Science.gov

Sample records for mammalian hemoglobins effect

  1. Structural analysis of fish versus mammalian hemoglobins: Effect of the heme pocket environment on autooxidation and hemin loss

    SciTech Connect

    Aranda IV, Roman; Cai, He; Worley, Chad E.; Levin, Elena J.; Li, Rong; Olson, John S.; Phillips, Jr., George N.; Richards, Mark P.

    2010-01-07

    The underlying stereochemical mechanisms for the dramatic differences in autooxidation and hemin loss rates of fish versus mammalian hemoglobins (Hb) have been examined by determining the crystal structures of perch, trout IV, and bovine Hb at high and low pH. The fish Hbs autooxidize and release hemin {approx}50- to 100-fold more rapidly than bovine Hb. Five specific amino acid replacements in the CD corner and along the E helix appear to cause the increased susceptibility of fish Hbs to oxidative degradation compared with mammalian Hbs. Ile is present at the E11 helical position in most fish Hb chains whereas a smaller Val residue is present in all mammalian {alpha} and {beta} chains. The larger IleE11 side chain sterically hinders bound O{sub 2} and facilitates dissociation of the neutral superoxide radical, enhancing autooxidation. Lys(E10) is found in most mammalian Hb and forms favorable electrostatic and hydrogen bonding interactions with the heme-7-propionate. In contrast, Thr(E10) is present in most fish Hbs and is too short to stabilize bound heme, and causes increased rates of hemin dissociation. Especially high rates of hemin loss in perch Hb are also due to a lack of electrostatic interaction between His(CE3) and the heme-6 propionate in {alpha} subunits whereas this interaction does occur in trout IV and bovine Hb. There is also a larger gap for solvent entry into the heme crevice near {beta} CD3 in the perch Hb ({approx}8 {angstrom}) compared with trout IV Hb ({approx}6 {angstrom}) which in turn is significantly higher than that in bovine Hb ({approx}4 {angstrom}) at low pH. The amino acids at CD4 and E14 differ between bovine and the fish Hbs and have the potential to modulate oxidative degradation by altering the orientation of the distal histidine and the stability of the E-helix. Generally rapid rates of lipid oxidation in fish muscle can be partly attributed to the fact that fish Hbs are highly susceptible to oxidative degradation.

  2. Structural analysis of fish versus mammalian hemoglobins: effect of the heme pocket environment on autooxidation and hemin loss.

    PubMed

    Aranda, Roman; Cai, He; Worley, Chad E; Levin, Elena J; Li, Rong; Olson, John S; Phillips, George N; Richards, Mark P

    2009-04-01

    The underlying stereochemical mechanisms for the dramatic differences in autooxidation and hemin loss rates of fish versus mammalian hemoglobins (Hb) have been examined by determining the crystal structures of perch, trout IV, and bovine Hb at high and low pH. The fish Hbs autooxidize and release hemin approximately 50- to 100-fold more rapidly than bovine Hb. Five specific amino acid replacements in the CD corner and along the E helix appear to cause the increased susceptibility of fish Hbs to oxidative degradation compared with mammalian Hbs. Ile is present at the E11 helical position in most fish Hb chains whereas a smaller Val residue is present in all mammalian alpha and beta chains. The larger IleE11 side chain sterically hinders bound O(2) and facilitates dissociation of the neutral superoxide radical, enhancing autooxidation. Lys(E10) is found in most mammalian Hb and forms favorable electrostatic and hydrogen bonding interactions with the heme-7-propionate. In contrast, Thr(E10) is present in most fish Hbs and is too short to stabilize bound heme, and causes increased rates of hemin dissociation. Especially high rates of hemin loss in perch Hb are also due to a lack of electrostatic interaction between His(CE3) and the heme-6 propionate in alpha subunits whereas this interaction does occur in trout IV and bovine Hb. There is also a larger gap for solvent entry into the heme crevice near beta CD3 in the perch Hb (approximately 8 A) compared with trout IV Hb (approximately 6 A) which in turn is significantly higher than that in bovine Hb (approximately 4 A) at low pH. The amino acids at CD4 and E14 differ between bovine and the fish Hbs and have the potential to modulate oxidative degradation by altering the orientation of the distal histidine and the stability of the E-helix. Generally rapid rates of lipid oxidation in fish muscle can be partly attributed to the fact that fish Hbs are highly susceptible to oxidative degradation. PMID:18831041

  3. MOESSBAUER EFFECT IN HEMOGLOBIN WITH DIFFERENT LIGANDS.

    PubMed

    GONSER, U; GRANT, R W; KREGZDE, J

    1964-02-14

    Recoil-free nuclear gamma-ray resonance adsorption was observed in the iron-57 of blood. The spectral parameters are dependent on the ligand bound to the iron atoms in hemoglobin. The results are interpreted in terms of isomeric shifts and quad rupole splittings. PMID:14081237

  4. Ligand-dependent Bohr effect of Chrionomus hemoglobins.

    PubMed

    Steffens, G; Buse, G; Wollmer, A

    1977-01-01

    The O2 and CO Bohr effects of monomeric and dimeric hemoglobins of the insect Chironomus thummi thummi were determined as proton releases upon ligation. For the O2 Bohr effect of the monomeric hemoglobin III a maximum value of 0.20 H+/heme was obtained at pH 7.5. Upon ligation with CO, however, only 0.04 H+/heme were released at the same pH. In agreement with this finding isoelectric focusing experiments revealed different isoelectric points for O2-liganded and CO-liganded states of hemoglobin III. Analogous results were obtained in the cases of the monomeric hemoglobin IV and the dimeric hemoglobins of Chironomus thummi thummi; here O2 Bohr effects of 0.43 and 0.86 H+/heme were observed. For the corresponding CO Bohr effects values of 0.08 and 0.31 H+/heme were obtained respectively. On the basis of the available structural data the reduced CO Bohr effect in hemoglobin III is discussed as arising from a steric hindrance of the CO ligand by the side chain of isoleucine-E11, obstructing the movement of the heme-iron upon reaction with carbon monoxide. It should, however, be noted that ligands, according to their different electron donor and acceptor properties, may generally induce different conformational changes and thus different Bohr effects, in those hemoglobins in which distinct tertiary and/or quaternary constraints have not evolved. The general utilization of CO instead of O2 as allosteric effector is ruled out by the results reported here. PMID:12977

  5. Effects of cerebral ischemia on neuronal hemoglobin

    PubMed Central

    He, Yangdong; Hua, Ya; Liu, Wenquan; Hu, Haitao; Keep, Richard F.; Xi, Guohua

    2009-01-01

    Summary The present study examined whether or not neuronal hemoglobin (Hb) is present in rats. It then examined whether cerebral ischemia or ischemic preconditioning (IPC) affects neuronal Hb levels in vivo and in vitro. In vivo, male Sprague-Dawley rats were subjected to either 15 minutes of transient middle cerebral artery occlusion with 24 hours of reperfusion, an IPC stimulus, or 24 hours of permanent middle cerebral artery occlusion (pMCAO), or IPC followed three days later by 24 hours of pMCAO. In vitro, primary cultured neurons were exposed to 2 hours of oxygen-glucose deprivation with 22 hours of reoxygenation. Results showed that Hb is widely expressed in rat cerebral neurons but not astrocytes. Hb expression was significantly upregulated in the ipsilateral caudate and the cortical core of the middle cerebral artery territory after IPC. Hb levels also increased in more penumbral cortex and the contralateral hemisphere 24 hours after pMCAO, but expression in the ipsilateral caudate and cortical core area were decreased. Ischemic preconditioning modified pMCAO-induced brain Hb changes. Neuronal Hb levels in vitro were increased by 2 hours of oxygen-glucose deprivation and 22 hours of reoxygenation. These results indicate that Hb is synthesized in neurons and can be upregulated by ischemia. PMID:19066615

  6. Effect of Some High Consumption Spices on Hemoglobin Glycation

    PubMed Central

    Naderi, G. H.; Dinani, Narges J.; Asgary, S.; Taher, M.; Nikkhoo, N.; Boshtam, M.

    2014-01-01

    Formation of glycation products is major factor responsible in complications of diabetes. Worldwide trend is toward the use of natural additives in reducing the complications of diseases. Therefore, there is a growing interest in natural antiglycation found in plants. Herbs and spices are one of the most important targets to search for natural antiglycation from the point of view of safety. This study investigated the ability of some of the spices to inhibit glycation process in a hemoglobin/glucose model system and compared their potency with each other. For this subject the best concentration and time to incubate glucose with hemoglobin was investigated. Then the glycosylation degree of hemoglobin in the presence of extracts by the three concentrations 0.25, 0.5 and 1 μg/ml was measured colorimetrically at 520 nm. Results represent that some of extracts such as wild caraway, turmeric, cardamom and black pepper have inhibitory effects on hemoglobin glycation. But some of the extracts such as anise and saffron have not only inhibitory effects but also aggravated this event and have proglycation properties. In accordance with the results obtained we can conclude that wild caraway, turmeric, cardamom and black pepper especially wild caraway extracts are potent antiglycation agents, which can be of great value in the preventive glycation-associated complications in diabetes. PMID:25593391

  7. Effect of some high consumption spices on hemoglobin glycation.

    PubMed

    Naderi, G H; Dinani, Narges J; Asgary, S; Taher, M; Nikkhoo, N; Boshtam, M

    2014-01-01

    Formation of glycation products is major factor responsible in complications of diabetes. Worldwide trend is toward the use of natural additives in reducing the complications of diseases. Therefore, there is a growing interest in natural antiglycation found in plants. Herbs and spices are one of the most important targets to search for natural antiglycation from the point of view of safety. This study investigated the ability of some of the spices to inhibit glycation process in a hemoglobin/glucose model system and compared their potency with each other. For this subject the best concentration and time to incubate glucose with hemoglobin was investigated. Then the glycosylation degree of hemoglobin in the presence of extracts by the three concentrations 0.25, 0.5 and 1 μg/ml was measured colorimetrically at 520 nm. Results represent that some of extracts such as wild caraway, turmeric, cardamom and black pepper have inhibitory effects on hemoglobin glycation. But some of the extracts such as anise and saffron have not only inhibitory effects but also aggravated this event and have proglycation properties. In accordance with the results obtained we can conclude that wild caraway, turmeric, cardamom and black pepper especially wild caraway extracts are potent antiglycation agents, which can be of great value in the preventive glycation-associated complications in diabetes. PMID:25593391

  8. Hydrogen-tritium exchange survey of allosteric effects in hemoglobin

    SciTech Connect

    Englander, J.J.; Englander, S.W.

    1987-04-07

    The oxy and deoxy forms of hemoglobin display major differences in H-exchange behavior. Hydrogen-tritium exchange experiments on hemoglobin were performed in the low-resolution mode to observe the dependence of these differences on pH (Bohr effect), organic phosphates, and salt. Unlike a prior report, increasing pH was found to decrease the oxy-deoxy difference monotonically, in general accordance with the alkaline Bohr effect. A prior report that the H-exchange difference between oxy- and deoxyhemoglobin vanishes at pH 9, and thus appears to reflect the Bohr effect alone, was found to be due to the borate buffer used, which at high pH tends to abolish the oxy-deoxy difference in a limited region of the H-exchange curve. Effects on hemoglobin H exchange due to organic phosphates parallel the differential binding of these agents (inositol hexaphosphate more than diphosphoglycerate, deoxy more than oxy, at low pH more than at high pH). Added salt slows H exchange of deoxyhemoglobin and has no effect on the oxy form. These results display the sensitivity of simple H-exchange measurements for finding and characterizing effects on structure and dynamics that may occur anywhere in the protein and help to define conditions for higher resolution approaches that can localize the changes observed.

  9. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Knight, C.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization.The Astronauts will be exposed to microgravity environment for a long duration of time during these flights.Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system.We did our preliminary investigations by exposing mammalian lymphocytes to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon Inc (USA).Our initial results showed no significant change in cytokine expression in these cells for a time period of forty eight hours exposure.Our future experiments will involve exposure for a longer period of time.

  10. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization. The Astronauts will be exposed to microgravity environment for a long duration of time during these flights. Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system and nervous system. We did our preliminary investigations by exposing mammalian lymphocytes and astrocyte cells to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon, Inc. (USA).Our initial results showed no significant change in cytokine expression in these cells up to a time period of 120 hours exposure. Our future experiments will involve exposure for a longer period of time.

  11. Effects of hydroxyurea treatment for patients with hemoglobin SC disease.

    PubMed

    Luchtman-Jones, Lori; Pressel, Sara; Hilliard, Lee; Brown, R Clark; Smith, Mary G; Thompson, Alexis A; Lee, Margaret T; Rothman, Jennifer; Rogers, Zora R; Owen, William; Imran, Hamayun; Thornburg, Courtney; Kwiatkowski, Janet L; Aygun, Banu; Nelson, Stephen; Roberts, Carla; Gauger, Cynthia; Piccone, Connie; Kalfa, Theodosia; Alvarez, Ofelia; Hassell, Kathryn; Davis, Barry R; Ware, Russell E

    2016-02-01

    Although hemoglobin SC (HbSC) disease is usually considered less severe than sickle cell anemia (SCA), which includes HbSS and HbS/β(0) -thalassemia genotypes, many patients with HbSC experience severe disease complications, including vaso-occlusive pain, acute chest syndrome, avascular necrosis, retinopathy, and poor quality of life. Fully 20 years after the clinical and laboratory efficacy of hydroxyurea was proven in adult SCA patients, the safety and utility of hydroxyurea treatment for HbSC patients remain unclear. Recent NHLBI evidence-based guidelines highlight this as a critical knowledge gap, noting HbSC accounts for ∼30% of sickle cell patients within the United States. To date, only 5 publications have reported short-term, incomplete, or conflicting laboratory and clinical outcomes of hydroxyurea treatment in a total of 71 adults and children with HbSC. We now report on a cohort of 133 adult and pediatric HbSC patients who received hydroxyurea, typically for recurrent vaso-occlusive pain. Hydroxyurea treatment was associated with a stable hemoglobin concentration; increased fetal hemoglobin (HbF) and mean corpuscular volume (MCV); and reduced white blood cell count (WBC), absolute neutrophil count (ANC), and absolute reticulocyte count (ARC). Reversible cytopenias occurred in 22% of patients, primarily neutropenia and thrombocytopenia. Painful events were reduced with hydroxyurea, more in patients >15 years old. These multicenter data support the safety and potentially salutary effects of hydroxyurea treatment for HbSC disease; however, a multicenter, placebo-controlled, Phase 3 clinical trial is needed to determine if hydroxyurea therapy has efficacy for patients with HbSC disease. PMID:26615793

  12. Mössbauer Effect in Hemoglobin and Some Iron-Containing Biological Compounds

    PubMed Central

    Gonser, U.; Grant, R. W.

    1965-01-01

    The Mössbauer effect in Fe57 has been used to study the molecules, hemoglobin, O2-hemoglobin, CO2-hemoglobin, and CO-hemoglobin (within red cells) and the molecules, hemin and hematin (in the crystalline state). Quadrupole splittings and isomeric shifts observed in the Mössbauer spectra of these molecules are tabulated. The temperature dependence of the quadrupole splitting and relative recoil-free fraction for hemoglobin with different ligands has been investigated. An estimate of the Debye-Waller factor in O2-hemoglobin at 5°K is 0.83. An asymmetry in the quadrupole splitting observed in hemoglobin is attributed to a directional dependence of the recoil-free fraction which establishes the sign of the electric field gradient in the molecule and indicates that the lowest lying d orbital of the Fe atoms is |xy>. This asymmetry indicates that the iron atoms in hemoglobin are vibrating farther perpendicular to the heme planes than parallel to them, and, in fact, the ratio of the mean square displacements perpendicular and parallel to the heme planes in hemoglobin is ≈5.5 at 5°K. The temperature dependence of the quadrupole splitting in hemoglobin has been used to estimate a splitting between the lowest lying iron atom d orbitals of ≈420 cm-1. PMID:5884013

  13. Effects of rutin on the redox reactions of hemoglobin.

    PubMed

    Lu, Naihao; Ding, Yun; Yang, Zhen; Gao, Pingzhang

    2016-08-01

    Flavonoids are widely used to attenuate oxidative damage in vitro and in vivo. In this study, we investigated the influence of rutin (quercetin-3-rhamnosylglucoside) on hemoglobin (Hb)- dependent redox reactions, i.e. oxidative stability of Hb and its cytotoxic ferryl intermediate. It was found that rutin induced generation of H2O2, which in turn oxidized Hb rapidly. Meanwhile, rutin exhibited anti-oxidant effect by effectively reducing ferryl intermediate back to ferric Hb at physiological pH. In comparison with quercetin, rutin had stronger capability on reducing ferryl species while lesser pro-oxidant effect on H2O2 generation, thus it exhibited more protective effect on H2O2-induced Hb oxidation. Circular dichroism spectrum showed no significant change in the secondary structure of Hb after flavonoid addition, while molecular docking revealed different binding modes of quercetin and rutin with Hb. These results might provide new insights into the potential nutritional and physiological implications of rutin and quercetin with redox active heme proteins regarding their ani- and pro-oxidant effects. PMID:27126166

  14. Negative cooperativity in Root-effect hemoglobins: role of heterogeneity.

    PubMed

    Decker, Heinz; Nadja, Hellmann

    2007-10-01

    In some animals, the oxygen transport capacity of blood decreases when pH is lowered, yielding oxygen binding curves with Hill-coefficients smaller than unity. This so-called Root effect is observed in several fishes and is important for creating large oxygen partial pressures locally, for example in the swim bladder. While there is general agreement on the physiological advantages of this effect, its molecular basis remains ambiguous. Various studies show that isoforms of hemoglobins usually are present in the hemolymph, when the Root effect is observed. Here, we show that in such a case the mixture of these isoforms can exhibit apparent negative cooperativity, although each component taken separately can be described by the MWC model. In other cases, isolated isoforms exhibit true negative cooperativity. The well established MWC model describes many cooperative phenomena of enzymes and respiratory proteins but is not capable of describing negative cooperativity. In order to model negative cooperativity within a single molecular species a decoupling model might be employed, as pointed out previously. However, simulations show that it is not mandatory to have species with negative cooperativity, in order to obtain the binding curves typically seen for whole blood. These two aspects of the Root effect will be discussed on the basis of data from the literature. PMID:21672870

  15. Effect of hemoglobin adjustment on the precision of mercury concentrations in maternal and cord blood

    PubMed Central

    Kim, Byung-Mi; Choi, Anna L.; Ha, Eun-Hee; Pedersen, Lise; Nielsen, Flemming; Weihe, Pal; Hong, Yun-Chul; Budtz-Jørgensen, Esben; Grandjean, Philippe

    2014-01-01

    The cord-blood mercury concentration is usually considered the best biomarker in regard to developmental methylmercury neurotoxicity. However, the mercury concentration may be affected by the binding of methylmercury to hemoglobin and perhaps also selenium. As cord-blood mercury analyses appear to be less precise than suggested by laboratory quality data, we studied the interrelationships of mercury concentrations with hemoglobin in paired maternal and cord blood samples from a Faroese birth cohort (N = 514) and the Mothers and Children’s Environmental Health study in Korea (n=797). Linear regression and structural equation model (SEM) analyses were used to ascertain interrelationships between the exposure biomarkers and the possible impact of hemoglobin as well as selenium. Both methods showed a significant dependence of the cord-blood concentration on hemoglobin, also after adjustment for other exposure biomarkers. In the SEM, the cord blood measurement was a less imprecise indicator of the latent methylmercury exposure variable than other exposure biomarkers available, and the maternal hair concentration had the largest imprecision. Adjustment of mercury concentrations both in maternal and cord blood for hemoglobin improved their precision, while no significant effect of the selenium concentration in maternal blood was found. Adjustment of blood-mercury concentrations for hemoglobin is therefore recommended. PMID:24853977

  16. Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice.

    PubMed

    Jensen, Birgitte; Storz, Jay F; Fago, Angela

    2016-05-01

    An important means of physiological adaptation to environmental hypoxia is an increased oxygen (O2) affinity of the hemoglobin (Hb) that can help secure high O2 saturation of arterial blood. However, the trade-off associated with a high Hb-O2 affinity is that it can compromise O2 unloading in the systemic capillaries. High-altitude deer mice (Peromyscus maniculatus) have evolved an increased Hb-O2 affinity relative to lowland conspecifics, but it is not known whether they have also evolved compensatory mechanisms to facilitate O2 unloading to respiring tissues. Here we investigate the effects of pH (Bohr effect) and temperature on the O2-affinity of high- and low-altitude deer mouse Hb variants, as these properties can potentially facilitate O2 unloading to metabolizing tissues. Our experiments revealed that Bohr factors for the high- and low-altitude Hb variants are very similar in spite of the differences in O2-affinity. The Bohr factors of deer mouse Hbs are also comparable to those of other mammalian Hbs. In contrast, the high- and low-altitude variants of deer mouse Hb exhibited similarly low temperature sensitivities that were independent of red blood cell anionic cofactors, suggesting an appreciable endothermic allosteric transition upon oxygenation. In conclusion, high-altitude deer mice have evolved an adaptive increase in Hb-O2 affinity, but this is not associated with compensatory changes in sensitivity to changes in pH or temperature. Instead, it appears that the elevated Hb-O2 affinity in high-altitude deer mice is compensated by an associated increase in the tissue diffusion capacity of O2 (via increased muscle capillarization), which promotes O2 unloading. PMID:26808972

  17. Effects of Hemoglobin-Based Oxygen Carriers on Blood Coagulation

    PubMed Central

    Roghani, Kimia; Holtby, Randall J.; Jahr, Jonathan S.

