifMiner identified the major motifs known in the literature along with some unexpected novel binding motifs. PMID:22877213

  1. Automated motif discovery from glycan array data.

    PubMed

    Cholleti, Sharath R; Agravat, Sanjay; Morris, Tim; Saltz, Joel H; Song, Xuezheng; Cummings, Richard D; Smith, David F

    2012-10-01

    Assessing interactions of a glycan-binding protein (GBP) or lectin with glycans on a microarray generates large datasets, making it difficult to identify a glycan structural motif or determinant associated with the highest apparent binding strength of the GBP. We have developed a computational method, termed GlycanMotifMiner, that uses the relative binding of a GBP with glycans within a glycan microarray to automatically reveal the glycan structural motifs recognized by a GBP. We implemented the software with a web-based graphical interface for users to explore and visualize the discovered motifs. The utility of GlycanMotifMiner was determined using five plant lectins, SNA, HPA, PNA, Con A, and UEA-I. Data from the analyses of the lectins at different protein concentrations were processed to rank the glycans based on their relative binding strengths. The motifs, defined as glycan substructures that exist in a large number of the bound glycans and few non-bound glycans, were then discovered by our algorithm and displayed in a web-based graphical user interface ( http://glycanmotifminer.emory.edu ). The information is used in defining the glycan-binding specificity of GBPs. The results were compared to the known glycan specificities of these lectins generated by manual methods. A more complex analysis was also carried out using glycan microarray data obtained for a recombinant form of human galectin-8. Results for all of these lectins show that GlycanMotifMiner identified the major motifs known in the literature along with some unexpected novel binding motifs. PMID:22877213

  2. Roof Plans: Section "CC", Roof Plan; Roof Framing Plans: Section ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roof Plans: Section "C-C", Roof Plan; Roof Framing Plans: Section "C-C", Section "D-D"; Roof Framing Sections: Cross Section "G-G", Cross Section "H-H" - Fort Washington, Fort Washington Light, Northeast side of Potomac River at Fort Washington Park, Fort Washington, Prince George's County, MD

  3. Understanding Rotation about a C=C Double Bond

    ERIC Educational Resources Information Center

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-01-01

    The study focuses on the process and energetic cost of twisting around a C=C double bond and provides instructors with a simple vehicle for rectifying the common misrepresentation of C=C double bonds as rigid and inflexible. Discussions of cis and trans isomers of cycloalkenes are a good entry point for introducing students to the idea of a…

  4. Isolation, synthesis and characterization of ω-TRTX-Cc1a, a novel tarantula venom peptide that selectively targets L-type Cav channels.

    PubMed

    Klint, Julie K; Berecki, Géza; Durek, Thomas; Mobli, Mehdi; Knapp, Oliver; King, Glenn F; Adams, David J; Alewood, Paul F; Rash, Lachlan D

    2014-05-15

    Spider venoms are replete with peptidic ion channel modulators, often with novel subtype selectivity, making them a rich source of pharmacological tools and drug leads. In a search for subtype-selective blockers of voltage-gated calcium (CaV) channels, we isolated and characterized a novel 39-residue peptide, ω-TRTX-Cc1a (Cc1a), from the venom of the tarantula Citharischius crawshayi (now Pelinobius muticus). Cc1a is 67% identical to the spider toxin ω-TRTX-Hg1a, an inhibitor of CaV2.3 channels. We assembled Cc1a using a combination of Boc solid-phase peptide synthesis and native chemical ligation. Oxidative folding yielded two stable, slowly interconverting isomers. Cc1a preferentially inhibited Ba(2+) currents (IBa) mediated by L-type (CaV1.2 and CaV1.3) CaV channels heterologously expressed in Xenopus oocytes, with half-maximal inhibitory concentration (IC50) values of 825nM and 2.24μM, respectively. In rat dorsal root ganglion neurons, Cc1a inhibited IBa mediated by high voltage-activated CaV channels but did not affect low voltage-activated T-type CaV channels. Cc1a exhibited weak activity at NaV1.5 and NaV1.7 voltage-gated sodium (NaV) channels stably expressed in mammalian HEK or CHO cells, respectively. Experiments with modified Cc1a peptides, truncated at the N-terminus (ΔG1-E5) or C-terminus (ΔW35-V39), demonstrated that the N- and C-termini are important for voltage-gated ion channel modulation. We conclude that Cc1a represents a novel pharmacological tool for probing the structure and function of L-type CaV channels. PMID:24561180

  5. Mammalian Endogenous Retroviruses.

    PubMed

    Mager, Dixie L; Stoye, Jonathan P

    2015-02-01

    Over 40% of mammalian genomes comprise the products of reverse transcription. Among such retrotransposed sequences are those characterized by the presence of long terminal repeats (LTRs), including the endogenous retroviruses (ERVs), which are inherited genetic elements closely resembling the proviruses formed following exogenous retrovirus infection. Sequences derived from ERVs make up at least 8 to 10% of the human and mouse genomes and range from ancient sequences that predate mammalian divergence to elements that are currently still active. In this chapter we describe the discovery, classification and origins of ERVs in mammals and consider cellular mechanisms that have evolved to control their expression. We also discuss the negative effects of ERVs as agents of genetic disease and cancer and review examples of ERV protein domestication to serve host functions, as in placental development. Finally, we address growing evidence that the gene regulatory potential of ERV LTRs has been exploited multiple times during evolution to regulate genes and gene networks. Thus, although recently endogenized retroviral elements are often pathogenic, those that survive the forces of negative selection become neutral components of the host genome or can be harnessed to serve beneficial roles. PMID:26104559

  6. RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets.

    PubMed

    Thomas-Chollier, Morgane; Herrmann, Carl; Defrance, Matthieu; Sand, Olivier; Thieffry, Denis; van Helden, Jacques

    2012-02-01

    ChIP-seq is increasingly used to characterize transcription factor binding and chromatin marks at a genomic scale. Various tools are now available to extract binding motifs from peak data sets. However, most approaches are only available as command-line programs, or via a website but with size restrictions. We present peak-motifs, a computational pipeline that discovers motifs in peak sequences, compares them with databases, exports putative binding sites for visualization in the UCSC genome browser and generates an extensive report suited for both naive and expert users. It relies on time- and memory-efficient algorithms enabling the treatment of several thousand peaks within minutes. Regarding time efficiency, peak-motifs outperforms all comparable tools by several orders of magnitude. We demonstrate its accuracy by analyzing data sets ranging from 4000 to 1,28,000 peaks for 12 embryonic stem cell-specific transcription factors. In all cases, the program finds the expected motifs and returns additional motifs potentially bound by cofactors. We further apply peak-motifs to discover tissue-specific motifs in peak collections for the p300 transcriptional co-activator. To our knowledge, peak-motifs is the only tool that performs a complete motif analysis and offers a user-friendly web interface without any restriction on sequence size or number of peaks. PMID:22156162

  7. Charmonium suppression with cc¯ dissociation by strings

    NASA Astrophysics Data System (ADS)

    Geiss, J.; Greiner, C.; Bratkovskaya, E. L.; Cassing, W.; Mosel, U.

    1999-02-01

    We study the production of cc¯ pairs in nuclear reactions at SPS energies within the covariant transport approach HSD. The production of cc¯ pairs is treated perturbatively employing experimental cross sections while the interactions of cc¯ pairs with baryons are included by conventional cascade-type two-body collisions. Adopting 6 mb for the cc¯-baryon cross section the data on J/Ψ suppression in p+A reactions are reproduced in line with calculations based on the Glauber model. Additionally the dissociation of the cc¯ pairs by strings is included in a purely geometrical way. We find good agreement with the experimental data from the NA38 and NA50 Collaborations with an estimate for the string radius of Rs~0.2-0.25 fm.

  8. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas

    PubMed Central

    Petrov, Anton I.; Zirbel, Craig L.; Leontis, Neocles B.

    2013-01-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access. PMID:23970545

  9. CodingMotif: exact determination of overrepresented nucleotide motifs in coding sequences

    PubMed Central

    2012-01-01

    Background It has been increasingly appreciated that coding sequences harbor regulatory sequence motifs in addition to encoding for protein. These sequence motifs are expected to be overrepresented in nucleotide sequences bound by a common protein or small RNA. However, detecting overrepresented motifs has been difficult because of interference by constraints at the protein level. Sampling-based approaches to solve this problem based on codon-shuffling have been limited to exploring only an infinitesimal fraction of the sequence space and by their use of parametric approximations. Results We present a novel O(N(log N)2)-time algorithm, CodingMotif, to identify nucleotide-level motifs of unusual copy number in protein-coding regions. Using a new dynamic programming algorithm we are able to exhaustively calculate the distribution of the number of occurrences of a motif over all possible coding sequences that encode the same amino acid sequence, given a background model for codon usage and dinucleotide biases. Our method takes advantage of the sparseness of loci where a given motif can occur, greatly speeding up the required convolution calculations. Knowledge of the distribution allows one to assess the exact non-parametric p-value of whether a given motif is over- or under- represented. We demonstrate that our method identifies known functional motifs more accurately than sampling and parametric-based approaches in a variety of coding datasets of various size, including ChIP-seq data for the transcription factors NRSF and GABP. Conclusions CodingMotif provides a theoretically and empirically-demonstrated advance for the detection of motifs overrepresented in coding sequences. We expect CodingMotif to be useful for identifying motifs in functional genomic datasets such as DNA-protein binding, RNA-protein binding, or microRNA-RNA binding within coding regions. A software implementation is available at http://bioinformatics.bc.edu/chuanglab/codingmotif.tar PMID

  10. Identifying the activation motif in the N-terminal of rainbow trout and zebrafish melanocortin-2 receptor accessory protein 1 (MRAP1) orthologs.

    PubMed

    Dores, Robert M; Liang, Liang; Hollmann, Rebecca E; Sandhu, Navdeep; Vijayan, Mathilakath M

    2016-08-01

    The activation of mammalian melanocortin-2 receptor (MC2R) orthologs is dependent on a four-amino acid activation motif (LDYL/I) located in the N-terminal of mammalian MRAP1 (melanocortin-2 receptor accessory protein). Previous alanine substitution analysis had shown that the Y residue in this motif appears to be the most important for mediating the activation of mammalian MC2R orthologs. Similar, but not identical amino acid motifs were detected in rainbow trout MRAP1 (YDYL) and zebrafish MRAP1 (YDYV). To determine the importance of these residues in the putative activation motifs, rainbow trout and zebrafish MRAP1 orthologs were individually co-expressed in CHO cells with rainbow trout MC2R, and the activation of this receptor with either the wild-type MRAP1 ortholog or alanine-substituted analogs of the two teleost MRAP1s was analyzed. Alanine substitutions at all four amino acid positions in rainbow trout MRAP1 blocked activation of the rainbow trout MC2R. Single alanine substitutions of the D and Y residues in rainbow trout and zebrafish MRAP1 indicate that these two residues play a significant role in the activation of rainbow trout MC2R. These observations indicate that there are subtle differences in the way that teleost and mammalian MRAPs are involved in the activation of their corresponding MC2R orthologs. PMID:26752246

  11. MotifMiner: A Table Driven Greedy Algorithm for DNA Motif Mining

    NASA Astrophysics Data System (ADS)

    Seeja, K. R.; Alam, M. A.; Jain, S. K.

    DNA motif discovery is a much explored problem in functional genomics. This paper describes a table driven greedy algorithm for discovering regulatory motifs in the promoter sequences of co-expressed genes. The proposed algorithm searches both DNA strands for the common patterns or motifs. The inputs to the algorithm are set of promoter sequences, the motif length and minimum Information Content. The algorithm generates subsequences of given length from the shortest input promoter sequence. It stores these subsequences and their reverse complements in a table. Then it searches the remaining sequences for good matches of these subsequences. The Information Content score is used to measure the goodness of the motifs. The algorithm has been tested with synthetic data and real data. The results are found promising. The algorithm could discover meaningful motifs from the muscle specific regulatory sequences.

  12. DNA Motif Databases and Their Uses.

    PubMed

    Stormo, Gary D

    2015-01-01

    Transcription factors (TFs) recognize and bind to specific DNA sequences. The specificity of a TF is usually represented as a position weight matrix (PWM). Several databases of DNA motifs exist and are used in biological research to address important biological questions. This overview describes PWMs and some of the most commonly used motif databases, as well as a few of their common applications. PMID:26334922

  13. The mammalian blastocyst.

    PubMed

    Frankenberg, Stephen R; de Barros, Flavia R O; Rossant, Janet; Renfree, Marilyn B

    2016-01-01

    The blastocyst is a mammalian invention that carries the embryo from cleavage to gastrulation. For such a simple structure, it exhibits remarkable diversity in its mode of formation, morphology, longevity, and intimacy with the uterine endometrium. This review explores this diversity in the light of the evolution of viviparity, comparing the three main groups of mammals: monotremes, marsupials, and eutherians. The principal drivers in blastocyst evolution were loss of yolk coupled with evolution of the placenta. An important outcome of blastocyst development is differentiation of two extraembryonic lineages (trophoblast and hypoblast) that contribute to the placenta. While in many species trophoblast segregation is often coupled with blastocyst formation, in marsupials and at least some Afrotherians, these events do not coincide. Thus, many questions regarding the conservation of molecular mechanisms controlling these events are of great interest but currently unresolved. For further resources related to this article, please visit the WIREs website. PMID:26799266

  14. Mammalian phospholipase C.

    PubMed

    Kadamur, Ganesh; Ross, Elliott M

    2013-01-01

    Phospholipase C (PLC) converts phosphatidylinositol 4,5-bisphosphate (PIP(2)) to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol (DAG). DAG and IP(3) each control diverse cellular processes and are also substrates for synthesis of other important signaling molecules. PLC is thus central to many important interlocking regulatory networks. Mammals express six families of PLCs, each with both unique and overlapping controls over expression and subcellular distribution. Each PLC also responds acutely to its own spectrum of activators that includes heterotrimeric G protein subunits, protein tyrosine kinases, small G proteins, Ca(2+), and phospholipids. Mammalian PLCs are autoinhibited by a region in the catalytic TIM barrel domain that is the target of much of their acute regulation. In combination, the PLCs act as a signaling nexus that integrates numerous signaling inputs, critically governs PIP(2) levels, and regulates production of important second messengers to determine cell behavior over the millisecond to hour timescale. PMID:23140367

  15. Basic OSF/Motif programming and applications

    SciTech Connect

    Brooks, D. ); Novak, B. )

    1992-09-15

    When users refer to Motif, they are usually talking about mwm, the window manager. However, when programmers mention Motif they are usually discussing the programming toolkit. This toolkit is used to develop new or modify existing applications. In this presentation, the term Motif will refer to the toolkit. Motif comes with a number of features that help users effectively use the applications built with it. The term look and feel may be overused; nonetheless, a consistent and well designed look and feel assists the user in Teaming and using new applications. The term point and click generally refers to using a mouse to select program commands. While Motif supports point and click, the toolkit also supports using the keyboard as a substitute for many operations. This gives a good typist a distinct advantage when using a familiar application. We will give an overview of the toolkit, touching on the user interface features and general programming considerations. Since the source code for many useful Motif programs is readily available, we will explain how to get these sources and touch on derived benefits. We win also point to other sources of on-line help and documentation. Finally, we will present some practical experiences developing applications.

  16. Detecting seeded motifs in DNA sequences.

    PubMed

    Pizzi, Cinzia; Bortoluzzi, Stefania; Bisognin, Andrea; Coppe, Alessandro; Danieli, Gian Antonio

    2005-01-01

    The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, composed by regions with a different extent of variability. The method is based on a multi-step approach, which was implemented in a motif searching web tool (MOST). Overrepresented exact patterns are extracted from input sequences and clustered to produce motifs core regions, which are then extended and scored to generate seeded motifs. The combination of automated pattern discovery algorithms and different display tools for the evaluation and selection of results at several analysis steps can potentially lead to much more meaningful results than complete automation can produce. Experimental results on different yeast and human real datasets proved the methodology to be a promising solution for finding seeded motifs. MOST web tool is freely available at http://telethon.bio.unipd.it/bioinfo/MOST. PMID:16141193

  17. Detecting seeded motifs in DNA sequences

    PubMed Central

    Pizzi, Cinzia; Bortoluzzi, Stefania; Bisognin, Andrea; Coppe, Alessandro; Danieli, Gian Antonio

    2005-01-01

    The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, composed by regions with a different extent of variability. The method is based on a multi-step approach, which was implemented in a motif searching web tool (MOST). Overrepresented exact patterns are extracted from input sequences and clustered to produce motifs core regions, which are then extended and scored to generate seeded motifs. The combination of automated pattern discovery algorithms and different display tools for the evaluation and selection of results at several analysis steps can potentially lead to much more meaningful results than complete automation can produce. Experimental results on different yeast and human real datasets proved the methodology to be a promising solution for finding seeded motifs. MOST web tool is freely available at . PMID:16141193

  18. Energy Materials Coordinating Committee (EMaCC), Fiscal year 1990

    SciTech Connect

    None, None

    1991-05-31

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. Four topical subcommittees are established and are continuing their own programs: Structural Ceramics, Electrochemical Technologies, Radioactive Waste Containment, and Superconductivity. In addition, the EMaCC aids in obtaining materialsrelated inputs for both intra- and inter-agency compilations. Membership in the EMaCC is open to any Department organizational unit; participants are appointed by Division or Office Directors. The current active membership is listed on the following four pages. The EMaCC reports to the Director of the Office of Energy Research in his capacity as overseer of the technical programs of the Department. This annual technical report is mandated by the EMaCC terms of reference. This report summarizes EMaCC activities for FY 1990 and describes the materials research programs of various offices and divisions within the Department. The Chairman of EMaCC for FY 1990 was Scott L. Richlen; the Executive Secretary was Dr. Jerry Smith.

  19. Atlantic cod (Gadus morhua) CC chemokines: Diversity and expression analysis.

    PubMed

    Borza, Tudor; Stone, Cynthia; Rise, Matthew L; Bowman, Sharen; Johnson, Stewart C

    2010-08-01

    Chemokines are a large, diverse group of small cytokines that can be classified into several families, including the CC chemokines that are characterized by two adjacent cysteines near their amino terminus. CC chemokines play a pivotal role in host defense mechanisms by inducing leukocyte chemotaxis under physiological and inflammatory conditions. Analysis of CC chemokines from teleost fishes indicates that the number of CC chemokine genes and their tissue expression patterns vary largely in this group of vertebrates. Here we describe 32 distinct CC chemokine sequences from Atlantic cod (Gadus morhua) identified by analysis of approximately 206,000 ESTs. Phylogenetic analysis of Atlantic cod CC chemokines placed these sequences in seven clusters, most likely resulting from species-specific gene duplications, and two unique sequences; 12 of these CC chemokines, including at least one member of each cluster, were analyzed by QPCR using four immune-related tissues (head kidney, liver, spleen and blood) obtained from unstimulated, polyriboinosinic polyribocytidylic acid (pIC)-stimulated and formalin-killed atypical Aeromonas salmonicida-stimulated individuals. EST abundance and QPCR analysis indicate that the expression of closely related CC chemokines GmSCYA101 and GmSCYA102, GmSCYA108 and GmSCYA109 or GmSCYA122 and GmSCYA124 can be highly tissue-specific despite substantial sequence identity. Stimulation with the viral mimic pIC or formalin-killed atypical A. salmonicida resulted in increased expression of most of the CC chemokines, indicating that they can be regarded as either inducible (inflammatory) or dual-function rather than constitutive (homeostatic). Tissue specificity, and the level of induction, varied broadly; for example, GmSCYA123 was at least 4-fold up-regulated by both inducers in all tissues analyzed, whereas pIC increased the expression of GmSCYA124 in liver over 1500 times. PMID:20381521

  20. Crystal structure of SEL1L: Insight into the roles of SLR motifs in ERAD pathway

    PubMed Central

    Jeong, Hanbin; Sim, Hyo Jung; Song, Eun Kyung; Lee, Hakbong; Ha, Sung Chul; Jun, Youngsoo; Park, Tae Joo; Lee, Changwook

    2016-01-01

    Terminally misfolded proteins are selectively recognized and cleared by the endoplasmic reticulum-associated degradation (ERAD) pathway. SEL1L, a component of the ERAD machinery, plays an important role in selecting and transporting ERAD substrates for degradation. We have determined the crystal structure of the mouse SEL1L central domain comprising five Sel1-Like Repeats (SLR motifs 5 to 9; hereafter called SEL1Lcent). Strikingly, SEL1Lcent forms a homodimer with two-fold symmetry in a head-to-tail manner. Particularly, the SLR motif 9 plays an important role in dimer formation by adopting a domain-swapped structure and providing an extensive dimeric interface. We identified that the full-length SEL1L forms a self-oligomer through the SEL1Lcent domain in mammalian cells. Furthermore, we discovered that the SLR-C, comprising SLR motifs 10 and 11, of SEL1L directly interacts with the N-terminus luminal loops of HRD1. Therefore, we propose that certain SLR motifs of SEL1L play a unique role in membrane bound ERAD machinery. PMID:27064360

  1. An essential GT motif in the lamin A promoter mediates activation by CREB-binding protein

    SciTech Connect

    Janaki Ramaiah, M.; Parnaik, Veena K. . E-mail: veenap@ccmb.res.in

    2006-09-29

    Lamin A is an important component of nuclear architecture in mammalian cells. Mutations in the human lamin A gene lead to highly degenerative disorders that affect specific tissues. In studies directed towards understanding the mode of regulation of the lamin A promoter, we have identified an essential GT motif at -55 position by reporter gene assays and mutational analysis. Binding of this sequence to Sp transcription factors has been observed in electrophoretic mobility shift assays and by chromatin immunoprecipitation studies. Further functional analysis by co-expression of recombinant proteins and ChIP assays has shown an important regulatory role for CREB-binding protein in promoter activation, which is mediated by the GT motif.

  2. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets

    PubMed Central

    2012-01-01

    Background To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. Results We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. Conclusions SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery

  3. G alpha selectivity and inhibitor function of the multiple GoLoco motif protein GPSM2/LGN.

    PubMed

    McCudden, Christopher R; Willard, Francis S; Kimple, Randall J; Johnston, Christopher A; Hains, Melinda D; Jones, Miller B; Siderovski, David P

    2005-09-10

    GPSM2 (G-protein signalling modulator 2; also known as LGN or mammalian Pins) is a protein that regulates mitotic spindle organization and cell division. GPSM2 contains seven tetratricopeptide repeats (TPR) and four Galpha(i/o)-Loco (GoLoco) motifs. GPSM2 has guanine nucleotide dissociation inhibitor (GDI) activity towards both Galpha(o)- and Galpha(i)-subunits; however, a systematic analysis of its individual GoLoco motifs has not been described. We analyzed each of the four individual GoLoco motifs from GPSM2, assessing their relative binding affinities and GDI potencies for Galpha(i1), Galpha(i2), and Galpha(i3) and Galpha(o). Each of the four GPSM2 GoLoco motifs (36-43 amino acids in length) was expressed in bacteria as a GST-fusion protein and purified to homogeneity. The binding of each of the four GST-GoLoco motifs to Galpha(i1)-, Galpha(o)-, and Galpha(s)-subunits was assessed by surface plasmon resonance; all of the motifs bound Galpha(i1), but exhibited low affinity towards Galpha(o). GDI activity was assessed by a fluorescence-based nucleotide-binding assay, revealing that all four GoLoco motifs are functional as GDIs for Galpha(i1), Galpha(i2), and Galpha(i3). Consistent with our binding studies, the GDI activity of GPSM2 GoLoco motifs on Galpha(o) was significantly lower than that toward Galpha(i1), suggesting that the in vivo targets of GPSM2 are most likely to be Galpha(i)-subunits. PMID:15946753

  4. Late Assembly Motifs of Human T-Cell Leukemia Virus Type 1 and Their Relative Roles in Particle Release

    PubMed Central

    Heidecker, Gisela; Lloyd, Patricia A.; Fox, Kristi; Nagashima, Kunio; Derse, David

    2004-01-01

    Three late assembly domain consensus motifs, namely PTAP, PPPY, and LYPXL, have been identified in different retroviruses. They have been shown to interact with the cellular proteins TSG101, Nedd4, and AP2 or AIP, respectively. Human T-cell leukemia virus type 1 (HTLV-1) has a PPPY and a PTAP motif, separated by two amino acids, located at the end of MA, but only the PPPY motif is conserved in the deltaretrovirus group. Like other retroviral peptides carrying the late motif, MA is mono- or di-ubiquitinated. A mutational analysis showed that 90% of PPPY mutant particles were retained in the cell compared to 15% for the wild-type virus. Mutations of the PTAP motif resulted in a 20% decrease in particle release. In single-cycle infectivity assays, the infectious titers of late motif mutants correlated with the amounts of released virus, as determined by an enzyme-linked immunosorbent assay. We observed binding of MA to the WW domains of the Nedd4 family member WWP1 but not to the amino-terminal ubiquitin E2 variant domain of TSG101 in mammalian two-hybrid analyses. The binding to WWP1 was eliminated when the PPPY motif was mutated. However, MA showed binding to TSG101 in the yeast two-hybrid system that was dependent on an intact PTAP motif. A dominant-negative (DN) mutant of WWP1 could inhibit budding of the intact HTLV-1 virus. In contrast, DN TSG101 only affected the release of virus-like particles encoded by Gag expression plasmids. Electron and fluorescent microscopy showed that Gag accumulates in large patches in the membranes of cells expressing viruses with PPPY mutations. Very few tethered immature particles could be detected in these samples, suggesting that budding is impaired at an earlier step than in other retroviruses. PMID:15163754

  5. 30. Part of South Elevation / Section CC / Section ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Part of South Elevation / Section CC / Section BB / Elevation of Skylight (drawing 7) - Whittier State School, Hospital & Receiving Building, 11850 East Whittier Boulevard, Whittier, Los Angeles County, CA

  6. Section BB, Section DD, Plan AA, Plan CC, Typical Framing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Section B-B, Section D-D, Plan A-A, Plan C-C, Typical Framing Detail of Upper Stringers, Typical Framing Detail of Lower Stringers - Covered Bridge, Spanning Connecticut River, Orford, Grafton County, NH

  7. Regulation of expression of venom toxins: silencing of prothrombin activator trocarin D by AG-rich motifs.

    PubMed

    Han, Summer Xia; Kwong, Shiyang; Ge, Ruowen; Kolatkar, Prasanna R; Woods, Anthony E; Blanchet, Guillaume; Kini, R Manjunatha

    2016-06-01

    Trocarin D (TroD), a venom prothrombin activator from Tropidechis carinatus, shares similar structure and function with blood coagulation factor Xa [Tropidechis carinatus FX (TrFX) a]. Their distinct physiologic roles are due to their distinct expression patterns. The genes of TroD and TrFX are highly similar, except for promoter and intron 1, indicating that TroD has probably evolved by duplication of FX, the plasma counterpart. The promoter insertion in TroD accounts for the elevated but not venom gland-specific expression. Here we examined the roles of 3 insertions and 2 deletions in intron 1 of TroD in the regulation of expression using luciferase as a reporter. By systematic deletions, we showed that a 209 bp region within the second insertion silences expression in mammalian and unmilked venom gland cells. Through bioinformatics analysis, we identified 5 AG-rich motifs in this region. All except the 5th motif are important for silencing function. YY1, Sp3 and HMGB2 were identified to bind these AG-rich motifs and silence gene expression in mammalian cells. Similar AG-rich motif clusters are also found in other toxin genes but not in their physiologic counterparts. Thus, AG-rich motifs contribute to regulation of expression of TroD, and probably other toxin genes.-Han, S. X., Kwong, S., Ge, R., Kolatkar, P. R., Woods, A. E., Blanchet, G., Kini, R. M. Regulation of expression of venom toxins: silencing of prothrombin activator trocarin D by AG-rich motifs. PMID:26985007

  8. SVM2Motif--Reconstructing Overlapping DNA Sequence Motifs by Mimicking an SVM Predictor.

    PubMed

    Vidovic, Marina M-C; Görnitz, Nico; Müller, Klaus-Robert; Rätsch, Gunnar; Kloft, Marius

    2015-01-01

    Identifying discriminative motifs underlying the functionality and evolution of organisms is a major challenge in computational biology. Machine learning approaches such as support vector machines (SVMs) achieve state-of-the-art performances in genomic discrimination tasks, but--due to its black-box character--motifs underlying its decision function are largely unknown. As a remedy, positional oligomer importance matrices (POIMs) allow us to visualize the significance of position-specific subsequences. Although being a major step towards the explanation of trained SVM models, they suffer from the fact that their size grows exponentially in the length of the motif, which renders their manual inspection feasible only for comparably small motif sizes, typically k ≤ 5. In this work, we extend the work on positional oligomer importance matrices, by presenting a new machine-learning methodology, entitled motifPOIM, to extract the truly relevant motifs--regardless of their length and complexity--underlying the predictions of a trained SVM model. Our framework thereby considers the motifs as free parameters in a probabilistic model, a task which can be phrased as a non-convex optimization problem. The exponential dependence of the POIM size on the oligomer length poses a major numerical challenge, which we address by an efficient optimization framework that allows us to find possibly overlapping motifs consisting of up to hundreds of nucleotides. We demonstrate the efficacy of our approach on a synthetic data set as well as a real-world human splice site data set. PMID:26690911

  9. Mammalian Wax Biosynthesis

    PubMed Central

    Cheng, Jeffrey B.; Russell, David W.

    2009-01-01

    Wax monoesters are synthesized by the esterification of fatty alcohols and fatty acids. A mammalian enzyme that catalyzes this reaction has not been isolated. We used expression cloning to identify cDNAs encoding a wax synthase in the mouse preputial gland. The wax synthase gene is located on the X chromosome and encodes a member of the acyltransferase family of enzymes that synthesize neutral lipids. Expression of wax synthase in cultured cells led to the formation of wax monoesters from straight chain saturated, unsaturated, and polyunsaturated fatty alcohols and acids. Polyisoprenols also were incorporated into wax monoesters by the enzyme. The wax synthase had little or no ability to synthesize cholesteryl esters, diacylglycerols, or triacylglycerols, whereas other acyltransferases, including the acyl-CoA:monoacylglycerol acyltransferase 1 and 2 enzymes and the acyl-CoA:diacylglycerol acyltransferase 1 and 2 enzymes, exhibited modest wax monoester synthesis activities. Confocal light microscopy indicated that the wax synthase was localized in membranes of the endoplasmic reticulum. Wax synthase mRNA was abundant in tissues rich in sebaceous glands such as the preputial gland and eyelid and was present at lower levels in other tissues. Coexpression of cDNAs specifying fatty acyl-CoA reductase 1 and wax synthase led to the synthesis of wax monoesters. The data suggest that wax monoester synthesis in mammals involves a two step biosynthetic pathway catalyzed by fatty acyl-CoA reductase and wax synthase enzymes. PMID:15220349

  10. Structure of mammalian metallothionein

    SciTech Connect

    Kaegi, J.H.R.; Vasak, M.; Lerch, K.; Gilg, D.E.O.; Hunziker, P.; Bernhard, W.R.; Good, M.

    1984-03-01

    All mammalian metallothioneins characterized contain a single polypeptide chain of 61 amino acid residues, among them 20 cysteines providing the ligands for seven metal-binding sites. Native metallothioneins are usually heterogeneous in metal composition, with Zn, Cd, and Cu occurring in varying proportions. However, forms containing only a single metal species, i.e., Zn, Cd, Ni, Co, Hg, Pb, Bi, have now been prepared by in vitro reconstitution from the metal-free apoprotein. By spectroscopic analysis of such derivatives it was established that all cysteine residues participate in metal binding, that each metal ion is bound to four thiolate ligands, and that the symmetry of each complex is close to that of a tetrahedron. To satisfy the requirements of the overall Me/sub 7/(Cys/sup -/)/sub 20/ stoichiometry, the complexes must be combined to form metal-thiolate cluster structures. The actual spatial organization of the clusters and the polypeptide chain remains to be established. An attractive possibility is the arrangement of the tetrahedral metal-thiolates in adamantane-like structures surrounded by properly folded segments of the chain providing the ligands. /sup 1/H-NMR data and infrared absorption measurements are consistent with a tightly folded structure rich in ..beta..-type conformation. 79 references, 11 figures, 4 tables.

  11. Mammalian Sirtuins and Energy Metabolism

    PubMed Central

    Li, Xiaoling; Kazgan, Nevzat

    2011-01-01

    Sirtuins are highly conserved NAD+-dependent protein deacetylases and/or ADP-ribosyltransferases that can extend the lifespan of several lower model organisms including yeast, worms and flies. The seven mammalian sirtuins, SIRT1 to SIRT7, have emerged as key metabolic sensors that directly link environmental signals to mammalian metabolic homeostasis and stress response. Recent studies have shed light on the critical roles of sirtuins in mammalian energy metabolism in response to nutrient signals. This review focuses on the involvement of two nuclear sirtuins, SIRT1 and SIRT6, and three mitochondrial sirtuins, SIRT3, SIRT4, and SIRT5, in regulation of diverse metabolic processes. PMID:21614150

  12. Mammalian DNA Repair. Final Report

    SciTech Connect

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  13. Conservation of trans-acting networks during mammalian regulatory evolution

    PubMed Central

    Stergachis, Andrew B.; Neph, Shane; Sandstrom, Richard; Haugen, Eric; Reynolds, Alex P.; Zhang, Miaohua; Byron, Rachel; Canfield, Theresa; Stelhing-Sun, Sandra; Lee, Kristen; Thurman, Robert E.; Vong, Shinny; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Giste, Erika; Dunn, Douglas; Hansen, R. Scott; Johnson, Audra K.; Sabo, Peter J.; Wilken, Matthew S.; Reh, Thomas A.; Treuting, Piper M.; Kaul, Rajinder; Groudine, Mark; Bender, M.A.; Borenstein, Elhanan; Stamatoyannopoulos, John A.

    2014-01-01

    The fundamental body plan and major physiological axes have been highly conserved during mammalian evolution, despite constraint of only a fraction of the human genome sequence. To quantify cis- vs. trans-regulatory contributions to mammalian regulatory evolution, we performed genomic DNase I footprinting of the mouse genome across 25 cell and tissue types, collectively defining >8.6 million TF occupancy sites at nucleotide resolution. Here we show that mouse TF footprints encode a regulatory lexicon of >600 motifs that is >95% similar with that recognized in vivo by human TFs. However, only ~20% of mouse TF footprints have human orthologues. Despite substantial turnover of the cis-regulatory landscape around each TF gene, nearly half of all pairwise regulatory interactions connecting mouse TF genes have been maintained in orthologous human cell types through evolutionary innovation of TF recognition sequences. Strikingly, the higher-level organization of mouse TF-to-TF connections into cellular network architectures is nearly identical with human. Our results suggest that evolutionary selection on mammalian gene regulation is targeted chiefly at the level of trans-regulatory circuitry. PMID:25409825

  14. Mammalian Interphase Cdks

    PubMed Central

    2012-01-01

    Cyclin-dependent kinases (Cdks) drive cell cycle progression in all eukaryotes. Yeasts have a single major Cdk that mediates distinct cell cycle transitions via association with different cyclins. The closest homolog in mammals, Cdk1, drives mitosis. Mammals have additional Cdks—Cdk2, Cdk4, and Cdk6—that represent the major Cdks activated during interphase (iCdks). A large body of evidence has accrued that suggests that activation of iCdks dictates progression though interphase. In apparent contradiction, deficiency in each individual iCdk, respectively, in knockout mice proved to be compatible with live birth and in some instances fertility. Moreover, murine embryos could be derived with Cdk1 as the only functional Cdk. Thus, none of the iCdks is strictly essential for mammalian cell cycle progression, raising the possibility that Cdk1 is the dominant regulator in interphase. However, an absence of iCdks has been accompanied by major shifts in cyclin association to Cdk1, suggesting gain in function. After considerable tweaking, a chemical genetic approach has recently been able to examine the impact of acute inhibition of Cdk2 activity without marked distortion of cyclin/Cdk complex formation. The results suggest that, when expressed at its normal levels, Cdk2 performs essential roles in driving human cells into S phase and maintaining genomic stability. These new findings appear to have restored order to the cell cycle field, bringing it full circle to the view that iCdks indeed play important roles. They also underscore the caveat in knockdown and knockout approaches that protein underexpression can significantly perturb a protein interaction network. We discuss the implications of the new synthesis for future cell cycle studies and anti–Cdk-based therapy of cancer and other diseases. PMID:23634250

  15. Isotope Labeling in Mammalian Cells

    PubMed Central

    Dutta, Arpana; Saxena, Krishna; Klein-Seetharaman, Judith

    2011-01-01

    Isotope labeling of proteins represents an important and often required tool for the application of nuclear magnetic resonance (NMR) spectroscopy to investigate the structure and dynamics of proteins. Mammalian expression systems have conventionally been considered to be too weak and inefficient for protein expression. However, recent advances have significantly improved the expression levels of these systems. Here, we provide an overview of some of the recent developments in expression strategies for mammalian expression systems in view of NMR investigations. PMID:22167668

  16. Hydrodynamic Gene Delivery of CC Chemokine Binding Fc Fusion Proteins to Target Acute Vascular Inflammation In Vivo

    PubMed Central

    McNeill, Eileen; Iqbal, Asif J.; White, Gemma E.; Patel, Jyoti; Greaves, David R.; Channon, Keith M.

    2015-01-01

    Blockade of CC chemokines is an attractive yet under utilized therapeutic strategy. We report the in vivo pharmacokinetics of a broad-spectrum vaccinia virus CC chemokine binding protein (35 K) fused to human IgG1 Fc. We demonstrate that the in vivo efficacy of the protein can be interrogated using hydrodynamic gene delivery of a standard mammalian expression plasmid. High plasma levels of the 35 K-Fc protein are maintained for at least 14 days post gene transfer, with the protein still detectable at 5 weeks. We confirm that the protein has biological activity in acute inflammation, causing a significant reduction in monocyte recruitment during zymosan induced peritonitis. The ability of 35 K-Fc to block more complex pathologies is demonstrated using aortic digests to assess angiotensin II mediated leukocyte recruitment to the aorta. Angiotensin II causes upregulation of mCCL2 in the aorta causing the accumulation of CCR2+ cells. Peak monocyte recruitment to the aorta occurs within 3 days and this process is CC chemokine dependent, being significantly reduced by hydrodynamic delivery of 35 K-Fc. PMID:26620767

  17. MEME Suite: tools for motif discovery and searching

    PubMed Central

    Bailey, Timothy L.; Boden, Mikael; Buske, Fabian A.; Frith, Martin; Grant, Charles E.; Clementi, Luca; Ren, Jingyuan; Li, Wilfred W.; Noble, William S.

    2009-01-01

    The MEME Suite web server provides a unified portal for online discovery and analysis of sequence motifs representing features such as DNA binding sites and protein interaction domains. The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps. Three sequence scanning algorithms—MAST, FIMO and GLAM2SCAN—allow scanning numerous DNA and protein sequence databases for motifs discovered by MEME and GLAM2. Transcription factor motifs (including those discovered using MEME) can be compared with motifs in many popular motif databases using the motif database scanning algorithm Tomtom. Transcription factor motifs can be further analyzed for putative function by association with Gene Ontology (GO) terms using the motif-GO term association tool GOMO. MEME output now contains sequence LOGOS for each discovered motif, as well as buttons to allow motifs to be conveniently submitted to the sequence and motif database scanning algorithms (MAST, FIMO and Tomtom), or to GOMO, for further analysis. GLAM2 output similarly contains buttons for further analysis using GLAM2SCAN and for rerunning GLAM2 with different parameters. All of the motif-based tools are now implemented as web services via Opal. Source code, binaries and a web server are freely available for noncommercial use at http://meme.nbcr.net. PMID:19458158

  18. Conserved function of the lysine-based KXD/E motif in Golgi retention for endomembrane proteins among different organisms.

    PubMed

    Woo, Cheuk Hang; Gao, Caiji; Yu, Ping; Tu, Linna; Meng, Zhaoyue; Banfield, David K; Yao, Xiaoqiang; Jiang, Liwen

    2015-11-15

    We recently identified a new COPI-interacting KXD/E motif in the C-terminal cytosolic tail (CT) of Arabidopsis endomembrane protein 12 (AtEMP12) as being a crucial Golgi retention mechanism for AtEMP12. This KXD/E motif is conserved in CTs of all EMPs found in plants, yeast, and humans and is also present in hundreds of other membrane proteins. Here, by cloning selective EMP isoforms from plants, yeast, and mammals, we study the localizations of EMPs in different expression systems, since there are contradictory reports on the localizations of EMPs. We show that the N-terminal and C-terminal GFP-tagged EMP fusions are localized to Golgi and post-Golgi compartments, respectively, in plant, yeast, and mammalian cells. In vitro pull-down assay further proves the interaction of the KXD/E motif with COPI coatomer in yeast. COPI loss of function in yeast and plants causes mislocalization of EMPs or KXD/E motif-containing proteins to vacuole. Ultrastructural studies further show that RNA interference (RNAi) knockdown of coatomer expression in transgenic Arabidopsis plants causes severe morphological changes in the Golgi. Taken together, our results demonstrate that N-terminal GFP fusions reflect the real localization of EMPs, and KXD/E is a conserved motif in COPI interaction and Golgi retention in eukaryotes. PMID:26378254

  19. Internal friction and gas desorption of {C}/{C} composites

    NASA Astrophysics Data System (ADS)

    Serizawa, H.; Sato, S.; Kohyama, A.

    1994-09-01

    {C}/{C} composites are the most promising candidates as high heat flux component materials, where temperature dependence of mechanical properties and gas desorption behavior at elevated temperature are important properties. At the beginning, the newly developed internal friction measurement apparatus, which enables the accurate measurement of dynamic elastic properties up to 1373 K along with the measurement of gas desorption behavior, was used. The materials studied were unidirectional (UD) {C}/{C} composites reinforced with mesophase pitch-based carbon fibers, which were heat treated at temperatures ranging from 1473 to 2773 K which produced a variety of graphitized microstructures. Two-dimensional (2D) {C}/{C} composites reinfored with flat woven fabrics of PAN type carbon fibers were also studied. These materials were heat treated at 1873 K. From the temperature spectrum of internal friction of 2D {C}/{C} composites, these internal friction peaks were detected and were related to gas desorption. Also the temperature dependence of Young's modulus of UD {C}/{C} composites, negative and positive dependence of Young's modulus were observed reflecting microstructure changes resulting from the heat treatments.

  20. The Motif of Meeting in Digital Education

    ERIC Educational Resources Information Center

    Sheail, Philippa

    2015-01-01

    This article draws on theoretical work which considers the composition of meetings, in order to think about the form of the meeting in digital environments for higher education. To explore the motif of meeting, I undertake a "compositional interpretation" (Rose, 2012) of the default interface offered by "Collaborate", an…

  1. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data

    PubMed Central

    2014-01-01

    Abstract ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data. Reviewers This article was reviewed by Prof. Sandor Pongor, Dr. Yuriy Gusev, and Dr. Shyam Prabhakar (nominated by Prof. Limsoon Wong). PMID:24555784

  2. The Molecular Evolution of the Qo Motif

    PubMed Central

    Kao, Wei-Chun; Hunte, Carola

    2014-01-01

    Quinol oxidation in the catalytic quinol oxidation site (Qo site) of cytochrome (cyt) bc1 complexes is the key step of the Q cycle mechanism, which laid the ground for Mitchell’s chemiosmotic theory of energy conversion. Bifurcated electron transfer upon quinol oxidation enables proton uptake and release on opposite membrane sides, thus generating a proton gradient that fuels ATP synthesis in cellular respiration and photosynthesis. The Qo site architecture formed by cyt b and Rieske iron–sulfur protein (ISP) impedes harmful bypass reactions. Catalytic importance is assigned to four residues of cyt b formerly described as PEWY motif in the context of mitochondrial complexes, which we now denominate Qo motif as comprehensive evolutionary sequence analysis of cyt b shows substantial natural variance of the motif with phylogenetically specific patterns. In particular, the Qo motif is identified as PEWY in mitochondria, α- and ε-Proteobacteria, Aquificae, Chlorobi, Cyanobacteria, and chloroplasts. PDWY is present in Gram-positive bacteria, Deinococcus–Thermus and haloarchaea, and PVWY in β- and γ-Proteobacteria. PPWF only exists in Archaea. Distinct patterns for acidophilic organisms indicate environment-specific adaptations. Importantly, the presence of PDWY and PEWY is correlated with the redox potential of Rieske ISP and quinone species. We propose that during evolution from low to high potential electron-transfer systems in the emerging oxygenic atmosphere, cyt bc1 complexes with PEWY as Qo motif prevailed to efficiently use high potential ubiquinone as substrate, whereas cyt b with PDWY operate best with low potential Rieske ISP and menaquinone, with the latter being the likely composition of the ancestral cyt bc1 complex. PMID:25115012

  3. DNA motif elucidation using belief propagation.

    PubMed

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-09-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k=8∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM. PMID:23814189

  4. Alkali metal mediated C-C bond coupling reaction

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2015-02-01

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2]- was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  5. CombiMotif: A new algorithm for network motifs discovery in protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Luo, Jiawei; Li, Guanghui; Song, Dan; Liang, Cheng

    2014-12-01

    Discovering motifs in protein-protein interaction networks is becoming a current major challenge in computational biology, since the distribution of the number of network motifs can reveal significant systemic differences among species. However, this task can be computationally expensive because of the involvement of graph isomorphic detection. In this paper, we present a new algorithm (CombiMotif) that incorporates combinatorial techniques to count non-induced occurrences of subgraph topologies in the form of trees. The efficiency of our algorithm is demonstrated by comparing the obtained results with the current state-of-the art subgraph counting algorithms. We also show major differences between unicellular and multicellular organisms. The datasets and source code of CombiMotif are freely available upon request.

  6. Thalidomide analogue CC1069 inhibits development of rat adjuvant arthritis

    PubMed Central

    Oliver, S J; Freeman, S L; Corral, L G; Ocampo, C J; Kaplan, G

    1999-01-01

    The cytokine tumour necrosis factor-alpha (TNF-α) has been implicated in the aetiology of rheumatoid arthritis in humans as well as of experimental arthritis in rodents. Thalidomide, and to a greater extent the new thalidomide analogue CC1069, inhibit monocyte TNF-α production both in vitro and in vivo. The aim of the present study is to establish whether these drugs block production of TNF-α as well as IL-2 by rat leucocytes and whether this inhibition affects the development of rat adjuvant arthritis (AA). Cultured splenocytes were stimulated with either lipopolysaccharide (LPS) or concanavalin A (Con A) in the presence of thalidomide, CC1069, or solvent, and the production of TNF-α and IL-2 were compared. Next, adjuvant was injected into the base of the tail of rats without or with daily intraperitoneal injections with 100–200 mg/kg per day thalidomide or 50–200 mg/kg per day CC1069. Disease activity, including ankle swelling, hind limb radiographic and histological changes, weight gain, and ankle joint cytokine mRNA levels, were monitored. CC1069, but not the parent drug thalidomide, inhibited in vitro production of TNF-α and IL-2 by stimulated splenocytes in a dose-dependent manner. In vivo, a dose-dependent suppression of AA disease activity occurred in the CC1069-treated animals. In contrast, thalidomide-treated rats experienced comparable arthritis severity to placebo-treated animals. There was also a reduction in TNF-α and IL-2 mRNA levels in the ankle joints of CC1069-treated rats compared with thalidomide- and placebo-treated arthritic rats. Early initiation of CC1069 treatment suppressed AA inflammation more efficiently than delayed treatment. We conclude that thalidomide, which did not suppress TNF-α or IL-2 production in vitro by Lewis rat cells, did not suppress development of rat AA. However, the development of rat AA can be blocked by the thalidomide analogue CC1069, which is an efficient inhibitor of TNF-α production and IL-2 in vitro

  7. Association of tripartite motif family-like 2 (TRIML2) polymorphisms with late-onset Alzheimer's disease risk in a Korean population.

    PubMed

    Kang, Won Sub; Park, Jin Kyung; Kim, Young Jong; Cho, Ah Rang; Park, Hae Jeong; Kim, Su Kang; Paik, Jong-Woo; Lee, Kang Joon; Na, Hae Ri; Kim, Young Youl; Lim, Hyun Kook; Jeong, Hyun-Ghang; Kim, Jong Woo

    2016-09-01

    Apoptosis is a prominent feature in the progression of Alzheimer's disease (AD), regulated in part by the activity of p53. As tripartite motif family-like 2 (TRIML2), a member of the TRIM family of proteins, has been implicated in the regulation of p53-mediated apoptosis, we hypothesized that TRIML2 polymorphisms may result in an increased AD susceptibility. Here, we investigated the association between coding region single nucleotide polymorphisms (cSNPs) in TRIML2 and AD in a Korean population. Two cSNPs (rs79698746 and rs2279551) were genotyped using the Sequenom iPLEX(®) Gold assay and direct sequencing in 162 AD patients and 191 controls. Multiple logistic regression models were used to determine the odds ratios, 95% confidence intervals, and p-values. Significant associations were observed between AD and the allelic frequencies of two SNPs (rs79698746, p=0.007; rs2279551, p=0.01); genotype frequencies were also significantly different between the two groups [rs79698746: p=0.003 in the codominant 2 model (CC vs. TT), p=0.01 in the dominant model (TC/CC vs. TT), p=0.016 in the recessive model (CC vs. TT/TC), and p=0.0025 in the log-additive model (TC vs. CC vs. TT); rs2279551: p=0.003 in the codominant 2 model (CC vs. TT), p=0.011 in the dominant model (TC/CC vs. TT), p=0.019 in the recessive model (CC vs. TT/TC), and p=0.0028 in the log-additive model (TC vs. CC vs. TT)]. In the haplotype analyses, CC haplotypes containing two cSNPs were significantly associated with AD (p=0.013). Taken together, these findings indicate that the C allele of both SNPs was associated with an increased risk of AD. These results suggest that TRIML2 may contribute to AD susceptibility. PMID:27471163

  8. Motif module map reveals enforcement of aging by continual NF-κB activity

    PubMed Central

    Adler, Adam S.; Sinha, Saurabh; Kawahara, Tiara L.A.; Zhang, Jennifer Y.; Segal, Eran; Chang, Howard Y.

