Science.gov

Sample records for mammalian gene pairs

  1. Mammalian Axoneme Central Pair Complex Proteins: Broader Roles Revealed by Gene Knockout Phenotypes

    PubMed Central

    Teves, Maria E.; Nagarkatti-Gude, David R.; Zhang, Zhibing; Strauss, Jerome F.

    2016-01-01

    The axoneme genes, their encoded proteins, their functions and the structures they form are largely conserved across species. Much of our knowledge of the function and structure of axoneme proteins in cilia and flagella is derived from studies on model organisms like the green algae, Chlamydomonas reinhardtii. The core structure of cilia and flagella is the axoneme, which in most motile cilia and flagella contains a 9 + 2 configuration of microtubules. The two central microtubules are the scaffold of the central pair complex (CPC). Mutations that disrupt CPC genes in Chlamydomonas and other model organisms result in defects in assembly, stability and function of the axoneme, leading to flagellar motility defects. However, targeted mutations generated in mice in the orthologous CPC genes have revealed significant differences in phenotypes of mutants compared to Chlamydomonas. Here we review observations that support the concept of cell-type specific roles for the CPC genes in mice, and an expanded repertoire of functions for the products of these genes in cilia, including non-motile cilia, and other microtubule-associated cellular functions. PMID:26785425

  2. Hysteresis in a synthetic mammalian gene network.

    PubMed

    Kramer, Beat P; Fussenegger, Martin

    2005-07-01

    Bistable and hysteretic switches, enabling cells to adopt multiple internal expression states in response to a single external input signal, have a pivotal impact on biological systems, ranging from cell-fate decisions to cell-cycle control. We have designed a synthetic hysteretic mammalian transcription network. A positive feedback loop, consisting of a transgene and transactivator (TA) cotranscribed by TA's cognate promoter, is repressed by constitutive expression of a macrolide-dependent transcriptional silencer, whose activity is modulated by the macrolide antibiotic erythromycin. The antibiotic concentration, at which a quasi-discontinuous switch of transgene expression occurs, depends on the history of the synthetic transcription circuitry. If the network components are imbalanced, a graded rather than a quasi-discontinuous signal integration takes place. These findings are consistent with a mathematical model. Synthetic gene networks, which are able to emulate natural gene expression behavior, may foster progress in future gene therapy and tissue engineering initiatives. PMID:15972812

  3. MAMMALIAN CELL GENE MUTATION ASSAYS WORKING GROUP REPORT

    EPA Science Inventory

    Mammalian cell gene mutation assays have been used for many years and the diversity of the available systems attests to the varied methods found to grow mammalian dells and detect mutations. s part of the International Workshop on Standardization of Genotoxicity Test Procedures, ...

  4. Rapid, modular and reliable construction of complex mammalian gene circuits

    PubMed Central

    Guye, Patrick; Li, Yinqing; Wroblewska, Liliana; Duportet, Xavier; Weiss, Ron

    2013-01-01

    We developed a framework for quick and reliable construction of complex gene circuits for genetically engineering mammalian cells. Our hierarchical framework is based on a novel nucleotide addressing system for defining the position of each part in an overall circuit. With this framework, we demonstrate construction of synthetic gene circuits of up to 64 kb in size comprising 11 transcription units and 33 basic parts. We show robust gene expression control of multiple transcription units by small molecule inducers in human cells with transient transfection and stable chromosomal integration of these circuits. This framework enables development of complex gene circuits for engineering mammalian cells with unprecedented speed, reliability and scalability and should have broad applicability in a variety of areas including mammalian cell fermentation, cell fate reprogramming and cell-based assays. PMID:23847100

  5. Autosomal location of genes from the conserved mammalian X in the platypus (Ornithorhynchus anatinus): implications for mammalian sex chromosome evolution.

    PubMed

    Waters, Paul D; Delbridge, Margaret L; Deakin, Janine E; El-Mogharbel, Nisrine; Kirby, Patrick J; Carvalho-Silva, Denise R; Graves, Jennifer A Marshall

    2005-01-01

    Mammalian sex chromosomes evolved from an ancient autosomal pair. Mapping of human X- and Y-borne genes in distantly related mammals and non-mammalian vertebrates has proved valuable to help deduce the evolution of this unique part of the genome. The platypus, a monotreme mammal distantly related to eutherians and marsupials, has an extraordinary sex chromosome system comprising five X and five Y chromosomes that form a translocation chain at male meiosis. The largest X chromosome (X1), which lies at one end of the chain, has considerable homology to the human X. Using comparative mapping and the emerging chicken database, we demonstrate that part of the therian X chromosome, previously thought to be conserved across all mammals, was lost from the platypus X1 to an autosome. This region included genes flanking the XIST locus, and also genes with Y-linked homologues that are important to male reproduction in therians. Since these genes lie on the X in marsupials and eutherians, and also on the homologous region of chicken chromosome 4, this represents a loss from the monotreme X rather than an additional evolutionary stratum of the human X. PMID:15973504

  6. How difficult is inference of mammalian causal gene regulatory networks?

    PubMed

    Djordjevic, Djordje; Yang, Andrian; Zadoorian, Armella; Rungrugeecharoen, Kevin; Ho, Joshua W K

    2014-01-01

    Gene regulatory networks (GRNs) play a central role in systems biology, especially in the study of mammalian organ development. One key question remains largely unanswered: Is it possible to infer mammalian causal GRNs using observable gene co-expression patterns alone? We assembled two mouse GRN datasets (embryonic tooth and heart) and matching microarray gene expression profiles to systematically investigate the difficulties of mammalian causal GRN inference. The GRNs were assembled based on > 2,000 pieces of experimental genetic perturbation evidence from manually reading > 150 primary research articles. Each piece of perturbation evidence records the qualitative change of the expression of one gene following knock-down or over-expression of another gene. Our data have thorough annotation of tissue types and embryonic stages, as well as the type of regulation (activation, inhibition and no effect), which uniquely allows us to estimate both sensitivity and specificity of the inference of tissue specific causal GRN edges. Using these unprecedented datasets, we found that gene co-expression does not reliably distinguish true positive from false positive interactions, making inference of GRN in mammalian development very difficult. Nonetheless, if we have expression profiling data from genetic or molecular perturbation experiments, such as gene knock-out or signalling stimulation, it is possible to use the set of differentially expressed genes to recover causal regulatory relationships with good sensitivity and specificity. Our result supports the importance of using perturbation experimental data in causal network reconstruction. Furthermore, we showed that causal gene regulatory relationship can be highly cell type or developmental stage specific, suggesting the importance of employing expression profiles from homogeneous cell populations. This study provides essential datasets and empirical evidence to guide the development of new GRN inference methods for

  7. Producing a Mammalian GFP Expression Vector Containing Neomycin Resistance Gene.

    PubMed

    Izadi, Manizheh; Abiri, Maryam; Keramatipour, Mohammad

    2009-04-01

    The green fluorescent protein (GFP) was originally isolated from the Jellyfish Aequorea Victoria that fluoresces green when exposed to blue light. GFP protein is composed of 238 amino acids with the molecular mass of 26.9 kD. The GFP gene is frequently used in cellular and molecular biology as a reporter gene. To date, many bacterial, yeast, fungal, plants, fly and mammalian cells, including human, have been created which express GFP. Martin Chalfie, Osamu Shimomura, and Roger Tsien were awarded the 2008 noble prize in chemistry for their discovery and development of GFP. In many studies on mammalian cells, GFP gene is introduced into cells using vector-based systems or a recombinant virus to track the location of a target protein or to study the expression level of the gene of interest, but in these studies there is no selection marker to normalize transfection. According to the importance of neomycin gene as a selection marker in mammalian cells, we aimed to produce a GFP expression vector that contains neomycin gene. GFP gene was separated from pEGFP-N1 vector and was inserted in the back-bone of pCDNA3.1/His/LacZ vector that contained the neomycin gene. The resulted vector contained GFP beside neomycin gene. PMID:23407141

  8. Pairing call-response surveys and distance sampling for a mammalian carnivore

    USGS Publications Warehouse

    Hansen, Sara J. K.; Frair, Jacqueline L.; Underwood, Harold B.; Gibbs, James P.

    2015-01-01

    Density estimates accounting for differential animal detectability are difficult to acquire for wide-ranging and elusive species such as mammalian carnivores. Pairing distance sampling with call-response surveys may provide an efficient means of tracking changes in populations of coyotes (Canis latrans), a species of particular interest in the eastern United States. Blind field trials in rural New York State indicated 119-m linear error for triangulated coyote calls, and a 1.8-km distance threshold for call detectability, which was sufficient to estimate a detection function with precision using distance sampling. We conducted statewide road-based surveys with sampling locations spaced ≥6 km apart from June to August 2010. Each detected call (be it a single or group) counted as a single object, representing 1 territorial pair, because of uncertainty in the number of vocalizing animals. From 524 survey points and 75 detections, we estimated the probability of detecting a calling coyote to be 0.17 ± 0.02 SE, yielding a detection-corrected index of 0.75 pairs/10 km2 (95% CI: 0.52–1.1, 18.5% CV) for a minimum of 8,133 pairs across rural New York State. Importantly, we consider this an index rather than true estimate of abundance given the unknown probability of coyote availability for detection during our surveys. Even so, pairing distance sampling with call-response surveys provided a novel, efficient, and noninvasive means of monitoring populations of wide-ranging and elusive, albeit reliably vocal, mammalian carnivores. Our approach offers an effective new means of tracking species like coyotes, one that is readily extendable to other species and geographic extents, provided key assumptions of distance sampling are met.

  9. Birth and expression evolution of mammalian microRNA genes.

    PubMed

    Meunier, Julien; Lemoine, Frédéric; Soumillon, Magali; Liechti, Angélica; Weier, Manuela; Guschanski, Katerina; Hu, Haiyang; Khaitovich, Philipp; Kaessmann, Henrik

    2013-01-01

    MicroRNAs (miRNAs) are major post-transcriptional regulators of gene expression, yet their origins and functional evolution in mammals remain little understood due to the lack of appropriate comparative data. Using RNA sequencing, we have generated extensive and comparable miRNA data for five organs in six species that represent all main mammalian lineages and birds (the evolutionary outgroup) with the aim to unravel the evolution of mammalian miRNAs. Our analyses reveal an overall expansion of miRNA repertoires in mammals, with threefold accelerated birth rates of miRNA families in placentals and marsupials, facilitated by the de novo emergence of miRNAs in host gene introns. Generally, our analyses suggest a high rate of miRNA family turnover in mammals with many newly emerged miRNA families being lost soon after their formation. Selectively preserved mammalian miRNA families gradually evolved higher expression levels, as well as altered mature sequences and target gene repertoires, and were apparently mainly recruited to exert regulatory functions in nervous tissues. However, miRNAs that originated on the X chromosome evolved high expression levels and potentially diverse functions during spermatogenesis, including meiosis, through selectively driven duplication-divergence processes. Overall, our study thus provides detailed insights into the birth and evolution of mammalian miRNA genes and the associated selective forces. PMID:23034410

  10. Endogenous Methanol Regulates Mammalian Gene Activity

    PubMed Central

    Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296

  11. Mammalian homologues of the Drosophila eye specification genes.

    PubMed

    Hanson, I M

    2001-12-01

    The Drosophila compound eye is specified by the simultaneous and interdependent activity of transcriptional regulatory genes from four families: PAX6 (eyeless, twin of eyeless, eyegone), EYA (eyes absent), SIX (sine oculis, Optix) and DACH (dachshund). Mammals have homologues of all these genes, and many of them are expressed in the embryonic or adult eye, but the functional relationships between them are currently much less clear than in Drosophila. Nevertheless, mutations in the mammalian genes highlight their requirement both within and outside the eye in embryos and adults, and emphasize that they can be deployed in many different contexts. PMID:11735383

  12. The completion of the Mammalian Gene Collection (MGC)

    PubMed Central

    Temple, Gary; Gerhard, Daniela S.; Rasooly, Rebekah; Feingold, Elise A.; Good, Peter J.; Robinson, Cristen; Mandich, Allison; Derge, Jeffrey G.; Lewis, Jeanne; Shoaf, Debonny; Collins, Francis S.; Jang, Wonhee; Wagner, Lukas; Shenmen, Carolyn M.; Misquitta, Leonie; Schaefer, Carl F.; Buetow, Kenneth H.; Bonner, Tom I.; Yankie, Linda; Ward, Ming; Phan, Lon; Astashyn, Alex; Brown, Garth; Farrell, Catherine; Hart, Jennifer; Landrum, Melissa; Maidak, Bonnie L.; Murphy, Michael; Murphy, Terence; Rajput, Bhanu; Riddick, Lillian; Webb, David; Weber, Janet; Wu, Wendy; Pruitt, Kim D.; Maglott, Donna; Siepel, Adam; Brejova, Brona; Diekhans, Mark; Harte, Rachel; Baertsch, Robert; Kent, Jim; Haussler, David; Brent, Michael; Langton, Laura; Comstock, Charles L.G.; Stevens, Michael; Wei, Chaochun; van Baren, Marijke J.; Salehi-Ashtiani, Kourosh; Murray, Ryan R.; Ghamsari, Lila; Mello, Elizabeth; Lin, Chenwei; Pennacchio, Christa; Schreiber, Kirsten; Shapiro, Nicole; Marsh, Amber; Pardes, Elizabeth; Moore, Troy; Lebeau, Anita; Muratet, Mike; Simmons, Blake; Kloske, David; Sieja, Stephanie; Hudson, James; Sethupathy, Praveen; Brownstein, Michael; Bhat, Narayan; Lazar, Joseph; Jacob, Howard; Gruber, Chris E.; Smith, Mark R.; McPherson, John; Garcia, Angela M.; Gunaratne, Preethi H.; Wu, Jiaqian; Muzny, Donna; Gibbs, Richard A.; Young, Alice C.; Bouffard, Gerard G.; Blakesley, Robert W.; Mullikin, Jim; Green, Eric D.; Dickson, Mark C.; Rodriguez, Alex C.; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M.; Hirst, Martin; Zeng, Thomas; Tse, Kane; Moksa, Michelle; Deng, Merinda; Ma, Kevin; Mah, Diana; Pang, Johnson; Taylor, Greg; Chuah, Eric; Deng, Athena; Fichter, Keith; Go, Anne; Lee, Stephanie; Wang, Jing; Griffith, Malachi; Morin, Ryan; Moore, Richard A.; Mayo, Michael; Munro, Sarah; Wagner, Susan; Jones, Steven J.M.; Holt, Robert A.; Marra, Marco A.; Lu, Sun; Yang, Shuwei; Hartigan, James; Graf, Marcus; Wagner, Ralf; Letovksy, Stanley; Pulido, Jacqueline C.; Robison, Keith; Esposito, Dominic; Hartley, James; Wall, Vanessa E.; Hopkins, Ralph F.; Ohara, Osamu; Wiemann, Stefan

    2009-01-01

    Since its start, the Mammalian Gene Collection (MGC) has sought to provide at least one full-protein-coding sequence cDNA clone for every human and mouse gene with a RefSeq transcript, and at least 6200 rat genes. The MGC cloning effort initially relied on random expressed sequence tag screening of cDNA libraries. Here, we summarize our recent progress using directed RT-PCR cloning and DNA synthesis. The MGC now contains clones with the entire protein-coding sequence for 92% of human and 89% of mouse genes with curated RefSeq (NM-accession) transcripts, and for 97% of human and 96% of mouse genes with curated RefSeq transcripts that have one or more PubMed publications, in addition to clones for more than 6300 rat genes. These high-quality MGC clones and their sequences are accessible without restriction to researchers worldwide. PMID:19767417

  13. Comparative genomics of mammalian hibernators using gene networks.

    PubMed

    Villanueva-Cañas, José Luis; Faherty, Sheena L; Yoder, Anne D; Albà, M Mar

    2014-09-01

    In recent years, the study of the molecular processes involved in mammalian hibernation has shifted from investigating a few carefully selected candidate genes to large-scale analysis of differential gene expression. The availability of high-throughput data provides an unprecedented opportunity to ask whether phylogenetically distant species show similar mechanisms of genetic control, and how these relate to particular genes and pathways involved in the hibernation phenotype. In order to address these questions, we compare 11 datasets of differentially expressed (DE) genes from two ground squirrel species, one bat species, and the American black bear, as well as a list of genes extracted from the literature that previously have been correlated with the drastic physiological changes associated with hibernation. We identify several genes that are DE in different species, indicating either ancestral adaptations or evolutionary convergence. When we use a network approach to expand the original datasets of DE genes to large gene networks using available interactome data, a higher agreement between datasets is achieved. This indicates that the same key pathways are important for activating and maintaining the hibernation phenotype. Functional-term-enrichment analysis identifies several important metabolic and mitochondrial processes that are critical for hibernation, such as fatty acid beta-oxidation and mitochondrial transport. We do not detect any enrichment of positive selection signatures in the coding sequences of genes from the networks of hibernation-associated genes, supporting the hypothesis that the genetic processes shaping the hibernation phenotype are driven primarily by changes in gene regulation. PMID:24881044

  14. Cohesin: a critical chromatin organizer in mammalian gene regulation

    PubMed Central

    Chien, Richard; Zeng, Weihua; Ball, Alexander R.; Yokomori, Kyoko

    2014-01-01

    Cohesins are evolutionarily conserved essential multi-protein complexes important for higher-order chromatin organization. They play pivotal roles in the maintenance of genome integrity through mitotic chromosome regulation, DNA repair and replication, as well as gene regulation critical for proper development and cellular differentiation. In this review, we will discuss the multifaceted functions of mammalian cohesins and their apparent functional hierarchy in the cell, with particular focus on their actions in gene regulation and their relevance to human developmental disorders. PMID:21851156

  15. Amplification of a Gene Related to Mammalian mdr Genes in Drug-Resistant Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Wilson, Craig M.; Serrano, Adelfa E.; Wasley, Annemarie; Bogenschutz, Michael P.; Shankar, Anuraj H.; Wirth, Dyann F.

    1989-06-01

    The malaria parasite Plasmodium falciparum contains at least two genes related to the mammalian multiple drug resistance genes, and at least one of the P. falciparum genes is expressed at a higher level and is present in higher copy number in a strain that is resistant to multiple drugs than in a strain that is sensitive to the drugs.

  16. Baculoviruses deficient in ie1 gene function abrogate viral gene expression in transduced mammalian cells

    SciTech Connect

    Efrose, Rodica; Swevers, Luc; Iatrou, Kostas

    2010-10-25

    One of the newest niches for baculoviruses-based technologies is their use as vectors for mammalian cell transduction and gene therapy applications. However, an outstanding safety issue related to such use is the residual expression of viral genes in infected mammalian cells. Here we show that infectious baculoviruses lacking the major transcriptional regulator, IE1, can be produced in insect host cells stably transformed with IE1 expression constructs lacking targets of homologous recombination that could promote the generation of wt-like revertants. Such ie1-deficient baculoviruses are unable to direct viral gene transcription to any appreciable degree and do not replicate in normal insect host cells. Most importantly, the residual viral gene expression, which occurs in mammalian cells infected with wt baculoviruses is reduced 10 to 100 fold in cells infected with ie1-deficient baculoviruses. Thus, ie1-deficient baculoviruses offer enhanced safety features to baculovirus-based vector systems destined for use in gene therapy applications.

  17. Hypoxia-mediated regulation of gene expression in mammalian cells

    PubMed Central

    Shih, Shu-Ching; Claffey, Kevin P.

    1998-01-01

    The molecular mechanism underlying oxygen sensing in mammalian cells has been extensively investigated in the areas of glucose transport, glycolysis, erythropoiesis, angiogenesis and catecholamine metabolism. Expression of functionally operative representative proteins in these specific areas, such as the glucose transporter 1, glycolytic enzymes, erythropoietin, vascular endothelial growth factor and tyrosine hydroxylase are all induced by hypoxia. Recent studies demonstrated that both transcriptional activation and post-transcriptional mechanisms are important to the hypoxia-mediated regulation of gene expression. In this article, the cis-acting elements and trans-acting factors involved in the transcriptional activation of gene expression will be reviewed. In addition, the mechanisms of post-transcriptional mRNA stabilization will also be addressed. We will discuss whether these two processes of regulation of hypoxia-responsive genes are mechanistically linked and co-operative in nature. PMID:10319016

  18. Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species

    PubMed Central

    Rosselló, Ricardo Antonio; Chen, Chun-Chun; Dai, Rui; Howard, Jason T; Hochgeschwender, Ute; Jarvis, Erich D

    2013-01-01

    Cells are fundamental units of life, but little is known about evolution of cell states. Induced pluripotent stem cells (iPSCs) are once differentiated cells that have been re-programmed to an embryonic stem cell-like state, providing a powerful platform for biology and medicine. However, they have been limited to a few mammalian species. Here we found that a set of four mammalian transcription factor genes used to generate iPSCs in mouse and humans can induce a partially reprogrammed pluripotent stem cell (PRPSCs) state in vertebrate and invertebrate model organisms, in mammals, birds, fish, and fly, which span 550 million years from a common ancestor. These findings are one of the first to show cross-lineage stem cell-like induction, and to generate pluripotent-like cells for several of these species with in vivo chimeras. We suggest that the stem-cell state may be highly conserved across a wide phylogenetic range. DOI: http://dx.doi.org/10.7554/eLife.00036.001 PMID:24015354

  19. Simplified ontologies allowing comparison of developmental mammalian gene expression

    PubMed Central

    Kruger, Adele; Hofmann, Oliver; Carninci, Piero; Hayashizaki, Yoshihide; Hide, Winston

    2007-01-01

    Model organisms represent an important resource for understanding the fundamental aspects of mammalian biology. Mapping of biological phenomena between model organisms is complex and if it is to be meaningful, a simplified representation can be a powerful means for comparison. The Developmental eVOC ontologies presented here are simplified orthogonal ontologies describing the temporal and spatial distribution of developmental human and mouse anatomy. We demonstrate the ontologies by identifying genes showing a bias for developmental brain expression in human and mouse. PMID:17961239

  20. An ensemble of SVM classifiers based on gene pairs.

    PubMed

    Tong, Muchenxuan; Liu, Kun-Hong; Xu, Chungui; Ju, Wenbin

    2013-07-01

    In this paper, a genetic algorithm (GA) based ensemble support vector machine (SVM) classifier built on gene pairs (GA-ESP) is proposed. The SVMs (base classifiers of the ensemble system) are trained on different informative gene pairs. These gene pairs are selected by the top scoring pair (TSP) criterion. Each of these pairs projects the original microarray expression onto a 2-D space. Extensive permutation of gene pairs may reveal more useful information and potentially lead to an ensemble classifier with satisfactory accuracy and interpretability. GA is further applied to select an optimized combination of base classifiers. The effectiveness of the GA-ESP classifier is evaluated on both binary-class and multi-class datasets. PMID:23668348

  1. Controlling mammalian gene expression by allosteric hepatitis delta virus ribozymes.

    PubMed

    Nomura, Yoko; Zhou, Linlin; Miu, Anh; Yokobayashi, Yohei

    2013-12-20

    We engineered small molecule responsive allosteric ribozymes based on the genomic hepatitis delta virus (HDV) ribozyme by replacing the P4-L4 stem-loop with an RNA aptamer through a connector stem. When embedded in the 3' untranslated region of a reporter gene mRNA, these RNA devices enabled regulation of cis-gene expression by theophylline and guanine by up to 29.5-fold in mammalian cell culture. Furthermore, a NOR logic gate device was constructed by placing two engineered ribozymes in tandem, demonstrating the modularity of the RNA devices. The significant improvement in the regulatory dynamic range (ON/OFF ratio) of the RNA devices based on the HDV ribozyme should provide new opportunities for practical applications. PMID:23697539

  2. Ex vivo mammalian prions are formed of paired double helical prion protein fibrils

    PubMed Central

    Terry, Cassandra; Wenborn, Adam; Gros, Nathalie; Sells, Jessica; Joiner, Susan; Hosszu, Laszlo L. P.; Tattum, M. Howard; Panico, Silvia; Clare, Daniel K.; Collinge, John; Saibil, Helen R.

    2016-01-01

    Mammalian prions are hypothesized to be fibrillar or amyloid forms of prion protein (PrP), but structures observed to date have not been definitively correlated with infectivity and the three-dimensional structure of infectious prions has remained obscure. Recently, we developed novel methods to obtain exceptionally pure preparations of prions from mouse brain and showed that pathogenic PrP in these high-titre preparations is assembled into rod-like assemblies. Here, we have used precise cell culture-based prion infectivity assays to define the physical relationship between the PrP rods and prion infectivity and have used electron tomography to define their architecture. We show that infectious PrP rods isolated from multiple prion strains have a common hierarchical assembly comprising twisted pairs of short fibres with repeating substructure. The architecture of the PrP rods provides a new structural basis for understanding prion infectivity and can explain the inability to systematically generate high-titre synthetic prions from recombinant PrP. PMID:27249641

  3. Ex vivo mammalian prions are formed of paired double helical prion protein fibrils.

    PubMed

    Terry, Cassandra; Wenborn, Adam; Gros, Nathalie; Sells, Jessica; Joiner, Susan; Hosszu, Laszlo L P; Tattum, M Howard; Panico, Silvia; Clare, Daniel K; Collinge, John; Saibil, Helen R; Wadsworth, Jonathan D F

    2016-05-01

    Mammalian prions are hypothesized to be fibrillar or amyloid forms of prion protein (PrP), but structures observed to date have not been definitively correlated with infectivity and the three-dimensional structure of infectious prions has remained obscure. Recently, we developed novel methods to obtain exceptionally pure preparations of prions from mouse brain and showed that pathogenic PrP in these high-titre preparations is assembled into rod-like assemblies. Here, we have used precise cell culture-based prion infectivity assays to define the physical relationship between the PrP rods and prion infectivity and have used electron tomography to define their architecture. We show that infectious PrP rods isolated from multiple prion strains have a common hierarchical assembly comprising twisted pairs of short fibres with repeating substructure. The architecture of the PrP rods provides a new structural basis for understanding prion infectivity and can explain the inability to systematically generate high-titre synthetic prions from recombinant PrP. PMID:27249641

  4. Firefly luciferase gene: structure and expression in mammalian cells.

    PubMed Central

    de Wet, J R; Wood, K V; DeLuca, M; Helinski, D R; Subramani, S

    1987-01-01

    The nucleotide sequence of the luciferase gene from the firefly Photinus pyralis was determined from the analysis of cDNA and genomic clones. The gene contains six introns, all less than 60 bases in length. The 5' end of the luciferase mRNA was determined by both S1 nuclease analysis and primer extension. Although the luciferase cDNA clone lacked the six N-terminal codons of the open reading frame, we were able to reconstruct the equivalent of a full-length cDNA using the genomic clone as a source of the missing 5' sequence. The full-length, intronless luciferase gene was inserted into mammalian expression vectors and introduced into monkey (CV-1) cells in which enzymatically active firefly luciferase was transiently expressed. In addition, cell lines stably expressing firefly luciferase were isolated. Deleting a portion of the 5'-untranslated region of the luciferase gene removed an upstream initiation (AUG) codon and resulted in a twofold increase in the level of luciferase expression. The ability of the full-length luciferase gene to activate cryptic or enhancerless promoters was also greatly reduced or eliminated by this 5' deletion. Assaying the expression of luciferase provides a rapid and inexpensive method for monitoring promoter activity. Depending on the instrumentation employed to detect luciferase activity, we estimate this assay to be from 30- to 1,000-fold more sensitive than assaying chloramphenicol acetyltransferase expression. Images PMID:3821727

  5. The Inferred Cardiogenic Gene Regulatory Network in the Mammalian Heart

    PubMed Central

    Li, Xing; Thiagarajan, Raghuram; Nelson, Timothy J.; Tomita-Mitchell, Aoy; Beard, Daniel A.

    2014-01-01

    Cardiac development is a complex, multiscale process encompassing cell fate adoption, differentiation and morphogenesis. To elucidate pathways underlying this process, a recently developed algorithm to reverse engineer gene regulatory networks was applied to time-course microarray data obtained from the developing mouse heart. Approximately 200 genes of interest were input into the algorithm to generate putative network topologies that are capable of explaining the experimental data via model simulation. To cull specious network interactions, thousands of putative networks are merged and filtered to generate scale-free, hierarchical networks that are statistically significant and biologically relevant. The networks are validated with known gene interactions and used to predict regulatory pathways important for the developing mammalian heart. Area under the precision-recall curve and receiver operator characteristic curve are 9% and 58%, respectively. Of the top 10 ranked predicted interactions, 4 have already been validated. The algorithm is further tested using a network enriched with known interactions and another depleted of them. The inferred networks contained more interactions for the enriched network versus the depleted network. In all test cases, maximum performance of the algorithm was achieved when the purely data-driven method of network inference was combined with a data-independent, functional-based association method. Lastly, the network generated from the list of approximately 200 genes of interest was expanded using gene-profile uniqueness metrics to include approximately 900 additional known mouse genes and to form the most likely cardiogenic gene regulatory network. The resultant network supports known regulatory interactions and contains several novel cardiogenic regulatory interactions. The method outlined herein provides an informative approach to network inference and leads to clear testable hypotheses related to gene regulation. PMID:24971943

  6. Modular construction of mammalian gene circuits using TALE transcriptional repressors.

    PubMed

    Li, Yinqing; Jiang, Yun; Chen, He; Liao, Weixi; Li, Zhihua; Weiss, Ron; Xie, Zhen

    2015-03-01

    An important goal of synthetic biology is the rational design and predictable implementation of synthetic gene circuits using standardized and interchangeable parts. However, engineering of complex circuits in mammalian cells is currently limited by the availability of well-characterized and orthogonal transcriptional repressors. Here, we introduce a library of 26 reversible transcription activator-like effector repressors (TALERs) that bind newly designed hybrid promoters and exert transcriptional repression through steric hindrance of key transcriptional initiation elements. We demonstrate that using the input-output transfer curves of our TALERs enables accurate prediction of the behavior of modularly assembled TALER cascade and switch circuits. We also show that TALER switches using feedback regulation exhibit improved accuracy for microRNA-based HeLa cancer cell classification versus HEK293 cells. Our TALER library is a valuable toolkit for modular engineering of synthetic circuits, enabling programmable manipulation of mammalian cells and helping elucidate design principles of coupled transcriptional and microRNA-mediated post-transcriptional regulation. PMID:25643171

  7. Evaluation of gene-finding programs on mammalian sequences.

    PubMed

    Rogic, S; Mackworth, A K; Ouellette, F B

    2001-05-01

    We present an independent comparative analysis of seven recently developed gene-finding programs: FGENES, GeneMark.hmm, Genie, Genescan, HMMgene, Morgan, and MZEF. For evaluation purposes we developed a new, thoroughly filtered, and biologically validated dataset of mammalian genomic sequences that does not overlap with the training sets of the programs analyzed. Our analysis shows that the new generation of programs has substantially better results than the programs analyzed in previous studies. The accuracy of the programs was also examined as a function of various sequence and prediction features, such as G + C content of the sequence, length and type of exons, signal type, and score of the exon prediction. This approach pinpoints the strengths and weaknesses of each individual program as well as those of computational gene-finding in general. The dataset used in this analysis (HMR195) as well as the tables with the complete results are available at http://www.cs.ubc.ca/~rogic/evaluation/. PMID:11337477

  8. Gene stability in mammalian cells and protein consistency.

    PubMed

    Berthold, W

    1994-01-01

    The safety of a patient who is the recipient of protein drugs has to be assured. A "wrong" protein is thought to represent a great risk. The philosophy of testing strategies related to gene stability with product safety will be discussed in the light of experimental data available today. Although all mammalian cell lines used in the production of biologicals including recombinant DNA-derived lines have been produced from individual clones (functional monoclonality) they have been found to be heterogenous with regard to the genomic content (number of chromosomes, characteristics of identifiable chromosomes and position and number of integrated recombinant sequences). The verification of the presence of correct gene in a production cell line constitutes a well accepted and useful test, especially if derived by "population sequencing". A batch not related repeated confirmation of this fact cannot lead to any additional assurance for the correctness of all proteins constituting a given product beyond the level provided by cheminal testing. In contrast to this obvious and unavoidable heterogeneity in cellular genomes, the coding regions of genes have not been shown to change. Evidence is available to demonstrate the consistency of protein products originating from recombinant (and hybridoma) cell lines, e.g. more than 500,000 patients have received and tolerated rtPA well. PMID:7883100

  9. Molecular dissection of the roles of the SOD genes in mammalian response to low dose irradiation

    SciTech Connect

    Li, Chuan-Yaun

    2009-01-27

    “Molecular dissection of the roles of the SOD genes in mammalian response to low dose irradiation " was started on 09/01/03 and ended on 08/31/07. The primary objective of the project was to carry out mechanistic studies of the roles of the anti-oxidant SOD genes in mammalian cellular response to low dose ionizing radiation.

  10. Limitations of allotopic expression of mitochondrial genes in mammalian cells.

    PubMed Central

    Oca-Cossio, Jose; Kenyon, Lesley; Hao, Huiling; Moraes, Carlos T

    2003-01-01

    The possibility of expressing mitochondrial DNA-coded genes in the nuclear-cytoplasmic compartment provides an attractive system for genetic treatment of mitochondrial disorders associated with mitochondrial DNA mutations. In theory, by recoding mitochondrial genes to adapt them to the universal genetic code and by adding a DNA sequence coding for a mitochondrial-targeting sequence, one could achieve correct localization of the gene product. Such transfer has occurred in nature, and certain species of algae and plants express a number of polypeptides that are commonly coded by mtDNA in the nuclear-cytoplasmic compartment. In the present study, allotopic expression of three different mtDNA-coded polypeptides (ATPase8, apocytochrome b, and ND4) into COS-7 and HeLa cells was analyzed. Among these, only ATPase8 was correctly expressed and localized to mitochondria. The full-length, as well as truncated forms, of apocytochrome b and ND4 decorated the periphery of mitochondria, but also aggregated in fiber-like structures containing tubulin and in some cases also vimentin. The addition of a hydrophilic tail (EGFP) to the C terminus of these polypeptides did not change their localization. Overexpression of molecular chaperones also did not have a significant effect in preventing aggregations. Allotopic expression of apocytochrome b and ND4 induced a loss of mitochondrial membrane potential in transfected cells, which can lead to cell death. Our observations suggest that only a subset of mitochondrial genes can be replaced allotopically. Analyses of the hydrophobic patterns of different polypeptides suggest that hydrophobicity of the N-terminal segment is the main determinant for the importability of peptides into mammalian mitochondria. PMID:14573482

  11. Conservation of alternative polyadenylation patterns in mammalian genes

    PubMed Central

    Ara, Takeshi; Lopez, Fabrice; Ritchie, William; Benech, Philippe; Gautheret, Daniel

    2006-01-01

    Background Alternative polyadenylation is a widespread mechanism contributing to transcript diversity in eukaryotes. Over half of mammalian genes are alternatively polyadenylated. Our understanding of poly(A) site evolution is limited by the lack of a reliable identification of conserved, equivalent poly(A) sites among species. We introduce here a working definition of conserved poly(A) sites as sites that are both (i) properly aligned in human and mouse orthologous 3' untranslated regions (UTRs) and (ii) supported by EST or cDNA data in both species. Results We identified about 4800 such conserved poly(A) sites covering one third of the orthologous gene set studied. Characteristics of conserved poly(A) sites such as processing efficiency and tissue-specificity were analyzed. Conserved sites show a higher processing efficiency but no difference in tissular distribution when compared to non-conserved sites. In general, alternative poly(A) sites are species-specific and involve minor, non-conserved sites that are unlikely to play essential roles. However, there are about 500 genes with conserved tandem poly(A) sites. A significant fraction of these conserved tandems display a conserved arrangement of major/minor sites in their 3' UTR, suggesting that these alternative 3' ends may be under selection. Conclusion This analysis allows us to identify potential functional alternative poly(A) sites and provides clues on the selective mechanisms at play in the appearance of multiple poly(A) sites and their maintenance in the 3' UTRs of genes. PMID:16872498

  12. Characterization of two nuclear mammalian homologous DNA-pairing activities that do not require associated exonuclease activity.

    PubMed Central

    Akhmedov, A T; Bertrand, P; Corteggiani, E; Lopez, B S

    1995-01-01

    We have developed an assay to study homologous DNA-pairing activities in mammalian nuclear extracts. This assay is derived from the POM blot assay, described earlier, which was specific for RecA activity in bacterial crude extracts. In the present work, proteins from mammalian nuclear extracts were resolved by electrophoresis on SDS/polyacrylamide gels and then electrotransferred onto a nitrocellulose membrane coated with circular single-stranded DNA (ssDNA). The blot obtained was incubated with a labeled homologous double-stranded DNA (dsDNA). Homologous pairing between the ssDNA and the labeled dsDNA was detected by autoradiography as a radioactive spot on the membrane. In nuclear extracts from mammalian cells, we found two major polypeptides of 100 and 75 kDa, able to promote the formation of stable plectonemic joints. Joint molecule formation required at least one homologous end on the dsDNA, but either end of the dsDNA could be recruited to initiate the reaction. For each polypeptide, the reaction required divalent cations such as Mg2+, Ca2+, or Mn2+. Although ATP was not necessary, ADP was inhibitory in each case. Unlike most of the known eukaryotic DNA-pairing proteins, both activities identified here were able to promote the formation of joint molecules without requiring an associated exonuclease activity. In addition, these two proteins were detected in cell lines from different tissues and from different mammalian species (human, mouse, and hamster). Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7878049

  13. GENE EXPRESSION IN PRE-IMPLANTATION MAMMALIAN EMBRYOS

    EPA Science Inventory

    The pre-implantation mammalian embryo is initially under the control of maternal informational macromolecules that are accumulated during oogenesis. ubsequently, the genetic program of development becomes dependent upon new transcription derived from activation of the embryonic g...

  14. Hypergravity signal transduction and gene expression in cultured mammalian cells

    NASA Technical Reports Server (NTRS)

    Kumei, Y.; Whitson, P. A.

    1994-01-01

    A number of studies have been conducted during space flight and with clinostats and centrifuges, suggesting that gravity effects the proliferation and differentiation of mammalian cells in vitro. However, little is known about the mechanisms by which mammalian cells respond to changes in gravitational stress. This paper summarizes studies designed to clarify the effects of hypergravity on the cultured human HeLa cells and to investigate the mechanism of hypergravity signal transduction in these cells.

  15. 40 CFR 799.9530 - TSCA in vitro mammalian cell gene mutation test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... several base pairs in the DNA. Forward mutation is a gene mutation from the parental type to the mutant... multiple base pairs in the DNA molecule. Mutant frequency is the number of mutant cells observed divided...

  16. The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes.

    PubMed Central

    Baker, R T; Board, P G

    1991-01-01

    Complementary DNA clones encoding ubiquitin fused to a 52 amino acid tail protein were isolated from human placental and adrenal gland cDNA libraries. The deduced human 52 amino acid tail protein is very similar to the homologous protein from other species, including the conservation of the putative metal-binding, nucleic acid-binding domain observed in these proteins. Northern blot analysis with a tail-specific probe indicated that the previously identified UbA mRNA species most likely represents comigrating transcripts of the 52 amino acid tail (UbA52) and 80 amino acid tail (UbA80) ubiquitin fusion genes. The UbA52 gene was isolated from a human genomic library and consists of five exons distributed over 3400 base pairs. One intron is in the 5' non-coding region, two interrupt the single ubiquitin coding unit, and the fourth intron is within the tail coding region. Several members of the Alu family of repetitive DNA are associated with the gene. The UbA52 promoter has several features in common with mammalian ribosomal protein genes, including its location in a CpG-rich island, initiation of transcription within a polypyrimidine tract, the lack of a consensus TATA motif, and the presence of Sp1 binding sites, observations that are consistent with the recent identification of the ubiquitin-free tail proteins as ribosomal proteins. Thus, in spite of its unusual feature of being translationally fused to ubiquitin, the 52 amino acid tail ribosomal protein is expressed from a structurally typical ribosomal protein gene. Images PMID:1850507

  17. Mammalian cDNA Library from the NIH Mammalian Gene Collection (MGC) | Office of Cancer Genomics

    Cancer.gov

    The MGC provides the research community full-length clones for most of the defined (as of 2006) human and mouse genes, along with selected clones of cow and rat genes. Clones were designed to allow easy transfer of the ORF sequences into nearly any type of expression vector. MGC provides protein ‘expression-ready’ clones for each of the included human genes. MGC is part of the ORFeome Collaboration (OC).

  18. Chromosomal Redistribution of Male-Biased Genes in Mammalian Evolution with Two Bursts of Gene Gain on the X Chromosome

    PubMed Central

    Zhang, Yong E.; Vibranovski, Maria D.; Landback, Patrick; Marais, Gabriel A. B.; Long, Manyuan

    2010-01-01

    Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI). These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes and miRNA genes on the vertebrate phylogenetic tree. We found that the X chromosome recently acquired a burst of young male-biased genes, which is consistent with fixation of recessive male-beneficial alleles by sexual antagonism. For genes originating earlier, however, this pattern diminishes and finally reverses with an overrepresentation of the oldest male-biased genes on autosomes. MSCI contributes to this dynamic since it silences X-linked old genes but not X-linked young genes. This demasculinization process seems to be associated with feminization of the X chromosome with more X-linked old genes expressed in ovaries. Moreover, we detected another burst of gene originations after the split of eutherian mammals and opossum, and these genes were quickly incorporated into transcriptional networks of multiple tissues. Preexisting X-linked genes also show significantly higher protein-level evolution during this period compared to autosomal genes, suggesting positive selection accompanied the early evolution of mammalian X chromosomes. These two findings cast new light on the evolutionary history of the mammalian X chromosome in terms of gene gain, sequence, and expressional evolution. PMID:20957185

  19. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals

    PubMed Central

    KANEKO-ISHINO, Tomoko; ISHINO, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is “mammalian-specific genomic functions”, a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of “mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons”, based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes. PMID:26666304

  20. Gene amplification during differentiation of mammalian neural stem cells in vitro and in vivo.

    PubMed

    Fischer, Ulrike; Backes, Christina; Raslan, Abdulrahman; Keller, Andreas; Meier, Carola; Meese, Eckart

    2015-03-30

    In development of amphibians and flies, gene amplification is one of mechanisms to increase gene expression. In mammalian cells, gene amplification seems to be restricted to tumorigenesis and acquiring of drug-resistance in cancer cells. Here, we report a complex gene amplification pattern in mouse neural progenitor cells during differentiation with approximately 10% of the genome involved. Half of the amplified mouse chromosome regions overlap with amplified regions previously reported in human neural progenitor cells, indicating conserved mechanisms during differentiation. Using fluorescence in situ hybridization, we verified the amplification in single cells of primary mouse mesencephalon E14 (embryonic stage) neurosphere cells during differentiation. In vivo we confirmed gene amplifications of the TRP53 gene in cryosections from mouse embryos at stage E11.5. Gene amplification is not only a cancer-related mechanism but is also conserved in evolution, occurring during differentiation of mammalian neural stem cells. PMID:25760141

  1. Base composition and gene distribution: critical patterns in mammalian genome organization.

    PubMed

    Gardiner, K

    1996-12-01

    Recent success in developing transcriptional maps of large genomic regions provide excellent opportunities for the investigation of mammalian genome organization. Detailed definition of organizational features will, in the short term, aid in prioritizing genomic sequencing efforts and in interpreting sequencing results and, in the long term, will surely provide insights into the structural, functional and evolutionary basis for the mammalian chromosome and chromosomal banding patterns. For such efforts, human chromosome 21 provides an excellent model system because the physical and clone maps are detailed, and several transcriptional mapping projects have provided large numbers of novel genes. It is, therefore, valuable at this point to examine these transcriptional mapping data and to compare them with the isochore model of the mammalian genome, which describes patterns in base composition and predicts gene distributions. Not only do compelling organizational patterns appear, but new questions about additional possible patterns in gene size, structure, conservation and transcription can be asked. PMID:9257535

  2. Positive genetic selection for gene disruption in mammalian cells by homologous recombination.

    PubMed Central

    Sedivy, J M; Sharp, P A

    1989-01-01

    Efficient modification of genes in mammalian cells by homologous recombination has not been possible because of the high frequency of nonhomologous recombination. An efficient method for targeted gene disruption has been developed. Cells with substitution of exogenous sequences into a chromosomal locus were enriched, by a factor of 100, using a positive genetic selection that specifically selects for homologous recombination at the targeted site. The selection is based on the conditional expression of a dominant selectable marker by virtue of in-frame gene fusion with the target gene. The dominant selectable marker was derived by modification of the Escherichia coli neo gene so that it retains significant activity in mammalian cells after in-frame fusion with heterologous coding sequences. In the example presented here, homologous recombinants were efficiently recovered from a pool in which the targeted gene was disrupted in 1 per 10,000 cells incorporating exogenous DNA. Images PMID:2536156

  3. The life history of retrocopies illuminates the evolution of new mammalian genes

    PubMed Central

    Carelli, Francesco Nicola; Hayakawa, Takashi; Go, Yasuhiro; Imai, Hiroo; Warnefors, Maria; Kaessmann, Henrik

    2016-01-01

    New genes contribute substantially to adaptive evolutionary innovation, but the functional evolution of new mammalian genes has been little explored at a broad scale. Previous work established mRNA-derived gene duplicates, known as retrocopies, as models for the study of new gene origination. Here we combine mammalian transcriptomic and epigenomic data to unveil the processes underlying the evolution of stripped-down retrocopies into complex new genes. We show that although some robustly expressed retrocopies are transcribed from preexisting promoters, most evolved new promoters from scratch or recruited proto-promoters in their genomic vicinity. In particular, many retrocopy promoters emerged from ancestral enhancers (or bivalent regulatory elements) or are located in CpG islands not associated with other genes. We detected 88–280 selectively preserved retrocopies per mammalian species, illustrating that these mechanisms facilitated the birth of many functional retrogenes during mammalian evolution. The regulatory evolution of originally monoexonic retrocopies was frequently accompanied by exon gain, which facilitated co-option of distant promoters and allowed expression of alternative isoforms. While young retrogenes are often initially expressed in the testis, increased regulatory and structural complexities allowed retrogenes to functionally diversify and evolve somatic organ functions, sometimes as complex as those of their parents. Thus, some retrogenes evolved the capacity to temporarily substitute for their parents during the process of male meiotic X inactivation, while others rendered parental functions superfluous, allowing for parental gene loss. Overall, our reconstruction of the “life history” of mammalian retrogenes highlights retroposition as a general model for understanding new gene birth and functional evolution. PMID:26728716

  4. The life history of retrocopies illuminates the evolution of new mammalian genes.

    PubMed

    Carelli, Francesco Nicola; Hayakawa, Takashi; Go, Yasuhiro; Imai, Hiroo; Warnefors, Maria; Kaessmann, Henrik

    2016-03-01

    New genes contribute substantially to adaptive evolutionary innovation, but the functional evolution of new mammalian genes has been little explored at a broad scale. Previous work established mRNA-derived gene duplicates, known as retrocopies, as models for the study of new gene origination. Here we combine mammalian transcriptomic and epigenomic data to unveil the processes underlying the evolution of stripped-down retrocopies into complex new genes. We show that although some robustly expressed retrocopies are transcribed from preexisting promoters, most evolved new promoters from scratch or recruited proto-promoters in their genomic vicinity. In particular, many retrocopy promoters emerged from ancestral enhancers (or bivalent regulatory elements) or are located in CpG islands not associated with other genes. We detected 88-280 selectively preserved retrocopies per mammalian species, illustrating that these mechanisms facilitated the birth of many functional retrogenes during mammalian evolution. The regulatory evolution of originally monoexonic retrocopies was frequently accompanied by exon gain, which facilitated co-option of distant promoters and allowed expression of alternative isoforms. While young retrogenes are often initially expressed in the testis, increased regulatory and structural complexities allowed retrogenes to functionally diversify and evolve somatic organ functions, sometimes as complex as those of their parents. Thus, some retrogenes evolved the capacity to temporarily substitute for their parents during the process of male meiotic X inactivation, while others rendered parental functions superfluous, allowing for parental gene loss. Overall, our reconstruction of the "life history" of mammalian retrogenes highlights retroposition as a general model for understanding new gene birth and functional evolution. PMID:26728716

  5. Gene-Trap Mutagenesis Identifies Mammalian Genes Contributing to Intoxication by Clostridium perfringens ε-Toxin

    PubMed Central

    Ivie, Susan E.; Fennessey, Christine M.; Sheng, Jinsong; Rubin, Donald H.; McClain, Mark S.

    2011-01-01

    The Clostridium perfringens ε-toxin is an extremely potent toxin associated with lethal toxemias in domesticated ruminants and may be toxic to humans. Intoxication results in fluid accumulation in various tissues, most notably in the brain and kidneys. Previous studies suggest that the toxin is a pore-forming toxin, leading to dysregulated ion homeostasis and ultimately cell death. However, mammalian host factors that likely contribute to ε-toxin-induced cytotoxicity are poorly understood. A library of insertional mutant Madin Darby canine kidney (MDCK) cells, which are highly susceptible to the lethal affects of ε-toxin, was used to select clones of cells resistant to ε-toxin-induced cytotoxicity. The genes mutated in 9 surviving resistant cell clones were identified. We focused additional experiments on one of the identified genes as a means of validating the experimental approach. Gene expression microarray analysis revealed that one of the identified genes, hepatitis A virus cellular receptor 1 (HAVCR1, KIM-1, TIM1), is more abundantly expressed in human kidney cell lines than it is expressed in human cells known to be resistant to ε-toxin. One human kidney cell line, ACHN, was found to be sensitive to the toxin and expresses a larger isoform of the HAVCR1 protein than the HAVCR1 protein expressed by other, toxin-resistant human kidney cell lines. RNA interference studies in MDCK and in ACHN cells confirmed that HAVCR1 contributes to ε-toxin-induced cytotoxicity. Additionally, ε-toxin was shown to bind to HAVCR1 in vitro. The results of this study indicate that HAVCR1 and the other genes identified through the use of gene-trap mutagenesis and RNA interference strategies represent important targets for investigation of the process by which ε-toxin induces cell death and new targets for potential therapeutic intervention. PMID:21412435

  6. General method for quantifying base adducts in specific mammalian genes

    SciTech Connect

    Thomas, D.C.; Morton, A.G.; Bohr, V.A.; Sancar, A.

    1988-06-01

    A general method has been developed to measure the formation and removal of DNA adducts in defined sequences of mammalian genomes. Adducted genomic DNA is digested with an appropriate restriction enzyme, treated with Escherichia coli UvrABC excision nuclease (ABC excinuclease), subjected to alkaline gel electrophoresis, and probed for specific sequences by Southern hybridization. The ABC excinuclease incises DNA containing bulky adducts and thus reduces the intensity of the full-length fragments in Southern hybridization in proportion to the number of adducts present in the probed sequence. This method is similar to that developed by Bohr et al. for quantifying pyrimidine dimers by using T4 endonuclease V. Because of the wide substrate range of ABC exinuclease, however, our method can be used to quantify a large variety of DNA adducts in specific genomic sequences.

  7. Tenm, a Drosophila gene related to tenascin, is a new pair-rule gene.

    PubMed Central

    Baumgartner, S; Martin, D; Hagios, C; Chiquet-Ehrismann, R

    1994-01-01

    We describe the molecular characterization of the Drosophila gene tenm, a large transcription unit spanning > 110 kb of DNA. tenm encodes a large extracellular protein of 2515 amino acids related to the extracellular matrix molecule tenascin. The Tenm protein is found in seven stripes during the blastoderm stage, and each stripe overlaps with the even-skipped stripes. tenm mutants show a phenotype resembling that of odd-paired (opa), a member of the pair-rule class of segmentation genes. Thus, Tenm is the first example of a pair-rule gene product acting from outside the cell. While the Tenm protein is under the control of fushi tarazu and even-skipped, but not of opa, at least two pair-rule genes, paired (prd) and sloppy paired (slp), and all segment-polarity genes analysed to date are under the control of tenm. Our data suggest that Tenm initiates a signal transduction cascade which acts, via or in concert with opa, on downstream targets such as prd, slp, gooseberry, engrailed and wingless, leading to an opa-like phenotype. Images PMID:8070401

  8. Inhibiting expression of specific genes in mammalian cells with 5′ end-mutated U1 small nuclear RNAs targeted to terminal exons of pre-mRNA

    PubMed Central

    Fortes, Puri; Cuevas, Yolanda; Guan, Fei; Liu, Peng; Pentlicky, Sara; Jung, Stephen P.; Martínez-Chantar, Maria L.; Prieto, Jesús; Rowe, David; Gunderson, Samuel I.

    2003-01-01

    Reducing or eliminating expression of a given gene is likely to require multiple methods to ensure coverage of all of the genes in a given mammalian cell. We and others [Furth, P. A., Choe, W. T., Rex, J. H., Byrne, J. C., and Baker, C. C. (1994) Mol. Cell. Biol. 14, 5278–5289] have previously shown that U1 small nuclear (sn) RNA, both natural or with 5′ end mutations, can specifically inhibit reporter gene expression in mammalian cells. This inhibition occurs when the U1 snRNA 5′ end base pairs near the polyadenylation signal of the reporter gene's pre-mRNA. This base pairing inhibits poly(A) tail addition, a key, nearly universal step in mRNA biosynthesis, resulting in degradation of the mRNA. Here we demonstrate that expression of endogenous mammalian genes can be efficiently inhibited by transiently or stably expressed 5′ end-mutated U1 snRNA. Also, we determine the inhibitory mechanism and establish a set of rules to use this technique and to improve the efficiency of inhibition. Two U1 snRNAs base paired to a single pre-mRNA act synergistically, resulting in up to 700-fold inhibition of the expression of specific reporter genes and 25-fold inhibition of endogenous genes. Surprisingly, distance from the U1 snRNA binding site to the poly(A) signal is not critical for inhibition, instead the U1 snRNA must be targeted to the terminal exon of the pre-mRNA. This could reflect a disruption by the 5′ end-mutated U1 snRNA of the definition of the terminal exon as described by the exon definition model. PMID:12826613

  9. 40 CFR 799.9530 - TSCA in vitro mammalian cell gene mutation test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false TSCA in vitro mammalian cell gene mutation test. 799.9530 Section 799.9530 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Health Effects...

  10. Adaptive Evolution of the STRA6 Genes in Mammalian

    PubMed Central

    Wu, Jianghong; Xiang, Hui; Qi, Yunxia; Yang, Ding; Wang, Xiaojuan; Sun, Hailian; Wang, Feng; Liu, Bin

    2014-01-01

    Stimulated by retinoic acid 6 (STRA6) is the receptor for retinol binding protein and is relevant for the transport of retinol to specific sites such as the eye. The adaptive evolution mechanism that vertebrates have occupied nearly every habitat available on earth and adopted various lifestyles associated with different light conditions and visual challenges, as well as their role in development and adaptation is thus far unknown. In this work, we have investigated different aspects of vertebrate STRA6 evolution and used molecular evolutionary analyses to detect evidence of vertebrate adaptation to the lightless habitat. Free-ratio model revealed significant rate shifts immediately after the species divergence. The amino acid sites detected to be under positive selection are within the extracellular loops of STRA6 protein. Branch-site model A test revealed that STRA6 has undergone positive selection in the different phyla of mammalian except for the branch of rodent. The results suggest that interactions between different light environments and host may be driving adaptive change in STRA6 by competition between species. In support of this, we found that altered functional constraints may take place at some amino acid residues after speciation. We suggest that STRA6 has undergone adaptive evolution in different branch of vertebrate relation to habitat environment. PMID:25251323

  11. Tempo and Mode of Gene Duplication in Mammalian Ribosomal Protein Evolution

    PubMed Central

    Gajdosik, Matthew D.; Simon, Amanda; Nelson, Craig E.

    2014-01-01

    Gene duplication has been widely recognized as a major driver of evolutionary change and organismal complexity through the generation of multi-gene families. Therefore, understanding the forces that govern the evolution of gene families through the retention or loss of duplicated genes is fundamentally important in our efforts to study genome evolution. Previous work from our lab has shown that ribosomal protein (RP) genes constitute one of the largest classes of conserved duplicated genes in mammals. This result was surprising due to the fact that ribosomal protein genes evolve slowly and transcript levels are very tightly regulated. In our present study, we identified and characterized all RP duplicates in eight mammalian genomes in order to investigate the tempo and mode of ribosomal protein family evolution. We show that a sizable number of duplicates are transcriptionally active and are very highly conserved. Furthermore, we conclude that existing gene duplication models do not readily account for the preservation of a very large number of intact retroduplicated ribosomal protein (RT-RP) genes observed in mammalian genomes. We suggest that selection against dominant-negative mutations may underlie the unexpected retention and conservation of duplicated RP genes, and may shape the fate of newly duplicated genes, regardless of duplication mechanism. PMID:25369106

  12. The Mammalian Cervical Vertebrae Blueprint Depends on the T (brachyury) Gene

    PubMed Central

    Kromik, Andreas; Ulrich, Reiner; Kusenda, Marian; Tipold, Andrea; Stein, Veronika M.; Hellige, Maren; Dziallas, Peter; Hadlich, Frieder; Widmann, Philipp; Goldammer, Tom; Baumgärtner, Wolfgang; Rehage, Jürgen; Segelke, Dierck; Weikard, Rosemarie; Kühn, Christa

    2015-01-01

    A key common feature of all but three known mammalian genera is the strict seven cervical vertebrae blueprint, suggesting the involvement of strong conserving selection forces during mammalian radiation. This is further supported by reports indicating that children with cervical ribs die before they reach reproductive age. Hypotheses were put up, associating cervical ribs (homeotic transformations) to embryonal cancer (e.g., neuroblastoma) or ascribing the constraint in cervical vertebral count to the development of the mammalian diaphragm. Here, we describe a spontaneous mutation c.196A > G in the Bos taurus T gene (also known as brachyury) associated with a cervical vertebral homeotic transformation that violates the fundamental mammalian cervical blueprint, but does not preclude reproduction of the affected individual. Genome-wide mapping, haplotype tracking within a large pedigree, resequencing of target genome regions, and bioinformatic analyses unambiguously confirmed the mutant c.196G allele as causal for this previously unknown defect termed vertebral and spinal dysplasia (VSD) by providing evidence for the mutation event. The nonsynonymous VSD mutation is located within the highly conserved T box of the T gene, which plays a fundamental role in eumetazoan body organization and vertebral development. To our knowledge, VSD is the first unequivocally approved spontaneous mutation decreasing cervical vertebrae number in a large mammal. The spontaneous VSD mutation in the bovine T gene is the first in vivo evidence for the hypothesis that the T protein is directly involved in the maintenance of the mammalian seven-cervical vertebra blueprint. It therefore furthers our knowledge of the T-protein function and early mammalian notochord development. PMID:25614605

  13. Gaining Insights into the Codon Usage Patterns of TP53 Gene across Eight Mammalian Species

    PubMed Central

    Mazumder, Tarikul Huda; Chakraborty, Supriyo

    2015-01-01

    TP53 gene is known as the “guardian of the genome” as it plays a vital role in regulating cell cycle, cell proliferation, DNA damage repair, initiation of programmed cell death and suppressing tumor growth. Non uniform usage of synonymous codons for a specific amino acid during translation of protein known as codon usage bias (CUB) is a unique property of the genome and shows species specific deviation. Analysis of codon usage bias with compositional dynamics of coding sequences has contributed to the better understanding of the molecular mechanism and the evolution of a particular gene. In this study, the complete nucleotide coding sequences of TP53 gene from eight different mammalian species were used for CUB analysis. Our results showed that the codon usage patterns in TP53 gene across different mammalian species has been influenced by GC bias particularly GC3 and a moderate bias exists in the codon usage of TP53 gene. Moreover, we observed that nature has highly favored the most over represented codon CTG for leucine amino acid but selected against the ATA codon for isoleucine in TP53 gene across all mammalian species during the course of evolution. PMID:25807269

  14. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases

    PubMed Central

    Santiago, Yolanda; Chan, Edmond; Liu, Pei-Qi; Orlando, Salvatore; Zhang, Lin; Urnov, Fyodor D.; Holmes, Michael C.; Guschin, Dmitry; Waite, Adam; Miller, Jeffrey C.; Rebar, Edward J.; Gregory, Philip D.; Klug, Aaron; Collingwood, Trevor N.

    2008-01-01

    Gene knockout is the most powerful tool for determining gene function or permanently modifying the phenotypic characteristics of a cell. Existing methods for gene disruption are limited by their efficiency, time to completion, and/or the potential for confounding off-target effects. Here, we demonstrate a rapid single-step approach to targeted gene knockout in mammalian cells, using engineered zinc-finger nucleases (ZFNs). ZFNs can be designed to target a chosen locus with high specificity. Upon transient expression of these nucleases the target gene is first cleaved by the ZFNs and then repaired by a natural—but imperfect—DNA repair process, nonhomologous end joining. This often results in the generation of mutant (null) alleles. As proof of concept for this approach we designed ZFNs to target the dihydrofolate reductase (DHFR) gene in a Chinese hamster ovary (CHO) cell line. We observed biallelic gene disruption at frequencies >1%, thus obviating the need for selection markers. Three new genetically distinct DHFR−/− cell lines were generated. Each new line exhibited growth and functional properties consistent with the specific knockout of the DHFR gene. Importantly, target gene disruption is complete within 2–3 days of transient ZFN delivery, thus enabling the isolation of the resultant DHFR−/− cell lines within 1 month. These data demonstrate further the utility of ZFNs for rapid mammalian cell line engineering and establish a new method for gene knockout with application to reverse genetics, functional genomics, drug discovery, and therapeutic recombinant protein production. PMID:18359850

  15. Light without substrate amendment: the bacterial luciferase gene cassette as a mammalian bioreporter

    NASA Astrophysics Data System (ADS)

    Close, Dan M.; Xu, Tingting; Smartt, Abby E.; Jegier, Pat; Ripp, Steven A.; Sayler, Gary S.

    2011-06-01

    Bioluminescent production represents a facile method for bioreporter detection in mammalian tissues. The lack of endogenous bioluminescent reactions in these tissues allows for high signal to noise ratios even at low signal strength compared to fluorescent signal detection. While the luciferase enzymes commonly employed for bioluminescent detection are those from class Insecta (firefly and click beetle luciferases), these are handicapped in that they require concurrent administration of a luciferin compound to elicit a bioluminescent signal. The bacterial luciferase (lux) gene cassette offers the advantages common to other bioluminescent proteins, but is simultaneously capable of synthesizing its own luciferin substrates using endogenously available cellular compounds. The longstanding shortcoming of the lux cassette has been its recalcitrance to function in the mammalian cellular environment. This paper will present an overview of the work completed to date to overcome this limitation and provide examples of mammalian lux-based bioreporter technologies that could provide the framework for advanced, biomedically relevant real-time sensor development.

  16. A platform for rapid prototyping of synthetic gene networks in mammalian cells

    PubMed Central

    Duportet, Xavier; Wroblewska, Liliana; Guye, Patrick; Li, Yinqing; Eyquem, Justin; Rieders, Julianne; Rimchala, Tharathorn; Batt, Gregory; Weiss, Ron

    2014-01-01

    Mammalian synthetic biology may provide novel therapeutic strategies, help decipher new paths for drug discovery and facilitate synthesis of valuable molecules. Yet, our capacity to genetically program cells is currently hampered by the lack of efficient approaches to streamline the design, construction and screening of synthetic gene networks. To address this problem, here we present a framework for modular and combinatorial assembly of functional (multi)gene expression vectors and their efficient and specific targeted integration into a well-defined chromosomal context in mammalian cells. We demonstrate the potential of this framework by assembling and integrating different functional mammalian regulatory networks including the largest gene circuit built and chromosomally integrated to date (6 transcription units, 27kb) encoding an inducible memory device. Using a library of 18 different circuits as a proof of concept, we also demonstrate that our method enables one-pot/single-flask chromosomal integration and screening of circuit libraries. This rapid and powerful prototyping platform is well suited for comparative studies of genetic regulatory elements, genes and multi-gene circuits as well as facile development of libraries of isogenic engineered cell lines. PMID:25378321

  17. Expression of pair rule gene orthologs in the blastoderm of a myriapod: evidence for pair rule-like mechanisms?

    PubMed Central

    2012-01-01

    Background A hallmark of Drosophila segmentation is the stepwise subdivision of the body into smaller and smaller units, and finally into the segments. This is achieved by the function of the well-understood segmentation gene cascade. The first molecular sign of a segmented body appears with the action of the pair rule genes, which are expressed as transversal stripes in alternating segments. Drosophila development, however, is derived, and in most other arthropods only the anterior body is patterned (almost) simultaneously from a pre-existing field of cells; posterior segments are added sequentially from a posterior segment addition zone. A long-standing question is to what extent segmentation mechanisms known from Drosophila may be conserved in short-germ arthropods. Despite the derived developmental modes, it appears more likely that conserved mechanisms can be found in anterior patterning. Results Expression analysis of pair rule gene orthologs in the blastoderm of the pill millipede Glomeris marginata (Myriapoda: Diplopoda) suggests that these genes are generally involved in segmenting the anterior embryo. We find that the Glomeris pairberry-1 ( pby-1) gene is expressed in a pair rule pattern that is also found in insects and a chelicerate, the mite Tetraynchus urticae. Other Glomeris pair rule gene orthologs are expressed in double segment wide domains in the blastoderm, which at subsequent stages split into two stripes in adjacent segments. Conclusions The expression patterns of the millipede pair rule gene orthologs resemble pair rule patterning in Drosophila and other insects, and thus represent evidence for the presence of an ancestral pair rule-like mechanism in myriapods. We discuss the possibilities that blastoderm patterning may be conserved in long-germ and short-germ arthropods, and that a posterior double segmental mechanism may be present in short-germ arthropods. PMID:22595029

  18. The expansion of amino-acid repeats is not associated to adaptive evolution in mammalian genes

    PubMed Central

    2009-01-01

    Background The expansion of amino acid repeats is determined by a high mutation rate and can be increased or limited by selection. It has been suggested that recent expansions could be associated with the potential of adaptation to new environments. In this work, we quantify the strength of this association, as well as the contribution of potential confounding factors. Results Mammalian positively selected genes have accumulated more recent amino acid repeats than other mammalian genes. However, we found little support for an accelerated evolutionary rate as the main driver for the expansion of amino acid repeats. The most significant predictors of amino acid repeats are gene function and GC content. There is no correlation with expression level. Conclusions Our analyses show that amino acid repeat expansions are causally independent from protein adaptive evolution in mammalian genomes. Relaxed purifying selection or positive selection do not associate with more or more recent amino acid repeats. Their occurrence is slightly favoured by the sequence context but mainly determined by the molecular function of the gene. PMID:20021652

  19. Antagonistic control of a dual-input mammalian gene switch by food additives

    PubMed Central

    Xie, Mingqi; Ye, Haifeng; Hamri, Ghislaine Charpin-El; Fussenegger, Martin

    2014-01-01

    Synthetic biology has significantly advanced the design of mammalian trigger-inducible transgene-control devices that are able to programme complex cellular behaviour. Fruit-based benzoate derivatives licensed as food additives, such as flavours (e.g. vanillate) and preservatives (e.g. benzoate), are a particularly attractive class of trigger compounds for orthogonal mammalian transgene control devices because of their innocuousness, physiological compatibility and simple oral administration. Capitalizing on the genetic componentry of the soil bacterium Comamonas testosteroni, which has evolved to catabolize a variety of aromatic compounds, we have designed different mammalian gene expression systems that could be induced and repressed by the food additives benzoate and vanillate. When implanting designer cells engineered for gene switch-driven expression of the human placental secreted alkaline phosphatase (SEAP) into mice, blood SEAP levels of treated animals directly correlated with a benzoate-enriched drinking programme. Additionally, the benzoate-/vanillate-responsive device was compatible with other transgene control systems and could be assembled into higher-order control networks providing expression dynamics reminiscent of a lap-timing stopwatch. Designer gene switches using licensed food additives as trigger compounds to achieve antagonistic dual-input expression profiles and provide novel control topologies and regulation dynamics may advance future gene- and cell-based therapies. PMID:25030908

  20. Baton pass hypothesis: successive incorporation of unconserved endogenous retroviral genes for placentation during mammalian evolution.

    PubMed

    Imakawa, Kazuhiko; Nakagawa, So; Miyazawa, Takayuki

    2015-10-01

    It is well accepted that numerous RNAs derived from endogenous retroviruses (ERVs) are expressed in mammalian reproductive structures, particularly in the uterus, trophoblast, and placenta. Syncytin 1 and syncytin 2 in humans and syncytin A and syncytin B in mice are membrane proteins originating from Env genes of ERVs. These ERVs are involved in the fusion of trophoblast cells, resulting in multinucleated syncytiotrophoblast formation. Evidence accumulated indicates that syncytin-like fusogenic proteins are expressed in the placenta of rabbits, dogs/cats, ruminant ungulates, tenrecs, and opossums. The syncytin genes so far characterized are known to be endogenized to the host genome only within the past 12-80 million years, more recently than the appearance of mammalian placentas, estimated to be 160-180 million years ago. We speculate that ERVs including syncytin-like gene variants integrated into mammalian genomes in a locus-specific manner have replaced the genes previously responsible for cell fusion. We therefore propose the 'baton pass' hypothesis, in which multiple successive ERV variants 'take over' cell-fusion roles, resulting in increased trophoblast cell fusion, morphological variations in placental structures, and enhanced reproductive success in placental mammals. PMID:26442811

  1. Expression of mammalian metallothionein genes in Escherichia coli and in Saccharomyces cerevisiae

    SciTech Connect

    Hou, Ya-Ming

    1986-08-01

    The metallothionein genes of mouse and human were expressed in Escherichia coli and in Saccharomyces cerevisiae, respectively. The mammalian metallothionein genes code for a group of proteins that are low molecular weight, rich in cysteine and capable of binding heavy metal ions such as cadmium (Cd/sup +2/) and zinc (Zn/sup +2/). Expression of a metallothionein gene renders bacteria and yeast more resistant to heavy metal ions under a variety of growth conditions. This effect is specific for metallothionein because of gene expression is inactivated, bacteria and yeast become sensitive to metals. In addition, bacteria show a preferential incorporation of Cd/sup +2/ ions upon gene expression and contain a protein species that is readily labelled by (/sup 35/S)cysteine. Yeast also contain a protein of a similar molecular weight as the mammalian species but show characteristics that indicate the cells are under stress. Expression of metallothionein has a toxic effect on the microorganism, especially for yeast. The amounts of metallothionein detectable in both bacteria and yeast lysates are low. Several experiments suggest that metallothionein is quickly degraded in the presence of cell lysate. The low level of gene expression and/or the degradation of the gene product make it difficult to detect the expressed metallothionein in the bacterial or yeast lysate. 133 refs., 32 figs., 12 tabs.

  2. Ehrlichia chaffeensis Transcriptome in Mammalian and Arthropod Hosts Reveals Differential Gene Expression and Post Transcriptional Regulation

    PubMed Central

    Kuriakose, Jeeba A.; Miyashiro, Simone; Luo, Tian; Zhu, Bing; McBride, Jere W.

    2011-01-01

    Background Human monocytotropic ehrlichiosis is an emerging life-threatening zoonosis caused by obligately intracellular bacterium, Ehrlichia chaffeensis. E. chaffeensis is transmitted by the lone star tick, Amblyomma americanum, and replicates in mononuclear phagocytes in mammalian hosts. Differences in the E. chaffeensis transcriptome in mammalian and arthropod hosts are unknown. Thus, we determined host-specific E. chaffeensis gene expression in human monocyte (THP-1) and in Amblyomma and Ixodes tick cell lines (AAE2 and ISE6) using a whole genome microarray. Methodology/Principal Findings The majority (∼80%) of E. chaffeensis genes were expressed during infection in human and tick cells. There were few differences observed in E. chaffeensis gene expression between the vector Amblyomma and non-vector Ixodes tick cells, but extensive host-specific and differential gene expression profiles were detected between human and tick cells, including higher transcriptional activity in tick cells and identification of gene subsets that were differentially expressed in the two hosts. Differentially and host-specifically expressed ehrlichial genes encoded major immunoreactive tandem repeat proteins (TRP), the outer membrane protein (OMP-1) family, and hypothetical proteins that were 30–80 amino acids in length. Consistent with previous observations, high expression of p28 and OMP-1B genes was detected in human and tick cells, respectively. Notably, E. chaffeensis genes encoding TRP32 and TRP47 were highly upregulated in the human monocytes and expressed as proteins; however, although TRP transcripts were expressed in tick cells, the proteins were not detected in whole cell lysates demonstrating that TRP expression was post transcriptionally regulated. Conclusions/Significance Ehrlichia gene expression is highly active in tick cells, and differential gene expression among a wide variety of host-pathogen associated genes occurs. Furthermore, we demonstrate that genes

  3. ssiRNA Induced Gene Silencing is Transmitted Between Cells From the Mammalian Central Nervous System

    PubMed Central

    Zhao, Tian-Yong; Zou, Shi-Ping; Alimova, Yelena V.; Wang, Guoying; Hauser, Kurt F.; Ghandour, M. Said; Knapp, Pamela E.

    2014-01-01

    Although siRNA induced gene silencing can be transmitted between cells in plants and in C. elegans, this phenomenon has been barely studied in mammalian cells. Both immortalized oligodendrocytes and SNB-19 glioblastoma cells were transfected with siRNA constructs for PTEN (phosphatase and tensin homolog deleted on chromosome 10) or Akt (Akt/protein kinase B). Co-cultures were established between silenced cells and non-silenced cells which were hygromycin resistant and/or expressed green fluorescent protein (GFP). After fluorescence sorting or hygromycin selection to remove the silenced cells, the expression of PTEN or Akt genes in the originally unsilenced cells was in all cases significantly decreased. Importantly, silencing did not occur in transwell culture studies, suggesting that transmission of the silencing signal requires a close association between cells. These results provide the first direct demonstration that an siRNA induced silencing signal can be transmitted between mammalian central nervous system (CNS) cells. PMID:16923165

  4. Mammalian Glutaminase Gls2 Gene Encodes Two Functional Alternative Transcripts by a Surrogate Promoter Usage Mechanism

    PubMed Central

    Campos-Sandoval, José A.; Manzanares, Elisa; Lobo, Carolina; Segura, J. A.; Alonso, Francisco J.; Matés, José M.; Márquez, Javier

    2012-01-01

    Background Glutaminase is expressed in most mammalian tissues and cancer cells, but the regulation of its expression is poorly understood. An essential step to accomplish this goal is the characterization of its species- and cell-specific isoenzyme pattern of expression. Our aim was to identify and characterize transcript variants of the mammalian glutaminase Gls2 gene. Methodology/Principal Findings We demonstrate for the first time simultaneous expression of two transcript variants from the Gls2 gene in human, rat and mouse. A combination of RT-PCR, primer-extension analysis, bioinformatics, real-time PCR, in vitro transcription and translation and immunoblot analysis was applied to investigate GLS2 transcripts in mammalian tissues. Short (LGA) and long (GAB) transcript forms were isolated in brain and liver tissue of human, rat and mouse. The short LGA transcript arises by a combination of two mechanisms of transcriptional modulation: alternative transcription initiation and alternative promoter. The LGA variant contains both the transcription start site (TSS) and the alternative promoter in the first intron of the Gls2 gene. The full human LGA transcript has two in-frame ATGs in the first exon, which are missing in orthologous rat and mouse transcripts. In vitro transcription and translation of human LGA yielded two polypeptides of the predicted size, but only the canonical full-length protein displayed catalytic activity. Relative abundance of GAB and LGA transcripts showed marked variations depending on species and tissues analyzed. Conclusions/Significance This is the first report demonstrating expression of alternative transcripts of the mammalian Gls2 gene. Transcriptional mechanisms giving rise to GLS2 variants and isolation of novel GLS2 transcripts in human, rat and mouse are presented. Results were also confirmed at the protein level, where catalytic activity was demonstrated for the human LGA protein. Relative abundance of GAB and LGA transcripts was

  5. Specific repertoire of olfactory receptor genes in the male germ cells of several mammalian species

    SciTech Connect

    Vanderhaeghen, P.; Schurmans, S.; Vassart, G.; Parmentier, M.