    2014-01-01

    For many decades, Hemoglobin-based oxygen carriers (HBOCs) have been central in the development of resuscitation agents that might provide oxygen delivery in addition to simple volume expansion. Since 80% of the world population lives in areas where fresh blood products are not available, the application of these new solutions may prove to be highly beneficial (Kim and Greenburg 2006). Many improvements have been made to earlier generation HBOCs, but various concerns still remain, including coagulopathy, nitric oxide scavenging, platelet interference and decreased calcium concentration secondary to volume expansion (Jahr et al. 2013). This review will summarize the current challenges faced in developing HBOCs that may be used clinically, in order to guide future research efforts in the field. PMID:25514567

  18. Effect of Hemoglobin Transfusion Threshold on Cerebral Hemodynamics and Oxygenation.

    PubMed

    Yamal, Jose-Miguel; Rubin, M Laura; Benoit, Julia S; Tilley, Barbara C; Gopinath, Shankar; Hannay, H Julia; Doshi, Pratik; Aisiku, Imoigele P; Robertson, Claudia S

    2015-08-15

    Cerebral dysfunction caused by traumatic brain injury may adversely affect cerebral hemodynamics and oxygenation leading to worse outcomes if oxygen capacity is decreased due to anemia. In a randomized clinical trial of 200 patients comparing transfusion thresholds <7 g/dl versus 10 g/dl, where transfusion of leukoreduced packed red blood cells was used to maintain the assigned hemoglobin threshold, no long-term neurological difference was detected. The current study examines secondary outcome measures of intracranial pressure (ICP), cerebral perfusion pressure (CPP), and brain tissue oxygenation (PbtO2) in patients enrolled in this randomized clinical trial. We observed a lower hazard for death (hazard ratio [HR]=0.12, 95% confidence interval [CI]=0.02-0.99) during the first 3 days post-injury, and a higher hazard for death after three days (HR=2.55, 95% CI=1.00-6.53) in the 10 g/dl threshold group as compared to the 7 g/dL threshold group. No significant differences were observed for ICP and CPP but MAP was slightly lower in the 7 g/dL group, although the decreased MAP did not result in increased hypotension. Overall brain tissue hypoxia events were not significantly different in the two transfusion threshold groups. When the PbtO2 catheter was placed in normal brain, however, tissue hypoxia occurred in 25% of patients in the 7 g/dL threshold group, compared to 10.2% of patients in the 10 g/dL threshold group (p=0.04). Although we observed a few differences in hemodynamic outcomes between the transfusion threshold groups, none were of major clinical significance and did not affect long-term neurological outcome and mortality. PMID:25566694

  19. Cerebrovascular response to decreased hematocrit: effect of cell-free hemoglobin, plasma viscosity, and CO2.

    PubMed

    Rebel, Annette; Ulatowski, John A; Kwansa, Herman; Bucci, Enrico; Koehler, Raymond C

    2003-10-01

    The effect of transfusing a nonextravasating, zero-link polymer of cell-free hemoglobin on pial arteriolar diameter, cerebral blood flow (CBF), and O2 transport (CBF x arterial O2 content) was compared with that of transfusing an albumin solution at equivalent reductions in hematocrit (approximately 19%) in anesthetized cats. The influence of viscosity was assessed by coinfusion of a high-viscosity solution of polyvinylpyrrolidone (PVP), which increased plasma viscosity two- to threefold. Exchange transfusion of a 5% albumin solution resulted in pial arteriolar dilation, increased CBF, and unchanged O2 transport, whereas there were no significant changes over time in a control group. Exchange transfusion of a 12% polymeric hemoglobin solution resulted in pial arteriolar constriction and unchanged CBF and O2 transport. Coinfusion of PVP with albumin produced pial arteriolar dilation that was similar to that obtained with transfusion of albumin alone. In contrast, coinfusion of PVP with hemoglobin converted the constrictor response to a dilator response that prevented a decrease in CBF. Pial arteriolar dilation to hypercapnia was unimpaired in groups transfused with albumin or hemoglobin alone but was attenuated in the largest vessels in albumin and hemoglobin groups coinfused with PVP. Unexpectedly, hypocapnic vasoconstriction was blunted in all groups after transfusion of albumin or hemoglobin alone or with PVP. We conclude that 1) the increase in arteriolar diameter after albumin transfusion represents a compensatory response that prevents decreased O2 transport at reduced O2-carrying capacity, 2) the decrease in diameter associated with near-normal O2-carrying capacity after cell-free polymeric hemoglobin transfusion represents a compensatory mechanism that prevents increased O2 transport at reduced blood viscosity, 3) pial arterioles are capable of dilating to an increase in plasma viscosity when hemoglobin is present in the plasma, 4) decreasing hematocrit does

  20. Effect of thiol reagents on functional properties and heme oxidation in the hemoglobin of Geochelone carbonaria.

    PubMed

    Torsoni, M A; Viana, R I; Barros, B F; Stoppa, G; Cesquini, M; Ogo, S H

    1996-10-01

    The reaction of thiol reagents with G. carbonaria hemoglobin was studied, and the oxygen equilibrium and kinetic of oxidation of derivatives determined. The oxygen affinity and kinetic of oxidation of hemoglobin derivatives were modified to various extents depending on the nature of thiol reagents used. Diamide yielded approximately 80% polymeric hemoglobin, although the oxidation kinetic, and the functional properties, were practically invariant (T1/2 = 10.0 min.; P50 = 5.0 mm Hg at pH 7.4; alkaline Bohr effect = -0.64). Iodoacetamide did not modify the electrophoretic pattern significantly, although all the free SH groups of hemoglobin were alkylated. A P50 of 2.5 mmHg at pH 7.4 and the Bohr effect of -0.15 were obtained; the T1/2 of about 6.4 min. was shorter than that for un-modified Hb. Similar T1/2 were obtained for Hb treated with oxidized glutathione, which produced polymeric Hb and glutathionyl-Hb. The oxygen binding characteristics showed that both of Hb derivatives, glutathionyl-Hb and polymeric Hb, maintain the capacity to transport the gas. PMID:8896757

  1. Hemoglobin (image)

    MedlinePlus

    Hemoglobin is the most important component of red blood cells. It is composed of a protein called ... exchanged for carbon dioxide. Abnormalities of an individual's hemoglobin value can indicate defects in the normal balance ...

  2. Effects of low doses of quercetin and genistein on oxidation and carbonylation in hemoglobin and myoglobin.

    PubMed

    Boadi, William Y; Johnson, Damitea

    2014-09-01

    Protein-bound carbonyls have been shown to increase with age as well as in numerous diseases including rheumatoid arthritis, adult respiratory syndrome pulmonary fibrosis, diabetes, Parkinson's disease, and Alzheimer's just to mention a few. The effects of the flavonoids quercetin and genistein were investigated according to their ability to inhibit the oxidation of hemoglobin and myoglobin via the Fenton's pathway. Antioxidative activity of the flavonoids were determined by oxidizing hemoglobin and myoglobin in separate experiments with 50 μM Fe(2+) and 0.01 mM hydrogen peroxide (H2O2) with and without quercetin and/or genistein. The samples were treated singly with either quercetin, genistein, or in combination at concentrations of 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 μM, respectively, dissolved in dimethyl sulfoxide (DMSO). Samples were then incubated in a water bath at 37°C for 8, 12, and 24 hr, respectively. Levels of carbonylation were assayed by the protein carbonyl assay and the carbonyl levels quantified and expressed per mg of protein. The results indicate that protein carbonyls for samples treated with quercetin or genistein decreased in a dose-dependent manner compared to the controls. That of quercetin compared to genistein was more efficient in reducing the levels of protein carbonylation in hemoglobin and myoglobin, respectively. The combination of both flavonoids did show a gradual decrease in carbonyl compounds for only hemoglobin for all the doses and times tested. The results indicate that both flavonoids at low doses inhibited carbonylation in both hemoglobin and myoglobin and the inhibition may be attributed to the prevention of protein oxidation. PMID:25026201

  3. Nonantibiotic Effects of Fluoroquinolones in Mammalian Cells*

    PubMed Central

    Badal, Sujan; Her, Yeng F.; Maher, L. James

    2015-01-01

    Fluoroquinolones (FQ) are powerful broad-spectrum antibiotics whose side effects include renal damage and, strangely, tendinopathies. The pathological mechanisms underlying these toxicities are poorly understood. Here, we show that the FQ drugs norfloxacin, ciprofloxacin, and enrofloxacin are powerful iron chelators comparable with deferoxamine, a clinically useful iron-chelating agent. We show that iron chelation by FQ leads to epigenetic effects through inhibition of α-ketoglutarate-dependent dioxygenases that require iron as a co-factor. Three dioxygenases were examined in HEK293 cells treated with FQ. At sub-millimolar concentrations, these antibiotics inhibited jumonji domain histone demethylases, TET DNA demethylases, and collagen prolyl 4-hydroxylases, leading to accumulation of methylated histones and DNA and inhibition of proline hydroxylation in collagen, respectively. These effects may explain FQ-induced nephrotoxicity and tendinopathy. By the same reasoning, dioxygenase inhibition by FQ was predicted to stabilize transcription factor HIF-1α by inhibition of the oxygen-dependent hypoxia-inducible transcription factor prolyl hydroxylation. In dramatic contrast to this prediction, HIF-1α protein was eliminated by FQ treatment. We explored possible mechanisms for this unexpected effect and show that FQ inhibit HIF-1α mRNA translation. Thus, FQ antibiotics induce global epigenetic changes, inhibit collagen maturation, and block HIF-1α accumulation. We suggest that these mechanisms explain the classic renal toxicities and peculiar tendinopathies associated with FQ antibiotics. PMID:26205818

  4. Nonantibiotic Effects of Fluoroquinolones in Mammalian Cells.

    PubMed

    Badal, Sujan; Her, Yeng F; Maher, L James

    2015-09-01

    Fluoroquinolones (FQ) are powerful broad-spectrum antibiotics whose side effects include renal damage and, strangely, tendinopathies. The pathological mechanisms underlying these toxicities are poorly understood. Here, we show that the FQ drugs norfloxacin, ciprofloxacin, and enrofloxacin are powerful iron chelators comparable with deferoxamine, a clinically useful iron-chelating agent. We show that iron chelation by FQ leads to epigenetic effects through inhibition of α-ketoglutarate-dependent dioxygenases that require iron as a co-factor. Three dioxygenases were examined in HEK293 cells treated with FQ. At sub-millimolar concentrations, these antibiotics inhibited jumonji domain histone demethylases, TET DNA demethylases, and collagen prolyl 4-hydroxylases, leading to accumulation of methylated histones and DNA and inhibition of proline hydroxylation in collagen, respectively. These effects may explain FQ-induced nephrotoxicity and tendinopathy. By the same reasoning, dioxygenase inhibition by FQ was predicted to stabilize transcription factor HIF-1α by inhibition of the oxygen-dependent hypoxia-inducible transcription factor prolyl hydroxylation. In dramatic contrast to this prediction, HIF-1α protein was eliminated by FQ treatment. We explored possible mechanisms for this unexpected effect and show that FQ inhibit HIF-1α mRNA translation. Thus, FQ antibiotics induce global epigenetic changes, inhibit collagen maturation, and block HIF-1α accumulation. We suggest that these mechanisms explain the classic renal toxicities and peculiar tendinopathies associated with FQ antibiotics. PMID:26205818

  5. Blood lead: Its effect on trace element levels and iron structure in hemoglobin

    NASA Astrophysics Data System (ADS)

    Jin, C.; Li, Y.; Li, Y. L.; Zou, Y.; Zhang, G. L.; Normura, M.; Zhu, G. Y.

    2008-08-01

    Lead is a ubiquitous environmental pollutant that induce a broad range of physiological and biochemical dysfunctions. The purpose of this study was to investigate its effects on trace elements and the iron structure in hemoglobin. Blood samples were collected from rats that had been exposed to lead. The concentration of trace elements in whole blood and blood plasma was determined by ICP-MS and the results indicate that lead exists mainly in the red blood cells and only about 1-3% in the blood plasma. Following lead exposure, the concentrations of zinc and iron in blood decrease, as does the hemoglobin level. This indicates that the heme biosynthetic pathway is inhibited by lead toxicity and that lead poisoning-associated anemia occurs. The selenium concentration also decreases after lead exposure, which may lead to an increased rate of free radical production. The effect of lead in the blood on iron structure in hemoglobin was determined by EXAFS. After lead exposure, the Fe-O bond length increases by about 0.07 Å and the Fe-Np bond length slightly increases, but the Fe-N ɛ bond length remains unchanged. This indicates that the blood content of Hb increases, but that the content of HbO 2 decreases.

  6. Hemoglobin Effects on Nitric Oxide Mediated Hypoxic Vasodilation.

    PubMed

    Rong, Zimei; Cooper, Chris E

    2016-01-01

    The brain responds to hypoxia with an increase in cerebral blood flow (CBF). However, such an increase is generally believed to start only after the oxygen tension decreases to a certain threshold level. Although many mechanisms (different vasodilator and different generation and metabolism mechanisms of the vasodilator) have been proposed at the molecular level, none of them has gained universal acceptance. Nitric oxide (NO) has been proposed to play a central role in the regulation of oxygen supply since it is a vasodilator whose production and metabolism are both oxygen dependent. We have used a computational model that simulates blood flow and oxygen metabolism in the brain (BRAINSIGNALS) to test mechanism by which NO may elucidate hypoxic vasodilation. The first model proposed that NO was produced by the enzyme nitric oxide synthase (NOS) and metabolized by the mitochondrial enzyme cytochrome c oxidase (CCO). NO production declined with decreasing oxygen concentration given that oxygen is a substrate for nitric oxide synthase (NOS). However, this was balanced by NO metabolism by CCO, which also declined with decreasing oxygen concentration. However, the NOS effect was dominant; the resulting model profiles of hypoxic vasodilation only approximated the experimental curves when an unfeasibly low K m for oxygen for NOS was input into the model. We therefore modified the model such that NO generation was via the nitrite reductase activity of deoxyhemoglobin instead of NOS, whilst keeping the metabolism of NO by CCO the same. NO production increased with decreasing oxygen concentration, leading to an improved reproduction of the experimental CBF versus PaO2 curve. However, the threshold phenomenon was not perfectly reproduced. In this present work, we incorporated a wider variety of oxygen dependent and independent NO production and removal mechanisms. We found that the addition of NO removal via oxidation to nitrate mediated by oxyhemoglobin resulted in the

  7. Effect of Carbon Nanotubes on Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Chen, Michelle; Ahmed, Asma; Black, Melanie; Kawamoto, Nicole; Lucas, Jessica; Pagala, Armie; Pham, Tram; Stankiewicz, Sara; Chen, Howard

    2010-03-01

    Carbon Nanotubes possess extraordinary electrical, mechanical, and thermal properties. Research on applying the carbon nanotubes for ultrasensitive detection, disease diagnosis, and drug delivery is rapidly developing. While the fundamental and technological findings on carbon nanotubes show great promise, it is extremely important to investigate the effect of the carbon nanotubes on human health. In our experiments, we introduce purified carbon nanotubes in suspension to ovary cells cultured from Hamsters. These cells are chosen since they show robust morphological changes associated with cytotoxicity that can easily be observed under a light microscope. We will discuss the toxicity of carbon nanotubes by characterizing the cell morphology and viability as a function of time and the concentration of carbon nanotube suspension.

  8. Guanidine hydrochloride and urea effects upon thermal stability of Glossoscolex paulistus hemoglobin (HbGp).

    PubMed

    Carvalho, Francisco A O; Alves, Fernanda R; Carvalho, José W P; Tabak, Marcel

    2015-03-01

    Glossoscolex paulistus hemoglobin (HbGp) has a molecular mass of 3600kDa. It belongs to the hexagonal bilayer hemoglobin class, which consists of highly cooperative respiratory macromolecules found in mollusks and annelids. The present work focusses on oxy-HbGp thermal stability, in the presence of urea and guanidine hydrochloride (GuHCl), monitored by several techniques. Initially, dynamic light scattering data show that the presence of GuHCl induces the protein oligomeric dissociation, followed by a significant 11-fold increase in the hydrodynamic diameter (DH) values, due to the formation of protein aggregates in solution. In contrast, urea promotes the HbGp oligomeric dissociation, followed by unfolding process at high temperatures, without aggregation. Circular dichroism data show that unfolding critical temperature (Tc) of oxy-HbGp decreases from 57°C, at 0.0 mol/L of the denaturant, to 45°C, in the presence of 3.5 mol/L of urea, suggesting the reduction of HbGp oligomeric stability. Moreover, differential scanning calorimetry results show that at lower GuHCl concentrations, some thermal stabilization of the hemoglobin is observed, whereas at higher concentrations, the reduction of stability takes place. Besides, HbGp is more stable in the presence of urea when compared with the guanidine effect, as deduced from the differences in the concentration range of denaturants. PMID:25433131

  9. Effects of naphthalene on the hemoglobin concentration and oxygen uptake of daphnia magna

    SciTech Connect

    Crider, J.Y.; Wilhm, J.; Harman, H.J.

    1982-01-01

    In addition to acute testing for survival of Daphnia magna exposed to naphthalene, various physiological tests were made. Short term studies were conducted to calculate LC50 values and physiological responses. Daphnia of 24 h were fed initially 0.25 ml food/l and the pH, dissolved oxygen and temperature, conductivity, swimming movements, and the number of survivors were determined at 0, 24, and 48 h. These experiments were run at least three times and the dosage-mortality curves were determined by the use of probit and regression analyses. Physiological studies were made for concentrations of 1, 5, and 10 mg/l. Oxygen consumption of Daphnia was measured polarographically and a carboxyhemoglobin method was used to measure total hemoglobin. The hemoglobin concentrations of the treated organisms decreased from 102 nmoles/animal at 1 mg/l naphthalene to 67 nmoles/animal at 9 mg/l. Oxygen uptake decreased from 37 nmoles/animal/h at 1 mg/l to 28 nmoles/animal/h at8 mg/l. Results show that hemoglobin concentration and oxygen uptake may be useful tools in assessing water quality and its effects on the biota. (JMT)

  10. Effects of laser acupoint irradiation on blood glucose and glycosylated hemoglobin in type 2 diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Liu; Guo-Xin, Xiong; Li-Ping, Zhang

    2016-06-01

    To investigate the effects of semiconductor laser acupoint irradiation on blood glucose, glycosylated hemoglobin and physical fitness in type 2 diabetes mellitus, 44 cases of type 2 diabetic patients were randomly divided into a control group and a treatment group. All patients in both groups were given a drug treatment. The Hegu, Quchi and Zusanli acupoints of patients in the treatment group were then irradiated daily for 15 d with a 10 MW semiconductor laser. Before and after treatment, patients in both groups underwent a variety of tests and measurements: a two-hour postprandial blood glucose test; a glycosylated hemoglobin test and body mass index (BMI), waist-to-hip ratio (WHR) and body fat percentage (BFP) measurements. The data detected after treatment greatly decreased in the treatment group and was significantly different from that in the control group. It is shown that the acupoint irradiation with a semiconductor laser can improve two-hour postprandial blood glucose, glycosylated hemoglobin and some physical fitness measurements in type 2 diabetes mellitus patients.

  11. Space radiation effects on plant and mammalian cells

    NASA Astrophysics Data System (ADS)

    Arena, C.; De Micco, V.; Macaeva, E.; Quintens, R.

    2014-11-01

    The study of the effects of ionizing radiation on organisms is related to different research aims. The current review emphasizes the studies on the effects of different doses of sparsely and densely ionizing radiation on living organisms, with the final purpose of highlighting specific and common effects of space radiation in mammals and plants. This topic is extremely relevant in the context of radiation protection from space environment. The response of different organisms to ionizing radiation depends on the radiation quality/dose and/or the intrinsic characteristics of the living system. Macromolecules, in particular DNA, are the critical targets of radiation, even if there is a strong difference between damages encountered by plant and mammalian cells. The differences in structure and metabolism between the two cell types are responsible for the higher resistance of the plant cell compared with its animal counterpart. In this review, we report some recent findings from studies performed in Space or on Earth, simulating space-like levels of radiation with ground-based facilities, to understand the effect of ionizing radiation on mammalian and plant cells. In particular, our attention is focused on genetic alterations and repair mechanisms in mammalian cells and on structures and mechanisms conferring radioresistance to plant cells.

  12. Quinones: reactions with hemoglobin, effects within erythrocytes and potential for antimalarial development

    SciTech Connect

    Denny, B.J.

    1986-01-01

    The focus of this research was to characterize the interactions of some simple quinone like compounds with purified hemoglobin and to study the effects of these compounds within erythrocytes. It is proposed that these sorts of agents can have an antimalarial effect. The simplest compounds chosen for study were benzoquinone, methylquinone (toluquinone) and hydroquinone. When /sup 14/C-quinone was reacted with purified hemoglobin (Hb) there was rapid binding of the first two moles of substrate per Hb molecule. An unusual property of the modified Hb's is that in the presence of a redox sensitive agent such as cytochrome c they are capable of generating superoxide anions. Within erythrocytes, quinone and toluquinone which differ only by a single methyl group have completely different effects. Toluquinone causes the cells to hemolyse and the effect was enhanced when the erythrocyte superoxide dismutase was inhibited; the effect was diminished when scavengers of activated oxygen such as histidine, mannitol and vital E were present. Benzoquinone on the other hand did not cause the cells to hemolyse and instead appeared to protect the cells from certain hemolytic stresses. Growth of malaria parasites in erythrocytes has been shown to be inhibited by activated forms of oxygen, also some quinone like agents in the past have been shown to inhibit the parasite's metabolism. An initial experiment with erythrocytes infected with malaria parasites showed that quinone and toluquinone could both inhibit the growth rate of parasites.

  13. Protective Effect of Ascorbic Acid on Molecular Behavior Changes of Hemoglobin Induced by Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hassan, Nahed S.; Abou Aiad, T. H. M.

    With the use of electricity and industrialization of societies, humans are commonly exposed to static magnetic field induced by electric currents. The putative mechanisms by which Static Magnetic Field (SMF) may affect biological systems is that of increasing free radical life span in organisms. To test this hypothesis, we investigate the effect of ascorbic acid (Vitamin C) treatment on the changes in the molecular behavior of hemoglobin as a result of exposure of the animals to magnetic field in the occupation levels. By measuring the relative permittivity, dielectric loss, relaxation time, conductivity, radius and diffusion coefficient of aqueous solutions of hemoglobin. These measurements were calculated in the frequency range of (100 Hz-100 kHz) to give more information about molecular behavior. Twenty four male albino rats were equally divided into four groups 1, 2, 3 and 4. Animals of group 1, were used as control, animals of group 2, were exposed to (0.2T) magnetic field and that of group 3, 4, were treated with Ascorbic Acid by two doses group 3 (20 mg kg-1 body weight), group 4 (50 mg kg-1 body weight) orally half hour before exposure to magnetic field. The sub chronic exposure expanded (1 h day-1) for 30 consecutive days. The results indicated that exposure of animals to magnetic field resulted in changes in the molecular behavior of hemoglobin molecule while treatment with ascorbic acid afforded comparatively more significant amelioration in these molecular changes, via decreasing the radical pair interaction of magnetic field with biological molecules.

  14. Hemoglobin electrophoresis

    MedlinePlus

    ... is an abnormal form of hemoglobin associated with sickle cell anemia . In people with this condition, the red blood ... symptoms are much milder than they are in sickle cell anemia. Other, less common, abnormal Hb molecules cause anemias . ...

  15. Hemoglobin electrophoresis

    MedlinePlus

    ... is an abnormal form of hemoglobin associated with sickle cell anemia . In people with this condition, the red blood ... symptoms are much milder than they are in sickle cell anemia. Other, less common, abnormal Hb molecules cause anemias .

  16. Hemoglobin derivatives

    MedlinePlus

    ... in red blood cells that moves oxygen and carbon dioxide between the lungs and body tissues. This article ... attached to carbon monoxide instead of oxygen or carbon dioxide. High amounts of this type of abnormal hemoglobin ...

  17. Toxic effects of Karenia mikimotoi extracts on mammalian cells

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Yan, Tian; Yu, Rencheng; Zhou, Mingjiang

    2011-07-01

    Karenia is one of the most harmful and representative red tide genus in a temperate zone. Blooms caused by this genus have resulted in massive fish death in the South China Sea and the East China Sea. However, the potential effects of this dinoflagellate on human health through the transfer of toxins via marine food webs, and the mechanisms of toxicity, are still unknown. Therefore, we examined the toxic effects of a strain of K. mikimotoi (isolated from the South China Sea) on the proliferation and morphology of four mammalian cell lines (two normal cell lines and two cancer cell lines). In addition, we carried out a preliminary investigation on the mechanism of toxicity of the alga. The results show that the polar lipid-soluble component of K. mikimotoi significantly inhibited proliferation of the four cell lines, and resulted in the cells becoming spherical, swollen and damaged. The result of Annexin V and PI double-staining confirmed that cell membranes were disrupted. The malonaldehyde (MDA) contents in the medium of the four cell lines treated with the polar-lipid extracts all increased significantly, which indicates that the polar-lipid toxins produced by K. mikimotoi could adversely affect mammalian cells by inducing lipid peroxidation. We conclude that K. mikimotoi is a potential threat to human health, and the comprehensive effect of this dinoflagellate and its mechanisms should be investigated further.