    2007-01-01

    Aging is characterized by specific alterations in gene expression, but their underlying mechanisms and functional consequences are not well understood. Here we develop a systematic approach to identify combinatorial cis-regulatory motifs that drive age-dependent gene expression across different tissues and organisms. Integrated analysis of 365 microarrays spanning nine tissue types predicted fourteen motifs as major regulators of age-dependent gene expression in human and mouse. The motif most strongly associated with aging was that of the transcription factor NF-κB. Inducible genetic blockade of NF-κB for 2 wk in the epidermis of chronologically aged mice reverted the tissue characteristics and global gene expression programs to those of young mice. Age-specific NF-κB blockade and orthogonal cell cycle interventions revealed that NF-κB controls cell cycle exit and gene expression signature of aging in parallel but not sequential pathways. These results identify a conserved network of regulatory pathways underlying mammalian aging and show that NF-κB is continually required to enforce many features of aging in a tissue-specific manner. PMID:18055696

  9. Sirtuins: Guardians of Mammalian Healthspan

    PubMed Central

    Giblin, William; Skinner, Mary E.; Lombard, David B.

    2014-01-01

    The first link between sirtuins and longevity was made 15 years ago in yeast. These initial studies sparked efforts by many laboratories working in diverse model organisms to elucidate the relationships between sirtuins, lifespan, and age-associated dysfunction. Here we discuss the current understanding of how sirtuins relate to aging. We focus primarily on mammalian sirtuins SIRT1, SIRT3, and SIRT6, the three sirtuins for which the most relevant data are available. Strikingly, a large body of evidence now indicates that these and other mammalian sirtuins suppress a variety of age-related pathologies and promote healthspan. Moreover, increased expression of SIRT1 or SIRT6 extends mouse lifespan. Overall, these data point to important roles for sirtuins in promoting mammalian health, and perhaps in modulating the aging process. PMID:24877878

  10. Electroporation into Cultured Mammalian Embryos

    NASA Astrophysics Data System (ADS)

    Nomura, Tadashi; Takahashi, Masanori; Osumi, Noriko

    Over the last century, mammalian embryos have been used extensively as a common animal model to investigate fundamental questions in the field of developmental biology. More recently, the establishment of transgenic and gene-targeting systems in laboratory mice has enabled researchers to unveil the genetic mechanisms under lying complex developmental processes (Mak, 2007). However, our understanding of cell—cell interactions and their molecular basis in the early stages of mammalian embryogenesis is still very fragmentary. One of the major problems is the difficulty of precise manipulation and limited accessibility to mammalian embryos via uterus wall. Unfortunately, existing tissue and organotypic culture systems per se do not fully recapitulate three-dimensional, dynamic processes of organogenesis observed in vivo. Although transgenic animal technology and virus-mediated gene delivery are useful to manipulate gene expression, these techniques take much time and financial costs, which limit their use.

  11. 32. SECTIONS AA, BB, CC, DD, AND EE WASTE CALCINATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. SECTIONS A-A, B-B, C-C, D-D, AND E-E WASTE CALCINATION FACILITY SHOWING RELATIONSHIPS OF DIFFERENT FLOOR LEVELS TO ONE ANOTHER. INEEL DRAWING NUMBER 200-0633-00-287-106353. FLUOR NUMBER 5775-CPP-633-A-3. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  12. A LIGHT-EMITTING DIODE EQUIPPED CC TRAP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trap catches of adult Bemisia tabaci (Gennadius), biotype-B, and their Eretmocerus spp. and Encarsia spp. parasitoids were compared in cage studies in the greenhouse. Average catches of adult B. tabaci in CC traps were 41% of the numbers caught on 100 cm^2 yellow sticky card (YC) traps. Coating th...

  13. The Gas Leakage Analysis in C/C Composites

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yuichi; Hatta, Hiroshi; Bando, Takamasa; Sugibayashi, Toshio

    Gas leakage through carbon fiber reinforcement carbon composites, C/Cs, was discussed so as to apply C/Cs to heat exchangers in an engine system for a future space-plane. Since C/Cs include many cracks and pores, gas easily leaks through C/Cs. To predict and to prevent the gas flow through a C/C, leakage rate was measured as a function of pressure and gas flow path was identified by micro-observation of the C/C. Then, several analytical models were examined to clarify principal mechanism yielding gas flow resistance. It was found that laminar flow models gave far small flow resistance compared with experimental results, but a model based on adiabatic expansion and compression flow, used for gas leak through labyrinth seals, resulted in reasonable agreement. Finally, Si impregnation in a C/C was examined to minimize the gas leakage. This treatment was shown to be an excellent measure to reduce the gas leakage through C/C.

  14. Crossing Levels and Representations: The Connected Chemistry (CC1) Curriculum

    ERIC Educational Resources Information Center

    Levy, Sharona T.; Wilensky, Uri

    2009-01-01

    Connected Chemistry (named CC1 to denote Connected Chemistry Chapter 1) is a computer-based environment for learning the topics of gas laws and kinetic molecular theory in chemistry. It views chemistry from an "emergent" perspective, how macroscopic phenomena result from the interaction of many submicroscopic particles. Connected Chemistry employs…

  15. BB: Half Section; Top of Engine; Valve Gear Detail; CC: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    B-B: Half Section; Top of Engine; Valve Gear Detail; C-C: Top of Condenser; D-D: Condenser Interior; Air Pump Piston; Air Pump Lever; Water Pump - Steamboat COLUMBUS, Submerged south-southeast of Point Lookout, Scotland, St. Mary's County, MD

  16. Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain

    PubMed Central

    Mo, Alisa; Mukamel, Eran A.; Davis, Fred P.; Luo, Chongyuan; Henry, Gilbert L.; Picard, Serge; Urich, Mark A.; Nery, Joseph R.; Sejnowski, Terrence J.; Lister, Ryan; Eddy, Sean R.; Ecker, Joseph R.; Nathans, Jeremy

    2015-01-01

    SUMMARY Neuronal diversity is essential for mammalian brain function but poses a challenge to molecular profiling. To address the need for tools that facilitate cell-type-specific epigenomic studies, we developed the first affinity purification approach to isolate nuclei from genetically defined cell types in a mammal. We combine this technique with next-generation sequencing to show that three subtypes of neocortical neurons have highly distinctive epigenomic landscapes. Over 200,000 regions differ in chromatin accessibility and DNA methylation signatures characteristic of gene regulatory regions. By footprinting and motif analyses, these regions are predicted to bind distinct cohorts of neuron subtype-specific transcription factors. Neuronal epigenomes reflect both past and present gene expression, with DNA hyper-methylation at developmentally critical genes appearing as a novel epigenomic signature in mature neurons. Taken together, our findings link the functional and transcriptional complexity of neurons to their underlying epigenomic diversity. PMID:26087164

  17. Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain.

    PubMed

    Mo, Alisa; Mukamel, Eran A; Davis, Fred P; Luo, Chongyuan; Henry, Gilbert L; Picard, Serge; Urich, Mark A; Nery, Joseph R; Sejnowski, Terrence J; Lister, Ryan; Eddy, Sean R; Ecker, Joseph R; Nathans, Jeremy

    2015-06-17

    Neuronal diversity is essential for mammalian brain function but poses a challenge to molecular profiling. To address the need for tools that facilitate cell-type-specific epigenomic studies, we developed the first affinity purification approach to isolate nuclei from genetically defined cell types in a mammal. We combine this technique with next-generation sequencing to show that three subtypes of neocortical neurons have highly distinctive epigenomic landscapes. Over 200,000 regions differ in chromatin accessibility and DNA methylation signatures characteristic of gene regulatory regions. By footprinting and motif analyses, these regions are predicted to bind distinct cohorts of neuron subtype-specific transcription factors. Neuronal epigenomes reflect both past and present gene expression, with DNA hyper-methylation at developmentally critical genes appearing as a novel epigenomic signature in mature neurons. Taken together, our findings link the functional and transcriptional complexity of neurons to their underlying epigenomic diversity. PMID:26087164

  18. Functional Motifs in Biochemical Reaction Networks

    PubMed Central

    Tyson, John J.; Novák, Béla

    2013-01-01

    The signal-response characteristics of a living cell are determined by complex networks of interacting genes, proteins, and metabolites. Understanding how cells respond to specific challenges, how these responses are contravened in diseased cells, and how to intervene pharmacologically in the decision-making processes of cells requires an accurate theory of the information-processing capabilities of macromolecular regulatory networks. Adopting an engineer’s approach to control systems, we ask whether realistic cellular control networks can be decomposed into simple regulatory motifs that carry out specific functions in a cell. We show that such functional motifs exist and review the experimental evidence that they control cellular responses as expected. PMID:20055671

  19. A Basic Set of Homeostatic Controller Motifs

    PubMed Central

    Drengstig, T.; Jolma, I.W.; Ni, X.Y.; Thorsen, K.; Xu, X.M.; Ruoff, P.

    2012-01-01

    Adaptation and homeostasis are essential properties of all living systems. However, our knowledge about the reaction kinetic mechanisms leading to robust homeostatic behavior in the presence of environmental perturbations is still poor. Here, we describe, and provide physiological examples of, a set of two-component controller motifs that show robust homeostasis. This basic set of controller motifs, which can be considered as complete, divides into two operational work modes, termed as inflow and outflow control. We show how controller combinations within a cell can integrate uptake and metabolization of a homeostatic controlled species and how pathways can be activated and lead to the formation of alternative products, as observed, for example, in the change of fermentation products by microorganisms when the supply of the carbon source is altered. The antagonistic character of hormonal control systems can be understood by a combination of inflow and outflow controllers. PMID:23199928

  20. Anticipated synchronization in neuronal network motifs

    NASA Astrophysics Data System (ADS)

    Matias, F. S.; Gollo, L. L.; Carelli, P. V.; Copelli, M.; Mirasso, C. R.

    2013-01-01

    Two identical dynamical systems coupled unidirectionally (in a so called master-slave configuration) exhibit anticipated synchronization (AS) if the one which receives the coupling (the slave) also receives a negative delayed self-feedback. In oscillatory neuronal systems AS is characterized by a phase-locking with negative time delay τ between the spikes of the master and of the slave (slave fires before the master), while in the usual delayed synchronization (DS) regime τ is positive (slave fires after the master). A 3-neuron motif in which the slave self-feedback is replaced by a feedback loop mediated by an interneuron can exhibits both AS and DS regimes. Here we show that AS is robust in the presence of noise in a 3 Hodgkin-Huxley type neuronal motif. We also show that AS is stable for large values of τ in a chain of connected slaves-interneurons.

  1. Motifs, modules and games in bacteria

    SciTech Connect

    Wolf, Denise M.; Arkin, Adam P.

    2003-04-01

    Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment. Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.

  2. AptaTRACE Elucidates RNA Sequence-Structure Motifs from Selection Trends in HT-SELEX Experiments.

    PubMed

    Dao, Phuong; Hoinka, Jan; Takahashi, Mayumi; Zhou, Jiehua; Ho, Michelle; Wang, Yijie; Costa, Fabrizio; Rossi, John J; Backofen, Rolf; Burnett, John; Przytycka, Teresa M

    2016-07-01

    Aptamers, short RNA or DNA molecules that bind distinct targets with high affinity and specificity, can be identified using high-throughput systematic evolution of ligands by exponential enrichment (HT-SELEX), but scalable analytic tools for understanding sequence-function relationships from diverse HT-SELEX data are not available. Here we present AptaTRACE, a computational approach that leverages the experimental design of the HT-SELEX protocol, RNA secondary structure, and the potential presence of many secondary motifs to identify sequence-structure motifs that show a signature of selection. We apply AptaTRACE to identify nine motifs in C-C chemokine receptor type 7 targeted by aptamers in an in vitro cell-SELEX experiment. We experimentally validate two aptamers whose binding required both sequence and structural features. AptaTRACE can identify low-abundance motifs, and we show through simulations that, because of this, it could lower HT-SELEX cost and time by reducing the number of selection cycles required. PMID:27467247

  3. Analyzing network reliability using structural motifs

    NASA Astrophysics Data System (ADS)

    Khorramzadeh, Yasamin; Youssef, Mina; Eubank, Stephen; Mowlaei, Shahir

    2015-04-01

    This paper uses the reliability polynomial, introduced by Moore and Shannon in 1956, to analyze the effect of network structure on diffusive dynamics such as the spread of infectious disease. We exhibit a representation for the reliability polynomial in terms of what we call structural motifs that is well suited for reasoning about the effect of a network's structural properties on diffusion across the network. We illustrate by deriving several general results relating graph structure to dynamical phenomena.

  4. Bioinformatics Approaches for Predicting Disordered Protein Motifs.

    PubMed

    Bhowmick, Pallab; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Short, linear motifs (SLiMs) in proteins are functional microdomains consisting of contiguous residue segments along the protein sequence, typically not more than 10 consecutive amino acids in length with less than 5 defined positions. Many positions are 'degenerate' thus offering flexibility in terms of the amino acid types allowed at those positions. Their short length and degenerate nature confers evolutionary plasticity meaning that SLiMs often evolve convergently. Further, SLiMs have a propensity to occur within intrinsically unstructured protein segments and this confers versatile functionality to unstructured regions of the proteome. SLiMs mediate multiple types of protein interactions based on domain-peptide recognition and guide functions including posttranslational modifications, subcellular localization of proteins, and ligand binding. SLiMs thus behave as modular interaction units that confer versatility to protein function and SLiM-mediated interactions are increasingly being recognized as therapeutic targets. In this chapter we start with a brief description about the properties of SLiMs and their interactions and then move on to discuss algorithms and tools including several web-based methods that enable the discovery of novel SLiMs (de novo motif discovery) as well as the prediction of novel occurrences of known SLiMs. Both individual amino acid sequences as well as sets of protein sequences can be scanned using these methods to obtain statistically overrepresented sequence patterns. Lists of putatively functional SLiMs are then assembled based on parameters such as evolutionary sequence conservation, disorder scores, structural data, gene ontology terms and other contextual information that helps to assess the functional credibility or significance of these motifs. These bioinformatics methods should certainly guide experiments aimed at motif discovery. PMID:26387106

  5. [Conserved motifs in voltage sensing proteins].

    PubMed

    Wang, Chang-He; Xie, Zhen-Li; Lv, Jian-Wei; Yu, Zhi-Dan; Shao, Shu-Li

    2012-08-25

    This paper was aimed to study conserved motifs of voltage sensing proteins (VSPs) and establish a voltage sensing model. All VSPs were collected from the Uniprot database using a comprehensive keyword search followed by manual curation, and the results indicated that there are only two types of known VSPs, voltage gated ion channels and voltage dependent phosphatases. All the VSPs have a common domain of four helical transmembrane segments (TMS, S1-S4), which constitute the voltage sensing module of the VSPs. The S1 segment was shown to be responsible for membrane targeting and insertion of these proteins, while S2-S4 segments, which can sense membrane potential, for protein properties. Conserved motifs/residues and their functional significance of each TMS were identified using profile-to-profile sequence alignments. Conserved motifs in these four segments are strikingly similar for all VSPs, especially, the conserved motif [RK]-X(2)-R-X(2)-R-X(2)-[RK] was presented in all the S4 segments, with positively charged arginine (R) alternating with two hydrophobic or uncharged residues. Movement of these arginines across the membrane electric field is the core mechanism by which the VSPs detect changes in membrane potential. The negatively charged aspartate (D) in the S3 segment is universally conserved in all the VSPs, suggesting that the aspartate residue may be involved in voltage sensing properties of VSPs as well as the electrostatic interactions with the positively charged residues in the S4 segment, which may enhance the thermodynamic stability of the S4 segments in plasma membrane. PMID:22907298

  6. Cohort Profile: Antiretroviral Therapy Cohort Collaboration (ART-CC)

    PubMed Central

    May, Margaret T; Ingle, Suzanne M; Costagliola, Dominique; Justice, Amy C; de Wolf, Frank; Cavassini, Matthias; D’Arminio Monforte, Antonella; Casabona, Jordi; Hogg, Robert S; Mocroft, Amanda; Lampe, Fiona C; Dabis, François; Fätkenheuer, Gerd; Sterling, Timothy R; del Amo, Julia; Gill, M John; Crane, Heidi M; Saag, Michael S; Guest, Jodie; Brodt, Hans-Reinhard; Sterne, Jonathan AC

    2014-01-01

    The advent of effective combination antiretroviral therapy (ART) in 1996 resulted in fewer patients experiencing clinical events, so that some prognostic analyses of individual cohort studies of human immunodeficiency virus-infected individuals had low statistical power. Because of this, the Antiretroviral Therapy Cohort Collaboration (ART-CC) of HIV cohort studies in Europe and North America was established in 2000, with the aim of studying the prognosis for clinical events in acquired immune deficiency syndrome (AIDS) and the mortality of adult patients treated for HIV-1 infection. In 2002, the ART-CC collected data on more than 12,000 patients in 13 cohorts who had begun combination ART between 1995 and 2001. Subsequent updates took place in 2004, 2006, 2008, and 2010. The ART-CC data base now includes data on more than 70 000 patients participating in 19 cohorts who began treatment before the end of 2009. Data are collected on patient demographics (e.g. sex, age, assumed transmission group, race/ethnicity, geographical origin), HIV biomarkers (e.g. CD4 cell count, plasma viral load of HIV-1), ART regimen, dates and types of AIDS events, and dates and causes of death. In recent years, additional data on co-infections such as hepatitis C; risk factors such as smoking, alcohol and drug use; non-HIV biomarkers such as haemoglobin and liver enzymes; and adherence to ART have been collected whenever available. The data remain the property of the contributing cohorts, whose representatives manage the ART-CC via the steering committee of the Collaboration. External collaboration is welcomed. Details of contacts are given on the ART-CC website (www.art-cohort-collaboration.org). PMID:23599235

  7. Efficient gene targeting in ΔCc.ku70 or ΔCc.lig4 mutants of the agaricomycete Coprinopsis cinerea.

    PubMed

    Nakazawa, Takehito; Ando, Yuki; Kitaaki, Kohei; Nakahori, Kiyoshi; Kamada, Takashi

    2011-10-01

    Coprinopsis cinerea is a model for studies of sexual development in agaricomycetes (homobasidiomycetes). Efficient gene targeting should facilitate such studies, especially because increasing genome and transcriptome information is now available in C. cinerea. To estimate the frequency of gene disruption by homologous integration in this fungus, we tried to disrupt Cc.wc-2, which encodes a WC-2 homolog, a partner of the fungal blue-light photoreceptor, WC-1. Disruption of Cc.wc-2 did not occur when recipients (protoplasts) of the disrupting construct were prepared from asexual spores, oidia, from the wild type, 326, while it occurred when protoplasts were prepared from mycelial cells from the same strain, albeit at a low frequency (3%). Double-stranded RNA-mediated silencing of a ku70 homolog, named Cc.ku70, or the lig4 homolog Cc.lig4 more or less increased the frequency of Cc.wc-2 targeting. On the basis of these results, we disrupted Cc.ku70 using a Cc.lig4-silenced strain. We then disrupted Cc.lig4 using the Cc.ku70 disruptant. We found that the disruption of Cc.ku70 or Cc.lig4 greatly enhanced gene targeting. In addition, this study demonstrates that Cc.wc-2 is involved in blue light perception in this fungus. PMID:21704178

  8. Dynamic motifs in socio-economic networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Shao, Shuai; Stanley, H. Eugene; Havlin, Shlomo

    2014-12-01

    Socio-economic networks are of central importance in economic life. We develop a method of identifying and studying motifs in socio-economic networks by focusing on “dynamic motifs,” i.e., evolutionary connection patterns that, because of “node acquaintances” in the network, occur much more frequently than random patterns. We examine two evolving bi-partite networks: i) the world-wide commercial ship chartering market and ii) the ship build-to-order market. We find similar dynamic motifs in both bipartite networks, even though they describe different economic activities. We also find that “influence” and “persistence” are strong factors in the interaction behavior of organizations. When two companies are doing business with the same customer, it is highly probable that another customer who currently only has business relationship with one of these two companies, will become customer of the second in the future. This is the effect of influence. Persistence means that companies with close business ties to customers tend to maintain their relationships over a long period of time.

  9. DNA repair in mammalian embryos.

    PubMed

    Jaroudi, Souraya; SenGupta, Sioban

    2007-01-01

    Mammalian cells have developed complex mechanisms to identify DNA damage and activate the required response to maintain genome integrity. Those mechanisms include DNA damage detection, DNA repair, cell cycle arrest and apoptosis which operate together to protect the conceptus from DNA damage originating either in parental gametes or in the embryo's somatic cells. DNA repair in the newly fertilized preimplantation embryo is believed to rely entirely on the oocyte's machinery (mRNAs and proteins deposited and stored prior to ovulation). DNA repair genes have been shown to be expressed in the early stages of mammalian development. The survival of the embryo necessitates that the oocyte be sufficiently equipped with maternal stored products and that embryonic gene expression commences at the correct time. A Medline based literature search was performed using the keywords 'DNA repair' and 'embryo development' or 'gametogenesis' (publication dates between 1995 and 2006). Mammalian studies which investigated gene expression were selected. Further articles were acquired from the citations in the articles obtained from the preliminary Medline search. This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages. PMID:17141556

  10. Occurrence probability of structured motifs in random sequences.

    PubMed

    Robin, S; Daudin, J-J; Richard, H; Sagot, M-F; Schbath, S

    2002-01-01

    The problem of extracting from a set of nucleic acid sequences motifs which may have biological function is more and more important. In this paper, we are interested in particular motifs that may be implicated in the transcription process. These motifs, called structured motifs, are composed of two ordered parts separated by a variable distance and allowing for substitutions. In order to assess their statistical significance, we propose approximations of the probability of occurrences of such a structured motif in a given sequence. An application of our method to evaluate candidate promoters in E. coli and B. subtilis is presented. Simulations show the goodness of the approximations. PMID:12614545

  11. ET-Motif: Solving the Exact (l, d)-Planted Motif Problem Using Error Tree Structure.

    PubMed

    Al-Okaily, Anas; Huang, Chun-Hsi

    2016-07-01

    Motif finding is an important and a challenging problem in many biological applications such as discovering promoters, enhancers, locus control regions, transcription factors, and more. The (l, d)-planted motif search, PMS, is one of several variations of the problem. In this problem, there are n given sequences over alphabets of size [Formula: see text], each of length m, and two given integers l and d. The problem is to find a motif m of length l, where in each sequence there is at least an l-mer at a Hamming distance of [Formula: see text] of m. In this article, we propose ET-Motif, an algorithm that can solve the PMS problem in [Formula: see text] time and [Formula: see text] space. The time bound can be further reduced by a factor of m with [Formula: see text] space. In case the suffix tree that is built for the input sequences is balanced, the problem can be solved in [Formula: see text] time and [Formula: see text] space. Similarly, the time bound can be reduced by a factor of m using [Formula: see text] space. Moreover, the variations of the problem, namely the edit distance PMS and edited PMS (Quorum), can be solved using ET-Motif with simple modifications but upper bands of space and time. For edit distance PMS, the time and space bounds will be increased by [Formula: see text], while for edited PMS the increase will be of [Formula: see text] in the time bound. PMID:27152692

  12. Experimental validation of predicted mammalian erythroid cis-regulatory modules

    PubMed Central

    Wang, Hao; Zhang, Ying; Cheng, Yong; Zhou, Yuepin; King, David C.; Taylor, James; Chiaromonte, Francesca; Kasturi, Jyotsna; Petrykowska, Hanna; Gibb, Brian; Dorman, Christine; Miller, Webb; Dore, Louis C.; Welch, John; Weiss, Mitchell J.; Hardison, Ross C.

    2006-01-01

    Multiple alignments of genome sequences are helpful guides to functional analysis, but predicting cis-regulatory modules (CRMs) accurately from such alignments remains an elusive goal. We predict CRMs for mammalian genes expressed in red blood cells by combining two properties gleaned from aligned, noncoding genome sequences: a positive regulatory potential (RP) score, which detects similarity to patterns in alignments distinctive for regulatory regions, and conservation of a binding site motif for the essential erythroid transcription factor GATA-1. Within eight target loci, we tested 75 noncoding segments by reporter gene assays in transiently transfected human K562 cells and/or after site-directed integration into murine erythroleukemia cells. Segments with a high RP score and a conserved exact match to the binding site consensus are validated at a good rate (50%–100%, with rates increasing at higher RP), whereas segments with lower RP scores or nonconsensus binding motifs tend to be inactive. Active DNA segments were shown to be occupied by GATA-1 protein by chromatin immunoprecipitation, whereas sites predicted to be inactive were not occupied. We verify four previously known erythroid CRMs and identify 28 novel ones. Thus, high RP in combination with another feature of a CRM, such as a conserved transcription factor binding site, is a good predictor of functional CRMs. Genome-wide predictions based on RP and a large set of well-defined transcription factor binding sites are available through servers at http://www.bx.psu.edu/. PMID:17038566

  13. Overexpression of the CC-type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants

    PubMed Central

    El-Kereamy, Ashraf; Bi, Yong-Mei; Mahmood, Kashif; Ranathunge, Kosala; Yaish, Mahmoud W.; Nambara, Eiji; Rothstein, Steven J.

    2015-01-01

    Glutaredoxins (GRXs) are small glutathione dependent oxidoreductases that belong to the Thioredoxin (TRX) superfamily and catalyze the reduction of disulfide bonds of their substrate proteins. Plant GRXs include three different groups based on the motif sequence, namely CPYC, CGFS, and CC-type proteins. The rice CC-type proteins, OsGRX6 was identified during the screening for genes whose expression changes depending on the level of available nitrate. Overexpression of OsGRX6 in rice displayed a semi-dwarf phenotype. The OsGRX6 overexpressors contain a higher nitrogen content than the wild type, indicating that OsGRX6 plays a role in homeostatic regulation of nitrogen use. Consistent with this, OsGRX6 overexpressors displayed delayed chlorophyll degradation and senescence compared to the wild type plants. To examine if the growth defect of these transgenic lines attribute to disturbed plant hormone actions, plant hormone levels were measured. The levels of two cytokinins (CKs), 2-isopentenyladenine and trans-zeatin, and gibberellin A1 (GA1) were increased in these lines. We also found that these transgenic lines were less sensitive to exogenously applied GA, suggesting that the increase in GA1 is a result of the feedback regulation. These data suggest that OsGRX6 affects hormone signaling and nitrogen status in rice plants. PMID:26579177

  14. Elongated Polyproline Motifs Facilitate Enamel Evolution through Matrix Subunit Compaction

    PubMed Central

    Luan, Xianghong; Dangaria, Smit; Walker, Cameron; Allen, Michael; Kulkarni, Ashok; Gibson, Carolyn; Braatz, Richard; Liao, Xiubei; Diekwisch, Thomas G. H.

    2009-01-01

    Vertebrate body designs rely on hydroxyapatite as the principal mineral component of relatively light-weight, articulated endoskeletons and sophisticated tooth-bearing jaws, facilitating rapid movement and efficient predation. Biological mineralization and skeletal growth are frequently accomplished through proteins containing polyproline repeat elements. Through their well-defined yet mobile and flexible structure polyproline-rich proteins control mineral shape and contribute many other biological functions including Alzheimer's amyloid aggregation and prolamine plant storage. In the present study we have hypothesized that polyproline repeat proteins exert their control over biological events such as mineral growth, plaque aggregation, or viscous adhesion by altering the length of their central repeat domain, resulting in dramatic changes in supramolecular assembly dimensions. In order to test our hypothesis, we have used the vertebrate mineralization protein amelogenin as an exemplar and determined the biological effect of the four-fold increased polyproline tandem repeat length in the amphibian/mammalian transition. To study the effect of polyproline repeat length on matrix assembly, protein structure, and apatite crystal growth, we have measured supramolecular assembly dimensions in various vertebrates using atomic force microscopy, tested the effect of protein assemblies on crystal growth by electron microscopy, generated a transgenic mouse model to examine the effect of an abbreviated polyproline sequence on crystal growth, and determined the structure of polyproline repeat elements using 3D NMR. Our study shows that an increase in PXX/PXQ tandem repeat motif length results (i) in a compaction of protein matrix subunit dimensions, (ii) reduced conformational variability, (iii) an increase in polyproline II helices, and (iv) promotion of apatite crystal length. Together, these findings establish a direct relationship between polyproline tandem repeat fragment

  15. CLIMP: Clustering Motifs via Maximal Cliques with Parallel Computing Design

    PubMed Central

    Chen, Yong

    2016-01-01

    A set of conserved binding sites recognized by a transcription factor is called a motif, which can be found by many applications of comparative genomics for identifying over-represented segments. Moreover, when numerous putative motifs are predicted from a collection of genome-wide data, their similarity data can be represented as a large graph, where these motifs are connected to one another. However, an efficient clustering algorithm is desired for clustering the motifs that belong to the same groups and separating the motifs that belong to different groups, or even deleting an amount of spurious ones. In this work, a new motif clustering algorithm, CLIMP, is proposed by using maximal cliques and sped up by parallelizing its program. When a synthetic motif dataset from the database JASPAR, a set of putative motifs from a phylogenetic foot-printing dataset, and a set of putative motifs from a ChIP dataset are used to compare the performances of CLIMP and two other high-performance algorithms, the results demonstrate that CLIMP mostly outperforms the two algorithms on the three datasets for motif clustering, so that it can be a useful complement of the clustering procedures in some genome-wide motif prediction pipelines. CLIMP is available at http://sqzhang.cn/climp.html. PMID:27487245

  16. CLIMP: Clustering Motifs via Maximal Cliques with Parallel Computing Design.

    PubMed

    Zhang, Shaoqiang; Chen, Yong

    2016-01-01

    A set of conserved binding sites recognized by a transcription factor is called a motif, which can be found by many applications of comparative genomics for identifying over-represented segments. Moreover, when numerous putative motifs are predicted from a collection of genome-wide data, their similarity data can be represented as a large graph, where these motifs are connected to one another. However, an efficient clustering algorithm is desired for clustering the motifs that belong to the same groups and separating the motifs that belong to different groups, or even deleting an amount of spurious ones. In this work, a new motif clustering algorithm, CLIMP, is proposed by using maximal cliques and sped up by parallelizing its program. When a synthetic motif dataset from the database JASPAR, a set of putative motifs from a phylogenetic foot-printing dataset, and a set of putative motifs from a ChIP dataset are used to compare the performances of CLIMP and two other high-performance algorithms, the results demonstrate that CLIMP mostly outperforms the two algorithms on the three datasets for motif clustering, so that it can be a useful complement of the clustering procedures in some genome-wide motif prediction pipelines. CLIMP is available at http://sqzhang.cn/climp.html. PMID:27487245

  17. No tradeoff between versatility and robustness in gene circuit motifs

    NASA Astrophysics Data System (ADS)

    Payne, Joshua L.

    2016-05-01

    Circuit motifs are small directed subgraphs that appear in real-world networks significantly more often than in randomized networks. In the Boolean model of gene circuits, most motifs are realized by multiple circuit genotypes. Each of a motif's constituent circuit genotypes may have one or more functions, which are embodied in the expression patterns the circuit forms in response to specific initial conditions. Recent enumeration of a space of nearly 17 million three-gene circuit genotypes revealed that all circuit motifs have more than one function, with the number of functions per motif ranging from 12 to nearly 30,000. This indicates that some motifs are more functionally versatile than others. However, the individual circuit genotypes that constitute each motif are less robust to mutation if they have many functions, hinting that functionally versatile motifs may be less robust to mutation than motifs with few functions. Here, I explore the relationship between versatility and robustness in circuit motifs, demonstrating that functionally versatile motifs are robust to mutation despite the inherent tradeoff between versatility and robustness at the level of an individual circuit genotype.

  18. Multiple activities of the plant pathogen type III effector proteins WtsE and AvrE require WxxxE motifs.

    PubMed

    Ham, Jong Hyun; Majerczak, Doris R; Nomura, Kinya; Mecey, Christy; Uribe, Francisco; He, Sheng-Yang; Mackey, David; Coplin, David L

    2009-06-01

    The broadly conserved AvrE-family of type III effectors from gram-negative plant-pathogenic bacteria includes important virulence factors, yet little is known about the mechanisms by which these effectors function inside plant cells to promote disease. We have identified two conserved motifs in AvrE-family effectors: a WxxxE motif and a putative C-terminal endoplasmic reticulum membrane retention/retrieval signal (ERMRS). The WxxxE and ERMRS motifs are both required for the virulence activities of WtsE and AvrE, which are major virulence factors of the corn pathogen Pantoea stewartii subsp. stewartii and the tomato or Arabidopsis pathogen Pseudomonas syringae pv. tomato, respectively. The WxxxE and the predicted ERMRS motifs are also required for other biological activities of WtsE, including elicitation of the hypersensitive response in nonhost plants and suppression of defense responses in Arabidopsis. A family of type III effectors from mammalian bacterial pathogens requires WxxxE and subcellular targeting motifs for virulence functions that involve their ability to mimic activated G-proteins. The conservation of related motifs and their necessity for the function of type III effectors from plant pathogens indicates that disturbing host pathways by mimicking activated host G-proteins may be a virulence mechanism employed by plant pathogens as well. PMID:19445595

  19. Molecular cloning and characterization of the human RNase kappa, an ortholog of Cc RNase.

    PubMed

    Economopoulou, Marie-Angela I; Fragoulis, Emmanouel G; Sideris, Diamantis C

    2007-01-01

    A novel protein family, designated hereafter as RNase kappa (kappa) family, has been recently introduced with the characterization of the specific Cc RNase, isolated from the insect Ceratitis capitata. The human ortholog of this family consists of 98 amino acids and shares > 98% identity with its mammalian counterparts. This RNase is encoded by a single-copy gene found to be expressed in a wide spectrum of normal and cancer tissues. The cDNA of the human ribonuclease has been isolated and subcloned into a variety of prokaryotic expression vectors, but most efforts to express it caused a severe toxic effect. On the other hand, the expression of the human RNase by the use of the methylotrophic yeast Pichia pastoris system resulted in the production of a highly active recombinant enzyme. Using a 30-mer 5'-end-labeled RNA probe as substrate, the purified enzyme seems to preferentially cleave ApU and ApG phosphodiester bonds, while it hydrolyzes UpU bonds at a lower rate. Based on amino acid sequence alignment and substrate specificity data, as well as the complete resistance of the recombinant protein to the placental ribonuclease inhibitor, we concluded that the human RNase kappa is a novel endoribonuclease distinct from other known ribonucleases. PMID:17881363

  20. Molecular cloning and characterization of the human RNase κ, an ortholog of Cc RNase

    PubMed Central

    Economopoulou, Marie-angela I.; Fragoulis, Emmanouel G.; Sideris, Diamantis C.

    2007-01-01

    A novel protein family, designated hereafter as RNase κ (kappa) family, has been recently introduced with the characterization of the specific Cc RNase, isolated from the insect Ceratitis capitata. The human ortholog of this family consists of 98 amino acids and shares > 98% identity with its mammalian counterparts. This RNase is encoded by a single-copy gene found to be expressed in a wide spectrum of normal and cancer tissues. The cDNA of the human ribonuclease has been isolated and subcloned into a variety of prokaryotic expression vectors, but most efforts to express it caused a severe toxic effect. On the other hand, the expression of the human RNase by the use of the methylotrophic yeast Pichia pastoris system resulted in the production of a highly active recombinant enzyme. Using a 30-mer 5′-end-labeled RNA probe as substrate, the purified enzyme seems to preferentially cleave ApU and ApG phosphodiester bonds, while it hydrolyzes UpU bonds at a lower rate. Based on amino acid sequence alignment and substrate specificity data, as well as the complete resistance of the recombinant protein to the placental ribonuclease inhibitor, we concluded that the human RNase κ is a novel endoribonuclease distinct from other known ribonucleases. PMID:17881363

  1. Receptor-mediated mitophagy in yeast and mammalian systems.

    PubMed

    Liu, Lei; Sakakibara, Kaori; Chen, Quan; Okamoto, Koji

    2014-07-01

    Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDC1 in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atg11 on the surface of mitochondria, promoting core Atg protein assembly for mitophagy. NIX/BNIP3L, BNIP3 and FUNDC1 also have a classic motif to directly bind LC3 (Atg8 homolog in mammals) for activation of mitophagy. Recent studies have shown that receptor-mediated mitophagy is regulated by reversible protein phosphorylation. Casein kinase 2 (CK2) phosphorylates Atg32 and activates mitophagy in yeast. In contrast, in mammalian cells Src kinase and CK2 phosphorylate FUNDC1 to prevent mitophagy. Notably, in response to hypoxia and FCCP treatment, the mitochondrial phosphatase PGAM5 dephosphorylates FUNDC1 to activate mitophagy. Here, we mainly focus on recent advances in our understanding of the molecular mechanisms underlying the activation of receptor-mediated mitophagy and the implications of this catabolic process in health and disease. PMID:24903109

  2. The RNA 3D Motif Atlas: Computational methods for extraction, organization and evaluation of RNA motifs.

    PubMed

    Parlea, Lorena G; Sweeney, Blake A; Hosseini-Asanjan, Maryam; Zirbel, Craig L; Leontis, Neocles B

    2016-07-01

    RNA 3D motifs occupy places in structured RNA molecules that correspond to the hairpin, internal and multi-helix junction "loops" of their secondary structure representations. As many as 40% of the nucleotides of an RNA molecule can belong to these structural elements, which are distinct from the regular double helical regions formed by contiguous AU, GC, and GU Watson-Crick basepairs. With the large number of atomic- or near atomic-resolution 3D structures appearing in a steady stream in the PDB/NDB structure databases, the automated identification, extraction, comparison, clustering and visualization of these structural elements presents an opportunity to enhance RNA science. Three broad applications are: (1) identification of modular, autonomous structural units for RNA nanotechnology, nanobiology and synthetic biology applications; (2) bioinformatic analysis to improve RNA 3D structure prediction from sequence; and (3) creation of searchable databases for exploring the binding specificities, structural flexibility, and dynamics of these RNA elements. In this contribution, we review methods developed for computational extraction of hairpin and internal loop motifs from a non-redundant set of high-quality RNA 3D structures. We provide a statistical summary of the extracted hairpin and internal loop motifs in the most recent version of the RNA 3D Motif Atlas. We also explore the reliability and accuracy of the extraction process by examining its performance in clustering recurrent motifs from homologous ribosomal RNA (rRNA) structures. We conclude with a summary of remaining challenges, especially with regard to extraction of multi-helix junction motifs. PMID:27125735

  3. New CC units seamlessly tied into existing cogen plant

    SciTech Connect

    Wheeler, R.A.; Cromer, D.A.; Atkins, T.W.; Coburn, R.G.

    1995-05-01

    This article examines how, at Selkirk, two combined-cycle units were added and fully integrated to an existing one. Generating capacity quadrupled, steam output doubled--all without disrupting existing power and steam sales obligations. The Selkirk Phase 2 cogeneration project is a 266-MW natural-gas/distillate-oil-fired combined-cycle (CC) station in Bethlehem, NY, on General Electric Plastics Co.`s (GEP) Selkirk site, near Albany. The project has been expeditiously integrated with its sister plant, Selkirk Phase 1, to provide process steam and power in a highly efficient manner. Selkirk Phase 1, a 93-MW CC cogeneration station was completed in 1992 (POWER, April 1992, p. 169). This facility produces upwards of 400,000 lb/hr of process steam to steam host GEP. Phase 1 power sales are to Niagara Mohawk Power Corp. and Phase-2 sales to Consolidated Edison Co. of New York Inc.

  4. [Study on spectral emissivity of C/C composites].

    PubMed

    Zhu, Bo; Cao, Wei-Wei; Jing, Min; Dong, Xing-Guang; Wang, Cheng-Guo

    2009-11-01

    Different types of C/C composites were prepared by conventional molding, and the changes in normal spectral emissivity of samples were tested. The testing results show that spectral emissivity of C/C composite reinforced by short cut carbon fibers is generally higher than the sample reinforced by carbon cloth in the entire 2500-13000nm wavelength region. The structure of short cut carbon fibers is relatively loose and the number of material particles is less than other samples in unit volume, which increases the penetration depth of electromagnetic waves. This is the reason for higher normal spectral emissivity and better heat radiation property. Meanwhile, the test results of normal spectral emissivity for fiber perform and C/C composite samples show that the spectral emissivity of resin carbon is better than fiber carbon because of the difference in microstructure for the two kinds of carbon materials. Laser Raman spectroscopy was employed to analyze the microstructures of different carbon materials, and the results show that because sp3 and sp2 hybrid states of carbon atoms in resin carbon produced more vibration modes, the resin carbon also has higher normal spectral emissivity and better characteristics of heat radiation. PMID:20101951

  5. Accurate Anharmonic IR Spectra from Integrated Cc/dft Approach

    NASA Astrophysics Data System (ADS)

    Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien; Carnimeo, Ivan; Puzzarini, Cristina

    2014-06-01

    The recent implementation of the computation of infrared (IR) intensities beyond the double harmonic approximation [1] paved the route to routine calculations of infrared spectra for a wide set of molecular systems. Contrary to common beliefs, second-order perturbation theory is able to deliver results of high accuracy provided that anharmonic resonances are properly managed [1,2]. It has been already shown for several small closed- and open shell molecular systems that the differences between coupled cluster (CC) and DFT anharmonic wavenumbers are mainly due to the harmonic terms, paving the route to introduce effective yet accurate hybrid CC/DFT schemes [2]. In this work we present that hybrid CC/DFT models can be applied also to the IR intensities leading to the simulation of highly accurate fully anharmonic IR spectra for medium-size molecules, including ones of atmospheric interest, showing in all cases good agreement with experiment even in the spectral ranges where non-fundamental transitions are predominant[3]. [1] J. Bloino and V. Barone, J. Chem. Phys. 136, 124108 (2012) [2] V. Barone, M. Biczysko, J. Bloino, Phys. Chem. Chem. Phys., 16, 1759-1787 (2014) [3] I. Carnimeo, C. Puzzarini, N. Tasinato, P. Stoppa, A. P. Charmet, M. Biczysko, C. Cappelli and V. Barone, J. Chem. Phys., 139, 074310 (2013)

  6. A novel mammalian flavin-dependent histone demethylase.

    PubMed

    Karytinos, Aristotele; Forneris, Federico; Profumo, Antonella; Ciossani, Giuseppe; Battaglioli, Elena; Binda, Claudia; Mattevi, Andrea

    2009-06-26

    Methylation of Lys residues on histone proteins is a well known and extensively characterized epigenetic mark. The recent discovery of lysine-specific demethylase 1 (LSD1) demonstrated that lysine methylation can be dynamically controlled. Among the histone demethylases so far identified, LSD1 has the unique feature of functioning through a flavin-dependent amine oxidation reaction. Data base analysis reveals that mammalian genomes contain a gene (AOF1, for amine-oxidase flavin-containing domain 1) that is homologous to the LSD1-coding gene. Here, we demonstrate that the protein encoded by AOF1 represents a second mammalian flavin-dependent histone demethylase, named LSD2. The new demethylase is strictly specific for mono- and dimethylated Lys4 of histone H3, recognizes a long stretch of the H3 N-terminal tail, senses the presence of additional epigenetic marks on the histone substrate, and is covalently inhibited by tranylcypromine. As opposed to LSD1, LSD2 does not form a biochemically stable complex with the C-terminal domain of the corepressor protein CoREST. Furthermore, LSD2 contains a CW-type zinc finger motif with potential zinc-binding sites that are not present in LSD1. We conclude that mammalian LSD2 represents a new flavin-dependent H3-Lys4 demethylase that features substrate specificity properties highly similar to those of LSD1 but is very likely to be part of chromatin-remodeling complexes that are distinct from those involving LSD1. PMID:19407342

  7. Mechanisms of mammalian iron homeostasis

    PubMed Central

    Pantopoulos, Kostas; Porwal, Suheel Kumar; Tartakoff, Alan; Devireddy, L.

    2012-01-01

    Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in acquisition or distribution of the metal causes anemia; whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways, as well as in mechanisms underlying intracellular iron trafficking, an important but less-studied area of mammalian iron homeostasis. PMID:22703180

  8. An overview of mammalian pluripotency.

    PubMed

    Wu, Jun; Yamauchi, Takayoshi; Izpisua Belmonte, Juan Carlos

    2016-05-15

    Mammalian pluripotency is the ability to give rise to all somatic cells as well as the germ cells of an adult mammal. It is a unique feature of embryonic epiblast cells, existing only transiently, as cells pass through early developmental stages. By contrast, pluripotency can be captured and stabilized indefinitely in cell culture and can also be reactivated in differentiated cells via nuclear reprogramming. Pluripotent stem cells (PSCs) are the in vitro carriers of pluripotency and they can inhabit discrete pluripotent states depending on the stage at which they were derived and their culture conditions. Here, and in the accompanying poster, we provide a summary of mammalian pluripotency both in vivo and in vitro, and highlight recent and future applications of PSCs for basic and translational research. PMID:27190034

  9. Cross-Disciplinary Detection and Analysis of Network Motifs

    PubMed Central

    Tran, Ngoc Tam L; DeLuccia, Luke; McDonald, Aidan F; Huang, Chun-Hsi

    2015-01-01

    The detection of network motifs has recently become an important part of network analysis across all disciplines. In this work, we detected and analyzed network motifs from undirected and directed networks of several different disciplines, including biological network, social network, ecological network, as well as other networks such as airlines, power grid, and co-purchase of political books networks. Our analysis revealed that undirected networks are similar at the basic three and four nodes, while the analysis of directed networks revealed the distinction between networks of different disciplines. The study showed that larger motifs contained the three-node motif as a subgraph. Topological analysis revealed that similar networks have similar small motifs, but as the motif size increases, differences arise. Pearson correlation coefficient showed strong positive relationship between some undirected networks but inverse relationship between some directed networks. The study suggests that the three-node motif is a building block of larger motifs. It also suggests that undirected networks share similar low-level structures. Moreover, similar networks share similar small motifs, but larger motifs define the unique structure of individuals. Pearson correlation coefficient suggests that protein structure networks, dolphin social network, and co-authorships in network science belong to a superfamily. In addition, yeast protein–protein interaction network, primary school contact network, Zachary’s karate club network, and co-purchase of political books network can be classified into a superfamily. PMID:25983553

  10. Transcription factor motif quality assessment requires systematic comparative analysis

    PubMed Central

    Kibet, Caleb Kipkurui; Machanick, Philip

    2016-01-01

    Transcription factor (TF) binding site prediction remains a challenge in gene regulatory research due to degeneracy and potential variability in binding sites in the genome. Dozens of algorithms designed to learn binding models (motifs) have generated many motifs available in research papers with a subset making it to databases like JASPAR, UniPROBE and Transfac. The presence of many versions of motifs from the various databases for a single TF and the lack of a standardized assessment technique makes it difficult for biologists to make an appropriate choice of binding model and for algorithm developers to benchmark, test and improve on their models. In this study, we review and evaluate the approaches in use, highlight differences and demonstrate the difficulty of defining a standardized motif assessment approach. We review scoring functions, motif length, test data and the type of performance metrics used in prior studies as some of the factors that influence the outcome of a motif assessment. We show that the scoring functions and statistics used in motif assessment influence ranking of motifs in a TF-specific manner. We also show that TF binding specificity can vary by source of genomic binding data. We also demonstrate that information content of a motif is not in isolation a measure of motif quality but is influenced by TF binding behaviour. We conclude that there is a need for an easy-to-use tool that presents all available evidence for a comparative analysis. PMID:27092243

  11. Cross-disciplinary detection and analysis of network motifs.

    PubMed

    Tran, Ngoc Tam L; DeLuccia, Luke; McDonald, Aidan F; Huang, Chun-Hsi

    2015-01-01

    The detection of network motifs has recently become an important part of network analysis across all disciplines. In this work, we detected and analyzed network motifs from undirected and directed networks of several different disciplines, including biological network, social network, ecological network, as well as other networks such as airlines, power grid, and co-purchase of political books networks. Our analysis revealed that undirected networks are similar at the basic three and four nodes, while the analysis of directed networks revealed the distinction between networks of different disciplines. The study showed that larger motifs contained the three-node motif as a subgraph. Topological analysis revealed that similar networks have similar small motifs, but as the motif size increases, differences arise. Pearson correlation coefficient showed strong positive relationship between some undirected networks but inverse relationship between some directed networks. The study suggests that the three-node motif is a building block of larger motifs. It also suggests that undirected networks share similar low-level structures. Moreover, similar networks share similar small motifs, but larger motifs define the unique structure of individuals. Pearson correlation coefficient suggests that protein structure networks, dolphin social network, and co-authorships in network science belong to a superfamily. In addition, yeast protein-protein interaction network, primary school contact network, Zachary's karate club network, and co-purchase of political books network can be classified into a superfamily. PMID:25983553

  12. RMOD: a tool for regulatory motif detection in signaling network.

    PubMed

    Kim, Jinki; Yi, Gwan-Su

    2013-01-01

    Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod. PMID:23874612

  13. Olfactory sensitivity in mammalian species.

    PubMed

    Wackermannová, M; Pinc, L; Jebavý, L

    2016-07-18

    Olfaction enables most mammalian species to detect and discriminate vast numbers of chemical structures called odorants and pheromones. The perception of such chemical compounds is mediated via two major olfactory systems, the main olfactory system and the vomeronasal system, as well as minor systems, such as the septal organ and the Grueneberg ganglion. Distinct differences exist not only among species but also among individuals in terms of their olfactory sensitivity; however, little is known about the mechanisms that determine these differences. In research on the olfactory sensitivity of mammals, scientists thus depend in most cases on behavioral testing. In this article, we reviewed scientific studies performed on various mammalian species using different methodologies and target chemical substances. Human and non-human primates as well as rodents and dogs are the most frequently studied species. Olfactory threshold studies on other species do not exist with the exception of domestic pigs. Olfactory testing performed on seals, elephants, and bats focused more on discriminative abilities than on sensitivity. An overview of olfactory sensitivity studies as well as olfactory detection ability in most studied mammalian species is presented here, focusing on comparable olfactory detection thresholds. The basics of olfactory perception and olfactory sensitivity factors are also described. PMID:27070753

  14. Exploring water binding motifs to an excess electron via X2(-)(H2O) [X = O, F].

    PubMed

    Chiou, Mong-Feng; Sheu, Wen-Shyan

    2012-07-26

    X(2)(-)(H(2)O) [X = O, F] is utilized to explore water binding motifs to an excess electron via ab initio calculations at the MP4(SDQ)/aug-cc-pVDZ + diffs(2s2p,2s2p) level of theory. X(2)(-)(H(2)O) can be regarded as a water molecule that binds to an excess electron, the distribution of which is gauged by X(2). By varying the interatomic distance of X(2), r(X1-X2), the distribution of the excess electron is altered, and the water binding motifs to the excess electron is then examined. Depending on r(X1-X2), both binding motifs of C(s) and C(2v) forms are found with a critical distance of ∼1.37 Å and ∼1.71 Å for O(2)(-)(H(2)O) and F(2)(-)(H(2)O), respectively. The energetic and geometrical features of O(2)(-)(H(2)O) and F(2)(-)(H(2)O) are compared. In addition, various electronic properties of X(2)(-)(H(2)O) are examined. For both O(2)(-)(H(2)O) and F(2)(-)(H(2)O), the C(s) binding motif appears to prevail at a compact distribution of the excess electron. However, when the electron is diffuse, characterized by the radius of gyration in the direction of the X(2) bond axis with a threshold of ∼0.84 Å, the C(2v) binding motif is formed. PMID:22762788

  15. Structural motifs and the stability of fullerenes

    SciTech Connect

    Austin, S.J.; Fowler, P.W.; Manolopoulos, D.E.; Orlandi, G.; Zerbetto, F.