    1997-02-01

    Olfactory receptors constitute the largest family among G protein-coupled receptors, with up to 1000 members expected. We have previously shown that genes belonging to this family were expressed in the male germ line from both dog and human. We have subsequently demonstrated the presence of one of the corresponding olfactory receptor proteins during dog spermatogenesis and in mature sperm cells. In this study, we investigated whether the unexpected pattern of expression of olfactory receptors in the male germ line was conserved in other mammalian species. Using reverse transcription-PCR with primers specific for the olfactory receptor gene family, about 20 olfactory receptor cDNA fragments were cloned from the testis of each mammalian species tested. As a whole, they displayed no sequence specificity compared to other olfactory receptors, but highly homologous, possibly orthologous, genes were amplified from different species. Finally, their pattern of expression, as determined by RNase protection assay, revealed that many but not all of these receptors were expressed predominantly in testis. The male germ line from each mammalian species tested is thus characterized by a specific repertoire of olfactory receptors, which display a pattern of expression suggestive of their potential implication in the control of sperm maturation, migration, or fertilization. 34 refs., 4 figs., 1 tab.

  6. Comparative and evolutionary insights into CD4 gene across mammalian and avian taxa

    PubMed Central

    Khan, Naazneen

    2015-01-01

    The present day genetic architecture of a species bears much significance to its closely related species which is due to species-specific differences, shaped by different evolutionary forces across time scale. With the availability of whole genome sequence of several closely related species, it is now possible to infer evolutionary patterns of genes and genomes in specific lineages. To this respect, CD4 gene, primarily responsible for defensive mechanism in human, is conserved across a few taxa, and thus, comparative genomic studies could be useful for better understanding of host–pathogen biology. Comparative and evolutionary analyses were performed in eleven taxa (10 mammalian and avian) with different statistical algorithms. Phylogenetic inferences revealed recent divergence of human and chimpanzee, and pig was found to be diverged from rest of the taxa significantly. Additionally, gene length, microsatellites, and secondary structures were observed across taxa. The genetic architecture of CD4 gene and its evolutionary history in different mammalian taxa provide crucial evidence in support of the fact that this gene might have been evolving at a similar rate to other human immune system genes. Future population-based study and structural modeling would unravel the differential ability to interact with HIV virus and influence immune system in humans. PMID:26767121

  7. Combinatorial gene editing in mammalian cells using ssODNs and TALENs

    NASA Astrophysics Data System (ADS)

    Strouse, Bryan; Bialk, Pawel; Niamat, Rohina A.; Rivera-Torres, Natalia; Kmiec, Eric B.

    2014-01-01

    The regulation of gene editing is being elucidated in mammalian cells and its potential as well as its limitations are becoming evident. ssODNs carry out gene editing by annealing to their complimentary sequence at the target site and acting as primers for replication fork extension. To effect a genetic change, a large amount of ssODN molecules must be introduced into cells and as such induce a Reduced Proliferation Phenotype (RPP), a phenomenon in which corrected cells do not proliferate. To overcome this limitation, we have used TAL-Effector Nucleases (TALENs) to increase the frequency, while reducing the amount of ssODN required to direct gene correction. This strategy resolves the problem and averts the serious effects of RPP. The efficiency of gene editing can be increased significantly if cells are targeted while they progress through S phase. Our studies define new reaction parameters that will help guide experimental strategies of gene editing.

  8. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas.

    PubMed

    Schroeder, Diane I; Jayashankar, Kartika; Douglas, Kory C; Thirkill, Twanda L; York, Daniel; Dickinson, Pete J; Williams, Lawrence E; Samollow, Paul B; Ross, Pablo J; Bannasch, Danika L; Douglas, Gordon C; LaSalle, Janine M

    2015-08-01

    Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo. PMID:26241857

  9. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas

    PubMed Central

    Schroeder, Diane I.; Jayashankar, Kartika; Douglas, Kory C.; Thirkill, Twanda L.; York, Daniel; Dickinson, Pete J.; Williams, Lawrence E.; Samollow, Paul B.; Ross, Pablo J.; Bannasch, Danika L.; Douglas, Gordon C.; LaSalle, Janine M.

    2015-01-01

    Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo. PMID:26241857

  10. Quantitative Analyses of Core Promoters Enable Precise Engineering of Regulated Gene Expression in Mammalian Cells.

    PubMed

    Ede, Christopher; Chen, Ximin; Lin, Meng-Yin; Chen, Yvonne Y

    2016-05-20

    Inducible transcription systems play a crucial role in a wide array of synthetic biology circuits. However, the majority of inducible promoters are constructed from a limited set of tried-and-true promoter parts, which are susceptible to common shortcomings such as high basal expression levels (i.e., leakiness). To expand the toolbox for regulated mammalian gene expression and facilitate the construction of mammalian genetic circuits with precise functionality, we quantitatively characterized a panel of eight core promoters, including sequences with mammalian, viral, and synthetic origins. We demonstrate that this selection of core promoters can provide a wide range of basal gene expression levels and achieve a gradient of fold-inductions spanning 2 orders of magnitude. Furthermore, commonly used parts such as minimal CMV and minimal SV40 promoters were shown to achieve robust gene expression upon induction, but also suffer from high levels of leakiness. In contrast, a synthetic promoter, YB_TATA, was shown to combine low basal expression with high transcription rate in the induced state to achieve significantly higher fold-induction ratios compared to all other promoters tested. These behaviors remain consistent when the promoters are coupled to different genetic outputs and different response elements, as well as across different host-cell types and DNA copy numbers. We apply this quantitative understanding of core promoter properties to the successful engineering of human T cells that respond to antigen stimulation via chimeric antigen receptor signaling specifically under hypoxic environments. Results presented in this study can facilitate the design and calibration of future mammalian synthetic biology systems capable of precisely programmed functionality. PMID:26883397

  11. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin.

    PubMed

    Ortells, M Carmen; Morancho, Beatriz; Drews-Elger, Katherine; Viollet, Benoit; Laderoute, Keith R; López-Rodríguez, Cristina; Aramburu, Jose

    2012-05-01

    Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses. PMID:22287635

  12. Glycosylation and post-translational modification gene expression analysis by DNA microarrays for cultured mammalian cells

    PubMed Central

    Brodsky, Arthur Nathan; Caldwell, Mary; Harcum, Sarah W.

    2011-01-01

    DNA microarray analysis of gene expression has become a valuable tool for bioprocessing research aimed at improving therapeutic protein yields. The highly parallel nature of DNA microarray technology allows researchers to assess hundreds of gene simultaneously, essentially enabling genome-wide snapshots. The quality and amount of therapeutic proteins produced by cultured mammalian cells rely heavily on the culture environment. In order to implement beneficial changes to the culture environment, a better understanding of the relationship between the product quality and culture environment must be developed. By analyzing gene expression levels under various environmental conditions, light can be shed on the underlying mechanisms. This paper describes a method for evaluating gene expression changes for cultured NS0 cells, a mouse-derived myeloma cell line, under culture environment conditions, such as ammonia buildup, known to affect product quality. These procedures can be easily adapted to other environmental conditions and any mammalian cell lines cultured in suspension, so long as a sufficient number of gene sequences are publicly available. PMID:22033470

  13. Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes

    PubMed Central

    Tischer, Thomas; Santhanam, Balaji; Schuh, Melina

    2015-01-01

    During fertilization, an egg and a sperm fuse to form a new embryo. Eggs develop from oocytes in a process called meiosis. Meiosis in human oocytes is highly error-prone1,2, and defective eggs are the leading cause of pregnancy loss and several genetic disorders such as Down’s syndrome3-5. Which genes safeguard accurate progression through meiosis is largely unclear. Here, we developed high-content phenotypic screening methods for the systematic identification of mammalian meiotic genes. We targeted 774 genes by RNAi within follicle-enclosed mouse oocytes to block protein expression from an early stage of oocyte development onwards. We then analysed the function of several genes simultaneously by high-resolution imaging of chromosomes and microtubules in live oocytes and scored each oocyte quantitatively for 50 phenotypes, generating a comprehensive resource of meiotic gene function. The screen generated an unprecedented annotated dataset of meiotic progression in 2,241 mammalian oocytes, which allowed us to analyse systematically which defects are linked to abnormal chromosome segregation during meiosis, identifying progression into anaphase with misaligned chromosomes as well as defects in spindle organization as risk factors. This study demonstrates how high-content screens can be performed in oocytes, and now allows systematic studies of meiosis in mammals. PMID:26147080

  14. Bacterial IMPDH gene used for the selection of mammalian cell transfectants.

    SciTech Connect

    Baccam, M.; Huberman, E.; Energy Systems

    2003-06-01

    Stable cell transfection is used for the expression of exogenous genes or cDNAs in eukaryotic cells. Selection of these transfectants requires a dominant selectable marker. A variety of such markers has been identified and is currently in use. However, many of these are not suitable for all cell types or require unique conditions. Here we describe a simple and versatile dominant selectable marker that involves bacterial IMP dehydrogenase (IMPDH), an enzyme essential for the replication of mammalian and bacterial cells. Although IMPDH is evolutionarily conserved, the bacterial enzyme is orders of magnitude more resistant to the toxic effect of the drug mycophenolic acid, which is an IMPDH inhibitor. We have demonstrated that transfection of human, monkey or Chinese hamster cell lines with an expression vector containing bacterial IMPDH and mycophenolic acid treatment resulted in the selection of colonies with a strikingly increased resistance to mycophenolic acid toxicity. Analysis of cells derived from these colonies indicated that the acquisition of this resistance was associated with bacterial IMPDH protein expression. As a proof of principle, we showed that mammalian cell transfection with a hicistronic IMPDH/GFP expression vector and mycophenolic acid treatment can he used to successfully select transfectants that express the fluorescent protein. These results indicate that bacterial IMPDH is a practical dominant selectable marker that can be used for the selection of transfectants that express exogenous genes or cDNAs in mammalian cells.

  15. The yeast SNF3 gene encodes a glucose transporter homologous to the mammalian protein.

    PubMed Central

    Celenza, J L; Marshall-Carlson, L; Carlson, M

    1988-01-01

    The SNF3 gene is required for high-affinity glucose transport in the yeast Saccharomyces cerevisiae and has also been implicated in control of gene expression by glucose repression. We report here the nucleotide sequence of the cloned SNF3 gene. The predicted amino acid sequence shows that SNF3 encodes a 97-kilodalton protein that is homologous to mammalian glucose transporters and has 12 putative membrane-spanning regions. We also show that a functional SNF3-lacZ gene-fusion product cofractionates with membrane proteins and is localized to the cell surface, as judged by indirect immunofluorescence microscopy. Expression of the fusion protein is regulated by glucose repression. Images PMID:3281163

  16. Stimulus-induced modulation of transcriptional bursting in a single mammalian gene.

    PubMed

    Molina, Nacho; Suter, David M; Cannavo, Rosamaria; Zoller, Benjamin; Gotic, Ivana; Naef, Félix

    2013-12-17

    Mammalian genes are often transcribed discontinuously as short bursts of RNA synthesis followed by longer silent periods. However, how these "on" and "off" transitions, together with the burst sizes, are modulated in single cells to increase gene expression upon stimulation is poorly characterized. By combining single-cell time-lapse luminescence imaging with stochastic modeling of the time traces, we quantified the transcriptional responses of the endogenous connective tissue growth factor gene to different physiological stimuli: serum and TGF-β1. Both stimuli caused a rapid and acute increase in burst sizes. Whereas TGF-β1 showed prolonged transcriptional activation mediated by an increase of transcription rate, serum stimulation resulted in a large and temporally tight first transcriptional burst, followed by a refractory period in the range of hours. Our study thus reveals how different physiological stimuli can trigger kinetically distinct transcriptional responses of the same gene. PMID:24297917

  17. Genome-wide detection of gene extinction in early mammalian evolution.

    PubMed

    Kuraku, Shigehiro; Kuratani, Shigeru

    2011-01-01

    Detecting gene losses is a novel aspect of evolutionary genomics that has been made feasible by whole-genome sequencing. However, research to date has concentrated on elucidating evolutionary patterns of genomic components shared between species, rather than identifying disparities between genomes. In this study, we searched for gene losses in the lineage leading to eutherian mammals. First, as a pilot analysis, we selected five gene families (Wnt, Fgf, Tbx, TGFβ, and Frizzled) for molecular phylogenetic analyses, and identified mammalian lineage-specific losses of Wnt11b, Tbx6L/VegT/tbx16, Nodal-related, ADMP1, ADMP2, Sizzled, and Crescent. Second, automated genome-wide phylogenetic screening was implemented based on this pilot analysis. As a result, we detected 147 chicken genes without eutherian orthologs, which resulted from 141 gene loss events. Our inventory contained a group of regulatory genes governing early embryonic axis formation, such as Noggins, and multiple members of the opsin and prolactin-releasing hormone receptor ("PRLHR") gene families. Our findings highlight the potential of genome-wide gene phylogeny ("phylome") analysis in detecting possible rearrangement of gene networks and the importance of identifying losses of ancestral genomic components in analyzing the molecular basis underlying phenotypic evolution. PMID:22094861

  18. Plastid-LCGbase: a collection of evolutionarily conserved plastid-associated gene pairs.

    PubMed

    Wang, Dapeng; Yu, Jun

    2015-01-01

    Plastids carry their own genetic material that encodes a variable set of genes that are limited in number but functionally important. Aside from orthology, the lineage-specific order and orientation of these genes are also relevant. Here, we develop a database, Plastid-LCGbase (http://lcgbase.big.ac.cn/plastid-LCGbase/), which focuses on organizational variability of plastid genes and genomes from diverse taxonomic groups. The current Plastid-LCGbase contains information from 470 plastid genomes and exhibits several unique features. First, through a genome-overview page generated from OrganellarGenomeDRAW, it displays general arrangement of all plastid genes (circular or linear). Second, it shows patterns and modes of all paired plastid genes and their physical distances across user-defined lineages, which are facilitated by a step-wise stratification of taxonomic groups. Third, it divides the paired genes into three categories (co-directionally-paired genes or CDPGs, convergently-paired genes or CPGs and divergently-paired genes or DPGs) and three patterns (separation, overlap and inclusion) and provides basic statistics for each species. Fourth, the gene pairing scheme is expandable, where neighboring genes can also be included in species-/lineage-specific comparisons. We hope that Plastid-LCGbase facilitates gene variation (insertion-deletion, translocation and rearrangement) and transcription-level studies of plastid genomes. PMID:25378306

  19. Multi-omics data driven analysis establishes reference codon biases for synthetic gene design in microbial and mammalian cells.

    PubMed

    Ang, Kok Siong; Kyriakopoulos, Sarantos; Li, Wei; Lee, Dong-Yup

    2016-06-01

    In this study, we analyzed multi-omics data and subsets thereof to establish reference codon usage biases for codon optimization in synthetic gene design. Specifically, publicly available genomic, transcriptomic, proteomic and translatomic data for microbial and mammalian expression hosts, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Chinese hamster ovary (CHO) cells, were compiled to derive their individual codon and codon pair frequencies. Then, host dependent and -omics specific codon biases were generated and compared by principal component analysis and hierarchical clustering. Interestingly, our results indicated the similar codon bias patterns of the highly expressed transcripts, highly abundant proteins, and efficiently translated mRNA in microbial cells, despite the general lack of correlation between mRNA and protein expression levels. However, for CHO cells, the codon bias patterns among various -omics subsets are not distinguishable, forming one cluster. Thus, we further investigated the effect of different input codon biases on codon optimized sequences using the codon context (CC) and individual codon usage (ICU) design parameters, via in silico case study on the expression of human IFNγ sequence in CHO cells. The results supported that CC is more robust design parameter than ICU for improved heterologous gene design. PMID:26850284

  20. Allelic expression of mammalian imprinted genes in a matrotrophic lizard, Pseudemoia entrecasteauxii.

    PubMed

    Griffith, Oliver W; Brandley, Matthew C; Belov, Katherine; Thompson, Michael B

    2016-03-01

    Genomic imprinting is a process that results in the differential expression of genes depending on their parent of origin. It occurs in both plants and live-bearing mammals, with imprinted genes typically regulating the ability of an embryo to manipulate the maternal provision of nutrients. Genomic imprinting increases the potential for selection to act separately on paternally and maternally expressed genes, which increases the number of opportunities that selection can facilitate embryonic control over maternal nutrient provision. By looking for imprinting in an independent matrotrophic lineage, the viviparous lizard Pseudemoia entrecasteauxii (Scincidae), we test the hypothesis that genomic imprinting facilitates the evolution of substantial placental nutrient transport to embryos (matrotrophy). We sequenced transcriptomes from the embryonic component of lizard placentae to determine whether there are parent-of-origin differences in expression of genes that are imprinted in mammals. Of these genes, 19 had sufficiently high expression in the lizard to identify polymorphisms in transcribed sequences. We identified bi-allelic expression in 17 genes (including insulin-like growth factor 2), indicating that neither allele was imprinted. These data suggest that either genomic imprinting has not evolved in this matrotrophic skink or, if it has, it has evolved in different genes to mammals. We outline how these hypotheses can be tested. This study highlights important differences between mammalian and reptile pregnancy and the absence of any shared imprinting genes reflects fundamental differences in the way that pregnancy has evolved in these two lineages. PMID:26943808

  1. Role of cell signaling in poxvirus-mediated foreign gene expression in mammalian cells

    PubMed Central

    Hu, Ningjie; Yu, Richard; Shikuma, Cecilia; Shiramizu, Bruce; Ostrwoski, Mario A.; Yu, Qigui

    2011-01-01

    Poxviruses have been extensively used as a promising vehicle to efficiently deliver a variety of antigens in mammalian hosts to induce immune responses against infectious diseases and cancer. Using recombinant vaccinia virus (VV) and canarypox virus (ALVAC) expressing enhanced green fluorescent protein (EGFP) or multiple HIV-1 gene products, we studied the role of four cellular signaling pathways, the phosphoinositide-3-OH kinase (PI3K), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK), and c-Jun N-terminal kinase (JNK), in poxvirus-mediated foreign gene expression in mammalian cells. In nonpermissive infection (human monocytes), activation of PI3K, ERK, p38 MAPK, and JNK was observed both VV and ALVAC and blocking PI3K, p38 MAKP, and JNK pathways with their specific inhibitors significantly reduced viral and vaccine antigen gene expression. Whereas, blocking the ERK pathway had no significant effect. Among these cellular signaling pathways studied, PI3K was the most critical pathway involved in gene expression by VV- or ALVAC-infected monocytes. The important role of PI3K in poxvirus-mediated gene expression was further confirmed in mouse epidermal cells stably transfected with dominant-negative PI3K mutant, as poxvirus-mediated targeted gene expression was significantly decreased in these cells when compared with their parental cells. Signaling pathway activation was influenced gene expression at the mRNA level rather than virus binding. In permissive mammalian cells, however, VV DNA copies were also significantly decreased in the absence of normal function of PI3K pathway. Poxvirus-triggered activation of PI3K pathway could be completely abolished by atazanavir, a new generation of antiretroviral protease inhibitors (PIs). As a consequence, ALVAC-mediated EGFP or HIV-1 gag gene expression in infected primary human monocytes was significantly reduced in the presence of atazanavir. These findings implicate that

  2. Have gene knockouts caused evolutionary reversals in the mammalian first arch?

    PubMed

    Smith, K K; Schneider, R A

    1998-03-01

    Many recent gene knockout experiments cause anatomical changes to the jaw region of mice that several investigators claim are evolutionary reversals. Here we evaluate these mutant phenotypes and the assertions of atavism. We argue that following the knockout of Hoxa-2, Dlx-2, MHox, Otx2, and RAR genes, ectopic cartilages arise as secondary consequences of disruptions in normal processes of cell specification, migration, or differentiation. These disruptions cause an excess of mesenchyme to accumulate in a region through which skeletal progenitor cells usually migrate, and at a site of condensation that is normally present in mammals but that is too small to chondrify. We find little evidence that these genes, when disrupted, cause a reversion to any primitive condition and although changes in their expression may have played a role in the evolution of the mammalian jaw, their function during morphogenesis is not sufficiently understood to confirm such hypotheses. PMID:9631652

  3. Characterization of the mammalian DNA polymerase gene(s) and enzyme(s). Annual progress report

    SciTech Connect

    Mishra, N.C.

    1995-01-01

    Two Genes for DNA polymerase delta were identified from the wild type Chinese hamster ovary cells. These genes were cloned via RT-PCR from mRNA prepared the Chinese hamster ovary cells using primers specific to conserved sequences of the DNA polymerase {delta} gene. The first gene encodes a PCNA dependent DNA polymerase {delta} gene whereas the second gene encodes a PCNA independent DNA polymerase {delta} gene. Methods were developed to clone these genes in expression vector and host systems. The role of the two genes in DNA replication and repair was determined.

  4. A new role for muscle segment homeobox genes in mammalian embryonic diapause

    PubMed Central

    Cha, Jeeyeon; Sun, Xiaofei; Bartos, Amanda; Fenelon, Jane; Lefèvre, Pavine; Daikoku, Takiko; Shaw, Geoff; Maxson, Robert; Murphy, Bruce D.; Renfree, Marilyn B.; Dey, Sudhansu K.

    2013-01-01

    Mammalian embryonic diapause is a phenomenon defined by the temporary arrest in blastocyst growth and metabolic activity within the uterus which synchronously becomes quiescent to blastocyst activation and implantation. This reproductive strategy temporally uncouples conception from parturition until environmental or maternal conditions are favourable for the survival of the mother and newborn. The underlying molecular mechanism by which the uterus and embryo temporarily achieve quiescence, maintain blastocyst survival and then resume blastocyst activation with subsequent implantation remains unknown. Here, we show that uterine expression of Msx1 or Msx2, members of an ancient, highly conserved homeobox gene family, persists in three unrelated mammalian species during diapause, followed by rapid downregulation with blastocyst activation and implantation. Mice with uterine inactivation of Msx1 and Msx2 fail to achieve diapause and reactivation. Remarkably, the North American mink and Australian tammar wallaby share similar expression patterns of MSX1 or MSX2 as in mice—it persists during diapause and is rapidly downregulated upon blastocyst activation and implantation. Evidence from mouse studies suggests that the effects of Msx genes in diapause are mediated through Wnt5a, a known transcriptional target of uterine Msx. These studies provide strong evidence that the Msx gene family constitutes a common conserved molecular mediator in the uterus during embryonic diapause to improve female reproductive fitness. PMID:23615030

  5. R-loops induce repressive chromatin marks over mammalian gene terminators

    PubMed Central

    Skourti-Stathaki, Konstantina; Kamieniarz-Gdula, Kinga; Proudfoot, Nicholas J.

    2014-01-01

    The formation of R-loops is a natural consequence of the transcription process, caused by invasion of the DNA duplex by nascent transcripts. These structures have been considered rare transcriptional by-products with potential harmful effects on genome integrity, due to the fragility of the displaced DNA coding strand1. However R-loops may also possess beneficial effects as their widespread formation has been detected over CpG island promoters in human genes2,3. Furthermore we have previously shown that R-loops are particularly enriched over G-rich terminator elements. These facilitate RNA polymerase II (Pol II) pausing prior to efficient termination4. Here we reveal an unanticipated link between R-loops and RNA interference (RNAi)-dependent H3K9me2 formation over pause site termination regions of mammalian protein coding genes. We show that R-loops induce antisense transcription over these pause elements which in turn lead to the generation of double-strand RNA (dsRNA) and recruitment of Dicer, Ago1, Ago2, and G9a histone lysine methyltransferase (HKMT). Consequently an H3K9me2 repressive mark is formed and Heterochromatin Protein 1γ (HP1γ) is recruited, that reinforces Pol II pausing prior to efficient transcriptional termination. We predict that R-loops promote a chromatin architecture that defines the termination region for a substantial subset of mammalian genes. PMID:25296254

  6. A new role for muscle segment homeobox genes in mammalian embryonic diapause.

    PubMed

    Cha, Jeeyeon; Sun, Xiaofei; Bartos, Amanda; Fenelon, Jane; Lefèvre, Pavine; Daikoku, Takiko; Shaw, Geoff; Maxson, Robert; Murphy, Bruce D; Renfree, Marilyn B; Dey, Sudhansu K

    2013-04-01

    Mammalian embryonic diapause is a phenomenon defined by the temporary arrest in blastocyst growth and metabolic activity within the uterus which synchronously becomes quiescent to blastocyst activation and implantation. This reproductive strategy temporally uncouples conception from parturition until environmental or maternal conditions are favourable for the survival of the mother and newborn. The underlying molecular mechanism by which the uterus and embryo temporarily achieve quiescence, maintain blastocyst survival and then resume blastocyst activation with subsequent implantation remains unknown. Here, we show that uterine expression of Msx1 or Msx2, members of an ancient, highly conserved homeobox gene family, persists in three unrelated mammalian species during diapause, followed by rapid downregulation with blastocyst activation and implantation. Mice with uterine inactivation of Msx1 and Msx2 fail to achieve diapause and reactivation. Remarkably, the North American mink and Australian tammar wallaby share similar expression patterns of MSX1 or MSX2 as in mice-it persists during diapause and is rapidly downregulated upon blastocyst activation and implantation. Evidence from mouse studies suggests that the effects of Msx genes in diapause are mediated through Wnt5a, a known transcriptional target of uterine Msx. These studies provide strong evidence that the Msx gene family constitutes a common conserved molecular mediator in the uterus during embryonic diapause to improve female reproductive fitness. PMID:23615030

  7. Asymmetrical distribution of CpG in an 'average' mammalian gene.

    PubMed Central

    McClelland, M; Ivarie, R

    1982-01-01

    The frequency and distribution of the rare dinucleotide CpG was examined in 15 mammalian genes. CpG is highly methylated at cytosine in mammalian DNA (1,2) and 5-methylcytosine (5mC) is thought to undergo a transition mutation via deamination to produce thymine (3). This would result in the accumulation of TpG and CpA and depletion of CpG during evolution (4). Consistent with this hypothesis, the gene sample of 26,541 dinucleotides contained CpG at 40% the frequency expected by base composition and the CpG transition products, TpG+CpA, were significantly elevated at 124% of expected random frequency. However, because CpG occurs at only 25% of expected random frequency in the genome, the sampled genes were considerably enriched in this dinucleotide. CpGs were asymmetrically distributed in sequences flanking the genes. 5'-flanking sequences were enriched in CpG at 135% of the frequency expected assuming a symmetrical distribution of all the CpGs in the sampled genes (p less than 0.01), while 3'-flanking regions were depleted in CpG at 40% of expected values (p less than 0.0001). This asymmetry may reflect the role of 5-methylcytosine in gene expression. In contrast the frequencies of GpC and GpT+ ApC did not differ significantly from that predicted by base composition and these dinucleotides were not asymmetrically distributed. PMID:7155899

  8. Constraint and divergence of global gene expression in the mammalian embryo

    PubMed Central

    Spies, Noah; Smith, Cheryl L; Rodriguez, Jesse M; Baker, Julie C; Batzoglou, Serafim; Sidow, Arend

    2015-01-01

    The effects of genetic variation on gene regulation in the developing mammalian embryo remain largely unexplored. To globally quantify these effects, we crossed two divergent mouse strains and asked how genotype of the mother or of the embryo drives gene expression phenotype genomewide. Embryonic expression of 331 genes depends on the genotype of the mother. Embryonic genotype controls allele-specific expression of 1594 genes and a highly overlapping set of cis-expression quantitative trait loci (eQTL). A marked paucity of trans-eQTL suggests that the widespread expression differences do not propagate through the embryonic gene regulatory network. The cis-eQTL genes exhibit lower-than-average evolutionary conservation and are depleted for developmental regulators, consistent with purifying selection acting on expression phenotype of pattern formation genes. The widespread effect of maternal and embryonic genotype in conjunction with the purifying selection we uncovered suggests that embryogenesis is an important and understudied reservoir of phenotypic variation. DOI: http://dx.doi.org/10.7554/eLife.05538.001 PMID:25871848

  9. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: A putative role in human disease.

    PubMed

    Gopisetty, Gopal; Thangarajan, Rajkumar

    2016-09-01

    Mitochondria are prominently understood as power houses producing ATP the primary energy currency of the cell. However, mitochondria are also known to play an important role in apoptosis and autophagy, and mitochondrial dysregulation can lead to pathological outcomes. Mitochondria are known to contain 1500 proteins of which only 13 are coded by mitochondrial DNA and the rest are coded by nuclear genes. Protein synthesis in mitochondria involves mitochondrial ribosomes which are 55-60S particles and are composed of small 28S and large 39S subunits. A feature of mammalian mitoribosome which differentiate it from bacterial ribosomes is the increased protein content. The human mitochondrial ribosomal protein (MRP) gene family comprises of 30 genes which code for mitochondrial ribosomal small subunit and 50 genes for the large subunit. The present review focuses on the mitochondrial ribosomal small subunit genes (MRPS), presents an overview of the literature and data gleaned from publicly available gene and protein expression databases. The survey revealed aberrations in MRPS gene expression patterns in varied human diseases indicating a putative role in their etiology. PMID:27170550

  10. Targeted gene conversion induced by triplex-directed psoralen interstrand crosslinks in mammalian cells.

    PubMed

    Liu, Yaobin; Nairn, Rodney S; Vasquez, Karen M

    2009-10-01

    Correction of a defective gene is a promising approach for both basic research and clinical gene therapy. However, the absence of site-specific targeting and the low efficiency of homologous recombination in human cells present barriers to successful gene targeting. In an effort to overcome these barriers, we utilized triplex-forming oligonucleotides (TFOs) conjugated to a DNA interstrand crosslinking (ICL) agent, psoralen (pTFO-ICLs), to improve the gene targeting efficiency at a specific site in DNA. Gene targeting events were monitored by the correction of a deletion on a recipient plasmid with the homologous sequence from a donor plasmid in human cells. The mechanism underlying this event is stimulation of homologous recombination by the pTFO-ICL. We found that pTFO-ICLs are efficient in inducing targeted gene conversion (GC) events in human cells. The deletion size in the recipient plasmid influenced both the recombination frequency and spectrum of recombinants; i.e. plasmids with smaller deletions had a higher frequency and proportion of GC events. The polarity of the pTFO-ICL also had a prominent effect on recombination. Our results suggest that pTFO-ICL induced intermolecular recombination provides an efficient method for targeted gene correction in mammalian cells. PMID:19726585

  11. Menzerath-Altmann law in mammalian exons reflects the dynamics of gene structure evolution.

    PubMed

    Nikolaou, Christoforos

    2014-12-01

    Genomic sequences exhibit self-organization properties at various hierarchical levels. One such is the gene structure of higher eukaryotes with its complex exon/intron arrangement. Exon sizes and exon numbers in genes have been shown to conform to a law derived from statistical linguistics and formulated by Menzerath and Altmann, according to which the mean size of the constituents of an entity is inversely related to the number of these constituents. We herein perform a detailed analysis of this property in the complete exon set of the mouse genome in correlation to the sequence conservation of each exon and the transcriptional complexity of each gene locus. We show that extensive linear fits, representative of accordance to Menzerath-Altmann law are restricted to a particular subset of genes that are formed by exons under low or intermediate sequence constraints and have a small number of alternative transcripts. Based on this observation we propose a hypothesis for the law of Menzerath-Altmann in mammalian genes being predominantly due to genes that are more versatile in function and thus, more prone to undergo changes in their structure. To this end we demonstrate one test case where gene categories of different functionality also show differences in the extent of conformity to Menzerath-Altmann law. PMID:25155263

  12. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs

    PubMed Central

    Tian, Feng-Xia; Zang, Jian-Lei; Wang, Tan; Xie, Yu-Li; Zhang, Jin; Hu, Jian-Jun

    2015-01-01

    Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants. PMID:25909656

  13. Gene Expression Patterns in Larval Schistosoma mansoni Associated with Infection of the Mammalian Host

    PubMed Central

    Parker-Manuel, Sophia J.; Ivens, Alasdair C.; Dillon, Gary P.; Wilson, R. Alan

    2011-01-01

    Background The infective schistosome cercaria develops within the intramolluscan daughter sporocyst from an undifferentiated germ ball, during which synthesis of proteins essential for infection occurs. When the aquatic cercaria locates the mammalian host it rapidly penetrates into the epidermis using glandular secretions. It then undergoes metamorphosis into the schistosomulum, including replacement of its tegument surface membranes, a process taking several days before it exits the skin. Patterns of gene expression underlying this transition have been characterised. Methods and Principal Findings All gene models from the S. mansoni genome (www.GeneDB.org) were incorporated into a high-density oligonucleotide array. Double-stranded cDNA from germ balls, cercariae, and day 3 schistosomula was hybridised to the array without amplification. Statistical analysis was performed using Bioconductor to reveal differentially transcribed loci. Genes were categorised on the basis of biological process, tissue association or molecular function to aid understanding of the complex processes occurring. Genes necessary for DNA replication were enriched only in the germ ball, while those involved in translation were up-regulated in the germ ball and/or day 3 schistosomulum. Different sets of developmental genes were up-regulated at each stage. A large number of genes encoding elastases and invadolysins, and some venom allergen-like proteins were up-regulated in the germ ball, those encoding cysteine and aspartic proteases in the cercaria and schistosomulum. Micro exon genes encoding variant secreted proteins were highly up-regulated in the schistosomulum along with tegument and gut-associated genes, coincident with remodelling of the parasite body. Genes encoding membrane proteins were prominently up-regulated in the cercaria and/or day 3 schistosomulum. Conclusions/Significance Our study highlights an expanded number of transcripts encoding proteins potentially involved in skin

  14. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome

    PubMed Central

    Hurst, Laurence D.; Ghanbarian, Avazeh T.; Forrest, Alistair R. R.; Huminiecki, Lukasz

    2015-01-01

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

  15. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    PubMed

    Hurst, Laurence D; Ghanbarian, Avazeh T; Forrest, Alistair R R; Huminiecki, Lukasz

    2015-12-01

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

  16. Analyses of interactions among pair-rule genes and the gap gene Krüppel in Bombyx segmentation.

    PubMed

    Nakao, Hajime

    2015-09-01

    In the short-germ insect Tribolium, a pair-rule gene circuit consisting of the Tribolium homologs of even-skipped, runt, and odd-skipped (Tc-eve, Tc-run and Tc-odd, respectively) has been implicated in segment formation. To examine the application of the model to other taxa, I studied the expression and function of pair-rule genes in Bombyx mori, together with a Bombyx homolog of Krüppel (Bm-Kr), a known gap gene. Knockdown embryos of Bombyx homologs of eve, run and odd (Bm-eve, Bm-run and Bm-odd) exhibited asegmental phenotypes similar to those of Tribolium knockdowns. However, pair-rule gene interactions were similar to those of both Tribolium and Drosophila, which, different from Tribolium, shows a hierarchical segmentation mode. Additionally, the Bm-odd expression pattern shares characteristics with those of Drosophila pair-rule genes that receive upstream regulatory input. On the other hand, Bm-Kr knockdowns exhibited a large posterior segment deletion as observed in short-germ insects. However, a detailed analysis of these embryos indicated that Bm-Kr modulates expression of pair-rule genes like in Drosophila, although the mechanisms appear to be different. This suggested hierarchical interactions between Bm-Kr and pair-rule genes. Based on these results, I concluded that the pair-rule gene circuit model that describes Tribolium development is not applicable to Bombyx. PMID:26102481

  17. Evolution of the pair rule gene network: Insights from a centipede☆

    PubMed Central

    Green, Jack; Akam, Michael

    2013-01-01

    Comparative studies have examined the expression and function of homologues of the Drosophila melanogaster pair rule and segment polarity genes in a range of arthropods. The segment polarity gene homologues have a conserved role in the specification of the parasegment boundary, but the degree of conservation of the upstream patterning genes has proved more variable. Using genomic resources we identify a complete set of pair rule gene homologues from the centipede Strigamia maritima, and document a detailed time series of expression during trunk segmentation. We find supportive evidence for a conserved hierarchical organisation of the pair rule genes, with a division into early- and late-activated genes which parallels the functional division into primary and secondary pair rule genes described in insects. We confirm that the relative expression of sloppy-paired and paired with respect to wingless and engrailed at the parasegment boundary is conserved between myriapods and insects; suggesting that functional interactions between these genes might be an ancient feature of arthropod segment patterning. However, we find that the relative expression of a number of the primary pair rule genes is divergent between myriapods and insects. This corroborates suggestions that the evolution of upper tiers in the segmentation gene network is more flexible. Finally, we find that the expression of the Strigamia pair rule genes in periodic patterns is restricted to the ectoderm. This suggests that any direct role of these genes in segmentation is restricted to this germ layer, and that mesoderm segmentation is either dependent on the ectoderm, or occurs through an independent mechanism. PMID:23810931

  18. Evolution of the pair rule gene network: Insights from a centipede.

    PubMed

    Green, Jack; Akam, Michael

    2013-10-01

    Comparative studies have examined the expression and function of homologues of the Drosophila melanogaster pair rule and segment polarity genes in a range of arthropods. The segment polarity gene homologues have a conserved role in the specification of the parasegment boundary, but the degree of conservation of the upstream patterning genes has proved more variable. Using genomic resources we identify a complete set of pair rule gene homologues from the centipede Strigamia maritima, and document a detailed time series of expression during trunk segmentation. We find supportive evidence for a conserved hierarchical organisation of the pair rule genes, with a division into early- and late-activated genes which parallels the functional division into primary and secondary pair rule genes described in insects. We confirm that the relative expression of sloppy-paired and paired with respect to wingless and engrailed at the parasegment boundary is conserved between myriapods and insects; suggesting that functional interactions between these genes might be an ancient feature of arthropod segment patterning. However, we find that the relative expression of a number of the primary pair rule genes is divergent between myriapods and insects. This corroborates suggestions that the evolution of upper tiers in the segmentation gene network is more flexible. Finally, we find that the expression of the Strigamia pair rule genes in periodic patterns is restricted to the ectoderm. This suggests that any direct role of these genes in segmentation is restricted to this germ layer, and that mesoderm segmentation is either dependent on the ectoderm, or occurs through an independent mechanism. PMID:23810931

  19. ORA1, a Zebrafish Olfactory Receptor Ancestral to All Mammalian V1R Genes, Recognizes 4-Hydroxyphenylacetic Acid, a Putative Reproductive Pheromone

    PubMed Central

    Behrens, Maik; Frank, Oliver; Rawel, Harshadrai; Ahuja, Gaurav; Potting, Christoph; Hofmann, Thomas; Meyerhof, Wolfgang; Korsching, Sigrun

    2014-01-01

    The teleost v1r-related ora genes are a small, highly conserved olfactory receptor gene family of only six genes, whose direct orthologues can be identified in lineages as far as that of cartilaginous fish. However, no ligands for fish olfactory receptor class A related genes (ORA) had been uncovered so far. Here we have deorphanized the ORA1 receptor using heterologous expression and calcium imaging. We report that zebrafish ORA1 recognizes with high specificity and sensitivity 4-hydroxyphenylacetic acid. The carboxyl group of this compound is required in a particular distance from the aromatic ring, whereas the hydroxyl group in the para-position is not essential, but strongly enhances the binding efficacy. Low concentrations of 4-hydroxyphenylacetic acid elicit increases in oviposition frequency in zebrafish mating pairs. This effect is abolished by naris closure. We hypothesize that 4-hydroxyphenylacetic acid might function as a pheromone for reproductive behavior in zebrafish. ORA1 is ancestral to mammalian V1Rs, and its putative function as pheromone receptor is reminiscent of the role of several mammalian V1Rs as pheromone receptors. PMID:24831010

  20. Rapid evolution of mammalian X-linked testis-expressed homeobox genes.

    PubMed Central

    Wang, Xiaoxia; Zhang, Jianzhi

    2004-01-01

    Homeobox genes encode transcription factors that function in various developmental processes and are usually evolutionarily conserved in their sequences. However, two X-chromosome-linked testis-expressed homeobox genes, one from rodents and the other from fruit flies, are known to evolve rapidly under positive Darwinian selection. Here we report yet another case, from primates. TGIFLX is an X-linked homeobox gene that originated by retroposition of the autosomal gene TGIF2, most likely in a common ancestor of rodents and primates. While TGIF2 is ubiquitously expressed, TGIFLX is exclusively expressed in adult testis. A comparison of the TGIFLX sequences among 16 anthropoid primates revealed a significantly higher rate of nonsynonymous nucleotide substitution (d(N)) than synonymous substitution (d(S)), strongly suggesting the action of positive selection. Although the high d(N)/d(S) ratio is most evident outside the homeobox, the homeobox has a d(N)/d(S) of approximately 0.89 and includes two codons that are likely under selection. Furthermore, the rate of radical amino acid substitutions that alter amino acid charge is significantly greater than that of conservative substitutions, suggesting that the selection promotes diversity of the protein charge profile. More interestingly, an analysis of 64 orthologous homeobox genes from humans and mice shows substantially higher rates of amino acid substitution in X-linked testis-expressed genes than in other genes. These results suggest a general pattern of rapid evolution of mammalian X-linked testis-expressed homeobox genes. Although the physiological function of and the exact selective agent on TGIFLX and other rapidly evolving homeobox genes are unclear, the common expression pattern of these transcription factor genes led us to conjecture that the selection is related to one or more aspects of male reproduction and may contribute to speciation. PMID:15238536

  1. MEF2 Transcription Factors Regulate Distinct Gene Programs in Mammalian Skeletal Muscle Differentiation*

    PubMed Central

    Estrella, Nelsa L.; Desjardins, Cody A.; Nocco, Sarah E.; Clark, Amanda L.; Maksimenko, Yevgeniy; Naya, Francisco J.

    2015-01-01

    Skeletal muscle differentiation requires precisely coordinated transcriptional regulation of diverse gene programs that ultimately give rise to the specialized properties of this cell type. In Drosophila, this process is controlled, in part, by MEF2, the sole member of an evolutionarily conserved transcription factor family. By contrast, vertebrate MEF2 is encoded by four distinct genes, Mef2a, -b, -c, and -d, making it far more challenging to link this transcription factor to the regulation of specific muscle gene programs. Here, we have taken the first step in molecularly dissecting vertebrate MEF2 transcriptional function in skeletal muscle differentiation by depleting individual MEF2 proteins in myoblasts. Whereas MEF2A is absolutely required for proper myoblast differentiation, MEF2B, -C, and -D were found to be dispensable for this process. Furthermore, despite the extensive redundancy, we show that mammalian MEF2 proteins regulate a significant subset of nonoverlapping gene programs. These results suggest that individual MEF2 family members are able to recognize specific targets among the entire cohort of MEF2-regulated genes in the muscle genome. These findings provide opportunities to modulate the activity of MEF2 isoforms and their respective gene programs in skeletal muscle homeostasis and disease. PMID:25416778

  2. Mammalian Reverse Genetics without Crossing Reveals Nr3a as a Short-Sleeper Gene.

    PubMed

    Sunagawa, Genshiro A; Sumiyama, Kenta; Ukai-Tadenuma, Maki; Perrin, Dimitri; Fujishima, Hiroshi; Ukai, Hideki; Nishimura, Osamu; Shi, Shoi; Ohno, Rei-ichiro; Narumi, Ryohei; Shimizu, Yoshihiro; Tone, Daisuke; Ode, Koji L; Kuraku, Shigehiro; Ueda, Hiroki R

    2016-01-26

    The identification of molecular networks at the system level in mammals is accelerated by next-generation mammalian genetics without crossing, which requires both the efficient production of whole-body biallelic knockout (KO) mice in a single generation and high-performance phenotype analyses. Here, we show that the triple targeting of a single gene using the CRISPR/Cas9 system achieves almost perfect KO efficiency (96%-100%). In addition, we developed a respiration-based fully automated non-invasive sleep phenotyping system, the Snappy Sleep Stager (SSS), for high-performance (95.3% accuracy) sleep/wake staging. Using the triple-target CRISPR and SSS in tandem, we reliably obtained sleep/wake phenotypes, even in double-KO mice. By using this system to comprehensively analyze all of the N-methyl-D-aspartate (NMDA) receptor family members, we found Nr3a as a short-sleeper gene, which is verified by an independent set of triple-target CRISPR. These results demonstrate the application of mammalian reverse genetics without crossing to organism-level systems biology in sleep research. PMID:26774482

  3. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes

    PubMed Central

    Chiang, H. Rosaria; Schoenfeld, Lori W.; Ruby, J. Graham; Auyeung, Vincent C.; Spies, Noah; Baek, Daehyun; Johnston, Wendy K.; Russ, Carsten; Luo, Shujun; Babiarz, Joshua E.; Blelloch, Robert; Schroth, Gary P.; Nusbaum, Chad; Bartel, David P.

    2010-01-01

    MicroRNAs (miRNAs) are small regulatory RNAs that derive from distinctive hairpin transcripts. To learn more about the miRNAs of mammals, we sequenced 60 million small RNAs from mouse brain, ovary, testes, embryonic stem cells, three embryonic stages, and whole newborns. Analysis of these sequences confirmed 398 annotated miRNA genes and identified 108 novel miRNA genes. More than 150 previously annotated miRNAs and hundreds of candidates failed to yield sequenced RNAs with miRNA-like features. Ectopically expressing these previously proposed miRNA hairpins also did not yield small RNAs, whereas ectopically expressing the confirmed and newly identified hairpins usually did yield small RNAs with the classical miRNA features, including dependence on the Drosha endonuclease for processing. These experiments, which suggest that previous estimates of conserved mammalian miRNAs were inflated, provide a substantially revised list of confidently identified murine miRNAs from which to infer the general features of mammalian miRNAs. Our analyses also revealed new aspects of miRNA biogenesis and modification, including tissue-specific strand preferences, sequential Dicer cleavage of a metazoan precursor miRNA (pre-miRNA), consequential 5′ heterogeneity, newly identified instances of miRNA editing, and evidence for widespread pre-miRNA uridylation reminiscent of miRNA regulation by Lin28. PMID:20413612

  4. POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA

    PubMed Central

    Kühl, Inge; Miranda, Maria; Posse, Viktor; Milenkovic, Dusanka; Mourier, Arnaud; Siira, Stefan J.; Bonekamp, Nina A.; Neumann, Ulla; Filipovska, Aleksandra; Polosa, Paola Loguercio; Gustafsson, Claes M.; Larsson, Nils-Göran

    2016-01-01

    Mitochondria are vital in providing cellular energy via their oxidative phosphorylation system, which requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes (mtDNA). Transcription of the circular mammalian mtDNA depends on a single mitochondrial RNA polymerase (POLRMT). Although the transcription initiation process is well understood, it is debated whether POLRMT also serves as the primase for the initiation of mtDNA replication. In the nucleus, the RNA polymerases needed for gene expression have no such role. Conditional knockout of Polrmt in the heart results in severe mitochondrial dysfunction causing dilated cardiomyopathy in young mice. We further studied the molecular consequences of different expression levels of POLRMT and found that POLRMT is essential for primer synthesis to initiate mtDNA replication in vivo. Furthermore, transcription initiation for primer formation has priority over gene expression. Surprisingly, mitochondrial transcription factor A (TFAM) exists in an mtDNA-free pool in the Polrmt knockout mice. TFAM levels remain unchanged despite strong mtDNA depletion, and TFAM is thus protected from degradation of the AAA+ Lon protease in the absence of POLRMT. Last, we report that mitochondrial transcription elongation factor may compensate for a partial depletion of POLRMT in heterozygous Polrmt knockout mice, indicating a direct regulatory role of this factor in transcription. In conclusion, we present in vivo evidence that POLRMT has a key regulatory role in the replication of mammalian mtDNA and is part of a transcriptional mechanism that provides a switch between primer formation for mtDNA replication and mitochondrial gene expression. PMID:27532055

  5. POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA.

    PubMed

    Kühl, Inge; Miranda, Maria; Posse, Viktor; Milenkovic, Dusanka; Mourier, Arnaud; Siira, Stefan J; Bonekamp, Nina A; Neumann, Ulla; Filipovska, Aleksandra; Polosa, Paola Loguercio; Gustafsson, Claes M; Larsson, Nils-Göran

    2016-08-01

    Mitochondria are vital in providing cellular energy via their oxidative phosphorylation system, which requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes (mtDNA). Transcription of the circular mammalian mtDNA depends on a single mitochondrial RNA polymerase (POLRMT). Although the transcription initiation process is well understood, it is debated whether POLRMT also serves as the primase for the initiation of mtDNA replication. In the nucleus, the RNA polymerases needed for gene expression have no such role. Conditional knockout of Polrmt in the heart results in severe mitochondrial dysfunction causing dilated cardiomyopathy in young mice. We further studied the molecular consequences of different expression levels of POLRMT and found that POLRMT is essential for primer synthesis to initiate mtDNA replication in vivo. Furthermore, transcription initiation for primer formation has priority over gene expression. Surprisingly, mitochondrial transcription factor A (TFAM) exists in an mtDNA-free pool in the Polrmt knockout mice. TFAM levels remain unchanged despite strong mtDNA depletion, and TFAM is thus protected from degradation of the AAA(+) Lon protease in the absence of POLRMT. Last, we report that mitochondrial transcription elongation factor may compensate for a partial depletion of POLRMT in heterozygous Polrmt knockout mice, indicating a direct regulatory role of this factor in transcription. In conclusion, we present in vivo evidence that POLRMT has a key regulatory role in the replication of mammalian mtDNA and is part of a transcriptional mechanism that provides a switch between primer formation for mtDNA replication and mitochondrial gene expression. PMID:27532055

  6. Mutations in mammalian tolloid-like 1 gene detected in adult patients with ASD

    PubMed Central

    Stańczak, Paweł; Witecka, Joanna; Szydło, Anna; Gutmajster, Ewa; Lisik, Małgorzata; Auguściak-Duma, Aleksandra; Tarnowski, Maciej; Czekaj, Tomasz; Czekaj, Hanna; Sieroń, Aleksander L

    2009-01-01

    Atrial septal defect (ASD) is an incomplete septation of atria in human heart causing circulatory problems. Its frequency is estimated at one per 10 000. Actions of numerous genes have been linked to heart development. However, no single gene defect causing ASD has yet been identified. Incomplete heart septation similar to ASD was reported in transgenic mice with both inactive alleles of gene encoding mammalian zinc metalloprotease a mammalian tolloid-like 1 (tll1). Here, we have screened 19 ASD patients and 15 healthy age-matched individuals for mutations in TLL1 gene. All 22 exons were analyzed exon by exon for heteroduplex formation. Subsequently, DNA fragments forming heteroduplexes were sequenced. In four nonrelated patients, three missense mutations in coding sequence, and one single base change in the 5′UTR have been detected. Two mutations (Met182Leu, and Ala238Val) were detected in ASD patients with the same clinical phenotype. As the second mutation locates immediately upstream of the catalytic zinc-binding signature, it might change the enzyme substrate specificity. The third change, Leu627Val in the CUB3 domain, has been found in an ASD patient with interatrial septum aneurysm in addition to ASD. The CUB3 domain is important for substrate-specific recognition. In the remaining 15 patients as well as in 15 reference samples numerous base substitutions, deletions, and insertions have been detected, but no mutations changing the coding sequence have been found. Lack of mutations in relation to ASD of these patients could possibly be because of genetic heterogeneity of the syndrome. PMID:18830233

  7. Imbalance between the expression dosages of X-chromosome and autosomal genes in mammalian oocytes

    PubMed Central

    Fukuda, Atsushi; Tanino, Motohiko; Matoba, Ryo; Umezawa, Akihiro; Akutsu, Hidenori

    2015-01-01

    Oocytes have unique characteristics compared with other cell types. In mouse and human oocytes, two X chromosomes are maintained in the active state. Previous microarray studies have shown that the balance of the expression state is maintained in haploid oocytes. Here, we investigated transcripts using RNA-sequence technology in mouse and human oocytes. The median expression ratio between X chromosome and autosomal genes (X:A) in immature mouse oocytes increased as the gene expression levels increased, reaching a value of 1. However, the ratio in mature oocytes was under 1 for all expression categories. Moreover, we observed a markedly low ratio resulting from the bimodal expression patterns of X–linked genes. The low X:A expression ratio in mature oocyte was independent of DNA methylation. While mature human oocytes exhibited a slightly low X:A expression ratio, this was the result of the skewed high frequency of lowly expressed X-linked genes rather than the bimodal state. We propose that this imbalance between the expression dosages of X-chromosome and autosomal genes is a feature of transcripts in mammalian oocytes lacking X-chromosome inactivation. PMID:26370379

  8. The antibody paradox: trying on a pair of genes.

    PubMed

    Fleischman, J B

    1985-01-01

    Rodney Porter's separation of antibody molecules into Fab and Fc fragments engendered the notion that a single antibody polypeptide chain might be coded by two or more genes. This concept profoundly influenced the development of molecular immunology over the past 25 years. Our current knowledge of antibody gene organization has enabled investigators to recombine antibody genes to create 'chimeric' antibodies with a number of potentially useful applications. PMID:3938300

  9. Two Ancient Gene Families Are Critical for Maintenance of the Mammalian Skin Barrier in Postnatal Life.

    PubMed

    Cangkrama, Michael; Darido, Charbel; Georgy, Smitha R; Partridge, Darren; Auden, Alana; Srivastava, Seema; Wilanowski, Tomasz; Jane, Stephen M

    2016-07-01

    The skin barrier is critical for mammalian survival in the terrestrial environment, affording protection against fluid loss, microbes, toxins, and UV exposure. Many genes indispensable for barrier formation in the embryo have been identified, but loss of these genes in adult mice does not induce barrier regression. We describe a complex regulatory network centered on two ancient gene families, the grainyhead-like (Grhl) transcription factors and the protein cross-linking enzymes (tissue transglutaminases [Tgms]), which are essential for skin permeability barrier maintenance in adult mice. Embryonic deletion of Grhl3 induces loss of Tgm1 expression, which disrupts the cornified envelope, thus preventing permeability barrier formation leading to neonatal death. However, gene deletion of Grhl3 in adult mice does not disrupt the preformed barrier, with cornified envelope integrity maintained by Grhl1 and Tgm5, which are up-regulated in response to postnatal loss of Grhl3. Concomitant deletion of both Grhl factors in adult mice induced loss of Tgm1 and Tgm5 expression, perturbation of the cornified envelope, and complete permeability barrier regression that was incompatible with life. These findings define the molecular safeguards for barrier function that accompany the transition from intrauterine to terrestrial life. PMID:26975724

  10. Insert sequence length determines transfection efficiency and gene expression levels in bicistronic mammalian expression vectors

    PubMed Central

    Payne, Andrew J; Gerdes, Bryan C; Kaja, Simon; Koulen, Peter

    2013-01-01

    Bicistronic expression vectors have been widely used for co-expression studies since the initial discovery of the internal ribosome entry site (IRES) about 25 years ago. IRES sequences allow the 5’ cap-independent initiation of translation of multiple genes on a single messenger RNA strand. Using a commercially available mammalian expression vector containing an IRES sequence with a 3’ green fluorescent protein fluorescent marker, we found that sequence length of the gene of interest expressed 5’ of the IRES site influences both expression of the 3’ fluorescent marker and overall transfection efficiency of the vector construct. Furthermore, we generated a novel construct expressing two distinct fluorescent markers and found that high expression of one gene can lower expression of the other. Observations from this study indicate that caution is warranted in the design of experiments utilizing an IRES system with a short 5’ gene of interest sequence (<300 bp), selection of single cells based on the expression profile of the 3’ optogenetic fluorescent marker, and assumptions made during data analysis. PMID:24380024

  11. Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells

    PubMed Central

    Önal, Pinar; Grün, Dominic; Adamidi, Catherine; Rybak, Agnieszka; Solana, Jordi; Mastrobuoni, Guido; Wang, Yongbo; Rahn, Hans-Peter; Chen, Wei; Kempa, Stefan; Ziebold, Ulrike; Rajewsky, Nikolaus

    2012-01-01

    Freshwater planaria possess extreme regeneration capabilities mediated by abundant, pluripotent stem cells (neoblasts) in adult animals. Although planaria emerged as an attractive in vivo model system for stem cell biology, gene expression in neoblasts has not been profiled comprehensively and it is unknown how molecular mechanisms for pluripotency in neoblasts relate to those in mammalian embryonic stem cells (ESCs). We purified neoblasts and quantified mRNA and protein expression by sequencing and shotgun proteomics. We identified ∼4000 genes specifically expressed in neoblasts, including all ∼30 known neoblast markers. Genes important for pluripotency in ESCs, including regulators as well as targets of OCT4, were well conserved and upregulated in neoblasts. We found conserved expression of epigenetic regulators and demonstrated their requirement for planarian regeneration by knockdown experiments. Post-transcriptional regulatory genes characteristic for germ cells were also enriched in neoblasts, suggesting the existence of a common ancestral state of germ cells and ESCs. We conclude that molecular determinants of pluripotency are conserved throughout evolution and that planaria are an informative model system for human stem cell biology. PMID:22543868

  12. A testis-specific gene within a widely expressed gene: Contrasting evolutionary patterns of two differentially expressed mammalian proteins encoded by a single gene, CAMK4.

    PubMed

    Padhi, Abinash; Ma, Li

    2015-12-01

    Understanding the patterns of genetic variations within fertility-related genes and the evolutionary forces that shape such variations is crucial in predicting the fitness landscapes of subsequent generations. This study reports distinct evolutionary features of two differentially expressed mammalian proteins [CaMKIV (Ca(2+) /calmodulin-dependent protein kinase IV) and CaS (calspermin)] that are encoded by a single gene, CAMK4. The multifunctional CaMKIV, which is expressed in multiple tissues including testis and ovary, is evolving at a relatively low rate (0.46-0.64 × 10(-9) nucleotide substitutions/site/year), whereas the testis-specific CaS gene, which is predominantly expressed in post-meiotic cells, evolves at least three to four times faster (1.48-1.98 × 10(-9) substitutions/site/year). Concomitantly, maximum-likelihood-based selection analyses revealed that the ubiquitously expressed CaMKIV is constrained by intense purifying selection and, therefore, remained functionally highly conserved throughout the mammalian evolution, whereas the testis-specific CaS gene is under strong positive selection. The substitution rates of different mammalian lineages within both genes are positively correlated with GC content, indicating the possible influence of GC-biased gene conversion on the estimated substitution rates. The observation of such unusually high GC content of the CaS gene (≈74%), particularly in the lineage that comprises the bovine species, suggests the possible role of GC-biased gene conversion in the evolution of CaS that mimics positive selection. PMID:26388303

  13. Engineering aptazyme switches for conditional gene expression in mammalian cells utilizing an in vivo screening approach.

    PubMed

    Rehm, Charlotte; Klauser, Benedikt; Hartig, Jörg S

    2015-01-01

    Artificial RNA switches are an emerging class of genetic controllers suitable for synthetic biology applications. Aptazymes are fusions composed of an aptamer domain and a self-cleaving ribozyme. The utilization of aptazymes for conditional gene expression displays several advantages over employing conventional transcription factor-based techniques as aptazymes require minimal genomic space, fulfill their function without the need of protein cofactors, and most importantly are reprogrammable with respect to ligand selectivity and the RNA function to be regulated. Technologies that enable the generation of aptazymes to defined input ligands are of interest for the construction of biocomputing devices and biosensing applications. In this chapter we present a method that facilitates the in vivo screening of randomized pools of aptazymes in mammalian cells. PMID:25967058

  14. Mammalian Mss51 is a skeletal muscle-specific gene modulating cellular metabolism

    PubMed Central

    Moyer, Adam L.; Wagner, Kathryn R.

    2015-01-01

    Background The transforming growth factor β (TGF-β) signaling pathways modulate skeletal muscle growth, regeneration, and cellular metabolism. Several recent gene expression studies have shown that inhibition of myostatin and TGF-β1 signaling consistently leads to a significant reduction in expression of Mss51, also named Zmynd17. The function of mammalian Mss51 is unknown although a putative homolog in yeast is a mitochondrial translational activator. Objective The objective of this work was to characterize mammalian Mss51. Methods Quantitative RT-PCR and immunoblot of subcellular fractionation were used to determine expression patterns and localization of Mss51. The CRISPR/Cas9 system was used to reduce expression of Mss51 in C2C12 myoblasts and the function of Mss51 was evaluated in assays of proliferation, differentiation and cellular metabolism. Results Mss51 was predominantly expressed in skeletal muscle and in those muscles dominated by fast-twitch fibers. In vitro, its expression was upregulated upon differentiation of C2C12 myoblasts into myotubes. Expression of Mss51 was modulated in response to altered TGF-β family signaling. In human muscle, Mss51 localized to the mitochondria. Its genetic disruption resulted in increased levels of cellular ATP, β-oxidation, glycolysis, and oxidative phosphorylation. Conclusions Mss51 is a novel, skeletal muscle-specific gene and a key target of myostatin and TGF-β1 signaling. Unlike myostatin, TGF-β1 and IGF-1, Mss51 does not regulate myoblast proliferation or differentiation. Rather, Mss51 appears to be one of the effectors of these growth factors on metabolic processes including fatty acid oxidation, glycolysis and oxidative phosphorylation. PMID:26634192

  15. Structure of silent transcription intervals and noise characteristics of mammalian genes

    PubMed Central

    Zoller, Benjamin; Nicolas, Damien; Molina, Nacho; Naef, Felix

    2015-01-01

    Mammalian transcription occurs stochastically in short bursts interspersed by silent intervals showing a refractory period. However, the underlying processes and consequences on fluctuations in gene products are poorly understood. Here, we use single allele time-lapse recordings in mouse cells to identify minimal models of promoter cycles, which inform on the number and durations of rate-limiting steps responsible for refractory periods. The structure of promoter cycles is gene specific and independent of genomic location. Typically, five rate-limiting steps underlie the silent periods of endogenous promoters, while minimal synthetic promoters exhibit only one. Strikingly, endogenous or synthetic promoters with TATA boxes show simplified two-state promoter cycles. Since transcriptional bursting constrains intrinsic noise depending on the number of promoter steps, this explains why TATA box genes display increased intrinsic noise genome-wide in mammals, as revealed by single-cell RNA-seq. These findings have implications for basic transcription biology and shed light on interpreting single-cell RNA-counting experiments. PMID:26215071

  16. Conditional control of mammalian gene expression by tetracycline-dependent hammerhead ribozymes.

    PubMed

    Beilstein, Kim; Wittmann, Alexander; Grez, Manuel; Suess, Beatrix

    2015-05-15

    Robust synthetic devices are requisite for the construction of synthetic genetic circuits and important scientific and technological tools to control cellular processes. We developed tetracycline-dependent ribozymes, which can switch on gene expression up to 8.7-fold upon addition of tetracycline. A tetracycline aptamer was grafted onto the hammerhead ribozyme in such a way that ligand binding to the aptamers destroys a loop-loop interaction within the ribozyme thereby inhibiting ribozyme cleavage and allowing gene expression. The advantage of the presented regulatory system is its independence of any regulatory proteins. The stable integration of the ribozyme into the genome of HeLa cells indicates a low background activity in the absence of ligand. Furthermore, the ligand concentration required to robustly flip the switch does not affect cell viability and therefore allows a long-term application of the system. These properties turn the tetracycline-dependent ribozymes into a very promising tool for conditional gene expression in mammalian cells. PMID:25265236

  17. Mammalian hibernation: differential gene expression and novel application of epigenetic controls.

    PubMed

    Morin, Pier; Storey, Kenneth B

    2009-01-01

    This review highlights current information about the regulatory mechanisms that govern gene expression during mammalian hibernation, in particular the potential role of epigenetic controls in coordinating the global suppression of transcription. Hibernation is characterized by long periods of deep torpor (when core body temperature drops to near ambient) that are interspersed with brief arousal periods back to euthermia. Entry into torpor requires coordinated controls which strongly suppress and reprioritize all metabolic functions, including global controls on both transcription and translation. At the same time, however, selected hibernation-specific genes are up-regulated under the control of specific transcription factors to support the torpid state; this includes genes that encode proteins involved in lipid fuel catabolism and in long term cytoprotection (e.g. antioxidants, chaperones). We evaluate the currently available information on global transcriptional suppression in hibernation and propose that epigenetic mechanisms such as DNA methylation, histone modification, SUMOylation and the actions of sirtuins play crucial roles in transcriptional suppression during torpor. Global controls providing translational suppression also occur during hibernation including reversible phosphorylation control of ribosomal initiation and elongation factors as well as polysome dissociation. We also present initial data that mRNA transcripts are regulated via inhibitory interactions with microRNA species during torpor and provide the first evidence of differential expression of miRNAs in hibernators. When taken together, these mechanisms provide hibernators with multiple layers of regulatory controls that achieve both global repression of gene expression and selected enhancement of genes/proteins that achieve the hibernation phenotype. PMID:19412897

  18. Identification of Enzyme Genes Using Chemical Structure Alignments of Substrate-Product Pairs.

    PubMed

    Moriya, Yuki; Yamada, Takuji; Okuda, Shujiro; Nakagawa, Zenichi; Kotera, Masaaki; Tokimatsu, Toshiaki; Kanehisa, Minoru; Goto, Susumu

    2016-03-28

    Although there are several databases that contain data on many metabolites and reactions in biochemical pathways, there is still a big gap in the numbers between experimentally identified enzymes and metabolites. It is supposed that many catalytic enzyme genes are still unknown. Although there are previous studies that estimate the number of candidate enzyme genes, these studies required some additional information aside from the structures of metabolites such as gene expression and order in the genome. In this study, we developed a novel method to identify a candidate enzyme gene of a reaction using the chemical structures of the substrate-product pair (reactant pair). The proposed method is based on a search for similar reactant pairs in a reference database and offers ortholog groups that possibly mediate the given reaction. We applied the proposed method to two experimentally validated reactions. As a result, we confirmed that the histidine transaminase was correctly identified. Although our method could not directly identify the asparagine oxo-acid transaminase, we successfully found the paralog gene most similar to the correct enzyme gene. We also applied our method to infer candidate enzyme genes in the mesaconate pathway. The advantage of our method lies in the prediction of possible genes for orphan enzyme reactions where any associated gene sequences are not determined yet. We believe that this approach will facilitate experimental identification of genes for orphan enzymes. PMID:26822930

  19. Mechanisms of double-strand-break repair during gene targeting in mammalian cells.

    PubMed Central

    Ng, P; Baker, M D

    1999-01-01

    In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting.In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp.The hDNA was efficiently repaired prior to DNA replication.The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism. PMID:10049929

  20. Dynamic gene expression for metabolic engineering of mammalian cells in culture.

    PubMed

    Le, Huong; Vishwanathan, Nandita; Kantardjieff, Anne; Doo, Inseok; Srienc, Michael; Zheng, Xiaolu; Somia, Nikunj; Hu, Wei-Shou

    2013-11-01

    Recombinant mammalian cells are the major hosts for the production of protein therapeutics. In addition to high expression of the product gene, a hyper-producer must also harbor superior phenotypic traits related to metabolism, protein secretion, and growth control. Introduction of genes endowing the relevant hyper-productivity traits is a strategy frequently used to enhance the productivity. Most of such cell engineering efforts have been performed using constitutive expression systems. However, cells respond to various environmental cues and cellular events dynamically according to cellular needs. The use of inducible systems allows for time dependent expression, but requires external manipulation. Ideally, a transgene's expression should be synchronous to the host cell's own rhythm, and at levels appropriate for the objective. To that end, we identified genes with different expression dynamics and intensity ranges using pooled transcriptome data. Their promoters may be used to drive the expression of the transgenes following the desired dynamics. We isolated the promoter of the Thioredoxin-interacting protein (Txnip) gene and demonstrated its capability to drive transgene expression in concert with cell growth. We further employed this Chinese hamster promoter to engineer dynamic expression of the mouse GLUT5 fructose transporter in Chinese hamster ovary (CHO) cells, enabling them to utilize sugar according to cellular needs rather than in excess as typically seen in culture. Thus, less lactate was produced, resulting in a better growth rate, prolonged culture duration, and higher product titer. This approach illustrates a novel concept in metabolic engineering which can potentially be used to achieve dynamic control of cellular behaviors for enhanced process characteristics. PMID:24055788

  1. The Mammalian Circadian Clock Gene Per2 Modulates Cell Death in Response to Oxidative Stress

    PubMed Central

    Magnone, Maria Chiara; Langmesser, Sonja; Bezdek, April Candice; Tallone, Tiziano; Rusconi, Sandro; Albrecht, Urs

    2015-01-01

    Living in the earth’s oxygenated environment forced organisms to develop strategies to cope with the damaging effects of molecular oxygen known as reactive oxygen species (ROS). Here, we show that Per2, a molecular component of the mammalian circadian clock, is involved in regulating a cell’s response to oxidative stress. Mouse embryonic fibroblasts (MEFs) containing a mutation in the Per2 gene are more resistant to cytotoxic effects mediated by ROS than wild-type cells, which is paralleled by an altered regulation of bcl-2 expression in Per2 mutant MEFs. The elevated survival rate and alteration of NADH/NAD+ ratio in the mutant cells is reversed by introduction of the wild-type Per2 gene. Interestingly, clock synchronized cells display a time dependent sensitivity to paraquat, a ROS inducing agent. Our observations indicate that the circadian clock is involved in regulating the fate of a cell to survive or to die in response to oxidative stress, which could have implications for cancer development and the aging process. PMID:25628599

  2. Characterization of a cryptic gene pair from Neisseria gonorrhoeae that is common to pathogenic Neisseria species.

    PubMed

    Seifert, H S; Wilson, D

    1992-03-01

    A pair of genes, each of which produces in Escherichia coli a 20-kDa, periplasmically localized protein that cross-reacts with anti-rpoN monoclonal antibody, was isolated from Neisseria gonorrhoeae. Homologs of the two genes were detected in pathogenic Neisseria species but not in commensal species. These genes are designated cnp1 and cnp2 (cryptic neisserial protein). PMID:1541538

  3. Functional Similarities between Pigeon ‘Milk’ and Mammalian Milk: Induction of Immune Gene Expression and Modification of the Microbiota

    PubMed Central

    Gillespie, Meagan J.; Stanley, Dragana; Chen, Honglei; Donald, John A.; Nicholas, Kevin R.; Moore, Robert J.; Crowley, Tamsyn M.

    2012-01-01

    Pigeon ‘milk’ and mammalian milk have functional similarities in terms of nutritional benefit and delivery of immunoglobulins to the young. Mammalian milk has been clearly shown to aid in the development of the immune system and microbiota of the young, but similar effects have not yet been attributed to pigeon ‘milk’. Therefore, using a chicken model, we investigated the effect of pigeon ‘milk’ on immune gene expression in the Gut Associated Lymphoid Tissue (GALT) and on the composition of the caecal microbiota. Chickens fed pigeon ‘milk’ had a faster rate of growth and a better feed conversion ratio than control chickens. There was significantly enhanced expression of immune-related gene pathways and interferon-stimulated genes in the GALT of pigeon ‘milk’-fed chickens. These pathways include the innate immune response, regulation of cytokine production and regulation of B cell activation and proliferation. The caecal microbiota of pigeon ‘milk’-fed chickens was significantly more diverse than control chickens, and appears to be affected by prebiotics in pigeon ‘milk’, as well as being directly seeded by bacteria present in pigeon ‘milk’. Our results demonstrate that pigeon ‘milk’ has further modes of action which make it functionally similar to mammalian milk. We hypothesise that pigeon ‘lactation’ and mammalian lactation evolved independently but resulted in similarly functional products. PMID:23110233

  4. Use of bacterial and firefly luciferases as reporter genes in DEAE-dextran-mediated transfection of mammalian cells.

    PubMed

    Pazzagli, M; Devine, J H; Peterson, D O; Baldwin, T O

    1992-08-01

    The aim of this study was to compare three different luciferase genes by placing them in a single reporter vector and expressing them in the same mammalian cell type. The luciferase genes investigated were the luc genes from the fireflies Photinus pyralis (PP) and Luciola mingrelica (LM) and the lux AB5 gene, a translational fusion of the two subunits of the bacterial luciferase from Vibrio harveyi (VH). The chloramphenicol acetyltransferase (CAT) gene was also included in this study for comparison. The performances of the assay methods of the corresponding enzymes were evaluated using reference materials and the results of the expressed enzymes following transfection were calculated using calibration curves. All of the bioluminescent assays possess high reproducibility both within and between the batches (less than 15%). The comparison of the assay methods shows that firefly luciferases have the highest detection sensitivity (0.05 and 0.08 amol for PP and LM, respectively) whereas the VH bacterial luciferase has 5 amol and CAT 100 amol. On the other hand, the transfection of the various plasmids shows that the content of the expressed enzyme within the cells is much higher for CAT than for the other luciferase genes. VH luciferase is expressed at very low levels in mammalian cells due to the relatively high temperature of growing of the mammalian cells that seems to impair the correct folding of the active enzyme. PP and LM luciferases are both expressed at picomolar level but usually 10 to 70 times less in content with respect to CAT within the transfected cells. On the basis of these results the overall improvement in sensitivity related to the use of firefly luciferases as reporter genes in mammalian cells is about 30 to 50 times with respect to that of CAT. PMID:1443530

  5. Characterization of the mammalian DNA polymerase gene(s) and enzyme(s). Annual progress report

    SciTech Connect

    Mishra, N.C.

    1994-01-01

    Consistent with the long term goal of our research to understand the nature of the key enzymes in eukaryotic DNA replication we have characterized the properties of the wild type DNA polymerases of the {alpha}-family and their mutants. We have also provided evidence for the role of aphidicolin in the elongation process of the in vivo DNA replication in eukaryotic cells. We also developed a technology for planned prep from a large numbers of clones for direct screening by size or restriction digestion in order to facilitate our goals to clone the DNA polymerase gene.

  6. An internal ribosome entry site (IRES) mutant library for tuning expression level of multiple genes in mammalian cells.