  18. Effects of S-nitrosation on hemoglobin-induced microvascular damage.

    PubMed

    Burke, Tara K; Teng, Xinjun; Patel, Rakesh P; Baldwin, Ann L

    2006-01-01

    Blood substitutes, such as diaspirin cross-linked hemoglobin (Hb), cause microvascular leakiness to macromolecules. Because of the potentially stabilizing effects of nitric acid (NO) on endothelium, experiments were performed to determine whether S-nitrosohemoglobin (SNO-Hb), a potential NO-donor Hb-based blood substitute, would not cause microvascular damage. Release of NO, or its metabolites, from the SNO-Hb was facilitated by addition of glutathione, which aids in the decomposition of S-nitrosothiols. In anesthetized rats, the mesenteric microvasculature was perfused with SNO-Hb with glutathione (six rats), SNO-Hb alone (six rats), or saline (eight rats) for 10 min, followed by fluorescein isothiocyanate (FITC)-albumin for 1 min, and finally fixed for epifluorescence microscopic examination. When comparing the SNO-Hb group with saline, both the numbers and areas of leaks were significantly increased [0.019 +/- 0.003 (SEM) microm vs. 0.0030 +/- 0.0004 and 7.36 +/- 1.50 vs. 0.156 +/- 0.035 (p < 0.005)]. With the addition of glutathione, leakage was still high (0.005 +/- 0.00005 microm and 5.086 +/- 0.064 microm) but decreased compared with SNO-Hb alone (p < 0.005). In conclusion, NO, or a related vasodilator, when released from SNO-Hb, significantly reduces but does not eliminate microvascular damage. Further improvements may result by S-nitrosating a more stable form of modified hemoglobin. PMID:16910757

  19. The effects of lead on delta-aminolevulinic acid dehydratase activity, growth, hemoglobin content, and reproduction in Daphnia magna.

    PubMed

    Berglind, R; Dave, G; Sjöbeck, M L

    1985-04-01

    The effects of continuous exposure to lead for various periods and recovery in clean water on delta-aminolevulinic acid dehydratase (ALA-D) activity, hemoglobin content, growth, and reproduction were studied in Daphnia magna. Steady-state inhibition of ALA-D activity was reached within 2 days in 16, 64, and 256 micrograms Pb liter-1, but restoration in clean water was prolonged in relation to previous exposure. In spite of the inhibition of ALA-D activity hemoglobin content increased after 2 days in 16 and 24 micrograms Pb liter-1. Furthermore, hemoglobin content in previously exposed animals increased during recovery in clean water. Maximum hemoglobin content (2.9 times control value) was found after 2 days recovery of animals exposed to 64 micrograms Pb liter-1. These findings suggest that some enzyme(s) other than ALA-D in the biosynthetic pathway of hemoglobin formation is (are) more sensitive to lead. Growth, in contrast to reproduction, was stimulated by low concentrations of lead (less than 64 micrograms Pb liter-1), although in 256 micrograms Pb liter-1 growth was also significantly impaired. After 19 days the 16 and 50% reproductive impairment concentrations were less than or equal to 1 and 10 micrograms Pb liter-1, respectively. PMID:3987601

  20. Effects of lead on delta-aminolevulinic acid dehydratase activity, growth, hemoglobin content, and reproduction in Daphnia magna

    SciTech Connect

    Berglind, R.; Dave, G.; Sjoebeck, M.L.

    1985-04-01

    The effects of continuous exposure to lead for various periods and recovery in clean water on delta-aminolevulinic acid dehydratase (ALA-D) activity, hemoglobin content, growth, and reproduction were studied in Daphnia magna. Steady-state inhibition of ALA-D activity was reached within 2 days in 16, 64, and 256 micrograms Pb liter-1, but restoration in clean water was prolonged in relation to previous exposure. In spite of the inhibition of ALA-D activity hemoglobin content increased after 2 days in 16 and 24 micrograms Pb liter-1. Furthermore, hemoglobin content in previously exposed animals increased during recovery in clean water. Maximum hemoglobin content (2.9 times control value) was found after 2 days recovery of animals exposed to 64 micrograms Pb liter-1. These findings suggest that some enzyme(s) other than ALA-D in the biosynthetic pathway of hemoglobin formation is (are) more sensitive to lead. Growth, in contrast to reproduction, was stimulated by low concentrations of lead (less than 64 micrograms Pb liter-1), although in 256 micrograms Pb liter-1 growth was also significantly impaired. After 19 days the 16 and 50% reproductive impairment concentrations were less than or equal to 1 and 10 micrograms Pb liter-1, respectively.

  1. Effect of deep breathing on extracted oxygen and cerebral hemoglobin levels.

    PubMed

    Kennedy, Patrick M; Zarbock, Christopher M; Burke, Broc A; Diamond, Solomon G

    2011-01-01

    This study examines the relationship between oxygen expired and functional near infrared spectroscopy (fNIRS) measured hemoglobin levels in the brain. Analysis of these two signals during normal versus deep breathing provides insight into the dynamics of cerebral physiology. Intersubject variation suggests the existence of two distinct groups with respect to oxygen extraction and hemoglobin levels. PMID:22254486

  2. The calming effect of maternal carrying in different mammalian species

    PubMed Central

    Esposito, Gianluca; Setoh, Peipei; Yoshida, Sachine; Kuroda, Kumi O.

    2015-01-01

    Attachment theory postulates that mothers and their infants possess some basic physiological mechanisms that favor their dyadic interaction and bonding. Many studies have focused on the maternal physiological mechanisms that promote attachment (e.g., mothers’ automatic responses to infant faces and/or cries), and relatively less have examined infant physiology. Thus, the physiological mechanisms regulating infant bonding behaviors remain largely undefined. This review elucidates some of the neurobiological mechanisms governing social bonding and cooperation in humans by focusing on maternal carrying and its beneficial effect on mother–infant interaction in mammalian species (e.g., in humans, big cats, and rodents). These studies show that infants have a specific calming response to maternal carrying. A human infant carried by his/her walking mother exhibits a rapid heart rate decrease, and immediately stops voluntary movement and crying compared to when he/she is held in a sitting position. Furthermore, strikingly similar responses were identified in mouse rodents, who exhibit immobility, diminished ultra-sonic vocalizations and heart rate. In general, the studies described in the current review demonstrate the calming effect of maternal carrying to be comprised of a complex set of behavioral and physiological components, each of which has a specific postnatal time window and is orchestrated in a well-matched manner with the maturation of the infants. Such reactions could have been evolutionarily adaptive in mammalian mother–infant interactions. The findings have implications for parenting practices in developmentally normal populations. In addition, we propose that infants’ physiological response may be useful in clinical assessments as we discuss possible implications on early screening for child psychopathology (e.g., autism spectrum disorders and perinatal brain disorders). PMID:25932017

  3. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity

    PubMed Central

    Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages. PMID:27097326

  4. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity.

    PubMed

    Toma, Vlad Al; Farcaș, Anca D; Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages. PMID:27097326

  5. Serum free hemoglobin test

    MedlinePlus

    Blood hemoglobin; Serum hemoglobin ... Hemoglobin (Hb) is the main component of red blood cells. It is a protein that carries oxygen. ... people may contain up to 5 mg/dL hemoglobin. Normal value ranges may vary slightly among different ...

  6. Hemoglobin C disease

    MedlinePlus

    Clinical hemoglobin C ... Hemoglobin C is an abnormal type of hemoglobin, the protein in red blood cells that carries oxygen. It is ... Americans. You are more likely to have hemoglobin C disease if someone in your family has had ...

  7. Effect of the N-terminal residues on the quaternary dynamics of human adult hemoglobin

    NASA Astrophysics Data System (ADS)

    Chang, Shanyan; Mizuno, Misao; Ishikawa, Haruto; Mizutani, Yasuhisa

    2016-05-01

    The protein dynamics of human hemoglobin following ligand photolysis was studied by time-resolved resonance Raman spectroscopy. The time-resolved spectra of two kinds of recombinant hemoglobin expressed in Escherichia coli, normal recombinant hemoglobin and the α(V1M)/β(V1M) double mutant, were compared with those of human adult hemoglobin (HbA) purified from blood. A frequency shift of the iron-histidine stretching [ν(Fe-His)] band was observed in the time-resolved spectra of all three hemoglobin samples, indicative of tertiary and quaternary changes in the protein following photolysis. The spectral changes of the α(V1M)/β(V1M) double mutant were distinct from those of HbA in the tens of microseconds region, whereas the spectral changes of normal recombinant hemoglobin were similar to those of HbA isolated from blood. These results demonstrated that a structural change in the N-termini is involved in the second step of the quaternary structure change of hemoglobin. We discuss the implications of these results for understanding the allosteric pathway of HbA.

  8. Effects of Iron Supplementation and Activity on Serum Iron Depletion and Hemoglobin Levels in Female Athletes

    ERIC Educational Resources Information Center

    Cooter, G. Rankin; Mowbray, Kathy W.

    1978-01-01

    Research revealed that a four-month basketball training program did not significantly alter serum iron, total iron binding capacity, hemoglobin, and percent saturation levels in female basketball athletes. (JD)

  9. Effects of Non-Thermal Plasma on Mammalian Cells

    PubMed Central

    Kalghatgi, Sameer; Kelly, Crystal M.; Cerchar, Ekaterina; Torabi, Behzad; Alekseev, Oleg; Fridman, Alexander; Friedman, Gary; Azizkhan-Clifford, Jane

    2011-01-01

    Thermal plasmas and lasers have been widely used in medicine to cut, ablate and cauterize tissues through heating; in contrast, non-thermal plasma produces no heat, so its effects can be selective. In order to exploit the potential for clinical applications, including wound healing, sterilization, blood coagulation, and cancer treatment, a mechanistic understanding of the interaction of non-thermal plasma with living tissues is required. Using mammalian cells in culture, it is shown here that non-thermal plasma created by dielectric barrier discharge (DBD) has dose-dependent effects that range from increasing cell proliferation to inducing apoptosis. It is also shown that these effects are primarily due to formation of intracellular reactive oxygen species (ROS). We have utilized γ-H2AX to detect DNA damage induced by non-thermal plasma and found that it is initiated by production of active neutral species that most likely induce formation of organic peroxides in cell medium. Phosphorylation of H2AX following non-thermal plasma treatment is ATR dependent and ATM independent, suggesting that plasma treatment may lead to replication arrest or formation of single-stranded DNA breaks; however, plasma does not lead to formation of bulky adducts/thymine dimers. PMID:21283714

  10. Non-site-specific allosteric effect of oxygen on human hemoglobin under high oxygen partial pressure

    PubMed Central

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2014-01-01

    Protein allostery is essential for vital activities. Allosteric regulation of human hemoglobin (HbA) with two quaternary states T and R has been a paradigm of allosteric structural regulation of proteins. It is widely accepted that oxygen molecules (O2) act as a “site-specific” homotropic effector, or the successive O2 binding to the heme brings about the quaternary regulation. However, here we show that the site-specific allosteric effect is not necessarily only a unique mechanism of O2 allostery. Our simulation results revealed that the solution environment of high O2 partial pressure enhances the quaternary change from T to R without binding to the heme, suggesting an additional “non-site-specific” allosteric effect of O2. The latter effect should play a complementary role in the quaternary change by affecting the intersubunit contacts. This analysis must become a milestone in comprehensive understanding of the allosteric regulation of HbA from the molecular point of view. PMID:24710521

  11. Effects of iron supplementation on red blood cell hemoglobin content in pregnancy

    PubMed Central

    Schoorl, Margreet; Schoorl, Marianne; van der Gaag, Derek; Bartels, Piet C. M.

    2012-01-01

    Although a mild degree of anemia is common in the third trimester of pregnancy, it remains a challenge to establish whether a decrease in hemoglobin (Hb) concentration is physiological or pathological. The World Health Organization suggested a Hb concentration of 110 g/L to discriminate anemia. Several European investigators recommended Hb cut-off values of between 101–110 g/L. The aim of this study was to establish short-term effects of iron supplementation on the hemoglobin content of reticulocytes (Ret-He) and red blood cells (RBC-He) in case of suspected iron deficient erythropoiesis (IDE) in the third trimester of pregnancy. Twenty-five subjects with suspected IDE during pregnancy (Hb ≤110g/L, Ret-He <29.6 pg, zinc protoporphyrin >75 mol/mol hem) participated in the study. After iron supplementation, reticulocyte counts increased from 0.061±0.015×1012/L to 0.079±0.026×1012/L and Ret-He increased from 23.6±2.8 pg to 28.3±2.6 pg (P=<0.001). RBC-He increased from 26.9±1.9 pg to 27.4±1.8 pg (not significant, NS) and Ret-He/RBC-He ratio increased from 0.97±0.06 towards 1.07±0.05 (P=<0.001). Hb concentrations demonstrated an obvious increase from 105±6 g/L towards 115±5 g/L (P≤0.001) after supplementation. An obvious increase in RBC distribution width was observed from 45.0±3.6 fL towards 52.3±7.0 fL (P≤0.001). We recommend that Ret-He and Ret-He/RBC-He ratio be integrated into the protocols for anemia screening and for monitoring effects of iron supplementation during pregnancy. In particular, the parameters should be considered in subjects with Hb results in the controversial range of 101–108 g/L. PMID:23355942

  12. The effect of ascetic acid on mammalian cells

    SciTech Connect

    Mariana, Oana C; Trujillo, Antoinette; Sanders, Claire K; Burnett, Kassidy S; Freyer, James P; Mourant, Judith R

    2010-01-01

    Effects of the contrast agent, acetic acid, on mammalian cells are studied using light scattering measurements, viability and fluorescence pH assays. Results depend on whether cells are in PBS or are live and metabolizing. Acetic acid is a contrast agent used to aid the detection of cancerous and precancerous lesions of the uterine cervix. Typically 3% or 5% acetic acid is applied to the swface of the cervix and areas of the tissue that turn 'acetowhite' are considered more likely to be precancerous. The mechanism of action of acetic acid has never been understood in detail, although there are several hypotheses. One is that a decrease in pH causes cytokeratins in epithelial cells to polymerize. We will present data demonstrating that this is not the sole mechanism of acetowhitening. Another hypothesis is that a decrease in pH in the nucleus causes deacetylation of the histones which in turn results in a dense chromatin structure. Relevant to this hypothesis we have measured the internal pH of cells. Additional goals of this work are to understand what physical changes result in acetowhitening, to understand why there is variation in how cells respond to acetic acid, and to investigate how acetowhitening affects the light scatter properties measured by a fiber-optic probe we have developed for cervical cancer diagnostics.

  13. Effects of Tetrodotoxin on the Mammalian Cardiovascular System

    PubMed Central

    Zimmer, Thomas

    2010-01-01

    The human genome encodes nine functional voltage-gated Na+ channels. Three of them, namely Nav1.5, Nav1.8, and Nav1.9, are resistant to nanomolar concentrations of tetrodotoxin (TTX; IC50 ≥ 1 μM). The other isoforms, which are predominantly expressed in the skeletal muscle and nervous system, are highly sensitive to TTX (IC50 ~ 10 nM). During the last two decades, it has become evident that in addition to the major cardiac isoform Nav1.5, several of those TTX sensitive isoforms are expressed in the mammalian heart. Whereas immunohistochemical and electrophysiological methods demonstrated functional expression in various heart regions, the physiological importance of those isoforms for cardiac excitation in higher mammals is still debated. This review summarizes our knowledge on the systemic cardiovascular effects of TTX in animals and humans, with a special focus on cardiac excitation and performance at lower concentrations of this marine drug. Altogether, these data strongly suggest that TTX sensitive Na+ channels, detected more recently in various heart tissues, are not involved in excitation phenomena in the healthy adult heart of higher mammals. PMID:20411124

  14. Antineoplastic effects of mammalian target of rapamycine inhibitors.

    PubMed

    Salvadori, Maurizio

    2012-10-24

    Cancer after transplantation is the third cause of death and one of the more relevant comorbidities. Aim of this review is to verify the role of different pathogenetic mechanisms in cancer development in transplant patients and in general population as well. In particular has been outlined the different role exerted by two different families of drug as calcineurin inhibitor and mammalian target of rapamycin (mTOR) inhibitor. The role of mTOR pathways in cell homeostasis is complex but enough clear. As a consequence the mTOR pathway deregulation is involved in the genesis of several cancers. Hence the relevant role of mTOR inhibitors. The authors review the complex mechanism of action of mTOR inhibitors, not only for what concerns the immune system but also other cells as endothelial, smooth muscle and epithelial cells. The mechanism of action is still now not completely defined and understood. It implies the inhibition of mTOR pathway at different levels, but mainly at level of the phosphorylation of several intracellular kinases that contribute to activate mTOR complex. Many prospective and retrospective studies in transplant patients document the antineoplastic role of mTOR inhibition. More recently mTOR inhibitors proven to be effective in the treatment of some cancers also in general population. Kidney cancers, neuroendocrine tumors and liver cancers seem to be the most sensitive to these drugs. Best results are obtained with a combination treatment, targeting the mTOR pathway at different levels. PMID:24175199

  15. The fungicide mancozeb induces toxic effects on mammalian granulosa cells

    SciTech Connect

    Paro, Rita; Tiboni, Gian Mario; Buccione, Roberto; Rossi, Gianna; Cellini, Valerio; Canipari, Rita; Cecconi, Sandra

    2012-04-15

    The ethylene-bis-dithiocarbamate mancozeb is a widely used fungicide with low reported toxicity in mammals. In mice, mancozeb induces embryo apoptosis, affects oocyte meiotic spindle morphology and impairs fertilization rate even when used at very low concentrations. We evaluated the toxic effects of mancozeb on the mouse and human ovarian somatic granulosa cells. We examined parameters such as cell morphology, induction of apoptosis, and p53 expression levels. Mouse granulosa cells exposed to mancozeb underwent a time- and dose-dependent modification of their morphology, and acquired the ability to migrate but not to proliferate. The expression level of p53, in terms of mRNA and protein content, decreased significantly in comparison with unexposed cells, but no change in apoptosis was recorded. Toxic effects could be attributed, at least in part, to the presence of ethylenthiourea (ETU), the main mancozeb catabolite, which was found in culture medium. Human granulosa cells also showed dose-dependent morphological changes and reduced p53 expression levels after exposure to mancozeb. Altogether, these results indicate that mancozeb affects the somatic cells of the mammalian ovarian follicles by inducing a premalignant-like status, and that such damage occurs to the same extent in both mouse and human GC. These results further substantiate the concept that mancozeb should be regarded as a reproductive toxicant. Highlights: ► The fungicide mancozeb affects oocyte spindle morphology and fertilization rate. ► We investigated the toxic effects of mancozeb on mouse and human granulosa cells. ► Granulosa cells modify their morphology and expression level of p53. ► Mancozeb induces a premalignant-like status in exposed cells.

  16. Effects of indigo carmine intravenous injection on noninvasive and continuous total hemoglobin measurement.

    PubMed

    Isosu, Tsuyoshi; Satoh, Tomohiko; Oishi, Rieko; Imaizumi, Tsuyoshi; Hakozaki, Takahiro; Obara, Shinju; Ikegami, Yukihiro; Kurosawa, Shin; Murakawa, Masahiro

    2016-06-01

    The effects of an intravenous injection of indigo carmine on noninvasive and continuous total hemoglobin (SpHb) measurement were retrospectively evaluated. The subjects were 21 patients who underwent elective gynecologic surgery under general anesthesia. During surgery, 5 mL of 0.4 % indigo carmine was intravenously injected, and subsequent changes in SpHb concentrations were evaluated. The results demonstrate that the pre-injection SpHb level was 10 g/dL, and the minimum post-injection SpHb level was 8.3 g/dL. The amount of decrease was 1.8 g/dL. The time to reach the minimum value was 4 min, and the time to return to the pre-injection value was 15 min. The decrease in SpHb was greater in the group with a perfusion index (PI) < 1.4 than in the group with a PI > 1.4. The assessment of SpHb after an intravenous injection of indigo carmine necessitates caution. PMID:26076807

  17. Osmotic and diffusive properties of intracellular water in camel erythrocytes: effect of hemoglobin crowdedness.

    PubMed

    Bogner, Peter; Miseta, Attila; Berente, Zoltan; Schwarcz, Attila; Kotek, Gyula; Repa, Imre

    2005-09-01

    Camel erythrocytes have exceptional osmotic resistance and is believed to be due to augmented water-binding associated with the high hydrophilicity of camel hemoglobin. In practical terms this means that the proportion of osmotically non-removable water in camel erythrocytes is nearly 3-fold greater than that in human erythrocytes (approximately 65 vs approximately 20%). The relationship between water diffusion and the osmotic characteristics of intracellular water is the subject of this report. The amount of osmotically inactive water is 2-fold greater in camel hemoglobin solution in vitro compared to that of human, but water diffusion does not differ in camel and human hemoglobin solutions. However, the evaluation of water diffusion by magnetic resonance measurements in camel erythrocytes revealed approximately 15% lower apparent diffusion coefficient (ADC) compared with human erythrocytes. When human erythrocytes were dehydrated to the level of camel erythrocytes, their osmotic and water diffusion properties were similar. These results show that a lower ADC is associated with a more pronounced increase in osmotically inactive water fraction. It is proposed that increased hemoglobin hydrophilicity allows not only augmented water-binding, but also a closer hemoglobin packaging in vivo, which in turn is associated with slower ADC and increased osmotic resistance. PMID:15951204

  18. Comparison of the effects of radiographic contrast media on dehydration and filterability of red blood cells from donors homozygous for hemoglobin A or hemoglobin S.

    PubMed

    Losco, P; Nash, G; Stone, P; Ventre, J

    2001-11-01

    Iodinated radiographic contrast media have traditionally been contraindicated in patients with sickle cell disease because their high osmolality may induce osmotic shrinkage of red blood cells, impair blood flow through the microcirculation, and precipitate or exacerbate a sickle cell crisis. This study investigated that concept by comparing the hematological and rheological effects in vitro of four X-ray contrast media of differing osmolalities: Visipaque (290 mOsm/kg), Hexabrix (600 mOsm/kg), Omnipaque (844 mOsm/kg), and RenoCal-76 (1940 mOsm/kg). Blood was tested from 10 normal and 10 sickle cell donors at drug concentrations of 0, 1, 10, and 30% w/v in an attempt to approximate the relative concentrations of contrast medium to blood that might occur during the bolus-injection and circulation-diluted phases of drug administration. Parameters evaluated included hematology, red cell morphology, and red cell flow resistance through a micropore filter to approximate the microcirculatory effects. Significant hematological effects for both normal and sickle cell donors included a concentration dependent decrease in hematocrit and MCV, and increase in MCHC, all of which varied directly with the osmolality of the contrast media in the order of RenoCal-76 > Omnipaque > Hexabrix > Visipaque. The contrast media had minor effects on red blood cell morphology except for RenoCal-76, 10-30% in which marked echinocytosis was observed. There was no significant increase in the number of irreversibly sickled cells in donors with hemoglobin S. Filterability of red cell suspensions through capillary size pores was impaired in both normal and sickle cell samples in direct proportion to the osmolality of the contrast media, as listed above. Filterability effects were greater for sickle cells than for normal red cells. Visipaque, which was closest to isotonicity, had little effect on red cell volume and had no significant effect on filterability of normal or sickle cells. These results

  19. Synergistic Effects of Hemoglobin and Tumor Perfusion on Tumor Control and Survival in Cervical Cancer

    SciTech Connect

    Mayr, Nina A. Wang, Jian Z.; Zhang Dongqing; Montebello, Joseph F.; Grecula, John C.; Lo, Simon S.; Fowler, Jeffery M.; Yuh, William T.C.