    1995-05-18

    Full geometry optimization has been performed within the semiempirical QCFF/PI model for the 1812 fullerene structural isomers of C{sub 60} formed by 12 pentagons and 20 hexagons. All are local minima on the potential energy hypersurface. Correlations of total energy with many structural motifs yield highly scattered diagrams, but some exhibit linear trends. Penalty and merit functions can be assigned to certain motifs: inclusion of a fused pentagon pair entails an average penalty of 111 kJ mol{sup -1}; a generic hexagon triple costs 23 kJ mol{sup -1}; a triple (open or fused) comprising a pentagon between two hexagonal neighbors gives a stabilization of 19 kJ mol{sup -1}. These results can be understood in terms of the curved nature of fullerene molecules: pentagons should be isolated to avoid sharp local curvature, hexagon triples are costly because they enforce local planarity and hence imply high curvature in another part of the fullerene surface, but hexagon-pentagon-hexagon triples allow the surface to distribute steric strain by warping. The best linear fit is found for H, the second moment of the hexagon-neighbor-index signature, which fits the total energies with a standard deviation of only 53 kJ mol{sup -1} and must be minimized for stability; this index too can be interpreted in terms of curvature. 26 refs., 5 figs.

  16. Structural motifs of pre-nucleation clusters.

    PubMed

    Zhang, Y; Türkmen, I R; Wassermann, B; Erko, A; Rühl, E

    2013-10-01

    Structural motifs of pre-nucleation clusters prepared in single, optically levitated supersaturated aqueous aerosol microparticles containing CaBr2 as a model system are reported. Cluster formation is identified by means of X-ray absorption in the Br K-edge regime. The salt concentration beyond the saturation point is varied by controlling the humidity in the ambient atmosphere surrounding the 15-30 μm microdroplets. This leads to the formation of metastable supersaturated liquid particles. Distinct spectral shifts in near-edge spectra as a function of salt concentration are observed, in which the energy position of the Br K-edge is red-shifted by up to 7.1 ± 0.4 eV if the dilute solution is compared to the solid. The K-edge positions of supersaturated solutions are found between these limits. The changes in electronic structure are rationalized in terms of the formation of pre-nucleation clusters. This assumption is verified by spectral simulations using first-principle density functional theory and molecular dynamics calculations, in which structural motifs are considered, explaining the experimental results. These consist of solvated CaBr2 moieties, rather than building blocks forming calcium bromide hexahydrates, the crystal system that is formed by drying aqueous CaBr2 solutions. PMID:24116574

  17. Extensive Genomic Diversity among Bovine-Adapted Staphylococcus aureus: Evidence for a Genomic Rearrangement within CC97

    PubMed Central

    Budd, Kathleen E.; McCoy, Finola; Monecke, Stefan; Cormican, Paul; Mitchell, Jennifer; Keane, Orla M.

    2015-01-01

    Staphylococcus aureus is an important pathogen associated with both human and veterinary disease and is a common cause of bovine mastitis. Genomic heterogeneity exists between S. aureus strains and has been implicated in the adaptation of specific strains to colonise particular mammalian hosts. Knowledge of the factors required for host specificity and virulence is important for understanding the pathogenesis and management of S. aureus mastitis. In this study, a panel of mastitis-associated S. aureus isolates (n = 126) was tested for resistance to antibiotics commonly used to treat mastitis. Over half of the isolates (52%) demonstrated resistance to penicillin and ampicillin but all were susceptible to the other antibiotics tested. S. aureus isolates were further examined for their clonal diversity by Multi-Locus Sequence Typing (MLST). In total, 18 different sequence types (STs) were identified and eBURST analysis demonstrated that the majority of isolates grouped into clonal complexes CC97, CC151 or sequence type (ST) 136. Analysis of the role of recombination events in determining S. aureus population structure determined that ST diversification through nucleotide substitutions were more likely to be due to recombination compared to point mutation, with regions of the genome possibly acting as recombination hotspots. DNA microarray analysis revealed a large number of differences amongst S. aureus STs in their variable genome content, including genes associated with capsule and biofilm formation and adhesion factors. Finally, evidence for a genomic arrangement was observed within isolates from CC97 with the ST71-like subgroup showing evidence of an IS431 insertion element having replaced approximately 30 kb of DNA including the ica operon and histidine biosynthesis genes, resulting in histidine auxotrophy. This genomic rearrangement may be responsible for the diversification of ST71 into an emerging bovine adapted subgroup. PMID:26317849

  18. Network Motifs: Simple Building Blocks of Complex Networks

    NASA Astrophysics Data System (ADS)

    Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U.

    2002-10-01

    Complex networks are studied across many fields of science. To uncover their structural design principles, we defined ``network motifs,'' patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks. We found such motifs in networks from biochemistry, neurobiology, ecology, and engineering. The motifs shared by ecological food webs were distinct from the motifs shared by the genetic networks of Escherichia coli and Saccharomyces cerevisiae or from those found in the World Wide Web. Similar motifs were found in networks that perform information processing, even though they describe elements as different as biomolecules within a cell and synaptic connections between neurons in Caenorhabditis elegans. Motifs may thus define universal classes of networks. This approach may uncover the basic building blocks of most networks.

  19. A Gibbs sampler for motif detection in phylogenetically close sequences

    NASA Astrophysics Data System (ADS)

    Siddharthan, Rahul; van Nimwegen, Erik; Siggia, Eric

    2004-03-01

    Genes are regulated by transcription factors that bind to DNA upstream of genes and recognize short conserved ``motifs'' in a random intergenic ``background''. Motif-finders such as the Gibbs sampler compare the probability of these short sequences being represented by ``weight matrices'' to the probability of their arising from the background ``null model'', and explore this space (analogous to a free-energy landscape). But closely related species may show conservation not because of functional sites but simply because they have not had sufficient time to diverge, so conventional methods will fail. We introduce a new Gibbs sampler algorithm that accounts for common ancestry when searching for motifs, while requiring minimal ``prior'' assumptions on the number and types of motifs, assessing the significance of detected motifs by ``tracking'' clusters that stay together. We apply this scheme to motif detection in sporulation-cycle genes in the yeast S. cerevisiae, using recent sequences of other closely-related Saccharomyces species.

  20. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures.

    PubMed

    Fan, Qitang; Gottfried, J Michael; Zhu, Junfa

    2015-08-18

    reaction of the precursors in the right positions. Incomplete connections typically result when mobile precursor monomers are blocked from reaching unsaturated reaction sites of the preformed nanostructures. For example, monomers may not be able to reach a randomly formed internal cavity of a two-dimensional (2D) nanostructure island due to steric hindrance in 2D confinement, leaving reaction sites in the internal cavity unsaturated. Wrong connections between precursor monomers, here defined as intermolecular C-C bonds forcing the monomer into a nonideal position within the structure, are usually irreversible and can induce further structural defects. The relative conformational flexibility of the monomer backbones permits connections between deformed monomers when they encounter strong steric hindrance. This, however, usually leads to heterogeneous structural motifs in the formed nanostructures. This Account reviews some of the latest developments regarding on-surface C-C coupling strategies toward the synthesis of carbon-based nanostructures by addressing the above-mentioned issues. The strategies include Ullmann coupling and other, "cleaner" alternative C-C coupling reactions like Glaser coupling, cyclo-dehydrogenation, and dehydrogenative coupling. The choice of substrate materials and precursor designs is crucial for optimizing substrate reactivity and precursor diffusion rates, and to reduce events of wrong linkage. Hierarchical polymerization is employed to steer the coupling route, which effectively improves the completeness of the reaction. Effects of byproducts on nanostructure formation is comprehended with both experimental and theoretical studies. PMID:26194462

  1. A General RNA Motif for Cellular Transfection

    PubMed Central

    Magalhães, Maria LB; Byrom, Michelle; Yan, Amy; Kelly, Linsley; Li, Na; Furtado, Raquel; Palliser, Deborah; Ellington, Andrew D; Levy, Matthew

    2012-01-01

    We have developed a selection scheme to generate nucleic acid sequences that recognize and directly internalize into mammalian cells without the aid of conventional delivery methods. To demonstrate the generality of the technology, two independent selections with different starting pools were performed against distinct target cells. Each selection yielded a single highly functional sequence, both of which folded into a common core structure. This internalization signal can be adapted for use as a general purpose reagent for transfection into a wide variety of cell types including primary cells. PMID:22233578

  2. Detecting DNA regulatory motifs by incorporating positional trendsin information content

    SciTech Connect

    Kechris, Katherina J.; van Zwet, Erik; Bickel, Peter J.; Eisen,Michael B.

    2004-05-04

    On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing deviations from a specified conservation profile. Examples with both simulated and real data show that this extension helps discover motifs as the data become noisier or when there is a competing false motif.

  3. Guanine nucleotide dissociation inhibitor activity of the triple GoLoco motif protein G18: alanine-to-aspartate mutation restores function to an inactive second GoLoco motif.

    PubMed

    Kimple, Randall J; Willard, Francis S; Hains, Melinda D; Jones, Miller B; Nweke, Gift K; Siderovski, David P

    2004-03-15

    GoLoco ('Galpha(i/o)-Loco' interaction) motif proteins have recently been identified as novel GDIs (guanine nucleotide dissociation inhibitors) for heterotrimeric G-protein alpha subunits. G18 is a member of the mammalian GoLoco-motif gene family and was uncovered by analyses of human and mouse genomes for anonymous open-reading frames. The encoded G18 polypeptide is predicted to contain three 19-amino-acid GoLoco motifs, which have been shown in other proteins to bind Galpha subunits and inhibit spontaneous nucleotide release. However, the G18 protein has thus far not been characterized biochemically. Here, we have cloned and expressed the G18 protein and assessed its ability to act as a GDI. G18 is capable of simultaneously binding more than one Galpha(i1) subunit. In binding assays with the non-hydrolysable GTP analogue guanosine 5'-[gamma-thio]triphosphate, G18 exhibits GDI activity, slowing the exchange of GDP for GTP by Galpha(i1). Only the first and third GoLoco motifs within G18 are capable of interacting with Galpha subunits, and these bind with low micromolar affinity only to Galpha(i1) in the GDP-bound form, and not to Galpha(o), Galpha(q), Galpha(s) or Galpha12. Mutation of Ala-121 to aspartate in the inactive second GoLoco motif of G18, to restore the signature acidic-glutamine-arginine tripeptide that forms critical contacts with Galpha and its bound nucleotide [Kimple, Kimple, Betts, Sondek and Siderovski (2002) Nature (London) 416, 878-881], results in gain-of-function with respect to Galpha binding and GDI activity. PMID:14656218

  4. Ballast: A Ball-based Algorithm for Structural Motifs

    PubMed Central

    He, Lu; Vandin, Fabio; Pandurangan, Gopal

    2013-01-01

    Abstract Structural motifs encapsulate local sequence-structure-function relationships characteristic of related proteins, enabling the prediction of functional characteristics of new proteins, providing molecular-level insights into how those functions are performed, and supporting the development of variants specifically maintaining or perturbing function in concert with other properties. Numerous computational methods have been developed to search through databases of structures for instances of specified motifs. However, it remains an open problem how best to leverage the local geometric and chemical constraints underlying structural motifs in order to develop motif-finding algorithms that are both theoretically and practically efficient. We present a simple, general, efficient approach, called Ballast (ball-based algorithm for structural motifs), to match given structural motifs to given structures. Ballast combines the best properties of previously developed methods, exploiting the composition and local geometry of a structural motif and its possible instances in order to effectively filter candidate matches. We show that on a wide range of motif-matching problems, Ballast efficiently and effectively finds good matches, and we provide theoretical insights into why it works well. By supporting generic measures of compositional and geometric similarity, Ballast provides a powerful substrate for the development of motif-matching algorithms. PMID:23383999

  5. Gibbs motif sampling: detection of bacterial outer membrane protein repeats.

    PubMed Central

    Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.

    1995-01-01

    The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488

  6. Selected CC and CXC chemokines in children with atopic asthma

    PubMed Central

    Machura, Edyta; Mazur, Bogdan; Chrobak, Ewelina; Ziora, Katarzyna; Ziora, Dariusz; Kasperska-Zajac, Alicja

    2016-01-01

    Introduction There are only limited data on CC and CXC chemokines regulation in children with asthma. Aim We compared the serum profile of selected CC and CXC chemokines in patients with atopic asthma and healthy children. Material and methods Serum concentration of CC chemokines RANTES, MCP-1, and CXC chemokines IP-10, MIG, IL-8, RANTES was measured using cytometric bead array in 44 children with atopic asthma and 17 healthy subjects. Results The concentration of RANTES was significantly higher and the MIG level was lower in all children with asthma as compared to their control counterparts. We observed increased RANTES and decreased MIG levels also in patients with stable asthma when compared with children in the control group. The IP-10 concentration was similar between the whole asthma group and healthy controls, while significantly increased levels of this chemokine in acute asthma have been observed when compared to stable asthma. For MCP-1 and IL-8, the serum concentration was similar in all compared groups. The MIG concentration correlated positively with IP-10, IL-8, and CRP levels and negatively with the eosinophil count. A negative correlation between the IP-10 and eosinophil count and a negative correlation between FEV1 and IP-10 were found. Conclusions An increased serum RANTES level in children with asthma may result in enhancement of Th2 lymphocyte recruitment into the airway. A decreased expression of Th1 chemokine MIG in children with stable asthma may contribute to a diminished antagonizing effect on Th2 cytokine production and hence intensify Th2 predominance. An increased IP-10 level in children during an asthma attack suggest that this chemokine is a serological marker of disease exacerbation. PMID:27279817

  7. Cross-correlation Doppler global velocimetry (CC-DGV)

    NASA Astrophysics Data System (ADS)

    Cadel, Daniel R.; Lowe, K. Todd

    2015-08-01

    A flow velocimetry method, cross-correlation Doppler global velocimetry (CC-DGV), is presented as a robust, simplified, and high dynamic range implementation of the Doppler global/planar Doppler velocimetry technique. A sweep of several gigahertz of the vapor absorption spectrum is used for each velocity sample, with signals acquired from both Doppler-shifted scattered light within the flow and a non-Doppler shifted reference beam. Cross-correlation of these signals yields the Doppler shift between them, averaged over the duration of the scan. With presently available equipment, velocities from 0 ms-1 to over 3000 ms-1 can notionally be measured simultaneously, making the technique ideal for high speed flows. The processing routine is shown to be robust against large changes in the vapor pressure of the iodine cell, benefiting performance of the system in facilities where ambient conditions cannot be easily regulated. Validation of the system was performed with measurements of a model wind turbine blade boundary layer made in a 1.83 m by 1.83 m subsonic wind tunnel for which laser Doppler velocimetry (LDV) measurements were acquired alongside the CC-DGV results. CC-DGV uncertainties of ±1.30 ms-1, ±0.64 ms-1, and ±1.11 ms-1 were determined for the orthogonal stream-wise, transverse-horizontal, and transverse-vertical velocity components, and root-mean-square deviations of 2.77 ms-1 and 1.34 ms-1 from the LDV validation results were observed for Reynolds numbers of 1.5 million and 2 million, respectively. Volumetric mean velocity measurements are also presented for a supersonic jet, with velocity uncertainties of ±4.48 ms-1, ±16.93 ms-1, and ±0.50 ms-1 for the orthogonal components, and self-validation done by collapsing the data with a physical scaling.

  8. The formation and characteristics of the i-motif structure within the promoter of the c-myb proto-oncogene.

    PubMed

    Li, Huihui; Hai, Jinhui; Zhou, Jiang; Yuan, Gu

    2016-09-01

    C-myb proto-oncogene is a potential therapeutic target for some human solid tumors and leukemias. A long cytosine-rich sequence, which locates the downstream of the transcription initiation site, is demonstrated to fold into an intramolecular i-motif DNA using electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. Effects of factors, including the pH value, the number of C:C(+) dimers, the concentration of buffer, the molecular crowding condition, and the coexistence of the complementary DNA, on the formation and the structural stability of the i-motif DNA are systematically studied. We have demonstrated that the i-motif folding in the c-myb promoter could be accelerated upon synergistic physiological stimuli including intracellular molecular crowding and low pH values, as well as the large number of the i-motif C:C(+) dimers. Meanwhile, various inputs, such as acids/bases and metal ions, have exhibited their abilities in controlling the conformational switch of the c-myb GC-rich DNA. Acidic pH values and the presence of K(+) ions can induce the dissociation of the double helix. Our present strategy can greatly extend the potential usages of i-motif DNA molecules with specific sequences as conformational switch-controlled devices. Moreover, this work demonstrates the superiority of CD spectroscopy associated with ESI-MS as a rapid, more cost-effective and sensitive structural change responsive method in the research of DNA conformational switching. PMID:27487467

  9. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation

    PubMed Central

    Murakawa, Tomokazu; Yamaguchi, Osamu; Hashimoto, Ayako; Hikoso, Shungo; Takeda, Toshihiro; Oka, Takafumi; Yasui, Hiroki; Ueda, Hiromichi; Akazawa, Yasuhiro; Nakayama, Hiroyuki; Taneike, Manabu; Misaka, Tomofumi; Omiya, Shigemiki; Shah, Ajay M.; Yamamoto, Akitsugu; Nishida, Kazuhiko; Ohsumi, Yoshinori; Okamoto, Koji; Sakata, Yasushi; Otsu, Kinya

    2015-01-01

    Damaged mitochondria are removed by mitophagy. Although Atg32 is essential for mitophagy in yeast, no Atg32 homologue has been identified in mammalian cells. Here, we show that Bcl-2-like protein 13 (Bcl2-L-13) induces mitochondrial fragmentation and mitophagy in mammalian cells. First, we hypothesized that unidentified mammalian mitophagy receptors would share molecular features of Atg32. By screening the public protein database for Atg32 homologues, we identify Bcl2-L-13. Bcl2-L-13 binds to LC3 through the WXXI motif and induces mitochondrial fragmentation and mitophagy in HEK293 cells. In Bcl2-L-13, the BH domains are important for the fragmentation, while the WXXI motif facilitates mitophagy. Bcl2-L-13 induces mitochondrial fragmentation in the absence of Drp1, while it induces mitophagy in Parkin-deficient cells. Knockdown of Bcl2-L-13 attenuates mitochondrial damage-induced fragmentation and mitophagy. Bcl2-L-13 induces mitophagy in Atg32-deficient yeast cells. Induction and/or phosphorylation of Bcl2-L-13 may regulate its activity. Our findings offer insights into mitochondrial quality control in mammalian cells. PMID:26146385

  10. Synthetic biology in mammalian cells: Next generation research tools and therapeutics

    PubMed Central

    Lienert, Florian; Lohmueller, Jason J; Garg, Abhishek; Silver, Pamela A

    2014-01-01

    Recent progress in DNA manipulation and gene circuit engineering has greatly improved our ability to programme and probe mammalian cell behaviour. These advances have led to a new generation of synthetic biology research tools and potential therapeutic applications. Programmable DNA-binding domains and RNA regulators are leading to unprecedented control of gene expression and elucidation of gene function. Rebuilding complex biological circuits such as T cell receptor signalling in isolation from their natural context has deepened our understanding of network motifs and signalling pathways. Synthetic biology is also leading to innovative therapeutic interventions based on cell-based therapies, protein drugs, vaccines and gene therapies. PMID:24434884

  11. Serotype IV Streptococcus agalactiae ST-452 has arisen from large genomic recombination events between CC23 and the hypervirulent CC17 lineages

    PubMed Central

    Campisi, Edmondo; Rinaudo, C. Daniela; Donati, Claudio; Barucco, Mara; Torricelli, Giulia; Edwards, Morven S.; Baker, Carol J.; Margarit, Imma; Rosini, Roberto

    2016-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) causes life-threatening infections in newborns and adults with chronic medical conditions. Serotype IV strains are emerging both among carriers and as cause of invasive disease and recent studies revealed two main Sequence Types (STs), ST-452 and ST-459 assigned to Clonal Complexes CC23 and CC1, respectively. Whole genome sequencing of 70 type IV GBS and subsequent phylogenetic analysis elucidated the localization of type IV isolates in a SNP-based phylogenetic tree and suggested that ST-452 could have originated through genetic recombination. SNPs density analysis of the core genome confirmed that the founder strain of this lineage originated from a single large horizontal gene transfer event between CC23 and the hypervirulent CC17. Indeed, ST-452 genomes are composed by two parts that are nearly identical to corresponding regions in ST-24 (CC23) and ST-291 (CC17). Chromosome mapping of the major GBS virulence factors showed that ST-452 strains have an intermediate yet unique profile among CC23 and CC17 strains. We described unreported large recombination events, involving the cps IV operon and resulting in the expansion of serotype IV to CC23. This work sheds further light on the evolution of GBS providing new insights on the recent emergence of serotype IV. PMID:27411639

  12. Serotype IV Streptococcus agalactiae ST-452 has arisen from large genomic recombination events between CC23 and the hypervirulent CC17 lineages.

    PubMed

    Campisi, Edmondo; Rinaudo, C Daniela; Donati, Claudio; Barucco, Mara; Torricelli, Giulia; Edwards, Morven S; Baker, Carol J; Margarit, Imma; Rosini, Roberto

    2016-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) causes life-threatening infections in newborns and adults with chronic medical conditions. Serotype IV strains are emerging both among carriers and as cause of invasive disease and recent studies revealed two main Sequence Types (STs), ST-452 and ST-459 assigned to Clonal Complexes CC23 and CC1, respectively. Whole genome sequencing of 70 type IV GBS and subsequent phylogenetic analysis elucidated the localization of type IV isolates in a SNP-based phylogenetic tree and suggested that ST-452 could have originated through genetic recombination. SNPs density analysis of the core genome confirmed that the founder strain of this lineage originated from a single large horizontal gene transfer event between CC23 and the hypervirulent CC17. Indeed, ST-452 genomes are composed by two parts that are nearly identical to corresponding regions in ST-24 (CC23) and ST-291 (CC17). Chromosome mapping of the major GBS virulence factors showed that ST-452 strains have an intermediate yet unique profile among CC23 and CC17 strains. We described unreported large recombination events, involving the cps IV operon and resulting in the expansion of serotype IV to CC23. This work sheds further light on the evolution of GBS providing new insights on the recent emergence of serotype IV. PMID:27411639

  13. Dual-tagging system for the affinity purification of mammalian protein complexes

    SciTech Connect

    Giannone, Richard J; McDonald, W Hayes; Hurst, Gregory {Greg} B; Huang, Ying; Wu, Jun; Liu, Yie; Wang, Yisong

    2007-01-01

    Although affinity purification coupled with mass spectrometry (MS) provides a powerful tool to study protein-protein interactions, this strategy has encountered numerous difficulties when adapted to mammalian cells. Here we describe a Gateway{reg_sign}-compatible dual-tag affinity purification system that integrates regulatable expression, tetracysteine motifs, and various combinations of affinity tags to facilitate the cloning, detection, and purification of bait proteins and their interacting partners. Utilizing the human telomere binding protein TRF2 as a benchmark, we demonstrate bait protein recoveries upwards of approximately 16% from as little as 1-7 x 10{sup 7} cells and successfully identify known TRF2 interacting proteins, suggesting that our dual-tag affinity purification approach is a capable new tool for expanding the capacity to explore mammalian proteomic networks.

  14. Evolutionary paths to mammalian cochleae.

    PubMed

    Manley, Geoffrey A

    2012-12-01

    Evolution of the cochlea and high-frequency hearing (>20 kHz; ultrasonic to humans) in mammals has been a subject of research for many years. Recent advances in paleontological techniques, especially the use of micro-CT scans, now provide important new insights that are here reviewed. True mammals arose more than 200 million years (Ma) ago. Of these, three lineages survived into recent geological times. These animals uniquely developed three middle ear ossicles, but these ossicles were not initially freely suspended as in modern mammals. The earliest mammalian cochleae were only about 2 mm long and contained a lagena macula. In the multituberculate and monotreme mammalian lineages, the cochlea remained relatively short and did not coil, even in modern representatives. In the lineage leading to modern therians (placental and marsupial mammals), cochlear coiling did develop, but only after a period of at least 60 Ma. Even Late Jurassic mammals show only a 270 ° cochlear coil and a cochlear canal length of merely 3 mm. Comparisons of modern organisms, mammalian ancestors, and the state of the middle ear strongly suggest that high-frequency hearing (>20 kHz) was not realized until the early Cretaceous (~125 Ma). At that time, therian mammals arose and possessed a fully coiled cochlea. The evolution of modern features of the middle ear and cochlea in the many later lineages of therians was, however, a mosaic and different features arose at different times. In parallel with cochlear structural evolution, prestins in therian mammals evolved into effective components of a new motor system. Ultrasonic hearing developed quite late-the earliest bat cochleae (~60 Ma) did not show features characteristic of those of modern bats that are sensitive to high ultrasonic frequencies. PMID:22983571

  15. 29 CFR Appendix A to Subpart Cc of... - Standard Hand Signals

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Standard Hand Signals A Appendix A to Subpart CC of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Construction Pt. 1926, Subpt. CC, App. A Appendix A to Subpart CC of Part 1926—Standard Hand Signals...

  16. 29 CFR Appendix A to Subpart Cc of... - Standard Hand Signals

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Standard Hand Signals A Appendix A to Subpart CC of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Construction Pt. 1926, Subpt. CC, App. A Appendix A to Subpart CC of Part 1926—Standard Hand Signals...

  17. 29 CFR Appendix A to Subpart Cc of... - Standard Hand Signals

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Standard Hand Signals A Appendix A to Subpart CC of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Construction Pt. 1926, Subpt. CC, App. A Appendix A to Subpart CC of Part 1926—Standard Hand Signals...

  18. 29 CFR Appendix A to Subpart Cc of... - Standard Hand Signals

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Standard Hand Signals A Appendix A to Subpart CC of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Construction Pt. 1926, Subpt. CC, App. A Appendix A to Subpart CC of Part 1926—Standard Hand Signals...

  19. Motif-Role-Fingerprints: The Building-Blocks of Motifs, Clustering-Coefficients and Transitivities in Directed Networks

    PubMed Central

    McDonnell, Mark D.; Yaveroğlu, Ömer Nebil; Schmerl, Brett A.; Iannella, Nicolangelo; Ward, Lawrence M.

    2014-01-01

    Complex networks are frequently characterized by metrics for which particular subgraphs are counted. One statistic from this category, which we refer to as motif-role fingerprints, differs from global subgraph counts in that the number of subgraphs in which each node participates is counted. As with global subgraph counts, it can be important to distinguish between motif-role fingerprints that are ‘structural’ (induced subgraphs) and ‘functional’ (partial subgraphs). Here we show mathematically that a vector of all functional motif-role fingerprints can readily be obtained from an arbitrary directed adjacency matrix, and then converted to structural motif-role fingerprints by multiplying that vector by a specific invertible conversion matrix. This result demonstrates that a unique structural motif-role fingerprint exists for any given functional motif-role fingerprint. We demonstrate a similar result for the cases of functional and structural motif-fingerprints without node roles, and global subgraph counts that form the basis of standard motif analysis. We also explicitly highlight that motif-role fingerprints are elemental to several popular metrics for quantifying the subgraph structure of directed complex networks, including motif distributions, directed clustering coefficient, and transitivity. The relationships between each of these metrics and motif-role fingerprints also suggest new subtypes of directed clustering coefficients and transitivities. Our results have potential utility in analyzing directed synaptic networks constructed from neuronal connectome data, such as in terms of centrality. Other potential applications include anomaly detection in networks, identification of similar networks and identification of similar nodes within networks. Matlab code for calculating all stated metrics following calculation of functional motif-role fingerprints is provided as S1 Matlab File. PMID:25486535

  20. Invisible RNA state dynamically couples distant motifs

    PubMed Central

    Lee, Janghyun; Dethoff, Elizabeth A.; Al-Hashimi, Hashim M.

    2014-01-01

    Using on- and off-resonance carbon and nitrogen R1ρ NMR relaxation dispersion in concert with mutagenesis and NMR chemical shift fingerprinting, we show that the transactivation response element RNA from the HIV-1 exists in dynamic equilibrium with a transient state that has a lifetime of ∼2 ms and population of ∼0.4%, which simultaneously remodels the structure of a bulge, stem, and apical loop. This is accomplished by a global change in strand register, in which bulge residues pair up with residues in the upper stem, causing a reshuffling of base pairs that propagates to the tip of apical loop, resulting in the creation of three noncanonical base pairs. Our results show that transient states can remodel distant RNA motifs and possibly give rise to mechanisms for rapid long-range communication in RNA that can be harnessed in processes such as cooperative folding and ribonucleoprotein assembly. PMID:24979799

  1. An RNA motif that binds ATP

    NASA Technical Reports Server (NTRS)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  2. Identification of Diverse Lipid Droplet Targeting Motifs in the PNPLA Family of Triglyceride Lipases

    PubMed Central

    Dou, Eda; Brown, William J.

    2013-01-01

    Members of the Patatin-like Phospholipase Domain containing Protein A (PNPLA) family play key roles in triglyceride hydrolysis, energy metabolism, and lipid droplet (LD) homoeostasis. Here we report the identification of two distinct LD targeting motifs (LTM) for PNPLA family members. Transient transfection of truncated versions of human adipose triglyceride lipase (ATGL, also known as PNPLA2), PNPLA3/adiponutrin, or PNPLA5 (GS2-like) fused to GFP revealed that the C-terminal third of these proteins contains sequences that are sufficient for targeting to LDs. Furthermore, fusing the C-termini of PNPLA3 or PNPLA5 confers LD localization to PNPLA4, which is otherwise cytoplasmic. Analyses of additional mutants in ATGL, PNPLA5, and Brummer Lipase, the Drosophila homolog of mammalian ATGL, identified two different types of LTMs. The first type, in PNPLA5 and Brummer lipase, is a set of loosely conserved basic residues, while the second type, in ATGL, is contained within a stretch of hydrophobic residues. These results show that even closely related members of the PNPLA family employ different molecular motifs to associate with LDs. PMID:23741432

  3. Sequence Motifs in MADS Transcription Factors Responsible for Specificity and Diversification of Protein-Protein Interaction

    PubMed Central

    van Dijk, Aalt D. J.; Morabito, Giuseppa; Fiers, Martijn; van Ham, Roeland C. H. J.; Angenent, Gerco C.; Immink, Richard G. H.

    2010-01-01

    Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain transcription factor family. In comparison to the situation in mammalian species, this important family of transcription regulators has expanded enormously in plant species and contains over 100 members in the model plant species Arabidopsis thaliana. Here, we provide insight into the mechanisms that determine protein-protein interaction specificity for the Arabidopsis MADS domain transcription factor family, using an integrated computational and experimental approach. Plant MADS proteins have highly similar amino acid sequences, but their dimerization patterns vary substantially. Our computational analysis uncovered small sequence regions that explain observed differences in dimerization patterns with reasonable accuracy. Furthermore, we show the usefulness of the method for prediction of MADS domain transcription factor interaction networks in other plant species. Introduction of mutations in the predicted interaction motifs demonstrated that single amino acid mutations can have a large effect and lead to loss or gain of specific interactions. In addition, various performed bioinformatics analyses shed light on the way evolution has shaped MADS domain transcription factor interaction specificity. Identified protein-protein interaction motifs appeared to be strongly conserved among orthologs, indicating their evolutionary importance. We also provide evidence that mutations in these motifs can be a source for sub- or neo-functionalization. The analyses presented here take us a step forward in understanding protein-protein interactions and the interplay between protein sequences and network evolution. PMID

  4. Encoded Expansion: An Efficient Algorithm to Discover Identical String Motifs

    PubMed Central

    Azmi, Aqil M.; Al-Ssulami, Abdulrakeeb

    2014-01-01

    A major task in computational biology is the discovery of short recurring string patterns known as motifs. Most of the schemes to discover motifs are either stochastic or combinatorial in nature. Stochastic approaches do not guarantee finding the correct motifs, while the combinatorial schemes tend to have an exponential time complexity with respect to motif length. To alleviate the cost, the combinatorial approach exploits dynamic data structures such as trees or graphs. Recently (Karci (2009) Efficient automatic exact motif discovery algorithms for biological sequences, Expert Systems with Applications 36:7952–7963) devised a deterministic algorithm that finds all the identical copies of string motifs of all sizes in theoretical time complexity of and a space complexity of where is the length of the input sequence and is the length of the longest possible string motif. In this paper, we present a significant improvement on Karci's original algorithm. The algorithm that we propose reports all identical string motifs of sizes that occur at least times. Our algorithm starts with string motifs of size 2, and at each iteration it expands the candidate string motifs by one symbol throwing out those that occur less than times in the entire input sequence. We use a simple array and data encoding to achieve theoretical worst-case time complexity of and a space complexity of Encoding of the substrings can speed up the process of comparison between string motifs. Experimental results on random and real biological sequences confirm that our algorithm has indeed a linear time complexity and it is more scalable in terms of sequence length than the existing algorithms. PMID:24871320

  5. The cryogenic system for ITER CC superconducting conductor test facility

    NASA Astrophysics Data System (ADS)

    Peng, Jinqing; Wu, Yu; Liu, Huajun; Shi, Yi; Chen, Jinglin; Ren, Zhibin

    2011-01-01

    This paper describes the cryogenic system of the International Thermonuclear Experimental Reactor (ITER) Correction Coils (CC) test facility, which consists of a 500 W/4.5 K helium refrigerator, a 50 kA superconducting transformer cryostat (STC) and a background field magnet cryostat (BFMC). The 500 W/4.5 K helium refrigerator synchronously produces both the liquid helium (LHe) and supercritical helium (SHe). The background field magnet and the primary coil of the superconducting transformer (PCST) are cooled down by immersing into 4.2 K LHe. The secondary Cable-In-Conduit Conductor (CICC) coil of the superconducting transformer (SCST), superconducting joints and the testing sample of ITER CC are cooled down by forced-flow supercritical helium. During the commissioning experiment, all the superconducting coils were successfully translated into superconducting state. The background field magnet was fully cooled by immersing it into 4.2 K LHe and generated a maximal background magnetic field of 6.96 T; the temperature of transformer coils and current leads was reduced to 4.3 K; the inlet temperature of SHe loop was 5.6 K, which can meet the cooling requirements of CIC-Conductor and joint boxes. It is noted that a novel heat cut-off device for High Temperature Superconducting (HTS) binary current leads was introduced to reduce the heat losses of transformer cryostat.

  6. Energy Materials Coordinating Committee (EMaCC), Fiscal year 1989

    SciTech Connect

    1991-03-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. Four topical subcommittees are established and are continuing their own programs: Structural Ceramics, Electrochemical Technologies, Radioactive Waste Containment, and Superconductivity. In addition, the EMaCC aids in obtaining materials-related inputs for both intra- and inter-agency compilations. The first part of the Program Descriptions consists of a funding summary for each Assistant Secretary office and the Office of Energy Research. This is followed by a summary of project titles and objectives, including the program/project manager(s) and principal investigator. The second part of the Program Descriptions consists of more detailed project summaries with project goals and accomplishments.

  7. Assessment of the potential contribution of the highly conserved C-terminal motif (C10) of Borrelia burgdorferi outer surface protein C in transmission and infectivity.

    PubMed

    Earnhart, Christopher G; Rhodes, DeLacy V L; Smith, Alexis A; Yang, Xiuli; Tegels, Brittney; Carlyon, Jason A; Pal, Utpal; Marconi, Richard T

    2014-03-01

    OspC is produced by all species of the Borrelia burgdorferi sensu lato complex and is required for infectivity in mammals. To test the hypothesis that the conserved C-terminal motif (C10) of OspC is required for function in vivo, a mutant B. burgdorferi strain (B31::ospCΔC10) was created in which ospC was replaced with an ospC gene lacking the C10 motif. The ability of the mutant to infect mice was investigated using tick transmission and needle inoculation. Infectivity was assessed by cultivation, qRT-PCR, and measurement of IgG antibody responses. B31::ospCΔC10 retained the ability to infect mice by both needle and tick challenge and was competent to survive in ticks after exposure to the blood meal. To determine whether recombinant OspC protein lacking the C-terminal 10 amino acid residues (rOspCΔC10) can bind plasminogen, the only known mammalian-derived ligand for OspC, binding analyses were performed. Deletion of the C10 motif resulted in a statistically significant decrease in plasminogen binding. Although deletion of the C10 motif influenced plasminogen binding, it can be concluded that the C10 motif is not required for OspC to carry out its critical in vivo functions in tick to mouse transmission. PMID:24376161

  8. Mast cells in mammalian brain.

    PubMed

    Dropp, J J

    1976-01-01

    Mast cells, which had until recently been believed to be not present in the mammalian brain, were studied in the brains of 29 mammalian species. Although there was considerable intraspecific and interspecific variation, mast cells were most numerous within the leptomeninges (especially in those overlying the cerebrum and the dorsal thalamus - most rodents, most carnivores, chimpanzees, squirrel monkeys and elephant), the cerebral cortex (most rodents, tiger, fox, chimpanzee, tarsier, and elephant) and in many nuclei of the dorsal thalamus (most rodents, tiger, lion, and fox). In some mammals, mast cells were also numerous in the stroma of the telencephalic choroid plexuses (chimpanzee, squirrel monkey), the putamen and the claustrum (chimpanzee), the subfornical organ (pack rat, tiger, chimpanzee), the olfactory peduncles (hooded rat, albino rat), the stroma of the diencephalic choroid plexus (lion, chimpanzee, squirrel monkey), the pineal organ (chimpanzee, squirrel monkey), some nuclei of the hypothalamus (tiger), the infundibulum (hooded rat, tiger, fox) the area postrema (pack rat, chinchilla, lion, spider monkey, chimpanzee, fox) and some nuclei and tracts of the metencephalon and the myelencephalon (tiger). Neither the sex of the animal nor electrolytic lesions made in the brains of some of the animals at various times prior to sacrifice appeared to effect the number and the distribution of mast cells. Age-related changes in mast cell number and distribution were detected in the albino rat. PMID:961335

  9. DNA modifications in the mammalian brain

    PubMed Central

    Shin, Jaehoon; Ming, Guo-li; Song, Hongjun

    2014-01-01

    DNA methylation is a crucial epigenetic mark in mammalian development, genomic imprinting, X-inactivation, chromosomal stability and suppressing parasitic DNA elements. DNA methylation in neurons has also been suggested to play important roles for mammalian neuronal functions, and learning and memory. In this review, we first summarize recent discoveries and fundamental principles of DNA modifications in the general epigenetics field. We then describe the profiles of different DNA modifications in the mammalian brain genome. Finally, we discuss roles of DNA modifications in mammalian brain development and function. PMID:25135973

  10. The Monitoring and Affinity Purification of Proteins Using Dual-Tags with Tetracysteine Motifs

    SciTech Connect

    Giannone, Richard J; Liu, Yie; Wang, Yisong

    2009-01-01

    Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter we describe a comprehensive methodology that utilizes our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we have demonstrated the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.

  11. The Monitoring and Affinity Purification of Proteins Using Dual Tags with Tetracysteine Motifs

    NASA Astrophysics Data System (ADS)

    Giannone, Richard J.; Liu, Yie; Wang, Yisong

    Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter, we describe a comprehensive methodology that uses our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we demonstrate the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.

  12. Identifying novel sequence variants of RNA 3D motifs

    PubMed Central

    Zirbel, Craig L.; Roll, James; Sweeney, Blake A.; Petrov, Anton I.; Pirrung, Meg; Leontis, Neocles B.

    2015-01-01

    Predicting RNA 3D structure from sequence is a major challenge in biophysics. An important sub-goal is accurately identifying recurrent 3D motifs from RNA internal and hairpin loop sequences extracted from secondary structure (2D) diagrams. We have developed and validated new probabilistic models for 3D motif sequences based on hybrid Stochastic Context-Free Grammars and Markov Random Fields (SCFG/MRF). The SCFG/MRF models are constructed using atomic-resolution RNA 3D structures. To parameterize each model, we use all instances of each motif found in the RNA 3D Motif Atlas and annotations of pairwise nucleotide interactions generated by the FR3D software. Isostericity relations between non-Watson–Crick basepairs are used in scoring sequence variants. SCFG techniques model nested pairs and insertions, while MRF ideas handle crossing interactions and base triples. We use test sets of randomly-generated sequences to set acceptance and rejection thresholds for each motif group and thus control the false positive rate. Validation was carried out by comparing results for four motif groups to RMDetect. The software developed for sequence scoring (JAR3D) is structured to automatically incorporate new motifs as they accumulate in the RNA 3D Motif Atlas when new structures are solved and is available free for download. PMID:26130723

  13. Stochastic EM-based TFBS motif discovery with MITSU

    PubMed Central

    Kilpatrick, Alastair M.; Ward, Bruce; Aitken, Stuart

    2014-01-01

    Motivation: The Expectation–Maximization (EM) algorithm has been successfully applied to the problem of transcription factor binding site (TFBS) motif discovery and underlies the most widely used motif discovery algorithms. In the wider field of probabilistic modelling, the stochastic EM (sEM) algorithm has been used to overcome some of the limitations of the EM algorithm; however, the application of sEM to motif discovery has not been fully explored. Results: We present MITSU (Motif discovery by ITerative Sampling and Updating), a novel algorithm for motif discovery, which combines sEM with an improved approximation to the likelihood function, which is unconstrained with regard to the distribution of motif occurrences within the input dataset. The algorithm is evaluated quantitatively on realistic synthetic data and several collections of characterized prokaryotic TFBS motifs and shown to outperform EM and an alternative sEM-based algorithm, particularly in terms of site-level positive predictive value. Availability and implementation: Java executable available for download at http://www.sourceforge.net/p/mitsu-motif/, supported on Linux/OS X. Contact: a.m.kilpatrick@sms.ed.ac.uk PMID:24931999

  14. Identifying novel sequence variants of RNA 3D motifs.

    PubMed

    Zirbel, Craig L; Roll, James; Sweeney, Blake A; Petrov, Anton I; Pirrung, Meg; Leontis, Neocles B

    2015-09-01

    Predicting RNA 3D structure from sequence is a major challenge in biophysics. An important sub-goal is accurately identifying recurrent 3D motifs from RNA internal and hairpin loop sequences extracted from secondary structure (2D) diagrams. We have developed and validated new probabilistic models for 3D motif sequences based on hybrid Stochastic Context-Free Grammars and Markov Random Fields (SCFG/MRF). The SCFG/MRF models are constructed using atomic-resolution RNA 3D structures. To parameterize each model, we use all instances of each motif found in the RNA 3D Motif Atlas and annotations of pairwise nucleotide interactions generated by the FR3D software. Isostericity relations between non-Watson-Crick basepairs are used in scoring sequence variants. SCFG techniques model nested pairs and insertions, while MRF ideas handle crossing interactions and base triples. We use test sets of randomly-generated sequences to set acceptance and rejection thresholds for each motif group and thus control the false positive rate. Validation was carried out by comparing results for four motif groups to RMDetect. The software developed for sequence scoring (JAR3D) is structured to automatically incorporate new motifs as they accumulate in the RNA 3D Motif Atlas when new structures are solved and is available free for download. PMID:26130723

  15. The phenomenon of astral motifs on late mediaeval tombstones

    NASA Astrophysics Data System (ADS)

    Mijatović, V.; Ninković, S.; Vemić, D.

    2003-10-01

    The authors study astral motifs present on some mediaeval tombstones found in present-day Serbia and Montenegro and in the neighbouring countries (especially in Bosnia and Herzegovina). The authors discern some important astral motifs, explain them and present a short review concerning their frequency.

  16. DETAIL VIEW, MAIN ENTRANCE GATES, SHOWING A WINGED HOURGLASS MOTIF, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW, MAIN ENTRANCE GATES, SHOWING A WINGED HOURGLASS MOTIF, WHICH REFERS TO THE QUICK PASSAGE OF TIME AND THE SHORTNESS OF HUMAN LIFE. USE OF THIS MOTIF WAS A CARRYOVER FROM THE MCARTHUR GATES. - Woodlands Cemetery, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  17. Role of GxxxG Motifs in Transmembrane Domain Interactions.

    PubMed

    Teese, Mark G; Langosch, Dieter

    2015-08-25

    Transmembrane (TM) helices of integral membrane proteins can facilitate strong and specific noncovalent protein-protein interactions. Mutagenesis and structural analyses have revealed numerous examples in which the interaction between TM helices of single-pass membrane proteins is dependent on a GxxxG or (small)xxx(small) motif. It is therefore tempting to use the presence of these simple motifs as an indicator of TM helix interactions. In this Current Topic review, we point out that these motifs are quite common, with more than 50% of single-pass TM domains containing a (small)xxx(small) motif. However, the actual interaction strength of motif-containing helices depends strongly on sequence context and membrane properties. In addition, recent studies have revealed several GxxxG-containing TM domains that interact via alternative interfaces involving hydrophobic, polar, aromatic, or even ionizable residues that do not form recognizable motifs. In multipass membrane proteins, GxxxG motifs can be important for protein folding, and not just oligomerization. Our current knowledge thus suggests that the presence of a GxxxG motif alone is a weak predictor of protein dimerization in the membrane. PMID:26244771

  18. Differences in local genomic context of bound and unbound motifs

    PubMed Central

    Hansen, Loren; Mariño-Ramírez, Leonardo; Landsman, David

    2012-01-01

    Understanding gene regulation is a major objective in molecular biology research. Frequently, transcription is driven by transcription factors (TFs) that bind to specific DNA sequences. These motifs are usually short and degenerate, rendering the likelihood of multiple copies occurring throughout the genome due to random chance as high. Despite this, TFs only bind to a small subset of sites, thus prompting our investigation into the differences between motifs that are bound by TFs and those that remain unbound. Here we constructed vectors representing various chromatin- and sequence-based features for a published set of bound and unbound motifs representing nine TFs in the budding yeast Saccharomyces cerevisiae. Using a machine learning approach, we identified a set of features that can be used to discriminate between bound and unbound motifs. We also discovered that some TFs bind most or all of their strong motifs in intergenic regions. Our data demonstrate that local sequence context can be strikingly different around motifs that are bound compared to motifs that are unbound. We concluded that there are multiple combinations of genomic features that characterize bound or unbound motifs. PMID:22692006

  19. ELM: the status of the 2010 eukaryotic linear motif resource

    PubMed Central

    Gould, Cathryn M.; Diella, Francesca; Via, Allegra; Puntervoll, Pål; Gemünd, Christine; Chabanis-Davidson, Sophie; Michael, Sushama; Sayadi, Ahmed; Bryne, Jan Christian; Chica, Claudia; Seiler, Markus; Davey, Norman E.; Haslam, Niall; Weatheritt, Robert J.; Budd, Aidan; Hughes, Tim; Paś, Jakub; Rychlewski, Leszek; Travé, Gilles; Aasland, Rein; Helmer-Citterich, Manuela; Linding, Rune; Gibson, Toby J.

    2010-01-01

    Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a ‘Bar Code’ format, which also displays known instances from homologous proteins through a novel ‘Instance Mapper’ protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation. PMID:19920119

  20. Aztec, Incan and Mayan Motifs...Lead to Distinctive Designs.

    ERIC Educational Resources Information Center

    Shields, Joanne

    2001-01-01

    Describes an art project for seventh-grade students in which they choose motifs based on Incan, Aztec, and Mayan Indian materials to incorporate into two-dimensional designs. Explains that the activity objective is to create a unified, balanced and pleasing composition using a minimum of three motifs. (CMK)

  1. Improved Hybrid Genome Assemblies of Two Strains of Bacteroides xylanisolvens, SD_CC_1b and SD_CC_2a, Obtained Using Illumina and 454 Sequencing Technologies

    PubMed Central

    Ramaraj, Thiruvarangan; Sundararajan, Anitha; Schilkey, Faye D.; DelVecchio, Vito G.; Donlon, Mildred; Ziemer, Cherie

    2014-01-01

    Bacteroides xlyanisolvens strains (SD_CC_1b, SD_CC_2a) isolated from human feces were grown on crystalline cellulose. Cellulolytic properties are not common in Bacteroides species. Here, we report improved genome sequences of both of the B. xlyanisolvens strains. PMID:24699955

  2. Improved hybrid genome assemblies of 2 strains of Bacteroides xylanisolvens SD-CC-1b and SD-CC-2a using Illumina and 454 sequencing technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteroides xlyanisolvens strains (SD_CC_1b, SD_CC_2a) isolated from human feces were able to grow on crystalline cellulose. Cellulolytic properties are not common in Bacteroides species. Here, we report improved genome sequences of both the B. xlyanisolvens strains....

  3. MRSA CC398 in the pig production chain.

    PubMed

    Broens, E M; Graat, E A M; van der Wolf, P J; van de Giessen, A W; van Duijkeren, E; Wagenaar, J A; van Nes, A; Mevius, D J; de Jong, M C M

    2011-02-01

    In 2005, a distinct clone of methicillin resistant Staphylococcus aureus (MRSA CC398) was found in pigs and people in contact with pigs. The structure of the pig production chain in high technology pig husbandry enables pathogens to spread during animal trading, with an increasing prevalence in herds further down the chain. The objective of this study was to quantify the effect of the MRSA status of the supplying herd on the MRSA status of the receiving herd in order to gain more insight into the role of animal trading as a transmission route for MRSA CC398. Nasal samples (60-80 pigs per herd) were collected from 38 herds; in 20 herds, environmental samples were collected as well. Ten MRSA-positive herds (based on the results of nasal swabs of 10 individual pigs per herd) from a prior study were included in the data analysis. Herds were classified as MRSA positive if at least one sample tested positive. The 48 herds were part of 14 complete (40 herds) and 4 incomplete (8 herds) pig production chains. Fifty-six percent of the herds were classified as MRSA positive. MRSA-positive herds were observed at the start (breeding herds), middle (farrowing herds) and the end (finishing herds) of the pig production chain. All of the herds in 8 chains tested MRSA positive;, all of the herds in 5 chains tested MRSA negative and in the remaining 5 chains, MRSA-positive and MRSA-negative herds were detected. Seven spa types were found, which were all previously confirmed to belong to CC398. All of the isolates were susceptible to mupirocin, linezolid, rifampicin, fusidic acid and cotrimoxazole. Resistance against tetracycline, erythromycin and clindamycin was found in 100, 74 and 76% of the isolates, respectively. Seventy-nine percent of herds with a MRSA-positive supplier of pigs were MRSA positive, whereas 23% of herds with a MRSA-negative supplier were MRSA positive (OR=10.8; 95% CI: 1.5-110.1; P=0.011). The presence of entirely MRSA-positive and MRSA-negative chains and the

  4. [Comporison Sduty of Microstructure by Metallographicalk on the Polarized Light and Texture by XRD of CC 5083 and CC 5182 Aluminium Alloy after Cold Rolling and Recrystallization].

