Science.gov

Sample records for mammalian excision repair

  1. Mammalian Transcription-Coupled Excision Repair

    PubMed Central

    Vermeulen, Wim; Fousteri, Maria

    2013-01-01

    Transcriptional arrest caused by DNA damage is detrimental for cells and organisms as it impinges on gene expression and thereby on cell growth and survival. To alleviate transcriptional arrest, cells trigger a transcription-dependent genome surveillance pathway, termed transcription-coupled nucleotide excision repair (TC-NER) that ensures rapid removal of such transcription-impeding DNA lesions and prevents persistent stalling of transcription. Defective TC-NER is causatively linked to Cockayne syndrome, a rare severe genetic disorder with multisystem abnormalities that results in patients’ death in early adulthood. Here we review recent data on how damage-arrested transcription is actively coupled to TC-NER in mammals and discuss new emerging models concerning the role of TC-NER-specific factors in this process. PMID:23906714

  2. Base excision repair intermediates are mutagenic in mammalian cells

    PubMed Central

    Simonelli, Valeria; Narciso, Laura; Dogliotti, Eugenia; Fortini, Paola

    2005-01-01

    Base excision repair (BER) is the main pathway for repair of DNA damage in mammalian cells. This pathway leads to the formation of DNA repair intermediates which, if still unsolved, cause cell lethality and mutagenesis. To characterize mutations induced by BER intermediates in mammalian cells, an SV-40 derived shuttle vector was constructed carrying a site-specific lesion within the recognition sequence of a restriction endonuclease. The mutation spectra of abasic (AP) sites, 5′-deoxyribose-5-phosphate (5′dRp) and 3′-[2,3-didehydro-2,3-dideoxy-ribose] (3′ddR5p) single-strand breaks (ssb) in mammalian cells was analysed by RFLP/PCR and mutation frequency was estimated by quantitative PCR. Point mutations were the predominant events occurring at all BER intermediates. The AP site-induced mutation spectrum supports evidence for the ‘A-rule’ and is also consistent with the use of the 5′ neighbouring base to instruct nucleotide incorporation (5′-rule). Preferential adenine insertion was also observed after in vivo replication of 5′dRp or 3′ddR5p ssb. We provide original evidence that not only the abasic site but also its derivatives ‘faceless’ BER intermediates are mutagenic, with a similar mutation frequency, in mammalian cells. Our findings support the hypothesis that unattended BER intermediates could be a constant threat for genome integrity as well as a spontaneous source of mutations. PMID:16077026

  3. HMGB1 is a cofactor in mammalian base excision repair.

    PubMed

    Prasad, Rajendra; Liu, Yuan; Deterding, Leesa J; Poltoratsky, Vladimir P; Kedar, Padmini S; Horton, Julie K; Kanno, Shin-Ichiro; Asagoshi, Kenjiro; Hou, Esther W; Khodyreva, Svetlana N; Lavrik, Olga I; Tomer, Kenneth B; Yasui, Akira; Wilson, Samuel H

    2007-09-01

    Deoxyribose phosphate (dRP) removal by DNA polymerase beta (Pol beta) is a pivotal step in base excision repair (BER). To identify BER cofactors, especially those with dRP lyase activity, we used a Pol beta null cell extract and BER intermediate as bait for sodium borohydride crosslinking. Mass spectrometry identified the high-mobility group box 1 protein (HMGB1) as specifically interacting with the BER intermediate. Purified HMGB1 was found to have weak dRP lyase activity and to stimulate AP endonuclease and FEN1 activities on BER substrates. Coimmunoprecipitation experiments revealed interactions of HMGB1 with known BER enzymes, and GFP-tagged HMGB1 was found to accumulate at sites of oxidative DNA damage in living cells. HMGB1(-/-) mouse cells were slightly more resistant to MMS than wild-type cells, probably due to the production of fewer strand-break BER intermediates. The results suggest HMGB1 is a BER cofactor capable of modulating BER capacity in cells. PMID:17803946

  4. Studying nucleotide excision repair of mammalian DNA in a cell-free system

    SciTech Connect

    Wood, R.D.

    1994-12-31

    During nucleotide excision repair, a multiprotein system locates a lesion in DNA and catalyzes enzymatic cleavage of the altered strand. The damaged oligonucleotide and the incision proteins are then displaced, DNA synthesis proceeds to form a short patch using the nonmodified strand as a template, and repair is completed by a DNA ligase. Many gene products participate in these reactions, the best known of which correspond to the seven genetic complementation groups XP-A to XP-G of the disease xeroderma pigmentosum (XP). Cells representing any of these XP groups appear to exhibit, to varying degrees, defects in the first steps of nucleotide excision repair. Individuals affected with XP are hypersensitive to sunlight; most have a predisposition to skin cancer, and some patients show severe neurological abnormalities. In addition to XP, other UV-sensitive mutants of mammalian cells are providing insight into nucleotide excision repair. Of particular interest are mutants isolated from the rodent cells, which have been assigned to 11 different complementation groups. Human genes that can correct the repair defects of rodent mutants in these complementation groups are denoted. ERCC (excision repair cross-complementing) genes are are referred to by number, ERCC1 to ERCC11. Some of these genes are proving to be equivalent to particular XP-complementing genes, while others are distinct. The process of nucleotide excision repair is evolutionarily conserved in eukaryotes, and functional homologues of many of the ERCC and XP genes have been identified in other organisms; studies in yeast are proving to be particularly informative.

  5. Base Excision Repair and Cancer

    PubMed Central

    Wallace, Susan S.; Murphy, Drew L.; Sweasy, Joann B.

    2012-01-01

    Base excision repair is the system used from bacteria to man to remove the tens of thousands of endogenous DNA damages produced daily in each human cell. Base excision repair is required for normal mammalian development and defects have been associated with neurological disorders and cancer. In this paper we provide an overview of short patch base excision repair in humans and summarize current knowledge of defects in base excision repair in mouse models and functional studies on short patch base excision repair germ line polymorphisms and their relationship to cancer. The biallelic germ line mutations that result in MUTYH-associated colon cancer are also discussed. PMID:22252118

  6. In vivo dynamics of chromatin-associated complex formation in mammalian nucleotide excision repair

    PubMed Central

    Moné, Martijn J.; Bernas, Tytus; Dinant, Christoffel; Goedvree, Feliks A.; Manders, Erik M. M.; Volker, Marcel; Houtsmuller, Adriaan B.; Hoeijmakers, Jan H. J.; Vermeulen, Wim; van Driel, Roel

    2004-01-01

    Chromatin is the substrate for many processes in the cell nucleus, including transcription, replication, and various DNA repair systems, all of which require the formation of multiprotein machineries on the chromatin fiber. We have analyzed the kinetics of in vivo assembly of the protein complex that is responsible for nucleotide excision repair (NER) in mammalian cells. Assembly is initiated by UV irradiation of a small area of the cell nucleus, after which the accumulation of GFP-tagged NER proteins in the DNA-damaged area is measured, reflecting the establishment of the dual-incision complex. The dynamic behavior of two NER proteins, ERCC1-XPF and TFIIH, was studied in detail. Results show that the repair complex is assembled with a rate of ≈30 complexes per second and is not diffusion limited. Furthermore, we provide in vivo evidence that not only binding of TFIIH, but also its helicase activity, is required for the recruitment of ERCC1-XPF. These studies give quantitative insight into the de novo assembly of a chromatin-associated protein complex in living cells. PMID:15520397

  7. Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair.

    PubMed

    Sugasawa, Kaoru

    2016-08-01

    For faithful DNA repair, it is crucial for cells to locate lesions precisely within the vast genome. In the mammalian global genomic nucleotide excision repair (NER) pathway, this difficult task is accomplished through multiple steps, in which the xeroderma pigmentosum group C (XPC) protein complex plays a central role. XPC senses the presence of oscillating 'normal' bases in the DNA duplex, and its binding properties contribute to the extremely broad substrate specificity of NER. Unlike XPC, which acts as a versatile sensor of DNA helical distortion, the UV-damaged DNA-binding protein (UV-DDB) is more specialized, recognizing UV-induced photolesions and facilitating recruitment of XPC. Recent single-molecule analyses and structural studies have advanced our understanding of how UV-DDB finds its targets, particularly in the context of chromatin. After XPC binds DNA, it is necessary to verify the presence of damage in order to avoid potentially deleterious incisions at damage-free sites. Accumulating evidence suggests that XPA and the helicase activity of transcription factor IIH (TFIIH) cooperate to verify abnormalities in DNA chemistry. This chapter reviews recent findings about the mechanisms underlying the efficiency, versatility, and accuracy of NER. PMID:27264556

  8. Adaptive response to gamma radiation in mammalian cells proficient and deficient in components of nucleotide excision repair.

    PubMed

    Hafer, Kurt; Iwamoto, Keisuke S; Iwamoto, Keisuke K; Scuric, Zorica; Schiestl, Robert H

    2007-08-01

    Cells preconditioned with low doses of low-linear energy transfer (LET) ionizing radiation become more resistant to later challenges of radiation. The mechanism(s) by which cells adaptively respond to radiation remains unclear, although it has been suggested that DNA repair induced by low doses of radiation increases cellular radioresistance. Recent gene expression profiles have consistently indicated that proteins involved in the nucleotide excision repair pathway are up-regulated after exposure to ionizing radiation. Here we test the role of the nucleotide excision repair pathway for adaptive response to gamma radiation in vitro. Wild-type CHO cells exhibited both greater survival and fewer HPRT mutations when preconditioned with a low dose of gamma rays before exposure to a later challenging dose. Cells mutated for ERCC1, ERCC3, ERCC4 or ERCC5 did not express either adaptive response to radiation; cells mutated for ERCC2 expressed a survival adaptive response but no mutation adaptive response. These results suggest that some components of the nucleotide excision repair pathway are required for phenotypic low-dose induction of resistance to gamma radiation in mammalian cells. PMID:17638404

  9. Genetic evidence for nucleotide excision repair of O6-alkylguanine in mammalian cells.

    PubMed

    Boyle, J M; Durrant, L G; Wild, C P; Saffhill, R; Margison, G P

    1987-01-01

    Human cells that lack O6-alkylguanine DNA alkyltransferase (AT) activity can remove O6-butylguanine (O6-nBuG) produced in cellular DNA by exposure to N-n-butyl-N-nitrosourea as determined by radioimmunoassay of enzyme digests of DNA. Fibroblasts from xeroderma pigmentosum (XP) complementation groups A and G that show less than 5% unscheduled DNA synthesis following exposure to UVC failed to remove O6-nBuG. Hence it appears that O6-alkylguanine is repaired in cells that lack AT by a process that is defective in XP cells, presumably nucleotide excision repair. Neither V79 nor V79/79 Chinese hamster cell lines have AT activity and both are able to remove O6-nBuG from DNA. However, only V79/79 is able to remove O6MeG, suggesting some substrate specificity of the excision repair process. Comparison of relative levels of O6-alkylation by N-methyl-, N-ethyl-, N-propyl- and N-n-butyl-nitrosourea indicate that approximately equal levels of O6-alkylation are produced by equitoxic doses of these agents. PMID:3477561

  10. Regulation and Disregulation of Mammalian Nucleotide Excision Repair: a Pathway to Non-germline Breast Carcinogenesis†

    PubMed Central

    Latimer, Jean J.; Majekwana, Vongai J.; Pabón-Padín, Yashira R.; Pimpley, Manasi R.; Grant, Stephen G.

    2015-01-01

    Nucleotide excision repair (NER) is important as a modulator of disease, especially in constitutive deficiencies, such as the cancer predisposition syndrome Xeroderma pigmentosum. We have found profound variation of NER capacity among normal individuals, between cell-types and during carcinogenesis. NER is a repair system for many types of DNA damage, and therefore many types of genotoxic carcinogenic exposures, including ultraviolet light, products of organic combustion, metals, oxidative stress, etc. Since NER is intimately related to cellular metabolism, requiring components of both the DNA replicative and transcription machinery, it has a narrow range of functional viability. Thus, genes in the NER pathway are expressed at the low levels manifested by, for example, nuclear transcription factors. Since NER activity and gene expression vary by cell-type, it is inherently epigenetically regulated. Furthermore, this epigenetic regulation is disregulated during sporadic breast carcinogenesis. Loss of NER is one basis of genomic instability, a required element in cellular transformation, and one that potentially modulates response to therapy. In this paper, we demonstrate differences in NER capacity in eight adult mouse tissues, and place this result into the context of our previous work on mouse extraembryonic tissues, normal human tissues and sporadic early stage human breast cancer. PMID:25393451

  11. Prokaryotic nucleotide excision repair.

    PubMed

    Kisker, Caroline; Kuper, Jochen; Van Houten, Bennett

    2013-03-01

    Nucleotide excision repair (NER) has allowed bacteria to flourish in many different niches around the globe that inflict harsh environmental damage to their genetic material. NER is remarkable because of its diverse substrate repertoire, which differs greatly in chemical composition and structure. Recent advances in structural biology and single-molecule studies have given great insight into the structure and function of NER components. This ensemble of proteins orchestrates faithful removal of toxic DNA lesions through a multistep process. The damaged nucleotide is recognized by dynamic probing of the DNA structure that is then verified and marked for dual incisions followed by excision of the damage and surrounding nucleotides. The opposite DNA strand serves as a template for repair, which is completed after resynthesis and ligation. PMID:23457260

  12. Repair of DNA damage in mammalian cells after treatment with UV and dimethyl sulphate: discrimination between nucleotide and base excision repair by their temperature dependence.

    PubMed

    Hjertvik, M; Erixon, K; Ahnström, G

    1998-03-01

    Alkylating agents have been reported to give rise to both short and long patches of repair. The reason for the different patch sizes is not known. One possibility is that alkylating agents can trigger both base and nucleotide excision repair. Another possibility is that base excision repair itself can result in different patch sizes. Recognition and incision at lesions is the rate limiting step in excision repair. In order to discriminate between base and nucleotide excision repair it would be desirable to be able to distinguish between different incision activities. In order to accurately measure incision rates, the rejoining of the strand-breaks formed must be inhibited. We have used two inhibitors, aphidicolin and 3-aminobenzamide. Aphidicolin, an inhibitor of DNA polymerases alpha/delta/epsilon. caused accumulation of single-strand breaks both after UV and dimethylsulphate. 3-Aminobenzamide, an inhibitor of poly(ADP-ribose)-polymerase caused accumulation of single-strand breaks only after alkylating agents and is thus specific for base excision repair. Enzymatic activities can be characterised by their activation energy. In order to discriminate between base and nucleotide excision repair the temperature dependence of incision activities was determined. When the temperature is decreased, the incision rate is reduced to a larger extent for UV than for DMS-induced repair. Incisions in UV-irradiated cells are practically cut off at temperatures of 15 degrees C and below, whereas DMS-exposed cells still are actively repairing at this temperature. In DMS treated cells the temperature dependence was the same whether aphidicolin or 3-aminobenzamide was used, speaking against an involvement of nucleotide excision repair. In addition, cell lines deficient in nucleotide excision repair responded in the same way to aphidicolin after DMS treatment as normal cells and were able to make incisions at 15 degrees C. This indicates that nucleotide excision repair is not to any

  13. Nucleotide excision repair in humans.

    PubMed

    Spivak, Graciela

    2015-12-01

    The demonstration of DNA damage excision and repair replication by Setlow, Howard-Flanders, Hanawalt and their colleagues in the early 1960s, constituted the discovery of the ubiquitous pathway of nucleotide excision repair (NER). The serial steps in NER are similar in organisms from unicellular bacteria to complex mammals and plants, and involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. The transcription-coupled repair (TCR) subpathway of NER, discovered nearly two decades later, is dedicated to the removal of lesions from the template DNA strands of actively transcribed genes. In this review I will outline the essential factors and complexes involved in NER in humans, and will comment on additional factors and metabolic processes that affect the efficiency of this important process. PMID:26388429

  14. Navigating the Nucleotide Excision Repair Threshold

    PubMed Central

    Liu, Liren; Lee, Jennifer; Zhou, Pengbo

    2010-01-01

    Nucleotide excision repair (NER) is the primary DNA repair pathway that removes helix-distorting DNA strand damage induced by ultraviolet light (UV) irradiation or chemical carcinogens to ensure genome integrity. While the core NER proteins that carry out damage recognition, excision and repair reactions have been identified and extensively characterized, and the NER pathway has been reconstituted in vitro, the regulatory pathways that govern the threshold levels of NER have not been fully elucidated. This mini-review focuses on recently discovered transcriptional and post-translational mechanisms that specify the capacity of NER, and suggests the potential implications of modulating NER activity in cancer prevention and therapeutic intervention. PMID:20458729

  15. Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair.

    PubMed

    Zhu, Chenxu; Lu, Lining; Zhang, Jun; Yue, Zongwei; Song, Jinghui; Zong, Shuai; Liu, Menghao; Stovicek, Olivia; Gao, Yi Qin; Yi, Chengqi

    2016-07-12

    NEIL1 (Nei-like 1) is a DNA repair glycosylase guarding the mammalian genome against oxidized DNA bases. As the first enzymes in the base-excision repair pathway, glycosylases must recognize the cognate substrates and catalyze their excision. Here we present crystal structures of human NEIL1 bound to a range of duplex DNA. Together with computational and biochemical analyses, our results suggest that NEIL1 promotes tautomerization of thymine glycol (Tg)-a preferred substrate-for optimal binding in its active site. Moreover, this tautomerization event also facilitates NEIL1-catalyzed Tg excision. To our knowledge, the present example represents the first documented case of enzyme-promoted tautomerization for efficient substrate recognition and catalysis in an enzyme-catalyzed reaction. PMID:27354518

  16. Mammalian DNA Repair. Final Report

    SciTech Connect

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  17. Differential modulation of base excision repair activities during brain ontogeny: implications for repair of transcribed DNA.

    PubMed

    Englander, Ella W; Ma, Huaxian

    2006-01-01

    DNA repair sustains fidelity of genomic replication in proliferating cells and integrity of transcribed sequences in postmitotic tissues. The repair process is critical in the brain, because high oxygen consumption exacerbates the risk for accumulation of oxidative DNA lesions in postmitotic neurons. Most oxidative DNA damage is repaired by the base excision repair (BER) pathway, which is initiated by specialized DNA glycosylases. Because the newly discovered Nei-like mammalian DNA glycosylases (NEIL1/2) proficiently excise oxidized bases from bubble structured DNA, it was suggested that NEILs favor repair of transcribed or replicated DNA. In addition, since NEILs generate 3'-phosphate termini, which are poor targets for AP endonuclease (APE1), it was proposed that APE1-dependent and independent BER sub-pathways exist in mammalian cells. We measured expression and activities of BER enzymes during brain ontogeny, i.e., during a physiologic transition from proliferative to postmitotic differentiated state. While a subset of BER enzymes, exhibited declining expression and excision activities, expression of NEIL1 and NEIL2 glycosylases increased during brain development. Furthermore, the capacity for excision of 5-hydroxyuracil from bubble structured DNA was retained in the mature rat brain suggesting a role for NEIL glycosylases in maintaining the integrity of transcribed DNA in postmitotic brain. PMID:16257035

  18. DNA repair in mammalian embryos.

    PubMed

    Jaroudi, Souraya; SenGupta, Sioban

    2007-01-01

    Mammalian cells have developed complex mechanisms to identify DNA damage and activate the required response to maintain genome integrity. Those mechanisms include DNA damage detection, DNA repair, cell cycle arrest and apoptosis which operate together to protect the conceptus from DNA damage originating either in parental gametes or in the embryo's somatic cells. DNA repair in the newly fertilized preimplantation embryo is believed to rely entirely on the oocyte's machinery (mRNAs and proteins deposited and stored prior to ovulation). DNA repair genes have been shown to be expressed in the early stages of mammalian development. The survival of the embryo necessitates that the oocyte be sufficiently equipped with maternal stored products and that embryonic gene expression commences at the correct time. A Medline based literature search was performed using the keywords 'DNA repair' and 'embryo development' or 'gametogenesis' (publication dates between 1995 and 2006). Mammalian studies which investigated gene expression were selected. Further articles were acquired from the citations in the articles obtained from the preliminary Medline search. This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages. PMID:17141556

  19. Oxidative DNA Damage and Nucleotide Excision Repair

    PubMed Central

    Melis, Joost P.M.; Luijten, Mirjam

    2013-01-01

    Abstract Significance: Oxidative DNA damage is repaired by multiple, overlapping DNA repair pathways. Accumulating evidence supports the hypothesis that nucleotide excision repair (NER), besides base excision repair (BER), is also involved in neutralizing oxidative DNA damage. Recent Advances: NER includes two distinct sub-pathways: transcription-coupled NER (TC-NER) and global genome repair (GG-NER). The CSA and CSB proteins initiate the onset of TC-NER. Recent findings show that not only CSB, but also CSA is involved in the repair of oxidative DNA lesions, in the nucleus as well as in mitochondria. The XPG protein is also of importance for the removal of oxidative DNA lesions, as it may enhance the initial step of BER. Substantial evidence exists that support a role for XPC in NER and BER. XPC deficiency not only results in decreased repair of oxidative lesions, but has also been linked to disturbed redox homeostasis. Critical Issues: The role of NER proteins in the regulation of the cellular response to oxidative (mitochondrial and nuclear) DNA damage may be the underlying mechanism of the pathology of accelerated aging in Cockayne syndrome patients, a driving force for internal cancer development in XP-A and XP-C patients, and a contributor to the mixed exhibited phenotypes of XP-G patients. Future Directions: Accumulating evidence indicates that DNA repair factors can be involved in multiple DNA repair pathways. However, the distinct detailed mechanism and consequences of these additional functions remain to be elucidated and can possibly shine a light on clinically related issues. Antioxid. Redox Signal. 18, 2409–2419. PMID:23216312

  20. Base Excision Repair in the Mitochondria

    PubMed Central

    Prakash, Aishwarya; Doublié, Sylvie

    2015-01-01

    The 16.5 kb human mitochondrial genome encodes for 13 polypeptides, 22 tRNAs and 2 rRNAs involved in oxidative phosphorylation. Mitochondrial DNA (mtDNA), unlike its nuclear counterpart, is not packaged into nucleosomes and is more prone to the adverse effects of reactive oxygen species (ROS) generated during oxidative phosphorylation. The past few decades have witnessed an increase in the number of proteins observed to translocate to the mitochondria for the purposes of mitochondrial genome maintenance. The mtDNA damage produced by ROS, if not properly repaired, leads to instability and can ultimately manifest in mitochondrial dysfunction and disease. The base excision repair (BER) pathway is employed for the removal and consequently the repair of deaminated, oxidized, and alkylated DNA bases. Specialized enzymes called DNA glycosylases, which locate and cleave the damaged base, catalyze the first step of this highly coordinated repair pathway. This review focuses on members of the four human BER DNA glycosylase superfamilies and their subcellular localization in the mitochondria and/or the nucleus, as well as summarizes their structural features, biochemical properties, and functional role in the excision of damaged bases. PMID:25754732

  1. Base Excision Repair, Aging and Health Span

    PubMed Central

    Xu, Guogang; Herzig, Maryanne; Rotrekl, Vladimir; Walter, Christi A.

    2008-01-01

    DNA damage and mutagenesis are suggested to contribute to aging through their ability to mediate cellular dysfunction. The base excision repair (BER) pathway ameliorates a large number of DNA lesions that arise spontaneously. Many of these lesions are reported to increase with age. Oxidized guanine, repaired largely via base excision repair, is particularly well studied and shown to increase with age. Spontaneous mutant frequencies also increase with age which suggests that mutagenesis may contribute to aging. It is widely accepted that genetic instability contributes to age-related occurrences of cancer and potentially other age-related pathologies. BER activity decreases with age in multiple tissues. The specific BER protein that appears to limit activity varies among tissues. DNA polymerase-β is reduced in brain from aged mice and rats while AP endonuclease is reduced in spermatogenic cells obtained from old mice. The differences in proteins that appear to limit BER activity among tissues may represent true tissue-specific differences in activity or may be due to differences in techniques, environmental conditions or other unidentified differences among the experimental approaches. Much remains to be addressed concerning the potential role of BER in aging and age-related health span. PMID:18423806

  2. Targeting base excision repair for chemosensitization.

    PubMed

    Adhikari, Sanjay; Choudhury, Sujata; Mitra, Partha S; Dubash, Jerita J; Sajankila, Shyama P; Roy, Rabindra

    2008-05-01

    In both bacteria and eukaryotes the alkylated, oxidized, and deaminated bases and depurinated lesions are primarily repaired via an endogenous preventive pathway, i.e. base excision repair (BER). Radiation therapy and chemotherapy are two important modes of cancer treatment. Many of those therapeutic agents used in the clinic have the ability to induce the DNA damage; however, they may also be highly cytotoxic, causing peripheral toxicity and secondary cancer as adverse side effects. In addition, the damage produced by the therapeutic agents can often be repaired by the BER proteins, which in effect confers therapeutic resistance. Efficient inhibition of a particular BER protein(s) may increase the efficacy of current chemotherapeutic regimes, which minimizes resistance and ultimately decreases the possibility of the aforementioned negative side effects. Therefore, pharmacological inhibition of DNA damage repair pathways may be explored as a useful strategy to enhance chemosensitivity. Various agents have shown excellent results in preclinical studies in combination chemotherapy. Early phase clinical trials are now being carried out using DNA repair inhibitors targeting enzymes such as PARP, DNA-PK or MGMT. In the case of BER proteins, elimination of N-Methylpurine DNA glycosylase (MPG) or inhibition of AP-endonuclease (APE) increased sensitivity of cancer cells to alkylating chemotherapeutics. MPG(-/-) embryonic stem cells and cells having MPG knock-down by siRNA are hypersensitive to alkylating agents, whereas inhibition of APE by small molecule inhibitors sensitized cancer cells to alkylating chemotherapeutics. Thus, MPG and other BER proteins could be potential targets for chemosensitization. PMID:18473720

  3. Base excision repair capacity in informing healthspan

    PubMed Central

    Brenerman, Boris M.; Illuzzi, Jennifer L.; Wilson, David M.

    2014-01-01

    Base excision repair (BER) is a frontline defense mechanism for dealing with many common forms of endogenous DNA damage, several of which can drive mutagenic or cell death outcomes. The pathway engages proteins such as glycosylases, abasic endonucleases, polymerases and ligases to remove substrate modifications from DNA and restore the genome back to its original state. Inherited mutations in genes related to BER can give rise to disorders involving cancer, immunodeficiency and neurodegeneration. Studies employing genetically defined heterozygous (haploinsufficient) mouse models indicate that partial reduction in BER capacity can increase vulnerability to both spontaneous and exposure-dependent pathologies. In humans, measurement of BER variation has been imperfect to this point, yet tools to assess BER in epidemiological surveys are steadily evolving. We provide herein an overview of the BER pathway and discuss the current efforts toward defining the relationship of BER defects with disease susceptibility. PMID:25355293

  4. DNA INTERSTRAND CROSSLINK REPAIR IN MAMMALIAN CELLS: STEP BY STEP

    PubMed Central

    Muniandy, Parameswary; Liu, Jia; Majumdar, Alokes; Liu, Su-ting; Seidman, Michael M.

    2009-01-01

    Interstrand DNA crosslinks (ICLs) are formed by natural products of metabolism and by chemotherapeutic reagents. Work in E. coli identified a two cycle repair scheme involving incisions on one strand on either side of the ICL (unhooking) producing a gapped intermediate with the incised oligonucleotide attached to the intact strand. The gap is filled by recombinational repair or lesion bypass synthesis. The remaining monoadduct is then removed by Nucleotide Excision Repair (NER). Despite considerable effort, our understanding of each step in mammalian cells is still quite limited. In part this reflects the variety of crosslinking compounds, each with distinct structural features, used by different investigators. Also, multiple repair pathways are involved, variably operative during the cell cycle. G1 phase repair requires functions from NER, although the mechanism of recognition has not been determined. Repair can be initiated by encounters with the transcriptional apparatus, or a replication fork. In the case of the latter, the reconstruction of a replication fork, stalled or broken by collision with an ICL, adds to the complexity of the repair process. The enzymology of unhooking, the identity of the lesion bypass polymerases required to fill the first repair gap, and the functions involved in the second repair cycle are all subjects of active inquiry. Here we will review current understanding of each step in ICL repair in mammalian cells. PMID:20039786

  5. Base excision repair: A critical player in many games

    PubMed Central

    Wallace, Susan S.

    2014-01-01

    This perspective reviews the many dimensions of base excision repair from a 10,000 foot vantage point and provides one person’s view on where the field is headed. Enzyme function is considered under the lens of X-ray diffraction and single molecule studies. Base excision repair in chromatin and telomeres, regulation of expression and the role of posttranslational modifications are also discussed in the context of enzyme activities, cellular localization and interacting partners. The specialized roles that base excision repair play in transcriptional activation by active demethylation and targeted oxidation as well as how base excision repair functions in the immune processes of somatic hypermutation and class switch recombination and its possible involvement in retroviral infection are also discussed. Finally the complexities of oxidative damage and its repair and its link to neurodegenerative disorders, as well as the role of base excision repair as a tumor suppressor are examined in the context of damage, repair and aging. By outlining the many base excision repair-related mysteries that have yet to be unraveled, hopefully this perspective will stimulate further interest in the field. PMID:24780558

  6. Nucleotide excision repair proteins and interstrand crosslink repair

    PubMed Central

    Wood, Richard D.

    2010-01-01

    Although various schemes for interstrand crosslink (ICL) repair incorporate recombination, replication, and double-strand break intermediate steps, action of the NER system or some variation of it is a common feature of most models. In the bacterium Escherichia coli, the NER enzyme UvrABC can incise on either side of an ICL to unhook the crosslink, and repair can proceed via a subsequent recombination step. The relevance of NER to ICL repair in mammalian cells has been challenged. Of all NER mutants, it is clear that ERCC1 and XPF-defective cells show the most pronounced sensitivities to ICL-inducing agents, and defects in ICL repair. However, there is good evidence that cells defective in NER proteins including XPA and XPG are also more sensitive than normal to ICL-inducing agents. These results are summarized here, together with evidence for defective crosslink removal in NER-defective cells. Studies of incision at sites of ICL by cell extracts and purified proteins have been done, but these studies are not all consistent with one another and further research is required. PMID:20658645

  7. Uracil excision repair in Mycobacterium tuberculosis cell-free extracts.

    PubMed

    Kumar, Pradeep; Bharti, Sanjay Kumar; Varshney, Umesh

    2011-05-01

    Uracil excision repair is ubiquitous in all domains of life and initiated by uracil DNA glycosylases (UDGs) which excise the promutagenic base, uracil, from DNA to leave behind an abasic site (AP-site). Repair of the resulting AP-sites requires an AP-endonuclease, a DNA polymerase, and a DNA ligase whose combined activities result in either short-patch or long-patch repair. Mycobacterium tuberculosis, the causative agent of tuberculosis, has an increased risk of accumulating uracils because of its G + C-rich genome, and its niche inside host macrophages where it is exposed to reactive nitrogen and oxygen species, two major causes of cytosine deamination (to uracil) in DNA. In vitro assays to study DNA repair in this important human pathogen are limited. To study uracil excision repair in mycobacteria, we have established assay conditions using cell-free extracts of M. tuberculosis and M. smegmatis (a fast-growing mycobacterium) and oligomer or plasmid DNA substrates. We show that in mycobacteria, uracil excision repair is completed primarily via long-patch repair. In addition, we show that M. tuberculosis UdgB, a newly characterized family 5 UDG, substitutes for the highly conserved family 1 UDG, Ung, thereby suggesting that UdgB might function as backup enzyme for uracil excision repair in mycobacteria. PMID:21371942

  8. Variant Base Excision Repair Proteins: Contributors to Genomic Instability

    PubMed Central

    Nemec, Antonia A.; Wallace, Susan S.; Sweasy, Joann B.

    2012-01-01

    Cells sustain endogenous DNA damage at rates greater than 20,000 DNA lesions per cell per day. These damages occur largely as a result of the inherently unstable nature of DNA and the presence of reactive oxygen species within cells. The base excision repair system removes the majority of DNA lesions resulting from endogenous DNA damage. There are several enzymes that function during base excision repair. Importantly, there are over 100 germline single nucleotide polymorphisms in genes that function in base excision repair and that result in non-synonymous amino acid substitutions in the proteins they encode. Somatic variants of these enzymes are also found in human tumors. Variant repair enzymes catalyze aberrant base excision repair. Aberrant base excision repair combined with continuous endogenous DNA damage over time has the potential to lead to a mutator phenotype. Mutations that arise in key growth control genes, imbalances in chromosome number, chromosomal translocations, and loss of heterozygosity can result in the initiation of human cancer or its progression. PMID:20955798

  9. An interplay of the base excision repair and mismatch repair pathways in active DNA demethylation.

    PubMed

    Grin, Inga; Ishchenko, Alexander A

    2016-05-01

    Active DNA demethylation (ADDM) in mammals occurs via hydroxylation of 5-methylcytosine (5mC) by TET and/or deamination by AID/APOBEC family enzymes. The resulting 5mC derivatives are removed through the base excision repair (BER) pathway. At present, it is unclear how the cell manages to eliminate closely spaced 5mC residues whilst avoiding generation of toxic BER intermediates and whether alternative DNA repair pathways participate in ADDM. It has been shown that non-canonical DNA mismatch repair (ncMMR) can remove both alkylated and oxidized nucleotides from DNA. Here, a phagemid DNA containing oxidative base lesions and methylated sites are used to examine the involvement of various DNA repair pathways in ADDM in murine and human cell-free extracts. We demonstrate that, in addition to short-patch BER, 5-hydroxymethyluracil and uracil mispaired with guanine can be processed by ncMMR and long-patch BER with concomitant removal of distant 5mC residues. Furthermore, the presence of multiple mispairs in the same MMR nick/mismatch recognition region together with BER-mediated nick formation promotes proficient ncMMR resulting in the reactivation of an epigenetically silenced reporter gene in murine cells. These findings suggest cooperation between BER and ncMMR in the removal of multiple mismatches that might occur in mammalian cells during ADDM. PMID:26843430

  10. An interplay of the base excision repair and mismatch repair pathways in active DNA demethylation

    PubMed Central

    Grin, Inga; Ishchenko, Alexander A.

    2016-01-01

    Active DNA demethylation (ADDM) in mammals occurs via hydroxylation of 5-methylcytosine (5mC) by TET and/or deamination by AID/APOBEC family enzymes. The resulting 5mC derivatives are removed through the base excision repair (BER) pathway. At present, it is unclear how the cell manages to eliminate closely spaced 5mC residues whilst avoiding generation of toxic BER intermediates and whether alternative DNA repair pathways participate in ADDM. It has been shown that non-canonical DNA mismatch repair (ncMMR) can remove both alkylated and oxidized nucleotides from DNA. Here, a phagemid DNA containing oxidative base lesions and methylated sites are used to examine the involvement of various DNA repair pathways in ADDM in murine and human cell-free extracts. We demonstrate that, in addition to short-patch BER, 5-hydroxymethyluracil and uracil mispaired with guanine can be processed by ncMMR and long-patch BER with concomitant removal of distant 5mC residues. Furthermore, the presence of multiple mispairs in the same MMR nick/mismatch recognition region together with BER-mediated nick formation promotes proficient ncMMR resulting in the reactivation of an epigenetically silenced reporter gene in murine cells. These findings suggest cooperation between BER and ncMMR in the removal of multiple mismatches that might occur in mammalian cells during ADDM. PMID:26843430

  11. Rules of Engagement for Base Excision Repair in Chromatin

    PubMed Central

    Odell, Ian D.; Wallace, Susan S.; Pederson, David S.

    2012-01-01

    Most of the DNA in eukaryotes is packaged in tandemly arrayed nucleosomes that, together with numerous DNA- and nucleosome-associated enzymes and regulatory factors, make up chromatin. Chromatin modifying and remodeling agents help regulate access to selected DNA segments in chromatin, thereby facilitating transcription and DNA replication and repair. Studies of nucleotide excision repair (NER), single strand break repair (SSBR), and the homology-directed (HDR) and non-homologous end-joining (NHEJ) double strand break repair pathways have led to an ‘access-repair-restore’ paradigm, in which chromatin in the vicinity of damaged DNA is disrupted, thereby enabling efficient repair and the subsequent repackaging of DNA into nucleosomes. When damage is extensive, these repair processes are accompanied by cell cycle checkpoint activation, which provides cells with sufficient time to either complete the repair or initiate apoptosis. It is not clear, however, if base excision repair (BER) of the ~20,000 or more oxidative DNA damages that occur daily in each nucleated human cell can be viewed through this same lens. Until recently, we did not know if BER requires or is accompanied by nucleosome disruption, and it is not yet clear that anything short of overwhelming oxidative damage (resulting in the shunting of DNA substrates into other repair pathways) results in checkpoint activation. This review highlights studies of how oxidatively damaged DNA in nucleosomes is discovered and repaired, and offers a working model of events associated with BER in chromatin that we hope will have heuristic value. PMID:22718094

  12. A history of the DNA repair and mutagenesis field: The discovery of base excision repair.

    PubMed

    Friedberg, Errol C

    2016-01-01

    This article reviews the early history of the discovery of an DNA repair pathway designated as base excision repair (BER), since in contrast to the enzyme-catalyzed removal of damaged bases from DNA as nucleotides [called nucleotide excision repair (NER)], BER involves the removal of damaged or inappropriate bases, such as the presence of uracil instead of thymine, from DNA as free bases. PMID:26861186

  13. Hydrolytic function of Exo1 in mammalian mismatch repair

    PubMed Central

    Shao, Hongbing; Baitinger, Celia; Soderblom, Erik J.; Burdett, Vickers; Modrich, Paul

    2014-01-01

    Genetic and biochemical studies have previously implicated exonuclease 1 (Exo1) in yeast and mammalian mismatch repair, with results suggesting that function of the protein in the reaction depends on both its hydrolytic activity and its ability to interact with other components of the repair system. However, recent analysis of an Exo1-E109K knockin mouse has concluded that Exo1 function in mammalian mismatch repair is restricted to a structural role, a conclusion based on a prior report that N-terminal His-tagged Exo1-E109K is hydrolytically defective. Because Glu-109 is distant from the nuclease hydrolytic center, we have compared the activity of untagged full-length Exo1-E109K with that of wild type Exo1 and the hydrolytically defective active site mutant Exo1-D173A. We show that the activity of Exo1-E109K is comparable to that of wild type enzyme in a conventional exonuclease assay and that in contrast to a D173A active site mutant, Exo1-E109K is fully functional in mismatch-provoked excision and repair. We conclude that the catalytic function of Exo1 is required for its participation in mismatch repair. We also consider the other phenotypes of the Exo1-E109K mouse in the context of Exo1 hydrolytic function. PMID:24829455

  14. Premature aging and cancer in nucleotide excision repair-disorders

    PubMed Central

    Diderich, K.; Alanazi, M.; Hoeijmakers, J.H.J.

    2014-01-01

    During past decades the major impact of DNA damage on cancer as ‘disease of the genes’ has become abundantly apparent. In addition to cancer recent years have also uncovered a very strong association of DNA damage with many features of (premature) aging. The notion that DNA repair systems not only protect against cancer but equally against too fast aging has become evident from a systematic, integral analysis of a variety of mouse mutants carrying defects in e.g. transcription-coupled repair with or without an additional impairment of global genome nucleotide excision repair and the corresponding segmental premature aging syndromes in man. A striking correlation between the degree of the DNA repair deficiency and the acceleration of specific progeroid symptoms has been discovered for those repair systems that primarily protect from the cytotoxic and cytostatic effects of DNA damage. These observations are explained from the perspective of nucleotide excision repair mouse mutant and human syndromes. However, similar principles likely apply to other DNA repair pathways including interstrand crosslink repair and double strand break repair and genome maintenance systems in general, supporting the notion that DNA damage constitutes an important intermediate in the process of aging. PMID:21680258

  15. In vitro chromatin templates to study nucleotide excision repair.

    PubMed

    Liu, Xiaoqi

    2015-12-01

    In eukaryotic cells, DNA associates with histones and exists in the form of a chromatin hierarchy. Thus, it is generally believed that many eukaryotic cellular DNA processing events such as replication, transcription, recombination and DNA repair are influenced by the packaging of DNA into chromatin. This mini-review covers the current knowledge of DNA damage and repair in chromatin based on in vitro studies. Specifically, nucleosome assembly affects DNA damage formation in both random sequences and sequences with strong nucleosome-positioning signals such as 5S rDNA. At least three systems have been used to analyze the effect of nucleosome folding on nucleotide excision repair (NER) in vitro: (a) human cell extracts that have to rely on labeling of repair synthesis to monitor DNA repair, due to very low repair efficacy; (b) Xenopus oocyte nuclear extracts, that have very robust DNA repair efficacy, have been utilized to follow direct removal of DNA damage; (c) six purified human DNA repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1) that have been used to reconstitute excision repair in vitro. In general, the results have shown that nucleosome folding inhibits NER and, therefore, its activity must be enhanced by chromatin remodeling factors like SWI/SNF. In addition, binding of transcription factors such as TFIIIA to the 5S rDNA promoter also modulates NER efficacy. PMID:26531320

  16. Base excision repair and the role of MUTYH

    PubMed Central

    Kairupan, Carla; Scott, Rodney J

    2007-01-01

    The correction of exogenous and endogenous environmental insult to DNA involves a series of DNA repair mechanisms that reduce the likelihood of mutation accumulation and hence an increased probability of tumour development. The mechanisms underlying the process of base excision repair are relatively well understood and are placed in context with how deterioration of this process is associated with an increased risk of malignancy. PMID:19725997

  17. XPA: A key scaffold for human nucleotide excision repair.

    PubMed

    Sugitani, Norie; Sivley, Robert M; Perry, Kelly E; Capra, John A; Chazin, Walter J

    2016-08-01

    Nucleotide excision repair (NER) is essential for removing many types of DNA lesions from the genome, yet the mechanisms of NER in humans remain poorly understood. This review summarizes our current understanding of the structure, biochemistry, interaction partners, mechanisms, and disease-associated mutations of one of the critical NER proteins, XPA. PMID:27247238

  18. Recombinant methods for screening human DNA excision repair proficiency

    SciTech Connect

    Athas, W.F.

    1988-01-01

    A method for measuring DNA excision repair in response to ultraviolet radiation (UV)-induced DNA damage has been developed, validated, and field-tested in cultured human lymphocytes. The methodology is amenable to population-based screening and should facilitate future epidemiologic studies seeking to investigate associations between excision repair proficiency and cancer susceptibility. The impetus for such endeavors derives from the belief that the high incidence of skin cancer in the genetic disorder xeroderma pigmentosum (XP) primarily is a result of the reduced capacity of patients cells to repair UV-induced DNA damage. For assay, UV-irradiated non-replicating recombinant plasmid DNA harboring a chloramphenicol acetyltransferase (CAT) indicator gene is introduced into lymphocytes using DEAE-dextran short-term transfection conditions. Exposure to UV induces transcriptionally-inactivating DNA photoproducts in the plasmid DNA which inactivate CAT gene expression. Excision repair of the damaged CAT gene is monitored indirectly as a function of reactivated CAT enzyme activity following a 40 hour repair/expression incubation period.

  19. Complexities of the DNA Base Excision Repair Pathway for Repair of Oxidative DNA Damage

    PubMed Central

    Mitra, Sankar; Boldogh, Istvan; Izumi, Tadahide; Hazra, Tapas K.

    2016-01-01

    Oxidative damage represents the most significant insult to organisms because of continuous production of the reactive oxygen species (ROS) in vivo. Oxidative damage in DNA, a critical target of ROS, is repaired primarily via the base excision repair (BER) pathway which appears to be the simplest among the three excision repair pathways. However, it is now evident that although BER can be carried with four or five enzymes in vitro, a large number of proteins, including some required for nucleotide excision repair (NER), are needed for in vivo repair of oxidative damage. Furthermore, BER in transcribed vs. nontranscribed DNA regions requires distinct sets of proteins, as in the case of NER. We propose an additional complexity in repair of replicating vs. nonreplicating DNA. Unlike DNA bulky adducts, the oxidized base lesions could be incorporated in the nascent DNA strand, repair of which may share components of the mismatch repair process. Distinct enzyme specificities are thus warranted for repair of lesions in the parental vs. nascent DNA strand. Repair synthesis may be carried out by DNA polymerase β or replicative polymerases δ and ε. Thus, multiple subpathways are needed for repairing oxidative DNA damage, and the pathway decision may require coordination of the successive steps in repair. Such coordination includes transfer of the product of a DNA glycosylase to AP-endonuclease, the next enzyme in the pathway. Interactions among proteins in the pathway may also reflect such coordination, characterization of which should help elucidate these subpathways and their in vivo regulation. PMID:11746753

  20. Facilitation of base excision repair by chromatin remodeling.

    PubMed

    Hinz, John M; Czaja, Wioletta

    2015-12-01

    Base Excision Repair (BER) is a conserved, intracellular DNA repair system that recognizes and removes chemically modified bases to insure genomic integrity and prevent mutagenesis. Aberrant BER has been tightly linked with a broad spectrum of human pathologies, such as several types of cancer, neurological degeneration, developmental abnormalities, immune dysfunction and aging. In the cell, BER must recognize and remove DNA lesions from the tightly condensed, protein-coated chromatin. Because chromatin is necessarily refractory to DNA metabolic processes, like transcription and replication, the compaction of the genomic material is also inhibitory to the repair systems necessary for its upkeep. Multiple ATP-dependent chromatin remodelling (ACR) complexes play essential roles in modulating the protein-DNA interactions within chromatin, regulating transcription and promoting activities of some DNA repair systems, including double-strand break repair and nucleotide excision repair. However, it remains unclear how BER operates in the context of chromatin, and if the chromatin remodelling processes that govern transcription and replication also actively regulate the efficiency of BER. In this review we highlight the emerging role of ACR in regulation of BER. PMID:26422134

  1. Biomolecular Simulation of Base Excision Repair and Protein Signaling

    SciTech Connect

    Straatsma, TP; McCammon, J A; Miller, John H; Smith, Paul E; Vorpagel, Erich R; Wong, Chung F; Zacharias, Martin W

    2006-03-03

    The goal of the Biomolecular Simulation of Base Excision Repair and Protein Signaling project is to enhance our understanding of the mechanism of human polymerase-β, one of the key enzymes in base excision repair (BER) and the cell-signaling enzymes cyclic-AMP-dependent protein kinase. This work used molecular modeling and simulation studies to specifically focus on the • dynamics of DNA and damaged DNA • dynamics and energetics of base flipping in DNA • mechanism and fidelity of nucleotide insertion by BER enzyme human polymerase-β • mechanism and inhibitor design for cyclic-AMP-dependent protein kinase. Molecular dynamics simulations and electronic structure calculations have been performed using the computer resources at the Molecular Science Computing Facility at the Environmental Molecular Sciences Laboratory.

  2. Dynamic control of strand excision during human DNA mismatch repair

    PubMed Central

    Jeon, Yongmoon; Kim, Daehyung; Martín-López, Juana V.; Lee, Ryanggeun; Oh, Jungsic; Hanne, Jeungphill; Fishel, Richard; Lee, Jong-Bong

    2016-01-01

    Mismatch repair (MMR) is activated by evolutionarily conserved MutS homologs (MSH) and MutL homologs (MLH/PMS). MSH recognizes mismatched nucleotides and form extremely stable sliding clamps that may be bound by MLH/PMS to ultimately authorize strand-specific excision starting at a distant 3′- or 5′-DNA scission. The mechanical processes associated with a complete MMR reaction remain enigmatic. The purified human (Homo sapien or Hs) 5′-MMR excision reaction requires the HsMSH2–HsMSH6 heterodimer, the 5′ → 3′ exonuclease HsEXOI, and the single-stranded binding heterotrimer HsRPA. The HsMLH1–HsPMS2 heterodimer substantially influences 5′-MMR excision in cell extracts but is not required in the purified system. Using real-time single-molecule imaging, we show that HsRPA or Escherichia coli EcSSB restricts HsEXOI excision activity on nicked or gapped DNA. HsMSH2–HsMSH6 activates HsEXOI by overcoming HsRPA/EcSSB inhibition and exploits multiple dynamic sliding clamps to increase tract length. Conversely, HsMLH1–HsPMS2 regulates tract length by controlling the number of excision complexes, providing a link to 5′ MMR. PMID:26951673

  3. Repair of radiation damage in mammalian cells

    SciTech Connect

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  4. Radiation induced base excision repair (BER): a mechanistic mathematical approach.

    PubMed

    Rahmanian, Shirin; Taleei, Reza; Nikjoo, Hooshang

    2014-10-01

    This paper presents a mechanistic model of base excision repair (BER) pathway for the repair of single-stand breaks (SSBs) and oxidized base lesions produced by ionizing radiation (IR). The model is based on law of mass action kinetics to translate the biochemical processes involved, step-by-step, in the BER pathway to translate into mathematical equations. The BER is divided into two subpathways, short-patch repair (SPR) and long-patch repair (LPR). SPR involves in replacement of single nucleotide via Pol β and ligation of the ends via XRCC1 and Ligase III, while LPR involves in replacement of multiple nucleotides via PCNA, Pol δ/ɛ and FEN 1, and ligation via Ligase I. A hallmark of IR is the production of closely spaced lesions within a turn of DNA helix (named complex lesions), which have been attributed to a slower repair process. The model presented considers fast and slow component of BER kinetics by assigning SPR for simple lesions and LPR for complex lesions. In the absence of in vivo reaction rate constants for the BER proteins, we have deduced a set of rate constants based on different published experimental measurements including accumulation kinetics obtained from UVA irradiation, overall SSB repair kinetic experiments, and overall BER kinetics from live-cell imaging experiments. The model was further used to calculate the repair kinetics of complex base lesions via the LPR subpathway and compared to foci kinetic experiments for cells irradiated with γ rays, Si, and Fe ions. The model calculation show good agreement with experimental measurements for both overall repair and repair of complex lesions. Furthermore, using the model we explored different mechanisms responsible for inhibition of repair when higher LET and HZE particles are used and concluded that increasing the damage complexity can inhibit initiation of LPR after the AP site removal step in BER. PMID:25117268

  5. Nucleosomes determine their own patch size in base excision repair

    PubMed Central

    Meas, Rithy; Smerdon, Michael J.

    2016-01-01

    Base excision repair (BER) processes non-helix distorting lesions (e.g., uracils and gaps) and is composed of two subpathways that differ in the number of nucleotides (nts) incorporated during the DNA synthesis step: short patch (SP) repair incorporates 1 nt and long patch (LP) repair incorporates 2–12 nts. This choice for either LP or SP repair has not been analyzed in the context of nucleosomes. Initial studies with uracil located in nucleosome core DNA showed a distinct DNA polymerase extension profile in cell-free extracts that specifically limits extension to 1 nt, suggesting a preference for SP BER. Therefore, we developed an assay to differentiate long and short repair patches in ‘designed’ nucleosomes containing a single-nucleotide gap at specific locations relative to the dyad center. Using cell-free extracts or purified enzymes, we found that DNA lesions in the nucleosome core are preferentially repaired by DNA polymerase β and there is a significant reduction in BER polymerase extension beyond 1 nt, creating a striking bias for incorporation of short patches into nucleosomal DNA. These results show that nucleosomes control the patch size used by BER. PMID:27265863

  6. Nucleosomes determine their own patch size in base excision repair.

    PubMed

    Meas, Rithy; Smerdon, Michael J

    2016-01-01

    Base excision repair (BER) processes non-helix distorting lesions (e.g., uracils and gaps) and is composed of two subpathways that differ in the number of nucleotides (nts) incorporated during the DNA synthesis step: short patch (SP) repair incorporates 1 nt and long patch (LP) repair incorporates 2-12 nts. This choice for either LP or SP repair has not been analyzed in the context of nucleosomes. Initial studies with uracil located in nucleosome core DNA showed a distinct DNA polymerase extension profile in cell-free extracts that specifically limits extension to 1 nt, suggesting a preference for SP BER. Therefore, we developed an assay to differentiate long and short repair patches in 'designed' nucleosomes containing a single-nucleotide gap at specific locations relative to the dyad center. Using cell-free extracts or purified enzymes, we found that DNA lesions in the nucleosome core are preferentially repaired by DNA polymerase β and there is a significant reduction in BER polymerase extension beyond 1 nt, creating a striking bias for incorporation of short patches into nucleosomal DNA. These results show that nucleosomes control the patch size used by BER. PMID:27265863

  7. Effect of the uvrD mutation on excision repair.

    PubMed Central

    Kuemmerle, N B; Masker, W E

    1980-01-01

    A pair of related Escherichia coli K-12 strains, one of which contains the uvrD101 mutation, were constructed and compared for ability to perform various steps in the excision repair of deoxyribonucleic acid damage inflicted by ultraviolet radiation. The results of this study indicated: (i) ultraviolet sensitivity in the uvrD101 mutant was greater than that of wild type but less than that measured in an incision-deficient uvrA mutant; (ii) host cell reactivation paralleled the survival data; (iii) postirradiation deoxyribonucleic acid degradation was virtually identical in the two strains; (iv) incision, presumably at the sites of pyrimidine dimers, proceeded normally in the uvrD101 strain; (v) excision of pyrimidine dimers was markedly reduced in both rate and extent in the uvrD101 mutant; (vi) the amount of repair resynthesis was the same in both strains, and there was no evidence of abnormally long repair patches in the uvrD mutant; and (vii) rejoining of incision breaks was slow and incomplete in the uvrD strain. These data suggest that the ultraviolet sensitivity conferred by the uvrD mutation arises from inefficient removal of pyrimidine dimers or from failure to close incision breaks. The data are compatible with the notion that the uvrD+ gene produce affects the conformation of incised deoxyribonucleic acid molecules. PMID:6991479

  8. Mechanisms of DNA Repair by Photolyase and Excision Nuclease (Nobel Lecture).

    PubMed

    Sancar, Aziz

    2016-07-18

    Ultraviolet light damages DNA by converting two adjacent thymines into a thymine dimer which is potentially mutagenic, carcinogenic, or lethal to the organism. This damage is repaired by photolyase and the nucleotide excision repair system in E. coli by nucleotide excision repair in humans. The work leading to these results is presented by Aziz Sancar in his Nobel Lecture. PMID:27337655

  9. Nucleotide excision repair deficient mouse models and neurological disease.

    PubMed

    Niedernhofer, Laura J

    2008-07-01

    Nucleotide excision repair (NER) is a highly conserved mechanism to remove helix-distorting DNA base damage. A major substrate for NER is DNA damage caused by environmental genotoxins, most notably ultraviolet radiation. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three human diseases caused by inherited defects in NER. The symptoms and severity of these diseases vary dramatically, ranging from profound developmental delay to cancer predisposition and accelerated aging. All three syndromes include neurological disease, indicating an important role for NER in protecting against spontaneous DNA damage as well. To study the pathophysiology caused by DNA damage, numerous mouse models of NER-deficiency were generated by knocking-out genes required for NER or knocking-in disease-causing human mutations. This review explores the utility of these mouse models to study neurological disease caused by NER-deficiency. PMID:18272436

  10. Properties of damage-dependent DNA incision by nucleotide excision repair in human cell-free extracts.

    PubMed Central

    Calsou, P; Salles, B

    1994-01-01

    Nucleotide excision repair (NER) is the primary mechanism for the removal of many lesions from DNA. This repair process can be broadly divided in two stages: first, incision at damaged sites and second, synthesis of new DNA to replace the oligonucleotide removed by excision. In order to dissect the repair mechanism, we have recently devised a method to analyze the incision reaction in vitro in the absence of repair synthesis (1). Damage-specific incisions take place in a repair reaction in which mammalian cell-free extracts are mixed with undamaged and damaged plasmids. Most of the incision events are accompanied by excision. Using this assay, we investigated here various parameters that specifically affect the level of damage-dependent incision activity by cell-free extracts in vitro. We have defined optimal conditions for the reaction and determined the kinetics of the incision with cell-free extracts from human cells. We present direct evidence that the incision step of NER is ATP-dependent. In addition, we observe that Mn2+ but no other divalent cation can substitute for Mg2+ in the incision reaction. Images PMID:7800483

  11. Excision repair and patch size in UV-irradiated bacteriophage T4

    SciTech Connect

    Yarosh, D.B.; Rosenstein, B.S.; Setlow, R.B.

    1981-11-01

    We determined the average size of excision repair patches in repair of UV lesions in bacteriophage T4 by measuring the photolysis of bromodeoxyuridine incorporated during repair. The average patch was small, approximately four nucleotides long. In control experiments with the denV1 excision-deficient mutant, we encountered an artifact, a protein(s) which remained bound to phenol-extracted DNA and prevented nicking by the UV-specific endonucleases of Micrococcus luteus and bacteriophage T4.

  12. Excision repair and patch size in UV-irradiated bacteriophage T4

    SciTech Connect

    Yarosh, D.B.; Rosenstein, B.S.; Setlow, R.B.

    1981-11-01

    We determined the average size of excision repair patches in repair of UV lesions in bacteriophage T4 by measuring the photolysis of bromodeoxyuridine incorporated during repair. The average patch was small, approximately four nucleotides long. In control, experiments with the denV/sub 1/ excision-deificient mutant, we encountered an artifact, a protein(s) which remained bound to phenol-extracted DNA and prevented nicking by the UV-specific endonucleases of Micrococcus luteus and bacteriophage T4.

  13. Pol β associated complex and base excision repair factors in mouse fibroblasts.

    PubMed

    Prasad, Rajendra; Williams, Jason G; Hou, Esther W; Wilson, Samuel H

    2012-12-01

    During mammalian base excision repair (BER) of lesion-containing DNA, it is proposed that toxic strand-break intermediates generated throughout the pathway are sequestered and passed from one step to the next until repair is complete. This stepwise process is termed substrate channeling. A working model evaluated here is that a complex of BER factors may facilitate the BER process. FLAG-tagged DNA polymerase (pol) β was expressed in mouse fibroblasts carrying a deletion in the endogenous pol β gene, and the cell extract was subjected to an 'affinity-capture' procedure using anti-FLAG antibody. The pol β affinity-capture fraction (ACF) was found to contain several BER factors including polymerase-1, X-ray cross-complementing factor1-DNA ligase III and enzymes involved in processing 3'-blocked ends of BER intermediates, e.g. polynucleotide kinase and tyrosyl-DNA phosphodiesterase 1. In contrast, DNA glycosylases, apurinic/aprymidinic endonuclease 1 and flap endonuclease 1 and several other factors involved in BER were not present. Some of the BER factors in the pol β ACF were in a multi-protein complex as observed by sucrose gradient centrifugation. The pol β ACF was capable of substrate channeling for steps in vitro BER and was proficient in in vitro repair of substrates mimicking a 3'-blocked topoisomerase I covalent intermediate or an oxidative stress-induced 3'-blocked intermediate. PMID:23042675

  14. Polymorphism of the DNA Base Excision Repair Genes in Keratoconus

    PubMed Central

    Wojcik, Katarzyna A.; Synowiec, Ewelina; Sobierajczyk, Katarzyna; Izdebska, Justyna; Blasiak, Janusz; Szaflik, Jerzy; Szaflik, Jacek P.

    2014-01-01

    Keratoconus (KC) is a degenerative corneal disorder for which the exact pathogenesis is not yet known. Oxidative stress is reported to be associated with this disease. The stress may damage corneal biomolecules, including DNA, and such damage is primarily removed by base excision repair (BER). Variation in genes encoding BER components may influence the effectiveness of corneal cells to cope with oxidative stress. In the present work we genotyped 5 polymorphisms of 4 BER genes in 284 patients and 353 controls. The A/A genotype of the c.–1370T>A polymorphism of the DNA polymerase γ (POLG) gene was associated with increased occurrence of KC, while the A/T genotype was associated with decreased occurrence of KC. The A/G genotype and the A allele of the c.1196A>G polymorphism of the X-ray repair cross-complementing group 1 (XRCC1) were associated with increased, and the G/G genotype and the G allele, with decreased KC occurrence. Also, the C/T and T as well as C/C genotypes and alleles of the c.580C>T polymorphism of the same gene displayed relationship with KC occurrence. Neither the g.46438521G>C polymorphism of the Nei endonuclease VIII-like 1 (NEIL1) nor the c.2285T>C polymorphism of the poly(ADP-ribose) polymerase-1 (PARP-1) was associated with KC. In conclusion, the variability of the XRCC1 and POLG genes may play a role in KC pathogenesis and determine the risk of this disease. PMID:25356504

  15. Mismatch repair and nucleotide excision repair proteins cooperate in the recognition of DNA interstrand crosslinks.

    PubMed

    Zhao, Junhua; Jain, Aklank; Iyer, Ravi R; Modrich, Paul L; Vasquez, Karen M

    2009-07-01

    DNA interstrand crosslinks (ICLs) are among the most cytotoxic types of DNA damage, thus ICL-inducing agents such as psoralen, are clinically useful chemotherapeutics. Psoralen-modified triplex-forming oligonucleotides (TFOs) have been used to target ICLs to specific genomic sites to increase the selectivity of these agents. However, how TFO-directed psoralen ICLs (Tdp-ICLs) are recognized and processed in human cells is unclear. Previously, we reported that two essential nucleotide excision repair (NER) protein complexes, XPA-RPA and XPC-RAD23B, recognized ICLs in vitro, and that cells deficient in the DNA mismatch repair (MMR) complex MutSbeta were sensitive to psoralen ICLs. To further investigate the role of MutSbeta in ICL repair and the potential interaction between proteins from the MMR and NER pathways on these lesions, we performed electrophoretic mobility-shift assays and chromatin immunoprecipitation analysis of MutSbeta and NER proteins with Tdp-ICLs. We found that MutSbeta bound to Tdp-ICLs with high affinity and specificity in vitro and in vivo, and that MutSbeta interacted with XPA-RPA or XPC-RAD23B in recognizing Tdp-ICLs. These data suggest that proteins from the MMR and NER pathways interact in the recognition of ICLs, and provide a mechanistic link by which proteins from multiple repair pathways contribute to ICL repair. PMID:19468048

  16. The Fanconi Anaemia Components UBE2T and FANCM Are Functionally Linked to Nucleotide Excision Repair

    PubMed Central

    Kelsall, Ian R.; Langenick, Judith; MacKay, Craig; Patel, Ketan J.; Alpi, Arno F.

    2012-01-01

    The many proteins that function in the Fanconi anaemia (FA) monoubiquitylation pathway initiate replicative DNA crosslink repair. However, it is not clear whether individual FA genes participate in DNA repair pathways other than homologous recombination and translesion bypass. Here we show that avian DT40 cell knockouts of two integral FA genes – UBE2T and FANCM are unexpectedly sensitive to UV-induced DNA damage. Comprehensive genetic dissection experiments indicate that both of these FA genes collaborate to promote nucleotide excision repair rather than translesion bypass to protect cells form UV genotoxicity. Furthermore, UBE2T deficiency impacts on the efficient removal of the UV-induced photolesion cyclobutane pyrimidine dimer. Therefore, this work reveals that the FA pathway shares two components with nucleotide excision repair, intimating not only crosstalk between the two major repair pathways, but also potentially identifying a UBE2T-mediated ubiquitin-signalling response pathway that contributes to nucleotide excision repair. PMID:22615860

  17. Polymorphisms of nucleotide excision repair genes predict melanoma survival.

    PubMed

    Li, Chunying; Yin, Ming; Wang, Li-E; Amos, Christopher I; Zhu, Dakai; Lee, Jeffrey E; Gershenwald, Jeffrey E; Grimm, Elizabeth A; Wei, Qingyi

    2013-07-01

    Melanoma is the most highly malignant skin cancer, and nucleotide excision repair (NER) is involved in melanoma susceptibility. In this analysis of 1,042 melanoma patients, we evaluated whether genetic variants of NER genes may predict survival outcome of melanoma patients. We used genotyping data of 74 tagging single-nucleotide polymorphisms (tagSNPs) in eight core NER genes from our genome-wide association study (including two in XPA, 14 in XPC, three in XPE, four in ERCC1, 10 in ERCC2, eight in ERCC3, 14 in ERCC4, and 19 in ERCC5) and evaluated their associations with prognosis of melanoma patients. Using the Cox proportional hazards model and Kaplan-Meier analysis, we found a predictive role of XPE rs28720291, ERCC5 rs4150314, XPC rs2470458, and ERCC2 rs50871 SNPs in the prognosis of melanoma patients (rs28720291: AG vs. GG, adjusted hazard ratio (adjHR)=11.2, 95% confidence interval (CI) 3.04-40.9, P=0.0003; rs4150314: AG vs. GG, adjHR=4.76, 95% CI 1.09-20.8, P=0.038; rs2470458: AA vs. AG/GG, adjHR=2.11, 95% CI 1.03-4.33, P=0.040; and rs50871: AA vs. AC/CC adjHR=2.27, 95% CI 1.18-4.35, P=0.015). Patients with an increasing number of unfavorable genotypes had markedly increased death risk. Genetic variants of NER genes, particularly XPE rs28720291, ERCC5 rs4150314, XPC rs2470458, and ERCC2 rs50871, may independently or jointly modulate survival outcome of melanoma patients. Because our results were based on a median follow-up of 3 years without multiple test corrections, additional large prospective studies are needed to confirm our findings. PMID:23407396

  18. DNA repair and radiation sensitivity in mammalian cells

    SciTech Connect

    Chen, D.J.C.; Stackhouse, M. ); Chen, D.S. . Dept. of Radiation Oncology)

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  19. DNA repair and radiation sensitivity in mammalian cells

    SciTech Connect

    Chen, D.J.C.; Stackhouse, M.; Chen, D.S.

    1993-02-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  20. Base Excision Repair Facilitates a Functional Relationship Between Guanine Oxidation and Histone Demethylation

    PubMed Central

    Li, Jianfeng; Braganza, Andrea

    2013-01-01

    Abstract Significance: Appropriately controlled epigenetic regulation is critical for the normal development and health of an organism. Misregulation of epigenetic control via deoxyribonucleic acid (DNA) methylation or histone methylation has been associated with cancer and chromosomal instability syndromes. Recent Advances: The main function of the proteins in the base excision repair (BER) pathway is to repair DNA single-strand breaks and deamination, oxidation, and alkylation-induced DNA base damage that may result from chemotherapy, environmental exposure, or byproducts of cellular metabolism. Recent studies have suggested that one or more BER proteins may also participate in epigenetic regulation to facilitate gene expression modulation via alteration of the state of DNA methylation or via a reaction coupled to histone modification. BER proteins have also been reported to play an essential role in pluripotent stem cell reprogramming. Critical Issues: One emerging function for BER in epigenetic regulation is the repair of base lesions induced by hydrogen peroxide as a byproduct of lysine-specific demethylase 1 (LSD1) enzymatic activity (LSD1/LSD2-coupled BER) for transcriptional regulation. Future Directions: To shed light on this novel role of BER, this review focuses on the repair of oxidative lesions in nuclear DNA that are induced during LSD1-mediated histone demethylation. Further, we highlight current studies suggesting a role for BER proteins in transcriptional regulation of gene expression via BER-coupled active DNA demethylation in mammalian cells. Such efforts to address the role of BER proteins in epigenetic regulation could broaden cancer therapeutic strategies to include epigenetic modifiers combined with BER inhibitors. Antioxid. Redox Signal. 18, 2429–2443. PMID:23311711

  1. SUMOylation of xeroderma pigmentosum group C protein regulates DNA damage recognition during nucleotide excision repair

    PubMed Central

    Akita, Masaki; Tak, Yon-Soo; Shimura, Tsutomu; Matsumoto, Syota; Okuda-Shimizu, Yuki; Shimizu, Yuichiro; Nishi, Ryotaro; Saitoh, Hisato; Iwai, Shigenori; Mori, Toshio; Ikura, Tsuyoshi; Sakai, Wataru; Hanaoka, Fumio; Sugasawa, Kaoru

    2015-01-01

    The xeroderma pigmentosum group C (XPC) protein complex is a key factor that detects DNA damage and initiates nucleotide excision repair (NER) in mammalian cells. Although biochemical and structural studies have elucidated the interaction of XPC with damaged DNA, the mechanism of its regulation in vivo remains to be understood in more details. Here, we show that the XPC protein undergoes modification by small ubiquitin-related modifier (SUMO) proteins and the lack of this modification compromises the repair of UV-induced DNA photolesions. In the absence of SUMOylation, XPC is normally recruited to the sites with photolesions, but then immobilized profoundly by the UV-damaged DNA-binding protein (UV-DDB) complex. Since the absence of UV-DDB alleviates the NER defect caused by impaired SUMOylation of XPC, we propose that this modification is critical for functional interactions of XPC with UV-DDB, which facilitate the efficient damage handover between the two damage recognition factors and subsequent initiation of NER. PMID:26042670

  2. Human HMGB1 directly facilitates interactions between nucleotide excision repair proteins on triplex-directed psoralen interstrand crosslinks

    PubMed Central

    Lange, Sabine S.; Reddy, Madhava C.; Vasquez, Karen M.

    2009-01-01

    Psoralen is a chemotherapeutic agent that acts by producing DNA interstrand crosslinks (ICLs), which are especially cytotoxic and mutagenic because their complex chemical nature makes them difficult to repair. Proteins from multiple repair pathways, including nucleotide excision repair (NER), are involved in their removal in mammalian cells, but the exact nature of their repair is poorly understood. We have shown previously that HMGB1, a protein involved in chromatin structure, transcriptional regulation, and inflammation, can bind cooperatively to triplex-directed psoralen ICLs with RPA, and that mammalian cells lacking HMGB1 are hyper-sensitive to psoralen ICLs. However, whether this effect is mediated by a role for HMGB1 in DNA damage recognition is still unknown. Given HMGB1’s ability to bind to damaged DNA and its interaction with the RPA protein, we hypothesized that HMGB1 works together with the NER damage recognition proteins to aid in the removal of ICLs. We show here that HMGB1 is capable of binding to triplex-directed psoralen ICLs with the dedicated NER damage recognition complex XPC-RAD23B, as well as RPA, and that they form a high molecular weight complex on these lesions. In addition, we demonstrate that HMGB1 interacts with XPC-RAD23B and XPA in the absence of DNA. These findings directly demonstrate interactions between HMGB1 and the NER damage recognition proteins, and suggest that HMGB1 may affect ICL repair by enhancing the interactions between NER damage recognition factors. PMID:19446504

  3. Reprint of "Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair".

    PubMed

    Çağlayan, Melike; Wilson, Samuel H

    2015-12-01

    DNA lesions arise from many endogenous and environmental agents, and such lesions can promote deleterious events leading to genomic instability and cell death. Base excision repair (BER) is the main DNA repair pathway responsible for repairing single strand breaks, base lesions and abasic sites in mammalian cells. During BER, DNA substrates and repair intermediates are channeled from one step to the next in a sequential fashion so that release of toxic repair intermediates is minimized. This includes handoff of the product of gap-filling DNA synthesis to the DNA ligation step. The conformational differences in DNA polymerase β (pol β) associated with incorrect or oxidized nucleotide (8-oxodGMP) insertion could impact channeling of the repair intermediate to the final step of BER, i.e., DNA ligation by DNA ligase I or the DNA Ligase III/XRCC1 complex. Thus, modified DNA ligase substrates produced by faulty pol β gap-filling could impair coordination between pol β and DNA ligase. Ligation failure is associated with 5'-AMP addition to the repair intermediate and accumulation of strand breaks that could be more toxic than the initial DNA lesions. Here, we provide an overview of the consequences of ligation failure in the last step of BER. We also discuss DNA-end processing mechanisms that could play roles in reversal of impaired BER. PMID:26596511

  4. Activities of DNA base excision repair enzymes in liver and brain correlate with body mass, but not lifespan.

    PubMed

    Page, Melissa M; Stuart, Jeffrey A

    2012-10-01

    Accumulation of DNA lesions compromises replication and transcription and is thus toxic to cells. DNA repair deficiencies are generally associated with cellular replicative senescence and premature aging syndromes, suggesting that efficient DNA repair is required for normal longevity. It follows that the evolution of increasing lifespan amongst animal species should be associated with enhanced DNA repair capacities. Although UV damage repair has been shown to correlate positively with mammalian species lifespan, we lack similar insight into many other DNA repair pathways, including base excision repair (BER). DNA is continuously exposed to reactive oxygen species produced during aerobic metabolism, resulting in the occurrence of oxidative damage within DNA. Short-patch BER plays an important role in repairing the resultant oxidative lesions. We therefore tested whether an enhancement of BER enzyme activities has occurred concomitantly with the evolution of increased maximum lifespan (MLSP). We collected brain and liver tissue from 15 vertebrate endotherm species ranging in MLSP over an order of magnitude. We measured apurinic/apyrimidinic (AP) endonuclease activity, as well as the rates of nucleotide incorporation into an oligonucleotide containing a single nucleotide gap (catalyzed by BER polymerase β) and subsequent ligation of the oligonucleotide. None of these activities correlated positively with species MLSP. Rather, nucleotide incorporation and oligonucleotide ligation activities appeared to be primarily (and negatively) correlated with species body mass. PMID:21853261

  5. Postreplication repair in mammalian cells after ultraviolet irradiation: a model.

    PubMed Central

    Lavin, M F

    1978-01-01

    A model is presented for bypass of ultraviolet-induced damage in DNA during replication. The overall process is initiated by the introduction of a single-strand break into parental DNA near the point of arrest of synthesis, followed by a transient crossing-over step similar to that envisaged in genetic recombination. The mechanism proposed provides an alternative explanation to existing models and is entirely consistent with available data on postreplication repair in mammalian cells. In addition the model explains the low level of recombination repair observed in mammalian cells. PMID:687763

  6. Repair of mismatched basepairs in mammalian DNA

    SciTech Connect

    Taylor, J.H.; Hare, J.T.

    1991-08-01

    We have concentrated on three specific areas of our research plan. Our greatest emphasis is on the role of single strand nicks in influencing template strand selection in mismatch repair. We have found, that the ability of a nick in one strand to influence which strand is repaired is not a simple function of distance from the mismatched site but rather that an hot spot where a nick is more likely to have an influence can exist. The second line was production of single-genotype heteroduplexes in order to examine independently the repair of T/G and A/C mispairs within the same sequence context as in our mixed mispair preparations. We have shown preparations of supercoiled heteroduplex can be prepared that were exclusively T/G or exclusively A/C at the mispair site. The third effort has been to understand the difference in repair bias of different cell lines or different transfection conditions as it may relate to different repair systems in the cell. We have identified some of the sources of variation, including cell cycle position. We hope to continue this work to more precisely identify the phase of the cell cycle.

  7. Inhibition of excision-repair of ultraviolet damage in human cells by exposure to methyl methanesulfonate.

    PubMed

    Park, S D; Choi, K H; Hong, S W; Cleaver, J E

    1981-07-01

    Unscheduled DNA synthesis and excision of pyrimidine dimers in human cells exposed to ultraviolet let were inhibited by exposure to methyl methanesulfonate (MMS, 1-2 mM), but repair of MMS damage was not inhibited by UV light. Because the pathways for excision of pyrimidine dimers and alkylation damage have previously been shown to be different, this observation implies a direct effect of alkylation on repair enzymes. We estimate that if inhibition is due to protein alkylation, the UV repair system must present an extremely large target to alkylation and may involve a complex of protein subunits in the order of 1 million daltons such that 1 or more alkylations occur per complex at the concentrations used. These results also indicate that the method of exposing cells to 2 DNA-damaging agents to determine whether they are repaired by common or different pathways can be quite unreliable because of other effects on the repair systems themselves. PMID:7196494

  8. The ING1b tumor suppressor facilitates nucleotide excision repair by promoting chromatin accessibility to XPA

    SciTech Connect

    Kuo, Wei-Hung W.; Wang Yemin; Wong, Ronald P.C.; Campos, Eric I.; Li Gang . E-mail: gangli@interchange.ubc.ca

    2007-05-01

    ING1b is the most studied ING family protein and perhaps the most ubiquitously and abundantly expressed. This protein is involved in the regulation of various biological functions ranging from senescence, cell cycle arrest, apoptosis, to DNA repair. ING1b is upregulated by UV irradiation and enhances the removal of bulky nucleic acid photoproducts. In this study, we provide evidence that ING1b mediates nucleotide excision repair by facilitating the access to damaged nucleosomal DNA. We demonstrate that ING1b is not recruited to UV-induced DNA lesions but enhances nucleotide excision repair only in XPC-proficient cells, implying an essential role in early steps of the 'access, repair, restore' model. We also find that ING1b alters histone acetylation dynamics upon exposure to UV radiation and induces chromatin relaxation in microccocal nuclease digestion assay, revealing that ING1b may allow better access to nucleotide excision repair machinery. More importantly, ING1b associates with chromatin in a UV-inducible manner and facilitates DNA access to nucleotide excision repair factor XPA. Furthermore, depletion of the endogenous ING1b results to the sensitization of cells at S-phase to UV irradiation. Taken together, these observations establish a role of ING1b acting as a chromatin accessibility factor for DNA damage recognition proteins upon genotoxic injury.