    2009-08-01

    Purpose: The tumor oxygenation status is likely influenced by two major factors: local tumor blood supply (tumor perfusion) and its systemic oxygen carrier, hemoglobin (Hgb). Each has been independently shown to affect the radiotherapy (RT) outcome in cervical cancer. This study assessed the effect of local tumor perfusion, systemic Hgb levels, and their combination on the treatment outcome in cervical cancer. Methods and Materials: A total of 88 patients with cervical cancer, Stage IB2-IVA, who were treated with RT/chemotherapy, underwent serial dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) before RT, at 20-22 Gy, and at 45-50 Gy. The DCE-MRI perfusion parameters, mean and lowest 10th percentile of the signal intensity distribution in the tumor pixels, and the Hgb levels, including pre-RT, nadir, and mean Hgb (average of weekly Hgb during RT), were correlated with local control and disease-specific survival. The median follow-up was 4.6 years. Results: Local recurrence predominated in the group with both a low mean Hgb (<11.2 g/dL) and low perfusion (lowest 10th percentile of signal intensity <2.0 at 20-22 Gy), with a 5-year local control rate of 60% vs. 90% for all other groups (p = .001) and a disease-specific survival rate of 41% vs. 72% (p = .008), respectively. In the group with both high mean Hgb and high perfusion, the 5-year local control rate and disease-specific survival rate was 100% and 78%, respectively. Conclusion: These results suggest that the compounded effects of Hgb level and tumor perfusion during RT influence the radioresponsiveness and survival in cervical cancer patients. The outcome was worst when both were impaired. The management of Hgb may be particularly important in patients with low tumor perfusion.

  20. Hemoglobin C disease

    MedlinePlus

    Clinical hemoglobin C ... Hemoglobin C is an abnormal type of hemoglobin, the protein in red blood cells that carries oxygen. It is a type of hemoglobinopathy. The disease is caused by a problem with ...

  1. Transfection of the Human Heme Oxygenase Gene Into Rabbit Coronary Microvessel Endothelial Cells: Protective Effect Against Heme and Hemoglobin Toxicity

    NASA Astrophysics Data System (ADS)

    Abraham, N. G.; Lavrovsky, Y.; Schwartzman, M. L.; Stoltz, R. A.; Levere, R. D.; Gerritsen, M. E.

    1995-07-01

    Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an ≈3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with >85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

  2. Effect of Paricalcitol vs Calcitriol on Hemoglobin Levels in Chronic Kidney Disease Patients: A Randomized Trial

    PubMed Central

    Bruzzese, Dario; Capuano, Ivana; Migliaccio, Silvia; Andreucci, Michele; Pisani, Antonio

    2015-01-01

    Background Recent studies suggest that vitamin D deficiency represents an additional cofactor of renal anemia, with several mechanisms accounting for this relationship. In line with it, the administration of vitamin D or its analogues has been associated with an improvement of anemia. There are no data, however, about a direct effect of paricalcitol on hemoglobin (Hb) levels. Therefore, we conducted a study to determine whether paricalcitol, compared to calcitriol, improves anemia in patients with chronic kidney disease (CKD). Methods In this randomized trial 60 CKD patients stage 3b-5 and anemia (Hb levels: 10-12.5 g/dL) were assigned (1:1) to receive low doses of calcitriol (Group Calcitriol) or paricalcitol (Group Paricalcitol) for 6 months. All the patients had normal values of plasma calcium, phosphorus and PTH, a stable iron balance, and normal values of C-Reactive Protein. The primary endpoint was to evaluate the effects of the two treatments on Hb levels; the modifications in 24hr-proteinuria (UProt) were also evaluated. Results A significant Group x Time interaction effect was observed in the longitudinal analysis of Hb levels (F(1,172)=31.4, p<0.001). Subjects in Paricalcitol experienced a significant monthly increase of Hb levels equal to +0.16 g/dL [95% C.I. 0.10 to +0.22, p<0.001) while in Group Calcitriol, Hb decrease throughout the follow-up with an average monthly rate of -0.10 g/dL (95% C.I.: -0.17 to -0.04, p<0.001). In Group Paricalcitol, UProt was significantly reduced after 6 months [0.35 (0.1-1.2) vs 0.59 (0.2-1.6), p<0.01], whereas no significant difference emerged in Group Calcitriol. Plasma levels of calcium, phosphate, PTH and of inflammation markers remained in the normal range in both groups throughout the study. Conclusions Short-term exposure to paricalcitol results in an independent increase in Hb levels, which occurred with no modification of iron balance, inflammatory markers, and PTH plasma concentrations, and was associated with a

  3. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor.

    PubMed

    Hajian, A; Ghodsi, J; Afraz, A; Yurchenko, O; Urban, G

    2016-12-01

    This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH=7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13μmolL(-1) and detection limit of 25nmolL(-1). The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. PMID:27612696

  4. Roles of the. beta. 146 histidyl residue in the molecular basis of the Bohr Effect of hemoglobin: A proton nuclear magnetic resonance study

    SciTech Connect

    Busch, M.R.; Mace, J.E.; Ho, N.T.; Ho, Chien )

    1991-02-19

    Assessment of the roles of the carboxyl-terminal {beta}146 histidyl residues in the alkaline Bohr effect in human and normal adult hemoglobin by high-resolution proton nuclear magnetic resonance spectroscopy requires assignment of the resonances corresponding to these residues. By a careful spectroscopic study of human normal adult hemoglobin, enzymatically prepared des(His146{beta})-hemoglobin, and the mutant hemoglobins Cowtown ({beta}146His {yields} Leu) and York ({beta}146His {yields} Pro), the authors have resolved some of these conflicting results. By a close incremental variation of pH over a wide range in chloride-free 0.1 M N-(2-hydroxyethyl)piperazine-N{prime}-2-ethanesulfonic acid buffer, a single resonance has been found to be consistently missing in the proton nuclear magnetic resonance spectra of these hemoglobin variants. The results indicate that the contribution of the {beta}146 histidyl residues is 0.52 H{sup +}/hemoglobin tetramer at pH 7.6, markedly less than 0.8 H{sup +}/hemoglobin tetramer estimated by study of the mutant hemoglobin Cowtown ({beta}146His {yields} Leu) by Shih and Perutz. They have found that at least two histidyl residues in the carbonmonoxy form of this mutant have pK values that are perturbed, and they suggest that these pK differences may in part account for this discrepancy. The results show that the pK values of {beta}146 histidyl residues in the carbonmonoxy form of hemoglobin are substantially affected by the presence of chloride and other anions in the solvent, and thus, the contribution of this amino acid residue to the alkaline Bohr effect can be shown to vary widely in magnitude, depending on the solvent composition. These results demonstrate that the detailed molecular mechanisms of the alkaline Bohr effect are not unique but are affected both by the hemoglobin structure and by the interactions with the solvent components in which the hemoglobin molecule resides.

  5. Sickle Cells Abolish Melanoma Tumorigenesis in Hemoglobin SS Knockin Mice and Augment the Tumoricidal Effect of Oncolytic Virus In Vivo.

    PubMed

    Sun, Chiang Wang; Willmon, Candice; Wu, Li-Chen; Knopick, Peter; Thoerner, Jutta; Vile, Richard; Townes, Tim M; Terman, David S

    2016-01-01

    Insights from the study of cancer resistance in animals have led to the discovery of novel anticancer pathways and opened new venues for cancer prevention and treatment. Sickle cells (SSRBCs) from subjects with homozygous sickle cell anemia (SCA) have been shown to target hypoxic tumor niches, induce diffuse vaso-occlusion, and potentiate a tumoricidal response in a heme- and oxidant-dependent manner. These findings spawned the hypothesis that SSRBCs and the vasculopathic microenvironment of subjects with SCA might be inimical to tumor outgrowth and thereby constitute a natural antitumor defense. We therefore implanted the B16F10 melanoma into humanized hemoglobin SS knockin mice which exhibit the hematologic and vasculopathic sequelae of human SCA. Over the 31-day observation period, hemoglobin SS mice showed no significant melanoma outgrowth. By contrast, 68-100% of melanomas implanted in background and hemoglobin AA knockin control mice reached the tumor growth end point (p < 0.0001). SS knockin mice also exhibited established markers of underlying vasculopathy, e.g., chronic hemolysis (anemia, reticulocytosis) and vascular inflammation (leukocytosis) that differed significantly from all control groups. Genetic differences or normal AA gene knockin do not explain the impaired tumor outgrowth in SS knockin mice. These data point instead to the chronic pro-oxidative vasculopathic network in these mice as the predominant cause. In related studies, we demonstrate the ability of the sickle cell component of this system to function as a therapeutic vehicle in potentiating the oncolytic/vasculopathic effect of RNA reovirus. Sickle cells were shown to efficiently adsorb and transfer the virus to melanoma cells where it induced apoptosis even in the presence of anti-reovirus neutralizing antibodies. In vivo, SSRBCs along with their viral cargo rapidly targeted the tumor and initiated a tumoricidal response exceeding that of free virus and similarly loaded normal RBCs

  6. Sickle Cells Abolish Melanoma Tumorigenesis in Hemoglobin SS Knockin Mice and Augment the Tumoricidal Effect of Oncolytic Virus In Vivo

    PubMed Central

    Sun, Chiang Wang; Willmon, Candice; Wu, Li-Chen; Knopick, Peter; Thoerner, Jutta; Vile, Richard; Townes, Tim M.; Terman, David S.

    2016-01-01

    Insights from the study of cancer resistance in animals have led to the discovery of novel anticancer pathways and opened new venues for cancer prevention and treatment. Sickle cells (SSRBCs) from subjects with homozygous sickle cell anemia (SCA) have been shown to target hypoxic tumor niches, induce diffuse vaso-occlusion, and potentiate a tumoricidal response in a heme- and oxidant-dependent manner. These findings spawned the hypothesis that SSRBCs and the vasculopathic microenvironment of subjects with SCA might be inimical to tumor outgrowth and thereby constitute a natural antitumor defense. We therefore implanted the B16F10 melanoma into humanized hemoglobin SS knockin mice which exhibit the hematologic and vasculopathic sequelae of human SCA. Over the 31-day observation period, hemoglobin SS mice showed no significant melanoma outgrowth. By contrast, 68–100% of melanomas implanted in background and hemoglobin AA knockin control mice reached the tumor growth end point (p < 0.0001). SS knockin mice also exhibited established markers of underlying vasculopathy, e.g., chronic hemolysis (anemia, reticulocytosis) and vascular inflammation (leukocytosis) that differed significantly from all control groups. Genetic differences or normal AA gene knockin do not explain the impaired tumor outgrowth in SS knockin mice. These data point instead to the chronic pro-oxidative vasculopathic network in these mice as the predominant cause. In related studies, we demonstrate the ability of the sickle cell component of this system to function as a therapeutic vehicle in potentiating the oncolytic/vasculopathic effect of RNA reovirus. Sickle cells were shown to efficiently adsorb and transfer the virus to melanoma cells where it induced apoptosis even in the presence of anti-reovirus neutralizing antibodies. In vivo, SSRBCs along with their viral cargo rapidly targeted the tumor and initiated a tumoricidal response exceeding that of free virus and similarly loaded normal

  7. Nonlinear photoacoustic spectroscopy of hemoglobin

    SciTech Connect

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V.

    2015-05-18

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.

  8. Nonlinear photoacoustic spectroscopy of hemoglobin

    PubMed Central

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V.

    2015-01-01

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography. PMID:26045627

  9. Nonlinear photoacoustic spectroscopy of hemoglobin

    NASA Astrophysics Data System (ADS)

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V.

    2015-05-01

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.

  10. The Effect of Hemoglobin Levels on Mortality in Pediatric Patients with Severe Traumatic Brain Injury

    PubMed Central

    2016-01-01

    Objective. There is increasing evidence of adverse outcomes associated with blood transfusions for adult traumatic brain injury patients. However, current evidence suggests that pediatric traumatic brain injury patients may respond to blood transfusions differently on a vascular level. This study examined the influence of blood transfusions and anemia on the outcome of pediatric traumatic brain injury patients. Design. A retrospective cohort analysis of severe pediatric traumatic brain injury (TBI) patients was undertaken to investigate the association between blood transfusions and anemia on patient outcomes. Measurements and Main Results. One hundred and twenty patients with severe traumatic brain injury were identified and included in the analysis. The median Glasgow Coma Scale (GCS) was 6 and the mean hemoglobin (Hgb) on admission was 115.8 g/L. Forty-three percent of patients (43%) received at least one blood transfusion and the mean hemoglobin before transfusion was 80.1 g/L. Multivariable regression analysis revealed that anemia and the administration of packed red blood cells were not associated with adverse outcomes. Factors that were significantly associated with mortality were presence of abusive head trauma, increasing PRISM score, and low GCS after admission. Conclusion. In this single centre retrospective cohort study, there was no association found between anemia, blood transfusions, and hospital mortality in a pediatric traumatic brain injury patient population.

  11. Effects of simulated weightlessness on mammalian development. Part 1: Development of clinostat for mammalian tissue culture and use in studies on meiotic maturation of mouse oocytes

    NASA Technical Reports Server (NTRS)

    Wolegemuth, D. J.; Grills, G. S.

    1984-01-01

    The effects of weightlessness on three aspects of mammalian reproduction: oocyte development, fertilization, and early embryogenesis was studied. Zero-gravity conditions within the laboratory by construction of a clinostat designed to support in vitro tissue culture were simulated and the effects of simulated weightlessness on meiotic maturation in mammalian oocytes using mouse as the model system were studied. The timing and frequency of germinal vesicule breakdown and polar body extrusion, and the structural and numerical properties of meiotic chromosomes at Metaphase and Metaphase of meiosis are assessed.

  12. Positive Effect of Large Birth Intervals on Early Childhood Hemoglobin Levels in Africa Is Limited to Girls: Cross-Sectional DHS Study

    PubMed Central

    Afeworki, Robel; Smits, Jeroen; Tolboom, Jules; van der Ven, Andre

    2015-01-01

    Background Short birth intervals are independently associated with increased risk of adverse maternal, perinatal, infant and child outcomes. Anemia in children, which is highly prevalent in Africa, is associated with an increased risk of morbidity and mortality. Birth spacing is advocated as a tool to reduce anemia in preschool African children, but the role of gender differences and contextual factors has been neglected. The present study aims to determine to what extent the length of preceding birth interval influences the hemoglobin levels of African preschool children in general, as well as for boys and girls separately, and which contextual factors thereby play a crucial role. Methods and Findings This cross-sectional study uses data from Demographic and Health Surveys (DHS) conducted between 2003 and 2011 in 20 African countries. All preschool children aged 6–59 months with a valid hemoglobin measurement and a preceding birth interval of 7–72 months as well as their corresponding multigravida mothers aged 21–49 years were included in the study. Hemoglobin levels of children and mothers were measured in g/l, while birth intervals were calculated as months difference between consecutive births. Multivariate analyses were done to examine the relationship between length of preceding birth interval and child hemoglobin levels, adjusted for factors at the individual, household, community, district, and country level. A positive linear relationship was observed between birth interval and the 49,260 included children’s hemoglobin level, whereby age and sex of the child, hemoglobin level of the mother, household wealth, mother’s education and urbanization of place of residence also showed positive associations. In the interaction models, the effect of a month increase in birth interval is associated with an average increase of 0.025 g/l in hemoglobin level (P = 0.001) in girls, while for boys the effect was not significant. In addition, for girls, the effect

  13. Importance of many-body effects in the Kernel of hemoglobin for ligand binding.

    PubMed

    Weber, Cédric; O'Regan, David D; Hine, Nicholas D M; Littlewood, Peter B; Kotliar, Gabriel; Payne, Mike C

    2013-03-01

    We propose a mechanism for binding of diatomic ligands to heme based on a dynamical orbital selection process. This scenario may be described as bonding determined by local valence fluctuations. We support this model using linear-scaling first-principles calculations, in combination with dynamical mean-field theory, applied to heme, the kernel of the hemoglobin metalloprotein central to human respiration. We find that variations in Hund's exchange coupling induce a reduction of the iron 3d density, with a concomitant increase of valence fluctuations. We discuss the comparison between our computed optical absorption spectra and experimental data, our picture accounting for the observation of optical transitions in the infrared regime, and how the Hund's coupling reduces, by a factor of 5, the strong imbalance in the binding energies of heme with CO and O(2) ligands. PMID:23521275

  14. [Effect of sheep haptoglobin on the hemoglobin molecule in the Hp-Hb complex].

    PubMed

    Beĭsembaeva, R U; Dzhusupova, R Zh

    1986-01-01

    Sheep haptoglobin (HpC) binding hemoglobin increases the stability of the latter to acid denaturation and oxidation by atmospheric O2. HpC is also capable of binding methemoglobin (MetHb) denaturated at pH 3.5 to form a stable complex. This process is accompanied by partial reconstitution of the structural integrity and peroxidase activity of MetHb. Consequently, the formation of a HpC-MetHb complex leads to changes in the tertiary structure of the MetHb molecule. The increase in the peroxidase activity of MetHb at pH less than or equal to 4.0 after its binding to HpC is due to the stabilizing and stimulating activity of HpC. PMID:3006800

  15. Serum free hemoglobin test

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003677.htm Serum free hemoglobin test To use the sharing features on this page, please enable JavaScript. Serum free hemoglobin is a blood test that measures the ...

  16. When Herbivores Eat Predators: Predatory Insects Effectively Avoid Incidental Ingestion by Mammalian Herbivores

    PubMed Central

    Ben-Ari, Matan; Inbar, Moshe

    2013-01-01

    The direct trophic links between mammalian herbivores and plant-dwelling insects have been practically ignored. Insects are ubiquitous on plants consumed by mammalian herbivores and are thus likely to face the danger of being incidentally ingested by a grazing mammal. A few studies have shown that some herbivorous hemipterans are able to avoid this peril by dropping to the ground upon detecting the heat and humidity on the mammal's breath. We hypothesized that if this risk affects the entire plant-dwelling insect community, other insects that share this habitat are expected to develop similar escape mechanisms. We assessed the ability of three species (adults and larvae) of coccinellid beetles, important aphid predators, to avoid incidental ingestion. Both larvae and adults were able to avoid incidental ingestion effectively by goats by dropping to the ground, demonstrating the importance of this behavior in grazed habitats. Remarkably, all adult beetles escaped by dropping off the plant and none used their functional wings to fly away. In controlled laboratory experiments, we found that human breath caused 60–80% of the beetles to drop. The most important component of mammalian herbivore breath in inducing adult beetles and larvae to drop was the combination of heat and humidity. The fact that the mechanism of dropping in response to mammalian breath developed in distinct insect orders and disparate life stages accentuates the importance of the direct influence of mammalian herbivores on plant-dwelling insects. This direct interaction should be given its due place when discussing trophic interactions. PMID:23424674

  17. Effects of Short-Term Exenatide Treatment on Regional Fat Distribution, Glycated Hemoglobin Levels, and Aortic Pulse Wave Velocity of Obese Type 2 Diabetes Mellitus Patients

    PubMed Central

    Park, Keun-Young; Kim, Byung-Joon; Hwang, Won-Min; Kim, Dong-Ho

    2016-01-01

    Background Most type 2 diabetes mellitus patients are obese and have obesity related vascular complications. Exenatide treatment is well known for both decreasing glycated hemoglobin levels and reduction in body weight. So, this study aimed to determine the effects of exenatide on body composition, glycated hemoglobin levels, and vascular stiffness in obese type 2 diabetes mellitus patients. Methods For 1 month, 32 obese type 2 diabetes mellitus patients were administered 5 µg of exenatide twice daily. The dosage was then increased to 10 µg. Patients' height, body weight, glycated hemoglobin levels, lipid profile, pulse wave velocity (PWV), body mass index, fat mass, and muscle mass were measured by using Inbody at baseline and after 3 months of treatment. Results After 3 months of treatment, glycated hemoglobin levels decreased significantly (P=0.007). Triglyceride, total cholesterol, and low density lipoprotein levels decreased, while aspartate aminotransferase and alanine aminotransferase levels were no change. Body weight, and fat mass decreased significantly (P=0.002 and P=0.001, respectively), while interestingly, muscle mass did not decrease (P=0.289). In addition to, Waist-to-hip ratio and aortic PWV decreased significantly (P=0.006 and P=0.001, respectively). Conclusion Effects of short term exenatide use in obese type 2 diabetes mellitus with cardiometabolic high risk patients not only reduced body weight without muscle mass loss, body fat mass, and glycated hemoglobin levels but also improved aortic PWV in accordance with waist to hip ratio. PMID:26676329

  18. Reproducing the Hemoglobin Saturation Profile, a Marker of the Blood Oxygenation Level Dependent (BOLD) fMRI Effect, at the Microscopic Level.

    PubMed

    Hadjistassou, Constantinos; Moyle, Keri; Ventikos, Yiannis

    2016-01-01

    The advent of functional MRI in the mid-1990s has catalyzed progress pertaining to scientific discoveries in neuroscience. With the prospect of elucidating the physiological aspect of the Blood Oxygenation Level Dependent (BOLD) effect we present a computational capillary-tissue system capable of mapping venous hemoglobin saturation- a marker of the BOLD hemodynamic response. Free and facilitated diffusion and convection for hemoglobin and oxygen are considered in the radial and axial directions. Hemoglobin reaction kinetics are governed by the oxyhemoglobin dissociation curve. Brain activation, mimicked by dynamic transitions in cerebral blood velocity (CBv) and oxidative metabolism (CMRO2), is simulated by normalized changes in m = (ΔCBv/CBv)/(ΔCMRO2/CMRO2) of values 2, 3 and 4. Venous hemoglobin saturation profiles and peak oxygenation results, for m = 2, based upon a 50% and a 25% increase in CBv and CMRO2, respectively, lie within physiological limits exhibiting excellent correlation with the BOLD signal, for short-duration stimuli. Our analysis suggests basal CBv and CMRO2 values of 0.6 mm/s and 200 μmol/100g/min. Coupled CBv and CMRO2 responses, for m = 3 and m = 4, overestimate peak hemoglobin saturation, confirming the system's responsiveness to changes in hematocrit, CBv and CMRO2. Finally, factoring in neurovascular effects, we show that no initial dip will be observed unless there is a time delay in the onset of increased CBv relative to CMRO2. PMID:26939128

  19. Reproducing the Hemoglobin Saturation Profile, a Marker of the Blood Oxygenation Level Dependent (BOLD) fMRI Effect, at the Microscopic Level

    PubMed Central

    Hadjistassou, Constantinos; Moyle, Keri; Ventikos, Yiannis

    2016-01-01

    The advent of functional MRI in the mid-1990s has catalyzed progress pertaining to scientific discoveries in neuroscience. With the prospect of elucidating the physiological aspect of the Blood Oxygenation Level Dependent (BOLD) effect we present a computational capillary-tissue system capable of mapping venous hemoglobin saturation— a marker of the BOLD hemodynamic response. Free and facilitated diffusion and convection for hemoglobin and oxygen are considered in the radial and axial directions. Hemoglobin reaction kinetics are governed by the oxyhemoglobin dissociation curve. Brain activation, mimicked by dynamic transitions in cerebral blood velocity (CBv) and oxidative metabolism (CMRO2), is simulated by normalized changes in m = (ΔCBv/CBv)/(ΔCMRO2/CMRO2) of values 2, 3 and 4. Venous hemoglobin saturation profiles and peak oxygenation results, for m = 2, based upon a 50% and a 25% increase in CBv and CMRO2, respectively, lie within physiological limits exhibiting excellent correlation with the BOLD signal, for short-duration stimuli. Our analysis suggests basal CBv and CMRO2 values of 0.6 mm/s and 200 μmol/100g/min. Coupled CBv and CMRO2 responses, for m = 3 and m = 4, overestimate peak hemoglobin saturation, confirming the system’s responsiveness to changes in hematocrit, CBv and CMRO2. Finally, factoring in neurovascular effects, we show that no initial dip will be observed unless there is a time delay in the onset of increased CBv relative to CMRO2. PMID:26939128

  20. The Effects of Ionizing Radiation on Mammalian Cells.

    ERIC Educational Resources Information Center

    Biaglow, John E.