    PubMed

    Chen, Ming-biao; Li, Yong-wei; Tan, Yuan-biao; Ma, Min; Wang, Xue-min; Liu, Wen-chang

    2015-03-01

    At present the study of relation between microstructure, texture and performance of CC 5083 aluminium alloy after cold tolling and recrystallization processes is still finitude. So that the use of the CC 5083 aluminium alloy be influenced. Be cased into electrical furnace, hot up with unlimited speed followed the furnace hot up to different temperature and annealed 2h respectively, and be cased into salt-beth furnace, hot up quickly to different temperature and annealed 30 min respectively for CC 5083 and CC 5182 aluminum alloy after cold roling with 91.5% reduction. The microstructure be watched use metallographic microscope, the texture be inspected by XRD. The start temperature of recrystallization and grain grow up temperature within annealing in the electric furnace of CC 5083 aluminum alloy board is 343 degrees C, and the shap of grain after grow up with long strip (the innovation point ); The start temperature of recrystallization within annealling in the salt bath furnace of CC 5083 is 343 degrees C. The start temperature and end temperature of recrystallization within annealling of CC 5083 and CC 5182 aluminum alloy is 371 degrees C. The grain grow up outstanding of cold rooled CC 5152 aluminum alloy after annealed with 454 degrees C in the electric furnace and salt bath furnace. The start temperature of grain grow up of CC 5083 alluminurn alloy annealed in the electric furnace and salt bath furnace respectively is higher than the start temperature of grain grow up of CC 5182 alluminum alloy annealed in the electric furnace and salt bath furnace respectively. The strat temperature of recrystallization grain grow up is higher than which annealled with other three manner annealing process. The recrystallization temperature of CC 5182 annealed in the salt bath furnace is higher than which annealed in the electric furnace. The recrystallization temperature of the surface layer of CC 5083 and CC 5182 aluminum alloy is higher than the inner layer (the innovation

  5. A CC' loop decoy peptide blocks the interaction between Act1 and IL-17RA to attenuate IL-17- and IL-25-induced inflammation.

    PubMed

    Liu, Caini; Swaidani, Shadi; Qian, Wen; Kang, Zizhen; Sun, Paige; Han, Yue; Wang, Chenhui; Gulen, Muhammet Fatih; Yin, Weiguo; Zhang, Chunjiang; Fox, Paul L; Aronica, Mark; Hamilton, Thomas A; Misra, Saurav; Deng, Junpeng; Li, Xiaoxia

    2011-01-01

    Interleukin-17 (IL-17) and IL-25 signaling induce the expression of genes encoding inflammatory factors and are implicated in the pathology of various inflammatory diseases. Nuclear factor κB (NF-κB) activator 1 (Act1) is an adaptor protein and E3 ubiquitin ligase that is critical for signaling by either IL-17 or IL-25, and it is recruited to their receptors (IL-17R and IL-25R) through heterotypic interactions between the SEFIR [SEF (similar expression to fibroblast growth factor genes) and IL-17R] domain of Act1 and that of the receptor. SEFIR domains have structural similarity with the Toll-IL-1 receptor (TIR) domains of Toll-like receptors and IL-1R. Whereas the BB' loop of TIR is required for TIR-TIR interactions, we found that deletion of the BB' loop from Act1 or IL-17RA (a common subunit of both IL-17R and IL-25R) did not affect Act1-IL-17RA interactions; rather, deletion of the CC' loop from Act1 or IL-17RA abolished the interaction between both proteins. Surface plasmon resonance measurements showed that a peptide corresponding to the CC' loop of Act1 bound directly to IL-17RA. A cell-permeable decoy peptide based on the CC' loop sequence inhibited IL-17- or IL-25-mediated signaling in vitro, as well as IL-17- and IL-25-induced pulmonary inflammation in mice. Together, these findings provide the molecular basis for the specificity of SEFIR-SEFIR versus TIR-TIR domain interactions and consequent signaling. Moreover, we suggest that the CC' loop motif of SEFIR domains is a promising target for therapeutic strategies against inflammatory diseases associated with IL-17 or IL-25 signaling. PMID:22045852

  6. De Novo Regulatory Motif Discovery Identifies Significant Motifs in Promoters of Five Classes of Plant Dehydrin Genes

    PubMed Central

    Zolotarov, Yevgen; Strömvik, Martina

    2015-01-01

    Plants accumulate dehydrins in response to osmotic stresses. Dehydrins are divided into five different classes, which are thought to be regulated in different manners. To better understand differences in transcriptional regulation of the five dehydrin classes, de novo motif discovery was performed on 350 dehydrin promoter sequences from a total of 51 plant genomes. Overrepresented motifs were identified in the promoters of five dehydrin classes. The Kn dehydrin promoters contain motifs linked with meristem specific expression, as well as motifs linked with cold/dehydration and abscisic acid response. KS dehydrin promoters contain a motif with a GATA core. SKn and YnSKn dehydrin promoters contain motifs that match elements connected with cold/dehydration, abscisic acid and light response. YnKn dehydrin promoters contain motifs that match abscisic acid and light response elements, but not cold/dehydration response elements. Conserved promoter motifs are present in the dehydrin classes and across different plant lineages, indicating that dehydrin gene regulation is likely also conserved. PMID:26114291

  7. Results of the BETS Survey of the CC Cryostat

    SciTech Connect

    Luther, R.D.; /Fermilab

    1988-01-07

    This Engineering Note presents results of dimensional surveys of the CC Cryostat. The surveys were performed by members of the Fermilab Alignment Group using a computerized optical system known as BETS. The coordinate system used is described on page 1 of the note. Locations of the support bosses in the inner vessel are given on pages 2 and 3. The bosses control the position of the module array within the cryostat. Locations of the center cylinders (bores) and bypass tubes in both vessels are given on pages 2 and 4 through 6. Elevations and locations of the nozzles on top of the cryostat are given on page 9. Measurements of the stack-up heights of the support stanchions are given on page 13. Raw BETS data are included in Appendix A of the Note.

  8. Simulating CC and MLO compressions with the Surface Evolver

    NASA Astrophysics Data System (ADS)

    Zanchetta do Nascimento, Marcelo; Ramos Batista, Valério

    2015-01-01

    Mammographies are X-ray images of the breast under external compressions called Craniocaudal (CC) and Mediolateral Oblique (MLO). Together they increase the chances of detecting cancer but the breast is shown in strongly deformed shapes. Cancer location is highly uncertain for the surgery and so the breast is commonly taken out entirely, a serious trauma for the patient. In this paper we present a fully virtual mammography procedure that faithfully reproduces all shapes of the breast and in its inside tracks the cancer at any step. The cancer is then precisely located for the surgery and can be removed through a small incision. So the whole structure is preserved and cured as an integral benefit to the patient.

  9. Producing Newborn Synchronous Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  10. Body Size in Mammalian Paleobiology

    NASA Astrophysics Data System (ADS)

    Damuth, John; MacFadden, Bruce J.

    1990-11-01

    This valuable collection of essays presents and evaluates techniques of body-mass estimation and reviews current and potential applications of body-size estimates in paleobiology. Papers discuss explicitly the errors and biases of various regression techniques and predictor variables, and the identification of functionally similar groups of species for improving the accuracy of estimates. At the same time other chapters review and discuss the physiological, ecological, and behavioral correlates of body size in extant mammals; the significance of body-mass distributions in mammalian faunas; and the ecology and evolution of body size in particular paleofaunas. Coverage is particularly detailed for carnivores, primates, and ungulates, but information is also presented on marsupials, rodents, and proboscideans.

  11. Determinants of Mammalian Nucleolar Architecture

    PubMed Central

    Farley, Katherine I.; Surovtseva, Yulia; Merkel, Janie; Baserga, Susan J.

    2015-01-01

    The nucleolus is responsible for the production of ribosomes, essential machines which synthesize all proteins needed by the cell. The structure of human nucleoli is highly dynamic and is directly related to its functions in ribosome biogenesis. Despite the importance of this organelle, the intricate relationship between nucleolar structure and function remains largely unexplored. How do cells control nucleolar formation and function? What are the minimal requirements for making a functional nucleolus? Here we review what is currently known regarding mammalian nucleolar formation at nucleolar organizer regions (NORs), which can be studied by observing the dissolution and reformation of the nucleolus during each cell division. Additionally, the nucleolus can be examined by analyzing how alterations in nucleolar function manifest in differences in nucleolar architecture. Furthermore, changes in nucleolar structure and function are correlated with cancer, highlighting the importance of studying the determinants of nucleolar formation. PMID:25670395

  12. Development of the Mammalian Kidney.

    PubMed

    McMahon, Andrew P

    2016-01-01

    The basic unit of kidney function is the nephron. In the mouse, around 14,000 nephrons form in a 10-day period extending into early neonatal life, while the human fetus forms the adult complement of nephrons in a 32-week period completed prior to birth. This review discusses our current understanding of mammalian nephrogenesis: the contributing cell types and the regulatory processes at play. A conceptual developmental framework has emerged for the mouse kidney. This framework is now guiding studies of human kidney development enabled in part by in vitro systems of pluripotent stem cell-seeded nephrogenesis. A near future goal will be to translate our developmental knowledge-base to the productive engineering of new kidney structures for regenerative medicine. PMID:26969971

  13. Tripartite motif 32 prevents pathological cardiac hypertrophy.

    PubMed

    Chen, Lijuan; Huang, Jia; Ji, Yanxiao; Zhang, Xiaojing; Wang, Pixiao; Deng, Keqiong; Jiang, Xi; Ma, Genshan; Li, Hongliang

    2016-05-01

    TRIM32 (tripartite motif 32) is widely accepted to be an E3 ligase that interacts with and eventually ubiquitylates multiple substrates. TRIM32 mutants have been associated with LGMD-2H (limb girdle muscular dystrophy 2H). However, whether TRIM32 is involved in cardiac hypertrophy induced by biomechanical stresses and neurohumoral mediators remains unclear. We generated mice and isolated NRCMs (neonatal rat cardiomyocytes) that overexpressed or were deficient in TRIM32 to investigate the effect of TRIM32 on AB (aortic banding) or AngII (angiotensin II)-mediated cardiac hypertrophy. Echocardiography and both pathological and molecular analyses were used to determine the extent of cardiac hypertrophy and subsequent fibrosis. Our results showed that overexpression of TRIM32 in the heart significantly alleviated the hypertrophic response induced by pressure overload, whereas TRIM32 deficiency dramatically aggravated pathological cardiac remodelling. Similar results were also found in cultured NRCMs incubated with AngII. Mechanistically, the present study suggests that TRIM32 exerts cardioprotective action by interruption of Akt- but not MAPK (mitogen-dependent protein kinase)-dependent signalling pathways. Additionally, inactivation of Akt by LY294002 offset the exacerbated hypertrophic response induced by AB in TRIM32-deficient mice. In conclusion, the present study indicates that TRIM32 plays a protective role in AB-induced pathological cardiac remodelling by blocking Akt-dependent signalling. Therefore TRIM32 could be a novel therapeutic target for the prevention of cardiac hypertrophy and heart failure. PMID:26884348

  14. Tripartite motif 32 prevents pathological cardiac hypertrophy

    PubMed Central

    Huang, Jia; Ji, Yanxiao; Zhang, Xiaojing; Wang, Pixiao; Deng, Keqiong; Jiang, Xi; Ma, Genshan

    2016-01-01

    TRIM32 (tripartite motif 32) is widely accepted to be an E3 ligase that interacts with and eventually ubiquitylates multiple substrates. TRIM32 mutants have been associated with LGMD-2H (limb girdle muscular dystrophy 2H). However, whether TRIM32 is involved in cardiac hypertrophy induced by biomechanical stresses and neurohumoral mediators remains unclear. We generated mice and isolated NRCMs (neonatal rat cardiomyocytes) that overexpressed or were deficient in TRIM32 to investigate the effect of TRIM32 on AB (aortic banding) or AngII (angiotensin II)-mediated cardiac hypertrophy. Echocardiography and both pathological and molecular analyses were used to determine the extent of cardiac hypertrophy and subsequent fibrosis. Our results showed that overexpression of TRIM32 in the heart significantly alleviated the hypertrophic response induced by pressure overload, whereas TRIM32 deficiency dramatically aggravated pathological cardiac remodelling. Similar results were also found in cultured NRCMs incubated with AngII. Mechanistically, the present study suggests that TRIM32 exerts cardioprotective action by interruption of Akt- but not MAPK (mitogen-dependent protein kinase)-dependent signalling pathways. Additionally, inactivation of Akt by LY294002 offset the exacerbated hypertrophic response induced by AB in TRIM32-deficient mice. In conclusion, the present study indicates that TRIM32 plays a protective role in AB-induced pathological cardiac remodelling by blocking Akt-dependent signalling. Therefore TRIM32 could be a novel therapeutic target for the prevention of cardiac hypertrophy and heart failure. PMID:26884348

  15. Recent advances in mammalian protein production

    PubMed Central

    Bandaranayake, Ashok D.; Almo, Steven C.

    2014-01-01

    Mammalian protein production platforms have had a profound impact in many areas of basic and applied research, and an increasing number of blockbuster drugs are recombinant mammalian proteins. With global sales of these drugs exceeding US$120 billion per year, both industry and academic research groups continue to develop cost effective methods for producing mammalian proteins to support preclinical and clinical evaluations of potential therapeutics. While a wide range of platforms have been successfully exploited for laboratory use, the bulk of recent biologics have been produced in mammalian cell lines due to the requirement for post translational modification and the biosynthetic complexity of the target proteins. In this review we highlight the range of mammalian expression platforms available for recombinant protein production, as well as advances in technologies for the rapid and efficient selection of highly productive clones. PMID:24316512

  16. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  17. BB0238, a Presumed Tetratricopeptide Repeat-Containing Protein, Is Required during Borrelia burgdorferi Mammalian Infection

    PubMed Central

    Groshong, Ashley M.; Fortune, Danielle E.; Moore, Brendan P.; Spencer, Horace J.; Skinner, Robert A.; Bellamy, William T.

    2014-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, occupies both a tick vector and mammalian host in nature. Considering the unique enzootic life cycle of B. burgdorferi, it is not surprising that a large proportion of its genome is composed of hypothetical proteins not found in other bacterial pathogens. bb0238 encodes a conserved hypothetical protein of unknown function that is predicted to contain a tetratricopeptide repeat (TPR) domain, a structural motif responsible for mediating protein-protein interactions. To evaluate the role of bb0238 during mammalian infection, a bb0238-deficient mutant was constructed. The bb0238 mutant was attenuated in mice infected via needle inoculation, and complementation of bb0238 expression restored infectivity to wild-type levels. bb0238 expression does not change in response to varying culture conditions, and thus, it appears to be constitutively expressed under in vitro conditions. bb0238 is expressed in murine tissues during infection, though there was no significant change in expression levels among different tissue types. Localization studies indicate that BB0238 is associated with the inner membrane of the spirochete and is therefore unlikely to promote interaction with host ligands during infection. B. burgdorferi clones containing point mutations in conserved residues of the putative TPR motif of BB0238 demonstrated attenuation in mice that was comparable to that in the bb0238 deletion mutant, suggesting that BB0238 may contain a functional TPR domain. PMID:25069985

  18. BB0238, a presumed tetratricopeptide repeat-containing protein, is required during Borrelia burgdorferi mammalian infection.

    PubMed

    Groshong, Ashley M; Fortune, Danielle E; Moore, Brendan P; Spencer, Horace J; Skinner, Robert A; Bellamy, William T; Blevins, Jon S

    2014-10-01

    The Lyme disease spirochete, Borrelia burgdorferi, occupies both a tick vector and mammalian host in nature. Considering the unique enzootic life cycle of B. burgdorferi, it is not surprising that a large proportion of its genome is composed of hypothetical proteins not found in other bacterial pathogens. bb0238 encodes a conserved hypothetical protein of unknown function that is predicted to contain a tetratricopeptide repeat (TPR) domain, a structural motif responsible for mediating protein-protein interactions. To evaluate the role of bb0238 during mammalian infection, a bb0238-deficient mutant was constructed. The bb0238 mutant was attenuated in mice infected via needle inoculation, and complementation of bb0238 expression restored infectivity to wild-type levels. bb0238 expression does not change in response to varying culture conditions, and thus, it appears to be constitutively expressed under in vitro conditions. bb0238 is expressed in murine tissues during infection, though there was no significant change in expression levels among different tissue types. Localization studies indicate that BB0238 is associated with the inner membrane of the spirochete and is therefore unlikely to promote interaction with host ligands during infection. B. burgdorferi clones containing point mutations in conserved residues of the putative TPR motif of BB0238 demonstrated attenuation in mice that was comparable to that in the bb0238 deletion mutant, suggesting that BB0238 may contain a functional TPR domain. PMID:25069985

  19. Molecular characterization of miiuy croaker CC chemokine gene and its expression following Vibrio anguillarum injection.

    PubMed

    Cheng, Yuan-zhi; Wang, Ri-xin; Sun, Yue-na; Xu, Tian-jun

    2011-07-01

    A CC chemokine gene was isolated from miiuy croaker (Miichthys miiuy) by expressed sequence tag analysis. The Mimi-CC cDNA contains an open reading frame of 429 nucleotides encoding 142 amino acid residues. The deduced Mimi-CC possesses the typical arrangement of four cysteines as found in other known CC chemokines (C³¹, C³², C⁵⁶, and C⁷⁰). It shares 15.3%-37.4% identity to CC chemokines of mammal and teleost. Phylogenetic analysis showed that miiuy croaker was most closely related to Atlantic cod. Genomic analysis revealed that Mimi-CC gene consists of four exons and three introns, which is not typical of CC chemokines but resembles that of CXC chemokines. Real-time quantitative RT-PCR demonstrated that Mimi-CC is constitutively expressed in most tissues including lymphoid organs, and the highest expression of Mimi-CC transcripts in normal tissues was observed in muscle. Challenge of miiuy croaker with Vibrio anguillarum resulted in significant changes in the expression of CC chemokine transcripts in four tissues, especially in kidney and spleen. PMID:21414411

  20. Triadic motifs in the dependence networks of virtual societies.

    PubMed

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-01-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs. PMID:24912755

  1. Recurrent Structural Motifs in Non-Homologous Protein Structures

    PubMed Central

    Johansson, Maria U.; Zoete, Vincent; Guex, Nicolas

    2013-01-01

    We have extracted an extensive collection of recurrent structural motifs (RSMs), which consist of sequentially non-contiguous structural motifs (4–6 residues), each of which appears with very similar conformation in three or more mutually unrelated protein structures. We find that the proteins in our set are covered to a substantial extent by the recurrent non-contiguous structural motifs, especially the helix and strand regions. Computational alanine scanning calculations indicate that the average folding free energy changes upon alanine mutation for most types of non-alanine residues are higher for amino acids that are present in recurrent structural motifs than for amino acids that are not. The non-alanine amino acids that are most common in the recurrent structural motifs, i.e., phenylalanine, isoleucine, leucine, valine and tyrosine and the less abundant methionine and tryptophan, have the largest folding free energy changes. This indicates that the recurrent structural motifs, as we define them, describe recurrent structural patterns that are important for protein stability. In view of their properties, such structural motifs are potentially useful for inter-residue contact prediction and protein structure refinement. PMID:23574940

  2. BlockLogo: visualization of peptide and sequence motif conservation.

    PubMed

    Olsen, Lars Rønn; Kudahl, Ulrich Johan; Simon, Christian; Sun, Jing; Schönbach, Christian; Reinherz, Ellis L; Zhang, Guang Lan; Brusic, Vladimir

    2013-12-31

    BlockLogo is a web-server application for the visualization of protein and nucleotide fragments, continuous protein sequence motifs, and discontinuous sequence motifs using calculation of block entropy from multiple sequence alignments. The user input consists of a multiple sequence alignment, selection of motif positions, type of sequence, and output format definition. The output has BlockLogo along with the sequence logo, and a table of motif frequencies. We deployed BlockLogo as an online application and have demonstrated its utility through examples that show visualization of T-cell epitopes and B-cell epitopes (both continuous and discontinuous). Our additional example shows a visualization and analysis of structural motifs that determine the specificity of peptide binding to HLA-DR molecules. The BlockLogo server also employs selected experimentally validated prediction algorithms to enable on-the-fly prediction of MHC binding affinity to 15 common HLA class I and class II alleles as well as visual analysis of discontinuous epitopes from multiple sequence alignments. It enables the visualization and analysis of structural and functional motifs that are usually described as regular expressions. It provides a compact view of discontinuous motifs composed of distant positions within biological sequences. BlockLogo is available at: http://research4.dfci.harvard.edu/cvc/blocklogo/ and http://met-hilab.bu.edu/blocklogo/. PMID:24001880

  3. Anti-sense DNA d(GGCCCC)n expansions in C9ORF72 form i-motifs and protonated hairpins.

    PubMed

    Kovanda, Anja; Zalar, Matja; Šket, Primož; Plavec, Janez; Rogelj, Boris

    2015-01-01

    The G4C2 hexanucleotide repeat expansion mutation (HREM) in C9ORF72, represents the most common mutation associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Three main disease mechanisms have been proposed to date: C9ORF72 haploinsufficiency, RNA toxicity, and accumulation of dipeptide repeat proteins. Pure GC content of the HREM potentially enables the formation of various non-B DNA structures such as G-quadruplexes and i-motifs. These structures are proposed to act as promoters and regulatory elements affecting replication, transcription and translation of the surrounding region. G-quadruplexes have already been shown on the G-rich sense DNA and RNA strands (G4C2)n, the structure of the anti-sense (G2C4)n strand remains unresolved. Similar C-rich sequences may, under acidic conditions, form i-motifs consisting of two parallel duplexes in a head to tail orientation held together by hemi-protonated C(+)-C pairs. We show that d(G2C4)n repeats do form i-motif and protonated hairpins even under near-physiological conditions. Rather than forming a DNA duplex, i-motifs persist even in the presence of the sense strand. This preferential formation of G-quadruplex and i-motif/hairpin structures over duplex DNA, may explain HREM replicational and transcriptional instability. Furthermore, i-motifs/hairpins can represent a novel pharmacological target for C9ORF72 associated ALS and FTLD. PMID:26632347

  4. Anti-sense DNA d(GGCCCC)n expansions in C9ORF72 form i-motifs and protonated hairpins

    PubMed Central

    Kovanda, Anja; Zalar, Matja; Šket, Primož; Plavec, Janez; Rogelj, Boris

    2015-01-01

    The G4C2 hexanucleotide repeat expansion mutation (HREM) in C9ORF72, represents the most common mutation associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Three main disease mechanisms have been proposed to date: C9ORF72 haploinsufficiency, RNA toxicity, and accumulation of dipeptide repeat proteins. Pure GC content of the HREM potentially enables the formation of various non-B DNA structures such as G-quadruplexes and i-motifs. These structures are proposed to act as promoters and regulatory elements affecting replication, transcription and translation of the surrounding region. G-quadruplexes have already been shown on the G-rich sense DNA and RNA strands (G4C2)n, the structure of the anti-sense (G2C4)n strand remains unresolved. Similar C-rich sequences may, under acidic conditions, form i-motifs consisting of two parallel duplexes in a head to tail orientation held together by hemi-protonated C+-C pairs. We show that d(G2C4)n repeats do form i-motif and protonated hairpins even under near-physiological conditions. Rather than forming a DNA duplex, i-motifs persist even in the presence of the sense strand. This preferential formation of G-quadruplex and i-motif/hairpin structures over duplex DNA, may explain HREM replicational and transcriptional instability. Furthermore, i-motifs/hairpins can represent a novel pharmacological target for C9ORF72 associated ALS and FTLD. PMID:26632347

  5. Multiple Dileucine-like Motifs Direct VGLUT1 Trafficking

    PubMed Central

    Foss, Sarah M.; Li, Haiyan; Santos, Magda S.; Edwards, Robert H.

    2013-01-01

    The vesicular glutamate transporters (VGLUTs) package glutamate into synaptic vesicles, and the two principal isoforms VGLUT1 and VGLUT2 have been suggested to influence the properties of release. To understand how a VGLUT isoform might influence transmitter release, we have studied their trafficking and previously identified a dileucine-like endocytic motif in the C terminus of VGLUT1. Disruption of this motif impairs the activity-dependent recycling of VGLUT1, but does not eliminate its endocytosis. We now report the identification of two additional dileucine-like motifs in the N terminus of VGLUT1 that are not well conserved in the other isoforms. In the absence of all three motifs, rat VGLUT1 shows limited accumulation at synaptic sites and no longer responds to stimulation. In addition, shRNA-mediated knockdown of clathrin adaptor proteins AP-1 and AP-2 shows that the C-terminal motif acts largely via AP-2, whereas the N-terminal motifs use AP-1. Without the C-terminal motif, knockdown of AP-1 reduces the proportion of VGLUT1 that responds to stimulation. VGLUT1 thus contains multiple sorting signals that engage distinct trafficking mechanisms. In contrast to VGLUT1, the trafficking of VGLUT2 depends almost entirely on the conserved C-terminal dileucine-like motif: without this motif, a substantial fraction of VGLUT2 redistributes to the plasma membrane and the transporter's synaptic localization is disrupted. Consistent with these differences in trafficking signals, wild-type VGLUT1 and VGLUT2 differ in their response to stimulation. PMID:23804088

  6. Coherent feedforward transcriptional regulatory motifs enhance drug resistance

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel A.; Balázsi, Gábor; Kærn, Mads

    2014-05-01

    Fluctuations in gene expression give identical cells access to a spectrum of phenotypes that can serve as a transient, nongenetic basis for natural selection by temporarily increasing drug resistance. In this study, we demonstrate using mathematical modeling and simulation that certain gene regulatory network motifs, specifically coherent feedforward loop motifs, can facilitate the development of nongenetic resistance by increasing cell-to-cell variability and the time scale at which beneficial phenotypic states can be maintained. Our results highlight how regulatory network motifs enabling transient, nongenetic inheritance play an important role in defining reproductive fitness in adverse environments and provide a selective advantage subject to evolutionary pressure.

  7. Seeing the B-A-C-H motif

    NASA Astrophysics Data System (ADS)

    Catravas, Palmyra

    2005-09-01

    Musical compositions can be thought of as complex, multidimensional data sets. Compositions based on the B-A-C-H motif (a four-note motif of the pitches of the last name of Johann Sebastian Bach) span several centuries of evolving compositional styles and provide an intriguing set for analysis since they contain a common feature, the motif, buried in dissimilar contexts. We will present analyses which highlight the content of this unusual set of pieces, with emphasis on visual display of information.

  8. Binding of imidazole, 1-methylimidazole and 4-nitroimidazole to yeast cytochrome c peroxidase (CcP) and the distal histidine mutant, CcP(H52L).

    PubMed

    Erman, James E; Chinchilla, Diana; Studer, Jason; Vitello, Lidia B

    2015-08-01

    Imidazole, 1-methylimidazole and 4-nitroimidazole bind to yeast cytochrome c peroxidase (yCcP) with apparent equilibrium dissociation constants (KD(app)) of 3.3±0.4, 0.85±0.11, and ~0.2M, respectively, at pH7. This is the weakest imidazole binding to a heme protein reported to date and it is about 120 times weaker than imidazole binding to metmyoglobin. Spectroscopic changes associated with imidazole and 1-methylimidazole binding to yCcP suggest partial ionization of bound imidazole to imidazolate. The pKa for ionization of bound imidazole is estimated to be 7.4±0.2, about 7 units lower than that of free imidazole and about 3 units lower than imidazole bound to metmyoglobin. Equilibrium binding of imidazole to CcP(H52L) is biphasic with low- and high-affinity phases having KD(app) values of 9.5±4.5 and 0.13±0.04M, respectively. CcP(H52L) binding of 1-methylimidazole is monophasic with an affinity similar to those of yCcP and rCcP. Binding of 1-methylimidazole to rCcP is associated with two kinetic phases, the initial binding complete within 10s, followed by a process that is consistent with 1-methylimidazole binding to a cavity created by movement of Trp-191 from the interior of the protein to the surface. Both the equilibrium binding and kinetics of 1-methylimidazole binding to yCcP are pH dependent. yCcP has a four-fold increase in 1-methylimidazole binding affinity on decreasing the pH from 7.5 to 4.0, an observation that is unique among the many studies on binding of imidazole and imidazole derivatives to heme proteins. PMID:25907133

  9. Binding of imidazole, 1-methylimidazole and 4-nitroimidazole to yeast cytochrome c peroxidase (CcP) and the distal histidine mutant, CcP(H52L)

    PubMed Central

    Erman, James E.; Chinchilla, Diana; Studer, Jason; Vitello, Lidia B.

    2015-01-01

    Imidazole, 1-methylimidazole and 4-nitroimidazole bind to yeast cytochrome c peroxidase (yCcP) with apparent equilibrium dissociation constants (KDapp) of 3.3 ± 0.4, 0.85 ± 0.11, and ~0.2 M, respectively, at pH 7. This is the weakest imidazole binding to a heme protein reported to date and it is about 120 times weaker than imidazole binding to metmyoglobin. Spectroscopic changes associated with imidazole and 1-methylimidazole binding to yCcP suggest partial ionization of bound imidazole to imidazolate. The pKa for ionization of bound imidazole is estimated to be 7.4 ± 0.2, about 7 units lower than that of free imidazole and about 3 units lower than imidazole bound to metmyoglobin. Equilibrium binding of imidazole to CcP(H52L) is biphasic with low- and high-affinity phases having KDapp values of 9.5 ± 4.5 and 0.13 ± 0.04 M, respectively. CcP(H52L) binding of 1-methylimidazole is monophasic with an affinity similar to those of yCcP and rCcP. Binding of 1-methylimidazole to rCcP is associated with two kinetic phases, the initial binding complete within 10 s, followed by a process that is consistent with 1-methylimidazole binding to a cavity created by movement of Trp-191 from the interior of the protein to the surface. Both the equilibrium binding and kinetics of 1-methylimidazole binding to yCcP are pH dependent. yCcP has a four-fold increase in 1-methylimidazole binding affinity on decreasing the pH from 7.5 to 4.0, an observation that is unique among the many studies on binding of imidazole and imidazole derivatives to heme proteins. PMID:25907133

  10. SNPs in candidate genes MX dynamin-like GTPase and chemokine (C-C motif) receptor-5 are associated with ovine pulmonary adenocarcinoma progression in Latxa sheep.

    PubMed

    Larruskain, A; Esparza-Baquer, A; Minguijón, E; Juste, R A; Jugo, B M

    2015-12-01

    Ovine pulmonary adenocarcinoma (OPA) is a contagious lung cancer in sheep caused by Jaagsiekte sheep retrovirus (JSRV). OPA is present in many sheep-rearing countries causing economic and welfare issues, as currently no efficient vaccines or treatments are available. Breed differences suggest a host genetic component may influence the pathogenesis of OPA, but so far few genes have been identified. In this work, a genetic association study was carried out in Latxa dairy sheep which were classified as cases/controls based on the presence/absence of OPA lung tumours. Candidate genes included cytokines and a receptor and innate immunity genes. After SNPs in the candidate genes were identified, the distribution of alleles in cases and controls was compared by means of logistic regression analyses at the allelic, genotypic and haplotypic levels. The association analysis showed that several candidate genes were significantly associated with resistance or susceptibility to OPA; two of the candidates, CCR5 and MX1, remained significantly associated with resistance and susceptibility respectively, even after Bonferroni correction. PMID:26365162

  11. Synthetic mammalian trigger-controlled bipartite transcription factors

    PubMed Central

    Folcher, Marc; Xie, Mingqi; Spinnler, Andrea; Fussenegger, Martin

    2013-01-01

    Synthetic biology has significantly advanced the design of synthetic control devices, gene circuits and networks that can reprogram mammalian cells in a trigger-inducible manner. Prokaryotic helix-turn-helix motifs have become the standard resource to design synthetic mammalian transcription factors that tune chimeric promoters in a small molecule-responsive manner. We have identified a family of Actinomycetes transcriptional repressor proteins showing a tandem TetR-family signature and have used a synthetic biology-inspired approach to reveal the potential control dynamics of these bi-partite regulators. Daisy-chain assembly of well-characterized prokaryotic repressor proteins such as TetR, ScbR, TtgR or VanR and fusion to either the Herpes simplex transactivation domain VP16 or the Krueppel-associated box domain (KRAB) of the human kox-1 gene resulted in synthetic bi- and even tri-partite mammalian transcription factors that could reversibly program their individual chimeric or hybrid promoters for trigger-adjustable transgene expression using tetracycline (TET), γ-butyrolactones, phloretin and vanillic acid. Detailed characterization of the bi-partite ScbR-TetR-VP16 (ST-TA) transcription factor revealed independent control of TET- and γ-butyrolactone-responsive promoters at high and double-pole double-throw (DPDT) relay switch qualities at low intracellular concentrations. Similar to electromagnetically operated mechanical DPDT relay switches that control two electric circuits by a fully isolated low-power signal, TET programs ST-TA to progressively switch from TetR-specific promoter-driven expression of transgene one to ScbR-specific promoter-driven transcription of transgene two while ST-TA flips back to exclusive transgene 1 expression in the absence of the trigger antibiotic. We suggest that natural repressors and activators with tandem TetR-family signatures may also provide independent as well as DPDT-mediated control of two sets of transgenes in

  12. Preferential carriage of class 2 integrons in Acinetobacter baumannii CC113 and novel singletons.

    PubMed

    Ramírez, M S; Montaña, S; Cassini, M; Centrón, D

    2015-10-01

    Our understanding of the distribution of integrons associated with multidrug resistance in Acinetobacter baumannii isolates around the world remains incomplete. The association between the class 1 and 2 integron A. baumannii-positive isolates (n = 60), recovered since 1982 from 11 Argentinean hospitals, and the circulating lineages, was investigated. While class 2 integrons were highly significantly associated with clonal lineage CC113B/CC79P (P = 0·009) and novel singletons (P = 0·001), class 1 integrons were found not to be associated with CC109B/CC1P or other lineages. The study reveals a differential distribution of class 2 integrons in lineages, and suggests that the prevalence of intI2 in Argentina is related to the emergence of novel singletons in recent years and to the abundance of CC113B/CC79P, which has been the local dominant lineage for several decades. PMID:25697643

  13. Mammalian reproduction: an ecological perspective.

    PubMed

    Bronson, F H

    1985-02-01

    The objectives of this paper are to organize our concepts about the environmental regulation of reproduction in mammals and to delineate important gaps in our knowledge of this subject. The environmental factors of major importance for mammalian reproduction are food availability, ambient temperature, rainfall, the day/night cycle and a variety of social cues. The synthesis offered here uses as its core the bioenergetic control of reproduction. Thus, for example, annual patterns of breeding are viewed as reflecting primarily the caloric costs of the female's reproductive effort as they relate to the energetic costs and gains associated with her foraging effort. Body size of the female is an important consideration since it is correlated with both potential fat reserves and life span. Variation in nutrient availability may or may not be an important consideration. The evolutionary forces that have shaped the breeding success of males usually are fundamentally different from those acting on females and, by implication, the environmental controls governing reproduction probably also often differ either qualitatively or quantitatively in the two sexes. Mammals often live in habitats where energetic and nutrient challenges vary seasonally, even in the tropics. When seasonal breeding is required, a mammal may use a predictor such as photoperiod or a secondary plant compound to prepare metabolically for reproduction. A reasonable argument can be made, however, that opportunistic breeding, unenforced by a predictor, may be the most prevalent strategy extant among today's mammals. Social cues can have potent modulating actions. They can act either via discrete neural and endocrine pathways to alter specific processes such as ovulation, or they can induce nonspecific emotional states that secondarily affect reproduction. Many major gaps remain in our knowledge about the environmental regulation of mammalian reproduction. For one, we have a paucity of information about the

  14. Mammalian Carboxylesterase 5: Comparative Biochemistry and Genomics

    PubMed Central

    Holmes, Roger S; Cox, Laura A; VandeBerg, John L

    2008-01-01

    Carboxylesterase 5 (CES5) (also called cauxin or CES7) is one of at least five mammalian CES gene families encoding enzymes of broad substrate specificity and catalysing hydrolytic and transesterification reactions. In silico methods were used to predict the amino acid sequences, secondary structures and gene locations for CES5 genes and gene products. Amino acid sequence alignments of mammalian CES5 enzymes enabled identification of key CES sequences previously reported for human CES1, as well as other sequences that are specific to the CES5 gene family, which were consistent with being monomeric in subunit structure and available for secretion into body fluids. Predicted secondary structures for mammalian CES5 demonstrated significant conservation with human CES1 as well as distinctive mammalian CES5 like structures. Mammalian CES5 genes are located in tandem with the CES1 gene(s), are transcribed on the reverse strand and contained 13 exons. CES5 has been previously reported in high concentrations in the urine (cauxin) of adult male cats, and within a protein complex of mammalian male epididymal fluids. Roles for CES5 may include regulating urinary levels of male cat pheromones; catalysing lipid transfer reactions within mammalian male reproductive fluids; and protecting neural tissue from drugs and xenobiotics. PMID:19727319

  15. Reaction mechanism and regulation of mammalian thioredoxin/glutathione reductase.

    PubMed

    Sun, Qi-An; Su, Dan; Novoselov, Sergey V; Carlson, Bradley A; Hatfield, Dolph L; Gladyshev, Vadim N

    2005-11-01

    Thioredoxin/glutathione reductase (TGR) is a recently discovered member of the selenoprotein thioredoxin reductase family in mammals. In contrast to two other mammalian thioredoxin reductases, it contains an N-terminal glutaredoxin domain and exhibits a wide spectrum of enzyme activities. To elucidate the reaction mechanism and regulation of TGR, we prepared a recombinant mouse TGR in the selenoprotein form as well as various mutants and individual domains of this enzyme. Using these proteins, we showed that the glutaredoxin and thioredoxin reductase domains of TGR could independently catalyze reactions normally associated with each domain. The glutaredoxin domain is a monothiol glutaredoxin containing a CxxS motif at the active site, which could receive electrons from either the thioredoxin reductase domain of TGR or thioredoxin reductase 1. We also found that the C-terminal penultimate selenocysteine was required for transfer of reducing equivalents from the thiol/disulfide active site of TGR to the glutaredoxin domain. Thus, the physiologically relevant NADPH-dependent activities of TGR were dependent on this residue. In addition, we examined the effects of selenium levels in the diet and perturbations in selenocysteine tRNA function on TGR biosynthesis and found that expression of this protein was regulated by both selenium and tRNA status in liver, but was more resistant to this regulation in testes. PMID:16262253

  16. Effect of salt stress on the physiology of Frankia sp strain CcI6.

    PubMed

    Oshone, Rediet; Mansour, Samira R; Tisa, Louis S

    2013-11-01

    Actinorhizal plants are able to overcome saline soils and reclaim land. Frankia sp strain CcI6 was isolated from nodules of Casuarina cunninghamiana found in Egypt. Phylogenetic analysis of Frankia sp. strain CcI6 revealed that the strain is closely related to Frankia sp. strain CcI3. The strain displays an elevated level of NaCl tolerance. Vesicle production and nitrogenase activity were also influenced by NaCl. PMID:24287648

  17. A million peptide motifs for the molecular biologist.

    PubMed

    Tompa, Peter; Davey, Norman E; Gibson, Toby J; Babu, M Madan

    2014-07-17

    A molecular description of functional modules in the cell is the focus of many high-throughput studies in the postgenomic era. A large portion of biomolecular interactions in virtually all cellular processes is mediated by compact interaction modules, referred to as peptide motifs. Such motifs are typically less than ten residues in length, occur within intrinsically disordered regions, and are recognized and/or posttranslationally modified by structured domains of the interacting partner. In this review, we suggest that there might be over a million instances of peptide motifs in the human proteome. While this staggering number suggests that peptide motifs are numerous and the most understudied functional module in the cell, it also holds great opportunities for new discoveries. PMID:25038412

  18. 10. DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT SHADES OF GOLD LEAF AND BURNISHED GOLD LEAF WERE USED FOR THE INTERIOR FINISHES - Anaconda Historic District, Washoe Theater, 305 Main Street, Anaconda, Deer Lodge County, MT

  19. DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT SHADES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT SHADES OF GOLD LEAF AND BURNISHED GOLD LEAF WERE USED FOR THE INTERIOR FINISHES. - Anaconda Historic District, Washoe Theater, 305 Main Street, Anaconda, Deer Lodge County, MT

  20. The building blocks and motifs of RNA architecture

    PubMed Central

    Leontis, Neocles B; Lescoute, Aurelie; Westhof, Eric

    2010-01-01

    RNA motifs can be defined broadly as recurrent structural elements containing multiple intramolecular RNA–RNA interactions, as observed in atomic-resolution RNA structures. They constitute the modular building blocks of RNA architecture, which is organized hierarchically. Recent work has focused on analyzing RNA backbone conformations to identify, define and search for new instances of recurrent motifs in X-ray structures. One current view asserts that recurrent RNA strand segments with characteristic backbone configurations qualify as independent motifs. Other considerations indicate that, to characterize modular motifs, one must take into account the larger structural context of such strand segments. This follows the biologically relevant motivation, which is to identify RNA structural characteristics that are subject to sequence constraints and that thus relate RNA architectures to sequences. PMID:16713707

  1. Network motifs emerge from interconnections that favour stability

    NASA Astrophysics Data System (ADS)

    Angulo, Marco Tulio; Liu, Yang-Yu; Slotine, Jean-Jacques

    2015-10-01

    The microscopic principles organizing dynamic units in complex networks--from proteins to power generators--can be understood in terms of network `motifs’: small interconnection patterns that appear much more frequently in real networks than expected in random networks. When considered as small subgraphs isolated from a large network, these motifs are more robust to parameter variations, easier to synchronize than other possible subgraphs, and can provide specific functionalities. But one can isolate these subgraphs only by assuming, for example, a significant separation of timescales, and the origin of network motifs and their functionalities when embedded in larger networks remain unclear. Here we show that most motifs emerge from interconnection patterns that best exploit the intrinsic stability characteristics at different scales of interconnection, from simple nodes to whole modules. This functionality suggests an efficient mechanism to stably build complex systems by recursively interconnecting nodes and modules as motifs. We present direct evidence of this mechanism in several biological networks.

  2. The biofunction of orange-spotted grouper (Epinephelus coioides) CC chemokine ligand 4 (CCL4) in innate and adaptive immunity.

    PubMed

    Hsu, Yi-Jiou; Hou, Chia-Yi; Lin, Shih-Jie; Kuo, Wan-Ching; Lin, Han-Tso; Lin, John Han-You

    2013-12-01

    CC chemokine (motif) ligand 4 (CCL4) is indispensable to the chemoattraction of macrophages, natural killer cells, and lymphocytes in mammals; however, it has only been cloned in a limited number of fish species and information related to its biofunction remains ambiguous with regard to teleosts. To explore the role of teleost CCL4, we first evaluated the mRNA expression of the Epinephelus coioides CCL4 (gCCL4) gene in various organs under LPS and poly (I:C) stimulated; secondary, we evaluated the immune-related genes expression of fish under the recombinant gCCL4 protein stimulated. Our results revealed an increase in the mRNA of gCCL4 in immune organs immediately following stimulation by poly (I:C); however, in LPS stimulated fish, the expression did not increase until nearly 24 h after induction. In biofunction assays, recombinant gCCL4 was found to induce chemotactic activity in the peripheral blood leukocytes of groupers and up-regulate the gene expressions of grouper TNFA1 (TNF-α1), TNFA2 (TNF-α2), IFNG (IFN-γ), MX, TBX21 (T-bet), CD8 (α and β chain). These findings indicate that grouper CCL4 attracts leukocytes, induces an inflammatory response, and drives lymphocyte differentiation into the Th1 pathway. PMID:24120504

  3. Fate Mapping Mammalian Corneal Epithelia.

    PubMed

    Richardson, Alexander; Wakefield, Denis; Di Girolamo, Nick

    2016-04-01

    The anterior aspect of the cornea consists of a stratified squamous epithelium, thought to be maintained by a rare population of stem cells (SCs) that reside in the limbal transition zone. Although migration of cells that replenish the corneal epithelium has been studied for over a century, the process is still poorly understood and not well characterized. Numerous techniques have been employed to examine corneal epithelial dynamics, including visualization by light microscopy, the incorporation of vital dyes and DNA labels, and transplantation of genetically marked cells that have acted as cell and lineage beacons. Modern-day lineage tracing utilizes molecular methods to determine the fate of a specific cell and its progeny over time. Classically employed in developmental biology, lineage tracing has been used more recently to track the progeny of adult SCs in a number of organs to pin-point their location and understand their movement and influence on tissue regeneration. This review highlights key discoveries that have led researchers to develop cutting-edge genetic tools to effectively and more accurately monitor turnover and displacement of cells within the mammalian corneal epithelium. Collating information on the basic biology of SCs will have clinical ramifications in furthering our knowledge of the processes that govern their role in homeostasis, wound-healing, transplantation, and how we can improve current unsatisfactory SC-based therapies for patients suffering blinding corneal disease. PMID:26774909

  4. Possible mechanisms of mammalian immunocontraception.

    PubMed

    Barber, M R; Fayrer-Hosken, R A

    2000-03-01

    Ecological and conservation programs in ecosystems around the world have experienced varied success in population management. One of the greatest problems is that human expansion has led to the shrinking of wildlife habitat and, as a result, the overpopulation of many different species has occurred. The pressures exerted by the increased number of animals has caused environmental damage. The humane and practical control of these populations has solicited the scientific community to arrive at a safe, effective, and cost-efficient means of population control. Immunocontraception using zona pellucida antigens, specifically porcine zona pellucida (pZP), has become one of the most promising population control tools in the world today, with notable successes in horses and elephants. A conundrum has risen where pZP, a single vaccine, successfully induces an immunocontraceptive effect in multiple species of mammals. This review describes the most current data pertaining to the mammalian zona pellucida and immunocontraception, and from these studies, we suggest several potential mechanisms of immunocontraception. PMID:10706942

  5. Mammalian cell cultivation in space

    NASA Astrophysics Data System (ADS)

    Gmünder, Felix K.; Suter, Robert N.; Kiess, M.; Urfer, R.; Nordau, C.-G.; Cogoli, A.

    Equipment used in space for the cultivation of mammalian cells does not meet the usual standard of earth bound bioreactors. Thus, the development of a space worthy bioreactor is mandatory for two reasons: First, to investigate the effect on single cells of the space environment in general and microgravity conditions in particular, and second, to provide researchers on long term missions and the Space Station with cell material. However, expertise for this venture is not at hand. A small and simple device for animal cell culture experiments aboard Spacelab (Dynamic Cell Culture System; DCCS) was developed. It provides 2 cell culture chambers, one is operated as a batch system, the other one as a perfusion system. The cell chambers have a volume of 200 μl. Medium exchange is achieved with an automatic osmotic pump. The system is neither mechanically stirred nor equipped with sensors. Oxygen for cell growth is provided by a gas chamber that is adjacent to the cell chambers. The oxygen gradient produced by the growing cells serves to maintain the oxygen influx by diffusion. Hamster kidney cells growing on microcarriers were used to test the biological performance of the DCCS. On ground tests suggest that this system is feasible.

  6. Mammalian mitochondrial beta-oxidation.

    PubMed Central

    Eaton, S; Bartlett, K; Pourfarzam, M

    1996-01-01

    The enzymic stages of mammalian mitochondrial beta-oxidation were elucidated some 30-40 years ago. However, the discovery of a membrane-associated multifunctional enzyme of beta-oxidation, a membrane-associated acyl-CoA dehydrogenase and characterization of the carnitine palmitoyl transferase system at the protein and at the genetic level has demonstrated that the enzymes of the system itself are incompletely understood. Deficiencies of many of the enzymes have been recognized as important causes of disease. In addition, the study of these disorders has led to a greater understanding of the molecular mechanism of beta-oxidation and the import, processing and assembly of the beta-oxidation enzymes within the mitochondrion. The tissue-specific regulation, intramitochondrial control and supramolecular organization of the pathway is becoming better understood as sensitive analytical and molecular techniques are applied. This review aims to cover enzymological and organizational aspects of mitochondrial beta-oxidation together with the biochemical aspects of inherited disorders of beta-oxidation and the intrinsic control of beta-oxidation. PMID:8973539

  7. Cell death in mammalian development.

    PubMed

    Penaloza, C; Orlanski, S; Ye, Y; Entezari-Zaher, T; Javdan, M; Zakeri, Z

    2008-01-01

    During embryogenesis there is an exquisite orchestration of cellular division, movement, differentiation, and death. Cell death is one of the most important aspects of organization of the developing embryo, as alteration in timing, level, or pattern of cell death can lead to developmental anomalies. Cell death shapes the embryo and defines the eventual functions of the organs. Cells die using different paths; understanding which path a dying cell takes helps us define the signals that regulate the fate of the cell. Our understanding of cell death in development stems from a number of observations indicating genetic regulation of the death process. With today's increased knowledge of the pathways of cell death and the identification of the genes whose products regulate the pathways we know that, although elimination of some of these gene products has no developmental phenotype, alteration of several others has profound effects. In this review we discuss the types and distributions of cell death seen in developing mammalian embryos as well as the gene products that may regulate the process. PMID:18220829

  8. A genome-wide screen identifies a single Β-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins

    SciTech Connect

    Xiao, Yanjing; Hughes, Austin L.; Ando, Junko; Matsuda, Yoichi; Cheng, Jan-Fang; Skinner-Noble, Donald; Zhang, Guolong

    2004-08-13

    Defensins comprise a large family of cationic antimicrobial peptides that are characterized by the presence of a conserved cysteine-rich defensin motif. Based on the spacing pattern of cysteines, these defensins are broadly divided into five groups, namely plant, invertebrate, {alpha}-, {beta}-, and {theta}-defensins, with the last three groups being mostly found in mammalian species. However, the evolutionary relationships among these five groups of defensins remain controversial.