    PubMed

    Koh, Esther Y C; Ho, Steven C L; Mariati; Song, Zhiwei; Bi, Xuezhi; Bardor, Muriel; Yang, Yuansheng

    2013-01-01

    A set of mutated Encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) elements with varying strengths is generated by mutating the translation initiation codons of 10(th), 11(th), and 12(th) AUG to non-AUG triplets. They are able to control the relative expression of multiple genes over a wide range in mammalian cells in both transient and stable transfections. The relative strength of each IRES mutant remains similar in different mammalian cell lines and is not gene specific. The expressed proteins have correct molecular weights. Optimization of light chain over heavy chain expression by these IRES mutants enhances monoclonal antibody expression level and quality in stable transfections. Uses of this set of IRES mutants can be extended to other applications such as synthetic biology, investigating interactions between proteins and its complexes, cell engineering, multi-subunit protein production, gene therapy, and reprogramming of somatic cells into stem cells. PMID:24349195

  7. An Internal Ribosome Entry Site (IRES) Mutant Library for Tuning Expression Level of Multiple Genes in Mammalian Cells

    PubMed Central

    Koh, Esther Y. C.; Ho, Steven C. L.; Mariati; Song, Zhiwei; Bi, Xuezhi; Bardor, Muriel; Yang, Yuansheng

    2013-01-01

    A set of mutated Encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) elements with varying strengths is generated by mutating the translation initiation codons of 10th, 11th, and 12th AUG to non-AUG triplets. They are able to control the relative expression of multiple genes over a wide range in mammalian cells in both transient and stable transfections. The relative strength of each IRES mutant remains similar in different mammalian cell lines and is not gene specific. The expressed proteins have correct molecular weights. Optimization of light chain over heavy chain expression by these IRES mutants enhances monoclonal antibody expression level and quality in stable transfections. Uses of this set of IRES mutants can be extended to other applications such as synthetic biology, investigating interactions between proteins and its complexes, cell engineering, multi-subunit protein production, gene therapy, and reprogramming of somatic cells into stem cells. PMID:24349195

  8. Bioinformatics Identification of Drug Resistance-Associated Gene Pairs in Mycobacterium tuberculosis.

    PubMed

    Cui, Ze-Jia; Yang, Qing-Yong; Zhang, Hong-Yu; Zhu, Qiang; Zhang, Qing-Ye

    2016-01-01

    Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb). Due to the extensive use of anti-tuberculosis drugs and the development of mutations, the emergence and spread of multidrug-resistant tuberculosis is recognized as one of the most dangerous threats to global tuberculosis control. Some single mutations have been identified to be significantly linked with drug resistance. However, the prior research did not take gene-gene interactions into account, and the emergence of transmissible drug resistance is connected with multiple genetic mutations. In this study we use the bioinformatics software GBOOST (The Hong Kong University, Clear Water Bay, Kowloon, Hong Kong, China) to calculate the interactions of Single Nucleotide Polymorphism (SNP) pairs and identify gene pairs associated with drug resistance. A large part of the non-synonymous mutations in the drug target genes that were included in the screened gene pairs were confirmed by previous reports, which lent sound solid credits to the effectiveness of our method. Notably, most of the identified gene pairs containing drug targets also comprise Pro-Pro-Glu (PPE) family proteins, suggesting that PPE family proteins play important roles in the drug resistance of Mtb. Therefore, this study provides deeper insights into the mechanisms underlying anti-tuberculosis drug resistance, and the present method is useful for exploring the drug resistance mechanisms for other microorganisms. PMID:27618895

  9. Mutation and gene transfer of neutral amino acid transport System L genes in mammalian cells

    SciTech Connect

    El-Gewely, M.R.; Collarini, E.J.; Campbell, G.S.; Oxender, D.L.

    1987-05-01

    The authors are attempting to clone the genes coding for amino acid transport System L. Chinese hamster ovary (CHO) cell mutants that are temperature sensitive in their leucyl-tRNA synthetase show temperature-dependent regulation of System L. Temperature resistant mutants isolated from these cells have constitutively derepressed System L activity. Somatic cell fusion studies using these mutants have suggested that a trans-acting element controls regulation of System L. Mutants with reduced transport activity were isolated by a TH-suicide selection. The growth of these mutant cells is limited by the transport defect. CHO mutants were transformed with a human cosmid library, followed by selection at high temperatures and low leucine concentrations. Some transformants have increased levels of System L activity, suggesting that human genes coding for leucine transport have been incorporated into the CHO genome. Human sequences were rescued by a lambda in vitro packaging system. These sequences hybridize to vector and total human DNA. Experiments are being done to confirm that these sequences indeed code for transport System L. They are also attempting to label membrane components of amino acid transporters by group-specific modifying reagents.

  10. Evolution of paired domains: Isolation and sequencing of jellyfish and hydra Pax genes related to Pax-5 and Pax-6

    PubMed Central

    Sun, Hongmin; Rodin, Andrei; Zhou, Yihong; Dickinson, Douglas P.; Harper, Donald E.; Hewett-Emmett, David; Li, Wen-Hsiung

    1997-01-01

    Pax proteins are a family of transcription factors with a highly conserved paired domain; many members also contain a paired-type homeodomain and/or an octapeptide. Nine mammalian Pax genes are known and classified into four subgroups: Pax-1/9, Pax-2/5/8, Pax-3/7, and Pax-4/6. Most of these genes are involved in nervous system development. In particular, Pax-6 is a key regulator that controls eye development in vertebrates and Drosophila. Although the Pax-4/6 subgroup seems to be more closely related to Pax-2/5/8 than to Pax-3/7 or Pax-1/9, its evolutionary origin is unknown. We therefore searched for a Pax-6 homolog and related genes in Cnidaria, which is the lowest phylum of animals that possess a nervous system and eyes. A sea nettle (a jellyfish) genomic library was constructed and two pax genes (Pax-A and -B) were isolated and partially sequenced. Surprisingly, unlike most known Pax genes, the paired box in these two genes contains no intron. In addition, the complete cDNA sequences of hydra Pax-A and -B were obtained. Hydra Pax-B contains both the homeodomain and the octapeptide, whereas hydra Pax-A contains neither. DNA binding assays showed that sea nettle Pax-A and -B and hydra Pax-A paired domains bound to a Pax-5/6 site and a Pax-5 site, although hydra Pax-B paired domain bound neither. An alignment of all available paired domain sequences revealed two highly conserved regions, which cover the DNA binding contact positions. Phylogenetic analysis showed that Pax-A and especially Pax-B were more closely related to Pax-2/5/8 and Pax-4/6 than to Pax-1/9 or Pax-3/7 and that the Pax genes can be classified into two supergroups: Pax-A/Pax-B/Pax-2/5/8/4/6 and Pax-1/9/3/7. From this analysis and the gene structure, we propose that modern Pax-4/6 and Pax-2/5/8 genes evolved from an ancestral gene similar to cnidarian Pax-B, having both the homeodomain and the octapeptide. PMID:9144207

  11. Slug, mammalian homologue gene of Drosophila escargot, promotes neuronal-differentiation through suppression of HEB/daughterless.

    PubMed

    Yang, Dong-Jin; Chung, Ji-Yun; Lee, Su-Jin; Park, So-Young; Pyo, Jung-Hoon; Ha, Nam-Chul; Yoo, Mi-Ae; Park, Bum-Joon

    2010-07-15

    At the neuron developmental stage, neuron-precursor cells can be differentiated into neuron or glia cells. However, precise molecular mechanism to determine the cell fate has not been clearly demonstrated. In this study, we reveal that Drosophila esgarcot and its mammalian homologue genes, Snail and Slug, play a key role in neuronal differentiation. In Drosophila model system, overexpression of Esg, like as Wingless, suppresses the bristle formation. In contrast, elimination of Esg though RNAi promotes double bristle phenotype. We can also observe the similar phenotype in Snail-overexpression system. In mammalian system, overexpression of Slug or Snail can induce neuronal differentiation. Esg and its mammalian homologue gene Slug directly interact with Daughtherless and its mammalian homologue HEB and eliminate them through siah-1 mediated protein degradation. Thus, overexpression of siah-1 can promote neuron cell differentiation, whereas si-siah-1 blocks the Slug-induced HEB suppression. In fact, Drosophila SINA, Siah-1 homologue, has been also known to be involved in bristle formation and Neuronal differentiation. In addition, it has been revealed that CK1 is involved in Esg or Snail stability and Neuronal differentiation. However, Snail is regulated only by CK1 but not by Siah. Considering the fact that Slug mutations have been found in human genetic disease, waardenberg syndrome, major symptoms of which is loss of hearing neuron and odd eye, our result implies that slug/Snail system is required for proper neuronal differentiation, like as Esg in Drosophila. PMID:20647756

  12. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells

    PubMed Central

    Müller, Konrad; Engesser, Raphael; Metzger, Stéphanie; Schulz, Simon; Kämpf, Michael M.; Busacker, Moritz; Steinberg, Thorsten; Tomakidi, Pascal; Ehrbar, Martin; Nagy, Ferenc; Timmer, Jens; Zubriggen, Matias D.; Weber, Wilfried

    2013-01-01

    Growth and differentiation of multicellular systems is orchestrated by spatially restricted gene expression programs in specialized subpopulations. The targeted manipulation of such processes by synthetic tools with high-spatiotemporal resolution could, therefore, enable a deepened understanding of developmental processes and open new opportunities in tissue engineering. Here, we describe the first red/far-red light-triggered gene switch for mammalian cells for achieving gene expression control in time and space. We show that the system can reversibly be toggled between stable on- and off-states using short light pulses at 660 or 740 nm. Red light-induced gene expression was shown to correlate with the applied photon number and was compatible with different mammalian cell lines, including human primary cells. The light-induced expression kinetics were quantitatively analyzed by a mathematical model. We apply the system for the spatially controlled engineering of angiogenesis in chicken embryos. The system’s performance combined with cell- and tissue-compatible regulating red light will enable unprecedented spatiotemporally controlled molecular interventions in mammalian cells, tissues and organisms. PMID:23355611

  13. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development.

    PubMed Central

    Lovering, Ruth C

    2014-01-01

    For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer’s vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer’s vesicle determine asymmetry in the developing heart, the direction of ‘heart jogging’ and the direction of ‘heart looping’.  ‘Heart jogging’ is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward ‘jog’. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development.    We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging.  We found that the human, mouse and zebrafish ‘heart jogging orthologs’ are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging.    This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach. PMID:24627794

  14. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development.

    PubMed

    Khodiyar, Varsha K; Howe, Doug; Talmud, Philippa J; Breckenridge, Ross; Lovering, Ruth C

    2013-01-01

    For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer's vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer's vesicle determine asymmetry in the developing heart, the direction of 'heart jogging' and the direction of 'heart looping'.  'Heart jogging' is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward 'jog'. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development.    We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging.  We found that the human, mouse and zebrafish 'heart jogging orthologs' are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging.    This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach. PMID:24627794

  15. Rapid evolution and diversification of mammalian alpha-defensins as revealed by comparative analysis of rodent and primate genes.

    PubMed

    Patil, Amar; Hughes, Austin L; Zhang, Guolong

    2004-12-15

    Mammalian alpha-defensins constitute a family of cysteine-rich, cationic antimicrobial peptides produced by phagocytes and intestinal Paneth cells, playing an important role in innate host defense. Following comprehensive computational searches, here we report the discovery of complete repertoires of the alpha-defensin gene family in the human, chimpanzee, rat, and mouse with new genes identified in each species. The human genome was found to encode a cluster of 10 distinct alpha-defensin genes and pseudogenes expanding 132 kb continuously on chromosome 8p23. Such alpha-defensin loci are also conserved in the syntenic chromosomal regions of chimpanzee, rat, and mouse. Phylogenetic analyses showed formation of two distinct clusters with primate alpha-defensins forming one cluster and rodent enteric alpha-defensins forming the other cluster. Species-specific clustering of genes is evident in nonprimate species but not in the primates. Phylogenetically distinct subsets of alpha-defensins also exist in each species, with most subsets containing multiple members. In addition, natural selection appears to have acted to diversify the functionally active mature defensin region but not signal or prosegment sequences. We concluded that mammalian alpha-defensin genes may have evolved from two separate ancestors originated from beta-defensins. The current repertoires of the alpha-defensin gene family in each species are primarily a result of repeated gene duplication and positive diversifying selection after divergence of mammalian species from each other, except for the primate genes, which were evolved prior to the separation of the primate species. We argue that the presence of multiple, divergent subsets of alpha-defensins in each species may help animals to better cope with different microbial challenges in the ecological niches which they inhabit. PMID:15494476

  16. High throughput gene complementation screening permits identification of a mammalian mitochondrial protein synthesis (ρ(-)) mutant.

    PubMed

    Potluri, Prasanth; Procaccio, Vincent; Scheffler, Immo E; Wallace, Douglas C

    2016-08-01

    To identify nuclear DNA (nDNA) oxidative phosphorylation (OXPHOS) gene mutations using cultured cells, we have developed a complementation system based on retroviral transduction with a full length cDNA expression library and selection for OXHOS function by growth in galactose. We have used this system to transduce the Chinese hamster V79-G7 OXPHOS mutant cell line with a defect in mitochondrial protein synthesis. The complemented cells were found to have acquired the cDNA for the bS6m polypeptide of the small subunit of the mitochondrial ribosome. bS6m is a 14 kDa polypeptide located on the outside of the mitochondrial 28S ribosomal subunit and interacts with the rRNA. The V79-G7 mutant protein was found to harbor a methionine to threonine missense mutation at codon 13. The hamster bS6m null mutant could also be complemented by its orthologs from either mouse or human. bS6m protein tagged at its C-terminus by HA, His or GFP localized to the mitochondrion and was fully functional. Through site-directed mutagenesis we identified the probable RNA interacting residues of the bS6m peptide and tested the functional significance of mammalian specific C-terminal region. The N-terminus of the bS6m polypeptide functionally corresponds to that of the prokaryotic small ribosomal subunit, but deletion of C-terminal residues along with the zinc ion coordinating cysteine had no functional effect. Since mitochondrial diseases can result from hundreds to thousands of different nDNA gene mutations, this one step viral complementation cloning may facilitate the molecular diagnosis of a range of nDNA mitochondrial disease mutations. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26946086

  17. The fatty acid desaturase 3 gene encodes for different FADS3 protein isoforms in mammalian tissues

    PubMed Central

    Pédrono, Frédérique; Blanchard, Hélène; Kloareg, Maela; D'andréa, Sabine; Daval, Stéphanie; Rioux, Vincent; Legrand, Philippe

    2010-01-01

    In 2000, Marquardt et al. (A. Marquardt, H. Stöhr, K. White, and B. H. F. Weber. 2000. cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics. 66: 176–183.) described the genomic structure of the fatty acid desaturase (FADS) cluster in humans. This cluster includes the FADS1 and FADS2 genes encoding, respectively, for the Δ5- and Δ6-desaturases involved in polyunsaturated fatty acid biosynthesis. A third gene, named FADS3, has recently been identified but no functional role has yet been attributed to the putative FADS3 protein. In this study, we investigated the FADS3 occurrence in rat tissues by using two specific polyclonal antibodies directed against the N-terminal and C-terminal ends of rat FADS3. Our results showed three potential protein isoforms of FADS3 (75 kDa, 51 kDa, and 37 kDa) present in a tissue-dependent manner. The occurrence of these FADS3 isoforms did not depend on the mRNA level determined by real-time PCR. In parallel, mouse tissues were also tested and showed the same three FADS3 isoforms but with a different tissue distribution. Finally, we reported the existence of FADS3 in human cells and tissues but different new isoforms were identified. To conclude, we showed in this study that FADS3 does exist under multiple protein isoforms depending on the mammalian tissues. These results will help further investigations to determine the physiological function of FADS3. PMID:19752397

  18. Unique expression patterns of multiple key genes associated with the evolution of mammalian flight

    PubMed Central

    Wang, Zhe; Dai, Mengyao; Wang, Yao; Cooper, Kimberly L.; Zhu, Tengteng; Dong, Dong; Zhang, Junpeng; Zhang, Shuyi

    2014-01-01

    Bats are the only mammals capable of true flight. Critical adaptations for flight include a pair of dramatically elongated hands with broad wing membranes. To study the molecular mechanisms of bat wing evolution, we perform genomewide mRNA sequencing and in situ hybridization for embryonic bat limbs. We identify seven key genes that display unique expression patterns in embryonic bat wings and feet, compared with mouse fore- and hindlimbs. The expression of all 5′HoxD genes (Hoxd9–13) and Tbx3, six known crucial transcription factors for limb and digit development, is extremely high and prolonged in the elongating wing area. The expression of Fam5c, a tumour suppressor, in bat limbs is bat-specific and significantly high in all short digit regions (the thumb and foot digits). These results suggest multiple genetic changes occurred independently during the evolution of bat wings to elongate the hand digits, promote membrane growth and keep other digits short. Our findings also indicate that the evolution of limb morphology depends on the complex integration of multiple gene regulatory networks and biological processes that control digit formation and identity, chondrogenesis, and interdigital regression or retention. PMID:24695426

  19. Expression of a tumor-related gene network increases in the mammalian hypothalamus at the time of female puberty.

    PubMed

    Roth, Christian L; Mastronardi, Claudio; Lomniczi, Alejandro; Wright, Hollis; Cabrera, Ricardo; Mungenast, Alison E; Heger, Sabine; Jung, Heike; Dubay, Christopher; Ojeda, Sergio R

    2007-11-01

    Much has been learned in recent years about the central mechanisms controlling the initiation of mammalian puberty. It is now clear that this process requires the interactive participation of several genes. Using a combination of high throughput, molecular, and bioinformatics strategies, in combination with a system biology approach, we singled out from the hypothalamus of nonhuman primates and rats a group of related genes whose expression increases at the time of female puberty. Although these genes [henceforth termed tumor-related genes (TRGs)] have diverse cellular functions, they share the common feature of having been earlier identified as involved in tumor suppression/tumor formation. A prominent member of this group is KiSS1, a gene recently shown to be essential for the occurrence of puberty. Cis-regulatory analysis revealed the presence of a hierarchically arranged gene set containing five major hubs (CDP/CUTL1, MAF, p53, YY1, and USF2) controlling the network at the transcriptional level. In turn, these hubs are heavily connected to non-TRGs involved in the transcriptional regulation of the pubertal process. TRGs may be expressed in the mammalian hypothalamus as components of a regulatory gene network that facilitates and integrates cellular and cell-cell communication programs required for the acquisition of female reproductive competence. PMID:17615149

  20. Gene transduction in mammalian cells using Bombyx mori nucleopolyhedrovirus assisted by glycoprotein 64 of Autographa californica multiple nucleopolyhedrovirus

    PubMed Central

    Kato, Tatsuya; Sugioka, Saki; Itagaki, Kohei; Park, Enoch Y.

    2016-01-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV), an alphabaculovirus, has been widely utilized for protein expression in not only insect cells but also mammalian cells. AcMNPV is closely related to Bombyx mori nucleopolyhedrovirus (BmNPV), and nucleotide sequences of AcMNPV genes have high similarity with those of BmNPV. However, the transduction of BmNPV into mammalian cells has not been reported. In this study, we constructed a recombinant BmNPV (BmNPVΔbgp/AcGP64/EGFP) whose surface 64 kDa glycoprotein (BmGP64) was substituted with that from AcMNPV (AcGP64). BmNPVΔbgp/AcGP64/EGFP also carried an EGFP gene under the control of the CMV promoter. BmNPVΔbgp/AcGP64/EGFP successfully transduced HEK293T cells. In comparison, a control construct (BmNPVΔbgp/BmGP64/EGFP) which possessed BmGP64 instead of AcGP64 did not express EGFP in HEK293T cells. The transduction efficiency of BmNPVΔbgp/AcGP64/EGFP was lower than that of an AcMNPV based-BacMam GFP transduction control. This result indicates that AcGP64 facilitates BmNPV transduction into HEK293T cells. BmNPV can be prepared easily on a large scale because BmNPV can infect silkworm larvae without any special equipment, even though specific diet is needed for silkworm rearing. BmNPV gene transduction into mammalian cells can potentially be applied easily for gene delivery into mammalian cells. PMID:27562533

  1. Characterization of Two Melanin-Concentrating Hormone Genes in Zebrafish Reveals Evolutionary and Physiological Links with the Mammalian MCH System

    PubMed Central

    BERMAN, JENNIFER R.; SKARIAH, GEMINI; MARO, GÉRALDINE S.; MIGNOT, EMMANUEL; MOURRAIN, PHILIPPE

    2011-01-01

    Melanin-concentrating hormone (MCH) regulates feeding and complex behaviors in mammals and pigmentation in fish. The relationship between fish and mammalian MCH systems is not well understood. Here, we identify and characterize two MCH genes in zebrafish, Pmch1 and Pmch2. Whereas Pmch1 and its corresponding MCH1 peptide resemble MCH found in other fish, the zebrafish Pmch2 gene and MCH2 peptide share genomic structure, synteny, and high peptide sequence homology with mammalian MCH. Zebrafish Pmch genes are expressed in closely associated but non-overlapping neurons within the hypothalamus, and MCH2 neurons send numerous projections to multiple MCH receptor-rich targets with presumed roles in sensory perception, learning and memory, arousal, and homeostatic regulation. Preliminary functional analysis showed that whereas changes in zebrafish Pmch1 expression correlate with pigmentation changes, the number of MCH2-expressing neurons increases in response to chronic food deprivation. These findings demonstrate that zebrafish MCH2 is the putative structural and functional ortholog of mammalian MCH and help elucidate the nature of MCH evolution among vertebrates. PMID:19827161

  2. DLGP: A database for lineage-conserved and lineage-specific gene pairs in animal and plant genomes.

    PubMed

    Wang, Dapeng

    2016-01-15

    The conservation of gene organization in the genome with lineage-specificity is an invaluable resource to decipher their potential functionality with diverse selective constraints, especially in higher animals and plants. Gene pairs appear to be the minimal structure for such kind of gene clusters that tend to reside in their preferred locations, representing the distinctive genomic characteristics in single species or a given lineage. Despite gene families having been investigated in a widespread manner, the definition of gene pair families in various taxa still lacks adequate attention. To address this issue, we report DLGP (http://lcgbase.big.ac.cn/DLGP/) that stores the pre-calculated lineage-based gene pairs in currently available 134 animal and plant genomes and inspect them under the same analytical framework, bringing out a set of innovational features. First, the taxonomy or lineage has been classified into four levels such as Kingdom, Phylum, Class and Order. It adopts all-to-all comparison strategy to identify the possible conserved gene pairs in all species for each gene pair in certain species and reckon those that are conserved in over a significant proportion of species in a given lineage (e.g. Primates, Diptera or Poales) as the lineage-conserved gene pairs. Furthermore, it predicts the lineage-specific gene pairs by retaining the above-mentioned lineage-conserved gene pairs that are not conserved in any other lineages. Second, it carries out pairwise comparison for the gene pairs between two compared species and creates the table including all the conserved gene pairs and the image elucidating the conservation degree of gene pairs in chromosomal level. Third, it supplies gene order browser to extend gene pairs to gene clusters, allowing users to view the evolution dynamics in the gene context in an intuitive manner. This database will be able to facilitate the particular comparison between animals and plants, between vertebrates and arthropods, and

  3. Two novel human members of an emerging mammalian gene family related to mono-ADP-ribosylating bacterial toxins

    SciTech Connect

    Koch-Nolte, F.; Haag, F.; Braren, R.

    1997-02-01

    Mono-ADP-ribosylation is one of the posttranslational protein modifications regulating cellular metabolism, e.g., nitrogen fixation, in prokaryotes. Several bacterial toxins mono-ADP-ribosylate and inactivate specific proteins in their animal hosts. Recently, two mammalian GPI-anchored cell surface enzymes with similar activities were cloned (designated ART1 and ART2). We have now identified six related expressed sequence tags (ESTs) in the public database and cloned the two novel human genes from which these are derived (designated ART3 and ART4). The deduced amino acid sequences of the predicted gene products show 28% sequence identity to one another and 32-41% identity vs the muscle and T cell enzymes. They contain signal peptide sequences characteristic of GPI anchorage. Southern Zoo blot analyses suggest the presence of related genes in other mammalian species. By PCR screening of somatic cell hybrids and by in situ hybridization, we have mapped the two genes to human chromosomes 4p14-p15.l and 12q13.2- q13.3. Northern blot analyses show that these genes are specifically expressed in testis and spleen, respectively. Comparison of genomic and cDNA sequences reveals a conserved exon/intron structure, with an unusually large exon encoding the predicted mature membrane proteins. Secondary structure prediction analyses indicate conserved motifs and amino acid residues consistent with a common ancestry of this emerging mammalian enzyme family and bacterial mono(ADP-ribosyl)transferases. It is possible that the four human gene family members identified so far represent the {open_quotes}tip of an iceberg,{close_quote} i.e., a larger family of enzymes that influences the function of target proteins via mono-ADP-ribosylation. 35 refs., 4 figs.

  4. Cooperative gene regulation by microRNA pairs and their identification using a computational workflow

    PubMed Central

    Schmitz, Ulf; Lai, Xin; Winter, Felix; Wolkenhauer, Olaf; Vera, Julio; Gupta, Shailendra K.

    2014-01-01

    MicroRNAs (miRNAs) are an integral part of gene regulation at the post-transcriptional level. Recently, it has been shown that pairs of miRNAs can repress the translation of a target mRNA in a cooperative manner, which leads to an enhanced effectiveness and specificity in target repression. However, it remains unclear which miRNA pairs can synergize and which genes are target of cooperative miRNA regulation. In this paper, we present a computational workflow for the prediction and analysis of cooperating miRNAs and their mutual target genes, which we refer to as RNA triplexes. The workflow integrates methods of miRNA target prediction; triplex structure analysis; molecular dynamics simulations and mathematical modeling for a reliable prediction of functional RNA triplexes and target repression efficiency. In a case study we analyzed the human genome and identified several thousand targets of cooperative gene regulation. Our results suggest that miRNA cooperativity is a frequent mechanism for an enhanced target repression by pairs of miRNAs facilitating distinctive and fine-tuned target gene expression patterns. Human RNA triplexes predicted and characterized in this study are organized in a web resource at www.sbi.uni-rostock.de/triplexrna/. PMID:24875477

  5. Prediction of mucin-type O-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs

    PubMed Central

    Chen, Yong-Zi; Tang, Yu-Rong; Sheng, Zhi-Ya; Zhang, Ziding

    2008-01-01

    Background As one of the most common protein post-translational modifications, glycosylation is involved in a variety of important biological processes. Computational identification of glycosylation sites in protein sequences becomes increasingly important in the post-genomic era. A new encoding scheme was employed to improve the prediction of mucin-type O-glycosylation sites in mammalian proteins. Results A new protein bioinformatics tool, CKSAAP_OGlySite, was developed to predict mucin-type O-glycosylation serine/threonine (S/T) sites in mammalian proteins. Using the composition of k-spaced amino acid pairs (CKSAAP) based encoding scheme, the proposed method was trained and tested in a new and stringent O-glycosylation dataset with the assistance of Support Vector Machine (SVM). When the ratio of O-glycosylation to non-glycosylation sites in training datasets was set as 1:1, 10-fold cross-validation tests showed that the proposed method yielded a high accuracy of 83.1% and 81.4% in predicting O-glycosylated S and T sites, respectively. Based on the same datasets, CKSAAP_OGlySite resulted in a higher accuracy than the conventional binary encoding based method (about +5.0%). When trained and tested in 1:5 datasets, the CKSAAP encoding showed a more significant improvement than the binary encoding. We also merged the training datasets of S and T sites and integrated the prediction of S and T sites into one single predictor (i.e. S+T predictor). Either in 1:1 or 1:5 datasets, the performance of this S+T predictor was always slightly better than those predictors where S and T sites were independently predicted, suggesting that the molecular recognition of O-glycosylated S/T sites seems to be similar and the increase of the S+T predictor's accuracy may be a result of expanded training datasets. Moreover, CKSAAP_OGlySite was also shown to have better performance when benchmarked against two existing predictors. Conclusion Because of CKSAAP encoding's ability of

  6. Dynamics of the mammalian nucleus: can microscopic movements help us to understand our genes?

    PubMed

    Sleeman, Judith E

    2004-12-15

    The cell is the basic building block of human life. Each of us has existed as a single cell--the fertilized egg--and each of us is made up of billions of cells specialized in many different ways to form our tissues and organs. The nucleus of the cell, described as far back as 1682, is known to be the site of storage of chromosomes that carry the essential and unique DNA blueprint for life. With the recent publication of the entire human genome, our knowledge of exactly what our genes say has increased immeasurably. This, however, is only a small part of the story. In order for the chromosomal genes to function correctly, a complex cellular machinery must rewrite (or transcribe) the genetic instructions of the DNA into a temporary messenger molecule, messenger RNA (mRNA), rearrange (or splice) this message into a readable format and then produce a protein that accurately represents the DNA code. It is these protein molecules that are the functional result of the genetic information. This whole process is termed 'gene expression'. Both transcription and splicing of the mRNA message are carried out in the nucleus. These events must be performed accurately and efficiently in a minute volume already full of highly packaged DNA. An ever-increasing number of sub-nuclear structures have been described, from the nucleolus (first described in 1835) to newly discovered 'paraspeckles' and 'clastosomes'. In fact, as increasing numbers of molecular probes become available, so the complexity of nuclear structure appears to expand. The functions of some of these structures are currently unknown. Those whose functions are, at least partly, understood play roles in gene expression. Interestingly, alterations in nuclear structure are associated with human diseases such as spinal muscular atrophy and promyelocytic leukaemia, suggesting that the control of nuclear organization may be vital to health. The dynamic nature of the structure of the mammalian nucleus has come under increasing

  7. Genomic Locations of Conserved Noncoding Sequences and Their Proximal Protein-Coding Genes in Mammalian Expression Dynamics.

    PubMed

    Babarinde, Isaac Adeyemi; Saitou, Naruya

    2016-07-01

    Experimental studies have found the involvement of certain conserved noncoding sequences (CNSs) in the regulation of the proximal protein-coding genes in mammals. However, reported cases of long range enhancer activities and inter-chromosomal regulation suggest that proximity of CNSs to protein-coding genes might not be important for regulation. To test the importance of the CNS genomic location, we extracted the CNSs conserved between chicken and four mammalian species (human, mouse, dog, and cattle). These CNSs were confirmed to be under purifying selection. The intergenic CNSs are often found in clusters in gene deserts, where protein-coding genes are in paucity. The distribution pattern, ChIP-Seq, and RNA-Seq data suggested that the CNSs are more likely to be regulatory elements and not corresponding to long intergenic noncoding RNAs. Physical distances between CNS and their nearest protein coding genes were well conserved between human and mouse genomes, and CNS-flanking genes were often found in evolutionarily conserved genomic neighborhoods. ChIP-Seq signal and gene expression patterns also suggested that CNSs regulate nearby genes. Interestingly, genes with more CNSs have more evolutionarily conserved expression than those with fewer CNSs. These computationally obtained results suggest that the genomic locations of CNSs are important for their regulatory functions. In fact, various kinds of evolutionary constraints may be acting to maintain the genomic locations of CNSs and protein-coding genes in mammals to ensure proper regulation. PMID:27017584

  8. Comprehensive profiling of EBV gene expression in nasopharyngeal carcinoma through paired-end transcriptome sequencing.

    PubMed

    Hu, Lijuan; Lin, Zhirui; Wu, Yanheng; Dong, Juqin; Zhao, Bo; Cheng, Yanbing; Huang, Peiyu; Xu, Lihua; Xia, Tianliang; Xiong, Dan; Wang, Hongbo; Li, Manzhi; Guo, Ling; Kieff, Elliott; Zeng, Yixin; Zhong, Qian; Zeng, Musheng

    2016-03-01

    The latent expression pattern of Epstein-Barr Virus (EBV) genes in nasopharyngeal carcinoma (NPC) has been extensively investigated, and the expression of several lytic genes in NPC has been reported. However, comprehensive information through EBV transcriptome analysis in NPC is limited. We performed paired-end RNA-seq to systematically and comprehensively characterize the expression of EBV genes in NPC tissue and C666-1 NPC cell line, which consistently carries EBV. In addition to the transcripts restricted to type II latency infection, the type III latency EBNA3s genes and a substantial number of lytic genes, such as BZLF1, BRLF1, and BMRF1, were detected through RNA-seq and were further verified in C666-1 cells and NPC tissue through realtime PCR.We also performed clustering analysis to classify NPC patient groups in terms of EBV gene expression, which presented two subtypes of NPC samples. Results revealed interesting patterns of EBV gene expression in NPC patients. This clustering was correlated with many signaling pathways, such as those related to heterotrimeric G-protein signaling, inflammation mediated by chemokine and cytokine signaling, ribosomes, protein metabolism, influenza infection, and ECM-receptor interaction. Our combined findings suggested that the expression of EBV genes in NPC is restricted not only to type II latency genes but also to type III latency and lytic genes. This study provided further insights into the potential role of EBV in the development of NPC. PMID:26969667

  9. The mammalian single-minded (SIM) gene: Mouse cDNA structure and diencephalic expression indicate a candidate gene for Down syndrome

    SciTech Connect

    Yamaki, Akiko |; Kudoh, Jun; Shindoh, Nobuaki

    1996-07-01

    We have recently isolated a human homolog (hSIM) of the Drosophila single-minded (sim) gene from the Down syndrome critical region of chromosome 21 using the exon trapping method. The Drosophila sim gene encodes a transcription factor that regulates the development of the central nervous system midline cell lineage. To elucidate the structure of the mammalian SIM protein, we have isolated cDNA clones from a mouse embryo cDNA library. The cDNA clones encode a polypeptide of 657 amino acids with a bHLH (basic-helix-loop-helix) domain, characteristic of a large family of transcription factors, and a PAS (Per-Arnt-Sim) domain in the amino-terminal half region. Both of these domains have striking sequence homology with human SIM and Drosophila SIM proteins. In contrast, the carboxy-terminal half of the mouse SIM protein consists of a proline-rich region with no sequence homology to the Drosophila SIM provator domain of a number of transcription factors. Whole-mount embryo in situ hybridization experiments revealed that the SIM mRNA is expressed prominently in the diencephalon during embryogenesis strongly suggest that the newly isolated mammalian SIM homolog may play a critical role in the development of the mammalian central nervous system. We propose that the human SIM gene may be one of the pathogenic genes of Down syndrome. 36 refs., 6 figs.

  10. Gene set enrichment analysis of microarray data from Pimephales promelas (Rafinesque), a non-mammalian model organism

    PubMed Central

    2011-01-01

    Background Methods for gene-class testing, such as Gene Set Enrichment Analysis (GSEA), incorporate biological knowledge into the analysis and interpretation of microarray data by comparing gene expression patterns to pathways, systems and emergent phenotypes. However, to use GSEA to its full capability with non-mammalian model organisms, a microarray platform must be annotated with human gene symbols. Doing so enables the ability to relate a model organism's gene expression, in response to a given treatment, to potential human health consequences of that treatment. We enhanced the annotation of a microarray platform from a non-mammalian model organism, and then used the GSEA approach in a reanalysis of a study examining the biological significance of acute and chronic methylmercury exposure on liver tissue of fathead minnow (Pimephales promelas). Using GSEA, we tested the hypothesis that fathead livers, in response to methylmercury exposure, would exhibit gene expression patterns similar to diseased human livers. Results We describe an enhanced annotation of the fathead minnow microarray platform with human gene symbols. This resource is now compatible with the GSEA approach for gene-class testing. We confirmed that GSEA, using this enhanced microarray platform, is able to recover results consistent with a previous analysis of fathead minnow exposure to methylmercury using standard analytical approaches. Using GSEA to compare fathead gene expression profiles to human phenotypes, we also found that fathead methylmercury-treated livers exhibited expression profiles that are homologous to human systems & pathways and results in damage that is similar to those of human liver damage associated with hepatocellular carcinoma and hepatitis B. Conclusions This study describes a powerful resource for enabling the use of non-mammalian model organisms in the study of human health significance. Results of microarray gene expression studies involving fathead minnow, typically

  11. The Role of Transcription Factors at Antisense-Expressing Gene Pairs in Yeast

    PubMed Central

    Mostovoy, Yulia; Thiemicke, Alexander; Hsu, Tiffany Y.; Brem, Rachel B.

    2016-01-01

    Genes encoded close to one another on the chromosome are often coexpressed, by a mechanism and regulatory logic that remain poorly understood. We surveyed the yeast genome for tandem gene pairs oriented tail-to-head at which expression antisense to the upstream gene was conserved across species. The intergenic region at most such tandem pairs is a bidirectional promoter, shared by the downstream gene mRNA and the upstream antisense transcript. Genomic analyses of these intergenic loci revealed distinctive patterns of transcription factor regulation. Mutation of a given transcription factor verified its role as a regulator in trans of tandem gene pair loci, including the proximally initiating upstream antisense transcript and downstream mRNA and the distally initiating upstream mRNA. To investigate cis-regulatory activity at such a locus, we focused on the stress-induced NAD(P)H dehydratase YKL151C and its downstream neighbor, the metabolic enzyme GPM1. Previous work has implicated the region between these genes in regulation of GPM1 expression; our mutation experiments established its function in rich medium as a repressor in cis of the distally initiating YKL151C sense RNA, and an activator of the proximally initiating YKL151C antisense RNA. Wild-type expression of all three transcripts required the transcription factor Gcr2. Thus, at this locus, the intergenic region serves as a focal point of regulatory input, driving antisense expression and mediating the coordinated regulation of YKL151C and GPM1. Together, our findings implicate transcription factors in the joint control of neighboring genes specialized to opposing conditions and the antisense transcripts expressed between them. PMID:27190003

  12. The mammalian AMP-activated protein kinase complex mediates glucose regulation of gene expression in the yeast Saccharomyces cerevisiae.

    PubMed

    Ye, Tian; Bendrioua, Loubna; Carmena, David; García-Salcedo, Raúl; Dahl, Peter; Carling, David; Hohmann, Stefan

    2014-06-01

    The AMP-activated protein kinase (AMPK) controls energy homeostasis in eukaryotic cells. Here we expressed hetero-trimeric mammalian AMPK complexes in a Saccharomyces cerevisiae mutant lacking all five genes encoding yeast AMPK/SNF1 components. Certain mammalian complexes complemented the growth defect of the yeast mutant on non-fermentable carbon sources. Phosphorylation of the AMPK α1-subunit was glucose-regulated, albeit not by the Glc7-Reg1/2 phosphatase, which performs this function on yeast AMPK/SNF1. AMPK could take over SNF1 function in glucose derepression. While indirectly acting anti-diabetic drugs had no effect on AMPK in yeast, compound 991 stimulated α1-subunit phosphorylation. Our results demonstrate a remarkable functional conservation of AMPK and that glucose regulation of AMPK may not be mediated by regulatory features of a specific phosphatase. PMID:24815694

  13. Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase.

    PubMed Central

    Cyert, M S; Kunisawa, R; Kaim, D; Thorner, J

    1991-01-01

    Calcineurin, or phosphoprotein phosphatase type 2B (PP2B), is a calmodulin-regulated phosphoprotein phosphatase. We isolated a gene encoding a yeast PP2B homolog (CNA1) by screening a yeast genomic DNA library in the expression vector lambda gt11, first with 125I-labeled yeast calmodulin and then with a human cDNA encoding the catalytic (or A) subunit of calcineurin. The predicted CNA1 gene product is 54% identical to its mammalian counterpart. Using the polymerase chain reaction (PCR) with oligonucleotide primers based on sequences conserved between CNA1 and mammalian PP2B genes, we isolated a second gene, CNA2. CNA2 is identical to PP2Bw, a partial cDNA clone previously described by others as originating from rabbit brain tissue. Our findings demonstrate that a unicellular eukaryote contains phosphoprotein phosphatases of the 2B class. Haploid cells containing a single cna1 or cna2 null mutation, or both mutations, were viable. MATa cna1 cna2 double mutants were more sensitive than wild-type cells or either single mutant to growth arrest induced by the mating pheromone alpha factor and failed to resume growth during continuous exposure to alpha factor. Thus, calcineurin action antagonizes the mating-pheromone response pathway. Images PMID:1651503

  14. Variation in the oxytocin receptor gene (OXTR) is associated with pair-bonding and social behavior

    PubMed Central

    Walum, Hasse; Lichtenstein, Paul; Neiderhiser, Jenae M.; Reiss, David; Ganiban, Jody M.; Spotts, Erica L.; Pedersen, Nancy L.; Anckarsäter, Henrik; Larsson, Henrik; Westberg, Lars

    2011-01-01

    Background In specific vole and primate species the neuropeptide Oxytocin (OT) plays a central role in the regulation of pair-bonding behavior. Here we investigate to what extent genetic variants in the oxytocin receptor gene (OXTR) are associated with pair-bonding and related social behaviors in humans. Methods We first genotyped twelve Single Nucleotide Polymorphisms (SNPs) in the Twin and Offspring Study in Sweden (TOSS, N=2309) and the Swedish Twin Study of CHild and Adolescent Development (TCHAD, N=1240) comprising measures of self-reported pair-bonding behavior. In the TOSS-sample we further investigated one the SNPs for measures of marital status and quality. Moreover, in the TCHAD sample we explored the longitudinal relationship between precursors of pair-bonding during childhood and subsequent behavior in romantic relationships. Finally, in TCHAD and in the Child and Adolescent Twin Study of Sweden (CATSS, N=1771) the association between the same SNP and childhood behaviors was investigated. Results One SNP (rs7632287) in OXTR was associated with traits reflecting pair-bonding in women in the TOSS and TCHAD samples. In girls the rs7632287 SNP was further associated with childhood social problems, which longitudinally predicted pair-bonding behavior in the TCHAD-sample. This association was replicated in the CATSS-sample in which an association between the same SNP and social interaction deficit symptoms from the autism spectrum was detected. Conclusion These results suggest an association between variation in OXTR and human pair-bonding and other social behaviors, possibly indicating that the well described influence of OT on affiliative behavior in voles could also be of importance for humans. PMID:22015110

  15. Gene transfer into mammalian cells by use of a nanosecond pulsed laser-induced stress wave

    NASA Astrophysics Data System (ADS)

    Terakawa, Mitsuhiro; Ogura, Makoto; Sato, Shunichi; Wakisaka, Hitoshi; Ashida, Hiroshi; Uenoyama, Maki; Masaki, Yoshinori; Obara, Minoru

    2004-06-01

    Plasmid DNA has been successfully delivered to mammalian cells by applying a nanosecond pulsed laser-induced stress wave (LISW). Cells exposed to a LISW were selectively transfected with plasmids coding for green fluorescent protein. It was also shown that transient, mild cellular heating (~43 °C) was effective in improving the transfection efficiency.

  16. A synthetic cGMP-sensitive gene switch providing Viagra(®)-controlled gene expression in mammalian cells and mice.

    PubMed

    Kim, Taeuk; Folcher, Marc; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2015-05-01

    Cyclic guanosine monophosphate (cGMP) is a universal second messenger that is synthesized from guanosine triphosphate (GTP) by guanylyl cyclases (GCs) and hydrolyzed into guanosine monophosphate (GMP) by phosphodiesterases (PDEs). Small-molecule drugs that induce high cGMP levels in specialized tissues by boosting GC activity or inhibiting PDE activity have become the predominant treatment strategy for a wide range of medical conditions, including congestive heart failure, pulmonary hypertension, atherosclerosis-based claudication and erectile dysfunction. By fusing the cGMP receptor protein (CRP) of Rhodospirillum centenum to the Herpes simplex-derived transactivation domain VP16, we created a novel synthetic mammalian cGMP-sensing transcription factor (GTA) that activates synthetic promoters (PGTA) containing newly identified GTA-specific operator sites in a concentration-dependent manner. In cell lines expressing endogenous natriuretic peptide receptor A (NPR-A) (HeLa), GTA/PGTA-driven transgene expression was induced by B-type natriuretic peptide (BNP; Nesiritide(®)) in a concentration-dependent manner, which activated NPR-A׳s intracellular GC domain and triggered a corresponding cGMP surge. Ectopic expression of NPR-A in NPR-A-negative cell lines (HEK-293T) produced high cGMP levels and mediated maximum GTA/PGTA-driven transgene expression, which was suppressed by co-expression of PDEs (PDE-3A, PDE-5A and PDE-9A) and was re-triggered by the corresponding PDE inhibitor drugs (Pletal(®), Perfan(®), Primacor(®) (PDE-3A), Viagra(®), Levitra(®), Cialis(®) (PDE-5A) and BAY73-6691 (PDE-9A)). Mice implanted with microencapsulated designer cells co-expressing the GTA/PGTA device with NPR-A and PDE-5A showed control of blood SEAP levels through administration of sildenafil (Viagra(®)). Designer cells engineered for PDE inhibitor-modulated transgene expression may provide a cell-based PDE-targeting drug discovery platform and enable drug-adjusted gene- and cell

  17. Effective Targeted Gene Knockdown in Mammalian Cells Using the piggyBac Transposase-based Delivery System

    PubMed Central

    Owens, Jesse B; Mathews, Juanita; Davy, Philip; Stoytchev, Ilko; Moisyadi, Stefan; Allsopp, Rich

    2013-01-01

    Nonviral gene delivery systems are rapidly becoming a desirable and applicable method to overexpress genes in various types of cells. We have recently developed a piggyBac transposase-based, helper-independent and self-inactivating delivery system (pmGENIE-3) capable of high-efficiency transfection of mammalian cells including human cells. In the following study, we have assessed the potential of this delivery system to drive the expression of short hairpin RNAs to knock down genes in human cells. Two independent pmGENIE-3 vectors were developed to specifically target knockdown of an endogenous gene, telomerase reverse transcriptase (TERT), in telomerase-positive human immortalized cell lines. As compared with a transposase-deficient vector, pmGENIE-3 showed significantly improved short-term transfection efficiency (~4-fold enhancement, 48 hours posttransfection) and long-term integration efficiency (~5-fold enhancement) following antibiotic selection. We detected a significant reduction of both TERT expression and telomerase activity in both HEK293 and MCF-7 breast carcinoma cells transfected with two pmGENIE-3 construct targeting distinct regions of TERT. Importantly, this knockdown of expression was sufficient to abrogate telomerase function since telomeres were significantly shortened (3–4 Kb, P < 0.001) in both TERT-targeted cell lines following antibiotic selection of stable integrants. Together, these data show the capacity of the piggyBac nonviral delivery system to stably knockdown gene expression in mammalian cells and indicate the potential to develop novel tumor-targeting therapies. PMID:24326734

  18. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain.

    PubMed

    Vieux-Rochas, Maxence; Fabre, Pierre J; Leleu, Marion; Duboule, Denis; Noordermeer, Daan

    2015-04-14

    Embryogenesis requires the precise activation and repression of many transcriptional regulators. The Polycomb group proteins and the associated H3K27me3 histone mark are essential to maintain the inactive state of many of these genes. Mammalian Hox genes are targets of Polycomb proteins and form local 3D clusters centered on the H3K27me3 mark. More distal contacts have also been described, yet their selectivity, dynamics, and relation to other layers of chromatin organization remained elusive. We report that repressed Hox genes form mutual intra- and interchromosomal interactions with other genes located in strong domains labeled by H3K27me3. These interactions occur in a central and active nuclear environment that consists of the HiC compartment A, away from peripheral lamina-associated domains. Interactions are independent of nearby H3K27me3-marked loci and determined by chromosomal distance and cell-type-specific scaling factors, thus inducing a moderate reorganization during embryogenesis. These results provide a simplified view of nuclear organization whereby Polycomb proteins may have evolved to repress genes located in gene-dense regions whose position is restricted to central, active, nuclear environments. PMID:25825760

  19. Active and Repressive Chromatin Are Interspersed without Spreading in an Imprinted Gene Cluster in the Mammalian Genome

    PubMed Central

    Regha, Kakkad; Sloane, Mathew A.; Huang, Ru; Pauler, Florian M.; Warczok, Katarzyna E.; Melikant, Balázs; Radolf, Martin; Martens, Joost H.A.; Schotta, Gunnar; Jenuwein, Thomas; Barlow, Denise P.

    2010-01-01

    SUMMARY The Igf2r imprinted cluster is an epigenetic silencing model in which expression of a ncRNA silences multiple genes in cis. Here, we map a 250 kb region in mouse embryonic fibroblast cells to show that histone modifications associated with expressed and silent genes are mutually exclusive and localized to discrete regions. Expressed genes were modified at promoter regions by H3K4me3 + H3K4me2 + H3K9Ac and on putative regulatory elements flanking active promoters by H3K4me2 + H3K9Ac. Silent genes showed two types of nonoverlapping profile. One type spread over large domains of tissue-specific silent genes and contained H3K27me3 alone. A second type formed localized foci on silent imprinted gene promoters and a nonexpressed pseudogene and contained H3K9me3 + H4K20me3 ± HP1. Thus, mammalian chromosome arms contain active chromatin interspersed with repressive chromatin resembling the type of heterochromatin previously considered a feature of centromeres, telomeres, and the inactive X chromosome. PMID:17679087

  20. Synthetic mammalian gene networks as a blueprint for the design of interactive biohybrid materials.

    PubMed

    Jakobus, Kathrin; Wend, Sabrina; Weber, Wilfried

    2012-02-01

    Synthetic biology aims at the rational design and construction of devices, systems and organisms with desired functionality based on modular well-characterized biological building blocks. Based on first proof-of-concept studies in bacteria a decade ago, synthetic biology strategies have rapidly entered mammalian cell technology providing novel therapeutic solutions. Here we review how biological building blocks can be rewired to interactive regulatory genetic networks in mammalian cells and how these networks can be transformed into open- and closed-loop control configurations for autonomously managing disease phenotypes. In the second part of this tutorial review we describe how the regulatory biological sensors and switches can be transferred from mammalian cell synthetic biology to materials sciences in order to develop interactive biohybrid materials with similar (therapeutic) functionality as their synthetic biological archetypes. We develop a perspective of how the convergence of synthetic biology with materials sciences might contribute to the development of truly interactive and adaptive materials for autonomous operation in a complex environment. PMID:21894343

  1. Sense-antisense gene-pairs in breast cancer and associated pathological pathways

    PubMed Central

    Grinchuk, Oleg V.; Motakis, Efthymios; Yenamandra, Surya Pavan; Ow, Ghim Siong; Jenjaroenpun, Piroon; Tang, Zhiqun; Yarmishyn, Aliaksandr A.; Ivshina, Anna V.; Kuznetsov, Vladimir A.

    2015-01-01

    More than 30% of human protein-coding genes form hereditary complex genome architectures composed of sense-antisense (SA) gene pairs (SAGPs) transcribing their RNAs from both strands of a given locus. Such architectures represent important novel components of genome complexity contributing to gene expression deregulation in cancer cells. Therefore, the architectures might be involved in cancer pathways and, in turn, be used for novel drug targets discovery. However, the global roles of SAGPs in cancer pathways has not been studied. Here we investigated SAGPs associated with breast cancer (BC)-related pathways using systems biology, prognostic survival and experimental methods. Gene expression analysis identified 73 BC-relevant SAGPs that are highly correlated in BC. Survival modelling and metadata analysis of the 1161 BC patients allowed us to develop a novel patient prognostic grouping method selecting the 12 survival-significant SAGPs. The qRT-PCR-validated 12-SAGP prognostic signature reproducibly stratified BC patients into low- and high-risk prognostic subgroups. The 1381 SAGP-defined differentially expressed genes common across three studied cohorts were identified. The functional enrichment analysis of these genes revealed the GABPA gene network, including BC-relevant SAGPs, specific gene sets involved in cell cycle, spliceosomal and proteasomal pathways. The co-regulatory function of GABPA in BC cells was supported using siRNA knockdown studies. Thus, we demonstrated SAGPs as the synergistically functional genome architectures interconnected with cancer-related pathways and associated with BC patient clinical outcomes. Taken together, SAGPs represent an important component of genome complexity which can be used to identify novel aspects of coordinated pathological gene networks in cancers. PMID:26517092

  2. Sense-antisense gene-pairs in breast cancer and associated pathological pathways.

    PubMed

    Grinchuk, Oleg V; Motakis, Efthymios; Yenamandra, Surya Pavan; Ow, Ghim Siong; Jenjaroenpun, Piroon; Tang, Zhiqun; Yarmishyn, Aliaksandr A; Ivshina, Anna V; Kuznetsov, Vladimir A

    2015-12-01

    More than 30% of human protein-coding genes form hereditary complex genome architectures composed of sense-antisense (SA) gene pairs (SAGPs) transcribing their RNAs from both strands of a given locus. Such architectures represent important novel components of genome complexity contributing to gene expression deregulation in cancer cells. Therefore, the architectures might be involved in cancer pathways and, in turn, be used for novel drug targets discovery. However, the global roles of SAGPs in cancer pathways has not been studied. Here we investigated SAGPs associated with breast cancer (BC)-related pathways using systems biology, prognostic survival and experimental methods. Gene expression analysis identified 73 BC-relevant SAGPs that are highly correlated in BC. Survival modelling and metadata analysis of the 1161 BC patients allowed us to develop a novel patient prognostic grouping method selecting the 12 survival-significant SAGPs. The qRT-PCR-validated 12-SAGP prognostic signature reproducibly stratified BC patients into low- and high-risk prognostic subgroups. The 1381 SAGP-defined differentially expressed genes common across three studied cohorts were identified. The functional enrichment analysis of these genes revealed the GABPA gene network, including BC-relevant SAGPs, specific gene sets involved in cell cycle, spliceosomal and proteasomal pathways. The co-regulatory function of GABPA in BC cells was supported using siRNA knockdown studies. Thus, we demonstrated SAGPs as the synergistically functional genome architectures interconnected with cancer-related pathways and associated with BC patient clinical outcomes. Taken together, SAGPs represent an important component of genome complexity which can be used to identify novel aspects of coordinated pathological gene networks in cancers. PMID:26517092

  3. ORF13 in the Type III secretion system gene cluster of Edwardsiella tarda binds to the mammalian factor Cugbp2.

    PubMed

    Okuda, Jun; Takeuchi, Yusuke; Yasuda, Masashi; Nakai, Toshihiro

    2016-05-01

    The Type III secretion system (TTSS) is essential for the intracellular replication of Edwardsiella tarda in phagocytes of fish and mammals, and a hypothetical gene (orf13) located in the TTSS gene cluster is required for intracellular replication and virulence of E. tarda. Here, we show that under TTSS-inducing conditions, the protein ORF13 was secreted into culture supernatant. Then, using a yeast 2-hybrid screen, we show that the mammalian factor Cugbp2, which regulates apoptosis in breast cancer cells, directly interacts with ORF13. A pull-down assay revealed that ORF13 binds to the C-terminal region of Cugbp2. Our results suggest that ORF13 may facilitate E. tarda replication in phagocytes by binding to Cugbp2. PMID:27137075

  4. Developmental-stage-specific expression of the hsp70 gene family during differentiation of the mammalian male germ line.

    PubMed Central

    Zakeri, Z F; Wolgemuth, D J

    1987-01-01

    Mouse somatic tissues contain low levels of transcripts homologous to the heat shock-inducible and cognate members of the heat shock protein 70 (hsp70) gene family. An abundant, unique sized hsp70 mRNA of 2.7 kilobases (kb) is present in testes in the absence of exogenous stress. Its expression is restricted to germ cells and is developmentally regulated. The 2.7-kb transcript first appears during the haploid phase of spermatogenesis and is stable throughout the morphogenic stages of spermiogenesis. A 2.7-kb hsp70 mRNA is present in rat and human testes. These observations suggest that a member of the hsp70 gene family plays a role in the development of the mammalian male germ cell lineage. Images PMID:3600644

  5. Dlx genes pattern mammalian jaw primordium by regulating both lower jaw-specific and upper jaw-specific genetic programs

    PubMed Central

    Jeong, Juhee; Li, Xue; McEvilly, Robert J.; Rosenfeld, Michael G.; Lufkin, Thomas; Rubenstein, John L. R.

    2016-01-01

    Dlx transcription factors are implicated in patterning the mammalian jaw, based on their nested expression patterns in the first branchial arch (primordium for jaw) and mutant phenotypes; inactivation of Dlx1 and Dlx2 (Dlx1/2−/−) causes defects in the upper jaw, whereas Dlx5/6−/− results in homeotic transformation of the lower jaw into upper jaw. Therefore, the ‘Dlx codes’ appear to regionalize the jaw primordium such that Dlx1/2 regulate upper jaw development, while Dlx5/6 confer the lower jaw fate. Towards identifying the genetic pathways downstream of Dlx5/6, we compared the gene expression profiles of the wild-type and Dlx5/6−/− mouse mandibular arch (prospective lower jaw). We identified 20 previously unrecognized Dlx5/6-downstream genes, of which 12 were downregulated and 8 upregulated in the mutant. We found a Dlx-regulated transcriptional enhancer in close proximity to Gbx2, one of the Dlx5/6-downstream genes, strongly suggesting that Gbx2 is a direct target of Dlx5/6. We also showed that Pou3f3 is normally expressed in the maxillary (prospective upper jaw) but not mandibular arch, is upregulated in the mandibular arch of Dlx5/6−/−, and is essential for formation of some of the maxillary arch-derived skeleton. A comparative analysis of the morphological and molecular phenotypes of various Dlx single and double mutants revealed that Dlx1, 2, 5 and 6 act both partially redundantly and antagonistically to direct differential expression of downstream genes in each domain of the first branchial arch. We propose a new model for Dlx-mediated mammalian jaw patterning. PMID:18697905

  6. Deciphering the onychophoran 'segmentation gene cascade': Gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network.

    PubMed

    Janssen, Ralf; Budd, Graham E

    2013-10-01

    The hallmark of the arthropods is their segmented body, although origin of segmentation, however, is unresolved. In order to shed light on the origin of segmentation we investigated orthologs of pair rule genes (PRGs) and segment polarity genes (SPGs) in a member of the closest related sister-group to the arthropods, the onychophorans. Our gene expression data analysis suggests that most of the onychophoran PRGs do not play a role in segmentation. One possible exception is the even-skipped (eve) gene that is expressed in the posterior end of the onychophoran where new segments are likely patterned, and is also expressed in segmentation-gene typical transverse stripes in at least a number of newly formed segments. Other onychophoran PRGs such as runt (run), hairy/Hes (h/Hes) and odd-skipped (odd) do not appear to have a function in segmentation at all. Onychophoran PRGs that act low in the segmentation gene cascade in insects, however, are potentially involved in segment-patterning. Most obvious is that from the expression of the pairberry (pby) gene ortholog that is expressed in a typical SPG-pattern. Since this result suggested possible conservation of the SPG-network we further investigated SPGs (and associated factors) such as Notum in the onychophoran. We find that the expression patterns of SPGs in arthropods and the onychophoran are highly conserved, suggesting a conserved SPG-network in these two clades, and indeed also in an annelid. This may suggest that the common ancestor of lophotrochozoans and ecdysozoans was already segmented utilising the same SPG-network, or that the SPG-network was recruited independently in annelids and onychophorans/arthropods. PMID:23880430

  7. Linkage of the VNTR/insulin-gene and type I diabetes mellitus: Increased gene sharing in affected sibling pairs

    SciTech Connect

    Owerbach, D.; Gabbay, K.H. )

    1994-05-01

    Ninety-six multiplex type I diabetic families were typed at the 5' flanking region of the insulin gene by using a PCR assay that better resolves the VNTR into multiple alleles. Affected sibling pairs shared 2, 1, and 0 VNTR alleles - identical by descent - at a frequency of .47, .45, and .08, respectively, a ratio that deviated from the expected 1:2:1 ratio (P<.001). These results confirm linkage of the chromosome 11p15.5 region with type I diabetes mellitus susceptibility. 20 refs., 2 tabs.

  8. Mammalian Fetal Cardiac Regeneration Following Myocardial Infarction is Associated with Differential Gene Expression Compared to the Adult

    PubMed Central

    Zgheib, Carlos; Allukian, Myron W.; Xu, Junwang; Morris, Michael W.; Caskey, Robert C.; Herdrich, Benjamin J.; Hu, Junyi; Gorman, Joseph H.; Gorman, Robert C.; Liechty, Kenneth W.

    2014-01-01

    Background In adults, MI results in a brisk inflammatory response, myocardium loss and scar formation. We have recently reported the first mammalian large animal model of cardiac regeneration following MI in fetal sheep. We hypothesize that the fetus ability to regenerate functional myocardium following MI is due to differential gene expression regulating the response to MI in the fetus compared to the adult. Methods MI was created in adult (n=4) or early gestation fetal (n=4) sheep. Tissue harvested after 3 or 30 days, RNA extracted for microarray, followed by PCA and global gene expression analysis for the gene ontology (GO) terms: “response to wounding”, “inflammatory response”, “extracellular matrix”, “cell cycle”, “cell migration”, “cell proliferation” and “apoptosis”. Results PCA demonstrated that the global gene expression pattern in adult infarcts was distinctly different from uninfarcted region at 3 days and remained different 30 days post-MI. In contrast, gene expression in the fetal infarct was different from the uninfarcted region at 3 days, but by 30 days it returned to a baseline expression pattern similar to the uninfarcted region. 3 days post-MI there was an increase in the expression of genes related to all GO terms in fetal and adult infarcts, but this increase was much more pronounced in adults. By 30 days, the fetal gene expression returned to baseline, whereas in the adult remained significantly elevated. Conclusions These data demonstrate that the global gene expression pattern is dramatically different in the fetal regenerative response to MI compared to the adult response and may partly be responsible for the regeneration. PMID:24792251

  9. A gene encoding a yeast equivalent of mammalian NADPH-adrenodoxin oxidoreductases.

    PubMed

    Lacour, T; Dumas, B

    1996-10-01

    Adrenodoxin oxidoreductase (ADR) and adrenodoxin (ADX) are the two proteins involved in electron transport to mammalian mitochondrial P-450s capable of steroid modifications. The cloning and sequencing of a S. cervisiae ADR homologue (YADR) is presented here. The YADR protein sequence shares 36 and 37% of identical amino acids with human and bovine ADR respectively. The physiological role of this ADR homologue in yeast is unknown. We intend to study the interaction of this YADR with bovine ADX in vitro and in vivo. PMID:8890749

  10. Finding of a highly efficient ZFN pair for Aqpep gene functioning in murine zygotes

    PubMed Central

    FUJII, Wataru; ONUMA, Asuka; YOSHIOKA, Shin; NAGASHIMA, Keisuke; SUGIURA, Koji; NAITO, Kunihiko

    2015-01-01

    The generation efficiencies of mutation-induced mice when using engineered zinc-finger nucleases (ZFNs) have been generally 10 to 20% of obtained pups in previous studies. The discovery of high-affinity DNA-binding modules can contribute to the generation of various kinds of novel artificial chromatin-targeting tools, such as zinc-finger acetyltransferases, zinc-finger histone kinases and so on, as well as improvement of reported zinc-finger recombinases and zinc-finger methyltransferases. Here, we report a novel ZFN pair that has a highly efficient mutation-induction ability in murine zygotes. The ZFN pair induced mutations in all obtained mice in the target locus, exon 17 of aminopeptidase Q gene, and almost all of the pups had biallelic mutations. This high efficiency was also shown in the plasmid DNA transfected in a cultured human cell line. The induced mutations were inherited normally in the next generation. The zinc-finger modules of this ZFN pair are expected to contribute to the development of novel ZF-attached chromatin-targeting tools. PMID:26460691

  11. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes.

    PubMed

    Dowen, Jill M; Fan, Zi Peng; Hnisz, Denes; Ren, Gang; Abraham, Brian J; Zhang, Lyndon N; Weintraub, Abraham S; Schuijers, Jurian; Lee, Tong Ihn; Zhao, Keji; Young, Richard A

    2014-10-01

    The pluripotent state of embryonic stem cells (ESCs) is produced by active transcription of genes that control cell identity and repression of genes encoding lineage-specifying developmental regulators. Here, we use ESC cohesin ChIA-PET data to identify the local chromosomal structures at both active and repressed genes across the genome. The results produce a map of enhancer-promoter interactions and reveal that super-enhancer-driven genes generally occur within chromosome structures that are formed by the looping of two interacting CTCF sites co-occupied by cohesin. These looped structures form insulated neighborhoods whose integrity is important for proper expression of local genes. We also find that repressed genes encoding lineage-specifying developmental regulators occur within insulated neighborhoods. These results provide insights into the relationship between transcriptional control of cell identity genes and control of local chromosome structure. PMID:25303531

  12. Codon pairs of the HIV-1 vif gene correlate with CD4+ T cell count

    PubMed Central

    2013-01-01

    Background The human APOBEC3G (A3G) protein activity is associated with innate immunity against HIV-1 by inducing high rates of guanosines to adenosines (G-to-A) mutations (viz., hypermutation) in the viral DNA. If hypermutation is not enough to disrupt the reading frames of viral genes, it may likely increase the HIV-1 diversity. To counteract host innate immunity HIV-1 encodes the Vif protein that binds A3G protein and form complexes to be degraded by cellular proteolysis. Methods Here we studied the pattern of substitutions in the vif gene and its association with clinical status of HIV-1 infected individuals. To perform the study, unique vif gene sequences were generated from 400 antiretroviral-naïve individuals. Results The codon pairs: 78–154, 85–154, 101–157, 105–157, and 105–176 of vif gene were associated with CD4+ T cell count lower than 500 cells per mm3. Some of these codons were located in the 81LGQGVSIEW89 region and within the BC-Box. We also identified codons under positive selection clustered in the N-terminal region of Vif protein, between 21WKSLVK26 and 40YRHHY44 regions (i.e., 31, 33, 37, 39), within the BC-Box (i.e., 155, 159) and the Cullin5-Box (i.e., 168) of vif gene. All these regions are involved in the Vif-induced degradation of A3G/F complexes and the N-terminal of Vif protein binds to viral and cellular RNA. Conclusions Adaptive evolution of vif gene was mostly to optimize viral RNA binding and A3G/F recognition. Additionally, since there is not a fully resolved structure of the Vif protein, codon pairs associated with CD4+ T cell count may elucidate key regions that interact with host cell factors. Here we identified and discriminated codons under positive selection and codons under functional constraint in the vif gene of HIV-1. PMID:23578255

  13. Topoisomerase II Inhibitors Can Enhance Baculovirus-Mediated Gene Expression in Mammalian Cells through the DNA Damage Response.

    PubMed

    Liu, Ming-Kun; Lin, Jhe-Jhih; Chen, Chung-Yung; Kuo, Szu-Cheng; Wang, Yu-Ming; Chan, Hong-Lin; Wu, Tzong Yuan

    2016-01-01

    BacMam is an insect-derived recombinant baculovirus that can deliver genes into mammalian cells. BacMam vectors carrying target genes are able to enter a variety of cell lines by endocytosis, but the level of expression of the transgene depends on the cell line and the state of the transduced cells. In this study, we demonstrated that the DNA damage response (DDR) could act as an alternative pathway to boost the transgene(s) expression by BacMam and be comparable to the inhibitors of histone deacetylase. Topoisomerase II (Top II) inhibitor-induced DDR can enhance the CMV-IE/enhancer mediated gene expression up to 12-fold in BacMam-transduced U-2OS cells. The combination of a Top II inhibitor, VM-26, can also augment the killing efficiency of a p53-expressing BacMam vector in U-2OS osteosarcoma cells. These results open a new avenue to facilitate the application of BacMam for gene delivery and therapy. PMID:27314325

  14. Identification of Core Alpha 1,3-Fucosyltransferase Gene From Silkworm: An Insect Popularly Used to Express Mammalian Proteins

    PubMed Central

    Minagawa, Sachi; Sekiguchi, Satoshi; Nakaso, Yuzuru; Tomita, Masahiro; Takahisa, Manabu; Yasuda, Hideyo

    2015-01-01

    Silkworm has great potential as production system of recombinant mammalian proteins. When the protein products are used for medical purpose, it is required to reduce the risk of an allergy, the content of core alpha 1,3-fucosyl residue attached to the N-glycan of proteins, for example. We isolated the gene of an enzyme responsible for the transfer of core alpha 1,3-fucosyl residue, core alpha 1,3-fucosyltransferase (Fuc-T C3), from silkworm. A candidate cDNA for silkworm Fuc-T C3 was isolated as a homolog of the fruit fly enzyme gene fucTA. The gene was located on chromosome 7 of the silkworm genome and was composed of seven exons, which spanned approximately 10 kb on the genome. The coding region of the gene was 1,350 bp and encoded a 450-amino acid protein with a molecular mass of 52.2 kDa. Deduced amino acid sequence of the coding region showed one transmembrane domain in its N-terminal and typical motifs common to fucosyltransferases including Fuc-T C3s of other organisms in its C-terminal. The extract of CHO cells transfected with the cDNA showed Fuc-T C3 activity using GDP-fucose and DABS-GnGn peptide as substrates. These results showed this cDNA clone actually encodes silkworm Fuc-T C3. PMID:26223947

  15. Topoisomerase II Inhibitors Can Enhance Baculovirus-Mediated Gene Expression in Mammalian Cells through the DNA Damage Response

    PubMed Central

    Liu, Ming-Kun; Lin, Jhe-Jhih; Chen, Chung-Yung; Kuo, Szu-Cheng; Wang, Yu-Ming; Chan, Hong-Lin; Wu, Tzong Yuan

    2016-01-01

    BacMam is an insect-derived recombinant baculovirus that can deliver genes into mammalian cells. BacMam vectors carrying target genes are able to enter a variety of cell lines by endocytosis, but the level of expression of the transgene depends on the cell line and the state of the transduced cells. In this study, we demonstrated that the DNA damage response (DDR) could act as an alternative pathway to boost the transgene(s) expression by BacMam and be comparable to the inhibitors of histone deacetylase. Topoisomerase II (Top II) inhibitor-induced DDR can enhance the CMV-IE/enhancer mediated gene expression up to 12-fold in BacMam-transduced U-2OS cells. The combination of a Top II inhibitor, VM-26, can also augment the killing efficiency of a p53-expressing BacMam vector in U-2OS osteosarcoma cells. These results open a new avenue to facilitate the application of BacMam for gene delivery and therapy. PMID:27314325

  16. A modified procedure for replica plating of mammalian cells allowing selection of clones based on gene expression.

    PubMed

    Hornsby, P J; Yang, L; Lala, D S; Cheng, C Y; Salmons, B

    1992-02-01

    The polyester cloth replica-plating technique for selection of mammalian cell clones was modified by growing cells in colonies on a flexible polytetrafluoroethylene membrane and then transferring them completely to polyester cloth (27-microns mesh), from which a replica was made by allowing cells to transfer to a cloth of smaller pore size (17-microns mesh). Using this technique, two phenotype selection methods are demonstrated here: in situ hybridization for detection of a specific mRNA and a photographic film assay for detection of luciferase expression. Cells were transfected with pSV2AL-A delta 5' in which firefly luciferase cDNA is under the control of the simian virus 40 promoter. The luciferase assay was adapted for colonies on polyester cloth; cells were permeabilized with digitonin to allow access of ATP and luciferin to the cell without disruption of colonies. Clones selected for expression or nonexpression of luciferase by the photographic film assay were positive or negative for expression after isolation from the cloth replica and subsequent growth under conventional culture conditions. The replica-plating procedure described here should be generally applicable to most mammalian cell types. The ability to produce replicas of colonies, combined with in situ hybridization or assays that can be adapted to in situ detection, provides phenotype selection for clones based on gene expression independent of growth characteristics. PMID:1616718

  17. Uterine Gene Expression in the Live-Bearing Lizard, Chalcides ocellatus, Reveals Convergence of Squamate Reptile and Mammalian Pregnancy Mechanisms

    PubMed Central

    Brandley, Matthew C.; Young, Rebecca L.; Warren, Dan L.; Thompson, Michael B.; Wagner, Günter P.

    2012-01-01

    Although the morphological and physiological changes involved in pregnancy in live-bearing reptiles are well studied, the genetic mechanisms that underlie these changes are not known. We used the viviparous African Ocellated Skink, Chalcides ocellatus, as a model to identify a near complete gene expression profile associated with pregnancy using RNA-Seq analyses of uterine transcriptomes. Pregnancy in C. ocellatus is associated with upregulation of uterine genes involved with metabolism, cell proliferation and death, and cellular transport. Moreover, there are clear parallels between the genetic processes associated with pregnancy in mammals and Chalcides in expression of genes related to tissue remodeling, angiogenesis, immune system regulation, and nutrient provisioning to the embryo. In particular, the pregnant uterine transcriptome is dominated by expression of proteolytic enzymes that we speculate are involved both with remodeling the chorioallantoic placenta and histotrophy in the omphaloplacenta. Elements of the maternal innate immune system are downregulated in the pregnant uterus, indicating a potential mechanism to avoid rejection of the embryo. We found a downregulation of major histocompatability complex loci and estrogen and progesterone receptors in the pregnant uterus. This pattern is similar to mammals but cannot be explained by the mammalian model. The latter finding provides evidence that pregnancy is controlled by different endocrinological mechanisms in mammals and reptiles. Finally, 88% of the identified genes are expressed in both the pregnant and the nonpregnant uterus, and thus, morphological and physiological changes associated with C. ocellatus pregnancy are likely a result of regulation of genes continually expressed in the uterus rather than the initiation of expression of unique genes. PMID:22333490

  18. Two highly homologous ribonuclease genes expressed in mouse eosinophils identify a larger subgroup of the mammalian ribonuclease superfamily.

    PubMed Central

    Larson, K A; Olson, E V; Madden, B J; Gleich, G J; Lee, N A; Lee, J J

    1996-01-01

    Two putative ribonucleases have been isolated from the secondary granules of mouse eosinophils. Degenerate oligonucleotide primers inferred from peptide sequence data were used in reverse transcriptase-PCR reactions of bone marrow-derived cDNA. The resulting PCR product was used to screen a C57BL/6J bone marrow cDNA library, and comparisons of representative clones showed that these genes and encoded proteins are highly homologous (96% identity at the nucleotide level; 92/94% identical/similar at the amino acid level). The mouse proteins are only weakly homologous (approximately 50% amino acid identity) with the human eosinophil-associated ribonucleases (i.e., eosinophil-derived neurotoxin and eosinophil cationic protein) and show no sequence bias toward either human protein. Phylogenetic analyses established that the human and mouse loci shared an ancestral gene, but that independent duplication events have occurred since the divergence of primates and rodents. The duplication event generating the mouse genes was estimated to have occurred < 5 x 10(6) years ago (versus 30 to 40 x 10(6) years ago in primates). The identification of independent duplication events in two extant mammalian orders suggests a selective advantage to having multiple eosinophil granule ribonucleases. Southern blot analyses in the mouse demonstrated the existence of three additional highly homologous genes (i.e., five genes total) as well as several more divergent family members. The potential significance of this observation is the implication of a larger gene subfamily in primates (i.e., humans). Images Fig. 3 Fig. 5 PMID:8901588

  19. Mammalian non-classical major histocompatibility complex I and its receptors: Important contexts of gene, evolution, and immunity

    PubMed Central

    Pratheek, B. M.; Nayak, Tapas K.; Sahoo, Subhransu S.; Mohanty, Prafulla K.; Chattopadhyay, Soma; Chakraborty, Ntiya G.; Chattopadhyay, Subhasis

    2014-01-01

    The evolutionary conserved, less-polymorphic, nonclassical major histocompatibility complex (MHC) class I molecules: Qa-1 and its human homologue human leukocyte antigen-E (HLA-E) along with HLA-F, G and H cross-talk with the T-cell receptors and also interact with natural killer T-cells and other lymphocytes. Moreover, these nonclassical MHC molecules are known to interact with CD94/NKG2 heterodimeric receptors to induce immune responses and immune regulations. This dual role of Qa-1/HLA-E in terms of innate and adaptive immunity makes them more interesting. This review highlights the new updates of the mammalian nonclassical MHC-I molecules in terms of their gene organization, evolutionary perspective and their role in immunity. PMID:25400340

  20. Silencing of a metaphase I-specific gene results in a phenotype similar to that of the Pairing homeologous 1 (Ph1) gene mutations.