    1981-01-01

    Discusses the effects of radiation on dividing cells and factors influencing these effects; also briefly reviews the radical mechanism for radiation damage. Emphasizes the importance of oxygen in radiation effects. (CS)

  1. Development of a simple assay system for protein-stabilizing efficiency based on hemoglobin protection against denaturation and measurement of the cooperative effect of mixing protein stabilizers.

    PubMed

    Chen, Siyu; Manabe, Yoshiyuki; Minamoto, Naoya; Saiki, Naoka; Fukase, Koichi

    2016-10-01

    We have elucidated the cooperative stabilization of proteins by sugars, amino acids, and other protein-stabilizing agents using a new and simple assay system. Our system determines the protein-stabilizing ability of various compounds by measuring their ability to protect hemoglobin from denaturation. Hemoglobin denaturation was readily measured by quantitative changes in its ultraviolet-visible absorption spectrum. The efficiency of our assay was confirmed using various sugars such as trehalose and sucrose that are known to be good protein stabilizers. We have also found that mixtures of two different types of protein stabilizers resulted in a cooperative stabilizing effect on protein. PMID:27253914

  2. Effects of increased anionic charge in the beta-globin chain on assembly of hemoglobin in vitro.

    PubMed

    Adachi, K; Yamaguchi, T; Pang, J; Surrey, S

    1998-02-15

    Studies on assembly in vitro of alpha-globin chains with recombinant beta16 Gly-->Asp, beta95 Lys-->Glu, beta120 Lys-->Glu and beta16 Gly-->Asp, 120 Lys-->Glu human beta-globin chain variants in addition to human betaA- and betaS-globin chains were performed to evaluate effects of increased anionic charge in the beta chain on hemoglobin assembly using soluble recombinant beta-globin chains expressed in bacteria. A beta112 Cys-->Asp change was also engineered to monitor effects on assembly of increased negative charge at alpha1beta1 interaction sites. Order of tetramer formation in vitro under limiting alpha-globin chain conditions showed Hb betaG16D, K120E = Hb betaK120E = Hb betaK95E > Hb betaG16D > Hb A > Hb S > Hb betaC112D. In addition, beta112 Cys-->Asp chains exist as monomers rather than beta4 tetramers in the absence of alpha chains, and the beta chain in Hb betaC112D tetramers was readily exchanged by addition of betas. These results suggest that affinity between alpha and beta chains is promoted by negatively-charged beta chains up to a maximum of two additional net negative charges and is independent of location on the surface except at the alpha1beta1 interaction site. In addition, our findings show that beta112 Cys on the G helix is critical for facilitating formation of stable alphabeta dimers, which then form functional hemoglobin tetramers, and that beta112 Cys-->Asp inhibits formation of stable alpha1beta1 and beta1beta2 interactions in alpha2beta2 and beta4 tetramers, respectively. PMID:9454775

  3. Heat treatment of human esophageal tissues: Effect on esophageal cancer detection using oxygenated hemoglobin diffuse reflectance ratio

    NASA Astrophysics Data System (ADS)

    Zhao, Q. L.; Guo, Z. Y.; Si, J. L.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Guo, X.; Zhong, H. Q.; Li, L. Q.; Li, X. Y.

    2011-03-01

    The main objective of the present work is to study the influence of heat treatment on the esophageal cancer detection using the diffuse reflectance (DR) spectral intensity ratio R540/R575 of oxygenated hemoglobin (HbO2) absorption bands to distinguish the epithelial tissues of normal human esophagus and moderately differentiated esophageal squamous cell carcinoma (ESCC) at different heat treatment temperature of 20, 37, 42, 50, and 60°C, respectively. The DR spectra for the epithelial tissues of the normal esophagus and ESCC in vitro at different heat-treatment temperature in the wavelength range 400-650 nm were measured with a commercial optical fiber spectrometer. The results indicate that the average DR spectral intensity overall enhancement with concomitant increase of heat-treatment temperature for the epithelial tissues of normal esophagus and ESCC, but the average DR spectral intensity for the normal esophageal epithelial tissues is relatively higher than that for ESCC epithelial tissues at the same heat-treatment temperature. The mean R540/R575 ratios of ESCC epithelial tissues were always lower than that of normal esophageal epithelial tissues at the same temperature, and the mean R540/R575 ratios of the epithelial tissues of the normal esophagus and ESCC were decreasing with the increase of different heat-treatment temperatures. The differences in the mean R540/R575 ratios between the epithelial tissues of normal esophagus and ESCC were 13.33, 13.59, 11.76, and 11.11% at different heat-treatment temperature of 20, 37, 42, and 50°C, respectively. These results also indicate that the DR intensity ratio R540/R575 of the hemoglobin bands is a useful tool for discrimination between the epithelial tissues of normal esophagus and ESCC in the temperature range from room temperature to 50°C, but it was non-effective at 60°C or over 60°C.

  4. NIR Raman spectra of whole human blood: effects of laser-induced and in vitro hemoglobin denaturation.

    PubMed

    Lemler, P; Premasiri, W R; DelMonaco, A; Ziegler, L D

    2014-01-01

    Care must be exercised in the use of Raman spectroscopy for the identification of blood in forensic applications. The Raman spectra of dried whole human blood excited at 785 nm are shown to be exclusively due to oxyhemoglobin or related hemoglobin denaturation products. Raman spectra of whole blood are reported as a function of the incident 785-nm-laser power, and features attributable to heme aggregates are observed for fluences on the order of 10(4) W/cm(2) and signal collection times of 20 s. In particular, the formation of this local-heating-induced heme aggregate product is indicated by a redshifting of several heme porphyrin ring vibrational bands, the appearance of a large broad band at 1,248 cm(-1), the disappearance of the Fe-O2 stretching and bending bands, and the observation of a large overlapping fluorescence band. This denaturation product is also observed in the low-power-excitation Raman spectrum of older ambient-air-exposed bloodstains (2 weeks or more). The Raman spectrum of methemoglobin whole blood excited at 785 nm is reported, and increasing amounts of this natural denaturation product can also be identified in Raman spectra of dried whole blood particularly when the blood has been stored prior to drying. These results indicate that to use 785-nm-excitation Raman spectra as an identification method for forensic applications to maximum effect, incident laser powers need to be kept low to eliminate variable amounts of heme aggregate spectral components contributing to the signal and the natural aging process of hemoglobin denaturation needs to be accounted for. This also suggests that there is a potential opportunity for 785-nm-excitation Raman spectra to be a sensitive indicator of the age of dried bloodstains at crime scenes. PMID:24162820

  5. NIR Raman spectra of whole human blood: Effects of laser-induced and in vitro hemoglobin denaturation

    PubMed Central

    Lemler, P.; Premasiri, W. R.; DelMonaco, A.; Ziegler, L. D.

    2013-01-01

    Care must be exercised in the use of Raman spectroscopy for the identification of blood in forensic applications. The 785 nm excited Raman spectra of dried whole human blood are shown to be exclusively due to oxyhemoglobin (oxyHb) or related hemoglobin denaturation products. Raman spectra of whole blood are reported as a function of incident 785 nm laser power and features attributable to heme aggregates are observed for fluences on the order of 104 W/cm2 and 20 sec signal collection times. In particular, the formation of this local heating induced heme aggregate product is indicated by a red-shifting of several heme porphyrin ring vibrational bands, the appearance of a large broad band at 1248 cm−1, the disappearance of the Fe-O2 stretching and bending bands, and the observation of a large overlapping fluorescence. This denaturation product is also observed in the low power excited Raman spectrum of older ambient air exposed bloodstains (≥ two weeks). The 785 nm excited Raman spectrum of methemoglobin whole blood is reported and increasing amounts of this natural denaturation product can also be identified in dried whole blood Raman spectra particularly when the blood has been stored prior to drying. These results indicate that to use 785 nm excited Raman spectra as an identification methodology for forensic applications to maximum effectiveness, incident laser powers need to be kept low to eliminate variable amounts of heme aggregate spectral components contributing to the signal and the natural aging process of hemoglobin denaturation needs to be accounted for. This also suggests that there is a potential opportunity for 785 nm excited Raman to be a sensitive indicator of dried bloodstain age at crime scenes. PMID:24162820

  6. Effect of radiofrequency radiation in cultured mammalian cells: A review.

    PubMed

    Manna, Debashri; Ghosh, Rita

    2016-01-01

    The use of mobile phone related technologies will continue to increase in the foreseeable future worldwide. This has drawn attention to the probable interaction of radiofrequency electromagnetic radiation with different biological targets. Studies have been conducted on various organisms to evaluate the alleged ill-effect on health. We have therefore attempted to review those work limited to in vitro cultured cells where irradiation conditions were well controlled. Different investigators have studied varied endpoints like DNA damage, cell cycle arrest, reactive oxygen species (ROS) formation, cellular morphology and viability to weigh the genotoxic effect of such radiation by utilizing different frequencies and dose rates under various irradiation conditions that include continuous or pulsed exposures and also amplitude- or frequency-modulated waves. Cells adapt to change in their intra and extracellular environment from different chemical and physical stimuli through organized alterations in gene or protein expression that result in the induction of stress responses. Many studies have focused on such effects for risk estimations. Though the effects of microwave radiation on cells are often not pronounced, some investigators have therefore combined radiofrequency radiation with other physical or chemical agents to observe whether the effects of such agents were augmented or not. Such reports in cultured cellular systems have also included in this review. The findings from different workers have revealed that, effects were dependent on cell type and the endpoint selection. However, contradictory findings were also observed in same cell types with same assay, in such cases the specific absorption rate (SAR) values were significant. PMID:27053138

  7. Collateral effects of antibiotics on mammalian gut microbiomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibiotics are an essential component of the modern lifestyle. They improve our lives by treating disease, preventing disease, and in the case of agricultural animals by improving feed efficiency. However, antibiotic usage is not without collateral effects. The development and spread of antibiot...

  8. Study of radiation effects on mammalian cells in vitro

    NASA Technical Reports Server (NTRS)

    Sinclair, W. K.

    1968-01-01

    Radiation effect on single cells and cell populations of Chinese hamster lung tissue is studied in vitro. The rate and position as the cell progresses through the generation cycle shows division delay, changes in some biochemical processes in the cell, chromosomal changes, colony size changes, and loss of reproductive capacity.

  9. Dose-response effects of fluoride in mammalian species

    SciTech Connect

    Smith, F.A.

    1983-01-01

    A number of deleterious effects have been attributed to the ingestion of fluoride, sometimes for good reason and sometimes with no good basis. Literature describing some of these effects has been reviewed and threshold doses for the effects are suggested. Fluoride absorbed into the systemic circulation is rapidly removed, in part by storage in the skeletal system and in part by excretion in the urine. Skeletal storage evident in x-ray films as increased density to the x-rays is seen in about 10% of persons who have used drinking water containing 8 mg F per liter (8 ppm) for long periods of time. No deleterious effects are seen at this level of F storage in the bone. In the kidney the renal status of a population using water containing 8 mg F was not different from that of a population in an area where there was 0.4 ppm F in the water supply. Decreased renal function has been reported in persons using water supplies containing 10 ppm F. In human subjects growth is unaffected by prolonged use of water supplies containing up to 6-8 mg F/l (6-8 ppm). Growth in most animal species is not affected at concentrations of 100 mg F/kg diet (100 ppm). However, cattle undergoing cycle pregnancy, gestation and lactation appear to be more sensitive and growth is adversely affected at more than 40 ppm F in the diet. For cardiovascular effects, prolonged use of a water supply containing 2.5 mg F/l (2.5 ppm) was found not to increase the incidence of CVD.

  10. [EFFECTS OF DIFFERENT CLASSES OF PLANT HORMONES ON MAMMALIAN CELLS].

    PubMed

    Vildanova, M S; Smirnova, E A

    2016-01-01

    Plant hormones are signal molecules of different chemical structure, secreted by plant cells and acting at low concentrations as regulators of plant growth and differentiation. Certain plant hormones are similar to animal hormones or can be produced by animal cells. A number of studies show that the effect of biologically active components of plant origin including plant/phytohormones is much wider than was previously thought, but so far there are no objective criteria for assessing the influence of phytohormones on the physiological state of animal cells. Presented in the survey data show that plant hormones, which have different effects on plant growth and development (jasmonic, abscisic and gibberellic acids), are not neutral to the cells of animal origin, and animal cells response to them may be either positive or negative. PMID:27220246

  11. Non-cell-autonomous effects of vector-expressed regulatory RNAs in mammalian heart cells.

    PubMed

    Kizana, E; Cingolani, E; Marbán, E

    2009-09-01

    In mammalian cells, small regulatory RNA molecules are able to modulate gene expression in a cell-autonomous manner. In contrast, this mechanism of gene regulation can occur systemically in plants and nematodes. The existence of similar cell-to-cell transmission in mammalian cells has been explored, but generalizibilty and mechanistic insights have remained elusive. Here, we show that small regulatory RNA molecules are capable of a non-cell-autonomous effect between primary cardiac myocytes through a gap-junction-dependent mechanism. Co-culture experiments showed that both Dicer-processed small-interfering RNAs (siRNAs) and Drosha-processed microRNAs (miRNAs) were capable of target gene knockdown and physiological effects in a non-cell-autonomous manner. Target gene siRNA molecules were detected in recipient cells, indicating transfer of the primary effector molecule. All of these effects were abrogated by dominant-negative molecular suppression of gap junction function. Our results show that both siRNAs and miRNAs are capable of a non-cell-autonomous effect between mammalian cells through gap junctions. The recognition of this biological process raises the novel therapeutic prospect of a bystander effect after gene transfer to tissues bearing gap junctions and for cell engineering with a view to creating regulatory RNA donor cells that exert their influence throughout a syncytium. PMID:19516277

  12. An analysis of particle track effects on solid mammalian tissues

    NASA Technical Reports Server (NTRS)

    Todd, P.; Clarkson, T. W. (Principal Investigator)

    1992-01-01

    Relative biological effectiveness (RBE) and quality factor (Q) at extreme values of linear energy transfer (LET) have been determined on the basis of experiments with single-cell systems and specific tissue responses. In typical single-cell systems, each heavy particle (Ar or Fe) passes through a single cell or no cell. In experiments on animal tissues, however, each heavy particle passes through several cells, and the LET can exceed 200 keV micrometers-1 in every cell. In most laboratory animal tissue systems, however, only a small portion of the hit cells are capable of expressing the end-point being measured, such as cell killing, mutation or carcinogenesis. The following question was therefore addressed: do RBEs and Q factors derived from single-cell experiments properly account for the damage at high LET when multiple cells are hit by HZE tracks? A review is offered in which measured radiation effects and known tissue properties are combined to estimate on the one hand, the number of cells at risk, p3n, per track, where n is the number of cells per track based on tissue and organ geometry, and p3 is the probability that a cell in the track is capable of expressing the experimental end-point. On the other hand, the tissue and single-cell responses are compared by determining the ratio RBE in tissue/RBE in corresponding single cells. Experimental data from the literature indicate that tissue RBEs at very high LET (Fe and Ar ions) are higher than corresponding single-cell RBEs, especially in tissues in which p3n is high.

  13. An analysis of particle track effects on solid mammalian tissues.

    PubMed

    Todd, P

    1992-01-01

    Relative biological effectiveness (RBE) and quality factor (Q) at extreme values of linear energy transfer (LET) have been determined on the basis of experiments with single-cell systems and specific tissue responses. In typical single-cell systems, each heavy particle (Ar or Fe) passes through a single cell or no cell. In experiments on animal tissues, however, each heavy particle passes through several cells, and the LET can exceed 200 keV micrometers-1 in every cell. In most laboratory animal tissue systems, however, only a small portion of the hit cells are capable of expressing the end-point being measured, such as cell killing, mutation or carcinogenesis. The following question was therefore addressed: do RBEs and Q factors derived from single-cell experiments properly account for the damage at high LET when multiple cells are hit by HZE tracks? A review is offered in which measured radiation effects and known tissue properties are combined to estimate on the one hand, the number of cells at risk, p3n, per track, where n is the number of cells per track based on tissue and organ geometry, and p3 is the probability that a cell in the track is capable of expressing the experimental end-point. On the other hand, the tissue and single-cell responses are compared by determining the ratio RBE in tissue/RBE in corresponding single cells. Experimental data from the literature indicate that tissue RBEs at very high LET (Fe and Ar ions) are higher than corresponding single-cell RBEs, especially in tissues in which p3n is high. PMID:11681323

  14. Effect of Gravity on the Mammalian Cell Deformation

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y.; Gonda, Steven

    1995-01-01

    The effect of human cell immersed in culture liquid under a micro-gravity environment has been investigated. The study is based on the numerical simulation of the configuration of human cell affected by the time dependent variation of gravity acceleration ranging from 10(exp -3) to 2 g(sub o) (g(sub o) = 9.81 m/s(exp 2)) in 15 seconds. Both the free floating cell and the cell contacted to the upper and lower inclined walls imposed by the time-dependent reduced gravity acceleration are considered in this study. The results show that the cell configuration changes from spherical to horizontally elongated ellipsoid for both the free floating cell and the cell sitting on the lower inclined wall while the cell configuration varies from spherical to vertically elongated ellipsoid for the cell hanging to the upper inclined wall when the gravity acceleration increases. Experimental observations, carried out of human cells exposed to the variation of gravity levels, show that the results of experimental observations agree exactly with the theoretical model computation described in this paper. These results sre significant for humans exposed to the micro-gravity environment.

  15. The Hemoglobin E Thalassemias

    PubMed Central

    Fucharoen, Suthat; Weatherall, David J.

    2012-01-01

    Hemoglobin E (HbE) is an extremely common structural hemoglobin variant that occurs at high frequencies throughout many Asian countries. It is a β-hemoglobin variant, which is produced at a slightly reduced rate and hence has the phenotype of a mild form of β thalassemia. Its interactions with different forms of α thalassemia result in a wide variety of clinical disorders, whereas its coinheritance with β thalassemia, a condition called hemoglobin E β thalassemia, is by far the most common severe form of β thalassemia in Asia and, globally, comprises approximately 50% of the clinically severe β-thalassemia disorders. PMID:22908199

  16. Contrasting effects of different mammalian herbivores on sagebrush plant communities.

    PubMed

    Veblen, Kari E; Nehring, Kyle C; McGlone, Christopher M; Ritchie, Mark E

    2015-01-01

    Herbivory by both grazing and browsing ungulates shapes the structure and functioning of terrestrial ecosystems worldwide, and both types of herbivory have been implicated in major ecosystem state changes. Despite the ecological consequences of differences in diets and feeding habits among herbivores, studies that experimentally distinguish effects of grazing from spatially co-occurring, but temporally segregated browsing are extremely rare. Here we use a set of long-term exclosures in northern Utah, USA, to determine how domestic grazers vs. wild ungulate herbivores (including browsers and mixed feeders) affect sagebrush-dominated plant communities that historically covered ~62 million ha in North America. We sampled plant community properties and found that after 22 years grazing and browsing elicited perceptible changes in overall plant community composition and distinct responses by individual plant species. In the woody layer of the plant community, release from winter and spring wild ungulate herbivory increased densities of larger Wyoming big sagebrush (Artemisia tridentata, ssp. wyomingensis) at the expense of small sagebrush, while disturbance associated with either cattle or wild ungulate activity alone was sufficient to increase bare ground and reduce cover of biological soil crusts. The perennial bunchgrass, bottlebrush squirretail (Elymus elymoides), responded positively to release from summer cattle grazing, and in turn appeared to competitively suppress another more grazing tolerant perennial grass, Sandberg's blue grass (Poa secunda). Grazing by domestic cattle also was associated with increased non-native species biomass. Together, these results illustrate that ungulate herbivory has not caused sagebrush plant communities to undergo dramatic state shifts; however clear, herbivore-driven shifts are evident. In a dry, perennial-dominated system where plant community changes can occur very slowly, our results provide insights into potential long

  17. Contrasting Effects of Different Mammalian Herbivores on Sagebrush Plant Communities

    PubMed Central

    Veblen, Kari E.; Nehring, Kyle C.; McGlone, Christopher M.; Ritchie, Mark E.