  9. Ghrelin Receptors in Non-Mammalian Vertebrates

    PubMed Central

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2012-01-01

    The growth hormone secretagogue-receptor (GHS-R) was discovered in humans and pigs in 1996. The endogenous ligand, ghrelin, was discovered 3 years later, in 1999, and our understanding of the physiological significance of the ghrelin system in vertebrates has grown steadily since then. Although the ghrelin system in non-mammalian vertebrates is a subject of great interest, protein sequence data for the receptor in non-mammalian vertebrates has been limited until recently, and related biological information has not been well organized. In this review, we summarize current information related to the ghrelin receptor in non-mammalian vertebrates. PMID:23882259

  10. Direct vs 2-stage approaches to structured motif finding

    PubMed Central

    2012-01-01

    Background The notion of DNA motif is a mathematical abstraction used to model regions of the DNA (known as Transcription Factor Binding Sites, or TFBSs) that are bound by a given Transcription Factor to regulate gene expression or repression. In turn, DNA structured motifs are a mathematical counterpart that models sets of TFBSs that work in concert in the gene regulations processes of higher eukaryotic organisms. Typically, a structured motif is composed of an ordered set of isolated (or simple) motifs, separated by a variable, but somewhat constrained number of “irrelevant” base-pairs. Discovering structured motifs in a set of DNA sequences is a computationally hard problem that has been addressed by a number of authors using either a direct approach, or via the preliminary identification and successive combination of simple motifs. Results We describe a computational tool, named SISMA, for the de-novo discovery of structured motifs in a set of DNA sequences. SISMA is an exact, enumerative algorithm, meaning that it finds all the motifs conforming to the specifications. It does so in two stages: first it discovers all the possible component simple motifs, then combines them in a way that respects the given constraints. We developed SISMA mainly with the aim of understanding the potential benefits of such a 2-stage approach w.r.t. direct methods. In fact, no 2-stage software was available for the general problem of structured motif discovery, but only a few tools that solved restricted versions of the problem. We evaluated SISMA against other published tools on a comprehensive benchmark made of both synthetic and real biological datasets. In a significant number of cases, SISMA outperformed the competitors, exhibiting a good performance also in most of the cases in which it was inferior. Conclusions A reflection on the results obtained lead us to conclude that a 2-stage approach can be implemented with many advantages over direct approaches. Some of these

  11. Application of Aquaculture Monitoring System Based on CC2530

    NASA Astrophysics Data System (ADS)

    Chen, H. L.; Liu, X. Q.

    In order to improve the intelligent level of aquaculture technology, this paper puts forward a remote wireless monitoring system based on ZigBee technology, GPRS technology and Android mobile phone platform. The system is composed of wireless sensor network (WSN), GPRS module, PC server, and Android client. The WSN was set up by CC2530 chips based on ZigBee protocol, to realize the collection of water quality parameters such as the water level, temperature, PH and dissolved oxygen. The GPRS module realizes remote communication between WSN and PC server. Android client communicates with server to monitor the level of water quality. The PID (proportion, integration, differentiation) control is adopted in the control part, the control commands from the android mobile phone is sent to the server, the server again send it to the lower machine to control the water level regulating valve and increasing oxygen pump. After practical testing to the system in Liyang, Jiangsu province, China, temperature measurement accuracy reaches 0.5°C, PH measurement accuracy reaches 0.3, water level control precision can be controlled within ± 3cm, dissolved oxygen control precision can be controlled within ±0.3 mg/L, all the indexes can meet the requirements, this system is very suitable for aquaculture.

  12. Beam to Shell Temperature Differencees for the CC Cryostat

    SciTech Connect

    Luther, R.; /Fermilab

    1991-02-05

    This note documents the calculation of stresses resulting from temperature differences between the CC cryostat shell and the module array support beams, and the calculation of corresponding maximum allowable temperature differences to be monitored during the cooldown of the cryostat. A finite element model of a portion of the inner vessel shell was analyzed for a uniform temperature change. The shell was assumed to be completely restrained by the support beams. A maximum allowable temperature difference was determined based on limits on secondary stress ranges prescribed by the ASME Code (Section VID, Division 2). The maximum allowable difference between the cryostat shell and the support beams was found to vary from about 18K near room temperature to about 30K as the shell temperature approaches liquid argon temperature. The allowable values are tabulated below and plotted in Figure 1. The variation results from the decrease in the coefficient of thermal expansion of stainless steels at lower temperatures. As shown in the plot, the variation is roughly linear. Note that although the shell is assumed to be at the lower temperature in Fig. 1, the limitation on temperature difference will also apply during warmup, when the shell will likely be warmer than the beams.

  13. JMS Proxy and C/C++ Client SDK

    NASA Technical Reports Server (NTRS)

    Wolgast, Paul; Pechkam, Paul

    2007-01-01

    JMS Proxy and C/C++ Client SDK (JMS signifies "Java messaging service" and "SDK" signifies "software development kit") is a software package for developing interfaces that enable legacy programs (here denoted "clients") written in the C and C++ languages to communicate with each other via a JMS broker. This package consists of two main components: the JMS proxy server component and the client C library SDK component. The JMS proxy server component implements a native Java process that receives and responds to requests from clients. This component can run on any computer that supports Java and a JMS client. The client C library SDK component is used to develop a JMS client program running in each affected C or C++ environment, without need for running a Java virtual machine in the affected computer. A C client program developed by use of this SDK has most of the quality-of-service characteristics of standard Java-based client programs, including the following: Durable subscriptions; Asynchronous message receipt; Such standard JMS message qualities as "TimeToLive," "Message Properties," and "DeliveryMode" (as the quoted terms are defined in previously published JMS documentation); and Automatic reconnection of a JMS proxy to a restarted JMS broker.

  14. D0 CC Cryostat Test Cooldown - Cooldown Time

    SciTech Connect

    Fuerst, J.D.; /Fermilab

    1987-08-19

    The D0 CC Cryostat is to be cold tested with LN{sub 2}. Calculations show that the time required for the 12.5 ton stainless steel inner vessel to reach equilibrium is around 5 hours if the vessel is cooled by introducing liquid into a nozzle at the bottom. The heat transfer calculations contain many assumptions. As a result, the vessel will be cooled by spraying LN{sub 2} through a nozzle at the vessel top, providing as fast a cooldown as desired. Although calculations of the bottom-fill cooldown method indicate a reasonable cooldown time, the assumption of uniform gas temperature (absence of stratification) is vital to the analysis and in fast may not be valid. Initially, as liquid is introduced into the bottom of the vessel, it will boil rapidly creating large amounts of cold gas which then cool the walls above. As the vessel bottom cools and LN{sub 2} begins to pool, however, the boiloff rate could decrease significantly. Thus the cold gas assumed in the free convection calculations is not generated. For this reason and in the interest of a speedy cooldown it has been decided to fill the vessel by spraying LN{sub 2} in through a nozzle in the vessel top.

  15. Crossing Levels and Representations: The Connected Chemistry (CC1) Curriculum

    NASA Astrophysics Data System (ADS)

    Levy, Sharona T.; Wilensky, Uri

    2009-06-01

    Connected Chemistry (named CC1 to denote Connected Chemistry Chapter 1) is a computer-based environment for learning the topics of gas laws and kinetic molecular theory in chemistry. It views chemistry from an "emergent" perspective, how macroscopic phenomena result from the interaction of many submicroscopic particles. Connected Chemistry employs agent-based models built in NetLogo (Wilensky, NetLogo, Northwestern University, Evanston, 1999a), embedded in scripts that structure and log the students' activities. A conceptual framework was developed to structure students' experiences and learning through exploring the models. The framework describes three spheres of knowledge (conceptual, symbolic and physical) and four forms of access to understanding the system (submicro, macro, mathematical and experiential). Activities were designed to help students build an integrated view of the chemical system, by focusing on understanding within each form of access, and promoting transitions between the spheres of knowledge. The macro-level descriptions were used to bridge between the three spheres and support these shifts. The conceptual framework for the Connected Chemistry curriculum is discussed and demonstrated. Further development directions are suggested.

  16. Robust and Adaptive MicroRNA-Mediated Incoherent Feedforward Motifs

    NASA Astrophysics Data System (ADS)

    Xu, Feng-Dan; Liu, Zeng-Rong; Zhang, Zhi-Yong; Shen, Jian-Wei

    2009-02-01

    We integrate transcriptional and post-transcriptional regulation into microRNA-mediated incoherent feedforward motifs and analyse their dynamical behaviour and functions. The analysis show that the behaviour of the system is almost uninfluenced by the varying input in certain ranges and by introducing of delay and noise. The results indicate that microRNA-mediated incoherent feedforward motifs greatly enhance the robustness of gene regulation.

  17. Network motif-based method for identifying coronary artery disease

    PubMed Central

    LI, YIN; CONG, YAN; ZHAO, YUN

    2016-01-01

    The present study aimed to develop a more efficient method for identifying coronary artery disease (CAD) than the conventional method using individual differentially expressed genes (DEGs). GSE42148 gene microarray data were downloaded, preprocessed and screened for DEGs. Additionally, based on transcriptional regulation data obtained from ENCODE database and protein-protein interaction data from the HPRD, the common genes were downloaded and compared with genes annotated from gene microarrays to screen additional common genes in order to construct an integrated regulation network. FANMOD was then used to detect significant three-gene network motifs. Subsequently, GlobalAncova was used to screen differential three-gene network motifs between the CAD group and the normal control data from GSE42148. Genes involved in the differential network motifs were then subjected to functional annotation and pathway enrichment analysis. Finally, clustering analysis of the CAD and control samples was performed based on individual DEGs and the top 20 network motifs identified. In total, 9,008 significant three-node network motifs were detected from the integrated regulation network; these were categorized into 22 interaction modes, each containing a minimum of one transcription factor. Subsequently, 1,132 differential network motifs involving 697 genes were screened between the CAD and control group. The 697 genes were enriched in 154 gene ontology terms, including 119 biological processes, and 14 KEGG pathways. Identifying patients with CAD based on the top 20 network motifs provided increased accuracy compared with the conventional method based on individual DEGs. The results of the present study indicate that the network motif-based method is more efficient and accurate for identifying CAD patients than the conventional method based on individual DEGs. PMID:27347046

  18. In Vivo Assessment of NS1-Truncated Influenza Virus with a Novel SLSYSINWRH Motif as a Self-Adjuvanting Live Attenuated Vaccine

    PubMed Central

    Ngunjiri, John M.; Ali, Ahmed; Boyaka, Prosper; Lee, Chang-Won

    2015-01-01

    Mutants of influenza virus that encode C-terminally truncated NS1 proteins (NS1-truncated mutants) characteristically induce high interferon responses. The dual activity of interferon in blocking virus replication and enhancing the development of adaptive immune responses makes these mutants promising as self-adjuvanting live-attenuated influenza vaccine (LAIV) candidates. Yet, among the NS1-truncated mutants, the length of NS1 is not directly correlated with the interferon-inducing efficiency, the level of attenuation, or effectiveness as LAIV. Using quantitative in vitro biologically active particle subpopulation analysis as a tool to identify potential LAIV candidates from a pool of NS1-truncated mutants, we previously predicted that a NS1-truncated mutant pc2, which was less effective as a LAIV in chickens, would be sufficiently effective as a LAIV in mammalian hosts. In this study, we confirmed that pc2 protected mice and pigs against heterologous virus challenge in terms of preventing clinical signs and reducing virus shedding. pc2 expresses a unique SLSYSINWRH motif at the C-terminus of its truncated NS1. Deletion of the SLSYSINWRH motif led to ~821-fold reduction in the peak yield of type I interferon induced in murine cells. Furthermore, replacement of the SLSYSINWRH motif with the wildtype MVKMDQAIMD sequence did not restore the interferon-inducing efficiency. The diminished interferon induction capacity in the absence of the SLSYSINWRH motif was similar to that observed in other mutants which are less effective LAIV candidates. Remarkably, pc2 induced 16-fold or more interferon in human lung and monkey kidney cells compared to the temperature-sensitive, cold-adapted Ann Arbor virus that is currently used as a master backbone for LAIVs such as FluMist. Although the mechanism by which the SLSYSINWRH motif regulates the vaccine properties of pc2 has not been elucidated, this motif has potential use in engineering self-adjuvanting NS1-truncated-based LAIVs

  19. In vivo assessment of NS1-truncated influenza virus with a novel SLSYSINWRH motif as a self-adjuvanting live attenuated vaccine.

    PubMed

    Ngunjiri, John M; Ali, Ahmed; Boyaka, Prosper; Marcus, Philip I; Lee, Chang-Won

    2015-01-01

    Mutants of influenza virus that encode C-terminally truncated NS1 proteins (NS1-truncated mutants) characteristically induce high interferon responses. The dual activity of interferon in blocking virus replication and enhancing the development of adaptive immune responses makes these mutants promising as self-adjuvanting live-attenuated influenza vaccine (LAIV) candidates. Yet, among the NS1-truncated mutants, the length of NS1 is not directly correlated with the interferon-inducing efficiency, the level of attenuation, or effectiveness as LAIV. Using quantitative in vitro biologically active particle subpopulation analysis as a tool to identify potential LAIV candidates from a pool of NS1-truncated mutants, we previously predicted that a NS1-truncated mutant pc2, which was less effective as a LAIV in chickens, would be sufficiently effective as a LAIV in mammalian hosts. In this study, we confirmed that pc2 protected mice and pigs against heterologous virus challenge in terms of preventing clinical signs and reducing virus shedding. pc2 expresses a unique SLSYSINWRH motif at the C-terminus of its truncated NS1. Deletion of the SLSYSINWRH motif led to ~821-fold reduction in the peak yield of type I interferon induced in murine cells. Furthermore, replacement of the SLSYSINWRH motif with the wildtype MVKMDQAIMD sequence did not restore the interferon-inducing efficiency. The diminished interferon induction capacity in the absence of the SLSYSINWRH motif was similar to that observed in other mutants which are less effective LAIV candidates. Remarkably, pc2 induced 16-fold or more interferon in human lung and monkey kidney cells compared to the temperature-sensitive, cold-adapted Ann Arbor virus that is currently used as a master backbone for LAIVs such as FluMist. Although the mechanism by which the SLSYSINWRH motif regulates the vaccine properties of pc2 has not been elucidated, this motif has potential use in engineering self-adjuvanting NS1-truncated-based LAIVs

  20. The Cys3-His1 Motif of the Respiratory Syncytial Virus M2-1 Protein Is Essential for Protein Function

    PubMed Central

    Hardy, Richard W.; Wertz, Gail W.

    2000-01-01

    The M2 gene of respiratory syncytial (RS) virus has two open reading frames (ORFs). ORF1 encodes a 22-kDa protein termed M2-1. The M2-1 protein contains a Cys3-His1 motif (C-X7-C-X5-C-X3-H) near the amino terminus. This motif is conserved in all human, bovine, and ovine strains of RS virus. A similar motif found in the mammalian transcription factor Nup475 has been shown to bind zinc. The M2-1 protein of human RS virus functions as a transcription factor which increases polymerase processivity, and it enhances readthrough of intergenic junctions during RS virus transcription, thereby acting as a transcription antiterminator. The M2-1 protein also interacts with the nucleocapsid protein. We examined the effects of mutations of cysteine and histidine residues predicted to coordinate zinc in the Cys3-His1 motif on transcription antitermination and N protein binding. We found that mutating the predicted zinc-coordinating residues, the cysteine residues at amino acid positions 7 and 15 and the histidine residue at position 25, prevented M2-1 from enhancing transcriptional readthrough. In contrast, mutations of amino acids within this motif not predicted to coordinate zinc had no effect. Mutations of the predicted zinc-coordinating residues in the Cys3-His1 motif also prevented M2-1 from interacting with the nucleocapsid protein. One mutation of a noncoordinating residue in the motif which did not affect readthrough during transcription, E10G, prevented interaction with the nucleocapsid protein. This suggests that M2-1 does not require interaction with the nucleocapsid protein in order to function during transcription. Analysis of the M2-1 protein in reducing sodium dodecyl sulfate-polyacrylamide gels revealed two major forms distinguished by their mobilities. The slower migrating form was shown to be phosphorylated, whereas the faster migrating form was not. Mutations in the Cys3-His1 motif caused a change in distribution of the M2-1 protein from the slower to the

  1. Transcriptional Network Growing Models Using Motif-Based Preferential Attachment

    PubMed Central

    Abdelzaher, Ahmed F.; Al-Musawi, Ahmad F.; Ghosh, Preetam; Mayo, Michael L.; Perkins, Edward J.

    2015-01-01

    Understanding relationships between architectural properties of gene-regulatory networks (GRNs) has been one of the major goals in systems biology and bioinformatics, as it can provide insights into, e.g., disease dynamics and drug development. Such GRNs are characterized by their scale-free degree distributions and existence of network motifs – i.e., small-node subgraphs that occur more abundantly in GRNs than expected from chance alone. Because these transcriptional modules represent “building blocks” of complex networks and exhibit a wide range of functional and dynamical properties, they may contribute to the remarkable robustness and dynamical stability associated with the whole of GRNs. Here, we developed network-construction models to better understand this relationship, which produce randomized GRNs by using transcriptional motifs as the fundamental growth unit in contrast to other methods that construct similar networks on a node-by-node basis. Because this model produces networks with a prescribed lower bound on the number of choice transcriptional motifs (e.g., downlinks, feed-forward loops), its fidelity to the motif distributions observed in model organisms represents an improvement over existing methods, which we validated by contrasting their resultant motif and degree distributions against existing network-growth models and data from the model organism of the bacterium Escherichia coli. These models may therefore serve as novel testbeds for further elucidating relationships between the topology of transcriptional motifs and network-wide dynamical properties. PMID:26528473

  2. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    PubMed

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology. PMID:26886735

  3. Finding specific RNA motifs: Function in a zeptomole world?

    PubMed Central

    KNIGHT, ROB; YARUS, MICHAEL

    2003-01-01

    We have developed a new method for estimating the abundance of any modular (piecewise) RNA motif within a longer random region. We have used this method to estimate the size of the active motifs available to modern SELEX experiments (picomoles of unique sequences) and to a plausible RNA World (zeptomoles of unique sequences: 1 zmole = 602 sequences). Unexpectedly, activities such as specific isoleucine binding are almost certainly present in zeptomoles of molecules, and even ribozymes such as self-cleavage motifs may appear (depending on assumptions about the minimal structures). The number of specified nucleotides is not the only important determinant of a motif’s rarity: The number of modules into which it is divided, and the details of this division, are also crucial. We propose three maxims for easily isolated motifs: the Maxim of Minimization, the Maxim of Multiplicity, and the Maxim of the Median. These maxims together state that selected motifs should be small and composed of as many separate, equally sized modules as possible. For evenly divided motifs with four modules, the largest accessible activity in picomole scale (1–1000 pmole) pools of length 100 is about 34 nucleotides; while for zeptomole scale (1–1000 zmole) pools it is about 20 specific nucleotides (50% probability of occurrence). This latter figure includes some ribozymes and aptamers. Consequently, an RNA metabolism apparently could have begun with only zeptomoles of RNA molecules. PMID:12554865

  4. Motif for controllable toggle switch in gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Bin, Ao; Ye, Weiming; Fan, Ying; Di, Zengru

    2015-02-01

    Toggle switch as a common phenomenon in gene regulatory networks has been recognized important for biological functions. Despite much effort dedicated to understanding the toggle switch and designing synthetic biology circuit to achieve the biological function, we still lack a comprehensive understanding of the intrinsic dynamics behind such phenomenon and the minimum structure that is imperative for producing toggle switch. In this paper, we discover a minimum structure, a motif that enables a controllable toggle switch. In particular, the motif consists of a transformative double negative feedback loop (DNFL) that is regulated by an additional driver node. By enumerating all possible regulatory configurations from the driver node, we identify two types of motifs associated with the toggle switch that is captured by the existence of bistable states. The toggle switch is controllable in the sense that the gap between the bistable states is adjustable as determined by the regulatory strength from the driver nodes. We test the effect of the motifs in self-oscillating gene regulatory network (SON) with respect to the interplay between the motifs and the other genes, and find that the switching dynamics of the whole network can be successfully controlled insofar as the network contains a single motif. Our findings are important to uncover the underlying nonlinear dynamics of controllable toggle switch and can have implications in devising biology circuit in the field of synthetic biology.

  5. Heparin-Binding Motifs and Biofilm Formation by Candida albicans

    PubMed Central

    Green, Julianne V.; Orsborn, Kris I.; Zhang, Minlu; Tan, Queenie K. G.; Greis, Kenneth D.; Porollo, Alexey; Andes, David R.; Long Lu, Jason; Hostetter, Margaret K.

    2013-01-01

    Candida albicans is a leading pathogen in infections of central venous catheters, which are frequently infused with heparin. Binding of C. albicans to medically relevant concentrations of soluble and plate-bound heparin was demonstrable by confocal microscopy and enzyme-linked immunosorbent assay (ELISA). A sequence-based search identified 34 C. albicans surface proteins containing ≥1 match to linear heparin-binding motifs. The virulence factor Int1 contained the most putative heparin-binding motifs (n = 5); peptides encompassing 2 of 5 motifs bound to heparin-Sepharose. Alanine substitution of lysine residues K805/K806 in 804QKKHQIHK811 (motif 1 of Int1) markedly attenuated biofilm formation in central venous catheters in rats, whereas alanine substitution of K1595/R1596 in 1593FKKRFFKL1600 (motif 4 of Int1) did not impair biofilm formation. Affinity-purified immunoglobulin G (IgG) recognizing motif 1 abolished biofilm formation in central venous catheters; preimmune IgG had no effect. After heparin treatment of C. albicans, soluble peptides from multiple C. albicans surface proteins were detected, such as Eno1, Pgk1, Tdh3, and Ssa1/2 but not Int1, suggesting that heparin changes candidal surface structures and may modify some antigens critical for immune recognition. These studies define a new mechanism of biofilm formation for C. albicans and a novel strategy for inhibiting catheter-associated biofilms. PMID:23904295

  6. Directed network motifs in Alzheimer's disease and mild cognitive impairment.

    PubMed

    Friedman, Eric J; Young, Karl; Tremper, Graham; Liang, Jason; Landsberg, Adam S; Schuff, Norbert

    2015-01-01

    Directed network motifs are the building blocks of complex networks, such as human brain networks, and capture deep connectivity information that is not contained in standard network measures. In this paper we present the first application of directed network motifs in vivo to human brain networks, utilizing recently developed directed progression networks which are built upon rates of cortical thickness changes between brain regions. This is in contrast to previous studies which have relied on simulations and in vitro analysis of non-human brains. We show that frequencies of specific directed network motifs can be used to distinguish between patients with Alzheimer's disease (AD) and normal control (NC) subjects. Especially interesting from a clinical standpoint, these motif frequencies can also distinguish between subjects with mild cognitive impairment who remained stable over three years (MCI) and those who converted to AD (CONV). Furthermore, we find that the entropy of the distribution of directed network motifs increased from MCI to CONV to AD, implying that the distribution of pathology is more structured in MCI but becomes less so as it progresses to CONV and further to AD. Thus, directed network motifs frequencies and distributional properties provide new insights into the progression of Alzheimer's disease as well as new imaging markers for distinguishing between normal controls, stable mild cognitive impairment, MCI converters and Alzheimer's disease. PMID:25879535

  7. cWINNOWER Algorithm for Finding Fuzzy DNA Motifs

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan

    2003-01-01

    The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if multiple mutated copies of the motif (i.e., the signals) are present in the DNA sequence in sufficient abundance. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum number of detectable motifs qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc, by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12000 for (l,d) = (15,4).

  8. Exposure to bloom-like concentrations of two marine Synechococcus cyanobacteria (strains CC9311 and CC9902) differentially alters fish behaviour

    PubMed Central

    Hamilton, T. J.; Paz-Yepes, J.; Morrison, R. A.; Palenik, B.; Tresguerres, M.

    2014-01-01

    Coastal California experiences large-scale blooms of Synechococcus cyanobacteria, which are predicted to become more prevalent by the end of the 21st century as a result of global climate change. This study investigated whether exposure to bloom-like concentrations of two Synechococcus strains, CC9311 and CC9902, alters fish behaviour. Black perch (Embiotoca jacksoni) were exposed to Synechococcus strain CC9311 or CC9902 (1.5 × 106 cells ml−1) or to control seawater in experimental aquaria for 3 days. Fish movement inside a testing arena was then recorded and analysed using video camera-based motion-tracking software. Compared with control fish, fish exposed to CC9311 demonstrated a significant preference for the dark zone of the tank in the light–dark test, which is an indication of increased anxiety. Furthermore, fish exposed to CC9311 also had a statistically significant decrease in velocity and increase in immobility and they meandered more in comparison to control fish. There was a similar trend in velocity, immobility and meandering in fish exposed to CC9902, but there were no significant differences in behaviour or locomotion between this group and control fish. Identical results were obtained with a second batch of fish. Additionally, in this second trial we also investigated whether fish would recover after a 3 day period in seawater without cyanobacteria. Indeed, there were no longer any significant differences in behaviour among treatments, demonstrating that the sp. CC9311-induced alteration of behaviour is reversible. These results demonstrate that blooms of specific marine Synechococcus strains can induce differential sublethal effects in fish, namely alterations light–dark preference behaviour and motility. PMID:27293641

  9. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA

    PubMed Central

    Mitrea, Diana M; Cika, Jaclyn A; Guy, Clifford S; Ban, David; Banerjee, Priya R; Stanley, Christopher B; Nourse, Amanda; Deniz, Ashok A; Kriwacki, Richard W

    2016-01-01

    The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus. DOI: http://dx.doi.org/10.7554/eLife.13571.001 PMID:26836305

  10. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA.

    PubMed

    Mitrea, Diana M; Cika, Jaclyn A; Guy, Clifford S; Ban, David; Banerjee, Priya R; Stanley, Christopher B; Nourse, Amanda; Deniz, Ashok A; Kriwacki, Richard W

    2016-01-01

    The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus. PMID:26836305

  11. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA

    DOE PAGESBeta

    Mitrea, Diana M.; Cika, Jaclyn A.; Guy, Clifford S.; Ban, David; Banerjee, Priya R.; Stanley, Christopher B.; Nourse, Amanda; Deniz, Ashok A.; Kriwacki, Richard W.

    2016-02-02

    The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidicmore » tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus.« less

  12. Enhancer Evolution across 20 Mammalian Species

    PubMed Central

    Villar, Diego; Berthelot, Camille; Aldridge, Sarah; Rayner, Tim F.; Lukk, Margus; Pignatelli, Miguel; Park, Thomas J.; Deaville, Robert; Erichsen, Jonathan T.; Jasinska, Anna J.; Turner, James M.A.; Bertelsen, Mads F.; Murchison, Elizabeth P.; Flicek, Paul; Odom, Duncan T.

    2015-01-01

    Summary The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution. PMID:25635462

  13. Mammalian synthetic biology: emerging medical applications

    PubMed Central

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob

    2015-01-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  14. Mammalian Response to Cenozoic Climatic Change

    NASA Astrophysics Data System (ADS)

    Blois, Jessica L.; Hadly, Elizabeth A.

    2009-05-01

    Multiple episodes of rapid and gradual climatic changes influenced the evolution and ecology of mammalian species and communities throughout the Cenozoic. Climatic change influenced the abundance, genetic diversity, morphology, and geographic ranges of individual species. Within communities these responses interacted to catalyze immigration, speciation, and extinction. Combined they affected long-term patterns of community stability, functional turnover, biotic turnover, and diversity. Although the relative influence of climate on particular evolutionary processes is oft debated, an understanding of processes at the root of biotic change yields important insights into the complexity of mammalian response. Ultimately, all responses trace to events experienced by populations. However, many such processes emerge as patterns above the species level, where shared life history traits and evolutionary history allow us to generalize about mammalian response to climatic change. These generalizations provide the greatest power to understand and predict mammalian responses to current and future global change.

  15. Bats and Rodents Shape Mammalian Retroviral Phylogeny

    PubMed Central

    Cui, Jie; Tachedjian, Gilda; Wang, Lin-Fa

    2015-01-01

    Endogenous retroviruses (ERVs) represent past retroviral infections and accordingly can provide an ideal framework to infer virus-host interaction over their evolutionary history. In this study, we target high quality Pol sequences from 7,994 Class I and 8,119 Class II ERVs from 69 mammalian genomes and surprisingly find that retroviruses harbored by bats and rodents combined occupy the major phylogenetic diversity of both classes. By analyzing transmission patterns of 30 well-defined ERV clades, we corroborate the previously published observation that rodents are more competent as originators of mammalian retroviruses and reveal that bats are more capable of receiving retroviruses from non-bat mammalian origins. The powerful retroviral hosting ability of bats is further supported by a detailed analysis revealing that the novel bat gammaretrovirus, Rhinolophus ferrumequinum retrovirus, likely originated from tree shrews. Taken together, this study advances our understanding of host-shaped mammalian retroviral evolution in general. PMID:26548564

  16. Bats and Rodents Shape Mammalian Retroviral Phylogeny.

    PubMed

    Cui, Jie; Tachedjian, Gilda; Wang, Lin-Fa

    2015-01-01

    Endogenous retroviruses (ERVs) represent past retroviral infections and accordingly can provide an ideal framework to infer virus-host interaction over their evolutionary history. In this study, we target high quality Pol sequences from 7,994 Class I and 8,119 Class II ERVs from 69 mammalian genomes and surprisingly find that retroviruses harbored by bats and rodents combined occupy the major phylogenetic diversity of both classes. By analyzing transmission patterns of 30 well-defined ERV clades, we corroborate the previously published observation that rodents are more competent as originators of mammalian retroviruses and reveal that bats are more capable of receiving retroviruses from non-bat mammalian origins. The powerful retroviral hosting ability of bats is further supported by a detailed analysis revealing that the novel bat gammaretrovirus, Rhinolophus ferrumequinum retrovirus, likely originated from tree shrews. Taken together, this study advances our understanding of host-shaped mammalian retroviral evolution in general. PMID:26548564

  17. Mammalian synthetic biology: emerging medical applications.

    PubMed

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  18. Structure of subcomplex Iβ of mammalian respiratory complex I leads to new supernumerary subunit assignments.

    PubMed

    Zhu, Jiapeng; King, Martin S; Yu, Minmin; Klipcan, Liron; Leslie, Andrew G W; Hirst, Judy

    2015-09-29

    Mitochondrial complex I (proton-pumping NADH:ubiquinone oxidoreductase) is an essential respiratory enzyme. Mammalian complex I contains 45 subunits: 14 conserved "core" subunits and 31 "supernumerary" subunits. The structure of Bos taurus complex I, determined to 5-Å resolution by electron cryomicroscopy, described the structure of the mammalian core enzyme and allowed the assignment of 14 supernumerary subunits. Here, we describe the 6.8-Å resolution X-ray crystallography structure of subcomplex Iβ, a large portion of the membrane domain of B. taurus complex I that contains two core subunits and a cohort of supernumerary subunits. By comparing the structures and composition of subcomplex Iβ and complex I, supported by comparisons with Yarrowia lipolytica complex I, we propose assignments for eight further supernumerary subunits in the structure. Our new assignments include two CHCH-domain containing subunits that contain disulfide bridges between CX9C motifs; they are processed by the Mia40 oxidative-folding pathway in the intermembrane space and probably stabilize the membrane domain. We also assign subunit B22, an LYR protein, to the matrix face of the membrane domain. We reveal that subunit B22 anchors an acyl carrier protein (ACP) to the complex, replicating the LYR protein-ACP structural module that was identified previously in the hydrophilic domain. Thus, we significantly extend knowledge of how the mammalian supernumerary subunits are arranged around the core enzyme, and provide insights into their roles in biogenesis and regulation. PMID:26371297

  19. Motif types, motif locations and base composition patterns around the RNA polyadenylation site in microorganisms, plants and animals

    PubMed Central

    2014-01-01

    Background The polyadenylation of RNA is critical for gene functioning, but the conserved sequence motifs (often called signal or signature motifs), motif locations and abundances, and base composition patterns around mRNA polyadenylation [poly(A)] sites are still uncharacterized in most species. The evolutionary tendency for poly(A) site selection is still largely unknown. Results We analyzed the poly(A) site regions of 31 species or phyla. Different groups of species showed different poly(A) signal motifs: UUACUU at the poly(A) site in the parasite Trypanosoma cruzi; UGUAAC (approximately 13 bases upstream of the site) in the alga Chlamydomonas reinhardtii; UGUUUG (or UGUUUGUU) at mainly the fourth base downstream of the poly(A) site in the parasite Blastocystis hominis; and AAUAAA at approximately 16 bases and approximately 19 bases upstream of the poly(A) site in animals and plants, respectively. Polyadenylation signal motifs are usually several hundred times more abundant around poly(A) sites than in whole genomes. These predominant motifs usually had very specific locations, whether upstream of, at, or downstream of poly(A) sites, depending on the species or phylum. The poly(A) site was usually an adenosine (A) in all analyzed species except for B. hominis, and there was weak A predominance in C. reinhardtii. Fungi, animals, plants, and the protist Phytophthora infestans shared a general base abundance pattern (or base composition pattern) of “U-rich—A-rich—U-rich—Poly(A) site—U-rich regions”, or U-A-U-A-U for short, with some variation for each kingdom or subkingdom. Conclusion This study identified the poly(A) signal motifs, motif locations, and base composition patterns around mRNA poly(A) sites in protists, fungi, plants, and animals and provided insight into poly(A) site evolution. PMID:25052519

  20. Reverse genetics for mammalian reovirus.

    PubMed

    Boehme, Karl W; Ikizler, Miné; Kobayashi, Takeshi; Dermody, Terence S

    2011-10-01

    Mammalian orthoreoviruses (reoviruses) are highly tractable models for studies of viral replication and pathogenesis. The versatility of reovirus as an experimental model has been enhanced by development of a plasmid-based reverse genetics system. Infectious reovirus can be recovered from cells transfected with plasmids encoding cDNAs of each reovirus gene segment using a strategy that does not require helper virus and is independent of selection. In this system, transcription of each gene segment is driven by bacteriophage T7 RNA polymerase, which can be supplied transiently by recombinant vaccinia virus (rDIs-T7pol) or by cells that constitutively express the enzyme. Reverse genetics systems have been developed for two prototype reovirus strains, type 1 Lang (T1L) and type 3 Dearing (T3D). Each reovirus cDNA was encoded on an independent plasmid for the first-generation rescue system. The efficiency of virus recovery was enhanced in a second-generation system by combining the cDNAs for multiple reovirus gene segments onto single plasmids to reduce the number of plasmids from 10 to 4. The reduction in plasmid number and the use of baby hamster kidney cells that express T7 RNA polymerase increased the efficiency of viral rescue, reduced the incubation time required to recover infectious virus, and eliminated potential biosafety concerns associated with the use of recombinant vaccinia virus. Reovirus reverse genetics has been used to introduce mutations into viral capsid and nonstructural components to study viral protein-structure activity relationships and can be exploited to engineer recombinant reoviruses for vaccine and oncolytic applications. PMID:21798351

  1. Chemosignals, Hormones and Mammalian Reproduction

    PubMed Central

    Petrulis, Aras

    2013-01-01

    Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as “pheromones” but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking. PMID:23545474

  2. Hacking the genetic code of mammalian cells.

    PubMed

    Schwarzer, Dirk

    2009-07-01

    A genetic shuttle: The highlighted article, which was recently published by Schultz, Geierstanger and co-workers, describes a straightforward scheme for enlarging the genetic code of mammalian cells. An orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for a new amino acid can be evolved in E. coli and subsequently transferred into mammalian cells. The feasibility of this approach was demonstrated by adding a photocaged lysine derivative to the genetic repertoire of a human cell line. PMID:19533721

  3. Simplified Bioreactor For Growing Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F.

    1995-01-01

    Improved bioreactor for growing mammalian cell cultures developed. Designed to support growth of dense volumes of mammalian cells by providing ample, well-distributed flows of nutrient solution with minimal turbulence. Cells relatively delicate and, unlike bacteria, cannot withstand shear forces present in turbulent flows. Bioreactor vessel readily made in larger sizes to accommodate greater cell production quantities. Molding equipment presently used makes cylinders up to 30 centimeters long. Alternative sintered plastic techniques used to vary pore size and quantity, as necessary.

  4. CC chemokine receptor 5 gene polymorphisms in beryllium disease.

    PubMed

    Sato, H; Silveira, L; Spagnolo, P; Gillespie, M; Gottschall, E B; Welsh, K I; du Bois, R M; Newman, L S; Maier, L A

    2010-08-01

    CC chemokine receptor 5 (CCR5) is expressed on type-1 T-helper cells, which are involved in the pathogenesis of the granulomatous lung disease chronic beryllium disease (CBD). CCR5 gene (CCR5) polymorphisms are associated with sarcoidosis severity. The present study explores associations between CCR5 polymorphisms and CBD and its disease progression. Eight CCR5 polymorphisms were genotyped in CBD (n = 88), beryllium sensitisation (BeS; n = 86) and beryllium-exposed nondiseased controls (n = 173) using PCR with sequence-specific primers. Pulmonary function and bronchoalveolar lavage data were examined for associations with genotypes. There were no significant differences in genotype and allele frequency between CBD, BeS individuals and controls. In CBD, associations were found with decline in forced expiratory volume in 1 s and forced vital capacity and the CCR5 -3458 thymidine (T)T genotype (p<0.0001), and an increase in alveolar-arterial oxygen tension difference at rest (p = 0.003) and at maximum exercise (p = 0.01) and the -5663 adenine allele. Increased bronchoalveolar lavage lymphocyte numbers were associated with CCR5 -2459 guanine/-2135T (p = 0.01) only in the combined CBD and BeS group. This is the first study showing that CCR5 polymorphisms are associated with worsening pulmonary function over time in CBD, suggesting that CCR5 is important in the progression of pulmonary function in CBD. Further studies would be useful to clarify the mechanism whereby CCR5 polymorphisms affect progression of CBD. PMID:20075058

  5. Mammalian phylogeny reveals recent diversification rate shifts.

    PubMed

    Stadler, Tanja

    2011-04-12

    Phylogenetic trees of present-day species allow investigation of the rate of evolution that led to the present-day diversity. A recent analysis of the mammalian phylogeny challenged the view of explosive mammalian evolution after the Cretaceous-Tertiary (K/T) boundary (65 Mya). However, due to lack of appropriate methods, the diversification (speciation minus extinction) rates in the more recent past of mammalian evolution could not be determined. In this paper, I provide a method that reveals that the tempo of mammalian evolution did not change until ∼ 33 Mya. This constant period was followed by a peak of diversification rates between 33 and 30 Mya. Thereafter, diversification rates remained high and constant until 8.55 Mya. Diversification rates declined significantly at 8.55 and 3.35 Mya. Investigation of mammalian subgroups (marsupials, placentals, and the six largest placental subgroups) reveals that the diversification rate peak at 33-30 Mya is mainly driven by rodents, cetartiodactyla, and marsupials. The recent diversification rate decrease is significant for all analyzed subgroups but eulipotyphla, cetartiodactyla, and primates. My likelihood approach is not limited to mammalian evolution. It provides a robust framework to infer diversification rate changes and mass extinction events in phylogenies, reconstructed from, e.g., present-day species or virus data. In particular, the method is very robust toward noise and uncertainty in the phylogeny and can account for incomplete taxon sampling. PMID:21444816

  6. The Pellino E3 Ubiquitin Ligases Recognize Specific Phosphothreonine Motifs and Have Distinct Substrate Specificities

    PubMed Central

    2015-01-01

    The four mammalian Pellinos (Pellinos 1, 2, 3a, and 3b) are E3 ubiquitin ligases that are emerging as critical mediators for a variety of immune signaling pathways, including those activated by Toll-like receptors, the T-cell receptor, and NOD2. It is becoming increasingly clear that each Pellino has a distinct role in facilitating immune receptor signaling. However, the underlying mechanisms by which these highly homologous proteins act selectively in these signaling pathways are not clear. In this study, we investigate whether Pellino substrate recognition contributes to the divergent functions of Pellinos. Substrate recognition of each Pellino is mediated by its noncanonical forkhead-associated (FHA) domain, a well-characterized phosphothreonine-binding module. Pellino FHA domains share very high sequence identity, so a molecular basis for differences in substrate recognition is not immediately apparent. To explore Pellino substrate specificity, we first identify a high-affinity Pellino2 FHA domain-binding motif in the Pellino substrate, interleukin-1 receptor-associated kinase 1 (IRAK1). Analysis of binding of the different Pellinos to a panel of phosphothreonine-containing peptides derived from the IRAK1-binding motif reveals that each Pellino has a distinct phosphothreonine peptide binding preference. We observe a similar binding specificity in the interaction of Pellinos with a number of known Pellino substrates. These results argue that the nonredundant roles that Pellinos play in immune signaling are in part due to their divergent substrate specificities. This new insight into Pellino substrate recognition could be exploited for pharmacological advantage in treating inflammatory diseases that have been linked to the aberrant regulation of Pellinos. PMID:25027698

  7. Association of Overt Diabetes Mellitus with the Non-CC but not the CC Genotype of Interleukin-28B in Hepatitis C Virus Infected Patients

    PubMed Central

    Kumar, Ashish; Gupta, Varun; Sharma, Praveen; Bansal, Naresh; Singla, Vikas; Arora, Anil

    2016-01-01

    Background: Interleukin-28B (IL-28B) polymorphism is an important predictor for hepatitis C virus (HCV) treatment response. Whether IL-28b genotypes also influence other nontreatment related clinical parameters is unclear. Methods: Patients with HCV-related chronic liver diseases who attended our department during 2012-2014 were retrospectively analyzed. The single nucleotide polymorphisms (SNPs) of rs12979860 (IL-28B) were correlated with various clinical parameters. We also compared these parameters in patients with and without overt diabetes to identify possible associations. Results: A total of 115 patients were included (median age 48, range 15-76 years; 70% males). Overall, 43/115 (37%) patients had chronic hepatitis, while the remaining 72/115 (63%) had cirrhosis. The most common IL-28B genotype was CC, which was found in 53% of patients (61/115), while the remaining 47% were nonCC [CT 42% (48/115) and TT 5% (6/115)]. Clinical and laboratory parameters like Hb, white blood cell (WBC), platelets, bilirubin, transaminases, and albumin were similar in the CC and nonCC genotypes. Overt diabetes mellitus was present in 22% (25/115) of patients. Patients with nonCC genotype had significantly higher prevalence of overt diabetes mellitus than patients with CC genotype (31% [17/54] versus 13% [8/61]; p < 0.05). When parameters were compared in patients with and without overt diabetes mellitus, only IL-28B and age were significantly associated with overt diabetes mellitus (p < 0.05). Conclusion: In HCV patients, overt diabetes mellitus was more commonly associated with the nonCC genotype of IL-28B than the CC genotype. Carriers of the T-allele of SNP rs12979860 were more likely to have insulin resistance than CC homozygotes, and this finding may explain the higher prevalence of diabetes in non-CC genotypes. Thus, an IL-28B test may be useful in patients of HCV in order to determine their likelihood of developing diabetes mellitus. PMID:27047769

  8. C-C chemokine receptor type-4 transduction of T cells enhances interaction with dendritic cells, tumor infiltration and therapeutic efficacy of adoptive T cell transfer

    PubMed Central

    Rapp, Moritz; Grassmann, Simon; Chaloupka, Michael; Layritz, Patrick; Kruger, Stephan; Ormanns, Steffen; Rataj, Felicitas; Janssen, Klaus-Peter; Endres, Stefan; Anz, David; Kobold, Sebastian

    2016-01-01

    ABSTRACT T cell infiltration at the tumor site has been identified as a major predictor for the efficacy of adoptive T cell therapy. The chemokine C-C motif ligand 22 (CCL22) is highly expressed by immune cells in murine and human pancreatic cancer. Expression of its corresponding receptor, C-C chemokine receptor type 4 (CCR4), is restricted to regulatory T cells (Treg). We show that transduction of cytotoxic T cells (CTL) with CCR4 enhances their immigration into a pancreatic cancer model. Further, we show that binding of CCR4 with CCL22 strengthens the binding of T cell LFA-1 to dendritic cell (DC) ICAM-1 and increases CTL activation. In vivo, in a model of subcutaneous pancreatic cancer, treatment of tumor-bearing mice with CCR4-transduced CTL led to the eradication of established tumors in 40% of the mice. In conclusion, CCR4 overexpression in CTL is a promising therapeutic strategy to enhance the efficacy of adoptive T cell transfer (ACT). PMID:27195186

  9. Choosing the Right CC Welding Unit: Student Success Depends on It

    ERIC Educational Resources Information Center

    Borchert, Neal

    2008-01-01

    Understanding the personality of a constant current (CC) dc welding machine can make the difference between a successful or unsuccessful weld test or between a student who pursues a career in welding and one who may quit in frustration. In this article, the author explains the two different "personalities" of CC welders. He also explains how…

  10. A comprehensive analysis of the La-motif protein superfamily

    PubMed Central

    Bousquet-Antonelli, Cécile; Deragon, Jean-Marc

    2009-01-01

    The extremely well-conserved La motif (LAM), in synergy with the immediately following RNA recognition motif (RRM), allows direct binding of the (genuine) La autoantigen to RNA polymerase III primary transcripts. This motif is not only found on La homologs, but also on La-related proteins (LARPs) of unrelated function. LARPs are widely found amongst eukaryotes and, although poorly characterized, appear to be RNA-binding proteins fulfilling crucial cellular functions. We searched the fully sequenced genomes of 83 eukaryotic species scattered along the tree of life for the presence of LAM-containing proteins. We observed that these proteins are absent from archaea and present in all eukaryotes (except protists from the Plasmodium genus), strongly suggesting that the LAM is an ancestral motif that emerged early after the archaea-eukarya radiation. A complete evolutionary and structural analysis of these proteins resulted in their classification into five families: the genuine La homologs and four LARP families. Unexpectedly, in each family a conserved domain representing either a classical RRM or an RRM-like motif immediately follows the LAM of most proteins. An evolutionary analysis of the LAM-RRM/RRM-L regions shows that these motifs co-evolved and should be used as a single entity to define the functional region of interaction of LARPs with their substrates. We also found two extremely well conserved motifs, named LSA and DM15, shared by LARP6 and LARP1 family members, respectively. We suggest that members of the same family are functional homologs and/or share a common molecular mode of action on different RNA baits. PMID:19299548

  11. In vivo analysis of Caenorhabditis elegans noncoding RNA promoter motifs

    PubMed Central

    Li, Tiantian; He, Housheng; Wang, Yunfei; Zheng, Haixia; Skogerbø, Geir; Chen, Runsheng

    2008-01-01

    Background Noncoding RNAs (ncRNAs) play important roles in a variety of cellular processes. Characterizing the transcriptional activity of ncRNA promoters is therefore a critical step toward understanding the complex cellular roles of ncRNAs. Results Here we present an in vivo transcriptional analysis of three C. elegans ncRNA upstream motifs (UM1-3). Transcriptional activity of all three motifs has been demonstrated, and mutational analysis revealed differential contributions of different parts of each motif. We showed that upstream motif 1 (UM1) can drive the expression of green fluorescent protein (GFP), and utilized this for detailed analysis of temporal and spatial expression patterns of 5 SL2 RNAs. Upstream motifs 2 and 3 do not drive GFP expression, and termination at consecutive T runs suggests transcription by RNA polymerase III. The UM2 sequence resembles the tRNA promoter, and is actually embedded within its own short-lived, primary transcript. This is a structure which is also found at a few plant and yeast loci, and may indicate an evolutionarily very old dicistronic transcription pattern in which a tRNA serves as a promoter for an adjacent snoRNA. Conclusion The study has demonstrated that the three upstream motifs UM1-3 have promoter activity. The UM1 sequence can drive expression of GFP, which allows for the use of UM1::GFP fusion constructs to study temporal-spatial expression patterns of UM1 ncRNA loci. The UM1 loci appear to act in concert with other upstream sequences, whereas the transcriptional activities of the UM2 and UM3 are confined to the motifs themselves. PMID:18680611

  12. Energy Materials Coordinating Committee (EMaCC): Fiscal year 1996. Annual technical report

    SciTech Connect

    1997-08-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department`s materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. The EMaCC reports to the Director of the Office of Energy Research in his or her capacity as overseer of the technical programs of the Department. This annual technical report is mandated by the EMaCC terms of reference. This report summarizes EMaCC activities for FY 1996 and describes the materials research programs of various offices and divisions within the Department.

  13. Discovering Motifs in Ranked Lists of DNA Sequences

    PubMed Central

    Eden, Eran; Lipson, Doron; Yogev, Sivan; Yakhini, Zohar

    2007-01-01

    Computational methods for discovery of sequence elements that are enriched in a target set compared with a background set are fundamental in molecular biology research. One example is the discovery of transcription factor binding motifs that are inferred from ChIP–chip (chromatin immuno-precipitation on a microarray) measurements. Several major challenges in sequence motif discovery still require consideration: (i) the need for a principled approach to partitioning the data into target and background sets; (ii) the lack of rigorous models and of an exact p-value for measuring motif enrichment; (iii) the need for an appropriate framework for accounting for motif multiplicity; (iv) the tendency, in many of the existing methods, to report presumably significant motifs even when applied to randomly generated data. In this paper we present a statistical framework for discovering enriched sequence elements in ranked lists that resolves these four issues. We demonstrate the implementation of this framework in a software application, termed DRIM (discovery of rank imbalanced motifs), which identifies sequence motifs in lists of ranked DNA sequences. We applied DRIM to ChIP–chip and CpG methylation data and obtained the following results. (i) Identification of 50 novel putative transcription factor (TF) binding sites in yeast ChIP–chip data. The biological function of some of them was further investigated to gain new insights on transcription regulation networks in yeast. For example, our discoveries enable the elucidation of the network of the TF ARO80. Another finding concerns a systematic TF binding enhancement to sequences containing CA repeats. (ii) Discovery of novel motifs in human cancer CpG methylation data. Remarkably, most of these motifs are similar to DNA sequence elements bound by the Polycomb complex that promotes histone methylation. Our findings thus support a model in which histone methylation and CpG methylation are mechanistically linked. Overall

  14. Design and Test of the CC Cryostat Head Cart

    SciTech Connect

    Jaques, Al; /Fermilab

    1989-08-08

    This Engineering Note documents the design of the stand to be used to transport the CC Cryostat heads into the D-Zero clean room. Due to the width of the clean room access door, the heads will have to be upright to fit through. This head cart will hold the heads upright and wheel them into the clean room on a guided track. Before the wheels are placed on the heat cart, it will be used as a stand to place the heads on for the purpose of test fitting the super insulation. The head cart will not only be structurally sufficient to support the weight of the heads but also stiff enough to allow a maximum deflection of 1/2-inch at the end of the 48-inch cylinder. The heaviest head assembly weighs about 9000 pounds. Following A.I.S.C. specifications and using a 9000 pound design load, the head cart was initially designed and built and later modified in order to meet the deflection requirements. Bending and tension stresses were limited to two thirds the yield strength. Weld and shear stresses are limited to 0.4*Fy. The C7 X 12.25 channels, the L2.5 X 2.5 X 0.25 angles adn the 1/2-inch plate are all A36 steel. In order to validate the need for an end plate in the 48-inch cylinder, an ANSYS model was created of the cylinder itself to determine it's rigidity under a point load applied at it's outer end. Appendix D contains the results which demonstrate the rigidity of the cylinder-end plate assembly. Also included is a Frame-Mac simulation of the head cart which was used to estimate the deflection at the cylinder end. A load test was performed to 133% of the rated capacity, or 12,000 pounds. The test load was incrementally applied using a crane and hook scale. A graph of deflection vs. load is shown in Appendix E. A spreader beam was designed and built to properly test the head cart. Stress calculations for this test spreader beam are included in Appendix C.