  9. Quantitative characterization of protein–protein complexes involved in base excision DNA repair

    PubMed Central

    Moor, Nina A.; Vasil'eva, Inna A.; Anarbaev, Rashid O.; Antson, Alfred A.; Lavrik, Olga I.

    2015-01-01

    Base Excision Repair (BER) efficiently corrects the most common types of DNA damage in mammalian cells. Step-by-step coordination of BER is facilitated by multiple interactions between enzymes and accessory proteins involved. Here we characterize quantitatively a number of complexes formed by DNA polymerase β (Polβ), apurinic/apyrimidinic endonuclease 1 (APE1), poly(ADP-ribose) polymerase 1 (PARP1), X-ray repair cross-complementing protein 1 (XRCC1) and tyrosyl-DNA phosphodiesterase 1 (TDP1), using fluorescence- and light scattering-based techniques. Direct physical interactions between the APE1-Polβ, APE1-TDP1, APE1-PARP1 and Polβ-TDP1 pairs have been detected and characterized for the first time. The combined results provide strong evidence that the most stable complex is formed between XRCC1 and Polβ. Model DNA intermediates of BER are shown to induce significant rearrangement of the Polβ complexes with XRCC1 and PARP1, while having no detectable influence on the protein–protein binding affinities. The strength of APE1 interaction with Polβ, XRCC1 and PARP1 is revealed to be modulated by BER intermediates to different extents, depending on the type of DNA damage. The affinity of APE1 for Polβ is higher in the complex with abasic site-containing DNA than after the APE1-catalyzed incision. Our findings advance understanding of the molecular mechanisms underlying coordination and regulation of the BER process. PMID:26013813

  10. Subunit interactions in yeast transcription/repair factor TFIIH. Requirement for Tfb3 subunit in nucleotide excision repair.

    PubMed

    Feaver, W J; Huang, W; Gileadi, O; Myers, L; Gustafsson, C M; Kornberg, R D; Friedberg, E C

    2000-02-25

    A yeast strain harboring a temperature-sensitive allele of TFB3 (tfb3(ts)), the 38-kDa subunit of the RNA polymerase II transcription/nucleotide excision repair factor TFIIH, was found to be sensitive to ultraviolet (UV) radiation and defective for nucleotide excision repair in vitro. Interestingly, tfb3(ts) failed to grow on medium containing caffeine. A comprehensive pairwise two-hybrid analysis between yeast TFIIH subunits identified novel interactions between Rad3 and Tfb3, Tfb4 and Ssl1, as well as Ssl2 and Tfb2. These interactions have facilitated a more complete model of the structure of TFIIH and the nucleotide excision repairosome. PMID:10681587

  11. Purification of mammalian DNA repair protein XRCC1

    SciTech Connect

    Chen, I.

    1995-11-01

    Malfunctioning DNA repair systems lead to cancer mutations, and cell death. XRCC1 (X-ray Repair Cross Complementing) is a human DNA repair gene that has been found to fully correct the x-ray repair defect in Chinese hamster ovary (CHO) cell mutant EM9. The corresponding protein (XRCC1) encoded by this gene has been linked to a DNA repair pathway known as base excision repair, and affects the activity of DNA ligase III. Previously, an XRCC1 cDNA minigene (consisting of the uninterrupted coding sequence for XRCC1 protein followed by a decahistidine tag) was constructed and cloned into vector pET-16b for the purpose of: (1) overproduction of XRCC1 in both prokaryotic and eukaryotic cells; and (2) to facilitate rapid purification of XRCC1 from these systems. A vector is basically a DNA carrier that allows recombinant protein to be cloned and overexpressed in host cells. In this study, XRCC1 protein was overexpressed in E. coli and purified by immobilized metal affinity chromatography. Currently, the XRCC1 minigene is being inserted into a new vector [pET-26b(+)] in hopes to increase overexpression and improve purification. Once purified XRCC1 can be crystallized for structural studies, or studied in vitro for its biological function.

  12. Induced DNA repair pathway in mammalian cells

    SciTech Connect

    Overberg, R.

    1985-01-01

    The survival of cultured rat kangaroo cells (PtK-2) and human xeroderma pigmentosum cells incubated with 5 ..mu..M cycloheximide subsequent to ultraviolet irradiation is lower than that of cells incubated without cycloheximide. The drop in survival is considerably larger than that produced by incubation of unirradiated cells with cycloheximide. The phenomenon was also observed when PtK-2 cells were incubated with emetine, another protein synthesis inhibitor, or with 5,6-dichloro-1-..beta..-D-ribofuranosylbenzimidazole, a RNA synthesis inhibitor. PtK cells which received a preliminary UV treatment followed by an incubation period without cycloheximide and then a second irradiation and 24 hour incubation with cycloheximide, survived the effects of the second irradiation better than cells which were incubated in the presence of cycloheximide after the first and second UV irradiation. The application of cycloheximide for 24 hours after UV irradiation of PtK cells resulted in one-half as many 6-thioguanine resistant cells as compared to the number of 6-thioguanine resistant cells found when cycloheximide was not used. These experiments indicate that a UV-inducible cycloheximide-sensitive DNA repair pathway is present in PtK and xeroderma pigmentosum cells, which is error-prone in PtK cells.

  13. POLYMORPHISMS IN THE DNA NUCLEOTIDE EXCISION REPAIR GENES AND LUNG CANCER RISK IN XUAN WEI, CHINA

    EPA Science Inventory

    The lung cancer mortality rate in Xuan Wei County, China is among the highest in the country and has been etiologically attributed to exposure to indoor smoky coal emissions that contain very high levels of polycyclic aromatic hydrocarbons (PAHs). Nucleotide excision repair (NE...

  14. Excision repair of UV radiation-induced DNA damage in Caenorhabditis elegans

    SciTech Connect

    Hartman, P.S.; Hevelone, J.; Dwarakanath, V.; Mitchell, D.L. )

    1989-06-01

    Radioimmunoassays were used to monitor the removal of antibody-binding sites associated with the two major UV radiation-induced DNA photoproducts (cyclobutane dimers and (6-4) photoproducts). Unlike with cultured human cells, where (6-4) photoproducts are removed more rapidly than cyclobutane dimers, the kinetics of repair were similar for both lesions. Repair capacity in wild type diminished throughout development. The radioimmunoassays were also employed to confirm the absence of photoreactivation in C. elegans. In addition, three radiation-sensitive mutants (rad-1, rad-2, rad-7) displayed normal repair capacities. An excision defect was much more pronounced in larvae than embryos in the fourth mutant tested (rad-3). This correlates with the hypersensitivity pattern of this mutant and suggests that DNA repair may be developmentally regulated in C. elegans. The mechanism of DNA repair in C. elegans as well as the relationship between the repair of specific photoproducts and UV radiation sensitivity during development are discussed.

  15. Nucleotide excision repair in rat male germ cells: low level of repair in intact cells contrasts with high dual incision activity in vitro.

    PubMed

    Jansen, J; Olsen, A K; Wiger, R; Naegeli, H; de Boer, P; van Der Hoeven, F; Holme, J A; Brunborg, G; Mullenders, L

    2001-04-15

    The acquisition of genotoxin-induced mutations in the mammalian germline is detrimental to the stable transfer of genomic information. In somatic cells, nucleotide excision repair (NER) is a major pathway to counteract the mutagenic effects of DNA damage. Two NER subpathways have been identified, global genome repair (GGR) and transcription-coupled repair (TCR). In contrast to somatic cells, little is known regarding the expression of these pathways in germ cells. To address this basic question, we have studied NER in rat spermatogenic cells in crude cell suspension, in enriched cell stages and within seminiferous tubules after exposure to UV or N-acetoxy-2-acetylaminofluorene. Surprisingly, repair in spermatogenic cells was inefficient in the genome overall and in transcriptionally active genes indicating non-functional GGR and TCR. In contrast, extracts from early/mid pachytene cells displayed dual incision activity in vitro as high as extracts from somatic cells, demonstrating that the proteins involved in incision are present and functional in premeiotic cells. However, incision activities of extracts from diplotene cells and round spermatids were low, indicating a stage-dependent expression of incision activity. We hypothesize that sequestering of NER proteins by mispaired regions in DNA involved in synapsis and recombination may underlie the lack of NER activity in premeiotic cells. PMID:11292852

  16. Low-Dose Formaldehyde Delays DNA Damage Recognition and DNA Excision Repair in Human Cells

    PubMed Central

    Luch, Andreas; Frey, Flurina C. Clement; Meier, Regula; Fei, Jia; Naegeli, Hanspeter

    2014-01-01

    Objective Formaldehyde is still widely employed as a universal crosslinking agent, preservative and disinfectant, despite its proven carcinogenicity in occupationally exposed workers. Therefore, it is of paramount importance to understand the possible impact of low-dose formaldehyde exposures in the general population. Due to the concomitant occurrence of multiple indoor and outdoor toxicants, we tested how formaldehyde, at micromolar concentrations, interferes with general DNA damage recognition and excision processes that remove some of the most frequently inflicted DNA lesions. Methodology/Principal Findings The overall mobility of the DNA damage sensors UV-DDB (ultraviolet-damaged DNA-binding) and XPC (xeroderma pigmentosum group C) was analyzed by assessing real-time protein dynamics in the nucleus of cultured human cells exposed to non-cytotoxic (<100 μM) formaldehyde concentrations. The DNA lesion-specific recruitment of these damage sensors was tested by monitoring their accumulation at local irradiation spots. DNA repair activity was determined in host-cell reactivation assays and, more directly, by measuring the excision of DNA lesions from chromosomes. Taken together, these assays demonstrated that formaldehyde obstructs the rapid nuclear trafficking of DNA damage sensors and, consequently, slows down their relocation to DNA damage sites thus delaying the excision repair of target lesions. A concentration-dependent effect relationship established a threshold concentration of as low as 25 micromolar for the inhibition of DNA excision repair. Conclusions/Significance A main implication of the retarded repair activity is that low-dose formaldehyde may exert an adjuvant role in carcinogenesis by impeding the excision of multiple mutagenic base lesions. In view of this generally disruptive effect on DNA repair, we propose that formaldehyde exposures in the general population should be further decreased to help reducing cancer risks. PMID:24722772

  17. Modeling the induced mutation process in bacterial cells with defects in excision repair system

    NASA Astrophysics Data System (ADS)

    Bugay, A. N.; Vasilyeva, M. A.; Krasavin, E. A.; Parkhomenko, A. Yu.

    2015-12-01

    A mathematical model of the UV-induced mutation process in Escherichia coli cells with defects in the uvrA and polA genes has been developed. The model describes in detail the reaction kinetics for the excision repair system. The number of mismatches as a result of translesion synthesis is calculated for both wild-type and mutant cells. The effect of temporal modulation of the number of single-stranded DNA during postreplication repair has been predicted. A comparison of effectiveness of different repair systems has been conducted.

  18. Nucleotide excision repair and response and survival to chemotherapy in colorectal cancer patients.

    PubMed

    Kap, Elisabeth J; Popanda, Odilia; Chang-Claude, Jenny

    2016-05-01

    Several new chemotherapeutic agents have become available for the treatment of colorectal cancer, which has led to increased complexity in treatment planning. Treatment decision making for individual patients could be facilitated if guided by predictive and prognostic markers. As most cytotoxic drugs induce DNA damage, the DNA damage repair pathways hold potential for yielding such biomarkers. Here, we review the current evidence of a possible involvement of the nucleotide excision repair pathway in the efficacy of chemotherapeutic agents used in the treatment of colorectal cancer. Although a large number of studies have been conducted, they are generally of moderate size and heterogeneous in design. Up to date no firm conclusions can be drawn to translate these results into the clinic. We recommend further comprehensive investigations of the nucleotide excision repair pathway in large patient studies that include both discovery and validation cohorts. PMID:27183147

  19. Excision repair characteristics of denV-transformed xeroderma pigmentosum cells.

    PubMed

    Ley, R D; Applegate, L A; de Riel, J K; Henderson, E E

    1989-03-01

    Introduction of the denV gene of phage T4, encoding the pyrimidine dimer-specific endonuclease V, into xeroderma pigmentosum cells XP12RO(M1) was reported to result in partial restoration of colony-forming ability and excision repair synthesis. We have further characterized 3 denV-transformed XP clones in terms of rates of excision of pyrimidine dimers and size of the resulting resynthesized regions following exposure to 100 J/m2 from an FS-40 sunlamp. In the denV-transformed XP cells we observed 50% dimer removal within 3-6 h after UV exposure as compared to no measurable removal in the XP12RO(M1) line and 50% dimer excision after 18 h in the GM637A human, control cells. Dimer removal was assayed with Micrococcus luteus UV-endonuclease in conjunction with sedimentation of treated DNA in alkaline sucrose gradients. The size of the resulting repaired regions was determined by the bromouracil photolysis technique. Based on the photolytic sensitivity of DNA repaired in the presence of bromodeoxyuridine, we calculated that the excision of a dimer in the GM637A cells appears to be accompanied by the resynthesis of a region approximately 95 nucleotides in length. Conversely, the resynthesized regions in the denV-transformed clones were considerably smaller and were estimated to be between 13 and 18 nucleotides in length. These results may indicate that either the endonuclease that initiated dimer repair dictated the size of the resynthesized region or that the long-patch repair observed in the normal cells resulted from the repair of non-dimer DNA lesions. PMID:2918865

  20. Folate depletion impairs DNA excision repair in the colon of the rat

    PubMed Central

    Choi, S; Kim, Y; Weitzel, J; Mason, J

    1998-01-01

    Background/Aims—Diminished folate status appears to promote colonic carcinogenesis by, as of yet, undefined mechanisms. Impaired DNA repair plays a significant role in the evolution of many colon cancers. Since folate is essential for the de novo synthesis of nucleotides and since folate depletion has previously been associated with excessive DNA strand breaks, it was hypothesised that folate depletion may impair DNA repair. Studies were therefore performed to examine whether folate depletion affects the two major categories of DNA repair. 
Methods—Study 1: eight weanling male Sprague-Dawley rats were fed on diets containing either 0 or 8 mg folate/kg diet with 1% succinylsulphathiazole for four weeks. After viable colonocytes had been harvested, DNA excision repair was evaluated by a single cell gel electrophoresis assay. Study 2: eighteen animals were fed on similar diets for five weeks. Also in study 2, 18 additional rats were fed on the same defined diet without succinylsulphathiazole for 15 weeks. Weekly injections with the procarcinogen, 1,2-dimethylhydrazine (20 mg base/kg), were administered to the latter group of animals. Five microsatellite loci from different chromosomes were investigated for instability in hepatic and colonic DNA. 
Results—In study 1, a significantly retarded rate of DNA excision repair was observed in the folate deficient colonocytes compared with controls (p<0.05). In study 2, there was no evidence of instability at the five microsatellite loci associated with either short or long term folate depletion. 
Conclusions—Folate deficiency impairs DNA excision repair in rat colonic mucosa; a similar degree of deficiency, even when administered in conjunction with a colonic carcinogen, did not produce evidence of a widespread defect in mismatch repair. 

 Keywords: folate; colon cancer; DNA repair; single cell gel electrophoresis; microsatellite instability; rat PMID:9771411

  1. Global-genome Nucleotide Excision Repair Controlled by Ubiquitin/Sumo Modifiers

    PubMed Central

    Rüthemann, Peter; Balbo Pogliano, Chiara; Naegeli, Hanspeter

    2016-01-01

    Global-genome nucleotide excision repair (GG-NER) prevents genome instability by excising a wide range of different DNA base adducts and crosslinks induced by chemical carcinogens, ultraviolet (UV) light or intracellular side products of metabolism. As a versatile damage sensor, xeroderma pigmentosum group C (XPC) protein initiates this generic defense reaction by locating the damage and recruiting the subunits of a large lesion demarcation complex that, in turn, triggers the excision of aberrant DNA by endonucleases. In the very special case of a DNA repair response to UV radiation, the function of this XPC initiator is tightly controlled by the dual action of cullin-type CRL4DDB2 and sumo-targeted RNF111 ubiquitin ligases. This twofold protein ubiquitination system promotes GG-NER reactions by spatially and temporally regulating the interaction of XPC protein with damaged DNA across the nucleosome landscape of chromatin. In the absence of either CRL4DDB2 or RNF111, the DNA excision repair of UV lesions is inefficient, indicating that these two ubiquitin ligases play a critical role in mitigating the adverse biological effects of UV light in the exposed skin. PMID:27200078

  2. Fluorogenic DNA ligase and base excision repair enzyme assays using substrates labeled with single fluorophores.

    PubMed

    Nikiforov, Theo T; Roman, Steven

    2015-05-15

    Continuing our work on fluorogenic substrates labeled with single fluorophores for nucleic acid modifying enzymes, here we describe the development of such substrates for DNA ligases and some base excision repair enzymes. These substrates are hairpin-type synthetic DNA molecules with a single fluorophore located on a base close to the 3' ends, an arrangement that results in strong fluorescence quenching. When such substrates are subjected to an enzymatic reaction, the position of the dyes relative to that end of the molecules is altered, resulting in significant fluorescence intensity changes. The ligase substrates described here were 5' phosphorylated and either blunt-ended or carrying short, self-complementary single-stranded 5' extensions. The ligation reactions resulted in the covalent joining of the ends of the molecules, decreasing the quenching effect of the terminal bases on the dyes. To generate fluorogenic substrates for the base excision repair enzymes formamido-pyrimidine-DNA glycosylase (FPG), human 8-oxo-G DNA glycosylase/AP lyase (hOGG1), endonuclease IV (EndoIV), and apurinic/apyrimidinic endonuclease (APE1), we introduced abasic sites or a modified nucleotide, 8-oxo-dG, at such positions that their enzymatic excision would result in the release of a short fluorescent fragment. This was also accompanied by strong fluorescence increases. Overall fluorescence changes ranged from approximately 4-fold (ligase reactions) to more than 20-fold (base excision repair reactions). PMID:25728944

  3. Global-genome Nucleotide Excision Repair Controlled by Ubiquitin/Sumo Modifiers.

    PubMed

    Rüthemann, Peter; Balbo Pogliano, Chiara; Naegeli, Hanspeter

    2016-01-01

    Global-genome nucleotide excision repair (GG-NER) prevents genome instability by excising a wide range of different DNA base adducts and crosslinks induced by chemical carcinogens, ultraviolet (UV) light or intracellular side products of metabolism. As a versatile damage sensor, xeroderma pigmentosum group C (XPC) protein initiates this generic defense reaction by locating the damage and recruiting the subunits of a large lesion demarcation complex that, in turn, triggers the excision of aberrant DNA by endonucleases. In the very special case of a DNA repair response to UV radiation, the function of this XPC initiator is tightly controlled by the dual action of cullin-type CRL4(DDB2) and sumo-targeted RNF111 ubiquitin ligases. This twofold protein ubiquitination system promotes GG-NER reactions by spatially and temporally regulating the interaction of XPC protein with damaged DNA across the nucleosome landscape of chromatin. In the absence of either CRL4(DDB2) or RNF111, the DNA excision repair of UV lesions is inefficient, indicating that these two ubiquitin ligases play a critical role in mitigating the adverse biological effects of UV light in the exposed skin. PMID:27200078

  4. FACT Assists Base Excision Repair by Boosting the Remodeling Activity of RSC

    PubMed Central

    Ouararhni, Khalid; Roulland, Yohan; Ben Simon, Elsa; Kundu, Tapas; Hamiche, Ali; Angelov, Dimitar; Dimitrov, Stefan

    2016-01-01

    FACT, in addition to its role in transcription, is likely implicated in both transcription-coupled nucleotide excision repair and DNA double strand break repair. Here, we present evidence that FACT could be directly involved in Base Excision Repair and elucidate the chromatin remodeling mechanisms of FACT during BER. We found that, upon oxidative stress, FACT is released from transcription related protein complexes to get associated with repair proteins and chromatin remodelers from the SWI/SNF family. We also showed the rapid recruitment of FACT to the site of damage, coincident with the glycosylase OGG1, upon the local generation of oxidized DNA. Interestingly, FACT facilitates uracil-DNA glycosylase in the removal of uracil from nucleosomal DNA thanks to an enhancement in the remodeling activity of RSC. This discloses a novel property of FACT wherein it has a co-remodeling activity and strongly enhances the remodeling capacity of the chromatin remodelers. Altogether, our data suggest that FACT may acts in concert with RSC to facilitate excision of DNA lesions during the initial step of BER. PMID:27467129

  5. FACT Assists Base Excision Repair by Boosting the Remodeling Activity of RSC.

    PubMed

    Charles Richard, John Lalith; Shukla, Manu Shubhdarshan; Menoni, Hervé; Ouararhni, Khalid; Lone, Imtiaz Nisar; Roulland, Yohan; Papin, Christophe; Ben Simon, Elsa; Kundu, Tapas; Hamiche, Ali; Angelov, Dimitar; Dimitrov, Stefan

    2016-07-01

    FACT, in addition to its role in transcription, is likely implicated in both transcription-coupled nucleotide excision repair and DNA double strand break repair. Here, we present evidence that FACT could be directly involved in Base Excision Repair and elucidate the chromatin remodeling mechanisms of FACT during BER. We found that, upon oxidative stress, FACT is released from transcription related protein complexes to get associated with repair proteins and chromatin remodelers from the SWI/SNF family. We also showed the rapid recruitment of FACT to the site of damage, coincident with the glycosylase OGG1, upon the local generation of oxidized DNA. Interestingly, FACT facilitates uracil-DNA glycosylase in the removal of uracil from nucleosomal DNA thanks to an enhancement in the remodeling activity of RSC. This discloses a novel property of FACT wherein it has a co-remodeling activity and strongly enhances the remodeling capacity of the chromatin remodelers. Altogether, our data suggest that FACT may acts in concert with RSC to facilitate excision of DNA lesions during the initial step of BER. PMID:27467129

  6. Identification of a Second Locus in DROSOPHILA MELANOGASTER Required for Excision Repair

    PubMed Central

    Boyd, J. B.; Snyder, R. D.; Harris, P. V.; Presley, J. M.; Boyd, S. F.; Smith, P. D.

    1982-01-01

    The mus(2)201 locus in Drosophila is defined by two mutant alleles that render homozygous larvae hypersensitive to mutagens. Both alleles confer strong in vivo somatic sensitivity to treatment by methyl methanesulfonate, nitrogen mustard and ultraviolet radiation but only weak hypersensitivity to X-irradiation. Unlike the excision-defective mei-9 mutants identified in previous studies, the mus(2)201 mutants do not affect female fertility and do not appear to influence recombination proficiency or chromosome segregation in female meiocytes.—Three independent biochemical assays reveal that cell cultures derived from embryos homozygous for the mus(2)D1 allele are devoid of detectable excision repair. 1. Such cells quantitatively retain pyrimidine dimers in their DNA for 24 hr following UV exposure. 2. No measurable unscheduled DNA synthesis is induced in mutant cultures by UV treatment. 3. Single-strand DNA breaks, which are associated with normal excision repair after treatment with either UV or N-acetoxy-N-acetyl-2-aminofluorene,* are much reduced in these cultures. Mutant cells possess a normal capacity for postreplication repair and the repair of single-strand breaks induced by X-rays. PMID:6809529

  7. Nonspecific DNA Binding and Coordination of the First Two Steps of Base Excision Repair

    PubMed Central

    Baldwin, Michael R.; O'Brien, Patrick J.

    2010-01-01

    The base excision repair (BER) pathway repairs a wide variety of damaged nucleobases in DNA. This pathway is initiated by a DNA repair glycosylase, which locates the site of damage and catalyzes the excision of the damaged nucleobase. The resulting abasic site is further processed by apurinic/apyrimidinic site endonuclease 1 (APE1) to create a single strand nick with the 3'-hydroxyl that serves as a primer for DNA repair synthesis. Since an abasic site is highly mutagenic it is critical that the steps of the BER pathway be coordinated. Most human glycosylases bind tightly to their abasic product. APE1 displaces the bound glycosylase, thereby stimulating multiple turnover base excision. It has been proposed that direct protein-protein interactions are involved in the stimulation by APE1, but no common interaction motifs have been identified among the glycosylases that are stimulated by APE1. We characterized the APE1 stimulation of alkyladenine DNA glycosylase (AAG) using a variety of symmetric and asymmetric lesion-containing oligonucleotides. Efficient stimulation on a wide variety of substrates favors a model whereby both AAG and APE1 can simultaneously bind to DNA, but may not interact directly. Rather, nonspecific DNA binding by both AAG and APE1 enables APE1 to replace AAG at the abasic site. AAG is not displaced into solution, but remains bound to an adjacent undamaged site. We propose that nonspecific DNA binding interactions allow transient exposure of the abasic site so that it can be captured by APE1. PMID:20701268

  8. Cellular homeostasis and repair in the mammalian liver.

    PubMed

    Stanger, Ben Z

    2015-01-01

    The mammalian liver is one of the most regenerative tissues in the body, capable of fully recovering mass and function after a variety of injuries. This factor alone makes the liver unusual among mammalian tissues, but even more atypical is the widely held notion that the method of repair depends on the manner of injury. Specifically, the liver is believed to regenerate via replication of existing cells under certain conditions and via differentiation from specialized cells--so-called facultative stem cells--under others. Nevertheless, despite the liver's dramatic and unique regenerative response, the cellular and molecular features of liver homeostasis and regeneration are only now starting to come into relief. This review provides an overview of normal liver function and development and focuses on the evidence for and against various models of liver homeostasis and regeneration. PMID:25668020

  9. Gut Microbiota Imbalance and Base Excision Repair Dynamics in Colon Cancer

    PubMed Central

    Ray, Debolina; Kidane, Dawit

    2016-01-01

    Gut microbiota are required for host nutrition, energy balance, and regulating immune homeostasis, however, in some cases, this mutually beneficial relationship becomes twisted (dysbiosis), and the gut flora can incite pathological disorders including colon cancer. Microbial dysbiosis promotes the release of bacterial genotoxins, metabolites, and causes chronic inflammation, which promote oxidative DNA damage. Oxidized DNA base lesions are removed by base excision repair (BER), however, the role of this altered function of BER, as well as microbiota-mediated genomic instability and colon cancer development, is still poorly understood. In this review article, we will discuss how dysbiotic microbiota induce DNA damage, its impact on base excision repair capacity, the potential link of host BER gene polymorphism, and the risk of dysbiotic microbiota mediated genomic instability and colon cancer. PMID:27471558

  10. Assays for chromatin remodeling during nucleotide excision repair in Saccharomyces cerevisiae

    PubMed Central

    Zhang, Ling; Jones, Kristi; Smerdon, Michael J.; Gong, Feng

    2009-01-01

    How DNA repair proteins interact with the dynamic structure of chromatin is an emerging question. Chromatin structure impedes the access of repair proteins to sites of DNA damage. Several recent studies have implicated chromatin remodeling complexes in DNA repair. In this report we summarize the methods we used to investigate chromatin remodeling during nucleotide excision repair (NER) in vivo. We describe a procedure to analyze UV-induced chromatin remodeling at the silent mating-type locus HML using isolated nuclei from UV treated yeast cells. In addition, a method to capture transient protein-protein associations in chromatin is outlined. We have used the methods described here to demonstrate that the SWI/SNF chromatin remodeling complex is involved in chromatin rearrangement during NER. PMID:19336254

  11. Exploiting Base Excision Repair to Improve Therapeutic Approaches for Pancreatic Cancer

    PubMed Central

    Sharbeen, George; McCarroll, Joshua; Goldstein, David; Phillips, Phoebe A.

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDA) is a highly chemoresistant and metastatic disease with a dismal 5-year survival rate of 6%. More effective therapeutic targets and approaches are urgently needed to tackle this devastating disease. The base excision repair (BER) pathway has been identified as a predictor of therapeutic response, prognostic factor, and therapeutic target in a variety of cancers. This review will discuss our current understanding of BER in PDA and its potential to improve PDA treatment. PMID:25988138

  12. Removal of Misincorporated Ribonucleotides from Prokaryotic Genomes: An Unexpected Role for Nucleotide Excision Repair

    PubMed Central

    Vaisman, Alexandra; McDonald, John P.; Huston, Donald; Kuban, Wojciech; Liu, Lili; Van Houten, Bennett; Woodgate, Roger

    2013-01-01

    Stringent steric exclusion mechanisms limit the misincorporation of ribonucleotides by high-fidelity DNA polymerases into genomic DNA. In contrast, low-fidelity Escherichia coli DNA polymerase V (pol V) has relatively poor sugar discrimination and frequently misincorporates ribonucleotides. Substitution of a steric gate tyrosine residue with alanine (umuC_Y11A) reduces sugar selectivity further and allows pol V to readily misincorporate ribonucleotides as easily as deoxynucleotides, whilst leaving its poor base-substitution fidelity essentially unchanged. However, the mutability of cells expressing the steric gate pol V mutant is very low due to efficient repair mechanisms that are triggered by the misincorporated rNMPs. Comparison of the mutation frequency between strains expressing wild-type and mutant pol V therefore allows us to identify pathways specifically directed at ribonucleotide excision repair (RER). We previously demonstrated that rNMPs incorporated by umuC_Y11A are efficiently removed from DNA in a repair pathway initiated by RNase HII. Using the same approach, we show here that mismatch repair and base excision repair play minimal back-up roles in RER in vivo. In contrast, in the absence of functional RNase HII, umuC_Y11A-dependent mutagenesis increases significantly in ΔuvrA, uvrB5 and ΔuvrC strains, suggesting that rNMPs misincorporated into DNA are actively repaired by nucleotide excision repair (NER) in vivo. Participation of NER in RER was confirmed by reconstituting ribonucleotide-dependent NER in vitro. We show that UvrABC nuclease-catalyzed incisions are readily made on DNA templates containing one, two, or five rNMPs and that the reactions are stimulated by the presence of mispaired bases. Similar to NER of DNA lesions, excision of rNMPs proceeds through dual incisions made at the 8th phosphodiester bond 5′ and 4th–5th phosphodiester bonds 3′ of the ribonucleotide. Ribonucleotides misinserted into DNA can therefore be added to the

  13. The Emerging Roles of ATP-Dependent Chromatin Remodeling Enzymes in Nucleotide Excision Repair

    PubMed Central

    Czaja, Wioletta; Mao, Peng; Smerdon, Michael J.

    2012-01-01

    DNA repair in eukaryotic cells takes place in the context of chromatin, where DNA, including damaged DNA, is tightly packed into nucleosomes and higher order chromatin structures. Chromatin intrinsically restricts accessibility of DNA repair proteins to the damaged DNA and impacts upon the overall rate of DNA repair. Chromatin is highly responsive to DNA damage and undergoes specific remodeling to facilitate DNA repair. How damaged DNA is accessed, repaired and restored to the original chromatin state, and how chromatin remodeling coordinates these processes in vivo, remains largely unknown. ATP-dependent chromatin remodelers (ACRs) are the master regulators of chromatin structure and dynamics. Conserved from yeast to humans, ACRs utilize the energy of ATP to reorganize packing of chromatin and control DNA accessibility by sliding, ejecting or restructuring nucleosomes. Several studies have demonstrated that ATP-dependent remodeling activity of ACRs plays important roles in coordination of spatio-temporal steps of different DNA repair pathways in chromatin. This review focuses on the role of ACRs in regulation of various aspects of nucleotide excision repair (NER) in the context of chromatin. We discuss current understanding of ATP-dependent chromatin remodeling by various subfamilies of remodelers and regulation of the NER pathway in vivo. PMID:23109894

  14. 3CAPS – a structural AP–site analogue as a tool to investigate DNA base excision repair

    PubMed Central

    Schuermann, David; Scheidegger, Simon P.; Weber, Alain R.; Bjørås, Magnar; Leumann, Christian J.; Schär, Primo

    2016-01-01

    Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP–sites. With its 3′–phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase β but repaired only by strand displacement as the 5′–deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, underlining its structural integrity and biochemical reactivity. The AP lyase activity of bifunctional DNA glycosylases (NTH1, NEIL1, FPG), however, was fully inhibited. Notably, 3CAPS-containing DNA also effectively inhibited the activity of bifunctional glycosylases on authentic substrates. Hence, the chemically stable 3CAPS with its preserved hemiacetal functionality is a potent tool for BER research and a potential inhibitor of bifunctional DNA glycosylases. PMID:26733580

  15. Base Excision Repair in Physiology and Pathology of the Central Nervous System

    PubMed Central

    Bosshard, Matthias; Markkanen, Enni; van Loon, Barbara

    2012-01-01

    Relatively low levels of antioxidant enzymes and high oxygen metabolism result in formation of numerous oxidized DNA lesions in the tissues of the central nervous system. Accumulation of damage in the DNA, due to continuous genotoxic stress, has been linked to both aging and the development of various neurodegenerative disorders. Different DNA repair pathways have evolved to successfully act on damaged DNA and prevent genomic instability. The predominant and essential DNA repair pathway for the removal of small DNA base lesions is base excision repair (BER). In this review we will discuss the current knowledge on the involvement of BER proteins in the maintenance of genetic stability in different brain regions and how changes in the levels of these proteins contribute to aging and the onset of neurodegenerative disorders. PMID:23203191

  16. Impact of ribonucleotide incorporation by DNA polymerases β and λ on oxidative base excision repair

    PubMed Central

    Crespan, Emmanuele; Furrer, Antonia; Rösinger, Marcel; Bertoletti, Federica; Mentegari, Elisa; Chiapparini, Giulia; Imhof, Ralph; Ziegler, Nathalie; Sturla, Shana J.; Hübscher, Ulrich; van Loon, Barbara; Maga, Giovanni

    2016-01-01

    Oxidative stress is a very frequent source of DNA damage. Many cellular DNA polymerases (Pols) can incorporate ribonucleotides (rNMPs) during DNA synthesis. However, whether oxidative stress-triggered DNA repair synthesis contributes to genomic rNMPs incorporation is so far not fully understood. Human specialized Pols β and λ are the important enzymes involved in the oxidative stress tolerance, acting both in base excision repair and in translesion synthesis past the very frequent oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxo-G). We found that Pol β, to a greater extent than Pol λ can incorporate rNMPs opposite normal bases or 8-oxo-G, and with a different fidelity. Further, the incorporation of rNMPs opposite 8-oxo-G delays repair by DNA glycosylases. Studies in Pol β- and λ-deficient cell extracts suggest that Pol β levels can greatly affect rNMP incorporation opposite oxidative DNA lesions. PMID:26917111

  17. Structural and Functional Studies on Nucleotide Excision Repair From Recognition to Incision.

    SciTech Connect

    Caroline Kisker

    2001-01-01

    Maintenance of the correct genetic information is crucial for all living organisms because mutations are the primary cause of hereditary diseases, as well as cancer and may also be involved in aging. The importance of genomic integrity is underscored by the fact that 80 to 90% of all human cancers are ultimately due to DNA damage. Among the different repair mechanisms that have evolved to protect the genome, nucleotide excision repair (NER) is a universal pathway found in all organisms. NER removes a wide variety of bulky DNA adducts including the carcinogenic cyclobutane pyrimidine dimers induced by UV radiation, benzo(a)pyrene-guanine adducts caused by smoking and the guanine-cisplatin adducts induced by chemotherapy. The importance of this repair mechanism is reflected by three severe inherited diseases in humans, which are due to defects in NER: xeroderma pigmentosum, Cockayne's syndrome and trichothiodystrophy.

  18. Cloning, comparative mapping, and RNA expression of the mouse homologues of the Saccharomyces cerevisiae nucleotide excision repair gene RAD23.

    PubMed

    van der Spek, P J; Visser, C E; Hanaoka, F; Smit, B; Hagemeijer, A; Bootsma, D; Hoeijmakers, J H

    1996-01-01

    The Saccharomyces cerevisiae RAD23 gene is involved in nucleotide excision repair (NER). Two human homologs of RAD23, HHR23A and HHR23B (HGMW-approved symbols RAD23A and RAD23B), were previously isolated. The HHR23B protein is complexed with the protein defective in the cancer-prone repair syndrome xeroderma pigmentosum, complementation group C, and is specifically involved in the global genome NER subpathway. The cloning of both mouse homologs (designated MHR23A and MHR23B) and detailed sequence comparison permitted the deduction of the following overall structure for all RAD23 homologs: an ubiquitin-like N-terminus followed by a strongly conserved 50-amino-acid domain that is repeated at the C-terminus. We also found this domain as a specific C-terminal extension of one of the ubiquitin-conjugating enzymes, providing a second link with the ubiquitin pathway. By means of in situ hybridization, MHR23A was assigned to mouse chromosome 8C3 and MHR23B to 4B3. Because of the close chromosomal proximity of human XPC and HHR23B, the mouse XPC chromosomal location was determined (6D). Physical disconnection of the genes in mouse argues against a functional significance of the colocalization of these genes in human. Northern blot analysis revealed constitutive expression of both MHR23 genes in all tissues examined. Elevated RNA expression of both MHR23 genes was observed in testis. Although the RAD23 equivalents are well conserved during evolution, the mammalian genes did not express the UV-inducible phenotype of their yeast counterpart. This may point to a fundamental difference between the UV responses of yeast and human. No stage-specific mRNA expression during the cell cycle was observed for the mammalian RAD23 homologs. PMID:8808275

  19. Unscheduled DNA Synthesis: The Clinical and Functional Assay for Global Genomic DNA Nucleotide Excision Repair

    PubMed Central

    Latimer, Jean J.; Kelly, Crystal M.

    2016-01-01

    The unscheduled DNA synthesis (UDS) assay measures the ability of a cell to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique by creating 6-4 photoproducts and pyrimidine dimers using UV-C irradiation. This procedure is designed specifically for quantification of the 6-4 photoproducts. Repair is quantified by the amount of radioactive thymidine incorporated during repair synthesis after this insult, and radioactivity is evaluated by grain counting after autoradiography. The results are used to clinically diagnose human DNA repair deficiency disorders and provide a basis for investigation of repair deficiency in human tissues or tumors. No other functional assay is available that directly measures the capacity to perform NER on the entire genome without the use of specific antibodies. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation (HCR), as discussed in Chapter 37, is not an equivalent technique, as it measures only transcription-coupled repair (TCR) at active genes, a small subset of total NER. PMID:24623250

  20. DREMECELS: A Curated Database for Base Excision and Mismatch Repair Mechanisms Associated Human Malignancies

    PubMed Central

    Shukla, Ankita; Singh, Tiratha Raj

    2016-01-01

    DNA repair mechanisms act as a warrior combating various damaging processes that ensue critical malignancies. DREMECELS was designed considering the malignancies with frequent alterations in DNA repair pathways, that is, colorectal and endometrial cancers, associated with Lynch syndrome (also known as HNPCC). Since lynch syndrome carries high risk (~40–60%) for both cancers, therefore we decided to cover all three diseases in this portal. Although a large population is presently affected by these malignancies, many resources are available for various cancer types but no database archives information on the genes specifically for only these cancers and disorders. The database contains 156 genes and two repair mechanisms, base excision repair (BER) and mismatch repair (MMR). Other parameters include some of the regulatory processes that have roles in these disease progressions due to incompetent repair mechanisms, specifically BER and MMR. However, our unique database mainly provides qualitative and quantitative information on these cancer types along with methylation, drug sensitivity, miRNAs, copy number variation (CNV) and somatic mutations data. This database would serve the scientific community by providing integrated information on these disease types, thus sustaining diagnostic and therapeutic processes. This repository would serve as an excellent accompaniment for researchers and biomedical professionals and facilitate in understanding such critical diseases. DREMECELS is publicly available at http://www.bioinfoindia.org/dremecels. PMID:27276067

  1. Repair of traumatized mammalian hair cells via sea anemone repair proteins.

    PubMed

    Tang, Pei-Ciao; Smith, Karen Müller; Watson, Glen M

    2016-08-01

    Mammalian hair cells possess only a limited ability to repair damage after trauma. In contrast, sea anemones show a marked capability to repair damaged hair bundles by means of secreted repair proteins (RPs). Previously, it was found that recovery of traumatized hair cells in blind cavefish was enhanced by anemone-derived RPs; therefore, the ability of anemone RPs to assist recovery of damaged hair cells in mammals was tested here. After a 1 h incubation in RP-enriched culture media, uptake of FM1-43 by experimentally traumatized murine cochlear hair cells was restored to levels comparable to those exhibited by healthy controls. In addition, RP-treated explants had significantly more normally structured hair bundles than time-matched traumatized control explants. Collectively, these results indicate that anemone-derived RPs assist in restoring normal function and structure of experimentally traumatized hair cells of the mouse cochlea. PMID:27489215

  2. Evidence for indirect involvement of thymidine kinase in excision repair processes in mouse cell lines

    SciTech Connect

    McKenna, P.G.; Yasseen, A.A.; McKelvey, V.J.

    1985-05-01

    Wild-type cells and thymidine kinase-deficient clones from two mouse lymphoma cell lines, P388 and L5178Y, were compared for sensitivity to killing by the mutagens, ultraviolet irradiation (UV), ethyl methane sulfonate (EMS), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Two out of three thymidine kinase-deficient P388 clones showed significantly enhanced sensitivity to killing by all three mutagens. This increased sensitivity to killing was also reflected in increased mutagenesis by the three mutagens. In the L5178Y cell line, wild-type cells showed little difference to two thymidine kinase-deficient clones in terms of mutagen sensitivity. This indicates that thymidine kinase may be significant for DNA repair processes in P388 but not in L5178Y cells. Unscheduled DNA synthesis (UDS) experiments were carried out on P388 and L5178Y wild-type cells and wild-type Friend leukemia cells (which are mutagen-sensitive when deficient in thymidine kinase). The UDS experiments showed the L5178Y cells were low in excision repair abilities relative to the P388 cells and the Friend cell clone. This indicates that the increased mutagen sensitivity in thymidine kinase-deficient P388 and clone 707 Friend cells may be due to thymidine kinase playing an indirect role in DNA excision repair, a process which is of little significance in the L5178Y cell line.

  3. Nucleotide excision repair is impaired by binding of transcription factors to DNA.

    PubMed

    Sabarinathan, Radhakrishnan; Mularoni, Loris; Deu-Pons, Jordi; Gonzalez-Perez, Abel; López-Bigas, Núria

    2016-04-14

    Somatic mutations are the driving force of cancer genome evolution. The rate of somatic mutations appears to be greatly variable across the genome due to variations in chromatin organization, DNA accessibility and replication timing. However, other variables that may influence the mutation rate locally are unknown, such as a role for DNA-binding proteins, for example. Here we demonstrate that the rate of somatic mutations in melanomas is highly increased at active transcription factor binding sites and nucleosome embedded DNA, compared to their flanking regions. Using recently available excision-repair sequencing (XR-seq) data, we show that the higher mutation rate at these sites is caused by a decrease of the levels of nucleotide excision repair (NER) activity. Our work demonstrates that DNA-bound proteins interfere with the NER machinery, which results in an increased rate of DNA mutations at the protein binding sites. This finding has important implications for our understanding of mutational and DNA repair processes and in the identification of cancer driver mutations. PMID:27075101

  4. ALKBH1 is dispensable for abasic site cleavage during base excision repair and class switch recombination.

    PubMed

    Müller, Tina A; Yu, Kefei; Hausinger, Robert P; Meek, Katheryn

    2013-01-01

    Potential roles of the abasic site lyase activity associated with AlkB homolog 1 (ALKBH1) were assessed by studies focusing on the two cellular processes that create abasic sites as intermediates: base excision repair and class switch recombination. Alkbh1(-/-) pups (lacking exon 3) were born at a lower than expected frequency from heterozygous parents, suggesting a reduced survival rate and non-Mendelian inheritance, and they exhibited a gender bias in favor of males (70% males and 30% females). To study ALKBH1's potential involvement in DNA repair, fibroblasts were isolated from Alkbh1(-/-) mice, spontaneously immortalized and tested for resistance to DNA damaging agents. Alkbh1(-/-) and isogenic cells expressing hALKBH1 showed no difference in survival to the DNA damaging agents methyl-methionine sulfate or H2O2. This result indicates that ALKBH1 does not play a major role in the base excision repair pathway. To assess ALKBH1's role in class switch recombination, splenic B cells were isolated from Alkbh1(-/-) and Alkbh1(+/+) mice and subjected to switching from IgM to IgG1. No differences were found in IgG1 switching, suggesting that Alkbh1 is not involved in class switch recombination of the immunoglobulin heavy chain during B lymphocyte activation. PMID:23825659

  5. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability

    PubMed Central

    Sollier, Julie; Stork, Caroline Townsend; García-Rubio, María L.; Paulsen, Renee D.; Aguilera, Andrés; Cimprich, Karlene A.

    2014-01-01

    Summary R-loops, consisting of an RNA-DNA hybrid and displaced single-stranded DNA, are physiological structures that regulate various cellular processes occurring on chromatin. Intriguingly, changes in R-loop dynamics have also been associated with DNA damage accumulation and genome instability, however the mechanisms underlying R-loop induced DNA damage remain unknown. Here we demonstrate in human cells that R-loops induced by the absence of diverse RNA processing factors, including the RNA/DNA helicases Aquarius (AQR) and Senataxin (SETX), or by the inhibition of topoisomerase I, are actively processed into DNA double-strand breaks (DSBs) by the nucleotide excision repair endonucleases XPF and XPG. Surprisingly, DSB formation requires the transcription-coupled nucleotide excision repair (TC-NER) factor Cockayne syndrome group B (CSB), but not the global genome repair protein XPC. These findings reveal an unexpected and potentially deleterious role for TC-NER factors in driving R-loop-induced DNA damage and genome instability. PMID:25435140

  6. Mutations in XPA that prevent association with ERCC1 are defective in nucleotide excision repair.

    PubMed Central

    Li, L; Peterson, C A; Lu, X; Legerski, R J

    1995-01-01

    The human repair proteins XPA and ERCC1 have been shown to be absolutely required for the incision step of nucleotide excision repair, and recently we identified an interaction between these two proteins both in vivo and in vitro (L. Li, S. J. Elledge, C. A. Peterson, E. S. Bales, and R. J. Legerski, Proc. Natl. Acad. Sci. USA 91:5012-5016, 1994). In this report, we demonstrate the functional relevance of this interaction. The ERCC1-binding domain on XPA was previously mapped to a region containing two highly conserved XPA sequences, Gly-72 to Phe-75 and Glu-78 to Glu-84, which are termed the G and E motifs, respectively. Site-specific mutagenesis was used to independently delete these motifs and create two XPA mutants referred to as delta G and delta E. In vitro, the binding of ERCC1 to delta E was reduced by approximately 70%, and binding to delta G was undetectable; furthermore, both mutants failed to complement XPA cell extracts in an in vitro DNA repair synthesis assay. In vivo, the delta E mutant exhibited an intermediate level of complementation of XPA cells and the delta G mutant exhibited little or no complementation. In addition, the delta G mutant inhibited repair synthesis in wild-type cell extracts, indicating that it is a dominant negative mutant. The delta E and delta G mutations, however, did not affect preferential binding of XPA to damaged DNA. These results suggest that the association between XPA and ERCC1 is a required step in the nucleotide excision repair pathway and that the probable role of the interaction is to recruit the ERCC1 incision complex to the damage site. Finally, the affinity of the XPA-ERCC1 complex was found to increase as a function of salt concentration, indicating a hydrophobic interaction; the half-life of the complex was determined to be approximately 90 min. PMID:7891694

  7. New design of nucleotide excision repair (NER) inhibitors for combination cancer therapy.

    PubMed

    Gentile, Francesco; Tuszynski, Jack A; Barakat, Khaled H

    2016-04-01

    Many cancer chemotherapy agents act by targeting the DNA of cancer cells, causing substantial damage within their genome and causing them to undergo apoptosis. An effective DNA repair pathway in cancer cells can act in a reverse way by removing these drug-induced DNA lesions, allowing cancer cells to survive, grow and proliferate. In this context, DNA repair inhibitors opened a new avenue in cancer treatment, by blocking the DNA repair mechanisms from removing the chemotherapy-mediated DNA damage. In particular, the nucleotide excision repair (NER) involves more than thirty protein-protein interactions and removes DNA adducts caused by platinum-based chemotherapy. The excision repair cross-complementation group 1 (ERCC1)-xeroderma pigmentosum, complementation group A (XPA) protein (XPA-ERCC1) complex seems to be one of the most promising targets in this pathway. ERCC1 is over expressed in cancer cells and the only known cellular function so far for XPA is to recruit ERCC1 to the damaged point. Here, we build upon our recent advances in identifying inhibitors for this interaction and continue our efforts to rationally design more effective and potent regulators for the NER pathway. We employed in silico drug design techniques to: (1) identify compounds similar to the recently discovered inhibitors, but more effective at inhibiting the XPA-ERCC1 interactions, and (2) identify different scaffolds to develop novel lead compounds. Two known inhibitor structures have been used as starting points for two ligand/structure-hybrid virtual screening approaches. The findings described here form a milestone in discovering novel inhibitors for the NER pathway aiming at improving the efficacy of current platinum-based therapy, by modulating the XPA-ERCC1 interaction. PMID:26939044

  8. Cdt2-mediated XPG degradation promotes gap-filling DNA synthesis in nucleotide excision repair.

    PubMed

    Han, Chunhua; Wani, Gulzar; Zhao, Ran; Qian, Jiang; Sharma, Nidhi; He, Jinshan; Zhu, Qianzheng; Wang, Qi-En; Wani, Altaf A

    2015-01-01

    Xeroderma pigmentosum group G (XPG) protein is a structure-specific repair endonuclease, which cleaves DNA strands on the 3' side of the DNA damage during nucleotide excision repair (NER). XPG also plays a crucial role in initiating DNA repair synthesis through recruitment of PCNA to the repair sites. However, the fate of XPG protein subsequent to the excision of DNA damage has remained unresolved. Here, we show that XPG, following its action on bulky lesions resulting from exposures to UV irradiation and cisplatin, is subjected to proteasome-mediated proteolytic degradation. Productive NER processing is required for XPG degradation as both UV and cisplatin treatment-induced XPG degradation is compromised in NER-deficient XP-A, XP-B, XP-C, and XP-F cells. In addition, the NER-related XPG degradation requires Cdt2, a component of an E3 ubiquitin ligase, CRL4(Cdt2). Micropore local UV irradiation and in situ Proximity Ligation assays demonstrated that Cdt2 is recruited to the UV-damage sites and interacts with XPG in the presence of PCNA. Importantly, Cdt2-mediated XPG degradation is crucial to the subsequent recruitment of DNA polymerase δ and DNA repair synthesis. Collectively, our data support the idea of PCNA recruitment to damage sites which occurs in conjunction with XPG, recognition of the PCNA-bound XPG by CRL4(Cdt2) for specific ubiquitylation and finally the protein degradation. In essence, XPG elimination from DNA damage sites clears the chromatin space needed for the subsequent recruitment of DNA polymerase δ to the damage site and completion of gap-filling DNA synthesis during the final stage of NER. PMID:25483071

  9. A Case of Microangiopathic Hemolytic Anemia after Myxoma Excision and Mitral Valve Repair Presenting as Hemolytic Uremic Syndrome

    PubMed Central

    Park, Young Joo; Kim, Sang Pil; Shin, Ho-Jin

    2016-01-01

    Microangiopathic hemolytic anemia occurs in a diverse group of disorders, including thrombotic thrombocytopenic purpura, hemolytic uremic syndrome, and prosthetic cardiac valves. Hemolytic anemia also occurs as a rare complication after mitral valve repair. In this report, we describe a case of microangiopathic hemolytic anemia following myxoma excision and mitral valve repair, which was presented as hemolytic uremic syndrome. PMID:27081450

  10. A Case of Microangiopathic Hemolytic Anemia after Myxoma Excision and Mitral Valve Repair Presenting as Hemolytic Uremic Syndrome.

    PubMed

    Park, Young Joo; Kim, Sang Pil; Shin, Ho-Jin; Choi, Jung Hyun

    2016-03-01

    Microangiopathic hemolytic anemia occurs in a diverse group of disorders, including thrombotic thrombocytopenic purpura, hemolytic uremic syndrome, and prosthetic cardiac valves. Hemolytic anemia also occurs as a rare complication after mitral valve repair. In this report, we describe a case of microangiopathic hemolytic anemia following myxoma excision and mitral valve repair, which was presented as hemolytic uremic syndrome. PMID:27081450

  11. UV-induced DNA excision repair in rat fibroblasts during immortalization and terminal differentiation in vitro

    SciTech Connect

    Vijg, J.; Mullaart, E.; Berends, F.; Lohman, P.H.; Knook, D.L.

    1986-12-01

    UV-induced DNA excision repair was studied as DNA repair synthesis and dimer removal in rat fibroblast cultures, initiated from either dense or sparse inocula of primary cells grown from skin biopsies. During passaging in vitro an initial increase in DNA repair synthesis, determined both autoradiographically as unscheduled DNA synthesis (UDS) and by means of the BrdU photolysis assay as the number and average size of repair patches, was found to be associated with a morphological shift from small spindle-shaped to large pleiomorphic cells observed over the first twenty generations. In cell populations in growth crisis, a situation exclusively associated with thin-inoculum cultures in which the population predominantly consisted of large pleiomorphic cells, UDS was found to occur at a low level. After development of secondary cultures into immortal cell lines, both repair synthesis and morphology appeared to be the same as in the original primary spindle-shaped cells. At all passages the capacity to remove UV-induced pyrimidine dimers was found to be low, as indicated by the persistence of Micrococcus luteus UV endonuclease-sensitive sites. These results are discussed in the context of terminal differentiation and immortalization of rat fibroblasts upon establishment in vitro.

  12. Nucleotide excision repair and the 26S proteasome function together to promote trinucleotide repeat expansions.

    PubMed

    Concannon, Claire; Lahue, Robert S

    2014-01-01

    Trinucleotide repeat (TNR) expansion underpins a number of inheritable neurological human disorders. Multiple mechanisms are thought to contribute to the expansion process. The incorrect processing of the repeat tract by DNA repair proteins can drive this mutation process forward, as expansions are suppressed following ablation of certain repair factors in mouse models and cell models of disease. Nucleotide excision repair (NER) is one repair pathway implicated in TNR instability, although most previous work focussed on TNR contractions, not expansions. Here we investigated the role of NER in modulating expansions of threshold-length (CTG·CAG) repeats in yeast. We show that both the global genome and transcription-coupled repair subpathways promote expansions of threshold-length TNRs. Furthermore, NER works with the 26S proteasome to drive expansions, based on analysis of double mutants defective in both pathways, and of Rad23, a protein involved in both NER and the shuttling of ubiquitinated proteins to the proteasome. This work provides the first evidence that both subpathways of NER can promote threshold-length TNR expansions and that NER interacts with the proteasome to drive expansions. PMID:24359926

  13. MCM9 Is Required for Mammalian DNA Mismatch Repair.

    PubMed

    Traver, Sabine; Coulombe, Philippe; Peiffer, Isabelle; Hutchins, James R A; Kitzmann, Magali; Latreille, Daniel; Méchali, Marcel

    2015-09-01

    DNA mismatch repair (MMR) is an evolutionarily conserved process that corrects DNA polymerase errors during replication to maintain genomic integrity. In E. coli, the DNA helicase UvrD is implicated in MMR, yet an analogous helicase activity has not been identified in eukaryotes. Here, we show that mammalian MCM9, a protein involved in replication and homologous recombination, forms a complex with MMR initiation proteins (MSH2, MSH3, MLH1, PMS1, and the clamp loader RFC) and is essential for MMR. Mcm9-/- cells display microsatellite instability and MMR deficiency. The MCM9 complex has a helicase activity that is required for efficient MMR since wild-type but not helicase-dead MCM9 restores MMR activity in Mcm9-/- cells. Moreover, MCM9 loading onto chromatin is MSH2-dependent, and in turn MCM9 stimulates the recruitment of MLH1 to chromatin. Our results reveal a role for MCM9 and its helicase activity in mammalian MMR. PMID:26300262

  14. Investigation of bacterial nucleotide excision repair using single-molecule techniques.

    PubMed

    Van Houten, Bennett; Kad, Neil

    2014-08-01

    Despite three decades of biochemical and structural analysis of the prokaryotic nucleotide excision repair (NER) system, many intriguing questions remain with regard to how the UvrA, UvrB, and UvrC proteins detect, verify and remove a wide range of DNA lesions. Single-molecule techniques have begun to allow more detailed understanding of the kinetics and action mechanism of this complex process. This article reviews how atomic force microscopy and fluorescence microscopy have captured new glimpses of how these proteins work together to mediate NER. PMID:24472181

  15. E2F1 and p53 Transcription Factors as Accessory Factors for Nucleotide Excision Repair

    PubMed Central

    Vélez-Cruz, Renier; Johnson, David G.

    2012-01-01

    Many of the biochemical details of nucleotide excision repair (NER) have been established using purified proteins and DNA substrates. In cells however, DNA is tightly packaged around histones and other chromatin-associated proteins, which can be an obstacle to efficient repair. Several cooperating mechanisms enhance the efficiency of NER by altering chromatin structure. Interestingly, many of the players involved in modifying chromatin at sites of DNA damage were originally identified as regulators of transcription. These include ATP-dependent chromatin remodelers, histone modifying enzymes and several transcription factors. The p53 and E2F1 transcription factors are well known for their abilities to regulate gene expression in response to DNA damage. This review will highlight the underappreciated, transcription-independent functions of p53 and E2F1 in modifying chromatin structure in response to DNA damage to promote global NER. PMID:23202967

  16. SUMO and ubiquitin-dependent XPC exchange drives nucleotide excision repair

    PubMed Central

    van Cuijk, Loes; van Belle, Gijsbert J.; Turkyilmaz, Yasemin; Poulsen, Sara L.; Janssens, Roel C.; Theil, Arjan F.; Sabatella, Mariangela; Lans, Hannes; Mailand, Niels; Houtsmuller, Adriaan B.; Vermeulen, Wim; Marteijn, Jurgen A.

    2015-01-01

    XPC recognizes UV-induced DNA lesions and initiates their removal by nucleotide excision repair (NER). Damage recognition in NER is tightly controlled by ubiquitin and SUMO modifications. Recent studies have shown that the SUMO-targeted ubiquitin ligase RNF111 promotes K63-linked ubiquitylation of SUMOylated XPC after DNA damage. However, the exact regulatory function of these modifications in vivo remains elusive. Here we show that RNF111 is required for efficient repair of ultraviolet-induced DNA lesions. RNF111-mediated ubiquitylation promotes the release of XPC from damaged DNA after NER initiation, and is needed for stable incorporation of the NER endonucleases XPG and ERCC1/XPF. Our data suggest that RNF111, together with the CRL4DDB2 ubiquitin ligase complex, is responsible for sequential XPC ubiquitylation, which regulates the recruitment and release of XPC and is crucial for efficient progression of the NER reaction, thereby providing an extra layer of quality control of NER. PMID:26151477

  17. Vertebrate POLQ and POLβ Cooperate in Base Excision Repair of Oxidative DNA Damage

    PubMed Central

    Yoshimura, Michio; Kohzaki, Masaoki; Nakamura, Jun; Asagoshi, Kenjiro; Sonoda, Eiichiro; Hou, Esther; Prasad, Rajendra; Wilson, Samuel H.; Tano, Keizo; Yasui, Akira; Lan, Li; Seki, Mineaki; Wood, Richard D.; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Hochegger, Helfrid; Okada, Takashi; Hiraoka, Masahiro; Takeda, Shunichi

    2007-01-01

    Summary Base excision repair (BER) plays an essential role in protecting cells from mutagenic base damage caused by oxidative stress, hydrolysis, and environmental factors. POLQ is a DNA polymerase, which appears to be involved in translesion DNA synthesis (TLS) past base damage. We disrupted POLQ, and its homologs HEL308 and POLN in chicken DT40 cells, and also created polq/hel308 and polq/poln double mutants. We found that POLQ-deficient mutants exhibit hypersensitivity to oxidative base damage induced by H2O2, but not to UV or cisplatin. Surprisingly, this phenotype was synergistically increased by concomitant deletion of the major BER polymerase, POLβ. Moreover, extracts from a polq null mutant cell line show reduced BER activity, and POLQ, like POLβ, accumulated rapidly at sites of base damage. Accordingly, POLQ and POLβ share an overlapping function in the repair of oxidative base damage. Taken together, these results suggest a role for vertebrate POLQ in BER. PMID:17018297

  18. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, August 1, 1977-October 31, 1980

    SciTech Connect

    Evans, H.H.

    1980-10-01

    The objective of this research is to determine the role of DNA repair in mutagenesis and carcinogenesis in mammalian cells. More specifically, mutant strains will be selected which are deficient in various DNA repair pathways. These strains will be studied with regard to (1) the nature of the defect in repair, and (2) the mutability and transformability of the defective cells by various agents as compared to the wild type parental cells. The results to date include progress in the following areas: (1) determination of optimum conditions for growth and maintenance of cells and for quantitative measurement of various cellular parameters; (2) investigation of the effect of holding mutagenized cells for various periods in a density inhibited state on survival and on mutation and transformation frequencies; (3) examination of the repair capabilities of BHK cells, as compared to repair-proficient and repair-deficient human cells and excision-deficient mouse cells, as measured by the reactivation of Herpes simplex virus (HSV) treated with radiation and ethylmethane sulfonate (EMS); (4) initiation of host cell reactivation viral sucide enrichment and screening of survivors of the enrichment for sensitivity to ionizing radiation; and (5) investigation of the toxicity, mutagenicity, and carcinogenicity of various metabolites of 4-nitroquinoline-1-oxide (4-NQO). (ERB)

  19. A physical interaction of UvrD with nucleotide excision repair protein UvrB.

    PubMed

    Ahn, B

    2000-10-31

    The dual-incision nature of the reaction of UV-irradiated DNA catalyzed by the UvrABC complex potentially leads to excision of a damaged fragment. However, neither fragment release under nondenaturing conditions nor the UvrBC proteins are turned over. The addition of the UvrD protein to the incised DNA-UvrBC complex results in excision of the incised damaged strand and in the turnover of the UvrC protein. In an effort to better understand the involvement of UvrD in the excision step, immunoprecipitation was used to detect interacting proteins with UvrD in the DNA repair. In this communication, it is shown that UvrA and UvrB are precipitated with UvrD in solution but the UvrAB complex is not. In the incision complex, UvrB could be precipitated and the preincubation of UvrD with UvrB revealed an inhibitory effect on the turnover of the incision complex. These data imply that UvrB in the incision complex seems to recruit UvrD to the 3' incised site of the incised strand by protein-protein interaction and to allow initiation of unwinding by UvrD from the resulting nick in a 3' to 5' direction. PMID:11101153

  20. Excision repair of 5,6-dihydroxydihydrothymine from the DNA of Micrococcus radiodurans

    SciTech Connect

    Targovnik, H.S.; Hariharan, P.V.

    1980-08-01

    One of the major ionizing radiation products, 5,6-dihydroxydihydrothymine (thymine glycol), was measured in the DNA of Micrococcus radiodurans following exposure of cells to 6.8-MeV electrons or 254-nm ultraviolet light. Removal of 5,6-dihydroxydihydrothymine was measured in both an ionizing radiation-sensitive strain (262) and a highly radioresistant strain (the wild type W/sup +/) of Micrococcus radiodurans. Within 30 min of incubation (33/sup 0/C) following exposure to ultraviolet light (2400 J/m/sup 2/) approximately 60% of the thymine glycols were excised, whereas in the case of ionizing radiation (250 krad) only 35% were removed from the cellular DNA of the wild-type strain. In contrast less than 50% of the thymine glycols were excised from the sensitive strain. The amount of DNA degradation induced by radiation was less than 10% in both strains. The results suggest a possible correlation between reduced excision repair of base damage and increased radiation sensitivity.

  1. Polymorphisms within base and nucleotide excision repair pathways and risk of differentiated thyroid carcinoma.

    PubMed

    Cipollini, Monica; Figlioli, Gisella; Maccari, Giuseppe; Garritano, Sonia; De Santi, Chiara; Melaiu, Ombretta; Barone, Elisa; Bambi, Franco; Ermini, Stefano; Pellegrini, Giovanni; Cristaudo, Alfonso; Foddis, Rudy; Bonotti, Alessandra; Romei, Cristina; Vivaldi, Agnese; Agate, Laura; Molinari, Eleonora; Barale, Roberto; Forsti, Asta; Hemminki, Kari; Elisei, Rossella; Gemignani, Federica; Landi, Stefano

    2016-05-01

    The thyrocytes are exposed to high levels of oxidative stress which could induce DNA damages. Base excision repair (BER) is one of the principal mechanisms of defense against oxidative DNA damage, however recent evidences suggest that also nucleotide excision repair (NER) could be involved. The aim of present work was to identify novel differentiated thyroid cancer (DTC) risk variants in BER and NER genes. For this purpose, the most strongly associated SNPs within NER and BER genes found in our previous GWAS on DTC were selected and replicated in an independent series of samples for a new case-control study. Although a positive signal was detected at the nominal level of 0.05 for rs7689099 (encoding for an aminoacid change proline to arginine at codon 117 within NEIL3), none of the considered SNPs (i.e. rs7990340 and rs690860 within RFC3, rs3744767 and rs1131636 within RPA1, rs16962916 and rs3136166 in ERCC4, and rs17739370 and rs7689099 in NEIL3) was associated with the risk of DTC when the correction of multiple testing was applied. In conclusion, a role of NER and BER pathways was evoked in the susceptibility to DTC. However, this seemed to be limited to few polymorphic genes and the overall effect size appeared weak. PMID:27062014

  2. Molecular cloning of the human nucleotide-excision-repair gene ERCC4

    SciTech Connect

    Thompson, L.H.; Brookman, K.W.; Weber, C.A.; Salazar, E.P.; Reardon, J.T.; Sancar, A.; Deng, Z.; Siciliano, M.J.

    1994-07-19

    ERCC4 was previously identified in somatic cell hybrids as a human gene that corrects the nucleotide-excision-repair deficiency in mutant hamster cells. The cloning strategy for ERCC4 involved transfection of the repair-deficient hamster cell line UV41 with a human sCos-1 cosmid library derived from chromosome 16. Enhanced UV resistance was seen with one cosmid-library transformant and two secondary transformants of UV41. Cosmid clones carrying a functional ERCC4 gene were isolated from a library of a second transformant by selecting in Escherichia coli for expression of a linked neomycin-resistance gene that was present in the sCos-1 vector. The cosmids mapped to 16p13.13-p13.2, the location assigned to ERCC4 by using somatic cell hybrids. Upon transfection into UV41, six cosmid clones gave partial correction ranging from 30% to 64%, although all appeared to contain the complete gene. The capacity for in vitro excision of thymine dimers from a plasmid by transformant cell extracts correlated qualitatively with enhanced UV resistance.

  3. Transcriptional and Post-Transcriptional Regulation of Nucleotide Excision Repair Genes in Human Cells

    PubMed Central

    Lefkofsky, Hailey B.; Veloso, Artur; Ljungman, Mats

    2014-01-01

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death. PMID:26255935

  4. Cloning and molecular characterization of the Chinese hamster ERCC2 nucleotide excision repair gene

    SciTech Connect

    Kirchner, J.M.; Salazar, E.P.; Lamerdin, J.E.

    1994-10-01

    The Chinese hamster ERCC2 nucleotide excision repair gene, encoding a presumed ATP-dependent DNA helicase, was cloned from the V79 cell line, and its nucleotide sequence was determined. The {approximately}15-kb gene comprises 23 exons with a 2283-base open reading frame. The predicted 760-amino-acid protein is 98% identical to the human ERCC2/EXP (760 amino acids), 51% identical to the Saccharomyces cerevisiae RAD3 (778 amino acids), and 54% identical to the Schizosaccharomyces pombe rad15 (772 amino acids) proteins. The promoter region of the hamster ERCC2 gene contains a pyrimidine-rich stretch (42 nucleotides, 88% C+T) similar to sequences found in the promoter regions of two other nucleotide excision repair genes, a GC box, a putative {alpha}-Pal transcription factor binding site, and two CAAT boxes. There is no apparent TAATA box. No consensus polyadenylation sequence (AATAAA or its variants) was found with 663 bases 3{prime} of the translation termination codon. 54 refs., 2 figs., 2 tabs.

  5. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells.

    PubMed

    Lefkofsky, Hailey B; Veloso, Artur; Ljungman, Mats

    2015-06-01

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death. PMID:26255935

  6. Nucleotide excision repair of the 5 S ribosomal RNA gene assembled into a nucleosome.

    PubMed

    Liu, X; Smerdon, M J

    2000-08-01

    A-175-base pair fragment containing the Xenopus borealis somatic 5 S ribosomal RNA gene was used as a model system to determine the effect of nucleosome assembly on nucleotide excision repair (NER) of the major UV photoproduct (cyclobutane pyrimidine dimer (CPD)) in DNA. Xenopus oocyte nuclear extracts were used to carry out repair in vitro on reconstituted, positioned 5 S rDNA nucleosomes. Nucleosome structure strongly inhibits NER at many CPD sites in the 5 S rDNA fragment while having little effect at a few sites. The time course of CPD removal at 35 different sites indicates that >85% of the CPDs in the naked DNA fragment have t(12) values <2 h, whereas <26% of the t(12) values in nucleosomes are <2 h, and 15% are >8 h. Moreover, removal of histone tails from these mononucleosomes has little effect on the repair rates. Finally, nucleosome inhibition of repair shows no correlation with the rotational setting of a 14-nucleotide-long pyrimidine tract located 30 base pairs from the nucleosome dyad. These results suggest that inhibition of NER by mononucleosomes is not significantly influenced by the rotational orientation of CPDs on the histone surface, and histone tails play little (or no) role in this inhibition. PMID:10821833

  7. UV sensitivity and impaired nucleotide excision repair in DNA-dependent protein kinase mutant cells.

    PubMed Central

    Muller, C; Calsou, P; Frit, P; Cayrol, C; Carter, T; Salles, B

    1998-01-01

    DNA-dependent protein kinase (DNA-PK), a member of the phosphatidyl-inositol (PI)3-kinase family, is involved in the repair of DNA double-strand breaks. Its regulatory subunit, Ku, binds to DNA and recruits the kinase catalytic subunit (DNA-PKcs). We show here a new role of DNA-PK in the modulation of the process of nucleotide excision repair (NER) in vivo since, as compared with their respective parental cell lines, DNA-PK mutants (scid , V-3 and xrs 6 cells) exhibit sensitivity to UV-C irradiation (2.0- to 2.5-fold) and cisplatin ( approximately 3- to 4-fold) associated with a decreased activity (40-55%) of unscheduled DNA synthesis after UV-C irradiation. Moreover, we observed that wortmannin sensitized parental cells in vivo when combined with either cisplatin or UV-C light, but had no effect on the DNA-PKcs deficient scid cells. Despite a lower repair synthesis activity (approximately 2-fold) measured in vitro with nuclear cell extracts from DNA-PK mutants, a direct involvement of DNA-PK in the NER reaction in vitro has not been observed. This study establishes a regulatory function of DNA-PK in the NER process in vivo but rules out a physical role of the complex in the repair machinery at the site of the DNA lesion. PMID:9490781

  8. TGF-β signaling links E-cadherin loss to suppression of nucleotide excision repair.

    PubMed

    Qiang, L; Shah, P; Barcellos-Hoff, M H; He, Y Y

    2016-06-23

    E-cadherin is a cell adhesion molecule best known for its function in suppressing tumor progression and metastasis. Here we show that E-cadherin promotes nucleotide excision repair through positively regulating the expression of xeroderma pigmentosum complementation group C (XPC) and DNA damage-binding protein 1 (DDB1). Loss of E-cadherin activates the E2F4 and p130/107 transcription repressor complexes to suppress the transcription of both XPC and DDB1 through activating the transforming growth factor-β (TGF-β) pathway. Adding XPC or DDB1, or inhibiting the TGF-β pathway, increases the repair of ultraviolet (UV)-induced DNA damage in E-cadherin-inhibited cells. In the mouse skin and skin tumors, UVB radiation downregulates E-cadherin. In sun-associated premalignant and malignant skin neoplasia, E-cadherin is downregulated in association with reduced XPC and DDB1 levels. These findings demonstrate a crucial role of E-cadherin in efficient DNA repair of UV-induced DNA damage, identify a new link between epithelial adhesion and DNA repair and suggest a mechanistic link of early E-cadherin loss in tumor initiation. PMID:26477308

  9. The PARP inhibitor Olaparib disrupts base excision repair of 5-aza-2'-deoxycytidine lesions.

    PubMed

    Orta, Manuel Luis; Höglund, Andreas; Calderón-Montaño, José Manuel; Domínguez, Inmaculada; Burgos-Morón, Estefanía; Visnes, Torkild; Pastor, Nuria; Ström, Cecilia; López-lázaro, Miguel; Helleday, Thomas

    2014-08-01

    Decitabine (5-aza-2'-deoxycytidine, 5-azadC) is used in the treatment of Myelodysplatic syndrome (MDS) and Acute Myeloid Leukemia (AML). Its mechanism of action is thought to involve reactivation of genes implicated in differentiation and transformation, as well as induction of DNA damage by trapping DNA methyltranferases (DNMT) to DNA. We demonstrate for the first time that base excision repair (BER) recognizes 5-azadC-induced lesions in DNA and mediates repair. We find that BER (XRCC1) deficient cells are sensitive to 5-azadC and display an increased amount of DNA single- and double-strand breaks. The XRCC1 protein co-localizes with DNMT1 foci after 5-azadC treatment, suggesting a novel and specific role of XRCC1 in the repair of trapped DNMT1. 5-azadC-induced DNMT foci persist in XRCC1 defective cells, demonstrating a role for XRCC1 in repair of 5-azadC-induced DNA lesions. Poly (ADP-ribose) polymerase (PARP) inhibition prevents XRCC1 relocation to DNA damage sites, disrupts XRCC1-DNMT1 co-localization and thereby efficient BER. In a panel of AML cell lines, combining 5-azadC and Olaparib cause synthetic lethality. These data suggest that PARP inhibitors can be used in combination with 5-azadC to improve treatment of MDS and AML. PMID:25074383

  10. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription*

    PubMed Central

    Nadkarni, Aditi; Burns, John A.; Gandolfi, Alberto; Chowdhury, Moinuddin A.; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E.; Scicchitano, David A.

    2016-01-01

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N6-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N6-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N6-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N6-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N6-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. PMID:26559971

  11. Recruitment of the Nucleotide Excision Repair Endonuclease XPG to Sites of UV-Induced DNA Damage Depends on Functional TFIIH▿

    PubMed Central

    Zotter, Angelika; Luijsterburg, Martijn S.; Warmerdam, Daniël O.; Ibrahim, Shehu; Nigg, Alex; van Cappellen, Wiggert A.; Hoeijmakers, Jan H. J.; van Driel, Roel; Vermeulen, Wim; Houtsmuller, Adriaan B.