    2015-01-01

    Herbivory by both grazing and browsing ungulates shapes the structure and functioning of terrestrial ecosystems worldwide, and both types of herbivory have been implicated in major ecosystem state changes. Despite the ecological consequences of differences in diets and feeding habits among herbivores, studies that experimentally distinguish effects of grazing from spatially co-occurring, but temporally segregated browsing are extremely rare. Here we use a set of long-term exclosures in northern Utah, USA, to determine how domestic grazers vs. wild ungulate herbivores (including browsers and mixed feeders) affect sagebrush-dominated plant communities that historically covered ~62 million ha in North America. We sampled plant community properties and found that after 22 years grazing and browsing elicited perceptible changes in overall plant community composition and distinct responses by individual plant species. In the woody layer of the plant community, release from winter and spring wild ungulate herbivory increased densities of larger Wyoming big sagebrush (Artemisia tridentata, ssp. wyomingensis) at the expense of small sagebrush, while disturbance associated with either cattle or wild ungulate activity alone was sufficient to increase bare ground and reduce cover of biological soil crusts. The perennial bunchgrass, bottlebrush squirretail (Elymus elymoides), responded positively to release from summer cattle grazing, and in turn appeared to competitively suppress another more grazing tolerant perennial grass, Sandberg’s blue grass (Poa secunda). Grazing by domestic cattle also was associated with increased non-native species biomass. Together, these results illustrate that ungulate herbivory has not caused sagebrush plant communities to undergo dramatic state shifts; however clear, herbivore-driven shifts are evident. In a dry, perennial-dominated system where plant community changes can occur very slowly, our results provide insights into potential long

  18. Hemoglobin patterns in American Indians.

    PubMed

    POLLITZER, W S; CHERNOFF, A I; HORTON, L L; FROEHLICH, M

    1959-01-23

    Two populations of North Carolina have been analyzed for hemoglobin patterns by paper electrophoresis. Of 534 Cherokee Indians, both mixed and full bloods, all showed normal hemoglobin. Lumbee Indians of less certain ethnic status had 1.7 percent of hemoglobin S, an equal amount of hemoglobin C, and one possible hemoglobin D trait among 1332 bloods studied. PMID:13624709

  19. The Effects of Ginger on Fasting Blood Sugar, Hemoglobin A1c, Apolipoprotein B, Apolipoprotein A-I and Malondialdehyde in Type 2 Diabetic Patients

    PubMed Central

    Khandouzi, Nafiseh; Shidfar, Farzad; Rajab, Asadollah; Rahideh, Tayebeh; Hosseini, Payam; Mir Taheri, Mohsen

    2015-01-01

    Diabetes mellitus is the most common endocrine disorder, causes many complications such as micro- and macro-vascular diseases. Anti-diabetic, hypolipidemic and anti-oxidative properties of ginger have been noticed in several researches. The present study was conducted to investigate the effects of ginger on fasting blood sugar, Hemoglobin A1c, apolipoprotein B, apolipoprotein A-I, and malondialdehyde in type 2 diabetic patients. In a randomized, double-blind, placebo-controlled, clinical trial, a total of 41 type 2 diabetic patients randomly were assigned to ginger or placebo groups (22 in ginger group and 19 in control group), received 2 g/day of ginger powder supplement or lactose as placebo for 12 weeks. The serum concentrations of fasting blood sugar, Hemoglobin A1c, apolipoprotein B, apolipoprotein A-I and malondialdehyde were analyzed before and after the intervention. Ginger supplementation significantly reduced the levels of fasting blood sugar, hemoglobin A1c, apolipoprotein B, apolipoprotein B/apolipoprotein A-I and malondialdehyde in ginger group in comparison to baseline, as well as control group, while it increased the level of apolipoprotein A-I (p<0.05). It seems that oral administration of ginger powder supplement can improves fasting blood sugar, hemoglobin A1c, apolipoprotein B, apolipoprotein A-I, apolipoprotein B/apolipoprotein A-I and malondialdehyde in type 2 diabetic patients. So it may have a role in alleviating the risk of some chronic complications of diabetes. PMID:25561919

  20. Effect of uncouplers on radiosensitivity and mutagenicity in x-irradiated mammalian cells.

    PubMed Central

    Laval, F

    1980-01-01

    The number of x-irradiated mammalian cells surviving is markedly increased when the cells are incubated with an uncoupler of oxidative phosphorylation prior to or immediately after irradiation. This increase is greater in plateau-phase cells than in exponentially growing cells. The increase in survival is related to the potency of the uncouplers, which do not modify the effective x-ray dose. The influence of uncouplers on survival is related to an increase of repair and semiconservative DNA synthesis. The mutation frequency (8-azaguanine-resistant mutants) is significantly higher in irradiated cells treated with uncouplers than in untreated cells. These results suggest the existence of an error-prone repair process in mammalian cells. PMID:6930660

  1. Effect of uncouplers on radiosensitivity and mutagenicity in x-irradiated mammalian cells

    SciTech Connect

    Laval, F.

    1980-05-01

    The number of x-irradiated mammalian cells surviving is markedly increased when the cells are incubated with an uncoupler of oxidative phosphorylation prior to or immediately after irradiation. This increase is greater in plateau-phase cells than in exponentially growing cells. The increase in survival is related to the potency of the uncouplers, which do not modify the effective x-ray dose. The influence of uncouplers on survival is related to an increase of repair and semiconservative DNA synthesis. The mutation frequency (8-azaguanine-resistant mutants) is significantly higher in irradiated cells treated with uncouplers than in untreated cells. These results suggest the existence of an error-prone repair process in mammalian cells.

  2. The Effects of Dietary Iron and Capsaicin on Hemoglobin, Blood Glucose, Insulin Tolerance, Cholesterol, and Triglycerides, in Healthy and Diabetic Wistar Rats

    PubMed Central

    Villalpando-Hernández, Salvador; Ríos-Silva, Mónica; Díaz-Reval, María I.; Cruzblanca, Humberto; Mancilla, Evelyn

    2016-01-01

    Objective Our aim was to assess the effects of dietary iron, and the compound capsaicin, on hemoglobin as well as metabolic indicators including blood glucose, cholesterol, triglycerides, insulin, and glucose tolerance. Materials and Methods Our animal model was the Wistar rat, fed a chow diet, with or without experimentally induced diabetes. Diabetic males were fed control, low, or high-iron diets, the latter, with or without capsaicin. Healthy rats were fed identical diets, but without the capsaicin supplement. We then measured the parameters listed above, using the Student t-test and ANOVA, to compare groups. Results Healthy rats fed a low-iron diet exhibited significantly reduced total cholesterol and triglyceride levels, compared with rats fed a control diet. Significantly reduced blood lipid was also provoked by low dietary iron in diabetic rats, compared with those fed a control diet. Insulin, and glucose tolerance was only improved in healthy rats fed the low-iron diet. Significant increases in total cholesterol were found in diabetic rats fed a high-iron diet, compared with healthy rats fed the same diet, although no statistical differences were found for triglycerides. Hemoglobin levels, which were not statistically different in diabetic versus healthy rats fed the high-iron diet, fell when capsaicin was added. Capsaicin also provoked a fall in the level of cholesterol and triglycerides in diabetic animals, versus diabetics fed with the high iron diet alone. In conclusion, low levels of dietary iron reduced levels of serum triglycerides, hemoglobin, and cholesterol, and significantly improved insulin, and glucose tolerance in healthy rats. In contrast, a high-iron diet increased cholesterol significantly, with no significant changes to triglyceride concentrations. The addition of capsaicin to the high-iron diet (for diabetic rats) further reduced levels of hemoglobin, cholesterol, and triglycerides. These results suggest that capsaicin, may be suitable

  3. Denaturant effects on HbGp hemoglobin as monitored by 8-anilino-1-naphtalene-sulfonic acid (ANS) probe.

    PubMed

    Barros, Ana E B; Carvalho, Francisco A O; Alves, Fernanda R; Carvalho, José W P; Tabak, Marcel

    2015-03-01

    Glossoscolex paulistus extracellular hemoglobin (HbGp) stability has been monitored in the presence of denaturant agents. 8-Anilino-1-naphtalene-sulfonic acid (ANS) was used, and spectroscopic and hydrodynamic studies were developed. Dodecyltrimethylammonium bromide (DTAB) induces an increase in ANS fluorescence emission intensity, with maximum emission wavelength blue-shifted from 517 to 493 nm. Two transitions are noticed, at 2.50 and 9.50 mmol/L of DTAB, assigned to ANS interaction with pre-micellar aggregates and micelles, respectively. In oxy-HbGp, ANS binds to protein sites less exposed to solvent, as compared to DTAB micelles. In DTAB-HbGp-ANS ternary system, at pH 7.0, protein aggregation, oligomeric dissociation and unfolding were observed, while, at pH 5.0, aggregation is absent. DTAB induced unfolding process displays two transitions, one due to oligomeric dissociation and the second one, probably, to the denaturation of dissociated subunits. Moreover, guanidine hydrochloride and urea concentrations above 1.5 and 4.0 mol/L, respectively, induce the full HbGp denaturation, with reduction of ANS-bound oxy-HbGp hydrophobic patches, as noticed by fluorescence quenching up to 1.0 and 5.0 mol/L of denaturants. Our results show clearly the differences in probe sensitivity to the surfactant, in the presence and absence of protein, and new insights into the denaturant effects on HbGp unfolding. PMID:25546245

  4. Effects of Global Warming on Ancient Mammalian Communities and Their Environments

    PubMed Central

    DeSantis, Larisa R. G.; Feranec, Robert S.; MacFadden, Bruce J.

    2009-01-01

    Background Current global warming affects the composition and dynamics of mammalian communities and can increase extinction risk; however, long-term effects of warming on mammals are less understood. Dietary reconstructions inferred from stable isotopes of fossil herbivorous mammalian tooth enamel document environmental and climatic changes in ancient ecosystems, including C3/C4 transitions and relative seasonality. Methodology/Principal Findings Here, we use stable carbon and oxygen isotopes preserved in fossil teeth to document the magnitude of mammalian dietary shifts and ancient floral change during geologically documented glacial and interglacial periods during the Pliocene (∼1.9 million years ago) and Pleistocene (∼1.3 million years ago) in Florida. Stable isotope data demonstrate increased aridity, increased C4 grass consumption, inter-faunal dietary partitioning, increased isotopic niche breadth of mixed feeders, niche partitioning of phylogenetically similar taxa, and differences in relative seasonality with warming. Conclusion/Significance Our data show that global warming resulted in dramatic vegetation and dietary changes even at lower latitudes (∼28°N). Our results also question the use of models that predict the long term decline and extinction of species based on the assumption that niches are conserved over time. These findings have immediate relevance to clarifying possible biotic responses to current global warming in modern ecosystems. PMID:19492043

  5. Mutagenic effect of a keV range N + beam on mammalian cells

    NASA Astrophysics Data System (ADS)

    Feng, Huiyun; Wu, Lijun; Yu, Lixiang; Han, Wei; Liu, Xuelan; Yu, Zengliang

    2005-07-01

    The radiobiological effects of a keV (5-20 keV) range nitrogen ion (N +) beam on mammalian cells were studied, particularly with regard to the induction of mutation in the cell genome. The experiment demonstrated that the 20 keV N + beam, which resulted in cell death to a certain extent, induced a 2-3 fold increase in the mutation rates at the CD59 gene locus of the mammalian A L cells as compared to the control. Within certain fluence ranges (0-6 × 10 14 N +/cm 2), the cell survival displayed a down-up-down pattern which is similar to the phenomenon known as 'hyper-radiosensitivity' manifested under low-dose irradiation; the CD59 mutation rate firstly showed a gradual rise up to a 3-fold increment above the background level as the ion fluence went up to 4 × 10 14 N +/cm 2, after this peak point however, a downtrend appeared though the ion fluence increased further. It was also observed that the fraction of CD59 mutation bears no proportional relation to ion energy in further experiments of mutation induction by N + beams with the incident energies of 5, 10, 15 and 20 keV at the same fluence of 3 × 10 14 N +/cm 2. Analyses of the deletion patterns of chromosome 11 in CD59- mutants induced by 5-20 keV N + beams showed that these ions did not result in large-size chromosome deletions in this mammalian cell system. A preliminary discussion, suggesting that the mutagenic effect of such low-energy ion influx on mammalian cells could result from multiple processes involving direct collision of particles with cellular DNA, and cascade atomic and molecular reactions due to plentiful primary and secondary particles, was also presented. The study provided the first glimpse into the roles low-energy ions may play in inducing mutagenesis in mammalian cells, and results will be of much value in helping people to understand the contribution of low-energy ions to radiological effects of various ionising radiations.

  6. Effects of egg and vitamin A supplementation on hemoglobin, retinol status and physical growth levels of primary and middle school students in Chongqing, China.

    PubMed

    Cao, Jiaoyang; Wei, Xiaoping; Tang, Xianqiang; Jiang, Hongpeng; Fan, Zhen; Yu, Qin; Chen, Jie; Liu, Youxue; Li, Tingyu

    2013-01-01

    Lack of protein and vitamin A influences the growth of student in impoverished mountain areas. The aim of the study was to assess the effects of egg and vitamin A supplementation on hemoglobin, serum retinol and anthropometric indices of 10-18 years old students of a low socioeconomic status. A total number of 288 students from four boarding schools were randomly selected by using cluster sampling method in Chongqing, and they were assigned into supplement group and control group non-randomly. Students in supplement group received a single 200,000 international units vitamin A and 1 egg/day (including weekends) for 6 months. The control group did not receive any supplementation. We measured hemoglobin, serum retinol and height and weight at baseline and after supplementation. The supplementation increased the mean hemoglobin concentration by 7.13 g/L compared with 1.38 g/L in control group (p<0.001), the mean serum retinol concentration by 0.31 μmol/L compared with 0.09 μmol/L in the control group (p=0.005), the mean height-for-age z score by 0.05 compared with 0.03 in the control group (p=0.319), the mean weight-for-age z score by 0.05 compared with -0.12 in the control group (p<0.001). Our results revealed that egg and vitamin A supplementation is an effective, convenient, and practical method to improve the levels of hemoglobin, serum retinol and prevent the deterioration of growth in terms of weight for primary and middle school students from outlying poverty-stricken areas. Our intervention did not have a beneficial effect on linear growth. PMID:23635364

  7. O2-filled swimbladder employs monocarboxylate transporters for the generation of O2 by lactate-induced root effect hemoglobin.

    PubMed

    Umezawa, Takahiro; Kato, Akira; Ogoshi, Maho; Ookata, Kayoko; Munakata, Keijiro; Yamamoto, Yoko; Islam, Zinia; Doi, Hiroyuki; Romero, Michael F; Hirose, Shigehisa

    2012-01-01

    The swimbladder volume is regulated by O(2) transfer between the luminal space and the blood In the swimbladder, lactic acid generation by anaerobic glycolysis in the gas gland epithelial cells and its recycling through the rete mirabile bundles of countercurrent capillaries are essential for local blood acidification and oxygen liberation from hemoglobin by the "Root effect." While O(2) generation is critical for fish flotation, the molecular mechanism of the secretion and recycling of lactic acid in this critical process is not clear. To clarify molecules that are involved in the blood acidification and visualize the route of lactic acid movement, we analyzed the expression of 17 members of the H(+)/monocarboxylate transporter (MCT) family in the fugu genome and found that only MCT1b and MCT4b are highly expressed in the fugu swimbladder. Electrophysiological analyses demonstrated that MCT1b is a high-affinity lactate transporter whereas MCT4b is a low-affinity/high-conductance lactate transporter. Immunohistochemistry demonstrated that (i) MCT4b expresses in gas gland cells together with the glycolytic enzyme GAPDH at high level and mediate lactic acid secretion by gas gland cells, and (ii) MCT1b expresses in arterial, but not venous, capillary endothelial cells in rete mirabile and mediates recycling of lactic acid in the rete mirabile by solute-specific transcellular transport. These results clarified the mechanism of the blood acidification in the swimbladder by spatially organized two lactic acid transporters MCT4b and MCT1b. PMID:22496829

  8. Phylogeny of Echinoderm Hemoglobins

    PubMed Central

    Christensen, Ana B.; Herman, Joseph L.; Elphick, Maurice R.; Kober, Kord M.; Janies, Daniel; Linchangco, Gregorio; Semmens, Dean C.; Bailly, Xavier; Vinogradov, Serge N.; Hoogewijs, David

    2015-01-01

    Background Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/β-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms. Results The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates. Conclusion The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and

  9. Is hemoglobin A1c level effective in predicting the prognosis of Fournier gangrene?

    PubMed Central

    Sen, Haluk; Bayrak, Omer; Erturhan, Sakip; Borazan, Ersin; Koc, Mustafa Nihat

    2016-01-01

    Objectives: To evaluate the effect of immune failure and/or diabetes mellitus (DM) association on the mortality and morbidity of the Fournier's Gangrene (FG), and interrelatedly, the usability of HbA1c level in the prediction of prognosis. Materials and Methods: The data of 38 patients with the diagnosis of FG were investigated retrospectively. The patients were divided into two groups as patients with DM (Group 1, n = 18) and non-diabetics (Group 2, n = 20). The patients in group 1 were also divided into two subgroups as patients with HbA1c value ≥7 (Group 1a) and HbA1c value <7 (Group 1b). Results: The mean age of all 38 male patients was 66.3 ± 6.4 years. The initial symptoms were scrotal rash and swelling (n = 20, 52.6%), high fever (>38°C) (n = 22, 57.8%), purulent discharge from genital or perineal areas (n = 13, 34.2%), skin bruises (n = 11, 28.9%) and general state disorder in five patients that were admitted from day care center (13.1%). DM, as the most often comorbid disease, was detected in 18 patients (47.3%). Six patients (15.7%) were deceased during the follow-up period. Conclusion: In the present study, the researchers determined that diabetic patients with HbA1c level of 7 or higher had worse prognosis, and increased mortality. PMID:27453658

  10. Cytotoxic Effects of Tropodithietic Acid on Mammalian Clonal Cell Lines of Neuronal and Glial Origin

    PubMed Central

    Wichmann, Heidi; Vocke, Farina; Brinkhoff, Thorsten; Simon, Meinhard; Richter-Landsberg, Christiane

    2015-01-01

    The marine metabolite tropodithietic acid (TDA), produced by several Roseobacter clade bacteria, is known for its broad antimicrobial activity. TDA is of interest not only as a probiotic in aquaculture, but also because it might be of use as an antibacterial agent in non-marine or non-aquatic environments, and thus the potentially cytotoxic influences on eukaryotic cells need to be evaluated. The present study was undertaken to investigate its effects on cells of the mammalian nervous system, i.e., neuronal N2a cells and OLN-93 cells as model systems for nerve cells and glia. The data show that in both cell lines TDA exerted morphological changes and cytotoxic effects at a concentration of 0.3–0.5 µg/mL (1.4–2.4 µM). Furthermore, TDA caused a breakdown of the mitochondrial membrane potential, the activation of extracellular signal-regulated kinases ERK1/2, and the induction of the small heat shock protein HSP32/HO-1, which is considered as a sensor of oxidative stress. The cytotoxic effects were accompanied by an increase in intracellular Ca2+-levels, the disturbance of the microtubule network, and the reorganization of the microfilament system. Hence, mammalian cells are a sensitive target for the action of TDA and react by the activation of a stress response resulting in cell death. PMID:26633426

  11. Cytotoxic Effects of Tropodithietic Acid on Mammalian Clonal Cell Lines of Neuronal and Glial Origin.

    PubMed

    Wichmann, Heidi; Vocke, Farina; Brinkhoff, Thorsten; Simon, Meinhard; Richter-Landsberg, Christiane

    2015-12-01

    The marine metabolite tropodithietic acid (TDA), produced by several Roseobacter clade bacteria, is known for its broad antimicrobial activity. TDA is of interest not only as a probiotic in aquaculture, but also because it might be of use as an antibacterial agent in non-marine or non-aquatic environments, and thus the potentially cytotoxic influences on eukaryotic cells need to be evaluated. The present study was undertaken to investigate its effects on cells of the mammalian nervous system, i.e., neuronal N2a cells and OLN-93 cells as model systems for nerve cells and glia. The data show that in both cell lines TDA exerted morphological changes and cytotoxic effects at a concentration of 0.3-0.5 µg/mL (1.4-2.4 µM). Furthermore, TDA caused a breakdown of the mitochondrial membrane potential, the activation of extracellular signal-regulated kinases ERK1/2, and the induction of the small heat shock protein HSP32/HO-1, which is considered as a sensor of oxidative stress. The cytotoxic effects were accompanied by an increase in intracellular Ca(2+)-levels, the disturbance of the microtubule network, and the reorganization of the microfilament system. Hence, mammalian cells are a sensitive target for the action of TDA and react by the activation of a stress response resulting in cell death. PMID:26633426

  12. Complexes of DNA with cationic peptides: conditions of formation and factors effecting internalization by mammalian cells.

    PubMed

    Dizhe, E B; Ignatovich, I A; Burov, S V; Pohvoscheva, A V; Akifiev, B N; Efremov, A M; Perevozchikov, A P; Orlov, S V

    2006-12-01

    This work was devoted to the study of conditions of the formation of DNA/K8 complex and analysis of factors effecting the entry of DNA/K8 complex into mammalian cells in comparison with DNA complexes with arginine-rich fragment (47-57) of human immunodeficiency virus (type 1) transcription factor Tat (Tat peptide). The stoichiometry of positively charged DNA/K8 complexes has been studied for the first time. Non-cooperative character of DNA-K8 interaction was revealed. It has been shown that along with the positive charge of such complexes, the presence of an excess of free K8 peptide in the culture medium is a necessary condition for maximal efficiency of cell transfection with DNA/K8 complexes. A stimulatory effect of free K8 peptide on the efficiency of mammalian cell transfection by DNA/K8 complexes is likely to be mediated by the interactions of cationic peptide K8 with negatively charged proteoglycans on the cell surface, which leads to protection of DNA/K8 complexes from disruption by cellular heparan sulfates. However, the protective role of free cationic peptides depends not only on their positive charge, but also on the primary structure of the peptide. In contrast with the results obtained for DNA complexes with molecular conjugates based on poly-L-lysine, the aggregation of DNA/K8 complexes leads to a significant increase in the expression of transferred gene. PMID:17223788

  13. An insect-tapeworm model as a proxy for anthelminthic effects in the mammalian host.

    PubMed

    Woolsey, Ian David; Fredensborg, Brian L; Jensen, Per M; Kapel, Christian M O; Meyling, Nicolai V

    2015-07-01

    Invertebrate models provide several important advantages over their vertebrate counterparts including fewer legislative stipulations and faster, more cost-effective experimental procedures. Furthermore, various similarities between insect and mammalian systems have been highlighted. To obtain maximum use of invertebrate models in pharmacology, their fidelity as analogues of vertebrate systems requires verification. We utilised a flour beetle (Tenebrio molitor)-tapeworm (Hymenolepis diminuta) model to evaluate the efficacy of known anthelmintic compounds, praziquantel, mebendazole and levamisole against H. diminuta cysticercoid larvae in vitro. Inhibition of cysticercoid activity during the excystation procedure was used as a proxy for worm removal. The effects of the three compounds mirrored their relative efficacy in treatment against adult worms in mammalian systems; however, further study is required to determine the fidelity of this model in relation to dose administered. The model precludes comparison of consecutive daily administration of pharmaceuticals in mammals due to cysticercoids not surviving outside of the host for multiple days. Treatment of beetles in vivo, followed by excystation of cysticercoids postdissection could potentially allow for such comparisons. Further model validation will include analysis of pharmaceutical efficacy in varying H. diminuta isolates and pharmaceutical dilution in solvents other than water. Notwithstanding, our results demonstrate that this model holds promise as a method to efficiently identify promising new cestocidal candidates. PMID:25895063

  14. Contribution of the gamma-carboxyl group of Glu-43(beta) to the alkaline Bohr effect of hemoglobin A.

    PubMed

    Rao, M J; Acharya, A S

    1992-08-18

    Glu-43(beta) of hemoglobin A exhibits a high degree of chemical reactivity around neutral pH for amidation with nucleophiles in the presence of carbodiimide. Such a reactivity is unusual for the side-chain carboxyl groups of proteins. In addition, the reactivity of Glu-43(beta) is also sensitive to the ligation state of the protein [Rao, M. J., & Acharya, A. S. (1991) J. Protein Chem. 10, 129-138]. The influence of deoxygenation of hemoglobin A on the chemical reactivity of the gamma-carboxyl group of Glu-43(beta) has now been investigated as a function of pH (from 5.5 to 7.5). The chemical reactivity of Glu-43(beta) for amidation increases upon deoxygenation only when the modification reaction is carried out above pH 6.0. The pH-chemical reactivity profile of the amidation of hemoglobin A in the deoxy conformation reflects an apparent pKa of 7.0 for the gamma-carboxyl group of Glu-43(beta). This pKa is considerably higher than the pKa of 6.35 for the oxy conformation. The deoxy conformational transition mediated increase in the pKa of the gamma-carboxyl group of Glu-43(beta) implicates this carboxyl group as an alkaline Bohr group. The amidated derivative of hemoglobin A with 2 mol of glycine ethyl ester covalently bound to the protein was isolated by CM-cellulose chromatography.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1354984

  15. The effects of selenium on glutathione peroxidase activity and radioprotection in mammalian cells

    SciTech Connect

    Diamond, A.M.; Murray, J.L.; Dale, P.; Tritz, R.; Grdina, D.J.