  15. Interconnected Network Motifs Control Podocyte Morphology and Kidney Function

    PubMed Central

    Azeloglu, Evren U.; Hardy, Simon V.; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y.; Fang, Wei; Xiong, Huabao; Neves, Susana R.; Jain, Mohit R.; Li, Hong; Ma’ayan, Avi; Gordon, Ronald E.; He, John Cijiang; Iyengar, Ravi

    2014-01-01

    Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3′,5′-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element–binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor–driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease. PMID:24497609

  16. BC1 RNA motifs required for dendritic transport in vivo

    PubMed Central

    Robeck, Thomas; Skryabin, Boris V.; Rozhdestvensky, Timofey S.; Skryabin, Anastasiya B.; Brosius, Jürgen

    2016-01-01

    BC1 RNA is a small brain specific non-protein coding RNA. It is transported from the cell body into dendrites where it is involved in the fine-tuning translational control. Due to its compactness and established secondary structure, BC1 RNA is an ideal model for investigating the motifs necessary for dendritic localization. Previously, microinjection of in vitro transcribed BC1 RNA mutants into the soma of cultured primary neurons suggested the importance of RNA motifs for dendritic targeting. These ex vivo experiments identified a single bulged nucleotide (U22) and a putative K-turn (GA motif) structure required for dendritic localization or distal transport, respectively. We generated six transgenic mouse lines (three founders each) containing neuronally expressing BC1 RNA variants on a BC1 RNA knockout mouse background. In contrast to ex vivo data, we did not find indications of reduction or abolition of dendritic BC1 RNA localization in the mutants devoid of the GA motif or the bulged nucleotide. We confirmed the ex vivo data, which showed that the triloop terminal sequence had no consequence on dendritic transport. Interestingly, changing the triloop supporting structure completely abolished dendritic localization of BC1 RNA. We propose a novel RNA motif important for dendritic transport in vivo. PMID:27350115

  17. MALISAM: a database of structurally analogous motifs in proteins.

    PubMed

    Cheng, Hua; Kim, Bong-Hyun; Grishin, Nick V

    2008-01-01

    MALISAM (manual alignments for structurally analogous motifs) represents the first database containing pairs of structural analogs and their alignments. To find reliable analogs, we developed an approach based on three ideas. First, an insertion together with a part of the evolutionary core of one domain family (a hybrid motif) is analogous to a similar motif contained within the core of another domain family. Second, a motif at an interface, formed by secondary structural elements (SSEs) contributed by two or more domains or subunits contacting along that interface, is analogous to a similar motif present in the core of a single domain. Third, an artificial protein obtained through selection from random peptides or in sequence design experiments not biased by sequences of a particular homologous family, is analogous to a structurally similar natural protein. Each analogous pair is superimposed and aligned manually, as well as by several commonly used programs. Applications of this database may range from protein evolution studies, e.g. development of remote homology inference tools and discriminators between homologs and analogs, to protein-folding research, since in the absence of evolutionary reasons, similarity between proteins is caused by structural and folding constraints. The database is publicly available at http://prodata.swmed.edu/malisam. PMID:17855399

  18. DynaMIT: the dynamic motif integration toolkit

    PubMed Central

    Dassi, Erik; Quattrone, Alessandro

    2016-01-01

    De-novo motif search is a frequently applied bioinformatics procedure to identify and prioritize recurrent elements in sequences sets for biological investigation, such as the ones derived from high-throughput differential expression experiments. Several algorithms have been developed to perform motif search, employing widely different approaches and often giving divergent results. In order to maximize the power of these investigations and ultimately be able to draft solid biological hypotheses, there is the need for applying multiple tools on the same sequences and merge the obtained results. However, motif reporting formats and statistical evaluation methods currently make such an integration task difficult to perform and mostly restricted to specific scenarios. We thus introduce here the Dynamic Motif Integration Toolkit (DynaMIT), an extremely flexible platform allowing to identify motifs employing multiple algorithms, integrate them by means of a user-selected strategy and visualize results in several ways; furthermore, the platform is user-extendible in all its aspects. DynaMIT is freely available at http://cibioltg.bitbucket.org. PMID:26253738

  19. Mining tertiary structural motifs for assessment of designability.

    PubMed

    Zhang, Jian; Grigoryan, Gevorg

    2013-01-01

    The observation of a limited secondary-structural alphabet in native proteins, with significant sequence preferences, has profoundly influenced the fields of protein design and structure prediction (Simons, Kooperberg, Huang, & Baker, 1997; Verschueren et al., 2011). In the era of structural genomics, as the size of the structural dataset continues to grow rapidly, it is becoming possible to extend this analysis to tertiary structural motifs and their sequences. For a hypothetical tertiary motif, the rate of its utilization in natural proteins may be used to assess its designability-the ease with which the motif can be realized with natural amino acids. This requires a structural similarity search methodology, which rather than looking for global topological agreement (more appropriate for categorization of full proteins or domains), identifies detailed geometric matches. In this chapter, we introduce such a method, called MaDCaT, and demonstrate its use by assessing the designability landscapes of two tertiary structural motifs. We also show that such analysis can establish structure/sequence links by providing the sequence constraints necessary to encode designable motifs. As logical extension of their secondary-structure counterparts, tertiary structural preferences will likely prove extremely useful in de novo protein design and structure prediction. PMID:23422424

  20. BC1 RNA motifs required for dendritic transport in vivo.

    PubMed

    Robeck, Thomas; Skryabin, Boris V; Rozhdestvensky, Timofey S; Skryabin, Anastasiya B; Brosius, Jürgen

    2016-01-01

    BC1 RNA is a small brain specific non-protein coding RNA. It is transported from the cell body into dendrites where it is involved in the fine-tuning translational control. Due to its compactness and established secondary structure, BC1 RNA is an ideal model for investigating the motifs necessary for dendritic localization. Previously, microinjection of in vitro transcribed BC1 RNA mutants into the soma of cultured primary neurons suggested the importance of RNA motifs for dendritic targeting. These ex vivo experiments identified a single bulged nucleotide (U22) and a putative K-turn (GA motif) structure required for dendritic localization or distal transport, respectively. We generated six transgenic mouse lines (three founders each) containing neuronally expressing BC1 RNA variants on a BC1 RNA knockout mouse background. In contrast to ex vivo data, we did not find indications of reduction or abolition of dendritic BC1 RNA localization in the mutants devoid of the GA motif or the bulged nucleotide. We confirmed the ex vivo data, which showed that the triloop terminal sequence had no consequence on dendritic transport. Interestingly, changing the triloop supporting structure completely abolished dendritic localization of BC1 RNA. We propose a novel RNA motif important for dendritic transport in vivo. PMID:27350115

  1. cWINNOWER algorithm for finding fuzzy dna motifs

    NASA Technical Reports Server (NTRS)

    Liang, S.; Samanta, M. P.; Biegel, B. A.

    2004-01-01

    The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if a clique consisting of a sufficiently large number of mutated copies of the motif (i.e., the signals) is present in the DNA sequence. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum detectable clique size qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12,000 for (l, d) = (15, 4). Copyright Imperial College Press.

  2. Wnt signalling pathway parameters for mammalian cells.

    PubMed

    Tan, Chin Wee; Gardiner, Bruce S; Hirokawa, Yumiko; Layton, Meredith J; Smith, David W; Burgess, Antony W

    2012-01-01

    Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated with the parameters

  3. A plant virus replication system to assay the formation of RNA pseudotriloop motifs in RNA-protein interactions.

    PubMed

    Haasnoot, P C Joost; Bol, John F; Olsthoorn, René C L

    2003-10-28

    A pseudotriloop is formed by transloop base pairing between the first (5') and the fifth nucleotide in a hexanucleotide RNA loop ("hexaloop") to subtend a triloop of nucleotides 2-4. This structure has been found in hairpins involved in the regulation of iron metabolism in mammalian cells and in transcription of plant virus subgenomic RNA. Several hexaloop hairpins, including HIV-transactivation-responsive element and hepatitis B virus , potentially adopt a pseudotriloop conformation. Here we show that an RNA plant virus whose replication depends on a conventional triloop hairpin can be used to verify the existence of pseudotriloop structures in vivo. Our data suggest that the pseudotriloop may represent a common motif in RNA-protein recognition. PMID:14569004

  4. Lysine and the Na+/K+ Selectivity in Mammalian Voltage-Gated Sodium Channels.

    PubMed

    Li, Yang; Liu, Huihui; Xia, Mengdie; Gong, Haipeng

    2016-01-01

    Voltage-gated sodium (Nav) channels are critical in the generation and transmission of neuronal signals in mammals. The crystal structures of several prokaryotic Nav channels determined in recent years inspire the mechanistic studies on their selection upon the permeable cations (especially between Na+ and K+ ions), a property that is proposed to be mainly determined by residues in the selectivity filter. However, the mechanism of cation selection in mammalian Nav channels lacks direct explanation at atomic level due to the difference in amino acid sequences between mammalian and prokaryotic Nav homologues, especially at the constriction site where the DEKA motif has been identified to determine the Na+/K+ selectivity in mammalian Nav channels but is completely absent in the prokaryotic counterparts. Among the DEKA residues, Lys is of the most importance since its mutation to Arg abolishes the Na+/K+ selectivity. In this work, we modeled the pore domain of mammalian Nav channels by mutating the four residues at the constriction site of a prokaryotic Nav channel (NavRh) to DEKA, and then mechanistically investigated the contribution of Lys in cation selection using molecular dynamics simulations. The DERA mutant was generated as a comparison to understand the loss of ion selectivity caused by the K-to-R mutation. Simulations and free energy calculations on the mutants indicate that Lys facilitates Na+/K+ selection by electrostatically repelling the cation to a highly Na+-selective location sandwiched by the carboxylate groups of Asp and Glu at the constriction site. In contrast, the electrostatic repulsion is substantially weakened when Lys is mutated to Arg, because of two intrinsic properties of the Arg side chain: the planar geometric design and the sparse charge distribution of the guanidine group. PMID:27584582

  5. Robustness to noise in synchronization of network motifs: Experimental results

    NASA Astrophysics Data System (ADS)

    Buscarino, Arturo; Fortuna, Luigi; Frasca, Mattia; Iachello, Marco; Pham, Viet-Thanh

    2012-12-01

    In this work, we experimentally investigate the robustness to noise of synchronization in all the four-nodes network motifs. The experimental setup consists of four Chua's circuits diffusively coupled in order to implement the six different undirected network motifs that can be obtained with four nodes. In this experimental setup, synchronization in the presence of noise injected in one of the network nodes is investigated and network motifs are compared in terms of the synchronization error obtained. The analysis has been then extended to some selected case studies of networks with five and six nodes. Numerical simulations have been also performed and results in agreement with experiments have been obtained. A correlation between node degree and robustness to noise has been found also in these networks.

  6. Mammalian Cell-Based Sensor System

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.

    Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

  7. A Comparative Study of Mammalian Diversification Pattern

    PubMed Central

    Yu, Wenhua; Xu, Junxiao; Wu, Yi; Yang, Guang

    2012-01-01

    Although mammals have long been regarded as a successful radiation, the diversification pattern among the clades is still poorly known. Higher-level phylogenies are conflicting and comprehensive comparative analyses are still lacking. Using a recently published supermatrix encompassing nearly all extant mammalian families and a novel comparative likelihood approach (MEDUSA), the diversification pattern of mammalian groups was examined. Both order- and family-level phylogenetic analyses revealed the rapid radiation of Boreoeutheria and Euaustralidelphia in the early mammalian history. The observation of a diversification burst within Boreoeutheria at approximately 100 My supports the Long Fuse model in elucidating placental diversification progress, and the rapid radiation of Euaustralidelphia suggests an important role of biogeographic dispersal events in triggering early Australian marsupial rapid radiation. Diversification analyses based on family-level diversity tree revealed seven additional clades with exceptional diversification rate shifts, six of which represent accelerations in net diversification rate as compared to the background pattern. The shifts gave origin to the clades Muridae+Cricetidae, Bovidae+Moschidae+Cervidae, Simiiformes, Echimyidae, Odontoceti (excluding Physeteridae+Kogiidae+Platanistidae), Macropodidae, and Vespertilionidae. Moderate to high extinction rates from background and boreoeutherian diversification patterns indicate the important role of turnovers in shaping the heterogeneous taxonomic richness observed among extant mammalian groups. Furthermore, the present results emphasize the key role of extinction on erasing unusual diversification signals, and suggest that further studies are needed to clarify the historical radiation of some mammalian groups for which MEDUSA did not detect exceptional diversification rates. PMID:22457604

  8. A motif of eleven amino acids is a structural adaptation that facilitates motor capability of eutherian prestin

    PubMed Central

    Tan, Xiaodong; Pecka, Jason L.; Tang, Jie; Lovas, Sándor; Beisel, Kirk W.; He, David Z. Z.

    2012-01-01

    Cochlear outer hair cells (OHCs) alter their length in response to transmembrane voltage changes. This so-called electromotility is the result of conformational changes of membrane-bound prestin. Prestin-based OHC motility is thought to be responsible for cochlear amplification, which contributes to the exquisite frequency selectivity and sensitivity of mammalian hearing. Prestin belongs to an anion transporter family, the solute carrier protein 26A (SLC26A). Prestin is unique in this family in that it functions as a voltage-dependent motor protein manifested by two hallmarks, nonlinear capacitance and motility. Evidence suggests that prestin orthologs from zebrafish and chicken are anion exchangers or transporters with no motor function. We identified a segment of 11 amino acid residues in eutherian prestin that is extremely conserved among eutherian species but highly variable among non-mammalian orthologs and SLC26A paralogs. To determine whether this sequence represents a motif that facilitates motor function in eutherian prestin, we utilized a chimeric approach by swapping corresponding residues from the zebrafish and chicken with those of gerbil. Motility and nonlinear capacitance were measured from chimeric prestin-transfected human embryonic kidney 293 cells using a voltage-clamp technique and photodiode-based displacement measurement system. We observed a gain of motor function with both of the hallmarks in the chimeric prestin without loss of transport function. Our results show, for the first time, that the substitution of a span of 11 amino acid residues confers the electrogenic anion transporters of zebrafish and chicken prestins with motor-like function. Thus, this motif represents the structural adaptation that assists gain of motor function in eutherian prestin. PMID:22399806

  9. A motif of eleven amino acids is a structural adaptation that facilitates motor capability of eutherian prestin.

    PubMed

    Tan, Xiaodong; Pecka, Jason L; Tang, Jie; Lovas, Sándor; Beisel, Kirk W; He, David Z Z

    2012-02-15

    Cochlear outer hair cells (OHCs) alter their length in response to transmembrane voltage changes. This so-called electromotility is the result of conformational changes of membrane-bound prestin. Prestin-based OHC motility is thought to be responsible for cochlear amplification, which contributes to the exquisite frequency selectivity and sensitivity of mammalian hearing. Prestin belongs to an anion transporter family, the solute carrier protein 26A (SLC26A). Prestin is unique in this family in that it functions as a voltage-dependent motor protein manifested by two hallmarks, nonlinear capacitance and motility. Evidence suggests that prestin orthologs from zebrafish and chicken are anion exchangers or transporters with no motor function. We identified a segment of 11 amino acid residues in eutherian prestin that is extremely conserved among eutherian species but highly variable among non-mammalian orthologs and SLC26A paralogs. To determine whether this sequence represents a motif that facilitates motor function in eutherian prestin, we utilized a chimeric approach by swapping corresponding residues from the zebrafish and chicken with those of gerbil. Motility and nonlinear capacitance were measured from chimeric prestin-transfected human embryonic kidney 293 cells using a voltage-clamp technique and photodiode-based displacement measurement system. We observed a gain of motor function with both of the hallmarks in the chimeric prestin without loss of transport function. Our results show, for the first time, that the substitution of a span of 11 amino acid residues confers the electrogenic anion transporters of zebrafish and chicken prestins with motor-like function. Thus, this motif represents the structural adaptation that assists gain of motor function in eutherian prestin. PMID:22399806

  10. Selection against spurious promoter motifs correlates withtranslational efficiency across bacteria

    SciTech Connect

    Froula, Jeffrey L.; Francino, M. Pilar

    2007-05-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the {sigma}{sup 70} subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also implies that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.

  11. Analysis of interactions between ribosomal proteins and RNA structural motifs

    PubMed Central

    2010-01-01

    Background One important goal of structural bioinformatics is to recognize and predict the interactions between protein binding sites and RNA. Recently, a comprehensive analysis of ribosomal proteins and their interactions with rRNA has been done. Interesting results emerged from the comparison of r-proteins within the small subunit in T. thermophilus and E. coli, supporting the idea of a core made by both RNA and proteins, conserved by evolution. Recent work showed also that ribosomal RNA is modularly composed. Motifs are generally single-stranded sequences of consecutive nucleotides (ssRNA) with characteristic folding. The role of these motifs in protein-RNA interactions has been so far only sparsely investigated. Results This work explores the role of RNA structural motifs in the interaction of proteins with ribosomal RNA (rRNA). We analyze composition, local geometries and conformation of interface regions involving motifs such as tetraloops, kink turns and single extruded nucleotides. We construct an interaction map of protein binding sites that allows us to identify the common types of shared 3-D physicochemical binding patterns for tetraloops. Furthermore, we investigate the protein binding pockets that accommodate single extruded nucleotides either involved in kink-turns or in arbitrary RNA strands. This analysis reveals a new structural motif, called tripod. It corresponds to small pockets consisting of three aminoacids arranged at the vertices of an almost equilateral triangle. We developed a search procedure for the recognition of tripods, based on an empirical tripod fingerprint. Conclusion A comparative analysis with the overall RNA surface and interfaces shows that contact surfaces involving RNA motifs have distinctive features that may be useful for the recognition and prediction of interactions. PMID:20122215

  12. Specific RNA self-assembly with minimal paranemic motifs

    PubMed Central

    Afonin, Kirill A.; Cieply, Dennis J.; Leontis, Neocles B.

    2016-01-01

    The paranemic crossover (PX) is a motif for assembling two nucleic acid molecules using Watson-Crick (WC) basepairing without unfolding pre-formed secondary structure in the individual molecules. Once formed, the paranemic assembly motif comprises adjacent parallel double helices that cross over at every possible point over the length of the motif. The interaction is reversible as it does not require denaturation of basepairs internal to each interacting molecular unit. Paranemic assembly has been demonstrated for DNA but not for RNA, and only for motifs with four or more cross-over points and lengths of five or more helical half-turns. Here we report the design of RNA molecules that paranemically assemble with the minimum number of two cross-overs spanning the major groove to form paranemic motifs with a length of three half-turns (3HT). Dissociation constants (Kds) were measured for series of molecules in which the number of basepairs between the cross-over points was varied from five to eight basepairs. The paranemic 3HT complex with six basepairs (3HT_6M) was found to be the most stable with Kd = 1×10−8 M. The half-time for kinetic exchange of the 3HT_6M complex was determined to be ~100 minutes, from which we calculated association and dissociation rate constants ka = 5.11×103 M−1sec−1 and kd = 5.11×10−5 sec−1. RNA paranemic assembly of 3HT and 5HT complexes is blocked by single-base substitutions that disrupt individual inter-molecular Watson-Crick basepairs and is restored by compensatory substitutions that restore those basepairs. The 3HT motif appears suitable for specific, programmable, and reversible tecto-RNA self-assembly for constructing artificial RNA molecular machines. PMID:18072767

  13. Pharmacokinetics and Pharmacodynamics with Extended Dosing of CC-486 in Patients with Hematologic Malignancies

    PubMed Central

    Garcia-Manero, Guillermo; Cogle, Christopher R.; Gore, Steven D.; Hetzer, Joel; Kumar, Keshava; Skikne, Barry; MacBeth, Kyle J.

    2015-01-01

    CC-486 (oral azacitidine) is an epigenetic modifier in development for patients with myelodysplastic syndromes and acute myeloid leukemia. In part 1 of this two-part study, a 7-day CC-486 dosing schedule showed clinical activity, was generally well tolerated, and reduced DNA methylation. Extending dosing of CC-486 beyond 7 days would increase duration of azacitidine exposure. We hypothesized that extended dosing would therefore provide more sustained epigenetic activity. Reported here are the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of CC-486 extended dosing schedules in patients with myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia (CMML) or acute myeloid leukemia (AML) from part 2 of this study. PK and/or PD data were available for 59 patients who were sequentially assigned to 1 of 4 extended CC-486 dosing schedules: 300mg once-daily or 200mg twice-daily for 14 or 21 days per 28-day cycle. Both 300mg once-daily schedules and the 200mg twice-daily 21-day schedule significantly (all P < .05) reduced global DNA methylation in whole blood at all measured time points (days 15, 22, and 28 of the treatment cycle), with sustained hypomethylation at cycle end compared with baseline. CC-486 exposures and reduced DNA methylation were significantly correlated. Patients who had a hematologic response had significantly greater methylation reductions than non-responding patients. These data demonstrate that extended dosing of CC-486 sustains epigenetic effects through the treatment cycle. Trial Registration ClinicalTrials.gov NCT00528983 PMID:26296092

  14. RB1CC1 Protein Suppresses Type II Collagen Synthesis in Chondrocytes and Causes Dwarfism*

    PubMed Central

    Nishimura, Ichiro; Chano, Tokuhiro; Kita, Hiroko; Matsusue, Yoshitaka; Okabe, Hidetoshi

    2011-01-01

    RB1-inducible coiled-coil 1 (RB1CC1) functions in various processes, such as cell growth, differentiation, senescence, apoptosis, and autophagy. The conditional transgenic mice with cartilage-specific RB1CC1 excess that were used in the present study were made for the first time by the Cre-loxP system. Cartilage-specific RB1CC1 excess caused dwarfism in mice without causing obvious abnormalities in endochondral ossification and subsequent skeletal development from embryo to adult. In vitro and in vivo analysis revealed that the dwarf phenotype in cartilaginous RB1CC1 excess was induced by reductions in the total amount of cartilage and the number of cartilaginous cells, following suppressions of type II collagen synthesis and Erk1/2 signals. In addition, we have demonstrated that two kinds of SNPs (T-547C and C-468T) in the human RB1CC1 promoter have significant influence on the self-transcriptional level. Accordingly, human genotypic variants of RB1CC1 that either stimulate or inhibit RB1CC1 transcription in vivo may cause body size variations. PMID:22049074

  15. Dissemination of Methicillin-Susceptible CC398 Staphylococcus aureus Strains in a Rural Greek Area

    PubMed Central

    Sarrou, Styliani; Liakopoulos, Apostolos; Chasioti, Markella; Foka, Antigoni; Fthenakis, Georgios; Billinis, Charalampos; Spyrou, Vassiliki; Pantelidi, Kleoniki; Roussaki-Schulze, Angeliki; Lachanas, Vassilios; Makaritsis, Konstantinos; Skoulakis, Charalampos; Daikos, Georgios L.; Dalekos, Georgios; Spiliopoulou, Iris; Petinaki, Efthymia

    2015-01-01

    A large collection of Staphylococcus aureus including a. 745 clinically significant isolates that were consecutively recovered from human infections during 2012–2013, b. 19 methicillin-susceptible (MSSA), randomly selected between 2006–2011 from our Staphylococcal Collection, c. 16 human colonizing isolates, and d. 10 strains from colonized animals was investigated for the presence and the molecular characteristics of CC398. The study was conducted in Thessaly, a rural region in Greece. The differentiation of livestock-associated clade from the human clade was based on canSNPs combined with the presence of the φ3 bacteriophage and the tetM, scn, sak, and chp genes. Among the 745 isolates, two MRSA (0.8% of total MRSA) and thirteen MSSA (2.65% of total MSSA) were found to belong to CC398, while, between MSSA of our Staphylococcal Collection, one CC398, isolated in 2010, was detected. One human individual, without prior contact with animals, was found to be colonized by a MSSA CC398. No CC398 was identified among the 10 S. aureus isolated from animals. Based on the molecular markers, the 17 CC398 strains were equally placed in the livestock-associated and in the human clades. This is the first report for the dissemination of S. aureus CC398 among humans in Greece. PMID:25835293

  16. RB1CC1 protein suppresses type II collagen synthesis in chondrocytes and causes dwarfism.

    PubMed

    Nishimura, Ichiro; Chano, Tokuhiro; Kita, Hiroko; Matsusue, Yoshitaka; Okabe, Hidetoshi

    2011-12-23

    RB1-inducible coiled-coil 1 (RB1CC1) functions in various processes, such as cell growth, differentiation, senescence, apoptosis, and autophagy. The conditional transgenic mice with cartilage-specific RB1CC1 excess that were used in the present study were made for the first time by the Cre-loxP system. Cartilage-specific RB1CC1 excess caused dwarfism in mice without causing obvious abnormalities in endochondral ossification and subsequent skeletal development from embryo to adult. In vitro and in vivo analysis revealed that the dwarf phenotype in cartilaginous RB1CC1 excess was induced by reductions in the total amount of cartilage and the number of cartilaginous cells, following suppressions of type II collagen synthesis and Erk1/2 signals. In addition, we have demonstrated that two kinds of SNPs (T-547C and C-468T) in the human RB1CC1 promoter have significant influence on the self-transcriptional level. Accordingly, human genotypic variants of RB1CC1 that either stimulate or inhibit RB1CC1 transcription in vivo may cause body size variations. PMID:22049074

  17. SPIC: A novel similarity metric for comparing transcription factor binding site motifs based on information contents

    PubMed Central

    2013-01-01

    Background Discovering transcription factor binding sites (TFBS) is one of primary challenges to decipher complex gene regulatory networks encrypted in a genome. A set of short DNA sequences identified by a transcription factor (TF) is known as a motif, which can be expressed accurately in matrix form such as a position-specific scoring matrix (PSSM) and a position frequency matrix. Very frequently, we need to query a motif in a database of motifs by seeking its similar motifs, merge similar TFBS motifs possibly identified by the same TF, separate irrelevant motifs, or filter out spurious motifs. Therefore, a novel metric is required to seize slight differences between irrelevant motifs and highlight the similarity between motifs of the same group in all these applications. While there are already several metrics for motif similarity proposed before, their performance is still far from satisfactory for these applications. Methods A novel metric has been proposed in this paper with name as SPIC (Similarity with Position Information Contents) for measuring the similarity between a column of a motif and a column of another motif. When defining this similarity score, we consider the likelihood that the column of the first motif's PFM can be produced by the column of the second motif's PSSM, and multiply the likelihood by the information content of the column of the second motif's PSSM, and vise versa. We evaluated the performance of SPIC combined with a local or a global alignment method having a function for affine gap penalty, for computing the similarity between two motifs. We also compared SPIC with seven existing state-of-the-arts metrics for their capability of clustering motifs from the same group and retrieving motifs from a database on three datasets. Results When used jointly with the Smith-Waterman local alignment method with an affine gap penalty function (gap open penalty is equal to1, gap extension penalty is equal to 0.5), SPIC outperforms the seven

  18. Using the Gibbs Motif Sampler for Phylogenetic Footprinting

    SciTech Connect

    Thompson, William; Conlan, Sean; McCue, Lee Ann; Lawrence, Charles

    2007-07-01

    The Gibbs Motif Sampler (Gibbs) (1) is a software package used to predict conserved elements in biopolymer sequences. While the software can be used to locate conserved motifs in protein sequences, its most common use is the prediction of transcription factor binding sites (TFBSs) in promoters upstream of gene sequences. We will describe approaches that use Gibbs to locate TFBSs in a collection of orthologous nucleotide sequences, i.e. phylogenetic footprinting. To illustrate this technique, we present examples that use Gibbs to detect binding sites for the transcription factor LexA in orthologous sequence data from representative species belonging to two different proteobacterial divisions.

  19. Structural Insights into the Interaction Between a Potent Anti-Inflammatory Protein, Viral CC Chemokine Inhibitor (vCCI), and the Human CC Chemokine, Eotaxin-1

    SciTech Connect

    Kuo, Nai-Wei; Gao, Yong; Schill, Megan S.; Isern, Nancy G.; Dupureur, Cynthia M.; Liwang, Patricia J.

    2014-01-30

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirusencoded protein vCCI, a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes, and may represent a potent method to stop inflammation. Previously, our structure of the vCCI:MIP-1β complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1βN-terminus, 20’s region and 40’s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), another CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI:MIP-1βcomplex, and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin. Compared to wild-type eotaxin, single, double, or triple mutations at these critical charged residues weaken the binding. One exception is the K47A mutation that exhibits increased affinity for vCCI, which can be explained structurally. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1, MIP-1β and RANTES, were determined as 1.09 nM, 1.16 nM, and 0.22 nM, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and different CC chemokines.

  20. Motifs of VDAC2 required for mitochondrial Bak import and tBid-induced apoptosis.

    PubMed

    Naghdi, Shamim; Várnai, Péter; Hajnóczky, György

    2015-10-13

    Voltage-dependent anion channel (VDAC) proteins are major components of the outer mitochondrial membrane. VDAC has three isoforms with >70% sequence similarity and redundant roles in metabolite and ion transport. However, only Vdac2(-/-) (V2(-/-)) mice are embryonic lethal, indicating a unique and fundamental function of VDAC2 (V2). Recently, a specific V2 requirement was demonstrated for mitochondrial Bak import and truncated Bid (tBid)-induced apoptosis. To determine the relevant domain(s) of V2 involved, VDAC1 (V1) and V2 chimeric constructs were created and used to rescue V2(-/-) fibroblasts. Surprisingly, the commonly cited V2-specific N-terminal extension and cysteines were found to be dispensable for Bak import and high tBid sensitivity. In gain-of-function studies, V2 (123-179) was the minimal sequence sufficient to render V1 competent to support Bak insertion. Furthermore, in loss-of-function experiments, T168 and D170 were identified as critical residues. These motifs are conserved in zebrafish V2 (zfV2) that also rescued V2-deficient fibroblasts. Because high-resolution structures of zfV2 and mammalian V1 have become available, we could superimpose these structures and recognized that the critical V2-specific residues help to create a distinctive open "pocket" on the cytoplasmic surface that could facilitate Bak recruitment. PMID:26417093

  1. DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination

    PubMed Central

    Qin, Weihua; Wolf, Patricia; Liu, Nan; Link, Stephanie; Smets, Martha; Mastra, Federica La; Forné, Ignasi; Pichler, Garwin; Hörl, David; Fellinger, Karin; Spada, Fabio; Bonapace, Ian Marc; Imhof, Axel; Harz, Hartmann; Leonhardt, Heinrich

    2015-01-01

    DNMT1 is recruited by PCNA and UHRF1 to maintain DNA methylation after replication. UHRF1 recognizes hemimethylated DNA substrates via the SRA domain, but also repressive H3K9me3 histone marks with its TTD. With systematic mutagenesis and functional assays, we could show that chromatin binding further involved UHRF1 PHD binding to unmodified H3R2. These complementation assays clearly demonstrated that the ubiquitin ligase activity of the UHRF1 RING domain is required for maintenance DNA methylation. Mass spectrometry of UHRF1-deficient cells revealed H3K18 as a novel ubiquitination target of UHRF1 in mammalian cells. With bioinformatics and mutational analyses, we identified a ubiquitin interacting motif (UIM) in the N-terminal regulatory domain of DNMT1 that binds to ubiquitinated H3 tails and is essential for DNA methylation in vivo. H3 ubiquitination and subsequent DNA methylation required UHRF1 PHD binding to H3R2. These results show the manifold regulatory mechanisms controlling DNMT1 activity that require the reading and writing of epigenetic marks by UHRF1 and illustrate the multifaceted interplay between DNA and histone modifications. The identification and functional characterization of the DNMT1 UIM suggests a novel regulatory principle and we speculate that histone H2AK119 ubiquitination might also lead to UIM-dependent recruitment of DNMT1 and DNA methylation beyond classic maintenance. PMID:26065575

  2. DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination.

    PubMed

    Qin, Weihua; Wolf, Patricia; Liu, Nan; Link, Stephanie; Smets, Martha; La Mastra, Federica; Forné, Ignasi; Pichler, Garwin; Hörl, David; Fellinger, Karin; Spada, Fabio; Bonapace, Ian Marc; Imhof, Axel; Harz, Hartmann; Leonhardt, Heinrich

    2015-08-01

    DNMT1 is recruited by PCNA and UHRF1 to maintain DNA methylation after replication. UHRF1 recognizes hemimethylated DNA substrates via the SRA domain, but also repressive H3K9me3 histone marks with its TTD. With systematic mutagenesis and functional assays, we could show that chromatin binding further involved UHRF1 PHD binding to unmodified H3R2. These complementation assays clearly demonstrated that the ubiquitin ligase activity of the UHRF1 RING domain is required for maintenance DNA methylation. Mass spectrometry of UHRF1-deficient cells revealed H3K18 as a novel ubiquitination target of UHRF1 in mammalian cells. With bioinformatics and mutational analyses, we identified a ubiquitin interacting motif (UIM) in the N-terminal regulatory domain of DNMT1 that binds to ubiquitinated H3 tails and is essential for DNA methylation in vivo. H3 ubiquitination and subsequent DNA methylation required UHRF1 PHD binding to H3R2. These results show the manifold regulatory mechanisms controlling DNMT1 activity that require the reading and writing of epigenetic marks by UHRF1 and illustrate the multifaceted interplay between DNA and histone modifications. The identification and functional characterization of the DNMT1 UIM suggests a novel regulatory principle and we speculate that histone H2AK119 ubiquitination might also lead to UIM-dependent recruitment of DNMT1 and DNA methylation beyond classic maintenance. PMID:26065575

  3. Identification of an Electrostatic Ruler Motif for Sequence-Specific Binding of Collagenase to Collagen.

    PubMed

    Subramanian, Sundar Raman; Singam, Ettayapuram Ramaprasad Azhagiya; Berinski, Michael; Subramanian, Venkatesan; Wade, Rebecca C

    2016-08-25

    Sequence-specific cleavage of collagen by mammalian collagenase plays a pivotal role in cell function. Collagenases are matrix metalloproteinases that cleave the peptide bond at a specific position on fibrillar collagen. The collagenase Hemopexin-like (HPX) domain has been proposed to be responsible for substrate recognition, but the mechanism by which collagenases identify the cleavage site on fibrillar collagen is not clearly understood. In this study, Brownian dynamics simulations coupled with atomic-detail and coarse-grained molecular dynamics simulations were performed to dock matrix metalloproteinase-1 (MMP-1) on a collagen IIIα1 triple helical peptide. We find that the HPX domain recognizes the collagen triple helix at a conserved R-X11-R motif C-terminal to the cleavage site to which the HPX domain of collagen is guided electrostatically. The binding of the HPX domain between the two arginine residues is energetically stabilized by hydrophobic contacts with collagen. From the simulations and analysis of the sequences and structural flexibility of collagen and collagenase, a mechanistic scheme by which MMP-1 can recognize and bind collagen for proteolysis is proposed. PMID:27245212

  4. Motifs of VDAC2 required for mitochondrial Bak import and tBid-induced apoptosis

    PubMed Central

    Naghdi, Shamim; Várnai, Péter; Hajnóczky, György

    2015-01-01

    Voltage-dependent anion channel (VDAC) proteins are major components of the outer mitochondrial membrane. VDAC has three isoforms with >70% sequence similarity and redundant roles in metabolite and ion transport. However, only Vdac2−/− (V2−/−) mice are embryonic lethal, indicating a unique and fundamental function of VDAC2 (V2). Recently, a specific V2 requirement was demonstrated for mitochondrial Bak import and truncated Bid (tBid)-induced apoptosis. To determine the relevant domain(s) of V2 involved, VDAC1 (V1) and V2 chimeric constructs were created and used to rescue V2−/− fibroblasts. Surprisingly, the commonly cited V2-specific N-terminal extension and cysteines were found to be dispensable for Bak import and high tBid sensitivity. In gain-of-function studies, V2 (123–179) was the minimal sequence sufficient to render V1 competent to support Bak insertion. Furthermore, in loss-of-function experiments, T168 and D170 were identified as critical residues. These motifs are conserved in zebrafish V2 (zfV2) that also rescued V2-deficient fibroblasts. Because high-resolution structures of zfV2 and mammalian V1 have become available, we could superimpose these structures and recognized that the critical V2-specific residues help to create a distinctive open “pocket” on the cytoplasmic surface that could facilitate Bak recruitment. PMID:26417093

  5. Capacitation-Associated Glycocomponents of Mammalian Sperm.

    PubMed

    Liu, Min

    2016-05-01

    Mammalian fertilization is a series of events that are mostly carbohydrate mediated. The male gamete glycocomponents are extensively synthesized and modified during sperm development and sperm transport in the reproductive tracts. Freshly ejaculated mammalian sperm are required to undergo capacitation, which takes place in the female reproductive system, in order to become fully fertilizable. Several lines of evidence reveal changes in glycosylated sperm constituents during capacitation. Although the contributions of these molecular changes to capacitation are not completely understood, the presence, rearrangement, and/or modification of these sperm glycocomponents have been demonstrated to be important for fertilization. The following review summarizes mammalian sperm glycoconstituents, with emphasis on their molecular changes during capacitation. PMID:26363036

  6. Involvement of opsins in mammalian sperm thermotaxis

    PubMed Central

    Pérez-Cerezales, Serafín; Boryshpolets, Sergii; Afanzar, Oshri; Brandis, Alexander; Nevo, Reinat; Kiss, Vladimir; Eisenbach, Michael

    2015-01-01

    A unique characteristic of mammalian sperm thermotaxis is extreme temperature sensitivity, manifested by the capacity of spermatozoa to respond to temperature changes of <0.0006 °C as they swim their body-length distance. The identity of the sensing system that confers this exceptional sensitivity on spermatozoa is not known. Here we show that the temperature-sensing system of mammalian spermatozoa involves opsins, known to be G-protein-coupled receptors that act as photosensors in vision. We demonstrate by molecular, immunological, and functional approaches that opsins are present in human and mouse spermatozoa at specific sites, which depend on the species and the opsin type, and that they are involved in sperm thermotaxis via two signalling pathways—the phospholipase C and the cyclic-nucleotide pathways. Our results suggest that, depending on the context and the tissue, mammalian opsins act not only as photosensors but also as thermosensors. PMID:26537127

  7. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Knight, C.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization.The Astronauts will be exposed to microgravity environment for a long duration of time during these flights.Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system.We did our preliminary investigations by exposing mammalian lymphocytes to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon Inc (USA).Our initial results showed no significant change in cytokine expression in these cells for a time period of forty eight hours exposure.Our future experiments will involve exposure for a longer period of time.

  8. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization. The Astronauts will be exposed to microgravity environment for a long duration of time during these flights. Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system and nervous system. We did our preliminary investigations by exposing mammalian lymphocytes and astrocyte cells to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon, Inc. (USA).Our initial results showed no significant change in cytokine expression in these cells up to a time period of 120 hours exposure. Our future experiments will involve exposure for a longer period of time.

  9. Getting from A to B-exploring the activation motifs of the class B adhesion G protein-coupled receptor subfamily G member 4/GPR112.

    PubMed

    Peeters, Miriam C; Mos, Iris; Lenselink, Eelke B; Lucchesi, Martina; IJzerman, Adriaan P; Schwartz, Thue W

    2016-05-01

    The adhesion G protein-coupled receptors [ADGRs/class B2 G protein-coupled receptors (GPCRs)] constitute an ancient family of GPCRs that have recently been demonstrated to play important roles in cellular and developmental processes. Here, we describe a first insight into the structure-function relationship of ADGRs using the family member ADGR subfamily G member 4 (ADGRG4)/GPR112 as a model receptor. In a bioinformatics approach, we compared conserved, functional elements of the well-characterized class A and class B1 secretin-like GPCRs with the ADGRs. We identified several potential equivalent motifs and subjected those to mutational analysis. The importance of the mutated residues was evaluated by examining their effect on the high constitutive activity of the N-terminally truncated ADGRG4/GPR112 in a 1-receptor-1-G protein Saccharomyces cerevisiae screening system and was further confirmed in a transfected mammalian human embryonic kidney 293 cell line. We evaluated the results in light of the crystal structures of the class A adenosine A2A receptor and the class B1 corticotropin-releasing factor receptor 1. ADGRG4 proved to have functionally important motifs resembling class A, class B, and combined elements, but also a unique highly conserved ADGR motif (H3.33). Given the high conservation of these motifs and residues across the adhesion GPCR family, it can be assumed that these are general elements of ADGR function.-Peeters, M. C., Mos, I., Lenselink, E. B., Lucchesi, M., IJzerman, A. P., Schwartz, T. W. Getting from A to B-exploring the activation motifs of the class B adhesion G protein-coupled receptor subfamily G member 4/GPR112. PMID:26823453

  10. Extinction coefficients of CC and CC bands in ethyne and ethene molecules interacting with Cu+ and Ag+ in zeolites--IR studies and quantumchemical DFT calculations.

    PubMed

    Kozyra, Paweł; Góra-Marek, Kinga; Datka, Jerzy

    2015-02-01

    The values of extinction coefficients of CC and CC IR bands of ethyne and ethene interacting with Cu+ and Ag+ in zeolites were determined in quantitative IR experiments and also by quantumchemical DFT calculations with QM/MM method. Both experimental and calculated values were in very good agreement validating the reliability of calculations. The values of extinction coefficients of ethyne and ethene interacting with bare cations and cations embedded in zeolite-like clusters were calculated. The interaction of organic molecules with Cu+ and Ag+ in zeolites ZSM-5 and especially charge transfers between molecule, cation and zeolite framework was also discussed in relation to the values of extinction coefficients. PMID:25307963

  11. A Protective Role For Club Cell Secretory Protein-16 (CC16) In The Development of Chronic Obstructive Pulmonary Disease (COPD)

    PubMed Central

    Laucho-Contreras, Maria E.; Polverino, Francesca; Gupta, Kushagra; Taylor, Katherine L.; Kelly, Emer; Pinto-Plata, Victor; Divo, Miguel; Afshaq, Naveed; Petersen, Hans; Stripp, Barry; Pilon, Aprile L.; Tesfaigzi, Yohannes; Celli, Bartolome R.; Owen, Caroline A.

    2015-01-01

    Rationale Club cell secretory protein-16 (CC16) is the major secreted product of airway Club cells, but its role in the pathogenesis of COPD is unclear. We measured CC16 airway expression in humans with and without COPD and CC16 function in a cigarette smoke (CS)-induced COPD mice model. Methods Airway CC16 expression was measured in COPD patients, smokers without COPD, and non-smokers. We exposed wild-type (WT) and CC16-/- mice to CS or air for up to 6 months, and measured airway CC16 expression, pulmonary inflammation, alveolar septal cell apoptosis, airspace enlargement, airway MUC5AC expression, small airway remodeling, and pulmonary function. Results Smokers and COPD patients had reduced airway CC16 immunostaining that decreased with increasing COPD severity. Exposing mice to CS reduced airway CC16 expression. CC16-/- mice had greater CS-induced emphysema, airway remodeling, pulmonary inflammation, alveolar cell apoptosis, airway MUC5AC expression, and more compliant lungs than WT mice. These changes were associated with increased nuclear factor-κB (NFκB) activation in CC16-/- lungs. CS-induced acute pulmonary changes were reversed by adenoviral-mediated over-expression of CC16. Conclusions CC16 protects lungs from CS-induced injury by reducing lung NFκB activation. CS-induced airway CC16 deficiency increases CS-induced pulmonary inflammation and injury and likely contributes to the pathogenesis of COPD. PMID:25700379

  12. Energy Materials Coordinating Committee (EMaCC) Fiscal Year 1999 annual technical report

    SciTech Connect

    2000-10-31

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department`s materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. This report summarizes EMaCC activities for FY 1999 and describes the materials research programs of various offices and divisions within the Department.

  13. Specific Prenylation of Tomato Rab Proteins by Geranylgeranyl Type-II Transferase Requires a Conserved Cysteine-Cysteine Motif.

    PubMed Central

    Yalovsky, S.; Loraine, A. E.; Gruissem, W.

    1996-01-01

    Posttranslational isoprenylation of some small GTP-binding proteins is required for their biological activity. Rab geranylgeranyl transferase (Rab GGTase) uses geranylgeranyl pyrophosphate to modify Rab proteins, its only known substrates. Geranylgeranylation of Rabs is believed to promote their association with target membranes and interaction with other proteins. Plants, like other eukaryotes, contain Rab-like proteins that are associated with intracellular membranes. However, to our knowledge, the geranylgeranylation of Rab proteins has not yet been characterized from any plant source. This report presents an activity assay that allows the characterization of prenylation of Rab-like proteins in vitro, by protein extracts prepared from plants. Tomato Rab1 proteins and mammalian Rab1a were modified by geranylgeranyl pyrophosphate but not by farnesyl pyrophosphate. This modification required a conserved cysteine-cysteine motif. A mutant form lacking the cysteine-cysteine motif could not be modified, but inhibited the geranylgeranylation of its wild-type homolog. The tomato Rab proteins were modified in vitro by protein extract prepared from yeast, but failed to become modified when the protein extract was prepared from a yeast strain containing a mutant allele for the [alpha] subunit of yeast Rab GGTase (bet4 ts). These results demonstrate that plant cells, like other eukaryotes, contain Rab GGTase-like activity. PMID:12226265

  14. The mammalian blastema: regeneration at our fingertips

    PubMed Central

    Simkin, Jennifer; Sammarco, Mimi C.; Dawson, Lindsay A.; Schanes, Paula P.; Yu, Ling

    2015-01-01

    Abstract In the mouse, digit tip regeneration progresses through a series of discrete stages that include inflammation, histolysis, epidermal closure, blastema formation, and redifferentiation. Recent studies reveal how each regenerative stage influences subsequent stages to establish a blastema that directs the successful regeneration of a complex mammalian structure. The focus of this review is on early events of healing and how an amputation wound transitions into a functional blastema. The stepwise formation of a mammalian blastema is proposed to provide a model for how specific targeted treatments can enhance regenerative performance in humans.

  15. Epigenetic Regulation of Mammalian Stem Cells

    PubMed Central

    Li, Xuekun

    2008-01-01

    Two critical properties of stem cells are self-renewal and multipotency. The maintenance of their “stemness” state and commitment to differentiation are therefore tightly controlled by intricate molecular networks. Epigenetic mechanisms, including DNA methylation, chromatin remodeling and the noncoding RNA-mediated process, have profound regulatory roles in mammalian gene expression. Recent studies have shown that epigenetic regulators are key players in stem cell biology and their dysfunction can result in human diseases such as cancer and neurodevelopmental disorders. Here, we review the recent evidences that advance our knowledge in epigenetic regulations of mammalian stem cells, with focus on embryonic stem cells and neural stem cells. PMID:18393635

  16. Detection of apoptosis in mammalian development.

    PubMed

    Lin, Lin; Penaloza, Carlos; Ye, Yixia; Lockshin, Richard A; Zakeri, Zahra

    2009-01-01

    Mammalian development is dependent on an intricate orchestration of cell proliferation and death. Deregulation in the levels, localization, and type of cell death can lead to disease and even death of the developing embryo. The mechanisms involved in such deregulation are many; alterations and or manipulations of these can aid in the detection, prevention and possible treatments of any effects this de-regulation may have. Here we describe how cell death can be detected during mammalian development, using diverse staining and microscopy methods, while taking advantage of the advancements in cell death mechanisms, derived from biochemical and teratological studies in the field. PMID:19609762

  17. Nephila clavipes Flagelliform silk-like GGX motifs contribute to extensibility and spacer motifs contribute to strength in synthetic spider silk fibers.