    PubMed

    Bhullar, Ramanjot; Nagarajan, Ragupathi; Bennypaul, Harvinder; Sidhu, Gaganpreet K; Sidhu, Gaganjot; Rustgi, Sachin; von Wettstein, Diter; Gill, Kulvinder S

    2014-09-30

    Although studied extensively since 1958, the molecular mode of action of the Pairing homeologous 1 (Ph1) gene is still unknown. In polyploid wheat, the diploid-like chromosome pairing is principally controlled by the Ph1 gene via preventing homeologous chromosome pairing (HECP). Here, we report a candidate Ph1 gene (C-Ph1) present in the Ph1 locus, transient as well as stable silencing of which resulted in a phenotype characteristic of the Ph1 gene mutants, including HECP, multivalent formation, and disrupted chromosome alignment on the metaphase I (MI) plate. Despite a highly conserved DNA sequence, the C-Ph1 gene homeologues showed a dramatically different structure and expression pattern, with only the 5B copy showing MI-specific expression, further supporting our claim for the Ph1 gene. In agreement with the previous reports about the Ph1 gene, the predicted protein of the 5A copy of the C-Ph1 gene is truncated, and thus perhaps less effective. The 5D copy is expressed around the onset of meiosis; thus, it may function during the earlier stages of chromosome pairing. Along with alternate splicing, the predicted protein of the 5B copy is different from the protein of the other two copies because of an insertion. These structural and expression differences among the homeologues concurred with the previous observations about Ph1 gene function. Stable RNAi silencing of the wheat gene in Arabidopsis showed multivalents and centromere clustering during meiosis I. PMID:25232038

  1. Silencing of a metaphase I-specific gene results in a phenotype similar to that of the Pairing homeologous 1 (Ph1) gene mutations

    PubMed Central

    Bhullar, Ramanjot; Nagarajan, Ragupathi; Bennypaul, Harvinder; Sidhu, Gaganpreet K.; Sidhu, Gaganjot; Rustgi, Sachin; von Wettstein, Diter; Gill, Kulvinder S.

    2014-01-01

    Although studied extensively since 1958, the molecular mode of action of the Pairing homeologous 1 (Ph1) gene is still unknown. In polyploid wheat, the diploid-like chromosome pairing is principally controlled by the Ph1 gene via preventing homeologous chromosome pairing (HECP). Here, we report a candidate Ph1 gene (C-Ph1) present in the Ph1 locus, transient as well as stable silencing of which resulted in a phenotype characteristic of the Ph1 gene mutants, including HECP, multivalent formation, and disrupted chromosome alignment on the metaphase I (MI) plate. Despite a highly conserved DNA sequence, the C-Ph1 gene homeologues showed a dramatically different structure and expression pattern, with only the 5B copy showing MI-specific expression, further supporting our claim for the Ph1 gene. In agreement with the previous reports about the Ph1 gene, the predicted protein of the 5A copy of the C-Ph1 gene is truncated, and thus perhaps less effective. The 5D copy is expressed around the onset of meiosis; thus, it may function during the earlier stages of chromosome pairing. Along with alternate splicing, the predicted protein of the 5B copy is different from the protein of the other two copies because of an insertion. These structural and expression differences among the homeologues concurred with the previous observations about Ph1 gene function. Stable RNAi silencing of the wheat gene in Arabidopsis showed multivalents and centromere clustering during meiosis I. PMID:25232038

  2. Reassortment compatibility between PB1, PB2, and HA genes of the two influenza B virus lineages in mammalian cells.

    PubMed

    Kim, Jin Il; Lee, Ilseob; Park, Sehee; Bae, Joon-Yong; Yoo, Kirim; Lemey, Philippe; Park, Mee Sook; Song, Jin-Won; Kee, Sun-Ho; Song, Ki-Joon; Park, Man-Seong

    2016-01-01

    In addition to influenza A subtypes, two distinct lineages of influenza B virus also cause seasonal epidemics to humans. Recently, Dudas et al. have done evolutionary analyses of reassortment patterns of the virus and suggested genetic lineage relationship between PB1, PB2, and HA genes. Using genetic plasmids and reassortant viruses, we here demonstrate that a homologous lineage PB1-PB2 pair exhibits better compatibility than a heterologous one and that the lineage relationship between PB1 and HA is more important for viral replication than that between PB2 and HA. However, co-adaptation of PB1-PB2-HA genes appears to be affected by complete gene constellation. PMID:27270757

  3. Reassortment compatibility between PB1, PB2, and HA genes of the two influenza B virus lineages in mammalian cells

    PubMed Central

    Kim, Jin Il; Lee, Ilseob; Park, Sehee; Bae, Joon-Yong; Yoo, Kirim; Lemey, Philippe; Park, Mee Sook; Song, Jin-Won; Kee, Sun-Ho; Song, Ki-Joon; Park, Man-Seong

    2016-01-01

    In addition to influenza A subtypes, two distinct lineages of influenza B virus also cause seasonal epidemics to humans. Recently, Dudas et al. have done evolutionary analyses of reassortment patterns of the virus and suggested genetic lineage relationship between PB1, PB2, and HA genes. Using genetic plasmids and reassortant viruses, we here demonstrate that a homologous lineage PB1-PB2 pair exhibits better compatibility than a heterologous one and that the lineage relationship between PB1 and HA is more important for viral replication than that between PB2 and HA. However, co-adaptation of PB1-PB2-HA genes appears to be affected by complete gene constellation. PMID:27270757

  4. Evaluation of an Hprt-Luciferase Reporter Gene on a Mammalian Artificial Chromosome in Response to Cytotoxicity

    PubMed Central

    Endo, Takeshi; Noda, Natsumi; Kuromi, Yasushi; Kokura, Kenji; Kazuki, Yasuhiro; Oshimura, Mitsuo; Ohbayashi, Tetsuya

    2016-01-01

    Background Hypoxanthine guanine phosphoribosyltransferase (Hprt) is known as a house-keeping gene, and has been used as an internal control for real-time quantitative RT-PCR and various other methods of gene expression analysis. To evaluate the Hprt mRNA levels as a reference standard, we engineered a luciferase reporter driven by a long Hprt promoter and measured its response to cytotoxicity. Methods We constructed a reporter vector that harbored a phiC31 integrase recognition site and a mouse Hprt promoter fused with green-emitting luciferase (SLG) coding sequence. The Hprt-SLG vector was loaded onto a mouse artificial chromosome containing a multi-integrase platform using phiC31 integrase in mouse A9 cells. We established three independent clones. Results The established cell lines had similar levels of expression of the Hprt-SLG reporter gene. Hprt-SLG activity increased proportionately under growth conditions and decreased under cytotoxic conditions after blasticidin or cisplatin administration. Similar increases and decreases in the SLG luminescent were observed under growth and cytotoxic conditions, respectively, to those in the fluorescent obtained using the commercially available reagent, alamarBlue. Conclusion By employing a reliable and stable expression system in a mammalian artificial chromosome, the activity of an Hprt-SLG reporter can reflect cell numbers under cell growth condition and cell viability in the evaluation of cytotoxic conditions. PMID:27493490

  5. Spatiotemporal regulation of GLI target genes in the mammalian limb bud.

    PubMed

    Lewandowski, Jordan P; Du, Fang; Zhang, Shilu; Powell, Marian B; Falkenstein, Kristin N; Ji, Hongkai; Vokes, Steven A

    2015-10-01

    GLI proteins convert Sonic hedgehog (Shh) signaling into a transcriptional output in a tissue-specific fashion. The Shh pathway has been extensively studied in the limb bud, where it helps regulate growth through a SHH-FGF feedback loop. However, the transcriptional response is still poorly understood. We addressed this by determining the gene expression patterns of approximately 200 candidate GLI-target genes and identified three discrete SHH-responsive expression domains. GLI-target genes expressed in the three domains are predominately regulated by derepression of GLI3 but have different temporal requirements for SHH. The GLI binding regions associated with these genes harbor both distinct and common DNA motifs. Given the potential for interaction between the SHH and FGF pathways, we also measured the response of GLI-target genes to inhibition of FGF signaling and found the majority were either unaffected or upregulated. These results provide the first characterization of the spatiotemporal response of a large group of GLI-target genes and lay the foundation for a systems-level understanding of the gene regulatory networks underlying SHH-mediated limb patterning. PMID:26238476

  6. microRNA-dependent Temporal Gene Expression in the Ureteric Bud Epithelium during Mammalian Kidney Development

    PubMed Central

    Nagalakshmi, Vidya K.; Lindner, Volkhard; Wessels, Andy; Yu, Jing

    2014-01-01

    Background Our previous study on mouse mutants with the ureteric bud (UB) epithelium-specific Dicer deletion (Dicer UB mutants) demonstrated the significance of UB epithelium-derived miRNAs in UB development. Results Our whole-genome transcriptional profiling showed that the Dicer mutant UB epithelium abnormally retained transcriptional features of the early UB epithelium and failed to express many genes associated with collecting duct differentiation. Further, we identified a temporal expression pattern of early UB genes during UB epithelium development in which gene expression was detected at early developmental stages and became undetectable by E14.5. In contrast, expression of early UB genes persisted at later stages in the Dicer mutant UB epithelium and increased at early stages. Our bioinformatics analysis of the abnormally persistently expressed early genes in the Dicer mutant UB epithelium showed significant enrichment of the let-7 family miRNA targets. We further identified a temporal expression pattern of let-7 miRNAs in the UB epithelium that is anti-parallel to that of some early UB genes during kidney development. Conclusions We propose a model in which the let-7 family miRNAs silence the expression of a subset of early genes in the UB epithelium at later developmental stages in order to promote collecting duct differentiation. PMID:25369991

  7. Molecular dissection of the roles of the SOD genes in mammalian response to low dose irradiation

    SciTech Connect

    Eric Y. Chuang

    2006-08-31

    It has been long recognized that a significant fraction of the radiation-induced genetic damage to cells are caused by secondary oxidative species. Internal cellular defense systems against oxidative stress play significant roles in countering genetic damage induced by ionizing radiation. The role of the detoxifying enzymes may be even more prominent in the case of low-dose, low-LET irradiation, as the majority of genetic damage may be caused by secondary oxidative species. In this study we have attempted to decipher the roles of the superoxide dismutase (SOD) genes, which are responsible for detoxifying the superoxide anions. We used adenovirus vectors to deliver RNA interference (RNAi or siRNA) technology to down-regulate the expression levels of the SOD genes. We have also over-expressed the SOD genes by use of recombinant adenovirus vectors. Cells infected with the vectors were then subjected to low dose γ-irradiation. Total RNA were extracted from the exposed cells and the expression of 9000 genes were profiled by use of cDNA microarrays. The result showed that low dose radiation had clear effects on gene expression in HCT116 cells. Both over-expression and down-regulation of the SOD1 gene can change the expression profiles of sub-groups of genes. Close to 200 of the 9000 genes examined showed over two-fold difference in expression under various conditions. Genes with changed expression pattern belong to many categories that include: early growth response, DNA-repair, ion transport, apoptosis, and cytokine response.

  8. Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport.

    PubMed

    Lytton, Jonathan

    2007-09-15

    Mammalian Na+/Ca2+ exchangers are members of three branches of a much larger family of transport proteins [the CaCA (Ca2+/cation antiporter) superfamily] whose main role is to provide control of Ca2+ flux across the plasma membranes or intracellular compartments. Since cytosolic levels of Ca2+ are much lower than those found extracellularly or in sequestered stores, the major function of Na+/Ca2+ exchangers is to extrude Ca2+ from the cytoplasm. The exchangers are, however, fully reversible and thus, under special conditions of subcellular localization and compartmentalized ion gradients, Na+/Ca2+ exchangers may allow Ca2+ entry and may play more specialized roles in Ca2+ movement between compartments. The NCX (Na+/Ca2+ exchanger) [SLC (solute carrier) 8] branch of Na+/Ca2+ exchangers comprises three members: NCX1 has been most extensively studied, and is broadly expressed with particular abundance in heart, brain and kidney, NCX2 is expressed in brain, and NCX3 is expressed in brain and skeletal muscle. The NCX proteins subserve a variety of roles, depending upon the site of expression. These include cardiac excitation-contraction coupling, neuronal signalling and Ca2+ reabsorption in the kidney. The NCKX (Na2+/Ca2+-K+ exchanger) (SLC24) branch of Na+/Ca2+ exchangers transport K+ and Ca2+ in exchange for Na+, and comprises five members: NCKX1 is expressed in retinal rod photoreceptors, NCKX2 is expressed in cone photoreceptors and in neurons throughout the brain, NCKX3 and NCKX4 are abundant in brain, but have a broader tissue distribution, and NCKX5 is expressed in skin, retinal epithelium and brain. The NCKX proteins probably play a particularly prominent role in regulating Ca2+ flux in environments which experience wide and frequent fluctuations in Na+ concentration. Until recently, the range of functions that NCKX proteins play was generally underappreciated. This situation is now changing rapidly as evidence emerges for roles including photoreceptor

  9. An update on targeted gene repair in mammalian cells: methods and mechanisms.

    PubMed

    Jensen, Nanna M; Dalsgaard, Trine; Jakobsen, Maria; Nielsen, Roni R; Sørensen, Charlotte B; Bolund, Lars; Jensen, Thomas G

    2011-01-01

    Transfer of full-length genes including regulatory elements has been the preferred gene therapy strategy for clinical applications. However, with significant drawbacks emerging, targeted gene alteration (TGA) has recently become a promising alternative to this method. By means of TGA, endogenous DNA repair pathways of the cell are activated leading to specific genetic correction of single-base mutations in the genome. This strategy can be implemented using single-stranded oligodeoxyribonucleotides (ssODNs), small DNA fragments (SDFs), triplex-forming oligonucleotides (TFOs), adeno-associated virus vectors (AAVs) and zinc-finger nucleases (ZFNs). Despite difficulties in the use of TGA, including lack of knowledge on the repair mechanisms stimulated by the individual methods, the field holds great promise for the future. The objective of this review is to summarize and evaluate the different methods that exist within this particular area of human gene therapy research. PMID:21284895

  10. An update on targeted gene repair in mammalian cells: methods and mechanisms

    PubMed Central

    2011-01-01

    Transfer of full-length genes including regulatory elements has been the preferred gene therapy strategy for clinical applications. However, with significant drawbacks emerging, targeted gene alteration (TGA) has recently become a promising alternative to this method. By means of TGA, endogenous DNA repair pathways of the cell are activated leading to specific genetic correction of single-base mutations in the genome. This strategy can be implemented using single-stranded oligodeoxyribonucleotides (ssODNs), small DNA fragments (SDFs), triplex-forming oligonucleotides (TFOs), adeno-associated virus vectors (AAVs) and zinc-finger nucleases (ZFNs). Despite difficulties in the use of TGA, including lack of knowledge on the repair mechanisms stimulated by the individual methods, the field holds great promise for the future. The objective of this review is to summarize and evaluate the different methods that exist within this particular area of human gene therapy research. PMID:21284895

  11. Analysis of mammalian gene function through broad based phenotypic screens across a consortium of mouse clinics

    PubMed Central

    Adams, David J; Adams, Niels C; Adler, Thure; Aguilar-Pimentel, Antonio; Ali-Hadji, Dalila; Amann, Gregory; André, Philippe; Atkins, Sarah; Auburtin, Aurelie; Ayadi, Abdel; Becker, Julien; Becker, Lore; Bedu, Elodie; Bekeredjian, Raffi; Birling, Marie-Christine; Blake, Andrew; Bottomley, Joanna; Bowl, Mike; Brault, Véronique; Busch, Dirk H; Bussell, James N; Calzada-Wack, Julia; Cater, Heather; Champy, Marie-France; Charles, Philippe; Chevalier, Claire; Chiani, Francesco; Codner, Gemma F; Combe, Roy; Cox, Roger; Dalloneau, Emilie; Dierich, André; Di Fenza, Armida; Doe, Brendan; Duchon, Arnaud; Eickelberg, Oliver; Esapa, Chris T; El Fertak, Lahcen; Feigel, Tanja; Emelyanova, Irina; Estabel, Jeanne; Favor, Jack; Flenniken, Ann; Gambadoro, Alessia; Garrett, Lilian; Gates, Hilary; Gerdin, Anna-Karin; Gkoutos, George; Greenaway, Simon; Glasl, Lisa; Goetz, Patrice; Da Cruz, Isabelle Goncalves; Götz, Alexander; Graw, Jochen; Guimond, Alain; Hans, Wolfgang; Hicks, Geoff; Hölter, Sabine M; Höfler, Heinz; Hancock, John M; Hoehndorf, Robert; Hough, Tertius; Houghton, Richard; Hurt, Anja; Ivandic, Boris; Jacobs, Hughes; Jacquot, Sylvie; Jones, Nora; Karp, Natasha A; Katus, Hugo A; Kitchen, Sharon; Klein-Rodewald, Tanja; Klingenspor, Martin; Klopstock, Thomas; Lalanne, Valerie; Leblanc, Sophie; Lengger, Christoph; le Marchand, Elise; Ludwig, Tonia; Lux, Aline; McKerlie, Colin; Maier, Holger; Mandel, Jean-Louis; Marschall, Susan; Mark, Manuel; Melvin, David G; Meziane, Hamid; Micklich, Kateryna; Mittelhauser, Christophe; Monassier, Laurent; Moulaert, David; Muller, Stéphanie; Naton, Beatrix; Neff, Frauke; Nolan, Patrick M; Nutter, Lauryl MJ; Ollert, Markus; Pavlovic, Guillaume; Pellegata, Natalia S; Peter, Emilie; Petit-Demoulière, Benoit; Pickard, Amanda; Podrini, Christine; Potter, Paul; Pouilly, Laurent; Puk, Oliver; Richardson, David; Rousseau, Stephane; Quintanilla-Fend, Leticia; Quwailid, Mohamed M; Racz, Ildiko; Rathkolb, Birgit; Riet, Fabrice; Rossant, Janet; Roux, Michel; Rozman, Jan; Ryder, Ed; Salisbury, Jennifer; Santos, Luis; Schäble, Karl-Heinz; Schiller, Evelyn; Schrewe, Anja; Schulz, Holger; Steinkamp, Ralf; Simon, Michelle; Stewart, Michelle; Stöger, Claudia; Stöger, Tobias; Sun, Minxuan; Sunter, David; Teboul, Lydia; Tilly, Isabelle; Tocchini-Valentini, Glauco P; Tost, Monica; Treise, Irina; Vasseur, Laurent; Velot, Emilie; Vogt-Weisenhorn, Daniela; Wagner, Christelle; Walling, Alison; Weber, Bruno; Wendling, Olivia; Westerberg, Henrik; Willershäuser, Monja; Wolf, Eckhard; Wolter, Anne; Wood, Joe; Wurst, Wolfgang; Yildirim, Ali Önder; Zeh, Ramona; Zimmer, Andreas; Zimprich, Annemarie

    2015-01-01

    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse ES cell knockout resource provides a basis for characterisation of relationships between gene and phenotype. The EUMODIC consortium developed and validated robust methodologies for broad-based phenotyping of knockouts through a pipeline comprising 20 disease-orientated platforms. We developed novel statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no prior functional annotation. We captured data from over 27,000 mice finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. Novel phenotypes were uncovered for many genes with unknown function providing a powerful basis for hypothesis generation and further investigation in diverse systems. PMID:26214591

  12. Expression of the Streptococcus mutans fructosyltransferase gene within a mammalian host.

    PubMed Central

    Grey, W T; Curtiss, R; Hudson, M C

    1997-01-01

    In vivo expression of the virulence-associated fructosyltransferase gene (ftf) of Streptococcus mutans has been examined. S. mutans ftf expression is affected by both the specific carbohydrate consumed and the age of the host animal. PMID:9169798

  13. The Transcriptomic Evolution of Mammalian Pregnancy: Gene Expression Innovations in Endometrial Stromal Fibroblasts.

    PubMed

    Kin, Koryu; Maziarz, Jamie; Chavan, Arun R; Kamat, Manasi; Vasudevan, Sreelakshmi; Birt, Alyssa; Emera, Deena; Lynch, Vincent J; Ott, Troy L; Pavlicev, Mihaela; Wagner, Günter P

    2016-01-01

    The endometrial stromal fibroblast (ESF) is a cell type present in the uterine lining of therian mammals. In the stem lineage of eutherian mammals, ESF acquired the ability to differentiate into decidual cells in order to allow embryo implantation. We call the latter cell type "neo-ESF" in contrast to "paleo-ESF" which is homologous to eutherian ESF but is not able to decidualize. In this study, we compare the transcriptomes of ESF from six therian species: Opossum (Monodelphis domestica; paleo-ESF), mink, rat, rabbit, human (all neo-ESF), and cow (secondarily nondecidualizing neo-ESF). We find evidence for strong stabilizing selection on transcriptome composition suggesting that the expression of approximately 5,600 genes is maintained by natural selection. The evolution of neo-ESF from paleo-ESF involved the following gene expression changes: Loss of expression of genes related to inflammation and immune response, lower expression of genes opposing tissue invasion, increased markers for proliferation as well as the recruitment of FOXM1, a key gene transiently expressed during decidualization. Signaling pathways also evolve rapidly and continue to evolve within eutherian lineages. In the bovine lineage, where invasiveness and decidualization were secondarily lost, we see a re-expression of genes found in opossum, most prominently WISP2, and a loss of gene expression related to angiogenesis. The data from this and previous studies support a scenario, where the proinflammatory paleo-ESF was reprogrammed to express anti-inflammatory genes in response to the inflammatory stimulus coming from the implanting conceptus and thus paving the way for extended, trans-cyclic gestation. PMID:27401177

  14. Efficient Gene Transfection into Mammalian Cells Mediated by Cross-linked Polyethylenimine

    PubMed Central

    Dong, Wei; Li, Shufeng; Jin, Guanghui; Sun, Qiming; Ma, Dingyuan; Hua, Zichun

    2007-01-01

    25 kDa branched polyethylenimine (PEI) has successfully been used for in vitro and in vivo gene delivery approaches, but it is cytotoxic. Smaller PEIs are usually non-cytotoxic but less efficient. In order to enhance the gene delivery efficiency and minimize cytotoxicity of PEI, we explored to synthesize cross-linked PEIs with degradable bonds by reacting amines of small branched 2000 Da PEI with small diacrylate (1,4-butanediol diacrylate or ethyleneglycol dimethacrylate) for 2–6 hours. The efficiency of the cross-linked PEIs during in vitro delivering plasmid containing enhanced green fluorescent protein (EGFP) gene reporter and their cytotoxicity were assessed in melanoma B16F10 cell and other cell lines. In vivo gene delivery efficiency was evaluated by direct injection delivery of the EGFP plasmid/cross-linked PEI complexes into mice and by estimating the EGFP expression in animal muscles. Compared to commercially available 25-kDa branched PEI, the cross-linked PEIs reported here could mediate more efficient expression of reporter gene than the 25-kDa PEI control, 19-fold more efficiently in B16F10 cells, 17-fold in 293T cells, 2.3-fold in 3T3 cells, and they exhibited essentially nontoxic at their optimized condition for gene delivery. Furthermore the transfection activity of polyplexs was preserved in the presence of serum proteins. The muscle transfected with the cross-linked PEI prepared here exhibited normal morphology and excellent gene expression. The cross-linked PEIs reported here were evidently more efficient than the commercial 25-kD PEI control and had less cytotoxicity in gene delivery in vitro and in vivo.

  15. The Transcriptomic Evolution of Mammalian Pregnancy: Gene Expression Innovations in Endometrial Stromal Fibroblasts

    PubMed Central

    Kin, Koryu; Maziarz, Jamie; Chavan, Arun R.; Kamat, Manasi; Vasudevan, Sreelakshmi; Birt, Alyssa; Emera, Deena; Lynch, Vincent J.; Ott, Troy L.; Pavlicev, Mihaela; Wagner, Günter P.

    2016-01-01

    The endometrial stromal fibroblast (ESF) is a cell type present in the uterine lining of therian mammals. In the stem lineage of eutherian mammals, ESF acquired the ability to differentiate into decidual cells in order to allow embryo implantation. We call the latter cell type “neo-ESF” in contrast to “paleo-ESF” which is homologous to eutherian ESF but is not able to decidualize. In this study, we compare the transcriptomes of ESF from six therian species: Opossum (Monodelphis domestica; paleo-ESF), mink, rat, rabbit, human (all neo-ESF), and cow (secondarily nondecidualizing neo-ESF). We find evidence for strong stabilizing selection on transcriptome composition suggesting that the expression of approximately 5,600 genes is maintained by natural selection. The evolution of neo-ESF from paleo-ESF involved the following gene expression changes: Loss of expression of genes related to inflammation and immune response, lower expression of genes opposing tissue invasion, increased markers for proliferation as well as the recruitment of FOXM1, a key gene transiently expressed during decidualization. Signaling pathways also evolve rapidly and continue to evolve within eutherian lineages. In the bovine lineage, where invasiveness and decidualization were secondarily lost, we see a re-expression of genes found in opossum, most prominently WISP2, and a loss of gene expression related to angiogenesis. The data from this and previous studies support a scenario, where the proinflammatory paleo-ESF was reprogrammed to express anti-inflammatory genes in response to the inflammatory stimulus coming from the implanting conceptus and thus paving the way for extended, trans-cyclic gestation. PMID:27401177

  16. Mammalian ets-1 and ets-2 genes encode highly conserved proteins

    SciTech Connect

    Watson, D.K.; McWilliams, M.J.; Lapis, P.; Lautenberger, J.A.; Schweinfest, C.W.; Papas, T.S. )

    1988-11-01

    Cellular ets sequences homologous to v-ets of the avian leukemia virus E26 are highly conserved. In mammals the ets sequences are dispersed on two separate chromosomal loci, called ets-1 and ets-2. To determine the structure of these two genes and identify the open reading frames that code for the putative proteins, the authors have sequenced human ets-1 cDNAs and ets-2 cDNA clones obtained from both human and mouse. The human ETS1 gene is capable of encoding a protein of 441 amino acids. This protein is >95% identical to the chicken c-ets-1 gene product. Thus, the human ETS1 gene is homologous to the chicken c-ets-1 gene, the protooncogene that the E26 virus transduced. Human and mouse ets-2 cDNA clones are closely related and contain open reading frames capable of encoding proteins of 469 and 468 residues, respectively. Direct comparison of these data with previously published finding indicates that ets is a family of genes whose members share distinct domains.

  17. Mammalian ets-1 and ets-2 genes encode highly conserved proteins.

    PubMed Central

    Watson, D K; McWilliams, M J; Lapis, P; Lautenberger, J A; Schweinfest, C W; Papas, T S

    1988-01-01

    Cellular ets sequences homologous to v-ets of the avian leukemia virus E26 are highly conserved. In mammals the ets sequences are dispersed on two separate chromosomal loci, called ets-1 and ets-2. To determine the structure of these two genes and identify the open reading frames that code for the putative proteins, we have sequenced human ets-1 cDNAs and ets-2 cDNA clones obtained from both human and mouse. The human ETS1 gene is capable of encoding a protein of 441 amino acids. This protein is greater than 95% identical to the chicken c-ets-1 gene product. Thus, the human ETS1 gene is homologous to the chicken c-ets-1 gene, the protooncogene that the E26 virus transduced. Human and mouse ets-2 cDNA clones are closely related and contain open reading frames capable of encoding proteins of 469 and 468 residues, respectively. Direct comparison of these data with previously published findings indicates that ets is a family of genes whose members share distinct domains. PMID:2847145

  18. Development of a Safeguard System Using an Episomal Mammalian Artificial Chromosome for Gene and Cell Therapy.

    PubMed

    Uno, Narumi; Uno, Katsuhiro; Komoto, Shinya; Suzuki, Teruhiko; Hiratsuka, Masaharu; Osaki, Mitsuhiko; Kazuki, Yasuhiro; Oshimura, Mitsuo

    2015-01-01

    The development of a safeguard system to remove tumorigenic cells would allow safer clinical applications of stem cells for the treatment of patients with an intractable disease including genetic disorders. Such safeguard systems should not disrupt the host genome and should have long-term stability. Here, we attempted to develop a tumor-suppressing mammalian artificial chromosome containing a safeguard system that uses the immune rejection system against allogeneic tissue from the host. For proof-of-concept of the safeguard system, B16F10 mouse melanoma cells expressing the introduced H2-K(d) major histocompatibility complex (MHC class I)-allogenic haplotype were transplanted into recipient C57BL/6J mice expressing MHC H2-K(b). Subcutaneous implantation of B16F10 cells into C57BL/6J mice resulted in high tumorigenicity. The volume of tumors derived from B16F10 cells expressing allogenic MHC H2-K(d) was decreased significantly (P < 0.01). Suppression of MHC H2-K(d)-expressing tumors in C57BL/6J mice was enhanced by immunization with MHC H2-K(d)-expressing splenocytes (P < 0.01). These results suggest that the safeguard system is capable of suppressing tumor formation by the transplanted cells. PMID:26670279

  19. Peroxisome biogenesis in mammalian cells: The impact of genes and environment.

    PubMed

    Farr, Rebecca L; Lismont, Celien; Terlecky, Stanley R; Fransen, Marc

    2016-05-01

    The initiation and progression of many human diseases are mediated by a complex interplay of genetic, epigenetic, and environmental factors. As all diseases begin with an imbalance at the cellular level, it is essential to understand how various types of molecular aberrations, metabolic changes, and environmental stressors function as switching points in essential communication networks. In recent years, peroxisomes have emerged as important intracellular hubs for redox-, lipid-, inflammatory-, and nucleic acid-mediated signaling pathways. In this review, we focus on how nature and nurture modulate peroxisome biogenesis and function in mammalian cells. First, we review emerging evidence that changes in peroxisome activity can be linked to the epigenetic regulation of cell function. Next, we outline how defects in peroxisome biogenesis may directly impact cellular pathways involved in the development of disease. In addition, we discuss how changes in the cellular microenvironment can modulate peroxisome biogenesis and function. Finally, given the importance of peroxisome function in multiple aspects of health, disease, and aging, we highlight the need for more research in this still understudied field. PMID:26305119

  20. Mutant gene phenotypes mediated by a Drosophila melanogaster retrotransposon require sequences homologous to mammalian enhancers.

    PubMed Central

    Geyer, P K; Green, M M; Corces, V G

    1988-01-01

    We have analyzed the molecular structure of phenotypic revertants of gypsy-induced mutations to understand the molecular mechanisms by which this retrotransposon causes mutant phenotypes in Drosophila melanogaster. The independent partial revertants analyzed are caused by the insertion of different transposons into the same region of gypsy. One partial revertant of the yellow allele y2 arose as a consequence of the insertion of the jockey mobile element into gypsy sequences, whereas a second incomplete revertant is due to the insertion of the hobo transposon. In addition, a previously isolated partial revertant of the Hairy-wing allele Hw1 resulted from the integration of the BS transposable element into the same gypsy sequences. The region affected by the insertion of the three transposons contains 12 copies of a repeated motif that shows striking homology to mammalian transcriptional enhancers. Our results suggest that these sequences, which might be involved in the transcriptional control of the gypsy element, are also responsible for the induction of mutant phenotypes by this retrotransposon. PMID:2847167

  1. Isolation, structure and expression of mammalian genes for histidyl-tRNA synthetase.

    PubMed Central

    Tsui, F W; Siminovitch, L

    1987-01-01

    A full length cDNA clone that codes for human histidyl-tRNA synthetase (HRS) and cDNA clones that span the full length transcript of hamster HRS have been isolated. The full length human HRS cDNA was expressed after transfection into Cos 1 cells and a CHO ts mutant defective in the gene for HRS. The complete nucleotide sequence of the hamster and human gene were obtained and extensive homologies were observed in three regions on comparing these sequences between themselves and with the sequence of HRS derived from yeast. These results provide unequivocal evidence that we have indeed cloned the hamster and human gene for HRS. Three overlapping phage recombinants containing the complete hamster chromosomal gene for HRS have also been isolated. The genomic HRS is divided into 13 exons. The precise locations of each of the 5' and 3' exon-intron boundaries were defined by sequencing the appropriate regions of the cloned genomic DNA and aligning them with the sequence of HRS cDNAs. These studies provide the basis for future structural and functional analysis of the gene for HRS. In particular, it will be of interest to examine if different exons of HRS correlate to different domains of the HRS polypeptide. Images PMID:3554142

  2. Identification and analysis of mammalian KLK6 orthologue genes for prediction of physiological substrates.

    PubMed

    Pampalakis, Georgios; Arampatzidou, Maria; Amoutzias, Grigoris; Kossida, Sofia; Sotiropoulou, Georgia

    2008-04-01

    Human kallikrein-related peptidase 6 (KLK6) is a novel serine protease that is aberrantly expressed in human cancers and represents a serum biomarker for the molecular diagnosis and monitoring of ovarian cancer. Here, we report the cloning and analysis of human kallikrein-related peptidase 6 gene (KLK6) orthologues in model organisms and farm animals. The corresponding full-length cDNAs were assembled from partial sequences retrieved from EST and genomic databases. Alignment of inferred protein sequences indicated a high degree of conservation of the encoded enzyme. We found that, similarly to (HUMAN)KLK6, monkey, cattle, mouse and rat orthologue genes encode for multiple transcript variants. This strengthens our previously published data showing that (HUMAN)KLK6 transcription is coordinately regulated by alternative promoters. Analysis of the KLK6 upstream genomic region led to the identification of multiple conserved regulatory regions with motifs for nuclear receptor transcription factors. Interestingly, we found that specific CpG dinucleotides in the proximal promoter, that were shown to regulate (HUMAN)KLK6 gene expression via DNA methylation, are conserved in orthologue genes, indicating epigenetic regulation of the KLK6 gene. Construction of a protein-protein interaction network indicated that KLK6 likely acts on the TGF-b1 signal transduction pathway to regulate certain cytoskeletal proteins, such as vimentin and keratin 8, thus, KLK6 may control cell shape that, in turn, regulates cell migration and motility. PMID:18243805

  3. Gene expression in mammalian cells after exposure to 95 MeV/amu argon ions

    NASA Astrophysics Data System (ADS)

    Arenz, Andrea; Hellweg, Christine E.; Meier, Matthias M.; Baumstark-Khan, Christa

    High LET radiations, such as heavy ions or neutrons, have an increased biological effectiveness compared to X-rays for gene mutation, genomic instability and carcinogenesis. Estimating the biological risks from space radiation encountered by cosmonauts will continue to influence long term duration in space, such as the planned mission to Mars. The human radiation responsive genes CDKN1A (p21/WAF), GADD45α (GADD45), GADD45β (MyD118), RRM2b (p53R2) and BRCA2 (FancD1), involved in cell cycle control or damage repair, were screened for gene expression changes in MCF-7 cells by quantitative real-time reverse transcription PCR (qRT-PCR) assay, using cDNA obtained from total RNA isolated at various time points after irradiation with accelerated doses of 36-argon ions and X-rays. Examination of the expression profiles 2 and 12 h after exposure reveals a pattern consistent with a population of cells in the early response to DNA damage and invoking cell stress responses. Interesting new data showing different expression patterns according to the gene and the type of ionizing radiation used could be obtained. Results show, that the signaling and repair activities induced after heavy ion or X-ray exposure are not the same and gene expression patterns may become useful indicators for distinguishing different types of radiation in relation to their biological effects.

  4. Expression of complete transplantation antigens by mammalian cells transformed with truncated class I genes.

    PubMed

    Goodenow, R S; Stroynowski, I; McMillan, M; Nicolson, M; Eakle, K; Sher, B T; Davidson, N; Hood, L

    1983-02-01

    Mouse L cells transformed with the cloned class I genes of the major histocompatibility complex of the mouse express transplantation antigens with serological determinants of the donor haplotype. However, transformation with the truncated subclones of a BALB/c H-2Ld gene containing the exons encoding the external domains also leads to the production of cells which express complete cell-surface molecules. Moreover, full-length products of the foreign haplotype, as judged by serological and biochemical criteria, are generated independently of the use of carrier DNA in transformation. However, the frequency of productive transformation is substantially less than that obtained with a complete gene. The most plausible explanation for these phenomena involves homologous recombination between host chromosomal and donor class I sequences. PMID:6823314

  5. Genes and Conditions Controlling Mammalian Pre- and Post-implantation Embryo Development

    PubMed Central

    Anifandis, G.; Messini, C.I.; Dafopoulos, K.; Messinis, I.E.

    2015-01-01

    Embryo quality during the in vitro developmental period is of great clinical importance. Experimental genetic studies during this period have demonstrated the association between specific gene expression profiles and the production of healthy blastocysts. Although the quality of the oocyte may play a major role in embryo development, it has been well established that the post – fertilization period also has an important and crucial role in the determination of blastocyst quality. A variety of genes (such as OCT, SOX2, NANOG) and their related signaling pathways as well as transcription molecules (such as TGF-β, BMP) have been implicated in the pre- and post-implantation period. Furthermore, DNA methylation has been lately characterized as an epigenetic mark since it is one of the most important processes involved in the maintenance of genome stability. Physiological embryo development appears to depend upon the correct DNA methylation pattern. Due to the fact that soon after fertilization the zygote undergoes several morphogenetic and developmental events including activation of embryonic genome through the transition of the maternal genome, a diverse gene expression pattern may lead to clinically important conditions, such as apoptosis or the production of a chromosomically abnormal embryo. The present review focused on genes and their role during pre-implantation embryo development, giving emphasis on the various parameters that may alter gene expression or DNA methylation patterns. The pre-implantation embryos derived from in vitro culture systems (in vitro fertilization) and the possible effects on gene expression after the prolonged culture conditions are also discussed. PMID:25937812

  6. Gene Expression in Mammalian Cells After Exposure to 95 MeV Argon Ions

    NASA Astrophysics Data System (ADS)

    Arenz, A.; Hellweg, C. E.; Baumstark-Khan, C.

    Cell response to genotoxic agents is complex and involves the participation of different classes of genes (DNA repair, cell cycle control, signal transduction, apoptosis and oncogenesis). The unique feature of the space radiation environment is the dominance of high-energy charged particles (HZE or high LET radiation) which present a significant hazard to space flight crews, and accelerator-based experiments are underway to quantify the health risks due to unavoidable radiation exposure. High linear energy transfer (LET) radiation has an increased relative biological effectiveness (RBE) as compared to X-rays for cell death induction, gene mutation, genomic instability, and carcinogenesis. The tumour suppressor gene p53 plays a crucial role in maintaining the integrity of the genome. The p53 protein acts as a transcription factor that mediates cell cycle arrest and apoptosis by binding to DNA and activating transcription of specific genes. It is also though to be involved in damage repair by transcriptional activation of the newly identified p53 dependent ribonuclease subunit R2 (p53R2) that is directly involved in the p53 cell cycle checkpoint for repair of damaged DNA. In that case it is responsible for nucleotide delivery for DNA repair synthesis. DNA damages of cultured human cells (e.g. MCF-7, AGS, A549) exposed to accelerated argon ions at the French heavy ion facility GANIL were analysed for expression levels of certain damage- and apoptosis-relevant genes. RNA was extracted from cells exposed to different particle fluences after various recovery times. A real-time QRT-PCR assay was applied, which employs both relative and absolute quantification of a candidate mRNA biomarker. The expressions of different DNA damage inducible genes (e.g. p53R2, GADD45, p21) were analysed. A reproducible up-regulation representing a twofold to fourfold change in p53R2 gene expression level was confirmed for X-irradiated and Ar-ion exposed cells dependent on dose. Kinetics of p

  7. Blocking the PI3K/AKT pathway enhances mammalian reovirus replication by repressing IFN-stimulated genes

    PubMed Central

    Tian, Jin; Zhang, Xiaozhan; Wu, Hongxia; Liu, Chunguo; Li, Zhijie; Hu, Xiaoliang; Su, Shuo; Wang, Lin-Fa; Qu, Liandong

    2015-01-01

    Many host cellular signaling pathways were activated and exploited by virus infection for more efficient replication. The PI3K/Akt pathway has recently attracted considerable interest due to its role in regulating virus replication. This study demonstrated for the first time that the mammalian reovirus strains Masked Palm Civet/China/2004 (MPC/04) and Bat/China/2003 (B/03) can induce transient activation of the PI3K/Akt pathway early in infection in vitro. When UV-treated, both viruses activated PI3K/Akt signaling, indicating that the virus/receptor interaction was sufficient to activate PI3K/Akt. Reovirus virions can use both clathrin- and caveolae-mediated endocytosis, but only chlorpromazine, a specific inhibitor of clathrin-mediated endocytosis, or siRNA targeting clathrin suppressed Akt phosphorylation. We also identified the upstream molecules of the PI3K pathway. Virus infection induced phosphorylation of focal adhesion kinase (FAK) but not Gab1, and blockage of FAK phosphorylation suppressed Akt phosphorylation. Blockage of PI3K/Akt activation increased virus RNA synthesis and viral yield. We also found that reovirus infection activated the IFN-stimulated response element (ISRE) in an interferon-independent manner and up-regulated IFN-stimulated genes (ISGs) via the PI3K/Akt/EMSY pathway. Suppression of PI3K/Akt activation impaired the induction of ISRE and down-regulated the expression of ISGs. Overexpression of ISG15 and Viperin inhibited virus replication, and knockdown of either enhanced virus replication. Collectively, these results demonstrate that PI3K/Akt activated by mammalian reovirus serves as a pathway for sensing and then inhibiting virus replication/infection. PMID:26388843

  8. Optimization of transient gene expression in mammalian cells and potential for scale-up using flow electroporation.

    PubMed

    Parham, J H; Iannone, M A; Overton, L K; Hutchins, J T

    1998-11-01

    The goals of this study were to identify mammalian cell lines which could be efficiently transiently-transfected and scaled-up for protein production. The transfection efficiencies of eight cell lines (NSO, NSO-TAg, CV-1, COS-7, CHO, CHO-TAg, HEK 293, and 293-EBNA) were measured using electroporation for DNA delivery and green fluorescent protein (Evans, 1996) as the reporter gene. In addition, we have evaluated the effects of stable expression of viral proteins, cell cycle manipulation, and butyrate post-treatment in small scale experiments. The cell lines varied widely in their GFP transfection efficiencies. Stable expression of simian virus 40 large T-antigen or Epstein Barr nuclear antigen failed to significantly increase transfection efficiency above that seen in the parental lines. Aphidicolin (a DNA polymerase inhibitor), which blocked cells from S or G2/M, brought about an increase in transfection efficiency in two cell lines. The primary effect of butyrate (a histone deacetylase inhibitor) post-treatment was an increased intensity of the fluorescent signal of green fluorescent protein, as measured by flow cytometry (1.0 to 4.2-fold, depending on the cell line). The combined use of aphidicolin pretreatment followed by butyrate treatment post- electroporation yielded increases in fluorescence intensities ranging from 0.9 to 6.8-fold. Based on their high transfection efficiencies in small scale experiments, rapid growth, and ability to grow in suspension culture, CHO, CHO-TAg, and 293-EBNA were selected to assess the feasibility of using flow electroporation for large-scale transfections. Using secreted placental alkaline phosphatase as a reporter, 293-EBNA cells produced the highest protein levels in both the presence and absence of butyrate. These data indicate that flow electroporation provides an efficient method of DNA delivery into large numbers of cells for mammalian protein production. PMID:19003416

  9. The genomic organization of the region containing the Drosophila melanogaster rpL7a (Surf-3) gene differs from those of the mammalian and avian Surfeit loci.

    PubMed Central

    Armes, N; Fried, M

    1995-01-01

    The Surf-3 gene of the unusually tight mouse Surfeit locus gene cluster has been identified as the highly conserved ribosomal protein gene L7a (rpL7a). The topography and juxtaposition of the Surfeit locus genes are conserved for the 600 million years of divergent evolution between mammals and birds. This suggests cis interaction and/or coregulation of the genes and suggests that, within this locus, gene organization plays an important role in gene expression. The further evolutionary conservation of the organization of the Surfeit locus was investigated. A cDNA encoding the Drosophila melanogaster homolog of the Surf-3/rpL7a gene was cloned, was shown to be present as a single copy, and was expressed constitutively at high levels throughout development. Genomic cosmid clones encompassing the gene and its surrounding DNA were isolated. The gene was determined to have five introns, of which two were located in the 5' untranslated region of the gene. The remaining three introns had splice sites at positions equivalent to those found in the Surf-3/rpL7a mammalian homologs. S1 analysis and 5' rapid amplification of cDNA ends both confirmed the start of transcription to occur in a polypyrimidine tract in the absence of a TATA box in the promoter. The genomic region around the Surf-3/rpL7a gene was analyzed by low-stringency hybridization with murine Surfeit gene probes, by partial sequence analysis, and by hybridization of fragments to Northern (RNA) blots. No homologs of other members of the Surfeit gene cluster were detected in close proximity to the D. melanogaster Surf-3/rpL7a gene. However, a gene which was detected directly 3' to the Surf-3/rpL7a gene was shown to encode a homolog of a mammalian serine-pyruvate aminotransferase. PMID:7739520

  10. Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus

    PubMed Central

    Foley, Nicholas C.; Tong, Tina Y.; Foley, Duncan; LeSauter, Joseph; Welsh, David K.

    2012-01-01

    Because we can observe oscillation within individual cells and in the tissue as a whole, the suprachiasmatic nucleus (SCN) presents a unique system in the mammalian brain for the analysis of individual cells and the networks of which they are a part. While dispersed cells of the SCN sustain circadian oscillations in isolation, they are unstable oscillators that require network interactions for robust cycling. Using cluster analysis to assess bioluminescence in acute brain slices from PERIOD2∷Luciferase (PER2∷LUC) knockin mice, and immunochemistry of SCN from animals harvested at various circadian times, we assessed the spatiotemporal activation patterns of PER2 to explore the emergence of a coherent oscillation at the tissue level. The results indicate that circadian oscillation is characterized by a stable daily cycle of PER2 expression involving orderly serial activation of specific SCN subregions, followed by a silent interval, with substantial symmetry between the left and right side of the SCN. The biological significance of the clusters identified in living slices was confirmed by co-expression of LUC and PER2 in fixed, immunochemically stained brain sections, with the spatiotemporal pattern of LUC expression resembling that revealed in the cluster analysis of bioluminescent slices. We conclude that the precise timing of PER2 expression within individual neurons is dependent on their location within the nucleus, and that small groups of neurons within the SCN give rise to distinctive and identifiable subregions. We propose that serial activation of these subregions is the basis of robustness and resilience of the daily rhythm of the SCN. PMID:21488990

  11. Effect of intron A from human cytomegalovirus (Towne) immediate-early gene on heterologous expression in mammalian cells.

    PubMed Central

    Chapman, B S; Thayer, R M; Vincent, K A; Haigwood, N L

    1991-01-01

    A 2.4 kb fragment of hCMV (Towne strain), containing the 5' end of the major immediate-early gene, has been cloned, sequenced, and used to construct a series of mammalian cell expression plasmids. The effects of regulatory regions present on this fragment were assessed using human glycoproteins as reporter molecules. We compared secreted levels of Factor VIII, t-PA, and HIV-1 envelope glycoproteins in cells transfected with plasmids in which intron A of the immediate-early gene was present or absent. Secretion of several glycoproteins was significantly higher when cells were transfected with intron A-containing plasmids. Mutation of three basepairs in the strong nuclear factor 1 (NF1) binding site in intron A led to reduced transient expression levels, but not to the level observed in the absence of intron A. Reduced expression from NF1 mutant plasmids was roughly correlated with reduced binding in vitro of NF1 proteins to a synthetic oligonucleotide containing the mutation. The evidence indicates that sequences in intron A positively regulate expression from the hCMV immediate-early enhancer/promoter in transformed monkey kidney cells. Images PMID:1650459

  12. Distinct patterns of gene-specific methylation in mammalian placentas: implications for placental evolution and function.

    PubMed

    Ng, H K; Novakovic, B; Hiendleder, S; Craig, J M; Roberts, C T; Saffery, R

    2010-04-01

    The placenta has arisen relatively recently and is among the most rapidly evolving tissues in mammals. Several different placental barrier and structure types appear to have independently evolved common functional features. Specific patterns of gene expression that determine placental development in humans are predicted to be accompanied by specific profiles of epigenetic modification. However, the stratification of epigenetic modifications into those involved in conserved aspects of placental function, versus those involved in divergent placental features, has yet to begin. As a first step towards this goal, we have investigated the methylation status of a small number of gene-specific methylation events recently identified in human placenta, in a panel of placental tissue from baboon, marmoset, cow, cat, guinea pig and mouse. These represent disparate placental barrier types and structures. In this study we hypothesized that specific epigenetic markings may be associated with placental barrier type or function, independent of phylogeny. However, in contrast to our predictions, the majority of gene-specific methylation appears to track with phylogeny, independent of placental barrier type or other structural features. This suggests that despite the likelihood of epigenetic modification playing a role in the functioning and evolution of different placental subtypes, there is no evidence for an involvement of the gene-specific methylation profiles we have identified, in specifying these differences. Further studies, examining larger numbers of epigenetic modifications across phylogeny, are required to define the role of specific epigenetic modifications in the evolution of distinct placental structures. PMID:20167366

  13. Airway Epithelial Cells are the Site of Expression of a Mammalian Antimicrobial Peptide Gene

    NASA Astrophysics Data System (ADS)

    Diamond, Gill; Jones, Douglas E.; Bevins, Charles L.

    1993-05-01

    We previously reported the isolation and characterization of a broad-spectrum antimicrobial peptide from the bovine tracheal mucosa, which we called tracheal antimicrobial peptide (TAP). We now show the TAP gene is expressed throughout the adult conducting airway, from nasal to bronchiolar tissue, but not in tissues other than airway mucosa, as determined by Northern blot analysis. In situ hybridization of airway sections localizes TAP mRNA to columnar cells of the pseudostratified epithelium. We report the structural organization of the TAP gene and show that TAP is a member of a large family of related sequences with high nucleotide identity in the 5'exon. The data support the hypothesis that antimicrobial peptides contribute to host defense of the respiratory tract.

  14. Chromosomal localization of the chicken and mammalian orthologues of the orphan phosphatase PHOSPHO1 gene.

    PubMed

    Houston, B; Paton, I R; Burt, D W; Farquharson, C

    2002-12-01

    PHOSPHO1 is a recently identified phosphatase expressed at high levels in the chicken growth plate and which may be involved in generating inorganic phosphate for skeletal matrix mineralization. Using a degenerate RT-PCR approach a fragment of human PHOSPHO1 was cloned. This enabled the identification of the human orthologue on HSA17q21, and the mouse orthologue on a region of MMU11 that exhibits conservation of synteny with HSA17q21. Chicken PHOSPHO1 was mapped by SSCP analysis to position 44 cM on GGA27, adjacent to the HOXB@ (44 cM) and COL1A1 (36 cM) loci. Comparison of genes on GGA27 with their orthologues on the preliminary draft of the human genome identifies regions of conserved synteny equivalent to 25 Mb on HSA17q21.2-23.3 and approximately 20 Mb on GGA27 in which the gene order appears to be conserved. Mapping of the PHOSPHO1 genes to regions of HSA17q21.3, MMU11 and GGA27 that exhibit conservation of synteny provides strong evidence that they are orthologous. PMID:12464021

  15. In vivo analysis of developmentally and evolutionarily dynamic protein-DNA interactions regulating transcription of the Pgk2 gene during mammalian spermatogenesis.

    PubMed

    Yoshioka, Hirotaka; Geyer, Christopher B; Hornecker, Jacey L; Patel, Krishan T; McCarrey, John R

    2007-11-01

    Transcription of the testis-specific Pgk2 gene is selectively activated in primary spermatocytes to provide a source of phosphoglycerate kinase that is critical to normal motility and fertility of mammalian spermatozoa. We examined dynamic changes in protein-DNA interactions at the Pgk2 gene promoter during murine spermatogenesis in vivo by performing genomic footprinting and chromatin immunoprecipitation assays with enriched populations of murine spermatogenic cells at stages prior to, during, and following transcription of this gene. We found that genes encoding the testis-specific homeodomain factor PBX4 and its coactivator, PREP1, are expressed in patterns that mirror expression of the Pgk2 gene and that these factors become bound to the Pgk2 enhancer in cells in which this gene is actively expressed. We therefore suggest that these factors, along with CREM and SP3, direct stage- and cell type-specific transcription of the Pgk2 gene during spermatogenesis. We propose that binding of PBX4, plus its coactivator PREP1, is a rate-limiting step leading to the initiation of tissue-specific transcription of the Pgk2 gene. This study provides insight into the developmentally dynamic establishment of tissue-specific protein-DNA interactions in vivo. It also allows us to speculate about the events that led to tissue-specific regulation of the Pgk2 gene during mammalian evolution. PMID:17875925

  16. Identification and expression analysis of the zebrafish orthologues of the mammalian MAP1LC3 gene family.

    PubMed

    Ganesan, Swamynathan; Moussavi Nik, Seyyed Hani; Newman, Morgan; Lardelli, Michael

    2014-10-15

    Autophagy is the principle pathway within cells involved in clearing damaged proteins and organelles. Therefore autophagy is necessary to maintain the turnover balance of peptides and homoeostasis. Autophagy occurs at basal levels under normal conditions but can be upregulated by chemical inducers or stress conditions. The zebrafish (Danio rerio) serves as a versatile tool to understand the functions of genes implicated in autophagy. We report the identification of the zebrafish orthologues of mammalian genes MAP1LC3A (map1lc3a) and MAP1LC3B (map1lc3b) by phylogenetic and conserved synteny analysis and we examine their expression during embryonic development. The zebrafish map1lc3a and map1lc3b genes both show maternally contributed transcripts in early embryogenesis. However, levels of map1lc3a transcript steadily increase until at least 120h post-fertilisation while the levels of map1lc3b show a more variable pattern across developmental time. We have also validated the LC3I ratio/LC3I immunoblot autophagy assay in the presence of chloroquine (a lysosomal proteolysis inhibitor). We found that the LC3II/LC3I ratio is significantly increased in the presence of sodium azide with chloroquine supporting that hypoxia induces autophagy in zebrafish. This was supported by our qPCR assay that showed increased map1lc3a transcript levels in the presence of sodium azide. In contrast, levels of map1lc3b transcripts were reduced in the presence of rapamycin but the decrease in the presence of sodium azide did not reach statistical significance. Our study supports the use of zebrafish for analysing the interplay between hypoxia, development and autophagy. PMID:25051050

  17. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9

    PubMed Central

    Li, Jinhuan; Shou, Jia; Guo, Ya; Tang, Yuanxiao; Wu, Yonghu; Jia, Zhilian; Zhai, Yanan; Chen, Zhifeng; Xu, Quan; Wu, Qiang

    2015-01-01

    The human genome contains millions of DNA regulatory elements and a large number of gene clusters, most of which have not been tested experimentally. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) programed with a synthetic single-guide RNA (sgRNA) emerges as a method for genome editing in virtually any organisms. Here we report that targeted DNA fragment inversions and duplications could easily be achieved in human and mouse genomes by CRISPR with two sgRNAs. Specifically, we found that, in cultured human cells and mice, efficient precise inversions of DNA fragments ranging in size from a few tens of bp to hundreds of kb could be generated. In addition, DNA fragment duplications and deletions could also be generated by CRISPR through trans-allelic recombination between the Cas9-induced double-strand breaks (DSBs) on two homologous chromosomes (chromatids). Moreover, junctions of combinatorial inversions and duplications of the protocadherin (Pcdh) gene clusters induced by Cas9 with four sgRNAs could be detected. In mice, we obtained founders with alleles of precise inversions, duplications, and deletions of DNA fragments of variable sizes by CRISPR. Interestingly, we found that very efficient inversions were mediated by microhomology-mediated end joining (MMEJ) through short inverted repeats. We showed for the first time that DNA fragment inversions could be transmitted through germlines in mice. Finally, we applied this CRISPR method to a regulatory element of the Pcdhα cluster and found a new role in the regulation of members of the Pcdhγ cluster. This simple and efficient method should be useful in manipulating mammalian genomes to study millions of regulatory DNA elements as well as vast numbers of gene clusters. PMID:25757625

  18. Comparisons of mammalian Giardia duodenalis assemblages based on the β-giardin, glutamate dehydrogenase and triose phosphate isomerase genes.

    PubMed

    Scorza, Andrea V; Ballweber, Lora R; Tangtrongsup, Sahatchai; Panuska, Carla; Lappin, Michael R

    2012-10-26

    The objective of this study was to determine and compare the assemblages of Giardia duodenalis isolated from mammalian fecal samples using the β-giardin (bg), glutamate dehydrogenase (gdh) and triosephosphate isomerase (tpi) genes. A total of 202 samples, either submitted to the Veterinary Diagnostic Laboratory (Parasitology) at Colorado State University or part of ongoing research studies, were typed. A subset of 50 dog samples were also assessed by the tpi-D-specific primers. Of these, 183 were from dogs, 13 were from cats, two were from llamas, and one each was from a calf, an alpaca, a sheep, and a horse. The majority of the dogs (171 of 183 isolates) in this study were infected with only dog-adapted Assemblage C or D. The tpi-D-specific primers confirmed that 28 of the samples that typed as Assemblage D by the bg and gdh genes were also Assemblage D by the tpi-D-specific primers. Only 12 isolates were Assemblage A alone or Assemblage A and Assemblage C or D. Of the 13 cat isolates, seven were Assemblage F, two were Assemblage D, three were Assemblage A and 1 contained both Assemblages C and D. The calf isolate was Assemblage E (gdh, tpi) and the alpaca (bg, gdh), llamas (gdh), sheep (bg, gdh, tpi) and horse (tpi) isolates were all Assemblage A. When the assemblage could be determined for more than one gene, 91 of 117 dog isolates gave consistent results and 8 of 9 cat isolates gave consistent results. PMID:22652427

  19. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9.

    PubMed

    Li, Jinhuan; Shou, Jia; Guo, Ya; Tang, Yuanxiao; Wu, Yonghu; Jia, Zhilian; Zhai, Yanan; Chen, Zhifeng; Xu, Quan; Wu, Qiang

    2015-08-01

    The human genome contains millions of DNA regulatory elements and a large number of gene clusters, most of which have not been tested experimentally. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) programed with a synthetic single-guide RNA (sgRNA) emerges as a method for genome editing in virtually any organisms. Here we report that targeted DNA fragment inversions and duplications could easily be achieved in human and mouse genomes by CRISPR with two sgRNAs. Specifically, we found that, in cultured human cells and mice, efficient precise inversions of DNA fragments ranging in size from a few tens of bp to hundreds of kb could be generated. In addition, DNA fragment duplications and deletions could also be generated by CRISPR through trans-allelic recombination between the Cas9-induced double-strand breaks (DSBs) on two homologous chromosomes (chromatids). Moreover, junctions of combinatorial inversions and duplications of the protocadherin (Pcdh) gene clusters induced by Cas9 with four sgRNAs could be detected. In mice, we obtained founders with alleles of precise inversions, duplications, and deletions of DNA fragments of variable sizes by CRISPR. Interestingly, we found that very efficient inversions were mediated by microhomology-mediated end joining (MMEJ) through short inverted repeats. We showed for the first time that DNA fragment inversions could be transmitted through germlines in mice. Finally, we applied this CRISPR method to a regulatory element of the Pcdhα cluster and found a new role in the regulation of members of the Pcdhγ cluster. This simple and efficient method should be useful in manipulating mammalian genomes to study millions of regulatory DNA elements as well as vast numbers of gene clusters. PMID:25757625

  20. Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans

    PubMed Central

    Walum, Hasse; Westberg, Lars; Henningsson, Susanne; Neiderhiser, Jenae M.; Reiss, David; Igl, Wilmar; Ganiban, Jody M.; Spotts, Erica L.; Pedersen, Nancy L.; Eriksson, Elias; Lichtenstein, Paul

    2008-01-01

    Pair-bonding has been suggested to be a critical factor in the evolutionary development of the social brain. The brain neuropeptide arginine vasopressin (AVP) exerts an important influence on pair-bonding behavior in voles. There is a strong association between a polymorphic repeat sequence in the 5′ flanking region of the gene (avpr1a) encoding one of the AVP receptor subtypes (V1aR), and proneness for monogamous behavior in males of this species. It is not yet known whether similar mechanisms are important also for human pair-bonding. Here, we report an association between one of the human AVPR1A repeat polymorphisms (RS3) and traits reflecting pair-bonding behavior in men, including partner bonding, perceived marital problems, and marital status, and show that the RS3 genotype of the males also affects marital quality as perceived by their spouses. These results suggest an association between a single gene and pair-bonding behavior in humans, and indicate that the well characterized influence of AVP on pair-bonding in voles may be of relevance also for humans. PMID:18765804

  1. A semi-supervised approach to extract pharmacogenomics-specific drug-gene pairs from biomedical literature for personalized medicine.

    PubMed

    Xu, Rong; Wang, Quanqiu

    2013-08-01

    Personalized medicine is to deliver the right drug to the right patient in the right dose. Pharmacogenomics (PGx) is to identify genetic variants that may affect drug efficacy and toxicity. The availability of a comprehensive and accurate PGx-specific drug-gene relationship knowledge base is important for personalized medicine. However, building a large-scale PGx-specific drug-gene knowledge base is a difficult task. In this study, we developed a bootstrapping, semi-supervised learning approach to iteratively extract and rank drug-gene pairs according to their relevance to drug pharmacogenomics. Starting with a single PGx-specific seed pair and 20 million MEDLINE abstracts, the extraction algorithm achieved a precision of 0.219, recall of 0.368 and F1 of 0.274 after two iterations, a significant improvement over the results of using non-PGx-specific seeds (precision: 0.011, recall: 0.018, and F1: 0.014) or co-occurrence (precision: 0.015, recall: 1.000, and F1: 0.030). After the extraction step, the ranking algorithm further improved the precision from 0.219 to 0.561 for top ranked pairs. By comparing to a dictionary-based approach with PGx-specific gene lexicon as input, we showed that the bootstrapping approach has better performance in terms of both precision and F1 (precision: 0.251 vs. 0.152, recall: 0.396 vs. 0.856 and F1: 0.292 vs. 0.254). By integrative analysis using a large drug adverse event database, we have shown that the extracted drug-gene pairs strongly correlate with drug adverse events. In conclusion, we developed a novel semi-supervised bootstrapping approach for effective PGx-specific drug-gene pair extraction from large number of MEDLINE articles with minimal human input. PMID:23570835

  2. The evolving role of the orphan nuclear receptor ftz-f1, a pair-rule segmentation gene.

    PubMed

    Heffer, Alison; Grubbs, Nathaniel; Mahaffey, James; Pick, Leslie

    2013-01-01

    Segmentation is a critical developmental process that occurs by different mechanisms in diverse taxa. In insects, there are three common modes of embryogenesis-short-, intermediate-, and long-germ development-which differ in the number of segments specified at the blastoderm stage. While genes involved in segmentation have been extensively studied in the long-germ insect Drosophila melanogaster (Dm), it has been found that their expression and function in segmentation in short- and intermediate-germ insects often differ. Drosophila ftz-f1 encodes an orphan nuclear receptor that functions as a maternally expressed pair-rule segmentation gene, responsible for the formation of alternate body segments during Drosophila embryogenesis. Here we investigated the expression and function of ftz-f1 in the short-germ beetle, Tribolium castaneum (Tc). We found that Tc-ftz-f1 is expressed in stripes in Tribolium embryos. These stripes overlap alternate Tc-Engrailed (Tc-En) stripes, indicative of a pair-rule expression pattern. To test whether Tc-ftz-f1 has pair-rule function, we utilized embryonic RNAi, injecting double-stranded RNA corresponding to Tc-ftz-f1 coding or non-coding regions into early Tribolium embryos. Knockdown of Tc-ftz-f1 produced pair-rule segmentation defects, evidenced by loss of expression of alternate En stripes. In addition, a later role for Tc-ftz-f1 in cuticle formation was revealed. These results identify a new pair-rule gene in Tribolium and suggest that its role in segmentation may be shared among holometabolous insects. Interestingly, while Tc-ftz-f1 is expressed in pair-rule stripes, the gene is ubiquitously expressed in Drosophila embryos. Thus, the pair-rule function of ftz-f1 is conserved despite differences in expression patterns of ftz-f1 genes in different lineages. This suggests that ftz-f1 expression changed after the divergence of lineages leading to extant beetles and flies, likely due to differences in cis-regulatory sequences. We

  3. A cytoplasmic pathway for gapmer antisense oligonucleotide-mediated gene silencing in mammalian cells

    PubMed Central

    Castanotto, Daniela; Lin, Min; Kowolik, Claudia; Wang, LiAnn; Ren, Xiao-Qin; Soifer, Harris S.; Koch, Troels; Hansen, Bo Rode; Oerum, Henrik; Armstrong, Brian; Wang, Zhigang; Bauer, Paul; Rossi, John; Stein, C.A.

    2015-01-01

    Antisense oligonucleotides (ASOs) are known to trigger mRNA degradation in the nucleus via an RNase H-dependent mechanism. We have now identified a putative cytoplasmic mechanism through which ASO gapmers silence their targets when transfected or delivered gymnotically (i.e. in the absence of any transfection reagent). We have shown that the ASO gapmers can interact with the Ago-2 PAZ domain and can localize into GW-182 mRNA-degradation bodies (GW-bodies). The degradation products of the targeted mRNA, however, are not generated by Ago-2-directed cleavage. The apparent identification of a cytoplasmic pathway complements the previously known nuclear activity of ASOs and concurrently suggests that nuclear localization is not an absolute requirement for gene silencing. PMID:26433227

  4. Mammalian Septins Nomenclature

    PubMed Central

    Macara, Ian G.; Baldarelli, Richard; Field, Christine M.; Glotzer, Michael; Hayashi, Yasuhide; Hsu, Shu-Chan; Kennedy, Mary B.; Kinoshita, Makoto; Longtine, Mark; Low, Claudia; Maltais, Lois J.; McKenzie, Louise; Mitchison, Timothy J.; Nishikawa, Toru; Noda, Makoto; Petty, Elizabeth M.; Peifer, Mark; Pringle, John R.; Robinson, Phillip J.; Roth, Dagmar; Russell, S.E. Hilary; Stuhlmann, Heidi; Tanaka, Manami; Tanaka, Tomoo; Trimble, William S.; Ware, Jerry; Zeleznik-Le, Nancy J.; Zieger, Barbara

    2002-01-01

    There are 10 known mammalian septin genes, some of which produce multiple splice variants. The current nomenclature for the genes and gene products is very confusing, with several different names having been given to the same gene product and distinct names given to splice variants of the same gene. Moreover, some names are based on those of yeast or Drosophila septins that are not the closest homologues. Therefore, we suggest that the mammalian septin field adopt a common nomenclature system, based on that adopted by the Mouse Genomic Nomenclature Committee and accepted by the Human Genome Organization Gene Nomenclature Committee. The human and mouse septin genes will be named SEPT1–SEPT10 and Sept1–Sept10, respectively. Splice variants will be designated by an underscore followed by a lowercase “v” and a number, e.g., SEPT4_v1. PMID:12475938

  5. Circadian organization of the mammalian retina: from gene regulation to physiology and diseases.

    PubMed

    McMahon, Douglas G; Iuvone, P Michael; Tosini, Gianluca

    2014-03-01

    The retinal circadian system represents a unique structure. It contains a complete circadian system and thus the retina represents an ideal model to study fundamental questions of how neural circadian systems are organized and what signaling pathways are used to maintain synchrony of the different structures in the system. In addition, several studies have shown that multiple sites within the retina are capable of generating circadian oscillations. The strength of circadian clock gene expression and the emphasis of rhythmic expression are divergent across vertebrate retinas, with photoreceptors as the primary locus of rhythm generation in amphibians, while in mammals clock activity is most robust in the inner nuclear layer. Melatonin and dopamine serve as signaling molecules to entrain circadian rhythms in the retina and also in other ocular structures. Recent studies have also suggested GABA as an important component of the system that regulates retinal circadian rhythms. These transmitter-driven influences on clock molecules apparently reinforce the autonomous transcription-translation cycling of clock genes. The molecular organization of the retinal clock is similar to what has been reported for the SCN although inter-neural communication among retinal neurons that form the circadian network is apparently weaker than those present in the SCN, and it is more sensitive to genetic disruption than the central brain clock. The melatonin-dopamine system is the signaling pathway that allows the retinal circadian clock to reconfigure retinal circuits to enhance light-adapted cone-mediated visual function during the day and dark-adapted rod-mediated visual signaling at night. Additionally, the retinal circadian clock also controls circadian rhythms in disk shedding and phagocytosis, and possibly intraocular pressure. Emerging experimental data also indicate that circadian clock is also implicated in the pathogenesis of eye disease and compelling experimental data

  6. Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses.

    PubMed

    Trojnar, Eva; Sachsenröder, Jana; Twardziok, Sven; Reetz, Jochen; Otto, Peter H; Johne, Reimar

    2013-01-01

    Group A rotaviruses (RVAs) are an important cause of diarrhoeal illness in humans, as well as in mammalian and avian animal species. Previous sequence analyses indicated that avian RVAs are related only distantly to mammalian RVAs. Here, the complete genomes of RVA strain 03V0002E10 from turkey (Meleagris gallopavo) and RVA strain 10V0112H5 from pheasant (Phasianus colchicus) were analysed using a combination of 454 deep sequencing and Sanger sequencing technologies. An adenine-rich insertion similar to that found in the chicken RVA strain 02V0002G3, but considerably shorter, was found in the 3' NCR of the NSP1 gene of the pheasant strain. Most genome segments of both strains were related closely to those of avian RVAs. The novel genotype N10 was assigned to the NSP2 gene of the pheasant RVA, which is related most closely to genotype N6 found in avian RVAs. However, this virus contains a VP4 gene of the novel genotype P[37], which is related most closely to RVAs from pigs, dogs and humans. This strain either may represent an avian/mammalian rotavirus reassortant, or it carries an unusual avian rotavirus VP4 gene, thereby broadening the potential genetic and antigenic variability among RVAs. PMID:23052396

  7. Gene-Chemical Interactions in the Developing Mammalian Nervous System: Effects on Proliferation, Neurogenesis and Differentiation

    PubMed Central

    Fox, Donald A.; Opanashuk, Lisa; Zharkovsky, Aleksander; Weiss, Bernie

    2010-01-01

    The orderly formation of the nervous system requires a multitude of complex, integrated and simultaneously occurring processes. Neural progenitor cells expand through proliferation, commit to different cell fates, exit the cell cycle, generate different neuronal and glial cell types, and new neurons migrate to specified areas and establish synaptic connections. Gestational and perinatal exposure to environmental toxicants, pharmacological agents and drugs of abuse produce immediate, persistent or late-onset alterations in behavioral, cognitive, sensory and/or motor functions. These alterations reflect the disruption of the underlying processes of CNS formation and development. To determine the neurotoxic mechanisms that underlie these deficits it is necessary to analyze and dissect the complex molecular processes that occur during the proliferation, neurogenesis and differentiation of cells. This symposium will provide a framework for understanding the orchestrated events of neurogenesis, the coordination of proliferation and cell fate specification by selected genes, and the effects of well-known neurotoxicants on neurogenesis in the retina, hippocampus and cerebellum. These three tissues share common developmental profiles, mediate diverse neuronal activities and function, and thus provide important substrates for analysis. This paper summarizes four invited talks that were presented at the 12th International Neurotoxicology Association meeting held in Jerusalem, Israel during the summer of 2009. Donald A. Fox described the structural and functional alterations following low-level gestational lead exposure in children and rodents that produced a supernormal electroretinogram and selective increases in neurogenesis and cell proliferation of late-born retinal neurons (rod photoreceptors and bipolar cells), but not Müller glia cells, in mice. Lisa Opanashuk discussed how dioxin [TCDD] binding to the arylhydrocarbon receptor [AhR], a transcription factor that

  8. End-targeting proteomics of isolated chromatin segments of a mammalian ribosomal RNA gene promoter

    PubMed Central

    Ide, Satoru; Dejardin, Jerome

    2015-01-01

    The unbiased identification of proteins associated with specific loci is crucial for understanding chromatin-based processes. The proteomics of isolated chromatin fragment (PICh) method has previously been developed to purify telomeres and identify associated proteins. This approach is based on the affinity capture of endogenous chromatin segments by hybridization with oligonucleotide containing locked nucleic acids. However, PICh is only efficient with highly abundant genomic targets, limiting its applicability. Here we develop an approach for identifying factors bound to the promoter region of the ribosomal RNA genes that we call end-targeting PICh (ePICh). Using ePICh, we could specifically enrich the RNA polymerase I pre-initiation complex, including the selectivity factor 1. The high purity of the ePICh material allowed the identification of ZFP106, a novel factor regulating transcription initiation by targeting RNA polymerase I to the promoter. Our results demonstrate that ePICh can uncover novel proteins controlling endogenous regulatory elements in mammals. PMID:25812914

  9. End-targeting proteomics of isolated chromatin segments of a mammalian ribosomal RNA gene promoter.

    PubMed

    Ide, Satoru; Dejardin, Jerome

    2015-01-01

    The unbiased identification of proteins associated with specific loci is crucial for understanding chromatin-based processes. The proteomics of isolated chromatin fragment (PICh) method has previously been developed to purify telomeres and identify associated proteins. This approach is based on the affinity capture of endogenous chromatin segments by hybridization with oligonucleotide containing locked nucleic acids. However, PICh is only efficient with highly abundant genomic targets, limiting its applicability. Here we develop an approach for identifying factors bound to the promoter region of the ribosomal RNA genes that we call end-targeting PICh (ePICh). Using ePICh, we could specifically enrich the RNA polymerase I pre-initiation complex, including the selectivity factor 1. The high purity of the ePICh material allowed the identification of ZFP106, a novel factor regulating transcription initiation by targeting RNA polymerase I to the promoter. Our results demonstrate that ePICh can uncover novel proteins controlling endogenous regulatory elements in mammals. PMID:25812914

  10. Comparative study of polyethylenimines for transient gene expression in mammalian HEK293 and CHO cells.

    PubMed

    Delafosse, Laurence; Xu, Ping; Durocher, Yves

    2016-06-10

    Three commercially available linear polyethylenimines (25kDa LPEI, 40kDa PEI"Max" and PEIpro™) were compared regarding their potency to transfect serum-free growing and suspension-adapted HEK293 and CHO cells. We determined the optimal DNA:PEI ratios for maximal expression of the reporter gene SEAP while monitoring cytotoxicity following transfection. PEIs acylation was determined by (1)H NMR and their apparent size and polydispersity assessed by size-exclusion chromatography. The propensity of PEIs to condense plasmid DNA was evaluated by agarose-gel electrophoresis. The zeta potentials and particle sizes at optimal DNA:PEI ratio were analyzed. Polyplex attachment to the cells and internalization kinetics were monitored. The quantity of PEIpro™ needed to efficiently transfect the cells was significantly lower than with LPEI and PEI"Max" and, interestingly, the maximal amount of internalized PEIpro™-based polyplexes was approximately half of that observed with its counterparts. PEIpro™ was the largest and least polydisperse polymer, but also the most cytotoxic. The optimal transfection conditions were subsequently used to express three monoclonal antibodies at larger-scale. The use of the deacylated PEI"Max" and PEIpro™ resulted in a significant increase of recombinant protein expression compared to LPEI. These findings demonstrate the importance of properly choosing the most suitable polymers to obtain optimal recombinant protein transient expression. PMID:27085888

  11. The molecular basis of multiple vector insertion by gene targeting in mammalian cells.

    PubMed Central

    Ng, P; Baker, M D

    1999-01-01

    Gene targeting using sequence insertion vectors generally results in integration of one copy of the targeting vector generating a tandem duplication of the cognate chromosomal region of homology. However, occasionally the target locus is found to contain >1 copy of the integrated vector. The mechanism by which the latter recombinants arise is not known. In the present study, we investigated the molecular basis by which multiple vectors become integrated at the chromosomal immunoglobulin mu locus in a murine hybridoma. To accomplish this, specially designed insertion vectors were constructed that included six diagnostic restriction enzyme markers in the Cmu region of homology to the target chromosomal mu locus. This enabled contributions by the vector-borne and chromosomal Cmu sequences at the recombinant locus to be ascertained. Targeted recombinants were isolated and analyzed to determine the number of vector copies integrated at the chromosomal immunoglobulin mu locus. Targeted recombinants identified as bearing >1 copy of the integrated vector resulted from a Cmu triplication formed by two vector copies in tandem. Examination of the fate of the Cmu region markers suggested that this class of recombinant was generated predominantly, if not exclusively, by two targeted vector integration events, each involving insertion of a single copy of the vector. Both vector insertion events into the chromosomal mu locus were consistent with the double-strand-break repair mechanism of homologous recombination. We interpret our results, taken together, to mean that a proportion of recipient cells is in a predetermined state that is amenable to targeted but not random vector integration. PMID:10049930

  12. Regulatory elements of the EKLF gene that direct erythroid cell-specific expression during mammalian development.

    PubMed

    Xue, Li; Chen, Xiaoyong; Chang, Yanjie; Bieker, James J

    2004-06-01

    Erythroid Krüppel-like factor (EKLF) plays an essential role in enabling beta-globin expression during erythroid ontogeny. It is first expressed in the extraembryonic mesoderm of the yolk sac within the morphologically unique cells that give rise to the blood islands, and then later within the hepatic primordia. The BMP4/Smad pathway plays a critical role in the induction of EKLF, and transient transfection analyses demonstrate that sequences located within less than 1 kb of its transcription initiation site are sufficient for high-level erythroid-specific transcription. We have used transgenic analyses to verify that 950 bp located adjacent to the EKLF start site of transcription is sufficient to generate lacZ expression within the blood islands as well as the fetal liver during embryonic development. Of particular importance are 3 regions, 2 of which overlap endogenous erythroid-specific DNase hypersensitive sites, and 1 of which includes the proximal promoter region. The onset of transgene expression mimics that of endogenous EKLF as it begins by day 7.5 (d7.5) to d8.0. In addition, it exhibits a strict hematopoietic specificity, localized only to these cells and not to the adjacent vasculature at all stages examined. Finally, expression is heterocellular, implying that although these elements are sufficient for tissue-specific expression, they do not shield against the position effects of adjacent chromatin. These analyses demonstrate that a surprisingly small DNA segment contains all the information needed to target a linked gene to the hematopoietic compartment at both early and later stages of development, and may be a useful cassette for this purpose. PMID:14764531

  13. Yeast ribosomal proteins: XIII. Saccharomyces cerevisiae YL8A gene, interrupted with two introns, encodes a homolog of mammalian L7.