    2006-01-01

    The structure-specific endonuclease XPG is an indispensable core protein of the nucleotide excision repair (NER) machinery. XPG cleaves the DNA strand at the 3′ side of the DNA damage. XPG binding stabilizes the NER preincision complex and is essential for the 5′ incision by the ERCC1/XPF endonuclease. We have studied the dynamic role of XPG in its different cellular functions in living cells. We have created mammalian cell lines that lack functional endogenous XPG and stably express enhanced green fluorescent protein (eGFP)-tagged XPG. Life cell imaging shows that in undamaged cells XPG-eGFP is uniformly distributed throughout the cell nucleus, diffuses freely, and is not stably associated with other nuclear proteins. XPG is recruited to UV-damaged DNA with a half-life of 200 s and is bound for 4 min in NER complexes. Recruitment requires functional TFIIH, although some TFIIH mutants allow slow XPG recruitment. Remarkably, binding of XPG to damaged DNA does not require the DDB2 protein, which is thought to enhance damage recognition by NER factor XPC. Together, our data present a comprehensive view of the in vivo behavior of a protein that is involved in a complex chromatin-associated process. PMID:17000769

  12. Genetic characterization of the nucleotide excision repair system of Neisseria gonorrhoeae.

    PubMed

    LeCuyer, Brian E; Criss, Alison K; Seifert, H Steven

    2010-02-01

    Nucleotide excision repair (NER) is universally used to recognize and remove many types of DNA damage. In eubacteria, the NER system typically consists of UvrA, UvrB, UvrC, the UvrD helicase, DNA polymerase I, and ligase. In addition, when DNA damage blocks transcription, transcription-repair coupling factor (TRCF), the product of the mfd gene, recruits the Uvr complex to repair the damage. Previous work using selected mutants and assays have indicated that pathogenic Neisseria spp. carry a functional NER system. In order to comprehensively examine the role of NER in Neisseria gonorrhoeae DNA recombination and repair processes, the predicted NER genes (uvrA, uvrB, uvrC, uvrD, and mfd) were each disrupted by a transposon insertion, and the uvrB and uvrD mutants were complemented with a copy of each gene in an ectopic locus. Each uvr mutant strain was highly sensitive to UV irradiation and also showed sensitivity to hydrogen peroxide killing, confirming that all of the NER genes in N. gonorrhoeae are functional. The effect of RecA expression on UV survival was minor in uvr mutants but much larger in the mfd mutant. All of the NER mutants demonstrated wild-type levels of pilin antigenic variation and DNA transformation. However, the uvrD mutant exhibited higher frequencies of PilC-mediated pilus phase variation and spontaneous mutation, a finding consistent with a role for UvrD in mismatch repair. We conclude that NER functions are conserved in N. gonorrhoeae and are important for the DNA repair capabilities of this strict human pathogen. PMID:19933360

  13. Nucleotide excision repair (NER) machinery recruitment by the transcription-repair coupling factor involves unmasking of a conserved intramolecular interface

    PubMed Central

    Deaconescu, Alexandra M.; Sevostyanova, Anastasia; Artsimovitch, Irina; Grigorieff, Nikolaus

    2012-01-01

    Transcription-coupled DNA repair targets DNA lesions that block progression of elongating RNA polymerases. In bacteria, the transcription-repair coupling factor (TRCF; also known as Mfd) SF2 ATPase recognizes RNA polymerase stalled at a site of DNA damage, removes the enzyme from the DNA, and recruits the Uvr(A)BC nucleotide excision repair machinery via UvrA binding. Previous studies of TRCF revealed a molecular architecture incompatible with UvrA binding, leaving its recruitment mechanism unclear. Here, we examine the UvrA recognition determinants of TRCF using X-ray crystallography of a core TRCF–UvrA complex and probe the conformational flexibility of TRCF in the absence and presence of nucleotides using small-angle X-ray scattering. We demonstrate that the C-terminal domain of TRCF is inhibitory for UvrA binding, but not RNA polymerase release, and show that nucleotide binding induces concerted multidomain motions. Our studies suggest that autoinhibition of UvrA binding in TRCF may be relieved only upon engaging the DNA damage. PMID:22331906

  14. The role of glutathione in the regulation of nucleotide excision repair during oxidative stress.

    PubMed

    Langie, Sabine A S; Knaapen, Ad M; Houben, Joyce M J; van Kempen, Frederik C; de Hoon, Joep P J; Gottschalk, Ralph W H; Godschalk, Roger W L; van Schooten, Frederik J

    2007-02-01

    Nucleotide excision repair (NER) mainly repairs bulky DNA adducts and helix distorting lesions, but is additionally considered to be a back-up system for base excision repair to remove oxidative stress induced DNA damage. Therefore, it can be speculated that NER is up-regulated or primed by oxidative stress. Exposure of human pulmonary epithelial cells (A549) to non-toxic doses of 100muM H(2)O(2) indeed showed a 2 to 4.5-fold increase in expression of XPA, XPC, ERCC4, and ERCC5, whereas the expression of ERCC1 was 5-fold decreased. Phenotypical assessment of NER capacity (i.e. recognition and incision of benzo[a]pyrene-DNA adducts) showed a significant decrease to less than 50% after H(2)O(2) exposure, which paralleled the effects of H(2)O(2) on ERCC1 expression. To study the possible involvement of glutathione (GSH) in the regulation of NER, cells were pre-incubated with 0.5mM BSO, resulting in total GSH depletion and increased intracellular oxidative stress. In GSH-depleted cells, the down-regulation of ERCC1 expression by H(2)O(2) was completely abolished and the up-regulation of ERCC4 expression was potentiated from 2.5-fold to >10-fold. Similarly, the H(2)O(2)-induced decrease in NER capacity was absent in GSH-depleted cells. Overall, our data suggest that NER capacity as well as the expression of NER related genes can be modulated by oxidative stress. ERCC1 expression and NER capacity correlated strongly (R(2)=0.85, P<0.01) after oxidant exposure, indicating ERCC1 as a specific target for oxidative stress induced modification of NER. PMID:17207589

  15. Nucleotide Excision Repair Is Not Induced in Human Embryonic Lung Fibroblasts Treated with Environmental Pollutants

    PubMed Central

    Rossner, Pavel; Spatova, Milada; Rossnerova, Andrea; Libalova, Helena; Schmuczerova, Jana; Milcova, Alena; Topinka, Jan; Sram, Radim J.

    2013-01-01

    The cellular response to genotoxic treatment depends on the cell line used. Although tumor cell lines are widely used for genotoxicity tests, the interpretation of the results may be potentially hampered by changes in cellular processes caused by malignant transformation. In our study we used normal human embryonic lung fibroblasts (HEL12469 cells) and tested their response to treatment with benzo[a]pyrene (B[a]P) and extractable organic matter (EOM) from ambient air particles <2.5 µm (PM2.5) collected in two Czech cities differing in levels and sources of air pollution. We analyzed multiple endpoints associated with exposure to polycyclic aromatic hydrocarbons (PAHs) including the levels of bulky DNA adducts and the nucleotide excision repair (NER) response [expression of XPE, XPC and XPA genes on the level of mRNA and proteins, unscheduled DNA synthesis (UDS)]. EOMs were collected in the winter and summer of 2011 in two Czech cities with different levels and sources of air pollution. The effects of the studied compounds were analyzed in the presence (+S9) and absence (–S9) of the rat liver microsomal S9 fraction. The levels of bulky DNA adducts were highest after treatment with B[a]P, followed by winter EOMs; their induction by summer EOMs was weak. The induction of both mRNA and protein expression was observed, with the most pronounced effects after treatment with B[a]P (–S9); the response induced by EOMs from both cities and seasons was substantially weaker. The expression of DNA repair genes was not accompanied by the induction of UDS activity. In summary, our results indicate that the tested compounds induced low levels of DNA damage and affected the expression of NER genes; however, nucleotide excision repair was not induced. PMID:23894430

  16. Base excision DNA repair in the embryonic development of the sea urchin, Strongylocentrotus intermedius.

    PubMed

    Torgasheva, Natalya A; Menzorova, Natalya I; Sibirtsev, Yurii T; Rasskazov, Valery A; Zharkov, Dmitry O; Nevinsky, Georgy A

    2016-06-21

    In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability. PMID:27158700

  17. XRCC1 and base excision repair balance in response to nitric oxide.

    PubMed

    Mutamba, James T; Svilar, David; Prasongtanakij, Somsak; Wang, Xiao-Hong; Lin, Ying-Chih; Dedon, Peter C; Sobol, Robert W; Engelward, Bevin P

    2011-12-10

    Inflammation associated reactive oxygen and nitrogen species (RONs), including peroxynitrite (ONOO(-)) and nitric oxide (NO), create base lesions that potentially play a role in the toxicity and large genomic rearrangements associated with many malignancies. Little is known about the role of base excision repair (BER) in removing these endogenous DNA lesions. Here, we explore the role of X-ray repair cross-complementing group 1 (XRCC1) in attenuating RONs-induced genotoxicity. XRCC1 is a scaffold protein critical for BER for which polymorphisms modulate the risk of cancer. We exploited CHO and human glioblastoma cell lines engineered to express varied levels of BER proteins to study XRCC1. Cytotoxicity and the levels of DNA repair intermediates (single-strand breaks; SSB) were evaluated following exposure of the cells to the ONOO(-) donor, SIN-1, and to gaseous NO. XRCC1 null cells were slightly more sensitive to SIN-1 than wild-type cells. We used small-scale bioreactors to expose cells to NO and found that XRCC1-deficient CHO cells were not sensitive. However, using a molecular beacon assay to test lesion removal in vitro, we found that XRCC1 facilitates AAG-initiated excision of two key NO-induced DNA lesions: 1,N(6)-ethenoadenine and hypoxanthine. Furthermore, overexpression of AAG rendered XRCC1-deficient cells sensitive to NO-induced DNA damage. These results show that AAG is a key glycosylase for BER of NO-induced DNA damage and that XRCC1's role in modulating sensitivity to RONs is dependent upon the cellular level of AAG. This demonstrates the importance of considering the expression of other components of the BER pathway when evaluating the impact of XRCC1 polymorphisms on cancer risk. PMID:22041025

  18. Induction of DNA polymerase beta-dependent base excision repair in response to oxidative stress in vivo.

    PubMed

    Cabelof, Diane C; Raffoul, Julian J; Yanamadala, Sunitha; Guo, ZhongMao; Heydari, Ahmad R

    2002-09-01

    Base excision repair (BER) is the DNA repair pathway primarily responsible for repairing small base modifications and abasic sites caused by normal cellular metabolism or environmental insult. Strong evidence supports the requirement of DNA polymerase beta (beta-pol) in the BER pathway involving single nucleotide gap filling DNA synthesis in mammalian systems. In this study, we examine the relationship between oxidative stress, cellular levels of beta-pol and BER to determine whether oxidizing agents can upregulate BER capacity in vivo. Intraperitoneal injection of 2-nitropropane (2-NP, 100 mg/kg), an oxidative stress-inducing agent, in C57BL/6 mice was found to generate 8-hydroxydeoxyguanosine (8-OHdG) in liver tissue (4-fold increase, P < 0.001). We also observed a 4-5-fold increase in levels of DNA single strand breaks in 2-NP treated animals. The protein level of the tumor suppressor gene, p53 was also induced in liver by 2-NP (2.1-fold, P < 0.01), indicating an induction of DNA damage. In addition, we observed a 2-3-fold increase in mutant frequency in the lacI gene after exposure to 2-NP. Interestingly, an increase in DNA damage upregulated the level of beta-pol as well as BER capacity (42%, P < 0.05). These results suggest that beta-pol and BER can be upregulated in response to oxidative stress in vivo. Furthermore, data show that heterozygous beta-pol knockout (beta-pol(+/-)) mice express higher levels of p53 in response to 2-NP as compared with wild-type littermates. While the knockout and wild-type mice display similar levels of 8-OHdG after 2-NP exposure, the beta-pol(+/-) mice exhibit a significant increase in DNA single strand breaks. These findings suggest that in mice, a reduction in beta-pol expression results in a higher accumulation of DNA damage by 2-NP, thus establishing the importance of the beta-pol-dependent BER pathway in repairing oxidative damage. PMID:12189182

  19. Cells deficient in base-excision repair reveal cancer hallmarks originating from adjustments to genetic instability

    PubMed Central

    Markkanen, Enni; Fischer, Roman; Ledentcova, Marina; Kessler, Benedikt M.; Dianov, Grigory L.

    2015-01-01

    Genetic instability, provoked by exogenous mutagens, is well linked to initiation of cancer. However, even in unstressed cells, DNA undergoes a plethora of spontaneous alterations provoked by its inherent chemical instability and the intracellular milieu. Base excision repair (BER) is the major cellular pathway responsible for repair of these lesions, and as deficiency in BER activity results in DNA damage it has been proposed that it may trigger the development of sporadic cancers. Nevertheless, experimental evidence for this model remains inconsistent and elusive. Here, we performed a proteomic analysis of BER deficient human cells using stable isotope labelling with amino acids in cell culture (SILAC), and demonstrate that BER deficiency, which induces genetic instability, results in dramatic changes in gene expression, resembling changes found in many cancers. We observed profound alterations in tissue homeostasis, serine biosynthesis, and one-carbon- and amino acid metabolism, all of which have been identified as cancer cell ‘hallmarks’. For the first time, this study describes gene expression changes characteristic for cells deficient in repair of endogenous DNA lesions by BER. These expression changes resemble those observed in cancer cells, suggesting that genetically unstable BER deficient cells may be a source of pre-cancerous cells. PMID:25800737

  20. Base excision repair: NMR backbone assignments of Escherichia coli formamidopyrimidine-DNA glycosylase

    SciTech Connect

    Buchko, Garry W.; Wallace, Susan S.; Kennedy, Michael A.

    2002-03-01

    Oxidative damage is emerging as one of the most important mechanisms responsible for mutagenesis, carcinogenesis, aging, and various diseases (Farr and Kogma, 1991). One of the potential targets for oxidation is cellular DNA. While exposure to exogenous agents, such as ionizing radiation and chemicals, contributes to damaging DNA, the most important oxidative agents are endogenous, such as the reactive free radicals produced during normal oxidative metabolism (Adelman et., 1988). To mitigate the potentially deleterious effects of oxidative DNA damage virtually all aerobic organisms have developed complex repair mechanisms (Petit and Sancar, 1999). One repair mechanism, base excision repair (BER), appears to be responsible for replacing most oxidative DNA damage (David and Williams, 1998). Formamidopyrimidine-DNA glycosylase (Fpg), a 269-residue metalloprotein with a molecular weight of 30.2 kDa, is a key BER enzyme in prokaryotes (Boiteaux et al., 1987). Substrates recognized and released by Fpg include 7,8-dihydro-8-oxoguanine (8-oxoG), 2,6 diamino-4-hydroxy-5-formamido pyrimidine (Fapy-G), the adenine equivalents 8-oxoA and Fapy-A, 5-hydroxycytosine, 5-hydroxyuracil, B ureidoisobutiric acid, and a-R-hydroxy-B-ureidoisobutiric acid (Freidberg et al., 1995). In vitro Fpg bind double-stranded DNA and performs three catalytic activities: (i) DNA glycosylase, (ii) AP lyase, and (iii) deoxyribophosphodiesterase.

  1. Enhanced nucleotide excision repair capacity in lung cancer cells by preconditioning with DNA-damaging agents

    PubMed Central

    Choi, Ji Ye; Park, Jeong-Min; Yi, Joo Mi; Leem, Sun-Hee; Kang, Tae-Hong

    2015-01-01

    The capacity of tumor cells for nucleotide excision repair (NER) is a major determinant of the efficacy of and resistance to DNA-damaging chemotherapeutics, such as cisplatin. Here, we demonstrate that using lesion-specific monoclonal antibodies, NER capacity is enhanced in human lung cancer cells after preconditioning with DNA-damaging agents. Preconditioning of cells with a nonlethal dose of UV radiation facilitated the kinetics of subsequent cisplatin repair and vice versa. Dual-incision assay confirmed that the enhanced NER capacity was sustained for 2 days. Checkpoint activation by ATR kinase and expression of NER factors were not altered significantly by the preconditioning, whereas association of XPA, the rate-limiting factor in NER, with chromatin was accelerated. In preconditioned cells, SIRT1 expression was increased, and this resulted in a decrease in acetylated XPA. Inhibition of SIRT1 abrogated the preconditioning-induced predominant XPA binding to DNA lesions. Taking these data together, we conclude that upregulated NER capacity in preconditioned lung cancer cells is caused partly by an increased level of SIRT1, which modulates XPA sensitivity to DNA damage. This study provides some insights into the molecular mechanism of chemoresistance through acquisition of enhanced DNA repair capacity in cancer cells. PMID:26317794

  2. Oxidative DNA damage background estimated by a system model of base excision repair

    SciTech Connect

    Sokhansanj, B A; Wilson, III, D M

    2004-05-13

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parameters from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.

  3. Regulation of nucleotide excision repair activity by transcriptional and post-transcriptional control of the XPA protein.

    PubMed

    Kang, Tae-Hong; Reardon, Joyce T; Sancar, Aziz

    2011-04-01

    The XPA (Xeroderma pigmentosum A) protein is one of the six core factors of the human nucleotide excision repair system. In this study we show that XPA is a rate-limiting factor in all human cell lines tested, including a normal human fibroblast cell line. The level of XPA is controlled at the transcriptional level by the molecular circadian clock and at the post-translational level by a HECT domain family E3 ubiquitin ligase called HERC2. Stabilization of XPA by downregulation of HERC2 moderately enhances excision repair activity. Conversely, downregulation of XPA by siRNA reduces excision repair activity in proportion to the level of XPA. Ubiquitination and proteolysis of XPA are inhibited by DNA damage that promotes tight association of the protein with chromatin and its dissociation from the HERC2 E3 ligase. Finally, in agreement with a recent report, we find that XPA is post-translationally modified by acetylation. However, contrary to the previous claim, we find that in mouse liver only a small fraction of XPA is acetylated and that downregulation of SIRT1 deacetylase in two human cell lines does not affect the overall repair rate. Collectively, the data reveal that XPA is a limiting factor in excision repair and that its level is coordinately regulated by the circadian clock, the ubiquitin-proteasome system and DNA damage. PMID:21193487

  4. 1999 Gordon Research Conference on Mammalian DNA Repair. Final Progress Report

    SciTech Connect

    1999-02-12

    This Conference will examine DNA repair as the key component in genomic surveillance that is so crucial to the overall integrity and function of mammalian cells. Recent discoveries have catapulted the field of DNA repair into a pivotal position for fundamental investigations into oncology, aging, environmental health, and developmental biology. We hope to highlight the most promising and exciting avenues of research in robust discussions at this conference. This Mammalian DNA Repair Gordon Conference differs from the past conferences in this series, in which the programs were broader in scope, with respect to topics and biological systems covered. A conference sponsored by the Genetics Society in April 1998 emphasized recombinational mechanisms for double-strand break repair and the role of mismatch repair deficiency in colorectal cancer. These topics will therefore receive somewhat less emphasis in the upcoming Conference. In view of the recent mechanistic advances in mammalian DNA repair, an upcoming comprehensive DNA repair meeting next autumn at Hilton Head; and the limited enrollment for Gordon Conferences we have decided to focus session-by-session on particular areas of controversy and/or new developments specifically in mammalian systems. Thus, the principal presentations will draw upon results from other cellular systems only to the extent that they impact our understanding of mammalian DNA repair.

  5. An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair.

    PubMed Central

    Li, L; Lu, X; Peterson, C A; Legerski, R J

    1995-01-01

    Replication protein A (RPA) is required for simian virus 40-directed DNA replication in vitro and for nucleotide excision repair (NER). Here we report that RPA and the human repair protein XPA specifically interact both in vitro and in vivo. Mapping of the RPA-interactive domains in XPA revealed that both of the largest subunits of RPA, RPA-70 and RPA-34, interact with XPA at distinct sites. A domain involved in mediating the interaction with RPA-70 was located between XPA residues 153 and 176. Deletion of highly conserved motifs within this region identified two mutants that were deficient in binding RPA in vitro and highly defective in NER both in vitro and in vivo. A second domain mediating the interaction with RPA-34 was identified within the first 58 residues in XPA. Deletion of this region, however, only moderately affects the complementing activity of XPA in vivo. Finally, the XPA-RPA complex is shown to have a greater affinity for damaged DNA than XPA alone. Taken together, these results indicate that the interaction between XPA and RPA is required for NER but that only the interaction with RPA-70 is essential. PMID:7565690

  6. Enzymatic Activity Assays for Base Excision Repair Enzymes in Cell Extracts from Vertebrate Cells

    PubMed Central

    Çağlayan, Melike; Horton, Julie K.; Wilson, Samuel H.

    2016-01-01

    We previously reported enzymatic activity assays for the base excision repair (BER) enzymes DNA polymerase β (pol β), aprataxin (APTX), and flap endonuclease 1 (FEN1) in cell extracts from Saccharomyces cerevisiae (Çağlayan and Wilson, 2014). Here, we describe a method to prepare cell extracts from vertebrate cells to investigate these enzymatic activities for the processing of the 5′-adenylated-sugar phosphate-containing BER intermediate. This new protocol complements our previous publication. The cell lines used are wild-type and APTX-deficient human lymphoblast cells from an Ataxia with Oculomotor Apraxia Type 1 (AOA1) disease patient, wild-type and APTX-null DT40 chicken B cells, and mouse embryonic fibroblast (MEF) cells. This protocol is a quick and efficient way to make vertebrate cell extracts without using commercial kits. PMID:27390764

  7. Structure of UvrA nucleotide excision repair protein in complex with modified DNA

    PubMed Central

    Jaciuk, Marcin; Nowak, Elżbieta; Skowronek, Krzysztof; Tańska, Anna; Nowotny, Marcin

    2012-01-01

    One of the primary pathways for removal of DNA damage is nucleotide excision repair (NER). In bacteria, the UvrA protein is the component of NER that locates the lesion. A notable feature of NER is its ability to act on many DNA modifications that vary in chemical structure. So far, the mechanism underlying this broad specificity has been unclear. Here, we report the first crystal structure of a UvrA protein in complex with a chemically modified oligonucleotide. The structure shows that the UvrA dimer does not contact the site of lesion directly, but rather binds the DNA regions on both sides of the modification. The DNA region harboring the modification is deformed, with the double helix bent and unwound. UvrA uses damage-induced deformations of the DNA and a less rigid structure of the modified double helix for indirect readout of the lesion. PMID:21240268

  8. R152C DNA Pol β mutation impairs base excision repair and induces cellular transformation

    PubMed Central

    Zhao, Jing; Sun, Hongfang; Zhou, Xiaolong; Wu, Xuping; He, Lingfeng; Hu, Zhigang; Chen, Haoyan; Shen, Binghui; Guo, Zhigang

    2016-01-01

    DNA polymerase β (Pol β) is a key enzyme in DNA base excision repair (BER), a pathway that maintains genome integrity and stability. Pol β mutations have been detected in various types of cancers, suggesting a possible linkage between Pol β mutations and cancer. However, it is not clear whether and how Pol β mutations cause cancer onset and progression. In the current work, we show that a substitution mutation, R152C, impairs Pol β polymerase activity and BER efficiency. Cells harboring Pol β R152C are sensitive to the DNA damaging agents methyl methanesulfonate (MMS) and H2O2. Moreover, the mutant cells display a high frequency of chromatid breakages and aneuploidy and also form foci. Taken together, our data indicate that Pol β R152C can drive cellular transformation. PMID:26760506

  9. UVSSA and USP7: new players regulating transcription-coupled nucleotide excision repair in human cells

    PubMed Central

    2012-01-01

    Transcription-coupled nucleotide excision repair (TC-NER) specifically removes DNA damage located in actively transcribed genes. Defects in TC-NER are associated with several human disorders, including Cockayne syndrome (CS) and ultraviolet (UV)-sensitive syndrome (UVSS). Using exome sequencing, and genetic and proteomic approaches, three recent studies have identified mutations in the UVSSA gene as being responsible for UVSS-A. These findings suggest a new mechanistic model involving UV-stimulated scaffold protein A (UVSSA) and the ubiquitin-specific protease 7 (USP7) in the fate of stalled RNA polymerase II during TC-NER, and provide insights into the diverse clinical features of CS and UVSS. PMID:22621766

  10. UVSSA and USP7: new players regulating transcription-coupled nucleotide excision repair in human cells.

    PubMed

    Sarasin, Alain

    2012-01-01

    Transcription-coupled nucleotide excision repair (TC-NER) specifically removes DNA damage located in actively transcribed genes. Defects in TC-NER are associated with several human disorders, including Cockayne syndrome (CS) and ultraviolet (UV)-sensitive syndrome (UVSS). Using exome sequencing, and genetic and proteomic approaches, three recent studies have identified mutations in the UVSSA gene as being responsible for UVSS-A. These findings suggest a new mechanistic model involving UV-stimulated scaffold protein A (UVSSA) and the ubiquitin-specific protease 7 (USP7) in the fate of stalled RNA polymerase II during TC-NER, and provide insights into the diverse clinical features of CS and UVSS. PMID:22621766

  11. Nucleotide excision repair in chromatin: the shape of things to come.

    PubMed

    Reed, Simon H

    2005-07-28

    Much of our mechanistic understanding of nucleotide excision repair (NER) has been derived from biochemical studies that have analysed the reaction as it occurs on DNA substrates that are not representative of DNA as it exists in the living cell. These studies have been extremely useful in deciphering the core mechanism of the NER reaction, but efforts to understand how NER operates in chromatin have been hampered in part because assembling DNA into nucleosomes, the first level of chromatin compaction, is inhibitory to NER in vitro. However, recent research using biochemical, genetic and cell-based studies is now providing us with the first insights into the molecular mechanism of NER as it occurs in the cellular context. A number of recent studies have provided glimpses of a chromatin--NER connection. Here I review this literature and evaluate how it might aid our understanding, and shape our future research into NER. PMID:15905137

  12. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers

    PubMed Central

    Fonseca, A.S.; Campos, V.M.A.; Magalhães, L.A.G.; Paoli, F.

    2015-01-01

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers. PMID:26445337

  13. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers.

    PubMed

    Fonseca, A S; Campos, V M A; Magalhães, L A G; Paoli, F

    2015-10-01

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers. PMID:26445337

  14. Nucleotide Excision Repair and Vitamin D-Relevance for Skin Cancer Therapy.

    PubMed

    Pawlowska, Elzbieta; Wysokinski, Daniel; Blasiak, Janusz

    2016-01-01

    Ultraviolet (UV) radiation is involved in almost all skin cancer cases, but on the other hand, it stimulates the production of pre-vitamin D3, whose active metabolite, 1,25-dihydroxyvitamin D3 (1,25VD3), plays important physiological functions on binding with its receptor (vitamin D receptor, VDR). UV-induced DNA damages in the form of cyclobutane pyrimidine dimers or (6-4)-pyrimidine-pyrimidone photoproducts are frequently found in skin cancer and its precursors. Therefore, removing these lesions is essential for the prevention of skin cancer. As UV-induced DNA damages are repaired by nucleotide excision repair (NER), the interaction of 1,25VD3 with NER components can be important for skin cancer transformation. Several studies show that 1,25VD3 protects DNA against damage induced by UV, but the exact mechanism of this protection is not completely clear. 1,25VD3 was also shown to affect cell cycle regulation and apoptosis in several signaling pathways, so it can be considered as a potential modulator of the cellular DNA damage response, which is crucial for mutagenesis and cancer transformation. 1,25VD3 was shown to affect DNA repair and potentially NER through decreasing nitrosylation of DNA repair enzymes by NO overproduction by UV, but other mechanisms of the interaction between 1,25VD3 and NER machinery also are suggested. Therefore, the array of NER gene functioning could be analyzed and an appropriate amount of 1.25VD3 could be recommended to decrease UV-induced DNA damage important for skin cancer transformation. PMID:27058533

  15. Exposure of Human Lung Cells to Tobacco Smoke Condensate Inhibits the Nucleotide Excision Repair Pathway

    PubMed Central

    Holcomb, Nathaniel; Goswami, Mamta; Han, Sung Gu; Clark, Samuel; Orren, David K.; Gairola, C. Gary; Mellon, Isabel

    2016-01-01

    Exposure to tobacco smoke is the number one risk factor for lung cancer. Although the DNA damaging properties of tobacco smoke have been well documented, relatively few studies have examined its effect on DNA repair pathways. This is especially true for the nucleotide excision repair (NER) pathway which recognizes and removes many structurally diverse DNA lesions, including those introduced by chemical carcinogens present in tobacco smoke. The aim of the present study was to investigate the effect of tobacco smoke on NER in human lung cells. We studied the effect of cigarette smoke condensate (CSC), a surrogate for tobacco smoke, on the NER pathway in two different human lung cell lines; IMR-90 lung fibroblasts and BEAS-2B bronchial epithelial cells. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6–4 photoproducts and cyclobutane pyrimidine dimers. We find a dose-dependent inhibition of 6–4 photoproduct repair in both cell lines treated with CSC. Additionally, the impact of CSC on the abundance of various NER proteins and their respective RNAs was investigated. The abundance of XPC protein, which is required for functional NER, is significantly reduced by treatment with CSC while the abundance of XPA protein, also required for NER, is unaffected. Both XPC and XPA RNA levels are modestly reduced by CSC treatment. Finally, treatment of cells with MG-132 abrogates the reduction in the abundance of XPC protein produced by treatment with CSC, suggesting that CSC enhances proteasome-dependent turnover of the protein that is mediated by ubiquitination. Together, these findings indicate that tobacco smoke can inhibit the same DNA repair pathway that is also essential for the removal of some of the carcinogenic DNA damage introduced by smoke itself, increasing the DNA damage burden of cells exposed to tobacco smoke. PMID:27391141

  16. Nucleotide Excision Repair and Vitamin D—Relevance for Skin Cancer Therapy

    PubMed Central

    Pawlowska, Elzbieta; Wysokinski, Daniel; Blasiak, Janusz

    2016-01-01

    Ultraviolet (UV) radiation is involved in almost all skin cancer cases, but on the other hand, it stimulates the production of pre-vitamin D3, whose active metabolite, 1,25-dihydroxyvitamin D3 (1,25VD3), plays important physiological functions on binding with its receptor (vitamin D receptor, VDR). UV-induced DNA damages in the form of cyclobutane pyrimidine dimers or (6-4)-pyrimidine-pyrimidone photoproducts are frequently found in skin cancer and its precursors. Therefore, removing these lesions is essential for the prevention of skin cancer. As UV-induced DNA damages are repaired by nucleotide excision repair (NER), the interaction of 1,25VD3 with NER components can be important for skin cancer transformation. Several studies show that 1,25VD3 protects DNA against damage induced by UV, but the exact mechanism of this protection is not completely clear. 1,25VD3 was also shown to affect cell cycle regulation and apoptosis in several signaling pathways, so it can be considered as a potential modulator of the cellular DNA damage response, which is crucial for mutagenesis and cancer transformation. 1,25VD3 was shown to affect DNA repair and potentially NER through decreasing nitrosylation of DNA repair enzymes by NO overproduction by UV, but other mechanisms of the interaction between 1,25VD3 and NER machinery also are suggested. Therefore, the array of NER gene functioning could be analyzed and an appropriate amount of 1.25VD3 could be recommended to decrease UV-induced DNA damage important for skin cancer transformation. PMID:27058533

  17. Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution

    PubMed Central

    Hu, Jinchuan; Adar, Sheera; Selby, Christopher P.

    2015-01-01

    We developed a method for genome-wide mapping of DNA excision repair named XR-seq (excision repair sequencing). Human nucleotide excision repair generates two incisions surrounding the site of damage, creating an ∼30-mer. In XR-seq, this fragment is isolated and subjected to high-throughput sequencing. We used XR-seq to produce stranded, nucleotide-resolution maps of repair of two UV-induced DNA damages in human cells: cyclobutane pyrimidine dimers (CPDs) and (6-4) pyrimidine–pyrimidone photoproducts [(6-4)PPs]. In wild-type cells, CPD repair was highly associated with transcription, specifically with the template strand. Experiments in cells defective in either transcription-coupled excision repair or general excision repair isolated the contribution of each pathway to the overall repair pattern and showed that transcription-coupled repair of both photoproducts occurs exclusively on the template strand. XR-seq maps capture transcription-coupled repair at sites of divergent gene promoters and bidirectional enhancer RNA (eRNA) production at enhancers. XR-seq data also uncovered the repair characteristics and novel sequence preferences of CPDs and (6-4)PPs. XR-seq and the resulting repair maps will facilitate studies of the effects of genomic location, chromatin context, transcription, and replication on DNA repair in human cells. PMID:25934506

  18. Nucleotide Excision Repair Pathway Polymorphisms and Pancreatic Cancer Risk: Evidence for role of MMS19L

    PubMed Central

    McWilliams, Robert R.; Bamlet, William R.; de Andrade, Mariza; Rider, David N.; Cunningham, Julie M.; Petersen, Gloria M.

    2009-01-01

    Background Nucleotide excision repair (NER) is a vital response to DNA damage, including damage from tobacco exposure. Single nucleotide polymorphisms (SNPs) in the NER pathway may encode alterations that affect DNA repair function and therefore influence risk for pancreatic cancer development. Methods A clinic based case-control study in non-Hispanic white persons compared 1,143 patients with pancreatic adenocarcinoma with 1,097 healthy controls. Twenty-seven genes directly and indirectly involved in the NER pathway were identified and 236 tag-SNPs were selected from 26 of these (one had no SNPs identified). Association studies were performed at the gene level by principal components analysis, while recursive partitioning analysis was utilized to identify potential gene-gene and gene-environment interactions within the pathway. At the individual SNP level, adjusted additive, dominant, and recessive models were investigated, and gene-environment interactions were also assessed. Results Gene level analyses showed an association of MMS19L genotype (chromosome 10q24.1) with altered pancreatic cancer risk (p=0.023). Haplotype analysis of MMS19L also showed a significant association (p=0.0132). Analyses of 7 individual SNPs in this gene showed both protective and risk associations for minor alleles, broadly distributed across patient subgroups defined by smoking status, sex, and age. Conclusion In a candidate pathway SNP association study analysis, common variation in a NER gene, MMS19L, was associated with risk for pancreatic cancer. PMID:19318433

  19. Oxidative damage to RPA limits the nucleotide excision repair capacity of human cells

    PubMed Central

    Guven, Melisa; Brem, Reto; Macpherson, Peter; Peacock, Matthew; Karran, Peter

    2015-01-01

    Nucleotide excision repair (NER) protects against sunlight-induced skin cancer. Defective NER is associated with photosensitivity and a high skin cancer incidence. Some clinical treatments that cause photosensitivity can also increase skin cancer risk. Among these, the immunosuppressant azathioprine and the fluoroquinolone antibiotics ciprofloxacin and ofloxacin, interact with UVA radiation to generate reactive oxygen species (ROS) that diminish NER capacity by causing protein damage. The RPA DNA binding protein plays a pivotal role in DNA metabolism and is an essential component of NER. The relationship between protein oxidation and NER inhibition was investigated in cultured human cells expressing different levels of RPA. We show here that RPA is limiting for NER and that oxidative damage to RPA compromises NER capability. Our findings reveal that cellular RPA is surprisingly vulnerable to oxidation and we identify oxidized forms of RPA that are associated with impaired NER. The vulnerability of NER to inhibition by oxidation provides a connection between cutaneous photosensitivity, protein damage and increased skin cancer risk. Our findings emphasize that damage to DNA repair proteins, as well as to DNA itself is likely to be an important contributor to skin cancer risk. PMID:26134950

  20. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase

    PubMed Central

    Engelward, Bevin P.; Weeda, Geert; Wyatt, Michael D.; Broekhof, José L. M.; de Wit, Jan; Donker, Ingrid; Allan, James M.; Gold, Barry; Hoeijmakers, Jan H. J.; Samson, Leona D.

    1997-01-01

    3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA glycosylase not only for the cytotoxic 3MeA DNA lesion, but also for the mutagenic 1,N6-ethenoadenine (ɛA) and hypoxanthine lesions. Aag appears to be the only 3MeA and hypoxanthine DNA glycosylase in liver, testes, kidney, and lung, and the only ɛA DNA glycosylase in liver, testes, and kidney; another ɛA DNA glycosylase may be expressed in lung. Although alkyladenine DNA glycosylase has the capacity to remove 8-oxoguanine DNA lesions, it does not appear to be the major glycosylase for 8-oxoguanine repair. Fibroblasts derived from Aag −/− mice are alkylation sensitive, indicating that Aag −/− mice may be similarly sensitive. PMID:9371804

  1. Nucleotide Excision Repair Gene ERCC2 and ERCC5 Variants Increase Risk of Uterine Cervical Cancer

    PubMed Central

    Joo, Jungnam; Yoon, Kyong-Ah; Hayashi, Tomonori; Kong, Sun-Young; Shin, Hye-Jin; Park, Boram; Kim, Young Min; Hwang, Sang-Hyun; Kim, Jeongseon; Shin, Aesun; Kim, Joo-Young

    2016-01-01

    Purpose Defects in the DNA damage repair process can cause genomic instability and play an important role in cervical carcinogenesis. The purpose of this study was to analyze the association of 29 candidate single nucleotide polymorphisms (SNPs) in genes in the DNA repair pathway, TP53, and TP53BP1 with the risk of cervical cancer. Materials and Methods Twenty-nine SNPs in four genes in the DNA repair pathway (ERCC2, ERCC5, NBS1, and XRCC1), TP53, and TP53BP1 were genotyped for 478 cervical cancer patients and 922 healthy control subjects, and their effects on cervical carcinogenesis were analyzed. Results The most significant association was found for rs17655 in ERCC5, with an age-adjusted p-value < 0.0001, for which a strong additive effect of the risk allele C was observed (odds ratio, 2.01 for CC to GG). On the other hand, another significant polymorphism rs454421 in ERCC2 showed a dominant effect (odds ratio, 1.68 for GA+AA to GG) with an age-adjusted p-value of 0.0009. The association of these polymorphisms remained significant regardless of the age of onset. The significant result for rs17655 was also consistent for subgroups of patients defined by histology and human papillomavirus (HPV) types. However, for rs454421, the association was observed only in patients with squamous cell carcinoma and non-HPV 18 type. Conclusion The results of this study show a novel association of cervical cancer and the genes involved in the nucleotide excision pathway in the Korean population. PMID:26130668

  2. DNA with Damage in Both Strands as Affinity Probes and Nucleotide Excision Repair Substrates.

    PubMed

    Lukyanchikova, N V; Petruseva, I O; Evdokimov, A N; Silnikov, V N; Lavrik, O I

    2016-03-01

    Nucleotide excision repair (NER) is a multistep process of recognition and elimination of a wide spectrum of damages that cause significant distortions in DNA structure, such as UV-induced damage and bulky chemical adducts. A series of model DNAs containing new bulky fluoro-azidobenzoyl photoactive lesion dC(FAB) and well-recognized nonnucleoside lesions nFlu and nAnt have been designed and their interaction with repair proteins investigated. We demonstrate that modified DNA duplexes dC(FAB)/dG (probe I), dC(FAB)/nFlu+4 (probe II), and dC(FAB)/nFlu-3 (probe III) have increased (as compared to unmodified DNA, umDNA) structure-dependent affinity for XPC-HR23B (Kdum > KdI > KdII ≈ KdIII) and differentially crosslink to XPC and proteins of NER-competent extracts. The presence of dC(FAB) results in (i) decreased melting temperature (ΔTm = -3°C) and (ii) 12° DNA bending. The extended dC(FAB)/dG-DNA (137 bp) was demonstrated to be an effective NER substrate. Lack of correlation between the affinity to XPC-HR23B and substrate properties of the model DNA suggests a high impact of the verification stage on the overall NER process. In addition, DNAs containing closely positioned, well-recognized lesions in the complementary strands represent hardly repairable (dC(FAB)/nFlu+4, dC(FAB)/nFlu-3) or irreparable (nFlu/nFlu+4, nFlu/nFlu-3, nAnt/nFlu+4, nAnt/nFlu-3) structures. Our data provide evidence that the NER system of higher eukaryotes recognizes and eliminates damaged DNA fragments on a multi-criterion basis. PMID:27262196

  3. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    SciTech Connect

    Hansson, J.; Keyse, S.M.; Lindahl, T.; Wood, R.D. )

    1991-07-01

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurements of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links.

  4. Nucleotide Excision Repair, Mismatch Repair, and R-Loops Modulate Convergent Transcription-Induced Cell Death and Repeat Instability

    PubMed Central

    Lin, Yunfu; Wilson, John H.

    2012-01-01

    Expansion of CAG•CTG tracts located in specific genes is responsible for 13 human neurodegenerative disorders, the pathogenic mechanisms of which are not yet well defined. These disease genes are ubiquitously expressed in human tissues, and transcription has been identified as one of the major pathways destabilizing the repeats. Transcription-induced repeat instability depends on transcription-coupled nucleotide excision repair (TC-NER), the mismatch repair (MMR) recognition component MSH2/MSH3, and RNA/DNA hybrids (R-loops). Recently, we reported that simultaneous sense and antisense transcription–convergent transcription–through a CAG repeat not only promotes repeat instability, but also induces a cell stress response, which arrests the cell cycle and eventually leads to massive cell death via apoptosis. Here, we use siRNA knockdowns to investigate whether NER, MMR, and R-loops also modulate convergent-transcription-induced cell death and repeat instability. We find that siRNA-mediated depletion of TC-NER components increases convergent transcription-induced cell death, as does the simultaneous depletion of RNase H1 and RNase H2A. In contrast, depletion of MSH2 decreases cell death. These results identify TC-NER, MMR recognition, and R-loops as modulators of convergent transcription-induced cell death and shed light on the molecular mechanism involved. We also find that the TC-NER pathway, MSH2, and R-loops modulate convergent transcription-induced repeat instability. These observations link the mechanisms of convergent transcription-induced repeat instability and convergent transcription-induced cell death, suggesting that a common structure may trigger both outcomes. PMID:23056461

  5. Nonhomologous end joining of complex DNA double-strand breaks with proximal thymine glycol and interplay with base excision repair.

    PubMed

    Almohaini, Mohammed; Chalasani, Sri Lakshmi; Bafail, Duaa; Akopiants, Konstantin; Zhou, Tong; Yannone, Steven M; Ramsden, Dale A; Hartman, Matthew C T; Povirk, Lawrence F

    2016-05-01

    DNA double-strand breaks induced by ionizing radiation are often accompanied by ancillary oxidative base damage that may prevent or delay their repair. In order to better define the features that make some DSBs repair-resistant, XLF-dependent nonhomologous end joining of blunt-ended DSB substrates having the oxidatively modified nonplanar base thymine glycol at the first (Tg1), second (Tg2), third (Tg3) or fifth (Tg5) positions from one 3' terminus, was examined in human whole-cell extracts. Tg at the third position had little effect on end-joining even when present on both ends of the break. However, Tg as the terminal or penultimate base was a major barrier to end joining (>10-fold reduction in ligated products) and an absolute barrier when present at both ends. Dideoxy trapping of base excision repair intermediates indicated that Tg was excised from Tg1, Tg2 and Tg3 largely if not exclusively after DSB ligation. However, Tg was rapidly excised from the Tg5 substrate, resulting in a reduced level of DSB ligation, as well as slow concomitant resection of the opposite strand. Ligase reactions containing only purified Ku, XRCC4, ligase IV and XLF showed that ligation of Tg3 and Tg5 was efficient and only partially XLF-dependent, whereas ligation of Tg1 and Tg2 was inefficient and only detectable in the presence of XLF. Overall, the results suggest that promoting ligation of DSBs with proximal base damage may be an important function of XLF, but that Tg can still be a major impediment to repair, being relatively resistant to both trimming and ligation. Moreover, it appears that base excision repair of Tg can sometimes interfere with repair of DSBs that would otherwise be readily rejoined. PMID:27049455

  6. Developing an in silico model of the modulation of base excision repair using methoxyamine for more targeted cancer therapeutics.

    PubMed

    Gurkan-Cavusoglu, Evren; Avadhani, Sriya; Liu, Lili; Kinsella, Timothy J; Loparo, Kenneth A

    2013-04-01

    Base excision repair (BER) is a major DNA repair pathway involved in the processing of exogenous non-bulky base damages from certain classes of cancer chemotherapy drugs as well as ionising radiation (IR). Methoxyamine (MX) is a small molecule chemical inhibitor of BER that is shown to enhance chemotherapy and/or IR cytotoxicity in human cancers. In this study, the authors have analysed the inhibitory effect of MX on the BER pathway kinetics using a computational model of the repair pathway. The inhibitory effect of MX depends on the BER efficiency. The authors have generated variable efficiency groups using different sets of protein concentrations generated by Latin hypercube sampling, and they have clustered simulation results into high, medium and low efficiency repair groups. From analysis of the inhibitory effect of MX on each of the three groups, it is found that the inhibition is most effective for high efficiency BER, and least effective for low efficiency repair. PMID:23847811

  7. Molecular analysis of plasmid DNA repair within ultraviolet-irradiated Escherichia coli. II. UvrABC-initiated excision repair and photolyase-catalyzed dimer monomerization

    SciTech Connect

    Gruskin, E.A.; Lloyd, R.S.

    1988-09-05

    In this study, a novel approach to the analysis of DNA repair in Escherichia coli was employed which allowed the first direct determination of the mechanisms by which endogenous DNA repair enzymes encounter target sites in vivo. An in vivo plasmid DNA repair analysis was employed to discriminate between two possible mechanisms of target site location: a processive DNA scanning mechanism or a distributive random diffusion mechanism. The results demonstrate that photolyase acts by a distributive mechanism within E. coli. In contrast, UvrABC-initiated excision repair occurs by a limited processive DNA scanning mechanism. A majority of the dimer sites on a given plasmid molecule were repaired prior to the dissociation of the UvrABC complex. Furthermore, plasmid DNA repair catalyzed by the UvrABC complex occurs without a detectable accumulation of nicked plasmid intermediates despite the fact that the UvrABC complex generates dual incisions in the DNA at the site of a pyrimidine dimer. Therefore, the binding or assembly of the UvrABC complex on DNA at the site of a pyrimidine dimer represents the rate-limiting step in the overall process of UvrABC-initiated excision repair in vivo.

  8. Molecular cloning and 3D structure modeling of APEX1, DNA base excision repair enzyme from the Camel, Camelus dromedarius.

    PubMed

    Ataya, Farid Shokry; Fouad, Dalia; Malik, Ajamaluddin; Saeed, Hesham Mahmoud

    2012-01-01

    The domesticated one-humped camel, Camelus dromedarius, is one of the most important animals in the Arabian Desert. It is exposed most of its life to both intrinsic and extrinsic genotoxic factors that are known to cause gross DNA alterations in many organisms. Ionic radiation and sunlight are known producers of Reactive Oxygen Species (ROS), one of the causes for DNA lesions. The damaged DNA is repaired by many enzymes, among of them Base Excision Repair enzymes, producing the highly mutagenic apurinic/apyrimidinicsites (AP sites). Therefore, recognition of AP sites is fundamental to cell/organism survival. In the present work, the full coding sequence of a putative cAPEX1 gene was amplified for the first time from C. dromedarius by RT-PCR and cloned (NCBI accession number are HM209828 and ADJ96599 for nucleotides and amino acids, respectively). cDNA sequencing was deduced to be 1041 nucleotides, of which 954 nucleotides encode a protein of 318 amino acids, similar to the coding region of the APEX1 gene and the protein from many other species. The calculated molecular weight and isoelectric point of cAPEX1 using Bioinformatics tools was 35.5 kDa and 8.11, respectively. The relative expressions of cAPEX1 in camel kidney, spleen, lung and testis were examined using qPCR and compared with that of the liver using a 18S ribosomal subunit as endogenous control. The highest level of cAPEX1 transcript was found in the testis; 325% higher than the liver, followed by spleen (87%), kidney (20%) and lung (5%), respectively. The cAPEX1 is 94%-97% similar to their mammalian counterparts. Phylogenetic analysis revealed that cAPEX1 is grouped together with that of S. scrofa. The predicted 3D structure of cAPEX1 has similar folds and topology with the human (hAPEX1). The root-mean-square deviation (rmsd) between cAPEX1 and hAPEX1 was 0.582 and the Q-score was 0.939. PMID:22942721

  9. Role of the Escherichia coli nucleotide excision repair proteins in DNA replication.

    PubMed

    Moolenaar, G F; Moorman, C; Goosen, N

    2000-10-01

    DNA polymerase I (PolI) functions both in nucleotide excision repair (NER) and in the processing of Okazaki fragments that are generated on the lagging strand during DNA replication. Escherichia coli cells completely lacking the PolI enzyme are viable as long as they are grown on minimal medium. Here we show that viability is fully dependent on the presence of functional UvrA, UvrB, and UvrD (helicase II) proteins but does not require UvrC. In contrast, delta polA cells grow even better when the uvrC gene has been deleted. Apparently UvrA, UvrB, and UvrD are needed in a replication backup system that replaces the PolI function, and UvrC interferes with this alternative replication pathway. With specific mutants of UvrC we could show that the inhibitory effect of this protein is related to its catalytic activity that on damaged DNA is responsible for the 3' incision reaction. Specific mutants of UvrA and UvrB were also studied for their capacity to support the PolI-independent replication. Deletion of the UvrC-binding domain of UvrB resulted in a phenotype similar to that caused by deletion of the uvrC gene, showing that the inhibitory incision activity of UvrC is mediated via binding to UvrB. A mutation in the N-terminal zinc finger domain of UvrA does not affect NER in vivo or in vitro. The same mutation, however, does give inviability in combination with the delta polA mutation. Apparently the N-terminal zinc-binding domain of UvrA has specifically evolved for a function outside DNA repair. A model for the function of the UvrA, UvrB, and UvrD proteins in the alternative replication pathway is discussed. PMID:11004168

  10. ERCC4 (XPF) encodes a human nucleotide excision repair protein with eukaryotic recombination homologs.

    PubMed

    Brookman, K W; Lamerdin, J E; Thelen, M P; Hwang, M; Reardon, J T; Sancar, A; Zhou, Z Q; Walter, C A; Parris, C N; Thompson, L H

    1996-11-01

    ERCC4 is an essential human gene in the nucleotide excision repair (NER) pathway, which is responsible for removing UV-C photoproducts and bulky adducts from DNA. Among the NER genes, ERCC4 and ERCC1 are also uniquely involved in removing DNA interstrand cross-linking damage. The ERCC1-ERCC4 heterodimer, like the homologous Rad10-Rad1 complex, was recently found to possess an endonucleolytic activity that incises on the 5' side of damage. The ERCC4 gene, assigned to chromosome 16p13.1-p13.2, was previously isolated by using a chromosome 16 cosmid library. It corrects the defect in Chinese hamster ovary (CHO) mutants of NER complementation group 4 and is implicated in complementation group F of the human disorder xeroderma pigmentosum. We describe the ERCC4 gene structure and functional cDNA sequence encoding a 916-amino-acid protein (104 kDa), which has substantial homology with the eukaryotic DNA repair and recombination proteins MEI-9 (Drosophila melanogaster), Rad16 (Schizosaccharomyces pombe), and Rad1 (Saccharomyces cerevisiae). ERCC4 cDNA efficiently corrected mutants in rodent NER complementation groups 4 and 11, showing the equivalence of these groups, and ERCC4 protein levels were reduced in mutants of both groups. In cells of an XP-F patient, the ERCC4 protein level was reduced to less than 5%, consistent with XPF being the ERCC4 gene. The considerable identity (40%) between ERCC4 and MEI-9 suggests a possible involvement of ERCC4 in meiosis. In baboon tissues, ERCC4 was expressed weakly and was not significantly higher in testis than in nonmeiotic tissues. PMID:8887684

  11. Genome Instability in Development and Aging: Insights from Nucleotide Excision Repair in Humans, Mice, and Worms

    PubMed Central

    Edifizi, Diletta; Schumacher, Björn

    2015-01-01

    DNA damage causally contributes to aging and cancer. Congenital defects in nucleotide excision repair (NER) lead to distinct cancer-prone and premature aging syndromes. The genetics of NER mutations have provided important insights into the distinct consequences of genome instability. Recent work in mice and C. elegans has shed new light on the mechanisms through which developing and aging animals respond to persistent DNA damage. The various NER mouse mutants have served as important disease models for Xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD), while the traceable genetics of C. elegans have allowed the mechanistic delineation of the distinct outcomes of genome instability in metazoan development and aging. Intriguingly, highly conserved longevity assurance mechanisms respond to transcription-blocking DNA lesions in mammals as well as in worms and counteract the detrimental consequences of persistent DNA damage. The insulin-like growth factor signaling (IIS) effector transcription factor DAF-16 could indeed overcome DNA damage-driven developmental growth delay and functional deterioration even when DNA damage persists. Longevity assurance mechanisms might thus delay DNA damage-driven aging by raising the threshold when accumulating DNA damage becomes detrimental for physiological tissue functioning. PMID:26287260

  12. Conservation of the Nucleotide Excision Repair Pathway: Characterization of Hydra Xeroderma Pigmentosum Group F Homolog

    PubMed Central

    Barve, Apurva; Ghaskadbi, Saroj; Ghaskadbi, Surendra

    2013-01-01

    Hydra, one of the earliest metazoans with tissue grade organization and nervous system, is an animal with a remarkable regeneration capacity and shows no signs of organismal aging. We have for the first time identified genes of the nucleotide excision repair (NER) pathway from hydra. Here we report cloning and characterization of hydra homolog of xeroderma pigmentosum group F (XPF) gene that encodes a structure-specific 5′ endonuclease which is a crucial component of NER. In silico analysis shows that hydra XPF amino acid sequence is very similar to its counterparts from other animals, especially vertebrates, and shows all features essential for its function. By in situ hybridization, we show that hydra XPF is expressed prominently in the multipotent stem cell niche in the central region of the body column. Ectoderm of the diploblastic hydra was shown to express higher levels of XPF as compared to the endoderm by semi-quantitative RT-PCR. Semi-quantitative RT-PCR analysis also demonstrated that interstitial cells, a multipotent and rapidly cycling stem cell lineage of hydra, express higher levels of XPF mRNA than other cell types. Our data show that XPF and by extension, the NER pathway is highly conserved during evolution. The prominent expression of an NER gene in interstitial cells may have implications for the lack of senescence in hydra. PMID:23577191

  13. Coordinated regulation of XPA stability by ATR and HERC2 during nucleotide excision repair.

    PubMed

    Lee, T-H; Park, J-M; Leem, S-H; Kang, T-H

    2014-01-01

    ATR (ATM and Rad3-related) is an essential regulator of the nucleotide excision repair (NER) mechanism. For NER activation, ATR phosphorylates XPA, the rate-limiting factor in the NER pathway. However, the role of XPA phosphorylation at serine 196 by ATR has been elusive. Here we show that ATR-mediated XPA phosphorylation enhances XPA stability by inhibiting HERC2-mediated ubiquitination and subsequent degradation. We analyzed stabilization of XPA with substitutions of Ser 196 either to aspartate (S196D), a phosphomimetic mutation, or to alanine (S196A), a phosphodeficient mutation. Upon ultraviolet damage, ATR facilitated HERC2 dissociation from the XPA complex to induce XPA stabilization. However, this regulation was abrogated in S196A-complemented XPA-deficient cells due to persistent association of HERC2 with this XPA complex, resulting in enhanced ubiquitination of S196A. Conversely, the S196D substitution showed delayed degradation kinetics compared with the wild-type and less binding with HERC2, resulting in reduced ubiquitination of S196D. We also found that XPA phosphorylation enhanced the chromatin retention of XPA, the interaction with its binding partners following DNA damage. Taken together, our study presents a novel control mechanism in the NER pathway by regulating the steady-state level of XPA through posttranslational modifications by which ATR-mediated phosphorylation induces XPA stabilization by antagonizing HERC2-catalyzed XPA ubiquitination. PMID:23178497

  14. Base excision repair enzymes protect abasic sites in duplex DNA from interstrand cross-links.

    PubMed

    Admiraal, Suzanne J; O'Brien, Patrick J

    2015-03-10

    Hydrolysis of the N-glycosyl bond between a nucleobase and deoxyribose leaves an abasic site within duplex DNA. The abasic site can react with exocyclic amines of nucleobases on the complementary strand to form interstrand DNA-DNA cross-links (ICLs). We find that several enzymes from the base excision repair (BER) pathway protect an abasic site on one strand of a DNA duplex from cross-linking with an amine on the opposing strand. Human alkyladenine DNA glycosylase (AAG) and Escherichia coli 3-methyladenine DNA glycosylase II (AlkA) accomplish this by binding tightly to the abasic site and sequestering it. AAG protects an abasic site opposite T, the product of its canonical glycosylase reaction, by a factor of ∼10-fold, as estimated from its inhibition of the reaction of an exogenous amine with the damaged DNA. Human apurinic/apyrimidinic site endonuclease 1 and E. coli endonuclease III both decrease the amount of ICL at equilibrium by generating a single-strand DNA nick at the abasic position as it is liberated from the cross-link. The reversibility of the reaction between amines and abasic sites allows BER enzymes to counter the potentially disruptive effects of this type of cross-link on DNA transactions. PMID:25679877

  15. Resistance to Nucleotide Excision Repair of Bulky Guanine Adducts Opposite Abasic Sites in DNA Duplexes and Relationships between Structure and Function

    PubMed Central

    Liu, Zhi; Ding, Shuang; Kropachev, Konstantin; Lei, Jia; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2015-01-01

    The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide

  16. The endoperoxide ascaridol shows strong differential cytotoxicity in nucleotide excision repair-deficient cells

    SciTech Connect

    Abbasi, Rashda; Efferth, Thomas; Kuhmann, Christine; Opatz, Till; Hao, Xiaojiang; Popanda, Odilia; Schmezer, Peter

    2012-03-15

    Targeting synthetic lethality in DNA repair pathways has become a promising anti-cancer strategy. However little is known about such interactions with regard to the nucleotide excision repair (NER) pathway. Therefore, cell lines with a defect in the NER genes ERCC6 or XPC and their normal counterparts were screened with 53 chemically defined phytochemicals isolated from plants used in traditional Chinese medicine for differential cytotoxic effects. The screening revealed 12 drugs that killed NER-deficient cells more efficiently than proficient cells. Five drugs were further analyzed for IC{sub 50} values, effects on cell cycle distribution, and induction of DNA damage. Ascaridol was the most effective compound with a difference of > 1000-fold in resistance between normal and NER-deficient cells (IC{sub 50} values for cells with deficiency in ERCC6: 0.15 μM, XPC: 0.18 μM, and normal cells: > 180 μM). NER-deficiency combined with ascaridol treatment led to G2/M-phase arrest, an increased percentage of subG1 cells, and a substantially higher DNA damage induction. These results were confirmed in a second set of NER-deficient and -proficient cell lines with isogenic background. Finally, ascaridol was characterized for its ability to generate oxidative DNA damage. The drug led to a dose-dependent increase in intracellular levels of reactive oxygen species at cytotoxic concentrations, but only NER-deficient cells showed a strongly induced amount of 8-oxodG sites. In summary, ascaridol is a cytotoxic and DNA-damaging compound which generates intracellular reactive oxidative intermediates and which selectively affects NER-deficient cells. This could provide a new therapeutic option to treat cancer cells with mutations in NER genes. -- Highlights: ► Thousand-fold higher Ascaridol activity in NER-deficient versus proficient cells. ► Impaired repair of Ascaridol-induced oxidative DNA damage in NER-deficient cells. ► Selective activity of Ascaridol opens new therapy

  17. Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites

    PubMed Central

    Bellacosa, Alfonso; Drohat, Alexander C.

    2016-01-01

    Cytosine methylation at CpG dinucleotides is a central component of epigenetic regulation in vertebrates, and the base excision repair (BER) pathway is important for maintaining both the genetic stability and the methylation status of CpG sites. This perspective focuses on two enzymes that are of particular importance for the genetic and epigenetic integrity of CpG sites, Methyl Binding Domain 4 (MBD4) and Thymine DNA Glycosylase (TDG). We discuss their capacity for countering C to T mutations at CpG sites, by initiating base excision repair of G·T mismatches generated by deamination of 5-methylcytosine (5mC). We also consider their role in active DNA demethylation, including pathways that are initiated by oxidation and/or deamination of 5mC. PMID:26021671

  18. Nucleotide excision repair polymorphisms may modify ionizing radiation-related breast cancer risk in US radiologic technologists.

    PubMed

    Rajaraman, Preetha; Bhatti, Parveen; Doody, Michele Morin; Simon, Steven L; Weinstock, Robert M; Linet, Martha S; Rosenstein, Marvin; Stovall, Marilyn; Alexander, Bruce H; Preston, Dale L; Sigurdson, Alice J

    2008-12-01

    Exposure to ionizing radiation has been consistently associated with increased risk of female breast cancer. Although the majority of DNA damage caused by ionizing radiation is corrected by the base-excision repair pathway, certain types of multiple-base damage can only be repaired through the nucleotide excision repair pathway. In a nested case-control study of breast cancer in US radiologic technologists exposed to low levels of ionizing radiation (858 cases, 1,083 controls), we examined whether risk of breast cancer conferred by radiation was modified by nucleotide excision gene polymorphisms ERCC2 (XPD) rs13181, ERCC4 (XPF) rs1800067 and rs1800124, ERCC5 (XPG) rs1047769 and rs17655; and ERCC6 rs2228526. Of the 6 ERCC variants examined, only ERCC5 rs17655 showed a borderline main effect association with breast cancer risk (OR(GC) = 1.1, OR(CC) = 1.3; p-trend = 0.08), with some indication that individuals carrying the C allele variant were more susceptible to the effects of occupational radiation (EOR/Gy(GG) = 1.0, 95% CI = <0, 6.0; EOR/Gy(GC/CC) = 5.9, 95% CI = 0.9, 14.4; p(het) = 0.10). ERCC2 rs13181, although not associated with breast cancer risk overall, statistically significantly modified the effect of occupational radiation dose on risk of breast cancer (EOR/Gy(AA) = 9.1, 95% CI = 2.1-21.3; EOR/Gy(AC/CC) = 0.6, 95% CI = <0, 4.6; p(het) = 0.01). These results suggest that common variants in nucleotide excision repair genes may modify the association between occupational radiation exposure and breast cancer risk. PMID:18767034

  19. Evidence for an involvement of thymidine kinase in the excision repair of ultraviolet-irradiated herpes simplex virus in human cells

    SciTech Connect

    Intine, R.V.; Rainbow, A.J. )

    1990-01-01

    A wild-type strain of herpes simplex virus type 1 (HSV-1:KOS) encoding a functional thymidine kinase (tk+) and a tk- mutant strain (HSV-1:PTK3B) were used to study the role of the viral tk in the repair of UV-irradiated HSV-1 in human cells. UV survival of HSV-1:PTK3B was substantially reduced compared with that of HSV-1:KOS when infecting normal human cells. In contrast, the UV survival of HSV-1:PTK3B was similar to that of HSV-1:KOS when infecting excision repair-deficient cells from a xeroderma pigmentosum patient from complementation group A. These results suggest that the repair of UV-irradiated HSV-1 in human cells depends, in part at least, on expression of the viral tk and that the repair process influenced by tk activity is excision repair or a process dependent on excision repair.

  20. Repair of rDNA in Saccharomyces cerevisiae: RAD4-independent strand-specific nucleotide excision repair of RNA polymerase I transcribed genes.

    PubMed Central

    Verhage, R A; Van de Putte, P; Brouwer, J

    1996-01-01

    Removal of UV-induced pyrimidine dimers from the individual strands of the rDNA locus in Saccharomyces cerevisiae was studied. Yeast rDNA, that is transcribed by RNA polymerase I(RNA pol I), is repaired efficiently, slightly strand-specific and independently of RAD26, which has been implicated in transcription-coupled repair of the RNA pol II transcribed RPB2 gene. No repair of rDNA is observed in rad1,2,3 and 14 mutants, demonstrating that dimer removal from this highly repetitive DNA is accomplished by nucleotide excision repair (NER). In rad7 and rad16 mutants, which are specifically deficient in repair of non-transcribed DNA, there is a clear preferential repair of the transcribed strand of rDNA, indicating that strand-specific and therefore probably transcription-coupled repair of RNA pol I transcribed genes does exist in yeast. Unexpectedly, the transcribed but not the non-transcribed strand of rDNA can be repaired in rad4 mutants, which seem otherwise completely NER-deficient. PMID:8604332

  1. Metal inhibition of human alkylpurine-DNA-N-glycosylase activityin base excision repair

    SciTech Connect

    Wang, Ping; Guliaev, Anton B.; Hang, Bo

    2006-02-28

    Cadmium (Cd{sup 2+}), nickel (Ni{sup 2+}) and cobalt (Co{sup 2+}) are human and/or animal carcinogens. Zinc (Zn{sup 2+}) is not categorized as a carcinogen, and rather an essential element to humans. Metals were recently shown to inhibit DNA repair proteins that use metals for their function and/or structure. Here we report that the divalent ions Cd{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} can inhibit the activity of a recombinant human N-methylpurine-DNA glycosylase (MPG) toward a deoxyoligonucleotide with ethenoadenine (var epsilonA). MPG removes a variety of toxic/mutagenic alkylated bases and does not require metal for its catalytic activity or structural integrity. At concentrations starting from 50 to 1000 {micro}M, both Cd{sup 2+} and Zn{sup 2+} showed metal-dependent inhibition of the MPG catalytic activity. Ni{sup 2+} also inhibited MPG, but to a lesser extent. Such an effect can be reversed with EDTA addition. In contrast, Co{sup 2+} and Mg{sup 2+} did not inhibit the MPG activity in the same dose range. Experiments using HeLa cell-free extracts demonstrated similar patterns of inactivation of the var epsilonA excision activity by the same metals. Binding of MPG to the substrate was not significantly affected by Cd{sup 2+}, Zn{sup 2+}, and Ni{sup 2+} at concentrations that show strong inhibition of the catalytic function, suggesting that the reduced catalytic activity is not due to altered MPG binding affinity to the substrate. Molecular dynamics (MD) simulations with Zn{sup 2+} showed that the MPG active site has a potential binding site for Zn{sup 2+}, formed by several catalytically important and conserved residues. Metal binding to such a site is expected to interfere with the catalytic mechanism of this protein. These data suggest that inhibition of MPG activity may contribute to metal genotoxicity and depressed repair of alkylation damage by metals in vivo.

  2. Germ line variation in nucleotide excision repair genes and lung cancer risk in smokers.

    PubMed

    Sakoda, Lori C; Loomis, Melissa M; Doherty, Jennifer A; Julianto, Liberto; Barnett, Matt J; Neuhouser, Marian L; Thornquist, Mark D; Weiss, Noel S; Goodman, Gary E; Chen, Chu

    2012-01-01

    Since nucleotide excision repair (NER) is primarily responsible for detecting and removing bulky DNA lesions induced by tobacco smoke in the respiratory tract, single nucleotide polymorphisms (SNPs) in NER protein-encoding genes may influence lung cancer risk, particularly in smokers. Studies testing this hypothesis have produced inconsistent results, with most analyzing a few SNPs in relatively small population samples. In a study nested in the Beta- Carotene and Retinol Efficacy Trial, we examined 79 tag and previously reported risk-associated SNPs in the ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, LIG1, POLE, XPA, and XPC genes in 744 lung cancer cases and 1,477 controls, all of whom were non-Hispanic white smokers. Using logistic regression, odds ratios (OR) and 95% confidence intervals (95% CI) were calculated to estimate lung cancer risk associated with SNP genotypes and haplotypes, adjusting for case-control matching factors. Lung cancer risk was modestly associated with LIG1 rs156640 (OR per G allele, 1.23; 95% CI, 1.08-1.40), rs156641 (OR per A allele, 1.23; 95% CI, 1.08-1.40), and rs8100261 (OR per A allele, 0.83; 95% CI, 0.76-0.98); XPA rs3176658 (OR per A allele, 0.83; 95% CI, 0.69-1.00); and ERCC2 rs50871 (OR per C allele, 1.15; 95% CI: 1.01-1.30). Associations with LIG1 and XPA, but not ERCC2, haplotypes were found. The results of this study and others suggest that inherited variants in LIG1 and possibly other NER genes may predispose to smoking-related lung cancer. Given that chance likely accounts for one or more of the associations observed, replication of our findings is needed. PMID:22493747

  3. Variation in DNA Base Excision Repair Genes in Fuchs Endothelial Corneal Dystrophy

    PubMed Central

    Wójcik, Katarzyna A.; Synowiec, Ewelina; Polakowski, Piotr; Błasiak, Janusz; Szaflik, Jerzy; Szaflik, Jacek P.

    2015-01-01

    Background Fuchs endothelial corneal dystrophy (FECD) is a corneal disease characterized by abnormalities in the Descemet membrane and the corneal endothelium. The etiology of this disease is poorly understood. An increased level of oxidative DNA damage reported in FECD corneas suggests a role of DNA base excision repair (BER) genes in its pathogenesis. In this work, we searched for the association between variation of the PARP-1, NEIL1, POLG, and XRCC1 genes and FECD occurrence. Material/Methods This study was conducted on 250 FECD patients and 353 controls using polymerase chain reaction-restriction fragment length polymorphism, high-resolution melting analysis, and the TaqMan® SNP Genotyping Assay. Results We observed that the A/A genotype and the A allele of the c.1196A>G polymorphism of the XRCC1 gene were positively correlated with an increased FECD occurrence, whereas the G allele had the opposite effect. A weak association between the C/G genotype of the g.46438521G>C polymorphism of the NEIL1 gene and an increased incidence of FECD was also detected. Haplotypes of both polymorphisms of the XRCC1 were associated with FECD occurrence. No association of the c.2285T>C, c.–1370T>A and c.580C>T polymorphisms of the PARP-1, POLG and XRCC1 genes, respectively, with FECD occurrence was observed. Conclusions Our results suggest that the c.1196A>G polymorphism in the XRCC1 gene may be an independent genetic risk factor for FECD. PMID:26388025

  4. XRCC1 and Base Excision Repair Balance in Response to Nitric Oxide

    PubMed Central

    Mutamba, James T.; Svilar, David; Prasongtanakij, Somsak; Wang, Xiao-Hong; Lin, Ying-Chih; Dedon, Peter C.; Sobol, Robert W.; Engelward, Bevin P.

    2013-01-01

    Inflammation associated reactive oxygen and nitrogen species (RONs), including peroxynitrite (ONOO−) and nitric oxide (NO· ), create base lesions that potentially play a role in the toxicity and large-scale genomic rearrangements associated with many malignancies. Nevertheless, little is known about the functional role of base excision repair (BER) deficiencies following exposure to RONs. Here, we explore the role of XRCC1 in modulating the levels of RONs-induced genotoxicity. XRCC1 is a scaffold protein critical for BER for which polymorphisms modulate the risk of cancer. We exploited CHO and human glioblastoma cell lines engineered to carry varied levels of BER components to study XRCC1. Cytotoxicity and SSB-intermediate levels were evaluated following exposure to the ONOO− donor, SIN-1, and to gaseous NO·. XRCC1 null cells are slightly more sensitive to SIN-1 toxicity. To explore the potential importance of XRCC1 in response to NO· -induced lesions, we used small-scale bioreactors to expose cells to NO· and found that XRCC1 does not impact genotoxicity in CHO cells, suggesting a minimal role for XRCC1 in response to RONs. However, using a molecular beacon assay to measure AAG-mediated lesion removal in vitro, we found that XRCC1 facilitates AAG-initiated BER of two key NO· -induced lesions: 1,N6-ethenoadenine and hypoxanthine. Furthermore, overexpression of AAG rendered XRCC1 cells sensitive to NO· -induced DNA damage and toxicity. These results show that AAG is a key glycosylase in response to NO· exposure and that the cellular and functional impact of XRCC1 depends upon the level of AAG. These studies are some of the first to assess the functional role of XRCC1 in response to NO·, and demonstrate the importance of BER balance when considering the impact of XRCC1 polymorphisms in response to RONs. PMID:22041025

  5. Nucleotide excision repair DNA synthesis by excess DNA polymerase beta: a potential source of genetic instability in cancer cells.

    PubMed

    Canitrot, Y; Hoffmann, J S; Calsou, P; Hayakawa, H; Salles, B; Cazaux, C

    2000-09-01

    The nucleotide excision repair pathway contributes to genetic stability by removing a wide range of DNA damage through an error-free reaction. When the lesion is located, the altered strand is incised on both sides of the lesion and a damaged oligonucleotide excised. A repair patch is then synthesized and the repaired strand is ligated. It is assumed that only DNA polymerases delta and/or epsilon participate to the repair DNA synthesis step. Using UV and cisplatin-modified DNA templates, we measured in vitro that extracts from cells overexpressing the error-prone DNA polymerase beta exhibited a five- to sixfold increase of the ultimate DNA synthesis activity compared with control extracts and demonstrated the specific involvement of Pol beta in this step. By using a 28 nt gapped, double-stranded DNA substrate mimicking the product of the incision step, we showed that Pol beta is able to catalyze strand displacement downstream of the gap. We discuss these data within the scope of a hypothesis previously presented proposing that excess error-prone Pol beta in cancer cells could perturb the well-defined specific functions of DNA polymerases during error-free DNA transactions. PMID:10973926

  6. NDR1 modulates the UV-induced DNA-damage checkpoint and nucleotide excision repair

    SciTech Connect

    Park, Jeong-Min; Choi, Ji Ye; Yi, Joo Mi; Chung, Jin Woong; Leem, Sun-Hee; Koh, Sang Seok; Kang, Tae-Hong

    2015-06-05

    Nucleotide excision repair (NER) is the sole mechanism of UV-induced DNA lesion repair in mammals. A single round of NER requires multiple components including seven core NER factors, xeroderma pigmentosum A–G (XPA–XPG), and many auxiliary effector proteins including ATR serine/threonine kinase. The XPA protein helps to verify DNA damage and thus plays a rate-limiting role in NER. Hence, the regulation of XPA is important for the entire NER kinetic. We found that NDR1, a novel XPA-interacting protein, modulates NER by modulating the UV-induced DNA-damage checkpoint. In quiescent cells, NDR1 localized mainly in the cytoplasm. After UV irradiation, NDR1 accumulated in the nucleus. The siRNA knockdown of NDR1 delayed the repair of UV-induced cyclobutane pyrimidine dimers in both normal cells and cancer cells. It did not, however, alter the expression levels or the chromatin association levels of the core NER factors following UV irradiation. Instead, the NDR1-depleted cells displayed reduced activity of ATR for some set of its substrates including CHK1 and p53, suggesting that NDR1 modulates NER indirectly via the ATR pathway. - Highlights: • NDR1 is a novel XPA-interacting protein. • NDR1 accumulates in the nucleus in response to UV irradiation. • NDR1 modulates NER (nucleotide excision repair) by modulating the UV-induced DNA-damage checkpoint response.

  7. DNA polymerase beta-catalyzed-PCNA independent long patch base excision repair synthesis: a mechanism for repair of oxidatively damaged DNA ends in post-mitotic brain.

    PubMed

    Wei, Wei; Englander, Ella W

    2008-11-01

    Oxidative DNA damage incidental to normal respiratory metabolism poses a particular threat to genomes of highly metabolic-long lived cells. We show that post-mitotic brain has capacity to repair oxidatively damaged DNA ends, which are targets of the long patch (LP) base excision repair (BER) subpathway. LP-BER relies, in part, on proteins associated with DNA replication, including proliferating cell nuclear antigen and is inherent to proliferating cells. Nonetheless, repair products are generated with brain extracts, albeit at slow rates, in the case of 5'-DNA ends modeled with tetrahydrofuran (THF). THF at this position is refractory to DNA polymerase beta 5'-deoxyribose 5-phosphate lyase activity and drives repair into the LP-BER subpathway. Comparison of repair of 5'-THF-blocked termini in the post-mitotic rat brain and proliferative intestinal mucosa, revealed that in mucosa, resolution of damaged 5'-termini is accompanied by formation of larger repair products. In contrast, adducts targeted by the single nucleotide BER are proficiently repaired with both extracts. Our findings reveal mechanistic differences in BER processes selective for the brain versus proliferative tissues. The differences highlight the physiological relevance of the recently proposed 'Hit and Run' mechanism of alternating cleavage/synthesis steps, in the proliferating cell nuclear antigen-independent LP-BER process. PMID:18752643

  8. Involvement of mammalian OGG1(MMH) in excision of the 8-hydroxyguanine residue in DNA.

    PubMed

    Nishimura, Susumu

    2002-05-01

    8-Hydroxyguanine (7,8-dihydro-8-oxoguanine, abbreviated as 8-OH-G or 8-oxoG) is the site of a frequent mutagenic DNA lesion produced by oxidative damage. MutM of E. coli and OGG1 of Saccharomyces cervisiae are known to possess 8-OH-G glycosylase and apurinic (AP) site lyase activity. cDNA clones of four isoforms (types 1a, 1b, 1c, and 2) of human OGG1 homologs (hMMH) were isolated. In order to examine whether expression of hMMH (hOGG1) protein actually occurs in human cells, we prepared type 1a specific antibody, and by using this antibody, we showed that type 1a protein isolated from HeLaS3 has 8-OH-G glycosylase/lyase activity. Furthermore, we showed that type 1a protein is a major enzyme for repair of the 8-OH-G lesion in human cells. In our second study, we generated a mouse line carrying an inactivated mutant Mmh allele by targeted gene disruption. Liver extracts of Mmh homozygous mutant mice were found to have loss of the nicking activity for the 8-OH-G site. In addition, the amount of endogenous 8-OH-G in liver DNA of the homozygous mice increased linearly with age, reaching 7-fold increase in 14 week old mice, over that of wild-type or heterozygous mice. Furthermore, when homozygous mice were fed the oxygen radical-forming agent KBrO3, to provide oxidative stress, the level of 8-OH-G in kidney DNA was tremendously increased: more than 200-fold as that of control mice without oxidative stress after 12 weeks of age. These results indicate that Ogg1/Mmh plays an essential role in the repair of the 8-OH-G residue in DNA produced by oxidative stress. PMID:11978483

  9. In situ analysis of repair processes for oxidative DNA damage in mammalian cells

    NASA Astrophysics Data System (ADS)

    Lan, Li; Nakajima, Satoshi; Oohata, Yoshitsugu; Takao, Masashi; Okano, Satoshi; Masutani, Mitsuko; Wilson, Samuel H.; Yasui, Akira

    2004-09-01

    Oxidative DNA damage causes blocks and errors in transcription and replication, leading to cell death and genomic instability. Although repair mechanisms of the damage have been extensively analyzed in vitro, the actual in vivo repair processes remain largely unknown. Here, by irradiation with an UVA laser through a microscope lens, we have conditionally produced single-strand breaks and oxidative base damage at restricted nuclear regions of mammalian cells. We showed, in real time after irradiation by using antibodies and GFP-tagged proteins, rapid and ordered DNA repair processes of oxidative DNA damage in human cells. Furthermore, we characterized repair pathways by using repair-defective mammalian cells and found that DNA polymerase accumulated at single-strand breaks and oxidative base damage by means of its 31- and 8-kDa domains, respectively, and that XRCC1 is essential for both polymerase -dependent and proliferating cell nuclear antigen-dependent repair pathways of single-strand breaks. Thus, the repair of oxidative DNA damage is based on temporal and functional interactions among various proteins operating at the site of DNA damage in living cells.