    PubMed

    Adrianos, Sherry L; Teulé, Florence; Hinman, Michael B; Jones, Justin A; Weber, Warner S; Yarger, Jeffery L; Lewis, Randolph V

    2013-06-10

    Flagelliform spider silk is the most extensible silk fiber produced by orb weaver spiders, though not as strong as the dragline silk of the spider. The motifs found in the core of the Nephila clavipes flagelliform Flag protein are GGX, spacer, and GPGGX. Flag does not contain the polyalanine motif known to provide the strength of dragline silk. To investigate the source of flagelliform fiber strength, four recombinant proteins were produced containing variations of the three core motifs of the Nephila clavipes flagelliform Flag protein that produces this type of fiber. The as-spun fibers were processed in 80% aqueous isopropanol using a standardized process for all four fiber types, which produced improved mechanical properties. Mechanical testing of the recombinant proteins determined that the GGX motif contributes extensibility and the spacer motif contributes strength to the recombinant fibers. Recombinant protein fibers containing the spacer motif were stronger than the proteins constructed without the spacer that contained only the GGX motif or the combination of the GGX and GPGGX motifs. The mechanical and structural X-ray diffraction analysis of the recombinant fibers provide data that suggests a functional role of the spacer motif that produces tensile strength, though the spacer motif is not clearly defined structurally. These results indicate that the spacer is likely a primary contributor of strength, with the GGX motif supplying mobility to the protein network of native N. clavipes flagelliform silk fibers. PMID:23646825

  18. RGS14 is a mitotic spindle protein essential from the first division of the mammalian zygote.

    PubMed

    Martin-McCaffrey, Luke; Willard, Francis S; Oliveira-dos-Santos, Antonio J; Natale, David R C; Snow, Bryan E; Kimple, Randall J; Pajak, Agnieszka; Watson, Andrew J; Dagnino, Lina; Penninger, Josef M; Siderovski, David P; D'Souza, Sudhir J A

    2004-11-01

    Heterotrimeric G protein alpha subunits, RGS proteins, and GoLoco motif proteins have been recently implicated in the control of mitotic spindle dynamics in C. elegans and D. melanogaster. Here we show that "regulator of G protein signaling-14" (RGS14) is expressed by the mouse embryonic genome immediately prior to the first mitosis, where it colocalizes with the anastral mitotic apparatus of the mouse zygote. Loss of Rgs14 expression in the mouse zygote results in cytofragmentation and failure to progress to the 2-cell stage. RGS14 is found in all tissues and segregates to the nucleus in interphase and to the mitotic spindle and centrioles during mitosis. Alteration of RGS14 levels in exponentially proliferating cells leads to cell growth arrest. Our results indicate that RGS14 is one of the earliest essential product of the mammalian embryonic genome yet described and has a general role in mitosis. PMID:15525537

  19. Draft Genome Sequences of Exfoliative Toxin A-Producing Staphylococcus aureus Strains B-7772 and B-7777 (CC8/ST2993) and B-7774 (CC15/ST2126), Isolated in a Maternity Hospital in the Central Federal District of Russia

    PubMed Central

    Skryabin, Yury; Kislichkina, Angelina; Bogun, Alexandr; Korobova, Olga; Mayskaya, Nadezhda; Shemyakin, Igor; Dyatlov, Ivan

    2016-01-01

    Staphylococcus aureus clonal complex 8 (CC8) has not been associated with staphylococcal scalded-skin syndrome (SSSS) in newborns and exfoliative toxin genes. Here, we report the draft genome sequences of exfoliative toxin A-producing B-7772, B-7777 (both CC8), and B-7774 (CC15) strains associated with SSSS in newborns. PMID:26941146

  20. Redemptive Journey: The Storytelling Motif in Andersen's "The Snow Queen."

    ERIC Educational Resources Information Center

    Misheff, Sue

    1989-01-01

    Discusses how Hans Christian Andersen's "The Snow Queen" uses the motif of storytelling to describe the journey taken by the heroine Gerda. Identifies a story as that which is alive and active and which causes catharsis for those who participate in it. (MG)

  1. Fast, Sensitive Discovery of Conserved Genome-Wide Motifs

    PubMed Central

    Ihuegbu, Nnamdi E.; Buhler, Jeremy

    2012-01-01

    Abstract Regulatory sites that control gene expression are essential to the proper functioning of cells, and identifying them is critical for modeling regulatory networks. We have developed Magma (Multiple Aligner of Genomic Multiple Alignments), a software tool for multiple species, multiple gene motif discovery. Magma identifies putative regulatory sites that are conserved across multiple species and occur near multiple genes throughout a reference genome. Magma takes as input multiple alignments that can include gaps. It uses efficient clustering methods that make it about 70 times faster than PhyloNet, a previous program for this task, with slightly greater sensitivity. We ran Magma on all non-coding DNA conserved between Caenorhabditis elegans and five additional species, about 70 Mbp in total, in <4 h. We obtained 2,309 motifs with lengths of 6–20 bp, each occurring at least 10 times throughout the genome, which collectively covered about 566 kbp of the genomes, approximately 0.8% of the input. Predicted sites occurred in all types of non-coding sequence but were especially enriched in the promoter regions. Comparisons to several experimental datasets show that Magma motifs correspond to a variety of known regulatory motifs. PMID:22300316

  2. Motifs in triadic random graphs based on Steiner triple systems

    NASA Astrophysics Data System (ADS)

    Winkler, Marco; Reichardt, Jörg

    2013-08-01

    Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade, the overabundance of certain subnetwork patterns, i.e., the so-called motifs, has attracted much attention. It has been hypothesized that these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information, is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graph models (ERGMs) to define models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obstacle, we use Steiner triple systems (STSs). These are partitions of sets of nodes into pair-disjoint triads, which thus can be specified independently. Combining the concepts of ERGMs and STSs, we suggest generative models capable of generating ensembles of networks with nontrivial triadic Z-score profiles. Further, we discover inevitable correlations between the abundance of triad patterns, which occur solely for statistical reasons and need to be taken into account when discussing the functional implications of motif statistics. Moreover, we calculate the degree distributions of our triadic random graphs analytically.

  3. 5. DETAIL VIEW OF THE EGYPTIAN MOTIF DECORATIVE ELEMENTS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL VIEW OF THE EGYPTIAN MOTIF DECORATIVE ELEMENTS OF BUILDING 1'S MAIN ENTRY TOWER (INCLUDING THE ENGAGED COLUMN CAPITALS, PILASTERS & CAPITALS, CORNICES, AND TERRA COTTA EAGLES); LOOKING SW FROM THE E WING ROOF. (Ryan) - Veterans Administration Medical Center, Building No. 1, Old State Route 13 West, Marion, Williamson County, IL

  4. Identification of the Raptor-binding motif on Arabidopsis S6 kinase and its use as a TOR signaling suppressor.

    PubMed

    Son, Ora; Kim, Sunghan; Hur, Yoon-Sun; Cheon, Choong-Ill

    2016-03-25

    TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction. PMID:26920057

  5. Crystal structure and MD simulation of mouse EndoV reveal wedge motif plasticity in this inosine-specific endonuclease

    PubMed Central

    Nawaz, Meh Sameen; Vik, Erik Sebastian; Ronander, Mia Elise; Solvoll, Anne Marthe; Blicher, Pernille; Bjørås, Magnar; Alseth, Ingrun; Dalhus, Bjørn

    2016-01-01

    Endonuclease V (EndoV) is an enzyme with specificity for deaminated adenosine (inosine) in nucleic acids. EndoV from Escherichia coli (EcEndoV) acts both on inosines in DNA and RNA, whereas the human homolog cleaves only at inosines in RNA. Inosines in DNA are mutagenic and the role of EndoV in DNA repair is well established. In contrast, the biological function of EndoV in RNA processing is largely unexplored. Here we have characterized a second mammalian EndoV homolog, mouse EndoV (mEndoV), and show that mEndoV shares the same RNA selectivity as human EndoV (hEndoV). Mouse EndoV cleaves the same inosine-containing substrates as hEndoV, but with reduced efficiencies. The crystal structure of mEndoV reveals a conformation different from the hEndoV and prokaryotic EndoV structures, particularly for the conserved tyrosine in the wedge motif, suggesting that this strand separating element has some flexibility. Molecular dynamics simulations of mouse and human EndoV reveal alternative conformations for the invariant tyrosine. The configuration of the active site, on the other hand, is very similar between the prokaryotic and mammalian versions of EndoV. PMID:27108838

  6. Crystal structure and MD simulation of mouse EndoV reveal wedge motif plasticity in this inosine-specific endonuclease.

    PubMed

    Nawaz, Meh Sameen; Vik, Erik Sebastian; Ronander, Mia Elise; Solvoll, Anne Marthe; Blicher, Pernille; Bjørås, Magnar; Alseth, Ingrun; Dalhus, Bjørn

    2016-01-01

    Endonuclease V (EndoV) is an enzyme with specificity for deaminated adenosine (inosine) in nucleic acids. EndoV from Escherichia coli (EcEndoV) acts both on inosines in DNA and RNA, whereas the human homolog cleaves only at inosines in RNA. Inosines in DNA are mutagenic and the role of EndoV in DNA repair is well established. In contrast, the biological function of EndoV in RNA processing is largely unexplored. Here we have characterized a second mammalian EndoV homolog, mouse EndoV (mEndoV), and show that mEndoV shares the same RNA selectivity as human EndoV (hEndoV). Mouse EndoV cleaves the same inosine-containing substrates as hEndoV, but with reduced efficiencies. The crystal structure of mEndoV reveals a conformation different from the hEndoV and prokaryotic EndoV structures, particularly for the conserved tyrosine in the wedge motif, suggesting that this strand separating element has some flexibility. Molecular dynamics simulations of mouse and human EndoV reveal alternative conformations for the invariant tyrosine. The configuration of the active site, on the other hand, is very similar between the prokaryotic and mammalian versions of EndoV. PMID:27108838

  7. Crystal structure and MD simulation of mouse EndoV reveal wedge motif plasticity in this inosine-specific endonuclease

    NASA Astrophysics Data System (ADS)

    Nawaz, Meh Sameen; Vik, Erik Sebastian; Ronander, Mia Elise; Solvoll, Anne Marthe; Blicher, Pernille; Bjørås, Magnar; Alseth, Ingrun; Dalhus, Bjørn

    2016-04-01

    Endonuclease V (EndoV) is an enzyme with specificity for deaminated adenosine (inosine) in nucleic acids. EndoV from Escherichia coli (EcEndoV) acts both on inosines in DNA and RNA, whereas the human homolog cleaves only at inosines in RNA. Inosines in DNA are mutagenic and the role of EndoV in DNA repair is well established. In contrast, the biological function of EndoV in RNA processing is largely unexplored. Here we have characterized a second mammalian EndoV homolog, mouse EndoV (mEndoV), and show that mEndoV shares the same RNA selectivity as human EndoV (hEndoV). Mouse EndoV cleaves the same inosine-containing substrates as hEndoV, but with reduced efficiencies. The crystal structure of mEndoV reveals a conformation different from the hEndoV and prokaryotic EndoV structures, particularly for the conserved tyrosine in the wedge motif, suggesting that this strand separating element has some flexibility. Molecular dynamics simulations of mouse and human EndoV reveal alternative conformations for the invariant tyrosine. The configuration of the active site, on the other hand, is very similar between the prokaryotic and mammalian versions of EndoV.

  8. Section CC PreRehabilitation 2009; Section DD PostRehabilitation Gilpin's Falls ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Section C-C Pre-Rehabilitation 2009; Section D-D Post-Rehabilitation - Gilpin's Falls Covered Bridge, Spanning North East Creek at Former (Bypassed) Section of North East Road (SR 272), North East, Cecil County, MD

  9. Conformational changes of 1-4-glucopyranosyl residues of a sulfated C-C linked hexasaccharide.

    PubMed

    Coletti, Alessia; Elli, Stefano; Macchi, Eleonora; Galzerano, Patrizia; Zamani, Leila; Guerrini, Marco; Torri, Giangiacomo; Vismara, Elena

    2014-05-01

    This work describes the structure of a fully sulfated maltotriose alpha-beta C-C linked dimer, where a central glycosidic bond was substituted by a non natural, hydrolase-resistant C-C bond. Such compound shows anti-metastatic properties being an inhibitor of the heparanase enzymatic activity and of P-selectin-mediated cell-cell interactions. NMR spectroscopy was applied to investigate the structure and conformational properties of this C-C linked hexasaccharide. The presence of sulfate substituents and the internal C-C bond drives the two internal rings in an unusual (1)C(4) chair conformation, while the external rings linked by glycosidic bonds retain the typical (4)C(1) conformation. The NMR results were confirmed by molecular mechanics calculations using structure corresponding di- and tetrasaccharides as models. PMID:24680506

  10. 5. Historic American Buildings Survey C.C. Woodburn, Photographer. January 12, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey C.C. Woodburn, Photographer. January 12, 1934 DETAIL OF ENTRANCE (WEST ELEVATION) - Ferdinand Daniel Pulver House, County Road F-70 Vicinity, Vandalia, Jasper County, IA

  11. Energy materials coordinating committee (EMaCC). Annual technical report, fiscal year 2003

    SciTech Connect

    none,

    2004-10-18

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. Topical subcommittees of the EMaCC are responsible for conducting seminars and otherwise facilitating information flow between DOE organizational units in materials areas of particular importance to the Department. The EMaCC Terms of Reference were recently modified and developed into a Charter that was approved on June 5, 2003. As a result of this reorganization, the existing subcommittees were disbanded and new subcommittees are being formed.

  12. C/C composite brake disk nondestructive evaluation by IR thermography

    NASA Astrophysics Data System (ADS)

    Chu, Tsuchin P.; Poudel, Anish; Filip, Peter

    2012-06-01

    This paper discusses the non-destructive evaluation of thick Carbon/Carbon (C/C) composite aircraft brake disks by using transient infrared thermography (IRT) approach. Thermal diffusivity measurement technique was applied to identify the subsurface anomalies in thick C/C brake disks. In addition, finite element analysis (FEA) modeling tool was used to determine the transient thermal response of the C/C disks that were subjected to flash heating. For this, series of finite element models were built and thermal responses with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models by using custom built in-house IRT system and commercial turnkey system. The analysis and experimental results showed good correlation between thermal diffusivity value and anomalies within the disk. It was demonstrated that the step-heating transient thermal approach could be effectively applied to obtain the whole field thermal diffusivity value of C/C composites.

  13. Pyrazole prevention of CC14-induced ultrastructural changes in rat liver.

    PubMed Central

    Bernacchi, A. S.; de Castro, C. R.; de Toranzo, E. G.; Marzi, A.; de Ferreyra, E. C.; de Fenos, O. M.; Castro, J. A.

    1980-01-01

    Carbon tetrachloride (CC14) administration to rats leads to an early dilatation, vesiculation and disorganization of the liver endoplasmic reticulum (ER). This hepatotoxin also causes detachment of ribosomes from ER membranes, dilatation of the Golgi cisternae and occasionally dilatation of the perinuclear membrane. Prior treatment of the rats with pyrazole completely prevents CC14- induced ultrastructural alterations observed in liver at 3 h. This drug is known to decrease the intensity of the irreversible binding of CC14 reactive metabolites to cellular constituents without modifying the intensity of the CC14- induced lipid peroxidation, either in vitro or in vivo, as measured by the diene conjugation procedure or by decreases inthe arachidonic acid content of microsomal phospholipids. Results suggest that interaction of reactive metabolites rather than lipid peroxidation mediates deleterious effects of CCl4 on the liver ER. Images Fig. 1 Fig. 2 Fig. 3 PMID:7448119

  14. Variable structure motifs for transcription factor binding sites

    PubMed Central

    2010-01-01

    Background Classically, models of DNA-transcription factor binding sites (TFBSs) have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs). Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets. Results We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance. Conclusions We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does provide more interpretable

  15. Energy Materials Coordinating Committee (EMaCC). Annual technical report, Fiscal Year 2001

    SciTech Connect

    None, None

    2002-08-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations.

  16. Complete Genome Sequence of Porcine Circovirus 2b Strain CC1

    PubMed Central

    Yang, Xin; Chen, Fuwang; Cao, Yuhang; Pang, Daxing

    2012-01-01

    A porcine circovirus 2 (PCV2) strain, designated CC1, was isolated and purified from tissue samples from pigs with wasting syndromes in China. We report the complete genome sequence of PCV2b strain CC1 with a deletion of C at position 1053 resulting in elongation of open reading frame 2 (ORF2) and formation of ORF5. There were 11 ORFs in the genome. PMID:22879609

  17. Discovering common stem–loop motifs in unaligned RNA sequences

    PubMed Central

    Gorodkin, Jan; Stricklin, Shawn L.; Stormo, Gary D.

    2001-01-01

    Post-transcriptional regulation of gene expression is often accomplished by proteins binding to specific sequence motifs in mRNA molecules, to affect their translation or stability. The motifs are often composed of a combination of sequence and structural constraints such that the overall structure is preserved even though much of the primary sequence is variable. While several methods exist to discover transcriptional regulatory sites in the DNA sequences of coregulated genes, the RNA motif discovery problem is much more difficult because of covariation in the positions. We describe the combined use of two approaches for RNA structure prediction, FOLDALIGN and COVE, that together can discover and model stem–loop RNA motifs in unaligned sequences, such as UTRs from post-transcriptionally coregulated genes. We evaluate the method on two datasets, one a section of rRNA genes with randomly truncated ends so that a global alignment is not possible, and the other a hyper-variable collection of IRE-like elements that were inserted into randomized UTR sequences. In both cases the combined method identified the motifs correctly, and in the rRNA example we show that it is capable of determining the structure, which includes bulge and internal loops as well as a variable length hairpin loop. Those automated results are quantitatively evaluated and found to agree closely with structures contained in curated databases, with correlation coefficients up to 0.9. A basic server, Stem–Loop Align SearcH (SLASH), which will perform stem–loop searches in unaligned RNA sequences, is available at http://www.bioinf.au.dk/slash/. PMID:11353083

  18. 32 CFR Appendix E to Part 57 - DoD-CC on Early Intervention, Special Education, and Related Services

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false DoD-CC on Early Intervention, Special Education... SERVICES TO ELIGIBLE DOD DEPENDENTS Pt. 57, App. E Appendix E to Part 57—DoD-CC on Early Intervention, Special Education, and Related Services A. Committee Membership The DoD-CC shall meet at least yearly...

  19. 32 CFR Appendix E to Part 57 - DoD-CC on Early Intervention, Special Education, and Related Services

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false DoD-CC on Early Intervention, Special Education... SERVICES TO ELIGIBLE DOD DEPENDENTS Pt. 57, App. E Appendix E to Part 57—DoD-CC on Early Intervention, Special Education, and Related Services A. Committee Membership The DoD-CC shall meet at least yearly...

  20. 32 CFR Appendix E to Part 57 - DoD-CC on Early Intervention, Special Education, and Related Services

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false DoD-CC on Early Intervention, Special Education... SERVICES TO ELIGIBLE DOD DEPENDENTS Pt. 57, App. E Appendix E to Part 57—DoD-CC on Early Intervention, Special Education, and Related Services A. Committee Membership The DoD-CC shall meet at least yearly...

  1. 32 CFR Appendix E to Part 57 - DoD-CC on Early Intervention, Special Education, and Related Services

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false DoD-CC on Early Intervention, Special Education... SERVICES TO ELIGIBLE DOD DEPENDENTS Pt. 57, App. E Appendix E to Part 57—DoD-CC on Early Intervention, Special Education, and Related Services A. Committee Membership The DoD-CC shall meet at least yearly...

  2. The cytogenetics of mammalian autosomal rearrangements

    SciTech Connect

    Daniel, A.

    1988-01-01

    Combining data from animal and clinical studies with classical cytogenetic observations, the volume provides information on various aspects of mammalian autosomal rearrangements. Topics range from the reproductive consequences to carriers of autosomal rearrangements to the application of structural rearrangements and DNA probes to gene mapping. In addition, the book presents an overview of new perspectives and future directions for research.

  3. Mammalian PGRPs also mind the fort.

    PubMed

    Rubino, Stephen; Lee, Jooeun; Girardin, Stephen E

    2010-08-19

    Peptidoglycan recognition proteins (PGRPs or Pglyrps) regulate antibacterial responses in Drosophila, yet their functions in humans remain unclear. In this issue of Cell Host & Microbe, Saha and colleagues report that mammalian PGRPs can prevent aberrant interferon-gamma--induced inflammatory damage in vivo by modulating the composition of the intestinal bacterial flora. PMID:20709290

  4. Architecture of mammalian respiratory complex I

    PubMed Central

    Hirst, Judy

    2014-01-01

    Complex I (NADH:ubiquinone oxidoreductase) is essential for oxidative phosphorylation in mammalian mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the energy-transducing inner membrane, providing electrons for respiration and driving ATP synthesis. Mammalian complex I contains 44 different nuclear- and mitochondrial-encoded subunits, with a combined mass of 1 MDa. The fourteen conserved ‘core’ subunits have been structurally defined in the minimal, bacterial complex, but the structures and arrangement of the 30 ‘supernumerary’ subunits are unknown. Here, we describe a 5 Å resolution structure of complex I from Bos taurus heart mitochondria, a close relative of the human enzyme, determined by single-particle electron cryo-microscopy. We present the structures of the mammalian core subunits that contain eight iron-sulphur clusters and 60 transmembrane helices, identify 18 supernumerary transmembrane helices, and assign and model 14 supernumerary subunits. Thus, we significantly advance knowledge of the structure of mammalian complex I and the architecture of its supernumerary ensemble around the core domains. Our structure provides insights into the roles of the supernumerary subunits in regulation, assembly and homeostasis, and a basis for understanding the effects of mutations that cause a diverse range of human diseases. PMID:25209663

  5. Crossroads between Bacterial and Mammalian Glycosyltransferases

    PubMed Central

    Brockhausen, Inka

    2014-01-01

    Bacterial glycosyltransferases (GT) often synthesize the same glycan linkages as mammalian GT; yet, they usually have very little sequence identity. Nevertheless, enzymatic properties, folding, substrate specificities, and catalytic mechanisms of these enzyme proteins may have significant similarity. Thus, bacterial GT can be utilized for the enzymatic synthesis of both bacterial and mammalian types of complex glycan structures. A comparison is made here between mammalian and bacterial enzymes that synthesize epitopes found in mammalian glycoproteins, and those found in the O antigens of Gram-negative bacteria. These epitopes include Thomsen–Friedenreich (TF or T) antigen, blood group O, A, and B, type 1 and 2 chains, Lewis antigens, sialylated and fucosylated structures, and polysialic acids. Many different approaches can be taken to investigate the substrate binding and catalytic mechanisms of GT, including crystal structure analyses, mutations, comparison of amino acid sequences, NMR, and mass spectrometry. Knowledge of the protein structures and functions helps to design GT for specific glycan synthesis and to develop inhibitors. The goals are to develop new strategies to reduce bacterial virulence and to synthesize vaccines and other biologically active glycan structures. PMID:25368613

  6. Isolation of genomic DNA from mammalian cells.

    PubMed

    Koh, Cheryl M

    2013-01-01

    The isolation of genomic DNA from mammalian cells is a routine molecular biology laboratory technique with numerous downstream applications. The isolated DNA can be used as a template for PCR, cloning, and genotyping and to generate genomic DNA libraries. It can also be used for sequencing to detect mutations and other alterations, and for DNA methylation analyses. PMID:24011044

  7. [Placental developmental defects in cloned mammalian animals].

    PubMed

    Ao, Zheng; Liu, Dewu; Cai, Gengyuan; Wu, Zhenfang; Li, Zicong

    2016-05-01

    The cloning technique, also called somatic cell nuclear transfer (SCNT), has been successfully established and gradually applied to various mammalian species. However, the developmental rate of SCNT mammalian embryos is very low, usually at 1% to 5%, which limits the application of SCNT. Placental developmental defects are considered as the main cause of SCNT embryo development inhibition. Almost all of SCNT-derived mammalian placentas exhibit various abnormalities, such as placental hyperplasia, vascular defects and umbilical cord malformation. Mechanistically, these abnormalities result from failure of establishment of correct epigenetic modification in the trophectoderm genome, which leads to erroneous expression of important genes for placenta development-related, particularly imprinted genes. Consequently, aberrant imprinted gene expression gives rise to placental morphologic abnormalities and functional defects, therefore decreases developmental competence of cloned embryos. Currently, although numerous methods that can improve the developmental ability of SCNT-derived embryos have been reported, most of them are unable to substantially enhance the success rate of SCNT due to failure to eliminate the placental development defects. In this review, we summarize placental abnormalities and imprinted gene expression in mammalian cloning, and propose directions for the future research aiming to improve the cloning efficiency. PMID:27232488

  8. MAMMALIAN CELL MUTAGENESIS, BANBURY CONFERENCE (JOURNAL VERSION)

    EPA Science Inventory

    A conference on mammalian cell mutagenesis was held at the Banbury Center, Cold Spring Harbor, NY, USA, March 22-25, 1987. The objective of the conference was to provide a forum for discussions concerning the genetic, biochemical, and molecular basis of induced mutations in stand...

  9. Structure of mammalian respiratory complex I.

    PubMed

    Zhu, Jiapeng; Vinothkumar, Kutti R; Hirst, Judy

    2016-08-18

    Complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in the cell, powers ATP synthesis in mammalian mitochondria by using the reducing potential of NADH to drive protons across the inner mitochondrial membrane. Mammalian complex I (ref. 1) contains 45 subunits, comprising 14 core subunits that house the catalytic machinery (and are conserved from bacteria to humans) and a mammalian-specific cohort of 31 supernumerary subunits. Knowledge of the structures and functions of the supernumerary subunits is fragmentary. Here we describe a 4.2-Å resolution single-particle electron cryomicroscopy structure of complex I from Bos taurus. We have located and modelled all 45 subunits, including the 31 supernumerary subunits, to provide the entire structure of the mammalian complex. Computational sorting of the particles identified different structural classes, related by subtle domain movements, which reveal conformationally dynamic regions and match biochemical descriptions of the 'active-to-de-active' enzyme transition that occurs during hypoxia. Our structures therefore provide a foundation for understanding complex I assembly and the effects of mutations that cause clinically relevant complex I dysfunctions, give insights into the structural and functional roles of the supernumerary subunits and reveal new information on the mechanism and regulation of catalysis. PMID:27509854

  10. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  11. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  12. Cold shock response in mammalian cells.

    PubMed

    Fujita, J

    1999-11-01

    Compared to bacteria and plants, the cold shock response has attracted little attention in mammals except in some areas such as adaptive thermogenesis, cold tolerance, storage of cells and organs, and recently, treatment of brain damage and protein production. At the cellular level, some responses of mammalian cells are similar to microorganisms; cold stress changes the lipid composition of cellular membranes, and suppresses the rate of protein synthesis and cell proliferation. Although previous studies have mostly dealt with temperatures below 20 degrees C, mild hypothermia (32 degrees C) can change the cell's response to subsequent stresses as exemplified by APG-1, a member of the HSP110 family. Furthermore, 32 degrees C induces expression of CIRP (cold-inducible RNA-binding protein), the first cold shock protein identified in mammalian cells, without recovery at 37 degrees C. Remniscent of HSP, CIRP is also expressed at 37 degrees C and developmentary regulated, possibly working as an RNA chaperone. Mammalian cells are metabolically active at 32 degrees C, and cells may survive and respond to stresses with different strategies from those at 37 degrees C. Cellular and molecular biology of mammalian cells at 32 degrees C is a new area expected to have considerable implications for medical sciences and possibly biotechnology. PMID:10943555

  13. AMMONIA REMOVAL FROM MAMMALIAN CELL CULTURE MEDIUM

    EPA Science Inventory

    Metabolites such as ammonia and lactic formed during mammalian cell culture can frequently be toxic to the cells themselves beyond a threshold concentration of the metabolites. ell culture conducted in the presence of such accumulated metabolites is therefore limited in productiv...

  14. Medical and experimental mammalian genetics: A perspective

    SciTech Connect

    McKusick, V.A.; Roderick, T.H.; Mori, J.; Paul, N.W.

    1987-01-01

    This book contains 14 papers. Some of the titles are: Structure and Organization of Mammalian Chromosomes: Normal and Abnormal; Globin Gene Structure and the Nature of Mutation; Retroviral DNA Content of the Mouse Genome; Maternal Genes: Mitochondrial Diseases; Human Evolution; and Prospects for Gene Replacement Therapy.

  15. Ticks Take Cues from Mammalian Interferon.

    PubMed

    de Silva, Aravinda M

    2016-07-13

    Interferons are considered a first line of immune defense restricted to vertebrates. In this issue of Cell Host & Microbe, Smith et al. (2016) demonstrate that mammalian interferon γ activates an antimicrobial response within ticks feeding on blood. The study suggests that arthropods have a parallel interferon-like defense system. PMID:27414493

  16. Genomics in mammalian cell culture bioprocessing

    PubMed Central

    Wuest, Diane M.; Harcum, Sarah W.; Lee, Kelvin H.

    2013-01-01

    Explicitly identifying the genome of a host organism including sequencing, mapping, and annotating its genetic code has become a priority in the field of biotechnology with aims at improving the efficiency and understanding of cell culture bioprocessing. Recombinant protein therapeutics, primarily produced in mammalian cells, constitute a $108 billion global market. The most common mammalian cell line used in biologic production processes is the Chinese hamster ovary (CHO) cell line, and although great improvements have been made in titer production over the past 25 years, the underlying molecular and physiological factors are not well understood. Confident understanding of CHO bioprocessing elements (e.g. cell line selection, protein production, and reproducibility of process performance and product specifications) would significantly improve with a well understood genome. This review describes mammalian cell culture use in bioprocessing, the importance of obtaining CHO cell line genetic sequences, and the current status of sequencing efforts. Furthermore, transcriptomic techniques and gene expression tools are presented, and case studies exploring genomic techniques and applications aimed to improve mammalian bioprocess performance are reviewed. Finally, future implications of genomic advances are surmised. PMID:22079893

  17. Cultured normal mammalian tissue and process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor)

    1993-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cell aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  18. Energy Materials Coordinating Committee (EMaCC): Annual technical report, fiscal year 1988

    SciTech Connect

    1989-06-30

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. Four topical subcommittees are established and are continuing their own programs: Structural Ceramics, Batteries and Fuel Cells, Radioactive Waste Containment, and Superconductivity (established in FY 1987). In addition, the EMaCC aids in obtaining materials-related inputs for both intra- and interagency compilations. Membership in the EMaCC is open to any Department organizational unit; participants are appointed by Division or Office Directors. The current active membership is listed on the following four pages. The EMaCC reports to the Director of the Office of Energy Research in his capacity as overseer of the technical programs of the Department. This annual technical report is mandated by the EMaCC terms of reference. This report summarizes EMaCC activities for FY 1988 and describes the materials research programs of various offices and divisions within the Department.

  19. Improving Forecast Skill by Assimilation of AIRS Cloud Cleared Radiances RiCC

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Rosenberg, Robert I.; Iredell, Lena

    2015-01-01

    ECMWF, NCEP, and GMAO routinely assimilate radiosonde and other in-situ observations along with satellite IR and MW Sounder radiance observations. NCEP and GMAO use the NCEP GSI Data Assimilation System (DAS).GSI DAS assimilates AIRS, CrIS, IASI channel radiances Ri on a channel-by-channel, case-by-case basis, only for those channels i thought to be unaffected by cloud cover. This test excludes Ri for most tropospheric sounding channels under partial cloud cover conditions. AIRS Version-6 RiCC is a derived quantity representative of what AIRS channel i would have seen if the AIRS FOR were cloud free. All values of RiCC have case-by-case error estimates RiCC associated with them. Our experiments present to the GSI QCd values of AIRS RiCC in place of AIRS Ri observations. GSI DAS assimilates only those values of RiCC it thinks are cloud free. This potentially allows for better coverage of assimilated QCd values of RiCC as compared to Ri.

  20. Composite motifs integrating multiple protein structures increase sensitivity for function prediction.

    PubMed

    Chen, Brian Y; Bryant, Drew H; Cruess, Amanda E; Bylund, Joseph H; Fofanov, Viacheslav Y; Kristensen, David M; Kimmel, Marek; Lichtarge, Olivier; Kavraki, Lydia E

    2007-01-01

    The study of disease often hinges on the biological function of proteins, but determining protein function is a difficult experimental process. To minimize duplicated effort, algorithms for function prediction seek characteristics indicative of possible protein function. One approach is to identify substructural matches of geometric and chemical similarity between motifs representing known active sites and target protein structures with unknown function. In earlier work, statistically significant matches of certain effective motifs have identified functionally related active sites. Effective motifs must be carefully designed to maintain similarity to functionally related sites (sensitivity) and avoid incidental similarities to functionally unrelated protein geometry (specificity). Existing motif design techniques use the geometry of a single protein structure. Poor selection of this structure can limit motif effectiveness if the selected functional site lacks similarity to functionally related sites. To address this problem, this paper presents composite motifs, which combine structures of functionally related active sites to potentially increase sensitivity. Our experimentation compares the effectiveness of composite motifs with simple motifs designed from single protein structures. On six distinct families of functionally related proteins, leave-one-out testing showed that composite motifs had sensitivity comparable to the most sensitive of all simple motifs and specificity comparable to the average simple motif. On our data set, we observed that composite motifs simultaneously capture variations in active site conformation, diminish the problem of selecting motif structures, and enable the fusion of protein structures from diverse data sources. PMID:17951837

  1. LRP130, a pentatricopeptide motif protein with a noncanonical RNA-binding domain, is bound in vivo to mitochondrial and nuclear RNAs.

    PubMed

    Mili, Stavroula; Piñol-Roma, Serafín

    2003-07-01

    LRP130 (also known as LRPPRC) is an RNA-binding protein that is a constituent of postsplicing nuclear RNP complexes associated with mature mRNA. It belongs to a growing family of pentatricopeptide repeat (PPR) motif-containing proteins, several of which have been implicated in organellar RNA metabolism. We show here that only a fraction of LRP130 proteins are in nuclei and are directly bound in vivo to at least some of the same RNA molecules as the nucleocytoplasmic shuttle protein hnRNP A1. The majority of LRP130 proteins are located within mitochondria, where they are directly bound to polyadenylated RNAs in vivo. In vitro, LRP130 binds preferentially to polypyrimidines. This RNA-binding activity maps to a domain in its C-terminal region that does not contain any previously described RNA-binding motifs and that contains only 2 of the 11 predicted PPR motifs. Therefore, LRP130 is a novel type of RNA-binding protein that associates with both nuclear and mitochondrial mRNAs and as such is a potential candidate for coordinating nuclear and mitochondrial gene expression. These findings provide the first identification of a mammalian protein directly bound to mitochondrial RNA in vivo and provide a possible molecular explanation for the recently described association of mutations in LRP130 with cytochrome c oxidase deficiency in humans. PMID:12832482

  2. YB-1 binds to CAUC motifs and stimulates exon inclusion by enhancing the recruitment of U2AF to weak polypyrimidine tracts

    PubMed Central

    Wei, Wen-Juan; Mu, Shi-Rong; Heiner, Monika; Fu, Xing; Cao, Li-Juan; Gong, Xiu-Feng; Bindereif, Albrecht; Hui, Jingyi

    2012-01-01

    The human Y box-binding protein-1 (YB-1) is a deoxyribonucleic acid (DNA)/ribonucleic acid (RNA)-binding protein with pleiotropic functions. Besides its roles in the regulation of transcription and translation, several recent studies indicate that YB-1 is a spliceosome-associated protein and is involved in alternative splicing, but the underlying mechanism has remained elusive. Here, we define both CAUC and CACC as high-affinity binding motifs for YB-1 by systematic evolution of ligands by exponential enrichment (SELEX) and demonstrate that these newly defined motifs function as splicing enhancers. Interestingly, on the endogenous CD44 gene, YB-1 appears to mediate a network interaction to activate exon v5 inclusion via multiple CAUC motifs in both the alternative exon and its upstream polypyrimidine tract. We provide evidence that YB-1 activates splicing by facilitating the recruitment of U2AF65 to weak polypyrimidine tracts through direct protein–protein interactions. Together, these findings suggest a vital role of YB-1 in activating a subset of weak 3′ splice sites in mammalian cells. PMID:22730292

  3. A novel Wnt5a-Frizzled4 signaling pathway mediates activity-independent dendrite morphogenesis via the distal PDZ motif of Frizzled 4.

    PubMed

    Bian, Wen-Jie; Miao, Wan-Ying; He, Shun-Ji; Wan, Zong-Fang; Luo, Zhen-Ge; Yu, Xiang

    2015-08-01

    The morphology of the dendritic tree is critical to neuronal function and neural circuit wiring. Several Wnt family members have been demonstrated to play important roles in dendrite development. However, the Wnt receptors responsible for mediating this process remain largely elusive. Using primary hippocampal neuronal cultures as a model system, we report that Frizzled4 (Fzd4), a member of the Fzd family of Wnt receptors, specifically signals downstream of Wnt5a to promote dendrite branching and growth. Interestingly, the less conserved distal PDZ binding motif of Fzd4, and not its conserved proximal Dvl-interacting PDZ motif, is required for mediating this effect. We further showed that Dvl signaled parallel to and independent of Fzd4 in promoting dendrite growth. Unlike most previously described pathways, Wnt5a/Fzd4 signaling promoted dendrite development in an activity-independent and autocrine fashion. Together, these results provide the first identification of a Wnt receptor for regulating dendrite development in the mammalian system, and demonstrate a novel function of the distal PDZ motif of Fzd4 in dendrite morphogenesis, thereby expanding our knowledge of the complex roles of Wnt signaling in neural development. PMID:25424568

  4. FPGA implementation of motifs-based neuronal network and synchronization analysis

    NASA Astrophysics Data System (ADS)

    Deng, Bin; Zhu, Zechen; Yang, Shuangming; Wei, Xile; Wang, Jiang; Yu, Haitao

    2016-06-01

    Motifs in complex networks play a crucial role in determining the brain functions. In this paper, 13 kinds of motifs are implemented with Field Programmable Gate Array (FPGA) to investigate the relationships between the networks properties and motifs properties. We use discretization method and pipelined architecture to construct various motifs with Hindmarsh-Rose (HR) neuron as the node model. We also build a small-world network based on these motifs and conduct the synchronization analysis of motifs as well as the constructed network. We find that the synchronization properties of motif determine that of motif-based small-world network, which demonstrates effectiveness of our proposed hardware simulation platform. By imitation of some vital nuclei in the brain to generate normal discharges, our proposed FPGA-based artificial neuronal networks have the potential to replace the injured nuclei to complete the brain function in the treatment of Parkinson's disease and epilepsy.

  5. NON-MAMMALIAN ESTROGENICITY SCREEN: RAINBOW TROUT ESTROGEN RECEPTOR BINDING

    EPA Science Inventory

    The U.S. EPA has been mandated to screen industrial chemicals and pesticides for potential endocrine activity. Current assays for measuring endocrine activity are primarily mammalian-based. The appropriateness of extrapolating mammalian results to non-mammalian species is uncert...

  6. Impaired nuclear import of mammalian Dlx4 proteins as a consequence of rapid sequence divergence

    SciTech Connect

    Coubrough, Melissa L.; Bendall, Andrew J. . E-mail: abendall@uoguelph.ca

    2006-11-15

    Dlx genes encode a developmentally important family of transcription factors with a variety of functions and sites of action during vertebrate embryogenesis. The murine Dlx4 gene is an enigmatic member of the family; little is known about the normal developmental function(s) of Dlx4. Here, we show that Dlx4 is expressed in the murine placenta and in a trophoblast cell line where the protein localizes to both the nucleus and cytoplasm. Despite the presence of several leucine/valine-rich motifs that match known nuclear export sequences, cytoplasmic Dlx4 is not due to CRM-1-mediated nuclear export. Rather, nuclear import of Dlx4 is compromised by specific residues that flank the nuclear localization signal. One of these residues represents a novel conserved feature of the Dlx4 protein in placental mammals, and the second represents novel variation within mouse Dlx4 isoforms. Comparison of orthologous protein sequences reveals a particularly high rate of non-synonymous change in the coding regions of mammalian Dlx4 genes. Since impaired nuclear localization is unlikely to enhance the function of a nuclear transcription factor, these data point to reduced selection pressure as the basis for the rapid divergence of the Dlx4 gene within the mammalian clade.

  7. Synergetic regulation of translational reading-frame switch by ligand-responsive RNAs in mammalian cells.

    PubMed

    Hsu, Hsiu-Ting; Lin, Ya-Hui; Chang, Kung-Yao

    2014-12-16

    Distinct translational initiation mechanisms between prokaryotes and eukaryotes limit the exploitation of prokaryotic riboswitch repertoire for regulatory RNA circuit construction in mammalian application. Here, we explored programmed ribosomal frameshifting (PRF) as the regulatory gene expression platform for engineered ligand-responsive RNA devices in higher eukaryotes. Regulation was enabled by designed ligand-dependent conformational rearrangements of the two cis-acting RNA motifs of opposite activity in -1 PRF. Particularly, RNA elements responsive to trans-acting ligands can be tailored to modify co-translational RNA refolding dynamics of a hairpin upstream of frameshifting site to achieve reversible and adjustable -1 PRF attenuating activity. Combined with a ligand-responsive stimulator, synthetic RNA devices for synergetic translational-elongation control of gene expression can be constructed. Due to the similarity between co-transcriptional RNA hairpin folding and co-translational RNA hairpin refolding, the RNA-responsive ligand repertoire provided in prokaryotic systems thus becomes accessible to gene-regulatory circuit construction for synthetic biology application in mammalian cells. PMID:25414357

  8. Fungal Mimicry of a Mammalian Aminopeptidase Disables Innate Immunity and Promotes Pathogenicity.

    PubMed

    Sterkel, Alana K; Lorenzini, Jenna L; Fites, J Scott; Subramanian Vignesh, Kavitha; Sullivan, Thomas D; Wuthrich, Marcel; Brandhorst, Tristan; Hernandez-Santos, Nydiaris; Deepe, George S; Klein, Bruce S

    2016-03-01

    Systemic fungal infections trigger marked immune-regulatory disturbances, but the mechanisms are poorly understood. We report that the pathogenic yeast of Blastomyces dermatitidis elaborates dipeptidyl-peptidase IVA (DppIVA), a close mimic of the mammalian ectopeptidase CD26, which modulates critical aspects of hematopoiesis. We show that, like the mammalian enzyme, fungal DppIVA cleaved C-C chemokines and GM-CSF. Yeast producing DppIVA crippled the recruitment and differentiation of monocytes and prevented phagocyte activation and ROS production. Silencing fungal DppIVA gene expression curtailed virulence and restored recruitment of CCR2(+) monocytes, generation of TipDC, and phagocyte killing of yeast. Pharmacological blockade of DppIVA restored leukocyte effector functions and stemmed infection, while addition of recombinant DppIVA to gene-silenced yeast enabled them to evade leukocyte defense. Thus, fungal DppIVA mediates immune-regulatory disturbances that underlie invasive fungal disease. These findings reveal a form of molecular piracy by a broadly conserved aminopeptidase during disease pathogenesis. PMID:26922990

  9. Association of Children’s Urinary CC16 Levels with Arsenic Concentrations in Multiple Environmental Media

    PubMed Central

    Beamer, Paloma I.; Klimecki, Walter T.; Loh, Miranda; Van Horne, Yoshira Ornelas; Sugeng, Anastasia J.; Lothrop, Nathan; Billheimer, Dean; Guerra, Stefano; Lantz, Robert Clark; Canales, Robert A.; Martinez, Fernando D.

    2016-01-01

    Arsenic exposure has been associated with decreased club cell secretory protein (CC16) levels in adults. Further, both arsenic exposure and decreased levels of CC16 in childhood have been associated with decreased adult lung function. Our objective was to determine if urinary CC16 levels in children are associated with arsenic concentrations in environmental media collected from their homes. Yard soil, house dust, and tap water were taken from 34 homes. Urine and toenail samples were collected from 68 children. All concentrations were natural log-transformed prior to data analysis. There were associations between urinary CC16 and arsenic concentration in soil (b = −0.43, p = 0.001, R2 = 0.08), water (b = −0.22, p = 0.07, R2 = 0.03), house dust (b = −0.37, p = 0.07, R2 = 0.04), and dust loading (b = −0.21, p = 0.04, R2 = 0.04). In multiple analyses, only the concentration of arsenic in soil was associated with urinary CC16 levels (b = −0.42, p = 0.02, R2 = 0.14 (full model)) after accounting for other factors. The association between urinary CC16 and soil arsenic may suggest that localized arsenic exposure in the lungs could damage the airway epithelium and predispose children for diminished lung function. Future work to assess this possible mechanism should examine potential associations between airborne arsenic exposures, CC16 levels, lung function, and other possible confounders in children in arsenic-impacted communities. PMID:27223295

  10. Combining texture features from the MLO and CC views for mammographic CAD x

    NASA Astrophysics Data System (ADS)

    Gupta, Shalini; Zhang, David; Sampat, Mehul P.; Markey, Mia K.

    2006-03-01

    The purpose of this study was to investigate approaches for combining information from the MLO and CC mammographic views for Computer-aided Diagnosis (CADx) algorithms. Feature level and classifier output level combinations were explored. Linear discriminant analysis (LDA) with step-wise feature selection from a set of Haralick's texture features was used to develop classifiers for distinguishing between benign and malignant mammographic lesions. The effect of correlation between features from the two views on the performance of classifiers was investigated. The single view models included: (a) an LDA model with stepwise selection based on the MLO view only (MLO-Only) and similarly (b) a CC-Only LDA model. The feature-level combination models included: (a) LDA based on concatenation of feature sets selected independently from the two views (FEAT_CON), (b) LDA based on the concatenated feature sets along with the corresponding value of each feature from the opposite view (FEAT_COR_CON) if the correlation was below a threshold, (c) LDA based on the average of the MLO and CC feature values (FEAT_AVG). The classifier output level combination models investigated included: (a) average of the outputs of the MLO-Only and CC-Only classifiers (OUTPUT_AVG), (b) maximum of the outputs of the MLO-Only and CC-Only classifiers (OUTPUT_MAX), (c) minimum of the outputs of the MLO-Only and CC-Only classifiers (OUTPUT_MIN), (d) a second level LDA classifier on the outputs of the MLO-Only and CC-Only classifiers (OUTPUT_LDA), (e) product of the output values of the two classifiers (OUTPUT_PROD). The performance of the models was assessed and compared using the ROC methodology to determine if combination models performed better than the single-view models.

  11. Gene cloning, expression and characterization of avian cathelicidin orthologs, Cc-CATHs, from Coturnix coturnix.

    PubMed

    Feng, Feifei; Chen, Chen; Zhu, Wenjuan; He, Weiyu; Guang, Huijuan; Li, Zheng; Wang, Duo; Liu, Jingze; Chen, Ming; Wang, Yipeng; Yu, Haining

    2011-05-01

    Cathelicidins comprise a family of antimicrobial peptides sharing a highly conserved cathelin domain, which play a central role in the early innate host defense against infection. In the present study, we report three novel avian cathelicidin orthologs cloned from a constructed spleen cDNA library of Coturnix coturnix, using a nested-PCR-based cloning strategy. Three coding sequences containing ORFs of 447, 465 and 456 bp encode three mature antimicrobial peptides (named Cc-CATH1, 2 and 3) of 26, 32 and 29 amino acid residues, respectively. Phylogenetic analysis indicated that precursors of Cc-CATHs are significantly conserved with known avian cathelicidins. Synthetic Cc-CATH2 and 3 displayed broad and potent antimicrobial activity against most of the 41 strains of bacteria and fungi tested, especially the clinically isolated drug-resistant strains, with minimum inhibitory concentration values in the range 0.3-2.5 μm for most strains with or without the presence of 100 mm NaCl. Cc-CATH2 and 3 showed considerable reduction of cytotoxic activity compared to other avian cathelicidins, with average IC(50) values of 20.18 and 17.16 μm, respectively. They also exerted a negligible hemolytic activity against human erythrocytes, lysing only 3.6% of erythrocytes at a dose up to 100 μg·mL(-1) . As expected, the recombinant Cc-CATH2 (rCc-CATH2) also showed potent bactericidal activity. All these features of Cc-CATHs encourage further studies aiming to estimate their therapeutic potential as drug leads, as well as coping with current widespread antibiotic resistance, especially the new prevalent and dangerous 'superbug' that is resistant to almost all antibiotics. PMID:21375690

  12. Association of Children's Urinary CC16 Levels with Arsenic Concentrations in Multiple Environmental Media.

    PubMed

    Beamer, Paloma I; Klimecki, Walter T; Loh, Miranda; Van Horne, Yoshira Ornelas; Sugeng, Anastasia J; Lothrop, Nathan; Billheimer, Dean; Guerra, Stefano; Lantz, Robert Clark; Canales, Robert A; Martinez, Fernando D

    2016-01-01

    Arsenic exposure has been associated with decreased club cell secretory protein (CC16) levels in adults. Further, both arsenic exposure and decreased levels of CC16 in childhood have been associated with decreased adult lung function. Our objective was to determine if urinary CC16 levels in children are associated with arsenic concentrations in environmental media collected from their homes. Yard soil, house dust, and tap water were taken from 34 homes. Urine and toenail samples were collected from 68 children. All concentrations were natural log-transformed prior to data analysis. There were associations between urinary CC16 and arsenic concentration in soil (b = -0.43, p = 0.001, R² = 0.08), water (b = -0.22, p = 0.07, R² = 0.03), house dust (b = -0.37, p = 0.07, R² = 0.04), and dust loading (b = -0.21, p = 0.04, R² = 0.04). In multiple analyses, only the concentration of arsenic in soil was associated with urinary CC16 levels (b = -0.42, p = 0.02, R² = 0.14 (full model)) after accounting for other factors. The association between urinary CC16 and soil arsenic may suggest that localized arsenic exposure in the lungs could damage the airway epithelium and predispose children for diminished lung function. Future work to assess this possible mechanism should examine potential associations between airborne arsenic exposures, CC16 levels, lung function, and other possible confounders in children in arsenic-impacted communities. PMID:27223295

  13. Quartic scaling second-order approximate coupled cluster singles and doubles via tensor hypercontraction: THC-CC2

    NASA Astrophysics Data System (ADS)

    Hohenstein, Edward G.; Kokkila, Sara I. L.; Parrish, Robert M.; Martínez, Todd J.

    2013-03-01

    The second-order approximate coupled cluster singles and doubles method (CC2) is a valuable tool in electronic structure theory. Although the density fitting approximation has been successful in extending CC2 to larger molecules, it cannot address the steep O(N^5) scaling with the number of basis functions, N. Here, we introduce the tensor hypercontraction (THC) approximation to CC2 (THC-CC2), which reduces the scaling to O(N^4) and the storage requirements to O(N^2). We present an algorithm to efficiently evaluate the THC-CC2 correlation energy and demonstrate its quartic scaling. This implementation of THC-CC2 uses a grid-based least-squares THC (LS-THC) approximation to the density-fitted electron repulsion integrals. The accuracy of the CC2 correlation energy under these approximations is shown to be suitable for most practical applications.

  14. Characterization of an RNA receptor motif that recognizes a GCGA tetraloop.

    PubMed

    Furukawa, Airi; Maejima, Takaya; Matsumura, Shigeyoshi; Ikawa, Yoshiya

    2016-07-01

    Tertiary interactions between a new RNA motif and RNA tetraloops were analyzed to determine whether this new motif shows preference for a GCGA tetraloop. In the structural context of a ligase ribozyme, this motif discriminated GCGA loop from 3 other tetraloops. The affinity between the GCGA loop and its receptor is strong enough to carry out the ribozyme activity. PMID:26967268

  15. Identifiability and inference of pathway motifs by epistasis analysis.

    PubMed

    Phenix, Hilary; Perkins, Theodore; Kærn, Mads

    2013-06-01

    The accuracy of genetic network inference is limited by the assumptions used to determine if one hypothetical model is better than another in explaining experimental observations. Most previous work on epistasis analysis-in which one attempts to infer pathway relationships by determining equivalences among traits following mutations-has been based on Boolean or linear models. Here, we delineate the ultimate limits of epistasis-based inference by systematically surveying all two-gene network motifs and use symbolic algebra with arbitrary regulation functions to examine trait equivalences. Our analysis divides the motifs into equivalence classes, where different genetic perturbations result in indistinguishable experimental outcomes. We demonstrate that this partitioning can reveal important information about network architecture, and show, using simulated data, that it greatly improves the accuracy of genetic network inference methods. Because of the minimal assumptions involved, equivalence partitioning has broad applicability for gene network inference. PMID:23822501

  16. Distance conservation of transcriptional and splicing regulatory motifs

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Ding, Changjiang

    2012-09-01

    The distance conservation is a new kind of genomic evolutionary conservation. The transcriptional and splicing regulatory k-mer motifs are functionally important DNA sequence elements. We demonstrated that there exist the evolutionarily conservation of the distance between these k-mer pairs in genomic sequences. This kind of conservation is not based on the strict location of bases in genome sequences, and does not depend on excess frequency of occurrence of k-mers. By utilizing the conservation of k-mer distance it is possible to design a non-alignment-based approach to quickly identify transcriptional or splicing regulatory motifs on the genome-wide scale. In this paper we will summarize our previous studies on distance conservation, introduce the method of distance conservation and indicate the prospects of its application.