    PubMed Central

    Mizuta, K; Hashimoto, T; Otaka, E

    1992-01-01

    We isolated and sequenced a gene, YL8A, encoding ribosomal protein YL8 of Saccharomyces cerevisiae. It is one of the two duplicated genes encoding YL8 and is located on chromosome VII while the other is on chromosome XVI. The haploid strains carrying disrupted YL8A grew more slowly than the parent strain. The open reading frame is interrupted with two introns. The predicted amino acid sequence reveals that yeast YL8 is a homolog of mammalian ribosomal protein L7, E.coli L30 and others. Images PMID:1549461

  14. Methods for detecting interactions between imprinted genes and environmental exposures using birth cohort designs with mother-offspring pairs.

    PubMed

    Wang, Shuang; Yu, Zhaoxia; Miller, Rachel L; Tang, Deliang; Perera, Frederica P

    2011-01-01

    Genomic imprinting is a form of epigenetic regulation in mammals in which the same allele of a gene is expressed differently depending on the parental origin of the allele. Traditionally, the detection of imprinted genes that affect complex diseases has been focused on linkage designs with pedigrees or case-parent designs with case-parent trios. In the past two decades, the birth cohort design with mother-offspring pairs has been applied to understand better the effect of environmental influences during pregnancy and beginning of life on the growth and development of children. No work has been done on the detection of imprinted genes using birth cohort designs. Moreover, although the importance of imprinting has been well recognized, no study has looked at how environmental exposures modify the effects of imprinted genes. In this study, we show that the proposed imprinting test using the birth cohort design with mother-offspring pairs is an efficient test for testing the interactions between imprinted genes and environmental exposures. Through extensive simulation studies and a real data application, the proposed imprinting test has demonstrated much improved power in detecting gene-environment interactions than that of a test assuming the Mendelian dominant model when the true underlying genetic model is imprinting. PMID:21778739

  15. Connectivity of vertebrate genomes: Paired-related homeobox (Prrx) genes in spotted gar, basal teleosts, and tetrapods□

    PubMed Central

    Braasch, Ingo; Guiguen, Yann; Loker, Ryan; Letaw, John H.; Ferrara, Allyse; Bobe, Julien; Postlethwait, John H.

    2014-01-01

    Teleost fish are important models for human biology, health, and disease. Because genome duplication in a teleost ancestor (TGD) impacts the evolution of teleost genome structure and gene repertoires, we must discriminate gene functions that are shared and ancestral from those that are lineage-specific in teleosts or tetrapods to accurately apply inferences from teleost disease models to human health. Generalizations must account both for the TGD and for divergent evolution between teleosts and tetrapods after the likely two rounds of genome duplication shared by all vertebrates. Progress in sequencing techniques provides new opportunities to generate genomic and transcriptomic information from a broad range of phylogenetically informative taxa that facilitate detailed understanding of gene family and gene function evolution. We illustrate here the use of new sequence resources from spotted gar (Lepisosteus oculatus), a rayfin fish that diverged from teleosts before the TGD, as well as RNA-Seq data from gar and multiple teleost lineages to reconstruct the evolution of the Paired-related homeobox (Prrx) transcription factor gene family, which is involved in the development of mesoderm and neural crest-derived mesenchyme. We show that for Prrx genes, the spotted gar genome and gene expression patterns mimic mammals better than teleosts do. Analyses force the seemingly paradoxical conclusion that regulatory mechanisms for the limb expression domains of Prrx genes existed before the evolution of paired appendages. Detailed evolutionary analyses like those reported here are required to identify fish species most similar to the human genome to optimally connect fish models to human gene functions in health and disease. PMID:24486528

  16. Focusing on RISC assembly in mammalian cells

    SciTech Connect

    Hong Junmei; Wei Na; Chalk, Alistair; Wang Jue; Song, Yutong; Yi Fan; Qiao Renping; Sonnhammer, Erik L.L.; Wahlestedt, Claes; Liang Zicai Du, Quan

    2008-04-11

    RISC (RNA-induced silencing complex) is a central protein complex in RNAi, into which a siRNA strand is assembled to become effective in gene silencing. By using an in vitro RNAi reaction based on Drosophila embryo extract, an asymmetric model was recently proposed for RISC assembly of siRNA strands, suggesting that the strand that is more loosely paired at its 5' end is selectively assembled into RISC and results in target gene silencing. However, in the present study, we were unable to establish such a correlation in cell-based RNAi assays, as well as in large-scale RNAi data analyses. This suggests that the thermodynamic stability of siRNA is not a major determinant of gene silencing in mammalian cells. Further studies on fork siRNAs showed that mismatch at the 5' end of the siRNA sense strand decreased RISC assembly of the antisense strand, but surprisingly did not increase RISC assembly of the sense strand. More interestingly, measurements of melting temperature showed that the terminal stability of fork siRNAs correlated with the positions of the mismatches, but not gene silencing efficacy. In summary, our data demonstrate that there is no definite correlation between siRNA stability and gene silencing in mammalian cells, which suggests that instead of thermodynamic stability, other features of the siRNA duplex contribute to RISC assembly in RNAi.

  17. Adjacent Gene Pairing Plays a Role in the Coordinated Expression of Ribosome Biogenesis Genes MPP10 and YJR003C in Saccharomyces cerevisiae ▿

    PubMed Central

    Arnone, James T.; McAlear, Michael A.

    2011-01-01

    The rRNA and ribosome biogenesis (RRB) regulon from Saccharomyces cerevisiae contains some 200 genes, the expression of which is tightly regulated under changing cellular conditions. RRB gene promoters are enriched for the RRPE and PAC consensus motifs, and a significant fraction of RRB genes are found as adjacent gene pairs. A genetic analysis of the MPP10 promoter revealed that both the RRPE and PAC motifs are important for coordinated expression of MPP10 following heat shock, osmotic stress, and glucose replenishment. The association of the RRPE binding factor Stb3 with the MPP10 promoter was found to increase after glucose replenishment and to decrease following heat shock. Similarly, bulk histone H3 clearing and histone H4K12 acetylation levels at the MPP10 promoter were found to increase or decrease following glucose replenishment or heat shock, respectively. Interestingly, substitutions in the PAC and RRPE sequences at the MPP10 promoter were also found to impact the regulated expression of the adjacent RRB gene YJR003, whose promoter lies in the opposite orientation and some 3.8 kb away. Furthermore, the regulated expression of YJR003C could be disrupted by inserting a reporter cassette that increased its distance from MPP10. Given that a high incidence of gene pairing was also found within the ribosomal protein (RP) and RRB regulons across different yeast species, our results indicate that immediately adjacent positioning of genes can be functionally significant for their coregulated expression. PMID:21115740

  18. Paired-End Sequencing of Long-Range DNA Fragments for De Novo Assembly of Large, Complex Mammalian Genomes by Direct Intra-Molecule Ligation

    PubMed Central

    Wu, Kui; Cai, Qingle; Wang, Yu; Lang, Yongshan; Cao, Hongzhi; Yang, Huangming; Wang, Jian; Zhang, Xiuqing

    2012-01-01

    Background The relatively short read lengths from next generation sequencing (NGS) technologies still pose a challenge for de novo assembly of complex mammal genomes. One important solution is to use paired-end (PE) sequence information experimentally obtained from long-range DNA fragments (>1 kb). Here, we characterize and extend a long-range PE library construction method based on direct intra-molecule ligation (or molecular linker-free circularization) for NGS. Results We found that the method performs stably for PE sequencing of 2- to 5- kb DNA fragments, and can be extended to 10–20 kb (and even in extremes, up to ∼35 kb). We also characterized the impact of low quality input DNA on the method, and develop a whole-genome amplification (WGA) based protocol using limited input DNA (<1 µg). Using this PE dataset, we accurately assembled the YanHuang (YH) genome, the first sequenced Asian genome, into a scaffold N50 size of >2 Mb, which is over100-times greater than the initial size produced with only small insert PE reads(17 kb). In addition, we mapped two 7- to 8- kb insertions in the YH genome using the larger insert sizes of the long-range PE data. Conclusions In conclusion, we demonstrate here the effectiveness of this long-range PE sequencing method and its use for the de novo assembly of a large, complex genome using NGS short reads. PMID:23029438

  19. Dual mode of embryonic development is highlighted by expression and function of Nasonia pair-rule genes

    PubMed Central

    Rosenberg, Miriam I; Brent, Ava E; Payre, François; Desplan, Claude

    2014-01-01

    Embryonic anterior–posterior patterning is well understood in Drosophila, which uses ‘long germ’ embryogenesis, in which all segments are patterned before cellularization. In contrast, most insects use ‘short germ’ embryogenesis, wherein only head and thorax are patterned in a syncytial environment while the remainder of the embryo is generated after cellularization. We use the wasp Nasonia (Nv) to address how the transition from short to long germ embryogenesis occurred. Maternal and gap gene expression in Nasonia suggest long germ embryogenesis. However, the Nasonia pair-rule genes even-skipped, odd-skipped, runt and hairy are all expressed as early blastoderm pair-rule stripes and late-forming posterior stripes. Knockdown of Nv eve, odd or h causes loss of alternate segments at the anterior and complete loss of abdominal segments. We propose that Nasonia uses a mixed mode of segmentation wherein pair-rule genes pattern the embryo in a manner resembling Drosophila at the anterior and ancestral Tribolium at the posterior. DOI: http://dx.doi.org/10.7554/eLife.01440.001 PMID:24599282

  20. Mammalian heat shock p70 and histone H4 transcripts, which derive from naturally intronless genes, are immune to nonsense-mediated decay.

    PubMed Central

    Maquat, L E; Li, X

    2001-01-01

    Nonsense-mediated decay (NMD), also called mRNA surveillance, is an evolutionarily conserved pathway that degrades mRNAs that prematurely terminate translation. To date, the pathway in mammalian cells has been shown to depend on the presence of a cis-acting destabilizing element that usually consists of an exon-exon junction generated by the process of pre-mRNA splicing. Whether or not mRNAs that derive from naturally intronless genes, that is, mRNAs not formed by the process of splicing, are also subject to NMD has yet to be investigated. The possibility of NMD is certainly reasonable considering that mRNAs of Saccharomyces cerevisiae are subject to NMD even though most derive from naturally intronless genes. In fact, mRNAs of S. cerevisiae generally harbor a loosely defined splicing-independent destabilizing element that has been proposed to function in NMD analogously to the spliced exon-exon junction of mammalian mRNAs. Here, we demonstrate that nonsense codons introduced into naturally intronless genes encoding mouse heat shock protein 70 or human histone H4 fail to elicit NMD. Failure is most likely because each mRNA lacks a cis-acting destabilizing element, because insertion of a spliceable intron a sufficient distance downstream of a nonsense codon within either gene is sufficient to elicit NMD. PMID:11333024

  1. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision.

    PubMed

    Jacobs, Gerald H

    2013-03-01

    All mammalian cone photopigments are derived from the operation of representatives from two opsin gene families (SWS1 and LWS in marsupial and eutherian mammals; SWS2 and LWS in monotremes), a process that produces cone pigments with respective peak sensitivities in the short and middle-to-long wavelengths. With the exception of a number of primate taxa, the modal pattern for mammals is to have two types of cone photopigment, one drawn from each of the gene families. In recent years, it has been discovered that the SWS1 opsin genes of a widely divergent collection of eutherian mammals have accumulated mutational changes that render them nonfunctional. This alteration reduces the retinal complements of these species to a single cone type, thus rendering ordinary color vision impossible. At present, several dozen species from five mammalian orders have been identified as falling into this category, but the total number of mammalian species that have lost short-wavelength cones in this way is certain to be much larger, perhaps reaching as high as 10% of all species. A number of circumstances that might be used to explain this widespread cone loss can be identified. Among these, the single consistent fact is that the species so affected are nocturnal or, if they are not technically nocturnal, they at least feature retinal organizations that are typically associated with that lifestyle. At the same time, however, there are many nocturnal mammals that retain functional short-wavelength cones. Nocturnality thus appears to set the stage for loss of functional SWS1 opsin genes in mammals, but it cannot be the sole circumstance. PMID:23286388

  2. Insights into the evolution of mammalian telomerase: Platypus TERT shares similarities with genes of birds and other reptiles and localizes on sex chromosomes

    PubMed Central

    2012-01-01

    Background The TERT gene encodes the catalytic subunit of the telomerase complex and is responsible for maintaining telomere length. Vertebrate telomerase has been studied in eutherian mammals, fish, and the chicken, but less attention has been paid to other vertebrates. The platypus occupies an important evolutionary position, providing unique insight into the evolution of mammalian genes. We report the cloning of a platypus TERT (OanTERT) ortholog, and provide a comparison with genes of other vertebrates. Results The OanTERT encodes a protein with a high sequence similarity to marsupial TERT and avian TERT. Like the TERT of sauropsids and marsupials, as well as that of sharks and echinoderms, OanTERT contains extended variable linkers in the N-terminal region suggesting that they were present already in basal vertebrates and lost independently in ray-finned fish and eutherian mammals. Several alternatively spliced OanTERT variants structurally similar to avian TERT variants were identified. Telomerase activity is expressed in all platypus tissues like that of cold-blooded animals and murine rodents. OanTERT was localized on pseudoautosomal regions of sex chromosomes X3/Y2, expanding the homology between human chromosome 5 and platypus sex chromosomes. Synteny analysis suggests that TERT co-localized with sex-linked genes in the last common mammalian ancestor. Interestingly, female platypuses express higher levels of telomerase in heart and liver tissues than do males. Conclusions OanTERT shares many features with TERT of the reptilian outgroup, suggesting that OanTERT represents the ancestral mammalian TERT. Features specific to TERT of eutherian mammals have, therefore, evolved more recently after the divergence of monotremes. PMID:22655747

  3. Isoform- and Dose-sensitive Feedback Interactions between Paired Box 6 gene and δ-Catenin in Cell Differentiation and Death

    PubMed Central

    Zhang, Jiao; Lu, Jian-Ping; Suter, David M.; Krause, Karl-Heinz; Fini, M. Elizabeth; Chen, Baoan; Lu, Qun

    2010-01-01

    Pax6, a mammalian homolog of the Drosophila paired box gene family member expressed in stem and progenitor cells, resides at the top of the genetic hierarchy in controlling cell fates and morphogenesis. While Pax6 activation can lead to mitotic arrest, premature neurogenesis, and apoptosis, the underlying molecular mechanisms have not been resolved. Here we report that either Pax6(+5a) or Pax6(−5a) was sufficient to promote, whereas their knockdown reduced the expression of δ-catenin (CTNND2), a neural specific member of the armadillo/β-catenin superfamily. Pax6(+5a) elicited stronger effects on δ-catenin than Pax6(−5a). Inducible Pax6(+5a) expression demonstrated a biphasic and dose-dependent regulation of δ-catenin expression and cell fates. A moderate upregulation of Pax6(+5a) promoted δ-catenin expression and induced neurite-like cellular protrusions, but increasing expression of Pax6(+5a) reversed these processes. Furthermore, sustained high expression of Pax6(+5a) triggered apoptosis as determined by the reduction of phospho-Bad, Bcl-2, survivin and procaspases, as well as the increases in Bax and cleaved poly(ADP-ribose) polymerase. Importantly, re-introducing δ-catenin by ectopic expression elicited a feedback suppression on Pax6(+5a) expression and reduced Pax6(+5a) induced apoptosis. Therefore, δ-catenin expression is not only controlled by Pax6, but it also provides a feedback suppression mechanism for their functional interactions with important implications in cellular morphogenesis, apoptosis, and cancer. PMID:20074565

  4. MPromDb update 2010: an integrated resource for annotation and visualization of mammalian gene promoters and ChIP-seq experimental data.

    PubMed

    Gupta, Ravi; Bhattacharyya, Anirban; Agosto-Perez, Francisco J; Wickramasinghe, Priyankara; Davuluri, Ramana V

    2011-01-01

    MPromDb (Mammalian Promoter Database) is a curated database that strives to annotate gene promoters identified from ChIP-seq results with the goal of providing an integrated resource for mammalian transcriptional regulation and epigenetics. We analyzed 507 million uniquely aligned RNAP-II ChIP-seq reads from 26 different data sets that include six human cell-types and 10 distinct mouse cell/tissues. The updated MPromDb version consists of computationally predicted (novel) and known active RNAP-II promoters (42,893 human and 48,366 mouse promoters) from various data sets freely available at NCBI GEO database. We found that 36% and 40% of protein-coding genes have alternative promoters in human and mouse genomes and ∼40% of promoters are tissue/cell specific. The identified RNAP-II promoters were annotated using various known and novel gene models. Additionally, for novel promoters we looked into other evidences-GenBank mRNAs, spliced ESTs, CAGE promoter tags and mRNA-seq reads. Users can search the database based on gene id/symbol, or by specific tissue/cell type and filter results based on any combination of tissue/cell specificity, Known/Novel, CpG/NonCpG, and protein-coding/non-coding gene promoters. We have also integrated GBrowse genome browser with MPromDb for visualization of ChIP-seq profiles and to display the annotations. The current release of MPromDb can be accessed at http://bioinformatics.wistar.upenn.edu/MPromDb/. PMID:21097880

  5. Complete genome and gene expression analyses of Asaia bogorensis reveal unique responses to culture with mammalian cells as a potential opportunistic human pathogen

    PubMed Central

    Kawai, Mikihiko; Higashiura, Norie; Hayasaki, Kimie; Okamoto, Naruhei; Takami, Akiko; Hirakawa, Hideki; Matsushita, Kazunobu; Azuma, Yoshinao

    2015-01-01

    Asaia bogorensis, a member of acetic acid bacteria (AAB), is an aerobic bacterium isolated from flowers and fruits, as well as an opportunistic pathogen that causes human peritonitis and bacteraemia. Here, we determined the complete genomic sequence of the As. bogorensis type strain NBRC 16594, and conducted comparative analyses of gene expression under different conditions of co-culture with mammalian cells and standard AAB culture. The genome of As. bogorensis contained 2,758 protein-coding genes within a circular chromosome of 3,198,265 bp. There were two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases: cyoABCD-1 and cyoABCD-2. The cyoABCD-1 operon was phylogenetically common to AAB genomes, whereas the cyoABCD-2 operon belonged to a lineage distinctive from the cyoABCD-1 operon. Interestingly, cyoABCD-1 was less expressed under co-culture conditions than under the AAB culture conditions, whereas the converse was true for cyoABCD-2. Asaia bogorensis shared pathogenesis-related genes with another pathogenic AAB, Granulibacter bethesdensis, including a gene coding pathogen-specific large bacterial adhesin and additional genes for the inhibition of oxidation and antibiotic resistance. Expression alteration of the respiratory chain and unique hypothetical genes may be key traits that enable the bacterium to survive under the co-culture conditions. PMID:26358298

  6. Bacteroides isolated from four mammalian hosts lack host-specific 16S rRNA gene phylogeny and carbon and nitrogen utilization patterns*

    PubMed Central

    Atherly, Todd; Ziemer, Cherie J

    2014-01-01

    One-hundred-and-three isolates of Bacteroides ovatus,B. thetaiotaomicron, and B. xylanisolvens were recovered from cow, goat, human, and pig fecal enrichments with cellulose or xylan/pectin. Isolates were compared using 16S rRNA gene sequencing, repetitive sequence-based polymerase chain reaction (rep-PCR), and phenotypic microarrays. Analysis of 16S rRNA gene sequences revealed high sequence identity in these Bacteroides; with distinct phylogenetic groupings by bacterial species but not host origin. Phenotypic microarray analysis demonstrated these Bacteroides shared the ability to utilize many of the same carbon substrates, without differences due to species or host origin, indicative of their broad carbohydrate fermentation abilities. Limited nitrogen substrates were utilized; in addition to ammonia, guanine, and xanthine, purine derivatives were utilized by most isolates followed by a few amino sugars. Only rep-PCR analysis demonstrated host-specific patterns, indicating that genomic changes due to coevolution with host did not occur by mutation in the 16S rRNA gene or by a gain or loss of carbohydrate utilization genes within these Bacteroides. This is the first report to indicate that host-associated genomic differences are outside of 16S rRNA gene and carbohydrate utilization genes and suggest conservation of specific bacterial species with the same functionality across mammalian hosts for this Bacteroidetes clade. PMID:24532571

  7. Systems biology-guided identification of synthetic lethal gene pairs and its potential use to discover antibiotic combinations

    PubMed Central

    Aziz, Ramy K.; Monk, Jonathan M.; Lewis, Robert M.; In Loh, Suh; Mishra, Arti; Abhay Nagle, Amrita; Satyanarayana, Chitkala; Dhakshinamoorthy, Saravanakumar; Luche, Michele; Kitchen, Douglas B.; Andrews, Kathleen A.; Fong, Nicole L.; Li, Howard J.; Palsson, Bernhard O.; Charusanti, Pep

    2015-01-01

    Mathematical models of metabolism from bacterial systems biology have proven their utility across multiple fields, for example metabolic engineering, growth phenotype simulation, and biological discovery. The usefulness of the models stems from their ability to compute a link between genotype and phenotype, but their ability to accurately simulate gene-gene interactions has not been investigated extensively. Here we assess how accurately a metabolic model for Escherichia coli computes one particular type of gene-gene interaction, synthetic lethality, and find that the accuracy rate is between 25% and 43%. The most common failure modes were incorrect computation of single gene essentiality and biological information that was missing from the model. Moreover, we performed virtual and biological screening against several synthetic lethal pairs to explore whether two-compound formulations could be found that inhibit the growth of Gram-negative bacteria. One set of molecules was identified that, depending on the concentrations, inhibits E. coli and S. enterica serovar Typhimurium in an additive or antagonistic manner. These findings pinpoint specific ways in which to improve the predictive ability of metabolic models, and highlight one potential application of systems biology to drug discovery and translational medicine. PMID:26531810

  8. An Unusual Genomic Position Effect on Drosophila White Gene Expression: Pairing Dependence, Interactions with Zeste, and Molecular Analysis of Revertants

    PubMed Central

    Hazelrigg, T.; Petersen, S.

    1992-01-01

    The white gene in the A(R)4-24 P[white,rosy] insertion on chromosome 2 has a novel expression pattern, in which it is repressed in the dorsal half of the eye. X-ray mutagenesis led to the isolation of six revertants mapping to chromosome 2, which are wild type in a zeste(+) background, and three extreme derivatives, in which white gene expression is repressed in ventral regions of the eye as well. By Southern blot analyses the breakpoints of five of the revertants and one of the extreme derivatives were mapped in the flanking DNA bordering each side of the A(R)4-24 insertion. The revertants show some dorsal repression of white in the presence of z(1), and by this criterion each is only a partial revertant. The extreme derivatives act not only in cis, but also in trans to repress expression of A(R)4-24 and its various derivatives. We provide evidence that these trans effects are proximity-dependent effects, possibly mediated by pairing of gene copies, as they do not extend to copies of the white gene located elsewhere in the genome. We show that one extreme derivative, E1, is a small deletion spanning the insertion site at the 5' end of the white gene, and propose that the distance between a negative regulatory element in the 5' flanking DNA and the white promoter influences the degree of the repression. PMID:1732157

  9. Perception of the usefulness of drug/gene pairs and barriers for pharmacogenomics in Latin America.

    PubMed

    Quinones, Luis Abel; Lavanderos, Maria Alejandra; Cayun, Juan Pablo; Garcia-Martin, Elena; Agundez, Jose Augusto; Caceres, Dante Daniel; Roco, Angela Margarita; Morales, Jorge E; Herrera, Luisa; Encina, Gonzalo; Isaza, Carlos Alberto; Redal, Maria Ana; Larovere, Laura; Soria, Nestor Walter; Eslava-Schmalbach, Javier; Castaneda-Hernandez, Gilberto; Lopez-Cortes, Andres; Magno, Luiz Alexandre; Lopez, Marisol; Chiurillo, Miguel Angel; Rodeiro, Idania; Castro de Guerra, Dinorah; Teran, Enrique; Estevez-Carrizo, Francisco; Lares-Assef, Ismael

    2014-02-01

    Pharmacogenetics and Pharmacogenomics areas are currently emerging fields focused to manage pharmacotherapy that may prevent undertreatment while avoiding associated drug toxicity in patients. Large international differences in the awareness and in the use of pharmacogenomic testing are presumed, but not well assessed to date. In the present study we review the awareness of Latin American scientific community about pharmacogenomic testing and the perceived barriers for their clinical application. In order to that, we have compiled information from 9 countries of the region using a structured survey which is compared with surveys previously performed in USA and Spain. The most relevant group of barriers was related to the need for clear guidelines for the use of pharmacogenomics in clinical practice, followed by insufficient awareness about pharmacogenomics among clinicians and the absence of regulatory institutions that facilitate the use of pharmacogenetic tests. The higher ranked pairs were TPMT/thioguanine, TPMT/azathioprine, CYP2C9/warfarin, UGT1A1/irinotecan, CYP2D6/amitriptiline, CYP2C19/citalopram and CYP2D6/clozapine. The lower ranked pairs were SLCO1B1/simvastatin, CYP2D6/metoprolol and GP6D/chloroquine. Compared with USA and Spanish surveys, 25 pairs were of lower importance for Latin American respondents. Only CYP2C19/esomeprazole, CYP2C19/omeprazole, CYP2C19/celecoxib and G6PD/dapsone were ranked higher or similarly to the USA and Spanish surveys. Integration of pharmacogenomics in clinical practice needs training of healthcare professionals and citizens, but in addition legal and regulatory guidelines and safeguards will be needed. We propose that the approach offered by pharmacogenomics should be incorporated into the decision-making plans in Latin America. PMID:24524664

  10. Combined antitumor gene therapy with herpes simplex virus-thymidine kinase and short hairpin RNA specific for mammalian target of rapamycin.

    PubMed

    Woo, Ha-Na; Lee, Won Il; Kim, Ji Hyun; Ahn, Jeonghyun; Han, Jeong Hee; Lim, Sue Yeon; Lee, Won Woo; Lee, Heuiran

    2015-12-01

    A proof-of-concept study is presented using dual gene therapy that employed a small hairpin RNA (shRNA) specific for mammalian target of rapamycin (mTOR) and a herpes simplex virus-thymidine kinase (HSV-TK) gene to inhibit the growth of tumors. Recombinant adeno-associated virus (rAAV) vectors containing a mutant TK gene (sc39TK) were transduced into HeLa cells, and the prodrug ganciclovir (GCV) was administered to establish a suicide gene-therapy strategy. Additionally, rAAV vectors expressing an mTOR-targeted shRNA were employed to suppress mTOR-dependent tumor growth. GCV selectively induced death in tumor cells expressing TK, and the mTOR-targeted shRNA altered the cell cycle to impair tumor growth. Combining the TK-GCV system with mTOR inhibition suppressed tumor growth to a greater extent than that achieved with either treatment alone. Furthermore, HSV-TK expression and mTOR inhibition did not mutually interfere with each other. In conclusion, gene therapy that combines the TK-GCV system and mTOR inhibition shows promise as a novel strategy for cancer therapy. PMID:26459571

  11. Toxic pyrene metabolism in Mycobacterium gilvum PYR-GCK results in the expression of mammalian cell entry genes as revealed by transcriptomics study.

    PubMed

    Badejo, Abimbola Comfort; Chung, Won Hyong; Kim, Nam Shin; Kim, Se Kye; Chai, Jin Choul; Lee, Young Seek; Jung, Kyoung Hwa; Kim, Hyo Joon; Chai, Young Gyu

    2014-09-01

    Mycobacterium gilvum PYR-GCK is a bacterial strain under study for its bioremediation use on heavy hydrocarbon pollutants in the environment. During the course of our study, mammalian cell entry (mce) genes, known to facilitate pathogenicity in M. tuberculosis, were highly expressed during a comparative and substrate-related cultural global transcriptomic study. RNA sequencing of the global transcriptome of the test strain in two different substrates, pyrene and glucose, showed high expression of the mce genes based on the differential results. After validating the expression of these genes with quantitative real-time PCR, we arrived at the conclusion that the genes were expressed based on the pyrene substrate (a phytosterol compound), and sterol metabolism is said to activate the expression of the mce genes in some actinomycetes bacteria, M. gilvum PYR-GCK in this case. This study is believed to be important based on the fact that some mycobacterial strains are undergoing a continuous research as a result of their use in practical bioremediation of anthropogenic exposure of toxic organic wastes in the environment. PMID:24912554

  12. Bidirectional expression of long ncRNA/protein-coding gene pairs in cancer.

    PubMed

    Albrecht, Anne-Susann; Ørom, Ulf Andersson

    2016-05-01

    Bidirectional initiation of transcription by RNA polymerase II occurs prevalently at active promoters during protein-coding gene (PCG) expression. Upstream, antisense noncoding RNAs (ncRNAs) of differing lengths, stabilities and processings are being expressed from these promoters in concert with downstream, processive messenger RNA transcription. Although abundantly detected, the functional role and regulatory capacity of such transcripts have only been determined for individual cases. Long ncRNAs in general are reportedly able to regulate all steps of the gene expression process. Therefore, to get insight into the functionality of long ncRNAs transcribed bidirectionally from cancer-associated PCGs is of interest, as expression changes of tumor suppressor genes and oncogenes are prevalent in cancer.Here, we review the sources and characteristics of antisense transcription occurring at PCG loci in the human genome, and focus on the functional impact of bidirectional long ncRNA expression at cancer-associated PCGs. PMID:26578749

  13. Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury

    PubMed Central

    Zou, Yixiao; Stagi, Massimiliano; Wang, Xingxing; Yigitkanli, Kazim; Siegel, Chad S.; Nakatsu, Fubito; Cafferty, William B. J.

    2015-01-01

    Axonal growth and neuronal rewiring facilitate functional recovery after spinal cord injury. Known interventions that promote neural repair remain limited in their functional efficacy. To understand genetic determinants of mammalian CNS axon regeneration, we completed an unbiased RNAi gene-silencing screen across most phosphatases in the genome. We identified one known and 17 previously unknown phosphatase suppressors of injury-induced CNS axon growth. Silencing Inpp5f (Sac2) leads to robust enhancement of axon regeneration and growth cone reformation. Results from cultured Inpp5f−/− neurons confirm lentiviral shRNA results from the screen. Consistent with the nonoverlapping substrate specificity between Inpp5f and PTEN, rapamycin does not block enhanced regeneration in Inpp5f−/− neurons, implicating mechanisms independent of the PI3K/AKT/mTOR pathway. Inpp5f−/− mice develop normally, but show enhanced anatomical and functional recovery after mid-thoracic dorsal hemisection injury. More serotonergic axons sprout and/or regenerate caudal to the lesion level, and greater numbers of corticospinal tract axons sprout rostral to the lesion. Functionally, Inpp5f-null mice exhibit enhanced recovery of motor functions in both open-field and rotarod tests. This study demonstrates the potential of an unbiased high-throughput functional screen to identify endogenous suppressors of CNS axon growth after injury, and reveals Inpp5f (Sac2) as a novel suppressor of CNS axon repair after spinal cord injury. SIGNIFICANCE STATEMENT The extent of axon regeneration is a critical determinant of neurological recovery from injury, and is extremely limited in the adult mammalian CNS. We describe an unbiased gene-silencing screen that uncovered novel molecules suppressing axonal regeneration. Inpp5f (Sac2) gene deletion promoted recovery from spinal cord injury with no side effects. The mechanism of action is distinct from another lipid phosphatase implicated in regeneration

  14. Cognitive Functioning in Affected Sibling Pairs with ADHD: Familial Clustering and Dopamine Genes

    ERIC Educational Resources Information Center

    Loo, Sandra K.; Rich, Erika Carpenter; Ishii, Janeen; McGough, James; McCracken, James; Nelson, Stanley; Smalley, Susan L.

    2008-01-01

    Background: This paper examines familiality and candidate gene associations of cognitive measures as potential endophenotypes in attention-deficit/hyperactivity disorder (ADHD). Methods: The sample consists of 540 participants, aged 6 to 18, who were diagnosed with ADHD from 251 families recruited for a larger genetic study of ADHD. All members of…

  15. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  16. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  17. Evaluation of 16S rRNA Gene Primer Pairs for Monitoring Microbial Community Structures Showed High Reproducibility within and Low Comparability between Datasets Generated with Multiple Archaeal and Bacterial Primer Pairs

    PubMed Central

    Fischer, Martin A.; Güllert, Simon; Neulinger, Sven C.; Streit, Wolfgang R.; Schmitz, Ruth A.

    2016-01-01

    The application of next-generation sequencing technology in microbial community analysis increased our knowledge and understanding of the complexity and diversity of a variety of ecosystems. In contrast to Bacteria, the archaeal domain was often not particularly addressed in the analysis of microbial communities. Consequently, established primers specifically amplifying the archaeal 16S ribosomal gene region are scarce compared to the variety of primers targeting bacterial sequences. In this study, we aimed to validate archaeal primers suitable for high throughput next generation sequencing. Three archaeal 16S primer pairs as well as two bacterial and one general microbial 16S primer pairs were comprehensively tested by in-silico evaluation and performing an experimental analysis of a complex microbial community of a biogas reactor. The results obtained clearly demonstrate that comparability of community profiles established using different primer pairs is difficult. 16S rRNA gene data derived from a shotgun metagenome of the same reactor sample added an additional perspective on the community structure. Furthermore, in-silico evaluation of primers, especially those for amplification of archaeal 16S rRNA gene regions, does not necessarily reflect the results obtained in experimental approaches. In the latter, archaeal primer pair ArchV34 showed the highest similarity to the archaeal community structure compared to observed by the metagenomic approach and thus appears to be the appropriate for analyzing archaeal communities in biogas reactors. However, a disadvantage of this primer pair was its low specificity for the archaeal domain in the experimental application leading to high amounts of bacterial sequences within the dataset. Overall our results indicate a rather limited comparability between community structures investigated and determined using different primer pairs as well as between metagenome and 16S rRNA gene amplicon based community structure analysis

  18. Evaluation of 16S rRNA Gene Primer Pairs for Monitoring Microbial Community Structures Showed High Reproducibility within and Low Comparability between Datasets Generated with Multiple Archaeal and Bacterial Primer Pairs.

    PubMed

    Fischer, Martin A; Güllert, Simon; Neulinger, Sven C; Streit, Wolfgang R; Schmitz, Ruth A

    2016-01-01

    The application of next-generation sequencing technology in microbial community analysis increased our knowledge and understanding of the complexity and diversity of a variety of ecosystems. In contrast to Bacteria, the archaeal domain was often not particularly addressed in the analysis of microbial communities. Consequently, established primers specifically amplifying the archaeal 16S ribosomal gene region are scarce compared to the variety of primers targeting bacterial sequences. In this study, we aimed to validate archaeal primers suitable for high throughput next generation sequencing. Three archaeal 16S primer pairs as well as two bacterial and one general microbial 16S primer pairs were comprehensively tested by in-silico evaluation and performing an experimental analysis of a complex microbial community of a biogas reactor. The results obtained clearly demonstrate that comparability of community profiles established using different primer pairs is difficult. 16S rRNA gene data derived from a shotgun metagenome of the same reactor sample added an additional perspective on the community structure. Furthermore, in-silico evaluation of primers, especially those for amplification of archaeal 16S rRNA gene regions, does not necessarily reflect the results obtained in experimental approaches. In the latter, archaeal primer pair ArchV34 showed the highest similarity to the archaeal community structure compared to observed by the metagenomic approach and thus appears to be the appropriate for analyzing archaeal communities in biogas reactors. However, a disadvantage of this primer pair was its low specificity for the archaeal domain in the experimental application leading to high amounts of bacterial sequences within the dataset. Overall our results indicate a rather limited comparability between community structures investigated and determined using different primer pairs as well as between metagenome and 16S rRNA gene amplicon based community structure analysis

  19. Cloning the expression of a mammalian gene involved in the reduction of methionine sulfoxide residues in proteins.

    PubMed Central

    Moskovitz, J; Weissbach, H; Brot, N

    1996-01-01

    An enzyme that reduces methionine sulfoxide [Met(O)] residues in proteins [peptide Met(O) reductase (MsrA), EC 1.8.4.6; originally identified in Escherichia coli] was purified from bovine liver, and the cDNA encoding this enzyme was cloned and sequenced. The mammalian homologue of E. coli msrA (also called pmsR) cDNA encodes a protein of 255 amino acids with a calculated molecular mass of 25,846 Da. This protein has 61% identity with the E. coli MsrA throughout a region encompassing a 199-amino acid overlap. The protein has been overexpressed in E. coli and purified to homogeneity. The mammalian recombinant MsrA can use as substrate, proteins containing Met(O) as well as other organic compounds that contain an alkyl sulfoxide group such as N-acetylMet(O), Met(O), and dimethyl sulfoxide. Northern analysis of rat tissue extracts showed that rat msrA mRNA is present in a variety of organs with the highest level found in kidney. This is consistent with the observation that kidney extracts also contained the highest level of enzyme activity. Images Fig. 3 Fig. 5 PMID:8700890

  20. A novel bidirectional expression system for simultaneous expression of both the protein-coding genes and short hairpin RNAs in mammalian cells

    SciTech Connect

    Hung, C.-F.; Cheng, T.-L.; Wu, R.-H.; Teng, C.-F.; Chang, W.-T. . E-mail: wtchang@mail.ncku.edu.tw

    2006-01-27

    RNA interference (RNAi) is an extremely powerful and widely used gene silencing approach for reverse functional genomics and molecular therapeutics. In mammals, the conserved poly(ADP-ribose) polymerase 2 (PARP-2)/RNase P bidirectional control promoter simultaneously expresses both the PARP-2 protein and RNase P RNA by RNA polymerase II- and III-dependent mechanisms, respectively. To explore this unique bidirectional control system in RNAi-mediated gene silencing strategy, we have constructed two novel bidirectional expression vectors, pbiHsH1 and pbiMmH1, which contained the PARP-2/RNase P bidirectional control promoters from human and mouse, for simultaneous expression of both the protein-coding genes and short hairpin RNAs. Analyses of the dual transcriptional activities indicated that these two bidirectional expression vectors could not only express enhanced green fluorescent protein as a functional reporter but also simultaneously transcribe shLuc for inhibiting the firefly luciferase expression. In addition, to extend its utility for the establishment of inherited stable clones, we have also reconstructed this bidirectional expression system with the blasticidin S deaminase gene, an effective dominant drug resistance selectable marker, and examined both the selection and inhibition efficiencies in drug resistance and gene expression. Moreover, we have further demonstrated that this bidirectional expression system could efficiently co-regulate the functionally important genes, such as overexpression of tumor suppressor protein p53 and inhibition of anti-apoptotic protein Bcl-2 at the same time. In summary, the bidirectional expression vectors, pbiHsH1 and pbiMmH1, should provide a simple, convenient, and efficient novel tool for manipulating the gene function in mammalian cells.

  1. Transient Gene Expression in Serum-Free Suspension-Growing Mammalian Cells for the Production of Foot-and-Mouth Disease Virus Empty Capsids

    PubMed Central

    Mignaqui, Ana Clara; Ruiz, Vanesa; Perret, Sylvie; St-Laurent, Gilles; Singh Chahal, Parminder; Transfiguracion, Julia; Sammarruco, Ayelén; Gnazzo, Victoria; Durocher, Yves; Wigdorovitz, Andrés

    2013-01-01

    Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. It produces severe economic losses in the livestock industry. Currently available vaccines are based on inactivated FMD virus (FMDV). The use of empty capsids as a subunit vaccine has been reported to be a promising candidate because it avoids the use of virus in the vaccine production and conserves the conformational epitopes of the virus. In this report, we explored transient gene expression (TGE) in serum-free suspension-growing mammalian cells for the production of FMDV recombinant empty capsids as a subunit vaccine. The recombinant proteins produced, assembled into empty capsids and induced protective immune response against viral challenge in mice. Furthermore, they were recognized by anti-FMDV bovine sera. By using this technology, we were able to achieve expression levels that are compatible with the development of a vaccine. Thus, TGE of mammalian cells is an easy to perform, scalable and cost-effective technology for the production of a recombinant subunit vaccine against FMDV. PMID:23977353

  2. Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus.

    PubMed Central

    Katz, J M; Wang, M; Webster, R G

    1990-01-01

    When influenza (H3N2) viruses from infected individuals are grown in embryonated chicken eggs, viruses are isolated which differ antigenically and structurally from viruses grown in mammalian Madin-Darby canine kidney (MDCK) cell culture [G.C. Schild, J.S. Oxford, J.C. de Jong, and R.G. Webster, Nature (London) 303:706-709, 1983]. To determine which of these viruses is most representative of virus replicating in the infected individual, a region of the HA gene of virus present in original clinical samples was amplified by using the polymerase chain reaction and sequenced directly. Comparison of 170 amino acid residues of HA1 flanking and containing the receptor-binding site and antigenic sites indicated that over this region, the HA of virus replicating in the infected individual was identical to that of virus after growth in MDCK cells and was distinct from the HA of viruses grown in eggs. Therefore, cultivation of human influenza H3N2 virus in mammalian MDCK cells results in a virus similar to the predominant population of virus found in the infected individual. PMID:2319652

  3. A pair of transposons coordinately suppresses gene expression, independent of pathways mediated by siRNA in Antirrhinum.

    PubMed

    Uchiyama, Takako; Hiura, Satoshi; Ebinuma, Izuru; Senda, Mineo; Mikami, Tetsuo; Martin, Cathie; Kishima, Yuji

    2013-01-01

    Our knowledge is limited regarding mechanisms by which transposable elements control host gene expression. Two Antirrhinum lines, HAM2 and HAM5, show different petal colors, pale-red and white, respectively, although these lines contain the same insertion of transposon Tam3 in the promoter region of the nivea (niv) locus encoding chalcone synthase. Among 1000 progeny from HAM5 grown under the preferred conditions for the Tam3 transposition, a few showed an intermediate petal color between HAM2 and HAM5. Transposon tagging using these progeny identified a causative insertion of Tam3 for the HAM5 type (white) petal color, which was found 1.6 kb downstream of the niv gene. Insertion of Tam3 at the position 1.6 kb downstream of niv alone showed nearly wildtype petal pigmentation, and the niv expression reduced by only 50%. Severe suppression of niv observed in HAM5 required interaction of two Tam3 copies on either side of the niv coding sequence. DNA methylation and small interfering RNAs (siRNAs) were not associated with the suppression of niv expression in HAM5. Insertion of a pair of transposons in close proximity can interfere with the expression of gene located between the two copies, and also provide evidence that this interference is not directly associated with pathways mediated by siRNAs. PMID:23190182

  4. Dosage compensation and gene expression on the mammalian X chromosome: one plus one does not always equal two

    PubMed Central

    Prothero, Katie E.; Stahl, Jill M.; Carrel, Laura

    2016-01-01

    Counting chromosomes is not just simple math. Although normal males and females differ in sex chromosome content (XY vs. XX), X chromosome imbalance is tolerated because dosage compensation mechanisms have evolved to ensure functional equivalence. In mammals this is accomplished by two processes—X chromosome inactivation that silences most genes on one X chromosome in females, leading to functional X monosomy for most genes in both sexes, and X chromosome upregulation that results in increased gene expression on the single active X in males and females, equalizing dosage relative to autosomes. This review focuses on genes on the X chromosome, and how gene content, organization and expression levels can be influenced by these two processes. Special attention is given to genes that are not X inactivated, and are not necessarily fully dosage compensated. These genes that “escape” X inactivation are of medical importance as they explain phenotypes in individuals with sex chromosome aneuploidies and may impact normal traits and disorders that differ between men and women. Moreover, escape genes give insight into how X chromosome inactivation is spread and maintained on the X. PMID:19802704

  5. Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers

    NASA Astrophysics Data System (ADS)

    Pereira, M. M.; Raposo, N. R. B.; Brayner, R.; Teixeira, E. M.; Oliveira, V.; Quintão, C. C. R.; Camargo, L. S. A.; Mattoso, L. H. C.; Brandão, H. M.

    2013-02-01

    Cellulose nanofibers (CNF) have mechanical properties that make them very attractive for applications in the construction of polymeric matrices, drug delivery and tissue engineering. However, little is known about their impact on mammalian cells. The objective of this study was to evaluate the cytotoxicity of CNF and their effect on gene expression of fibroblasts cultured in vitro. The morphology of CNF was analyzed by transmission electron microscopy and the surface charge by Zeta potential. Cell viability was analyzed by flow cytometry assay and gene expression of biomarkers focused on cell stress response such as Heat shock protein 70.1 (HSP70.1) and Peroxiredoxin 1 (PRDX1) and apoptosis as B-cell leukemia (BCL-2) and BCL-2 associated X protein (BAX) by RT-PCR assay. Low concentrations of CNF (0.02-100 μg ml-1) did not cause cell death; however, at concentrations above 200 μg ml-1, the nanofibers significantly decreased cell viability (86.41 ± 5.37%). The exposure to high concentrations of CNF (2000 and 5000 μg ml-1) resulted in increased HSP70.1, PRDX1 and BAX gene expression. The current study concludes that, under the conditions tested, high concentrations (2000 and 5000 μg ml-1) of CNF cause decreased cell viability and affect the expression of stress- and apoptosis-associated molecular markers.

  6. Ankrd6 is a mammalian functional homolog of Drosophila planar cell polarity gene diego and regulates coordinated cellular orientation in the mouse inner ear

    PubMed Central

    Jones, Chonnettia; Qian, Dong; Kim, Sun Myoung; Li, Shuangding; Ren, Dongdong; Knapp, Lindsey; Sprinzak, David; Avraham, Karen B.; Matsuzaki, Fumio; Chi, Fanglu; Chen, Ping

    2014-01-01

    The coordinated polarization of neighboring cells within the plane of the tissue, known as planar cell polarity (PCP), is a recurring theme in biology. It is required for numerous developmental processes for the form and function of many tissues and organs across species. The genetic pathway regulating PCP was first discovered in Drosophila, and an analogous but distinct pathway is emerging in vertebrates. It consists of membrane protein complexes known as core PCP proteins that are conserved across species. Here we report that the over-expression of the murine Ankrd6 (mAnkrd6) gene that shares homology with Drosophila core PCP gene diego causes a typical PCP phenotype in Drosophila, and mAnkrd6 can rescue the loss of function of diego in Drosophila. In mice, mAnkrd6 protein is asymmetrically localized in cells of the inner ear sensory organs, characteristic of components of conserved core PCP complexes. The loss of mAnkrd6 causes PCP defects in the inner ear sensory organs. Moreover, canonical Wnt signaling is significantly increased in mouse embryonic fibroblasts from mAnkrd6 knockout mice in comparison to wild type controls. Together, these results indicated that mAnkrd6 is a functional homolog of the Drosophila diego gene for mammalian PCP regulation and act to suppress canonical Wnt signaling. PMID:25218921

  7. Electroporation into Cultured Mammalian Embryos

    NASA Astrophysics Data System (ADS)

    Nomura, Tadashi; Takahashi, Masanori; Osumi, Noriko

    Over the last century, mammalian embryos have been used extensively as a common animal model to investigate fundamental questions in the field of developmental biology. More recently, the establishment of transgenic and gene-targeting systems in laboratory mice has enabled researchers to unveil the genetic mechanisms under lying complex developmental processes (Mak, 2007). However, our understanding of cell—cell interactions and their molecular basis in the early stages of mammalian embryogenesis is still very fragmentary. One of the major problems is the difficulty of precise manipulation and limited accessibility to mammalian embryos via uterus wall. Unfortunately, existing tissue and organotypic culture systems per se do not fully recapitulate three-dimensional, dynamic processes of organogenesis observed in vivo. Although transgenic animal technology and virus-mediated gene delivery are useful to manipulate gene expression, these techniques take much time and financial costs, which limit their use.

  8. Widespread differentiation stage-specific expression of the gene encoding phosphoprotein p19 (metablastin) in mammalian cells.

    PubMed

    Schubart, U K; Xu, J; Fan, W; Cheng, G; Goldstein, H; Alpini, G; Shafritz, D A; Amat, J A; Farooq, M; Norton, W T

    1992-09-01

    p19 is a highly conserved 19 kD cytosolic protein that undergoes phosphorylation in response to diverse extracellular factors in mammalian cells. Its expression is abundant in brain and testis and is developmentally regulated. To gain insights regarding its function, we analyzed the expression of p19 mRNA in a variety of cell types during induction of differentiation. Murine erythroleukemia cells showed a moderate increase followed by a marked decrease in the abundance of p19 mRNA during induction of differentiation. In murine C2 myoblasts and primary fetal rat osteoblasts, p19 mRNA was abundant in replicating cells and decreased to undetectable levels during differentiation. In resting human peripheral blood lymphocytes, p19 mRNA was virtually undetectable but was strongly induced during blast transformation of both B and T cells. In rat liver, p19 mRNA was abundant on embryonic day 17 and decreased during early postnatal development. Upon fractionation of adult rat liver cells by centrifugal elutriation, p19 mRNA was not detected in hepatocytes while a low level was observed in a fraction enriched in non-parenchymal epithelial cells. CCl4-induced liver regeneration resulted in induction of p19 mRNA in hepatocytes. Primary cultures of embryonic and neonatal rat brain were analyzed by indirect immunofluorescence using co-staining with stage-specific markers. p19 expression was restricted to immature neurons and oligodendrocyte precursors. In contrast to the other cell types examined, the neuronal and glial precursors that express p19 were shown, using BrdU labeling, to be postmitotic both in primary culture and in vivo. The data demonstrate widespread, stage-specific expression of p19 and suggest that the protein exerts a general, lineage-independent function during induction of differentiation of mammalian cells. In view of the available evidence on the stimulation of serine phosphorylation of p19 by several growth factors, our working hypothesis is that

  9. Depletion of autophagy receptor p62/SQSTM1 enhances the efficiency of gene delivery in mammalian cells.

    PubMed

    Tsuchiya, Megumi; Ogawa, Hidesato; Koujin, Takako; Kobayashi, Shouhei; Mori, Chie; Hiraoka, Yasushi; Haraguchi, Tokuko

    2016-08-01

    Novel methods that increase the efficiency of gene delivery to cells will have many useful applications. Here, we report a simple approach involving depletion of p62/SQSTM1 to enhance the efficiency of gene delivery. The efficiency of reporter gene delivery was remarkably higher in p62-knockout murine embryonic fibroblast (MEF) cells compared with normal MEF cells. This higher efficiency was partially attenuated by ectopic expression of p62. Furthermore, siRNA-mediated knockdown of p62 clearly increased the efficiency of transfection of murine embryonic stem (mES) cells and human HeLa cells. These data indicate that p62 acts as a key regulator of gene delivery. PMID:27317902

  10. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics.

    PubMed

    Hrabě de Angelis, Martin; Nicholson, George; Selloum, Mohammed; White, Jacqueline K; Morgan, Hugh; Ramirez-Solis, Ramiro; Sorg, Tania; Wells, Sara; Fuchs, Helmut; Fray, Martin; Adams, David J; Adams, Niels C; Adler, Thure; Aguilar-Pimentel, Antonio; Ali-Hadji, Dalila; Amann, Gregory; André, Philippe; Atkins, Sarah; Auburtin, Aurelie; Ayadi, Abdel; Becker, Julien; Becker, Lore; Bedu, Elodie; Bekeredjian, Raffi; Birling, Marie-Christine; Blake, Andrew; Bottomley, Joanna; Bowl, Michael R; Brault, Véronique; Busch, Dirk H; Bussell, James N; Calzada-Wack, Julia; Cater, Heather; Champy, Marie-France; Charles, Philippe; Chevalier, Claire; Chiani, Francesco; Codner, Gemma F; Combe, Roy; Cox, Roger; Dalloneau, Emilie; Dierich, André; Di Fenza, Armida; Doe, Brendan; Duchon, Arnaud; Eickelberg, Oliver; Esapa, Chris T; Fertak, Lahcen El; Feigel, Tanja; Emelyanova, Irina; Estabel, Jeanne; Favor, Jack; Flenniken, Ann; Gambadoro, Alessia; Garrett, Lilian; Gates, Hilary; Gerdin, Anna-Karin; Gkoutos, George; Greenaway, Simon; Glasl, Lisa; Goetz, Patrice; Da Cruz, Isabelle Goncalves; Götz, Alexander; Graw, Jochen; Guimond, Alain; Hans, Wolfgang; Hicks, Geoff; Hölter, Sabine M; Höfler, Heinz; Hancock, John M; Hoehndorf, Robert; Hough, Tertius; Houghton, Richard; Hurt, Anja; Ivandic, Boris; Jacobs, Hughes; Jacquot, Sylvie; Jones, Nora; Karp, Natasha A; Katus, Hugo A; Kitchen, Sharon; Klein-Rodewald, Tanja; Klingenspor, Martin; Klopstock, Thomas; Lalanne, Valerie; Leblanc, Sophie; Lengger, Christoph; le Marchand, Elise; Ludwig, Tonia; Lux, Aline; McKerlie, Colin; Maier, Holger; Mandel, Jean-Louis; Marschall, Susan; Mark, Manuel; Melvin, David G; Meziane, Hamid; Micklich, Kateryna; Mittelhauser, Christophe; Monassier, Laurent; Moulaert, David; Muller, Stéphanie; Naton, Beatrix; Neff, Frauke; Nolan, Patrick M; Nutter, Lauryl M J; Ollert, Markus; Pavlovic, Guillaume; Pellegata, Natalia S; Peter, Emilie; Petit-Demoulière, Benoit; Pickard, Amanda; Podrini, Christine; Potter, Paul; Pouilly, Laurent; Puk, Oliver; Richardson, David; Rousseau, Stephane; Quintanilla-Fend, Leticia; Quwailid, Mohamed M; Racz, Ildiko; Rathkolb, Birgit; Riet, Fabrice; Rossant, Janet; Roux, Michel; Rozman, Jan; Ryder, Edward; Salisbury, Jennifer; Santos, Luis; Schäble, Karl-Heinz; Schiller, Evelyn; Schrewe, Anja; Schulz, Holger; Steinkamp, Ralf; Simon, Michelle; Stewart, Michelle; Stöger, Claudia; Stöger, Tobias; Sun, Minxuan; Sunter, David; Teboul, Lydia; Tilly, Isabelle; Tocchini-Valentini, Glauco P; Tost, Monica; Treise, Irina; Vasseur, Laurent; Velot, Emilie; Vogt-Weisenhorn, Daniela; Wagner, Christelle; Walling, Alison; Wattenhofer-Donze, Marie; Weber, Bruno; Wendling, Olivia; Westerberg, Henrik; Willershäuser, Monja; Wolf, Eckhard; Wolter, Anne; Wood, Joe; Wurst, Wolfgang; Yildirim, Ali Önder; Zeh, Ramona; Zimmer, Andreas; Zimprich, Annemarie; Holmes, Chris; Steel, Karen P; Herault, Yann; Gailus-Durner, Valérie; Mallon, Ann-Marie; Brown, Steve D M

    2015-09-01

    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems. PMID:26214591

  11. Expression of major guidance receptors is differentially regulated in spinal commissural neurons transfated by mammalian Barh genes.

    PubMed

    Kawauchi, Daisuke; Muroyama, Yuko; Sato, Tatsuya; Saito, Tetsuichiro

    2010-08-15

    During development, commissural neurons in the spinal cord project their axons across the ventral midline, floor plate, via multiple interactions among temporally controlled molecular guidance cues and receptors. The transcriptional regulation of commissural axon-associated receptors, however, is not well characterized. Spinal dorsal cells are transfated into commissural neurons by misexpression of Mbh1, a Bar-class homeobox gene. We examined the function of another Bar-class homeobox gene, Mbh2, and how Mbh1 and Mbh2 modulate expression of the receptors, leading to midline crossing of axons. Misexpression of Mbh1 and Mbh2 showed the same effects in the spinal cord. The competence of spinal dorsal cells to become commissural neurons was dependent on the embryonic stage, during which misexpression of the Mbh genes was able to activate guidance receptor genes such as Rig1 and Nrp2. Misexpression of Lhx2, which has been recently shown to be involved in Rig1 expression, activated Rig1 but not Nrp2, and was less effective in generating commissural neurons. Moreover, expression of Lhx2 was activated by and required the Mbh genes. These findings have revealed a transcriptional cascade, in which Lhx2-dependent and -independent pathways leading to expression of guidance receptors branch downstream of the Mbh genes. PMID:20599893

  12. Recombinational junctions of variants of Moloney murine sarcoma virus: generation and divergence of a mammalian transforming gene.

    PubMed Central

    Donoghue, D J; Hunter, T

    1983-01-01

    Different variants of Moloney murine sarcoma virus (MSV) were examined by nucleotide sequencing to compare the junctions between the acquired cellular sequence, v-mos, and the adjacent virus-derived sequences. These variants included 124-MSV, m1-MSV, and HT1-MSV and also the purportedly independent isolate Gazdar MSV. These four strains have an identical 5' junction between the murine leukemia virus env gene and the v-mos gene. This junction lies within the sixth codon of the chimeric env-mos coding region that encodes the transforming gene product. In contrast, at the 3' junction between the v-mos gene and the murine leukemia virus env gene, the three variants examined here were all different. A small deletion was found in the COOH-terminal portion of the m1-MSV env-mos coding region, indicating that the COOH terminus of this transforming gene product must be different from that of 124-MSV or HT1-MSV. The data presented here are consistent with the thesis that a virus closely related to HT1-MSV was the primordial Moloney MSV, and that all other related strains evolved from it by deletion or rearrangement. The variability observed in the Moloney MSV family is discussed in terms of possible mechanisms for the initial capture of mos sequences by the parental retrovirus and also in comparison with other transforming retrovirus families, such as Abelson murine leukemia virus and Rous sarcoma virus. PMID:6300424

  13. Mammalian Carboxylesterase 5: Comparative Biochemistry and Genomics

    PubMed Central

    Holmes, Roger S; Cox, Laura A; VandeBerg, John L

    2008-01-01

    Carboxylesterase 5 (CES5) (also called cauxin or CES7) is one of at least five mammalian CES gene families encoding enzymes of broad substrate specificity and catalysing hydrolytic and transesterification reactions. In silico methods were used to predict the amino acid sequences, secondary structures and gene locations for CES5 genes and gene products. Amino acid sequence alignments of mammalian CES5 enzymes enabled identification of key CES sequences previously reported for human CES1, as well as other sequences that are specific to the CES5 gene family, which were consistent with being monomeric in subunit structure and available for secretion into body fluids. Predicted secondary structures for mammalian CES5 demonstrated significant conservation with human CES1 as well as distinctive mammalian CES5 like structures. Mammalian CES5 genes are located in tandem with the CES1 gene(s), are transcribed on the reverse strand and contained 13 exons. CES5 has been previously reported in high concentrations in the urine (cauxin) of adult male cats, and within a protein complex of mammalian male epididymal fluids. Roles for CES5 may include regulating urinary levels of male cat pheromones; catalysing lipid transfer reactions within mammalian male reproductive fluids; and protecting neural tissue from drugs and xenobiotics. PMID:19727319

  14. Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals.

    PubMed

    Romiguier, Jonathan; Ranwez, Vincent; Delsuc, Frédéric; Galtier, Nicolas; Douzery, Emmanuel J P

    2013-09-01

    Despite the rapid increase of size in phylogenomic data sets, a number of important nodes on animal phylogeny are still unresolved. Among these, the rooting of the placental mammal tree is still a controversial issue. One difficulty lies in the pervasive phylogenetic conflicts among genes, with each one telling its own story, which may be reliable or not. Here, we identified a simple criterion, that is, the GC content, which substantially helps in determining which gene trees best reflect the species tree. We assessed the ability of 13,111 coding sequence alignments to correctly reconstruct the placental phylogeny. We found that GC-rich genes induced a higher amount of conflict among gene trees and performed worse than AT-rich genes in retrieving well-supported, consensual nodes on the placental tree. We interpret this GC effect mainly as a consequence of genome-wide variations in recombination rate. Indeed, recombination is known to drive GC-content evolution through GC-biased gene conversion and might be problematic for phylogenetic reconstruction, for instance, in an incomplete lineage sorting context. When we focused on the AT-richest fraction of the data set, the resolution level of the placental phylogeny was greatly increased, and a strong support was obtained in favor of an Afrotheria rooting, that is, Afrotheria as the sister group of all other placentals. We show that in mammals most conflicts among gene trees, which have so far hampered the resolution of the placental tree, are concentrated in the GC-rich regions of the genome. We argue that the GC content-because it is a reliable indicator of the long-term recombination rate-is an informative criterion that could help in identifying the most reliable molecular markers for species tree inference. PMID:23813978

  15. Selective blocking of primary amines in branched polyethylenimine with biocompatible ligand alleviates cytotoxicity and augments gene delivery efficacy in mammalian cells.

    PubMed

    Tripathi, Sushil K; Gupta, Niharika; Mahato, Manohar; Gupta, Kailash C; Kumar, Pradeep

    2014-03-01

    Recently, polyethylenimines (PEIs) have emerged as efficient vectors for nucleic acids delivery. However, inherent cytotoxicity has limited their in vivo applications. To address this concern as well as to incorporate hydrophobic domains for improving interactions with the lipid bilayers in the cell membranes, we have tethered varying amounts of amphiphilic pyridoxyl moieties onto bPEI to generate a small series of pyridoxyl-PEI (PyP) polymers. Spectroscopic characterization confirms the formation of PyP polymers, which subsequently form stable complexes with pDNA in nanometric range with positive surface charge. The projected modification not only accounts for a decrease in the density of 1° amines but also allows formation of relatively loose complexes with pDNA (cf. bPEI). Alleviation of the cytotoxicity, efficient interaction with cell membranes and easy disassembly of the pDNA complexes have led to the remarkable enhancement in the transfection efficiency of PyP/pDNA complexes in mammalian cells with one of the formulations, PyP-3/pDNA complex, showing transfection in ∼68% cells compared to ∼16% cells by Lipofectamine/pDNA complex. Further, the efficacy of PyP-3 vector has been established by delivering GFP-specific siRNA resulting in ∼88% suppression of the target gene expression. These results demonstrate the efficacy of the projected carriers that can be used in future gene therapy applications. PMID:24333556

  16. Mammalian Endogenous Retroviruses.

    PubMed

    Mager, Dixie L; Stoye, Jonathan P

    2015-02-01

    Over 40% of mammalian genomes comprise the products of reverse transcription. Among such retrotransposed sequences are those characterized by the presence of long terminal repeats (LTRs), including the endogenous retroviruses (ERVs), which are inherited genetic elements closely resembling the proviruses formed following exogenous retrovirus infection. Sequences derived from ERVs make up at least 8 to 10% of the human and mouse genomes and range from ancient sequences that predate mammalian divergence to elements that are currently still active. In this chapter we describe the discovery, classification and origins of ERVs in mammals and consider cellular mechanisms that have evolved to control their expression. We also discuss the negative effects of ERVs as agents of genetic disease and cancer and review examples of ERV protein domestication to serve host functions, as in placental development. Finally, we address growing evidence that the gene regulatory potential of ERV LTRs has been exploited multiple times during evolution to regulate genes and gene networks. Thus, although recently endogenized retroviral elements are often pathogenic, those that survive the forces of negative selection become neutral components of the host genome or can be harnessed to serve beneficial roles. PMID:26104559

  17. Molecular cloning of cDNA of mammalian and chicken II gonadotropin-releasing hormones (mGnRHs and cGnRH-II) in the beluga (Huso huso) and the disruptive effect of methylmercury on gene expression.

    PubMed

    Gharaei, Ahmad; Mahboudi, Fereidoun; Esmaili-Sari, Abbas; Edalat, Rozita; Adeli, Ahmad; Keyvanshokooh, Saeed

    2010-09-01

    Two gonadotropin-releasing hormone (GnRH) isoforms were identified in the beluga (Huso huso) brain by cDNA sequencing: prepro-mammalian GnRH (mGnRH) and prepro-chicken GnRH-II (cGnRH-II). The nucleotide sequences of the beluga mGnRH and cGnRH-II precursors are 273 and 258 base pairs (bp) long, encoding peptides of 91 and 86 amino acids, respectively. To investigate the effect of methylmercury (MeHg) on GnRH gene expression, animals were fed with four diets containing increasing levels of MeHg (0 mg kg(-1) [control]; 0.76 mg kg(-1) [low]; 7.8 mg kg(-1) [medium]; 16.22 mg kg(-1) [high]) for 32 days. The effects of MeHg on brain GnRH mRNA levels were evaluated by real-time PCR. A significant decrease in brain mGnRH and cGnRH-II mRNA levels were detected in fish receiving high dietary MeHg dose compared to controls on day 11 (P < 0.05). On day 18 and 32, all treatment groups had significantly lower brain mGnRH and cGnRH-II mRNA levels compared to the control group (P < 0.05). These findings demonstrate a disruptive role of MeHg on the level of brain mGnRH and cGnRH-II mRNAs in immature beluga. PMID:19821139

  18. Transposon Mutagenesis Paired with Deep Sequencing of Caulobacter crescentus under Uranium Stress Reveals Genes Essential for Detoxification and Stress Tolerance

    PubMed Central

    Yung, Mimi C.; Park, Dan M.; Overton, K. Wesley; Blow, Matthew J.; Hoover, Cindi A.; Smit, John; Murray, Sean R.; Ricci, Dante P.; Christen, Beat; Bowman, Grant R.

    2015-01-01

    ABSTRACT The ubiquitous aquatic bacterium Caulobacter crescentus is highly resistant to uranium (U) and facilitates U biomineralization and thus holds promise as an agent of U bioremediation. To gain an understanding of how C. crescentus tolerates U, we employed transposon (Tn) mutagenesis paired with deep sequencing (Tn-seq) in a global screen for genomic elements required for U resistance. Of the 3,879 annotated genes in the C. crescentus genome, 37 were found to be specifically associated with fitness under U stress, 15 of which were subsequently tested through mutational analysis. Systematic deletion analysis revealed that mutants lacking outer membrane transporters (rsaFa and rsaFb), a stress-responsive transcription factor (cztR), or a ppGpp synthetase/hydrolase (spoT) exhibited a significantly lower survival rate under U stress. RsaFa and RsaFb, which are homologues of TolC in Escherichia coli, have previously been shown to mediate S-layer export. Transcriptional analysis revealed upregulation of rsaFa and rsaFb by 4- and 10-fold, respectively, in the presence of U. We additionally show that rsaFa mutants accumulated higher levels of U than the wild type, with no significant increase in oxidative stress levels. Our results suggest a function for RsaFa and RsaFb in U efflux and/or maintenance of membrane integrity during U stress. In addition, we present data implicating CztR and SpoT in resistance to U stress. Together, our findings reveal novel gene targets that are key to understanding the molecular mechanisms of U resistance in C. crescentus. IMPORTANCE Caulobacter crescentus is an aerobic bacterium that is highly resistant to uranium (U) and has great potential to be used in U bioremediation, but its mechanisms of U resistance are poorly understood. We conducted a Tn-seq screen to identify genes specifically required for U resistance in C. crescentus. The genes that we identified have previously remained elusive using other omics approaches and thus

  19. Homeobox genes in the Ctenophora: identification of paired-type and Hox homologues in the atentaculate ctenophore, Beroë ovata.

    PubMed

    Finnerty, J R; Master, V A; Irvine, S; Kourakis, M J; Warriner, S; Martindale, M Q

    1996-12-01

    Homeobox-containing genes are a phylogenetically widespread family of transcription factors that can regulate cell fates during embryogenesis. Two distinct homeobox gene sequences are described for the atentaculate ctenophore Beroë, the first homeoboxes to be identified in this phylum. Beroë homeobox fragments were cloned in a survey of genomic DNA using polymerase chain reaction (PCR). Parsimony, neighbor-joining, and maximum likelihood methods were used to infer the orthology of the ctenophore sequences to specific homeoboxes from higher metazoans including Drosophila, Caenorhabditis elegans, and humans. Cteno-paired appears most closely related to paired-typed homeoboxes. This is the first evidence of a paired-type homeobox in one of the so-called diploblastic animals. Cteno-Hoxl appears most closely related to members of the Hox class, particularly Antennapedia. PMID:8983194

  20. scAAV-Mediated Gene Transfer of Interleukin 1-Receptor Antagonist to Synovium and Articular Cartilage in Large Mammalian Joints

    PubMed Central

    Watson, Rachael S.; Broome, Ted A.; Levings, Padraic P.; Rice, Bret L.; Kay, Jesse D.; Smith, Andrew D.; Gouze, Elvire; Gouze, Jean-Noel; Dacanay, E. Anthony; Hauswirth, William W.; Nickerson, David M.; Dark, Michael J.; Colahan, Patrick T.; Ghivizzani, Steven C.

    2012-01-01

    With the long-term goal of developing a gene-based treatment for osteoarthritis (OA), we performed studies to evaluate the equine joint as a model for AAV-mediated gene transfer to large, weight-bearing human joints. A self-complementary AAV2 vector containing the coding regions for human interleukin-1 receptor antagonist (hIL-1Ra) or green fluorescent protein (GFP) was packaged in AAV capsid serotypes 1, 2, 5, 8 and 9. Following infection of human and equine synovial fibroblasts in culture, we found that both were only receptive to transduction with AAV1, 2 and 5. For these serotypes, however, transgene expression from the equine cells was consistently at least 10-fold higher. Analyses of AAV surface receptor molecules and intracellular trafficking of vector genomes implicate enhanced viral uptake by the equine cells. Following delivery of 1 × 1011 vector genomes of serotypes 2, 5 and 8 into the forelimb joints of the horse, all three enabled hIL-1Ra expression at biologically relevant levels and effectively transduced the same cell types, primarily synovial fibroblasts and, to a lesser degree, chondrocytes in articular cartilage. These results provide optimism that AAV vectors can be effectively adapted for gene delivery to large human joints affected by OA. PMID:23151520

  1. Targeted DNA methylation by homology-directed repair in mammalian cells. Transcription reshapes methylation on the repaired gene

    PubMed Central

    Morano, Annalisa; Angrisano, Tiziana; Russo, Giusi; Landi, Rosaria; Pezone, Antonio; Bartollino, Silvia; Zuchegna, Candida; Babbio, Federica; Bonapace, Ian Marc; Allen, Brittany; Muller, Mark T.; Chiariotti, Lorenzo; Gottesman, Max E.; Porcellini, Antonio; Avvedimento, Enrico V.