  10. Rapid and apparently error-prone excision repair of nonreplicating UV-irradiated plasmids in Xenopus laevis oocytes

    SciTech Connect

    Hays, J.B.; Ackerman, E.J.; Pang, Q.S. )

    1990-07-01

    Repair of UV-irradiated plasmid DNA microinjected into frog oocytes was measured by two techniques: transformation of repair-deficient (delta uvrB delta recA delta phr) bacteria, and removal of UV endonuclease-sensitive sites (ESS). Transformation efficiencies relative to unirradiated plasmids were used to estimate the number of lethal lesions; the latter were assumed to be Poisson distributed. These estimates were in good agreement with measurements of ESS. By both criteria, plasmid DNA was efficiently repaired, mostly during the first 2 h, when as many as 2 x 10(10) lethal lesions were removed per oocyte. This rate is about 10(6) times the average for removal of ESS from repair-proficient human cells. Repair was slower but still significant after 2 h, but some lethal lesions usually remained after overnight incubation. Most repair occurred in the absence of light, in marked contrast to differentiated frog cells, previously shown to possess photoreactivating but no excision repair activity. There was no increase in the resistance to DpnI restriction of plasmids (methylated in Escherichia coli at GATC sites) incubated in oocytes; this implies no increase in hemimethylated GATC sites, and hence no semiconservative DNA replication. Plasmid substrates capable of either intramolecular or intermolecular homologous recombination were not recombined, whether UV-irradiated or not. Repair of Lac+ plasmids was accompanied by a significant UV-dependent increase in the frequency of Lac- mutants, corresponding to a repair synthesis error frequency on the order of 10(-4) per nucleotide.

  11. The nucleotide excision repair system of Borrelia burgdorferi is the sole pathway involved in repair of DNA damage by UV light.

    PubMed

    Hardy, Pierre-Olivier; Chaconas, George

    2013-05-01

    To survive and avoid accumulation of mutations caused by DNA damage, the genomes of prokaryotes encode a variety of DNA repair pathways most well characterized in Escherichia coli. Some of these are required for the infectivity of various pathogens. In this study, the importance of 25 DNA repair/recombination genes for Borrelia burgdorferi survival to UV-induced DNA damage was assessed. In contrast to E. coli, where 15 of these genes have an effect on survival of UV irradiation, disruption of recombinational repair, transcription-coupled repair, methyl-directed mismatch correction, and repair of arrested replication fork pathways did not decrease survival of B. burgdorferi exposed to UV light. However, the disruption of the B. burgdorferi nucleotide excision repair (NER) pathway (uvrA, uvrB, uvrC, and uvrD) resulted in a 10- to 1,000-fold increase in sensitivity to UV light. A functional NER pathway was also shown to be required for B. burgdorferi resistance to nitrosative damage. Finally, disruption of uvrA, uvrC, and uvrD had only a minor effect upon murine infection by increasing the time required for dissemination. PMID:23475971

  12. Silibinin enhances the repair of ultraviolet B-induced DNA damage by activating p53-dependent nucleotide excision repair mechanism in human dermal fibroblasts.

    PubMed

    Guillermo-Lagae, Ruth; Deep, Gagan; Ting, Harold; Agarwal, Chapla; Agarwal, Rajesh

    2015-11-24

    Ultraviolet radiation B (UVB) is the main cause of DNA damage in epidermal cells; and if not repaired, this DNA damage leads to skin cancer. In earlier studies, we have reported that natural flavonolignan silibinin exerts strong chemopreventive efficacy against UVB-induced skin damage and carcinogenesis; however mechanistic studies are still being actively pursued. Here, we investigated the role of nucleotide excision repair (NER) pathway in silibinin's efficacy to repair UVB-induced DNA damage. Normal human dermal fibroblasts (NHDFs) were exposed to UVB (1 mJ/cm2) with pre- or post- silibinin (100 μM) treatment, and cyclobutane pyrimidine dimers (CPDs) formation/repair was measured. Results showed that post-UVB silibinin treatment accelerates DNA repair via activating the NER pathway including the expression of XPA (xeroderma pigmentosum complementation group A), XPB, XPC, and XPG. In UVB exposed fibroblasts, silibinin treatment also increased p53 and GADD45α expression; the key regulators of the NER pathway and DNA repair. Consistently, post-UVB silibinin treatment increased the mRNA transcripts of XPA and GADD45α. Importantly, silibinin showed no effect on UVB-induced DNA damage repair in XPA- and XPB-deficient human dermal fibroblasts suggesting their key role in silibinin-mediated DNA damage repair. Moreover, in the presence of pifithrin-α, an inhibitor of p53, the DNA repair efficacy of silibinin was compromised associated with a reduction in XPA and GADD45α transcripts. Together, these findings suggest that silibinin's efficacy against UVB-induced photodamage is primarily by inhibiting NER and p53; and these findings further support silibinin's usage as a potential inexpensive, effective, and non-toxic agent for skin cancer chemoprevention. PMID:26447614

  13. Base excision repair of both uracil and oxidatively damaged bases contribute to thymidine deprivation-induced radiosensitization

    SciTech Connect

    Allen, Bryan G.; Johnson, Monika; Marsh, Anne E.; Dornfeld, Kenneth J. . E-mail: kenneth-dornfeld@uiowa.edu

    2006-08-01

    Purpose: Increased cellular sensitivity to ionizing radiation due to thymidine depletion is the basis of radiosensitization with fluoropyrimidine and methotrexate. The mechanism responsible for cytotoxicity has not been fully elucidated but appears to involve both the introduction of uracil into, and its removal from, DNA. The role of base excision repair of uracil and oxidatively damaged bases in creating the increased radiosensitization during thymidine depletion is examined. Methods and Materials: Isogenic strains of S. cerevisiae differing only at loci involved in DNA repair functions were exposed to aminopterin and sulfanilamide to induce thymidine deprivation. Cultures were irradiated and survival determined by clonogenic survival assay. Results: Strains lacking uracil base excision repair (BER) activities demonstrated less radiosensitization than the parental strain. Mutant strains continued to show partial radiosensitization with aminopterin treatment. Mutants deficient in BER of both uracil and oxidatively damaged bases did not demonstrate radiosensitization. A recombination deficient rad52 mutant strain was markedly sensitive to radiation; addition of aminopterin increased radiosensitivity only slightly. Radiosensitization observed in rad52 mutants was also abolished by deletion of the APN1, NTG1, and NTG2 genes. Conclusion: These data suggest radiosensitization during thymidine depletion is the result of BER activities directed at both uracil and oxidatively damaged bases.

  14. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification

    PubMed Central

    Almeida, Karen H.; Sobol, Robert W.

    2007-01-01

    Base excision repair (BER) proteins act upon a significantly broad spectrum of DNA lesions that result from endogenous and exogenous sources. Multiple sub-pathways of BER (short-path or long-patch) and newly designated DNA repair pathways (e.g., SSBR and NIR) that utilize BER proteins complicate any comprehensive understanding of BER and its role in genome maintenance, chemotherapeutic response, neurodegeneration, cancer or aging. Herein, we propose a unified model of BER, comprised of three functional processes: Lesion Recognition/Strand Scission, Gap Tailoring and DNA Synthesis/Ligation, each represented by one or more multiprotein complexes and coordinated via the XRCC1/DNA Ligase III and PARP1 scaffold proteins. BER therefore may be represented by a series of repair complexes that assemble at the site of the DNA lesion and mediates repair in a coordinated fashion involving protein-protein interactions that dictate subsequent steps or sub-pathway choice. Complex formation is influenced by post-translational protein modifications that arise from the cellular state or the DNA damage response, providing an increase in specificity and efficiency to the BER pathway. In this review, we have summarized the reported BER protein-protein interactions and protein post-translational modifications and discuss the impact on DNA repair capacity and complex formation. PMID:17337257

  15. Initiation of DNA Interstrand Cross-link Repair in Mammalian Cells

    PubMed Central

    Hlavin, Erica M.; Smeaton, Michael B.; Miller, Paul S.

    2010-01-01

    Interstrand cross-links (ICLs) are among the most cytotoxic DNA lesions to cells because they prevent the two DNA strands from separating, thereby precluding replication and transcription. Even though chemotherapeutic cross-linking agents are well established in clinical use, and numerous repair proteins have been implicated in the initial events of mammalian ICL repair, the precise mechanistic details of these events remain to be elucidated. This review will summarize our current understanding of how ICL repair is initiated with an emphasis on the context (replicating, transcribed or quiescent DNA) in which the ICL is recognized, and how the chemical and physical properties of ICLs influence repair. Although most studies have focused on replication-dependent repair because of the relation to highly replicative tumor cells, replication-independent ICL repair is likely to be important in the circumvention of cross-link cytotoxicity in non-dividing, terminally differentiated cells that may be challenged with exogenous or endogenous sources of ICLs. Consequently, the ICL repair pathway that should be considered ‘dominant’ appears to depend on the cell type and the DNA context in which the ICL is encountered. The ability to define and inhibit distinct pathways of ICL repair in different cell cycle phases may help in developing methods that increase cytotoxicity to cancer cells while reducing side-effects in non-dividing normal cells. This may also lead to a better understanding of pathways that protect against malignancy and aging. PMID:20658650

  16. Elevated metals compromise repair of oxidative DNA damage via the base excision repair pathway: implications of pathologic iron overload in the brain on integrity of neuronal DNA.

    PubMed

    Li, Hui; Swiercz, Rafal; Englander, Ella W

    2009-09-01

    Tissue-specific iron content is tightly regulated to simultaneously satisfy specialized metabolic needs and avoid cytotoxicity. In the brain, disruption of iron homeostasis may occur in acute as well as progressive injuries associated with neuronal dysfunction and death. We hypothesized that adverse effects of disrupted metal homeostasis on brain function may involve impairment of DNA repair processes. Because in the brain, the base excision repair (BER) pathway is central for handling oxidatively damaged DNA, we investigated effects of elevated iron and zinc on key BER enzymes. In vitro DNA repair assays revealed inhibitory effects of metals on BER activities, including the incision of abasic sites, 5'-flap cleavage, gap filling DNA synthesis and ligation. Using the comet assay, we showed that while metals at concentrations which inhibit BER activities in in vitro assays, did not induce direct genomic damage in cultured primary neurons, they significantly delayed repair of genomic DNA damage induced by sublethal exposure to H(2)O(2). Thus, in the brain even a mild transient metal overload, may adversely affect the DNA repair capacity and thereby compromise genomic integrity and initiate long-term deleterious sequelae including neuronal dysfunction and death. PMID:19619136

  17. Telomere proteins POT1, TRF1 and TRF2 augment long-patch base excision repair in vitro

    PubMed Central

    Miller, Adam S; Balakrishnan, Lata; Buncher, Noah A

    2012-01-01

    Human telomeres consist of multiple tandem hexameric repeats, each containing a guanine triplet. Guanosine-rich clusters are highly susceptible to oxidative base damage, necessitating base excision repair (BER). Previous demonstration of enhanced strand displacement synthesis by the BER component DNA polymerase β in the presence of telomere protein TRF2 suggests that telomeres employ long-patch (LP) BER. Earlier analyses in vitro showed that efficiency of BER reactions is reduced in the DNA-histone environment of chromatin. Evidence presented here indicates that BER is promoted at telomeres. We found that the three proteins that contact telomere DNA, POT1, TRF1 and TRF2, enhance the rate of individual steps of LP-BER and stimulate the complete reconstituted LP-BER pathway. Thought to protect telomere DNA from degradation, these proteins still apparently evolved to allow selective access of repair proteins. PMID:22336916

  18. MUTYH-associated polyposis (MAP), the syndrome implicating base excision repair in inherited predisposition to colorectal tumors

    PubMed Central

    Venesio, Tiziana; Balsamo, Antonella; D'Agostino, Vito G.; Ranzani, Guglielmina N.

    2012-01-01

    In 2002, Al-Tassan and co-workers described for the first time a recessive form of inherited polyposis associated with germline mutations of MUTYH, a gene encoding a base excision repair (BER) protein that counteracts the DNA damage induced by the oxidative stress. MUTYH-associated polyposis (MAP) is now a well-defined cancer susceptibility syndrome, showing peculiar molecular features that characterize disease progression. However, some aspects of MAP, including diagnostic criteria, genotype-phenotype correlations, pathogenicity of variants, as well as relationships between BER and other DNA repair pathways, are still poorly understood. A deeper knowledge of the MUTYH expression pattern is likely to refine our understanding of the protein role and, finally, to improve guidances for identifying and handling MAP patients. PMID:22876359

  19. Inhibition of DNA excision repair by methotrexate in Chinese hamster ovary cells following exposure to ultraviolet irradiation or ethylmethanesulfonate

    SciTech Connect

    Borchers, A.H.; Kennedy, K.A.; Straw, J.A. )

    1990-03-15

    Previous results have suggested that methotrexate (MTX) could interfere with the repair of spontaneous DNA damage. To determine its effects on induced DNA damage, MTX was compared to hydroxyurea and arabinofuranosylcytosine (H/A), a drug combination known to block the DNA polymerase step of excision repair, for its ability to cause the accumulation of single-strand breaks (SSB) following exposure to either UV light or the alkylating agent ethylmethanesulfonate in Chinese hamster ovary cells. SSB were measured by alkaline elution 1, 2, and 6 h after exposure to either 1.8 mg/ml of ethylmethanesulfonate or 10 J/m2 of UV in cells pretreated with MTX or H/A. Following exposure to ethylmethanesulfonate, significant accumulation of SSB occurred in cells pretreated with either H/A or MTX. Coadministration of hypoxanthine and thymidine in MTX-treated cells prevented SSB accumulation, indicating that nucleotide depletion by MTX had inhibited repair synthesis. After UV irradiation, SSB accumulation was much less in MTX- than in H/A-treated cells. MTX was found to have no effect on the incision of UV damage. These results indicate that nucleotide depletion by MTX can affect the repair of DNA damage by exogenous agents, and that the extent of inhibition is dependent on the type of damage induced.

  20. Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase.

    PubMed

    Kang, Tae-Hong; Lindsey-Boltz, Laura A; Reardon, Joyce T; Sancar, Aziz

    2010-03-16

    Cisplatin is one of the most commonly used anticancer drugs. It kills cancer cells by damaging their DNA, and hence cellular DNA repair capacity is an important determinant of its efficacy. Here, we investigated the repair of cisplatin-induced DNA damage in mouse liver and testis tissue extracts prepared at regular intervals over the course of a day. We find that the XPA protein, which plays an essential role in repair of cisplatin damage by nucleotide excision repair, exhibits circadian oscillation in the liver but not in testis. Consequently, removal of cisplatin adducts in liver extracts, but not in testis extracts, exhibits a circadian pattern with zenith at approximately 5 pm and nadir at approximately 5 am. Furthermore, we find that the circadian oscillation of XPA is achieved both by regulation of transcription by the core circadian clock proteins including cryptochrome and by regulation at the posttranslational level by the HERC2 ubiquitin ligase. These findings may be used as a guide for timing of cisplatin chemotherapy. PMID:20304803

  1. Functional interactions and signaling properties of mammalian DNA mismatch repair proteins.

    PubMed

    Bellacosa, A

    2001-11-01

    The mismatch repair (MMR) system promotes genomic fidelity by repairing base-base mismatches, insertion-deletion loops and heterologies generated during DNA replication and recombination. This function is critically dependent on the assembling of multimeric complexes involved in mismatch recognition and signal transduction to downstream repair events. In addition, MMR proteins coordinate a complex network of physical and functional interactions that mediate other DNA transactions, such as transcription-coupled repair, base excision repair and recombination. MMR proteins are also involved in activation of cell cycle checkpoint and induction of apoptosis when DNA damage overwhelms a critical threshold. For this reason, they play a role in cell death by alkylating agents and other chemotherapeutic drugs, including cisplatin. Inactivation of MMR genes in hereditary and sporadic cancer is associated with a mutator phenotype and inhibition of apoptosis. In the future, a deeper understanding of the molecular mechanisms and functional interactions of MMR proteins will lead to the development of more effective cancer prevention and treatment strategies. PMID:11687886

  2. Enhanced excision repair and lack of PSII activity contribute to higher UV survival of Chlamydomonas reinhardtii cells in dark.

    PubMed

    Chaudhari, Vishalsingh R; Vyawahare, Aniket; Bhattacharjee, Swapan K; Rao, Basuthkar J

    2015-03-01

    Plant cells are known to differentiate their responses to stress depending up on the light conditions. We observed that UVC sensitive phenotype of light grown asynchronous Chlamydomonas reinhardtii culture (Light culture: LC) can be converted to relatively resistant form by transfer to dark condition (Dark culture: DC) before UVC exposure. The absence of photosystem II (PSII) function, by either atrazine treatment in wild type or in D1 (psbA) null mutant, conferred UV protection even in LC. We provide an indirect support for involvement of reactive oxygen species (ROS) signalling by showing higher UV survival on exposures to mild dose of H2O2 or Methyl Viologen. Circadian trained culture also showed a rhythmic variation in UV sensitivity in response to alternating light-dark (12 h:12 h) entrainment, with maximum UV survival at the end of 12 h dark and minimum at the end of 12 h light. This rhythm failed to maintain in "free running" conditions, making it a non-circadian phenotype. Moreover, atrazine strongly inhibited rhythmic UV sensitivity and conferred a constitutively high resistance, without affecting internal circadian rhythm marker expression. Dampening of UV sensitivity rhythm in Thymine-dimer excision repair mutant (cc-888) suggested the involvement of DNA repair in this phenomenon. DNA excision repair (ER) assays in cell-free extracts revealed that dark incubated cells exhibit higher ER compared to those growing in light, underscoring the role of ER in conferring differential UV sensitivity in dark versus light incubation. We suggest that multiple factors such as ROS changes triggered by differences in PSII activity, concomitant with differential ER efficiency collectively contribute to light-dark (12 h: 12 h) rhythmicity in C. reinhardtii UV sensitivity. PMID:25660990

  3. A mutant of Eshcerchia coli K-12, URT-43, with a temperature-sensitive defect at the incision step of the excision repair mechanism.

    PubMed

    Morimyo, M; Suzuki, K; Shimauzu, Y

    1975-02-01

    URT-43, which has a defect in excision repair, exhibits a temperature-dependent ultraviolet survival. It was shown that URT-43 requires protein synthesis but not DNA synthesis for recovery, by examining recovery in a growth medium containing chloramphenicol or nalidixic acid. The recovery of irradiated bacteriophage lambda in URT-43 took place in a medium containing nalidixic acid at 30 degrees, but not at 41 degrees, and chloramphenicol prevented this recovery. These results seem to imply that the product of the mutated gene in URT-43 is labile. URT-43 was confirmed to have a temperature-sensitive mutation at the incision step of the excision repair mechanism by examining the nick formation of parental DNA in alkaline sucrose gradients. The release of pyrimidine dimers was reinvestigated directly by one- and two-dimensional paper-chromatography and indirectly by examining the distribution of DNA molecules synthesized after irradiation. Dimers were excised into the acid-soluble fraction when growing bacteria were incubated, but were not excised when in amino acid starved bacteria. These results suggest that URT-43 is a mutant slowly excising pyrimidine dimers because the product of a mutated gene concerned with the incision step of the excision repair mechanism is unstable. PMID:1093010

  4. Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1.

    PubMed

    Kassahun, Henok; Nilsen, Hilde

    2013-10-01

    Oxidative stress promotes human aging and contributes to common neurodegenerative diseases. Endogenous DNA damage induced by oxidative stress is believed to be an important promoter of neurodegenerative diseases. Although a large amount of evidence correlates a reduced DNA repair capacity with aging and neurodegenerative disease, there is little direct evidence of causality. Moreover, the contribution of oxidative DNA damage to the aging process is poorly understood. We have used the nematode Caenorhabditis elegans to study the contribution of oxidative DNA damage and repair to aging. C. elegans is particularly well suited to tackle this problem because it has a minimum complexity DNA repair system, which enables us to circumvent the important limitation presented by the extensive redundancy of DNA repair enzymes in mammals. PMID:24744987

  5. XPC is essential for nucleotide excision repair of zidovudine-induced DNA damage in human hepatoma cells

    SciTech Connect

    Wu Qiangen; Beland, Frederick A.; Chang, Ching-Wei; Fang Jialong

    2011-03-01

    Zidovudine (3'-azido-3'-dexoythymidine, AZT), a nucleoside reverse transcriptase inhibitor, can be incorporated into DNA and cause DNA damage. The mechanisms underlying the repair of AZT-induced DNA damage are unknown. To investigate the pathways involved in the recognition and repair of AZT-induced DNA damage, human hepatoma HepG2 cells were incubated with AZT for 2 weeks and the expression of DNA damage signaling pathways was determined using a pathway-based real-time PCR array. Compared to control cultures, damaged DNA binding and nucleotide excision repair (NER) pathways showed significantly increased gene expression. Further analysis indicated that AZT treatment increased the expression of genes associated with NER, including XPC, XPA, RPA1, GTF2H1, and ERCC1. Western blot analysis demonstrated that the protein levels of XPC and GTF2H1 were also significantly up-regulated. To explore further the function of XPC in the repair of AZT-induced DNA damage, XPC expression was stably knocked down by 71% using short hairpin RNA interference. In the XPC knocked-down cells, 100 {mu}M AZT treatment significantly increased [{sup 3}H]AZT incorporation into DNA, decreased the total number of viable cells, increased the release of lactate dehydrogenase, induced apoptosis, and caused a more extensive G2/M cell cycle arrest when compared to non-transfected HepG2 cells or HepG2 cells transfected with a scrambled short hairpin RNA sequence. Overall, these data indicate that XPC plays an essential role in the NER repair of AZT-induced DNA damage.

  6. Heat shock protein 70 enhanced deoxyribonucleic acid base excision repair in human leukemic cells after ionizing radiation.

    PubMed

    Bases, Robert

    2006-01-01

    Base excision repair (BER) of DNA damage in irradiated THP1 human leukemic cells was stimulated by pretreating the cells with exogenous recombinant Hsp70. The treatment of THP1 cells with recombinant Hsp70 in cell culture promoted repair by reducing the frequency of apurinic, apyrimidinic (AP) sites in DNA before and after 1.3 Gy of radiation. However, by 30 minutes after 2.6 Gy, accelerated repair of abasic sites supervened, which may contribute to the loss of the very-low-dose cell hypersensitivity seen in clonogenic studies of other laboratories. After irradiation with 2.6 Gy, the crucial initial glycosylase step was markedly incomplete when cells had been transfected 24 hours before with a small interfering RNA (siRNA) designed to inhibit synthesis of Hsp70. In confirmation, lysates from irradiated siRNA-treated cells after 2.6 Gy were deficient in uracil glycosylase activity (UDG). Transfection with a scrambled RNA of the same size did not interfere with the glycosylase step, ie, the prompt conversion of damaged pyrimidine sites to abasic sites as well as the subsequent repair of those sites. BER measured by reduction of DNA AP sites before and after low-dose radiation was also deficient in THP1 cells that had been transfected with the siRNA designed to inhibit synthesis of Hsp70. These results implicate BER and the participation of Hsp70 in the repair of DNA in human leukemic cells with the doses of ionizing radiation used in clinical regimens. PMID:17009597

  7. Effect of cordycepin(3'-deoxyadenosine) on excision repair of 5,6-dihydroxy-dihydrothymine-type products from the DNA of Micrococcus radiodurans

    SciTech Connect

    Patil, M.S.; Tundo, V.J.; Locher, S.E.; Hariharan, P.V.

    1983-07-01

    Cordycepin(3'-deoxyadenosine), a nucleoside analog, has been shown to enhance radiation-induced cell killing. In an effort to elucidate the possible mechanism for enhancement of cell killing, the effect of cordycepin on the excision repair of radiation-induced 5,6-dihydroxy-dihydrothymine-type (t') products from the DNA of wild type Micrococcus radiodurans was investigated. The capacity of M. radiodurans to excise nondimeric (t') products from its DNA was significantly impaired after cordycepin treatment. The results suggest that the increased radiation sensitivity of cordycepin-treated cells could be due to alterations in cellular processes that repair DNA damage.

  8. A UV–Induced Genetic Network Links the RSC Complex to Nucleotide Excision Repair and Shows Dose-Dependent Rewiring

    PubMed Central

    Srivas, Rohith; Costelloe, Thomas; Carvunis, Anne-Ruxandra; Sarkar, Sovan; Malta, Erik; Sun, Su Ming; Pool, Marijke; Licon, Katherine; van Welsem, Tibor; van Leeuwen, Fred; McHugh, Peter J.; van Attikum, Haico; Ideker, Trey

    2014-01-01

    SUMMARY Efficient repair of UV-induced DNA damage requires the precise coordination of nucleotide excision repair (NER) with numerous other biological processes. To map this crosstalk, we generated a differential genetic interaction map centered on quantitative growth measurements of >45,000 double mutants before and after different doses of UV radiation. Integration of genetic data with physical interaction networks identified a global map of 89 UV-induced functional interactions amongst 62 protein complexes, including a number of links between the RSC complex and several NER factors. We show that RSC is recruited to both silenced and transcribed loci following UV damage where it facilitates efficient repair by promoting nucleosome remodeling. Finally, a comparison of the response to high versus low levels of UV shows that the degree of genetic rewiring correlates with dose of UV and reveals a network of dose-specific interactions. This study makes available a large resource of UV-induced interactions, and it illustrates a methodology for identifying dose-dependent interactions based on quantitative shifts in genetic networks. PMID:24360959

  9. SIRT6 rescues the age related decline in base excision repair in a PARP1-dependent manner

    PubMed Central

    Xu, Zhu; Zhang, Lei; Zhang, Wenjun; Meng, Du; Zhang, Hongxia; Jiang, Ying; Xu, Xiaojun; Van Meter, Michael; Seluanov, Andrei; Gorbunova, Vera; Mao, Zhiyong

    2015-01-01

    In principle, a decline in base excision repair (BER) efficiency with age should lead to genomic instability and ultimately contribute to the onset of the aging phenotype. Although multiple studies have indicated a negative link between aging and BER, the change of BER efficiency with age in humans has not been systematically analyzed. Here, with foreskin fibroblasts isolated from 19 donors between 20 and 64 y of age, we report a significant decline of BER efficiency with age using a newly developed GFP reactivation assay. We further observed a very strong negative correlation between age and the expression levels of SIRT6, a factor which is known to maintain genomic integrity by improving DNA double strand break (DSB) repair. Our mechanistic study suggests that, similar to the regulatory role that SIRT6 plays in DNA DSB repair, SIRT6 regulates BER in a PARP1-depdendent manner. Moreover, overexpression of SIRT6 rescues the decline of BER in aged fibroblasts. In summary, our results uncovered the regulatory mechanisms of BER by SIRT6, suggesting that SIRT6 reactivation in aging tissues may help delay the process of aging through improving BER. PMID:25607651

  10. Structural Basis for Bulky-Adduct DNA-Lesion Recognition by the Nucleotide Excision Repair Protein Rad14.

    PubMed

    Simon, Nina; Ebert, Charlotte; Schneider, Sabine

    2016-07-25

    Heterocyclic aromatic amines react with purine bases and result in bulky DNA adducts that cause mutations. Such structurally diverse lesions are substrates for the nucleotide excision repair (NER). It is thought that the NER machinery recognises and verifies distorted DNA conformations, also involving the xeroderma pigmentosum group A and C proteins (XPA, XPC) that act as a scaffold between the DNA substrate and several other NER proteins. Here we present the synthesis of DNA molecules containing the polycyclic, aromatic amine C8-guanine lesions acetylaminophenyl, acetylaminonaphthyl, acetylaminoanthryl, and acetylaminopyrenyl, as well as their crystal structures in complex with the yeast XPA homologue Rad14. This work further substantiates the indirect lesion-detection mechanism employed by the NER system that recognises destabilised and deformable DNA structures. PMID:27223336

  11. Enhanced Genotoxicity of Silver Nanoparticles in DNA Repair Deficient Mammalian Cells

    PubMed Central

    Lim, Hui Kheng; Asharani, P. V.; Hande, M. Prakash

    2012-01-01

    Silver nanoparticles (Ag-np) have been used in medicine and commercially due to their anti-microbial properties. Therapeutic potentials of these nanoparticles are being explored extensively despite the lack of information on their mechanism of action at molecular and cellular level. Here, we have investigated the DNA damage response and repair following Ag-np treatment in mammalian cells. Studies have shown that Ag-np exerts genotoxicity through double-strand breaks (DSBs). DNA-PKcs, the catalytic subunit of DNA dependent protein kinase, is an important caretaker of the genome which is known to be the main player mediating Non-homologous End-Joining (NHEJ) repair pathway. We hypothesize that DNA-PKcs is responsible for the repair of Ag-np induced DNA damage. In vitro studies have been carried out to investigate both cytotoxicity and genotoxicity induced by Ag-np in normal human cells, DNA-PKcs proficient, and deficient mammalian cells. Chemical inhibition of DNA-PKcs activity with NU7026, an ATP-competitive inhibitor of DNA-PKcs, has been performed to further validate the role of DNA-PKcs in this model. Our results suggest that Ag-np induced more prominent dose-dependent decrease in cell viability in DNA-PKcs deficient or inhibited cells. The deficiency or inhibition of DNA-PKcs renders the cells with higher susceptibility to DNA damage and genome instability which in turn contributed to greater cell cycle arrest/cell death. These findings support the fact that DNA-PKcs is involved in the repair of Ag-np induced genotoxicity and NHEJ repair pathway and DNA-PKcs particularly is activated to safeguard the genome upon Ag-np exposure. PMID:22707954

  12. Structure and stereochemistry of the base excision repair glycosylase MutY reveal a mechanism similar to retaining glycosidases

    PubMed Central

    Woods, Ryan D.; O'Shea, Valerie L.; Chu, Aurea; Cao, Sheng; Richards, Jody L.; Horvath, Martin P.; David, Sheila S.

    2016-01-01

    MutY adenine glycosylases prevent DNA mutations by excising adenine from promutagenic 8-oxo-7,8-dihydroguanine (OG):A mismatches. Here, we describe structural features of the MutY active site bound to an azaribose transition state analog which indicate a catalytic role for Tyr126 and approach of the water nucleophile on the same side as the departing adenine base. The idea that Tyr126 participates in catalysis, recently predicted by modeling calculations, is strongly supported by mutagenesis and by seeing close contact between the hydroxyl group of this residue and the azaribose moiety of the transition state analog. NMR analysis of MutY methanolysis products corroborates a mechanism for adenine removal with retention of stereochemistry. Based on these results, we propose a revised mechanism for MutY that involves two nucleophilic displacement steps akin to the mechanisms accepted for ‘retaining’ O-glycosidases. This new-for-MutY yet familiar mechanism may also be operative in related base excision repair glycosylases and provides a critical framework for analysis of human MutY (MUTYH) variants associated with inherited colorectal cancer. PMID:26673696

  13. Structure and stereochemistry of the base excision repair glycosylase MutY reveal a mechanism similar to retaining glycosidases.

    PubMed

    Woods, Ryan D; O'Shea, Valerie L; Chu, Aurea; Cao, Sheng; Richards, Jody L; Horvath, Martin P; David, Sheila S

    2016-01-29

    MutY adenine glycosylases prevent DNA mutations by excising adenine from promutagenic 8-oxo-7,8-dihydroguanine (OG):A mismatches. Here, we describe structural features of the MutY active site bound to an azaribose transition state analog which indicate a catalytic role for Tyr126 and approach of the water nucleophile on the same side as the departing adenine base. The idea that Tyr126 participates in catalysis, recently predicted by modeling calculations, is strongly supported by mutagenesis and by seeing close contact between the hydroxyl group of this residue and the azaribose moiety of the transition state analog. NMR analysis of MutY methanolysis products corroborates a mechanism for adenine removal with retention of stereochemistry. Based on these results, we propose a revised mechanism for MutY that involves two nucleophilic displacement steps akin to the mechanisms accepted for 'retaining' O-glycosidases. This new-for-MutY yet familiar mechanism may also be operative in related base excision repair glycosylases and provides a critical framework for analysis of human MutY (MUTYH) variants associated with inherited colorectal cancer. PMID:26673696

  14. Both base excision repair and O6-methylguanine-DNA methyltransferase protect against methylation-induced colon carcinogenesis

    PubMed Central

    Wirtz, Stefan; Nagel, Georg; Eshkind, Leonid; Neurath, Markus F.; Samson, Leona D.; Kaina, Bernd

    2010-01-01

    Methylating agents are widely distributed environmental carcinogens. Moreover, they are being used in cancer chemotherapy. The primary target of methylating agents is DNA, and therefore, DNA repair is the first-line barrier in defense against their toxic and carcinogenic effects. Methylating agents induce in the DNA O6-methylguanine (O6MeG) and methylations of the ring nitrogens of purines. The lesions are repaired by O6-methylguanine-DNA methyltransferase (Mgmt) and by enzymes of the base excision repair (BER) pathway, respectively. Whereas O6MeG is well established as a pre-carcinogenic lesion, little is known about the carcinogenic potency of base N-alkylation products such as N3-methyladenine and N3-methylguanine. To determine their role in cancer formation and the role of BER in cancer protection, we checked the response of mice with a targeted gene disruption of Mgmt or N-alkylpurine-DNA glycosylase (Aag) or both Mgmt and Aag, to azoxymethane (AOM)-induced colon carcinogenesis, using non-invasive mini-colonoscopy. We demonstrate that both Mgmt- and Aag-null mice show a higher colon cancer frequency than the wild-type. With a single low dose of AOM (3 mg/kg) Aag-null mice showed an even stronger tumor response than Mgmt-null mice. The data provide evidence that both BER initiated by Aag and O6MeG reversal by Mgmt are required for protection against alkylation-induced colon carcinogenesis. Further, the data indicate that non-repaired N-methylpurines are not only pre-toxic but also pre-carcinogenic DNA lesions. PMID:20732909

  15. Silymarin Protects Epidermal Keratinocytes from Ultraviolet Radiation-Induced Apoptosis and DNA Damage by Nucleotide Excision Repair Mechanism

    PubMed Central

    Katiyar, Santosh K.; Mantena, Sudheer K.; Meeran, Syed M.

    2011-01-01

    Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum), inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK) with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs) and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER) genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells. PMID:21731736

  16. Silymarin protects epidermal keratinocytes from ultraviolet radiation-induced apoptosis and DNA damage by nucleotide excision repair mechanism.

    PubMed

    Katiyar, Santosh K; Mantena, Sudheer K; Meeran, Syed M

    2011-01-01

    Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum), inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK) with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs) and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER) genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells. PMID:21731736

  17. Mechanisms of double-strand-break repair during gene targeting in mammalian cells.

    PubMed Central

    Ng, P; Baker, M D

    1999-01-01

    In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting.In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp.The hDNA was efficiently repaired prior to DNA replication.The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism. PMID:10049929

  18. In vitro Repair of Oxidative DNA Damage by Human Nucleotide Excision Repair System: Possible Explanation for Neurodegeneration in Xeroderma Pigmentosum Patients

    NASA Astrophysics Data System (ADS)

    Reardon, Joyce T.; Bessho, Tadayoshi; Kung, Hsiang Chuan; Bolton, Philip H.; Sancar, Aziz

    1997-08-01

    Xeroderma pigmentosum (XP) patients fail to remove pyrimidine dimers caused by sunlight and, as a consequence, develop multiple cancers in areas exposed to light. The second most common sign, present in 20-30% of XP patients, is a set of neurological abnormalities caused by neuronal death in the central and peripheral nervous systems. Neural tissue is shielded from sunlight-induced DNA damage, so the cause of neurodegeneration in XP patients remains unexplained. In this study, we show that two major oxidative DNA lesions, 8-oxoguanine and thymine glycol, are excised from DNA in vitro by the same enzyme system responsible for removing pyrimidine dimers and other bulky DNA adducts. Our results suggest that XP neurological disease may be caused by defective repair of lesions that are produced in nerve cells by reactive oxygen species generated as by-products of an active oxidative metabolism.

  19. The role of Schizosaccharomyces pombe DNA repair enzymes Apn1p and Uve1p in the base excision repair of apurinic/apyrimidinic sites

    SciTech Connect

    Tanihigashi, Haruna; Yamada, Ayako; Igawa, Emi; Ikeda, Shogo . E-mail: ikeda@dbc.ous.ac.jp

    2006-09-08

    In Schizosaccharomyces pombe the repair of apurinic/apyrimidinic (AP) sites is mainly initiated by AP lyase activity of DNA glycosylase Nth1p. In contrast, the major AP endonuclease Apn2p functions by removing 3'-{alpha},{beta}-unsaturated aldehyde ends induced by Nth1p, rather than by incising the AP sites. S. pombe possesses other minor AP endonuclease activities derived from Apn1p and Uve1p. In this study, we investigated the function of these two enzymes in base excision repair (BER) for methyl methanesulfonate (MMS) damage using the nth1 and apn2 mutants. Deletion of apn1 or uve1 from nth1{delta} cells did not affect sensitivity to MMS. Exogenous expression of Apn1p failed to suppress the MMS sensitivity of nth1{delta} cells. Although Apn1p and Uve1p incised the oligonucleotide containing an AP site analogue, these enzymes could not initiate repair of the AP sites in vivo. Despite this, expression of Apn1p partially restored the MMS sensitivity of apn2{delta} cells, indicating that the enzyme functions as a 3'-phosphodiesterase to remove 3'-blocked ends. Localization of Apn1p in the nucleus and cytoplasm hints at an additional function of the enzyme other than nuclear DNA repair. Heterologous expression of Saccharomyces cerevisiae homologue of Apn1p completely restored the MMS resistance of the nth1{delta} and apn2{delta} cells. This result confirms a difference in the major pathway for processing the AP site between S. pombe and S. cerevisiae cells.

  20. POLYMORPHISMS IN THE DNA BASE EXCISION REPAIR GENES APEX1 AND XRCC1 AND LUNG CANCER RISK IN XUAN WEI, CHINA

    EPA Science Inventory

    The lung cancer mortality rate in Xuan Wei County is among the highest in China and has been attributed to exposure to indoor smoky coal emissions that contain very high levels of polycyclic aromatic hydrocarbons (PAHs). Nucleotide excision repair (NER) plays a key role in revers...

  1. An Adenine-DNA Adduct Derived from Nitroreduction of 6-Nitrochrysene is more Resistant to Nucleotide Excision Repair than Guanine-DNA Adducts

    PubMed Central

    Krzeminski, Jacek; Kropachev, Konstantin; Reeves, Dara; Kolbanovskiy, Aleksandr; Kolbanovskiy, Marina; Chen, Kun-Ming; Sharma, Arun K.; Geacintov, Nicholas; Amin, Shantu; El-Bayoumy, Karam

    2013-01-01

    Previous studies in rats, mice and in vitro systems showed that 6-NC can be metabolically activated by two major pathways: 1) the formation of N-hydroxy-6-aminochrysene by nitroreduction to yield three major adducts: N-(dG-8-yl)-6-AC, 5-(dG-N2-yl)-6-AC and N-(dA-8-yl)-6-AC, and 2) the formation of trans-1,2-dihydroxy-1,2-dihydro-6-hydroxylaminochrysene (1,2-DHD-6-NHOH-C) by a combination of nitroreduction and ring oxidation pathways to yield: N-(dG-8-yl)-1,2-DHD-6-AC, 5-(dG-N2-yl)-1,2-DHD-6-AC and N-(dA-8-yl)-1,2-DHD-6-AC. These DNA lesions are likely to cause mutations if they are not removed by cellular defense mechanisms before DNA replication occurs. Here we compared for the first time, in HeLa cell extracts in vitro, the relative nucleotide excision repair (NER) efficiencies of DNA lesions derived from simple nitroreduction and from a combination of nitroreduction and ring oxidation pathways. We show that the N-(dG-8-yl)-1,2-DHD-6-AC adduct is more resistant to NER than the N-(dG-8-yl)-6-AC adduct by a factor of ~2. Furthermore, the N-(dA-8-yl)-6-AC is much more resistant to repair since its NER efficiency is ~ 8-fold lower than that of the N-(dG-8-yl)-6-AC adduct. On the basis of our previous study and the present investigation, lesions derived from 6-NC and benzo[a]pyrene can be ranked from the most to the least resistant lesion as follows: N-(dA-8-yl)-6-AC > N-(dG-8-yl)-1,2-DHD-6-AC > 5-(dG-N2-yl)-6-AC ~ N-(dG-8-yl)-6-AC ~ (+)-7R,8S,9S,10S-benzo[a]pyrene diol epoxide-derived trans-anti-benzo[a]pyrene-N2-dG adduct. The slow repair of the various lesions derived from 6-NC and thus their potential persistence in mammalian tissue, could in part account for the powerful carcinogenicity of 6-NC as compared to B[a]P in the rat mammary gland. PMID:24112095

  2. Excision repair of UV-induced pyrimidine dimers in human skin in vivo

    SciTech Connect

    D'Ambrosio, S.M.; Slazinski, L.; Whetstone, J.W.; Lowney, E.

    1981-09-01

    The induction and loss of pyrimidine dimers in human skin in vivo was determined using UV endonuclease, alkaline sucrose sedimentations, and the fluorescent detection of nonradiolabeled DNA. The number of dimers induced following exposure of the skin to radiation emitted from a Burdick UV-800 sunlamp was quantitated by reacting the extracted DNA with Micrococcus luteus endonuclease specific for pyrimidine dimers. Exposure to 15 and 30 seconds of radiation emitted from this lamp produced the formation of 12.8 and 23.6 dimers per 10(8) daltons DNA, respectively. Approximately 50% of the dimers induced were lost 58 min after irradiation. Only a small percentage (less than 10) remained 24 hr postirradiation. These data partially characterize the process by which pyrimidine dimers are excised from human skin DNA in vivo.

  3. Poly(ADP-ribose)-synthesis and excision repair in light sensitive skin disorders.

    PubMed

    Horkay, I; Topaloglou, A; Teherani, D K; Kósa, A; Altmann, H

    1990-01-01

    Several data suggest a relationship of poly(ADP-ribose) (PAR) synthesis to DNA repair and the influence of some trace elements on the semiconservative and unscheduled DNA synthesis (UDS). Previously we found certain alterations in the UV-light induced UDS and in the contents of trace elements in the lymphocytes of patients with light sensitive skin disorders. In the recent study in polymorphic light eruption, cutaneous porphyrias and xeroderma pigmentosum the PAR synthesis and zinc, copper and manganese contents in the chromatin of the lymphocytes (measured by neutron activation analysis) were investigated. UV induced PAR synthesis was generally lower in the cells of polymorphic light eruption and especially in xeroderma pigmentosum with a reduced repair capacity whereas in cutaneous porphyrias no difference was observed. Some correlations occurred between the contents of trace elements studied and UDS as well in each group tested. It seems that PAR investigations throw new light upon our understanding of the pathomechanism of photodermatoses. PMID:2094134

  4. Deficiency in nucleotide excision repair family gene activity, especially ERCC3, is associated with non-pigmented hair fiber growth.

    PubMed

    Yu, Mei; Bell, Robert H; Ho, Maggie M; Leung, Gigi; Haegert, Anne; Carr, Nicholas; Shapiro, Jerry; McElwee, Kevin J

    2012-01-01

    We conducted a microarray study to discover gene expression patterns associated with a lack of melanogenesis in non-pigmented hair follicles (HF) by microarray. Pigmented and non-pigmented HFs were collected and micro-dissected into the hair bulb (HB) and the upper hair sheaths (HS) including the bulge region. In comparison to pigmented HS and HBs, nucleotide excision repair (NER) family genes ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, XPA, NTPBP, HCNP, DDB2 and POLH exhibited statistically significantly lower expression in non- pigmented HS and HBs. Quantitative PCR verified microarray data and identified ERCC3 as highly differentially expressed. Immunohistochemistry confirmed ERCC3 expression in HF melanocytes. A reduction in ERCC3 by siRNA interference in human melanocytes in vitro reduced their tyrosinase production ability. Our results suggest that loss of NER gene function is associated with a loss of melanin production capacity. This may be due to reduced gene transcription and/or reduced DNA repair in melanocytes which may eventually lead to cell death. These results provide novel information with regard to melanogenesis and its regulation. PMID:22615732

  5. The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma

    PubMed Central

    Belanger, KarryAnne K.; Ameredes, Bill T.; Boldogh, Istvan

    2016-01-01

    Asthma is characterized by reversible airway narrowing, shortness of breath, wheezing, coughing, and other symptoms driven by chronic inflammatory processes, commonly triggered by allergens. In 90% of asthmatics, most of these symptoms can also be triggered by intense physical activities and severely exacerbated by environmental factors. This condition is known as exercise-induced asthma (EIA). Current theories explaining EIA pathogenesis involve osmotic and/or thermal alterations in the airways caused by changes in respiratory airflow during exercise. These changes, along with existing airway inflammatory conditions, are associated with increased cellular levels of reactive oxygen species (ROS) affecting important biomolecules including DNA, although the underlying molecular mechanisms have not been completely elucidated. One of the most abundant oxidative DNA lesions is 8-oxoguanine (8-oxoG), which is repaired by 8-oxoguanine DNA glycosylase 1 (OGG1) during the base excision repair (BER) pathway. Whole-genome expression analyses suggest a cellular response to OGG1-BER, involving genes that may have a role in the pathophysiology of EIA leading to mast cell degranulation, airway hyperresponsiveness, and bronchoconstriction. Accordingly, this review discusses a potential new hypothesis in which OGG1-BER-induced gene expression is associated with EIA symptoms. PMID:27524866

  6. Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice

    PubMed Central

    Skarpengland, Tonje; Holm, Sverre; Scheffler, Katja; Gregersen, Ida; Dahl, Tuva B.; Suganthan, Rajikala; Segers, Filip M.; Østlie, Ingunn; Otten, Jeroen J. T.; Luna, Luisa; Ketelhuth, Daniel F. J.; Lundberg, Anna M.; Neurauter, Christine G.; Hildrestrand, Gunn; Skjelland, Mona; Bjørndal, Bodil; Svardal, Asbjørn M.; Iversen, Per O.; Hedin, Ulf; Nygård, Ståle; Olstad, Ole K.; Krohg-Sørensen, Kirsten; Slupphaug, Geir; Eide, Lars; Kuśnierczyk, Anna; Folkersen, Lasse; Ueland, Thor; Berge, Rolf K.; Hansson, Göran K.; Biessen, Erik A. L.; Halvorsen, Bente; Bjørås, Magnar; Aukrust, Pål

    2016-01-01

    Increasing evidence suggests that oxidative DNA damage accumulates in atherosclerosis. Recently, we showed that a genetic variant in the human DNA repair enzyme NEIL3 was associated with increased risk of myocardial infarction. Here, we explored the role of Neil3/NEIL3 in atherogenesis by both clinical and experimental approaches. Human carotid plaques revealed increased NEIL3 mRNA expression which significantly correlated with mRNA levels of the macrophage marker CD68. Apoe−/−Neil3−/− mice on high-fat diet showed accelerated plaque formation as compared to Apoe−/− mice, reflecting an atherogenic lipid profile, increased hepatic triglyceride levels and attenuated macrophage cholesterol efflux capacity. Apoe−/−Neil3−/− mice showed marked alterations in several pathways affecting hepatic lipid metabolism, but no genotypic alterations in genome integrity or genome-wide accumulation of oxidative DNA damage. These results suggest a novel role for the DNA glycosylase Neil3 in atherogenesis in balancing lipid metabolism and macrophage function, potentially independently of genome-wide canonical base excision repair of oxidative DNA damage. PMID:27328939

  7. Calcium-Binding Capacity of Centrin2 Is Required for Linear POC5 Assembly but Not for Nucleotide Excision Repair

    PubMed Central

    Dantas, Tiago J.; Daly, Owen M.; Conroy, Pauline C.; Tomas, Martin; Wang, Yifan; Lalor, Pierce; Dockery, Peter; Ferrando-May, Elisa; Morrison, Ciaran G.

    2013-01-01

    Centrosomes, the principal microtubule-organising centres in animal cells, contain centrins, small, conserved calcium-binding proteins unique to eukaryotes. Centrin2 binds to xeroderma pigmentosum group C protein (XPC), stabilising it, and its presence slightly increases nucleotide excision repair (NER) activity in vitro. In previous work, we deleted all three centrin isoforms present in chicken DT40 cells and observed delayed repair of UV-induced DNA lesions, but no centrosome abnormalities. Here, we explore how centrin2 controls NER. In the centrin null cells, we expressed centrin2 mutants that cannot bind calcium or that lack sites for phosphorylation by regulatory kinases. Expression of any of these mutants restored the UV sensitivity of centrin null cells to normal as effectively as expression of wild-type centrin. However, calcium-binding-deficient and T118A mutants showed greatly compromised localisation to centrosomes. XPC recruitment to laser-induced UV-like lesions was only slightly slower in centrin-deficient cells than in controls, and levels of XPC and its partner HRAD23B were unaffected by centrin deficiency. Interestingly, we found that overexpression of the centrin interactor POC5 leads to the assembly of linear, centrin-dependent structures that recruit other centrosomal proteins such as PCM-1 and NEDD1. Together, these observations suggest that assembly of centrins into complex structures requires calcium binding capacity, but that such assembly is not required for centrin activity in NER. PMID:23844208

  8. Quantitative, real-time analysis of base excision repair activity in cell lysates utilizing lesion-specific molecular beacons.

    PubMed

    Svilar, David; Vens, Conchita; Sobol, Robert W

    2012-01-01

    We describe a method for the quantitative, real-time measurement of DNA glycosylase and AP endonuclease activities in cell nuclear lysates using base excision repair (BER) molecular beacons. The substrate (beacon) is comprised of a deoxyoligonucleotide containing a single base lesion with a 6-Carboxyfluorescein (6-FAM) moiety conjugated to the 5'end and a Dabcyl moiety conjugated to the 3' end of the oligonucleotide. The BER molecular beacon is 43 bases in length and the sequence is designed to promote the formation of a stem-loop structure with 13 nucleotides in the loop and 15 base pairs in the stem. When folded in this configuration the 6-FAM moiety is quenched by Dabcyl in a non-fluorescent manner via Förster Resonance Energy Transfer (FRET). The lesion is positioned such that following base lesion removal and strand scission the remaining 5 base oligonucleotide containing the 6-FAM moiety is released from the stem. Release and detachment from the quencher (Dabcyl) results in an increase of fluorescence that is proportionate to the level of DNA repair. By collecting multiple reads of the fluorescence values, real-time assessment of BER activity is possible. The use of standard quantitative real-time PCR instruments allows the simultaneous analysis of numerous samples. The design of these BER molecular beacons, with a single base lesion, is amenable to kinetic analyses, BER quantification and inhibitor validation and is adaptable for quantification of DNA Repair activity in tissue and tumor cell lysates or with purified proteins. The analysis of BER activity in tumor lysates or tissue aspirates using these molecular beacons may be applicable to functional biomarker measurements. Further, the analysis of BER activity with purified proteins using this quantitative assay provides a rapid, high-throughput method for the discovery and validation of BER inhibitors. PMID:22895410

  9. Base excision repair of ionizing radiation-induced DNA damage in G1 and G2 cell cycle phases

    PubMed Central

    Chaudhry, M Ahmad

    2007-01-01

    Background Major genomic surveillance mechanisms regulated in response to DNA damage exist at the G1/S and G2/M checkpoints. It is presumed that these delays provide time for the repair of damaged DNA. Cells have developed multiple DNA repair pathways to protect themselves from different types of DNA damage. Oxidative DNA damage is processed by the base excision repair (BER) pathway. Little is known about the BER of ionizing radiation-induced DNA damage and putative heterogeneity of BER in the cell cycle context. We measured the activities of three BER enzymes throughout the cell cycle to investigate the cell cycle-specific repair of ionizing radiation-induced DNA damage. We further examined BER activities in G2 arrested human cells after exposure to ionizing radiation. Results Using an in vitro incision assay involving radiolabeled oligonucleotides with specific DNA lesions, we examined the activities of several BER enzymes in the whole cell extracts prepared from synchronized human HeLa cells irradiated in G1 and G2 phase of the cell cycle. The activities of human endonuclease III (hNTH1), a glycosylase/lyase that removes several damaged bases from DNA including dihydrouracil (DHU), 8-oxoguanine-DNA glycosylase (hOGG1) that recognizes 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG) lesion and apurinic/apyrimidinic endonuclease (hAPE1) that acts on abasic sites including synthetic analog furan were examined. Conclusion Overall the repair activities of hNTH1 and hAPE1 were higher in the G1 compared to G2 phase of the cell cycle. The percent cleavages of oligonucleotide substrate with furan were greater than substrate with DHU in both G1 and G2 phases. The irradiation of cells enhanced the cleavage of substrates with furan and DHU only in G1 phase. The activity of hOGG1 was much lower and did not vary within the cell cycle. These results demonstrate the cell cycle phase dependence on the BER of ionizing radiation-induced DNA damage. Interestingly no evidence of

  10. Identification of a conserved 5'-dRP lyase activity in bacterial DNA repair ligase D and its potential role in base excision repair.

    PubMed

    de Ory, Ana; Nagler, Katja; Carrasco, Begoña; Raguse, Marina; Zafra, Olga; Moeller, Ralf; de Vega, Miguel

    2016-02-29

    Bacillus subtilis is one of the bacterial members provided with a nonhomologous end joining (NHEJ) system constituted by the DNA-binding Ku homodimer that recruits the ATP-dependent DNA Ligase D (BsuLigD) to the double-stranded DNA breaks (DSBs) ends. BsuLigD has inherent polymerization and ligase activities that allow it to fill the short gaps that can arise after realignment of the broken ends and to seal the resulting nicks, contributing to genome stability during the stationary phase and germination of spores. Here we show that BsuLigD also has an intrinsic 5'-2-deoxyribose-5-phosphate (dRP) lyase activity located at the N-terminal ligase domain that in coordination with the polymerization and ligase activities allows efficient repairing of 2'-deoxyuridine-containing DNA in an in vitro reconstituted Base Excision Repair (BER) reaction. The requirement of a polymerization, a dRP removal and a final sealing step in BER, together with the joint participation of BsuLigD with the spore specific AP endonuclease in conferring spore resistance to ultrahigh vacuum desiccation suggest that BsuLigD could actively participate in this pathway. We demonstrate the presence of the dRP lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa, allowing us to expand our results to other bacterial LigDs. PMID:26826709

  11. Identification of a conserved 5′-dRP lyase activity in bacterial DNA repair ligase D and its potential role in base excision repair

    PubMed Central

    de Ory, Ana; Nagler, Katja; Carrasco, Begoña; Raguse, Marina; Zafra, Olga; Moeller, Ralf; de Vega, Miguel

    2016-01-01

    Bacillus subtilis is one of the bacterial members provided with a nonhomologous end joining (NHEJ) system constituted by the DNA-binding Ku homodimer that recruits the ATP-dependent DNA Ligase D (BsuLigD) to the double-stranded DNA breaks (DSBs) ends. BsuLigD has inherent polymerization and ligase activities that allow it to fill the short gaps that can arise after realignment of the broken ends and to seal the resulting nicks, contributing to genome stability during the stationary phase and germination of spores. Here we show that BsuLigD also has an intrinsic 5′-2-deoxyribose-5-phosphate (dRP) lyase activity located at the N-terminal ligase domain that in coordination with the polymerization and ligase activities allows efficient repairing of 2′-deoxyuridine-containing DNA in an in vitro reconstituted Base Excision Repair (BER) reaction. The requirement of a polymerization, a dRP removal and a final sealing step in BER, together with the joint participation of BsuLigD with the spore specific AP endonuclease in conferring spore resistance to ultrahigh vacuum desiccation suggest that BsuLigD could actively participate in this pathway. We demonstrate the presence of the dRP lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa, allowing us to expand our results to other bacterial LigDs. PMID:26826709

  12. DNA polymerase X from Deinococcus radiodurans implicated in bacterial tolerance to DNA damage is characterized as a short patch base excision repair polymerase.

    PubMed

    Khairnar, Nivedita P; Misra, Hari S

    2009-09-01

    The Deinococcus radiodurans R1 genome encodes an X-family DNA repair polymerase homologous to eukaryotic DNA polymerase beta. The recombinant deinococcal polymerase X (PolX) purified from transgenic Escherichia coli showed deoxynucleotidyltransferase activity. Unlike the Klenow fragment of E. coli, this enzyme showed short patch DNA synthesis activity on heteropolymeric DNA substrate. The recombinant enzyme showed 5'-deoxyribose phosphate (5'-dRP) lyase activity and base excision repair function in vitro, with the help of externally supplied glycosylase and AP endonuclease functions. A polX disruption mutant of D. radiodurans expressing 5'-dRP lyase and a truncated polymerase domain was comparatively less sensitive to gamma-radiation than a polX deletion mutant. Both mutants showed higher sensitivity to hydrogen peroxide. Excision repair mutants of E. coli expressing this polymerase showed functional complementation of UV sensitivity. These results suggest the involvement of deinococcal polymerase X in DNA-damage tolerance of D. radiodurans, possibly by contributing to DNA double-strand break repair and base excision repair. PMID:19542005

  13. 8-oxoguanine DNA glycosylase-1 driven DNA base excision repair: role in asthma pathogenesis

    PubMed Central

    Ba, Xueqing; Aguilera Aguirre, Leopoldo; Sur, Sanjiv; Boldogh, Istvan

    2015-01-01

    Purpose of review To provide both an overview and evidence of the potential etiology of oxidative DNA base damage and repair-signaling in chronic inflammation and histological changes associated with asthma. Recent findings Asthma is initiated/maintained by immunological, genetic/epigenetic and environmental factors. It is a world-wide health problem, as current therapies suppress symptoms rather than prevent/reverse the disease, largely due to gaps in understanding its molecular mechanisms. Inflammation, oxidative stress and DNA damage are inseparable phenomena, but their molecular roles in asthma pathogenesis are unclear. It was found that among oxidatively modified DNA bases, 8-oxoguanine (8-oxoG) is one of the most abundant, and its levels in DNA and body fluids are considered a biomarker of ongoing asthmatic processes. Free 8-oxoG forms a complex with 8-oxoguanine DNA glycosylase-1 (OGG1) and activates RAS-family GTPases that induce gene expression to mobilize innate and adaptive immune systems, along with genes regulating airway hyperplasia, hyper-responsiveness and lung remodeling in atopic and non-atopic asthma. Summary DNA’s integrity must be maintained to prevent mutation, so its continuous repair and downstream signaling “fuels” chronic inflammatory processes in asthma, and forms the basic mechanism whose elucidation will allow the development of new drug targets for the prevention/reversal of lung diseases. PMID:25486379

  14. UvrD Participation in Nucleotide Excision Repair Is Required for the Recovery of DNA Synthesis following UV-Induced Damage in Escherichia coli.

    PubMed

    Newton, Kelley N; Courcelle, Charmain T; Courcelle, Justin

    2012-01-01

    UvrD is a DNA helicase that participates in nucleotide excision repair and several replication-associated processes, including methyl-directed mismatch repair and recombination. UvrD is capable of displacing oligonucleotides from synthetic forked DNA structures in vitro and is essential for viability in the absence of Rep, a helicase associated with processing replication forks. These observations have led others to propose that UvrD may promote fork regression and facilitate resetting of the replication fork following arrest. However, the molecular activity of UvrD at replication forks in vivo has not been directly examined. In this study, we characterized the role UvrD has in processing and restoring replication forks following arrest by UV-induced DNA damage. We show that UvrD is required for DNA synthesis to recover. However, in the absence of UvrD, the displacement and partial degradation of the nascent DNA at the arrested fork occur normally. In addition, damage-induced replication intermediates persist and accumulate in uvrD mutants in a manner that is similar to that observed in other nucleotide excision repair mutants. These data indicate that, following arrest by DNA damage, UvrD is not required to catalyze fork regression in vivo and suggest that the failure of uvrD mutants to restore DNA synthesis following UV-induced arrest relates to its role in nucleotide excision repair. PMID:23056919

  15. Nucleotide Excision Repair Factor XPC Enhances DNA Damage-Induced Apoptosis by Downregulating the Antiapoptotic Short Isoform of Caspase-2

    PubMed Central

    Wang, Qi-En; Han, Chunhua; Zhang, Bo; Sabapathy, Kanaga; Wani, Altaf A.

    2012-01-01

    XPC protein is a critical DNA damage recognition factor in nucleotide excision repair (NER) for which genetic deficiency confers a predisposition to cancer. In this study we demonstrate that XPC has a function that is independent of its canonical function in DNA repair, potentially altering the interpretation of how XPC deficiency leads to heightened cancer susceptibility. XPC enhances apoptosis induced by DNA damage in a p53 nullizygous background, acting downstream of mitochondrial permeabilization and upstream of caspase-9 activation in the DNA damage-induced apoptosis cascade. We found that deficiency in XPC upregulated production of the short isoform of caspase-2 (casp-2S). This upregulation occurred at both protein and mRNA levels through repression of the caspase-2 promoter by XPC protein. Targeted RNAi-mediated downregulation of casp-2S enhanced UV-induced apoptosis as well as activation of caspase-9 and caspase-6 in XPC-deficient cells, but not in XPC-proficient cells. In addition, XPC overexpression in various p53-deficient cancer cells resistant to cisplatin improved their sensitivity to cisplatin-induced apoptosis. Given that casp-2S functions as an anti-apoptotic protein, our findings suggest that XPC enhances DNA damage-induced apoptosis through inhibition of casp-2S transcription. Together, these findings offer a mechanistic foundation to overcome the resistance of highly prevalent p53-deficient tumors to cell death induced by DNA-damaging therapeutic agents, by targeting strategies that inhibit the expression or function of casp-2S. PMID:22174370

  16. Caloric restriction promotes genomic stability by induction of base excision repair and reversal of its age-related decline.

    PubMed

    Cabelof, Diane C; Yanamadala, Sunitha; Raffoul, Julian J; Guo, ZhongMao; Soofi, Abdulsalam; Heydari, Ahmad R

    2003-03-01

    Caloric restriction is a potent experimental manipulation that extends mean and maximum life span and delays the onset and progression of tumors in laboratory rodents. While caloric restriction (CR) clearly protects the genome from deleterious damage, the mechanism by which genomic stability is achieved remains unclear. We provide evidence that CR promotes genomic stability by increasing DNA repair capacity, specifically base excision repair (BER). CR completely reverses the age-related decline in BER capacity (P<0.01) in all tissues tested (brain, liver, spleen and testes) providing aged, CR animals with the BER phenotype of young, ad libitum-fed animals. This CR-induced reversal of the aged BER phenotype is accompanied by a reversal in the age-related decline in DNA polymerase beta (beta-pol), a rate-limiting enzyme in the BER pathway. CR significantly reversed the age-related loss of beta-pol protein levels (P<0.01), mRNA levels (P<0.01) and enzyme activity (P<0.01) in all tissues tested. Additionally, in young (4-6-month-old) CR animals a significant up-regulation in BER capacity, beta-pol protein and beta-pol mRNA is observed (P<0.01), demonstrating an early effect of CR that may provide insight in distinguishing the anti-tumor from the anti-aging effects of CR. This up-regulation in BER by caloric restriction in young animals corresponds to increased protection from carcinogen exposure, as mutation frequency is significantly reduced in CR animals exposed to either DMS or 2-nitropropane (2-NP) (P<0.01). Overall the data suggest an important biological consequence of moderate BER up-regulation and provides support for the hormesis theory of caloric restriction. PMID:12547392

  17. Inter-individual variation in nucleotide excision repair in young adults: effects of age, adiposity, micronutrient supplementation and genotype.

    PubMed

    Tyson, John; Caple, Fiona; Spiers, Alison; Burtle, Brian; Daly, Ann K; Williams, Elizabeth A; Hesketh, John E; Mathers, John C

    2009-05-01

    Nucleotide excision repair (NER) is responsible for repairing bulky helix-distorting DNA lesions and is essential for the maintenance of genomic integrity. Severe hereditary impairment of NER leads to cancers such as those in xeroderma pigmentosum, and more moderate reductions in NER capacity have been associated with an increased cancer risk. Diet is a proven modifier of cancer risk but few studies have investigated the potential relationships between diet and NER. In the present study, the plasmid-based host cell reactivation assay was used to measure the NER capacity in peripheral blood mononuclear cells from fifty-seven volunteers aged 18-30 years before and after 6 weeks of supplementation with micronutrients (selenium and vitamins A, C and E). As a control, nine individuals remained unsupplemented over the same period. Volunteers were genotyped for the following polymorphisms in NER genes: ERCC5 Asp1104His (rs17655); XPC Lys939Gln (rs2228001); ERCC2 Lys751Gnl (rs13181); XPC PAT (an 83 bp poly A/T insertion-deletion polymorphism in the XPC gene). NER capacity varied 11-fold between individuals and was inversely associated with age and endogenous DNA strand breaks. For the first time, we observed an inverse association between adiposity and NER. No single polymorphism was associated with the NER capacity, although significant gene-gene interactions were observed between XPC Lys939Gln and ERCC5 Asp1104His and XPC Lys939Gln and ERCC2 Lys751Gnl. While there was no detectable effect of micronutrient supplementation on NER capacity, there was evidence that the effect of fruit intake on the NER capacity may be modulated by the ERCC2 Lys751Gnl single nucleotide polymorphism. PMID:18838045

  18. Twist-open mechanism of DNA damage recognition by the Rad4/XPC nucleotide excision repair complex.

    PubMed

    Velmurugu, Yogambigai; Chen, Xuejing; Slogoff Sevilla, Phillip; Min, Jung-Hyun; Ansari, Anjum

    2016-04-19

    DNA damage repair starts with the recognition of damaged sites from predominantly normal DNA. In eukaryotes, diverse DNA lesions from environmental sources are recognized by the xeroderma pigmentosum C (XPC) nucleotide excision repair complex. Studies of Rad4 (radiation-sensitive 4; yeast XPC ortholog) showed that Rad4 "opens" up damaged DNA by inserting a β-hairpin into the duplex and flipping out two damage-containing nucleotide pairs. However, this DNA lesion "opening" is slow (˜5-10 ms) compared with typical submillisecond residence times per base pair site reported for various DNA-binding proteins during 1D diffusion on DNA. To address the mystery as to how Rad4 pauses to recognize lesions during diffusional search, we examine conformational dynamics along the lesion recognition trajectory using temperature-jump spectroscopy. Besides identifying the ˜10-ms step as the rate-limiting bottleneck towards opening specific DNA site, we uncover an earlier ˜100- to 500-μs step that we assign to nonspecific deformation (unwinding/"twisting") of DNA by Rad4. The β-hairpin is not required to unwind or to overcome the bottleneck but is essential for full nucleotide-flipping. We propose that Rad4 recognizes lesions in a step-wise "twist-open" mechanism, in which preliminary twisting represents Rad4 interconverting between search and interrogation modes. Through such conformational switches compatible with rapid diffusion on DNA, Rad4 may stall preferentially at a lesion site, offering time to open DNA. This study represents the first direct observation, to our knowledge, of dynamical DNA distortions during search/interrogation beyond base pair breathing. Submillisecond interrogation with preferential stalling at cognate sites may be common to various DNA-binding proteins. PMID:27035942

  19. Twist-open mechanism of DNA damage recognition by the Rad4/XPC nucleotide excision repair complex

    PubMed Central

    Velmurugu, Yogambigai; Chen, Xuejing; Slogoff Sevilla, Phillip; Min, Jung-Hyun; Ansari, Anjum

    2016-01-01

    DNA damage repair starts with the recognition of damaged sites from predominantly normal DNA. In eukaryotes, diverse DNA lesions from environmental sources are recognized by the xeroderma pigmentosum C (XPC) nucleotide excision repair complex. Studies of Rad4 (radiation-sensitive 4; yeast XPC ortholog) showed that Rad4 “opens” up damaged DNA by inserting a β-hairpin into the duplex and flipping out two damage-containing nucleotide pairs. However, this DNA lesion “opening” is slow (˜5–10 ms) compared with typical submillisecond residence times per base pair site reported for various DNA-binding proteins during 1D diffusion on DNA. To address the mystery as to how Rad4 pauses to recognize lesions during diffusional search, we examine conformational dynamics along the lesion recognition trajectory using temperature-jump spectroscopy. Besides identifying the ˜10-ms step as the rate-limiting bottleneck towards opening specific DNA site, we uncover an earlier ˜100- to 500-μs step that we assign to nonspecific deformation (unwinding/“twisting”) of DNA by Rad4. The β-hairpin is not required to unwind or to overcome the bottleneck but is essential for full nucleotide-flipping. We propose that Rad4 recognizes lesions in a step-wise “twist-open” mechanism, in which preliminary twisting represents Rad4 interconverting between search and interrogation modes. Through such conformational switches compatible with rapid diffusion on DNA, Rad4 may stall preferentially at a lesion site, offering time to open DNA. This study represents the first direct observation, to our knowledge, of dynamical DNA distortions during search/interrogation beyond base pair breathing. Submillisecond interrogation with preferential stalling at cognate sites may be common to various DNA-binding proteins. PMID:27035942

  20. Post-UV survival and mutagenesis in DNA repair-proficient and -deficient strains of Escherichia coli K-12 grown in 5-azacytidine to inhibit DNA cytosine methylation: evidence for mutagenic excision repair.

    PubMed

    Radnedge, L; Pinney, R J

    1993-03-01

    Inhibition of cytosine methylation by growth in 5-azacytidine (5-azaC), did not affect the sensitivities to DNA damage induced by exposure to ultraviolet light (UV) of Escherichia coli K-12 strains AB1157 dcm+, which is fully DNA repair-proficient, LR68 (a dcm derivative of AB1157), JC3890 dcm+ uvrB, deficient in error-free excision repair, TK702 dcm+ umuC, deficient in error-prone repair, or TK501 dcm+ uvrB umuC, which lacks both excision repair and error-prone repair. However, growth in 5-azaC increased the post-UV survival of strains AB2463 recA(Def), AB2470 recB and AB2494 lexA(Ind-), which are deficient in the induction or expression of recombination repair or error-prone repair of DNA. Spontaneous mutation frequencies were increased in strains LR68, AB2463, AB2470 and AB2494 by growth in 5-azaC, but remained unaltered in strains AB1157, JC3890, TK702 or TK501. Growth in 5-azaC significantly increased UV-induced mutation frequencies in strains AB2463 and AB2470, significantly reduced UV-induced mutation in strain JC3890, but had little effect on UV-induced mutation in the other strains. The results suggest that 5-azaC may induce a normally error-free DNA repair pathway to become error-prone and therefore genotoxic. PMID:7683337

  1. Up-regulation of nucleotide excision repair in mouse lung and liver following chronic exposure to aflatoxin B{sub 1} and its dependence on p53 genotype

    SciTech Connect

    Mulder, Jeanne E.; Bondy, Genevieve S.; Mehta, Rekha; Massey, Thomas E.

    2014-03-01

    Aflatoxin B{sub 1} (AFB{sub 1}) is biotransformed in vivo into an epoxide metabolite that forms DNA adducts that may induce cancer if not repaired. p53 is a tumor suppressor gene implicated in the regulation of global nucleotide excision repair (NER). Male heterozygous p53 knockout (B6.129-Trp53{sup tm1Brd}N5, Taconic) and wild-type mice were exposed to 0, 0.2 or 1.0 ppm AFB{sub 1} for 26 weeks. NER activity was assessed with an in vitro assay, using AFB{sub 1}-epoxide adducted plasmid DNA as a substrate. For wild-type mice, repair of AFB{sub 1}–N7-Gua adducts was 124% and 96% greater in lung extracts from mice exposed to 0.2 ppm and 1.0 ppm AFB{sub 1} respectively, and 224% greater in liver extracts from mice exposed to 0.2 ppm AFB{sub 1} (p < 0.05). In heterozygous p53 knockout mice, repair of AFB{sub 1}–N7-Gua was only 45% greater in lung extracts from mice exposed to 0.2 ppm AFB{sub 1} (p < 0.05), and no effect was observed in lung extracts from mice treated with 1.0 ppm AFB{sub 1} or in liver extracts from mice treated with either AFB{sub 1} concentration. p53 genotype did not affect basal levels of repair. AFB{sub 1} exposure did not alter repair of AFB{sub 1}-derived formamidopyrimidine adducts in lung or liver extracts of either mouse genotype nor did it affect XPA or XPB protein levels. In summary, chronic exposure to AFB{sub 1} increased NER activity in wild-type mice, and this response was diminished in heterozygous p53 knockout mice, indicating that loss of one allele of p53 limits the ability of NER to be up-regulated in response to DNA damage. - Highlights: • Mice are chronically exposed to low doses of the mycotoxin aflatoxin B{sub 1} (AFB{sub 1}). • The effects of AFB{sub 1} and p53 status on nucleotide excision repair are investigated. • AFB{sub 1} increases nucleotide excision repair in wild type mouse lung and liver. • This increase is attenuated in p53 heterozygous mouse lung and liver. • Results portray the role of p53 in

  2. A community-based study of nucleotide excision repair polymorphisms in relation to risk of non-melanoma skin cancer

    PubMed Central

    Wheless, Lee; Kistner-Griffin, Emily; Jorgensen, Timothy J.; Ruczinski, Ingo; Berthier-Schaad, Yvette; Kessing, Bailey; Hoffman-Bolton, Judith; Francis, Lesley; Shugart, Yin Yao; Strickland, Paul T.; Kao, W.H. Linda; Alani, Rhoda M.; Smith, Michael W.; Alberg, Anthony J.