    1995-09-05

    The media of representative mammalian cell lines were supplemented with low levels of selenium in the form of sodium selenite in order to investigate the effects of selenium on mammalian cells. Following incubation in 30 nM sodium selenite, these cells were assayed for changes in glutathione peroxidase (GPx) activity. The cells examined included NIH 3T3 mouse fibroblasts, PC12 rat sympathetic precursor cells, SupT-1 human lymphocytes, MCF-7{sup adr} human breast carcinoma cells and AA8 Chinese hamster ovary cells. Selenium supplementation resulted in a marginal increase in GPx activity for the NIH 3T3, MCF-7{sup adr} and Supt-1 cells but stimulated GPx activity approximately 5-fold in PC12 and AA8 cells. AA8 cells were selected to evaluate whether selenium supplementation was radioprotective against {sup 60}cobalt gamma irradiation. Protection against radiation-induced mutation was measured by evaluating mutation frequency at the hprt locus. In this assay, preincubation of AA8 CHO cells significantly protected these cells from exposure to 8 Gy.

  16. Anti-tumor effects of dehydroaltenusin, a specific inhibitor of mammalian DNA polymerase {alpha}

    SciTech Connect

    Maeda, Naoki; Kokai, Yasuo; Ohtani, Seiji; Sahara, Hiroeki; Kuriyama, Isoko; Kamisuki, Shinji; Takahashi, Shunya; Sakaguchi, Kengo; Sugawara, Fumio; Yoshida, Hiromi; Sato, Noriyuki; Mizushina, Yoshiyuki . E-mail: mizushin@nutr.kobegakuin.ac.jp

    2007-01-12

    In the screening of selective inhibitors of eukaryotic DNA polymerases (pols), dehydroaltenusin was found to be an inhibitor of pol {alpha} from a fungus (Alternaria tennuis). We succeeded in chemically synthesizing dehydroaltenusin, and the compound inhibited only mammalian pol {alpha} with IC{sub 50} value of 0.5 {mu}M, and did not influence the activities of other replicative pols such as pols {delta} and {epsilon}, but also showed no effect on pol {alpha} activity from another vertebrate, fish, or from a plant species. Dehydroaltenusin also had no influence on the other pols and DNA metabolic enzymes tested. The compound also inhibited the proliferation of human cancer cells with LD{sub 50} values of 38.0-44.4 {mu}M. In an in vivo anti-tumor assay on nude mice bearing solid tumors of HeLa cells, dehydroaltenusin was shown to be a promising suppressor of solid tumors. Histopathological examination revealed that increased tumor necrosis and decreased mitotic index were apparently detected by the compound in vivo. Therefore, dehydroaltenusin could be of interest as not only a mammalian pol {alpha}-specific inhibitor, but also as a candidate drug for anti-cancer treatment.

  17. Effects of tet-induced oxidation products of 5-methylcytosine on DNA replication in mammalian cells.

    PubMed

    Ji, Debin; You, Changjun; Wang, Pengcheng; Wang, Yinsheng

    2014-07-21

    Recently 5-hydroxymethyl-2'-deoxycytidine (5hmdC), 5-formyl-2'-deoxycytidine (5fdC), and 5-carboxyl-2'-deoxycytidine (5cadC) were discovered in mammalian DNA as oxidation products of 5-methyl-2'-deoxycytidine (5mdC) induced by the ten-eleven translocation family of enzymes. These oxidized derivatives of 5mdC may not only act as intermediates of active cytosine demethylation in mammals but also serve as epigenetic marks on their own. It remains unclear how 5hmdC, 5fdC, and 5cadC affect DNA replication in mammalian cells. Here, we examined the effects of the three modified nucleosides on the efficiency and accuracy of DNA replication in HEK293T human kidney epithelial cells. Our results demonstrated that a single, site-specifically incorporated 5fdC or 5cadC conferred modest drops, by approximately 30%, in replication bypass efficiency without inducing detectable mutations in human cells, whereas replicative bypass of 5hmdC is both accurate and efficient. The lack of pronounced perturbation of these oxidized 5mdC derivatives on DNA replication is consistent with their roles in epigenetic regulation of gene expression. PMID:24979327

  18. Immunomodulatory and radioprotective effects of lignans derived from fresh nutmeg mace (Myristica fragrans) in mammalian splenocytes.

    PubMed

    Checker, Rahul; Chatterjee, Suchandra; Sharma, Deepak; Gupta, Sumit; Variyar, Prasad; Sharma, Arun; Poduval, T B

    2008-05-01

    Recently, the lignans present in the aqueous extract of fresh nutmeg mace (aril of the fruit of Myristica fragrans) were shown to possess antioxidant properties in cell free systems and protected PUC18 plasmid against radiation-induced DNA damage. The present report describes the immunomodulatory and radiomodifying properties of lignans present in the aqueous extract of fresh nutmeg mace in mammalian splenocytes. These macelignans (ML) inhibited the proliferation of splenocytes in response to polyclonal T cell mitogen concanavalin A (Con A). This inhibition of proliferation was due to cell cycle arrest in G1 phase and augmentation of apoptosis as shown by increase in pre G1 cells. The increase in activation induced cell death by ML was dose dependent. It was found to inhibit the transcription of IL-2 and IL-4 genes in response to Con A. The production of IL-2, IL-4 and IFN-gamma cytokines was significantly inhibited by ML in Con A-stimulated lymphocytes in a dose dependent manner. ML protected splenocytes against radiation-induced intracellular ROS production in a dose dependent manner. ML was not cytotoxic towards lymphocytes. On the contrary, it significantly inhibited the radiation-induced DNA damage in splenocytes as indicated by decrease in DNA fragmentation. To our knowledge, this is the first report showing the antioxidant, radioprotective and immunomodulatory effects of lignans in mammalian cells. PMID:18387508

  19. Effect of pH on Structural Changes in Perch Hemoglobin that Can Alter Redox Stability and Heme Affinity

    SciTech Connect

    Richards, Mark P.; Aranda, IV, Roman; He, Cai; Phillips, Jr., George N.

    2010-01-07

    pH can be manipulated to alter the oxidative stability of fish-based foods during storage. X-ray diffraction was used to investigate the ability of reduced pH to cause structural changes in fish hemoglobins that lead to enhanced oxidative degradation. Decreasing pH from 8.0 to 6.3 and 5.7 created a large channel for solvent entry into the heme crevice of perch hemoglobin beta chains. The proton-induced opening of this channel occurred between site CD3 and the heme-6-propionate. Solvent entry into the heme crevice can enhance metHb formation and hemin loss, processes that accelerate lipid oxidation. Reduced pH also decreased the distance between Ile at E11 in one of the alpha chains and the ligand above the heme iron atom. This sterically displaces O{sub 2} and protonated O{sub 2} which increases metHb formation. These studies demonstrate that pH reduction causes structural changes in perch hemoglobin which increase oxidative degradation of the heme pigment.

  20. Stabilized hemoglobins as acellular resuscitative fluids.

    PubMed

    Cerny, L C; Green, A; Noga, B; Cerny, E R

    1992-01-01

    This study reports some recent work dealing with the stabilization of the tetramers of hemoglobin. It is shown that by using a variety of diacids, it is possible to increase the P50 above that of stroma free hemoglobin. In order to lengthen the retention times in the circulatory system, the stabilized hemoglobins were complexed with both hydroxyethyl starch polymers and polyol tetronic polymers. The resulting hemoglobin-polymer compounds were then freeze-dried. It was possible to reconstitute the powder by the addition of physiological saline when needed. The methods presented here appear to be appear to be as effective as using pyridoxal phosphate but at a fraction of the cost. PMID:1391448

  1. Deferral pattern in voluntary blood donors on basis of low hemoglobin and effect of application of digital hemoglobinometer on this pattern

    PubMed Central

    Mathur, Ankit; Shah, Ripal; Shah, Priti; Harimoorthy, V.; Choudhury, Nabajyoti

    2012-01-01

    Background: One of the responsibilities of blood center is to provide safety to blood donors. It is mandatory to screen a blood donor for hemoglobin (Hb) or hematocrit which should not be less than 12.5 g/dl or 38% Hct. Most commonly applied method for hemoglobin estimation is copper sulphate method, but this method has chances of false acceptance as well as false deferral. In order to avoid this chance of error, digital hemoglobinometer is used. This study was planned to analyze effect of application of digital hemoglobinometer for detection of Hb on donors, who are deferred by copper sulphate method. Materials and Methods: Total 35,339 voluntary non renumareted altruistic donors were included in this study between the periods of September 2005 to July 2006. Total deferred donors were 8622 (24.39%) and donors deferred due to hemoglobin by copper sulphate method were 4391 (50.92%). Digital hemoglobinometer was applied on 3163 deferred donors (72.03%). Results of digital hemoglobinometer were validated by known controls. Result: Digital hemoglobinometer was applied on 3163 donors who were deferred by copper sulphate method. Out of this, donors accepted by digital hemoglobinometer were 1196 (37.01%). Total repeat donors were 629 (52.50%) and first time were 567 (47.40%). Male donors were 891 (74.44%) and females were 305 (25.50%). Donors deferred with digital hemoglobinometer were 2135, out of them 1097 (51.14%) were repeat, 1038 (48.38%) were first time, 1349 (60.79%) were male, 786 (34.47%) donors were female donors. Range of hemoglobin in deferred donors was 7.0 to 12.4 and in accepted donors 12.5 to 16.4. Conclusion: By the application of digital hemoglobinometer 37.81% donors were found hemoglobin >12.5 which were deferred with copper sulphate method and unnecessary deferral of donors can be reduced to a great extent. In country like India, where blood supply is always less than the requirement, this new technique may be helpful to increase donor population but

  2. The effects of hemoglobin levels and their interactions with cigarette smoking on survival in nasopharyngeal carcinoma patients.

    PubMed

    Zeng, Qi; Shen, Lu-Jun; Li, Sheng; Chen, Ling; Guo, Xiang; Qian, Chao-Nan; Wu, Pei-Hong

    2016-05-01

    There is very little published information regarding the prognostic value of hemoglobin (Hb) levels combined with smoking on the survival of patients with nasopharyngeal carcinoma (NPC), and the interactions between them remain unclear. A total of 2440 NPC patients were confirmed, and multivariate analysis was performed to identify valuable prognostic Hb levels in the entire population and in the cohort of smokers. The survival differences were compared using log-rank tests. The multiplicative and additive interactions were assessed using Cox regression and a Microsoft Word Excel spreadsheet. Postradiotherapy (RT) Hb was an independent prognostic factor for overall survival (OS) (HR = 0.797; P = 0.006), failure-free survival (FFS) (HR=0.811; P = 0.010), and loco-regional failure-free survival (LR-FFS) (HR = 0.725; P = 0.000). In the cohort of smokers, pack-years was also an independent predictor of OS (HR = 0.673; P < 0.001) and FFS (HR = 0.681; P < 0.001), LR-FFS (HR = 0.663; P = 0.001). A significant positive additive effect was found for the interaction between low post-RT Hb and high SI on OS, with RERI = 5.616, AP = 0.665, and S = 4.078. Stratified analyses demonstrated that heavy smokers with low post-RT Hb had HRs of 2.295 (P < 0.001) for death, 2.222 (P < 0.001) for disease failure, and 2.267 (P < 0.001) loco-regional recurrence compared with light smokers with high post-RT Hb levels, and post-RT Hb level is an important predictor of survival in patients with NPC. The positive interaction between post-RT Hb level and pack-years contributes to the elevated risk of poor survival. Oncologists should devote particular attention to heavy smokers with low post-RT Hb levels in the future. PMID:26817420

  3. Effect of Smoking During Radiotherapy, Respiratory Insufficiency, and Hemoglobin Levels on Outcome in Patients Irradiated for Non-Small-Cell Lung Cancer

    SciTech Connect

    Rades, Dirk Setter, Cornelia M.S.; Schild, Steven E.; Dunst, Juergen

    2008-07-15

    Purpose: To investigate the effect of smoking during radiotherapy (RT), respiratory insufficiency before RT, hemoglobin levels during RT, and additional factors on overall survival, locoregional control (LRC), and metastasis-free survival in non-small-cell lung cancer patients. Methods and Materials: The following factors were investigated in 181 patients who underwent RT for non-small-cell lung cancer: age, gender, Karnofsky performance score, histologic type, grade, T/N stage, American Joint Committee on Cancer stage, surgery, chemotherapy, respiratory insufficiency before RT, pack-years, smoking during RT, and hemoglobin levels during RT. Additionally, in the 129 patients who did not undergo surgery, the effect of the equivalent dose in 2-Gy fractions (EQD2) (<60 Gy vs. 60 Gy vs. >60 Gy) on outcome was investigated. Results: On multivariate analysis, improved overall survival was associated with a lower T stage (p = 0.004), lower N stage (p 0.040), surgery (p = 0.010), and no respiratory insufficiency (p = 0.023). A Karnofsky performance score >70 achieved borderline significance (p = 0.056). Improved LRC was associated with a lower T stage (p = 0.007) and no smoking during RT (p = 0.029). Improved metastasis-free survival was associated with lower T stage (p < 0.001) and lower N stage (p < 0.001). In those patients who did not undergo surgery, an EQD2 of {>=}60 Gy was associated with a better outcome than an EQD2 of <60 Gy. Furthermore, an EQD2 >60 Gy resulted in better LRC than did an EQD2 of {<=}60 Gy. Conclusions: Smoking during RT had a significant effect on LRC, but we did not find that hemoglobin levels or respiratory insufficiency significantly affected LRC or metastasis-free survival in our patient population. Furthermore, our data suggest a dose-effect relationship in those patients who did not undergo surgery.

  4. Gap-junctional coupling of mammalian rod photoreceptors and its effect on visual detection

    PubMed Central

    Li, Peter H.; Verweij, Jan; Long, James H.; Schnapf, Julie L.

    2012-01-01

    The presence of gap junctions between rods in mammalian retina suggests a role for rod-rod coupling in human vision. Rod coupling is known to reduce response variability, but because junctional conductances are not known, the downstream effects on visual performance are uncertain. Here we assessed rod coupling in guinea pig retina by measuring: 1) the variability in responses to dim flashes, 2) Neurobiotin tracer coupling, and 3) junctional conductances. Results were consolidated into an electrical network model and a model of human psychophysical detection. Guinea pig rods form tracer pools of 1 to ~20 rods, with junctional conductances averaging ~350 pS. We calculate that coupling will reduce human dark-adapted sensitivity ~10% by impairing the noise filtering of the synapse between rods and rod bipolar cells. However, coupling also mitigates synaptic saturation and is thus calculated to improve sensitivity when stimuli are spatially restricted or are superimposed over background illumination. PMID:22399777

  5. The lack of consistent diaspirin cross-linked hemoglobin infusion blood pressure effects in the US and EU traumatic hemorrhagic shock clinical trials.

    PubMed

    Sloan, Edward P; Philbin, Nora B; Koenigsberg, Max D; Gao, Weihua

    2010-02-01

    Hemoglobin solutions have demonstrated a pressor effect that could adversely affect hemorrhagic shock patient resuscitation through accelerated hemorrhage, diminished perfusion, or inadequate resuscitation. Data from two parallel, multicenter traumatic hemorrhagic shock clinical trials in 17 US emergency departments and in 27 EU prehospital systems using diaspirin cross-linked hemoglobin (DCLHb), a hemoglobin-based resuscitation fluid. In the 219 patients, patients were 37 years old, 64% sustained blunt injury, 48% received DCLHb, and 36% expired. Although mean systolic blood pressure (SBP) and diastolic blood pressure values differed at 2 of the 10 measured time points, blood pressure (BP) curve analysis showed no SBP, diastolic blood pressure, or MAP differences based on treatment. Although SBP values 160 and 120 mmHg or greater were 2.2x and 2.6x more frequently noted in survivors, they were not more common with DCLHb use or in DCLHb patients who expired in US study nonsurvivors or in any EU study patients. Systolic blood pressure values 160 and 120 mmHg or greater were 2.8x and 1.3x more frequently noted in DCLHb survivors as compared with normal saline survivors. Only 3% of the BP variation noted could be attributed to DCLHb use, and as expected, injury severity and baseline physiologic status were stronger predictors. In the United States alone, treatment group was not correlated by regression with BP at any time point. Neither mean BP readings nor elevated BP readings were correlated with DCLHb treatment of traumatic hemorrhagic shock patients. As such, no clinically demonstrable DCLHb pressor effect could be directly related to the adverse mortality outcome observed in the US study. PMID:20092028

  6. Rice (Oryza) hemoglobins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  7. Comparisons of the electrophysiological effects of intravenous sotalol and propranolol on the immature mammalian heart.

    PubMed

    Xu, H; Villafane, J; McCormack, J; Stolfi, A; Gelband, H; Pickoff, A S

    1989-06-01

    Sotalol is a beta blocker that has also been reported to exert class III antiarrhythmic effects. To evaluate the effects of sotalol on the immature heart, and specifically to assess the relative importance of its class III action, the electrophysiologic effects of incremental doses of intravenous dl-sotalol (cumulative dose of 8 mg/kg) were studied in 11 intact canines (ages 4-15 days) utilizing intracardiac programmed stimulation and electrogram recording techniques. These results were compared to the electrophysiologic effects obtained in an additional 14 neonatal canines given 0.6 mg/kg of the beta blocker propranolol intravenously. Sotalol caused a greater increase than propranolol in the resting sinus cycle length (45 vs. 4%). Importantly, sotalol resulted in greater increases in atrial and ventricular muscle refractoriness than did propranolol (AERP--77 vs. 4%, AFRP--57 vs. 6%; VERP--53 vs. 4%, VFRP--51 vs. 7%). Thus, the electrophysiologic effects of sotalol include large changes in myocardial refractoriness that are not observed with simple beta blockade induced by propranolol. These results suggest that sotalol exerts a significant class III effect in the immature mammalian heart, and thus may be useful as an antiarrhythmic agent in the neonate. PMID:2484088

  8. Long-Term Single and Joint Effects of Excessive Daytime Napping on the HOMA-IR Index and Glycosylated Hemoglobin

    PubMed Central

    Li, Xue; Pang, Xiuyu; Zhang, Qiao; Qu, Qiannuo; Hou, Zhigang; Liu, Zhipeng; Lv, Lin; Na, Guanqiong; Zhang, Wei; Sun, Changhao; Li, Ying

    2016-01-01

    Abstract This prospective cohort study was conducted to assess the duration of daytime napping and its effect combined with night sleep deprivation on the risk of developing high HOMA-IR (homeostasis model assessment of insulin resistance) index and disadvantageous changes in glycosylated hemoglobin (HbA1c) levels. A total of 5845 diabetes-free subjects (2736 women and 3109 men), 30 to 65 years of age, were targeted for this cohort study since 2008. Multiple adjusted Cox regression models were performed to evaluate the single and joint effects of daytime napping on the risk of an elevated HbA1c level and high HOMA-IR index. After an average of 4.5 years of follow-up, >30 minutes of daytime napping was significantly associated with an increased risk of an elevated HbA1c level (>6.5%) in men and women (all P trend < 0.05). Hazard ratios (HRs) for an HbA1c level between 5.7% and 6.4% were also significant in the entire cohort and women, but nonsignificant in men. HRs (95% confidence interval, CIs) for the high HOMA-IR index in the entire cohort, men, and women were 1.33 (1.10–1.62), 1.46 (1.08–1.98), and 1.47 (1.12–1.91), respectively. The combination of sleep deprivation with no naps or >30 minutes napping and the combination of no sleep deprivation with >30 minutes daytime napping were all associated with an HbA1c level >6.5% (HR = 2.08, 95% CI = 1.24–3.51; HR = 4.00, 95% CI = 2.03–7.90; and HR = 2.05, 95% CI = 1.29–3.27, respectively). No sleep deprivation combined with >30 minutes daytime napping correlated with a high risk of an HbA1c level between 5.7% and 6.4% and high HOMA-IR index (HR = 2.12, 95% CI = 1.48–3.02; and HR = 1.35, 95% CI = 1.10–1.65, respectively). Daytime napping >30 minutes was associated with a high risk of an elevated HbA1c level and high HOMA-IR index. No sleep deprivation combined with napping >30 minutes carries a risk of abnormal glucose metabolism. Sleep deprivation combined with

  9. Rice ( Oryza) hemoglobins

    PubMed Central

    Arredondo-Peter, Raúl; Moran, Jose F.; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs. PMID:25653837

  10. Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells.

    PubMed

    Yang, Tianle; Chan, Noel Yan-Ki; Sauve, Anthony A

    2007-12-27

    A new two-step methodology achieves stereoselective synthesis of beta-nicotinamide riboside and a series of related amide, ester, and acid nucleosides. Compounds were prepared through a triacetylated-nicotinate ester nucleoside, via coupling of either ethylnicotinate or phenylnicotinate with 1,2,3,5-tetra-O-acetyl-beta-D-ribofuranose. Nicotinamide riboside, nicotinic acid riboside, O-ethylnicotinate riboside, O-methylnicotinate riboside, and several N-alkyl derivatives increased NAD+ concentrations from 1.2-2.7-fold in several mammalian cell lines. These findings establish bioavailability and potent effects of these nucleosides in stimulating the increase of NAD+ concentrations in mammalian cells. PMID:18052316

  11. Effects of lead shot ingestion on delta-aminolevulinic acid dehydratase activity, hemoglobin concentration, and serum chemistry in bald eagles

    USGS Publications Warehouse

    Hoffman, D.J.; Pattee, O.H.; Wiemeyer, Stanley N.; Mulhern, B.

    1981-01-01

    Lead shot ingestion by bald eagles (Haliaeetus leucocephalus) is considered to be widespread and has been implicated in the death of eagles in nature. It was recently demonstrated under experimental conditions that ingestion of as few as 10 lead shot resulted in death within 12 to 20 days. In the present study hematological responses to lead toxicity including red blood cell ALAD activity, hemoglobin concentration and 23 different blood serum chemistries were examined in five captive bald eagles that were unsuitable for rehabilitation and release. Eagles were dosed by force-feeding with 10 lead shot; they were redosed if regurgitation occurred. Red blood cell ALAD activity was inhibited by nearly 80% within 24 hours when mean blood lead concentration had increased to 0.8 parts per million (ppm). By the end of 1 week there was a significant decrease (20-25%) in hematocrit and hemoglobin, and the mean blood lead concentration was over 3 ppm. Within as little as 1-2 weeks after dosing, significant elevations in serum creatinine and serum alanine aminotransferase occurred, as well as a significant decrease in the ratio of serum aspartic aminotransferase to serum alanine aminotransferase. The mean blood lead concentration was over 5 ppm by the end of 2 weeks. These changes in serum chemistry may be indicative of kidney and liver alterations.

  12. Effect of Vitreoscilla hemoglobin expression on growth and specific tissue plasminogen activator productivity in recombinant Chinese hamster ovary cells

    SciTech Connect

    Pendse, G.J.; Bailey, J.E. . Dept. of Chemical Engineering)

    1994-12-01

    Previous studies suggest that secretion of cloned proteins synthesized by recombinant Chinese hamster ovary (CHO) cells can be adenosine triphosphate (ATP) limited. Other research indicates that the presence of cloned Vitreoscilla hemoglobin (VHb) enhances ATP production in oxygen-limited Escherichia coli. To evaluate the influence of VHb expression on recombinant CHO cell productivity, the vhb gene has been fused to the mouse mammary tumor virus (MMTV) promoter and cloned in a CHO cell line previously engineered to express human tissue plasminogen activator (tPA). Western blot analysis confirms dexamethasone-inducible VHb expression in all of the clones tested. Batch cultivation experiments with one VHb-expressing clone and the parental CHO-tPA cells show a reduced specific growth rate in the VHb-expressing cells. The VHb-expressing clone exhibits specific tPA production 40 to 100% greater than the parental CHO-tPA culture.