    2014-01-01

    We report that homology-directed repair of a DNA double-strand break within a single copy Green Fluorescent Protein (GFP) gene in HeLa cells alters the methylation pattern at the site of recombination. DNA methyl transferase (DNMT)1, DNMT3a and two proteins that regulate methylation, Np95 and GADD45A, are recruited to the site of repair and are responsible for selective methylation of the promoter-distal segment of the repaired DNA. The initial methylation pattern of the locus is modified in a transcription-dependent fashion during the 15–20 days following repair, at which time no further changes in the methylation pattern occur. The variation in DNA modification generates stable clones with wide ranges of GFP expression. Collectively, our data indicate that somatic DNA methylation follows homologous repair and is subjected to remodeling by local transcription in a discrete time window during and after the damage. We propose that DNA methylation of repaired genes represents a DNA damage code and is source of variation of gene expression. PMID:24137009

  2. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  3. Mammalian synthetic biology: emerging medical applications

    PubMed Central

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob

    2015-01-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  4. Mammalian synthetic biology: emerging medical applications.

    PubMed

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  5. Expression reduction in mammalian X chromosome evolution refutes Ohno’s hypothesis of dosage compensation

    PubMed Central

    Lin, Fangqin; Xing, Ke; Zhang, Jianzhi; He, Xionglei

    2012-01-01

    Susumu Ohno proposed in 1967 that, during the origin of mammalian sex chromosomes from a pair of autosomes, per-allele expression levels of X-linked genes were doubled to compensate for the degeneration of their Y homologs. This conjecture forms the foundation of the current evolutionary model of sex chromosome dosage compensation, but has been tested in mammals only indirectly via a comparison of expression levels between X-linked and autosomal genes in the same genome. The test results have been controversial, because examinations of different gene sets led to different conclusions that either support or refute Ohno’s hypothesis. Here we resolve this uncertainty by directly comparing mammalian X-linked genes with their one-to-one orthologs in species that diverged before the origin of the mammalian sex chromosomes. Analyses of RNA sequencing data and proteomic data provide unambiguous evidence for expression halving (i.e., no change in per-allele expression level) of X-linked genes during evolution, with the exception of only ∼5% of genes that encode members of large protein complexes. We conclude that Ohno’s hypothesis is rejected for the vast majority of genes, reopening the search for the evolutionary force driving the origin of chromosome-wide X inactivation in female mammals. PMID:22753487

  6. Expression reduction in mammalian X chromosome evolution refutes Ohno's hypothesis of dosage compensation.

    PubMed

    Lin, Fangqin; Xing, Ke; Zhang, Jianzhi; He, Xionglei

    2012-07-17

    Susumu Ohno proposed in 1967 that, during the origin of mammalian sex chromosomes from a pair of autosomes, per-allele expression levels of X-linked genes were doubled to compensate for the degeneration of their Y homologs. This conjecture forms the foundation of the current evolutionary model of sex chromosome dosage compensation, but has been tested in mammals only indirectly via a comparison of expression levels between X-linked and autosomal genes in the same genome. The test results have been controversial, because examinations of different gene sets led to different conclusions that either support or refute Ohno's hypothesis. Here we resolve this uncertainty by directly comparing mammalian X-linked genes with their one-to-one orthologs in species that diverged before the origin of the mammalian sex chromosomes. Analyses of RNA sequencing data and proteomic data provide unambiguous evidence for expression halving (i.e., no change in per-allele expression level) of X-linked genes during evolution, with the exception of only ∼5% of genes that encode members of large protein complexes. We conclude that Ohno's hypothesis is rejected for the vast majority of genes, reopening the search for the evolutionary force driving the origin of chromosome-wide X inactivation in female mammals. PMID:22753487

  7. The planar cell polarity gene Vangl2 is required for mammalian kidney-branching morphogenesis and glomerular maturation.

    PubMed

    Yates, Laura L; Papakrivopoulou, Jenny; Long, David A; Goggolidou, Paraskevi; Connolly, John O; Woolf, Adrian S; Dean, Charlotte H

    2010-12-01

    The planar cell polarity (PCP) pathway, incorporating non-canonical Wnt signalling, controls embryonic convergent (CE) extension, polarized cell division and ciliary orientation. It also limits diameters of differentiating renal tubules, with mutation of certain components of the pathway causing cystic kidneys. Mutations in mouse Vangl genes encoding core PCP proteins cause neural tube defects (NTDs) and Vangl2 mutations also impair branching of embryonic mouse lung airways. Embryonic metanephric kidneys also undergo branching morphogenesis and Vangl2 is known to be expressed in ureteric bud/collecting duct and metanephric mesenchymal/nephron lineages. These observations led us to investigate metanephroi in Vangl2 mutant mice, Loop-tail (Lp). Although ureteric bud formation is normal in Vangl2(Lp/Lp) embryos, subsequent in vivo and in vitro branching morphogenesis is impaired. Null mutant kidneys are short, consistent with a CE defect. Differentiating glomerular epithelia express several PCP genes (Vangl1/2, Celsr1, Scrib, Mpk1/2 and Fat4) and glomeruli in Vangl2(Lp/Lp) fetuses are smaller and contain less prominent capillary loops than wild-type littermates. Furthermore, Vangl2(Lp/+) kidneys had modest reduction in glomerular numbers postnatally. Vangl2(Lp/Lp) metanephroi contained occasional dilated tubules but no overt cystic phenotype. These data show for the first time that a PCP gene is required for normal morphogenesis of both the ureteric bud and metanephric mesenchyme-derived structures. It has long been recognized that certain individuals with NTDs are born with malformed kidneys, and recent studies have discovered VANGL mutations in some NTD patients. On the basis of our mutant mouse study, we suggest that PCP pathway mutations should be sought when NTD and renal malformation co-exist. PMID:20843830

  8. Mammalian aromatases.

    PubMed

    Conley, A; Hinshelwood, M

    2001-05-01

    Aromatase is the enzyme complex that catalyses the synthesis of oestrogens from androgens, and therefore it has unique potential to influence the physiological balance between the sex steroid hormones. Both aromatase cytochrome P450 (P450arom) and NADPH-cytochrome P450 reductase (reductase), the two essential components of the enzyme complex, are highly conserved among mammals and vertebrates. Aromatase expression occurs in the gonads and brain, and is essential for reproductive development and fertility. Of interest are the complex mechanisms involving alternative promoter utilization that have evolved to control tissue-specific expression in these tissues. In addition, in a number of species, including humans, expression of aromatase has a broader tissue distribution, including placenta, adipose and bone. The relevance of oestrogen synthesis and possibly androgen metabolism in these peripheral sites of expression is now becoming clear from studies in P450arom knockout (ArKO) mice and from genetic defects recognized recently in both men and women. Important species differences in the physiological roles of aromatase expression are also likely to emerge, despite the highly conserved nature of the enzyme system. The identification of functionally distinct, tissue-specific isozymes of P450arom in at least one mammal, pigs, and several species of fish indicates that there are additional subtle, but physiologically significant, species-specific roles for aromatase. Comparative studies of mammalian and other vertebrate aromatases will expand understanding of the role played by this ancient enzyme system in the evolution of reproduction and the adaptive influence of oestrogen synthesis on general health and well being. PMID:11427156

  9. Hacking the genetic code of mammalian cells.

    PubMed

    Schwarzer, Dirk

    2009-07-01

    A genetic shuttle: The highlighted article, which was recently published by Schultz, Geierstanger and co-workers, describes a straightforward scheme for enlarging the genetic code of mammalian cells. An orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for a new amino acid can be evolved in E. coli and subsequently transferred into mammalian cells. The feasibility of this approach was demonstrated by adding a photocaged lysine derivative to the genetic repertoire of a human cell line. PMID:19533721

  10. Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages

    PubMed Central

    Tallam, Aravind; Perumal, Thaneer M.; Antony, Paul M.; Jäger, Christian; Fritz, Joëlle V.; Vallar, Laurent; Balling, Rudi; del Sol, Antonio; Michelucci, Alessandro

    2016-01-01

    Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions. Its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalysing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. To this end, we studied IRG1 expression in human immune cells under different inflammatory stimuli, such as TNFα and IFNγ, in addition to lipopolysaccharides. Under these conditions, as previously shown in mouse macrophages, IRG1/CAD accumulates in mitochondria. Furthermore, using literature information and transcription factor prediction models, we re-constructed raw gene regulatory networks (GRNs) for IRG1 in mouse and human macrophages. We further implemented a contextualization algorithm that relies on genome-wide gene expression data to infer putative cell type-specific gene regulatory interactions in mouse and human macrophages, which allowed us to predict potential transcriptional regulators of IRG1. Among the computationally identified regulators, siRNA-mediated gene silencing of interferon regulatory factor 1 (IRF1) in macrophages significantly decreased the expression of IRG1/CAD at the gene and protein level, which correlated with a reduced production of itaconic acid. Using a synergistic approach of both computational and experimental methods, we here shed more light on the transcriptional machinery of IRG1 expression and could pave the way to therapeutic approaches targeting itaconic acid levels

  11. Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages.

    PubMed

    Tallam, Aravind; Perumal, Thaneer M; Antony, Paul M; Jäger, Christian; Fritz, Joëlle V; Vallar, Laurent; Balling, Rudi; Del Sol, Antonio; Michelucci, Alessandro

    2016-01-01

    Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions. Its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalysing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. To this end, we studied IRG1 expression in human immune cells under different inflammatory stimuli, such as TNFα and IFNγ, in addition to lipopolysaccharides. Under these conditions, as previously shown in mouse macrophages, IRG1/CAD accumulates in mitochondria. Furthermore, using literature information and transcription factor prediction models, we re-constructed raw gene regulatory networks (GRNs) for IRG1 in mouse and human macrophages. We further implemented a contextualization algorithm that relies on genome-wide gene expression data to infer putative cell type-specific gene regulatory interactions in mouse and human macrophages, which allowed us to predict potential transcriptional regulators of IRG1. Among the computationally identified regulators, siRNA-mediated gene silencing of interferon regulatory factor 1 (IRF1) in macrophages significantly decreased the expression of IRG1/CAD at the gene and protein level, which correlated with a reduced production of itaconic acid. Using a synergistic approach of both computational and experimental methods, we here shed more light on the transcriptional machinery of IRG1 expression and could pave the way to therapeutic approaches targeting itaconic acid levels

  12. Development of Saccharomyces cerevisiae as a model pathogen. A system for the genetic identification of gene products required for survival in the mammalian host environment.

    PubMed Central

    Goldstein, A L; McCusker, J H

    2001-01-01

    Saccharomyces cerevisiae, a close relative of the pathogenic Candida species, is an emerging opportunistic pathogen. An isogenic series of S. cerevisiae strains, derived from a human clinical isolate, were used to examine the role of evolutionarily conserved pathways in fungal survival in a mouse host. As is the case for the corresponding Candida albicans and Cryptococcus neoformans mutants, S. cerevisiae purine and pyrimidine auxotrophs were severely deficient in survival, consistent with there being evolutionary conservation of survival traits. Resistance to the antifungal drug 5-fluorocytosine was not deleterious and appeared to be slightly advantageous in vivo. Of mutants in three amino acid biosynthetic pathways, only leu2 mutants were severely deficient in vivo. Unlike the glyoxylate cycle, respiration was very important for survival; however, the mitochondrial genome made a respiration-independent contribution to survival. Mutants deficient in pseudohyphal formation were tested in vivo; flo11Delta mutants were phenotypically neutral while flo8Delta, tec1Delta, and flo8Delta tec1Delta mutants were slightly deficient. Because of its ease of genetic manipulation and the immense S. cerevisiae database, which includes the best annotated eukaryotic genome sequence, S. cerevisiae is a superb model system for the identification of gene products important for fungal survival in the mammalian host environment. PMID:11606528

  13. Inhibition of Mammalian Target of Rapamycin Complex 1 (mTORC1) Downregulates ELOVL1 Gene Expression and Fatty Acid Synthesis in Goat Fetal Fibroblasts

    PubMed Central

    Wang, Weipeng; He, Qiburi; Guo, Zhixin; Yang, Limin; Bao, Lili; Bao, Wenlei; Zheng, Xu; Wang, Yanfeng; Wang, Zhigang

    2015-01-01

    Elongation of very-long-chain fatty acids 1 (ELOVL1) is a ubiquitously expressed gene that belongs to the ELOVL family and regulates the synthesis of very-long-chain fatty acids (VLCFAs) and sphingolipids, from yeast to mammals. Mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of cell metabolism and is associated with fatty acids synthesis. In this study, we cloned the cDNA that encodes Cashmere goat (Capra hircus) ELOVL1 (GenBank Accession number KF549985) and investigated its expression in 10 tissues. ELOVL1 cDNA was 840 bp, encoding a deduced protein of 279 amino acids, and ELOVL1 mRNA was expressed in a wide range of tissues. Inhibition of mTORC1 by rapamycin decreased ELOVL1 expression and fatty acids synthesis in Cashmere goat fetal fibroblasts. These data show that ELOVL1 expression is regulated by mTORC1 and that mTORC1 has significant function in fatty acids synthesis in Cashmere goat. PMID:26204830

  14. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling.

    PubMed

    Tee, Andrew R; Fingar, Diane C; Manning, Brendan D; Kwiatkowski, David J; Cantley, Lewis C; Blenis, John

    2002-10-15

    Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder that occurs upon mutation of either the TSC1 or TSC2 genes, which encode the protein products hamartin and tuberin, respectively. Here, we show that hamartin and tuberin function together to inhibit mammalian target of rapamycin (mTOR)-mediated signaling to eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). First, coexpression of hamartin and tuberin repressed phosphorylation of 4E-BP1, resulting in increased association of 4E-BP1 with eIF4E; importantly, a mutant of TSC2 derived from TSC patients was defective in repressing phosphorylation of 4E-BP1. Second, the activity of S6K1 was repressed by coexpression of hamartin and tuberin, but the activity of rapamycin-resistant mutants of S6K1 were not affected, implicating mTOR in the TSC-mediated inhibitory effect on S6K1. Third, hamartin and tuberin blocked the ability of amino acids to activate S6K1 within nutrient-deprived cells, a process that is dependent on mTOR. These findings strongly implicate the tuberin-hamartin tumor suppressor complex as an inhibitor of mTOR and suggest that the formation of tumors within TSC patients may result from aberrantly high levels of mTOR-mediated signaling to downstream targets. PMID:12271141

  15. A COMPARATIVE ANALYSIS OF METHYLATION STATUS OF TUMOR SUPPRESSOR GENES IN PAIRED BIOPSY AND SERUM SAMPLES FROM CERVICAL CANCER PATIENTS AMONG NORTH INDIAN POPULATION.

    PubMed

    Jha, A K; Sharma, V; Nikbakht, M; Jain, V; Sehgal, A; Capalash, N; Kaur, J

    2016-02-01

    Tumor-specific genetic or epigenetic alterations have been detected in serum DNA in case of various types of cancers. In breast cancer, the detection of tumor suppressor gene hypermethylation has been reported in several body fluids. Promoter hypermethylation of some genes like MYOD1, CALCA, hTERT etc. has also been detected in serum samples from cervical cancer. The present study is the first report on the comparison of promoter hypermethylation of tumor suppressor genes likep14, p15, p16, p21, p27, p57, p53, p73, RARβ2, FHIT, DAPK, STAT1 and-RB1 genes in paired biopsy and serum samples from cervical cancer patients among north Indian population. This is also the first report on the hypermethylation of these genes in serum samples from cervical cancer patients among north Indian population. According to the results of the present study, promoter hypermethylation of these genes can also be detected in serum samples of cervical cancer patients. The sensitivity of detection of promoter hypermethylation in serum samples of cervical cancer patients as compared to paired biopsy samples was found to be around 83.3%. It was observed that promoter hypermethylation was mainly observed in the serum samples in the higher stages and very rarely in the lower stages. The present study clearly showed that serum of patients with cervical cancer can also be used to study methylated genes as biomarkers. PMID:27215041

  16. Positive Selection Linked with Generation of Novel Mammalian Dentition Patterns.

    PubMed

    Machado, João Paulo; Philip, Siby; Maldonado, Emanuel; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho

    2016-01-01

    A diverse group of genes are involved in the tooth development of mammals. Several studies, focused mainly on mice and rats, have provided a detailed depiction of the processes coordinating tooth formation and shape. Here we surveyed 236 tooth-associated genes in 39 mammalian genomes and tested for signatures of selection to assess patterns of molecular adaptation in genes regulating mammalian dentition. Of the 236 genes, 31 (∼13.1%) showed strong signatures of positive selection that may be responsible for the phenotypic diversity observed in mammalian dentition. Mammalian-specific tooth-associated genes had accelerated mutation rates compared with older genes found across all vertebrates. More recently evolved genes had fewer interactions (either genetic or physical), were associated with fewer Gene Ontology terms and had faster evolutionary rates compared with older genes. The introns of these positively selected genes also exhibited accelerated evolutionary rates, which may reflect additional adaptive pressure in the intronic regions that are associated with regulatory processes that influence tooth-gene networks. The positively selected genes were mainly involved in processes like mineralization and structural organization of tooth specific tissues such as enamel and dentin. Of the 236 analyzed genes, 12 mammalian-specific genes (younger genes) provided insights on diversification of mammalian teeth as they have higher evolutionary rates and exhibit different expression profiles compared with older genes. Our results suggest that the evolution and development of mammalian dentition occurred in part through positive selection acting on genes that previously had other functions. PMID:27613398

  17. The ancient mammalian KRAB zinc finger gene cluster on human chromosome 8q24.3 illustrates principles of C2H2 zinc finger evolution associated with unique expression profiles in human tissues

    PubMed Central

    2010-01-01

    Background Expansion of multi-C2H2 domain zinc finger (ZNF) genes, including the Krüppel-associated box (KRAB) subfamily, paralleled the evolution of tetrapodes, particularly in mammalian lineages. Advances in their cataloging and characterization suggest that the functions of the KRAB-ZNF gene family contributed to mammalian speciation. Results Here, we characterized the human 8q24.3 ZNF cluster on the genomic, the phylogenetic, the structural and the transcriptome level. Six (ZNF7, ZNF34, ZNF250, ZNF251, ZNF252, ZNF517) of the seven locus members contain exons encoding KRAB domains, one (ZNF16) does not. They form a paralog group in which the encoded KRAB and ZNF protein domains generally share more similarities with each other than with other members of the human ZNF superfamily. The closest relatives with respect to their DNA-binding domain were ZNF7 and ZNF251. The analysis of orthologs in therian mammalian species revealed strong conservation and purifying selection of the KRAB-A and zinc finger domains. These findings underscore structural/functional constraints during evolution. Gene losses in the murine lineage (ZNF16, ZNF34, ZNF252, ZNF517) and potential protein truncations in primates (ZNF252) illustrate ongoing speciation processes. Tissue expression profiling by quantitative real-time PCR showed similar but distinct patterns for all tested ZNF genes with the most prominent expression in fetal brain. Based on accompanying expression signatures in twenty-six other human tissues ZNF34 and ZNF250 revealed the closest expression profiles. Together, the 8q24.3 ZNF genes can be assigned to a cerebellum, a testis or a prostate/thyroid subgroup. These results are consistent with potential functions of the ZNF genes in morphogenesis and differentiation. Promoter regions of the seven 8q24.3 ZNF genes display common characteristics like missing TATA-box, CpG island-association and transcription factor binding site (TFBS) modules. Common TFBS modules partly

  18. Familial cortical dysplasia caused by mutation in the mammalian target of rapamycin regulator NPRL3.

    PubMed

    Sim, Joe C; Scerri, Thomas; Fanjul-Fernández, Miriam; Riseley, Jessica R; Gillies, Greta; Pope, Kate; van Roozendaal, Hanna; Heng, Julian I; Mandelstam, Simone A; McGillivray, George; MacGregor, Duncan; Kannan, Lakshminarayanan; Maixner, Wirginia; Harvey, A Simon; Amor, David J; Delatycki, Martin B; Crino, Peter B; Bahlo, Melanie; Lockhart, Paul J; Leventer, Richard J

    2016-01-01

    We describe first cousin sibling pairs with focal epilepsy, one of each pair having focal cortical dysplasia (FCD) IIa. Linkage analysis and whole-exome sequencing identified a heterozygous germline frameshift mutation in the gene encoding nitrogen permease regulator-like 3 (NPRL3). NPRL3 is a component of GAP Activity Towards Rags 1, a negative regulator of the mammalian target of rapamycin complex 1 signaling pathway. Immunostaining of resected brain tissue demonstrated mammalian target of rapamycin activation. Screening of 52 unrelated individuals with FCD identified 2 additional patients with FCDIIa and germline NPRL3 mutations. Similar to DEPDC5, NPRL3 mutations may be considered as causal variants in patients with FCD or magnetic resonance imaging-negative focal epilepsy. PMID:26285051

  19. Correction of point mutations at the endogenous locus of the dihydrofolate reductase gene using repair-PolyPurine Reverse Hoogsteen hairpins in mammalian cells.

    PubMed

    Solé, Anna; Ciudad, Carlos J; Chasin, Lawrence A; Noé, Véronique

    2016-06-15

    Correction of point mutations that lead to aberrant transcripts, often with pathological consequences, has been the focus of considerable research. In this work, repair-PPRHs are shown to be a new powerful tool for gene correction. A repair-PPRH consists of a PolyPurine Reverse Hoogsteen hairpin core bearing an extension sequence at one end, homologous to the DNA strand to be repaired but containing the wild type nucleotide instead of the mutation. Previously, we had corrected a single-point mutation with repair-PPRHs using a mutated version of a dihydrofolate reductase (dhfr) minigene. To further evaluate the utility of these molecules, different repair-PPRHs were designed to correct insertions, deletions, substitutions and a double substitution present in a collection of mutants at the endogenous locus of the dhfr gene, the product of which is the target of the chemotherapeutic agent methotrexate. We also describe an approach to use when the point mutation is far away from the homopyrimidine target domain. This strategy consists in designing Long-Distance- and Short-Distance-Repair-PPRHs where the PPRH core is bound to the repair tail by a five-thymidine linker. Surviving colonies in a DHFR selective medium, lacking glycine and sources of purines and thymidine, were analyzed by DNA sequencing, and by mRNA, protein and enzymatic measurements, confirming that all the dhfr mutants had been corrected. These results show that repair-PPRHs can be effective tools to accomplish a permanent correction of point mutations in the DNA sequence of mutant mammalian cells. PMID:27063945

  20. The Herbicide Atrazine Activates Endocrine Gene Networks via Non-Steroidal NR5A Nuclear Receptors in Fish and Mammalian Cells

    PubMed Central

    Suzawa, Miyuki; Ingraham, Holly A.

    2008-01-01

    Atrazine (ATR) remains a widely used broadleaf herbicide in the United States despite the fact that this s-chlorotriazine has been linked to reproductive abnormalities in fish and amphibians. Here, using zebrafish we report that environmentally relevant ATR concentrations elevated zcyp19a1 expression encoding aromatase (2.2 µg/L), and increased the ratio of female to male fish (22 µg/L). ATR selectively increased zcyp19a1, a known gene target of the nuclear receptor SF-1 (NR5A1), whereas zcyp19a2, which is estrogen responsive, remained unchanged. Remarkably, in mammalian cells ATR functions in a cell-specific manner to upregulate SF-1 targets and other genes critical for steroid synthesis and reproduction, including Cyp19A1, StAR, Cyp11A1, hCG, FSTL3, LHß, INHα, αGSU, and 11ß-HSD2. Our data appear to eliminate the possibility that ATR directly affects SF-1 DNA- or ligand-binding. Instead, we suggest that the stimulatory effects of ATR on the NR5A receptor subfamily (SF-1, LRH-1, and zff1d) are likely mediated by receptor phosphorylation, amplification of cAMP and PI3K signaling, and possibly an increase in the cAMP-responsive cellular kinase SGK-1, which is known to be upregulated in infertile women. Taken together, we propose that this pervasive and persistent environmental chemical alters hormone networks via convergence of NR5A activity and cAMP signaling, to potentially disrupt normal endocrine development and function in lower and higher vertebrates. PMID:18461179

  1. Paired box gene 2 is associated with estrogen receptor α in ovarian serous tumors: Potential theory basis for targeted therapy

    PubMed Central

    Wang, Min; Ma, Haifen

    2016-01-01

    It has been suggested that Paired box gene (PAX)2 is activated by estradiol via estrogen receptor (ER)α in breast and endometrial cancer. The expression of PAX2 was restricted to ovarian serous tumors and only one case was positive in borderline mucinous tumor in our previous study. In the present study, immunohistochemistry was performed to assess the expression of ERα in 58 cases of ovarian serous tumors, including 30 serous cystadenomas, 16 borderline serous cystadenomas, 12 serous carcinomas and 67 cases of ovarian mucinous tumors, including 29 mucinous cystadenoma, 23 borderline mucinous cystadenoma and 15 mucinous carcinoma, which were the same specimens with detection of PAX2 expression. The results demonstrated that ERα was expressed in 10% (3/30) of serous cystadenomas, 62.5% (10/16) borderline serous cystadenomas and 66.7% (8/12) serous carcinomas. The expression of ERα in borderline serous cystadenomas and serous carcinomas were significantly higher compared with that in serous cystadenomas (P<0.01). ERα was detected in 3.4% (1/29) mucinous cystadenoma, 26.1% (6/23) borderline mucinous cystadenoma and only 6.7% (1/15) mucinous carcinoma. Furthermore, a scatter plot of the expression of PAX2 and ERα revealed a linear correlation between them in ovarian serous tumors (P<0.0001). With few positive results, no correlation was determined in ovarian mucinous tumors. It was demonstrated that PAX2 is associated with ERα in ovarian serous tumors, and this may become a potential theory basis for targeted therapy for ovarian serous tumors. Further research is required to determine how PAX2 and ERα work together, and the role of targeted therapy in ovarian serous tumors. PMID:27446571

  2. DNA repair in mammalian embryos.

    PubMed

    Jaroudi, Souraya; SenGupta, Sioban

    2007-01-01

    Mammalian cells have developed complex mechanisms to identify DNA damage and activate the required response to maintain genome integrity. Those mechanisms include DNA damage detection, DNA repair, cell cycle arrest and apoptosis which operate together to protect the conceptus from DNA damage originating either in parental gametes or in the embryo's somatic cells. DNA repair in the newly fertilized preimplantation embryo is believed to rely entirely on the oocyte's machinery (mRNAs and proteins deposited and stored prior to ovulation). DNA repair genes have been shown to be expressed in the early stages of mammalian development. The survival of the embryo necessitates that the oocyte be sufficiently equipped with maternal stored products and that embryonic gene expression commences at the correct time. A Medline based literature search was performed using the keywords 'DNA repair' and 'embryo development' or 'gametogenesis' (publication dates between 1995 and 2006). Mammalian studies which investigated gene expression were selected. Further articles were acquired from the citations in the articles obtained from the preliminary Medline search. This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages. PMID:17141556

  3. Mammalian Lysine Histone Demethylase KDM2A Regulates E2F1-Mediated Gene Transcription in Breast Cancer Cells

    PubMed Central

    Rizwani, Wasia; Schaal, Courtney; Kunigal, Sateesh; Coppola, Domenico; Chellappan, Srikumar

    2014-01-01

    It is established that histone modifications like acetylation, methylation, phosphorylation and ubiquitination affect chromatin structure and modulate gene expression. Lysine methylation/demethylation on Histone H3 and H4 is known to affect transcription and is mediated by histone methyl transferases and histone demethylases. KDM2A/JHDM1A/FBXL11 is a JmjC-containing histone demethylase that targets mono- and dimethylated Lys36 residues of Histone H3; its function in breast cancer is not fully understood. Here we show that KDM2A is strongly expressed in myoepithelial cells (MEPC) in breast cancer tissues by immunohistochemistry. Ductal cells from ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDC) show positive staining for KDM2A, the expression decreases with disease progression to metastasis. Since breast MEPCs have tumor-suppressive and anti-angiogenic properties, we hypothesized that KDM2A could be contributing to some of these functions. Silencing KDM2A with small interfering RNAs demonstrated increased invasion and migration of breast cancer cells by suppressing a subset of matrix metalloproteinases (MMP-2, -9, -14 and -15), as seen by real-time PCR. HUVEC cells showed increased angiogenic tubule formation ability in the absence of KDM2A, with a concomitant increase in the expression of VEGF receptors, FLT-1 and KDR. KDM2A physically bound to both Rb and E2F1 in a cell cycle dependent manner and repressed E2F1 transcriptional activity. Chromatin immunoprecipitation (ChIP) assays revealed that KDM2A associates with E2F1-regulated proliferative promoters CDC25A and TS in early G-phase and dissociates in S-phase. Further, KDM2A could also be detected on MMP9, 14 and 15 promoters, as well as promoters of FLT1 and KDR. KDM2A could suppress E2F1-mediated induction of these promoters in transient transfection experiments. These results suggest a regulatory role for KDM2A in breast cancer cell invasion and migration, through the regulation of E2F1

  4. Medical and experimental mammalian genetics: A perspective

    SciTech Connect

    McKusick, V.A.; Roderick, T.H.; Mori, J.; Paul, N.W.

    1987-01-01

    This book contains 14 papers. Some of the titles are: Structure and Organization of Mammalian Chromosomes: Normal and Abnormal; Globin Gene Structure and the Nature of Mutation; Retroviral DNA Content of the Mouse Genome; Maternal Genes: Mitochondrial Diseases; Human Evolution; and Prospects for Gene Replacement Therapy.

  5. Loss of Tc-arrow and canonical Wnt signaling alters posterior morphology and pair-rule gene expression in the short-germ insect, Tribolium castaneum.

    PubMed

    Bolognesi, Renata; Fischer, Tamara D; Brown, Susan J

    2009-07-01

    Wnt signaling has been implicated in posterior patterning in short-germ insects, including the red flour beetle Tribolium castaneum (Bolognesi et al. Curr Biol 18:1624-1629, 2008b; Angelini and Kaufman Dev Biol 283:409-423, 2005; Miyawaki et al. Mech Dev 121:119-130, 2004). Specifically, depletion of Wnt ligands Tc-Wnt1 and Tc-WntD/8 produces Tribolium embryos lacking abdominal segments. Similar phenotypes are produced by depletion of Tc-porcupine (Tc-porc) or Tc-pangolin (Tc-pan), indicating that the signal is transmitted through the canonical Wnt pathway (Bolognesi et al. Curr Biol 18:1624-1629, 2008b). Here we show that RNAi for the receptor Tc-arrow produced similar truncated phenotypes, providing additional evidence supporting canonical signal transduction. Furthermore, since in Tribolium segments are defined sequentially by a pair-rule gene circuit that, when interrupted, produces truncated phenotypes (Choe et al. Proc Natl Acad Sci U S A 103:6560-6564, 2006), we investigated the relationship between loss of Wnt signaling and this pair-rule gene circuit. After depletion of the receptor Tc-arrow, expression of Tc-Wnt1 was noticeably absent from the growth zone, while Tc-WntD/8 was restricted to a single spot of expression in what remained of the posterior growth zone. The primary pair-rule genes Tc-runt (Tc-run) and Tc-even-skipped (Tc-eve) were expressed normally in the anterior segments, but were reduced to a single spot in the remnants of the posterior growth zone. Thus, expression of pair-rule genes and Tc-WntD/8 are similarly affected by depletion of Wnt signal and disruption of the posterior growth zone. PMID:19705150

  6. Synthetic Biology Platform for Sensing and Integrating Endogenous Transcriptional Inputs in Mammalian Cells.

    PubMed

    Angelici, Bartolomeo; Mailand, Erik; Haefliger, Benjamin; Benenson, Yaakov

    2016-08-30

    One of the goals of synthetic biology is to develop programmable artificial gene networks that can transduce multiple endogenous molecular cues to precisely control cell behavior. Realizing this vision requires interfacing natural molecular inputs with synthetic components that generate functional molecular outputs. Interfacing synthetic circuits with endogenous mammalian transcription factors has been particularly difficult. Here, we describe a systematic approach that enables integration and transduction of multiple mammalian transcription factor inputs by a synthetic network. The approach is facilitated by a proportional amplifier sensor based on synergistic positive autoregulation. The circuits efficiently transduce endogenous transcription factor levels into RNAi, transcriptional transactivation, and site-specific recombination. They also enable AND logic between pairs of arbitrary transcription factors. The results establish a framework for developing synthetic gene networks that interface with cellular processes through transcriptional regulators. PMID:27545896

  7. Genome-specific differential gene expressions in resynthesized Brassica allotetraploids from pair-wise crosses of three cultivated diploids revealed by RNA-seq

    PubMed Central

    Zhang, Dawei; Pan, Qi; Cui, Cheng; Tan, Chen; Ge, Xianhong; Shao, Yujiao; Li, Zaiyun

    2015-01-01

    Polyploidy is popular for the speciation of angiosperms but the initial stage of allopolyploidization resulting from interspecific hybridization and genome duplication is associated with different extents of changes in genome structure and gene expressions. Herein, the transcriptomes detected by RNA-seq in resynthesized Brassica allotetraploids (Brassica juncea, AABB; B. napus, AACC; B. carinata, BBCC) from the pair-wise crosses of the same three diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC) were compared to reveal the patterns of gene expressions from progenitor genomes and the effects of different types of genome combinations and cytoplasm, upon the genome merger and duplication. From transcriptomic analyses for leaves and silique walls, extensive expression alterations were revealed in these resynthesized allotetraploids relative to their diploid progenitors, as well as during the transition from vegetative to reproductive development, for differential and transgressive gene expressions were variable in numbers and functions. Genes involved in glucosinolates and DNA methylation were transgressively up-regulated among most samples, suggesting that gene expression regulation was immediately established after allopolyploidization. The expression of ribosomal protein genes was also tissue-specific and showed a similar expression hierarchy of rRNA genes. The balance between the co-up and co-down regulation was observed between reciprocal B. napus with different types of the cytoplasm. Our results suggested that gene expression changes occurred after initial genome merger and such profound alterations might enhance the growth vigor and adaptability of Brassica allotetraploids. PMID:26583027

  8. Genome-specific differential gene expressions in resynthesized Brassica allotetraploids from pair-wise crosses of three cultivated diploids revealed by RNA-seq.

    PubMed

    Zhang, Dawei; Pan, Qi; Cui, Cheng; Tan, Chen; Ge, Xianhong; Shao, Yujiao; Li, Zaiyun

    2015-01-01

    Polyploidy is popular for the speciation of angiosperms but the initial stage of allopolyploidization resulting from interspecific hybridization and genome duplication is associated with different extents of changes in genome structure and gene expressions. Herein, the transcriptomes detected by RNA-seq in resynthesized Brassica allotetraploids (Brassica juncea, AABB; B. napus, AACC; B. carinata, BBCC) from the pair-wise crosses of the same three diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC) were compared to reveal the patterns of gene expressions from progenitor genomes and the effects of different types of genome combinations and cytoplasm, upon the genome merger and duplication. From transcriptomic analyses for leaves and silique walls, extensive expression alterations were revealed in these resynthesized allotetraploids relative to their diploid progenitors, as well as during the transition from vegetative to reproductive development, for differential and transgressive gene expressions were variable in numbers and functions. Genes involved in glucosinolates and DNA methylation were transgressively up-regulated among most samples, suggesting that gene expression regulation was immediately established after allopolyploidization. The expression of ribosomal protein genes was also tissue-specific and showed a similar expression hierarchy of rRNA genes. The balance between the co-up and co-down regulation was observed between reciprocal B. napus with different types of the cytoplasm. Our results suggested that gene expression changes occurred after initial genome merger and such profound alterations might enhance the growth vigor and adaptability of Brassica allotetraploids. PMID:26583027

  9. Optical and Acoustical Techniques for Non-viral Gene Delivery to Mammalian Cells and In-situ Study of Cytoskeletal Mechanics

    NASA Astrophysics Data System (ADS)

    Ma, Zili

    surface acoustic waves, which not only achieved a high efficiency of cells permeabilization in a quick speed, but also allowed us to observe the permeabilization process in real time by microscope. This device is also compatible with biophotonics studies based on fs laser, which can be further developed as a powerful tool for optical gene delivery with the capability of precisely controlling the fluid on-chip by SAW. SAW devices could also achieve exogenous gene delivery through the cell membrane without the need of adding chemical agents. Our results showed that the membrane of mammalian adherent cells could be effectively perforated transiently by applying a SAW. The transfection of pEGFP plasmids into endothelial cells was carried out successfully via this SAW-induced cell perforation. The expression of GFP was observed after 24-hour incubation subsequent to the SAW treatment. In regard to the application of fs lasers in cellular and subcellular level studies, we applied the optical nanoscissoring technique based on fs lasers in biomechanical studies to study the mechanical properties of single SF in-situ. Integrated into a confocal microscope, the fs laser showed great power in manipulating targeted in-situ subcellular structures under real-time imaging without damaging nearby regions. Here, how oxidative challenges would alter the mechanical properties of SFs in myoblasts was firstly investigated using the optical nanoscissoring technique to comprehend the whole picture of muscle tissue injury and repair from the basics. The prestress of stress fibers after the oxidative challenges was found through our modified viscoelastic retraction model and experiment result.

  10. Two zebrafish alcohol dehydrogenases share common ancestry with mammalian class I, II, IV, and V alcohol dehydrogenase genes but have distinct functional characteristics.

    PubMed

    Reimers, Mark J; Hahn, Mark E; Tanguay, Robert L

    2004-09-10

    Ethanol is teratogenic to many vertebrates. We are utilizing zebrafish as a model system to determine whether there is an association between ethanol metabolism and ethanol-mediated developmental toxicity. Here we report the isolation and characterization of two cDNAs encoding zebrafish alcohol dehydrogenases (ADHs). Phylogenetic analysis of these zebrafish ADHs indicates that they share a common ancestor with mammalian class I, II, IV, and V ADHs. The genes encoding these zebrafish ADHs have been named Adh8a and Adh8b by the nomenclature committee. Both genes were genetically mapped to chromosome 13. The 1450-bp Adh8a is 82, 73, 72, and 72% similar at the amino acid level to the Baltic cod ADH8 (previously named ADH1), the human ADH1B2, the mouse ADH1, and the rat ADH1, respectively. Also, the 1484-bp Adh8b is 77, 68, 67, and 66% similar at the amino acid level to the Baltic cod ADH8, the human ADH1B2, the mouse ADH1, and the rat ADH1, respectively. ADH8A and ADH8B share 86% amino acid similarity. To characterize the functional properties of ADH8A and ADH8B, recombinant proteins were purified from SF-9 insect cells. Kinetic studies demonstrate that ADH8A metabolizes ethanol, with a V(max) of 13.4 nmol/min/mg protein, whereas ADH8B does not metabolize ethanol. The ADH8A K(m) for ethanol as a substrate is 0.7 mm. 4-Methyl pyrazole, a classical competitive inhibitor of class I ADH, failed to inhibit ADH8A. ADH8B has the capacity to efficiently biotransform longer chain primary alcohols (>/=5 carbons) and S-hydroxymethlyglutathione, whereas ADH8A does not efficiently metabolize these substrates. Finally, mRNA expression studies indicate that both ADH8A and ADH8B mRNA are expressed during early development and in the adult brain, fin, gill, heart, kidney, muscle, and liver. Together these results indicate that class I-like ADH is conserved in zebrafish, albeit with mixed functional properties. PMID:15231826

  11. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response.

    PubMed Central

    Haze, K; Okada, T; Yoshida, H; Yanagi, H; Yura, T; Negishi, M; Mori, K

    2001-01-01

    Eukaryotic cells control the levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element consisting of 19 nt (CCAATN(9)CCACG), the CCACG part of which is considered to provide specificity. We recently identified the basic leucine zipper (bZIP) protein ATF6 as a mammalian UPR-specific transcription factor; ATF6 is activated by ER stress-induced proteolysis and binds directly to CCACG. Here we report that eukaryotic cells express another bZIP protein closely related to ATF6 in both structure and function. This protein encoded by the G13 (cAMP response element binding protein-related protein) gene is constitutively synthesized as a type II transmembrane glycoprotein anchored in the ER membrane and processed into a soluble form upon ER stress as occurs with ATF6. The proteolytic processing of ATF6 and the G13 gene product is accompanied by their relocation from the ER to the nucleus; their basic regions seem to function as a nuclear localization signal. Overexpression of the soluble form of the G13 product constitutively activates the UPR, whereas overexpression of a mutant lacking the activation domain exhibits a strong dominant-negative effect. Furthermore, the soluble forms of ATF6 and the G13 gene product are unable to bind to several point mutants of the cis-acting ER stress response element in vitro that hardly respond to ER stress in vivo. We thus concluded that the two related bZIP proteins are crucial transcriptional regulators of the mammalian UPR, and propose calling the ATF6 gene product ATF6alpha and the G13 gene product ATF6beta. PMID:11256944

  12. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells

    SciTech Connect

    Gorman, C.M.; Moffat, L.F.; Howard, B.H.

    1982-09-01

    The authors constructed a series of recombinant genomes which directed expression of the enzyme chloramphenicol acetyltransferase (CAT) in mammalian cells. The prototype recombinant in this series, pSV2-cat, consisted of the beta-lactamase gene and origin of replication from pBR322 coupled to a simian virus 40 (SV40) early transcription region into which CAT coding sequences were inserted. Readily measured levels of CAT accumulated within 48 h after the introduction of pSV2-cat DNA into African green monkey kidney CV-1 cells. Because endogenous CAT activity is not present in CV-1 or other mammalian cells, and because rapid, sensitive assays for CAT activity are available, these recombinants provided a uniquely convenient system for monitoring the expression of foreign DNAs in tissue culture cells. To demonstrate the usefulness of this system, we constructed derivatives of pSV2-cat from which part or all of the SV 40 promoter region was removed. Deletion of one copy of the 72-base-pair repeat sequence in the SV40 promoter caused no significant decrease in CAT synthesis in monkey kidney CV-1 cells; however, an additional deletion of 50 base pairs from the second copy of the repeats reduced CAT synthesis to 11% of its level in the wild type. They also constructed a recombinant, pSVO-cat, in which the entire SV40 promoter region was removed and a unique HindIII site was substituted for the insertion of other promoter sequences.

  13. A robust tool for discriminative analysis and feature selection in paired samples impacts the identification of the genes essential for reprogramming lung tissue to adenocarcinoma

    PubMed Central

    2011-01-01

    Background Lung cancer is the leading cause of cancer deaths in the world. The most common type of lung cancer is lung adenocarcinoma (AC). The genetic mechanisms of the early stages and lung AC progression steps are poorly understood. There is currently no clinically applicable gene test for the early diagnosis and AC aggressiveness. Among the major reasons for the lack of reliable diagnostic biomarkers are the extraordinary heterogeneity of the cancer cells, complex and poorly understudied interactions of the AC cells with adjacent tissue and immune system, gene variation across patient cohorts, measurement variability, small sample sizes and sub-optimal analytical methods. We suggest that gene expression profiling of the primary tumours and adjacent tissues (PT-AT) handled with a rational statistical and bioinformatics strategy of biomarker prediction and validation could provide significant progress in the identification of clinical biomarkers of AC. To minimise sample-to-sample variability, repeated multivariate measurements in the same object (organ or tissue, e.g. PT-AT in lung) across patients should be designed, but prediction and validation on the genome scale with small sample size is a great methodical challenge. Results To analyse PT-AT relationships efficiently in the statistical modelling, we propose an Extreme Class Discrimination (ECD) feature selection method that identifies a sub-set of the most discriminative variables (e.g. expressed genes). Our method consists of a paired Cross-normalization (CN) step followed by a modified sign Wilcoxon test with multivariate adjustment carried out for each variable. Using an Affymetrix U133A microarray paired dataset of 27 AC patients, we reviewed the global reprogramming of the transcriptome in human lung AC tissue versus normal lung tissue, which is associated with about 2,300 genes discriminating the tissues with 100% accuracy. Cluster analysis applied to these genes resulted in four distinct gene groups

  14. GREAM: A Web Server to Short-List Potentially Important Genomic Repeat Elements Based on Over-/Under-Representation in Specific Chromosomal Locations, Such as the Gene Neighborhoods, within or across 17 Mammalian Species

    PubMed Central

    Chandrashekar, Darshan Shimoga; Dey, Poulami; Acharya, Kshitish K.

    2015-01-01

    Background Genome-wide repeat sequences, such as LINEs, SINEs and LTRs share a considerable part of the mammalian nuclear genomes. These repeat elements seem to be important for multiple functions including the regulation of transcription initiation, alternative splicing and DNA methylation. But it is not possible to study all repeats and, hence, it would help to short-list before exploring their potential functional significance via experimental studies and/or detailed in silico analyses. Result We developed the ‘Genomic Repeat Element Analyzer for Mammals’ (GREAM) for analysis, screening and selection of potentially important mammalian genomic repeats. This web-server offers many novel utilities. For example, this is the only tool that can reveal a categorized list of specific types of transposons, retro-transposons and other genome-wide repetitive elements that are statistically over-/under-represented in regions around a set of genes, such as those expressed differentially in a disease condition. The output displays the position and frequency of identified elements within the specified regions. In addition, GREAM offers two other types of analyses of genomic repeat sequences: a) enrichment within chromosomal region(s) of interest, and b) comparative distribution across the neighborhood of orthologous genes. GREAM successfully short-listed a repeat element (MER20) known to contain functional motifs. In other case studies, we could use GREAM to short-list repetitive elements in the azoospermia factor a (AZFa) region of the human Y chromosome and those around the genes associated with rat liver injury. GREAM could also identify five over-represented repeats around some of the human and mouse transcription factor coding genes that had conserved expression patterns across the two species. Conclusion GREAM has been developed to provide an impetus to research on the role of repetitive sequences in mammalian genomes by offering easy selection of more interesting

  15. Undetectable levels of N6-methyl adenine in mouse DNA: Cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase.

    PubMed

    Ratel, David; Ravanat, Jean-Luc; Charles, Marie-Pierre; Platet, Nadine; Breuillaud, Lionel; Lunardi, Joël; Berger, François; Wion, Didier

    2006-05-29

    Three methylated bases, 5-methylcytosine, N4-methylcytosine and N6-methyladenine (m6A), can be found in DNA. However, to date, only 5-methylcytosine has been detected in mammalian genomes. To reinvestigate the presence of m6A in mammalian DNA, we used a highly sensitive method capable of detecting one N6-methyldeoxyadenosine per million nucleosides. Our results suggest that the total mouse genome contains, if any, less than 10(3) m6A. Experiments were next performed on PRED28, a putative mammalian N6-DNA methyltransferase. The murine PRED28 encodes two alternatively spliced RNA. However, although recombinant PRED28 proteins are found in the nucleus, no evidence for an adenine-methyltransferase activity was detected. PMID:16684535

  16. Labeling proteins on live mammalian cells using click chemistry.

    PubMed

    Nikić, Ivana; Kang, Jun Hee; Girona, Gemma Estrada; Aramburu, Iker Valle; Lemke, Edward A

    2015-05-01

    We describe a protocol for the rapid labeling of cell-surface proteins in living mammalian cells using click chemistry. The labeling method is based on strain-promoted alkyne-azide cycloaddition (SPAAC) and strain-promoted inverse-electron-demand Diels-Alder cycloaddition (SPIEDAC) reactions, in which noncanonical amino acids (ncAAs) bearing ring-strained alkynes or alkenes react, respectively, with dyes containing azide or tetrazine groups. To introduce ncAAs site specifically into a protein of interest (POI), we use genetic code expansion technology. The protocol can be described as comprising two steps. In the first step, an Amber stop codon is introduced--by site-directed mutagenesis--at the desired site on the gene encoding the POI. This plasmid is then transfected into mammalian cells, along with another plasmid that encodes an aminoacyl-tRNA synthetase/tRNA (RS/tRNA) pair that is orthogonal to the host's translational machinery. In the presence of the ncAA, the orthogonal RS/tRNA pair specifically suppresses the Amber codon by incorporating the ncAA into the polypeptide chain of the POI. In the second step, the expressed POI is labeled with a suitably reactive dye derivative that is directly supplied to the growth medium. We provide a detailed protocol for using commercially available ncAAs and dyes for labeling the insulin receptor, and we discuss the optimal surface-labeling conditions and the limitations of labeling living mammalian cells. The protocol involves an initial cloning step that can take 4-7 d, followed by the described transfections and labeling reaction steps, which can take 3-4 d. PMID:25906116

  17. Differences in Muscle and Adipose Tissue Gene Expression and Cardio-Metabolic Risk Factors in the Members of Physical Activity Discordant Twin Pairs

    PubMed Central

    Leskinen, Tuija; Rinnankoski-Tuikka, Rita; Rintala, Mirva; Seppänen-Laakso, Tuulikki; Pöllänen, Eija; Alen, Markku; Sipilä, Sarianna; Kaprio, Jaakko; Kovanen, Vuokko; Rahkila, Paavo; Orešič, Matej; Kainulainen, Heikki; Kujala, Urho M.

    2010-01-01

    High physical activity/aerobic fitness predicts low morbidity and mortality. Our aim was to identify the most up-regulated gene sets related to long-term physical activity vs. inactivity in skeletal muscle and adipose tissues and to obtain further information about their link with cardio-metabolic risk factors. We studied ten same-sex twin pairs (age range 50–74 years) who had been discordant for leisure-time physical activity for 30 years. The examinations included biopsies from m. vastus lateralis and abdominal subcutaneous adipose tissue. RNA was analyzed with the genome-wide Illumina Human WG-6 v3.0 Expression BeadChip. For pathway analysis we used Gene Set Enrichment Analysis utilizing active vs. inactive co-twin gene expression ratios. Our findings showed that among the physically active members of twin pairs, as compared to their inactive co-twins, gene expression in the muscle tissue samples was chronically up-regulated for the central pathways related to energy metabolism, including oxidative phosphorylation, lipid metabolism and supportive metabolic pathways. Up-regulation of these pathways was associated in particular with aerobic fitness and high HDL cholesterol levels. In fat tissue we found physical activity-associated increases in the expression of polyunsaturated fatty acid metabolism and branched-chain amino acid degradation gene sets both of which associated with decreased ‘high-risk’ ectopic body fat and plasma glucose levels. Consistent with other findings, plasma lipidomics analysis showed up-regulation of the triacylglycerols containing the polyunsaturated fatty acids. Our findings identified skeletal muscle and fat tissue pathways which are associated with the long-term physical activity and reduced cardio-metabolic disease risk, including increased aerobic fitness. In particular, improved skeletal muscle oxidative energy and lipid metabolism as well as changes in adipocyte function and redistribution of body fat are associated with

  18. Novel single base-pair deletion in exon 1 of XK gene leading to McLeod syndrome with chorea, muscle wasting, peripheral neuropathy, acanthocytosis and haemolysis.

    PubMed

    Wiethoff, Sarah; Xiromerisiou, Georgia; Bettencourt, Conceição; Kioumi, Anna; Tsiptsios, Iakovos; Tychalas, Athanasios; Evaggelia, Markousi; George, Kaltsounis; Makris, Vasileios; Hardy, John; Houlden, Henry

    2014-04-15

    We present a 70-year-old male patient of Greek origin with choreatic movements of the tongue and face, lower limb muscle weakness, peripheral neuropathy, elevated creatinephosphokinase (CPK), acanthocytosis and haemolysis in the absence of Kell RBC antigens with an additional Factor IX-deficiency. Genetic testing for mutations in the three exons of the XK gene revealed a previously unreported hemizygous single base-pair frameshift deletion at exon 1 (c.229delC, p.Leu80fs). In conclusion, we hereby describe a rare phenotype of a patient with McLeod syndrome which was discovered coincidentally during routine blood group testing and consecutively genetically confirmed. PMID:24529944

  19. Cyclic AMP regulation of the human glycoprotein hormone. cap alpha. -subunit gene is mediated by an 18-base-pair element

    SciTech Connect

    Silver, B.J.; Bokar, J.A.; Virgin, J.B.; Vallen, E.A.; Milsted, A.; Nilson, J.H.

    1987-04-01

    cAMP regulates transcription of the gene encoding the ..cap alpha..-subunit of human chorionic gonadotropin (hCG) in the choriocarcinoma cells (BeWo). To define the sequences required for regulation by cAMP, the authors inserted fragments from the 5' flanking region of the ..cap alpha..-subunit gene into a test vector containing the simian virus 40 early promoter (devoid of its enhancer) linked to the bacterial chloramphenicol acetyltransferase (CAT) gene. Results from transient expression assays in BeWo cells indicated that a 1500-base-pair (bp) fragment conferred cAMP responsiveness on the CAT gene regardless of position or orientation of the insert relative to the viral promoter. A subfragment extending from position -169 to position -100 had the same effect on cAMP-induced expression. Furthermore, the entire stimulatory effect could be achieved with an 18-bp synthetic oligodeoxynucleotide corresponding to a direct repeat between position -146 and -111. In the absence of cAMP, the ..cap alpha..-subunit 5' flanking sequence also enhanced transcription from the simian virus 40 early promoter. They localized this enhancer activity to the same -169/-100 fragment containing the cAMP response element. The 18-bp element alone, however, had no effect on basal expression. Thus, this short DNA sequence serves as a cAMP response element and also functions independently of other promoter-regulatory elements located in the 5' flanking sequence of the ..cap alpha..-subunit gene.

  20. Rapid pair-wise synteny analysis of large bacterial genomes using web-based GeneOrder4.0

    PubMed Central

    2010-01-01

    Background The growing whole genome sequence databases necessitate the development of user-friendly software tools to mine these data. Web-based tools are particularly useful to wet-bench biologists as they enable platform-independent analysis of sequence data, without having to perform complex programming tasks and software compiling. Findings GeneOrder4.0 is a web-based "on-the-fly" synteny and gene order analysis tool for comparative bacterial genomics (ca. 8 Mb). It enables the visualization of synteny by plotting protein similarity scores between two genomes and it also provides visual annotation of "hypothetical" proteins from older archived genomes based on more recent annotations. Conclusions The web-based software tool GeneOrder4.0 is a user-friendly application that has been updated to allow the rapid analysis of synteny and gene order in large bacterial genomes. It is developed with the wet-bench researcher in mind. PMID:20178631

  1. Sources of Error in Mammalian Genetic Screens

    PubMed Central

    Sack, Laura Magill; Davoli, Teresa; Xu, Qikai; Li, Mamie Z.; Elledge, Stephen J.

    2016-01-01

    Genetic screens are invaluable tools for dissection of biological phenomena. Optimization of such screens to enhance discovery of candidate genes and minimize false positives is thus a critical aim. Here, we report several sources of error common to pooled genetic screening techniques used in mammalian cell culture systems, and demonstrate methods to eliminate these errors. We find that reverse transcriptase-mediated recombination during retroviral replication can lead to uncoupling of molecular tags, such as DNA barcodes (BCs), from their associated library elements, leading to chimeric proviral genomes in which BCs are paired to incorrect ORFs, shRNAs, etc. This effect depends on the length of homologous sequence between unique elements, and can be minimized with careful vector design. Furthermore, we report that residual plasmid DNA from viral packaging procedures can contaminate transduced cells. These plasmids serve as additional copies of the PCR template during library amplification, resulting in substantial inaccuracies in measurement of initial reference populations for screen normalization. The overabundance of template in some samples causes an imbalance between PCR cycles of contaminated and uncontaminated samples, which results in a systematic artifactual depletion of GC-rich library elements. Elimination of contaminating plasmid DNA using the bacterial endonuclease Benzonase can restore faithful measurements of template abundance and minimize GC bias. PMID:27402361

  2. Sources of Error in Mammalian Genetic Screens.

    PubMed

    Sack, Laura Magill; Davoli, Teresa; Xu, Qikai; Li, Mamie Z; Elledge, Stephen J

    2016-01-01

    Genetic screens are invaluable tools for dissection of biological phenomena. Optimization of such screens to enhance discovery of candidate genes and minimize false positives is thus a critical aim. Here, we report several sources of error common to pooled genetic screening techniques used in mammalian cell culture systems, and demonstrate methods to eliminate these errors. We find that reverse transcriptase-mediated recombination during retroviral replication can lead to uncoupling of molecular tags, such as DNA barcodes (BCs), from their associated library elements, leading to chimeric proviral genomes in which BCs are paired to incorrect ORFs, shRNAs, etc This effect depends on the length of homologous sequence between unique elements, and can be minimized with careful vector design. Furthermore, we report that residual plasmid DNA from viral packaging procedures can contaminate transduced cells. These plasmids serve as additional copies of the PCR template during library amplification, resulting in substantial inaccuracies in measurement of initial reference populations for screen normalization. The overabundance of template in some samples causes an imbalance between PCR cycles of contaminated and uncontaminated samples, which results in a systematic artifactual depletion of GC-rich library elements. Elimination of contaminating plasmid DNA using the bacterial endonuclease Benzonase can restore faithful measurements of template abundance and minimize GC bias. PMID:27402361

  3. Unusual properties of regulatory DNA from the Drosophila engrailed gene: three "pairing-sensitive" sites within a 1.6-kb region.

    PubMed

    Kassis, J A

    1994-03-01

    We have previously shown that a 2-kb fragment of engrailed DNA can suppress expression of a linked marker gene, white, in the P element vector CaSpeR. This suppression is dependent on the presence of two copies of engrailed DNA-containing P elements (P[en]) in proximity in the Drosophila genome (either in cis or in trans). In this study, the 2-kb fragment was dissected and found to contain three fragments of DNA which could mediate white suppression [called "pairing-sensitive sites" (PS)]. A PS site was also identified in regulatory DNA from the Drosophila escargot gene. The eye colors of six different P[en] insertions in the escargot gene suggest an interaction between P[en]-encoded and genome-encoded PS sites. I hypothesize that white gene expression from P[en] is repressed by the formation of a protein complex which is initiated at the engrailed PS sites and also requires interactions with flanking genomic DNA. Genes were sought which influence the function of PS sites. Mutations in some Polycomb and trithorax group genes were found to affect the eye color from some P[en] insertion sites. However, different mutations affected expression from different P[en] insertion sites and no one mutation was found to affect expression from all P[en] insertion sites examined. These results suggest that white expression from P[en] is not directly regulated by members of the Polycomb and trithorax group genes, but in some cases can be influenced by them. I propose that engrailed PS sites normally act to promote interactions between distantly located engrailed regulatory sites and the engrailed promoter. PMID:8005412

  4. A discrete region centered 22 base pairs upstream of the initiation site modulates transcription of Drosophila tRNAAsn genes.

    PubMed Central

    Lofquist, A K; Garcia, A D; Sharp, S J

    1988-01-01

    We have studied the mechanism by which 5'-flanking sequences modulate the in vitro transcription of eucaryotic tRNA genes. Using deletion and linker substitution mutagenesis, we have found that the 5'-flanking sequences responsible for the different in vitro transcription levels of three Drosophila tRNA5Asn genes are contained within a discrete region centered 22 nucleotides upstream from the transcription initiation site. In conjunction with the A-box intragenic control region, this upstream transcription-modulatory region functions in the selection mechanism for the site of transcription initiation. Since the transcription-modulatory region directs the position of the start site and the actual sequence of the transcription-modulatory region determines the level of tRNAAsn gene transcription, the possibility is raised that the transcription-modulatory region directs a transcription initiation event similar to open complex formation at procaryotic promoters. Images PMID:3141790

  5. A genome-wide screen identifies a single Β-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins

    SciTech Connect

    Xiao, Yanjing; Hughes, Austin L.; Ando, Junko; Matsuda, Yoichi; Cheng, Jan-Fang; Skinner-Noble, Donald; Zhang, Guolong

    2004-08-13

    Defensins comprise a large family of cationic antimicrobial peptides that are characterized by the presence of a conserved cysteine-rich defensin motif. Based on the spacing pattern of cysteines, these defensins are broadly divided into five groups, namely plant, invertebrate, {alpha}-, {beta}-, and {theta}-defensins, with the last three groups being mostly found in mammalian species. However, the evolutionary relationships among these five groups of defensins remain controversial.

  6. Comparison of KRAS and PIK3CA gene status between primary tumors and paired metastases in colorectal cancer

    PubMed Central

    He, Qiong; Xu, Qi; Wu, Wei; Chen, Lei; Sun, Weijing; Ying, Jieer

    2016-01-01

    Purpose In metastatic or recurrent colorectal cancer (MRCRC), the concordance of Kirsten rat sarcoma viral oncogene homolog (KRAS) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) mutation status between the primary tumors and metastases is still controversial. The purpose of this study was to evaluate the association between KRAS and PIK3CA mutational status and various clinicopathologic features, and compare their genotype in primary tumors with that of the paired metastatic tumors. Method We compared the mutation status of KRAS and PIK3CA between the primary tumors and the paired metastases of 59 MRCRC patients with available tissues (resection or biopsy). The presence of KRAS and PIK3CA mutations were determined by direct sequencing analysis. Results Seventeen patients (28.8%) had the KRAS mutation and 46 patients (80.0%) had the PIK3CA mutation when considering both the primary and metastatic sites. KRAS mutation was observed in ten primary tumors and eleven related metastases (16.9% vs 18.6%), while PIK3CA mutation was found in 26 primary tumors and 32 related metastases (44.1% vs 54.2%). KRAS status was concordant between primary and metastatic sites in 45 patients (76.3%, kappa =0.157), while the concordance of PIK3CA status was only found in 25 patients (42.4%, kappa =−0.141). The PIK3CA status discordance rate was significantly higher in 40 patients undergoing metachronous resection of primary tumor or metastasis, compared with that in 19 patients with synchronous resection of primary tumor or metastasis (67.5% [27/40] vs 36.8% [7/19]; P=0.026). Conclusion Our results demonstrate that low concordance of KRAS and high discordance of PIK3CA mutational status exist between the primary tumors and paired metastasis, and these findings remind us to have second thoughts about the need to evaluate metastatic tumors separately rather than only based on the primary tumor data when targeted therapy is considered. PMID:27143928

  7. Enhancer Evolution across 20 Mammalian Species

    PubMed Central

    Villar, Diego; Berthelot, Camille; Aldridge, Sarah; Rayner, Tim F.; Lukk, Margus; Pignatelli, Miguel; Park, Thomas J.; Deaville, Robert; Erichsen, Jonathan T.; Jasinska, Anna J.; Turner, James M.A.; Bertelsen, Mads F.; Murchison, Elizabeth P.; Flicek, Paul; Odom, Duncan T.

    2015-01-01

    Summary The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution. PMID:25635462

  8. cDNA cloning, expression analysis, and chromosomal localization of a gene with high homology to wheat eIF-(iso)4F and mammalian eIF-4G

    SciTech Connect

    Shaughnessy, J.D. Jr.; Jenkins, N.A.; Copeland, N.G.

    1997-01-15

    A novel mammalian gene, Eif4g2, with a high degree of homology to the p82 subunit of the wheat germ eukaryotic translation initiation factor eIF-(iso)4F and mammalian eIF-4G has been isolated. Zoo blot analysis indicates that Eif4g2 is a single-copy gene that is highly conserved among vertebrates. Northern blot analysis shows that Eif4g2 is ubiquitously expressed at high levels in all human and mouse tissues examined. The 3810-nucleotide Eif4g2 cDNA contains a 907-amino-acid open reading frame that codes for a polypeptide with a predicted molecular mass of 102 kDa. The Eif4g2 polypeptide exhibits an overall similarity to wheat p82 of 52%. A 248-amino-acid segment at the amino-terminal end of both peptides exhibits 63% similarity and contains conserved potential RNA binding domains and a phosphorylation site. The Eif4g2 polypeptide contains multiple potential N-linked glycosylation sites as well as protein kinase C and casein kinase II phosphorylation sites. Southern blot analysis of DNA from interspecific backcross mice shows that Eif4g2 is localized to distal mouse chromosome 7 in a region syntenic with human chromosome 11p15. 25 refs., 5 figs.

  9. Germline cell death is inhibited by P-element insertions disrupting the dcp-1/pita nested gene pair in Drosophila.

    PubMed Central

    Laundrie, Bonni; Peterson, Jeanne S; Baum, Jason S; Chang, Jeffrey C; Fileppo, Dana; Thompson, Sharona R; McCall, Kimberly

    2003-01-01

    Germline cell death in Drosophila oogenesis is controlled by distinct signals. The death of nurse cells in late oogenesis is developmentally regulated, whereas the death of egg chambers during mid-oogenesis is induced by environmental stress or developmental abnormalities. P-element insertions in the caspase gene dcp-1 disrupt both dcp-1 and the outlying gene, pita, leading to lethality and defective nurse cell death in late oogenesis. By isolating single mutations in the two genes, we have found that the loss of both genes contributes to this ovary phenotype. Mutants of pita, which encodes a C2H2 zinc-finger protein, are homozygous lethal and show dumpless egg chambers and premature nurse cell death in germline clones. Early nurse cell death is not observed in the dcp-1/pita double mutants, suggesting that dcp-1+ activity is required for the mid-oogenesis cell death seen in pita mutants. dcp-1 mutants are viable and nurse cell death in late oogenesis occurs normally. However, starvation-induced germline cell death during mid-oogenesis is blocked, leading to a reduction and inappropriate nuclear localization of the active caspase Drice. These findings suggest that the combinatorial loss of pita and dcp-1 leads to the increased survival of abnormal egg chambers in mutants bearing the P-element alleles and that dcp-1 is essential for cell death during mid-oogenesis. PMID:14704173

  10. Mammalian Wax Biosynthesis

    PubMed Central

    Cheng, Jeffrey B.; Russell, David W.

    2009-01-01

    Wax monoesters are synthesized by the esterification of fatty alcohols and fatty acids. A mammalian enzyme that catalyzes this reaction has not been isolated. We used expression cloning to identify cDNAs encoding a wax synthase in the mouse preputial gland. The wax synthase gene is located on the X chromosome and encodes a member of the acyltransferase family of enzymes that synthesize neutral lipids. Expression of wax synthase in cultured cells led to the formation of wax monoesters from straight chain saturated, unsaturated, and polyunsaturated fatty alcohols and acids. Polyisoprenols also were incorporated into wax monoesters by the enzyme. The wax synthase had little or no ability to synthesize cholesteryl esters, diacylglycerols, or triacylglycerols, whereas other acyltransferases, including the acyl-CoA:monoacylglycerol acyltransferase 1 and 2 enzymes and the acyl-CoA:diacylglycerol acyltransferase 1 and 2 enzymes, exhibited modest wax monoester synthesis activities. Confocal light microscopy indicated that the wax synthase was localized in membranes of the endoplasmic reticulum. Wax synthase mRNA was abundant in tissues rich in sebaceous glands such as the preputial gland and eyelid and was present at lower levels in other tissues. Coexpression of cDNAs specifying fatty acyl-CoA reductase 1 and wax synthase led to the synthesis of wax monoesters. The data suggest that wax monoester synthesis in mammals involves a two step biosynthetic pathway catalyzed by fatty acyl-CoA reductase and wax synthase enzymes. PMID:15220349

  11. Pick a Pair. Pancake Pairs

    ERIC Educational Resources Information Center

    Miller, Pat

    2005-01-01

    Cold February weather and pancakes are a traditional pairing. Pancake Day began as a way to eat up the foods that were abstained from in Lent--traditionally meat, fat, eggs and dairy products. The best-known pancake event is The Pancake Day Race in Buckinghamshire, England, which has been run since 1445. This column describes pairs of books that…

  12. A 24-base-pair sequence 3' to the human erythropoietin gene contains a hypoxia-responsive transcriptional enhancer.

    PubMed Central

    Madan, A; Curtin, P T

    1993-01-01

    Erythropoietin (Epo) synthesis increases in response to hypoxia. The hepatoma cell line Hep 3B produces low basal levels of Epo mRNA which increase markedly with hypoxia. To define the sequences necessary for this response, we linked fragments of the human Epo gene to a luciferase vector, introduced these plasmids into Hep 3B cells and assayed for luciferase activity after growth in 1% or 21% oxygen. A 621-bp Epo promoter fragment resulted in a 2.4-fold increase in luciferase activity with hypoxia. We tested several Epo gene fragments upstream of this Epo promoter fragment and found that a 613-bp Bgl II-Pvu II 3' fragment had a 10-fold increase in activity with hypoxia regardless of orientation. This fragment had a similar level of activity when linked to a simian virus 40 promoter. Portions of this fragment retained activity, including a 38-bp Apa I-Taq I fragment that had a 17-fold increase in activity with hypoxia. Deletion of nt 4-13 or 19-28 from this 38-bp fragment resulted in a loss of activity. The 24-bp upstream portion of the 38-bp fragment showed an 8-fold increase in activity with hypoxia. However, deletion of nt 19-24 or mutagenesis of nt 21 or 22 in this 24-bp fragment resulted in loss of activity. Our studies indicate that the transcriptional response of the human Epo gene to hypoxia is mediated in part by promoter sequences and to a greater degree by an enhancer element located in a 24-bp portion of the 3' flanking sequence of the gene. PMID:8387202

  13. GAS2 and GAS4, a Pair of Developmentally Regulated Genes Required for Spore Wall Assembly in Saccharomyces cerevisiae▿

    PubMed Central

    Ragni, Enrico; Coluccio, Alison; Rolli, Eleonora; Rodriguez-Peña, José Manuel; Colasante, Gaia; Arroyo, Javier; Neiman, Aaron M.; Popolo, Laura

    2007-01-01

    The GAS multigene family of Saccharomyces cerevisiae is composed of five paralogs (GAS1 to GAS5). GAS1 is the only one of these genes that has been characterized to date. It encodes a glycosylphosphatidylinositol-anchored protein functioning as a β(1,3)-glucan elongase and required for proper cell wall assembly during vegetative growth. In this study, we characterize the roles of the GAS2 and GAS4 genes. These genes are expressed exclusively during sporulation. Their mRNA levels showed a peak at 7 h from induction of sporulation and then decreased. Gas2 and Gas4 proteins were detected and reached maximum levels between 8 and 10 h from induction of sporulation, a time roughly coincident with spore wall assembly. The double null gas2 gas4 diploid mutant showed a severe reduction in the efficiency of sporulation, an increased permeability of the spores to exogenous substances, and production of inviable spores, whereas the single gas2 and gas4 null diploids were similar to the parental strain. An analysis of spore ultrastructure indicated that the loss of Gas2 and Gas4 proteins affected the proper attachment of the glucan to the chitosan layer, probably as a consequence of the lack of coherence of the glucan layer. The ectopic expression of GAS2 and GAS4 genes in a gas1 null mutant revealed that these proteins are redundant versions of Gas1p specialized to function in a compartment at a pH value close to neutral. PMID:17189486

  14. Expression of a gene in a 400-base-pair fragment of colicin plasmid ColE2-P9 is sufficient to cause host cell lysis.

    PubMed Central

    Pugsley, A P; Schwartz, M

    1983-01-01

    The colicin E2 immunity (ceiB) and lysis (celB) genes of colicin plasmid ColE2-P9 were cloned as a 900-base-pair insert under the control of the lac promoter in high-copy-number plasmid pUR222. Hosts carrying this plasmid were immune to colicin E2, produced increased amounts of immunity protein (molecular weight, 9,000) and two smaller proteins (molecular weights, 5,000 and 3,000), and lysed when incubated in medium containing isopropyl-beta-D-thiogalactopyranoside (IPTG). A 400-base-pair lacp-distal fragment derived from the insert in this plasmid was recloned in the same orientation into pUR222. Although hosts carrying this plasmid also lysed when grown in the presence of IPTG, they were sensitive to colicin E2 and produced increased amounts of the 5,000- and 3,000-molecular-weight proteins (but not the full-length immunity protein) when treated with IPTG. The results were consistent with the idea that expression of celB (production of the 5,000- and 3,000-molecular-weight proteins) is sufficient to cause host cell lysis in the absence of colicin production and derepression of the host cell SOS system. Images PMID:6352670

  15. Cytotoxic activity of Bacillus thuringiensis Cry proteins on mammalian cells transfected with cadherin-like Cry receptor gene of Bombyx mori (silkworm).

    PubMed Central

    Tsuda, Yoko; Nakatani, Fumiki; Hashimoto, Keiko; Ikawa, Satoshi; Matsuura, Chikako; Fukada, Takashi; Sugimoto, Kenji; Himeno, Michio

    2003-01-01

    Cry1Aa, an insecticidal protein produced by Bacillus thuringiensis, has been shown to bind to cadherin-like protein, BtR175, in Bombyx mori (silkworm) midgut. We previously reported three variant alleles of BtR175 (BtR175a, b and c). When transiently expressed in COS7 cells, all the three BtR175 variants bound to Cry1Aa. We stably expressed BtR175b in HEK293 cells. These BtR175b-expressing cells swelled and died in the presence of activated Cry1Aa in a dose- and time-dependent manner, showing that BtR175b itself can impart Cry1Aa-susceptibility to mammalian cells. These cells were more susceptible to Cry1Aa than to Cry1Ab and Cry1Ac. Since dispersed B. mori midgut cells were reported to be highly susceptible to Cry1Ac, this result suggested that other Cry1Ac-specific receptor(s) were simultaneously working with BtR175 in the midgut cells. Advantages are also discussed of applying these transfected mammalian cells to toxicity assays of mutant Cry proteins. PMID:12403648

  16. Performance, serum amino acid concentrations and expression of selected genes in pair-fed growing pigs exposed to high ambient temperatures.

    PubMed

    Morales, A; Grageola, F; García, H; Arce, N; Araiza, B; Yáñez, J; Cervantes, M

    2014-10-01

    Heat stress (HS) depresses pig performance mainly because of appetite reduction, although other factors involved in the cellular availability of nutrients may also contribute to that depression. An experiment was conducted with twelve pair-fed pigs (30.3 ± 2.7 kg BW) to examine the effect of severe HS (up to 45 °C) on the expression of genes coding for two cationic amino acid (AA) transporters (b(0,+) AT and CAT-1), leptin, heat-shock protein (Hsp-90) and myosin in several tissues; serum concentrations (SC) of AA; and performance. There were two treatments: Comfort, pigs housed at an average temperature of 22 (±2) °C; and HS, pigs housed in a similar room with no climate control, where temperature was raised up to 45 °C. All pigs received the same wheat-soybean meal diet and had similar daily feed intake. Comfort pigs had a higher daily gain and better gain/feed ratio than HS pigs (p < 0.05). The expression of b(0,+) AT in jejunum and liver, that of myosin in the Semitendinosus muscle, and leptin in adipose tissue was lower, but CAT-1 in jejunum and liver, and Hsp-90 in liver was higher in HS pigs. The SC of Lys and Met in HS pigs were around 55% and 20%, respectively, of that in Comfort pigs (p < 0.05). In conclusion, HS affects the expression of cationic AA transporters, myosin, Hsp-90, leptin; the SC of Lys and Met; and the performance of pair-fed pigs. These results suggest that HS-related changes in gene expression affect the performance of pigs beyond the effect caused by the reduction in voluntary feed intake. PMID:24393083

  17. Ecological adaptation determines functional mammalian olfactory subgenomes

    PubMed Central

    Hayden, Sara; Bekaert, Michaël; Crider, Tess A.; Mariani, Stefano; Murphy, William J.; Teeling, Emma C.