    2012-01-01

    Nucleotide excision repair (NER) is responsible for protecting DNA in skin cells against ultraviolet radiation-induced damage. Using a candidate pathway approach, a matched case-control study nested within a prospective, community-based cohort was carried out to test the hypothesis that single nucleotide polymorphisms (SNPs) in NER genes are associated with susceptibility to non-melanoma skin cancer (NMSC). Histologically-confirmed cases of NMSC (n=900) were matched to controls (n=900) on age, gender, and skin type. Associations were measured between NMSC and 221 SNPs in 26 NER genes. Using the additive model, two tightly linked functional SNPs in ERCC6 were significantly associated with increased risk of NMSC: rs2228527 (odds ratio (OR) 1.57, 95% confidence interval (CI) 1.20 – 2.05), and rs2228529 (OR 1.57, 95% CI 1.20 – 2.05). These associations were confined to basal cell carcinoma of the skin (BCC) (rs2228529, OR 1.78, 95% CI 1.30 – 2.44; rs2228527 OR 1.78, 95% CI 1.31 – 2.43). These hypothesis-generating findings suggest functional variants in ERCC6 may be associated with an increased risk of NMSC that may be specific to BCC. PMID:22336945

  3. Expression of Excision Repair Cross-Complementation Group 1 as Predictive Marker for Nasopharyngeal Cancer Treated With Concurrent Chemoradiotherapy

    SciTech Connect

    Sun, Jong-Mu; Ahn, Myung-Ju; Park, Min Jae; Lee, Hui-Young; Ahn, Jin Seok; Lee, Seungkoo; Kang, Gu; Han, Joungho; Son, Young-Ik; Baek, Chung-Hwan; Ahn, Yong Chan; Park, Keunchil

    2011-07-01

    Purpose: Cisplatin-based concurrent chemoradiotherapy is the standard treatment of nasopharyngeal cancer. The expression of excision repair cross-complementation group 1 (ERCC1) has been reported to be associated with resistance to platinum-based chemotherapy. We evaluated whether ERCC1 expression could predict the treatment response and survival outcome of patients with locally advanced nasopharyngeal cancer who were treated with cisplatin-based concurrent chemoradiotherapy. Methods and Materials: Immunohistochemistry was used to examine the expression of ERCC1 in nasopharyngeal tumor tissue. Patients were categorized into either a resistant or sensitive group depending on their treatment response outcome. A total of 77 patients were assessed in the present study. Results: The resistant and sensitive groups included 25 and 52 patients, respectively. ERCC1 expression was positive in the tumor tissue for 39 of the 77 patients (51%). Significantly more ERCC1-negative tumors were in the sensitive group than in the resistant group (p = .035). In terms of survival outcome, univariate analysis determined that patients with ERCC1-negative tumors had longer disease-free survival (p = .076) and overall survival (p = .013) than patients with ERCC1-positive tumors. Multivariate analysis determined that negative ERCC expression in tumors was an independent predictor for prolonged overall survival (hazard ratio, 0.14; 95% confidence interval, 0.03-0.71). Conclusion: These results suggest that ERCC1 expression might be a useful predictive marker in patients with locally advanced nasopharyngeal cancer who are under consideration for cisplatin-based concurrent chemoradiotherapy.

  4. Heterogeneity of excision repair cross-complementation group 1 gene expression in non-small-cell lung cancer patients

    PubMed Central

    SMIRNOV, SERHEY; PASHKEVICH, ANASTASIYA; LIUNDYSHEVA, VALERIYA; BABENKO, ANDREY; SMOLYAKOVA, RAISA

    2015-01-01

    Excision repair cross-complementation group 1 (ERCC1) gene expression analysis is currently used widely in the molecular diagnosis of cancer. According to numerous studies, ERCC1 gene expression correlates with overall survival and effectiveness of chemotherapy with platinum agents. However, the degree of this correlation differs among various studies, with certain authors reporting a complete lack of such a correlation. These contradictions may be attributed to a number of factors, including the heterogeneity of the tumor tissue. In this study, we attempted to assess the degree of genetic heterogeneity exhibited by tissue samples obtained from non-small-cell lung cancer (NSCLC) through the expression of the ERCC1 gene. This study included 25 samples of tumor tissue from patients with a morphologically confirmed NSCLC diagnosis. A total of three randomized sections of each specimen were used. The ERCC1 gene expression was assessed by quantitative polymerase chain reaction (qPCR) in the TaqMan format. When planning the experiment and analysis of qPCR data, the MIQE guidelines were taken into consideration. We established that the coefficient of variation of the relative level of ERCC1 gene expression in the majority of the samples exceeded 33% (P<0.05), indicating the significant heterogeneity of the sample. We also demonstrated that the degree of heterogeneity of the tumor tissue is largely dependent on disease stage. PMID:25469300

  5. Structure-function analysis of the EF-hand protein centrin-2 for its intracellular localization and nucleotide excision repair

    PubMed Central

    Nishi, Ryotaro; Sakai, Wataru; Tone, Daisuke; Hanaoka, Fumio; Sugasawa, Kaoru

    2013-01-01

    Centrin-2 is an evolutionarily conserved, calmodulin-related protein, which is involved in multiple cellular functions including centrosome regulation and nucleotide excision repair (NER) of DNA. Particularly to exert the latter function, complex formation with the XPC protein, the pivotal NER damage recognition factor, is crucial. Here, we show that the C-terminal half of centrin-2, containing two calcium-binding EF-hand motifs, is necessary and sufficient for both its localization to the centrosome and interaction with XPC. In XPC-deficient cells, nuclear localization of overexpressed centrin-2 largely depends on co-overexpression of XPC, and mutational analyses of the C-terminal domain suggest that XPC and the major binding partner in the centrosome share a common binding surface on the centrin-2 molecule. On the other hand, the N-terminal domain of centrin-2 also contains two EF-hand motifs but shows only low-binding affinity for calcium ions. Although the N-terminal domain is dispensable for enhancement of the DNA damage recognition activity of XPC, it contributes to augmenting rather weak physical interaction between XPC and XPA, another key factor involved in NER. These results suggest that centrin-2 may have evolved to bridge two protein factors, one with high affinity and the other with low affinity, thereby allowing delicate regulation of various biological processes. PMID:23716636

  6. C. elegans lifespan extension by osmotic stress requires FUdR, base excision repair, FOXO, and sirtuins.

    PubMed

    Anderson, Edward N; Corkins, Mark E; Li, Jia-Cheng; Singh, Komudi; Parsons, Sadé; Tucey, Tim M; Sorkaç, Altar; Huang, Huiyan; Dimitriadi, Maria; Sinclair, David A; Hart, Anne C

    2016-03-01

    Moderate stress can increase lifespan by hormesis, a beneficial low-level induction of stress response pathways. 5'-fluorodeoxyuridine (FUdR) is commonly used to sterilize Caenorhabditis elegans in aging experiments. However, FUdR alters lifespan in some genotypes and induces resistance to thermal and proteotoxic stress. We report that hypertonic stress in combination with FUdR treatment or inhibition of the FUdR target thymidylate synthase, TYMS-1, extends C. elegans lifespan by up to 30%. By contrast, in the absence of FUdR, hypertonic stress decreases lifespan. Adaptation to hypertonic stress requires diminished Notch signaling and loss of Notch co-ligands leads to lifespan extension only in combination with FUdR. Either FUdR treatment or TYMS-1 loss induced resistance to acute hypertonic stress, anoxia, and thermal stress. FUdR treatment increased expression of DAF-16 FOXO and the osmolyte biosynthesis enzyme GPDH-1. FUdR-induced hypertonic stress resistance was partially dependent on sirtuins and base excision repair (BER) pathways, while FUdR-induced lifespan extension under hypertonic stress conditions requires DAF-16, BER, and sirtuin function. Combined, these results demonstrate that FUdR, through inhibition of TYMS-1, activates stress response pathways in somatic tissues to confer hormetic resistance to acute and chronic stress. C. elegans lifespan studies using FUdR may need re-interpretation in light of this work. PMID:26854551

  7. A mechanism for the exclusion of low-fidelity human Y-family DNA polymerases from base excision repair.

    PubMed

    Haracska, Lajos; Prakash, Louise; Prakash, Satya

    2003-11-15

    The human Y-family DNA polymerases, Poliota, Poleta, and Polkappa, function in promoting replication through DNA lesions. However, because of their low fidelity, any involvement of these polymerases in DNA synthesis during base excision repair (BER) would be highly mutagenic. Mechanisms, therefore, must exist to exclude their participation in BER. Here, we show that although Poliota, Poleta, and Polkappa are all able to form a covalent Schiff base intermediate with the 5'-deoxyribose phosphate (5'-dRP) residue that results from the incision of DNA at an abasic site by an AP endonuclease, they all lack the ability for the subsequent catalytic removal of the 5'-dRP group. Instead, the covalent trapping of these polymerases by the 5'-dRP residue inhibits their DNA synthetic activity during BER. The unprecedented ability of these polymerases for robust Schiff base formation without the release of the 5'-dRP product provides a means of preventing their participation in the DNA synthetic step of BER, thereby avoiding the high incidence of mutagenesis and carcinogenesis that would otherwise occur. PMID:14630940

  8. Role of the DNA Base Excision Repair Protein, APE1 in Cisplatin, Oxaliplatin, or Carboplatin Induced Sensory Neuropathy

    PubMed Central

    Kelley, Mark R.; Jiang, Yanlin; Guo, Chunlu; Reed, April; Meng, Hongdi; Vasko, Michael R.

    2014-01-01

    Although chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect of platinum drugs, the mechanisms of this toxicity remain unknown. Previous work in our laboratory suggests that cisplatin-induced CIPN is secondary to DNA damage which is susceptible to base excision repair (BER). To further examine this hypothesis, we studied the effects of cisplatin, oxaliplatin, and carboplatin on cell survival, DNA damage, ROS production, and functional endpoints in rat sensory neurons in culture in the absence or presence of reduced expression of the BER protein AP endonuclease/redox factor-1 (APE1). Using an in situ model of peptidergic sensory neuron function, we examined the effects of the platinum drugs on hind limb capsaicin-evoked vasodilatation. Exposing sensory neurons in culture to the three platinum drugs caused a concentration-dependent increase in apoptosis and cell death, although the concentrations of carboplatin were 10 fold higher than cisplatin. As previously observed with cisplatin, oxaliplatin and carboplatin also increased DNA damage as indicated by an increase in phospho-H2AX and reduced the capsaicin-evoked release of CGRP from neuronal cultures. Both cisplatin and oxaliplatin increased the production of ROS as well as 8-oxoguanine DNA adduct levels, whereas carboplatin did not. Reducing levels of APE1 in neuronal cultures augmented the cisplatin and oxaliplatin induced toxicity, but did not alter the effects of carboplatin. Using an in vivo model, systemic injection of cisplatin (3 mg/kg), oxaliplatin (3 mg/kg), or carboplatin (30 mg/kg) once a week for three weeks caused a decrease in capsaicin-evoked vasodilatation, which was delayed in onset. The effects of cisplatin on capsaicin-evoked vasodilatation were attenuated by chronic administration of E3330, a redox inhibitor of APE1 that serendipitously enhances APE1 DNA repair activity in sensory neurons. These outcomes support the importance of the BER pathway, and particularly APE

  9. A ubiquitylation site in Cockayne syndrome B required for repair of oxidative DNA damage, but not for transcription-coupled nucleotide excision repair.

    PubMed

    Ranes, Michael; Boeing, Stefan; Wang, Yuming; Wienholz, Franziska; Menoni, Hervé; Walker, Jane; Encheva, Vesela; Chakravarty, Probir; Mari, Pierre-Olivier; Stewart, Aengus; Giglia-Mari, Giuseppina; Snijders, Ambrosius P; Vermeulen, Wim; Svejstrup, Jesper Q

    2016-06-20

    Cockayne syndrome B (CSB), best known for its role in transcription-coupled nucleotide excision repair (TC-NER), contains a ubiquitin-binding domain (UBD), but the functional connection between protein ubiquitylation and this UBD remains unclear. Here, we show that CSB is regulated via site-specific ubiquitylation. Mass spectrometry analysis of CSB identified lysine (K) 991 as a ubiquitylation site. Intriguingly, mutation of this residue (K991R) does not affect CSB's catalytic activity or protein stability, but greatly affects genome stability, even in the absence of induced DNA damage. Moreover, cells expressing CSB K991R are sensitive to oxidative DNA damage, but proficient for TC-NER. K991 becomes ubiquitylated upon oxidative DNA damage, and while CSB K991R is recruited normally to such damage, it fails to dissociate in a timely manner, suggesting a requirement for K991 ubiquitylation in CSB activation. Interestingly, deletion of CSB's UBD gives rise to oxidative damage sensitivity as well, while CSB ΔUBD and CSB K991R affects expression of overlapping groups of genes, further indicating a functional connection. Together, these results shed new light on the regulation of CSB, with K991R representing an important separation-of-function-mutation in this multi-functional protein. PMID:27060134

  10. A ubiquitylation site in Cockayne syndrome B required for repair of oxidative DNA damage, but not for transcription-coupled nucleotide excision repair

    PubMed Central

    Ranes, Michael; Boeing, Stefan; Wang, Yuming; Wienholz, Franziska; Menoni, Hervé; Walker, Jane; Encheva, Vesela; Chakravarty, Probir; Mari, Pierre-Olivier; Stewart, Aengus; Giglia-Mari, Giuseppina; Snijders, Ambrosius P.; Vermeulen, Wim; Svejstrup, Jesper Q.

    2016-01-01

    Cockayne syndrome B (CSB), best known for its role in transcription-coupled nucleotide excision repair (TC-NER), contains a ubiquitin-binding domain (UBD), but the functional connection between protein ubiquitylation and this UBD remains unclear. Here, we show that CSB is regulated via site-specific ubiquitylation. Mass spectrometry analysis of CSB identified lysine (K) 991 as a ubiquitylation site. Intriguingly, mutation of this residue (K991R) does not affect CSB's catalytic activity or protein stability, but greatly affects genome stability, even in the absence of induced DNA damage. Moreover, cells expressing CSB K991R are sensitive to oxidative DNA damage, but proficient for TC-NER. K991 becomes ubiquitylated upon oxidative DNA damage, and while CSB K991R is recruited normally to such damage, it fails to dissociate in a timely manner, suggesting a requirement for K991 ubiquitylation in CSB activation. Interestingly, deletion of CSB's UBD gives rise to oxidative damage sensitivity as well, while CSB ΔUBD and CSB K991R affects expression of overlapping groups of genes, further indicating a functional connection. Together, these results shed new light on the regulation of CSB, with K991R representing an important separation-of-function-mutation in this multi-functional protein. PMID:27060134

  11. Controlled degradation by ClpXP protease tunes the levels of the excision repair protein UvrA to the extent of DNA damage

    PubMed Central

    Pruteanu, Mihaela; Baker, Tania A.

    2010-01-01

    Summary UV-irradiation damages DNA and activates expression of genes encoding proteins helpful for survival under DNA stress. These proteins are often deleterious in the absence of DNA damage. Here, we investigate mechanisms used to regulate the levels of DNA-repair proteins during recovery by studying control of the nucleotide excision repair (NER) protein UvrA. We show that UvrA is induced after UV-irradiation and reaches maximum levels between ~20 to 120 min post-UV. During post-UV recovery, UvrA levels decrease principally as a result of ClpXP-dependent protein degradation. The rate of UvrA degradation depends on the amount of unrepaired pyrimidine dimers present; this degradation rate is initially slow shortly after UV, but increases as damage is repaired. This increase in UvrA degradation as repair progresses is also influenced by protein-protein interactions. Genetic and in vitro experiments support the conclusion that UvrA-UvrB interactions antagonize degradation. In contrast, Mfd appears to act as an enhancer of UvrA turnover. Thus, our results reveal that a complex network of interactions contribute to tuning the level of UvrA in the cell in response to the extent of DNA damage and nicely mirror findings with excision repair proteins from eukaryotes, which are controlled by proteolysis in a similar manner. PMID:19183285

  12. DNA-mediated supercharged fluorescent protein/graphene oxide interaction for label-free fluorescence assay of base excision repair enzyme activity.

    PubMed

    Wang, Zhen; Li, Yong; Li, Lijun; Li, Daiqi; Huang, Yan; Nie, Zhou; Yao, Shouzhuo

    2015-09-01

    The interaction between supercharged green fluorescent protein (ScGFP) and graphene oxide (GO) as well as the resulting quenching effect of GO on ScGFP were investigated. Based on this unique quenching effect and the DNA-mediated ScGFP/GO interaction, a label-free fluorescence method has been established for homogeneously assaying the activity and inhibition of base excision repair enzyme. PMID:26208330

  13. The NR4A2 Nuclear Receptor Is Recruited to Novel Nuclear Foci in Response to UV Irradiation and Participates in Nucleotide Excision Repair

    PubMed Central

    Harrison, Matthew; Lim, Wen; Muscat, George E. O.; Sturm, Richard A.; Smith, Aaron G.

    2013-01-01

    Ultraviolet radiation (UVR) is one of the most common mutagens encountered by humans and induces the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproduct (6-4PP) lesions in the genomic DNA. To prevent the accumulation of deleterious mutations these lesions must be efficiently repaired, primarily by nucleotide excision repair. We have previously demonstrated that the NR4A family of nuclear receptors are crucial mediators of the DNA repair function of the MC1R signalling pathway in melanocytes. Here we explore the role of the NR4A2 protein in the DNA repair process further. Using EYFP tagged-NR4A2 we have demonstrated a UVR induced recruitment to distinct nuclear foci where they co-localise with known DNA repair proteins. We reveal that the N-terminal domain of the receptor is required for this translocation and identify a role for p38 and PARP signalling in this process. Moreover disruption of the functional integrity of the Ligand Binding Domain of the receptor by deleting the terminal helix 12 effectively blocks co-localisation of the receptor with DNA repair factors. Restored co-localisation of the mutant receptor with DNA repair proteins in the presence of a Histone Deacetylase Inhibitor suggests that impaired chromatin accessibility underpins the mis-localisation observed. Finally NR4A2 over-expression facilitated a more efficient clearance of UVR induced CPD and 6-4PP lesions. Taken together these data uncover a novel role for the NR4A nuclear receptors as direct facilitators of nucleotide excision repair. PMID:24223135

  14. Characterizing Requirements for Small Ubiquitin-like Modifier (SUMO) Modification and Binding on Base Excision Repair Activity of Thymine-DNA Glycosylase in Vivo.

    PubMed

    McLaughlin, Dylan; Coey, Christopher T; Yang, Wei-Chih; Drohat, Alexander C; Matunis, Michael J

    2016-04-22

    Thymine-DNA glycosylase (TDG) plays critical roles in DNA base excision repair and DNA demethylation. It has been proposed, based on structural studies and in vitro biochemistry, that sumoylation is required for efficient TDG enzymatic turnover following base excision. However, whether sumoylation is required for TDG activity in vivo has not previously been tested. We have developed an in vivo assay for TDG activity that takes advantage of its recently discovered role in DNA demethylation and selective recognition and repair of 5-carboxylcytosine. Using this assay, we investigated the role of sumoylation in regulating TDG activity through the use of TDG mutants defective for sumoylation and Small Ubiquitin-like Modifier (SUMO) binding and by altering TDG sumoylation through SUMO and SUMO protease overexpression experiments. Our findings indicate that sumoylation and SUMO binding are not essential for TDG-mediated excision and repair of 5-carboxylcytosine bases. Moreover, in vitro assays revealed that apurinic/apyrimidinic nuclease 1 provides nearly maximum stimulation of TDG processing of G·caC substrates. Thus, under our assay conditions, apurinic/apyrimidinic nuclease 1-mediated stimulation or other mechanisms sufficiently alleviate TDG product inhibition and promote its enzymatic turnover in vivo. PMID:26917720

  15. Human DNA polymerase θ possesses 5′-dRP lyase activity and functions in single-nucleotide base excision repair in vitro

    PubMed Central

    Prasad, Rajendra; Longley, Matthew J.; Sharief, Farida S.; Hou, Esther W.; Copeland, William C.; Wilson, Samuel H.

    2009-01-01

    DNA polymerase θ (Pol θ) is a low-fidelity DNA polymerase that belongs to the family A polymerases and has been proposed to play a role in somatic hypermutation. Pol θ has the ability to conduct translesion DNA synthesis opposite an AP site or thymine glycol, and it was recently proposed to be involved in base excision repair (BER) of DNA damage. Here, we show that Pol θ has intrinsic 5′-deoxyribose phosphate (5′-dRP) lyase activity that is involved in single-nucleotide base excision DNA repair (SN-BER). Full-length human Pol θ is a ∼300-kDa polypeptide, but we show here that the 98-kDa C-terminal region of Pol θ possesses both DNA polymerase activity and dRP lyase activity and is sufficient to carry out base excision repair in vitro. The 5′-dRP lyase activity is independent of the polymerase activity, in that a polymerase inactive mutant retained full 5′-dRP lyase activity. Domain mapping of the 98-kDa enzyme by limited proteolysis and NaBH4 cross-linking with a BER intermediate revealed that the dRP lyase active site resides in a 24-kDa domain of Pol θ. These results are consistent with a role of Pol θ in BER. PMID:19188258

  16. The neonate versus adult mammalian immune system in cardiac repair and regeneration.

    PubMed

    Sattler, Susanne; Rosenthal, Nadia

    2016-07-01

    The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26801961

  17. Temporal and Spatial Uncoupling of DNA Double Strand Break Repair Pathways within Mammalian Heterochromatin.

    PubMed

    Tsouroula, Katerina; Furst, Audrey; Rogier, Melanie; Heyer, Vincent; Maglott-Roth, Anne; Ferrand, Alexia; Reina-San-Martin, Bernardo; Soutoglou, Evi

    2016-07-21

    Repetitive DNA is packaged into heterochromatin to maintain its integrity. We use CRISPR/Cas9 to induce DSBs in different mammalian heterochromatin structures. We demonstrate that in pericentric heterochromatin, DSBs are positionally stable in G1 and recruit NHEJ factors. In S/G2, DSBs are resected and relocate to the periphery of heterochromatin, where they are retained by RAD51. This is independent of chromatin relaxation but requires end resection and RAD51 exclusion from the core. DSBs that fail to relocate are engaged by NHEJ or SSA proteins. We propose that the spatial disconnection between end resection and RAD51 binding prevents the activation of mutagenic pathways and illegitimate recombination. Interestingly, in centromeric heterochromatin, DSBs recruit both NHEJ and HR proteins throughout the cell cycle. Our results highlight striking differences in the recruitment of DNA repair factors between pericentric and centromeric heterochromatin and suggest a model in which the commitment to specific DNA repair pathways regulates DSB position. PMID:27397684

  18. Metal binding mediated conformational change of XPA protein:a potential cytotoxic mechanism of nickel in the nucleotide excision repair.

    PubMed

    Hu, Jianping; Hu, Ziheng; Zhang, Yan; Gou, Xiaojun; Mu, Ying; Wang, Lirong; Xie, Xiang-Qun

    2016-07-01

    Nucleotide excision repair (NER) is a pivotal life process for repairing DNA nucleotide mismatch caused by chemicals, metal ions, radiation, and other factors. As the initiation step of NER, the xeroderma pigmentosum complementation group A protein (XPA) recognizes damaged DNA molecules, and recruits the replication protein A (RPA), another important player in the NER process. The stability of the Zn(2+)-chelated Zn-finger domain of XPA center core portion (i.e., XPA98-210) is the foundation of its biological functionality, while the displacement of the Zn(2+) by toxic metal ions (such as Ni(2+), a known human carcinogen and allergen) may impair the effectiveness of NER and hence elevate the chance of carcinogenesis. In this study, we first calculated the force field parameters for the bonded model in the metal center of the XPA98-210 system, showing that the calculated results, including charges, bonds, angles etc., are congruent with previously reported results measured by spectrometry experiments and quantum chemistry computation. Then, comparative molecular dynamics simulations using these parameters revealed the changes in the conformation and motion mode of XPA98-210 Zn-finger after the substitution of Zn(2+) by Ni(2+). The results showed that Ni(2+) dramatically disrupted the relative positions of the four Cys residues in the Zn-finger structure, forcing them to collapse from a tetrahedron into an almost planar structure. Finally, we acquired the binding mode of XPA98-210 with its ligands RPA70N and DNA based on molecular docking and structural alignment. We found that XPA98-210's Zn-finger domain primarily binds to a V-shaped cleft in RPA70N, while the cationic band in its C-terminal subdomain participates in the recognition of damaged DNA. In addition, this article sheds light on the multi-component interaction pattern among XPA, DNA, and other NER-related proteins (i.e., RPA70N, RPA70A, RPA70B, RPA70C, RPA32, and RPA14) based on previously reported

  19. Nucleotide excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African Americans.

    PubMed

    Chang, Jeffrey S; Wrensch, Margaret R; Hansen, Helen M; Sison, Jennette D; Aldrich, Melinda C; Quesenberry, Charles P; Seldin, Michael F; Kelsey, Karl T; Kittles, Rick A; Silva, Gabriel; Wiencke, John K

    2008-11-01

    Few studies on the association between nucleotide excision repair (NER) variants and lung cancer risk have included Latinos and African Americans. We examine variants in 6 NER genes (ERCC2, ERCC4, ERCC5, LIG1, RAD23B and XPC) in association with primary lung cancer risk among 113 Latino and 255 African American subjects newly diagnosed with primary lung cancer from 1998 to 2003 in the San Francisco Bay Area and 579 healthy controls (299 Latinos and 280 African Americans). Individual single nucleotide polymorphism and haplotype analyses, multifactor dimensionality reduction (MDR) and principal components analysis (PCA) were performed to assess the association between 6 genes in the NER pathway and lung cancer risk. Among Latinos, ERCC2 haplotype CGA (rs238406, rs11878644, rs6966) was associated with reduced lung cancer risk [odds ratio (OR) of 0.65 and 95% confidence interval (CI): 0.44-0.97], especially among nonsmokers (OR = 0.29; 95% CI: 0.12-0.67). From MDR analysis, in Latinos, smoking and 3 SNPs (ERCC2 rs171140, ERCC5 rs17655 and LIG1 rs20581) together had a prediction accuracy of 67.4% (p = 0.001) for lung cancer. Among African Americans, His/His genotype of ERCC5 His1104Asp (rs17655) was associated with increased lung cancer risk (OR = 1.78; 95% CI: 1.09-2.91), and LIG1 haplotype GGGAA (rs20581, rs156641, rs3730931, rs20579 and rs439132) was associated with reduced lung cancer risk (OR = 0.61; 95% CI: 0.42-0.88). Our study suggests different elements of the NER pathway may be important in the different ethnic groups resulting either from different linkage relationship, genetic backgrounds and/or exposure histories. PMID:18709642

  20. Excision Repair Cross-complementation Group 1 is a Prognostic Biomarker in Patients with Colorectal Cancer Receiving Chemotherapy

    PubMed Central

    Li, Mu-Xing; Bi, Xin-Yu; Zhao, Hong; Huang, Zhen; Han, Yue; Zhao, Dong-Bin; Zhao, Jian-Jun; Cai, Jian-Qiang

    2016-01-01

    Background: Conflicting results about the association between expression level of excision repair cross-complementation group 1 (ERCC1) and clinical outcome in patients with colorectal cancer (CRC) receiving chemotherapy have been reported. Thus, we searched the available articles and performed the meta-analysis to elucidate the prognostic role of ERCC1 expression in patients with CRC. Methods: A thorough literature search using PubMed (Medline), Embase, Cochrane Library, Web of Science databases, and Chinese Science Citation Database was conducted to obtain the relevant studies. Pooled hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to estimate the results. Results: A total of 11 studies were finally enrolled in this meta-analysis. Compared with patients with lower ERCC1 expression, patients with higher ERCC1 expression tended to have unfavorable overall survival (OS) (HR = 2.325, 95% CI: 1.720–3.143, P < 0.001), progression-free survival (PFS) (HR = 1.917, 95% CI: 1.366–2.691, P < 0.001) and poor response to chemotherapy (OR = 0.491, 95% CI: 0.243–0.990, P = 0.047). Subgroup analyses by treatment setting, ethnicity, HR extraction, detection methods, survival analysis, and study design demonstrated that our results were robust. Conclusions: ERCC1 expression may be taken as an effective prognostic factor predicting the response to chemotherapy, OS, and PFS. Further studies with better study design and longer follow-up are warranted in order to gain a deeper understanding of ERCC1's prognostic value. PMID:26904994

  1. p53-dependent global nucleotide excision repair of cisplatin-induced intrastrand cross links in human cells.

    PubMed

    Bhana, Sara; Hewer, Alan; Phillips, David H; Lloyd, Daniel R

    2008-03-01

    Cisplatin is an extremely effective chemotherapeutic agent used for the treatment of testicular and other solid tumours. It induces a variety of structural modifications in DNA, the most abundant being the GpG- and ApG-1,2-intrastrand cross links formed between adjacent purine bases. These cross links account for approximately 90% of cisplatin-induced DNA damage and are thought to be responsible for the cytotoxic activity of the drug. In human cells, the nucleotide excision repair (NER) process removes the intrastrand cross links from the genome, the efficiency of which is likely to be an important determinant of cisplatin cytotoxicity. We have investigated whether the p53 tumour suppressor status affects global NER of cisplatin-induced intrastrand cross links in human cells. We have used a (32)P-postlabelling method to monitor the removal of GpG- and ApG-intrastrand cross links from two human cell models (the 041TR system, in which p53 is regulated by a tetracycline-inducible promoter, together with WI38 fibroblasts and the SV40-transformed derivative VA13) that each differ in p53 status. We demonstrate that the absence of functional p53 leads to persistence of both cisplatin-induced intrastrand cross links in the genome, suggesting that p53 regulates NER of these DNA lesions. This observation extends the role of p53 in NER beyond enhancing the removal of environmentally induced DNA lesions to include those of clinical origin. Given the frequency of p53 mutations in human tumours, these results may have implications for the use of cisplatin in cancer chemotherapy. PMID:18267949

  2. Exploring Damage Recognition Models in Prokaryotic Nucleotide Excision Repair with a Benzo[a]pyrene-Derived Lesion in UvrB

    PubMed Central

    Jia, Lei; Kropachev, Konstantin; Ding, Shuang; Van Houten, Bennett; Geacintov, Nicholas E.; Broyde, Suse

    2009-01-01

    The UvrB protein is a central unit for damage recognition in the prokaryotic nucleotide excision repair system, which excises bulky DNA lesions. We have utilized molecular modeling and MD simulations based on crystal structures, mutagenesis, and fluorescence data, to model the 10R-(+)-cis-anti-B[a]P-N2-dG lesion, derived from the tumorigenic (+) anti-B[a]PDE metabolite of benzo[a]pyrene, at different locations on the inner and outer strand in UvrB. Our results suggest that this lesion is accommodated on the inner strand where it might translocate through the tunnel created by the β-hairpin and the UvrB domain 1B, and ultimately could be housed in the pocket behind the β-hairpin prior to excision by UvrC. Lesions that vary in size and shape may be stopped at the gate to the tunnel, within the tunnel or in the pocket when UvrC initiates excision. Common features of β-hairpin intrusion between the two DNA strands and nucleotide flipping manifested in structures of prokaryotic and eukaryotic NER lesion recognition proteins are consistent with common recognition mechanisms, based on lesion-induced local thermodynamic distortion/destabilization and nucleotide flipping. PMID:19681599

  3. The yeast TFB1 and SSL1 genes, which encode subunits of transcription factor IIH, are required for nucleotide excision repair and RNA polymerase II transcription.

    PubMed Central

    Wang, Z; Buratowski, S; Svejstrup, J Q; Feaver, W J; Wu, X; Kornberg, R D; Donahue, T F; Friedberg, E C

    1995-01-01

    The essential TFB1 and SSL1 genes of the yeast Saccharomyces cerevisiae encode two subunits of the RNA polymerase II transcription factor TFIIH (factor b). Here we show that extracts of temperature-sensitive mutants carrying mutations in both genes (tfb1-101 and ssl1-1) are defective in nucleotide excision repair (NER) and RNA polymerase II transcription but are proficient for base excision repair. RNA polymerase II-dependent transcription at the CYC1 promoter was normal at permissive temperatures but defective in extracts preincubated at a restrictive temperature. In contrast, defective NER was observed at temperatures that are permissive for growth. Additionally, both mutants manifested increased sensitivity to UV radiation at permissive temperatures. The extent of this sensitivity was not increased in a tfb1-101 strain and was only slightly increased in a ssl1-1 strain at temperatures that are semipermissive for growth. Purified factor TFIIH complemented defective NER in both tfb1-101 and ssl1-1 mutant extracts. These results define TFB1 and SSL1 as bona fide NER genes and indicate that, as is the case with the yeast Rad3 and Ss12 (Rad25) proteins, Tfb1 and Ssl1 are required for both RNA polymerase II basal transcription and NER. Our results also suggest that the repair and transcription functions of Tfb1 and Ssl1 are separable. PMID:7891722

  4. Protective Effect of Diphlorethohydroxycarmalol against Ultraviolet B Radiation-Induced DNA Damage by Inducing the Nucleotide Excision Repair System in HaCaT Human Keratinocytes

    PubMed Central

    Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Han, Xia; Kang, Kyoung Ah; Kang, Hee Kyoung; Lee, Nam Ho; Hyun, Jin Won

    2015-01-01

    We investigated the protective properties of diphlorethohydroxycarmalol (DPHC), a phlorotannin, against ultraviolet B (UVB) radiation-induced cyclobutane pyrimidine dimers (CPDs) in HaCaT human keratinocytes. The nucleotide excision repair (NER) system is the pathway by which cells identify and repair bulky, helix-distorting DNA lesions such as ultraviolet (UV) radiation-induced CPDs and 6-4 photoproducts. CPDs levels were elevated in UVB-exposed cells; however, this increase was reduced by DPHC. Expression levels of xeroderma pigmentosum complementation group C (XPC) and excision repair cross-complementing 1 (ERCC1), which are essential components of the NER pathway, were induced in DPHC-treated cells. Expression of XPC and ERCC1 were reduced following UVB exposure, whereas DPHC treatment partially restored the levels of both proteins. DPHC also increased expression of transcription factor specificity protein 1 (SP1) and sirtuin 1, an up-regulator of XPC, in UVB-exposed cells. DPHC restored binding of the SP1 to the XPC promoter, which is reduced in UVB-exposed cells. These results indicate that DPHC can protect cells against UVB-induced DNA damage by inducing the NER system. PMID:26404324

  5. Effect of strand-specific excision repair on the spectra of mutations induced by benzo[a]pyrene-diol epoxide and ultraviolet radiation in diploid human cells

    SciTech Connect

    Ruey-Hwa, Chen.

    1991-01-01

    To study the effect of excision repair on the spectra of mutations induced in diploid human cells by UV and [plus minus]-7[beta], 8[alpha]-dihydroxy-9[alpha],10[alpha]-epoxy- 7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), the author synchronized repair-proficient cells, treated them at the beginning of S phase or in G[sub 1] phase several hours prior to the onset of S phase, selected for thioguanine resistant cells, and determined the spectra of mutations in the coding region of the hyproxanthine(guanine)phosphoribosyl-transferase (HPRT) gene in the mutants. As a control, the spectra of mutations similarly induced in repair-deficient xeroderma pigmentosum (XP) cells were compared. There was no difference in the kinds of mutations observed in mutants derived from either cell strain treated with a particular mutagen either in S or in G[sub 1]. With BPDE, the majority were G.C[yields]T.A transversions; with UV, they were mainly G.C.[yields]A.T transitions. The strand distribution of premutagenic lesions in mutants from repair-proficient cells treated in S or G[sub 1] differed significantly. The results strongly support the hypothesis that human cells preferentially repair UV- and BPDE-induced lesions from the transcribed strand of the HPRT gene. To test this, the rate of repair of BPDE adducts from individual strands of the HPRT gene was measured, using the UvrABC exinuclease and Southern hybridizations with strand-specific probes to detect lesions remaining. BPDE lesions were removed from the transcribed strand at a significantly faster rate than from the nontranscribed strand, consistent with my hypothesis. It was found that BPDE adducts were removed faster from either strand of the HPRT gene than from a transcriptionally inactive locus, indicating preferential repair of active genes. The results of these studies provide biochemical and biological evidence of strand-specific DNA repair of BPDE adducts in human cells.

  6. Genomic assay reveals tolerance of DNA damage by both translesion DNA synthesis and homology-dependent repair in mammalian cells.

    PubMed

    Izhar, Lior; Ziv, Omer; Cohen, Isadora S; Geacintov, Nicholas E; Livneh, Zvi

    2013-04-16

    DNA lesions can block replication forks and lead to the formation of single-stranded gaps. These replication complications are mitigated by DNA damage tolerance mechanisms, which prevent deleterious outcomes such as cell death, genomic instability, and carcinogenesis. The two main tolerance strategies are translesion DNA synthesis (TLS), in which low-fidelity DNA polymerases bypass the blocking lesion, and homology-dependent repair (HDR; postreplication repair), which is based on the homologous sister chromatid. Here we describe a unique high-resolution method for the simultaneous analysis of TLS and HDR across defined DNA lesions in mammalian genomes. The method is based on insertion of plasmids carrying defined site-specific DNA lesions into mammalian chromosomes, using phage integrase-mediated integration. Using this method we show that mammalian cells use HDR to tolerate DNA damage in their genome. Moreover, analysis of the tolerance of the UV light-induced 6-4 photoproduct, the tobacco smoke-induced benzo[a]pyrene-guanine adduct, and an artificial trimethylene insert shows that each of these three lesions is tolerated by both TLS and HDR. We also determined the specificity of nucleotide insertion opposite these lesions during TLS in human genomes. This unique method will be useful in elucidating the mechanism of DNA damage tolerance in mammalian chromosomes and their connection to pathological processes such as carcinogenesis. PMID:23530190

  7. The SOS-dependent upregulation of uvrD is not required for efficient nucleotide excision repair of ultraviolet light induced DNA photoproducts in Escherichia coli.

    PubMed

    Crowley, D J; Hanawalt, P C

    2001-05-10

    We have shown previously that induction of the SOS response is required for efficient nucleotide excision repair (NER) of the major ultraviolet light (UV) induced DNA lesion, the cyclobutane pyrimidine dimer (CPD), but not for repair of 6-4 photoproducts (6-4PP) or for transcription-coupled repair of CPDs [1]. We have proposed that the upregulation of cellular NER capacity occurs in the early stages of the SOS response and enhances the rate of repair of the abundant yet poorly recognized genomic CPDs. The expression of three NER genes, uvrA, uvrB, and uvrD, is upregulated as part of the SOS response. UvrD differs from the others in that it is not involved in lesion recognition but rather in promoting the post-incision steps of NER, including turnover of the UvrBC incision complex. Since uvrC is not induced during the SOS response, its turnover would seem to be of great importance in promoting efficient NER. Here we show that the constitutive level of UvrD is adequate for carrying out efficient NER of both CPDs and 6-4PPs. Thus, the upregulation of uvrA and uvrB genes during the SOS response is sufficient for inducible NER of CPDs. We also show that cells with a limited NER capacity, in this case due to deletion of the uvrD gene, repair 6-4PPs but cannot perform transcription-coupled repair of CPDs, indicating that the 6-4PP is a better substrate for NER than is a CPD targeted for transcription-coupled repair. PMID:11585364

  8. Efficiency of Base Excision Repair of Oxidative DNA Damage and Its Impact on the Risk of Colorectal Cancer in the Polish Population

    PubMed Central

    Kabzinski, J.; Mucha, B.; Cuchra, M.; Markiewicz, L.; Przybylowska, K.; Dziki, A.; Dziki, L.; Majsterek, I.

    2016-01-01

    DNA oxidative lesions are widely considered as a potential risk factor for colorectal cancer development. The aim of this work was to determine the role of the efficiency of base excision repair, both in lymphocytes and in epithelial tissue, in patients with CRC and healthy subjects. SNPs were identified within genes responsible for steps following glycosylase action in BER, and patients and healthy subjects were genotyped. A radioisotopic BER assay was used for assessing repair efficiency and TaqMan for genotyping. Decreased BER activity was observed in lymphocyte extract from CRC patients and in cancer tissue extract, compared to healthy subjects. In addition, polymorphisms of EXO1, LIG3, and PolB may modulate the risk of colorectal cancer by decreasing (PolB) or increasing (LIG3 and EXO1) the chance of malignant transformation. PMID:26649135

  9. Tumor-selective use of DNA base excision repair inhibition in pancreatic cancer using the NQO1 bioactivatable drug, β-lapachone

    PubMed Central

    Chakrabarti, Gaurab; Silvers, Molly A.; Ilcheva, Mariya; Liu, Yuliang; Moore, Zachary R.; Luo, Xiuquan; Gao, Jinming; Anderson, Glenda; Liu, Lili; Sarode, Venetia; Gerber, David E.; Burma, Sandeep; DeBerardinis, Ralph J.; Gerson, Stanton L.; Boothman, David A.

    2015-01-01

    Base excision repair (BER) is an essential pathway for pancreatic ductal adenocarcinoma (PDA) survival. Attempts to target this repair pathway have failed due to lack of tumor-selectivity and very limited efficacy. The NAD(P)H:Quinone Oxidoreductase 1 (NQO1) bioactivatable drug, ß-lapachone (ARQ761 in clinical form), can provide tumor-selective and enhanced synergy with BER inhibition. ß-Lapachone undergoes NQO1-dependent futile redox cycling, generating massive intracellular hydrogen peroxide levels and oxidative DNA lesions that stimulate poly(ADP-ribose) polymerase 1 (PARP1) hyperactivation. Rapid NAD+/ATP depletion and programmed necrosis results. To identify BER modulators essential for repair of ß-lapachone-induced DNA base damage, a focused synthetic lethal RNAi screen demonstrated that silencing the BER scaffolding protein, XRCC1, sensitized PDA cells. In contrast, depleting OGG1 N-glycosylase spared cells from ß-lap-induced lethality and blunted PARP1 hyperactivation. Combining ß-lapachone with XRCC1 knockdown or methoxyamine (MeOX), an apyrimidinic/apurinic (AP)-modifying agent, led to NQO1-dependent synergistic killing in PDA, NSCLC, breast and head and neck cancers. OGG1 knockdown, dicoumarol-treatment or NQO1- cancer cells were spared. MeOX + ß-lapachone exposure resulted in elevated DNA double-strand breaks, PARP1 hyperactivation and TUNEL+ programmed necrosis. Combination treatment caused dramatic antitumor activity, enhanced PARP1-hyperactivation in tumor tissue, and improved survival of mice bearing MiaPaca2-derived xenografts, with 33% apparent cures. Significance: Targeting base excision repair (BER) alone has limited therapeutic potential for pancreatic or other cancers due to a general lack of tumor-selectivity. Here, we present a treatment strategy that makes BER inhibition tumor-selective and NQO1-dependent for therapy of most solid neoplasms, particularly for pancreatic cancer. PMID:26602448

  10. Influence of the uvr-dependent nucleotide excision repair on DNA adducts formation and mutagenic spectrum of a potent genotoxic agent: 7-methoxy-2-nitronaphtho[2,1-b]furan (R7000).

    PubMed

    Quillardet, P; Touati, E; Hofnung, M

    1996-10-28

    The influence of the uvr-dependent excision repair system on the lethal action, mutagenic specificity, SOS induction and DNA adducts formation of 7-methoxy-2-nitronaphtho[2,1-b]furan (R7000), a potent genotoxic nitrofuran, were examined in Escherichia coli. Binding measurements of 3H-labelled R7000 to DNA indicated that R7000-DNA adducts can be removed by excision repair soon after the action of the chemical: 50% of the DNA adducts were removed within 10 min of treatment. After 1 h of incubation the level of excision reached 70%. This result was confirmed using the postlabelling technique. We found that R7000 yielded at least 10 different DNA adducts. Each of the adducts detected could be removed by excision repair. The rates of excision appeared different from one to the other. In addition, using a lacZ reversion system that is able to detect each type of base substitution mutations [1], we found that in uvrA bacteria deficient in excision repair, R7000 can induce 5 out of the 6 possible mutational events: GC-->TA, AT-->TA, GC-->CG, AT-->CG and GC-->AT. The transition AT-->GC was not observed. Only 3 transversions: GC-->TA, AT-->TA and GC-->CG could be detected in repair proficient uvr+ bacteria. The differences between the mutagenic spectra obtained in either uvr+ bacteria or uvrA mutants indicate that some potentially mutagenic DNA adducts induced by R7000 can be removed by excision repair, thus lowering the mutagenic potency of the chemical and modifying the mutagenic spectrum detected. PMID:8921981

  11. Stabilization of Ultraviolet (UV)-stimulated Scaffold Protein A by Interaction with Ubiquitin-specific Peptidase 7 Is Essential for Transcription-coupled Nucleotide Excision Repair.

    PubMed

    Higa, Mitsuru; Zhang, Xue; Tanaka, Kiyoji; Saijo, Masafumi

    2016-06-24

    UV-sensitive syndrome is an autosomal recessive disorder characterized by hypersensitivity to UV light and deficiency in transcription-coupled nucleotide excision repair (TC-NER), a subpathway of nucleotide excision repair that rapidly removes transcription-blocking DNA damage. UV-sensitive syndrome consists of three genetic complementation groups caused by mutations in the CSA, CSB, and UVSSA genes. UV-stimulated scaffold protein A (UVSSA), the product of UVSSA, which is required for stabilization of Cockayne syndrome group B (CSB) protein and reappearance of the hypophosphorylated form of RNA polymerase II after UV irradiation, forms a complex with ubiquitin-specific peptidase 7 (USP7). In this study, we demonstrated that the deubiquitination activity of USP7 is suppressed by its interaction with UVSSA. The interaction required the tumor necrosis factor receptor-associated factor domain of USP7 and the central region of UVSSA and was disrupted by an amino acid substitution in the tumor necrosis factor receptor-associated factor-binding motif of UVSSA. Cells expressing mutant UVSSA were highly sensitive to UV irradiation and defective in recovery of RNA synthesis after UV irradiation. These results indicate that the interaction between UVSSA and USP7 is important for TC-NER. Furthermore, the mutant UVSSA was rapidly degraded by the proteasome, and CSB was also degraded after UV irradiation as observed in UVSSA-deficient cells. Thus, stabilization of UVSSA by interaction with USP7 is essential for TC-NER. PMID:27129218

  12. Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner.

    PubMed

    Moser, Jill; Kool, Hanneke; Giakzidis, Ioannis; Caldecott, Keith; Mullenders, Leon H F; Fousteri, Maria I

    2007-07-20

    Impaired gap filling and sealing of chromosomal DNA in nucleotide excision repair (NER) leads to genome instability. XRCC1-DNA ligase IIIalpha (XRCC1-Lig3) plays a central role in the repair of DNA single-strand breaks but has never been implicated in NER. Here we show that XRCC1-Lig3 is indispensable for ligation of NER-induced breaks and repair of UV lesions in quiescent cells. Furthermore, our results demonstrate that two distinct complexes differentially carry out gap filling in NER. XRCC1-Lig3 and DNA polymerase delta colocalize and interact with NER components in a UV- and incision-dependent manner throughout the cell cycle. In contrast, DNA ligase I and DNA polymerase epsilon are recruited to UV-damage sites only in proliferating cells. This study reveals an unexpected and key role for XRCC1-Lig3 in maintenance of genomic integrity by NER in both dividing and nondividing cells and provides evidence for cell-cycle regulation of NER-mediated repair synthesis in vivo. PMID:17643379

  13. The unstructured C-terminal extension of UvrD interacts with UvrB, but is dispensable for nucleotide excision repair.

    PubMed

    Manelyte, Laura; Guy, Colin P; Smith, Rachel M; Dillingham, Mark S; McGlynn, Peter; Savery, Nigel J

    2009-11-01

    During nucleotide excision repair (NER) in bacteria the UvrC nuclease and the short oligonucleotide that contains the DNA lesion are removed from the post-incision complex by UvrD, a superfamily 1A helicase. Helicases are frequently regulated by interactions with partner proteins, and immunoprecipitation experiments have previously indicated that UvrD interacts with UvrB, a component of the post-incision complex. We examined this interaction using 2-hybrid analysis and surface plasmon resonance spectroscopy, and found that the N-terminal domain and the unstructured region at the C-terminus of UvrD interact with UvrB. We analysed the properties of a truncated UvrD protein that lacked the unstructured C-terminal region and found that it showed a diminished affinity for single-stranded DNA, but retained the ability to displace both UvrC and the lesion-containing oligonucleotide from a post-incision nucleotide excision repair complex. The interaction of the C-terminal region of UvrD with UvrB is therefore not an essential feature of the mechanism by which UvrD disassembles the post-incision complex during NER. In further experiments we showed that PcrA helicase from Bacillus stearothermophilus can also displace UvrC and the excised oligonucleotide from a post-incision NER complex, which supports the idea that PcrA performs a UvrD-like function during NER in gram-positive organisms. PMID:19762288

  14. The unstructured C-terminal extension of UvrD interacts with UvrB, but is dispensable for nucleotide excision repair

    PubMed Central

    Manelyte, Laura; Guy, Colin P.; Smith, Rachel M.; Dillingham, Mark S.; McGlynn, Peter; Savery, Nigel J.

    2009-01-01

    During nucleotide excision repair (NER) in bacteria the UvrC nuclease and the short oligonucleotide that contains the DNA lesion are removed from the post-incision complex by UvrD, a superfamily 1A helicase. Helicases are frequently regulated by interactions with partner proteins, and immunoprecipitation experiments have previously indicated that UvrD interacts with UvrB, a component of the post-incision complex. We examined this interaction using 2-hybrid analysis and surface plasmon resonance spectroscopy, and found that the N-terminal domain and the unstructured region at the C-terminus of UvrD interact with UvrB. We analysed the properties of a truncated UvrD protein that lacked the unstructured C-terminal region and found that it showed a diminished affinity for single-stranded DNA, but retained the ability to displace both UvrC and the lesion-containing oligonucleotide from a post-incision nucleotide excision repair complex. The interaction of the C-terminal region of UvrD with UvrB is therefore not an essential feature of the mechanism by which UvrD disassembles the post-incision complex during NER. In further experiments we showed that PcrA helicase from Bacillus stearothermophilus can also displace UvrC and the excised oligonucleotide from a post-incision NER complex, which supports the idea that PcrA performs a UvrD-like function during NER in Gram-positive organisms. PMID:19762288

  15. Targeted DNA methylation by homology-directed repair in mammalian cells. Transcription reshapes methylation on the repaired gene

    PubMed Central

    Morano, Annalisa; Angrisano, Tiziana; Russo, Giusi; Landi, Rosaria; Pezone, Antonio; Bartollino, Silvia; Zuchegna, Candida; Babbio, Federica; Bonapace, Ian Marc; Allen, Brittany; Muller, Mark T.; Chiariotti, Lorenzo; Gottesman, Max E.; Porcellini, Antonio; Avvedimento, Enrico V.

    2014-01-01

    We report that homology-directed repair of a DNA double-strand break within a single copy Green Fluorescent Protein (GFP) gene in HeLa cells alters the methylation pattern at the site of recombination. DNA methyl transferase (DNMT)1, DNMT3a and two proteins that regulate methylation, Np95 and GADD45A, are recruited to the site of repair and are responsible for selective methylation of the promoter-distal segment of the repaired DNA. The initial methylation pattern of the locus is modified in a transcription-dependent fashion during the 15–20 days following repair, at which time no further changes in the methylation pattern occur. The variation in DNA modification generates stable clones with wide ranges of GFP expression. Collectively, our data indicate that somatic DNA methylation follows homologous repair and is subjected to remodeling by local transcription in a discrete time window during and after the damage. We propose that DNA methylation of repaired genes represents a DNA damage code and is source of variation of gene expression. PMID:24137009

  16. XLS (c9orf142) is a new component of mammalian DNA double-stranded break repair.

    PubMed

    Craxton, A; Somers, J; Munnur, D; Jukes-Jones, R; Cain, K; Malewicz, M

    2015-06-01

    Repair of double-stranded DNA breaks (DSBs) in mammalian cells primarily occurs by the non-homologous end-joining (NHEJ) pathway, which requires seven core proteins (Ku70/Ku86, DNA-PKcs (DNA-dependent protein kinase catalytic subunit), Artemis, XRCC4-like factor (XLF), XRCC4 and DNA ligase IV). Here we show using combined affinity purification and mass spectrometry that DNA-PKcs co-purifies with all known core NHEJ factors. Furthermore, we have identified a novel evolutionary conserved protein associated with DNA-PKcs-c9orf142. Computer-based modelling of c9orf142 predicted a structure very similar to XRCC4, hence we have named c9orf142-XLS (XRCC4-like small protein). Depletion of c9orf142/XLS in cells impaired DSB repair consistent with a defect in NHEJ. Furthermore, c9orf142/XLS interacted with other core NHEJ factors. These results demonstrate the existence of a new component of the NHEJ DNA repair pathway in mammalian cells. PMID:25941166

  17. XLS (c9orf142) is a new component of mammalian DNA double-stranded break repair

    PubMed Central

    Craxton, A; Somers, J; Munnur, D; Jukes-Jones, R; Cain, K; Malewicz, M

    2015-01-01

    Repair of double-stranded DNA breaks (DSBs) in mammalian cells primarily occurs by the non-homologous end-joining (NHEJ) pathway, which requires seven core proteins (Ku70/Ku86, DNA-PKcs (DNA-dependent protein kinase catalytic subunit), Artemis, XRCC4-like factor (XLF), XRCC4 and DNA ligase IV). Here we show using combined affinity purification and mass spectrometry that DNA-PKcs co-purifies with all known core NHEJ factors. Furthermore, we have identified a novel evolutionary conserved protein associated with DNA-PKcs—c9orf142. Computer-based modelling of c9orf142 predicted a structure very similar to XRCC4, hence we have named c9orf142—XLS (XRCC4-like small protein). Depletion of c9orf142/XLS in cells impaired DSB repair consistent with a defect in NHEJ. Furthermore, c9orf142/XLS interacted with other core NHEJ factors. These results demonstrate the existence of a new component of the NHEJ DNA repair pathway in mammalian cells. PMID:25941166

  18. MiR-192 inhibits nucleotide excision repair by targeting ERCC3 and ERCC4 in HepG2.2.15 cells.

    PubMed

    Xie, Qiong-Hui; He, Xing-Xing; Chang, Ying; Sun, Shu-zhen; Jiang, Xiang; Li, Pei-Yuan; Lin, Ju-Sheng

    2011-07-01

    Deficient DNA repair capacity is associated with genetic lesions accumulation and susceptibility to carcinogenesis. MicroRNAs (miRNAs) are small non-coding RNAs that regulate various cellular pathways including DNA repair. Here we hypothesized that the existence of HBV products may interfere with cellular nucleotide excision repair (NER) through microRNA-mediated gene regulation. We found that NER was impaired in HepG2.2.15 cells, a stable HBV-expressing cell line, compared with its parental cell line HepG2. Altered miRNA expression profile, in particular the significant upregulation of miR-192, was observed in HepG2.2.15 cells. Additionally, ERCC3 and ERCC4, two key factors implicated in NER, were identified as targets of miR-192 and over-expressing miR-192 significantly inhibited cellular NER. These results indicated that persistent HBV infection might trigger NER impairment in part through upregulation of miR-192, which suppressed the levels of ERCC3 and ERCC4. It provides new insight into the effect of chronic HBV infection on NER and genetic instability in cancer. PMID:21672525

  19. Chromosomal model for analysis of a long CTG/CAG tract stability in wild-type Escherichia coli and its nucleotide excision repair mutants.

    PubMed

    Szwarocka, Sylwia T; Staczek, Paweł; Parniewski, Paweł

    2007-07-01

    Many human hereditary neurological diseases, including fragile X syndrome, myotonic dystrophy, and Friedreich's ataxia, are associated with expansions of the triplet repeat sequences (TRS) (CGG/CCG, CTG/CAG, and GAA/TTC) within or near specific genes. Mechanisms that mediate mutations of TRS include DNA replication, repair, and gene conversion and (or) recombination. The involvement of the repair systems in TRS instability was investigated in Escherichia coli on plasmid models, and the results showed that the deficiency of some nucleotide excision repair (NER) functions dramatically affects the stability of long CTG inserts. In such models in which there are tens or hundreds of plasmid molecules in each bacterial cell, repetitive sequences may interact between themselves and according to a recombination hypothesis, which may lead to expansions and deletions within such repeated tracts. Since one cannot control interaction between plasmids, it is also sometimes difficult to give precise interpretation of the results. Therefore, using modified lambda phage (lambdaInCh), we have constructed a chromosomal model to study the instability of trinucleotide repeat sequences in E. coli. We have shown that the stability of (CTG/CAG)68 tracts in the bacterial chromosome is influenced by mutations in NER genes in E. coli. The absence of the uvrC or uvrD gene products greatly enhances the instability of the TRS in the chromosome, whereas the lack of the functional UvrA or UvrB proteins causes substantial stabilization of (CTG/CAG) tracts. PMID:17898841

  20. Oxidative stress alters base excision repair pathway and increases apoptotic response in apurinic/apyrimidinic endonuclease 1/redox factor-1 haploinsufficient mice.

    PubMed

    Unnikrishnan, Archana; Raffoul, Julian J; Patel, Hiral V; Prychitko, Thomas M; Anyangwe, Njwen; Meira, Lisiane B; Friedberg, Errol C; Cabelof, Diane C; Heydari, Ahmad R

    2009-06-01

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is the redox regulator of multiple stress-inducible transcription factors, such as NF-kappaB, and the major 5'-endonuclease in base excision repair (BER). We utilized mice containing a heterozygous gene-targeted deletion of APE1/Ref-1 (Apex(+/-)) to determine the impact of APE1/Ref-1 haploinsufficiency on the processing of oxidative DNA damage induced by 2-nitropropane (2-NP) in the liver tissue of mice. APE1/Ref-1 haploinsufficiency results in a significant decline in NF-kappaB DNA-binding activity in response to oxidative stress in liver. In addition, loss of APE1/Ref-1 increases the apoptotic response to oxidative stress, in which significant increases in GADD45g expression, p53 protein stability, and caspase activity are observed. Oxidative stress displays a differential impact on monofunctional (UNG) and bifunctional (OGG1) DNA glycosylase-initiated BER in the liver of Apex(+/-) mice. APE1/Ref-1 haploinsufficiency results in a significant decline in the repair of oxidized bases (e.g., 8-OHdG), whereas removal of uracil is increased in liver nuclear extracts of mice using an in vitro BER assay. Apex(+/-) mice exposed to 2-NP displayed a significant decline in 3'-OH-containing single-strand breaks and an increase in aldehydic lesions in their liver DNA, suggesting an accumulation of repair intermediates of failed bifunctional DNA glycosylase-initiated BER. PMID:19268524

  1. Molecular analysis of plasmid DNA repair within ultraviolet-irradiated Escherichia coli. I. T4 endonuclease V-initiated excision repair

    SciTech Connect

    Gruskin, E.A.; Lloyd, R.S.

    1988-09-05

    The process by which DNA-interactive proteins locate specific sequences or target sites on cellular DNA within Escherichia coli is a poorly understood phenomenon. In this study, we present the first direct in vivo analysis of the interaction of a DNA repair enzyme, T4 endonuclease V, and its substrate, pyrimidine dimer-containing plasmid DNA, within UV-irradiated E. coli. A pyrimidine dimer represents a small target site within large domains of DNA. There are two possible paradigms by which endonuclease V could locate these small target sites: a processive mechanism in which the enzyme scans DNA for dimer sites or a distributive process in which dimers are located by random three-dimensional diffusion. In order to discriminate between these two possibilities in E. coli, an in vivo DNA repair assay was developed to study the kinetics of plasmid DNA repair and the dimer frequency (i.e. the number of dimer sites on a given plasmid molecule) in plasmid DNA as a function of time during repair. Our results demonstrate that the overall process of plasmid DNA repair initiated by T4 endonuclease V (expressed from a recombinant plasmid within repair-deficient E. coli) occurs by a processive mechanism. Furthermore, by reducing the temperature of the repair incubation, the endonuclease V-catalyzed incision step has been effectively decoupled from the subsequent steps including repair patch synthesis, ligation, and supercoiling. By this manipulation, it was determined that the overall processive mechanism is composed of two phases: a rapid processive endonuclease V-catalyzed incision reaction, followed by a slower processive mechanism, the ultimate product of which is the dimer-free supercoiled plasmid molecule.

  2. Overexpression of rice OsREX1-S, encoding a putative component of the core general transcription and DNA repair factor IIH, renders plant cells tolerant to cadmium- and UV-induced damage by enhancing DNA excision repair.

    PubMed

    Kunihiro, Shuta; Kowata, Hikaru; Kondou, Youichi; Takahashi, Shinya; Matsui, Minami; Berberich, Thomas; Youssefian, Shohab; Hidema, Jun; Kusano, Tomonobu

    2014-05-01

    Screening of 40,000 Arabidopsis FOX (Full-length cDNA Over-eXpressor gene hunting system) lines expressing rice full-length cDNAs brings us to identify four cadmium (Cd)-tolerant lines, one of which carried OsREX1-S as a transgene. OsREX1-S shows the highest levels of identity to Chlamydomonas reinhardtii REX1-S (referred to as CrREX1-S, in which REX denotes Required for Excision) and to yeast and human TFB5s (RNA polymerase II transcription factor B5), both of which are components of the general transcription and DNA repair factor, TFIIH. Transient expression of OsREX1-S consistently localized the protein to the nucleus of onion cells. The newly generated transgenic Arabidopsis plants expressing OsREX1-S reproducibly displayed enhanced Cd tolerance, confirming that the Cd-tolerance of the initial identified line was conferred solely by OsREX1-S expression. Furthermore, transgenic Arabidopsis plants expressing OsREX1-S exhibited ultraviolet-B (UVB) tolerance by reducing the amounts of cyclobutane pyrimidine dimers produced by UVB radiation. Moreover, those transgenic OsREX1-S Arabidopsis plants became resistant to bleomycin (an inducer of DNA strand break) and mitomycin C (DNA intercalating activity), compared to wild type. Our results indicate that OsREX1-S renders host plants tolerant to Cd, UVB radiation, bleomycin and mitomycin C through the enhanced DNA excision repair. PMID:24563249

  3. Base-Excision-Repair-Induced Construction of a Single Quantum-Dot-Based Sensor for Sensitive Detection of DNA Glycosylase Activity.

    PubMed

    Wang, Li-Juan; Ma, Fei; Tang, Bo; Zhang, Chun-Yang

    2016-08-01

    DNA glycosylase is an initiating enzyme of cellular base excision repair pathway which is responsible for the repair of various DNA lesions and the maintenance of genomic stability, and the dysregulation of DNA glycosylase activity is associated with a variety of human pathology. Accurate detection of DNA glycosylase activity is critical to both clinical diagnosis and therapeutics, but conventional methods for the DNA glycosylase assay are usually time-consuming with poor sensitivity. Here, we demonstrate the base-excision-repair-induced construction of a single quantum dot (QD)-based sensor for highly sensitive measurement of DNA glycosylase activity. We use human 8-oxoguanine-DNA glycosylase 1 (hOGG1), which is responsible for specifically repairing the damaged 8-hydroxyguanine (8-oxoG, one of the most abundant and widely studied DNA damage products), as a model DNA glycosylase. In the presence of biotin-labeled DNA substrate, the hOGG1 may catalyze the removal of 8-oxo G from 8-oxoG·C base pairs to generate an apurinic/apyrimidinic (AP) site. With the assistance of apurinic/apyrimidinic endonuclease (APE1), the cleavage of the AP site results in the generation of a single-nucleotide gap. Subsequently, DNA polymerase β incorporates a Cy5-labeled dGTP into the DNA substrate to fill the gap. With the addition of streptavidin-coated QDs, a QD-DNA-Cy5 nanostructure is formed via specific biotin-streptavidin binding, inducing the occurrence of fluorescence resonance energy transfer (FRET) from the QD to Cy5. The resulting Cy5 signal can be simply monitored by total internal reflection fluorescence (TIRF) imaging. The proposed method enables highly sensitive measurement of hOGG1 activity with a detection limit of 1.8 × 10(-6) U/μL. Moreover, it can be used to measure the enzyme kinetic parameters and detect the hOGG1 activity in crude cell extracts, offering a powerful tool for biomedical research and clinical diagnosis. PMID:27401302

  4. Low-intensity red and infrared lasers affect mRNA expression of DNA nucleotide excision repair in skin and muscle tissue.

    PubMed

    Sergio, Luiz Philippe S; Campos, Vera Maria A; Vicentini, Solange C; Mencalha, Andre Luiz; de Paoli, Flavia; Fonseca, Adenilson S

    2016-04-01

    Lasers emit light beams with specific characteristics, in which wavelength, frequency, power, fluence, and emission mode properties determine the photophysical, photochemical, and photobiological responses. Low-intensity lasers could induce free radical generation in biological tissues and cause alterations in macromolecules, such as DNA. Thus, the aim of this work was to evaluate excision repair cross-complementing group 1 (ERCC1) and excision repair cross-complementing group 2 (ERCC2) messenger RNA (mRNA) expression in biological tissues exposed to low-intensity lasers. Wistar rat (n = 28, 4 for each group) skin and muscle were exposed to low-intensity red (660 nm) and near-infrared (880 nm) lasers at different fluences (25, 50, and 100 J/cm(2)), and samples of these tissues were withdrawn for RNA extraction, cDNA synthesis, and gene expression evaluation by quantitative polymerase chain reaction. Laser exposure was in continuous wave and power of 100 mW. Data show that ERCC1 and ERCC2 mRNA expressions decrease in skin (p < 0.001) exposed to near-infrared laser, but increase in muscle tissue (p < 0.001). ERCC1 mRNA expression does not alter (p > 0.05), but ERCC2 mRNA expression decreases in skin (p < 0.001) and increases in muscle tissue (p < 0.001) exposed to red laser. Our results show that ERCC1 and ERCC2 mRNA expression is differently altered in skin and muscle tissue exposed to low-intensity lasers depending on wavelengths and fluences used in therapeutic protocols. PMID:26796702

  5. The C-terminal Region and SUMOylation of Cockayne Syndrome Group B Protein Play Critical Roles in Transcription-coupled Nucleotide Excision Repair.

    PubMed

    Sin, Yooksil; Tanaka, Kiyoji; Saijo, Masafumi

    2016-01-15

    Cockayne syndrome (CS) is a recessive disorder that results in deficiencies in transcription-coupled nucleotide excision repair (TC-NER), a subpathway of nucleotide excision repair, and cells from CS patients exhibit hypersensitivity to UV light. CS group B protein (CSB), which is the gene product of one of the genes responsible for CS, belongs to the SWI2/SNF2 DNA-dependent ATPase family and has an ATPase domain and an ubiquitin-binding domain (UBD) in the central region and the C-terminal region, respectively. The C-terminal region containing the UBD is essential for the functions of CSB. In this study, we generated several CSB deletion mutants and analyzed the functions of the C-terminal region of CSB in TC-NER. Not only the UBD but also the C-terminal 30-amino acid residues were required for UV light resistance and TC-NER. This region was needed for the interaction of CSB with RNA polymerase II, the translocation of CS group A protein to the nuclear matrix, and the association of CSB with chromatin after UV irradiation. CSB was modified by small ubiquitin-like modifier 2/3 in a UV light-dependent manner. This modification was abolished in a CSB mutant lacking the C-terminal 30 amino acid residues. However, the substitution of lysine residues in this region with arginine did not affect SUMOylation or TC-NER. By contrast, substitution of a lysine residue in the N-terminal region with arginine decreased SUMOylation and resulted in cells with defects in TC-NER. These results indicate that both the most C-terminal region and SUMOylation are important for the functions of CSB in TC-NER. PMID:26620705

  6. ATR- and ATM-Mediated DNA Damage Response Is Dependent on Excision Repair Assembly during G1 but Not in S Phase of Cell Cycle.

    PubMed

    Ray, Alo; Blevins, Chessica; Wani, Gulzar; Wani, Altaf A

    2016-01-01

    Cell cycle checkpoint is mediated by ATR and ATM kinases, as a prompt early response to a variety of DNA insults, and culminates in a highly orchestrated signal transduction cascade. Previously, we defined the regulatory role of nucleotide excision repair (NER) factors, DDB2 and XPC, in checkpoint and ATR/ATM-dependent repair pathway via ATR and ATM phosphorylation and recruitment to ultraviolet radiation (UVR)-induced damage sites. Here, we have dissected the molecular mechanisms of DDB2- and XPC- mediated regulation of ATR and ATM recruitment and activation upon UVR exposures. We show that the ATR and ATM activation and accumulation to UVR-induced damage not only depends on DDB2 and XPC, but also on the NER protein XPA, suggesting that the assembly of an active NER complex is essential for ATR and ATM recruitment. ATR and ATM localization and H2AX phosphorylation at the lesion sites occur as early as ten minutes in asynchronous as well as G1 arrested cells, showing that repair and checkpoint-mediated by ATR and ATM starts early upon UV irradiation. Moreover, our results demonstrated that ATR and ATM recruitment and H2AX phosphorylation are dependent on NER proteins in G1 phase, but not in S phase. We reasoned that in G1 the UVR-induced ssDNA gaps or processed ssDNA, and the bound NER complex promote ATR and ATM recruitment. In S phase, when the UV lesions result in stalled replication forks with long single-stranded DNA, ATR and ATM recruitment to these sites is regulated by different sets of proteins. Taken together, these results provide evidence that UVR-induced ATR and ATM recruitment and activation differ in G1 and S phases due to the existence of distinct types of DNA lesions, which promote assembly of different proteins involved in the process of DNA repair and checkpoint activation. PMID:27442013

  7. ATR- and ATM-Mediated DNA Damage Response Is Dependent on Excision Repair Assembly during G1 but Not in S Phase of Cell Cycle

    PubMed Central

    Ray, Alo; Blevins, Chessica; Wani, Gulzar; Wani, Altaf A.

    2016-01-01

    Cell cycle checkpoint is mediated by ATR and ATM kinases, as a prompt early response to a variety of DNA insults, and culminates in a highly orchestrated signal transduction cascade. Previously, we defined the regulatory role of nucleotide excision repair (NER) factors, DDB2 and XPC, in checkpoint and ATR/ATM-dependent repair pathway via ATR and ATM phosphorylation and recruitment to ultraviolet radiation (UVR)-induced damage sites. Here, we have dissected the molecular mechanisms of DDB2- and XPC- mediated regulation of ATR and ATM recruitment and activation upon UVR exposures. We show that the ATR and ATM activation and accumulation to UVR-induced damage not only depends on DDB2 and XPC, but also on the NER protein XPA, suggesting that the assembly of an active NER complex is essential for ATR and ATM recruitment. ATR and ATM localization and H2AX phosphorylation at the lesion sites occur as early as ten minutes in asynchronous as well as G1 arrested cells, showing that repair and checkpoint-mediated by ATR and ATM starts early upon UV irradiation. Moreover, our results demonstrated that ATR and ATM recruitment and H2AX phosphorylation are dependent on NER proteins in G1 phase, but not in S phase. We reasoned that in G1 the UVR-induced ssDNA gaps or processed ssDNA, and the bound NER complex promote ATR and ATM recruitment. In S phase, when the UV lesions result in stalled replication forks with long single-stranded DNA, ATR and ATM recruitment to these sites is regulated by different sets of proteins. Taken together, these results provide evidence that UVR-induced ATR and ATM recruitment and activation differ in G1 and S phases due to the existence of distinct types of DNA lesions, which promote assembly of different proteins involved in the process of DNA repair and checkpoint activation. PMID:27442013

  8. ABT-888 and quinacrine induced apoptosis in metastatic breast cancer stem cells by inhibiting base excision repair via adenomatous polyposis coli.

    PubMed

    Siddharth, Sumit; Nayak, Deepika; Nayak, Anmada; Das, Sarita; Kundu, Chanakya Nath

    2016-09-01

    PARP inhibitors in combination with other agents are in clinical trial against cancer, but its effect on cancer stem cells (CSCs) is limited. CSCs are responsible for drug resistance, metastasis and cancer relapse due to high DNA repair capacity. Here, we present preclinical effects of Quinacrine (QC) with ABT-888, a PARP inhibitor, on highly metastatic breast cancer stem cells (mBCSCs). An increased level of Adenomatous polyposis coli (APC) was noted after treatment with ABT-888 in QC pre-treated mBCSCs cells. Increased APC physically interacts with PARP-1 and inhibits PARylation causing the non assembly of base excision repair (BER) multiprotein complex, resulting in an irreparable DNA damage and subsequent apoptosis. Knockdown of APC in mBCSCs inhibited DNA damage, increased BER and PARylation, reduces apoptosis while the over-expression of APC in BT20 (APC low expressing) cells reversed the effect. Thus, combination of QC and ABT-888 decreased mBCSCs growth by activating APC and inhibiting BER within the cells. PMID:27334689

  9. Mutation of DNA Polymerase β R137Q Results in Retarded Embryo Development Due to Impaired DNA Base Excision Repair in Mice

    PubMed Central

    Pan, Feiyan; Zhao, Jing; Zhou, Ting; Kuang, Zhihui; Dai, Huifang; Wu, Huan; Sun, Hongfang; Zhou, Xiaolong; Wu, Xuping; Hu, Zhigang; He, Lingfeng; Shen, Binghui; Guo, Zhigang

    2016-01-01

    DNA polymerase β (Pol β), a key enzyme in the DNA base excision repair (BER) pathway, is pivotal in maintaining the integrity and stability of genomes. One Pol β mutation that has been identified in tumors, R137Q (arginine to glutamine substitution), has been shown to lower polymerase activity, and impair its DNA repair capacity. However, the exact functional deficiency associated with this polymorphism in living organisms is still unknown. Here, we constructed Pol β R137Q knock-in mice, and found that homozygous knock-in mouse embryos were typically small in size and had a high mortality rate (21%). These embryonic abnormalities were caused by slow cell proliferation and increased apoptosis. In R137Q knock-in mouse embryos, the BER efficiency was severely impaired, which subsequently resulted in double-strand breaks (DSBs) and chromosomal aberrations. Furthermore, R137Q mouse embryo fibroblasts (MEFs) were more sensitive to DNA-damaging reagents, such as methyl methanesulfonate (MMS) and H2O2. They displayed a higher percentage of DSBs, and were more likely to undergo apoptosis. Our results indicate that R137 is a key amino acid site that is essential for proper Pol β functioning in maintaining genomic stability and embryo development. PMID:27358192

  10. Apigenin, a bioactive flavonoid from Lycopodium clavatum, stimulates nucleotide excision repair genes to protect skin keratinocytes from ultraviolet B-induced reactive oxygen species and DNA damage.

    PubMed

    Das, Sreemanti; Das, Jayeeta; Paul, Avijit; Samadder, Asmita; Khuda-Bukhsh, Anisur Rahman

    2013-10-01

    In this study, we examined the antioxidative and the DNA protective potentials of apigenin, a flavonoid polyphenol isolated from Lycopodium clavatum, in both in-vitro (HaCaT skin keratinocytes) and in-vivo (mice) models against UV-B radiation. We used DAPI staining in UV-B-irradiated HaCaT skin keratinocytes pre-treated with and without apigenin to assess DNA damage. We also used a flow-cytometric analysis in mice exposed to UV-B radiation with or without topical application of apigenin to assess, through a comet assay, chromosomal aberrations and quanta from reactive oxygen species (ROS) generation. Data from the stability curves for the Gibb's free energy determined from a melting-temperature profile study indicated that apigenin increased the stability of calf thymus DNA. Immunofluorescence studies revealed that apigenin caused a reduction in the number of cyclobutane pyrimidine dimers (CPDs) after 24 h, the time at which the nucleotide excision repair (NER) genes were activated. Thus, apigenin accelerated reversal of UV-B-induced CPDs through up-regulation of NER genes, removal of cyclobutane rings, inhibition of ROS generation, and down-regulation of NF-κB and MAPK, thereby revealing the precise mechanism of DNA repair. PMID:24139463

  11. Mutation of DNA Polymerase β R137Q Results in Retarded Embryo Development Due to Impaired DNA Base Excision Repair in Mice.

    PubMed

    Pan, Feiyan; Zhao, Jing; Zhou, Ting; Kuang, Zhihui; Dai, Huifang; Wu, Huan; Sun, Hongfang; Zhou, Xiaolong; Wu, Xuping; Hu, Zhigang; He, Lingfeng; Shen, Binghui; Guo, Zhigang

    2016-01-01

    DNA polymerase β (Pol β), a key enzyme in the DNA base excision repair (BER) pathway, is pivotal in maintaining the integrity and stability of genomes. One Pol β mutation that has been identified in tumors, R137Q (arginine to glutamine substitution), has been shown to lower polymerase activity, and impair its DNA repair capacity. However, the exact functional deficiency associated with this polymorphism in living organisms is still unknown. Here, we constructed Pol β R137Q knock-in mice, and found that homozygous knock-in mouse embryos were typically small in size and had a high mortality rate (21%). These embryonic abnormalities were caused by slow cell proliferation and increased apoptosis. In R137Q knock-in mouse embryos, the BER efficiency was severely impaired, which subsequently resulted in double-strand breaks (DSBs) and chromosomal aberrations. Furthermore, R137Q mouse embryo fibroblasts (MEFs) were more sensitive to DNA-damaging reagents, such as methyl methanesulfonate (MMS) and H2O2. They displayed a higher percentage of DSBs, and were more likely to undergo apoptosis. Our results indicate that R137 is a key amino acid site that is essential for proper Pol β functioning in maintaining genomic stability and embryo development. PMID:27358192

  12. Mitotic regulator Nlp interacts with XPA/ERCC1 complexes and regulates nucleotide excision repair (NER) in response to UV radiation.