  17. A new motif for inhibitors of geranylgeranyl diphosphate synthase.

    PubMed

    Foust, Benjamin J; Allen, Cheryl; Holstein, Sarah A; Wiemer, David F

    2016-08-15

    The enzyme geranylgeranyl diphosphate synthase (GGDPS) is believed to receive the substrate farnesyl diphosphate through one lipophilic channel and release the product geranylgeranyl diphosphate through another. Bisphosphonates with two isoprenoid chains positioned on the α-carbon have proven to be effective inhibitors of this enzyme. Now a new motif has been prepared with one isoprenoid chain on the α-carbon, a second included as a phosphonate ester, and the potential for a third at the α-carbon. The pivaloyloxymethyl prodrugs of several compounds based on this motif have been prepared and the resulting compounds have been tested for their ability to disrupt protein geranylgeranylation and induce cytotoxicity in myeloma cells. The initial biological studies reveal activity consistent with GGDPS inhibition, and demonstrate a structure-function relationship which is dependent on the nature of the alkyl group at the α-carbon. PMID:27338660

  18. Identifiability and inference of pathway motifs by epistasis analysis

    NASA Astrophysics Data System (ADS)

    Phenix, Hilary; Perkins, Theodore; Kærn, Mads

    2013-06-01

    The accuracy of genetic network inference is limited by the assumptions used to determine if one hypothetical model is better than another in explaining experimental observations. Most previous work on epistasis analysis—in which one attempts to infer pathway relationships by determining equivalences among traits following mutations—has been based on Boolean or linear models. Here, we delineate the ultimate limits of epistasis-based inference by systematically surveying all two-gene network motifs and use symbolic algebra with arbitrary regulation functions to examine trait equivalences. Our analysis divides the motifs into equivalence classes, where different genetic perturbations result in indistinguishable experimental outcomes. We demonstrate that this partitioning can reveal important information about network architecture, and show, using simulated data, that it greatly improves the accuracy of genetic network inference methods. Because of the minimal assumptions involved, equivalence partitioning has broad applicability for gene network inference.

  19. Motif, the basics: an overview of the widget set

    SciTech Connect

    McClurg, F.R.

    1992-10-01

    The Motif library provides programmers with a rich set of tools for building a graphical user interface with a three-dimensional appearance and a consistent method of interaction for controlling an Unix application. This Xt-based, high-level library presents an object-oriented'' approach to program design for programmers and allows end-users the flexibility to modify attributes of the interface.

  20. Motif, the basics: an overview of the widget set

    SciTech Connect

    McClurg, F.R.

    1992-10-01

    The Motif library provides programmers with a rich set of tools for building a graphical user interface with a three-dimensional appearance and a consistent method of interaction for controlling an Unix application. This Xt-based, high-level library presents an ``object-oriented`` approach to program design for programmers and allows end-users the flexibility to modify attributes of the interface.

  1. Biosynthesis of caffeine underlying the diversity of motif B' methyltransferase.

    PubMed

    Nakayama, Fumiyo; Mizuno, Kouichi; Kato, Misako

    2015-05-01

    Caffeine (1,3,7-trimethylxanthine) and theobromine (3,7-dimethylxanthine) are well-known purine alkaloids in Camellia, Coffea, Cola, Paullinia, Ilex, and Theobroma spp. The caffeine biosynthetic pathway depends on the substrate specificity of N-methyltransferases, which are members of the motif B' methyl-transferase family. The caffeine biosynthetic pathways in purine alkaloid-containing plants might have evolved in parallel with one another, consistent with different catalytic properties of the enzymes involved in these pathways. PMID:26058161

  2. Graph animals, subgraph sampling, and motif search in large networks

    NASA Astrophysics Data System (ADS)

    Baskerville, Kim; Grassberger, Peter; Paczuski, Maya

    2007-09-01

    We generalize a sampling algorithm for lattice animals (connected clusters on a regular lattice) to a Monte Carlo algorithm for “graph animals,” i.e., connected subgraphs in arbitrary networks. As with the algorithm in [N. Kashtan , Bioinformatics 20, 1746 (2004)], it provides a weighted sample, but the computation of the weights is much faster (linear in the size of subgraphs, instead of superexponential). This allows subgraphs with up to ten or more nodes to be sampled with very high statistics, from arbitrarily large networks. Using this together with a heuristic algorithm for rapidly classifying isomorphic graphs, we present results for two protein interaction networks obtained using the tandem affinity purification (TAP) method: one of Escherichia coli with 230 nodes and 695 links, and one for yeast (Saccharomyces cerevisiae) with roughly ten times more nodes and links. We find in both cases that most connected subgraphs are strong motifs ( Z scores >10 ) or antimotifs ( Z scores <-10 ) when the null model is the ensemble of networks with fixed degree sequence. Strong differences appear between the two networks, with dominant motifs in E. coli being (nearly) bipartite graphs and having many pairs of nodes that connect to the same neighbors, while dominant motifs in yeast tend towards completeness or contain large cliques. We also explore a number of methods that do not rely on measurements of Z scores or comparisons with null models. For instance, we discuss the influence of specific complexes like the 26S proteasome in yeast, where a small number of complexes dominate the k cores with large k and have a decisive effect on the strongest motifs with 6-8 nodes. We also present Zipf plots of counts versus rank. They show broad distributions that are not power laws, in contrast to the case when disconnected subgraphs are included.

  3. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs

    PubMed Central

    2012-01-01

    Background Discovery of functionally significant short, statistically overrepresented subsequence patterns (motifs) in a set of sequences is a challenging problem in bioinformatics. Oftentimes, not all sequences in the set contain a motif. These non-motif-containing sequences complicate the algorithmic discovery of motifs. Filtering the non-motif-containing sequences from the larger set of sequences while simultaneously determining the identity of the motif is, therefore, desirable and a non-trivial problem in motif discovery research. Results We describe MotifCatcher, a framework that extends the sensitivity of existing motif-finding tools by employing random sampling to effectively remove non-motif-containing sequences from the motif search. We developed two implementations of our algorithm; each built around a commonly used motif-finding tool, and applied our algorithm to three diverse chromatin immunoprecipitation (ChIP) data sets. In each case, the motif finder with the MotifCatcher extension demonstrated improved sensitivity over the motif finder alone. Our approach organizes candidate functionally significant discovered motifs into a tree, which allowed us to make additional insights. In all cases, we were able to support our findings with experimental work from the literature. Conclusions Our framework demonstrates that additional processing at the sequence entry level can significantly improve the performance of existing motif-finding tools. For each biological data set tested, we were able to propose novel biological hypotheses supported by experimental work from the literature. Specifically, in Escherichia coli, we suggested binding site motifs for 6 non-traditional LexA protein binding sites; in Saccharomyces cerevisiae, we hypothesize 2 disparate mechanisms for novel binding sites of the Cse4p protein; and in Halobacterium sp. NRC-1, we discoverd subtle differences in a general transcription factor (GTF) binding site motif across several data sets. We

  4. The Africa Madagascar connection and mammalian migrations

    NASA Astrophysics Data System (ADS)

    Rabinowitz, Philip D.; Woods, Stephen

    2006-03-01

    Madagascar separated from Africa in the Middle-Late Jurassic and has been in its present position relative to Africa since the Early Cretaceous (˜120-130 my). Several Early Eocene to Late Oligocene (˜50-26 my) terrestrial mammalian groups are observed on Madagascar that have a similar ancestral lineage to those found in Africa. These mammalian groups means of transport across the Mozambique Channel from Africa to Madagascar was either by traversing on exposed land masses across a land bridge or by swimming/rafting, since (1) Madagascar has been separated from mainland Africa for at least 70 my before their arrival, and (2) it is unlikely that similar ancestral lineage's evolved simultaneously in separated regions. No evidence has been found for a land bridge across the Mozambique Channel. The mammals thus either swam or have been swept away on vegetation mats from rivers flowing out of Mozambique or Tanzania.

  5. Mammalian Sperm Motility: Observation and Theory

    NASA Astrophysics Data System (ADS)

    Gaffney, E. A.; Gadêlha, H.; Smith, D. J.; Blake, J. R.; Kirkman-Brown, J. C.

    2011-01-01

    Mammalian spermatozoa motility is a subject of growing importance because of rising human infertility and the possibility of improving animal breeding. We highlight opportunities for fluid and continuum dynamics to provide novel insights concerning the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian sperm through the numerous environments of the female reproductive tract. This process demands certain specific changes to flagellar movement and motility for which further mechanical insight would be valuable, although this requires improved modeling capabilities, particularly to increase our understanding of sperm progression in vivo. We summarize current theoretical studies, highlighting the synergistic combination of imaging and theory in exploring sperm motility, and discuss the challenges for future observational and theoretical studies in understanding the underlying mechanics.

  6. Mammalian hairs in Early Cretaceous amber

    NASA Astrophysics Data System (ADS)

    Vullo, Romain; Girard, Vincent; Azar, Dany; Néraudeau, Didier

    2010-07-01

    Two mammalian hairs have been found in association with an empty puparium in a ˜100-million-year-old amber (Early Cretaceous) from France. Although hair is known to be an ancestral, ubiquitous feature in the crown Mammalia, the structure of Mesozoic hair has never been described. In contrast to fur and hair of some Jurassic and Cretaceous mammals preserved as carbonized filaments, the exceptional preservation of the fossils described here allows for the study of the cuticular structure. Results show the oldest direct evidence of hair with a modern scale pattern. This discovery implies that the morphology of hair cuticula may have remained unchanged throughout most of mammalian evolution. The association of these hairs with a possible fly puparium provides paleoecological information and indicates peculiar taphonomic conditions.

  7. Mammalian Sirtuins: Biological Insights and Disease Relevance

    PubMed Central

    Haigis, Marcia C.; Sinclair, David A.

    2010-01-01

    Aging is accompanied by a decline in the healthy function of multiple organ systems, leading to increased incidence and mortality from diseases such as type II diabetes mellitus, neurodegenerative diseases, cancer, and cardiovascular disease. Historically, researchers have focused on investigating individual pathways in isolated organs as a strategy to identify the root cause of a disease, with hopes of designing better drugs. Studies of aging in yeast led to the discovery of a family of conserved enzymes known as the sirtuins, which affect multiple pathways that increase the life span and the overall health of organisms. Since the discovery of the first known mammalian sirtuin, SIRT1, 10 years ago, there have been major advances in our understanding of the enzymology of sirtuins, their regulation, and their ability to broadly improve mammalian physiology and health span. This review summarizes and discusses the advances of the past decade and the challenges that will confront the field in the coming years. PMID:20078221

  8. Mammalian lipoxygenases and their biological relevance

    PubMed Central

    Kuhn, Hartmut; Banthiya, Swathi; van Leyen, Klaus

    2015-01-01

    Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOX oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. PMID:25316652

  9. Freezing mammalian cells for production of biopharmaceuticals.

    PubMed

    Seth, Gargi

    2012-03-01

    Cryopreservation techniques utilize very low temperatures to preserve the structure and function of living cells. Various strategies have been developed for freezing mammalian cells of biological and medical significance. This paper highlights the importance and application of cryopreservation for recombinant mammalian cells used in the biopharmaceutical industry to produce high-value protein therapeutics. It is a primer that aims to give insight into the basic principles of cell freezing for the benefit of biopharmaceutical researchers with limited or no prior experience in cryobiology. For the more familiar researchers, key cell banking parameters such as the cell density and hold conditions have been reviewed to possibly help optimize their specific cell freezing protocols. It is important to understand the mechanisms underlying the freezing of complex and sensitive cellular entities as we implement best practices around the techniques and strategies used for cryopreservation. PMID:22226818

  10. Linear motifs confer functional diversity onto splice variants

    PubMed Central

    Weatheritt, Robert J.; Davey, Norman E.; Gibson, Toby J.

    2012-01-01

    The pre-translational modification of messenger ribonucleic acids (mRNAs) by alternative promoter usage and alternative splicing is an important source of pleiotropy. Despite intensive efforts, our understanding of the functional implications of this dynamically created diversity is still incomplete. Using the available knowledge of interaction modules, particularly within intrinsically disordered regions (IDRs), we analysed the occurrences of protein modules within alternative exons. We find that regions removed or included by pre-translational variation are enriched in linear motifs suggesting that the removal or inclusion of exons containing these interaction modules is an important regulatory mechanism. In particular, we observe that PDZ-, PTB-, SH2- and WW-domain binding motifs are more likely to occur within alternative exons. We also determine that regions removed or included by alternative promoter usage are enriched in IDRs suggesting that protein isoform diversity is tightly coupled to the modulation of IDRs. This study, therefore, demonstrates that short linear motifs are key components for establishing protein diversity between splice variants. PMID:22638587

  11. Structure and ubiquitin binding of the ubiquitin-interacting motif

    SciTech Connect

    Fisher,R.; Wang, B.; Alam, S.; Higginson, D.; Robinson, H.; Sundquist, C.; Hill, C.

    2003-01-01

    Ubiquitylation is used to target proteins into a large number of different biological processes including proteasomal degradation, endocytosis, virus budding, and vacuolar protein sorting (Vps). Ubiquitylated proteins are typically recognized using one of several different conserved ubiquitin binding modules. Here, we report the crystal structure and ubiquitin binding properties of one such module, the ubiquitin-interacting motif (UIM). We found that UIM peptides from several proteins involved in endocytosis and vacuolar protein sorting including Hrs, Vps27p, Stam1, and Eps15 bound specifically, but with modest affinity (K{sub d} = 0.1-1 mM), to free ubiquitin. Full affinity ubiquitin binding required the presence of conserved acidic patches at the N and C terminus of the UIM, as well as highly conserved central alanine and serine residues. NMR chemical shift perturbation mapping experiments demonstrated that all of these UIM peptides bind to the I44 surface of ubiquitin. The 1.45 {angstrom} resolution crystal structure of the second yeast Vps27p UIM (Vps27p-2) revealed that the ubiquitin-interacting motif forms an amphipathic helix. Although Vps27p-2 is monomeric in solution, the motif unexpectedly crystallized as an antiparallel four-helix bundle, and the potential biological implications of UIM oligomerization are therefore discussed.

  12. Maximum likelihood density modification by pattern recognition of structural motifs

    DOEpatents

    Terwilliger, Thomas C.

    2004-04-13

    An electron density for a crystallographic structure having protein regions and solvent regions is improved by maximizing the log likelihood of a set of structures factors {F.sub.h } using a local log-likelihood function: (x)+p(.rho.(x).vertline.SOLV)p.sub.SOLV (x)+p(.rho.(x).vertline.H)p.sub.H (x)], where p.sub.PROT (x) is the probability that x is in the protein region, p(.rho.(x).vertline.PROT) is the conditional probability for .rho.(x) given that x is in the protein region, and p.sub.SOLV (x) and p(.rho.(x).vertline.SOLV) are the corresponding quantities for the solvent region, p.sub.H (x) refers to the probability that there is a structural motif at a known location, with a known orientation, in the vicinity of the point x; and p(.rho.(x).vertline.H) is the probability distribution for electron density at this point given that the structural motif actually is present. One appropriate structural motif is a helical structure within the crystallographic structure.

  13. TOPDOM: database of conservatively located domains and motifs in proteins

    PubMed Central

    Varga, Julia; Dobson, László; Tusnády, Gábor E.

    2016-01-01

    Summary: The TOPDOM database—originally created as a collection of domains and motifs located consistently on the same side of the membranes in α-helical transmembrane proteins—has been updated and extended by taking into consideration consistently localized domains and motifs in globular proteins, too. By taking advantage of the recently developed CCTOP algorithm to determine the type of a protein and predict topology in case of transmembrane proteins, and by applying a thorough search for domains and motifs as well as utilizing the most up-to-date version of all source databases, we managed to reach a 6-fold increase in the size of the whole database and a 2-fold increase in the number of transmembrane proteins. Availability and implementation: TOPDOM database is available at http://topdom.enzim.hu. The webpage utilizes the common Apache, PHP5 and MySQL software to provide the user interface for accessing and searching the database. The database itself is generated on a high performance computer. Contact: tusnady.gabor@ttk.mta.hu. Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153630

  14. Event Networks and the Identification of Crime Pattern Motifs.

    PubMed

    Davies, Toby; Marchione, Elio

    2015-01-01

    In this paper we demonstrate the use of network analysis to characterise patterns of clustering in spatio-temporal events. Such clustering is of both theoretical and practical importance in the study of crime, and forms the basis for a number of preventative strategies. However, existing analytical methods show only that clustering is present in data, while offering little insight into the nature of the patterns present. Here, we show how the classification of pairs of events as close in space and time can be used to define a network, thereby generalising previous approaches. The application of graph-theoretic techniques to these networks can then offer significantly deeper insight into the structure of the data than previously possible. In particular, we focus on the identification of network motifs, which have clear interpretation in terms of spatio-temporal behaviour. Statistical analysis is complicated by the nature of the underlying data, and we provide a method by which appropriate randomised graphs can be generated. Two datasets are used as case studies: maritime piracy at the global scale, and residential burglary in an urban area. In both cases, the same significant 3-vertex motif is found; this result suggests that incidents tend to occur not just in pairs, but in fact in larger groups within a restricted spatio-temporal domain. In the 4-vertex case, different motifs are found to be significant in each case, suggesting that this technique is capable of discriminating between clustering patterns at a finer granularity than previously possible. PMID:26605544

  15. Motif structure and cooperation in real-world complex networks

    NASA Astrophysics Data System (ADS)

    Salehi, Mostafa; Rabiee, Hamid R.; Jalili, Mahdi

    2010-12-01

    Networks of dynamical nodes serve as generic models for real-world systems in many branches of science ranging from mathematics to physics, technology, sociology and biology. Collective behavior of agents interacting over complex networks is important in many applications. The cooperation between selfish individuals is one of the most interesting collective phenomena. In this paper we address the interplay between the motifs’ cooperation properties and their abundance in a number of real-world networks including yeast protein-protein interaction, human brain, protein structure, email communication, dolphins’ social interaction, Zachary karate club and Net-science coauthorship networks. First, the amount of cooperativity for all possible undirected subgraphs with three to six nodes is calculated. To this end, the evolutionary dynamics of the Prisoner’s Dilemma game is considered and the cooperativity of each subgraph is calculated as the percentage of cooperating agents at the end of the simulation time. Then, the three- to six-node motifs are extracted for each network. The significance of the abundance of a motif, represented by a Z-value, is obtained by comparing them with some properly randomized versions of the original network. We found that there is always a group of motifs showing a significant inverse correlation between their cooperativity amount and Z-value, i.e. the more the Z-value the less the amount of cooperativity. This suggests that networks composed of well-structured units do not have good cooperativity properties.

  16. Event Networks and the Identification of Crime Pattern Motifs

    PubMed Central

    2015-01-01

    In this paper we demonstrate the use of network analysis to characterise patterns of clustering in spatio-temporal events. Such clustering is of both theoretical and practical importance in the study of crime, and forms the basis for a number of preventative strategies. However, existing analytical methods show only that clustering is present in data, while offering little insight into the nature of the patterns present. Here, we show how the classification of pairs of events as close in space and time can be used to define a network, thereby generalising previous approaches. The application of graph-theoretic techniques to these networks can then offer significantly deeper insight into the structure of the data than previously possible. In particular, we focus on the identification of network motifs, which have clear interpretation in terms of spatio-temporal behaviour. Statistical analysis is complicated by the nature of the underlying data, and we provide a method by which appropriate randomised graphs can be generated. Two datasets are used as case studies: maritime piracy at the global scale, and residential burglary in an urban area. In both cases, the same significant 3-vertex motif is found; this result suggests that incidents tend to occur not just in pairs, but in fact in larger groups within a restricted spatio-temporal domain. In the 4-vertex case, different motifs are found to be significant in each case, suggesting that this technique is capable of discriminating between clustering patterns at a finer granularity than previously possible. PMID:26605544

  17. GxxxG motifs hold the TIM23 complex together.

    PubMed

    Demishtein-Zohary, Keren; Marom, Milit; Neupert, Walter; Mokranjac, Dejana; Azem, Abdussalam

    2015-06-01

    Approximately 99% of the mitochondrial proteome is nucleus-encoded, synthesized in the cytosol, and subsequently imported into and sorted to the correct compartment in the organelle. The translocase of the inner mitochondrial membrane 23 (TIM23) complex is the major protein translocase of the inner membrane, and is responsible for translocation of proteins across the inner membrane and their insertion into the inner membrane. Tim23 is the central component of the complex that forms the import channel. A high-resolution structure of the import channel is still missing, and structural elements important for its function are unknown. In the present study, we analyzed the importance of the highly abundant GxxxG motifs in the transmembrane segments of Tim23 for the structural integrity of the TIM23 complex. Of 10 glycines present in the GxxxG motifs in the first, second and third transmembrane segments of Tim23, mutations of three of them in transmembrane segments 1 and 2 resulted in a lethal phenotype, and mutations of three others in a temperature-sensitive phenotype. The remaining four caused no obvious growth phenotype. Importantly, none of the mutations impaired the import and membrane integration of Tim23 precursor into mitochondria. However, the severity of growth impairment correlated with the destabilization of the TIM23 complex. We conclude that the GxxxG motifs found in the first and second transmembrane segments of Tim23 are necessary for the structural integrity of the TIM23 complex. PMID:25765297

  18. QuateXelero: An Accelerated Exact Network Motif Detection Algorithm

    PubMed Central

    Khakabimamaghani, Sahand; Sharafuddin, Iman; Dichter, Norbert; Koch, Ina; Masoudi-Nejad, Ali

    2013-01-01

    Finding motifs in biological, social, technological, and other types of networks has become a widespread method to gain more knowledge about these networks’ structure and function. However, this task is very computationally demanding, because it is highly associated with the graph isomorphism which is an NP problem (not known to belong to P or NP-complete subsets yet). Accordingly, this research is endeavoring to decrease the need to call NAUTY isomorphism detection method, which is the most time-consuming step in many existing algorithms. The work provides an extremely fast motif detection algorithm called QuateXelero, which has a Quaternary Tree data structure in the heart. The proposed algorithm is based on the well-known ESU (FANMOD) motif detection algorithm. The results of experiments on some standard model networks approve the overal superiority of the proposed algorithm, namely QuateXelero, compared with two of the fastest existing algorithms, G-Tries and Kavosh. QuateXelero is especially fastest in constructing the central data structure of the algorithm from scratch based on the input network. PMID:23874498

  19. An update on cell surface proteins containing extensin-motifs.

    PubMed

    Borassi, Cecilia; Sede, Ana R; Mecchia, Martin A; Salgado Salter, Juan D; Marzol, Eliana; Muschietti, Jorge P; Estevez, Jose M

    2016-01-01

    In recent years it has become clear that there are several molecular links that interconnect the plant cell surface continuum, which is highly important in many biological processes such as plant growth, development, and interaction with the environment. The plant cell surface continuum can be defined as the space that contains and interlinks the cell wall, plasma membrane and cytoskeleton compartments. In this review, we provide an updated view of cell surface proteins that include modular domains with an extensin (EXT)-motif followed by a cytoplasmic kinase-like domain, known as PERKs (for proline-rich extensin-like receptor kinases); with an EXT-motif and an actin binding domain, known as formins; and with extracellular hybrid-EXTs. We focus our attention on the EXT-motifs with the short sequence Ser-Pro(3-5), which is found in several different protein contexts within the same extracellular space, highlighting a putative conserved structural and functional role. A closer understanding of the dynamic regulation of plant cell surface continuum and its relationship with the downstream signalling cascade is a crucial forthcoming challenge. PMID:26475923

  20. QuateXelero: an accelerated exact network motif detection algorithm.

    PubMed

    Khakabimamaghani, Sahand; Sharafuddin, Iman; Dichter, Norbert; Koch, Ina; Masoudi-Nejad, Ali

    2013-01-01

    Finding motifs in biological, social, technological, and other types of networks has become a widespread method to gain more knowledge about these networks' structure and function. However, this task is very computationally demanding, because it is highly associated with the graph isomorphism which is an NP problem (not known to belong to P or NP-complete subsets yet). Accordingly, this research is endeavoring to decrease the need to call NAUTY isomorphism detection method, which is the most time-consuming step in many existing algorithms. The work provides an extremely fast motif detection algorithm called QuateXelero, which has a Quaternary Tree data structure in the heart. The proposed algorithm is based on the well-known ESU (FANMOD) motif detection algorithm. The results of experiments on some standard model networks approve the overal superiority of the proposed algorithm, namely QuateXelero, compared with two of the fastest existing algorithms, G-Tries and Kavosh. QuateXelero is especially fastest in constructing the central data structure of the algorithm from scratch based on the input network. PMID:23874498

  1. Structure and function of mammalian aldehyde oxidases.

    PubMed

    Terao, Mineko; Romão, Maria João; Leimkühler, Silke; Bolis, Marco; Fratelli, Maddalena; Coelho, Catarina; Santos-Silva, Teresa; Garattini, Enrico

    2016-04-01

    Mammalian aldehyde oxidases (AOXs; EC1.2.3.1) are a group of conserved proteins belonging to the family of molybdo-flavoenzymes along with the structurally related xanthine dehydrogenase enzyme. AOXs are characterized by broad substrate specificity, oxidizing not only aromatic and aliphatic aldehydes into the corresponding carboxylic acids, but also hydroxylating a series of heteroaromatic rings. The number of AOX isoenzymes expressed in different vertebrate species is variable. The two extremes are represented by humans, which express a single enzyme (AOX1) in many organs and mice or rats which are characterized by tissue-specific expression of four isoforms (AOX1, AOX2, AOX3, and AOX4). In vertebrates each AOX isoenzyme is the product of a distinct gene consisting of 35 highly conserved exons. The extant species-specific complement of AOX isoenzymes is the result of a complex evolutionary process consisting of a first phase characterized by a series of asynchronous gene duplications and a second phase where the pseudogenization and gene deletion events prevail. In the last few years remarkable advances in the elucidation of the structural characteristics and the catalytic mechanisms of mammalian AOXs have been made thanks to the successful crystallization of human AOX1 and mouse AOX3. Much less is known about the physiological function and physiological substrates of human AOX1 and other mammalian AOX isoenzymes, although the importance of these proteins in xenobiotic metabolism is fairly well established and their relevance in drug development is increasing. This review article provides an overview and a discussion of the current knowledge on mammalian AOX. PMID:26920149

  2. Mammalian Evolution May not Be Strictly Bifurcating

    PubMed Central

    Hallström, Björn M.; Janke, Axel

    2010-01-01

    The massive amount of genomic sequence data that is now available for analyzing evolutionary relationships among 31 placental mammals reduces the stochastic error in phylogenetic analyses to virtually zero. One would expect that this would make it possible to finally resolve controversial branches in the placental mammalian tree. We analyzed a 2,863,797 nucleotide-long alignment (3,364 genes) from 31 placental mammals for reconstructing their evolution. Most placental mammalian relationships were resolved, and a consensus of their evolution is emerging. However, certain branches remain difficult or virtually impossible to resolve. These branches are characterized by short divergence times in the order of 1–4 million years. Computer simulations based on parameters from the real data show that as little as about 12,500 amino acid sites could be sufficient to confidently resolve short branches as old as about 90 million years ago (Ma). Thus, the amount of sequence data should no longer be a limiting factor in resolving the relationships among placental mammals. The timing of the early radiation of placental mammals coincides with a period of climate warming some 100–80 Ma and with continental fragmentation. These global processes may have triggered the rapid diversification of placental mammals. However, the rapid radiations of certain mammalian groups complicate phylogenetic analyses, possibly due to incomplete lineage sorting and introgression. These speciation-related processes led to a mosaic genome and conflicting phylogenetic signals. Split network methods are ideal for visualizing these problematic branches and can therefore depict data conflict and possibly the true evolutionary history better than strictly bifurcating trees. Given the timing of tectonics, of placental mammalian divergences, and the fossil record, a Laurasian rather than Gondwanan origin of placental mammals seems the most parsimonious explanation. PMID:20591845

  3. Glia in mammalian development and disease.

    PubMed

    Zuchero, J Bradley; Barres, Ben A

    2015-11-15

    Glia account for more than half of the cells in the mammalian nervous system, and the past few decades have witnessed a flood of studies that detail novel functions for glia in nervous system development, plasticity and disease. Here, and in the accompanying poster, we review the origins of glia and discuss their diverse roles during development, in the adult nervous system and in the context of disease. PMID:26577203

  4. Excited state polarizabilities for CC2 using the resolution-of-the-identity approximation.

    PubMed

    Graf, Nora K; Friese, Daniel H; Winter, Nina O C; Hättig, Christof

    2015-12-28

    We report an implementation of static and frequency-dependent excited state polarizabilities for the approximate coupled cluster single and doubles model CC2 as analytic second derivatives of an excited state quasienergy Lagrangian. By including appropriate conditions for the normalization and the phase of the eigenvectors, divergent secular terms are avoided. This leads to response equations in a subspace orthogonal to the unperturbed eigenvectors. It is shown how these projected equations can be solved without storage of the double excitation part of the eigenvectors. By exploiting the resolution-of-the-identity approximation and a numerical Laplace transformation, the quadratic scaling of the main memory demands of RI-CC2 with the system size could be preserved. This enables calculations of excited state polarizabilities for large molecules, e.g., linear polyacenes up to decacene with almost 2500 basis functions on a single compute node within a few days. For a test set of molecules where measurements are available as reference data, we compare the orbital-relaxed and unrelaxed CC2 approaches with experiment to validate its accuracy. The approach can be easily extended to other response methods, in particular CIS(D∞). The latter gives results which, in the orbital-relaxed case, are within a few percent of the CC2 values, while coupled cluster singles results deviate typically by about 20% from orbital-relaxed CC2 and experimental reference data. PMID:26723652

  5. cis-acting elements that confer lung epithelial cell expression of the CC10 gene.

    PubMed

    Stripp, B R; Sawaya, P L; Luse, D S; Wikenheiser, K A; Wert, S E; Huffman, J A; Lattier, D L; Singh, G; Katyal, S L; Whitsett, J A

    1992-07-25

    To define cis-acting genetic elements responsible for cell-specific transcriptional regulation of the CC10 gene, DNA sequences spanning nucleotides -2338 to +49 of the rat CC10 gene were linked to a reporter gene coding for chloramphenicol acetyltransferase (CAT). In transient expression assays, CC10 sequences were capable of restricting CAT expression to a human lung adenocarcinoma cell line similar to pulmonary Clara cells. Transgenic mice harboring the hybrid RtCC10-CAT construct expressed high levels of CAT activity specifically within protein extracts of lung and trachea. Transcripts for the CAT reporter gene colocalized with those for the endogenous murine CC10 gene within the airways of transgenic mice. Functional analysis of deletion mutants identified stimulatory, inhibitory, and cell type-specific transcriptional regulatory elements. The results of gel retention and DNaseI protection assays suggest that a transcriptional stimulatory region located between -320 and -175, and a cell type-specific regulatory element located between -175 and +49, result from a series of protein-DNA interactions occurring at -220 to -205 and -128 to -86, respectively. Lung epithelial specific transcriptional regulatory elements described herein will be useful for expression of chimeric genes within epithelial cells lining the trachea, bronchi, and bronchioles of mice. PMID:1634515

  6. Exogenous lytic activity of SPN9CC endolysin against gram-negative bacteria.

    PubMed

    Lim, Jeong-A; Shin, Hakdong; Heu, Sunggi; Ryu, Sangryeol

    2014-06-28

    Concerns over drug-resistant bacteria have stimulated interest in developing alternative methods to control bacterial infections. Endolysin, a phage-encoded enzyme that breaks down bacterial peptidoglycan at the terminal stage of the phage reproduction cycle, is reported to be effective for the control of bacterial pathogenic bacteria. Bioinformatic analysis of the SPN9CC bacteriophage genome revealed a gene that encodes an endolysin with a domain structure similar to those of the endolysins produced by the P1 and P22 coliphages. The SPN9CC endolysin was purified with a C-terminal oligo-histidine tag. The endolysin was relatively stable and active over a broad temperature range (from 24°C to 65°C). It showed maximal activity at 50°C, and its optimum pH range was from pH 7.5 to 8.5. The SPN9CC endolysin showed antimicrobial activity against only gram-negative bacteria and functioned by cutting the glycosidic bond of peptidoglycan. Interestingly, the SPN9CC endolysin could lyse intact gram-negative bacteria in the absence of EDTA as an outer membrane permeabilizer. The exogenous lytic activity of the SPN9CC endolysin makes it a potential therapeutic agent against gram-negative bacteria. PMID:24690638

  7. Mammalian cells contain a second nucleocytoplasmic hexosaminidase.

    PubMed

    Gutternigg, Martin; Rendić, Dubravko; Voglauer, Regina; Iskratsch, Thomas; Wilson, Iain B H

    2009-04-01

    Some thirty years ago, work on mammalian tissues suggested the presence of two cytosolic hexosaminidases in mammalian cells; one of these has been more recently characterized in a recombinant form and has an important role in cellular function due to its ability to cleave beta-N-acetylglucosamine residues from a variety of nuclear and cytoplasmic proteins. However, the molecular nature of the second cytosolic hexosaminidase, named hexosaminidase D, has remained obscure. In the present study, we molecularly characterize for the first time the human and murine recombinant forms of enzymes, encoded by HEXDC genes, which appear to correspond to hexosaminidase D in terms of substrate specificity, pH dependency and temperature stability. Furthermore, a Myc-tagged form of this novel hexosaminidase displays a nucleocytoplasmic localization. Transcripts of the corresponding gene are expressed in a number of murine tissues. On the basis of its sequence, this enzyme represents, along with the lysosomal hexosaminidase subunits encoded by the HEXA and HEXB genes, the third class 20 glycosidase to be identified from mammalian sources. PMID:19040401

  8. [Telomere Recombination in Normal Mammalian Cells].

    PubMed

    Zhdanova, N S; Rubtsov, N B

    2016-01-01

    Two mechanisms of telomere length maintenance are known to date. The first includes the use of a special enzymatic telomerase complex to solve the problems that arise during the replication of linear DNA in a normal diploid and part of tumor cells. Alternative lengthening of telomeres (ALT), which is based on the homologous recombination of telomere DNA, represents the second mechanism. Until recently, ALT was assumed to be expressed only in 15-20% of tumors lacking active telomerase and, together with telomerase reactivation represented one of two possibilities to overcome the replicative senescence observed in somatic mammalian cells due to aging or during cell culturing in vitro. Previously described sporadic cases of combinations of the two mechanisms of telomere length maintenance in several cell lines in vitro were attributed to the experimental design rather than to a real biological phenomenon, since active cellular division without active telomerase was considered to be the "gold standard" of ALT. The present review describes the morphological and functional reorganizations of mammalian telomeres observed with ALT activation, as well as recently observed,and well-documented cases of combinations between ALT-like and telomerase-dependent mechanisms in mammalian cells. The possible role of telomere recombination in telomerase-dependent cells is discussed. PMID:27183789

  9. Aneuploidy in mammalian somatic cells in vivo.

    PubMed

    Cimino, M C; Tice, R R; Liang, J C

    1986-01-01

    Aneuploidy is an important potential source of human disease and of reproductive failure. Nevertheless, the ability of chemical agents to induce aneuploidy has been investigated only sporadically in intact (whole-animal) mammalian systems. A search of the available literature from the EMCT Aneuploidy File (for years 1970-1983) provided 112 papers that dealt with aneuploidy in mammalian somatic cells in vivo. 59 of these papers did not meet minimal criteria for analysis and were rejected from subsequent review. Of the remaining 53 papers that dealt with aneuploidy induction by chemical agents in mammalian somatic cells in vivo, only 3 (6%) contained data that were considered to be supported conclusively by adequate study designs, execution, and reporting. These 3 papers dealt with 2 chemicals, one of which, mercury, was negative for aneuploidy induction in humans, and the other, pyrimethamine, was positive in an experimental rodent study. The majority of papers (94%) were considered inconclusive for a variety of reasons. The most common reasons for calling a study inconclusive were (a) combining data on hyperploidy with those on hypoploidy and/or polyploidy, (b) an inadequate or unspecified number of animals and/or cells per animal scored per treatment group, and (c) poor data presentation such that animal-to-animal variability could not be assessed. Suggestions for protocol development are made, and the future directions of research into aneuploidy induction are discussed. PMID:3941670

  10. ULK2 Ser 1027 Phosphorylation by PKA Regulates Its Nuclear Localization Occurring through Karyopherin Beta 2 Recognition of a PY-NLS Motif.

    PubMed

    Shin, Sung Hwa; Lee, Eun Jeoung; Chun, Jaesun; Hyun, Sunghee; Kang, Sang Sun

    2015-01-01

    Uncoordinated 51-like kinase 2 (ULK2), a member of the serine/threonine kinase family, plays an essential role in the regulation of autophagy in mammalian cells. Given the role of autophagy in normal cellular homeostasis and in multiple diseases, improved mechanistic insight into this process may result in the development of novel therapeutic approaches. Here, we present evidence that ULK2 associates with karyopherin beta 2 (Kapβ2) for its transportation into the nucleus. We identify a potential PY-NLS motif ((774)gpgfgssppGaeaapslRyvPY(795)) in the S/P space domain of ULK2, which is similar to the consensus PY-NLS motif (R/K/H)X(2-5)PY. Using a pull-down approach, we observe that ULK2 interacts physically with Kapβ2 both in vitro and in vivo. Confocal microscopy confirmed the co-localization of ULK2 and Kapβ2. Localization of ULK2 to the nuclear region was disrupted by mutations in the putative Kapβ2-binding motif (P794A). Furthermore, in transient transfection assays, the presence of the Kapβ2 binding site mutant (the cytoplasmic localization form) was associated with a substantial increase in autophagy activity (but a decrease in the in vitro serine-phosphorylation) compared with the wild type ULK2. Mutational analysis showed that the phosphorylation on the Ser1027 residue of ULK2 by Protein Kinase A (PKA) is the regulatory point for its functional dissociation from Atg13 and FIP 200, nuclear localization, and autophagy. Taken together, our observations indicate that Kapβ2 interacts with ULK2 through ULK2's putative PY-NLS motif, and facilitates transport from the cytoplasm to the nucleus, depending on its Ser1027 residue phosphorylation by PKA, thereby reducing autophagic activity. PMID:26052940

  11. Iterative reactions of transient boronic acids enable sequential C-C bond formation

    NASA Astrophysics Data System (ADS)

    Battilocchio, Claudio; Feist, Florian; Hafner, Andreas; Simon, Meike; Tran, Duc N.; Allwood, Daniel M.; Blakemore, David C.; Ley, Steven V.

    2016-04-01

    The ability to form multiple carbon-carbon bonds in a controlled sequence and thus rapidly build molecular complexity in an iterative fashion is an important goal in modern chemical synthesis. In recent times, transition-metal-catalysed coupling reactions have dominated in the development of C-C bond forming processes. A desire to reduce the reliance on precious metals and a need to obtain products with very low levels of metal impurities has brought a renewed focus on metal-free coupling processes. Here, we report the in situ preparation of reactive allylic and benzylic boronic acids, obtained by reacting flow-generated diazo compounds with boronic acids, and their application in controlled iterative C-C bond forming reactions is described. Thus far we have shown the formation of up to three C-C bonds in a sequence including the final trapping of a reactive boronic acid species with an aldehyde to generate a range of new chemical structures.

  12. Extinction coefficient of H2CC(3B2) at 137 nm

    NASA Technical Reports Server (NTRS)

    Fahr, A.; Laufer, A. H.

    1985-01-01

    In spite of the conduction of numerous studies regarding the vinylidene free radical, its role and importance as a reactive intermediate is not well characterized. Laufer (1980, 1983) has reported the absorption spectrum of metastable H2CC(3B2), the lowest excited state, in the vacuum ultraviolet and has measured several aspects of its quenching properties. The present study provides a measurement of the extinction coefficient of H2CC(3B2). Knowledge of the vinylidene concentration is required to convert readily available absorption data into an extinction coefficient or cross section. In the current work, the H2CC(3B2) concentration was determined in an investigation of the photodissociation of vinyl chloride.

  13. Effects of Anti-Oxidant Migration on Friction and Wear of C/C Aircraft Brakes

    NASA Astrophysics Data System (ADS)

    Don, Jarlen; Wang, Zhe

    2009-04-01

    The surfaces of carbon-carbon (C/C) aircraft brakes are usually coated with anti-oxidant to protect them from oxidation. These surfaces do not include the friction surfaces since it is known that when anti-oxidant get onto the friction surface, the friction coefficient decreases. The anti-oxidant migration (AOM), however, happens during processing, heat treatment and application. In this study, phosphorus based anti-oxidants inhibited 3-D C/C aircraft brake system was investigated. The effects of their migration on friction and wear in the 3-D C/C brakes were revealed by sub-scale dynamometer tests and microscopic analysis. Dynamometer results showed that when AOM occurred, both landing and taxi coefficients decreased in humid environment and the wear was slightly lowered. Microscopic study showed that under high humidity conditions there was no formation of the friction film.

  14. Energy Materials Coordinating Committee (EMaCC): Annual technical report, fiscal year 1993

    SciTech Connect

    Not Available

    1994-07-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department`s materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. This report summarizes EMaCC activities for FY 1993 and describes the materials research programs of various offices and divisions within the Department. The program descriptions consist of a funding summary for each Assistant Secretary office and the Office of Energy Research, and detailed project summaries with project goals and accomplishments. The FY 1993 budget summary table for DOE Materials Activities in each of the programs is presented.

  15. Genetic transformation of marine cyanobacterium Synechococcus sp. CC9311 (Cyanophyceae) by electroporation

    NASA Astrophysics Data System (ADS)

    Chen, Huaxin; Lin, Hanzhi; Jiang, Peng; Li, Fuchao; Qin, Song

    2013-03-01

    Synechococcus sp. CC9311 is a marine cyanobacterium characterized by type IV chromatic acclimation (CA). A genetic transformation system was developed as a first step to elucidate the molecular mechanism of CA. The results show that Synechococcus sp. CC9311 cells were sensitive to four commonly used antibiotics: ampicillin, kanamycin, spectinomycin, and chloramphenicol. An integrative plasmid to disrupt the putative phycoerythrin lyase gene mpeV, using a kanamycin resistance gene as selectable marker, was constructed by recombinant polymerase chain reaction. The plasmid was then transformed into Synechococcus sp. CC9311 via electroporation. High transformation efficiency was achieved at a field strength of 2 kV/cm. DNA analysis showed that mpeV was fully disrupted following challenge of the transformants with a high concentration of kanamycin. In addition, the transformants that displayed poor growth on agar SN medium could be successfully plated on agarose SN medium.

  16. FinCC and the National Documentation Model in EHR--user feedback and development suggestions.

    PubMed

    Kinnunen, Ulla-Mari; Junttila, Kristiina; Liljamo, Pia; Sonninen, Anna Liisa; Härkönen, Mikko; Ensio, Anneli

    2014-01-01

    The structure of the Finnish nursing documentation model is based on the decision-making process and a standardized nursing terminology: Finnish Care Classification (FinCC). Nearly 20,000 nurses use the FinCC although not all healthcare organizations utilize it. Development projects for the common national nursing documentation framework have been carried out, for example, in 2010-2011 the aim of a project by the Ministry of Social Affairs and Health and the National Institute of Health and Welfare was to suggest recommendations for the Finnish nursing documentation model. The final report of the project was sent to different organizations all over the country for further feedback statements. The aim of this paper is to summarize the message of the statements (n=37) from primary and specialized care, universities including universities of applied science, professional nursing associations, trade unions and national authorities. Development suggestions for the FinCC and electronic health records will be introduced. PMID:24943544

  17. Expression of Anaplasma marginale Ankyrin Repeat-Containing Proteins during Infection of the Mammalian Host and Tick Vector ▿ †

    PubMed Central

    Ramabu, Solomon S.; Schneider, David A.; Brayton, Kelly A.; Ueti, Massaro W.; Graça, Telmo; Futse, James E.; Noh, Susan M.; Baszler, Timothy V.; Palmer, Guy H.

    2011-01-01

    Transmission of tick-borne pathogens requires transition between distinct host environments with infection and replication in host-specific cell types. Anaplasma marginale illustrates this transition: in the mammalian host, the bacterium infects and replicates in mature (nonnucleated) erythrocytes, while in the tick vector, replication occurs in nucleated epithelial cells. We hypothesized that proteins containing ankyrin motifs would be expressed by A. marginale only in tick cells and would traffic to the infected host cell nucleus. A. marginale encodes three proteins containing ankyrin motifs, an AnkA orthologue (the AM705 protein), AnkB (the AM926 protein), and AnkC (the AM638 protein). All three A. marginale Anks were confirmed to be expressed during intracellular infection: AnkA is expressed at significantly higher levels in erythrocytes, AnkB is expressed equally by both infected erythrocytes and tick cells, and AnkC is expressed exclusively in tick cells. There was no evidence of any of the Ank proteins trafficking to the nucleus. Thus, the hypothesis that ankyrin-containing motifs were predictive of cell type expression and nuclear localization was rejected. In contrast, AnkA orthologues in the closely related A. phagocytophilum and Ehrlichia chaffeensis have been shown to localize to the host cell nucleus. This difference, together with the lack of a nuclear localization signal in any of the AnkA orthologues, suggests that trafficking may be mediated by a separate transporter rather than by endogenous signals. Selection for divergence in Ank function among Anaplasma and Ehrlichia spp. is supported by both locus and allelic analyses of genes encoding orthologous proteins and their ankyrin motif compositions. PMID:21576345

  18. Expression of Anaplasma marginale ankyrin repeat-containing proteins during infection of the mammalian host and tick vector.

    PubMed

    Ramabu, Solomon S; Schneider, David A; Brayton, Kelly A; Ueti, Massaro W; Graça, Telmo; Futse, James E; Noh, Susan M; Baszler, Timothy V; Palmer, Guy H

    2011-07-01

    Transmission of tick-borne pathogens requires transition between distinct host environments with infection and replication in host-specific cell types. Anaplasma marginale illustrates this transition: in the mammalian host, the bacterium infects and replicates in mature (nonnucleated) erythrocytes, while in the tick vector, replication occurs in nucleated epithelial cells. We hypothesized that proteins containing ankyrin motifs would be expressed by A. marginale only in tick cells and would traffic to the infected host cell nucleus. A. marginale encodes three proteins containing ankyrin motifs, an AnkA orthologue (the AM705 protein), AnkB (the AM926 protein), and AnkC (the AM638 protein). All three A. marginale Anks were confirmed to be expressed during intracellular infection: AnkA is expressed at significantly higher levels in erythrocytes, AnkB is expressed equally by both infected erythrocytes and tick cells, and AnkC is expressed exclusively in tick cells. There was no evidence of any of the Ank proteins trafficking to the nucleus. Thus, the hypothesis that ankyrin-containing motifs were predictive of cell type expression and nuclear localization was rejected. In contrast, AnkA orthologues in the closely related A. phagocytophilum and Ehrlichia chaffeensis have been shown to localize to the host cell nucleus. This difference, together with the lack of a nuclear localization signal in any of the AnkA orthologues, suggests that trafficking may be mediated by a separate transporter rather than by endogenous signals. Selection for divergence in Ank function among Anaplasma and Ehrlichia spp. is supported by both locus and allelic analyses of genes encoding orthologous proteins and their ankyrin motif compositions. PMID:21576345

  19. Exercise but not mannitol provocation increases urinary Clara cell protein (CC16) in elite swimmers.

    PubMed

    Romberg, Kerstin; Bjermer, Leif; Tufvesson, Ellen

    2011-01-01

    Elite swimmers have an increased risk of developing asthma, and exposure to chloramine is believed to be an important trigger factor. The aim of the present study was to explore pathophysiological mechanisms behind induced bronchoconstriction in swimmers exposed to chloramine, before and after swim exercise provocation as well as mannitol provocation. Urinary Clara cell protein (CC16) was used as a possible marker for epithelial stress. 101 elite aspiring swim athletes were investigated and urinary samples were collected before and 1 h after completed exercise and mannitol challenge. CC16, 11β-prostaglandin (PG)F(2α) and leukotriene E(4) (LTE(4)) were measured. Urinary levels of CC16 were clearly increased after exercise challenge, while no reaction was seen after mannitol challenge. Similar to CC16, the level of 11β-PGF(2α) was increased after exercise challenge, but not after mannitol challenge, while LTE(4) was reduced after exercise. There was no significant difference in urinary response between those with a negative compared to positive challenge, but a tendency of increased baseline levels of 11β-PGF(2α) and LTE(4) in individuals with a positive mannitol challenge. The uniform increase of CC16 after swim exercise indicates that CC16 is of importance in epithelial stress, and may as such be an important pathogenic factor behind asthma development in swimmers. The changes seen in urinary levels of 11β-PGF(2α) and LTE(4) indicate a pathophysiological role in both mannitol and exercise challenge. PMID:20696561

  20. Longitudinal study on transmission of MRSA CC398 within pig herds

    PubMed Central

    2012-01-01

    Background Since the detection of MRSA CC398 in pigs in 2004, it has emerged in livestock worldwide. MRSA CC398 has been found in people in contact with livestock and thus has become a public health issue. Data from a large-scale longitudinal study in two Danish and four Dutch pig herds were used to quantify MRSA CC398 transmission rates within pig herds and to identify factors affecting transmission between pigs. Results Sows and their offspring were sampled at varying intervals during a production cycle. Overall MRSA prevalence of sows increased from 33% before farrowing to 77% before weaning. Overall MRSA prevalence of piglets was > 60% during the entire study period. The recurrent finding of MRSA in the majority of individuals indicates true colonization or might be the result of contamination. Transmission rates were estimated using a Susceptible-Infectious-Susceptible (SIS-)model, which resulted in values of the reproduction ratio (R0) varying from 0.24 to 8.08. Transmission rates were higher in pigs treated with tetracyclins and β-lactams compared to untreated pigs implying a selective advantage of MRSA CC398 when these antimicrobials are used. Furthermore, transmission rates were higher in pre-weaning pigs compared to post-weaning pigs which might be explained by an age-related susceptibility or the presence of the sow as a primary source of MRSA CC398. Finally, transmission rates increased with the relative increase of the infection pressure within the pen compared to the total infection pressure, implying that within-pen transmission is a more important route compared to between-pen transmission and transmission through environmental exposure. Conclusion Our results indicate that MRSA CC398 is able to spread and persist in pig herds, resulting in an endemic situation. Transmission rates are affected by the use of selective antimicrobials and by the age of pigs. PMID:22607475