    2010-01-01

    The ability to smell is governed by the largest gene family in mammalian genomes, the olfactory receptor (OR) genes. Although these genes are well annotated in the finished human and mouse genomes, we still do not understand which receptors bind specific odorants or how they fully function. Previous comparative studies have been taxonomically limited and mostly focused on the percentage of OR pseudogenes within species. No study has investigated the adaptive changes of functional OR gene families across phylogenetically and ecologically diverse mammals. To determine the extent to which OR gene repertoires have been influenced by habitat, sensory specialization, and other ecological traits, to better understand the functional importance of specific OR gene families and thus the odorants they bind, we compared the functional OR gene repertoires from 50 mammalian genomes. We amplified more than 2000 OR genes in aquatic, semi-aquatic, and flying mammals and coupled these data with 48,000 OR genes from mostly terrestrial mammals, extracted from genomic projects. Phylogenomic, Bayesian assignment, and principle component analyses partitioned species by ecotype (aquatic, semi-aquatic, terrestrial, flying) rather than phylogenetic relatedness, and identified OR families important for each habitat. Functional OR gene repertoires were reduced independently in the multiple origins of aquatic mammals and were significantly divergent in bats. We reject recent neutralist views of olfactory subgenome evolution and correlate specific OR gene families with physiological requirements, a preliminary step toward unraveling the relationship between specific odors and respective OR gene families. PMID:19952139

  18. Genetic variants and effects on milk traits of the caprine paired-like homeodomain transcription factor 2 (PITX2) gene in dairy goats.

    PubMed

    Zhao, Haiyu; Wu, Xianfeng; Cai, Hanfang; Pan, Chuanying; Lei, Chuzhao; Chen, Hong; Lan, Xianyong

    2013-12-15

    The paired-like homeodomain transcription factor 2 (PITX2) gene plays a critical role in cell proliferation, differentiation, hematopoiesis and organogenesis. This gene regulates several genes' expressions in the Wnt/beta-catenin and POU1F1 pathways, thereby probably affecting milk performance. The goal of this study was to characterize the genetic variants of the PITX2 gene and test their associations with milk traits in dairy goats. Herein, four novel single nucleotide polymorphisms (SNPs), AC_000163:g.18117T>C, g.18161C>G, g.18322C>A and g.18353T>C, within the caprine PITX2 gene, were found in two famous Chinese dairy goat breeds. These SNPs mapping at Cys28Arg, Pro42Pro, IVS1+79C>A and IVS1+110T>C, were genotyped by the MvaI, SmaI, MspI and RsaI aCRS-RFLP or PCR-RFLP methods, respectively. Accordingly, two main haplotypes (CGCT and CGCC) were identified among the specimens. Association testing revealed that the SmaI and RsaI polymorphisms were significantly associated with the milk fat content, milk lactose content and milk density (P<0.05 or P<0.01) in the Guanzhong (GZ) dairy goats, respectively. At the same time, the RsaI locus was also found to significantly link to the second lactation milk yield, milk fat content, milk lactose content, milk density and milk total solid content (P<0.05 or P<0.01) in the Xinong Saanen (XNSN) dairy goats, respectively. These results indicated that the caprine PITX2 gene had the significant effects on milk traits. Hence, the RsaI and SmaI loci could be regarded as two DNA markers for selecting superior milk performance in dairy goats. These preliminary findings not only would extend the spectrum of genetic variation of the goat PITX2 gene, but also would contribute to implementing marker-assisted selection (MAS) in breeding and genetics in dairy goats. PMID:24076438

  19. Light and auxin responsive cytochrome P450s from Withania somnifera Dunal: cloning, expression and molecular modelling of two pairs of homologue genes with differential regulation.

    PubMed

    Srivastava, Sudhakar; Sangwan, Rajender Singh; Tripathi, Sandhya; Mishra, Bhawana; Narnoliya, L K; Misra, L N; Sangwan, Neelam S

    2015-11-01

    Cytochrome P450s (CYPs) catalyse a wide variety of oxygenation/hydroxylation reactions that facilitate diverse metabolic functions in plants. Specific CYP families are essential for the biosynthesis of species-specialized metabolites. Therefore, we investigated the role of different CYPs related to secondary metabolism in Withania somnifera, a medicinally important plant of the Indian subcontinent. In this study, complete complementary DNAs (cDNAs) of four different CYP genes were isolated and christened as WSCYP93Id, WSCYP93Sm, WSCYP734B and WSCYP734R. These cDNAs encoded polypeptides comprising of 498, 496, 522 and 550 amino acid residues with their deduced molecular mass of 56.7, 56.9, 59.4 and 62.2 kDa, respectively. Phylogenetic study and molecular modelling analysis of the four cloned WSCYPs revealed their categorization into two CYP families (CYP83B1 and CYP734A1) belonging to CYP71 and CYP72 clans, respectively. BLASTp searches showed similarity of 75 and 56 %, respectively, between the two CYP members of CYP83B1 and CYP734A1 with major variances exhibited in their N-terminal regions. The two pairs of homologues exhibited differential expression profiles in the leaf tissues of selected chemotypes of W. somnifera as well as in response to treatments such as methyl jasmonate, wounding, light and auxin. Light and auxin regulated two pairs of WSCYP homologues in a developing seedling in an interesting differential manner. Their lesser resemblance and homology with other CYP sequences suggested these genes to be more specialized and distinct ones. The results on chemotype-specific expression patterns of the four genes strongly suggested their key/specialized involvement of the CYPs in the biosynthesis of chemotype-specific metabolites, though their further biochemical characterization would reveal the specificity in more detail. It is revealed that WSCYP93Id and WSCYP93Sm may be broadly involved in the oxygenation reactions in the plant and, thereby, control

  20. PIntron: a fast method for detecting the gene structure due to alternative splicing via maximal pairings of a pattern and a text

    PubMed Central

    2012-01-01

    Background A challenging issue in designing computational methods for predicting the gene structure into exons and introns from a cluster of transcript (EST, mRNA) sequences, is guaranteeing accuracy as well as efficiency in time and space, when large clusters of more than 20,000 ESTs and genes longer than 1 Mb are processed. Traditionally, the problem has been faced by combining different tools, not specifically designed for this task. Results We propose a fast method based on ad hoc procedures for solving the problem. Our method combines two ideas: a novel algorithm of proved small time complexity for computing spliced alignments of a transcript against a genome, and an efficient algorithm that exploits the inherent redundancy of information in a cluster of transcripts to select, among all possible factorizations of EST sequences, those allowing to infer splice site junctions that are largely confirmed by the input data. The EST alignment procedure is based on the construction of maximal embeddings, that are sequences obtained from paths of a graph structure, called embedding graph, whose vertices are the maximal pairings of a genomic sequence T and an EST P. The procedure runs in time linear in the length of P and T and in the size of the output. The method was implemented into the PIntron package. PIntron requires as input a genomic sequence or region and a set of EST and/or mRNA sequences. Besides the prediction of the full-length transcript isoforms potentially expressed by the gene, the PIntron package includes a module for the CDS annotation of the predicted transcripts. Conclusions PIntron, the software tool implementing our methodology, is available at http://www.algolab.eu/PIntron under GNU AGPL. PIntron has been shown to outperform state-of-the-art methods, and to quickly process some critical genes. At the same time, PIntron exhibits high accuracy (sensitivity and specificity) when benchmarked with ENCODE annotations. PMID:22537006

  1. Walleye Dermal Sarcoma Virus: OrfA N-Terminal End Inhibits the Activity of a Reporter Gene Directed by Eukaryotic Promoters and Has a Negative Effect on the Growth of Fish and Mammalian Cells

    PubMed Central

    Zhang, Z.; Martineau, D.

    1999-01-01

    Walleye dermal sarcoma virus (WDSV) is a fish retrovirus causing a skin tumor termed walleye dermal sarcoma, which develops and regresses on a seasonal basis. The WDSV genome contains three short open reading frames designated orfA, orfB, and orfC in addition to the viral structural genes, gag, pol, and env. orfA and orfB transcripts are detected in tumors by reverse transcription-PCR. Recently, OrfA, whose amino acid sequence is similar to that of cyclins A and D, has been shown to complement a cyclin-deficient yeast strain. We report that expression of the accessory gene orfA inhibited nonspecifically the activity of a reporter gene directed by various eukaryotic promoters. In addition, stable transfection with the wild-type orfA generated substantially fewer G418-resistant colonies in both fish and mammalian cells than the parent vector. An orfA mutant expressing only the first N-terminal 49 residues of the full-length protein had the same negative effect on the activity of the reporter gene and on the number of stably transfected colonies as the full-length OrfA. Thus, OrfA inhibits cell growth and/or causes cell death, and the first 49 N-terminal residues of this protein are sufficient to cause these negative effects. PMID:10482648

  2. The cytogenetics of mammalian autosomal rearrangements

    SciTech Connect

    Daniel, A.

    1988-01-01

    Combining data from animal and clinical studies with classical cytogenetic observations, the volume provides information on various aspects of mammalian autosomal rearrangements. Topics range from the reproductive consequences to carriers of autosomal rearrangements to the application of structural rearrangements and DNA probes to gene mapping. In addition, the book presents an overview of new perspectives and future directions for research.

  3. [Placental developmental defects in cloned mammalian animals].

    PubMed

    Ao, Zheng; Liu, Dewu; Cai, Gengyuan; Wu, Zhenfang; Li, Zicong

    2016-05-01

    The cloning technique, also called somatic cell nuclear transfer (SCNT), has been successfully established and gradually applied to various mammalian species. However, the developmental rate of SCNT mammalian embryos is very low, usually at 1% to 5%, which limits the application of SCNT. Placental developmental defects are considered as the main cause of SCNT embryo development inhibition. Almost all of SCNT-derived mammalian placentas exhibit various abnormalities, such as placental hyperplasia, vascular defects and umbilical cord malformation. Mechanistically, these abnormalities result from failure of establishment of correct epigenetic modification in the trophectoderm genome, which leads to erroneous expression of important genes for placenta development-related, particularly imprinted genes. Consequently, aberrant imprinted gene expression gives rise to placental morphologic abnormalities and functional defects, therefore decreases developmental competence of cloned embryos. Currently, although numerous methods that can improve the developmental ability of SCNT-derived embryos have been reported, most of them are unable to substantially enhance the success rate of SCNT due to failure to eliminate the placental development defects. In this review, we summarize placental abnormalities and imprinted gene expression in mammalian cloning, and propose directions for the future research aiming to improve the cloning efficiency. PMID:27232488

  4. Identification of Genes Important for the Physical Interaction between Protein Pairs through Reverse PCA (rPCA).

    PubMed

    Lev, Ifat; Volpe, Marina; Ben-Aroya, Shay

    2014-01-01

    Cells contain many important protein complexes involved in performing and regulating structural, metabolic, and signaling functions. Understanding physical and functional interactions between proteins in living systems is of vital importance in biology. The importance of protein-protein interactions (PPIs) has led to the development of several powerful methodologies and techniques to detect them. All of this information has enabled the creation of large protein-interaction networks. One important challenge in biology is to understand how protein complexes respond to genetic perturbations. Here we describe a systematic genetic assay termed "reverse PCA," which allows the identification of genes whose products are required for modulating the physical interaction between two given proteins. Our assay starts with a yeast strain in which the PPI of interest can be detected by resistance to the drug methotrexate, in the context of the protein-fragment complementation assay (PCA). By combining the synthetic genetic array (SGA) technology, we can systematically screen mutant libraries of the yeast Saccharomyces cerevisiae to identify trans-acting mutations that disrupt the physical interaction of interest. The identification of such mutants is valuable for unraveling important regulatory mechanisms, and for defining the response of the protein interactome to specific perturbations. PMID:25181300

  5. Winning Pairs.

    ERIC Educational Resources Information Center

    Monsour, Florence

    2000-01-01

    Mentoring programs that pair experienced and first-time teachers are gaining prominence in supporting, developing, and retaining new teachers. The successful Beginning Teacher Assistance program at University of Wisconsin-River Falls was designed to give new K-12 teachers the opportunity for yearlong, structured support from mentor teachers. (MLH)

  6. Rapid genotyping assays for the 4-base pair deletion of canine MDR1/ABCB1 gene and low frequency of the mutant allele in Border Collie dogs.

    PubMed

    Mizukami, Keijiro; Chang, Hye-Sook; Yabuki, Akira; Kawamichi, Takuji; Hossain, Mohammad A; Rahman, Mohammad M; Uddin, Mohammad M; Yamato, Osamu

    2012-01-01

    P-glycoprotein, encoded by the MDR1 or ABCB1 gene, is an integral component of the blood-brain barrier as an efflux pump for xenobiotics crucial in limiting drug uptake into the central nervous system. Dogs homozygous for a 4-base pair deletion of the canine MDR1 gene show altered expression or function of P-glycoprotein, resulting in neurotoxicosis after administration of the substrate drugs. In the present study, the usefulness of microchip electrophoresis for genotyping assays detecting this deletion mutation was evaluated. Mutagenically separated polymerase chain reaction (MS-PCR) and real-time PCR assays were newly developed and evaluated. Furthermore, a genotyping survey was carried out in a population of Border Collies dogs in Japan to determine the allele frequency in this breed. Microchip electrophoresis showed advantages in detection sensitivity and time saving over other modes of electrophoresis. The MS-PCR assay clearly discriminated all genotypes. Real-time PCR assay was most suitable for a large-scale survey due to its high throughput and rapidity. The genotyping survey demonstrated that the carrier and mutant allele frequencies were 0.49% and 0.25%, respectively, suggesting that the mutant allele frequency in Border Collies is markedly low compared to that in the susceptible dog breeds such as rough and smooth Collies. PMID:22362942

  7. The Wnt and Delta-Notch signalling pathways interact to direct pair-rule gene expression via caudal during segment addition in the spider Parasteatoda tepidariorum.

    PubMed

    Schönauer, Anna; Paese, Christian L B; Hilbrant, Maarten; Leite, Daniel J; Schwager, Evelyn E; Feitosa, Natália Martins; Eibner, Cornelius; Damen, Wim G M; McGregor, Alistair P

    2016-07-01

    In short-germ arthropods, posterior segments are added sequentially from a segment addition zone (SAZ) during embryogenesis. Studies in spiders such as Parasteatoda tepidariorum have provided insights into the gene regulatory network (GRN) underlying segment addition, and revealed that Wnt8 is required for dynamic Delta (Dl) expression associated with the formation of new segments. However, it remains unclear how these pathways interact during SAZ formation and segment addition. Here, we show that Delta-Notch signalling is required for Wnt8 expression in posterior SAZ cells, but represses the expression of this Wnt gene in anterior SAZ cells. We also found that these two signalling pathways are required for the expression of the spider orthologues of even-skipped (eve) and runt-1 (run-1), at least in part via caudal (cad). Moreover, it appears that dynamic expression of eve in this spider does not require a feedback loop with run-1, as is found in the pair-rule circuit of the beetle Tribolium Taken together, our results suggest that the development of posterior segments in Parasteatoda is directed by dynamic interactions between Wnt8 and Delta-Notch signalling that are read out by cad, which is necessary but probably not sufficient to regulate the expression of eve and run-1 Our study therefore provides new insights towards better understanding the evolution and developmental regulation of segmentation in other arthropods, including insects. PMID:27287802

  8. SMC1B is present in mammalian somatic cells and interacts with mitotic cohesin proteins

    PubMed Central

    Mannini, Linda; Cucco, Francesco; Quarantotti, Valentina; Amato, Clelia; Tinti, Mara; Tana, Luigi; Frattini, Annalisa; Delia, Domenico; Krantz, Ian D.; Jessberger, Rolf; Musio, Antonio

    2015-01-01

    Cohesin is an evolutionarily conserved protein complex that plays a role in many biological processes: it ensures faithful chromosome segregation, regulates gene expression and preserves genome stability. In mammalian cells, the mitotic cohesin complex consists of two structural maintenance of chromosome proteins, SMC1A and SMC3, the kleisin protein RAD21 and a fourth subunit either STAG1 or STAG2. Meiotic paralogs in mammals were reported for SMC1A, RAD21 and STAG1/STAG2 and are called SMC1B, REC8 and STAG3 respectively. It is believed that SMC1B is only a meiotic-specific cohesin member, required for sister chromatid pairing and for preventing telomere shortening. Here we show that SMC1B is also expressed in somatic mammalian cells and is a member of a mitotic cohesin complex. In addition, SMC1B safeguards genome stability following irradiation whereas its ablation has no effect on chromosome segregation. Finally, unexpectedly SMC1B depletion impairs gene transcription, particularly at genes mapping to clusters such as HOX and PCDHB. Genome-wide analyses show that cluster genes changing in expression are enriched for cohesin-SMC1B binding. PMID:26673124

  9. Cationic lipid-nanoceria hybrids, a novel nonviral vector-mediated gene delivery into mammalian cells: investigation of the cellular uptake mechanism.

    PubMed

    Das, Joydeep; Han, Jae Woong; Choi, Yun-Jung; Song, Hyuk; Cho, Ssang-Goo; Park, Chankyu; Seo, Han Geuk; Kim, Jin-Hoi

    2016-01-01

    Gene therapy is a promising technique for the treatment of various diseases. The development of minimally toxic and highly efficient non-viral gene delivery vectors is the most challenging undertaking in the field of gene therapy. Here, we developed dimethyldioctadecylammonium bromide (DODAB)-nanoceria (CeO2) hybrids as a new class of non-viral gene delivery vectors. These DODAB-modified CeO2 nanoparticles (CeO2/DODAB) could effectively compact the pDNA, allowing for highly efficient gene transfection into the selected cell lines. The CeO2/DODAB nanovectors were also found to be non-toxic and did not induce ROS formation as well as any stress responsive and pro-survival signaling pathways. The overall vector performance of CeO2/DODAB nanohybrids was comparable with lipofectamine and DOTAP, and higher than calcium phosphate and DEAE-dextran for transfecting small plasmids. The increased cellular uptake of the nanovector/DNA complexes through clathrin- and caveolae-mediated endocytosis and subsequent release from the endosomes further support the increased gene transfection efficiency of the CeO2/DODAB vectors. Besides, CeO2/DODAB nanovectors could transfect genes in vivo without any sign of toxicity. Taken together, this new nano-vector has the potential to be used for gene delivery in biomedical applications. PMID:27380727

  10. Cationic lipid-nanoceria hybrids, a novel nonviral vector-mediated gene delivery into mammalian cells: investigation of the cellular uptake mechanism

    PubMed Central

    Das, Joydeep; Han, Jae Woong; Choi, Yun-Jung; Song, Hyuk; Cho, Ssang-Goo; Park, Chankyu; Seo, Han Geuk; Kim, Jin-Hoi

    2016-01-01

    Gene therapy is a promising technique for the treatment of various diseases. The development of minimally toxic and highly efficient non-viral gene delivery vectors is the most challenging undertaking in the field of gene therapy. Here, we developed dimethyldioctadecylammonium bromide (DODAB)–nanoceria (CeO2) hybrids as a new class of non-viral gene delivery vectors. These DODAB-modified CeO2 nanoparticles (CeO2/DODAB) could effectively compact the pDNA, allowing for highly efficient gene transfection into the selected cell lines. The CeO2/DODAB nanovectors were also found to be non-toxic and did not induce ROS formation as well as any stress responsive and pro-survival signaling pathways. The overall vector performance of CeO2/DODAB nanohybrids was comparable with lipofectamine and DOTAP, and higher than calcium phosphate and DEAE-dextran for transfecting small plasmids. The increased cellular uptake of the nanovector/DNA complexes through clathrin- and caveolae-mediated endocytosis and subsequent release from the endosomes further support the increased gene transfection efficiency of the CeO2/DODAB vectors. Besides, CeO2/DODAB nanovectors could transfect genes in vivo without any sign of toxicity. Taken together, this new nano-vector has the potential to be used for gene delivery in biomedical applications. PMID:27380727

  11. Gene expression in subcutaneous adipose tissue differs in women with polycystic ovary syndrome and controls matched pair-wise for age, body weight, and body mass index

    PubMed Central

    Mannerås-Holm, Louise; Benrick, Anna; Stener-Victorin, Elisabet

    2014-01-01

    Adipose tissue dysfunction may be a central factor in the pathogenesis of insulin resistance in women with polycystic ovary syndrome (PCOS). Gene expression in subcutaneous adipose tissue in PCOS and its relation to metabolic and endocrine features of the syndrome have been fragmentarily investigated. The aim was to assess in subcutaneous adipose tissue the expression of genes potentially associated with adipose tissue dysfunction and to explore their relation to features of the syndrome. Twenty-one women with PCOS (body mass index [BMI] 18.2–33.4 kg/m2) and 21 controls (BMI 19.2–31.7 kg/m2) were matched pair-wise for age, body weight, and BMI. Tissue biopsies were obtained to measure mRNA expression of 44 genes (TaqMan Low Density Array). Differential expression levels were correlated with BMI, glucose infusion rate (GIR), sex hormone binding globulin (SHBG), and sex steroids. In PCOS, expression of adiponectin receptor 2 (ADIPOR2), LPL, and twist-related protein 1 (TWIST1) was decreased, while expression of chemokine (C-C motif) ligand 2 (CCL2) and heme oxygenase (decycling 1) (HMOX1) was increased. TWIST1 and HMOX1, both novel adipokines, correlated with BMI and GIR. After BMI adjustment, LPL and ADIPOR2 expression correlated with plasma estradiol, and CCL2 expression correlated with GIR, in all women. We conclude that adipose tissue mRNA expression differed in PCOS women and controls and that two novel adipokines, TWIST1 and HMOX1, together with adiponectin, LPL, and CCL2, and their downstream pathways merit further investigation. PMID:25068085

  12. Nephroblastoma overexpressed (NOV/CCN3) gene: a paired-domain-specific PAX3-FKHR transcription target that promotes survival and motility in alveolar rhabdomyosarcoma cells.

    PubMed

    Zhang, Y; Wang, C

    2011-08-11

    The CCN (Cy61, CTGF and NOV) family of proteins is a group of matricellular biomolecules involved in both physiological and pathological processes. Elevated expression of the CCN3 (also known as NOV, Nephroblastoma overexpressed) gene has been detected in clinical samples of the skeletal muscle cancer rhabdomyosarcoma, with the highest expression found in the alveolar subtype (aRMS). Over 80% of aRMSs are characterized by a chromosomal translocation-derived fusion transcription factor PAX3-FKHR. In this study, we linked elevated CCN3 levels in aRMS cells to PAX3-FKHR expression. We found reduced CCN3 levels in aRMS cells following small interfering RNA knockdown of PAX3-FKHR, and increased CCN3 levels in C2 myoblasts following ectopic expression of PAX3-FKHR. Promoter, electrophoretic mobility shift assay and chromatin immunoprecipitation analyses confirmed that the CCN3 gene was a direct target for PAX3-FKHR transcriptional activation through a paired-domain DNA sequence in the first intron of the CCN3 gene. To determine the function of CCN3, we showed that knockdown and ectopic expression of CCN3 decreased survival and increased differentiation in aRMS cells, respectively. In addition, we found that exogenously supplied CCN3 protein promoted aRMS cell adhesion, migration and Matrigel invasion. Taken together, data from this study have (1) provided a mechanistic basis for the CCN3 overexpression in aRMS cells, and (2) identified CCN3 as an autocrine/paracrine factor that contributes to the aggressive behavior of aRMS cells, perhaps through a positive feedback loop. Thus, CCN3 may be an attractive target for therapeutic intervention in aRMS. PMID:21423212

  13. Epigenetic Regulation of Mammalian Stem Cells

    PubMed Central

    Li, Xuekun

    2008-01-01

    Two critical properties of stem cells are self-renewal and multipotency. The maintenance of their “stemness” state and commitment to differentiation are therefore tightly controlled by intricate molecular networks. Epigenetic mechanisms, including DNA methylation, chromatin remodeling and the noncoding RNA-mediated process, have profound regulatory roles in mammalian gene expression. Recent studies have shown that epigenetic regulators are key players in stem cell biology and their dysfunction can result in human diseases such as cancer and neurodevelopmental disorders. Here, we review the recent evidences that advance our knowledge in epigenetic regulations of mammalian stem cells, with focus on embryonic stem cells and neural stem cells. PMID:18393635

  14. Proximity of H2A.Z containing nucleosome to the transcription start site influences gene expression levels in the mammalian liver and brain

    PubMed Central

    Bargaje, Rhishikesh; Alam, Mohammad Parwez; Patowary, Ashok; Sarkar, Maharnob; Ali, Tamer; Gupta, Shivani; Garg, Manali; Singh, Meghna; Purkanti, Ramya; Scaria, Vinod; Sivasubbu, Sridhar; Brahmachari, Vani; Pillai, Beena

    2012-01-01

    Nucleosome positioning maps of several organisms have shown that Transcription Start Sites (TSSs) are marked by nucleosome depleted regions flanked by strongly positioned nucleosomes. Using genome-wide nucleosome maps and histone variant occupancy in the mouse liver, we show that the majority of genes were associated with a single prominent H2A.Z containing nucleosome in their promoter region. We classified genes into clusters depending on the proximity of H2A.Z to the TSS. The genes with no detectable H2A.Z showed lowest expression level, whereas H2A.Z was positioned closer to the TSS of genes with higher expression levels. We confirmed this relation between the proximity of H2A.Z and expression level in the brain. The proximity of histone variant H2A.Z, but not H3.3 to the TSS, over seven consecutive nucleosomes, was correlated with expression. Further, a nucleosome was positioned over the TSS of silenced genes while it was displaced to expose the TSS in highly expressed genes. Our results suggest that gene expression levels in vivo are determined by accessibility of the TSS and proximity of H2A.Z. PMID:22821566

  15. A promoter-level mammalian expression atlas

    PubMed Central

    2015-01-01

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research. PMID:24670764

  16. Genetic Analysis Using an Isogenic Mating Pair of Aspergillus fumigatus Identifies Azole Resistance Genes and Lack of MAT Locus's Role in Virulence.

    PubMed

    Losada, Liliana; Sugui, Janyce A; Eckhaus, Michael A; Chang, Yun C; Mounaud, Stephanie; Figat, Abigail; Joardar, Vinita; Pakala, Suman B; Pakala, Suchitra; Venepally, Pratap; Fedorova, Natalie; Nierman, William C; Kwon-Chung, Kyung J

    2015-04-01

    Invasive aspergillosis (IA) due to Aspergillus fumigatus is a major cause of mortality in immunocompromised patients. The discovery of highly fertile strains of A. fumigatus opened the possibility to merge classical and contemporary genetics to address key questions about this pathogen. The merger involves sexual recombination, selection of desired traits, and genomics to identify any associated loci. We constructed a highly fertile isogenic pair of A. fumigatus strains with opposite mating types and used them to investigate whether mating type is associated with virulence and to find the genetic loci involved in azole resistance. The pair was made isogenic by 9 successive backcross cycles of the foundational strain AFB62 (MAT1-1) with a highly fertile (MAT1-2) progeny. Genome sequencing showed that the F9 MAT1-2 progeny was essentially identical to the AFB62. The survival curves of animals infected with either strain in three different animal models showed no significant difference, suggesting that virulence in A. fumigatus was not associated with mating type. We then employed a relatively inexpensive, yet highly powerful strategy to identify genomic loci associated with azole resistance. We used traditional in vitro drug selection accompanied by classical sexual crosses of azole-sensitive with resistant isogenic strains. The offspring were plated under varying drug concentrations and pools of resulting colonies were analyzed by whole genome sequencing. We found that variants in 5 genes contributed to azole resistance, including mutations in erg11A (cyp51A), as well as multi-drug transporters, erg25, and in HMG-CoA reductase. The results demonstrated that with minimal investment into the sequencing of three pools from a cross of interest, the variation(s) that contribute any phenotype can be identified with nucleotide resolution. This approach can be applied to multiple areas of interest in A. fumigatus or other heterothallic pathogens, especially for virulence

  17. Development of Primer Pairs from Molecular Typing of Rabies Virus Variants Present in Mexico

    PubMed Central

    Ramírez-Hernández, Dolores G.; Lara-Padilla, Eleazar; Zárate-Segura, Paola

    2016-01-01

    Nucleoprotein (N) gene from rabies virus (RABV) is a useful sequence target for variant studies. Several specific RABV variants have been characterized in different mammalian hosts such as skunk, dog, and bats by using anti-nucleocapsid monoclonal antibodies (MAbs) via indirect fluorescent antibody (IFA) test, a technique not available in many laboratories in Mexico. In the present study, a total of 158 sequences of N gene from RABV were used to design eight pairs of primers (four external and four internal primers), for typing four different RABV variants (dog, skunk, vampire bat, and nonhematophagous bat) which are most common in Mexico. The results indicate that the primer and the typing variant from the brain samples, submitted to nested and/or real-time PCR, are in agreement in all four singleplex reactions, and the designed primer pairs are an alternative for use in specific variant RABV typing. PMID:27563666

  18. Development of Primer Pairs from Molecular Typing of Rabies Virus Variants Present in Mexico.

    PubMed

    Bastida-González, Fernando; Ramírez-Hernández, Dolores G; Chavira-Suárez, Erika; Lara-Padilla, Eleazar; Zárate-Segura, Paola

    2016-01-01

    Nucleoprotein (N) gene from rabies virus (RABV) is a useful sequence target for variant studies. Several specific RABV variants have been characterized in different mammalian hosts such as skunk, dog, and bats by using anti-nucleocapsid monoclonal antibodies (MAbs) via indirect fluorescent antibody (IFA) test, a technique not available in many laboratories in Mexico. In the present study, a total of 158 sequences of N gene from RABV were used to design eight pairs of primers (four external and four internal primers), for typing four different RABV variants (dog, skunk, vampire bat, and nonhematophagous bat) which are most common in Mexico. The results indicate that the primer and the typing variant from the brain samples, submitted to nested and/or real-time PCR, are in agreement in all four singleplex reactions, and the designed primer pairs are an alternative for use in specific variant RABV typing. PMID:27563666

  19. Escherichia coli O157:H7 Cells Exposed to Lettuce Leaf Lysate in Refrigerated Conditions Exhibit Differential Expression of Selected Virulence and Adhesion-Related Genes with Altered Mammalian Cell Adherence.

    PubMed

    Kennedy, Nicole M; Mukherjee, Nabanita; Banerjee, Pratik

    2016-07-01

    Contamination by and persistence of pathogenic bacteria in ready-to-eat produce have emerged as significant food safety and public health concerns. Viable produceborne pathogens cope with several stresses (e.g., temperature fluctuations and lowtemperature storage) during production and storage of the commodities. In this study, we investigated the impact of transient cold shock on Escherichia coli O157:H7 (EcO157) cells in a produce matrix (romaine lettuce leaf lysate). EcO157 cells were exposed to 25°C for 1 h, 4°C for 1 h, and 4°C for 10 min in lettuce lysate. The expression of selected genes coding for virulence, stress response, and heat and cold shock proteins was quantified by real-time quantitative reverse transcription PCR assay. Treated EcO157 cells adhered to MAC-T mammalian cells were enumerated by in vitro bioassay. Expression of the Shiga toxin 1 gene (stx1a) was upregulated significantly (P < 0.05) upon cold shock treatments, but virulence genes related to EcO157 attachment (eaeA, lpfA, and hcpA) were down-regulated. Two key members of the cold shock regulon, cold shock protein (cspA) and gyrA, were significantly induced (P < 0.05) at the refrigeration temperature (4°C). Significant upregulation of an SOS response gene, recA, was also observed. E. coli heat shock regulon member grpE was induced, but a universal stress protein (uspA) was downregulated at the refrigeration temperatures in lettuce lysate. The adhesion assay revealed a temperature-dependent reduction in the attachment of cold-shocked EcO157 cells. The results of the current study indicate a reduction in the attachment of cold-shocked EcO157 to epithelial cells and higher levels of Shiga toxin gene expression at the molecular level. PMID:27357048

  20. Wnt signalling pathway parameters for mammalian cells.

    PubMed

    Tan, Chin Wee; Gardiner, Bruce S; Hirokawa, Yumiko; Layton, Meredith J; Smith, David W; Burgess, Antony W

    2012-01-01

    Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated with the parameters

  1. Mammalian cardiolipin biosynthesis.

    PubMed

    Mejia, Edgard M; Nguyen, Hieu; Hatch, Grant M

    2014-04-01

    Cardiolipin is a major phospholipid in mitochondria and is involved in the generation of cellular energy in the form of ATP. In mammalian and eukaryotic cells it is synthesized via the cytidine-5'-diphosphate-1,2-diacyl-sn-glycerol phosphate pathway. This brief review will describe some of the more recent studies on mammalian cardiolipin biosynthesis and provide an overview of regulation of cardiolipin biosynthesis. In addition, the important role that this key phospholipid plays in disease processes including heart failure, diabetes, thyroid hormone disease and the genetic disease Barth Syndrome will be discussed. PMID:24144810

  2. Stage and Gene Specific Signatures Defined by Histones H3K4me2 and H3K27me3 Accompany Mammalian Retina Maturation In Vivo

    PubMed Central

    Popova, Evgenya Y.; Xu, Xuming; DeWan, Andrew T.; Salzberg, Anna C.; Berg, Arthur; Hoh, Josephine; Zhang, Samuel S.; Barnstable, Colin J.

    2012-01-01

    The epigenetic contribution to neurogenesis is largely unknown. There is, however, growing evidence that posttranslational modification of histones is a dynamic process that shows many correlations with gene expression. Here we have followed the genome-wide distribution of two important histone H3 modifications, H3K4me2 and H3K27me3 during late mouse retina development. The retina provides an ideal model for these studies because of its well-characterized structure and development and also the extensive studies of the retinal transcriptome and its development. We found that a group of genes expressed only in mature rod photoreceptors have a unique signature consisting of de-novo accumulation of H3K4me2, both at the transcription start site (TSS) and over the whole gene, that correlates with the increase in transcription, but no accumulation of H3K27me3 at any stage. By in silico analysis of this unique signature we have identified a larger group of genes that may be selectively expressed in mature rod photoreceptors. We also found that the distribution of H3K4me2 and H3K27me3 on the genes widely expressed is not always associated with their transcriptional levels. Different histone signatures for retinal genes with the same gene expression pattern suggest the diversities of epigenetic regulation. Genes without H3K4me2 and H3K27me3 accumulation at any stage represent a large group of transcripts never expressed in retina. The epigenetic signatures defined by H3K4me2 and H3K27me3 can distinguish cell-type specific genes from widespread transcripts and may be reflective of cell specificity during retina maturation. In addition to the developmental patterns seen in wild type retina, the dramatic changes of histone modification in the retinas of mutant animals lacking rod photoreceptors provide a tool to study the epigenetic changes in other cell types and thus describe a broad range of epigenetic events in a solid tissue in vivo. PMID:23056497

  3. [A Pair of Siblings with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis and a Novel Thr462Lysfs Mutation in the TBK1 Gene].

    PubMed

    Schönecker, S; Brendel, M; van der Zee, J; van Broeckhoven, C; Rominger, A; Danek, A; Levin, J

    2016-08-01

    We report on a pair of siblings with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) and a novel Thr462Lysfs mutation in the TANK-binding kinase 1 (TBK1) gene identified through the European Early-Onset Dementia Consortium. The patients presented at the age of 77 and 75 years and displayed dementia and bulbar symptoms as well as progressive paresis. After a progressive course, both of them died only a few months after diagnosis. Most recently, TBK1 mutations were identified in patients with FTD and ALS. A loss of expression of the mutant allele, leading to 50 % reduced TBK1 protein levels, seems to be causative. The occurrence of TBK1 mutations in FTD and ALS underlines the fact that FTD and ALS are part of the same disease spectrum. For future therapeutic trials, characterization of TBK1 mutation carriers in presymptomatic cohorts, such as the genetic frontotemporal dementia initiative (GENFI), is of great importance. PMID:27570907

  4. Affected-sib-pair mapping of a novel susceptibility gene to insulin-dependent diabetes mellitus (IDDM8) on chromosome 6q25-q27

    SciTech Connect

    Luo, D.F.; Bui, M.M.; Muir, A.

    1995-10-01

    Affected-sib-pair analyses were performed using 104 Caucasian families to map genes that predispose to insulin-dependent diabetes mellitus (IDDM). We have obtained linkage evidence for D6S446 (maximum lod score [MLS] = 2.8) and for D6S264 (MLS = 2.0) on 6q25q27. Together with a previously reported data set, linkage can be firmly established (MLS = 3.4 for D6S264), and the disease locus has been designated IDDM8. With analysis of independent families, we confirmed linkage evidence for the previously identified IDDM3 (15q) and DDM7 (2q). We also typed additional markers in the regions containing IDDM3, IDDM4, IDDM5, and IDDM8. Preliminary linkage evidence for a novel region on chromosome 4q (D4S1566) has been found in 47 Florida families (P < .03). We also found evidence of linkage for two regions previously identified as potential linkages in the Florida subset: D3S1303 on 3q (P < .04) and D7S486 on 7q (P < .03). We could not confirm linkage with eight other regions (D1S191, D1S412, D4S1604, D8S264, D8S556, D1OS193, D13S158, and D18S64) previously identified as potential linkages. 26 refs., 1 fig., 4 tabs.

  5. Evaluation of Selected Borrelia burgdorferi lp54 Plasmid-Encoded Gene Products Expressed during Mammalian Infection as Antigens To Improve Serodiagnostic Testing for Early Lyme Disease

    PubMed Central

    Weiner, Zachary P.; Crew, Rebecca M.; Brandt, Kevin S.; Ullmann, Amy J.; Schriefer, Martin E.; Molins, Claudia R.

    2015-01-01

    Laboratory testing for the diagnosis of Lyme disease is performed primarily by serologic assays and is accurate for detection beyond the acute stage of the infection. Serodiagnostic assays to detect the early stages of infection, however, are limited in their sensitivity, and improvement is warranted. We analyzed a series of Borrelia burgdorferi proteins known to be induced within feeding ticks and/or during mammalian infection for their utility as serodiagnostic markers against a comprehensive panel of Lyme disease patient serum samples. The antigens were assayed for IgM and IgG reactivity in line immunoblots and separately by enzyme-linked immunosorbent assay (ELISA), with a focus on reactivity against early Lyme disease with erythema migrans (EM), early disseminated Lyme neuroborreliosis, and early Lyme carditis patient serum samples. By IgM immunoblotting, we found that recombinant proteins BBA65, BBA70, and BBA73 reacted with early Lyme EM samples at levels comparable to those of the OspC antigen used in the current IgM blotting criteria. Additionally, these proteins reacted with serum samples from patients with early neuroborreliosis and early carditis, suggesting value in detecting early stages of this disease progression. We also found serological reactivity against recombinant proteins BBA69 and BBA73 with early-Lyme-disease samples using IgG immunoblotting and ELISA. Significantly, some samples that had been scored negative by the Centers for Disease Control and Prevention-recommended 2-tiered testing algorithm demonstrated positive reactivity to one or more of the antigens by IgM/IgG immunoblot and ELISA. These results suggest that incorporating additional in vivo-expressed antigens into the current IgM/IgG immunoblotting tier in a recombinant protein platform assay may improve the performance of early-Lyme-disease serologic testing. PMID:26376927

  6. Characterization of shiga toxin-producing Escherichia coli recovered from domestic animals to determine stx variants, virulence genes, and cytotoxicity in mammalian cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) can cause foodborne illnesses ranging from diarrhea to severe diseases such as hemorrhagic colitis (HC), and hemolytic uremic syndrome (HUS) in humans. In this study, we determined virulence genes, stx subtypes and we evaluated the cytotoxicity in mammal...

  7. A Synthetic E7 Gene of Human Papillomavirus Type 16 That Yields Enhanced Expression of the Protein in Mammalian Cells and Is Useful for DNA Immunization Studies

    PubMed Central

    Cid-Arregui, Angel; Juárez, Victoria; Hausen, Harald zur

    2003-01-01

    A synthetic E7 gene of human papillomavirus (HPV) type 16 was generated that consists entirely of preferred human codons. Expression analysis of the synthetic E7 gene in human and animal cells showed levels of E7 protein 20- to 100-fold higher than those obtained with wild-type E7. Enhanced expression of E7 protein resulted from highly efficient translation, as well as increased stability of the E7 mRNA due to its codon optimization. Higher levels of E7 protein in cells transfected with synthetic E7 correlated with significant loss of cell viability in various human cell lines. In contrast, lower E7 protein expression driven by the wild-type gene resulted in a slight induction of cell proliferation. Furthermore, mice inoculated with plasmids expressing the synthetic E7 gene produced significantly higher levels of E7 antibodies than littermates injected with wild-type E7, suggesting that synthetic E7 may be useful for DNA immunization studies and the development of genetic vaccines against HPV-16. In view of these results, we hypothesize that HPVs may have retained a pattern of G + C content and codon usage distinct from that of their host cells in response to selective pressure. Thus, the nonhuman codon bias may have been conserved by HPVs to prevent compromising viability of the host cells by excessive viral early protein expression, as well as to evade the immune system. PMID:12663798

  8. A syntenic region conserved from fish to Mammalian x chromosome.

    PubMed

    Guan, Guijun; Yi, Meisheng; Kobayashi, Tohru; Hong, Yunhan; Nagahama, Yoshitaka

    2014-01-01

    Sex chromosomes bearing the sex-determining gene initiate development along the male or female pathway, no matter which sex is determined by XY male or ZW female heterogamety. Sex chromosomes originate from ancient autosomes but evolved rapidly after the acquisition of sex-determining factors which are highly divergent between species. In the heterogametic male system (XY system), the X chromosome is relatively evolutionary silent and maintains most of its ancestral genes, in contrast to its Y counterpart that has evolved rapidly and degenerated. Sex in a teleost fish, the Nile tilapia (Oreochromis niloticus), is determined genetically via an XY system, in which an unpaired region is present in the largest chromosome pair. We defined the differences in DNA contents present in this chromosome with a two-color comparative genomic hybridization (CGH) and the random amplified polymorphic DNA (RAPD) approach in XY males. We further identified a syntenic segment within this region that is well conserved in several teleosts. Through comparative genome analysis, this syntenic segment was also shown to be present in mammalian X chromosomes, suggesting a common ancestral origin of vertebrate sex chromosomes. PMID:25506037

  9. Mammalian development in space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  10. Increase of microRNA-210, Decrease of Raptor Gene Expression and Alteration of Mammalian Target of Rapamycin Regulated Proteins following Mithramycin Treatment of Human Erythroid Cells

    PubMed Central

    Bianchi, Nicoletta; Finotti, Alessia; Ferracin, Manuela; Lampronti, Ilaria; Zuccato, Cristina; Breveglieri, Giulia; Brognara, Eleonora; Fabbri, Enrica; Borgatti, Monica; Negrini, Massimo; Gambari, Roberto

    2015-01-01

    Expression and regulation of microRNAs is an emerging issue in erythroid differentiation and globin gene expression in hemoglobin disorders. In the first part of this study microarray analysis was performed both in mithramycin-induced K562 cells and erythroid precursors from healthy subjects or β-thalassemia patients producing low or high levels of fetal hemoglobin. We demonstrated that: (a) microRNA-210 expression is higher in erythroid precursors from β-thalassemia patients with high production of fetal hemoglobin; (b) microRNA-210 increases as a consequence of mithramycin treatment of K562 cells and human erythroid progenitors both from healthy and β-thalassemia subjects; (c) this increase is associated with erythroid induction and elevated expression of γ-globin genes; (d) an anti-microRNA against microRNA-210 interferes with the mithramycin-induced changes of gene expression. In the second part of the study we have obtained convergent evidences suggesting raptor mRNA as a putative target of microRNA-210. Indeed, microRNA-210 binding sites of its 3’-UTR region were involved in expression and are targets of microRNA-210-mediated modulation in a luciferase reporter assays. Furthermore, (i) raptor mRNA and protein are down-regulated upon mithramycin-induction both in K562 cells and erythroid progenitors from healthy and β-thalassemia subjects. In addition, (ii) administration of anti-microRNA-210 to K562 cells decreased endogenous microRNA-210 and increased raptor mRNA and protein expression. Finally, (iii) treatment of K562 cells with premicroRNA-210 led to a decrease of raptor mRNA and protein. In conclusion, microRNA-210 and raptor are involved in mithramycin-mediated erythroid differentiation of K562 cells and participate to the fine-tuning and control of γ-globin gene expression in erythroid precursor cells. PMID:25849663

  11. Novel mammalian cell lines expressing reporter genes for the detection of environmental chemicals activating endogenous aryl hydrocarbon receptors (ArhR) or estrogen receptors (ER).

    PubMed

    Minh, Si Do; Below, Sabine; Müller, Christian; Hildebrandt, Jan-Peter

    2008-12-01

    We have constructed two vector systems (pDMS5, pSAB2) containing the promoter regions of the human CYP1A1 gene including xenobiotic response elements or the promoter region of the Xenopus laevis vitellogenin A2 gene including estrogen response elements, respectively, and the genes for green fluorescent protein and firefly luciferase. These vectors were transfected into CHO-K1 cells. Transiently transfected cells consistently responded to 1 nmol/l TCDD (dioxin) or 10 nmol/l 17ss-estradiol, respectively, with a 3-5 fold increase in luciferase activity. Permanent cell lines were selected by culturing transiently transfected cells under continued presence of antibiotics and dilution cloning. Cells which had stably integrated the vector-DNA into the genomic DNA were selected. SiF6 cells responded to treatment with TCDD, PCB126, benzo(a)pyrene or indirubin-3'-monoxime in the concentration range between 0 and 1 micromol/l. SiG12 cells responded to treatment with bisphenol A, 4-MBC and DDT in the concentration range between 0 and 10 micromol/l. Compared with the controls, luciferase mRNA-abundance (semi-quantitative RT-PCR) and luciferase activity (luminescence assay) were elevated up to 3-fold. Resveratrol or tamoxifen, respectively, worked as full antagonists. Luciferase expression was increased upon treatment of cells with extracts of spiked soil samples indicating that our systems are suited for screening of environmental samples. PMID:18835349

  12. Cell death in mammalian development.

    PubMed

    Penaloza, C; Orlanski, S; Ye, Y; Entezari-Zaher, T; Javdan, M; Zakeri, Z

    2008-01-01

    During embryogenesis there is an exquisite orchestration of cellular division, movement, differentiation, and death. Cell death is one of the most important aspects of organization of the developing embryo, as alteration in timing, level, or pattern of cell death can lead to developmental anomalies. Cell death shapes the embryo and defines the eventual functions of the organs. Cells die using different paths; understanding which path a dying cell takes helps us define the signals that regulate the fate of the cell. Our understanding of cell death in development stems from a number of observations indicating genetic regulation of the death process. With today's increased knowledge of the pathways of cell death and the identification of the genes whose products regulate the pathways we know that, although elimination of some of these gene products has no developmental phenotype, alteration of several others has profound effects. In this review we discuss the types and distributions of cell death seen in developing mammalian embryos as well as the gene products that may regulate the process. PMID:18220829

  13. Microevolution of cis-regulatory elements: an example from the pair-rule segmentation gene fushi tarazu in the Drosophila melanogaster subgroup.

    PubMed

    Bakkali, Mohammed

    2011-01-01

    The importance of non-coding DNAs that control transcription is ever noticeable, but the characterization and analysis of the evolution of such DNAs presents challenges not found in the analysis of coding sequences. In this study of the cis-regulatory elements of the pair rule segmentation gene fushi tarazu (ftz) I report the DNA sequences of ftz's zebra element (promoter) and a region containing the proximal enhancer from a total of 45 fly lines belonging to several populations of the species Drosophila melanogaster, D. simulans, D. sechellia, D. mauritiana, D. yakuba, D. teissieri, D. orena and D. erecta. Both elements evolve at slower rate than ftz synonymous sites, thus reflecting their functional importance. The promoter evolves more slowly than the average for ftz's coding sequence while, on average, the enhancer evolves more rapidly, suggesting more functional constraint and effective purifying selection on the former. Comparative analysis of the number and nature of base substitutions failed to detect significant evidence for positive/adaptive selection in transcription-factor-binding sites. These seem to evolve at similar rates to regions not known to bind transcription factors. Although this result reflects the evolutionary flexibility of the transcription factor binding sites, it also suggests a complex and still not completely understood nature of even the characterized cis-regulatory sequences. The latter seem to contain more functional parts than those currently identified, some of which probably transcription factor binding. This study illustrates ways in which functional assignments of sequences within cis-acting sequences can be used in the search for adaptive evolution, but also highlights difficulties in how such functional assignment and analysis can be carried out. PMID:22073317

  14. Single-pair fluorescence resonance energy transfer analysis of mRNA transcripts for highly sensitive gene expression profiling in near real time.

    PubMed

    Peng, Zhiyong; Young, Brandon; Baird, Alison E; Soper, Steven A

    2013-08-20

    Expression analysis of mRNAs transcribed from certain genes can be used as important sources of biomarkers for in vitro diagnostics. While the use of reverse transcription quantitative PCR (RT-qPCR) can provide excellent analytical sensitivity for monitoring transcript numbers, more sensitive approaches for expression analysis that can report results in near real-time are needed for many critical applications. We report a novel assay that can provide exquisite limits-of-quantitation and consists of reverse transcription (RT) followed by a ligase detection reaction (LDR) with single-pair fluorescence resonance energy transfer (spFRET) to provide digital readout through molecular counting. For this assay, no PCR was employed, which enabled short assay turnaround times. To facilitate implementation of the assay, a cyclic olefin copolymer (COC) microchip, which was fabricated using hot embossing, was employed to carry out the LDR in a continuous flow format with online single-molecule detection following the LDR. As demonstrators of the assay's utility, MMP-7 mRNA was expression profiled from several colorectal cancer cell lines. It was found that the RT-LDR/spFRET assay produced highly linear calibration plots even in the low copy number regime. Comparison to RT-qPCR indicated a better linearity over the low copy number range investigated (10-10,000 copies) with an R(2) = 0.9995 for RT-LDR/spFRET and R(2) = 0.98 for RT-qPCR. In addition, differentiating between copy numbers of 10 and 50 could be performed with higher confidence using RT-LDR/spFRET. To demonstrate the short assay turnaround times obtainable using the RT-LDR/spFRET assay, a two thermal cycle LDR was carried out on amphiphysin gene transcripts that can serve as important diagnostic markers for ischemic stroke. The ability to supply diagnostic information on possible stroke events in short turnaround times using RT-LDR/spFRET will enable clinicians to treat patients effectively with appropriate time

  15. Mammalian sweet taste receptors.

    PubMed

    Nelson, G; Hoon, M A; Chandrashekar, J; Zhang, Y; Ryba, N J; Zuker, C S

    2001-08-10

    The sense of taste provides animals with valuable information about the quality and nutritional value of food. Previously, we identified a large family of mammalian taste receptors involved in bitter taste perception (the T2Rs). We now report the characterization of mammalian sweet taste receptors. First, transgenic rescue experiments prove that the Sac locus encodes T1R3, a member of the T1R family of candidate taste receptors. Second, using a heterologous expression system, we demonstrate that T1R2 and T1R3 combine to function as a sweet receptor, recognizing sweet-tasting molecules as diverse as sucrose, saccharin, dulcin, and acesulfame-K. Finally, we present a detailed analysis of the patterns of expression of T1Rs and T2Rs, thus providing a view of the representation of sweet and bitter taste at the periphery. PMID:11509186

  16. Locations and contexts of sequences that hybridize to poly(dG-dT).(dC-dA) in mammalian ribosomal DNAs and two X-linked genes.

    PubMed Central

    Braaten, D C; Thomas, J R; Little, R D; Dickson, K R; Goldberg, I; Schlessinger, D; Ciccodicola, A; D'Urso, M

    1988-01-01

    Sequences located several kilobases both 5' and 3' of the stably transcribed portion of several genes hybridize to radio-labeled pure fragments of the alternating sequence poly (dG-dT) (dC-dA) ["poly(GT)"]. The genes include the ribosomal DNA of mouse, rat, and human, and also human glucose-6-phosphate dehydrogenase (G6PD) and mouse hypoxanthine-guanine phosphoribosyl transferase (HPRT). HPRT has additional hybridizing sequences in introns. Fragments that include the hybridizing sequences and up to 300 bp of adjoining DNA show perfect runs of poly(GT) (greater than 30bp) in all but the human 5' region of rDNA, which shows a somewhat different alternating purine:pyrimidine sequence, poly(GTAT) (36bp). Within 150 bp of these sequences in various instances are found a number of other sequences reported to affect DNA conformation in model systems. Most marked is an enhancement of sequences matching at least 67% to the consensus binding sequence for topoisomerase II. Two to ten-fold less of such sequences were found in other sequenced portions of the nontranscribed spacer or in the transcribed portion of rDNA. The conservation of the locations of tracts of alternating purine:pyrimidine between evolutionarily diverse species is consistent with a possible functional role for these sequences. Images PMID:3267216

  17. Cloning, characterization, and expression in Escherichia coli of a gene encoding Listeria seeligeri catalase, a bacterial enzyme highly homologous to mammalian catalases.

    PubMed Central

    Haas, A; Brehm, K; Kreft, J; Goebel, W

    1991-01-01

    A gene coding for catalase (hydrogen-peroxide:hydrogen-peroxide oxidoreductase; EC 1.11.1.6) of the gram-positive bacterium Listeria seeligeri was cloned from a plasmid library of EcoRI-digested chromosomal DNA, with Escherichia coli DH5 alpha as a host. The recombinant catalase was expressed in E. coli to an enzymatic activity approximately 50 times that of the combined E. coli catalases. The nucleotide sequence was determined, and the deduced amino acid sequence revealed 43.2% amino acid sequence identity between bovine liver catalase and L. seeligeri catalase. Most of the amino acid residues which are involved in catalytic activity, the formation of the active center accession channel, and heme binding in bovine liver catalase were also present in L. seeligeri catalase at the corresponding positions. The recombinant protein contained 488 amino acid residues and had a calculated molecular weight of 55,869. The predicted isoelectric point was 5.0. Enzymatic and genetic analyses showed that there is most probably a single catalase of this type in L. seeligeri. A perfect 21-bp inverted repeat, which was highly homologous to previously reported binding sequences of the Fur (ferric uptake regulon) protein of E. coli, was detected next to the putative promoter region of the L. seeligeri catalase gene. Images PMID:1860824

  18. Rheotaxis guides mammalian sperm

    PubMed Central

    Miki, Kiyoshi; Clapham, David E

    2013-01-01

    Background In sea urchins, spermatozoan motility is altered by chemotactic peptides, giving rise to the assumption that mammalian eggs also emit chemotactic agents that guide spermatozoa through the female reproductive tract to the mature oocyte. Mammalian spermatozoa indeed undergo complex adaptations within the female (the process of capacitation) that are initiated by agents ranging from pH to progesterone, but these factors are not necessarily taxic. Currently, chemotaxis, thermotaxis, and rheotaxis have not been definitively established in mammals. Results Here, we show that positive rheotaxis, the ability of organisms to orient and swim against the flow of surrounding fluid, is a major taxic factor for mouse and human sperm. This flow is generated within 4 hours of sexual stimulation and coitus in female mice; prolactin-triggered oviductal fluid secretion clears the oviduct of debris, lowers viscosity, and generates the stream that guides sperm migration in the oviduct. Rheotaxic movement is demonstrated in capacitated and uncapacitated spermatozoa in low and high viscosity medium. Finally, we show that a unique sperm motion we quantify using the sperm head's rolling rate reflects sperm rotation that generates essential force for positioning the sperm in the stream. Rotation requires CatSper channels, presumably by enabling Ca2+ influx. Conclusions We propose that rheotaxis is a major determinant of sperm guidance over long distances in the mammalian female reproductive tract. Coitus induces fluid flow to guide sperm in the oviduct. Sperm rheotaxis requires rotational motion during CatSper channel-dependent hyperactivated motility. PMID:23453951

  19. Mammalian cells contain a second nucleocytoplasmic hexosaminidase.

    PubMed

    Gutternigg, Martin; Rendić, Dubravko; Voglauer, Regina; Iskratsch, Thomas; Wilson, Iain B H

    2009-04-01

    Some thirty years ago, work on mammalian tissues suggested the presence of two cytosolic hexosaminidases in mammalian cells; one of these has been more recently characterized in a recombinant form and has an important role in cellular function due to its ability to cleave beta-N-acetylglucosamine residues from a variety of nuclear and cytoplasmic proteins. However, the molecular nature of the second cytosolic hexosaminidase, named hexosaminidase D, has remained obscure. In the present study, we molecularly characterize for the first time the human and murine recombinant forms of enzymes, encoded by HEXDC genes, which appear to correspond to hexosaminidase D in terms of substrate specificity, pH dependency and temperature stability. Furthermore, a Myc-tagged form of this novel hexosaminidase displays a nucleocytoplasmic localization. Transcripts of the corresponding gene are expressed in a number of murine tissues. On the basis of its sequence, this enzyme represents, along with the lysosomal hexosaminidase subunits encoded by the HEXA and HEXB genes, the third class 20 glycosidase to be identified from mammalian sources. PMID:19040401

  20. Evaluation of the butter flavoring chemical diacetyl and a fluorochemical paper additive for mutagenicity and toxicity using the mammalian cell gene mutation assay in L5178Y mouse lymphoma cells.

    PubMed

    Whittaker, Paul; Clarke, Jane J; San, Richard H C; Begley, Timothy H; Dunkel, Virginia C

    2008-08-01

    Diacetyl (2,3-butanedione) is a yellowish liquid that is usually mixed with other ingredients to produce butter flavor or other flavors in a variety of food products. Inhalation of butter flavoring vapors was first associated with clinical bronchiolitis obliterans among workers in microwave popcorn production. Recent findings have shown irreversible obstructive lung disease among workers not only in the microwave popcorn industry, but also in flavoring manufacture, and in chemical synthesis of diacetyl, a predominant chemical for butter flavoring. It has been reported that perfluorochemicals utilized in food packaging are migrating into foods and may be sources of oral exposure. Relatively small quantities of perfluorochemicals are used in the manufacturing of paper or paperboard that is in direct contact with food to repel oil or grease and water. Because of recent concerns about perfluorochemicals such as those found on microwave popcorn bags (e.g. Lodyne P208E) and diacetyl in foods, we evaluated both compounds for mutagenicity using the mammalian cell gene mutation assay in L5178Y mouse lymphoma cells. Lodyne P208E was less toxic than diacetyl and did not induce a mutagenic response. Diacetyl induced a highly mutagenic response in the L5178Y mouse lymphoma mutation assay in the presence of human liver S9 for activation. The increase in the frequency of small colonies in the assay with diacetyl indicates that diacetyl causes damage to multiple loci on chromosome 11 in addition to functional loss of the thymidine kinase locus. PMID:18585428

  1. Aptazyme-based riboswitches and logic gates in mammalian cells.

    PubMed

    Nomura, Yoko; Yokobayashi, Yohei

    2015-01-01

    This chapter describes a screening strategy to engineer synthetic riboswitches that can chemically regulate gene expression in mammalian cells. Riboswitch libraries are constructed by randomizing the key nucleotides that couple the molecular recognition function of an aptamer with the self-cleavage activity of a ribozyme. The allosteric ribozyme (aptazyme) candidates are cloned in the 3' untranslated region (UTR) of a reporter gene mRNA. The plasmid-encoded riboswitch candidates are transfected into a mammalian cell line to screen for the desired riboswitch function. Furthermore, multiple aptazymes can be cloned into the 3' UTR of a desired gene to obtain a logic gate response to multiple chemical signals. This screening strategy complements other methods to engineer robust mammalian riboswitches to control gene expression. PMID:25967059

  2. Genomics in mammalian cell culture bioprocessing

    PubMed Central

    Wuest, Diane M.; Harcum, Sarah W.; Lee, Kelvin H.

    2013-01-01

    Explicitly identifying the genome of a host organism including sequencing, mapping, and annotating its genetic code has become a priority in the field of biotechnology with aims at improving the efficiency and understanding of cell culture bioprocessing. Recombinant protein therapeutics, primarily produced in mammalian cells, constitute a $108 billion global market. The most common mammalian cell line used in biologic production processes is the Chinese hamster ovary (CHO) cell line, and although great improvements have been made in titer production over the past 25 years, the underlying molecular and physiological factors are not well understood. Confident understanding of CHO bioprocessing elements (e.g. cell line selection, protein production, and reproducibility of process performance and product specifications) would significantly improve with a well understood genome. This review describes mammalian cell culture use in bioprocessing, the importance of obtaining CHO cell line genetic sequences, and the current status of sequencing efforts. Furthermore, transcriptomic techniques and gene expression tools are presented, and case studies exploring genomic techniques and applications aimed to improve mammalian bioprocess performance are reviewed. Finally, future implications of genomic advances are surmised. PMID:22079893

  3. Methylated DNA Immunoprecipitation Analysis of Mammalian Endogenous Retroviruses.

    PubMed

    Rebollo, Rita; Mager, Dixie L

    2016-01-01

    Endogenous retroviruses are repetitive sequences found abundantly in mammalian genomes which are capable of modulating host gene expression. Nevertheless, most endogenous retrovirus copies are under tight epigenetic control via histone-repressive modifications and DNA methylation. Here we describe a common method used in our laboratory to detect, quantify, and compare mammalian endogenous retrovirus DNA methylation. More specifically we describe methylated DNA immunoprecipitation (MeDIP) followed by quantitative PCR. PMID:26895065

  4. Effects of level of nutrient intake and age on mammalian target of rapamycin, insulin, and insulin-like growth factor-1 gene network expression in skeletal muscle of young Holstein calves.

    PubMed

    Wang, P; Drackley, J K; Stamey-Lanier, J A; Keisler, D; Loor, J J

    2014-01-01

    The molecular mechanisms by which level of nutrient intake enhances skeletal muscle growth in young ruminants are not fully understood. We examined mammalian target of rapamycin (mTOR), insulin, and insulin-like growth factor-1 (IGF-1) gene network expression in semitendinosus muscle tissue of young male Holstein calves fed a conventional milk replacer plus conventional starter (CON) or an enhanced milk replacer plus high-protein starter (ENH) for 5 wk followed by a conventional starter or a high-protein starter until 10 wk of age. Feeding ENH led to greater concentration of plasma IGF-1 and leptin and greater carcass protein and fat mass throughout the study. Despite the greater plasma IGF-1 and protein mass at wk 5, calves fed ENH had lower expression of IGF1R, INSR, and RPS6KB1 but greater expression of IRS1 and PDPK1 in muscle tissue. Except for IGF1R expression, which did not differ at wk 10, these differences persisted at wk 10, suggesting a long-term effect of greater nutrient intake on physiological and molecular mechanisms. Components of mTOR complex (mTORC)1 and mTORC2 (RICTOR and RPTOR) and FOXO1 expression decreased by wk 10 regardless of diet. Overall, the present data revealed that greater nutrient intake throughout the milk-fed and early postweaning phase alters body mass composition partly by altering hormonal and molecular profiles of genes associated with glucose and amino acid signaling. Those networks may play a crucial role in coordinating neonatal muscle growth and metabolism in response to level of nutrient intake. PMID:24210480

  5. A phosphatidylinositol (PI) kinase gene family in Dictyostelium discoideum: biological roles of putative mammalian p110 and yeast Vps34p PI 3-kinase homologs during growth and development.

    PubMed Central

    Zhou, K; Takegawa, K; Emr, S D; Firtel, R A

    1995-01-01

    Three groups of phosphatidylinositol (PI) kinases convert PI into PI(3)phosphate, PI(4)phosphate, PI(4,5) bisphosphate, and PI(3,4,5)trisphosphate. These phosphoinositides have been shown to function in vesicle-mediated protein sorting, and they serve as second-messenger signaling molecules for regulating cell growth. To further elucidate the mechanism of regulation and function of phosphoinositides, we cloned genes encoding five putative PI kinases from Dictyostelium discoideum. Database analysis indicates that D. discoideum PIK1 (DdPIK1), -2, and -3 are most closely related to the mammalian p110 PI 3-kinase, DdPIK5 is closest to the yeast Vps34p PI 3-kinase, and DdPIK4 is most homologous to PI 4-kinases. Together with other known PI kinases, a superfamily of PI kinase genes has been defined, with all of the encoded proteins sharing a common highly conserved catalytic core domain. DdPIK1, -2, and -3 may have redundant functions because disruption of any single gene had no effect on D. discoideum growth or development. However, strains in which both of the two most highly related genes, DdPIK1 and DdPIK2, were disrupted showed both growth and developmental defects, while double knockouts of DdPIK1 and DdPIK3 and DdPIK2 and DdPIK3 appear to be lethal. The delta Ddpik1 delta Ddpik2 null cells were smaller than wild-type cells and grew slowly both in association with bacteria and in axenic medium when attached to petri plates but were unable to grow in suspension in axenic medium. When delta Ddpik1 delta Ddpik2 null cells were plated for multicellular development, they formed aggregates having multiple tips and produced abnormal fruiting bodies. Antisense expression of DdPIK5 (a putative homolog of the Saccharomyces cerevisiae VPS34) led to a defect in the growth of D. discoideum cells on bacterial lawns and abnormal development. DdPIK5 complemented the temperature-sensitive growth defect of a Schizosaccharomyces pombe delta Svps34 mutant strain, suggesting DdPIK5

  6. Mammalian Kidney Development: Principles, Progress, and Projections

    PubMed Central

    Little, Melissa H.; McMahon, Andrew P.

    2012-01-01

    The mammalian kidney is a vital organ with considerable cellular complexity and functional diversity. Kidney development is notable for requiring distinct but coincident tubulogenic processes involving reciprocal inductive signals between mesenchymal and epithelial progenitor compartments. Key molecular pathways mediating these interactions have been identified. Further, advances in the analysis of gene expression and gene activity, coupled with a detailed knowledge of cell origins, are enhancing our understanding of kidney morphogenesis and unraveling the normal processes of postnatal repair and identifying disease-causing mechanisms. This article focuses on recent insights into central regulatory processes governing organ assembly and renal disease, and predicts future directions for the field. PMID:22550230

  7. Structure and function of mammalian aldehyde oxidases.

    PubMed

    Terao, Mineko; Romão, Maria João; Leimkühler, Silke; Bolis, Marco; Fratelli, Maddalena; Coelho, Catarina; Santos-Silva, Teresa; Garattini, Enrico

    2016-04-01

    Mammalian aldehyde oxidases (AOXs; EC1.2.3.1) are a group of conserved proteins belonging to the family of molybdo-flavoenzymes along with the structurally related xanthine dehydrogenase enzyme. AOXs are characterized by broad substrate specificity, oxidizing not only aromatic and aliphatic aldehydes into the corresponding carboxylic acids, but also hydroxylating a series of heteroaromatic rings. The number of AOX isoenzymes expressed in different vertebrate species is variable. The two extremes are represented by humans, which express a single enzyme (AOX1) in many organs and mice or rats which are characterized by tissue-specific expression of four isoforms (AOX1, AOX2, AOX3, and AOX4). In vertebrates each AOX isoenzyme is the product of a distinct gene consisting of 35 highly conserved exons. The extant species-specific complement of AOX isoenzymes is the result of a complex evolutionary process consisting of a first phase characterized by a series of asynchronous gene duplications and a second phase where the pseudogenization and gene deletion events prevail. In the last few years remarkable advances in the elucidation of the structural characteristics and the catalytic mechanisms of mammalian AOXs have been made thanks to the successful crystallization of human AOX1 and mouse AOX3. Much less is known about the physiological function and physiological substrates of human AOX1 and other mammalian AOX isoenzymes, although the importance of these proteins in xenobiotic metabolism is fairly well established and their relevance in drug development is increasing. This review article provides an overview and a discussion of the current knowledge on mammalian AOX. PMID:26920149

  8. Construction of a new minicircle DNA carrying an enhanced green florescent protein reporter gene for efficient expression into mammalian cell lines.

    PubMed

    Sanei Ata-Abadi, Nafiseh; Dormiani, Kianoush; Khazaie, Yahya; Ghaedi, Kamran; Forouzanfar, Mahboobeh; Lachinani, Liana; Rezaei, Naeimeh; Kiani-Esfahani, Abbas; Nasr-Esfahani, Mohammad Hossein

    2015-07-01

    The presence of a bacterial backbone in conventional eukaryotic expression plasmids may cause undesirable effects by triggering the immune responses in mammals and repression of episomal transgene expression. To avoid these problems, researchers have proposed the use of minicircle DNAs which are episomal vectors that have lost their bacterial backbone using a site-specific recombinase mediated recombination. In the present study, we have constructed a new minicircle DNA vector that carries an enhanced green florescent protein (EGFP) reporter gene using phage ΦC31 integrase-mediated recombination and homing endonuclease ISceI-mediated purification in E. coli. ΦC31 integrase expression was under the control of the araBAD promoter, whereas ISceI endonuclease was controlled by the tac promoter. This vector was transfected into CHO-K1 cells, which showed transient expression of EGFP up to 14 generations. Similar results were obtained upon transient transfection into HEK cells. In addition, PCR results on genomic DNA, demonstrated the EGFP-minicircle was episomal and did not integrate into the host genome. Our constructed parental plasmid expresses EGFP and could be used for the generation of episomal minicircle DNA with intent to carry out transient transfection of interested DNA fragments into the eukaryotic cells for various purposes. PMID:25736052

  9. scully, an Essential Gene of Drosophila, is Homologous to Mammalian Mitochondrial Type II l-3-hydroxyacyl-CoA Dehydrogenase/Amyloid-β Peptide-binding Protein

    PubMed Central

    Torroja, Laura; Ortuño-Sahagún, Daniel; Ferrús, Alberto; Hämmerle, Barbara; Barbas, Julio A.

    1998-01-01

    The characterization of scully, an essential gene of Drosophila with phenocritical phases at embryonic and pupal stages, shows its extensive homology with vertebrate type II l-3-hydroxyacyl-CoA dehydrogenase/ERAB. Genomic rescue demonstrates that four different lethal mutations are scu alleles, the molecular nature of which has been established. One of them, scu3127, generates a nonfunctional truncated product. scu4058 also produces a truncated protein, but it contains most of the known functional domains of the enzyme. The other two mutations, scu174 and scuS152, correspond to single amino acid changes. The expression of scully mRNA is general to many tissues including the CNS; however, it is highest in both embryonic gonadal primordia and mature ovaries and testes. Consistent with this pattern, the phenotypic analysis suggests a role for scully in germ line formation: mutant testis are reduced in size and devoid of maturing sperm, and mutant ovarioles are not able to produce viable eggs. Ultrastructural analysis of mutant spermatocytes reveals the presence of cytoplasmic lipid inclusions and scarce mitochondria. In addition, mutant photoreceptors contain morphologically aberrant mitochondria and large multilayered accumulations of membranous material. Some of these phenotypes are very similar to those present in human pathologies caused by β-oxidation disorders. PMID:9585418

  10. Ballistic transfection of mammalian cells in vivo

    SciTech Connect

    Kolesnikov, V.A.; Zelenin, A.V.; Zelenina, I.A.

    1995-11-01

    The method of ballistic transfection initially proposed for genetic transformation of plants was used for animal cells in vitro and in situ. The method consists in bombarding the transfected cells with microparticles of heavy metals carrying foreign DNA. Penetrating the cell nucleus, the microparticles transport the introduced gene. Successful genetic transformation of the cultured mouse cells and fish embryos was realized, and this allowed the study of mammalian cells in situ. The performed studies allowed us to demonstrate expression of the reporter genes of chloramphenicol acetyltransferase, galactosidase, and neomycin phosphotransferase in the mouse liver, mammary gland and kidney explants, in the liver and cross-striated muscle of mouse and rat in situ, and in developing mouse embryos at the stages of two-cell embryo, morula, and blastocyst. All these genes were introduced by ballistic transfection. In the liver and cross-striated muscle the transgene activity was detected within two to three months after transfection. Thus, the ballistic introduction of the foreign genes in the cells in situ was demonstrated, and this opens possibilities for the use of this method in gene therapy. Methodical aspects of the bombarding and transfection are considered in detail, and the published data on transfection and genetic transformation of mammalian cells are discussed. 41 refs., 13 figs., 1 tab.

  11. Search for characteristic structural features of mammalian mitochondrial tRNAs.

    PubMed Central

    Helm, M; Brulé, H; Friede, D; Giegé, R; Pütz, D; Florentz, C

    2000-01-01

    A number of mitochondrial (mt) tRNAs have strong structural deviations from the classical tRNA cloverleaf secondary structure and from the conventional L-shaped tertiary structure. As a consequence, there is a general trend to consider all mitochondrial tRNAs as "bizarre" tRNAs. Here, a large sequence comparison of the 22 tRNA genes within 31 fully sequenced mammalian mt genomes has been performed to define the structural characteristics of this specific group of tRNAs. Vertical alignments define the degree of conservation/variability of primary sequences and secondary structures and search for potential tertiary interactions within each of the 22 families. Further horizontal alignments ascertain that, with the exception of serine-specific tRNAs, mammalian mt tRNAs do fold into cloverleaf structures with mostly classical features. However, deviations exist and concern large variations in size of the D- and T-loops. The predominant absence of the conserved nucleotides G18G19 and T54T55C56, respectively in these loops, suggests that classical tertiary interactions between both domains do not take place. Classification of the tRNA sequences according to their genomic origin (G-rich or G-poor DNA strand) highlight specific features such as richness/poorness in mismatches or G-T pairs in stems and extremely low G-content or C-content in the D- and T-loops. The resulting 22 "typical" mammalian mitochondrial sequences built up a phylogenetic basis for experimental structural and functional investigations. Moreover, they are expected to help in the evaluation of the possible impacts of those point mutations detected in human mitochondrial tRNA genes and correlated with pathologies. PMID:11073213

  12. Reverse genetics for mammalian reovirus.

    PubMed

    Boehme, Karl W; Ikizler, Miné; Kobayashi, Takeshi; Dermody, Terence S

    2011-10-01

    Mammalian orthoreoviruses (reoviruses) are highly tractable models for studies of viral replication and pathogenesis. The versatility of reovirus as an experimental model has been enhanced by development of a plasmid-based reverse genetics system. Infectious reovirus can be recovered from cells transfected with plasmids encoding cDNAs of each reovirus gene segment using a strategy that does not require helper virus and is independent of selection. In this system, transcription of each gene segment is driven by bacteriophage T7 RNA polymerase, which can be supplied transiently by recombinant vaccinia virus (rDIs-T7pol) or by cells that constitutively express the enzyme. Reverse genetics systems have been developed for two prototype reovirus strains, type 1 Lang (T1L) and type 3 Dearing (T3D). Each reovirus cDNA was encoded on an independent plasmid for the first-generation rescue system. The efficiency of virus recovery was enhanced in a second-generation system by combining the cDNAs for multiple reovirus gene segments onto single plasmids to reduce the number of plasmids from 10 to 4. The reduction in plasmid number and the use of baby hamster kidney cells that express T7 RNA polymerase increased the efficiency of viral rescue, reduced the incubation time required to recover infectious virus, and eliminated potential biosafety concerns associated with the use of recombinant vaccinia virus. Reovirus reverse genetics has been used to introduce mutations into viral capsid and nonstructural components to study viral protein-structure activity relationships and can be exploited to engineer recombinant reoviruses for vaccine and oncolytic applications. PMID:21798351

  13. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis.