    PubMed

    Ma, Xiao-Juan; Shang, Li; Zhang, Wei-Min; Wang, Ming-Rong; Zhan, Qi-Min

    2016-04-10

    Cellular response to DNA damage, including ionizing radiation (IR) and UV radiation, is critical for the maintenance of genomic fidelity. Defects of DNA repair often result in genomic instability and malignant cell transformation. Centrosomal protein Nlp (ninein-like protein) has been characterized as an important cell cycle regulator that is required for proper mitotic progression. In this study, we demonstrate that Nlp is able to improve nucleotide excision repair (NER) activity and protects cells against UV radiation. Upon exposure of cells to UVC, Nlp is translocated into the nucleus. The C-terminus (1030-1382) of Nlp is necessary and sufficient for its nuclear import. Upon UVC radiation, Nlp interacts with XPA and ERCC1, and enhances their association. Interestingly, down-regulated expression of Nlp is found to be associated with human skin cancers, indicating that dysregulated Nlp might be related to the development of human skin cancers. Taken together, this study identifies mitotic protein Nlp as a new and important member of NER pathway and thus provides novel insights into understanding of regulatory machinery involved in NER. PMID:26805762

  13. Endonuclease IV Is the Main Base Excision Repair Enzyme Involved in DNA Damage Induced by UVA Radiation and Stannous Chloride

    PubMed Central

    Motta, Ellen S.; Souza-Santos, Paulo Thiago; Cassiano, Tuany R.; Dantas, Flávio J. S.; Caldeira-de-Araujo, Adriano; De Mattos, José Carlos P.

    2010-01-01

    Stannous chloride (SnCl2) and UVA induce DNA lesions through ROS. The aim of this work was to study the toxicity induced by UVA preillumination, followed by SnCl2 treatment. E. coli BER mutants were used to identify genes which could play a role in DNA lesion repair generated by these agents. The survival assays showed (i) The nfo mutant was the most sensitive to SnCl2; (ii) lethal synergistic effect was observed after UVA pre-illumination, plus SnCl2 incubation, the nfo mutant being the most sensitive; (iii) wild type and nfo mutants, transformed with pBW21 plasmid (nfo+) had their survival increased following treatments. The alkaline agarose gel electrophoresis assays pointed that (i) UVA induced DNA breaks and fpg mutant was the most sensitive; (ii) SnCl2-induced DNA strand breaks were higher than those from UVA and nfo mutant had the slowest repair kinetics; (iii) UVA + SnCl2 promoted an increase in DNA breaks than SnCl2 and, again, nfo mutant displayed the slowest repair kinetics. In summary, Nfo protects E. coli cells against damage induced by SnCl2 and UVA + SnCl2. PMID:20300433

  14. Use of a small palindrome genetic marker to investigate mechanisms of double-strand-break repair in mammalian cells.

    PubMed Central

    Li, J; Baker, M D

    2000-01-01

    We examined mechanisms of mammalian homologous recombination using a gene targeting assay in which the vector-borne region of homology to the chromosome bore small palindrome insertions that frequently escape mismatch repair when encompassed within heteroduplex DNA (hDNA). Our assay permitted the product(s) of each independent recombination event to be recovered for molecular analysis. The results revealed the following: (i) vector-borne double-strand break (DSB) processing usually did not yield a large double-strand gap (DSG); (ii) in 43% of the recombinants, the results were consistent with crossover at or near the DSB; and (iii) in the remaining recombinants, hDNA was an intermediate. The sectored (mixed) genotypes observed in 38% of the recombinants provided direct evidence for involvement of hDNA, while indirect evidence was obtained from the patterns of mismatch repair (MMR). Individual hDNA tracts were either long or short and asymmetric or symmetric on the one side of the DSB examined. Clonal analysis of the sectored recombinants revealed how vector-borne and chromosomal markers were linked in each strand of individual hDNA intermediates. As expected, vector-borne and chromosomal markers usually resided on opposite strands. However, in one recombinant, they were linked on the same strand. The results are discussed with particular reference to the double-strand-break repair (DSBR) model of recombination. PMID:10757769

  15. Single-nucleotide polymorphisms in base excision repair, nucleotide excision repair, and double strand break genes as markers for response to radiotherapy in patients with Stage I to II head-and-neck cancer

    SciTech Connect

    Carles, Joan . E-mail: jcarles@imas.imim.es; Monzo, Mariano; Amat, Marta; Jansa, Sonia; Artells, Rosa; Navarro, Alfons; Foro, Palmira; Alameda, Francesc; Gayete, Angel; Gel, Bernat; Miguel, Maribel; Albanell, Joan; Fabregat, Xavier

    2006-11-15

    Purpose: Polymorphisms in DNA repair genes can influence response to radiotherapy. We analyzed single-nucleotide polymorphisms (SNP) in nine DNA repair genes in 108 patients with head-and-neck cancer (HNSCC) who had received radiotherapy only. Methods and Materials: From May 1993 to December 2004, patients with Stage I and II histopathologically confirmed HNSCC underwent radiotherapy. DNA was obtained from paraffin-embedded tissue, and SNP analysis was performed using a real-time polymerase chain reaction allelic discrimination TaqMan assay with minor modifications. Results: Patients were 101 men (93.5%) and 7 (6.5%) women, with a median age of 64 years (range, 40 to 89 years). Of the patients, 76 (70.4%) patients were Stage I and 32 (29.6%) were Stage II. The XPF/ERCC1 SNP at codon 259 and XPG/ERCC5 at codon 46 emerged as significant predictors of progression (p 0.00005 and 0.049, respectively) and survival (p = 0.0089 and 0.0066, respectively). Similarly, when variant alleles of XPF/ERCC1, XPG/ERCC5 and XPA were examined in combination, a greater number of variant alleles was associated with shorter time to progression (p = 0.0003) and survival (p 0.0002). Conclusions: Genetic polymorphisms in XPF/ERCC1, XPG/ERCC5, and XPA may significantly influence response to radiotherapy; large studies are warranted to confirm their role in HNSCC.

  16. Excision without excision

    SciTech Connect

    Brown, David; Sarbach, Olivier; Schnetter, Erik; Diener, Peter; Tiglio, Manuel; Hawke, Ian; Pollney, Denis

    2007-10-15

    to turducken (turduckens, turduckening, turduckened, turduckened) [math.]: To stuff a black hole. We analyze and apply an alternative to black hole excision based on smoothing the interior of black holes with arbitrary initial data, and solving the vacuum Einstein evolution equations everywhere. By deriving the constraint propagation system for our hyperbolic formulation of the BSSN evolution system we rigorously prove that the constraints propagate causally and so any constraint violations introduced inside the black holes cannot affect the exterior spacetime. We present evolutions of Cook-Pfeiffer binary black hole initial configurations showing that these techniques appear to work robustly for generic data. We also present evidence from spherically symmetric evolutions that for the gauge conditions used the same stationary end-state is approached irrespective of the choice of initial data and smoothing procedure.

  17. Variation in PAH-related DNA adduct levels among non-smokers: the role of multiple genetic polymorphisms and nucleotide excision repair phenotype

    PubMed Central

    Etemadi, Arash; Islami, Farhad; Phillips, David H.; Godschalk, Roger; Golozar, Asieh; Kamangar, Farin; Malekshah, Akbar Fazel-Tabar; Pourshams, Akram; Elahi, Seerat; Ghojaghi, Farhad; Strickland, Paul T; Taylor, Philip R; Boffetta, Paolo; Abnet, Christian C; Dawsey, Sanford M; Malekzadeh, Reza; van Schooten, Frederik J.

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs) likely play a role in many cancers even in never-smokers. We tried to find a model to explain the relationship between variation in PAH-related DNA adduct levels among people with similar exposures, multiple genetic polymorphisms in genes related to metabolic and repair pathways, and nucleotide excision repair (NER) capacity. In 111 randomly-selected female never-smokers from the Golestan Cohort Study in Iran, we evaluated 21 SNPs in 14 genes related to xenobiotic metabolism and 12 SNPs in 8 DNA repair genes. NER capacity was evaluated by a modified comet assay, and aromatic DNA adduct levels were measured in blood by 32P-postlabelling. Multivariable regression models were compared by Akaike’s information criterion (AIC). Aromatic DNA adduct levels ranged between 1.7 and 18.6 per 108 nucleotides (mean: 5.8±3.1). DNA adduct level was significantly lower in homozygotes for NAT2 slow alleles and ERCC5 non risk-allele genotype, and was higher in the MPO homozygote risk-allele genotype. The sum of risk alleles in these genes significantly correlated with the log-adduct level (r=0.4, p<0.001). Compared with the environmental model, adding phase I SNPs and NER capacity provided the best fit, and could explain 17% more of the variation in adduct levels. NER capacity was affected by polymorphisms in the MTHFR and ERCC1 genes. Female non-smokers in this population had PAH-related DNA adduct levels 3-4 times higher than smokers and occupationally-exposed groups in previous studies, with large inter-individual variation which could best be explained by a combination of phase I genes and NER capacity. PMID:23175176

  18. AP endonuclease 1 prevents the extension of a T/G mismatch by DNA polymerase β to prevent mutations in CpGs during base excision repair.

    PubMed

    Lai, Yanhao; Jiang, Zhongliang; Zhou, Jing; Osemota, Emmanuel; Liu, Yuan

    2016-07-01

    Dynamics of DNA methylation and demethylation at CpG clusters are involved in gene regulation. CpG clusters have been identified as hot spots of mutagenesis because of their susceptibility to oxidative DNA damage. Damaged Cs and Gs at CpGs can disrupt a normal DNA methylation pattern through modulation of DNA methylation and demethylation, leading to mutations and deregulation of gene expression. DNA base excision repair (BER) plays a dual role of repairing oxidative DNA damage and mediating an active DNA demethylation pathway on CpG clusters through removal of a T/G mismatch resulting from deamination of a 5mC adjacent to a guanine that can be simultaneously damaged by oxidative stress. However, it remains unknown how BER processes clustered lesions in CpGs and what are the consequences from the repair of these lesions. In this study, we examined BER of an abasic lesion next to a DNA demethylation intermediate, the T/G mismatch in a CpG dinucleotide, and its effect on the integrity of CpGs. Surprisingly, we found that the abasic lesion completely abolished the activity of thymine DNA glycosylase (TDG) for removing the mismatched T. However, we found that APE1 could still efficiently incise the abasic lesion leaving a 3-terminus mismatched T, which was subsequently extended by pol β. This in turn resulted in a C to T transition mutation. Interestingly, we also found that APE1 3'-5' exonuclease activity efficiently removed the mismatched T, thereby preventing pol β extension of the mismatched nucleotide and the resulting mutation. Our results demonstrate a crucial role of APE1 3'-5' exonuclease activity in combating mutations in CpG clusters caused by an intermediate of DNA demethylation during BER. PMID:27183823

  19. UV-induced histone H2AX phosphorylation and DNA damage related proteins accumulate and persist in nucleotide excision repair-deficient XP-B cells.

    PubMed

    Oh, Kyu-Seon; Bustin, Michael; Mazur, Sharlyn J; Appella, Ettore; Kraemer, Kenneth H

    2011-01-01

    DNA double strand breaks (DSB) may be caused by ionizing radiation. In contrast, UV exposure forms dipyrimidine photoproducts and is not considered an inducer of DSB. We found that uniform or localized UV treatment induced phosphorylation of the DNA damage related (DDR) proteins H2AX, ATM and NBS1 and co-localization of γ-H2AX with the DDR proteins p-ATM, p-NBS1, Rad51 and FANCD2 that persisted for about 6h in normal human fibroblasts. This post-UV phosphorylation was observed in the absence of nucleotide excision repair (NER), since NER deficient XP-B cells (lacking functional XPB DNA repair helicase) and global genome repair-deficient rodent cells also showed phosphorylation and localization of these DDR proteins. Resolution of the DDR proteins was dependent on NER, since they persisted for 24h in the XP-B cells. In the normal and XP-B cells p53 and p21 was detected at 6h and 24h but Mdm2 was not induced in the XP-B cells. Post-UV induction of Wip1 phosphatase was detected in the normal cells but not in the XP-B cells. DNA DSB were detected with a neutral comet assay at 6h and 24h post-UV in the normal and XP-B cells. These results indicate that UV damage can activate the DDR pathway in the absence of NER. However, a later step in DNA damage processing involving induction of Wip1 and resolution of DDR proteins was not observed in the absence of NER. PMID:20947453

  20. Variation in PAH-related DNA adduct levels among non-smokers: the role of multiple genetic polymorphisms and nucleotide excision repair phenotype.

    PubMed

    Etemadi, Arash; Islami, Farhad; Phillips, David H; Godschalk, Roger; Golozar, Asieh; Kamangar, Farin; Malekshah, Akbar Fazel-Tabar; Pourshams, Akram; Elahi, Seerat; Ghojaghi, Farhad; Strickland, Paul T; Taylor, Philip R; Boffetta, Paolo; Abnet, Christian C; Dawsey, Sanford M; Malekzadeh, Reza; van Schooten, Frederik J

    2013-06-15

    Polycyclic aromatic hydrocarbons (PAHs) likely play a role in many cancers even in never-smokers. We tried to find a model to explain the relationship between variation in PAH-related DNA adduct levels among people with similar exposures, multiple genetic polymorphisms in genes related to metabolic and repair pathways, and nucleotide excision repair (NER) capacity. In 111 randomly selected female never-smokers from the Golestan Cohort Study in Iran, we evaluated 21 SNPs in 14 genes related to xenobiotic metabolism and 12 SNPs in eight DNA repair genes. NER capacity was evaluated by a modified comet assay, and aromatic DNA adduct levels were measured in blood by32P-postlabeling. Multivariable regression models were compared by Akaike's information criterion (AIC). Aromatic DNA adduct levels ranged between 1.7 and 18.6 per 10(8) nucleotides (mean: 5.8 ± 3.1). DNA adduct level was significantly lower in homozygotes for NAT2 slow alleles and ERCC5 non-risk-allele genotype, and was higher in the MPO homozygote risk-allele genotype. The sum of risk alleles in these genes significantly correlated with the log-adduct level (r = 0.4, p < 0.001). Compared with the environmental model, adding Phase I SNPs and NER capacity provided the best fit, and could explain 17% more of the variation in adduct levels. NER capacity was affected by polymorphisms in the MTHFR and ERCC1 genes. Female non-smokers in this population had PAH-related DNA adduct levels three to four times higher than smokers and occupationally-exposed groups in previous studies, with large inter-individual variation which could best be explained by a combination of Phase I genes and NER capacity. PMID:23175176

  1. Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair.

    PubMed

    Svendsen, Jennifer M; Smogorzewska, Agata; Sowa, Mathew E; O'Connell, Brenda C; Gygi, Steven P; Elledge, Stephen J; Harper, J Wade

    2009-07-10

    Structure-specific endonucleases mediate cleavage of DNA structures formed during repair of collapsed replication forks and double-strand breaks (DSBs). Here, we identify BTBD12 as the human ortholog of the budding yeast DNA repair factor Slx4p and D. melanogaster MUS312. Human SLX4 forms a multiprotein complex with the ERCC4(XPF)-ERCC1, MUS81-EME1, and SLX1 endonucleases and also associates with MSH2/MSH3 mismatch repair complex, telomere binding complex TERF2(TRF2)-TERF2IP(RAP1), the protein kinase PLK1 and the uncharacterized protein C20orf94. Depletion of SLX4 causes sensitivity to mitomycin C and camptothecin and reduces the efficiency of DSB repair in vivo. SLX4 complexes cleave 3' flap, 5' flap, and replication fork structures; yet unlike other endonucleases associated with SLX4, the SLX1-SLX4 module promotes symmetrical cleavage of static and migrating Holliday junctions (HJs), identifying SLX1-SLX4 as a HJ resolvase. Thus, SLX4 assembles a modular toolkit for repair of specific types of DNA lesions and is critical for cellular responses to replication fork failure. PMID:19596235

  2. Repair of mismatched basepairs in mammalian DNA. Progress report, March 1, 1990--February 28, 1991

    SciTech Connect

    Taylor, J.H.; Hare, J.T.

    1991-08-01

    We have concentrated on three specific areas of our research plan. Our greatest emphasis is on the role of single strand nicks in influencing template strand selection in mismatch repair. We have found, that the ability of a nick in one strand to influence which strand is repaired is not a simple function of distance from the mismatched site but rather that an hot spot where a nick is more likely to have an influence can exist. The second line was production of single-genotype heteroduplexes in order to examine independently the repair of T/G and A/C mispairs within the same sequence context as in our mixed mispair preparations. We have shown preparations of supercoiled heteroduplex can be prepared that were exclusively T/G or exclusively A/C at the mispair site. The third effort has been to understand the difference in repair bias of different cell lines or different transfection conditions as it may relate to different repair systems in the cell. We have identified some of the sources of variation, including cell cycle position. We hope to continue this work to more precisely identify the phase of the cell cycle.

  3. Preferential DNA repair in expressed genes.

    PubMed Central

    Hanawalt, P C

    1987-01-01

    Potentially deleterious alterations to DNA occur nonrandomly within the mammalian genome. These alterations include the adducts produced by many chemical carcinogens, but not the UV-induced cyclobutane pyrimidine dimer, which may be an exception. Recent studies in our laboratory have shown that the excision repair of pyrimidine dimers and certain other lesions is nonrandom in the mammalian genome, exhibiting a distinct preference for actively transcribed DNA sequences. An important consequence of this fact is that mutagenesis and carcinogenesis may be determined in part by the activities of the relevant genes. Repair may also be processive, and a model is proposed in which excision repair is coupled to transcription at the nuclear matrix. Similar but freely diffusing repair complexes may account for the lower overall repair efficiencies in the silent domains of the genome. Risk assessment in relation to chemical carcinogenesis requires assays that determine effective levels of DNA damage for producing malignancy. The existence of nonrandom repair in the genome casts into doubt the reliability of overall indicators of DNA binding and lesion repair for such determinations. Furthermore, some apparent differences between the intragenomic repair heterogeneity in rodent cells and that in human cells mandate a reevaluation of rodent test systems for human risk assessment. Tissue-specific and cell-specific differences in the coordinate regulation of gene expression and DNA repair may account for corresponding differences in the carcinogenic response. Images FIGURE 1. FIGURE 1. PMID:3447906

  4. Excision of Sleeping Beauty transposons: parameters and applications to gene therapy

    PubMed Central

    Liu, Geyi; Aronovich, Elena L.; Cui, Zongbin; Whitley, Chester B.; Hackett, Perry B.

    2007-01-01

    A major problem in gene therapy is the determination of the rates at which gene transfer has occurred. Our work has focused on applications of the Sleeping Beauty (SB) transposon system as a non-viral vector for gene therapy. Excision of a transposon from a donor molecule and its integration into a cellular chromosome are catalyzed by SB transposase. In this study, we used a plasmid-based excision assay to study the excision step of transposition. We used the excision assay to evaluate the importance of various sequences that border the sites of excision inside and outside the transposon in order to determine the most active sequences for transposition from a donor plasmid. These findings together with our previous results in transposase binding to the terminal repeats suggest that the sequences in the transposon-junction of SB are involved in steps subsequent to DNA binding but before excision, and that they may have a role in transposase–transposon interaction. We found that SB transposons leave characteristically different footprints at excision sites in different cell types, suggesting that alternative repair machineries operate in concert with transposition. Most importantly, we found that the rates of excision correlate with the rates of transposition. We used this finding to assess transposition in livers of mice that were injected with the SB transposon and transposase. The excision assay appears to be a relatively quick and easy method to optimize protocols for delivery of genes in SB transposons to mammalian chromosomes in living animals. PMID:15133768

  5. Mammalian ribonucleotide reductase subunit p53R2 is required for mitochondrial DNA replication and DNA repair in quiescent cells.

    PubMed

    Pontarin, Giovanna; Ferraro, Paola; Bee, Leonardo; Reichard, Peter; Bianchi, Vera

    2012-08-14

    In postmitotic mammalian cells, protein p53R2 substitutes for protein R2 as a subunit of ribonucleotide reductase. In human patients with mutations in RRM2B, the gene for p53R2, mitochondrial (mt) DNA synthesis is defective, and skeletal muscle presents severe mtDNA depletion. Skin fibroblasts isolated from a patient with a lethal homozygous missense mutation of p53R2 grow normally in culture with an unchanged complement of mtDNA. During active growth, the four dNTP pools do not differ in size from normal controls, whereas during quiescence, the dCTP and dGTP pools decrease to 50% of the control. We investigate the ability of these mutated fibroblasts to synthesize mtDNA and repair DNA after exposure to UV irradiation. Ethidium bromide depleted both mutant and normal cells of mtDNA. On withdrawal of the drug, mtDNA recovered equally well in cycling mutant and control cells, whereas during quiescence, the mutant fibroblasts remained deficient. Addition of deoxynucleosides to the medium increased intracellular dNTP pools and normalized mtDNA synthesis. Quiescent mutant fibroblasts were also deficient in the repair of UV-induced DNA damage, as indicated by delayed recovery of dsDNA analyzed by fluorometric analysis of DNA unwinding and the more extensive and prolonged phosphorylation of histone H2AX after irradiation. Supplementation by deoxynucleosides improved DNA repair. Our results show that in nontransformed cells only during quiescence, protein p53R2 is required for maintenance of mtDNA and for optimal DNA repair after UV damage. PMID:22847445

  6. Mutagenesis and repair by low doses of alpha radiation in mammalian cells.

    PubMed

    Puck, Theodore T; Johnson, Robert; Webb, Patricia; Cui, Helen; Valdez, Joseph G; Crissman, Harry

    2002-09-17

    Low doses of alpha radiation in basements have been causally implicated in lung cancer. Previous studies have concentrated on high dose effects, for which no significant repair was found. In the present study, the methodology for measuring mutation by quantitating mitotic breaks and gaps was found to be applicable to G2-phase Chinese hamster ovary cells irradiated with 10-50 cGy of alpha radiation. The mutation yield in such cells closely resembles that of gamma irradiation. Caffeine, which inhibits repair, produces the same straight line increase of alpha and gamma mutation yields plotted against the dose. In the absence of caffeine, the repair of alpha radiation lesions is almost twice as great as for gamma radiation. Mitotic index changes substantiate these interpretations. It is proposed that the higher ion density associated with alpha radiation may result in fewer lesions being missed by the repair processes. The quantitation of chromosomal lesions for G2 cells exposed to low doses of alpha radiation, gamma radiation, or chemical mutagens in the presence and absence of caffeine is a rapid and reproducible methodology. Protection from mutational disease in a fashion similar to the use of sanitation for infectious disease appears practical. PMID:12198179

  7. Radiofrequency (microwave) radiation exposure of mammalian cells during UV-induced DNA repair synthesis

    SciTech Connect

    Meltz, M.L.; Walker, K.A.; Erwin, D.N.

    1987-05-01

    The effect of continuous-wave (CW) and pulsed-wave (PW) radiofrequency radiation (RFR) in the microwave range on UV-induced DNA repair has been investigated in MRC-5 normal human diploid fibroblasts. RFR exposure at power densities of 1 (or 5) and 10 mW/cm2 gave a maximum specific absorption rate (SAR) (at 10 mW/cm2) of 0.39 +/- 0.15 W/kg for 350 MHz RFR, 4.5 +/- 3.0 W/kg for 850 MHz RFR, and 2.7 +/- 1.6 W/kg for 1.2 GHz RFR. RFR exposures for 1 to 3 h at 37 degrees C, in either continuous-wave or pulsed-wave modes, had no effect on the rate of repair replication label incorporated into preexisting UV-damaged DNA. RFR exposures (PW), with a constant medium temperature of 39 degrees C at 350 and 850 MHz during the repair period after UV damage, also had no effect. Assay for induction of repair synthesis by RFR exposure alone in non-UV irradiated cells was negative for the 350-, 850-, and 1200-MHz CW and PW RFR at 37 degrees C and the 350- and 850-MHz PW RFR at 39 degrees C. RFR does not induce DNA repair under these exposure conditions. In preliminary experiments--with the tissue culture medium maintained at 39 degrees C and RFR exposures (PW) at the frequencies of 350, 850, and 1200 MHz--no effect on incorporation of (/sup 3/H)thymidine into DNA undergoing semiconservative synthesis was observed.

  8. p53 controls global nucleotide excision repair of low levels of structurally diverse benzo(g)chrysene-DNA adducts in human fibroblasts.

    PubMed

    Lloyd, Daniel R; Hanawalt, Philip C

    2002-09-15

    Benzo(g)chrysene is a widespread environmental contaminant and potent carcinogen. We have measured the formation and nucleotide excision repair of covalent DNA adducts formed by the DNA-reactive metabolite of this compound in human fibroblasts, in which expression of the p53 tumor suppressor gene could be controlled by a tetracycline-inducible promoter. Cells were exposed for 1 h to 0.01, 0.1, or 1.2 microM (+/-)-anti-benzo(g)chrysene diol-epoxide, and DNA adducts were assessed at various post-treatment times by subjecting isolated DNA to (32)P-postlabeling analysis. Four major DNA adducts were detected, corresponding to the reaction of either the (+)- or (-)-anti-benzo(g)chrysene diol-epoxide stereoisomer with adenine or guanine. Treatment with 1.2 microM resulted in a level of 1100 total adducts/10(8) nucleotides for both p53-proficient and -deficient cells; removal of adducts was not observed in either case. In cells treated with 0.1 microM, the maximum level of total adducts at 24 h was 150/10(8) nucleotides in p53-proficient cells and 210 adducts/10(8) nucleotides in p53-deficient cells. A concentration of 0.01 microM resulted in a maximum of 20 adducts/10(8) nucleotides in p53-proficient cells at 4 h, but 40 adducts/10(8) nucleotides persisted in p53-deficient cells at 24 h. Whereas there were clear differences in the time course of adduct levels in p53-proficient compared with p53-deficient cells treated with 0.1 microM or 0.01 microM, these levels did not decrease extensively over 3 days. This is likely because of the stabilization of the diol-epoxide in cells, and consequent exposure and formation of adducts for many hours after the initial treatment. Furthermore, despite minor quantitative differences, all 4 of the adducts behaved similarly with respect to the effect of p53 expression on their removal. p53 appears to minimize the appearance of benzo(g)chrysene adducts in human cells by up-regulating global nucleotide excision repair and reducing the

  9. Inter-individual variation in nucleotide excision repair pathway is modulated by non-synonymous polymorphisms in ERCC4 and MBD4 genes.

    PubMed

    Allione, Alessandra; Guarrera, Simonetta; Russo, Alessia; Ricceri, Fulvio; Purohit, Rituraj; Pagnani, Andrea; Rosa, Fabio; Polidoro, Silvia; Voglino, Floriana; Matullo, Giuseppe

    2013-01-01

    Inter-individual differences in DNA repair capacity (DRC) may lead to genome instability and, consequently, modulate individual cancer risk. Among the different DNA repair pathways, nucleotide excision repair (NER) is one of the most versatile, as it can eliminate a wide range of helix-distorting DNA lesions caused by ultraviolet light irradiation and chemical mutagens. We performed a genotype-phenotype correlation study in 122 healthy subjects in order to assess if any associations exist between phenotypic profiles of NER and DNA repair gene single nucleotide polymorphisms (SNPs). Individuals were genotyped for 768 SNPs with a custom Illumina Golden Gate Assay, and peripheral blood mononuclear cells (PBMCs) of the same subjects were tested for a NER comet assay to measure DRC after challenging cells by benzo(a)pyrene diolepoxide (BPDE). We observed a large inter-individual variability of NER capacity, with women showing a statistically significant lower DRC (mean ± SD: 6.68 ± 4.76; p = 0.004) than men (mean ± SD: 8.89 ± 5.20). Moreover, DRC was significantly lower in individuals carrying a variant allele for the ERCC4 rs1800124 non-synonymous SNP (nsSNP) (p = 0.006) and significantly higher in subjects with the variant allele of MBD4 rs2005618 SNP (p = 0.008), in linkage disequilibrium (r(2) = 0.908) with rs10342 nsSNP. Traditional in silico docking approaches on protein-DNA and protein-protein interaction showed that Gly875 variant in ERCC4 (rs1800124) decreases the DNA-protein interaction and that Ser273 and Thr273 variants in MBD4 (rs10342) indicate complete loss of protein-DNA interactions. Our results showed that NER inter-individual capacity can be modulated by cross-talk activity involving nsSNPs in ERCC4 and MBD4 genes, and they suggested to better investigate SNP effect on cancer risk and response to chemo- and radiotherapies. PMID:24004570

  10. Radio-adaptive response of base excision repair genes and proteins in human peripheral blood mononuclear cells exposed to gamma radiation.

    PubMed

    Toprani, Sneh M; Das, Birajalaxmi

    2015-09-01

    Radio-adaptive response is a mechanism whereby a low-dose exposure (priming dose) induces resistance to a higher dose (challenging dose) thus significantly reducing its detrimental effects. Radiation-induced DNA damage gets repaired through various DNA repair pathways in human cells depending upon the type of lesion. The base excision repair (BER) pathway repairs radiation-induced base damage, abasic sites and single-strand breaks in cellular DNA. In the present study, an attempt has been made to investigate the involvement of BER genes and proteins in the radio-adaptive response in human resting peripheral blood mononuclear cells (PBMC). Venous blood samples were collected from 20 randomly selected healthy male individuals with written informed consent. PBMC were isolated and irradiated at a priming dose of 0.1 Gy followed 4h later with a challenging dose of 2.0 Gy (primed cells). Quantitation of DNA damage was done using the alkaline comet assay immediately and expression profile of BER genes and proteins were studied 30 min after the challenging dose using real-time quantitative polymerase chain reaction and western blot, respectively. The overall result showed significant (P ≤ 0.05) reduction of DNA damage in terms of percentage of DNA in tail (%T) with a priming dose of 0.1 Gy followed by a challenging dose of 2.0 Gy after 4 h. Twelve individuals showed significant (P ≤ 0.05) reduction in %T whereas eight individuals showed marginal reduction in DNA damage that was not statistically significant. However, at the transcriptional level, BER genes such as APE1, FEN1 and LIGASE1 showed significant (P ≤ 0.05) up-regulation in both groups. Significant (P ≤ 0.05) up-regulation was also observed at the protein level for OGG1, APE1, MBD4, FEN1 and LIGASE1 in primed cells. Up-regulation of some BER genes and proteins such as APE1, FEN1 and LIGASE1 in primed cells of resting PBMC is suggestive of active involvement of the BER pathway in radio-adaptive response

  11. Immunocytochemical and morphological evidence for intracellular self-repair as an important contributor to mammalian hair cell recovery.

    PubMed

    Zheng, J L; Keller, G; Gao, W Q

    1999-03-15

    Although recent studies have provided evidence for hair cell regeneration in mammalian inner ears, the mechanism underlying this regenerative process is still under debate. Here we report immunocytochemical, histological, electron microscopic, and autoradiographic evidence that, in cultured postnatal rat utricles, a substantial number of hair cells can survive gentamicin insult even their stereocilia are lost. These partially damaged hair cells can survive for a prolonged time and regrow the stereocilia. Although the number of stereocilia-bearing hair cells increases over time after gentamicin insult, hair cell and supporting cell numbers remain essentially unchanged. Tritiated thymidine autoradiography and bromodeoxyuridine immunocytochemistry of the cultures demonstrate that cell proliferation in the sensory epithelium is very limited and is far below the number of recovered hair cells. Furthermore, terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling analysis indicates that gentamicin-induced apoptosis in the sensory epithelium occurs mainly during a 2 d treatment period, and additional cell death is minimal 2-11 d after treatment. Considered together, intracellular repair of partially damaged hair cells can be an important contributor to spontaneous hair cell recovery in mammalian inner ears. PMID:10066269

  12. An update on targeted gene repair in mammalian cells: methods and mechanisms.

    PubMed

    Jensen, Nanna M; Dalsgaard, Trine; Jakobsen, Maria; Nielsen, Roni R; Sørensen, Charlotte B; Bolund, Lars; Jensen, Thomas G

    2011-01-01

    Transfer of full-length genes including regulatory elements has been the preferred gene therapy strategy for clinical applications. However, with significant drawbacks emerging, targeted gene alteration (TGA) has recently become a promising alternative to this method. By means of TGA, endogenous DNA repair pathways of the cell are activated leading to specific genetic correction of single-base mutations in the genome. This strategy can be implemented using single-stranded oligodeoxyribonucleotides (ssODNs), small DNA fragments (SDFs), triplex-forming oligonucleotides (TFOs), adeno-associated virus vectors (AAVs) and zinc-finger nucleases (ZFNs). Despite difficulties in the use of TGA, including lack of knowledge on the repair mechanisms stimulated by the individual methods, the field holds great promise for the future. The objective of this review is to summarize and evaluate the different methods that exist within this particular area of human gene therapy research. PMID:21284895

  13. An update on targeted gene repair in mammalian cells: methods and mechanisms

    PubMed Central

    2011-01-01

    Transfer of full-length genes including regulatory elements has been the preferred gene therapy strategy for clinical applications. However, with significant drawbacks emerging, targeted gene alteration (TGA) has recently become a promising alternative to this method. By means of TGA, endogenous DNA repair pathways of the cell are activated leading to specific genetic correction of single-base mutations in the genome. This strategy can be implemented using single-stranded oligodeoxyribonucleotides (ssODNs), small DNA fragments (SDFs), triplex-forming oligonucleotides (TFOs), adeno-associated virus vectors (AAVs) and zinc-finger nucleases (ZFNs). Despite difficulties in the use of TGA, including lack of knowledge on the repair mechanisms stimulated by the individual methods, the field holds great promise for the future. The objective of this review is to summarize and evaluate the different methods that exist within this particular area of human gene therapy research. PMID:21284895

  14. DNA repair prognostic index modelling reveals an essential role for base excision repair in influencing clinical outcomes in ER negative and triple negative breast cancers.

    PubMed

    Abdel-Fatah, Tarek M A; Arora, Arvind; Moseley, Paul M; Perry, Christina; Rakha, Emad A; Green, Andrew R; Chan, Stephen Y T; Ellis, Ian O; Madhusudan, Srinivasan

    2015-09-01

    Stratification of oestrogen receptor (ER) negative and triple negative breast cancers (TNBCs) is urgently needed. In the current study, a cohort of 880 ER- (including 635 TNBCs) was immuno-profiled for a panel of DNA repair proteins including: Pol β, FEN1, APE1, XRCC1, SMUG1, PARP1, BRCA1, ATR, ATM, DNA-PKcs, Chk1, Chk2, p53, and TOPO2. Multivariate Cox proportional hazards models (with backward stepwise exclusion of these factors, using a criterion of p < 0.05 for retention of factors in the model) were used to identify factors that were independently associated with clinical outcomes. XRCC1 (p = 0.002), pol β (p = 0.032) FEN1 (p = 0.001) and BRCA1 (p = 0.040) levels were independently associated with poor BCSS. Subsequently, DNA repair index prognostic (DRPI) scores for breast cancer specific survival (BCSS) were calculated and two prognostic groups (DRPI-PGs) were identified. Patients in prognostic group 2 (DRPI-PG2) have higher risk of death (p < 0.001). Furthermore, in DRPI-PG2 patients, exposure to anthracycline reduced the risk of death [(HR (95% CI) = 0.79 (0.64-0.98), p = 0.032) by 21-26%. In addition, DRPI-PG2 patients have adverse clinicopathological features including higher grade, lympho-vascular invasion, Her-2 positive phenotype, compared to those in DRPI-PG1 (p < 0.01). Receiver operating characteristic (ROC) curves indicated that the DRPI outperformed the currently used prognostic factors and adding DRPI to lymph node stage significantly improved their performance as a predictor for BCSS [p < 0.00001, area under curve (AUC) = 0.70]. BER strongly influences pathogenesis of ER- and TNBCs. The DRPI accurately predicts BCSS and can also serve as a valuable prognostic and predictive tool for TNBCs. PMID:26267318

  15. XPD DNA nucleotide excision repair gene polymorphisms associated with DNA repair deficiency predict better treatment outcomes in secondary acute myeloid leukemia

    PubMed Central

    Kuptsova-Clarkson, Nataliya; Ambrosone, Christine B; Weiss, Joli; Baer, Maria R; Sucheston, Lara E; Zirpoli, Gary; Kopecky, Kenneth J; Ford, Laurie; Blanco, Javier; Wetzler, Meir; Moysich, Kirsten B

    2010-01-01

    Pharmacogenetic studies in DNA repair pathway have consistently demonstrated correlations between the XRCC1 Arg399Gln, XPD Lys751Gln and XPD Asp312Gln genotypes, previously associated with suboptimal DNA repair, and differential cancer treatment outcomes. We evaluated these polymorphisms and XPD haplotypes in adult de novo (n=214) and secondary (n=79) acute myeloid leukemia (AML) patients treated with cytarabine and anthracycline chemotherapy. Genotyping was performed by MALDI-TOF mass spectrometry. Logistic and proportional hazards regression models were used to evaluate relationships. Differential responses were observed in secondary, but not de novo, AML. Among secondary AML patients, the odds of achieving complete remission (CR) were higher for the XPD 312Asn/Asn (OR= 11.23; 95% CI, 2.23-56.63) and XPD 751Gln/Gln (OR= 7.07; 95% CI, 1.42-35.18) genotypes. The XPD diplotypes were coded as the combination of two of the following haplotypes: haplotype A=(Lys)751A/(Asp) 312G; B=(Gln)751C/(Asn)312A; C=(Lys)751A/(Asn)312A; and D=(Gln)751C/(Asp)312G. The BB diplotype was associated with CR attainment [OR=18.31; 95% CI: 2.08-283.57] and longer survival [HR=0.31; 95% CI: 0.14-0.73] compared to the referent AA diplotype. The XPD 751 CC, 312GA, 312AA genotypes and the XPD DC diplotype were also associated with longer overall survival (OS).Thus, XPD codon 312 and 751 variant genotypes and haplotypes containing at least one variant allele may predict better treatment responses. If validated, these findings could support stratification of chemotherapy in secondary AML. PMID:21394217

  16. Polymorphisms in excision repair cross-complementing group 4 (ERCC4) and susceptibility to primary lung cancer in a Chinese Han population.

    PubMed

    Shao, Minhua; Ma, Hongxia; Wang, Ying; Xu, Liang; Yuan, Jing; Wang, Yi; Hu, Zhibin; Yang, Lin; Wang, Feng; Liu, Hongliang; Qian, Ji; Xun, Pengcheng; Chen, Weihong; Yuan, Wentao; Jing, Guangfu; Chen, Feng; Jin, Li; Wei, Qingyi; Wu, Tangchun; Shen, Hongbing; Huang, Wei; Lu, Daru

    2008-06-01

    ERCC4/XPF protein plays an important role in the nucleotide excision repair (NER) pathway, and deficiencies in the gene encoding it can lead to a repair-deficiency syndrome, xeroderma pigmentosum group F (XP-F). Common variants on this gene are assumed to be foreboding markers for lung cancer, and 4 selected SNPs in the ERCC4 gene were genotyped in a multi-center case-control study involving 1010 lung cancer patients and 1011 cancer-free controls in a Chinese Han population to test the hypothesis. A significant association to decreased risk of lung cancer was observed in major allele C of rs3136038 carriers (adjusted OR=0.57, 95% CI=0.39-0.84 for CT; adjusted OR=0.75, 95% CI=0.52-1.10 for CC; adjusted OR=0.68, 95% CI=0.46-0.99 for CT+CC, compared with genotype TT), and additionally, referenced with homozygote TT, the heterozygous genotype CT showed a distinct protective effect in younger subjects (adjusted OR=0.47, 95% CI=0.26-0.86), in males (adjusted OR=0.59, 95% CI=0.37-0.93), in non-smokers (adjusted OR=0.38, 95% CI=0.20-0.72), in subjects without family history of cancer (adjusted OR=0.52, 95% CI=0.34-0.80) and in adenocarcinomas patients (adjusted OR=0.51, 95% CI=0.31-0.84). Our finding indicated, for the first time, the polymorphism rs3136038 on the promotor region of ERCC4 may contribute to the etiology of lung cancer. Further functional studies on this locus and/or other genetic variants in highly linkage disequilibrium with it are warranted to elucidate the underlying molecular mechanisms of the association. PMID:18068852

  17. Lack of association between polymorphisms of the DNA base excision repair genes MUTYH and hOGG1 and keratoconus in a Polish subpopulation

    PubMed Central

    Synowiec, Ewelina; Wójcik, Katarzyna A.; Czubatka, Anna; Polakowski, Piotr; Izdebska, Justyna; Szaflik, Jerzy; Błasiak, Janusz

    2015-01-01

    Introduction Keratoconus (KC) is a non-inflammatory thinning of the cornea and a leading indication for corneal transplantation. Oxidative stress plays a role in the pathogenesis of this disease. The products of the hOGG1 and MUTYH genes play an important role in the repair of oxidatively modified DNA in the base excision repair pathway. We hypothesized that variability in these genes may change susceptibility to oxidative stress and predispose individuals to the development of KC. We investigated the possible association between the c.977C>G polymorphism of the hOGG1 gene (rs1052133) and the c.972G>C polymorphism of the MUTYH gene (rs3219489) and KC occurrence as well as the modulation of this association by some KC risk factors. Material and methods A total of 205 patients with KC and 220 controls were included in this study. The polymorphisms were genotyped with polymerase chain reaction (PCR) restriction fragment length polymorphism and PCR-confronting two-pair primer techniques. Differences in genotype and allele frequency distributions were evaluated using the χ2 test, and KC risk was estimated with an unconditional multiple logistic regression with and without adjustment for co-occurrence of visual impairment, allergies, sex and family history for KC. Results We did not find any association between the genotypes and combined genotypes of the c.977C>G polymorphism of the hOGG1 gene and the c.972G>C polymorphism of the MUTYH gene and the occurrence of KC. Conclusions Our findings suggest that the c.977C>G-hOGG1 polymorphism and the c.972G>C-MUTYH polymorphism may not be linked with KC occurrence in this Polish subpopulation. PMID:26528356

  18. Human ERCC5 cDNA-cosmid complementation for excision repair and bipartite amino acid domains conserved with RAD proteins of saccharomyces cerevisiae and schizosaccharomyces pombe

    SciTech Connect

    MacInnes, M.A.; Dickson, J.A.; Hernandez, R.R.; Lin, G.Y.; Park, M.S.; Schauer, S.; Reynolds, R.J.; Strniste, G.F. ); Learmonth, D. ); Mudgett, J.S. ); Yu, J.Y. )

    1993-10-01

    Several human genes related to DNA excision repair (ER) have been isolated via ER cross-species complementation (ERCC) of UV-sensitive CHO cells. The authors have now isolated and characterized cDNAs for the human ERCC5 gene that complement CHO UV135 cells. The ERCC5 mRNA size is about 4.6 kb. Their available cDNA clones are partial length, and no single clone was active for UV135 complementation. When cDNAs were mixed pairwise with a cosmid clone containing an overlapping 5[prime]-end segment of the ERCC5 gene, DNA transfer produced UV-resistant colonies with 60 to 95% correction of UV resistance relative to either a genomic ERCC5 DNA transformant or the CHO AA8 progenitor cells. cDNA-cosmid transformants regained intermediate levels (20 to 45%) of ER-dependent reactivation of a UV-damaged pSVCATgpt reporter plasmid. Their evidence strongly implicates an in situ recombination mechanism in cDNA-cosmid complementation for ER. The complete deduced amino acid sequence of ERCC5 was reconstructed for several cDNA clones encoding a predicted protein of 1,186 amino acids. The ERCC5 protein has extensive sequence similarities, in bipartite domains A and B, to products of RAD repair genes of two yeast, Saccharomyces cerevisiae RAD2 and Schizosaccharomyces pombe rad13. Sequence, structural, and functional data taken together indicate that ERCC5 and its relatives are probable functional homologs. A second locus represented by S. cerevisiae YKL510 and S. pombe rad2 genes is structurally distinct from the ERCC5 locus but retains vestigial A and B domain similarities. Their analyses suggest that ERCC5 is a nuclear-localized protein with one or more highly conserved helix-loop-helix segments within domains A and B. 69 refs., 6 figs., 1 tab.

  19. Polymorphisms in base excision repair genes as colorectal cancer risk factors and modifiers of the effect of diets high in red meat

    PubMed Central

    Brevik, Asgeir; Joshi, Amit D.; Corral, Román; Onland-Moret, N. Charlotte; Siegmund, Kimberly D.; Le Marchand, Loïc; Baron, John A.; Martinez, Maria Elena; Haile, Robert W.; Ahnen, Dennis J.; Sandler, Robert S.; Lance, Peter; Stern, Mariana C.

    2010-01-01

    Background A diet high in red meat is an established colorectal cancer (CRC) risk factor. Carcinogens generated during meat cooking have been implicated as causal agents, and can induce oxidative DNA damage, which elicits repair by the base excision repair (BER) pathway. Methods Using a family-based study we investigated the role of polymorphisms in four BER genes (APEX1 Gln51His, Asp148Glu; OGG1 Ser236Cys; PARP Val742Ala; XRCC1 Arg194Trp, Arg280His, Arg399Gln) as potential CRC risk factors and modifiers of the association between high-red meat or poultry diets and CRC risk. We tested for gene-environment interactions using case-only analyses (N = 577) and compared statistically significant results to those obtained using case-unaffected sibling comparisons (N = 307 sibships). Results Carriers of the APEX1 codon 51 Gln/His genotype had a reduced CRC risk compared to carriers of the Gln/Gln genotype (OR 0.15, 95% CI 0.03-0.69, p = 0.015). The association between higher red meat intake (>3 servings/week) and CRC was modified by the PARP Val762Ala SNP (case-only interaction p = 0.026). This SNP also modified the association between higher intake of high-temperature cooked red meat (case-only interaction p = 0.0009). Conclusions We report evidence that the BER pathway PARP gene modifies the association of diets high in red meat cooked at high temperatures with risk of CRC. Impact Our findings suggest a contribution to colorectal carcinogenesis of free radical damage as one of the possible harmful effects of a high-red meat diet. PMID:21037106

  20. Nucleotide excision repair deficiency increases levels of acrolein-derived cyclic DNA adduct and sensitizes cells to apoptosis induced by docosahexaenoic acid and acrolein.

    PubMed

    Pan, Jishen; Sinclair, Elizabeth; Xuan, Zhuoli; Dyba, Marcin; Fu, Ying; Sen, Supti; Berry, Deborah; Creswell, Karen; Hu, Jiaxi; Roy, Rabindra; Chung, Fung-Lung

    2016-07-01

    The acrolein derived cyclic 1,N(2)-propanodeoxyguanosine adduct (Acr-dG), formed primarily from ω-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) under oxidative conditions, while proven to be mutagenic, is potentially involved in DHA-induced apoptosis. The latter may contribute to the chemopreventive effects of DHA. Previous studies have shown that the levels of Acr-dG are correlated with apoptosis induction in HT29 cells treated with DHA. Because Acr-dG is shown to be repaired by the nucleotide excision repair (NER) pathway, to further investigate the role of Acr-dG in apoptosis, in this study, NER-deficient XPA and its isogenic NER-proficient XAN1 cells were treated with DHA. The Acr-dG levels and apoptosis were sharply increased in XPA cells, but not in XAN1 cells when treated with 125μM of DHA. Because DHA can induce formation of various DNA damage, to specifically investigate the role of Acr-dG in apoptosis induction, we treated XPA knockdown HCT116+ch3 cells with acrolein. The levels of both Acr-dG and apoptosis induction increased significantly in the XPA knockdown cells. These results clearly demonstrate that NER deficiency induces higher levels of Acr-dG in cells treated with DHA or acrolein and sensitizes cells to undergo apoptosis in a correlative manner. Collectively, these results support that Acr-dG, a ubiquitously formed mutagenic oxidative DNA adduct, plays a role in DHA-induced apoptosis and suggest that it could serve as a biomarker for the cancer preventive effects of DHA. PMID:27036235

  1. Identification of the microRNA transcriptome during the early phases of mammalian fracture repair.

    PubMed

    Hadjiargyrou, Michael; Zhi, Jizu; Komatsu, David E

    2016-06-01

    Fracture repair is a complex process that involves multiple biological processes requiring spatiotemporal expression of thousands of genes. The molecular regulation of this process is not completely understood. MicroRNAs (miRNAs) regulate gene expression by promoting mRNA degradation or blocking translation. To identify miRNAs expressed during fracture repair, we generated murine bone fractures and isolated miRNA-enriched RNA from intact and post-fracture day (PFD) 1, 3, 5, 7, 11, and 14 femurs. RNA samples were individually hybridized to mouse miRNA microarrays. Results indicated that 959 (51%) miRNAs were absent while 922 (49%) displayed expression in at least one sample. Of the 922 miRNAs, 306 (33.2%) and 374 (40.6%) were up- and down-regulated, respectively, in the calluses in comparison to intact bone. Additionally, 20 (2.2%) miRNAs displayed combined up- and down-regulated expression within the time course and the remaining 222 (24%) miRNAs did not exhibit any changes between calluses and intact bone. Quantitative-PCR validated the expression of several miRNAs. Further, we identified 2048 and 4782 target genes that were unique to the up- and down-regulated miRNAs, respectively. Gene ontology and pathway enrichment analyses indicated relevant biological processes. These data provide the first complete analysis of the miRNA transcriptome during the early phases of fracture repair. PMID:27058875

  2. Crosstalk between MSH2–MSH3 and polβ promotes trinucleotide repeat expansion during base excision repair

    PubMed Central

    Lai, Yanhao; Budworth, Helen; Beaver, Jill M.; Chan, Nelson L. S.; Zhang, Zunzhen; McMurray, Cynthia T.; Liu, Yuan

    2016-01-01

    Studies in knockout mice provide evidence that MSH2–MSH3 and the BER machinery promote trinucleotide repeat (TNR) expansion, yet how these two different repair pathways cause the mutation is unknown. Here we report the first molecular crosstalk mechanism, in which MSH2–MSH3 is used as a component of the BER machinery to cause expansion. On its own, pol β fails to copy TNRs during DNA synthesis, and bypasses them on the template strand to cause deletion. Remarkably, MSH2–MSH3 not only stimulates pol β to copy through the repeats but also enhances formation of the flap precursor for expansion. Our results provide direct evidence that MMR and BER, operating together, form a novel hybrid pathway that changes the outcome of TNR instability from deletion to expansion during the removal of oxidized bases. We propose that cells implement crosstalk strategies and share machinery when a canonical pathway is ineffective in removing a difficult lesion. PMID:27546332

  3. Formation of isodialuric acid lesion within DNA oligomers via one-electron oxidation of 5-hydroxyuracil: characterization, stability and excision repair.

    PubMed

    Simon, Philippe; Gasparutto, Didier; Gambarelli, Serge; Saint-Pierre, Christine; Favier, Alain; Cadet, Jean

    2006-01-01

    5-Hydroxyuracil is a major oxidized nucleobase that can be generated by the action of (*)OH radical and one-electron oxidants. The latter modified base that exhibits a low ionization potential is highly susceptible to further degradation upon exposure to various oxidants. Emphasis was placed in this work on the formation and characterization of one-electron oxidation products of 5-hydroxyuracil within DNA fragments of defined sequence. For this purpose, 5-hydroxyuracil containing single- and double-stranded oligonucleotides of various lengths were synthesized and then exposed to the oxidizing action of iridium salts. Isodialuric acid was found to be formed almost quantitatively by a one-electron oxidation mechanism for which relevant information was inferred from a freeze-quenched ESR study. Information on the stability of isodialuric acid thus formed and its conversion products in aqueous solutions was also gained from experiments performed at acidic, neutral and alkali pH's. Moreover, biochemical features dealing with the substrate specificity of several bacterial and yeast base excision repair enzymes to remove isodialuric acid from site-specifically modified DNA fragments were determined. PMID:16885239

  4. Posttranslational inhibition of Ty1 retrotransposition by nucleotide excision repair/transcription factor TFIIH subunits Ssl2p and Rad3p.

    PubMed Central

    Lee, B S; Lichtenstein, C P; Faiola, B; Rinckel, L A; Wysock, W; Curcio, M J; Garfinkel, D J

    1998-01-01

    rtt4-1 (regulator of Ty transposition) is a cellular mutation that permits a high level of spontaneous Ty1 retrotransposition in Saccharomyces cerevisiae. The RTT4 gene is allelic with SSL2 (RAD25), which encodes a DNA helicase present in basal transcription (TFIIH) and nucleotide excision repair (NER) complexes. The ssl2-rtt (rtt4-1) mutation stimulates Ty1 retrotransposition, but does not alter Ty1 target site preferences, or increase cDNA or mitotic recombination. In addition to ssl2-rtt, the ssl2-dead and SSL2-1 mutations stimulate Ty1 transposition without altering the level of Ty1 RNA or proteins. However, the level of Ty1 cDNA markedly increases in the ssl2 mutants. Like SSL2, certain mutations in another NER/TFIIH DNA helicase encoded by RAD3 stimulate Ty1 transposition. Although Ssl2p and Rad3p are required for NER, inhibition of Ty1 transposition is independent of Ssl2p and Rad3p NER functions. Our work suggests that NER/TFIIH subunits antagonize Ty1 transposition posttranslationally by inhibiting reverse transcription or destabilizing Ty1 cDNA. PMID:9560391

  5. Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair.

    PubMed

    Nakazawa, Yuka; Sasaki, Kensaku; Mitsutake, Norisato; Matsuse, Michiko; Shimada, Mayuko; Nardo, Tiziana; Takahashi, Yoshito; Ohyama, Kaname; Ito, Kosei; Mishima, Hiroyuki; Nomura, Masayo; Kinoshita, Akira; Ono, Shinji; Takenaka, Katsuya; Masuyama, Ritsuko; Kudo, Takashi; Slor, Hanoch; Utani, Atsushi; Tateishi, Satoshi; Yamashita, Shunichi; Stefanini, Miria; Lehmann, Alan R; Yoshiura, Koh-ichiro; Ogi, Tomoo

    2012-05-01

    UV-sensitive syndrome (UV(S)S) is a genodermatosis characterized by cutaneous photosensitivity without skin carcinoma. Despite mild clinical features, cells from individuals with UV(S)S, like Cockayne syndrome cells, are very UV sensitive and are deficient in transcription-coupled nucleotide-excision repair (TC-NER), which removes DNA damage in actively transcribed genes. Three of the seven known UV(S)S cases carry mutations in the Cockayne syndrome genes ERCC8 or ERCC6 (also known as CSA and CSB, respectively). The remaining four individuals with UVSS , one of whom is described for the first time here, formed a separate UV(S)S-A complementation group; however, the responsible gene was unknown. Using exome sequencing, we determine that mutations in the UVSSA gene (formerly known as KIAA1530) cause UV(S)S-A. The UVSSA protein interacts with TC-NER machinery and stabilizes the ERCC6 complex; it also facilitates ubiquitination of RNA polymerase IIo stalled at DNA damage sites. Our findings provide mechanistic insights into the processing of stalled RNA polymerase and explain the different clinical features across these TC-NER–deficient disorders. PMID:22466610

  6. Formation of isodialuric acid lesion within DNA oligomers via one-electron oxidation of 5-hydroxyuracil: characterization, stability and excision repair

    PubMed Central

    Simon, Philippe; Gasparutto, Didier; Gambarelli, Serge; Saint-Pierre, Christine; Favier, Alain; Cadet, Jean

    2006-01-01

    5-Hydroxyuracil is a major oxidized nucleobase that can be generated by the action of •OH radical and one-electron oxidants. The latter modified base that exhibits a low ionization potential is highly susceptible to further degradation upon exposure to various oxidants. Emphasis was placed in thiswork on the formation and characterization of one-electron oxidation products of 5-hydroxyuracil within DNA fragments of defined sequence. For this purpose, 5-hydroxyuracil containing single- and double-stranded oligonucleotides of various lengths were synthesized and then exposed to the oxidizing action of iridium salts. Isodialuric acid was found to be formed almost quantitatively by a one-electron oxidation mechanism for which relevant information was inferred from a freeze-quenched ESR study. Information on the stability of isodialuric acid thus formed and its conversion products in aqueous solutions was also gained from experiments performed at acidic, neutral and alkali pH’s. Moreover, biochemical features dealing with the substrate specificity of several bacterial and yeast base excision repair enzymes to remove isodialuric acid from site-specifically modified DNA fragments were determined. PMID:16885239

  7. Adenine-DNA adducts derived from the highly tumorigenic dibenzo[a,l]pyrene are resistant to nucleotide excision repair while guanine adducts are not

    PubMed Central

    Kropachev, Konstantin; Kolbanovskiy, Marina; Liu, Zhi; Cai, Yuqin; Zhang, Lu; Schwaid, Adam G.; Kolbanovskiy, Alexander; Ding, Shuang; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2013-01-01

    The structural origins of differences in susceptibilities of various DNA lesions to nucleotide excision repair (NER) are poorly understood. Here we compared, in the same sequence context, the relative NER dual incision efficiencies elicited by two stereochemically distinct pairs of guanine (N2-dG) and adenine (N6-dA) DNA lesions, derived from enantiomeric genotoxic diol epoxides of the highly tumorigenic fjord region polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P). Remarkably, in cell-free HeLa cell extracts, the guanine adduct with R absolute chemistry at the N2-dG linkage site is ~ 35 times more susceptible to NER dual incisions than the stereochemically identical N6-dA adduct. For the guanine and adenine adducts with S stereochemistry, a similar, but somewhat smaller effect (factor of ~15) is observed. The striking resistance of the bulky N6-dA in contrast to the modest to good susceptibilities of the N2-dG adducts to NER are interpreted in terms of the balance between lesion-induced DNA-distorting and DNA-stabilizing van der Waals interactions in their structures, that are partly reflected in the overall thermal stabilities of the modified duplexes. Our results are consistent with the hypothesis that the high genotoxic activity of DB[a,l]P is related to the formation of NER-resistant and persistent DB[a,l]P-derived adenine adducts in cellular DNA. PMID:23570232

  8. Metformin-mediated downregulation of p38 mitogen-activated protein kinase-dependent excision repair cross-complementing 1 decreases DNA repair capacity and sensitizes human lung cancer cells to paclitaxel.

    PubMed

    Tseng, Sheng-Chieh; Huang, Yu-Ching; Chen, Huang-Jen; Chiu, Hsien-Chun; Huang, Yi-Jhen; Wo, Ting-Yu; Weng, Shao-Hsing; Lin, Yun-Wei

    2013-02-15

    Metformin, an extensively used and well-tolerated drug for treating individuals with type 2 diabetes, has recently gained significant attention as an anticancer drug. On the other hand, paclitaxel (Taxol) is a new antineoplastic drug that has shown promise in the treatment of non-small cell lung cancer (NSCLC). High expression levels of excision repair cross-complementary 1 (ERCC1) in cancers have been positively associated with the DNA repair capacity and a poor prognosis in NSCLC patients treated with platinum-containing chemotherapy. In this current study, paclitaxel was found to increase phosphorylation of mitogen-activated protein kinase (MAPK) kinase 3/6 (MKK3/6)-p38 MAPK as well as protein and mRNA levels of ERCC1 in H1650 and H1703 cells. Moreover, paclitaxel-induced ERCC1 protein and mRNA levels significantly decreased via the downregulation of p38 activity by either a p38 MAPK inhibitor SB202190 or p38 knockdown with specific small interfering RNA (siRNA). Specific inhibition of ERCC1 with siRNA was found to enhance the paclitaxel-induced cytotoxic effect and growth inhibition. Furthermore, metformin was able to not only decrease the paclitaxel-induced p38 MAPK-mediated ERCC1 expression, but also augment the cytotoxic effect induced by paclitaxel. Finally, expression of constitutive activate MKK6 or HA-p38 MAPK vectors in lung cancer cells was able to abrogate ERCC1 downregulation by metformin and paclitaxel as well as cell viability and DNA repair capacity. Overall, our results suggest that inhibition of the p38 MAPK signaling by metformin coupled with paclitaxel therapy in human NSCLC cells may be a clinically useful combination, which however will require further validation. PMID:23228696

  9. Repair of Thalassemic Human β -globin mRNA in Mammalian Cells by Antisense Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Sierakowska, Halina; Sambade, Maria J.; Agrawal, Sudhir; Kole, Ryszard

    1996-11-01

    In one form of β -thalassemia, a genetic blood disorder, a mutation in intron 2 of the β -globin gene (IVS2-654) causes aberrant splicing of β -globin pre-mRNA and, consequently, β -globin deficiency. Treatment of mammalian cells stably expressing the IVS2-654 human β -globin gene with antisense oligonucleotides targeted at the aberrant splice sites restored correct splicing in a dose-dependent fashion, generating correct human β -globin mRNA and polypeptide. Both products persisted for up to 72 hr posttreatment. The oligonucleotides modified splicing by a true antisense mechanism without overt unspecific effects on cell growth and splicing of other pre-mRNAs. This novel approach in which antisense oligonucleotides are used to restore rather than to down-regulate the activity of the target gene is applicable to other splicing mutants and is of potential clinical interest.

  10. Quantitative PCR-Based Measurement of Nuclear and Mitochondrial DNA Damage and Repair in Mammalian Cells

    PubMed Central

    Furda, Amy; Santos, Janine H.; Meyer, Joel N.; Van Houten, Bennett

    2015-01-01

    In this chapter, we describe a gene-specific quantitative PCR (QPCR)-based assay for the measurement of DNA damage, using amplification of long DNA targets. This assay has been used extensively to measure the integrity of both nuclear and mitochondrial genomes exposed to different genotoxins and has proven to be particularly valuable in identifying reactive oxygen species-mediated mitochondrial DNA damage. QPCR can be used to quantify both the formation of DNA damage as well as the kinetics of damage removal. One of the main strengths of the assay is that it permits monitoring the integrity of mtDNA directly from total cellular DNA without the need for isolating mitochondria or a separate step of mitochondrial DNA purification. Here we discuss advantages and limitations of using QPCR to assay DNA damage in mammalian cells. In addition, we give a detailed protocol of the QPCR assay that helps facilitate its successful deployment in any molecular biology laboratory. PMID:24623245

  11. Assembly and function of DNA double-strand break repair foci in mammalian cells.

    PubMed

    Bekker-Jensen, Simon; Mailand, Niels

    2010-12-10

    DNA double-strand breaks (DSBs) are among the most cytotoxic types of DNA damage, which if left unrepaired can lead to mutations or gross chromosomal aberrations, and promote the onset of diseases associated with genomic instability such as cancer. One of the most discernible hallmarks of the cellular response to DSBs is the accumulation and local concentration of a plethora of DNA damage signaling and repair proteins in the vicinity of the lesion, initiated by ATM-mediated phosphorylation of H2AX (γ-H2AX) and culminating in the generation of distinct nuclear compartments, so-called Ionizing Radiation-Induced Foci (IRIF). The assembly of proteins at the DSB-flanking chromatin occurs in a highly ordered and strictly hierarchical fashion. To a large extent, this is achieved by regulation of protein-protein interactions triggered by a variety of post-translational modifications including phosphorylation, ubiquitylation, SUMOylation, and acetylation. Over the last decade, insight into the identity of proteins residing in IRIF and the molecular underpinnings of their retention at these structures has been vastly expanded. Despite such advances, however, our understanding of the biological relevance of such DNA repair foci still remains limited. In this review, we focus on recent discoveries on the mechanisms that govern the formation of IRIF, and discuss the implications of such findings in light of our understanding of the physiological importance of these structures. PMID:21035408

  12. Combination of Aβ Secretion and Oxidative Stress in an Alzheimer-Like Cell Line Leads to the Over-Expression of the Nucleotide Excision Repair Proteins DDB2 and XPC.

    PubMed

    Forestier, Anne; Douki, Thierry; De Rosa, Viviana; Béal, David; Rachidi, Walid

    2015-01-01

    Repair of oxidative DNA damage, particularly Base Excision Repair (BER), impairment is often associated with Alzheimer's disease pathology. Here, we aimed at investigating the complete Nucleotide Excision Repair (NER), a DNA repair pathway involved in the removal of bulky DNA adducts, status in an Alzheimer-like cell line. The level of DNA damage was quantified using mass spectrometry, NER gene expression was assessed by qPCR, and the NER protein activity was analysed through a modified version of the COMET assay. Interestingly, we found that in the presence of the Amyloid β peptide (Aβ), NER factors were upregulated at the mRNA level and that NER capacities were also specifically increased following oxidative stress. Surprisingly, NER capacities were not differentially improved following a typical NER-triggering of ultraviolet C (UVC) stress. Oxidative stress generates a differential and specific DNA damage response in the presence of Aβ. We hypothesized that the release of NER components such as DNA damage binding protein 2 (DDB2) and Xeroderma Pigmentosum complementation group C protein (XPC) following oxidative stress might putatively involve their apoptotic role rather than DNA repair function. PMID:26263968

  13. Combination of Aβ Secretion and Oxidative Stress in an Alzheimer-Like Cell Line Leads to the Over-Expression of the Nucleotide Excision Repair Proteins DDB2 and XPC

    PubMed Central

    Forestier, Anne; Douki, Thierry; De Rosa, Viviana; Béal, David; Rachidi, Walid

    2015-01-01

    Repair of oxidative DNA damage, particularly Base Excision Repair (BER), impairment is often associated with Alzheimer’s disease pathology. Here, we aimed at investigating the complete Nucleotide Excision Repair (NER), a DNA repair pathway involved in the removal of bulky DNA adducts, status in an Alzheimer-like cell line. The level of DNA damage was quantified using mass spectrometry, NER gene expression was assessed by qPCR, and the NER protein activity was analysed through a modified version of the COMET assay. Interestingly, we found that in the presence of the Amyloid β peptide (Aβ), NER factors were upregulated at the mRNA level and that NER capacities were also specifically increased following oxidative stress. Surprisingly, NER capacities were not differentially improved following a typical NER-triggering of ultraviolet C (UVC) stress. Oxidative stress generates a differential and specific DNA damage response in the presence of Aβ. We hypothesized that the release of NER components such as DNA damage binding protein 2 (DDB2) and Xeroderma Pigmentosum complementation group C protein (XPC) following oxidative stress might putatively involve their apoptotic role rather than DNA repair function. PMID:26263968

  14. Analysis of repair and mutagenesis of chromium-induced DNA damage in yeast, mammalian cells, and transgenic mice.

    PubMed Central

    Cheng, L; Liu, S; Dixon, K

    1998-01-01

    Chromium (Cr) is a widespread environmental contaminant and a known human carcinogen. We have used shuttle vector systems in yeast, mammalian cells, and transgenic mice to characterize the mutational specificity and premutational DNA damage induced by Cr(VI) and its reduction intermediates in order to elucidate the mechanism by which Cr induces mutations. In the yeast system, treatment of vector-containing cells with Cr(VI) results in a dose-dependent increase in mutations in the SUP4-o target gene of the vector; mutagenesis is enhanced in an apn-1 yeast mutant, deficient in the capacity to repair oxidative-type DNA damage. In vector-containing mammalian cells, treatment with Cr(VI) also results in a dose-dependent increase in mutations in the vector target gene supF. The Cr-induced mutations in supF occurred mostly at G:C base pairs and were widely distributed across the gene, a pattern similar to those observed with ionizing radiation or hydrogen peroxide. These results support the hypothesis that Cr(VI)-induced oxidative-type DNA damage is responsible for Cr mutagenesis in the cell. Recently these studies were extended into the Big Blue transgenic mouse system in which Cr-induced mutagenesis was observed in the lung, the target organ for Cr carcinogenesis in humans. Analysis of the spectrum of these mutations will test whether Cr mutagenesis occurs by similar mechanisms in the intact animal as in cell culture systems and yeast. Images Figure 2 Figure 3 PMID:9703488

  15. Lys98 Substitution in Human AP Endonuclease 1 Affects the Kinetic Mechanism of Enzyme Action in Base Excision and Nucleotide Incision Repair Pathways

    PubMed Central

    Timofeyeva, Nadezhda A.; Koval, Vladimir V.; Ishchenko, Alexander A.; Saparbaev, Murat K.; Fedorova, Olga S.

    2011-01-01

    Human apurinic/apyrimidinic endonuclease 1 (APE1) is a key enzyme in the base excision repair (BER) and nucleotide incision repair (NIR) pathways. We recently analyzed the conformational dynamics and kinetic mechanism of wild-type (wt) protein, in a stopped-flow fluorescence study. In this study, we investigated the mutant enzyme APE1K98A using the same approach. Lys98 was known to hydrogen bond to the carboxyl group of Asp70, a residue implicated in binding the divalent metal ion. Our data suggested that the conformational selection and induced fit occur during the enzyme action. We expanded upon the evidence that APE1 can pre-exist in two conformations. The isomerization of an enzyme-product complex in the BER process and the additional isomerization stage of enzyme-substrate complex in the NIR process were established for APE1K98A. These stages had not been registered for the wtAPE1. We found that the K98A substitution resulted in a 12-fold reduction of catalytic constant of 5′-phosphodiester bond hydrolysis in (3-hydroxytetrahydrofuran-2-yl)methyl phosphate (F, tetrahydrofuran) containing substrate, and in 200-fold reduction in 5,6-dihydrouridine (DHU) containing substrate. Thus, the K98A substitution influenced NIR more than BER. We demonstrated that the K98A mutation influenced the formation of primary unspecific enzyme-substrate complex in a complicated manner, depending on the Mg2+ concentration and pH. This mutation obstructed the induced fit of enzyme in the complex with undamaged DNA and F-containing DNA and appreciably decreased the stability of primary complex upon interaction of enzyme with DNA, containing the natural apurinic/apyrimidinic (AP) site. Furthermore, it significantly delayed the activation of the less active form of enzyme during NIR and slowed down the conformational conversion of the complex of enzyme with the cleavage product of DHU-substrate. Our data revealed that APE1 uses the same active site to catalyze the cleavage of DHU- and

  16. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers.

    PubMed

    Osorio, Ana; Milne, Roger L; Kuchenbaecker, Karoline; Vaclová, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Díez, Orland; Ramón Y Cajal, Teresa; Konstantopoulou, Irene; Martínez-Bouzas, Cristina; Andrés Conejero, Raquel; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; Swe-Brca; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I; Beattie, Mary S; Domchek, Susan M; Nathanson, Katherine; Rebbeck, Timothy R; Arun, Banu K; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; John, Esther M; Whittemore, Alice S; Daly, Mary B; Southey, Melissa; Hopper, John; Terry, Mary B; Buys, Saundra S; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Steele, Linda; Neuhausen, Susan L; Ding, Yuan Chun; Hansen, Thomas V O; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herráez, Belén; Moreno, Leticia Thais; Weitzel, Jeffrey N; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodríguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldés, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Rookus, Matti A; van Os, Theo A M; van der Kolk, Lizet; de Lange, J L; Meijers-Heijboer, Hanne E J; van der Hout, A H; van Asperen, Christi J; Gómez Garcia, Encarna B; Hoogerbrugge, Nicoline; Collée, J Margriet; van Deurzen, Carolien H M; van der Luijt, Rob B; Devilee, Peter; Hebon; Olah, Edith; Lázaro, Conxi; Teulé, Alex; Menéndez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R; Healey, Sue; Investigators, Kconfab; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F; Rappaport, Christine; Geschwantler Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F; Offit, Kenneth; Couch, Fergus J; Chenevix-Trench, Georgia; Antoniou, Antonis C; Benitez, Javier

    2014-04-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03-1.16), p = 2.7 × 10(-3)) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8 × 10(-3)). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied. PMID:24698998

  17. DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    PubMed Central

    Osorio, Ana; Milne, Roger L.; Kuchenbaecker, Karoline; Vaclová, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Díez, Orland; Ramón y Cajal, Teresa; Konstantopoulou, Irene; Martínez-Bouzas, Cristina; Andrés Conejero, Raquel; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; SWE-BRCA; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I.; Beattie, Mary S.; Domchek, Susan M.; Nathanson, Katherine; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; John, Esther M.; Whittemore, Alice S.; Daly, Mary B.; Southey, Melissa; Hopper, John; Terry, Mary B.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Steele, Linda; Neuhausen, Susan L.; Ding, Yuan Chun; Hansen, Thomas v. O.; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herráez, Belén; Moreno, Leticia Thais; Weitzel, Jeffrey N.; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K.; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M.; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodríguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldés, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Rookus, Matti A.; van Os, Theo A. M.; van der Kolk, Lizet; de Lange, J. L.; Meijers-Heijboer, Hanne E. J.; van der Hout, A. H.; van Asperen, Christi J.; Gómez Garcia, Encarna B.; Hoogerbrugge, Nicoline; Collée, J. Margriet; van Deurzen, Carolien H. M.; van der Luijt, Rob B.; Devilee, Peter; HEBON; Olah, Edith; Lázaro, Conxi; Teulé, Alex; Menéndez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th.; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R.; Healey, Sue; Investigators, kConFab; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I.; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Geschwantler Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F.; Offit, Kenneth; Couch, Fergus J.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Benitez, Javier

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03–1.16), p = 2.7×10−3) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03–1.21, p = 4.8×10−3). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied. PMID:24698998

  18. The association of six polymorphisms of five genes involved in three steps of nucleotide excision repair pathways with hepatocellular cancer risk

    PubMed Central

    Yang, Huai-wei; Sun, Li-ping; Yuan, Yuan

    2016-01-01

    Background Hundreds of single nucleotide polymorphisms (SNPs) of the genes encoding nucleotide excision repair (NER) proteins are involved in every step of the DNA recognition–unwinding–incision process, which may affect cancer risk. However, only a limited number of studies have examined the association of NER SNPs with hepatocellular cancer (HCC) risk. Results In screening stage, single-locus analysis showed that six SNPs in five genes were associated with HCC risk, including three risk SNPs (XPA rs10817938, XPC rs1870134 and ERCC2 rs238417) and three protective SNPs (ERCC1 rs2298881 and rs3212961, and ERCC5 rs873601). In verification stage, only XPC rs1870134 was verified to be associated with HCC risk (P = 4.7 × 10−4). Furthermore, multivariate logistic regression and MDR analysis consistently revealed a gene–gene interaction among ERCC1 rs2298881 and XPC rs1870134 SNPs associated with HCC risk (Pinteraction = 0.023). When analyzing the effect of the positive SNP on the mRNA expression, we found XPC rs1870134 GG genotype which was associated with an increased HCC risk showed lower XPC mRNA expression. Methods This study designed as “screening-verification” experiments and included a total of 1472 participants (570 HCC patients vs. 902 controls). We explored 39 SNPs in eight genes involved in NER Pathways, including XPA, XPC, DDB2, ERCC3, ERCC2, ERCC1, ERCC4 and ERCC5, using Sequenom MassARRAY and KASPar platform. Eighty-six cases of HCC and the neighboring noncancerous tissues were subjected to the measurement of mRNA expression level of the promising gene. Conclusions XPC promoter rs1870134 SNP and SNP-SNP interaction were associated with HCC risk. PMID:26967386

  19. Excision repair cross complementation group 1 is a chemotherapy-tolerating gene in cisplatin-based treatment for non-small cell lung cancer.

    PubMed

    Wang, Shoufeng; Pan, Hong; Liu, Desen; Mao, Naiquan; Zuo, Chuantian; Li, Li; Xie, Tong; Huang, Dingming; Huang, Yaoyuan; Pan, Qi; Yang, Li; Wu, Junwei

    2015-02-01

    This study aimed to evaluate the biological functions of excision repair cross complementation goup 1 (ERCC1) in cell proliferation, cell cycle, invasion and cisplatin response of non-small cell lung cancer (NSCLC) cells. Firstly, ERCC1 gene was successfully transfected into H1299 cells by gene cloning and transfection techniques. Then, cell proliferation was determined with the cell growth curve and colony-forming assays. Flow cytometry (FCM) was employed to investigate the cell cycle distribution. The ability of cell invasion was estimated by means of Matrigel invasion assays. Response of NSCLC cells to cisplatin was detected utilizing MTT assays, and the intracellular drug concentrations were determined by the high performance liquid chromatography (HPLC) analysis. Expression of the two cell membrane proteins, P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP), was also evaluated utilizing FCM technique. By contrast, ERCC1 expression in the NSCLC A549 cells was silenced by small interfering RNA (siRNA) through RNAi technique. In addition, the cytotoxic effect of cisplatin on A549 cells was detected by MTT assays. In the present study, the results demonstrated that ERCC1 had no effect on cell proliferation, cell cycle and the ability of invasion, but showed significant impact on cisplatin response of the NSCLC H1299 cells. Furthermore, siRNA-induced suppression of ERCC1 evidently enhanced sensitivity to cisplatin of NSCLC A549 cells. Therefore, it is confirmed that ERCC1 is a chemotherapy-tolerating gene and a promising predictor in tailoring chemotherapy of NSCLC. PMID:25434755

  20. Evaluation of effects of thymidylate synthase and excision repair cross-complementing 1 polymorphisms on chemotherapy outcome in patients with gastrointestinal tumors using peripheral venous blood

    PubMed Central

    HUANG, KAIDA; SHEN, YAN; ZHANG, FENGQI; WANG, SHANSHAN; WEI, XIAO

    2016-01-01

    The aim of the present study was to evaluate the effects of thymidylate synthase (TYMS) and excision repair cross-complementing 1 (ERCC1) polymorphisms on chemotherapeutic efficacy in patients with gastrointestinal tumors using peripheral venous blood. Preoperative peripheral venous blood and tumor tissue samples of 43 patients with gastric cancer and the peripheral venous blood samples of 76 patients with cancer who underwent chemotherapy were studied. The 3R/3R and 2R/2R or 2R/3R genotypes of TYMS were identified in 72.09 and 27.91%, respectively (P<0.01), of untreated patients, and the C/C and T/T or C/T genotypes of ERCC1 were present in 81.39 and 18.61%, respectively (P<0.01), of patients. The 3R/3R and 2R/2R or 2R/3R genotypes of TYMS were identified in 65.79 and 34.21%, respectively, of chemotherapy-treated patients. The overall response rates (ORRs) for the two aforementioned genotypes were 18.00 and 57.69%, respectively (P<0.01), and those for the C/C and T/T or C/T genotypes of ERCC1 were 63.16 and 36.84%, respectively. The ORRs were 47.91 and 3.57%, respectively (P<0.01). In conclusion, peripheral blood samples may be used to replace tumor tissue for detecting TYMS and ERCC1 polymorphisms, and may be used to evaluate the efficacy of 5-fluorouracil and platinum drugs. PMID:27123139

  1. Efficient and Reliable Production of Vectors for the Study of the Repair, Mutagenesis, and Phenotypic Consequences of Defined DNA Damage Lesions in Mammalian Cells

    PubMed Central

    Petrova, Lucy; Gran, Christine; Bjoras, Magnar; Doetsch, Paul W.

    2016-01-01

    Mammalian cells are constantly and unavoidably exposed to DNA damage from endogenous and exogenous sources, frequently to the detriment of genomic integrity and biological function. Cells acquire a large number of chemically diverse lesions per day, and each can have a different genetic fate and biological consequences. However, our knowledge of how and when specific lesions are repaired or how they may compromise the fidelity of DNA replication or transcription and lead to deleterious biological endpoints in mammalian cells is limited. Studying individual lesions requires technically challenging approaches for the targeted introduction of defined lesions into relevant DNA sequences of interest. Here, we present a systematic analysis of factors influencing yield and an improved, efficient and reliable protocol for the production of mammalian expression phagemid vectors containing defined DNA base modifications in any sequence position of either complementary DNA strand. We applied our improved protocol to study the transcriptional mutagenesis-mediated phenotypic consequences of the common oxidative lesion 5-hydroxyuracil, placed in the G12 mutational hotspot of the KRAS oncogene. 5-OHU induced sustained oncogenic signaling in Neil1-/-Neil2-/- mouse cells. The resulting advance in technology will have broad applicability for investigation of single lesion DNA repair, mutagenesis, and DNA damage responses in mammalian cells. PMID:27362559

  2. The role of CCNH Val270Ala (rs2230641) and other nucleotide excision repair polymorphisms in individual susceptibility to well-differentiated thyroid cancer.

    PubMed

    Santos, Luís S; Gomes, Bruno C; Gouveia, Rita; Silva, Susana N; Azevedo, Ana P; Camacho, Vanessa; Manita, Isabel; Gil, Octávia M; Ferreira, Teresa C; Limbert, Edward; Rueff, José; Gaspar, Jorge F

    2013-11-01

    Well-differentiated thyroid cancer (DTC) is the most common form of thyroid cancer (TC); however, with the exception of radiation exposure, its etiology remains largely unknown. Several single nucleotide polymorphisms (SNPs) have previously been implicated in DTC risk. Nucleotide excision repair (NER) polymorphisms, despite having been associated with cancer risk at other locations, have received little attention in the context of thyroid carcinogenesis. In order to evaluate the role of NER pathway SNPs in DTC susceptibility, we performed a case-control study in 106 Caucasian Portuguese DTC patients and 212 matched controls. rs2230641 (CCNH), rs2972388 (CDK7), rs1805329 (RAD23B), rs3212986 (ERCC1), rs1800067 (ERCC4), rs17655, rs2227869 (ERCC5), rs4253211 and rs2228529 (ERCC6) were genotyped using TaqMan® methodology, while conventional PCR-RFLP was employed for rs2228000 and rs2228001 (XPC). When considering all DTC cases, only rs2230641 (CCNH) was associated with DTC risk; a consistent increase in overall DTC risk was observed for both the heterozygous genotype (OR=1.89, 95% CI=1.14-3.14) and the variant allele carriers (OR=1.79, 95% CI=1.09-2.93). Histological stratification analysis confirmed an identical effect on follicular TC (OR=2.72, 95% CI=1.19-6.22, for heterozygous; OR=2.44, 95% CI=1.07‑5.55, for variant allele carriers). Considering papillary TC, the rs2228001 (XPC) variant genotype was associated with increased risk (OR=2.33, 95% CI=1.05-5.16), while a protective effect was observed for rs2227869 (ERCC5) (OR=0.26, 95% CI=0.08‑0.90, for heterozygous; OR=0.25, 95% CI=0.07-0.86, for variant allele carriers). No further significant results were observed. Our results suggest that NER polymorphisms such as rs2230641 (CCNH) and, possibly, rs2227869 (ERCC5) and rs2228001 (XPC), may influence DTC susceptibility. However, larger studies are required to confirm these results. PMID:23982724

  3. AB153. Down-regulated expression of excision of repair cross-complementing gene 1 reduces resistance to hydroxycamptothecine in bladder cancer

    PubMed Central

    Liu, Yili

    2016-01-01

    Objective The purpose of the study was to explore the potential mechanisms that interference of excision of repair cross-complementing gene 1 (ERCC1) mediated by lentiviral vector in bladder cancer T24 Cells. Methods the expression of ERCC1 was observed by immunohistochemical method in 25 cases of primary bladder cancer and recurrent bladder cancer tissues respectively from 25 patients. T24 cells were silenced targeting ERCC1 by lentiviruses .The transfection efficiency for ERCC1 was observed by fluorescence microscope and the interference efficiency was detected by real-time polymerase clain reaction and western blot assay. CCK-8 assay was used to assess the cell proliferation. Effects of cell apoptosis were detected by flow cytometry. Finally, the pathway of apoptosis was studied by using western blot method. Results As a result, we discovered that the expression level of ERCC1 in recurrent bladder cancer tissues (52%) was significantly higher than that in primary bladder cancer tissues (20%) (P<0.05). Compared with the T24 cells that did not silence the ERCC1 gene (control group) at different time periods (29.45%, 36.48%, 38.45%, 40.35%), the proliferation of T24 cells that silenced ERCC1 gene (experimental group) (27.25%, 37.45%, 32.5%, 42.05%) was not significantly changed (P>0.05). Hydroxycamptothecine (HCPT) inhibited the proliferation of T24 cells in dosage and time dependent manner. The inhibitory effect of HCPT on the experimental group was significantly higher than that of the control group (P<0.05).With the HCPT concentration increased, the apoptosis rate of the experimental group was significantly higher than that of the control group (P<0.05). After silencing of ERCC1, the sensitivity of T24 cells was increased to HCPT which could inhibit cell proliferation and induce cell apoptosis. Conclusions Therefore, ERCC1 may be a potential target protein used to guide the postoperative chemotherapy of bladder cancer.

  4. Studies of the repair of O/sup 6/-alkylguanine and O/sup 4/-alkylthymine in DNA by alkyltransferases from mammalian cells and bacteria

    SciTech Connect

    Pegg, A.E.; Dolan, M.E.; Acchitano, D.; Morimoto, K.

    1985-10-01

    O/sup 6/-Methylguanine in DNA is repaired by the action of a protein termed O/sup 6/-alkylguanine-DNA alkyltransferase (AT) which transfers the methyl group to a cysteine residue in its own sequence. Since the cysteine which is methylated is not regenerated rapidly, if at all, the capacity for repair of O/sup 6/-methylguanine is limited by the number of molecules of the AT available within the cell. The level and inducibility of the AT differed greatly in different mammalian cell types and species with the highest levels in human tissues and in liver and the lowest levels in brain. In E. coli such exposure increased the activity more than 100-fold. The protein isolated from E. coli removed methyl groups much more rapidly than the larger alkyl groups but the mammalian AT isolated from rat liver showed much less difference in rate with adducts of different size. Ethyl and n-propyl groups were removed by the rat liver AT only three to four times more slowly than methyl groups. Another important difference between the bacterial and mammalian ATs is that the bacterial protein was also able to remove methyl groups from the O/sup 4/-position of thymine in methylated DNA or poly(dT) but the AT from rat liver or human fibroblasts did not repair O/sup 4/-methylthymidine. These results indicate that the results obtained with the E. coli system may not be a suitable model for extrapolation to predictions of the effects of alkylating agents in initiating tumors or mutations in mammalian cells.

  5. Correction of point mutations at the endogenous locus of the dihydrofolate reductase gene using repair-PolyPurine Reverse Hoogsteen hairpins in mammalian cells.

    PubMed

    Solé, Anna; Ciudad, Carlos J; Chasin, Lawrence A; Noé, Véronique

    2016-06-15

    Correction of point mutations that lead to aberrant transcripts, often with pathological consequences, has been the focus of considerable research. In this work, repair-PPRHs are shown to be a new powerful tool for gene correction. A repair-PPRH consists of a PolyPurine Reverse Hoogsteen hairpin core bearing an extension sequence at one end, homologous to the DNA strand to be repaired but containing the wild type nucleotide instead of the mutation. Previously, we had corrected a single-point mutation with repair-PPRHs using a mutated version of a dihydrofolate reductase (dhfr) minigene. To further evaluate the utility of these molecules, different repair-PPRHs were designed to correct insertions, deletions, substitutions and a double substitution present in a collection of mutants at the endogenous locus of the dhfr gene, the product of which is the target of the chemotherapeutic agent methotrexate. We also describe an approach to use when the point mutation is far away from the homopyrimidine target domain. This strategy consists in designing Long-Distance- and Short-Distance-Repair-PPRHs where the PPRH core is bound to the repair tail by a five-thymidine linker. Surviving colonies in a DHFR selective medium, lacking glycine and sources of purines and thymidine, were analyzed by DNA sequencing, and by mRNA, protein and enzymatic measurements, confirming that all the dhfr mutants had been corrected. These results show that repair-PPRHs can be effective tools to accomplish a permanent correction of point mutations in the DNA sequence of mutant mammalian cells. PMID:27063945

  6. Germinal Excisions of the Maize Transposon Activator Do Not Stimulate Meiotic Recombination or Homology-Dependent Repair at the Bz Locus

    PubMed Central

    Dooner, H. K.; Martinez-Ferez, I. M.

    1997-01-01

    Double-strand breaks have been implicated both in the initiation of meiotic recombination in yeast and as intermediates in the transposition process of nonreplicative transposons. Some transposons of this class, notably P of Drosophila and Tc1 of Caenorhabditis elegans, promote a form of homology-dependent premeiotic gene conversion upon excision. In this work, we have looked for evidence of an interaction between Ac transposition and meiotic recombination at the bz locus in maize. We find that the frequency of meiotic recombination between homologues is not enhanced by the presence of Ac in one of the bz heteroalleles and, conversely, that the presence of a homologous sequence in either trans (homologous chromosome) or cis (tandem duplication) does not promote conversion of the Ac insertion site. However, a tandem duplication of the bz locus may be destabilized by the insertion of Ac. We discuss possible reasons for the lack of interaction between Ac excision and homologous meiotic recombination in maize. PMID:9409847

  7. Recurrent cystosarcoma phylloides of breast: extensive full-thickness excision of chest wall with immediate repair using steel mesh and a latissimus dorsi myocutaneous flap.

    PubMed

    Mindikoğlu, A N; Aktan, K

    1983-10-01

    The case of a young woman with a massive recurrent cystosarcoma phylloides of the breast is presented in whom a full thickness excision of the chest wall was carried out en bloc together with four ribs. The large full-thickness defect of the chest wall was reconstructed with stainless steel mesh and covered by a latissimus dorsi myocutaneous flap. The management of post-operative paradoxical movement is also described. PMID:6313105

  8. A Mutation in a Saccharomyces Cerevisiae Gene (Rad3) Required for Nucleotide Excision Repair and Transcription Increases the Efficiency of Mismatch Correction

    PubMed Central

    Yang, Y.; Johnson, A. L.; Johnston, L. H.; Siede, W.; Friedberg, E. C.; Ramachandran, K.; Kunz, B. A.

    1996-01-01

    RAD3 functions in DNA repair and transcription in Saccharomyces cerevisiae and particular rad3 alleles confer a mutator phenotype, possibly as a consequence of defective mismatch correction. We assessed the potential involvement of the Rad3 protein in mismatch correction by comparing heteroduplex repair in isogenic rad3-1 and wild-type strains. The rad3-1 allele increased the spontaneous mutation rate but did not prevent heteroduplex repair or bias its directionality. Instead, the efficiency of mismatch correction was enhanced in the rad3-1 strain. This surprising result prompted us to examine expression of yeast mismatch repair genes. We determined that MSH2, but not MLH1, is transcriptionally regulated during the cell-cycle like PMS1, and that rad3-1 does not increase the transcript levels for these genes in log phase cells. These observations suggest that the rad3-1 mutation gives rise to an enhanced efficiency of mismatch correction via a process that does not involve transcriptional regulation of mismatch repair. Interestingly, mismatch repair also was more efficient when error-editing by yeast DNA polymerase δ was eliminated. We discuss our results in relation to possible mechanisms that may link the rad3-1 mutation to mismatch correction efficiency. PMID:8889512

  9. Enhanced pyrimidine dimer repair in cultured murine epithelial cells transfected with the denV gene of bacteriophage T4.

    PubMed

    Kusewitt, D F; Budge, C L; Ley, R D

    1994-04-01

    The patch size for excision repair of ultraviolet radiation (UV)-induced pyrimidine dimers was determined in cultured murine epithelial cells with normal and enhanced pyrimidine dimer repair capabilities. Cells with enhanced pyrimidine dimer repair were produced by transfecting 308 cells with the denV gene of bacteriophage T4; this gene encodes the enzyme endonuclease V. Pyrimidine dimer repair following exposure to UV from an FS-40 sunlamp was determined by micrococcal dimer-specific nuclease digestion and alkaline sucrose ultracentrifugation. Patch size ws estimated based on the photolytic lability of bromodeoxyuridine-substituted DNA. Excision repair of UV-induced pyrimidine dimers in denV-transfected 308 cells was enhanced two- to threefold. Production of mRNA from the denV gene in cell lines with enhanced repair was confirmed by RNA blotting. In control cells, the patch size for excision repair of DNA photoproducts was estimated to be 34 nucleotides per photoproduct removed; in denV-transfected cells, a smaller average patch size of 10-16 nucleotides per photoproduct removed was calculated. Thus, endonuclease V activity appears to alter not only the extent, but also the nature of excision repair in UV-exposed mammalian epithelial cells. PMID:8151125

  10. Functional Polymorphisms of Base Excision Repair Genes XRCC1 and APEX1 Predict Risk of Radiation Pneumonitis in Patients With Non-Small Cell Lung Cancer Treated With Definitive Radiation Therapy

    SciTech Connect

    Yin Ming; Liao Zhongxing; Liu Zhensheng; Wang, Li-E; Gomez, Daniel; Komaki, Ritsuko; Wei Qingyi

    2011-11-01

    Purpose: To explore whether functional single nucleotide polymorphisms (SNPs) of base-excision repair genes are predictors of radiation treatment-related pneumonitis (RP), we investigated associations between functional SNPs of ADPRT, APEX1, and XRCC1 and RP development. Methods and Materials: We genotyped SNPs of ADPRT (rs1136410 [V762A]), XRCC1 (rs1799782 [R194W], rs25489 [R280H], and rs25487 [Q399R]), and APEX1 (rs1130409 [D148E]) in 165 patients with non-small cell lung cancer (NSCLC) who received definitive chemoradiation therapy. Results were assessed by both Logistic and Cox regression models for RP risk. Kaplan-Meier curves were generated for the cumulative RP probability by the genotypes. Results: We found that SNPs of XRCC1 Q399R and APEX1 D148E each had a significant effect on the development of Grade {>=}2 RP (XRCC1: AA vs. GG, adjusted hazard ratio [HR] = 0.48, 95% confidence interval [CI], 0.24-0.97; APEX1: GG vs. TT, adjusted HR = 3.61, 95% CI, 1.64-7.93) in an allele-dose response manner (Trend tests: p = 0.040 and 0.001, respectively). The number of the combined protective XRCC1 A and APEX1 T alleles (from 0 to 4) also showed a significant trend of predicting RP risk (p = 0.001). Conclusions: SNPs of the base-excision repair genes may be biomarkers for susceptibility to RP. Larger prospective studies are needed to validate our findings.

  11. The role of base excision repair genes OGG1, APN1 and APN2 in benzo[a]pyrene-7,8-dione induced p53 mutagenesis

    PubMed Central

    Abedin, Zahidur; Louis-Juste, Melissa; Stangl, Melissa; Field, Jeffrey

    2014-01-01

    Lung cancer is primarily caused by exposure to tobacco smoke. Tobacco smoke contains numerous carcinogens, including Polycyclic Aromatic Hydrocarbons (PAH). The most common PAH studied is benzo[a]pyrene (B[a]P). B[a]P is metabolically activated through multiple routes, one of which is catalyzed by aldo-keto reductase (AKR) to B[a]P-7,8-dione (BPQ). BPQ undergoes a futile redox cycle in the presence of NADPH to generate reactive oxygen species (ROS). ROS, in turn, damages DNA. Studies with a yeast p53 mutagenesis system found that the generation of ROS by PAH o-quinones may contribute to lung carcinogenesis because of similarities between the patterns (types of mutations) and spectra (location of mutations) and those seen in lung cancer. The patterns were dominated by G to T transversions, and the spectra in the experimental system have mutations at lung cancer hotspots. To address repair mechanisms that are responsible for BPQ induced damage we observed the effect of mutating two DNA repair genes OGG1 and APE1 (APN1 in yeast) and tested them in a yeast reporter system for p53 mutagenesis. There was an increase in both the mutant frequency and the number of G:C/T:A transversions in p53 treated with BPQ in ogg1 yeast but not in apn1 yeast. Knocking out APN2 increased mutagenesis in the apn1 cells. In addition, we did not find a strand bias on p53 treated with BPQ in ogg1 yeast. These studies suggest that Ogg1 is involved in repairing the oxidative damage caused by BPQ, Apn1 and Apn2 have redundant functions and that the stand bias seen in lung cancer may not be due to impaired repair of oxidative lesions. PMID:23117049

  12. Human DNA repair and recombination genes

    SciTech Connect

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs.

  13. Isolation of mammalian cell mutants that are X-ray sensitive, impaired in DNA double-strand break repair and defective for V(D)J recombination.

    PubMed

    Lee, S E; Pulaski, C R; He, D M; Benjamin, D M; Voss, M; Um, J; Hendrickson, E A

    1995-05-01

    The Chinese hamster lung V79-4 cell line was infected with a Moloney murine leukemia retrovirus and the infected cells were subsequently screened for mutants that were sensitive to X-rays using a toothpicking/96-well replica plating technique. Four independent mutants that were sensitive to X-irradiation (sxi-1 to sxi-4) were isolated from 9000 retrovirally infected colonies. A pulse-field gel electrophoresis (PFGE) assay demonstrated that all of the sxi mutants were impaired in DNA double-strand break (DSB) repair, thus providing a molecular explanation for the observed X-ray sensitivity. Interestingly, additional PFGE experiments demonstrated that for any given X-ray dose all of the mutants incurred more DNA DSBs than the parental V79-4 cell line indicating there may be some inherent fragility to sxi chromosomes. Cross-sensitivity to other DNA-damaging agents including bleomycin, mitomycin C and methyl methanesulfonate indicated that sxi-2, sxi-3 and sxi-4 appear to be specifically hypersensitive to genotoxic agents that cause DNA DSBs, whereas sxi-1 appeared to be hypersensitive to multiple types of DNA lesions. Lastly, in preliminary experiments all of the sxi mutants demonstrated an inability to carry out V(D)J recombination, a somatic DNA rearrangement process required for the assembly of lymphoid antigen receptor genes. Thus, the sxi cell lines have interesting phenotypes which should make them valuable tools for unraveling the mechanism(s) of DNA DSB repair and recombination in mammalian cells. PMID:7537861

  14. Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury

    PubMed Central

    Zou, Yixiao; Stagi, Massimiliano; Wang, Xingxing; Yigitkanli, Kazim; Siegel, Chad S.; Nakatsu, Fubito; Cafferty, William B. J.

    2015-01-01

    Axonal growth and neuronal rewiring facilitate functional recovery after spinal cord injury. Known interventions that promote neural repair remain limited in their functional efficacy. To understand genetic determinants of mammalian CNS axon regeneration, we completed an unbiased RNAi gene-silencing screen across most phosphatases in the genome. We identified one known and 17 previously unknown phosphatase suppressors of injury-induced CNS axon growth. Silencing Inpp5f (Sac2) leads to robust enhancement of axon regeneration and growth cone reformation. Results from cultured Inpp5f−/− neurons confirm lentiviral shRNA results from the screen. Consistent with the nonoverlapping substrate specificity between Inpp5f and PTEN, rapamycin does not block enhanced regeneration in Inpp5f−/− neurons, implicating mechanisms independent of the PI3K/AKT/mTOR pathway. Inpp5f−/− mice develop normally, but show enhanced anatomical and functional recovery after mid-thoracic dorsal hemisection injury. More serotonergic axons sprout and/or regenerate caudal to the lesion level, and greater numbers of corticospinal tract axons sprout rostral to the lesion. Functionally, Inpp5f-null mice exhibit enhanced recovery of motor functions in both open-field and rotarod tests. This study demonstrates the potential of an unbiased high-throughput functional screen to identify endogenous suppressors of CNS axon growth after injury, and reveals Inpp5f (Sac2) as a novel suppressor of CNS axon repair after spinal cord injury. SIGNIFICANCE STATEMENT The extent of axon regeneration is a critical determinant of neurological recovery from injury, and is extremely limited in the adult mammalian CNS. We describe an unbiased gene-silencing screen that uncovered novel molecules suppressing axonal regeneration. Inpp5f (Sac2) gene deletion promoted recovery from spinal cord injury with no side effects. The mechanism of action is distinct from another lipid phosphatase implicated in regeneration

  15. Different sensitivities of cultured mammalian cells towards aphidicolin-enhanced DNA effects in the comet assay.

    PubMed

    Speit, Günter; Schütz, Petra; Bausinger, Julia

    2016-06-01

    The comet assay in combination with the polymerase inhibitor aphidicolin (APC) has been used to measure DNA excision repair activity, DNA repair kinetics and individual DNA repair capacity. Since APC can enhance genotoxic effects of mutagens measured by the comet assay, this approach has been proposed for increasing the sensitivity of the comet assay in human biomonitoring. The APC-modified comet assay has mainly been performed with human blood and it was shown that it not only enhances the detection of DNA damage repaired by nucleotide excision repair (NER) but also damage typically repaired by base excision repair (BER). Recently, we reported that in contrast to blood leukocytes, A549 cells (a human lung adenocarcinoma cell line) seem to be insensitive towards the repair-inhibiting action of APC. To further elucidate the general usefulness of the APC-modified comet assay for studying repair in cultured mammalian cells, we comparatively investigated further cell lines (HeLa, TK6, V79). DNA damage was induced by BPDE (benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide) and MMS (methyl methanesulfonate) in the absence and presence of APC (3 or 15μM). APC was either added for 2h together with the mutagen or cells were pre-incubated for 30min with APC before the mutagen was added. The results indicate that the cell lines tested differ fundamentally with regard to their sensitivity and specificity towards the repair-inhibiting effect of APC. The actual cause for these differences is still unclear but potential molecular explanations are discussed. Irrespective of the underlying mechanism(s), our study revealed practical limitations of the use of the APC-modified comet assay. PMID:27265376

  16. DNA damage induction and/or repair as mammalian cell biomarker for the prediction of cellular radiation response

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, C.

    DNA damage and its repair processes are key factors in cancer induction and also in the treatment of malignancies. Cancer prevention during extended space missions becomes a topic of great importance for space radiobiology. The knowledge of individual responsiveness would allow the protection strategy to be tailored optimally in each case. Radiobiological analysis of cultured cells derived from tissue explants from individuals has shown that measurement of the surviving fraction after 2 Gy (SF2) may be used to predict the individual responsiveness. However, clonogenic assays are timeconsuming, thus alternative assays for the determination of radiore-sponse are being sought. For that reason CHO cell strains having different repair capacities were used for examining whether DNA strand break repair is a suitable experimental design to allow predictive statements. Cellular survival (CFA assay) and DNA strand breaks (total DNA strand breaks: FADU technique; DSBs: non-denaturing elution) were determined in parallel immediately after irradiation as well as after a 24 hour recovery period according to dose. There were no correlations between the dose-response curves of the initial level of DNA strand breaks and parameters that describe clonogenic survival curves (SF2). A good correlation exists between intrinsic cellular radioresistance and the extent of residual DNA strand breaks.

  17. Ubiquitin-specific Protease 7 Regulates Nucleotide Excision Repair through Deubiquitinating XPC Protein and Preventing XPC Protein from Undergoing Ultraviolet Light-induced and VCP/p97 Protein-regulated Proteolysis*

    PubMed Central

    He, Jinshan; Zhu, Qianzheng; Wani, Gulzar; Sharma, Nidhi; Han, Chunhua; Qian, Jiang; Pentz, Kyle; Wang, Qi-en; Wani, Altaf A.

    2014-01-01

    Ubiquitin specific protease 7 (USP7) is a known deubiquitinating enzyme for tumor suppressor p53 and its downstream regulator, E3 ubiquitin ligase Mdm2. Here we report that USP7 regulates nucleotide excision repair (NER) via deubiquitinating xeroderma pigmentosum complementation group C (XPC) protein, a critical damage recognition factor that binds to helix-distorting DNA lesions and initiates NER. XPC is ubiquitinated during the early stage of NER of UV light-induced DNA lesions. We demonstrate that transiently compromising cellular USP7 by siRNA and chemical inhibition leads to accumulation of ubiquitinated forms of XPC, whereas complete USP7 deficiency leads to rapid ubiquitin-mediated XPC degradation upon UV irradiation. We show that USP7 physically interacts with XPC in vitro and in vivo. Overexpression of wild-type USP7, but not its catalytically inactive or interaction-defective mutants, reduces the ubiquitinated forms of XPC. Importantly, USP7 efficiently deubiquitinates XPC-ubiquitin conjugates in deubiquitination assays in vitro. We further show that valosin-containing protein (VCP)/p97 is involved in UV light-induced XPC degradation in USP7-deficient cells. VCP/p97 is readily recruited to DNA damage sites and colocalizes with XPC. Chemical inhibition of the activity of VCP/p97 ATPase causes an increase in ubiquitinated XPC on DNA-damaged chromatin. Moreover, USP7 deficiency severely impairs the repair of cyclobutane pyrimidine dimers and, to a lesser extent, affects the repair of 6-4 photoproducts. Taken together, our findings uncovered an important role of USP7 in regulating NER via deubiquitinating XPC and by preventing its VCP/p97-regulated proteolysis. PMID:25118285

  18. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain.

    PubMed

    Tanaka, K; Miura, N; Satokata, I; Miyamoto, I; Yoshida, M C; Satoh, Y; Kondo, S; Yasui, A; Okayama, H; Okada, Y

    1990-11-01

    Xeroderma pigmentosum (XP) is an autosomal recessive disease, characterized by a high incidence of sunlight-induced skin cancer. Cells from people with this condition are hypersensitive to ultraviolet because of a defect in DNA repair. There are nine genetic complementation groups of XP, groups A-H and a variant. We have cloned the mouse DNA repair gene that complements the defect of group A, the XPAC gene. Here we report molecular cloning of human and mouse XPAC complementary DNAs. Expression of XPAC cDNA confers ultraviolet-resistance on several group A cell lines, but not on lines of other XP groups. Almost all group A lines tested showed abnormality or absence of XPAC messenger RNAs. These results indicate that a defective XPAC gene causes group A XP. The human and mouse XPAC genes are located on chromosome 9q34.1 and chromosome 4C2, respectively. Human XPAC cDNA encodes a protein of 273 amino acids with a zinc-finger motif. PMID:2234061

  19. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Final report, August 1, 1977-January 31, 1985

    SciTech Connect

    Evans, H.H.

    1985-02-01

    We have compared the lethal, mutagenic, and carcinogenic effects of radiation and alkylating agents in several types of cells. In C3H 10T 1/2 cells, lethal effects decreased, while the frequency of ouabain-resistant mutants and of transformed cells increased during a 4-hour holding period following EMS treatment. To isolate repair-deficient mutants, we used diploid BHK cells which were characterized with regard to reactivation of uv- and x-irradiated Herpes Simplex virus (HSV). Three radiation-sensitive BHK strains were isolated using a host cell viral-reactivation suicide procedure. Two of these strains were sensitive to the cytotoxic effects of alkylating agents. One strain was hypermutable and one hypomutable following treatment with EMS. Mouse lymphoma strain L5178Y-S (LY-S), though more sensitive to the lethal effects of X radiation and alkylating agents than strain L5178Y-R (LY-R), was less mutable by these agents at the Na/sup +//K/sup +/ ATPase and hypoxanthine/guanine phosphoribosyltransferase (HGPRT) loci. Strain LY-S exhibited less dose-rate dependence for lethal effects than strain LY-R, but no dose-rate dependence was observed in radiation-induced mutagenesis for either strain. Repair of x ray-induced potentially lethal damage (PLD) at 25/sup 0/ was observed for strain LY-S but not LY-R. Addition of 3-aminobenzamide (2 mm) to the medium sensitized both strains to x radiation, uv radiation and MNU, and inhibited rapair of x ray-induced PLD in strain LY-S.

  20. Laryngeal cancer risk associated with smoking and alcohol consumption is modified by genetic polymorphisms in ERCC5, ERCC6 and RAD23B but not by polymorphisms in five other nucleotide excision repair genes.

    PubMed

    Abbasi, Rashda; Ramroth, Heribert; Becher, Heiko; Dietz, Andreas; Schmezer, Peter; Popanda, Odilia

    2009-09-15

    Laryngeal cancer is known to be associated with smoking and high alcohol consumption. Nucleotide excision repair (NER) plays a key role in repairing DNA damage induced by these exposures and might affect laryngeal cancer susceptibility. In a population-based case-control study including 248 cases and 647 controls, the association of laryngeal cancer with 14 single nucleotide polymorphisms (SNPs) in 8 NER genes (XPC, XPA, ERCC1, ERCC2, ERCC4, ERCC5, ERCC6 and RAD23B) was analyzed with respect to smoking and alcohol exposure. For genotyping, sequence specific hybridization probes were used. Data were evaluated by conditional logistic regression analysis, stratified for age and gender, and adjusted for smoking, alcohol consumption and education. Pro-carriers of ERCC6 Arg1230Pro showed a decreased risk for laryngeal cancer (OR = 0.53, 95% CI 0.34-0.85), strongest in heavy smokers and high alcohol consumers. ERCC5 Asp1104His was associated with risk in heavy smokers (OR = 1.70, 95% CI 1.1-2.5). Val-carriers of RAD23B Ala249Val had an increased cancer risk in heavy smokers (OR = 1.6, 95% CI 1.1-2.5) and high alcohol consumers (OR = 2.0, 95% CI 1.1-3.4). The combined effect of smoking and alcohol intake affected risk, at high exposure level, for ERCC6 1230Pro carriers (OR = 0.47, 95% CI 0.22-0.98) and RAD23B 249Val carriers (OR = 2.6, 95% CI 1.3-4.9). When tested for gene-gene interaction, presence of 3 risk alleles in the XPC-RAD23B complex increased the risk 2.1-fold. SNPs in the other genes did not show a significant association with laryngeal cancer risk. We conclude that common genetic variations in NER genes can significantly modify laryngeal cancer risk. PMID:19444904

  1. DNA Repair Dysfunction and Neurodegeneration: Lessons From Rare Pediatric Disorders.

    PubMed

    Shabbir, Syed H

    2016-03-01

    Nucleotide excision repair disorders display a wide range of clinical syndromes and presentations, all associated at the molecular level by dysfunction of genes participating in the nucleotide excision repair pathway. Genotype-phenotype relationships are remarkably complex and not well understood. This article outlines neurodegenerative symptoms seen in nucleotide excision repair disorders and explores the role that nucleotide excision repair dysfunction can play in the pathogenesis of chronic neurodegenerative diseases. PMID:26116382

  2. Measurement of mutation and repair in mammalian cells/action of specific mutagens and antimutagens/genome exposure reaction in cancer and other disease conditions. Final subcontract report, April 1, 1996- March 31, 1996

    SciTech Connect

    Puck, T.T.

    1996-09-01

    This is the final report for the project dealing with the the measurement of mutation and repair in mammalian cells, action of specific mutagens and antimutagens, and genome exposure reaction in cancer and other disease conditions. The overall objectives of this research are threefold: to develop and improve methodology for measurement of mutation and repair in mammalian cells and to apply it to measurement of the effectiveness of mutagens, antimutagens, and other molecules to as to achieve greater power in prevention of cancer and genetic disease; to analyze theoretically and experimentally the action of specific mutagens and antimutagens; and to investigate the role of genome exposure reaction in cancer and other disease conditions to secure improve preventive and treatment modalities.

  3. hSSB1 (NABP2/ OBFC2B) is required for the repair of 8-oxo-guanine by the hOGG1-mediated base excision repair pathway

    PubMed Central

    Paquet, Nicolas; Adams, Mark N.; Leong, Vincent; Ashton, Nicholas W.; Touma, Christine; Gamsjaeger, Roland; Cubeddu, Liza; Beard, Sam; Burgess, Joshua T.; Bolderson, Emma; O'Byrne, Ken J.; Richard, Derek J.

    2015-01-01

    The maintenance of genome stability is essential to prevent loss of genetic information and the development of diseases such as cancer. One of the most common forms of damage to the genetic code is the oxidation of DNA by reactive oxygen species (ROS), of which 8-oxo-7,8-dihydro-guanine (8-oxoG) is the most frequent modification. Previous studies have established that human single-stranded DNA-binding protein 1 (hSSB1) is essential for the repair of double-stranded DNA breaks by the process of homologous recombination. Here we show that hSSB1 is also required following oxidative damage. Cells lacking hSSB1 are sensitive to oxidizing agents, have deficient ATM and p53 activation and cannot effectively repair 8-oxoGs. Furthermore, we demonstrate that hSSB1 forms a complex with the human oxo-guanine glycosylase 1 (hOGG1) and is important for hOGG1 localization to the damaged chromatin. In vitro, hSSB1 binds directly to DNA containing 8-oxoguanines and enhances hOGG1 activity. These results underpin the crucial role hSSB1 plays as a guardian of the genome. PMID:26261212

  4. Construction and Analysis of Photolyase Mutants of Pseudomonas aeruginosa and Pseudomonas syringae: Contribution of Photoreactivation, Nucleotide Excision Repair, and Mutagenic DNA Repair to Cell Survival and Mutability following Exposure to UV-B Radiation

    PubMed Central

    Kim, Jae J.; Sundin, George W.

    2001-01-01

    Based on nucleotide sequence homology with the Escherichia coli photolyase gene (phr), the phr sequence of Pseudomonas aeruginosa PAO1 was identified from the genome sequence, amplified by PCR, cloned, and shown to complement a known phr mutation following expression in Escherichia coli SY2. Stable, insertional phr mutants containing a tetracycline resistance gene cassette were constructed in P. aeruginosa PAO1 and P. syringae pv. syringae FF5 by homologous recombination and sucrose-mediated counterselection. These mutants showed a decrease in survival compared to the wild type of as much as 19-fold after irradiation at UV-B doses of 1,000 to 1,550 J m−2 followed by a recovery period under photoreactivating conditions. A phr uvrA mutant of P. aeruginosa PAO1 was markedly sensitive to UV-B irradiation exhibiting a decrease in survival of 6 orders of magnitude following a UV-B dose of 250 J m−2. Complementation of the phr mutations in P. aeruginosa PAO1 and P. syringae pv. syringae FF5 using the cloned phr gene from strain PAO1 resulted in a restoration of survival following UV-B irradiation and recovery under photoreactivating conditions. The UV-B survival of the phr mutants could also be complemented by the P. syringae mutagenic DNA repair determinant rulAB. Assays for increases in the frequency of spontaneous rifampin-resistant mutants in UV-B-irradiated strains containing rulAB indicated that significant UV-B mutability (up to a 51-fold increase compared to a nonirradiated control strain) occurred even in the wild-type PAO1 background in which rulAB only enhanced the UV-B survival by 2-fold under photoreactivating conditions. The frequency of occurrence of spontaneous nalidixic acid-resistant mutants in the PAO1 uvrA and uvrA phr backgrounds complemented with rulAB were 3.8 × 10−5 and 2.1 × 10−3, respectively, following a UV-B dose of 1,550 J m−2. The construction and characterization of phr mutants in the present study will facilitate the

  5. Robustness of DNA repair through collective rate control.

    PubMed

    Verbruggen, Paul; Heinemann, Tim; Manders, Erik; von Bornstaedt, Gesa; van Driel, Roel; Höfer, Thomas

    2014-01-01

    DNA repair and other chromatin-associated processes are carried out by enzymatic macromolecular complexes that assemble at specific sites on the chromatin fiber. How the rate of these molecular machineries is regulated by their constituent parts is poorly understood. Here we quantify nucleotide-excision DNA repair in mammalian cells and find that, despite the pathways' molecular complexity, repair effectively obeys slow first-order kinetics. Theoretical analysis and data-based modeling indicate that these kinetics are not due to a singular rate-limiting step. Rather, first-order kinetics emerge from the interplay of rapidly and reversibly assembling repair proteins, stochastically distributing DNA lesion repair over a broad time period. Based on this mechanism, the model predicts that the repair proteins collectively control the repair rate. Exploiting natural cell-to-cell variability, we corroborate this prediction for the lesion-recognition factor XPC and the downstream factor XPA. Our findings provide a rationale for the emergence of slow time scales in chromatin-associated processes from fast molecular steps and suggest that collective rate control might be a widespread mode of robust regulation in DNA repair and transcription. PMID:24499930

  6. DNA repair activity in fish and interest in ecotoxicology: a review.

    PubMed

    Kienzler, Aude; Bony, Sylvie; Devaux, Alain

    2013-06-15

    The knowledge of DNA repair in a target species is of first importance as it is the primary line of defense against genotoxicants, and a better knowledge of DNA repair capacity in fish could help to interpret genotoxicity data and/or assist in the choice of target species, developmental stage and tissues to focus on, both for environmental biomonitoring studies and DNA repair testing. This review focuses in a first part on what is presently known on a mechanistic basis, about the various DNA repair systems in fish, in vivo and in established cell lines. Data on base excision repair (BER), direct reversal with O⁶-alkylguanine transferase and double strand breaks repair, although rather scarce, are being reviewed, as well as nucleotide excision repair (NER) and photoreactivation repair (PER), which are by far the most studied repair mechanisms in fish. Most of these repair mechanisms seem to be strongly species and tissue dependent; they also depend on the developmental stage of the organisms. BER is efficient in vivo, although no data has been found on in vitro models. NER activity is quite low or even inexistent depending on the studies; however this lack is partly compensated by a strong PER activity, especially in early developmental stage. In a second part, a survey of the ecotoxicological studies integrating DNA repair as a parameter responding to single or mixture of contaminant is realized. Three main approaches are being used: the measurement of DNA repair gene expression after exposure, although it has not yet been clearly established whether gene expression is indicative of repair capacity; the monitoring of DNA damage removal by following DNA repair kinetics; and the modulation of DNA repair activity following exposure in situ, in order to assess the impact of exposure history on DNA repair capacity. Since all DNA repair processes are possible targets for environmental pollutants, we can also wonder at which extent such a modulation of repair capacities

  7. Dimer excision in Escherichia coli in the presence of caffeine

    SciTech Connect

    Rothman, R.H.

    1980-07-01

    The observation that polA1 and recL152 mutations result in both slow pyrimidine dimer excision and large repair patch size leads to the hypothesis that patch size is directly related to the rate of excision. In this study caffeine, a known inhibitor of excision repair, was used to examine the extent of correlation between excision rate and patch size by measuring patch size in the presence of several concentrations of caffeine. Both the rate of excision and the resistance to ultraviolet radiation were reduced with increasing concentrations of caffeine after irradiation. Caffeine also inhibited the rate at which incisions were made and prolonged the time required to rejoin the discontinuities. Patch size, however, was unaffected by caffeine treatment.

  8. International congress on DNA damage and repair: Book of abstracts

    SciTech Connect

    Not Available

    1987-01-01

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation. (TEM)

  9. The prognostic and predictive value of excision repair cross-complementation group 1 (ERCC1) protein in 1288 patients with head and neck squamous cell carcinoma treated with platinum-based therapy: a meta-analysis.

    PubMed

    Bišof, Vesna; Zajc Petranović, Matea; Rakušić, Zoran; Samardžić, Kristina Ruža; Juretić, Antonio

    2016-09-01

    Excision repair cross-complementation group 1 (ERCC1) protein has been extensively investigated as a prognostic and predictive factor for platinum-based treatment in head and neck squamous cell carcinoma (HNSCC) but with inconsistent results. We performed the present meta-analysis to better elucidate this issue in advanced HNSCC. A literature search was conducted using the PubMed and Web of Science databases. The inclusion criteria were head and neck cancer patients with platinum-based treatment and evaluation of the correlation between ERCC1 expression and clinical outcomes [objective response rate (ORR), progression-free survival (PFS), and overall survival (OS), both unadjusted and adjusted estimates]. In high vs. low pooled analyses, high ERCC1 expression was associated with unfavorable OS [hazard ratio (HR) = 1.95, 95 % confidence interval (CI) 1.18-3.21, p = 0.009], PFS (HR = 2.39, 95 % CI 1.74-3.28, p = 0.000) and ORR (odds ratio = 0.48, 95 % CI 0.23-0.98, p = 0.044). In the subgroup analysis of adjusted OS estimates, ERCC1 was a predictor of shorter survival in Asians (HR = 3.13, 95 % CI 2.09-4.70, p = 0.000) and Caucasians (HR = 2.02, 95 % CI 1.32-3.07, p = 0.001) but of longer survival in South Americans (HR = 0.17, 95 % CI 0.07-0.40, p = 0.000). Immunohistochemistry proved to be of predictive value irrespective of used antibody (p = 0.009). In the stratified analysis according to the tumor site, ERCC1 expression was associated with OS in nasopharyngeal cancer (HR = 2.72, 95 % CI 1.79-4.13, p = 0.000). ERCC1 has a potential to become predictive and prognostic factor enabling treatment tailoring in HNSCC patients. PMID:26179868

  10. [A Nobel Prize for DNA repair].

    PubMed

    Jordan, Bertrand

    2016-01-01

    This year's Nobel Prize for chemistry recognizes the seminal contributions of three researchers who discovered the existence and the basic mechanisms of DNA repair: base excision repair, mismatch repair, and nucleotide excision repair. They have since been joined by many scientists elucidating diverse aspects of these complex mechanisms that now constitute a thriving research field with many applications, notably for understanding oncogenesis and devising more effective therapies. PMID:26850617

  11. Slow base excision by human alkyladenine DNA glycosylase limits the rate of formation of AP sites and AP endonuclease 1 does not stimulate base excision.

    PubMed

    Maher, Robyn L; Vallur, Aarthy C; Feller, Joyce A; Bloom, Linda B

    2007-01-01

    The base excision repair pathway removes damaged DNA bases and resynthesizes DNA to replace the damage. Human alkyladenine DNA glycosylase (AAG) is one of several damage-specific DNA glycosylases that recognizes and excises damaged DNA bases. AAG removes primarily damaged adenine residues. Human AP endonuclease 1 (APE1) recognizes AP sites produced by DNA glycosylases and incises the phophodiester bond 5' to the damaged site. The repair process is completed by a DNA polymerase and DNA ligase. If not tightly coordinated, base excision repair could generate intermediates that are more deleterious to the cell than the initial DNA damage. The kinetics of AAG-catalyzed excision of two damaged bases, hypoxanthine and 1,N6-ethenoadenine, were measured in the presence and absence of APE1 to investigate the mechanism by which the base excision activity of AAG is coordinated with the AP incision activity of APE1. 1,N6-ethenoadenine is excised significantly slower than hypoxanthine and the rate of excision is not affected by APE1. The excision of hypoxanthine is inhibited to a small degree by accumulated product, and APE1 stimulates multiple turnovers by alleviating product inhibition. These results show that APE1 does not significantly affect the kinetics of base excision by AAG. It is likely that slow excision by AAG limits the rate of AP site formation in vivo such that AP sites are not created faster than can be processed by APE1. PMID:17018265

  12. Active DNA demethylation by DNA repair: Facts and uncertainties.

    PubMed

    Schuermann, David; Weber, Alain R; Schär, Primo

    2016-08-01

    Pathways that control and modulate DNA methylation patterning in mammalian cells were poorly understood for a long time, although their importance in establishing and maintaining cell type-specific gene expression was well recognized. The discovery of proteins capable of converting 5-methylcytosine (5mC) to putative substrates for DNA repair introduced a novel and exciting conceptual framework for the investigation and ultimate discovery of molecular mechanisms of DNA demethylation. Against the prevailing notion that DNA methylation is a static epigenetic mark, it turned out to be dynamic and distinct mechanisms appear to have evolved to effect global and locus-specific DNA demethylation. There is compelling evidence that DNA repair, in particular base excision repair, contributes significantly to the turnover of 5mC in cells. By actively demethylating DNA, DNA repair supports the developmental establishment as well as the maintenance of DNA methylation landscapes and gene expression patterns. Yet, while the biochemical pathways are relatively well-established and reviewed, the biological context, function and regulation of DNA repair-mediated active DNA demethylation remains uncertain. In this review, we will thus summarize and critically discuss the evidence that associates active DNA demethylation by DNA repair with specific functional contexts including the DNA methylation erasure in the early embryo, the control of pluripotency and cellular differentiation, the maintenance of cell identity, and the nuclear reprogramming. PMID:27247237

  13. The role of repair in the survival of mammalian cells from heavy ion irradiation: approximation to the ideal case of target theory.

    PubMed

    Lett, J T; Cox, A B; Story, M D

    1989-01-01

    Theories of cellular radiation sensitivity that preclude a significant role for cellular repair processes in the final biological expression of cellular damage induced by ionizing radiation are unsound. Experiments are discussed here in which the cell-cycle dependency of the repair deficiency of the S/S variant, of the L5178Y murine leukemic lymphoblast was examined by treatment with the heavy ions, 20Ne, 28Si, 40Ar, 56Fe and 93Nb. Evidence from those studies, which will be described in detail elsewhere, provide support for the notion that as the linear energy transfer (LET infinity) of the incident radiation increases the ability of the S/S cell to repair radiation damage decreases until effectively it is eliminated around 500 keV/micrometer. In the region of the latter LET infinity value, the behavior of the S/S cell approximates the ideal case of target theory where post-irradiation metabolism (repair) does not influence cell survival. The expression of this phenomenon among different cell types and tissues will depend upon the actual repair systems involved and other considerations. PMID:11537320

  14. Plants Possess a Cyclic Mitochondrial Metabolic Pathway similar to the Mammalian Metabolic Repair Mechanism Involving Malate Dehydrogenase and l-2-Hydroxyglutarate Dehydrogenase.

    PubMed

    Hüdig, Meike; Maier, Alexander; Scherrers, Isabell; Seidel, Laura; Jansen, Erwin E W; Mettler-Altmann, Tabea; Engqvist, Martin K M; Maurino, Veronica G

    2015-09-01

    Enzymatic side reactions can give rise to the formation of wasteful and toxic products that are removed by metabolite repair pathways. In this work, we identify and characterize a mitochondrial metabolic repair mechanism in Arabidopsis thaliana involving malate dehydrogenase (mMDH) and l-2-hydroxyglutarate dehydrogenase (l-2HGDH). We analyze the kinetic properties of both A. thaliana mMDH isoforms, and show that they produce l-2-hydroxyglutarate (l-2HG) from 2-ketoglutarate (2-KG) at low rates in side reactions. We identify A. thaliana l-2HGDH as a mitochondrial FAD-containing oxidase that converts l-2HG back to 2-KG. Using loss-of-function mutants, we show that the electrons produced in the l-2HGDH reaction are transferred to the mitochondrial electron transport chain through the electron transfer protein (ETF). Thus, plants possess the biochemical components of an l-2HG metabolic repair system identical to that found in mammals. While deficiencies in the metabolism of l-2HG result in fatal disorders in mammals, accumulation of l-2HG in plants does not adversely affect their development under a range of tested conditions. However, orthologs of l-2HGDH are found in all examined genomes of viridiplantae, indicating that the repair reaction we identified makes an essential contribution to plant fitness in as yet unidentified conditions in the wild. PMID:26203119

  15. Mesh Excision: Is Total Mesh Excision Necessary?

    PubMed

    Wolff, Gillian F; Winters, J Christian; Krlin, Ryan M

    2016-04-01

    Nearly 29% of women will undergo a secondary, repeat operation for pelvic organ prolapse (POP) symptom recurrence following a primary repair, as reported by Abbott et al. (Am J Obstet Gynecol 210:163.e1-163.e1, 2014). In efforts to decrease the rates of failure, graft materials have been utilized to augment transvaginal repairs. Following the success of using polypropylene mesh (PPM) for stress urinary incontinence (SUI), the use of PPM in the transvaginal repair of POP increased. However, in recent years, significant concerns have been raised about the safety of PPM mesh. Complications, some specific to mesh, such as exposures, erosion, dyspareunia, and pelvic pain, have been reported with increased frequency. In the current literature, there is not substantive evidence to suggest that PPM has intrinsic properties that warrant total mesh removal in the absence of complications. There are a number of complications that can occur after transvaginal mesh placement that do warrant surgical intervention after failure of conservative therapy. In aggregate, there are no high-quality controlled studies that clearly demonstrate that total mesh removal is consistently more likely to achieve pain reduction. In the cases of obstruction and erosion, it seems clear that definitive removal of the offending mesh is associated with resolution of symptoms in the majority of cases and reasonable practice. There are a number of complications that can occur with removal of mesh, and patients should be informed of this as they formulate a choice of treatment. We will review these considerations as we examine the clinical question of whether total versus partial removal of mesh is necessary for the resolution of complications following transvaginal mesh placement. PMID:26905696

  16. Mitochondrial DNA repair: a novel therapeutic target for heart failure.

    PubMed

    Marín-García, José

    2016-09-01

    Mitochondria play a crucial role in a variety of cellular processes ranging from energy metabolism, generation of reactive oxygen species (ROS) and Ca(2+) handling to stress responses, cell survival and death. Malfunction of the organelle may contribute to the pathogenesis of neuromuscular, cancer, premature aging and cardiovascular diseases (CVD), including myocardial ischemia, cardiomyopathy and heart failure (HF). Mitochondria contain their own genome organized into DNA-protein complexes, called "mitochondrial nucleoids," along with multiprotein machineries, which promote mitochondrial DNA (mtDNA) replication, transcription and repair. Although the mammalian organelle possesses almost all known nuclear DNA repair pathways, including base excision repair, mismatch repair and recombinational repair, the proximity of mtDNA to the main sites of ROS production and the lack of protective histones may result in increased susceptibility to various types of mtDNA damage. These include accumulation of mtDNA point mutations and/or deletions and decreased mtDNA copy number, which will impair mitochondrial function and finally, may lead to CVD including HF. PMID:26940911

  17. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair.

    PubMed

    Mentegari, Elisa; Kissova, Miroslava; Bavagnoli, Laura; Maga, Giovanni; Crespan, Emmanuele

    2016-01-01

    DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy. PMID:27589807

  18. The role of repair in the survival of mammalian cells from heavy ion irradiation - Approximation to the ideal case of target theory

    NASA Technical Reports Server (NTRS)

    Lett, J. T.; Cox, A. B.; Story, M. D.

    1989-01-01

    Experiments are discussed in which the cell-cycle dependency of the repair deficiency of the S/S variant of the L5178Y murine leukemic lymphoblast was examined by treatment with the heavy ions, Ne-20, Si-28, Ar-40, Fe-56, and Nb-93. Evidence from those studies provide support for the notion that as the linear energy transfer of the incident radiation increases the ability of the S/S cell to repair radiation damage decreases until it is eliminated around 500 keV/micron. In the region of the latter linear energy transfer value, the behavior of the S/S cell approximates the ideal case of target theory where post-irradiation metabolism does not influence cell survival.

  19. BRCA2 is needed for both repair and cell cycle arrest in mammalian cells exposed to S23906, an anticancer monofunctional DNA binder

    PubMed Central

    Rocca, Céline J; Soares, Daniele G; Bouzid, Hana; Henriques, João A P; Larsen, Annette K; Escargueil, Alexandre E

    2015-01-01

    Repair of DNA-targeted anticancer agents is an active area of investigation of both fundamental and clinical interest. However, most studies have focused on a small number of compounds limiting our understanding of both DNA repair and the DNA damage response. S23906 is an acronycine derivative that shows strong activity toward solid tumors in experimental models. S23906 forms bulky monofunctional DNA adducts in the minor groove which leads to destabilization of the double-stranded helix. We now report that S23906 induces formation of DNA double strand breaks that are processed through homologous recombination (HR) but not Non-Homologous End-Joining (NHEJ) repair. Interestingly, S23906 exposure was accompanied by a higher sensitivity of BRCA2-deficient cells compared to other HR deficient cell lines and by an S-phase accumulation in wild-type (wt), but not in BRCA2-deficient cells. Recently, we have shown that S23906-induced S phase arrest was mediated by the checkpoint kinase Chk1. However, its activated phosphorylated form is equally induced by S23906 in wt and BRCA2-deficient cells, likely indicating a role for BRCA2 downstream of Chk1. Accordingly, override of the S phase arrest by either 7-hydroxystaurosporine (UCN-01) or AZD7762 potentiates the cytotoxic activity of S23906 in wt, but not in BRCA2-deficient cells. Together, our findings suggest that the pronounced sensitivity of BRCA2-deficient cells to S23906 is due to both a defective S-phase arrest and the absence of HR repair. Tumors with deficiencies for proteins involved in HR, and BRCA2 in particular, may thus show increased sensitivity to S23906, thereby providing a rationale for patient selection in clinical trials. PMID:25945522

  20. BRCA2 is needed for both repair and cell cycle arrest in mammalian cells exposed to S23906, an anticancer monofunctional DNA binder.

    PubMed

    Rocca, Céline J; Soares, Daniele G; Bouzid, Hana; Henriques, João A P; Larsen, Annette K; Escargueil, Alexandre E

    2015-01-01

    Repair of DNA-targeted anticancer agents is an active area of investigation of both fundamental and clinical interest. However, most studies have focused on a small number of compounds limiting our understanding of both DNA repair and the DNA damage response. S23906 is an acronycine derivative that shows strong activity toward solid tumors in experimental models. S23906 forms bulky monofunctional DNA adducts in the minor groove which leads to destabilization of the double-stranded helix. We now report that S23906 induces formation of DNA double strand breaks that are processed through homologous recombination (HR) but not Non-Homologous End-Joining (NHEJ) repair. Interestingly, S23906 exposure was accompanied by a higher sensitivity of BRCA2-deficient cells compared to other HR deficient cell lines and by an S-phase accumulation in wild-type (wt), but not in BRCA2-deficient cells. Recently, we have shown that S23906-induced S phase arrest was mediated by the checkpoint kinase Chk1. However, its activated phosphorylated form is equally induced by S23906 in wt and BRCA2-deficient cells, likely indicating a role for BRCA2 downstream of Chk1. Accordingly, override of the S phase arrest by either 7-hydroxystaurosporine (UCN-01) or AZD7762 potentiates the cytotoxic activity of S23906 in wt, but not in BRCA2-deficient cells. Together, our findings suggest that the pronounced sensitivity of BRCA2-deficient cells to S23906 is due to both a defective S-phase arrest and the absence of HR repair. Tumors with deficiencies for proteins involved in HR, and BRCA2 in particular, may thus show increased sensitivity to S23906, thereby providing a rationale for patient selection in clinical trials. PMID:25945522

  1. Scalp repair using tissue expanders.

    PubMed

    Mangubat, E Antonio

    2013-08-01

    Repair of scalp defects is often challenging, because without careful planning, excision of the defect may leave unsatisfactory cosmesis. Contemporary techniques in hair restoration surgery allow creation of natural and undetectable results, but these techniques are often unsuitable for repairing large scarred areas of hair loss. However, by using older techniques of scalp reduction and tissue expansion, excision of many large scarring defects can be accomplished. Combining older methods with modern hair restoration surgery permits the satisfactory treatment of many previously untreatable conditions. This article focuses on tissue expansion as an adjunct to repairing large scalp defects. PMID:24017990

  2. Novel DNA mismatch repair activity involving YB-1 in human mitochondria

    PubMed Central

    de Souza-Pinto, Nadja C.; Mason, Penelope A.; Hashiguchi, Kazunari; Weissman, Lior; Tian, Jingyan; Guay, David; Lebel, Michel; Stevnsner, Tinna V.; Rasmussen, Lene Juel; Bohr, Vilhelm A.

    2009-01-01

    Maintenance of the mitochondrial genome (mtDNA) is essential for proper cellular function. The accumulation of damage and mutations in the mtDNA leads to diseases, cancer, and aging. Mammalian mitochondria have proficient base excision repair, but the existence of other DNA repair pathways is still unclear. Deficiencies in DNA mismatch repair (MMR), which corrects base mismatches and small loops, are associated with DNA microsatellite instability, accumulation of mutations, and cancer. MMR proteins have been identified in yeast and coral mitochondria; however, MMR proteins and function have not yet been detected in human mitochondria. Here we show that human mitochondria have a robust mismatch-repair activity, which is distinct from nuclear MMR. Key nuclear MMR factors were not detected in mitochondria, and similar mismatch-binding activity was observed in mitochondrial extracts from cells lacking MSH2, suggesting distinctive pathways for nuclear and mitochondrial MMR. We identified the repair factor YB-1 as a key candidate for a mitochondrial mismatch-binding protein. This protein localizes to mitochondria in human cells, and contributes significantly to the mismatch-binding and mismatch-repair activity detected in HeLa mitochondrial extracts, which are significantly decreased when the intracellular levels of YB-1 are diminished. Moreover, YB-1 depletion in cells increases mitochondrial DNA mutagenesis. Our results show that human mitochondria contain a functional MMR repair pathway in which YB-1 participates, likely in the mismatch binding and recognition steps. PMID:19272840

  3. Coordination of DNA repair by NEIL1 and PARP-1: a possible link to aging

    PubMed Central

    Noren Hooten, Nicole; Fitzpatrick, Megan; Kompaniez, Kari; Jacob, Kimberly D.; Moore, Brittany R.; Nagle, Julia; Barnes, Janice; Lohani, Althaf; Evans, Michele K.

    2012-01-01

    Oxidative DNA damage accumulates with age and is repaired primarily via the base excision repair (BER) pathway. This process is initiated by DNA glycosylases, which remove damaged bases in a substrate-specific manner. The DNA glycosylases human 8-oxoguanine-DNA glycosylase (OGG1) and NEIL1, a mammalian homolog of Escherichia coli endonuclease VIII, have overlapping yet distinct substrate specificity. Recently, we reported that OGG1 binds to the Poly(ADP-ribose) polymerase 1 (PARP-1), a DNA damage sensor protein that poly(ADP-ribosyl)ates nuclear proteins in response to DNA damage and other cellular signals. Here, we show that NEIL1 and PARP-1 bind both in vitro and in vivo. PARP-1 binds to the C-terminal-100 amino acids of NEIL1 and NEIL1 binds to the BRCT domain of PARP-1. NEIL1 stimulates the poly(ADP-ribosyl)ation activity of PARP-1. Furthermore, NEIL-deficient fibroblasts have impaired poly(ADP-ribosyl)ation of cellular proteins after DNA damage, which can be rescued by NEIL1 expression. Additionally, PARP-1 inhibits NEIL1 incision activity in a concentration-dependent manner. Consistent with the idea of impaired DNA repair during aging, we observed differential binding of PARP-1 to recombinant NEIL1 in older mice compared to younger mice. These data further support the idea that dynamic interplay between different base excision repair proteins is important for efficient BER. PMID:23104860

  4. Estimating allelic diversity generated by excision of different transposon types.

    PubMed

    Nordborg, M; Walbot, V

    1995-05-01

    Methods are presented for calculating the number and type of different DNA sequences generated by base excision and insertion events at a given site in a known DNA sequence. We calculate, for example, that excision of the Mu1 transposon from the bz1::Mu1 allele of maize should generate more than 500,000 unique alleles given the extent of base deletion (up to 34 bases removed) and base insertion (0-5 bases) observed thus far in sequenced excision alleles. Analysis of this universe of potential alleles can, for example, be used to predict the frequency of creation of stop codons or repair-generated duplications. In general, knowledge of the distribution of alleles can be used to evaluate models of both excision and repair by determining whether particular events occur more frequently than expected. Such quantitative analysis complements the qualitative description provided by the DNA sequence of individual events. Similar methods can be used to evaluate the outcome of other cases of DNA breakage and repair such as programmed V(D)J recombination in immunoglobin genes. PMID:24172918

  5. A Technique for Excision of Abdominal and Pelvic Neuroblastomas

    PubMed Central

    Kiely, Edward

    2007-01-01

    INTRODUCTION As neuroblastomas usually envelope major vessels, excision poses a significant technical problem. PATIENTS AND METHODS Over a 22-year period, 234 infants and children have undergone attempted surgical excision of abdominal or pelvic neuroblastomas using a consistent surgical approach. This entails a systematic dissection of the involved vessels prior to removal of the tumour. RESULTS Macroscopically complete or near complete tumour clearance was achieved in 89% of cases. Three aortic injuries occurred which required repair. CONCLUSION The described technique is safe and reproducible and allows tumour clearance in the majority offfected children. PMID:17535608

  6. Final report [DNA Repair and Mutagenesis - 1999

    SciTech Connect

    Walker, Graham C.

    2001-05-30

    The meeting, titled ''DNA Repair and Mutagenesis: Mechanism, Control, and Biological Consequences'', was designed to bring together the various sub-disciplines that collectively comprise the field of DNA Repair and Mutagenesis. The keynote address was titled ''Mutability Doth Play Her Cruel Sports to Many Men's Decay: Variations on the Theme of Translesion Synthesis.'' Sessions were held on the following themes: Excision repair of DNA damage; Transcription and DNA excision repair; UmuC/DinB/Rev1/Rad30 superfamily of DNA polymerases; Cellular responses to DNA damage, checkpoints, and damage tolerance; Repair of mismatched bases, mutation; Genome-instability, and hypermutation; Repair of strand breaks; Replicational fidelity, and Late-breaking developments; Repair and mutation in challenging environments; and Defects in DNA repair: consequences for human disease and aging.

  7. Repair of uv damaged DNA: Genes and proteins of yeast and human

    SciTech Connect

    Prakash, L.

    1992-04-01

    Our objectives are to determine the molecular mechanism of the incision step of excision repair of ultraviolet (UV) light damaged DNA in eukaryotic organisms, using the yeast Saccharomyces cerevisiae as a model system, and to study the human homologs of yeast excision repair and postreplication repair proteins progress is described.

  8. 5-Fluorouracil mediated anti-cancer activity in colon cancer cells is through the induction of Adenomatous Polyposis Coli: Implication of the long-patch base excision repair pathway

    PubMed Central

    Das, Dipon; Preet, Ranjan; Mohapatra, Purusottam; Satapathy, Shakti Ranjan; Siddharth, Sumit; Tamir, Tigist; Jain, Vaibhav; Bharatam, Prasad V.; Wyatt, Michael D.; Kundu, Chanakya Nath

    2016-01-01

    Colorectal cancer (CRC) patients with APC mutations do not benefit from 5-FU therapy. It was reported that APC physically interacts with POLβ and FEN1, thus blocking LP-BER via APC’s DNA repair inhibitory (DRI) domain in vitro. The aim of this study was to elucidate how APC status affects BER and the response of CRC to 5-FU. HCT-116, HT-29, and LOVO cells varying in APC status were treated with 5-FU to evaluate expression, repair, and survival responses. HCT-116 expresses wild-type APC; HT-29 expresses an APC mutant that contains DRI domain; LOVO expresses an APC mutant lacking DRI domain. 5-FU increased the expression of APC and decreased the expression of FEN1 in HCT-116 and HT-29 cells, which were sensitized to 5-FU when compared to LOVO cells. Knockdown of APC in HCT-116 rendered cells resistant to 5-FU, and FEN1 levels remained unchanged. Re-expression of full-length APC in LOVO cells caused sensitivity to 5-FU, and decreased expression of FEN1. These knockdown and addback studies confirmed that the DRI domain is necessary for the APC-mediated reduction in LP-BER and 5-FU. Modelling studies showed that 5-FU can interact with the DRI domain of APC via hydrogen bonding and hydrophobic interactions. 5-FU resistance in CRC occurs with mutations in APC that disrupt or eliminate the DRI domain’s interaction with LP-BER. Understanding the type of APC mutation should better predict 5-FU resistance in CRC than simply characterizing APC status as wild-type or mutant. PMID:25460919

  9. The use of a biological graft for the closure of large abdominal wall defects following excision of soft tissue tumours

    PubMed Central

    Illingworth, Emma; Rooney, Paul S.; Heath, Richard; Chandrasekar, Coonoor R.

    2015-01-01

    Primary soft tissue tumours arising from the abdominal wall are uncommon and surgical excision of such tumours can result in large abdominal wall defects. There are many techniques available for abdominal wall repair following tumour excision, each having its own advantages and disadvantages. The options range from direct closure to the use of tissue flap reconstructions and/or prosthetic meshes. Currently, synthetic material such as polypropylene mesh is a common choice for closure of abdominal wall defects after tumour excision. Biological meshes are an alternative option for repair, and this report outlines two cases of abdominal wall repair using the porcine intestinal submucosa biological graft following excision of abdominal wall tumours. There was no evidence of infection, recurrence, seroma or hernias at 2-year follow-up. Following excision of soft tissue tumours of the abdominal wall, biological reconstructions can be successfully used to bridge the defect with minimal morbidity. PMID:26109681

  10. Resveratrol mediated cell death in cigarette smoke transformed breast epithelial cells is through induction of p21Waf1/Cip1 and inhibition of long patch base excision repair pathway

    SciTech Connect

    Mohapatra, Purusottam; Satapathy, Shakti Ranjan; Das, Dipon; Siddharth, Sumit; Choudhuri, Tathagata; Kundu, Chanakya Nath

    2014-03-15

    Cigarette smoking is a key factor for the development and progression of different cancers including mammary tumor in women. Resveratrol (Res) is a promising natural chemotherapeutic agent that regulates many cellular targets including p21, a cip/kip family of cyclin kinase inhibitors involved in DNA damage-induced cell cycle arrest and blocking of DNA replication and repair. We have recently shown that cigarette smoke condensate (CSC) prepared from commercially available Indian cigarette can cause neoplastic transformation of normal breast epithelial MCF-10A cell. Here we studied the mechanism of Res mediated apoptosis in CSC transformed (MCF-10A-Tr) cells in vitro and in vivo. Res mediated apoptosis in MCF-10A-Tr cells was a p21 dependent event. It increased the p21 protein expression in MCF-10A-Tr cells and MCF-10A-Tr cells-mediated tumors in xenograft mice. Res treatment reduced the tumor size(s) and expression of anti-apoptotic proteins (e.g. PI3K, AKT, NFκB) in solid tumor. The expressions of cell cycle regulatory (Cyclins, CDC-2, CDC-6, etc.), BER associated (Pol-β, Pol-δ, Pol-ε, Pol-η, RPA, Fen-1, DNA-Ligase-I, etc.) proteins and LP-BER activity decreased in MCF-10A-Tr cells but remain significantly unaltered in isogenic p21 null MCF-10A-Tr cells after Res treatment. Interestingly, no significant changes were noted in SP-BER activity in both the cell lines after Res exposure. Finally, it was observed that increased p21 blocks the LP-BER in MCF-10A-Tr cells by increasing its interaction with PCNA via competing with Fen-1 after Res treatment. Thus, Res caused apoptosis in CSC-induced cancer cells by reduction of LP-BER activity and this phenomenon largely depends on p21. - Highlights: • Resveratrol (Res) caused reduction of MCF-10A-Tr cell growth by inducing apoptosis. • Res caused cell cycle arrest and DNA damage in p21 dependent manner. • Res mediated LP-BER reduction in MCF-10A-Tr cells was a p21 dependent phenomenon. • Res inhibits BER and PI

  11. Proteoglycans and brain repair.

    PubMed

    Properzi, Francesca; Fawcett, James W

    2004-02-01

    Proteoglycans are complex molecules composed of long, unbranched sugar chains attached to a protein core. In the mammalian central nervous system, they are a major component of the extracellular matrix and of the cellular surface. After a central nervous system injury, their expression in the lesion area changes strongly and contributes to the inhibition of axon regrowth and brain repair. PMID:14739401

  12. Evolution of the redox function in mammalian apurinic/apyrimidinic endonuclease.

    PubMed

    Georgiadis, M M; Luo, M; Gaur, R K; Delaplane, S; Li, X; Kelley, M R

    2008-08-25

    Human apurinic/apyrimidinic endonuclease (hApe1) encodes two important functional activities: an essential base excision repair (BER) activity and a redox activity that regulates expression of a number of genes through reduction of their transcription factors, AP-1, NFkappaB, HIF-1alpha, CREB, p53 and others. The BER function is highly conserved from prokaryotes (E. coli exonuclease III) to humans (hApe1). Here, we provide evidence supporting a redox function unique to mammalian Apes. An evolutionary analysis of Ape sequences reveals that, of the 7 Cys residues, Cys 93, 99, 208, 296, and 310 are conserved in both mammalian and non-mammalian vertebrate Apes, while Cys 65 is unique to mammalian Apes. In the zebrafish Ape (zApe), selected as the vertebrate sequence most distant from human, the residue equivalent to Cys 65 is Thr 58. The wild-type zApe enzyme was tested for redox activity in both in vitro EMSA and transactivation assays and found to be inactive, similar to C65A hApe1. Substitution of Thr 58 with Cys in zApe, however, resulted in a redox active enzyme, suggesting that a Cys residue in this position is indeed critical for redox function. In order to further probe differences between redox active and inactive enzymes, we have determined the crystal structures of vertebrate redox inactive enzymes, the C65A human Ape1 enzyme and the zApe enzyme at 1.9 and 2.3A, respectively. Our results provide new insights on the redox function and highlight a dramatic gain-of-function activity for Ape1 in mammals not found in non-mammalian vertebrates or lower organisms. PMID:18579163

  13. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  14. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  15. Repair of uv damaged DNA: Genes and proteins of yeast and human. Progress report, November 1, 1991--April 15, 1992

    SciTech Connect

    Prakash, L.

    1992-04-01

    Our objectives are to determine the molecular mechanism of the incision step of excision repair of ultraviolet (UV) light damaged DNA in eukaryotic organisms, using the yeast Saccharomyces cerevisiae as a model system, and to study the human homologs of yeast excision repair and postreplication repair proteins progress is described.

  16. Damage and repair of irradiated mammalian brain

    SciTech Connect

    Frankel, K.; Lo, E.; Phillips, M.; Fabrikant, J.; Brennan, K.; Valk, P.; Poljak, A.; Delapaz, R.; Woodruff, K.; Stanford Univ., CA . Medical Center; Brookside Hospital, San Pablo, CA )

    1989-07-01

    We have demonstrated that focal charged particle irradiation of the rabbit brain can create well-defined lesions which are observable by nuclear magnetic resonance imaging (NMR) and positron emission tomography (PET) imaging techniques. These are similar, in terms of location and characteristic NMR and PET features, to those that occur in the brain of about 10% of clinical research human subjects, who have been treated for intracranial vascular malformations with stereotactic radiosurgery. These lesions have been described radiologically as vasogenic edema of the deep white matter,'' and the injury is of variable intensity and temporal duration, can recede or progress to serious neurologic sequelae, and persist for a considerable period of time, frequently 18 mon to 3 yr. 8 refs., 6 figs.

  17. Meningocele repair

    MedlinePlus

    ... dysraphism repair; Meningomyelocele repair; Neural tube defect repair; Spina bifida repair ... a medical team with experience in children with spina bifida. Your baby will likely have an MRI (magnetic ...

  18. Earthworms repair H2O2-induced oxidative DNA adducts without removing UV-induced pyrimidine dimers.

    PubMed

    Chang, Wen-Shin; Tsai, Chia-Wen; Lin, Cheng-Chieh; Lin, Chih-Hsueh; Shen, Wu-Chung; Lin, Song-Shei; Bau, Da-Tian

    2011-01-01

    Ultraviolet (UV) radiation is a natural insult to various organisms. Earthworms, although possessing similar biomolecules to those in mammalian skin, do not suffer from skin cancer nor any other types of cancer as humans do. However, little is known about the molecular mechanism of the earthworm's tolerance to UV. In this study, we evaluated the genotoxicity of UV and the capacity of earthworm cell to repair UV-induced damage. The T4 UV endonuclease UV-incorporated comet assay was used to examine the excision and rejoining steps of UV-induced pyrimidine dimer. Earthworm testis cells were treated with a combination of 5 mM hydroxyurea plus 50 μM cytosine-β-D-arabinofuranoside for 6 h to block DNA rejoining capacity and to investigate excision dynamics. Compared with H(2)O(2)-induced oxidative repair capacity, the excision step of repair of UV-induced lesions in earthworm testis cells was significantly lower. After 6-h treatment of 5 mM hydroxyurea plus 50 μM cytosine-β-D-arabinofuranoside, the medium was totally replaced with fresh medium and cells were allowed to rejoin the accumulated DNA strand breaks. We found that the capacity for rejoining UV-induced breaks was also significantly lower than that for the H(2)O(2)-induced breaks. Our results strongly suggest that earthworms seem to be efficient at repairing H(2)O(2)-induced oxidative DNA adducts, but not so capable of removing UV-induced pyrimidine dimers from their genome. PMID:22021692

  19. Excision of the piggyBac transposable element in maize cells is a precise event

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The piggyBac transposable element (TE) from the moth Trichoplusia ni encodes a ‘cut and paste’ DNA transposase that has been used to transform a number of insects, as well as planaria, mammalian cells, and mice. The wild type and a mutated piggyBac TE excised from a DNA vector in transient assays u...