    PubMed

    Shin, Yong-Hyun; Choi, Youngsok; Erdin, Serpil Uckac; Yatsenko, Svetlana A; Kloc, Malgorzata; Yang, Fang; Wang, P Jeremy; Meistrich, Marvin L; Rajkovic, Aleksandar

    2010-11-01

    Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1(-/) (-)) testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1(-/) (-) testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with γH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1(-/) (-) ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1(-/) (-) oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing. PMID:21079677

  14. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases.

    PubMed

    Meinnel, T; Mechulam, Y; Fayat, G; Blanquet, S

    1992-09-25

    The rates of the cross-aminoacylation reactions of tRNAs(Met) catalyzed by methionyl-tRNA synthetases from various organisms suggest the occurrence of two types of tRNA(Met)/methionyl-tRNA synthetase systems. In this study, the tRNA determinants recognized by mammalian or E. coli methionyl-tRNA synthetases, which are representative members of the two types, have been examined. Like its prokaryotic counterpart, the mammalian enzyme utilizes the anticodon of tRNA as main recognition element. However, the mammalian cytoplasmic elongator tRNA(Met) species is not recognized by the bacterial synthetase, and both the initiator and elongator E. coli tRNA(Met) behave as poor substrates of the mammalian cytoplasmic synthetase. Synthetic genes encoding variants of tRNAs(Met), including the elongator one from mammals, were expressed in E. coli. tRNAs(Met) recognized by a synthetase of a given type can be converted into a substrate of an enzyme of the other type by introducing one-base substitutions in the anticodon loop or stem. In particular, a reduction of the size of the anticodon loop of cytoplasmic mammalian elongator tRNA(Met) from 9 to 7 bases, through the creation of an additional Watson-Crick pair at the bottom of the anticodon stem, makes it a substrate of the prokaryotic enzyme and decreases its ability to be methionylated by the mammalian enzyme. Moreover, enlarging the size of the anticodon loop of E. coli tRNA(Metm) from 7 to 9 bases, by disrupting the base pair at the bottom of the anticodon stem, renders the resulting tRNA a good substrate of the mammalian enzyme, while strongly altering its reaction with the prokaryotic synthetase. Finally, E. coli tRNA(Metf) can be rendered a better substrate of the mammalian enzyme by changing its U33 into a C. This modification makes the sequence of the anticodon loop of tRNA(Metf) identical to that of cytoplasmic initiator tRNA(Met). PMID:1408786

  15. Expression of the pair-rule gene homologs runt, Pax3/7, even-skipped-1 and even-skipped-2 during larval and juvenile development of the polychaete annelid Capitella teleta does not support a role in segmentation

    PubMed Central

    2012-01-01

    Background Annelids and arthropods each possess a segmented body. Whether this similarity represents an evolutionary convergence or inheritance from a common segmented ancestor is the subject of ongoing investigation. Methods To investigate whether annelids and arthropods share molecular components that control segmentation, we isolated orthologs of the Drosophila melanogaster pair-rule genes, runt, paired (Pax3/7) and eve, from the polychaete annelid Capitella teleta and used whole mount in situ hybridization to characterize their expression patterns. Results When segments first appear, expression of the single C. teleta runt ortholog is only detected in the brain. Later, Ct-runt is expressed in the ventral nerve cord, foregut and hindgut. Analysis of Pax genes in the C. teleta genome reveals the presence of a single Pax3/7 ortholog. Ct-Pax3/7 is initially detected in the mid-body prior to segmentation, but is restricted to two longitudinal bands in the ventral ectoderm. Each of the two C. teleta eve orthologs has a unique and complex expression pattern, although there is partial overlap in several tissues. Prior to and during segment formation, Ct-eve1 and Ct-eve2 are both expressed in the bilaterial pair of mesoteloblasts, while Ct-eve1 is expressed in the descendant mesodermal band cells. At later stages, Ct-eve2 is expressed in the central and peripheral nervous system, and in mesoderm along the dorsal midline. In late stage larvae and adults, Ct-eve1 and Ct-eve2 are expressed in the posterior growth zone. Conclusions C. teleta eve, Pax3/7 and runt homologs all have distinct expression patterns and share expression domains with homologs from other bilaterians. None of the pair-rule orthologs examined in C. teleta exhibit segmental or pair-rule stripes of expression in the ectoderm or mesoderm, consistent with an independent origin of segmentation between annelids and arthropods. PMID:22510249

  16. Mammalian lipoxygenases and their biological relevance

    PubMed Central

    Kuhn, Hartmut; Banthiya, Swathi; van Leyen, Klaus

    2015-01-01

    Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOX oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. PMID:25316652

  17. Light-Inducible Gene Regulation with Engineered Zinc Finger Proteins

    PubMed Central

    Polstein, Lauren R.; Gersbach, Charles A.

    2014-01-01

    The coupling of light-inducible protein-protein interactions with gene regulation systems has enabled the control of gene expression with light. In particular, heterodimer protein pairs from plants can be used to engineer a gene regulation system in mammalian cells that is reversible, repeatable, tunable, controllable in a spatiotemporal manner, and targetable to any DNA sequence. This system, Light-Inducible Transcription using Engineered Zinc finger proteins (LITEZ), is based on the blue light-induced interaction of GIGANTEA and the LOV domain of FKF1 that drives the localization of a transcriptional activator to the DNA-binding site of a highly customizable engineered zinc finger protein. This chapter provides methods for modifying LITEZ to target new DNA sequences, engineering a programmable LED array to illuminate cell cultures, and using the modified LITEZ system to achieve spatiotemporal control of transgene expression in mammalian cells. PMID:24718797

  18. Evidence of positive selection at codon sites localized in extracellular domains of mammalian CC motif chemokine receptor proteins

    PubMed Central

    2010-01-01

    Background CC chemokine receptor proteins (CCR1 through CCR10) are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted trafficking of white blood cells. In addition, some of these receptors have been identified as fusion proteins for viral pathogens: for example, HIV-1 strains utilize CCR5, CCR2 and CCR3 proteins to obtain cellular entry in humans. The extracellular domains of these receptor proteins are involved in ligand-binding specificity as well as pathogen recognition interactions. In mammals, the majority of chemokine receptor genes are clustered together; in humans, seven of the ten genes are clustered in the 3p21-24 chromosome region. Gene conversion events, or exchange of DNA sequence between genes, have been reported in chemokine receptor paralogs in various mammalian lineages, especially between the cytogenetically closely located pairs CCR2/5 and CCR1/3. Datasets of mammalian orthologs for each gene were analyzed separately to minimize the potential confounding impact of analyzing highly similar sequences resulting from gene conversion events. Molecular evolution approaches and the software package Phylogenetic Analyses by Maximum Likelihood (PAML) were utilized to investigate the signature of selection that has acted on the mammalian CC chemokine receptor (CCR) gene family. The results of neutral vs. adaptive evolution (positive selection) hypothesis testing using Site Models are reported. In general, positive selection is defined by a ratio of nonsynonymous/synonymous nucleotide changes (dN/dS, or ω) >1. Results Of the ten mammalian CC motif chemokine receptor sequence datasets analyzed, only CCR2 and CCR3 contain amino acid codon sites that exhibit evidence of positive selection using site based hypothesis testing in PAML. Nineteen of the twenty codon sites putatively indentified as likely to be under positive selection code for amino acid

  19. The mammalian blastocyst.

    PubMed

    Frankenberg, Stephen R; de Barros, Flavia R O; Rossant, Janet; Renfree, Marilyn B

    2016-01-01

    The blastocyst is a mammalian invention that carries the embryo from cleavage to gastrulation. For such a simple structure, it exhibits remarkable diversity in its mode of formation, morphology, longevity, and intimacy with the uterine endometrium. This review explores this diversity in the light of the evolution of viviparity, comparing the three main groups of mammals: monotremes, marsupials, and eutherians. The principal drivers in blastocyst evolution were loss of yolk coupled with evolution of the placenta. An important outcome of blastocyst development is differentiation of two extraembryonic lineages (trophoblast and hypoblast) that contribute to the placenta. While in many species trophoblast segregation is often coupled with blastocyst formation, in marsupials and at least some Afrotherians, these events do not coincide. Thus, many questions regarding the conservation of molecular mechanisms controlling these events are of great interest but currently unresolved. For further resources related to this article, please visit the WIREs website. PMID:26799266

  20. Mammalian phospholipase C.

    PubMed

    Kadamur, Ganesh; Ross, Elliott M

    2013-01-01

    Phospholipase C (PLC) converts phosphatidylinositol 4,5-bisphosphate (PIP(2)) to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol (DAG). DAG and IP(3) each control diverse cellular processes and are also substrates for synthesis of other important signaling molecules. PLC is thus central to many important interlocking regulatory networks. Mammals express six families of PLCs, each with both unique and overlapping controls over expression and subcellular distribution. Each PLC also responds acutely to its own spectrum of activators that includes heterotrimeric G protein subunits, protein tyrosine kinases, small G proteins, Ca(2+), and phospholipids. Mammalian PLCs are autoinhibited by a region in the catalytic TIM barrel domain that is the target of much of their acute regulation. In combination, the PLCs act as a signaling nexus that integrates numerous signaling inputs, critically governs PIP(2) levels, and regulates production of important second messengers to determine cell behavior over the millisecond to hour timescale. PMID:23140367

  1. New consensus nomenclature for mammalian keratins

    PubMed Central

    Schweizer, Jürgen; Bowden, Paul E.; Coulombe, Pierre A.; Langbein, Lutz; Lane, E. Birgitte; Magin, Thomas M.; Maltais, Lois; Omary, M. Bishr; Parry, David A.D.; Rogers, Michael A.; Wright, Mathew W.

    2006-01-01

    Keratins are intermediate filament–forming proteins that provide mechanical support and fulfill a variety of additional functions in epithelial cells. In 1982, a nomenclature was devised to name the keratin proteins that were known at that point. The systematic sequencing of the human genome in recent years uncovered the existence of several novel keratin genes and their encoded proteins. Their naming could not be adequately handled in the context of the original system. We propose a new consensus nomenclature for keratin genes and proteins that relies upon and extends the 1982 system and adheres to the guidelines issued by the Human and Mouse Genome Nomenclature Committees. This revised nomenclature accommodates functional genes and pseudogenes, and although designed specifically for the full complement of human keratins, it offers the flexibility needed to incorporate additional keratins from other mammalian species. PMID:16831889

  2. In Vitro Properties of the Conserved Mammalian Protein hnRNP D Suggest a Role in Telomere Maintenance

    PubMed Central

    Eversole, Ashley; Maizels, Nancy

    2000-01-01

    Mammalian chromosomes terminate with a 3′ tail which consists of reiterations of the G-rich repeat, d(TTAGGG). The telomeric tail is the primer for replication by telomerase, and it may also invade telomeric duplex DNA to form terminal lariat structures, or T loops. Here we show that the ubiquitous and highly conserved mammalian protein hnRNP D interacts specifically with the G-rich strand of the telomeric repeat. A single gene encodes multiple isoforms of hnRNP D. All isoforms bind comparably to the G-rich strand, and certain isoforms can also bind tightly and specifically to the C-rich telomeric strand. G-rich telomeric sequences readily form structures stabilized by G-G pairing, which can interfere with telomere replication by telomerase. We show that hnRNP D binding to the G-rich strand destabilizes intrastrand G-G pairing and that hnRNP D interacts specifically with telomerase in human cell extracts. This biochemical analysis suggest that hnRNP D could function in vivo to destabilize structures formed by telomeric G-rich tails and facilitate their extension by telomerase. PMID:10891483

  3. Mammalian Evolution May not Be Strictly Bifurcating

    PubMed Central

    Hallström, Björn M.; Janke, Axel

    2010-01-01

    The massive amount of genomic sequence data that is now available for analyzing evolutionary relationships among 31 placental mammals reduces the stochastic error in phylogenetic analyses to virtually zero. One would expect that this would make it possible to finally resolve controversial branches in the placental mammalian tree. We analyzed a 2,863,797 nucleotide-long alignment (3,364 genes) from 31 placental mammals for reconstructing their evolution. Most placental mammalian relationships were resolved, and a consensus of their evolution is emerging. However, certain branches remain difficult or virtually impossible to resolve. These branches are characterized by short divergence times in the order of 1–4 million years. Computer simulations based on parameters from the real data show that as little as about 12,500 amino acid sites could be sufficient to confidently resolve short branches as old as about 90 million years ago (Ma). Thus, the amount of sequence data should no longer be a limiting factor in resolving the relationships among placental mammals. The timing of the early radiation of placental mammals coincides with a period of climate warming some 100–80 Ma and with continental fragmentation. These global processes may have triggered the rapid diversification of placental mammals. However, the rapid radiations of certain mammalian groups complicate phylogenetic analyses, possibly due to incomplete lineage sorting and introgression. These speciation-related processes led to a mosaic genome and conflicting phylogenetic signals. Split network methods are ideal for visualizing these problematic branches and can therefore depict data conflict and possibly the true evolutionary history better than strictly bifurcating trees. Given the timing of tectonics, of placental mammalian divergences, and the fossil record, a Laurasian rather than Gondwanan origin of placental mammals seems the most parsimonious explanation. PMID:20591845

  4. Sequences more than 500 base pairs upstream of the human U3 small nuclear RNA gene stimulate the synthesis of U3 RNA in frog oocytes

    SciTech Connect

    Suh, D.; Reddy, R. ); Wright, D. )

    1991-06-04

    Small nuclear RNA (snRNA) genes contain strong promoters capable of initiating transcription once every 4 s. Studies on the human U1 snRNA gene, carried out in other laboratories, showed that sequences within 400 bp of the 5' flanking region are sufficient for maximal levels of transcription both in vivo and in frog oocytes (reviewed in Dahlberg and Lund (1988)). The authors studied the expression of a human U3 snRNA gene by injecting 5' deletion mutants into frog oocytes. The results show that sequences more than 500 bp upstream of the U3 snRNA gene have a 2-3-fold stimulatory effect on the U3 snRNA synthesis. These results indicate that the human U3 snRNA gene is different from human U1 snRNA gene in containing regulatory elements more than 500 bp upstream. The U3 snRNA gene upstream sequences contain an AluI homologous sequence in the {minus}1,200 region; these AluI sequences were transcribed in vitro and in frog oocytes but were not detectable in Hela cells.

  5. Structure of mammalian metallothionein

    SciTech Connect

    Kaegi, J.H.R.; Vasak, M.; Lerch, K.; Gilg, D.E.O.; Hunziker, P.; Bernhard, W.R.; Good, M.

    1984-03-01

    All mammalian metallothioneins characterized contain a single polypeptide chain of 61 amino acid residues, among them 20 cysteines providing the ligands for seven metal-binding sites. Native metallothioneins are usually heterogeneous in metal composition, with Zn, Cd, and Cu occurring in varying proportions. However, forms containing only a single metal species, i.e., Zn, Cd, Ni, Co, Hg, Pb, Bi, have now been prepared by in vitro reconstitution from the metal-free apoprotein. By spectroscopic analysis of such derivatives it was established that all cysteine residues participate in metal binding, that each metal ion is bound to four thiolate ligands, and that the symmetry of each complex is close to that of a tetrahedron. To satisfy the requirements of the overall Me/sub 7/(Cys/sup -/)/sub 20/ stoichiometry, the complexes must be combined to form metal-thiolate cluster structures. The actual spatial organization of the clusters and the polypeptide chain remains to be established. An attractive possibility is the arrangement of the tetrahedral metal-thiolates in adamantane-like structures surrounded by properly folded segments of the chain providing the ligands. /sup 1/H-NMR data and infrared absorption measurements are consistent with a tightly folded structure rich in ..beta..-type conformation. 79 references, 11 figures, 4 tables.

  6. Mammalian Sirtuins and Energy Metabolism

    PubMed Central

    Li, Xiaoling; Kazgan, Nevzat

    2011-01-01

    Sirtuins are highly conserved NAD+-dependent protein deacetylases and/or ADP-ribosyltransferases that can extend the lifespan of several lower model organisms including yeast, worms and flies. The seven mammalian sirtuins, SIRT1 to SIRT7, have emerged as key metabolic sensors that directly link environmental signals to mammalian metabolic homeostasis and stress response. Recent studies have shed light on the critical roles of sirtuins in mammalian energy metabolism in response to nutrient signals. This review focuses on the involvement of two nuclear sirtuins, SIRT1 and SIRT6, and three mitochondrial sirtuins, SIRT3, SIRT4, and SIRT5, in regulation of diverse metabolic processes. PMID:21614150

  7. Effects of slow-release urea and rumen-protected methionine and histidine on mammalian target of rapamycin (mTOR) signaling and ubiquitin proteasome-related gene expression in skeletal muscle of dairy cows.

    PubMed

    Sadri, H; Giallongo, F; Hristov, A N; Werner, J; Lang, C H; Parys, C; Saremi, B; Sauerwein, H

    2016-08-01

    The mammalian target of rapamycin (mTOR) is a major regulator of protein synthesis, whereas the ubiquitin-proteasome system (UPS) is regarded as the main proteolytic pathway in skeletal muscle. The objective of the current study was to investigate the effects of slow-release urea and rumen-protected (RP) Met and His supplementation of a metabolizable protein (MP)-deficient diet on the abundance of key components of the mTOR pathway and of the UPS in skeletal muscle of dairy cows. Sixty Holstein cows were blocked based on days in milk and milk yield and were randomly assigned within block to 1 of 5 diets in a 10-wk experiment (including the first 2 wk as covariate period) as follows: (1) MP-adequate diet (AMP; 107% of MP requirements, based on the National Research Council requirements); (2) MP-deficient diet (DMP; 95% of MP requirements); (3) DMP supplemented with slow-release urea (DMPU); (4) DMPU supplemented with RPMet (DMPUM); and (5) DMPUM supplemented with RPHis (DMPUMH). Muscle biopsies were collected from longissimus dorsi during the last week of the experiment. The mRNA abundance of key mTOR signaling genes was not affected by the treatments. The phosphorylated (P)-mTOR protein was or tended to be greater for DMP compared with DMPU and AMP, respectively. The P-mTOR protein in DMPUMH was decreased when compared against DMPUM. The P-ribosomal protein S6 tended to be increased by DMPUM compared with DMPU. The abundance of total-S6 was or tended to be greater for DMP compared with AMP and DMPU, respectively. The mRNA abundance of ubiquitin activating and conjugating enzymes was not affected by the treatments, whereas that of muscle ring-finger protein 1 (MuRF-1) was greater in DMP than DMPU. The increased abundance of mTOR-associated signaling proteins and MuRF-1 mRNA abundance indicates a higher rate of protein turnover in muscle of DMP-fed cows. The reduced abundance of P-mTOR by supplementation of RPHis may suggest that His is likely partitioned to the

  8. Ancestral Y-linked genes were maintained by translocation to the X and Y chromosomes fused to an autosomal pair in the Okinawa spiny rat Tokudaia muenninki.

    PubMed

    Murata, Chie; Kuroki, Yoko; Imoto, Issei; Kuroiwa, Asato

    2016-09-01

    Two species of the genus Tokudaia lack the Y chromosome and SRY, but several Y-linked genes have been rescued by translocation or transposition to other chromosomes. Tokudaia muenninki is the only species in the genus that maintains the Y owing to sex chromosome-autosome fusions. According to previous studies, many SRY pseudocopies and other Y-linked genes have evolved by excess duplication in this species. Using RNA-seq and RT-PCR, we found that ZFY, EIF2S3Y, TSPY, UTY, DDX3Y, USP9Y, and RBMY, but not UBA1Y, had high deduced amino acid sequence similarity and similar expression patterns with other rodents, suggesting that these genes were functional. Based on FISH and quantitative real-time PCR, all of the genes except for UTY and DDX3Y were amplified on the X and Y chromosomes with approximately 10-66 copies in the male genome. In a comparative analysis of the 372.4-kb BAC sequence and Y-linked gene transcripts from T. muenninki with the mouse Y genomic sequence, we observed that multiple-copy genes in the ancestral Y genome were nonfunctional, indicating that the gene functions were assumed by amplified copies. We also found a LTR sequence at the distal end of a SRY duplication unit, suggesting that unequal sister chromatid exchange mediated by retrotransposable elements could have been involved in SRY amplification. Our results revealed that the Y-linked genes were rescued from degeneration via translocations to other sex chromosomal regions and amplification events in T. muenninki. PMID:27333765

  9. Infectious Laryngotracheitis Herpesvirus Expresses a Related Pair of Unique Nuclear Proteins Which Are Encoded by Split Genes Located at the Right End of the UL Genome Region

    PubMed Central

    Ziemann, Katharina; Mettenleiter, Thomas C.; Fuchs, Walter

    1998-01-01

    Avian infectious laryngotracheitis virus (ILTV) possesses an alphaherpesvirus type D DNA genome of ca. 155 kbp. Completion of our previous sequence analyses (W. Fuchs and T. C. Mettenleiter, J. Gen. Virol. 77:2221–2229, 1996) of the right end of the unique long (UL) genome region revealed the presence of two adjacent, presumably ILTV-specific genes, which were named UL0 and UL[−1] because of their location upstream of the conserved UL1 (glycoprotein L) gene. Transcriptional analyses showed that both genes are abundantly expressed during the late phase of the viral replication cycle and that both mRNAs are spliced by the removal of short introns close to their 5′ ends. Furthermore, the deduced gene products exhibit a moderate but significant homology of 28% to each other. The newly identified ILTV genes encode proteins of 63 kDa (UL0) and 73 kDa (UL[−1]), which both are predominantly localized in the nuclei of virus infected chicken cells. In summary, our results indicate that duplication of a spliced ILTV-specific gene encoding a nuclear protein has occurred during evolution of ILTV. PMID:9658136

  10. Mammalian DNA Repair. Final Report

    SciTech Connect

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  11. Site-directed gene mutation at mixed sequence targets by psoralen-conjugated pseudo-complementary peptide nucleic acids.

    PubMed

    Kim, Ki-Hyun; Nielsen, Peter E; Glazer, Peter M

    2007-01-01

    Sequence-specific DNA-binding molecules such as triple helix-forming oligonucleotides (TFOs) provide a means for inducing site-specific mutagenesis and recombination at chromosomal sites in mammalian cells. However, the utility of TFOs is limited by the requirement for homopurine stretches in the target duplex DNA. Here, we report the use of pseudo-complementary peptide nucleic acids (pcPNAs) for intracellular gene targeting at mixed sequence sites. Due to steric hindrance, pcPNAs are unable to form pcPNA-pcPNA duplexes but can bind to complementary DNA sequences by Watson-Crick pairing via double duplex-invasion complex formation. We show that psoralen-conjugated pcPNAs can deliver site-specific photoadducts and mediate targeted gene modification within both episomal and chromosomal DNA in mammalian cells without detectable off-target effects. Most of the induced psoralen-pcPNA mutations were single-base substitutions and deletions at the predicted pcPNA-binding sites. The pcPNA-directed mutagenesis was found to be dependent on PNA concentration and UVA dose and required matched pairs of pcPNAs. Neither of the individual pcPNAs alone had any effect nor did complementary PNA pairs of the same sequence. These results identify pcPNAs as new tools for site-specific gene modification in mammalian cells without purine sequence restriction, thereby providing a general strategy for designing gene targeting molecules. PMID:17977869

  12. Cosplicing network analysis of mammalian brain RNA-Seq data utilizing WGCNA and Mantel correlations.

    PubMed

    Iancu, Ovidiu D; Colville, Alexandre; Oberbeck, Denesa; Darakjian, Priscila; McWeeney, Shannon K; Hitzemann, Robert

    2015-01-01

    Across species and tissues and especially in the mammalian brain, production of gene isoforms is widespread. While gene expression coordination has been previously described as a scale-free coexpression network, the properties of transcriptome-wide isoform production coordination have been less studied. Here we evaluate the system-level properties of cosplicing in mouse, macaque, and human brain gene expression data using a novel network inference procedure. Genes are represented as vectors/lists of exon counts and distance measures sensitive to exon inclusion rates quantifies differences across samples. For all gene pairs, distance matrices are correlated across samples, resulting in cosplicing or cotranscriptional network matrices. We show that networks including cosplicing information are scale-free and distinct from coexpression. In the networks capturing cosplicing we find a set of novel hubs with unique characteristics distinguishing them from coexpression hubs: heavy representation in neurobiological functional pathways, strong overlap with markers of neurons and neuroglia, long coding lengths, and high number of both exons and annotated transcripts. Further, the cosplicing hubs are enriched in genes associated with autism spectrum disorders. Cosplicing hub homologs across eukaryotes show dramatically increasing intronic lengths but stable coding region lengths. Shared transcription factor binding sites increase coexpression but not cosplicing; the reverse is true for splicing-factor binding sites. Genes with protein-protein interactions have strong coexpression and cosplicing. Additional factors affecting the networks include shared microRNA binding sites, spatial colocalization within the striatum, and sharing a chromosomal folding domain. Cosplicing network patterns remain relatively stable across species. PMID:26029240

  13. Structure of transcribing mammalian RNA polymerase II.

    PubMed

    Bernecky, Carrie; Herzog, Franz; Baumeister, Wolfgang; Plitzko, Jürgen M; Cramer, Patrick

    2016-01-28

    RNA polymerase (Pol) II produces messenger RNA during transcription of protein-coding genes in all eukaryotic cells. The Pol II structure is known at high resolution from X-ray crystallography for two yeast species. Structural studies of mammalian Pol II, however, remain limited to low-resolution electron microscopy analysis of human Pol II and its complexes with various proteins. Here we report the 3.4 Å resolution cryo-electron microscopy structure of mammalian Pol II in the form of a transcribing complex comprising DNA template and RNA transcript. We use bovine Pol II, which is identical to the human enzyme except for seven amino-acid residues. The obtained atomic model closely resembles its yeast counterpart, but also reveals unknown features. Binding of nucleic acids to the polymerase involves 'induced fit' of the mobile Pol II clamp and active centre region. DNA downstream of the transcription bubble contacts a conserved 'TPSA motif' in the jaw domain of the Pol II subunit RPB5, an interaction that is apparently already established during transcription initiation. Upstream DNA emanates from the active centre cleft at an angle of approximately 105° with respect to downstream DNA. This position of upstream DNA allows for binding of the general transcription elongation factor DSIF (SPT4-SPT5) that we localize over the active centre cleft in a conserved position on the clamp domain of Pol II. Our results define the structure of mammalian Pol II in its functional state, indicate that previous crystallographic analysis of yeast Pol II is relevant for understanding gene transcription in all eukaryotes, and provide a starting point for a mechanistic analysis of human transcription. PMID:26789250

  14. Mammalian Interphase Cdks

    PubMed Central

    2012-01-01

    Cyclin-dependent kinases (Cdks) drive cell cycle progression in all eukaryotes. Yeasts have a single major Cdk that mediates distinct cell cycle transitions via association with different cyclins. The closest homolog in mammals, Cdk1, drives mitosis. Mammals have additional Cdks—Cdk2, Cdk4, and Cdk6—that represent the major Cdks activated during interphase (iCdks). A large body of evidence has accrued that suggests that activation of iCdks dictates progression though interphase. In apparent contradiction, deficiency in each individual iCdk, respectively, in knockout mice proved to be compatible with live birth and in some instances fertility. Moreover, murine embryos could be derived with Cdk1 as the only functional Cdk. Thus, none of the iCdks is strictly essential for mammalian cell cycle progression, raising the possibility that Cdk1 is the dominant regulator in interphase. However, an absence of iCdks has been accompanied by major shifts in cyclin association to Cdk1, suggesting gain in function. After considerable tweaking, a chemical genetic approach has recently been able to examine the impact of acute inhibition of Cdk2 activity without marked distortion of cyclin/Cdk complex formation. The results suggest that, when expressed at its normal levels, Cdk2 performs essential roles in driving human cells into S phase and maintaining genomic stability. These new findings appear to have restored order to the cell cycle field, bringing it full circle to the view that iCdks indeed play important roles. They also underscore the caveat in knockdown and knockout approaches that protein underexpression can significantly perturb a protein interaction network. We discuss the implications of the new synthesis for future cell cycle studies and anti–Cdk-based therapy of cancer and other diseases. PMID:23634250

  15. Isotope Labeling in Mammalian Cells

    PubMed Central

    Dutta, Arpana; Saxena, Krishna; Klein-Seetharaman, Judith

    2011-01-01

    Isotope labeling of proteins represents an important and often required tool for the application of nuclear magnetic resonance (NMR) spectroscopy to investigate the structure and dynamics of proteins. Mammalian expression systems have conventionally been considered to be too weak and inefficient for protein expression. However, recent advances have significantly improved the expression levels of these systems. Here, we provide an overview of some of the recent developments in expression strategies for mammalian expression systems in view of NMR investigations. PMID:22167668

  16. Cell type-specific transcriptome profiling in mammalian brains

    PubMed Central

    LoVerso, Peter R.; Cui, Feng

    2016-01-01

    A mammalian brain contains numerous types of cells. Advances in neuroscience in the past decade allow us to identify and isolate neural cells of interest from mammalian brains. Recent developments in high-throughput technologies, such as microarrays and next-generation sequencing (NGS), provide detailed information on gene expression in pooled cells on a genomic scale. As a result, many novel genes have been found critical in cell type-specific transcriptional regulation. These differentially expressed genes can be used as molecular signatures, unique to a particular class of neural cells. Use of this gene expression-based approach can further differentiate neural cell types into subtypes, potentially linking some of them with neurological diseases. In this article, experimental techniques used to purify neural cells are described, followed by a review on recent microarray- or NGS-based transcriptomic studies of common neural cell types. The future prospects of cell type-specific research are also discussed. PMID:27100485

  17. Cell type-specific transcriptome profiling in mammalian brains.

    PubMed

    LoVerso, Peter R; Cui, Feng

    2016-01-01

    A mammalian brain contains numerous types of cells. Advances in neuroscience in the past decade allow us to identify and isolate neural cells of interest from mammalian brains. Recent developments in high-throughput technologies, such as microarrays and next-generation sequencing (NGS), provide detailed information on gene expression in pooled cells on a genomic scale. As a result, many novel genes have been found critical in cell type-specific transcriptional regulation. These differentially expressed genes can be used as molecular signatures, unique to a particular class of neural cells. Use of this gene expression-based approach can further differentiate neural cell types into subtypes, potentially linking some of them with neurological diseases. In this article, experimental techniques used to purify neural cells are described, followed by a review on recent microarray- or NGS-based transcriptomic studies of common neural cell types. The future prospects of cell type-specific research are also discussed. PMID:27100485

  18. Single-Plasmid-Based System for Efficient Noncanonical Amino Acid Mutagenesis in Cultured Mammalian Cells.

    PubMed

    Cohen, Sarit; Arbely, Eyal

    2016-06-01

    We describe a new expression system for efficient non-canonical amino acid mutagenesis in cultured mammalian cells by using the pyrrolysine tRNA synthetase/tRNACUA (Pyl) pair. A significant improvement in the incorporation of non-canonical amino acids into proteins was obtained by combining all the required genetic components into a single and compact vector that can be efficiently delivered to different mammalian cell lines by conventional transfection reagents. PMID:27120490

  19. Transfection of shRNA-encoding Minivector DNA of a few hundred base pairs to regulate gene expression in lymphoma cells

    PubMed Central

    Zhao, N; Fogg, J M; Zechiedrich, L; Zu, Y

    2011-01-01

    This work illustrates the utility of Minivector DNA, a non-viral, supercoiled gene therapy vector incorporating short hairpin RNA from an H1 promoter. Minivector DNA is superior to both plasmid DNA and small interfering RNA (siRNA) in that it has improved biostability while maintaining high cell transfection efficiency and gene silencing capacity. Minivector DNAs were stable for over 48 h in human serum, as compared with only 0.5 and 2 h for siRNA and plasmid, respectively. Although all three nucleic acids exhibited similar transfection efficiencies in easily transfected adhesion fibroblasts cells, only Minivector DNAs and siRNA were capable of transfecting difficult-to-transfect suspension lymphoma cells. Minivector DNA and siRNA were capable of silencing the gene encoding anaplastic lymphoma kinase, a key pathogenic factor of human anaplastic large cell lymphoma, and this silencing caused inhibition of the lymphoma cells. Based on these results, Minivector DNAs are a promising new gene therapy tool. PMID:20962872

  20. Genes2FANs: connecting genes through functional association networks

    PubMed Central

    2012-01-01

    Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs), researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI) network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our finding that disease genes in

  1. A novel 10-base pair insertion mutation in exon 5 of the SOD1 gene in a Chinese family with amyotrophic lateral sclerosis.

    PubMed

    Chen, Siyu; Li, Mao; Zhu, Wenjia; Mao, Fengbiao; Wang, Jiesi; Sun, Zhongsheng; Huang, Xusheng

    2016-09-01

    Amyotrophic lateral sclerosis (ALS) is an adult-onset, progressive, fatal neurodegenerative disease. Several genes are associated with ALS. Copper-zinc superoxide dismutase 1 (SOD1) is one of the most commonly mutated genes in ALS, and more than 160 mutations in SOD1 have been reported. We reported a novel heterozygous insertion mutation that led to a frameshift and a premature termination at position 136 in exon 5 of the SOD1 gene (c.392_393insGCAAAGGTGG; p.N132Qfs*5) in a Chinese familial ALS pedigree. This mutation in the pedigree demonstrated an autosomal dominant pattern of inheritance and a phenotype characterized by an early onset (approximately 34 years old) with a relatively rapid course (approximately 2 years) and limb onset with respiratory involvement. The clinical feature of the p.N132Qfs*5 mutation was nearly identical to a previously reported mutation (Gly127insTGGG). Experiments in G127X mice demonstrated that the G127X mutation was pathogenic. SOD1 activity in the p.N132Qfs*5 mutation carriers in the family decreased significantly compared with normal family members. In conclusion, we identified a novel SOD1 mutation in an ALS family, which is an important addition to the catalog of SOD1 mutations in ALS. PMID:27297615

  2. Reprogramming mammalian somatic cells.

    PubMed

    Rodriguez-Osorio, N; Urrego, R; Cibelli, J B; Eilertsen, K; Memili, E

    2012-12-01

    Somatic cell nuclear transfer (SCNT), the technique commonly known as cloning, permits transformation of a somatic cell into an undifferentiated zygote with the potential to develop into a newborn animal (i.e., a clone). In somatic cells, chromatin is programmed to repress most genes and express some, depending on the tissue. It is evident that the enucleated oocyte provides the environment in which embryonic genes in a somatic cell can be expressed. This process is controlled by a series of epigenetic modifications, generally referred to as "nuclear reprogramming," which are thought to involve the removal of reversible epigenetic changes acquired during cell differentiation. A similar process is thought to occur by overexpression of key transcription factors to generate induced pluripotent stem cells (iPSCs), bypassing the need for SCNT. Despite its obvious scientific and medical importance, and the great number of studies addressing the subject, the molecular basis of reprogramming in both reprogramming strategies is largely unknown. The present review focuses on the cellular and molecular events that occur during nuclear reprogramming in the context of SCNT and the various approaches currently being used to improve nuclear reprogramming. A better understanding of the reprogramming mechanism will have a direct impact on the efficiency of current SCNT procedures, as well as iPSC derivation. PMID:22979962

  3. Regulation of mammalian transcription and splicing by Nuclear RNAi

    PubMed Central

    Kalantari, Roya; Chiang, Cheng-Ming; Corey, David R.

    2016-01-01

    RNA interference (RNAi) is well known as a mechanism for controlling mammalian mRNA translation in the cytoplasm, but what would be the consequences if it also functions in cell nuclei? Although RNAi has also been found in nuclei of plants, yeast, and other organisms, there has been relatively little progress towards understanding the potential involvement of mammalian RNAi factors in nuclear processes including transcription and splicing. This review summarizes evidence for mammalian RNAi factors in cell nuclei and mechanisms that might contribute to the control of gene expression. When RNAi factors bind small RNAs, they form ribonucleoprotein complexes that can be selective for target sequences within different classes of nuclear RNA substrates. The versatility of nuclear RNAi may supply a previously underappreciated layer of regulation to transcription, splicing, and other nuclear processes. PMID:26612865

  4. Ribosomal protein S6 kinase 1 signaling regulates mammalian lifespan

    PubMed Central

    Selman, Colin; Tullet, Jennifer M.A.; Wieser, Daniela; Irvine, Elaine; Lingard, Steven J.; Choudhury, Agharul I.; Claret, Marc; Al-Qassab, Hind; Carmignac, Danielle; Ramadani, Faruk; Woods, Angela; Robinson, Iain C.A.; Schuster, Eugene; Batterham, Rachel L.; Kozma, Sara C.; Thomas, George; Carling, David; Okkenhaug, Klaus; Thornton, Janet M.; Partridge, Linda; Gems, David; Withers, Dominic J.

    2016-01-01

    Caloric restriction (CR) protects against aging and disease but the mechanisms by which this affects mammalian lifespan are unclear. We show in mice that deletion of the nutrient-responsive mTOR (mammalian target of rapamycin) signaling pathway component ribosomal S6 protein kinase 1 (S6K1) led to increased lifespan and resistance to age-related pathologies such as bone, immune and motor dysfunction and loss of insulin sensitivity. Deletion of S6K1 induced gene expression patterns similar to those seen in CR or with pharmacological activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), a conserved regulator of the metabolic response to CR. Our results demonstrate that S6K1 influences healthy mammalian lifespan, and suggest therapeutic manipulation of S6K1 and AMPK might mimic CR and provide broad protection against diseases of aging. PMID:19797661

  5. Molecular identification of ancient and modern mammalian magnesium transporters.

    PubMed

    Quamme, Gary A

    2010-03-01

    A large number of mammalian Mg(2+) transporters have been hypothesized on the basis of physiological data, but few have been investigated at the molecular level. The recent identification of a number of novel proteins that mediate Mg(2+) transport has enhanced our understanding of how Mg(2+) is translocated across mammalian membranes. Some of these transporters have some similarity to those found in prokaryocytes and yeast cells. Human Mrs2, a mitochondrial Mg(2+) channel, shares many of the properties of the bacterial CorA and yeast Alr1 proteins. The SLC41 family of mammalian Mg(2+) transporters has a similarity with some regions of the bacterial MgtE transporters. The mammalian ancient conserved domain protein (ACDP) Mg(2+) transporters are found in prokaryotes, suggesting an ancient origin. However, other newly identified mammalian transporters, including TRPM6/7, MagT, NIPA, MMgT, and HIP14 families, are not represented in prokaryotic genomes, suggesting more recent development. MagT, NIPA, MMgT, and HIP14 transporters were identified by differential gene expression using microarray analysis. These proteins, which are found in many different tissues and subcellular organelles, demonstrate a diversity of structural properties and biophysical functions. The mammalian Mg(2+) transporters have no obvious amino acid similarities, indicating that there are many ways to transport Mg(2+) across membranes. Most of these proteins transport a number of divalent cations across membranes. Only MagT1 and NIPA2 are selective for Mg(2+). Many of the identified mammalian Mg(2+) transporters are associated with a number of congenital disorders encompassing a wide range of tissues, including intestine, kidney, brain, nervous system, and skin. It is anticipated that future research will identify other novel Mg(2+) transporters and reveal other diseases. PMID:19940067

  6. Sirtuins: Guardians of Mammalian Healthspan

    PubMed Central

    Giblin, William; Skinner, Mary E.; Lombard, David B.

    2014-01-01

    The first link between sirtuins and longevity was made 15 years ago in yeast. These initial studies sparked efforts by many laboratories working in diverse model organisms to elucidate the relationships between sirtuins, lifespan, and age-associated dysfunction. Here we discuss the current understanding of how sirtuins relate to aging. We focus primarily on mammalian sirtuins SIRT1, SIRT3, and SIRT6, the three sirtuins for which the most relevant data are available. Strikingly, a large body of evidence now indicates that these and other mammalian sirtuins suppress a variety of age-related pathologies and promote healthspan. Moreover, increased expression of SIRT1 or SIRT6 extends mouse lifespan. Overall, these data point to important roles for sirtuins in promoting mammalian health, and perhaps in modulating the aging process. PMID:24877878

  7. Transcriptional mechanism for the paired miR-433 and miR-127 genes by nuclear receptors SHP and ERRgamma.

    PubMed

    Song, Guisheng; Wang, Li

    2008-10-01

    MicroRNAs (miRNAs, miRs) are genomically encoded small approximately 22 nt RNA molecules that have been shown to mediate translational repression of target mRNAs involved in cellular proliferation, differentiation and death. Despite intensive studies on their physiological and pathological functions, the molecular mechanism of how miRNA gene transcription is regulated remains largely unknown. Microarray profiling revealed 21 miRNAs clustered on chromosome 12, including miR-433 and miR-127, that were co-upregulated in small heterodimer partner (SHP, NR0B2) SHP knockouts (SHP(-/-)) liver. Gene cloning revealed that the 3'-coding region of pri-miR-433 served as the promoter region of pri-miR-127. Estrogen related receptor (ERRgamma, NR3B3) robustly activated miR-433 and miR-127 promoter reporters through ERRE, which was transrepressed by SHP. The strong elevation of miR-433 and miR-127 in Hepa-1 cells correlated with the down-regulation of SHP and up-regulation of ERRgamma. Ectopic expression of ERRgamma induced miR-433 and miR-127 expression, which was repressed by SHP coexpression. In contrast, knockdown ERRgamma decreased miR-433 and miR-127 expression. In addition, the ERRgamma agonist GSK4716 induced miR-433 and miR-127 expression both in vitro and in vivo, respectively. In summary, the coupled miR-433 and miR-127 genes were transcribed from independent promoters regulated by nuclear receptors ERRgamma/SHP in a compact space by using overlapping genomic regions. PMID:18776219

  8. Optimizing transient recombinant protein expression in mammalian cells.

    PubMed

    Hopkins, Ralph F; Wall, Vanessa E; Esposito, Dominic

    2012-01-01

    Transient gene expression (TGE) in mammalian cells has become a routine process for expressing recombinant proteins in cell lines such as human embryonic kidney 293 and Chinese hamster ovary cells. The rapidly increasing need for recombinant proteins requires further improvements in TGE technology. While a great deal of focus has been directed toward optimizing the secretion of antibodies and other naturally secreted targets, much less work has been done on ways to improve cytoplasmic expression in mammalian cells. The benefits to protein production in mammalian cells, particularly for eukaryotic proteins, should be very significant - glycosylation and other posttranslational modifications will likely be native or near-native, solubility and protein folding would likely improve overexpression in heterologous hosts, and expression of proteins in their proper intracellular compartments is much more likely to occur. Improvements in this area have been slow, however, due to limited development of the cell culture processes needed for low-cost, higher-throughput expression in mammalian cells, and the relatively low diversity of DNA vectors for protein production in these systems. Here, we describe how the use of recombinational cloning, coupled with improvements in transfection protocols which increase speed and lower cost, can be combined to make mammalian cells much more amenable for routine recombinant protein expression. PMID:21987258

  9. Frequencies of 32 base pair deletion of the (Delta 32) allele of the CCR5 HIV-1 co-receptor gene in Caucasians: a comparative analysis.

    PubMed

    Lucotte, Gérard

    2002-05-01

    The CCR5 gene encodes for the co-receptor for the major macrophage-tropics strains of human immunodeficiency virus (HIV-1), and a mutant allele of this gene (Delta 32) provide to homozygotes a strong resistance against infection by HIV. The frequency of the Delta 32 allele was investigated in 40 populations of 8842 non-infected subjects coming from Europe, the Middle-East and North Africa. A clear north-south decreasing gradient was evident for Delta 32 frequencies, with a significant correlation coefficient (r=0.83). The main frequency value of Delta 32 for Sweden, Norway, Denmark, Finland and Iceland (0.134) is significantly (chi(2)=63.818, P<0.001) highest than the Delta 32 mean value, indicating that probably the Vikings might have been instrumental in disseminating the Delta 32 allele during the eighth to the tenth centuries during historical times. Possibly variola virus has discriminated the Delta 32 carriers in Europe since the eighth century AD, explaining the high frequency of the Delta 32 allele in Europe today. PMID:12798016

  10. Catabolic flexibility of mammalian-associated lactobacilli

    PubMed Central

    2013-01-01

    Metabolic flexibility may be generally defined as “the capacity for the organism to adapt fuel oxidation to fuel availability”. The metabolic diversification strategies used by individual bacteria vary greatly from the use of novel or acquired enzymes to the use of plasmid-localised genes and transporters. In this review, we describe the ability of lactobacilli to utilise a variety of carbon sources from their current or new environments in order to grow and survive. The genus Lactobacillus now includes more than 150 species, many with adaptive capabilities, broad metabolic capacity and species/strain variance. They are therefore, an informative example of a cell factory capable of adapting to new niches with differing nutritional landscapes. Indeed, lactobacilli naturally colonise and grow in a wide variety of environmental niches which include the roots and foliage of plants, silage, various fermented foods and beverages, the human vagina and the mammalian gastrointestinal tract (GIT; including the mouth, stomach, small intestine and large intestine). Here we primarily describe the metabolic flexibility of some lactobacilli isolated from the mammalian gastrointestinal tract, and we also describe some of the food-associated species with a proven ability to adapt to the GIT. As examples this review concentrates on the following species - Lb. plantarum, Lb. acidophilus, Lb. ruminis, Lb. salivarius, Lb. reuteri and Lb. sakei, to highlight the diversity and inter-relationships between the catabolic nature of species within the genus. PMID:23680304

  11. Catabolic flexibility of mammalian-associated lactobacilli.

    PubMed

    O'Donnell, Michelle M; O'Toole, Paul W; Ross, Reynolds Paul

    2013-01-01

    Metabolic flexibility may be generally defined as "the capacity for the organism to adapt fuel oxidation to fuel availability". The metabolic diversification strategies used by individual bacteria vary greatly from the use of novel or acquired enzymes to the use of plasmid-localised genes and transporters. In this review, we describe the ability of lactobacilli to utilise a variety of carbon sources from their current or new environments in order to grow and survive. The genus Lactobacillus now includes more than 150 species, many with adaptive capabilities, broad metabolic capacity and species/strain variance. They are therefore, an informative example of a cell factory capable of adapting to new niches with differing nutritional landscapes. Indeed, lactobacilli naturally colonise and grow in a wide variety of environmental niches which include the roots and foliage of plants, silage, various fermented foods and beverages, the human vagina and the mammalian gastrointestinal tract (GIT; including the mouth, stomach, small intestine and large intestine). Here we primarily describe the metabolic flexibility of some lactobacilli isolated from the mammalian gastrointestinal tract, and we also describe some of the food-associated species with a proven ability to adapt to the GIT. As examples this review concentrates on the following species - Lb. plantarum, Lb. acidophilus, Lb. ruminis, Lb. salivarius, Lb. reuteri and Lb. sakei, to highlight the diversity and inter-relationships between the catabolic nature of species within the genus. PMID:23680304

  12. Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes

    PubMed Central

    Zhou, Qi; Wang, Jun; Huang, Ling; Nie, Wenhui; Wang, Jinhuan; Liu, Yan; Zhao, Xiangyi; Yang, Fengtang; Wang, Wen

    2008-01-01

    Background The regular mammalian X and Y chromosomes diverged from each other at least 166 to 148 million years ago, leaving few traces of their early evolution, including degeneration of the Y chromosome and evolution of dosage compensation. Results We studied the intriguing case of black muntjac, in which a recent X-autosome fusion and a subsequent large autosomal inversion within just the past 0.5 million years have led to inheritance patterns identical to the traditional X-Y (neo-sex chromosomes). We compared patterns of genome evolution in 35-kilobase noncoding regions and 23 gene pairs on the homologous neo-sex chromosomes. We found that neo-Y alleles have accumulated more mutations, comprising a wide variety of mutation types, which indicates cessation of recombination and is consistent with an ongoing neo-Y degeneration process. Putative deleterious mutations were observed in coding regions of eight investigated genes as well as cis-regulatory regions of two housekeeping genes. In vivo assays characterized a neo-Y insertion in the promoter of the CLTC gene that causes a significant reduction in allelic expression. A neo-Y-linked deletion in the 3'-untranslated region of gene SNX22 abolished a microRNA target site. Finally, expression analyses revealed complex patterns of expression divergence between neo-Y and neo-X alleles. Conclusion The nascent neo-sex chromosome system of black muntjacs is a valuable model in which to study the evolution of sex chromosomes in mammals. Our results illustrate the degeneration scenarios in various genomic regions. Of particular importance, we report - for the first time - that regulatory mutations were probably able to accelerate the degeneration process of Y and contribute to further evolution of dosage compensation. PMID:18554412

  13. Immunoregulation of mammalian fertility.

    PubMed

    Murdoch, W J

    1994-01-01

    Fertility management is a global issue of agricultural, medical, economic, and social consequence. Although many methods have been devised to both inhibit and assist reproduction, more acceptable alternatives are needed. Regulation by immune intervention is a promising technology as applied to livestock, pets, wildlife, and human beings. Outcome is dictated by site within the reproductive axis that is targeted. Fertility is suppressed by immunization against gonadotropin-releasing hormone, gonadotropins, prostaglandin F2 alpha, oxytocin, gonadotropin receptors, and gamete/embryonic antigens. It also is possible to lyse gonadal cells with ligand-antibody hybrid molecules. Ovulation rates are enhanced by vaccination with inhibin. Antibodies to sex steroid hormones have yielded mixed results. Perhaps recombinant viral vectors can be used to deliver reproductive immunogens. A new and simple technique to generate sustained autoimmune reactions to hormones and cellular antigens entails direct gene transfer into somatic cells. Evolving advances in reproductive immunology and biotechnology should furnish us with novel nonsurgical contraceptives and profertility agents that can be efficiently and safely implemented. PMID:7990647

  14. Development of a PCR Assay Based on a Single-Base Pair Substitution for the Detection of Aeromonas caviae by Targeting the gyrB Gene.

    PubMed

    Payattikul, Penpan; Longyant, Siwaporn; Sithigorngul, Paisarn; Chaivisuthangkura, Parin

    2015-09-01

    Aeromonas caviae is a bacterial pathogen that causes various infectious diseases in both humans and animals. To facilitate its detection, we developed species-specific primer sets targeting polymorphisms in the gyrB gene for use in a PCR assay. The technique was able to detect 100% (29/29) of the A. caviae strains tested using either of two sets of primers (designated ACF1-ACR and ACF3-ACR), which produced 293-bp and 206-bp amplicons, respectively. Another set of primers (designated ACF2-ACR) yielded a 237-bp amplicon and exhibited 90% (26/29) positive results with respect to A. caviae. None of the primer sets exhibited cross-reactivity with 12 non-A. caviae isolates and 52 other non-Aeromonas bacteria. The detection limit using the ACF2-ACR and ACF3-ACR primer sets in pure culture was 1.6 × 10(3) CFU/mL, or 6 CFU per reaction, whereas that of the ACF1-ACR primer set was 1.6 × 10(4) CFU/mL, or 60 CFU per reaction. In the case of spiked Nile Tilapia Oreochromis niloticus, the sensitivity of all primer sets without enrichment was 1.8 × 10(4) CFU/g, or 30 CFU per reaction. Primer set ACF3-ACR was the best for a PCR assay targeting the gyrB gene, and the PCR technique developed was rapid, specific, and sensitive for the identification of A. caviae. PMID:26223267

  15. Association between the p73 gene G4C14-to-A4T14 single nucleotide polymorphism and risk of cervical cancer by high resolution melting and PCR with confronting two-pair primers in a Chinese population

    PubMed Central

    GUO, HAIYAN; YANG, SHAODI; XU, LIJIAN; LI, DING; TANG, JIANXIN; WANG, SHUANGSHAUNG; WEI, BENJIE; LIU, ZHENGCHUN

    2016-01-01

    As a member of the p53 gene family, the p73 gene can affect an individual's susceptibility to cancer through a p53-like manner. DNA sequence variation in the p73 gene has been reported to be associated with cancer risk. The present study aimed to identify whether the p73 gene G4C14-to-A4T14 single nucleotide polymorphism (SNP) is associated with risk of cervical cancer in a Chinese population. The p73 G4C14-to-A4T14 polymorphism was genotyped in 175 cervical cancer and 189 healthy control peripheral blood DNA samples using high resolution melting, polymerase chain reaction with confronting two-pair primers and direct DNA sequencing. The results demonstrated that carriers of the AT/AT genotype were associated with a significantly increased risk of cervical cancer (P=0.042; χ2=4.122; odds ratio = 2.241; 95% confidence interval = 1.013–4.956) compared with the GC/GC genotype carriers. In addition, there was a significant association between p73 genotypes and tumor size in patients with cervical cancer (P=0.014; χ2=8.607). However, no association was identified between p73 genotypes and tumor stage, histological type or lymph node metastasis in patients with cervical cancer. These results suggest that the p73 G4C14-to-A4T14 SNP may function as a marker of genetic susceptibility to cervical cancer in the Chinese population. PMID:27347206

  16. Pairing forces in nuclei

    SciTech Connect

    Chasman, R.R.

    1996-12-31

    In this contribution, the author mentions some features of pairing forces that are unique to nuclei and cover some areas of major interest in nuclear structure research, that involve pairing. At the level of most nuclear structure studies, nuclei are treated as consisting of two kinds of fermions (protons and neutrons) in a valence space with rather few levels. These features give rise to unique aspects of pairing forces in nuclei: (1) n-p pairing in T = 0 as well as the usual T = 1 pairing that is characteristic of like fermions; (2) a need to correct pairing calculations for the (1/N) effects that can typically be neglected in superconducting solids. An issue of current concern is the nature of the pairing interaction: several recent studies suggest a need for a density dependent form of the pairing interaction. There is a good deal of feedback between the questions of accurate calculations of pairing interactions and the form and magnitude of the pairing interaction. Finally, the authors discuss some many-body wave functions that are a generalization of the BCS wave function form, and apply them to a calculation of energy level spacings in superdeformed rotational bands.

  17. Membrane penetrating peptides greatly enhance baculovirus transduction efficiency into mammalian cells

    SciTech Connect

    Chen, Hong-Zhang; Wu, Carol P.; Chao, Yu-Chan; Liu, Catherine Yen-Yen

    2011-02-11

    Research highlights: {yields} Ligation of CTP with GP64 enhances baculovirus transduction into mammalian cells. {yields} Fusion of PTD with VP39 enhances baculovirus transduction into mammalian cells. {yields} CTP and PTD-carrying viruses improve the transduction of co-transduced baculoviruses. {yields} Virus entry and gene expression can be separate events in different cell types. -- Abstract: The baculovirus group of insect viruses is widely used for foreign gene introduction into mammalian cells for gene expression and protein production; however, the efficiency of baculovirus entry into mammalian cells is in general still low. In this study, two recombinant baculoviruses were engineered and their ability to improve viral entry was examined: (1) cytoplasmic transduction peptide (CTP) was fused with baculovirus envelope protein, GP64, to produce a cytoplasmic membrane penetrating baculovirus (vE-CTP); and (2) the protein transduction domain (PTD) of HIV TAT protein was fused with the baculovirus capsid protein VP39 to form a nuclear membrane penetrating baculovirus (vE-PTD). Transduction experiments showed that both viruses had better transduction efficiency than vE, a control virus that only expresses EGFP in mammalian cells. Interestingly, vE-CTP and vE-PTD were also able to improve the transduction efficiency of a co-transduced baculovirus, resulting in higher levels of gene expression. Our results have described new routes to further enhance the development of baculovirus as a tool for gene delivery into mammalian cells.

  18. Fundamentals of Expression in Mammalian Cells.

    PubMed

    Dyson, Michael R

    2016-01-01

    Expression of proteins in mammalian cells is a key technology important for many functional studies on human and higher eukaryotic genes. Studies include the mapping of protein interactions, solving protein structure by crystallization and X-ray diffraction or solution phase NMR and the generation of antibodies to enable a range of studies to be performed including protein detection in vivo. In addition the production of therapeutic proteins and antibodies, now a multi billion dollar industry, has driven major advances in cell line engineering for the production of grams per liter of active proteins and antibodies. Here the key factors that need to be considered for successful expression in HEK293 and CHO cells are reviewed including host cells, expression vector design, transient transfection methods, stable cell line generation and cultivation conditions. PMID:27165328

  19. Global Epigenomic Reconfiguration During Mammalian Brain Development

    PubMed Central

    Nery, Joseph R.; Urich, Mark; Puddifoot, Clare A.; Johnson, Nicholas D.; Lucero, Jacinta; Huang, Yun; Dwork, Andrew J.; Schultz, Matthew D.; Yu, Miao; Tonti-Filippini, Julian; Heyn, Holger; Hu, Shijun; Wu, Joseph C.; Rao, Anjana; Esteller, Manel; He, Chuan; Haghighi, Fatemeh G.; Sejnowski, Terrence J.; Behrens, M. Margarita; Ecker, Joseph R.

    2013-01-01

    DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity. PMID:23828890

  20. DNA repair and radiation sensitivity in mammalian cells

    SciTech Connect

    Chen, D.J.C.; Stackhouse, M. ); Chen, D.S. . Dept. of Radiation Oncology)

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  1. DNA repair and radiation sensitivity in mammalian cells

    SciTech Connect

    Chen, D.J.C.; Stackhouse, M.; Chen, D.S.

    1993-02-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  2. Evolutionary patterns of RNA-based duplication in non-mammalian chordates.

    PubMed

    Chen, Ming; Zou, Ming; Fu, Beide; Li, Xin; Vibranovski, Maria D; Gan, Xiaoni; Wang, Dengqiang; Wang, Wen; Long, Manyuan; He, Shunping

    2011-01-01

    The role of RNA-based duplication, or retroposition, in the evolution of new gene functions in mammals, plants, and Drosophila has been widely reported. However, little is known about RNA-based duplication in non-mammalian chordates. In this study, we screened ten non-mammalian chordate genomes for retrocopies and investigated their evolutionary patterns. We identified numerous retrocopies in these species. Examination of the age distribution of these retrocopies revealed no burst of young retrocopies in ancient chordate species. Upon comparing these non-mammalian chordate species to the mammalian species, we observed that a larger fraction of the non-mammalian retrocopies was under strong evolutionary constraints than mammalian retrocopies are, as evidenced by signals of purifying selection and expression profiles. For the Western clawed frog, Medaka, and Sea squirt, many retrogenes have evolved gonad and brain expression patterns, similar to what was observed in human. Testing of retrogene movement in the Medaka genome, where the nascent sex chrosomes have been well assembled, did not reveal any significant gene movement. Taken together, our analyses demonstrate that RNA-based duplication generates many functional genes and can make a significant contribution to the evolution of non-mammalian genomes. PMID:21779328

  3. Matched-pair classification

    SciTech Connect

    Theiler, James P

    2009-01-01

    Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.

  4. Most mammalian mRNAs are conserved targets of microRNAs

    PubMed Central

    Friedman, Robin C.; Farh, Kyle Kai-How; Burge, Christopher B.; Bartel, David P.

    2009-01-01

    MicroRNAs (miRNAs) are small endogenous RNAs that pair to sites in mRNAs to direct post-transcriptional repression. Many sites that match the miRNA seed (nucleotides 2–7), particularly those in 3′ untranslated regions (3′UTRs), are preferentially conserved. Here, we overhauled our tool for finding preferential conservation of sequence motifs and applied it to the analysis of human 3′UTRs, increasing by nearly threefold the detected number of preferentially conserved miRNA target sites. The new tool more efficiently incorporates new genomes and more completely controls for background conservation by accounting for mutational biases, dinucleotide conservation rates, and the conservation rates of individual UTRs. The improved background model enabled preferential conservation of a new site type, the “offset 6mer,” to be detected. In total, >45,000 miRNA target sites within human 3′UTRs are conserved above background levels, and >60% of human protein-coding genes have been under selective pressure to maintain pairing to miRNAs. Mammalian-specific miRNAs have far fewer conserved targets than do the more broadly conserved miRNAs, even when considering only more recently emerged targets. Although pairing to the 3′ end of miRNAs can compensate for seed mismatches, this class of sites constitutes less than 2% of all preferentially conserved sites detected. The new tool enables statistically powerful analysis of individual miRNA target sites, with the probability of preferentially conserved targeting (PCT) correlating with experimental measurements of repression. Our expanded set of target predictions (including conserved 3′-compensatory sites), are available at the TargetScan website, which displays the PCT for each site and each predicted target. PMID:18955434

  5. A gene-model-free method for linkage analysis of a disease-related-trait based on analysis of proband/sibling pairs.

    PubMed

    Sung, Heejong; Finch, Stephen J; Ye, Kenny Q; Mendell, Nancy R

    2005-01-01

    In this paper we investigate the power of finding linkage to a disease locus through analysis of the disease-related traits. We propose two family-based gene-model-free linkage statistics. Both involve considering the distribution of the number of alleles identical by descent with the proband and comparing siblings with the disease-related trait to those without the disease-related-trait. The objective is to find linkages to disease-related traits that are pleiotropic for both the disease and the disease-related-traits. The power of these statistics is investigated for Kofendrerd Personality Disorder-related traits a (Joining/founding cults) and trait b (Fear/discomfort with strangers) of the simulated data. The answers were known prior to the execution of the reported analyses. We find that both tests have very high power when applied to the samples created by combining the data of the three cities for which we have nuclear family data. PMID:16451658

  6. De-novo assembly and characterization of Chlorella minutissima UTEX2341 transcriptome by paired-end sequencing and the identification of genes related to the biosynthesis of lipids for biodiesel.

    PubMed

    Yu, Mingjia; Yang, Shanjun; Lin, Xiangzhi

    2016-02-01

    Chlorella minutissima is considered to be one of the promising feedstocks for biofuels in the future. In this study, the transcriptome from the oil-rich strain UTEX2341 of C. minutissima was generated based on Illumina paired-end sequencing. Through de-novo assembly, a total of 14,905 isogenes were obtained and compacted into 6216 unigenes. A total of 80% of the unigenes were assigned with GO terms and were further subdivided into 55 sub-categories. KEGG analysis demonstrated that 37.2% of the unigenes could be accessed and mapped into 278 pathways. Interestingly, the genes that encoded key enzymes that are involved in the biosynthesis, elongation, and metabolism of fatty acids were identified, including malonyl-CoA-ACP transacylase, 3-ketoacyl-ACP synthase, 3-ketoacyl-ACP reductase, and others. Moreover, the genes that are involved in triacylglycerol (TAG) biosynthesis and metabolism were also observed. Therefore, the transcriptome analysis of C. minutissima UTEX2341 not only supplies comprehensive insight into the molecular pathway that is involved in the biosynthesis of biofuel precursors but also provides substantial valuable genomic resources to accelerate the further development and utilization of biofuels. PMID:26590019

  7. Vortex pairs on surfaces

    SciTech Connect

    Koiller, Jair

    2009-05-06

    A pair of infinitesimally close opposite vortices moving on a curved surface moves along a geodesic, according to a conjecture by Kimura. We outline a proof. Numerical simulations are presented for a pair of opposite vortices at a close but nonzero distance on a surface of revolution, the catenoid. We conjecture that the vortex pair system on a triaxial ellipsoid is a KAM perturbation of Jacobi's geodesic problem. We outline some preliminary calculations required for this study. Finding the surfaces for which the vortex pair system is integrable is in order.

  8. Stochastic mRNA synthesis in mammalian cells.

    PubMed

    Raj, Arjun; Peskin, Charles S; Tranchina, Daniel; Vargas, Diana Y; Tyagi, Sanjay

    2006-10-01

    Individual cells in genetically homogeneous populations have been found to express different numbers of molecules of specific proteins. We investigated the origins of these variations in mammalian cells by counting individual molecules of mRNA produced from a reporter gene that was stably integrated into the cell's genome. We found that there are massive variations in the number of mRNA molecules present in each cell. These variations occur because mRNAs are synthesized in short but intense bursts of transcription beginning when the gene transitions from an inactive to an active state and ending when they transition back to the inactive state. We show that these transitions are intrinsically random and not due to global, extrinsic factors such as the levels of transcriptional activators. Moreover, the gene activation causes burst-like expression of all genes within a wider genomic locus. We further found that bursts are also exhibited in the synthesis of natural genes. The bursts of mRNA expression can be buffered at the protein level by slow protein degradation rates. A stochastic model of gene activation and inactivation was developed to explain the statistical properties of the bursts. The model showed that increasing the level of transcription factors increases the average size of the bursts rather than their frequency. These results demonstrate that gene expression in mammalian cells is subject to large, intrinsically random fluctuations and raise questions about how cells are able to function in the face of such noise. PMID:17048983

  9. Mammalian meiotic silencing exhibits sexually dimorphic features.

    PubMed

    Cloutier, J M; Mahadevaiah, S K; ElInati, E; Tóth, A; Turner, James

    2016-06-01

    During mammalian meiotic prophase I, surveillance mechanisms exist to ensure that germ cells with defective synapsis or recombination are eliminated, thereby preventing the generation of aneuploid gametes and embryos. Meiosis in females is more error-prone than in males, and this is in part because the prophase I surveillance mechanisms are less efficient in females. A mechanistic understanding of this sexual dimorphism is currently lacking. In both sexes, asynapsed chromosomes are transcriptionally inactivated by ATR-dependent phosphorylation of histone H2AFX. This process, termed meiotic silencing, has been proposed to perform an important prophase I surveillance role. While the transcriptional effects of meiotic silencing at individual genes are well described in the male germ line, analogous studies in the female germ line have not been performed. Here we apply single- and multigene RNA fluorescence in situ hybridization (RNA FISH) to oocytes from chromosomally abnormal mouse models to uncover potential sex differences in the silencing response. Notably, we find that meiotic silencing in females is less efficient than in males. Within individual oocytes, genes located on the same asynapsed chromosome are silenced to differing extents, thereby generating mosaicism in gene expression profiles across oocyte populations. Analysis of sex-reversed XY female mice reveals that the sexual dimorphism in silencing is determined by gonadal sex rather than sex chromosome constitution. We propose that sex differences in meiotic silencing impact on the sexually dimorphic prophase I response to asynapsis. PMID:26712235

  10. RNAi microarray analysis in cultured mammalian cells.

    PubMed

    Mousses, Spyro; Caplen, Natasha J; Cornelison, Robert; Weaver, Don; Basik, Mark; Hautaniemi, Sampsa; Elkahloun, Abdel G; Lotufo, Roberto A; Choudary, Ashish; Dougherty, Edward R; Suh, Ed; Kallioniemi, Olli

    2003-10-01

    RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) is a powerful new tool for analyzing gene knockdown phenotypes in living mammalian cells. To facilitate large-scale, high-throughput functional genomics studies using RNAi, we have developed a microarray-based technology for highly parallel analysis. Specifically, siRNAs in a transfection matrix were first arrayed on glass slides, overlaid with a monolayer of adherent cells, incubated to allow reverse transfection, and assessed for the effects of gene silencing by digital image analysis at a single cell level. Validation experiments with HeLa cells stably expressing GFP showed spatially confined, sequence-specific, time- and dose-dependent inhibition of green fluorescence for those cells growing directly on microspots containing siRNA targeting the GFP sequence. Microarray-based siRNA transfections analyzed with a custom-made quantitative image analysis system produced results that were identical to those from traditional well-based transfection, quantified by flow cytometry. Finally, to integrate experimental details, image analysis, data display, and data archiving, we developed a prototype information management system for high-throughput cell-based analyses. In summary, this RNAi microarray platform, together with ongoing efforts to develop large-scale human siRNA libraries, should facilitate genomic-scale cell-based analyses of gene function. PMID:14525932

  11. Biocompatibility assessment of fibrous nanomaterials in mammalian embryos.

    PubMed

    Munk, Michele; Camargo, Luiz S A; Quintão, Carolina C R; Silva, Saulo R; Souza, Eliza D; Raposo, Nádia R B; Marconcini, Jose M; Jorio, Ado; Ladeira, Luiz O; Brandão, Humberto M

    2016-07-01

    Currently there is a growing interest in the use of nanotechnology in reproductive medicine and reproductive biology. However, their toxic effects on mammalian embryos remain poorly understood. In this work, we evaluate the biocompatibility of two fibrous nanomaterials (NMs): cotton cellulose nanofibers (CNF) and carboxylated multiwalled carbon nanotubes (MWCNT-COOH), by performing an investigation of the embryonic development, gene expression (biomarkers focused on cell stress, apoptosis and totipotency) and in situ apoptosis in bovine embryos. Exposure to NMs did not interfere in preimplantation development or in the incidence of apoptosis in the bovine embryo, but they did affect the gene expression. The results presented are important for an understanding of the toxicity of cotton CNF and MWCNT-COOH on mammalian embryos. To our knowledge, we report the first evaluation of biocompatibility between these NMs on preimplantation embryos, which may open a new window for reproductive biomedical applications. PMID:26949162

  12. Mechanisms of mammalian iron homeostasis

    PubMed Central

    Pantopoulos, Kostas; Porwal, Suheel Kumar; Tartakoff, Alan; Devireddy, L.

    2012-01-01

    Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in acquisition or distribution of the metal causes anemia; whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways, as well as in mechanisms underlying intracellular iron trafficking, an important but less-studied area of mammalian iron homeostasis. PMID:22703180

  13. An overview of mammalian pluripotency.

    PubMed

    Wu, Jun; Yamauchi, Takayoshi; Izpisua Belmonte, Juan Carlos

    2016-05-15

    Mammalian pluripotency is the ability to give rise to all somatic cells as well as the germ cells of an adult mammal. It is a unique feature of embryonic epiblast cells, existing only transiently, as cells pass through early developmental stages. By contrast, pluripotency can be captured and stabilized indefinitely in cell culture and can also be reactivated in differentiated cells via nuclear reprogramming. Pluripotent stem cells (PSCs) are the in vitro carriers of pluripotency and they can inhabit discrete pluripotent states depending on the stage at which they were derived and their culture conditions. Here, and in the accompanying poster, we provide a summary of mammalian pluripotency both in vivo and in vitro, and highlight recent and future applications of PSCs for basic and translational research. PMID:27190034

  14. Analysis of repair and mutagenesis of chromium-induced DNA damage in yeast, mammalian cells, and transgenic mice.

    PubMed Central

    Cheng, L; Liu, S; Dixon, K

    1998-01-01

    Chromium (Cr) is a widespread environmental contaminant and a known human carcinogen. We have used shuttle vector systems in yeast, mammalian cells, and transgenic mice to characterize the mutational specificity and premutational DNA damage induced by Cr(VI) and its reduction intermediates in order to elucidate the mechanism by which Cr induces mutations. In the yeast system, treatment of vector-containing cells with Cr(VI) results in a dose-dependent increase in mutations in the SUP4-o target gene of the vector; mutagenesis is enhanced in an apn-1 yeast mutant, deficient in the capacity to repair oxidative-type DNA damage. In vector-containing mammalian cells, treatment with Cr(VI) also results in a dose-dependent increase in mutations in the vector target gene supF. The Cr-induced mutations in supF occurred mostly at G:C base pairs and were widely distributed across the gene, a pattern similar to those observed with ionizing radiation or hydrogen peroxide. These results support the hypothesis that Cr(VI)-induced oxidative-type DNA damage is responsible for Cr mutagenesis in the cell. Recently these studies were extended into the Big Blue transgenic mouse system in which Cr-induced mutagenesis was observed in the lung, the target organ for Cr carcinogenesis in humans. Analysis of the spectrum of these mutations will test whether Cr mutagenesis occurs by similar mechanisms in the intact animal as in cell culture systems and yeast. Images Figure 2 Figure 3 PMID:9703488

  15. Genome exposure and regulation in mammalian cells.

    PubMed

    Puck, T T; Webb, P; Johnson, R

    1998-09-01

    fibroblasts as revealed by in situ nick translation reveals a nuclear distribution pattern around the periphery, around the nucleoli and in punctate positions in the nuclear interior in parts of both S and G1 phases of the cell cycle. The same exposure pattern is duplicated by the pattern of DNA synthesis in S cells. It would appear that these nuclear regions represent positions of special activity. The previously proposed theory of genome regulation in mammalian cells is supported by these findings. The theory proposes that: a) gene activity requires exposure of the given locus followed by action of transcription factors on the exposed genes; b) the fiber system of the cell (cytoskeleton, nuclear fibers, and extracellular fibers) are required for normal exposure; c) active sites for gene expression and replication consist of the nuclear periphery where differentiation genes particularly are exposed; the nucleoli where at least some housekeeping genes are exposed; and possibly also punctate regions in the interior; d) noncoding sequences play a critical role in genome regulation, possibly including the transport of loci to be activated to appropriate exposure transcriptional and replicating locations. Cancer cells have lost specific differentiation gene activities, at least sometimes because of mutation of appropriate exposure genes; at least some protooncogenes and tumor suppressor genes are responsible for exposure and transport of specific differentiation gene loci to their appropriate exposure sites in the nucleus and for inducing exposure. PMID:10696237

  16. Critical Schwinger Pair Production

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Torgrimsson, Greger

    2016-03-01

    We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws. An appropriate design of the electric background field can interpolate between power-law scaling, essential Berezinskii-Kosterlitz-Thouless-type scaling, and a power-law scaling with log corrections. The corresponding critical exponents only depend on the large-scale features of the electric background, whereas the microscopic details of the background play the role of irrelevant perturbations not affecting criticality.

  17. Critical Schwinger Pair Production.

    PubMed

    Gies, Holger; Torgrimsson, Greger

    2016-03-01

    We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws. An appropriate design of the electric background field can interpolate between power-law scaling, essential Berezinskii-Kosterlitz-Thouless-type scaling, and a power-law scaling with log corrections. The corresponding critical exponents only depend on the large-scale features of the electric background, whereas the microscopic details of the background play the role of irrelevant perturbations not affecting criticality. PMID:26991162

  18. Cooper Pairs in Insulators?!

    ScienceCinema

    James Valles

    2010-01-08

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  19. Pair contact process with diffusion of pairs

    NASA Astrophysics Data System (ADS)

    Santos, F. L.; Dickman, Ronald; Fulco, U. L.

    2011-03-01

    The pair contact process (PCP) is a nonequilibrium stochastic model which, like the basic contact process (CP), exhibits a phase transition to an absorbing state. The two models belong to the directed percolation (DP) universality class, despite the fact that the PCP possesses infinitely many absorbing configurations whereas the CP has but one. The critical behavior of the PCP with hopping by particles (PCPD) is as yet unclear. Here we study a version of the PCP in which nearest-neighbor particle pairs can hop but individual particles cannot. Using quasistationary simulations for three values of the diffusion probability (D = 0.1, 0.5 and 0.9), we find convincing evidence of DP-like critical behavior.

  20. Divergent evolution of vitamin B9 binding underlies Juno-mediated adhesion of mammalian gametes

    PubMed Central

    Han, Ling; Nishimura, Kaoru; Sadat Al Hosseini, Hamed; Bianchi, Enrica; Wright, Gavin J.; Jovine, Luca

    2016-01-01

    Summary The interaction between egg and sperm is the first necessary step of fertilization in all sexually reproducing organisms. A decade-long search for a protein pair mediating this event in mammals culminated in the identification of the glycosylphosphatidylinositol (GPI)-anchored glycoprotein Juno as the egg plasma membrane receptor of sperm Izumo1 1, 2. The Juno–Izumo1 interaction was shown to be essential for fertilization since mice lacking either gene exhibit sex-specific sterility, making these proteins promising non-hormonal