  20. Role of DNA repair inhibition in lead- and cadmium-induced genotoxicity: a review.

    PubMed Central

    Hartwig, A

    1994-01-01

    Compounds of lead and cadmium have been shown to be carcinogenic to humans and experimental animals. However, the underlying mechanisms are still not understood. In mammalian cells in culture, lead(II) is weakly mutagenic after long incubation times and generates DNA strand breaks only after treatment with high, toxic doses. Cadmium(II) induces DNA strand breaks and chromosomal aberrations, but its mutagenic potential is rather weak. However, both metals exert pronounced indirect genotoxic effects. Lead(II) is comutagenic towards UV and N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and enhances the number of UV-induced sister chromatid exchanges in V79 Chinese hamster cells. With regard to DNA repair, lead(II) causes an accumulation of DNA strand breaks after UV-irradiation in HeLa cells, indicating an interference with the polymerization or ligation step in excision repair. Cadmium(II) enhances the mutagenicity of UV light in V79 Chinese hamster cells and an increased sensitivity toward UV light is observed in various rodent and human cell lines. Furthermore, an inhibition of unscheduled DNA synthesis after UV-irradiation and a partial inhibition of the removal of UV-induced DNA lesions has been shown. For both metals, the indirect genotoxic effects are observed at low, nontoxic concentrations, suggesting that an interference with DNA repair processes may be predominant at biologically relevant concentrations. This might also explain the conflicting results of epidemiological studies obtained for both metals. Possible mechanisms of repair inhibition are discussed. PMID:7843136

  1. Rethinking transcription coupled DNA repair.

    PubMed

    Kamarthapu, Venu; Nudler, Evgeny

    2015-04-01

    Nucleotide excision repair (NER) is an evolutionarily conserved, multistep process that can detect a wide variety of DNA lesions. Transcription coupled repair (TCR) is a subpathway of NER that repairs the transcribed DNA strand faster than the rest of the genome. RNA polymerase (RNAP) stalled at DNA lesions mediates the recruitment of NER enzymes to the damage site. In this review we focus on a newly identified bacterial TCR pathway in which the NER enzyme UvrD, in conjunction with NusA, plays a major role in initiating the repair process. We discuss the tradeoff between the new and conventional models of TCR, how and when each pathway operates to repair DNA damage, and the necessity of pervasive transcription in maintaining genome integrity. PMID:25596348

  2. Protein oxidation, UVA and human DNA repair.

    PubMed

    Karran, Peter; Brem, Reto

    2016-08-01

    Solar UVB is carcinogenic. Nucleotide excision repair (NER) counteracts the carcinogenicity of UVB by excising potentially mutagenic UVB-induced DNA lesions. Despite this capacity for DNA repair, non-melanoma skin cancers and apparently normal sun-exposed skin contain huge numbers of mutations that are mostly attributable to unrepaired UVB-induced DNA lesions. UVA is about 20-times more abundant than UVB in incident sunlight. It does cause some DNA damage but this does not fully account for its biological impact. The effects of solar UVA are mediated by its interactions with cellular photosensitizers that generate reactive oxygen species (ROS) and induce oxidative stress. The proteome is a significant target for damage by UVA-induced ROS. In cultured human cells, UVA-induced oxidation of DNA repair proteins inhibits DNA repair. This article addresses the possible role of oxidative stress and protein oxidation in determining DNA repair efficiency - with particular reference to NER and skin cancer risk. PMID:27324272

  3. Aberrant repair initiated by mismatch-specific thymine-DNA glycosylases provides a mechanism for the mutational bias observed in CpG islands

    PubMed Central

    Talhaoui, Ibtissam; Couve, Sophie; Gros, Laurent; Ishchenko, Alexander A.; Matkarimov, Bakhyt; Saparbaev, Murat K.

    2014-01-01

    The human thymine-DNA glycosylase (TDG) initiates the base excision repair (BER) pathway to remove spontaneous and induced DNA base damage. It was first biochemically characterized for its ability to remove T mispaired with G in CpG context. TDG is involved in the epigenetic regulation of gene expressions by protecting CpG-rich promoters from de novo DNA methylation. Here we demonstrate that TDG initiates aberrant repair by excising T when it is paired with a damaged adenine residue in DNA duplex. TDG targets the non-damaged DNA strand and efficiently excises T opposite of hypoxanthine (Hx), 1,N6-ethenoadenine, 7,8-dihydro-8-oxoadenine and abasic site in TpG/CpX context, where X is a modified residue. In vitro reconstitution of BER with duplex DNA containing Hx•T pair and TDG results in incorporation of cytosine across Hx. Furthermore, analysis of the mutation spectra inferred from single nucleotide polymorphisms in human population revealed a highly biased mutation pattern within CpG islands (CGIs), with enhanced mutation rate at CpA and TpG sites. These findings demonstrate that under experimental conditions used TDG catalyzes sequence context-dependent aberrant removal of thymine, which results in TpG, CpA→CpG mutations, thus providing a plausible mechanism for the putative evolutionary origin of the CGIs in mammalian genomes. PMID:24692658

  4. Repair of ultraviolet-light-induced damage

    SciTech Connect

    Sutherland, B.M.

    1981-01-01

    Studies are reviewed which present three major new findings in the photobiology of skin. First, detectable numbers of dimers are formed even at sub-erythymal doses. Second, excision of dimers is much more rapid than would be predicted from results obtained in cell culture. Third, comparison of the rates of excision and photoreactivation in skin indicates that in normal sunlight exposure, photoreactivation may well be the predominant repair pathway in skin. (ACR)

  5. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  6. Molecular regulation of UV-induced DNA repair.

    PubMed

    Shah, Palak; He, Yu-Ying

    2015-01-01

    Ultraviolet (UV) radiation from sunlight is a major etiologic factor for skin cancer, the most prevalent cancer in the United States, as well as premature skin aging. In particular, UVB radiation causes formation of specific DNA damage photoproducts between pyrimidine bases. These DNA damage photoproducts are repaired by a process called nucleotide excision repair, also known as UV-induced DNA repair. When left unrepaired, UVB-induced DNA damage leads to accumulation of mutations, predisposing people to carcinogenesis as well as to premature aging. Genetic loss of nucleotide excision repair leads to severe disorders, namely, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS), which are associated with predisposition to skin carcinogenesis at a young age as well as developmental and neurological conditions. Regulation of nucleotide excision repair is an attractive avenue to preventing or reversing these detrimental consequences of impaired nucleotide excision repair. Here, we review recent studies on molecular mechanisms regulating nucleotide excision repair by extracellular cues and intracellular signaling pathways, with a special focus on the molecular regulation of individual repair factors. PMID:25534312

  7. Molecular Regulation of UV-Induced DNA Repair

    PubMed Central

    Shah, Palak; He, Yu-Ying

    2014-01-01

    Ultraviolet (UV) radiation from sunlight is a major etiologic factor for skin cancer, the most prevalent cancer in the U.S., as well as premature skin aging. In particular, UVB radiation causes formation of specific DNA damage photoproducts between pyrimidine bases. These DNA damage photoproducts are repaired by a process called nucleotide excision repair, also known as UV-induced DNA repair. When left unrepaired, UVB-induced DNA damage leads to accumulation of mutations, predisposing people to carcinogenesis as well as to premature aging. Genetic loss of nucleotide excision repair leads to severe disorders, namely, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS), which are associated with predisposition to skin carcinogenesis at a young age as well as developmental and neurological conditions. Regulation of nucleotide excision repair is an attractive avenue to preventing or reversing these detrimental consequences of impaired nucleotide excision repair. Here we review recent studies on molecular mechanisms regulating nucleotide excision repair by extracellular cues and intracellular signaling pathways, with a special focus on the molecular regulation of individual repair factors. PMID:25534312

  8. Mammalian aromatases.

    PubMed

    Conley, A; Hinshelwood, M

    2001-05-01

    Aromatase is the enzyme complex that catalyses the synthesis of oestrogens from androgens, and therefore it has unique potential to influence the physiological balance between the sex steroid hormones. Both aromatase cytochrome P450 (P450arom) and NADPH-cytochrome P450 reductase (reductase), the two essential components of the enzyme complex, are highly conserved among mammals and vertebrates. Aromatase expression occurs in the gonads and brain, and is essential for reproductive development and fertility. Of interest are the complex mechanisms involving alternative promoter utilization that have evolved to control tissue-specific expression in these tissues. In addition, in a number of species, including humans, expression of aromatase has a broader tissue distribution, including placenta, adipose and bone. The relevance of oestrogen synthesis and possibly androgen metabolism in these peripheral sites of expression is now becoming clear from studies in P450arom knockout (ArKO) mice and from genetic defects recognized recently in both men and women. Important species differences in the physiological roles of aromatase expression are also likely to emerge, despite the highly conserved nature of the enzyme system. The identification of functionally distinct, tissue-specific isozymes of P450arom in at least one mammal, pigs, and several species of fish indicates that there are additional subtle, but physiologically significant, species-specific roles for aromatase. Comparative studies of mammalian and other vertebrate aromatases will expand understanding of the role played by this ancient enzyme system in the evolution of reproduction and the adaptive influence of oestrogen synthesis on general health and well being. PMID:11427156

  9. DNA repair

    SciTech Connect

    Friedberg, E.C.; Hanawalt, P.C. )

    1988-01-01

    Topics covered in this book included: Eukaryote model systems for DNA repair study; Sensitive detection of DNA lesions and their repair; and Defined DNA sequence probes for analysis of mutagenesis and repair.

  10. Management of the Perineal Defect after Abdominoperineal Excision.

    PubMed

    Peirce, Colin; Martin, Sean

    2016-06-01

    The optimal management of the perineal defect following abdominoperineal excision for anorectal malignancy remains a source of debate. The repopularization of extralevator resection means colorectal surgeons are confronted with larger perineal wounds. There are several surgical options available-primary perineal closure and drainage, omentoplasty, biological or synthetic mesh placement, musculocutaneous flap repair, and negative wound pressure therapy. These options are discussed along with the potential benefits and complications of each. There remains no consensus on which management strategy is superior; thus, each case must be tailored for each individual patient. Surgical expertise and availability of a multidisciplinary team approach are important considerations. PMID:27247542

  11. The structural basis for substrate recognition by mammalian polynucleotide kinase 3’ phosphatase

    PubMed Central

    Garces, Fernando; Pearl, Laurence H.; Oliver, Antony W.

    2016-01-01

    Mammalian polynucleotide kinase 3’ phosphatase (PNK) plays a key role in the repair of DNA damage, functioning as part of both the non-homologous end-joining (NHEJ) and base-excision repair (BER) pathways. Through its two catalytic activities, PNK ensures that DNA termini are compatible with extension and ligation by either removing 3’-phosphates from, or by phosphorylating 5’-hydroxyl groups on, the ribose sugar of the DNA backbone. We have now determined crystal structures of murine PNK with DNA molecules bound to both of its active sites. The structure of ssDNA engaged with the 3’-phosphatase domain suggests a mechanism of substrate interaction that assists DNA end-seeking. The structure of dsDNA bound to the 5’-kinase domain reveals a mechanism of DNA bending that facilitates recognition of DNA-ends in the context of single-strand and double-strand breaks, and suggests a close functional cooperation in substrate recognition between the kinase and phosphatase active sites. PMID:22055185

  12. Energy and Technology Review: Unlocking the mysteries of DNA repair

    SciTech Connect

    Quirk, W.A.

    1993-04-01

    DNA, the genetic blueprint, has the remarkable property of encoding its own repair following diverse types of structural damage induced by external agents or normal metabolism. We are studying the interplay of DNA damaging agents, repair genes, and their protein products to decipher the complex biochemical pathways that mediate such repair. Our research focuses on repair processes that correct DNA damage produced by chemical mutagens and radiation, both ionizing and ultraviolet. The most important type of DNA repair in human cells is called excision repair. This multistep process removes damaged or inappropriate pieces of DNA -- often as a string of 29 nucleotides containing the damage -- and replaces them with intact ones. We have isolated, cloned, and mapped several human repair genes associated with the nucleotide excision repair pathway and involved in the repair of DNA damage after exposure to ultraviolet light or mutagens in cooked food. We have shown that a defect in one of these repair genes, ERCC2, is responsible for the repair deficiency in one of the groups of patients with the recessive genetic disorder xeroderma pigmentosum (XP group D). We are exploring ways to purify sufficient quantities (milligrams) of the protein products of these and other repair genes so that we can understand their functions. Our long-term goals are to link defective repair proteins to human DNA repair disorders that predispose to cancer, and to produce DNA-repair-deficient mice that can serve as models for the human disorders.

  13. Repair and cell cycle response in cells exposed to environmental biohazards. Progress report, June 1, 1979-May 31, 1980

    SciTech Connect

    Billen, D.; Hadden, C.T.

    1980-01-01

    Progress is reported in the following research areas: (1) DNA repair in Bacillus subtilis; (2) postreplication repair in Rec/sup -/ mutants of B. subtilis; (3) photobiology of halogenated DNA; (4) effects of caffeine on pyrimidine dimer excision and postreplication repair in B. subtilis; and (5) DNA repair in toluene-treated Escherichia coli. (ACR)

  14. The major human AP endonuclease (Ape1) is involved in the nucleotide incision repair pathway

    PubMed Central

    Gros, Laurent; Ishchenko, Alexander A.; Ide, Hiroshi; Elder, Rhoderick H.; Saparbaev, Murat K.

    2004-01-01

    In nucleotide incision repair (NIR), an endonuclease nicks oxidatively damaged DNA in a DNA glycosylase-independent manner, providing the correct ends for DNA synthesis coupled to the repair of the remaining 5′-dangling modified nucleotide. This mechanistic feature is distinct from DNA glycosylase-mediated base excision repair. Here we report that Ape1, the major apurinic/apyrimidinic endonuclease in human cells, is the damage- specific endonuclease involved in NIR. We show that Ape1 incises DNA containing 5,6-dihydro-2′-deoxyuridine, 5,6-dihydrothymidine, 5-hydroxy-2′-deoxyuridine, alpha-2′-deoxyadenosine and alpha-thymidine adducts, generating 3′-hydroxyl and 5′-phosphate termini. The kinetic constants indicate that Ape1-catalysed NIR activity is highly efficient. The substrate specificity and protein conformation of Ape1 is modulated by MgCl2 concentrations, thus providing conditions under which NIR becomes a major activity in cell-free extracts. While the N-terminal region of Ape1 is not required for AP endonuclease function, we show that it regulates the NIR activity. The physiological relevance of the mammalian NIR pathway is discussed. PMID:14704345

  15. Local excision for selected colorectal carcinomas.

    PubMed

    Lawrence, M A; Goldberg, S M

    1989-07-01

    In summary, local excision is a useful tool in the management of selected colorectal carcinomas. The advent of the fibreoptic colonoscope has revised the concept of local excision when dealing with carcinoma-containing polyps of the colon. The clinician now has the means of locally excising certain carcinomas which would have required laparotomy in the not so distant past. In dealing with carcinoma of the rectum, local excision is not advocated for all rectal carcinomas. In fact, when the previously discussed tumour related factors are considered, local excision should be the ultimate procedure in less than 5% of operations performed for rectal carcinomas. However, when appropriately used, local excision provides a less morbid alternative to more radical procedures without compromising patient survival rates or local recurrence rates. PMID:2692739

  16. New Paradigms in the Repair of Oxidative Damage in Human Genome

    PubMed Central

    Dutta, Arijit; Yang, Chunying; Sengupta, Shiladitya; Mitra, Sankar; Hegde, Muralidhar L.

    2015-01-01

    Oxidized bases in the mammalian genome, which are invariably mutagenic due to their mis-pairing property, are continuously induced by endogenous reactive oxygen species (ROS) and more abundantly after oxidative stress. Unlike bulky base adducts induced by UV and other environmental mutagens in the genome that block replicative DNA polymerases, oxidatively damaged bases such as 5-hydoxyuracil (5-OHU), produced by oxidative deamination of cytosine in the template strand, do not block replicative polymerases and thus need to be repaired prior to replication in order to prevent mutation. Following up our earlier studies, which showed that the Nei endonuclease VIII like 1 (NEIL1) DNA glycosylase, one of five base excision repair (BER)-initiating enzymes in mammalian cells, has enhanced expression during the S-phase and higher affinity for replication fork-mimicking single-stranded (ss) DNA substrates, we recently provided direct experimental evidence for NEIL1’s role in replicating template-strand repair. The key requirement for this event, which we named as the ‘cow-catcher’ mechanism of pre-replicative BER, is NEIL1’s non-productive binding (substrate binding without product formation) to the lesion base in ss DNA template to stall DNA synthesis, causing fork regression. Repair of the lesion in re-annealed duplex is then carried out by NEIL1 in association with the DNA replication proteins. NEIL1 (and other BER-initiating enzymes) also interact with several accessory and non-canonical proteins including the heterogeneous nuclear ribonucleoprotein U (hnRNP-U) and Y-box-binding protein 1 (YB-1) as well as high mobility group box 1 protein (HMGB1), whose precise roles in BER are still obscure. In this review, we have discussed the recent advances in our understanding of oxidative genome damage repair pathways with particular focus on the pre-replicative template strand repair and the role of scaffold factors like X-ray repair cross-complementing protein 1 (XRCC1

  17. Surgical excision of the burn wound.

    PubMed

    Mosier, Michael J; Gibran, Nicole S

    2009-10-01

    Early excision of the burn eschar has been one of the most significant advances in modern burn care. Historical advances in understanding of the pathophysiology of burn injury and the systemic inflammatory response fueled by the burn wound, and refinements in the techniques of tangential and fascial excision, have led to earlier excision and grafting of the burn wound with improvements in morbidity and mortality. Efforts to control blood loss, and good operative planning and attention to special areas, can lead to the safe excision and grafting of large burns. PMID:19793556

  18. Laparoscopic Excision of Retroperitoneal Schwannoma

    PubMed Central

    Rajkumar, J S; Anirudh, J R; Akbar, S; Kishore, C M

    2015-01-01

    Schwannomas are tumours that arise from the myelin sheath of the nerves. A very unusual location for schwannoma is the retro peritoneal areas (less than 2%). We present herewith a patient who had a 4x5cm Schwannoma arising from the nerve root of L2 on the right side, which presented as a lump in the psoas major muscle. This was treated by total laparoscopic excision after splitting open the psoas major. In the published english medical literature we could find only 16 cases of laparoscopic resection of retroperitoneal schwannoma and we believe ours to be the first case that was done through a psoas muscle split technique. Technical and histopathological details are discussed elaborately in this article. PMID:26676094

  19. The inhibition of DNA repair by aphidicolin or cytosine arabinoside in X-irradiated normal and xeroderma pigmentosum fibroblasts.

    PubMed

    Waters, R; Crocombe, K; Mirzayans, R

    1982-05-01

    Normal and excision-deficient xeroderma pigmentosum fibroblasts were X-irradiated and the influence on DNA repair of either the repair inhibitor cytosine arabinoside or the specific inhibitor of Dna polymerase alpha, aphidicolin, investigated. The data indicated that the repair of a certain fraction of X-ray-induced lesions can be inhibited in both cell lines by both compounds. Thus, as aphidicolin blocks the operation of polymerase alpha, this enzyme must be involved in an excision repair pathway operating in both normal and excision-deficient xeroderma pigmentosum cells. PMID:6808389

  20. Clubfoot repair

    MedlinePlus

    ... release; Talipes equinovarus - repair; Tibialis anterior tendon transfer Images Clubfoot repair - series References Kelly DM. Congenital Anomalies ... provided herein should not be used during any medical emergency or for the diagnosis or treatment of ...

  1. DNA polymerase θ (POLQ), double-strand break repair, and cancer.

    PubMed

    Wood, Richard D; Doublié, Sylvie

    2016-08-01

    DNA polymerase theta (pol θ) is encoded in the genomes of many eukaryotes, though not in fungi. Pol θ is encoded by the POLQ gene in mammalian cells. The C-terminal third of the protein is a family A DNA polymerase with additional insertion elements relative to prokaryotic homologs. The N-terminal third is a helicase-like domain with DNA-dependent ATPase activity. Pol θ is important in the repair of genomic double-strand breaks (DSBs) from many sources. These include breaks formed by ionizing radiation and topoisomerase inhibitors, breaks arising at stalled DNA replication forks, breaks introduced during diversification steps of the mammalian immune system, and DSB induced by CRISPR-Cas9. Pol θ participates in a route of DSB repair termed "alternative end-joining" (altEJ). AltEJ is independent of the DNA binding Ku protein complex and requires DNA end resection. Pol θ is able to mediate joining of two resected 3' ends harboring DNA sequence microhomology. "Signatures" of Pol θ action during altEJ are the frequent utilization of longer microhomologies, and the insertion of additional sequences at joining sites. The mechanism of end-joining employs the ability of Pol θ to tightly grasp a 3' terminus through unique contacts in the active site, allowing extension from minimally paired primers. Pol θ is involved in controlling the frequency of chromosome translocations and preserves genome integrity by limiting large deletions. It may also play a backup role in DNA base excision repair. POLQ is a member of a cluster of similarly upregulated genes that are strongly correlated with poor clinical outcome for breast cancer, ovarian cancer and other cancer types. Inhibition of pol θ is a compelling approach for combination therapy of radiosensitization. PMID:27264557

  2. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    PubMed Central

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A.

    2014-01-01

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting. PMID:25099886

  3. 27 CFR 70.412 - Excise taxes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Excise taxes. 70.412 Section 70.412 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Beer § 70.412 Excise taxes. (a) Collection. Taxes on distilled spirits, wines, and beer are paid...

  4. 27 CFR 26.30 - Excise taxes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Excise taxes. 26.30 Section 26.30 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Into the United States From Areas Other Than Puerto Rico and the Virgin Islands § 26.30 Excise...

  5. Repair of UV damage in Halobacterium salinarum.

    PubMed

    McCready, S; Marcello, L

    2003-06-01

    Halobacterium is one of the few known Archaea that tolerates high levels of sunlight in its natural environment. Photoreactivation is probably its most important strategy for surviving UV irradiation and we have shown that both of the major UV photoproducts, cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts, can be very efficiently repaired by photoreactivation in this organism. There are two putative photolyase gene homologues in the published genome sequence of Halobacterium sp. NRC-1. We have made a mutant deleted in one of these, phr2, and confirmed that this gene codes for a CPD photolyase. (6-4) photoproducts are still photoreactivated in the mutant so we are currently establishing whether the other homologue, phr1, codes for a (6-4) photolyase. We have also demonstrated an excision repair capacity that operates in the absence of visible light but the nature of this pathway is not yet known. There is probably a bacteria-type excision-repair mechanism, since homologues of uvrA, uvrB, uvrC and uvrD have been identified in the Halobacterium genome. However, there are also homologues of eukaryotic nucleotide-excision-repair genes ( Saccharomyces cerevisiae RAD3, RAD25 and RAD2 ) so there may be multiple repair mechanisms for UV damage in Halobacterium. PMID:12773185

  6. DNA repair in Mycoplasma gallisepticum

    PubMed Central

    2013-01-01

    Background DNA repair is essential for the maintenance of genome stability in all living beings. Genome size as well as the repertoire and abundance of DNA repair components may vary among prokaryotic species. The bacteria of the Mollicutes class feature a small genome size, absence of a cell wall, and a parasitic lifestyle. A small number of genes make Mollicutes a good model for a “minimal cell” concept. Results In this work we studied the DNA repair system of Mycoplasma gallisepticum on genomic, transcriptional, and proteomic levels. We detected 18 out of 22 members of the DNA repair system on a protein level. We found that abundance of the respective mRNAs is less than one per cell. We studied transcriptional response of DNA repair genes of M. gallisepticum at stress conditions including heat, osmotic, peroxide stresses, tetracycline and ciprofloxacin treatment, stationary phase and heat stress in stationary phase. Conclusions Based on comparative genomic study, we determined that the DNA repair system M. gallisepticum includes a sufficient set of proteins to provide a cell with functional nucleotide and base excision repair and mismatch repair. We identified SOS-response in M. gallisepticum on ciprofloxacin, which is a known SOS-inducer, tetracycline and heat stress in the absence of established regulators. Heat stress was found to be the strongest SOS-inducer. We found that upon transition to stationary phase of culture growth transcription of DNA repair genes decreases dramatically. Heat stress does not induce SOS-response in a stationary phase. PMID:24148612

  7. Breast reconstruction following excision of phylloides tumor.

    PubMed

    Lai, Y L; Weng, C J; Noordhoff, M S

    1999-08-01

    There are few papers published on breast reconstruction after excision of phylloides tumor. Six patients who had reconstruction of the breast following excision of phylloides tumor are described. All underwent wide excision or subcutaneous mastectomy followed by immediate or delayed reconstruction with implants or autologous tissue. The mean follow-up was 5 years (range, 2.5-7 years). One patient died of metastases; the others survived without evidence of recurrence. The etiology, incidence, diagnosis, and treatment of these tumors are discussed. The aesthetic results in these patients is also described. PMID:10454317

  8. End modification of a linear DNA duplex enhances NER-mediated excision of an internal Pt(II)-lesion.

    PubMed

    Mason, Tracey McGregor; Smeaton, Michael B; Cheung, Joyce C Y; Hanakahi, Les A; Miller, Paul S

    2008-05-01

    The study of DNA repair has been facilitated by the development of extract-based in vitro assay systems and the use of synthetic DNA duplexes that contain site-specific lesions as repair substrates. Unfortunately, exposed DNA termini can be a liability when working in crude cell extracts because they are targets for DNA end-modifying enzymes and binding sites for proteins that recognize DNA termini. In particular, the double-strand break repair protein Ku is an abundant DNA end-binding protein that has been shown to interfere with nucleotide excision repair (NER) in vitro. To facilitate the investigation of NER in whole-cell extracts, we explored ways of modifying the exposed ends of synthetic repair substrates to prevent Ku binding and improve in vitro NER efficiency. Replacement of six contiguous phosphodiester linkages at the 3'-ends of the duplex repair substrate with nuclease-resistant nonionic methylphosphonate linkages resulted in a 280-fold decrease in binding affinity between Ku and the modified duplex. These results are consistent with the published crystal structure of a Ku/DNA complex [Walker et al. (2001) Nature 412, 607-614] and show that the 3'-terminal phosphodiester linkages of linear DNA duplexes are important determinants in DNA end-binding by Ku. Using HeLa whole-cell extracts and a 149-base pair DNA duplex repair substrate, we tested the effects of modification of exposed DNA termini on NER-mediated in vitro excision of a 1,3-GTG-Pt(II) intrastrand cross-link. Methylphosphonate modification at the 3'-ends of the repair substrate resulted in a 1.6-fold increase in excision. Derivatization of the 5'-ends of the duplex with biotin and subsequent conjugation with streptavidin to block Ku binding resulted in a 2.3-fold increase excision. By combining these modifications, we were able to effectively reduce Ku-derived interference of NER excision in vitro and observed a 4.4-fold increase in platinum lesion excision. These modifications are easy to

  9. Developmental defects and male sterility in mice lacking the ubiquitin-like DNA repair gene mHR23B.

    PubMed

    Ng, Jessica M Y; Vrieling, Harry; Sugasawa, Kaoru; Ooms, Marja P; Grootegoed, J Anton; Vreeburg, Jan T M; Visser, Pim; Beems, Rudolph B; Gorgels, Theo G M F; Hanaoka, Fumio; Hoeijmakers, Jan H J; van der Horst, Gijsbertus T J

    2002-02-01

    mHR23B encodes one of the two mammalian homologs of Saccharomyces cerevisiae RAD23, a ubiquitin-like fusion protein involved in nucleotide excision repair (NER). Part of mHR23B is complexed with the XPC protein, and this heterodimer functions as the main damage detector and initiator of global genome NER. While XPC defects exist in humans and mice, mutations for mHR23A and mHR23B are not known. Here, we present a mouse model for mHR23B. Unlike XPC-deficient cells, mHR23B(-/-) mouse embryonic fibroblasts are not UV sensitive and retain the repair characteristics of wild-type cells. In agreement with the results of in vitro repair studies, this indicates that mHR23A can functionally replace mHR23B in NER. Unexpectedly, mHR23B(-/-) mice show impaired embryonic development and a high rate (90%) of intrauterine or neonatal death. Surviving animals display a variety of abnormalities, including retarded growth, facial dysmorphology, and male sterility. Such abnormalities are not observed in XPC and other NER-deficient mouse mutants and point to a separate function of mHR23B in development. This function may involve regulation of protein stability via the ubiquitin/proteasome pathway and is not or only in part compensated for by mHR23A. PMID:11809813

  10. Simple and easy reconstruction of nail matrix lesion using lateral finger flap after excision of digital mucous cyst

    PubMed Central

    Okochi, Masayuki; Saito, Masami; Ueda, Kazuki

    2016-01-01

    Abstract We treated nine patients with skin defect produced by digital mucous cyst (DMC) excision on the finger and toe using lateral finger flap (LFF). The postoperative scars were esthetically acceptable and no recurrence of mucous cysts was observed. Our LFF is a simple method to repair minor distal dorsal finger defects. PMID:27583263

  11. Simple and easy reconstruction of nail matrix lesion using lateral finger flap after excision of digital mucous cyst.

    PubMed

    Okochi, Masayuki; Saito, Masami; Ueda, Kazuki

    2016-01-01

    We treated nine patients with skin defect produced by digital mucous cyst (DMC) excision on the finger and toe using lateral finger flap (LFF). The postoperative scars were esthetically acceptable and no recurrence of mucous cysts was observed. Our LFF is a simple method to repair minor distal dorsal finger defects. PMID:27583263

  12. Mechanisms of transcription-repair coupling and mutation frequency decline.

    PubMed Central

    Selby, C P; Sancar, A

    1994-01-01

    Mutation frequency decline is the rapid and irreversible decline in the suppressor mutation frequency of Escherichia coli cells if the cells are kept in nongrowth media immediately following the mutagenic treatment. The gene mfd, which is necessary for mutation frequency decline, encodes a protein of 130 kDa which couples transcription to excision repair by binding to RNA polymerase and to UvrA, which is the damage recognition subunit of the excision repair enzyme. Although current evidence suggests that transcription-repair coupling is the cause of the preferential repair of the transcribed strand of mRNA encoding genes as well as of suppressor tRNA genes, the decline occurs under stringent response conditions in which the tRNA genes are not efficiently transcribed. Thus, the mechanism of strand-specific repair is well understood, but some questions remain regarding the precise mechanism of mutation frequency decline. PMID:7968917

  13. Mutagen sensitivity of Drosophila melanogaster. VII Alkylation mutagenesis of mature and immature oocytes of the excision-deficient mus (2) 201/sup D1/ mutant

    SciTech Connect

    Badaruddin, A.S.; Dusenbery, R.L.; Smith, P.D.

    1984-01-01

    The mus (2) 201/sup D1/ strain has normal meiotic processes but is absolutely defective in excision repair ability following alkylation treatment. The authors examined what effect total excision deficiency has on induced mutagenesis in these stages of oogenesis. Excision-proficient cn/sup 35/ females and excision-deficient cn/sup 35/ mus (2) 201/sup D1/ females were exposed to MMS in phosphate buffer, and subsequently mated to Basc males for five broods. From their data they conclude: first, even at this low exposure to MMS, the mus (2) 201/sup D1/ females exhibit high infertility in broods 3 through 5, indicative of extensive cell killing in the excision-deficient genotype; second, for the excision-proficient cn/sup 35/ strain, the frequency of induced mutagenesis in brood 1 is approximately threefold that observed in brood 2; third, by comparing the induced frequencies for broods 1 and 2 between two strains, the data demonstrate a very substantial increase in mutagenesis in the excision-deficient strain over that observed for the control strain. The data clearly demonstrate the extensive contribution that the excision repair process makes during oogenesis and early embryogenesis in protecting the female and zygotic genomes from mutational consequences arising fron DNA damage.

  14. Excision of translesion synthesis errors orchestrates responses to helix-distorting DNA lesions

    PubMed Central

    Tsaalbi-Shtylik, Anastasia; Ferrás, Cristina; Pauw, Bea; Hendriks, Giel; Temviriyanukul, Piya; Carlée, Leone; Calléja, Fabienne; van Hees, Sandrine; Akagi, Jun-Ichi; Iwai, Shigenori; Hanaoka, Fumio; Jansen, Jacob G.

    2015-01-01

    In addition to correcting mispaired nucleotides, DNA mismatch repair (MMR) proteins have been implicated in mutagenic, cell cycle, and apoptotic responses to agents that induce structurally aberrant nucleotide lesions. Here, we investigated the mechanistic basis for these responses by exposing cell lines with single or combined genetic defects in nucleotide excision repair (NER), postreplicative translesion synthesis (TLS), and MMR to low-dose ultraviolet light during S phase. Our data reveal that the MMR heterodimer Msh2/Msh6 mediates the excision of incorrect nucleotides that are incorporated by TLS opposite helix-distorting, noninstructive DNA photolesions. The resulting single-stranded DNA patches induce canonical Rpa–Atr–Chk1-mediated checkpoints and, in the next cell cycle, collapse to double-stranded DNA breaks that trigger apoptosis. In conclusion, a novel MMR-related DNA excision repair pathway controls TLS a posteriori, while initiating cellular responses to environmentally relevant densities of genotoxic lesions. These results may provide a rationale for the colorectal cancer tropism in Lynch syndrome, which is caused by inherited MMR gene defects. PMID:25869665

  15. Excision of translesion synthesis errors orchestrates responses to helix-distorting DNA lesions.

    PubMed

    Tsaalbi-Shtylik, Anastasia; Ferrás, Cristina; Pauw, Bea; Hendriks, Giel; Temviriyanukul, Piya; Carlée, Leone; Calléja, Fabienne; van Hees, Sandrine; Akagi, Jun-Ichi; Iwai, Shigenori; Hanaoka, Fumio; Jansen, Jacob G; de Wind, Niels

    2015-04-13

    In addition to correcting mispaired nucleotides, DNA mismatch repair (MMR) proteins have been implicated in mutagenic, cell cycle, and apoptotic responses to agents that induce structurally aberrant nucleotide lesions. Here, we investigated the mechanistic basis for these responses by exposing cell lines with single or combined genetic defects in nucleotide excision repair (NER), postreplicative translesion synthesis (TLS), and MMR to low-dose ultraviolet light during S phase. Our data reveal that the MMR heterodimer Msh2/Msh6 mediates the excision of incorrect nucleotides that are incorporated by TLS opposite helix-distorting, noninstructive DNA photolesions. The resulting single-stranded DNA patches induce canonical Rpa-Atr-Chk1-mediated checkpoints and, in the next cell cycle, collapse to double-stranded DNA breaks that trigger apoptosis. In conclusion, a novel MMR-related DNA excision repair pathway controls TLS a posteriori, while initiating cellular responses to environmentally relevant densities of genotoxic lesions. These results may provide a rationale for the colorectal cancer tropism in Lynch syndrome, which is caused by inherited MMR gene defects. PMID:25869665

  16. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions.

    PubMed

    Mullins, Elwood A; Shi, Rongxin; Parsons, Zachary D; Yuen, Philip K; David, Sheila S; Igarashi, Yasuhiro; Eichman, Brandt F

    2015-11-12

    Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. Here we present the first, to our knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge-dipole and CH-π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision. PMID:26524531

  17. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions

    NASA Astrophysics Data System (ADS)

    Mullins, Elwood A.; Shi, Rongxin; Parsons, Zachary D.; Yuen, Philip K.; David, Sheila S.; Igarashi, Yasuhiro; Eichman, Brandt F.

    2015-11-01

    Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. Here we present the first, to our knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge-dipole and CH-π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.

  18. 26 CFR 48.4061(b)-3 - Rebuilt, reconditioned, or repaired parts or accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Rebuilt, reconditioned, or repaired parts or accessories. 48.4061(b)-3 Section 48.4061(b)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Motor Vehicles, Tires, Tubes, Tread Rubber, and...

  19. Decreased cell survival and DNA repair capacity after UVC irradiation in association with down-regulation of GRP78/BiP in human RSa cells

    SciTech Connect

    Zhai Ling; Kita, Kazuko . E-mail: kita@faculty.chiba-u.jp; Wano, Chieko; Wu Yuping; Sugaya, Shigeru; Suzuki, Nobuo

    2005-05-01

    In contrast to extensive studies on the roles of molecular chaperones, such as heat shock proteins, there are only a few reports about the roles of GRP78/BiP, an endoplasmic reticulum (ER) stress-induced molecular chaperone, in mammalian cell responses to DNA-damaging stresses. To investigate whether GRP78/BiP is involved in resistance to a DNA-damaging agent, UVC (principally 254 nm in wavelength), we established human cells with down-regulation of GRP78/BiP by transfection of human RSa cells with antisense cDNA for GRP78/BiP. We found that the transfected cells showed higher sensitivity to UVC-induced cell death than control cells transfected with the vector alone. In the antisense-cDNA transfected cells, the removal capacities of the two major types of UVC-damaged DNA (thymine dimers and (6-4) photoproducts) in vivo and DNA synthesis activity of whole cell extracts to repair UVC-irradiated plasmids in vitro were remarkably decreased compared with those in the control cells. Furthermore, the antisense-cDNA transfected cells also showed slightly higher sensitivity to cisplatin-induced cell death than the control cells. Cisplatin-induced DNA damage is primarily repaired by nucleotide excision repair, like UVC-induced DNA damage. The present results suggest that GRP78/BiP plays a protective role against UVC-induced cell death possibly via nucleotide excision repair, at least in the human RSa cells tested.

  20. Postreplication repair in Saccharomyces cerevisiae

    SciTech Connect

    Resnick, M.A.; Boyce, J.; Cox, B.

    1981-04-01

    Postreplication events in logarithmically growing excision-defective mutants of Saccharomyces cerevisiae were examined after low doses of ultraviolet light. Pulse-labeled deoxyribonucleic acid had interruptions, and when the cells were chased, the interruptions were no longer detected. Since the loss of interruptions was not associated with an exchange of pyrimidine dimers at a detection level of 10 to 20% of the induced dimers, it was concluded that postreplication repair in excision-defective mutants does not involve molecular recombination. Pyrimidine dimers were assayed by utilizing the ultraviolet-endonuclease activity in extracts of Micrococcus luteus and newly developed alkaline sucrose gradient techniques, which yielded chromosomal-size deoxyribonucleic acid after treatment of irradiated cells.

  1. Role of Deubiquitinating Enzymes in DNA Repair

    PubMed Central

    2015-01-01

    Both proteolytic and nonproteolytic functions of ubiquitination are essential regulatory mechanisms for promoting DNA repair and the DNA damage response in mammalian cells. Deubiquitinating enzymes (DUBs) have emerged as key players in the maintenance of genome stability. In this minireview, we discuss the recent findings on human DUBs that participate in genome maintenance, with a focus on the role of DUBs in the modulation of DNA repair and DNA damage signaling. PMID:26644404

  2. DNA damage and repair kinetics of the Alternaria mycotoxins alternariol, altertoxin II and stemphyltoxin III in cultured cells.

    PubMed

    Fleck, Stefanie C; Sauter, Friederike; Pfeiffer, Erika; Metzler, Manfred; Hartwig, Andrea; Köberle, Beate

    2016-03-01

    The Alternaria mycotoxins alternariol (AOH) and altertoxin II (ATX II) have previously been shown to elicit mutagenic and genotoxic effects in bacterial and mammalian cells, although with vastly different activities. For example, ATX II was about 50 times more mutagenic than AOH. We now report that stemphyltoxin III (STTX III) is also highly mutagenic. The more pronounced effects of the perylene quinones ATX II and STTX III at lower concentrations compared to the dibenzo-α-pyrone AOH indicate a marked dependence of the genotoxic potential on the chemical structure and furthermore suggest that the underlying modes of action may be different. We have now further investigated the type of DNA damage induced by AOH, ATX II and STTX III, as well as the repair kinetics and their dependence on the status of nucleotide excision repair (NER). DNA double strand breaks induced by AOH due to poisoning of topoisomerase IIα were completely repaired in less than 2h. Under cell-free conditions, inhibition of topoisomerase IIα could also be measured for ATX II and STTX III at low concentrations, but the perylene quinones were catalytic inhibitors rather than topoisomerase poisons and did not induce DSBs. DNA strand breaks induced by ATX II and STTX III were more persistent and not completely repaired within 24h. A dependence of the repair rate on the NER status could only be demonstrated for STTX III, resulting in an accumulation of DNA damage in NER-deficient cells. Together with the finding that the DNA glycosylase formamidopyrimidine-DNA glycosylase (Fpg), but not T4 endonuclease V, is able to generate additional DNA strand breaks measurable by the alkaline unwinding assay, we conclude that the genotoxicity of the perylene quinones with an epoxide group is probably caused by the formation of DNA adducts which may be converted to Fpg sensitive sites. PMID:26994491

  3. DNA repair systems as targets of cadmium toxicity

    SciTech Connect

    Giaginis, Constantinos; Gatzidou, Elisavet; Theocharis, Stamatios . E-mail: theocharis@ath.forthnet.gr

    2006-06-15

    Cadmium (Cd) is a heavy metal and a potent carcinogen implicated in tumor development through occupational and environmental exposure. Recent evidence suggests that proteins participating in the DNA repair systems, especially in excision and mismatch repair, are sensitive targets of Cd toxicity. Cd by interfering and inhibiting these DNA repair processes might contribute to increased risk for tumor formation in humans. In the present review, the information available on the interference of Cd with DNA repair systems and their inhibition is summarized. These actions could possibly explain the indirect contribution of Cd to mutagenic effects and/or carcinogenicity.

  4. 29 CFR 794.121 - Exclusion of excise taxes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Exclusion of excise taxes. 794.121 Section 794.121 Labor... Exclusion of excise taxes. The computation of the annual gross volume of sales of the enterprise for purposes of section 7(b)(3) is made “exclusive of excise taxes.” It will be noted that the excise...

  5. Aortic valve repair for papillary fibroelastoma.

    PubMed

    Di Marco, Luca; Al-Basheer, Amin; Glineur, David; Oppido, Guido; Di Bartolomeo, Roberto; El-Khoury, Gebrine

    2006-05-01

    We report the case of aortic valve-papillary fibroelastoma in a 66-year-old Belgian woman with a previous single episode of cerebral transient ischemic attack. Transthoracic two-dimensional echocardiography revealed a small mass adherent to the noncoronary cusp of the valve, which was confirmed by transesophageal echocardiography. Indication for surgery was performed because of a previous cerebral transient ischemic attack and for its potential risk of cerebral and coronary embolization. Surgical excision of the mass was performed with the need for glutaraldehyde-treated autologous pericardial patch repair of the aortic cusp. Intraoperative and postoperative transesophageal echocardiography both showed the valve to be competent. Postoperative recovery was uneventful. After a review of the literature, we conclude that, even if asymptomatic, and independent of their size, aortic valve papillary fibroelastomas justify surgical excision for their potential to systemic embolization. Moreover, we believe that a valve-sparing approach might be feasible with no recurrence after complete excision. PMID:16645416

  6. DNA Repair in Human Cells Exposed to Combinations of Carcinogenic Agents

    SciTech Connect

    Setlow, R. B.; Ahmed, F. E.

    1980-01-01

    Normal human and XP2 fibroblasts were treated with UV plus UV-mimetic chemicals. The UV dose used was sufficient to saturate the UV excision repair system. Excision repair after combined treatments was estimated by unscheduled DNA synthesis, BrdUrd photolysis, and the loss of sites sensitive to a UV specific endonuclease. Since the repair of damage from UV and its mimetics is coordinately controlled we expected that there would be similar rate-limiting steps in the repair of UV and chemical damage and that after a combined treatment the total amount of repair would be the same as from UV or the chemicals separately. The expectation was not fulfilled. In normal cells repair after a combined treatment was additive whereas in XP cells repair after a combined treatment was usually less than after either agent separately. The chemicals tested were AAAF, DMBA-epoxide, 4NQO, and ICR-170.

  7. Molecular mechanisms of DNA repair inhibition by caffeine

    SciTech Connect

    Selby, C.P.; Sancar, A. )

    1990-05-01

    Caffeine potentiates the mutagenic and lethal effects of genotoxic agents. It is thought that this is due, at least in some organisms, to inhibition of DNA repair. However, direct evidence for inhibition of repair enzymes has been lacking. Using purified Escherichia coli DNA photolyase and (A)BC excinuclease, we show that the drug inhibits photoreactivation and nucleotide excision repair by two different mechanisms. Caffeine inhibits photoreactivation by interfering with the specific binding of photolyase to damaged DNA, and it inhibits nucleotide excision repair by promoting nonspecific binding of the damage-recognition subunit, UvrA, of (A)BC excinuclease. A number of other intercalators, including acriflavin and ethidium bromide, appear to inhibit the excinuclease by a similar mechanism--that is, by trapping the UvrA subunit in nonproductive complexes on undamaged DNA.

  8. Gastroschisis repair

    MedlinePlus

    ... and surgery in general are: Allergic reactions to medicines Breathing problems Bleeding Infection Risks for gastroschisis repair are: Breathing problems if the baby's belly area (abdominal space) is smaller than normal. The baby may need ...

  9. Hydrocele repair

    MedlinePlus

    ... is excellent. However, another hydrocele may form over time, or if there was also a hernia present. Alternative Names Hydrocelectomy Images Hydrocele repair - series References Aiken JJ, Oldham KT. Inguinal hernias. In: ...

  10. The Awakening of DNA Repair at Yale

    PubMed Central

    Hanawalt, Philip C.

    2013-01-01

    As a graduate student with Professor Richard Setlow at Yale in the late 1950s, I studied the effects of ultraviolet and visible light on the syntheses of DNA, RNA, and protein in bacteria. I reflect upon my research in the Yale Biophysics Department, my subsequent postdoctoral experiences, and the eventual analyses in the laboratories of Setlow, Paul Howard-Flanders, and myself that constituted the discovery of the ubiquitous pathway of DNA excision repair in the early 1960s. I then offer a brief perspective on a few more recent developments in the burgeoning DNA repair field and their relationships to human disease. PMID:24348216

  11. Functional characterization of dna repair proteins

    SciTech Connect

    Wilson, D M III

    2000-02-16

    Genetic material (DNA) is susceptible to spontaneous decomposition, to attack by reactive chemicals produced naturally in cells, and to assault by environmental and food mutagens. DNA modifications can lead to permanent genetic changes that promote human disease. To combat the deleterious effects of DNA damage, organisms are equipped with DNA repair systems. The focus of our investigations has been to elucidate the details of mammalian DNA repair. These studies have provided important insights into the relationship of DNA repair to human disease and the genetic factors that contribute to individual susceptibility to the harmful effects of environmental mutagens (e.g. ionizing radiation), and have established a framework for designing more effective anti-cancer treatment schemes. To investigate questions related to DNA repair, its mechanism(s) and linkage to disease development, the authors are employing an array of molecular, cellular, biochemical and structural approaches. These complementary experimental techniques have permitted a detailed analysis into various processes of human DNA repair.

  12. Mammalian Kidney Development: Principles, Progress, and Projections

    PubMed Central

    Little, Melissa H.; McMahon, Andrew P.

    2012-01-01

    The mammalian kidney is a vital organ with considerable cellular complexity and functional diversity. Kidney development is notable for requiring distinct but coincident tubulogenic processes involving reciprocal inductive signals between mesenchymal and epithelial progenitor compartments. Key molecular pathways mediating these interactions have been identified. Further, advances in the analysis of gene expression and gene activity, coupled with a detailed knowledge of cell origins, are enhancing our understanding of kidney morphogenesis and unraveling the normal processes of postnatal repair and identifying disease-causing mechanisms. This article focuses on recent insights into central regulatory processes governing organ assembly and renal disease, and predicts future directions for the field. PMID:22550230

  13. Participation of DNA polymerase II in the increased precise excision of Tn10.

    PubMed

    Nagel, Rosa; Chan, Ana

    2003-06-11

    In this work the involvement of polymerase II (Pol II) in the precise excision of Tn10 stimulated by a dnaB252 thermosensitive (Ts) mutant at the permissive temperature, by a uvrD mutant, or by mitomycin C (MMC) or ultraviolet (UV) light treatment, was investigated. A deltapolB::kan mutant showed a significant decrease in the excision of Tn10 induced by the dnaB mutation, or by MMC or UV treatment, indicating the participation of Pol II in this type of deletion process. However, no effect of Pol II was evidenced in the excision of Tn10 stimulated by the uvrD mutation. The effect of the polB mutation on Tn10 precise excision induced by all these treatments was compared to that of mutations in repair-recombination genes recF and recA. The results reveal that the degree of participation of these genes varies depending on the agent that stimulates the deletion event. PMID:12767351

  14. Host DNA repair proteins in response to Pseudomonas aeruginosa in lung epitehlial cells and in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host DNA damage and DNA repair response to bacterial infections and its significance are not fully understood. Here, we demonstrate that infection by Gram-negative bacterium P. aeruginosa significantly altered the expression and enzymatic activity of base excision DNA repair protein OGG1 in lung epi...

  15. Outcome of excision of oral erythroplakia.

    PubMed

    Yang, S W; Lee, Y S; Chang, L C; Hsieh, T Y; Chen, T A

    2015-02-01

    Oral erythroplakia is a precancerous lesion with high malignant potential, and resection is the recommended treatment. We designed a retrospective study to analyse the outcome of treatment in patients who had operations for oral erythroplakia. A total of 84 patients (74 men and 10 women, mean (SD) age 54 (12) years, range 29-83) were enrolled. Histopathologically the diagnoses were invasive carcinoma (n=3), dysplasia/carcinoma in situ (n=61), and squamous hyperplasia (n=20), and all patients were treated by carbon dioxide laser excision. There was no postoperative malignant transformation, but invasive carcinoma found after initial excision (n=3) was treated by further radical excision. The mean (SD) follow-up period was 46 (29) months (range 1-124), The postoperative recurrent rate was 14/84 (16.7%). The area of oral erythroplakia was the only factor associated with postoperative recurrence on univariate analysis, and was also the only independent factor that predicted postoperative recurrence in multivariate logistic regression analysis. An area exceeding 80 mm2 had the best predictive value (sensitivity=0.71, specificity=0.67) with a 5.1 times increased risk (odds ratio=5.1, CI 95% 1.45 to 18.05, p=0.01) of recurrence. Laser excision is effective for oral erythroplakia that is still confined to dysplasia of any degree, with low morbidity. The area of oral erythroplakia is a predictive factor for postoperative recurrence. PMID:25467247

  16. [Studies of the repair of radiation-induced genetic damage in Drosophila]. Annual progress report, September 1, 1990--July 1, 1991

    SciTech Connect

    1991-12-31

    Research is focused on the following areas: characterization of DNA double-strand break repair; using injected oligonucleotides as templates to repair double-strand DNA breaks; analysis of a gene required for postreplication repair; cloning of a gene required for resistance to DNA cross-linking agents; cloning of a gene required for excision repair; cloning of a gene required for X-ray resistance; and transposon tagging DNA repair genes.

  17. DNA repair in the variable platyfish (Xiphophorus variatus) irradiated in vivo with ultraviolet B light.

    PubMed

    Mitchell, D L; Scoggins, J T; Morizot, D C

    1993-09-01

    Dark- and light-dependent DNA repair processes were studied in vivo in the variable platyfish, Xiphophorus variatus. Excision (dark) repair of the (6-4) photoproduct was more efficient than that of the cyclobutane dimer with approximately 70% of the (6-4) photoproducts removed by 24 h post-UVB radiation compared to approximately 30% of the cyclobutane dimers. Exposure to photoreactivating light resulted in rapid loss of most (> 90%) of the cyclobutane dimers and increased excision repair of the (6-4) photoproduct. Preexposure to photoreactivating light 8 h prior to UVB radiation increased the rate of photoreactivation two-fold. PMID:8234482

  18. Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders

    PubMed Central

    Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874

  19. Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders.

    PubMed

    Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874

  20. Participation of DNA repair in the response to 5-fluorouracil

    PubMed Central

    Wyatt, Michael D.; Wilson, David M.

    2008-01-01

    The anti-metabolite 5-fluorouracil (5-FU) is employed clinically to manage solid tumors including colorectal and breast cancer. Intracellular metabolites of 5-FU can exert cytotoxic effects via inhibition of thymidylate synthetase, or through incorporation into RNA and DNA, events that ultimately activate apoptosis. In this review, we cover the current data implicating DNA repair processes in cellular responsiveness to 5-FU treatment. Evidence points to roles for base excision repair (BER) and mismatch repair (MMR). However, mechanistic details remain unexplained, and other pathways have not been exhaustively interrogated. Homologous recombination is of particular interest, because it resolves unrepaired DNA intermediates not properly dealt with by BER or MMR. Furthermore, crosstalk among DNA repair pathways and S-phase checkpoint signaling has not been examined. Ongoing efforts aim to design approaches and reagents that (i) approximate repair capacity and (ii) mediate strategic regulation of DNA repair in order to improve the efficacy of current anti-cancer treatments. PMID:18979208

  1. Tissue repair

    PubMed Central

    2010-01-01

    As living beings that encounter every kind of traumatic event from paper cut to myocardial infarction, we must possess ways to heal damaged tissues. While some animals are able to regrow complete body parts following injury (such as the earthworm who grows a new head following bisection), humans are sadly incapable of such feats. Our means of recovery following tissue damage consists largely of repair rather than pure regeneration. Thousands of times in our lives, a meticulously scripted but unseen wound healing drama plays, with cells serving as actors, extracellular matrix as the setting and growth factors as the means of communication. This article briefly reviews the cells involved in tissue repair, their signaling and proliferation mechanisms and the function of the extracellular matrix, then presents the actors and script for the three acts of the tissue repair drama. PMID:21220961

  2. Mass Spectrometry-Based Quantitative Strategies for Assessing the Biological Consequences and Repair of DNA Adducts.

    PubMed

    You, Changjun; Wang, Yinsheng

    2016-02-16

    The genetic integrity of living organisms is constantly threatened by environmental and endogenous sources of DNA damaging agents that can induce a plethora of chemically modified DNA lesions. Unrepaired DNA lesions may elicit cytotoxic and mutagenic effects and contribute to the development of human diseases including cancer and neurodegeneration. Understanding the deleterious outcomes of DNA damage necessitates the investigation about the effects of DNA adducts on the efficiency and fidelity of DNA replication and transcription. Conventional methods for measuring lesion-induced replicative or transcriptional alterations often require time-consuming colony screening and DNA sequencing procedures. Recently, a series of mass spectrometry (MS)-based strategies have been developed in our laboratory as an efficient platform for qualitative and quantitative analyses of the changes in genetic information induced by DNA adducts during DNA replication and transcription. During the past few years, we have successfully used these MS-based methods for assessing the replicative or transcriptional blocking and miscoding properties of more than 30 distinct DNA adducts. When combined with genetic manipulation, these methods have also been successfully employed for revealing the roles of various DNA repair proteins or translesion synthesis DNA polymerases (Pols) in modulating the adverse effects of DNA lesions on transcription or replication in mammalian and bacterial cells. For instance, we found that Escherichia coli Pol IV and its mammalian ortholog (i.e., Pol κ) are required for error-free bypass of N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) in cells. We also found that the N(2)-CEdG lesions strongly inhibit DNA transcription and they are repaired by transcription-coupled nucleotide excision repair in mammalian cells. In this Account, we focus on the development of MS-based approaches for determining the effects of DNA adducts on DNA replication and transcription

  3. Durability of laparoscopic repair of paraesophageal hernia.

    PubMed Central

    Edye, M B; Canin-Endres, J; Gattorno, F; Salky, B A

    1998-01-01

    OBJECTIVES: To define a method of primary repair that would minimize hernia recurrence and to report medium-term follow-up of patients who underwent laparoscopic repair of paraesophageal hernia to verify durability of the repair and to assess the effect of inclusion of an antireflux procedure. SUMMARY BACKGROUND DATA: Primary paraesophageal hernia repair was completed laparoscopically in 55 patients. There were five recurrences within 6 months when the sac was not excised (20%). After institution of a technique of total sac excision in 30 subsequent repairs, no early recurrences were observed. METHODS: Inclusion of an antireflux procedure, incidence of subsequent hernia recurrence, dysphagia, and gastroesophageal reflux symptoms were recorded in clinical follow-up of patients who underwent a laparoscopic procedure. RESULTS: Mean length of follow-up was 29 months. Forty-nine patients were available for follow-up, and one patient had died of lung cancer. Mean age at surgery was 68 years. The surgical morbidity rate in elderly patients was no greater than in younger patients. Eleven patients (22%) had symptoms of mild to moderate reflux, and 15 were taking acid-reduction medication for a variety of dyspeptic complaints. All but 2 of these 15 had undergone 360 degrees fundoplication at initial repair. Two patients (4%) had late recurrent hernia, each small, demonstrated by esophagram or endoscopy. CONCLUSIONS: Laparoscopic repair in the medium term appeared durable. The incidence of postsurgical reflux symptoms was unrelated to inclusion of an antireflux procedure. In the absence of motility data, partial fundoplication was preferred, although dysphagia after floppy 360 degrees wrap was rare. With the low morbidity rate of this procedure, correction of symptomatic paraesophageal hernia appears indicated in patients regardless of age. Images Figure 1. PMID:9790342

  4. Mammalian cardiolipin biosynthesis.

    PubMed

    Mejia, Edgard M; Nguyen, Hieu; Hatch, Grant M

    2014-04-01

    Cardiolipin is a major phospholipid in mitochondria and is involved in the generation of cellular energy in the form of ATP. In mammalian and eukaryotic cells it is synthesized via the cytidine-5'-diphosphate-1,2-diacyl-sn-glycerol phosphate pathway. This brief review will describe some of the more recent studies on mammalian cardiolipin biosynthesis and provide an overview of regulation of cardiolipin biosynthesis. In addition, the important role that this key phospholipid plays in disease processes including heart failure, diabetes, thyroid hormone disease and the genetic disease Barth Syndrome will be discussed. PMID:24144810

  5. Mechanisms of induction of SCE and mutations by BrdU and CldU and the use of inhibitors of DNA repair to study mechanisms of radiation-induced chromosome aberrations

    SciTech Connect

    Heartlein, M.W.

    1984-01-01

    The induction of sister chromatid exchanges (SCE) and specific locus mutations was studied by utilizing incorporation into DNA of the nucleoside analogues 5-bromo-and 5-chlorodeoxyuridine (BrdU and CldU). CldU was found to induce SCE seven-times more efficiently than BrdU at equal extracellular concentrations. This induction was linearly associated with substitution for thymidine from 0.5-20 ..mu..M. In these experiments, specific locus mutations were not detected at concentrations less than 50 ..mu..M and were not correlated with SCE induction. At concentrations greater than 50 ..mu..M, the mutagenicity of CldU and BrdU was similar, although BrdU was slightly more mutagenic than CldU. In the examination of radiation-induced chromosome aberrations in mammalian lymphocytes, 3-aminobenzamide and cytosine arabinoside, which are excision repair inhibitors, were used to show that the induction of chromosome aberrations depends upon the ratio of base damage to directly-induced DNA strand breaks for a particular radiation quality. In addition, it was shown that sensitivity of various mammalian species to X ray-induced aberrations depends upon the rate of repair of base damage.

  6. Regulation of DNA repair by parkin

    SciTech Connect

    Kao, Shyan-Yuan

    2009-05-01

    Mutation of parkin is one of the most prevalent causes of autosomal recessive Parkinson's disease (PD). Parkin is an E3 ubiquitin ligase that acts on a variety of substrates, resulting in polyubiquitination and degradation by the proteasome or monoubiquitination and regulation of biological activity. However, the cellular functions of parkin that relate to its pathological involvement in PD are not well understood. Here we show that parkin is essential for optimal repair of DNA damage. Parkin-deficient cells exhibit reduced DNA excision repair that can be restored by transfection of wild-type parkin, but not by transfection of a pathological parkin mutant. Parkin also protects against DNA damage-induced cell death, an activity that is largely lost in the pathological mutant. Moreover, parkin interacts with the proliferating cell nuclear antigen (PCNA), a protein that coordinates DNA excision repair. These results suggest that parkin promotes DNA repair and protects against genotoxicity, and implicate DNA damage as a potential pathogenic mechanism in PD.

  7. Outboard Repair.

    ERIC Educational Resources Information Center

    Hardway, Jack

    This consortium-developed instructor's manual for small engine repair (with focus on outboard motors) consists of the following nine instructional units: electrical remote control assembly, mechanical remote control assembly, tilt assemblies, exhaust housing, propeller and trim tabs, cooling system, mechanical gearcase, electrical gearcase, and…

  8. Snowmobile Repair.

    ERIC Educational Resources Information Center

    Helbling, Wayne

    This guide is designed to provide and/or improve instruction for occupational training in the area of snowmobile repair, and includes eight areas. Each area consists of one or more units of instruction, with each instructional unit including some or all of the following basic components: Performance objectives, suggested activities for teacher and…

  9. Motorcycle Repair.

    ERIC Educational Resources Information Center

    Hein, Jim; Bundy, Mike

    This motorcycle repair curriculum guide contains the following ten areas of study: brake systems, clutches, constant mesh transmissions, final drives, suspension, mechanical starting mechanisms, electrical systems, fuel systems, lubrication systems, and overhead camshafts. Each area consists of one or more units of instruction. Each instructional…

  10. Hydrocele repair

    MedlinePlus

    ... small surgical cut in the fold of the groin, and then drains the fluid. The sac (hydrocele) holding the fluid may be removed. The surgeon strengthens the muscle wall with stitches. This is called a hernia repair. Sometimes the surgeon uses a laparoscope to do ...

  11. Bladder exstrophy repair

    MedlinePlus

    Bladder birth defect repair; Everted bladder repair; Exposed bladder repair; Repair of bladder exstrophy ... in boys and is often linked to other birth defects. Surgery is necessary to: Allow the child to ...

  12. 29 CFR 779.264 - Excise taxes separately stated.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Excise taxes separately stated. 779.264 Section 779.264... Coverage Excise Taxes § 779.264 Excise taxes separately stated. A tax is separately stated where it clearly... was no invoice or sales slip. In the absence of a sales slip or invoice, the amount of the tax...

  13. Techniques in Total Mesorectal Excision Surgery

    PubMed Central

    Lichliter, Warren E.

    2015-01-01

    Advances in the surgical management of rectal cancer have placed the quality of total mesorectal excision (TME) as the major predictor in overall survival. A standardized TME technique along with quality increases the percentage of patients undergoing a complete TME. Quality measurements of TME will place increasing demands on surgeons maintaining competence with present and future techniques. These efforts will improve the outcome of the rectal cancer patients. PMID:25733970

  14. Mutational analysis of the Drosophila DNA repair and recombination gene mei-9.

    PubMed Central

    Yildiz, Ozlem; Kearney, Hutton; Kramer, Benjamin C; Sekelsky, Jeff J

    2004-01-01

    Drosophila mei-9 is essential for several DNA repair and recombination pathways, including nucleotide excision repair (NER), interstrand crosslink repair, and meiotic recombination. To better understand the role of MEI-9 in these processes, we characterized 10 unique mutant alleles of mei-9. These include a P-element insertion that disrupts repair functions but not the meiotic function; three nonsense mutations, one of which has nearly wild-type levels of protein; three missense mutations, one of which disrupts the meiotic function but not repair functions; two small in-frame deletions; and one frameshift. PMID:15166153

  15. Repair of DNA lesions associated with triplex-forming oligonucleotides.

    PubMed

    Chin, Joanna Y; Glazer, Peter M

    2009-04-01

    Triplex-forming oligonucleotides (TFOs) are gene targeting tools that can bind in the major groove of duplex DNA in a sequence-specific manner. When bound to DNA, TFOs can inhibit gene expression, can position DNA-reactive agents to specific locations in the genome, or can induce targeted mutagenesis and recombination. There is evidence that third strand binding, alone or with an associated cross-link, is recognized and metabolized by DNA repair factors, particularly the nucleotide excision repair pathway. This review examines the evidence for DNA repair of triplex-associated lesions. PMID:19072762

  16. Turbine repair process, repaired coating, and repaired turbine component

    DOEpatents

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  17. Excision of ultraviolet damage and the effect of irradiation on DNA synthesis in a strain of Bloom's syndrome fibroblasts

    SciTech Connect

    Henson, P.; Selsky, C.A.; Little, J.B.

    1981-03-01

    Researchers have studied repair of ultraviolet light-induced damage in a strain of Bloom's syndrome cells which we have shown to be defective in host cell reactivation of uv-irradiated herpes simplex virus. Excision repair was monitored by following loss of sensitivity of DNA in permeabilized cells to digestion by the Micrococcus luteus uv endonuclease preparation. The Bloom's syndrome fibroblasts apparently removed endonuclease-sensitive sites from the DNA slightly less efficiently than did normal strains. After 24 h, 38% of the sites remained in the Bloom's syndrome cells in comparison with 16% in normal fibroblasts. DNA newly synthesized in uv-irradiated Bloom's syndrome cells sedimented less far into alkaline sucrose gradients than did DNA from similarly treated normal cells. In other respects, including the effect of caffeine exposure, DNA synthesis in Bloom's syndrome cells was indistinguishable from that in normal cells. We were therefore able to detect only minor defects in the repair of uv-induced damage in Bloom's syndrome fibroblasts. This is consistent with the normal survival exhibited by these cells. The defect in excision repair may, however, be sufficient to allow the cellular repair capacity to become saturated at high infecting multiplicities of uv-irradiated herpes simplex virus.

  18. Mammalian development in space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  19. Meniscal Repair

    PubMed Central

    Yoon, Kyoung Ho

    2014-01-01

    The meniscus has several important roles, such as transmission of the load, absorption of the shock in the knee joint, acting as a secondary anteroposterior stabilizer of the knee joint, and contributing to proprioception of the knee joint. Degenerative changes of the knee joint develop in the long-term follow-up even after partial meniscectomy. Thus, there has been growing interest in meniscal repair. In addition, with increased understanding of the important roles of the meniscal root and advancement of diagnostic methods, efforts have been made to ensure preservation of the meniscal roots. In this review article, we will discuss operative techniques and clinical outcomes of arthroscopic repair of the meniscus and the meniscal root and postoperative rehabilitation and complications as well. PMID:24944971

  20. Coding and reimbursement of primary care debridement and excision procedures.

    PubMed

    Zuber, T J; Purvis, J R

    1992-12-01

    Current medical practice requires physicians to accurately report services provided to patients. Patient billing for debridement and excision procedures involves the selection of specific 1992 Physicians' Current Procedural Terminology codes. Although a site-specific surgical procedure code often yields higher reimbursement than a general procedure code, physicians should select the code that most accurately reflects the procedure performed. This review identifies the codes used to report destruction and excision procedures performed by primary care physicians. Included in this review are skin debridement, burn debridement, excision of benign and malignant lesions of the skin and subcutaneous tissue, cyst and ganglion excision, nail excision, anorectal lesion excision, shave, paring, and skin tag excision procedures, and foreign body removal. The Health Care Financing Administration's relative value units and one state's published Medicaid payment rates are included for each procedure code. Instructions are provided for selecting between multiple coding options when more than one code describes the service provided. PMID:1453151

  1. Mammalian Septins Nomenclature

    PubMed Central

    Macara, Ian G.; Baldarelli, Richard; Field, Christine M.; Glotzer, Michael; Hayashi, Yasuhide; Hsu, Shu-Chan; Kennedy, Mary B.; Kinoshita, Makoto; Longtine, Mark; Low, Claudia; Maltais, Lois J.; McKenzie, Louise; Mitchison, Timothy J.; Nishikawa, Toru; Noda, Makoto; Petty, Elizabeth M.; Peifer, Mark; Pringle, John R.; Robinson, Phillip J.; Roth, Dagmar; Russell, S.E. Hilary; Stuhlmann, Heidi; Tanaka, Manami; Tanaka, Tomoo; Trimble, William S.; Ware, Jerry; Zeleznik-Le, Nancy J.; Zieger, Barbara

    2002-01-01

    There are 10 known mammalian septin genes, some of which produce multiple splice variants. The current nomenclature for the genes and gene products is very confusing, with several different names having been given to the same gene product and distinct names given to splice variants of the same gene. Moreover, some names are based on those of yeast or Drosophila septins that are not the closest homologues. Therefore, we suggest that the mammalian septin field adopt a common nomenclature system, based on that adopted by the Mouse Genomic Nomenclature Committee and accepted by the Human Genome Organization Gene Nomenclature Committee. The human and mouse septin genes will be named SEPT1–SEPT10 and Sept1–Sept10, respectively. Splice variants will be designated by an underscore followed by a lowercase “v” and a number, e.g., SEPT4_v1. PMID:12475938

  2. Mammalian sweet taste receptors.

    PubMed

    Nelson, G; Hoon, M A; Chandrashekar, J; Zhang, Y; Ryba, N J; Zuker, C S

    2001-08-10

    The sense of taste provides animals with valuable information about the quality and nutritional value of food. Previously, we identified a large family of mammalian taste receptors involved in bitter taste perception (the T2Rs). We now report the characterization of mammalian sweet taste receptors. First, transgenic rescue experiments prove that the Sac locus encodes T1R3, a member of the T1R family of candidate taste receptors. Second, using a heterologous expression system, we demonstrate that T1R2 and T1R3 combine to function as a sweet receptor, recognizing sweet-tasting molecules as diverse as sucrose, saccharin, dulcin, and acesulfame-K. Finally, we present a detailed analysis of the patterns of expression of T1Rs and T2Rs, thus providing a view of the representation of sweet and bitter taste at the periphery. PMID:11509186

  3. Rheotaxis guides mammalian sperm

    PubMed Central

    Miki, Kiyoshi; Clapham, David E

    2013-01-01

    Background In sea urchins, spermatozoan motility is altered by chemotactic peptides, giving rise to the assumption that mammalian eggs also emit chemotactic agents that guide spermatozoa through the female reproductive tract to the mature oocyte. Mammalian spermatozoa indeed undergo complex adaptations within the female (the process of capacitation) that are initiated by agents ranging from pH to progesterone, but these factors are not necessarily taxic. Currently, chemotaxis, thermotaxis, and rheotaxis have not been definitively established in mammals. Results Here, we show that positive rheotaxis, the ability of organisms to orient and swim against the flow of surrounding fluid, is a major taxic factor for mouse and human sperm. This flow is generated within 4 hours of sexual stimulation and coitus in female mice; prolactin-triggered oviductal fluid secretion clears the oviduct of debris, lowers viscosity, and generates the stream that guides sperm migration in the oviduct. Rheotaxic movement is demonstrated in capacitated and uncapacitated spermatozoa in low and high viscosity medium. Finally, we show that a unique sperm motion we quantify using the sperm head's rolling rate reflects sperm rotation that generates essential force for positioning the sperm in the stream. Rotation requires CatSper channels, presumably by enabling Ca2+ influx. Conclusions We propose that rheotaxis is a major determinant of sperm guidance over long distances in the mammalian female reproductive tract. Coitus induces fluid flow to guide sperm in the oviduct. Sperm rheotaxis requires rotational motion during CatSper channel-dependent hyperactivated motility. PMID:23453951

  4. Laryngeal schwannoma: excision via a laryngofissure approach

    PubMed Central

    Tse, Antonia; Anwar, Bilal

    2015-01-01

    Schwannomas are peripheral nerve neurogenic tumours and although not common, laryngeal schwannomas can provide a unique challenge in diagnostic and treatment management. There are limited reports in the literature on approaches to management. A 73-year-old lady presented to the otolaryngology department after a MRI scan demonstrated an incidental right supraglottic mass. Further investigations included CT scanning and microlaryngoscopy, which only confirmed the presence of the mass with no histology diagnosis. Excision was undertaken by a laryngofissure approach and tracheostomy. Histology confirmed a benign ancient schwannoma. PMID:26034238

  5. The 2015 Nobel Prize in Chemistry The Discovery of Essential Mechanisms that Repair DNA Damage.

    PubMed

    Lindahl, Tomas; Modrich, Paul; Sancar, Aziz

    2016-01-01

    The Royal Swedish Academy awarded the Nobel Prize in Chemistry for 2015 to Tomas Lindahl, Paul Modrich and Aziz Sancar for their discoveries in fundamental mechanisms of DNA repair. This pioneering research described three different essential pathways that correct DNA damage, safeguard the integrity of the genetic code to ensure its accurate replication through generations, and allow proper cell division. Working independently of each other, Tomas Lindahl, Paul Modrich and Aziz Sancar delineated the mechanisms of base excision repair, mismatch repair and nucleotide excision repair, respectively. These breakthroughs challenged and dismissed the early view that the DNA molecule was very stable, paving the way for the discovery of human hereditary diseases associated with distinct DNA repair deficiencies and a susceptibility to cancer. It also brought a deeper understanding of cancer as well as neurodegenerative or neurological diseases, and let to novel strategies to treat cancer. PMID:27183258

  6. AP endonucleases process 5-methylcytosine excision intermediates during active DNA demethylation in Arabidopsis

    PubMed Central

    Lee, Jiyoon; Jang, Hosung; Shin, Hosub; Choi, Woo Lee; Mok, Young Geun; Huh, Jin Hoe

    2014-01-01

    DNA methylation is a primary epigenetic modification regulating gene expression and chromatin structure in many eukaryotes. Plants have a unique DNA demethylation system in that 5-methylcytosine (5mC) is directly removed by DNA demethylases, such as DME/ROS1 family proteins, but little is known about the downstream events. During 5mC excision, DME produces 3′-phosphor-α, β-unsaturated aldehyde and 3′-phosphate by successive β- and δ-eliminations, respectively. The kinetic studies revealed that these 3′-blocking lesions persist for a significant amount of time and at least two different enzyme activities are required to immediately process them. We demonstrate that Arabidopsis AP endonucleases APE1L, APE2 and ARP have distinct functions to process such harmful lesions to allow nucleotide extension. DME expression is toxic to E. coli due to excessive 5mC excision, but expression of APE1L or ARP significantly reduces DME-induced cytotoxicity. Finally, we propose a model of base excision repair and DNA demethylation pathway unique to plants. PMID:25228464

  7. Value of histopathologic analysis of subcutis excisions by general practitioners

    PubMed Central

    Buis, Pieter AJ; Verweij, Wim; van Diest, Paul J

    2007-01-01

    Background Only around 60% of skin lesions excised by GPs are referred to a pathologist. Clinical diagnoses of skin excisions by GPs may not be very accurate. Subcutis excisions are rarely done by GPs, and there is hence little information in the literature on the histopathological yield of subcutis excisions by GPs with regard to malignancies. The aim of this study was to evaluate the yield of histopathological investigation of a relatively large group of subcutis excisions by GPs, with special emphasis on discrepancies between clinical and histopathological diagnoses of malignancy. Methods We investigated a series of 90 subcutis excisions, which was derived from a database of consecutive GP submissions from the years 1999–2000 where in the same time period 4595 skin excisions were performed by the same group of GPs. This underlines the apparent reluctance of GPs to perform subcutis excisions. Results The final diagnosis was benign in 88 cases (97.8%) and malignant in 2 cases (2.2%). Seven cases had no clinical diagnosis, all of which were benign. Of the 83 clinically benign cases, 81 (97.6%) were indeed benign and 2 (2.4%) were malignant: one Merkel cell carcinoma and one dermatofibrosarcoma protuberans. The former was clinically thought to be a lipoma, and the latter a trichilemmal cyst. The dermatofibrosarcoma protuberans presented at the age of 27, and the Merkel cell carcinoma at the age of 60. Both were incompletely removed and required re-excision by a surgical oncologist. Conclusion Histopathological investigation of subcutis excisions by GPs yields unexpected and rare malignancies in about 2% of cases that may initially be excised inadequately. Based on these data, and because of the relatively rareness of these type of excisions, it could be argued that it may be worthwhile to have all subcutis excisions by GPs routinely investigated by histopathology. PMID:17257417

  8. Protease inhibitors suppress the survival increase mediated by uncouplers in X-irradiated mammalian cells.

    PubMed

    Michel, S; Laval, F

    1982-01-01

    When mammalian cells are incubated with an uncoupler of oxidative phosphorylation prior to and during X-irradiation, the survival and the mutation frequency are markedly increased. This process requires protein synthesis and is inhibited when the cells are plated in the presence of a protease inhibitor (antipain or leupeptin). These results suggest the existence of an error-prone DNA repair process in X-irradiated mammalian cells. PMID:6814524

  9. Effect of Carcinogenic Acrolein on DNA Repair and Mutagenic Susceptibility*

    PubMed Central

    Wang, Hsiang-Tsui; Hu, Yu; Tong, Dan; Huang, Jian; Gu, Liya; Wu, Xue-Ru; Chung, Fung-Lung; Li, Guo-Min; Tang, Moon-shong

    2012-01-01

    Acrolein (Acr), a ubiquitous environmental contaminant, is a human carcinogen. Acr can react with DNA to form mutagenic α- and γ-hydroxy-1, N2-cyclic propano-2′-deoxyguanosine adducts (α-OH-Acr-dG and γ-OH-Acr-dG). We demonstrate here that Acr-dG adducts can be efficiently repaired by the nucleotide excision repair (NER) pathway in normal human bronchial epithelia (NHBE) and lung fibroblasts (NHLF). However, the same adducts were poorly processed in cell lysates isolated from Acr-treated NHBE and NHLF, suggesting that Acr inhibits NER. In addition, we show that Acr treatment also inhibits base excision repair and mismatch repair. Although Acr does not change the expression of XPA, XPC, hOGG1, PMS2 or MLH1 genes, it causes a reduction of XPA, XPC, hOGG1, PMS2, and MLH1 proteins; this effect, however, can be neutralized by the proteasome inhibitor MG132. Acr treatment further enhances both bulky and oxidative DNA damage-induced mutagenesis. These results indicate that Acr not only damages DNA but can also modify DNA repair proteins and further causes degradation of these modified repair proteins. We propose that these two detrimental effects contribute to Acr mutagenicity and carcinogenicity. PMID:22275365

  10. Mammalian telomeres and their partnership with lamins

    PubMed Central

    Burla, Romina; La Torre, Mattia; Saggio, Isabella

    2016-01-01

    ABSTRACT Chromosome ends are complex structures, which require a panel of factors for their elongation, replication, and protection. We describe here the mechanics of mammalian telomeres, dynamics and maintainance in relation to lamins