  13. Hemoglobin oxidative stress

    NASA Astrophysics Data System (ADS)

    Croci, S.; Ortalli, I.; Pedrazzi, G.; Passeri, G.; Piccolo, P.

    2000-07-01

    Venous blood obtained from healthy donors and from patients suffering from breast cancer have been treated with acetylphenylhydrazine (APH) for different time. Mössbauer spectra of the packed red cells have been recorded and compared. The largest difference occurs after 50 min of treatment with APH where the patient samples show a broad spectral pattern indicating an advanced hemoglobin oxidation. These results may have some relevance in early cancer diagnosis.

  14. Sex differences and hemoglobin levels in relation to stroke outcomes

    PubMed Central

    Lima, Fabricio O.; O’Connor, Sydney; Furie, Karen L.

    2013-01-01

    Objective: Women have worse outcomes after stroke compared to men. Since women have lower hemoglobin values, we examined whether hemoglobin levels may associate with worse stroke outcomes in women. Methods: We retrospectively studied 274 patients enrolled in a prospective multicenter study. We explored the relationship of hemoglobin with clinical outcome at 6 months, as measured by the modified Rankin Scale (mRS). Ordinal logistic regression was used to evaluate the independent effect of hemoglobin on clinical outcome, and to explore the influence of sex on that association. Results: Women had a lower mean hemoglobin level (11.7 ± 1.8 g/dL) compared to men (13.3 ± 1.7 g/dL). Low hemoglobin was associated with worse 6-month mRS outcomes in univariate analysis (p < 0.001). Lower hemoglobin remained independently associated with poor outcome after adjustment for comorbid disease, stroke severity, age, and sex. The inclusion of hemoglobin in the model attenuated the independent effect of sex on outcome. Conclusions: Sex differences in stroke outcome are linked to lower hemoglobin level, which is more prevalent in women. Further examination of this potentially modifiable predictor is warranted. PMID:23365064

  15. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  16. Hemoglobin binding to deglycosylated haptoglobin.

    PubMed

    Kaartinen, V; Mononen, I

    1988-04-14

    The carbohydrate portion of polymeric haptoglobin was gradually removed by exoglycosidases in order to investigate its role in complex formation between haptoglobin and hemoglobin. Total removal of sialic acid diminished the haptoglobin-hemoglobin complex formation 15%. Removal of about 25% of the galactose residues from asialohaptoglobin, i.e., about 40% of the total weight of the carbohydrate moiety, totally inhibited the ability of haptoglobin to form complex with hemoglobin and react with haptoglobin-specific antibodies. Liberation of further galactose residues resulted in slow precipitation of the protein. Removal of a similar part of the carbohydrate moiety from haptoglobin-hemoglobin complex did not liberate hemoglobin from it, and the complex reacted with haptoglobin antibodies. The combined data indicate that the carbohydrate portion is essential for the functionally active form of polymeric haptoglobin to complex with hemoglobin, but it hardly has any direct role in the binding event, and other factors are responsible for the stability of the complex. PMID:3128331

  17. Disorders of Human Hemoglobin

    NASA Astrophysics Data System (ADS)

    Bank, Arthur; Mears, J. Gregory; Ramirez, Francesco

    1980-02-01

    Studies of the human hemoglobin system have provided new insights into the regulation of expression of a group of linked human genes, the γ -δ -β globin gene complex in man. In particular, the thalassemia syndromes and related disorders of man are inherited anemias that provide mutations for the study of the regulation of globin gene expression. New methods, including restriction enzyme analysis and cloning of cellular DNA, have made it feasible to define more precisely the structure and organization of the globin genes in cellular DNA. Deletions of specific globin gene fragments have already been found in certain of these disorders and have been applied in prenatal diagnosis.

  18. Experimental recovery of intrinsic fluorescence and fluorophore concentration in the presence of hemoglobin: spectral effect of scattering and absorption on fluorescence

    NASA Astrophysics Data System (ADS)

    Du Le, Vinh Nguyen; Patterson, Michael S.; Farrell, Thomas J.; Hayward, Joseph E.; Fang, Qiyin

    2015-12-01

    The ability to recover the intrinsic fluorescence of biological fluorophores is crucial to accurately identify the fluorophores and quantify their concentrations in the media. Although some studies have successfully retrieved the fluorescence spectral shape of known fluorophores, the techniques usually came with heavy computation costs and did not apply for strongly absorptive media, and the intrinsic fluorescence intensity and fluorophore concentration were not recovered. In this communication, an experimental approach was presented to recover intrinsic fluorescence and concentration of fluorescein in the presence of hemoglobin (Hb). The results indicated that the method was efficient in recovering the intrinsic fluorescence peak and fluorophore concentration with an error of 3% and 10%, respectively. The results also suggested that chromophores with irregular absorption spectra (e.g., Hb) have more profound effects on fluorescence spectral shape than chromophores with monotonic absorption and scattering spectra (e.g., black India ink and polystyrene microspheres).

  19. Effects of the non-commensal Methylococcus capsulatus Bath on mammalian immune cells.

    PubMed

    Christoffersen, Trine Eker; Olsen Hult, Lene Therese; Solberg, Henriette; Bakke, Anne; Kuczkowska, Katarzyna; Huseby, Eirin; Jacobsen, Morten; Lea, Tor; Kleiveland, Charlotte Ramstad

    2015-08-01

    Dietary inclusions of a bacterial meal consisting mainly of the non-commensal, methanotrophic bacteria Methylococcus capsulatus Bath have been shown to ameliorate symptoms of intestinal inflammation in different animal models. In order to investigate the molecular mechanisms causing these effects, we have studied the influence of this strain on different immune cells central for the regulation of inflammatory responses. Effects were compared to those induced by the closely related strain M. capsulatus Texas and the well-described probiotic strain Escherichia coli Nissle 1917. M. capsulatus Bath induced macrophage polarization toward a pro-inflammatory phenotype, but not to the extent observed after exposure to E. coli Nissle 1917. Likewise, dose-dependent abilities to activate NF-κB transcription in U937 cells were observed, with E. coli Nissle 1917 being most potent. High levels of CD141 on human primary monocyte-derived dendritic cells (moDCs) were only detected after exposure to E. coli Nissle 1917, which collectively indicate a superior capacity to induce Th1 cell responses for this strain. On the other hand, the M. capsulatus strains were more potent in increasing the expression of the maturation markers CD80, CD83 and CD86 than E. coli Nissle 1917. M. capsulatus Bath induced the highest levels of IL-6, IL-10 and IL-12 secretion from dendritic cells, suggesting that this strain generally the post potent inducer of cytokine secretion. These results show that M. capsulatus Bath exhibit immunogenic properties in mammalian in vitro systems which diverge from that of E. coli Nissle 1917. This may provide clues to how M. capsulatus Bath influence the adaptive immune system in vivo. However, further in vivo experiments are required for a complete understanding of how this strain ameliorates intestinal inflammation in animal models. PMID:25771177

  20. Different sensitivities of cultured mammalian cells towards aphidicolin-enhanced DNA effects in the comet assay.

    PubMed

    Speit, Günter; Schütz, Petra; Bausinger, Julia

    2016-06-01

    The comet assay in combination with the polymerase inhibitor aphidicolin (APC) has been used to measure DNA excision repair activity, DNA repair kinetics and individual DNA repair capacity. Since APC can enhance genotoxic effects of mutagens measured by the comet assay, this approach has been proposed for increasing the sensitivity of the comet assay in human biomonitoring. The APC-modified comet assay has mainly been performed with human blood and it was shown that it not only enhances the detection of DNA damage repaired by nucleotide excision repair (NER) but also damage typically repaired by base excision repair (BER). Recently, we reported that in contrast to blood leukocytes, A549 cells (a human lung adenocarcinoma cell line) seem to be insensitive towards the repair-inhibiting action of APC. To further elucidate the general usefulness of the APC-modified comet assay for studying repair in cultured mammalian cells, we comparatively investigated further cell lines (HeLa, TK6, V79). DNA damage was induced by BPDE (benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide) and MMS (methyl methanesulfonate) in the absence and presence of APC (3 or 15μM). APC was either added for 2h together with the mutagen or cells were pre-incubated for 30min with APC before the mutagen was added. The results indicate that the cell lines tested differ fundamentally with regard to their sensitivity and specificity towards the repair-inhibiting effect of APC. The actual cause for these differences is still unclear but potential molecular explanations are discussed. Irrespective of the underlying mechanism(s), our study revealed practical limitations of the use of the APC-modified comet assay. PMID:27265376

  1. siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference

    PubMed Central

    Naito, Yuki; Yamada, Tomoyuki; Ui-Tei, Kumiko; Morishita, Shinichi; Saigo, Kaoru

    2004-01-01

    siDirect (http://design.RNAi.jp/) is a web-based online software system for computing highly effective small interfering RNA (siRNA) sequences with maximum target-specificity for mammalian RNA interference (RNAi). Highly effective siRNA sequences are selected using novel guidelines that were established through an extensive study of the relationship between siRNA sequences and RNAi activity. Our efficient software avoids off-target gene silencing to enumerate potential cross-hybridization candidates that the widely used BLAST search may overlook. The website accepts an arbitrary sequence as input and quickly returns siRNA candidates, providing a wide scope of applications in mammalian RNAi, including systematic functional genomics and therapeutic gene silencing. PMID:15215364

  2. Effects of Simulated Weightlessness on Mammalian Development. Part 2: Meiotic Maturation of Mouse Oocytes During Clinostat Rotation

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Grills, G. S.

    1985-01-01

    In order to understand the role of gravity in basic cellular processes that are important during development, the effects of a simulated microgravity environment on mammalian gametes and early embryos cultured in vitro are examined. A microgravity environment is simulated by use of a clinostat, which essentially reorients cells relative to the gravity vector. Initial studies have focused on assessing the effects of clinostat rotation on the meiotic progression of mouse oocytes. Modifications centered on providing the unique in vitro culture of the clinostat requirements of mammalian oocytes and embryos: 37 C temperature, constant humidity, and a 5% CO2 in air environment. The oocytes are observed under the dissecting microscope for polar body formation and gross morphological appearance. They are then processed for cytogenetic analysis.

  3. Effects of mammalian herbivore declines on plant communities: observations and experiments in an African savanna

    PubMed Central

    Young, Hillary S; McCauley, Douglas J; Helgen, Kristofer M; Goheen, Jacob R; Otárola-Castillo, Erik; Palmer, Todd M; Pringle, Robert M; Young, Truman P; Dirzo, Rodolfo

    2013-01-01

    these observed differences is the compensatory effect of livestock associated with the depression or extirpation of wildlife. 5. Synthesis. Our results emphasize the importance of abiotic environmental heterogeneity in modulating the effects of mammalian herbivory on plant communities and the importance of such covariation in understanding effects of wild herbivore declines. They also suggest caution when extrapolating results from exclosure experiments to predict the consequences of defaunation as it proceeds in the Anthropocene. PMID:24014216

  4. Effects of mammalian herbivore declines on plant communities: observations and experiments in an African savanna.

    PubMed

    Young, Hillary S; McCauley, Douglas J; Helgen, Kristofer M; Goheen, Jacob R; Otárola-Castillo, Erik; Palmer, Todd M; Pringle, Robert M; Young, Truman P; Dirzo, Rodolfo

    2013-07-01

    these observed differences is the compensatory effect of livestock associated with the depression or extirpation of wildlife. 5. Synthesis. Our results emphasize the importance of abiotic environmental heterogeneity in modulating the effects of mammalian herbivory on plant communities and the importance of such covariation in understanding effects of wild herbivore declines. They also suggest caution when extrapolating results from exclosure experiments to predict the consequences of defaunation as it proceeds in the Anthropocene. PMID:24014216

  5. Genotoxic effects of fly ash in bacteria, mammalian cells and animals

    SciTech Connect

    Morris, D.L.; Connor, T.H.; Harper, J.B.; Ward, J.B. Jr.; Legator, M.S. )

    1989-01-01

    The increasing use of fossil fuels has raised concerns about possible deleterious health effects of the final combustion product, fly ash. Seven ash samples from coal sources obtained from Battelle Columbus Laboratories were evaluated in the Salmonella/mammalian microsome mutagenicity assay to determine their mutagenic potential. While dimethyl sulfoxide extracts of five samples showed no mutagenicity, sample 102 caused an increase in the number of revertants per plate over controls in TA100 and TA98 with activation by liver homogenate (2-fold and 2.4-fold, respectively), and without (2-fold and 6-fold). This ash was thus evaluated in whole animal studies. Animals treated by inhalation or oral gavage were assayed for the presence of mutagens in the urine, micronuclei in polychromatic erythrocytes, and chromosomal aberrations in metaphase bone marrow cells. Those animals treated by inhalation were also examined for local damage in the lung. The assay for mutagens in the urine was negative as shown by the Ames assay with TA100 and TA98 and there was no increase in micronuclei or in metaphase aberrations. Histological sections from the animals treated by inhalation did not show the presence of particles, macrophage infiltrations and generalized lung damage. We tested the same fly ash with an in vitro cell transformation assay with the cell line Balb/c 3T3 subclone A31-1-13. Although there was not an increase in Type III foci, there was a dose-dependent increase of Type II foci in the treated cells over the controls. In one assay, there was approximately a 14-fold increase in Type II foci in the highest dose (2 mg/ml) compared to the solvent control. One other ash sample induced cell transformation without being markedly cytotoxic, while a third sample was highly toxic but did not induce transformation.

  6. The effect of climbing Mount Everest on spleen contraction and increase in hemoglobin concentration during breath holding and exercise.

    PubMed

    Engan, Harald K; Lodin-Sundström, Angelica; Schagatay, Fanny; Schagatay, Erika

    2014-04-01

    Release of stored red blood cells resulting from spleen contraction improves human performance in various hypoxic situations. This study determined spleen volume resulting from two contraction-evoking stimuli: breath holding and exercise before and after altitude acclimatization during a Mount Everest ascent (8848 m). Eight climbers performed the following protocol before and after the climb: 5 min ambient air respiration at 1370 m during rest, 20 min oxygen respiration, 20 min ambient air respiration at 1370 m, three maximal-effort breath holds spaced by 2 min, 10 min ambient air respiration, 5 min of cycling at 100 W, and finally 10 min ambient air respiration. We measured spleen volume by ultrasound and capillary hemoglobin (HB) concentration after each exposure, and heart rate (HR) and arterial oxygen saturation (Sao2) continuously. Mean (SD) baseline spleen volume was unchanged at 213 (101) mL before and 206 (52) mL after the climb. Before the climb, spleen volume was reduced to 184 (83) mL after three breath holds, and after the climb three breath holds resulted in a spleen volume of 132 (26) mL (p=0.032). After exercise, the preclimb spleen volume was 186 (89) mL vs. 112 (389) mL) after the climb (p=0.003). Breath hold duration and cardiovascular responses were unchanged after the climb. We concluded that spleen contraction may be enhanced by altitude acclimatization, probably reflecting both the acclimatization to chronic hypoxic exposure and acute hypoxia during physical work. PMID:24673535

  7. Unexpected effects of the alteration of structure and stability of myoglobin and hemoglobin in ammonium-based ionic liquids.

    PubMed

    Jha, Indrani; Attri, Pankaj; Venkatesu, Pannuru

    2014-03-28

    The nature of solvent-biomolecule interactions is generally weak and non-specific. The addition of ionic liquids (ILs), which have emerged as a new class of solvents, strengthen the stability of some proteins whereas the same ILs weaken the stability of some other proteins. Although ILs are commonly used for the stabilization of biomolecules, the bimolecular interactions of their stabilization-destabilization is still an active subject of considerable interest and studies on this topic have been limited. To reveal the impact of ILs on the stability of proteins, a series of protic ILs possessing a tetra-alkyl ammonium cation [R4N](+) with a hydroxide [OH](-) anion were synthesized. In this study, we report the structural stability of heme proteins such as myoglobin (Mb) and hemoglobin (Hb) in a series of ammonium-based ILs such as tetramethyl ammonium hydroxide [(CH3)4N](+)[OH](-) (TMAH), tetraethyl ammonium hydroxide [(C2H5)4N](+)[OH](-) (TEAH), tetrapropyl ammonium hydroxide [(C3H7)4N](+)[OH](-) (TPAH) and tetrabutyl ammonium hydroxide [(C4H9)4N](+)[OH](-) (TBAH) by fluorescence and circular dichroism (CD) spectroscopic studies. Our experimental results reveal that less viscous ILs carrying smaller alkyl chain such as TMAH are strong destabilizers of the heme proteins as compared to the ILs carrying bulkier alkyl chains which are more viscous ILs, such as TBAH. Therefore, our results demonstrate that the addition of these ILs to the heme proteins decreases their thermal stability allowing the protein to be in an unfolded state at lower temperatures. Further, we describe the molecular-structural interaction of the heme proteins with the ILs (molecule like a ligand) by the PatchDocking method. PMID:24501743

  8. Physical properties of hemoglobin-poly(acrylamide) hydrogel-based oxygen carriers: effect of reaction pH.

    PubMed

    Patton, Jaqunda N; Palmer, Andre F

    2006-02-28

    This work examines the physical properties of bovine hemoglobin (BHb) chemically cross-linked to a pH responsive polymer (poly(acrylamide)) with the goal of taking advantage of the polymer's pH sensitivity to generate low-P50 oxygen carriers for application in physiological conditions characterized by deviations from normal pH. BHb-hydrogel-based oxygen carriers encapsulating 10-16 g/dL BHb displayed P50s < 10 mmHg when encapsulated inside of liposomes (i.e. Hb-LGs) and <15 mmHg in the absence of a lipid bilayer (i.e. Hb-NHPs), when synthesized at pHs less than normal physiological pH. The results of this work suggest that synthesis of Hb-LGs/Hb-NHPs under different pH conditions affect the ionization of BHb and the flexibility of the polymer chains to which BHb is chemically cross-linked. The degree of BHb cross-linking to the polymer matrix and the chain flexibility of the polymer influences the oxygen affinity and cooperativity of the oxygen carrier by influencing how easy it is for the Hb molecule to change conformations between the R and T states. The magnitude of the zeta potential of Hb-LGs and Hb-NHPs was shown to be within the range of stored red blood cells and within the range of limited flocculation. Taken together, this work describes the preparation and characterization of oxygen carriers with increased oxygen affinities compared to those of red blood cells. PMID:16489809

  9. Hemoglobin adducts from acrylonitrile and ethylene oxide in cigarette smokers: effects of glutathione S-transferase T1-null and M1-null genotypes.

    PubMed

    Fennell, T R; MacNeela, J P; Morris, R W; Watson, M; Thompson, C L; Bell, D A

    2000-07-01

    Acrylonitrile (ACN) is used to manufacture plastics and fibers. It is carcinogenic in rats and is found in cigarette smoke. Ethylene oxide (EO) is a metabolite of ethylene, also found in cigarette smoke, and is carcinogenic in rodents. Both ACN and EO undergo conjugation with glutathione. The objectives of this study were to examine the relationship between cigarette smoking and hemoglobin adducts derived from ACN and EO and to investigate whether null genotypes for glutathione transferase (GSTM1 and GSTT1) alter the internal dose of these agents. The hemoglobin adducts N-(2-cyanoethyl)valine (CEVal), which is formed from ACN, and N-(2-hydroxyethyl)valine (HEVal), which is formed from EO, and GST genotypes were determined in blood samples obtained from 16 nonsmokers and 32 smokers (one to two packs/day). Smoking information was obtained by questionnaire, and plasma cotinine levels were determined by immunoassay. Glutathione transferase null genotypes (GSTM1 and GSTT1) were determined by PCR. Both CEVal and HEVal levels increased with increased cigarette smoking dose (both self-reported and cotinine-based). CEVal and HEVal levels were also correlated. GSTM1 and GSTT1 genotypes had little effect on CEVal concentrations. GSTM1 null genotypes had no significant impact on HEVal. However, HEVal levels were significantly elevated in GSTT1-null individuals when normalized to smoking status or cotinine levels. The ratio of HEVal:CEVal was also elevated in GSTT1-null smokers (1.50 +/- 0.57 versus 0.88 +/- 0.24; P = 0.0002). The lack of a functional GSTT1 is estimated to increase the internal dose of EO derived from cigarette smoke by 50-70%. PMID:10919741

  10. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  11. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  12. Mechanism of two-photon excited hemoglobin fluorescence emission

    NASA Astrophysics Data System (ADS)

    Sun, Qiqi; Zheng, Wei; Wang, Jiannong; Luo, Yi; Qu, Jianan Y.

    2015-10-01

    Hemoglobin, one of the most important proteins in the human body, is composed of "heme" groups (iron-containing rings) and "globins" (proteins). We investigate the two-photon excited fluorescence of hemoglobin and its subunit components (heme and globin). We measure the hemoglobin fluorescence lifetime by using a streak camera of ps resolution and confirm that its lifetime is in femtosecond scale. In the study of the fluorescence properties of heme and globin, the experimental results reveal that heme is the sole fluorophore of hemoglobin. Hemoglobin fluorescence can be effectively excited only via two-photon process, because heme has a centrosymmetric molecular structure and two-photon allowed transition is forbidden for single-photon process and vice versa due to the Laporte parity selection rule.

  13. Hemoglobin-Based Nanoarchitectonic Assemblies as Oxygen Carriers.

    PubMed

    Jia, Yi; Duan, Li; Li, Junbai

    2016-02-10

    Safe and effective artificial oxygen carriers are the subject of great interest due to the problems of traditional blood transfusion and enormous demand in clinical use. In view of its unique oxygen-transport ability and normal metabolic pathways, hemoglobin is regarded as an ideal oxygen-carrying unit. With advances in nano-biotechnology, hemoglobin assemblies as artificial oxygen carriers achieve great development. Here, recent progress on hemoglobin-based oxygen carriers is highlighted in view of two aspects: acellular hemoglobin-based oxygen carriers and cellular hemoglobin-based oxygen carriers. These novel oxygen carriers exhibit advantages over traditional carriers and will greatly promote research on reliable and feasible oxygen carriers. PMID:26479864

  14. Mechanism of two-photon excited hemoglobin fluorescence emission.

    PubMed

    Sun, Qiqi; Zheng, Wei; Wang, Jiannong; Luo, Yi; Qu, Jianan Y

    2015-10-01

    Hemoglobin, one of the most important proteins in the human body, is composed of “heme” groups (iron-containing rings) and “globins” (proteins). We investigate the two-photon excited fluorescence of hemoglobin and its subunit components (heme and globin). We measure the hemoglobin fluorescence lifetime by using a streak camera of ps resolution and confirm that its lifetime is in femtosecond scale. In the study of the fluorescence properties of heme and globin, the experimental results reveal that heme is the sole fluorophore of hemoglobin. Hemoglobin fluorescence can be effectively excited only via two-photon process, because heme has a centrosymmetric molecular structure and two-photon allowed transition is forbidden for single-photon process and vice versa due to the Laporte parity selection rule. PMID:26506468

  15. The influence of experimental conditions on the spectrin-hemoglobin interaction.

    PubMed

    Vincentelli, J; Fraboni, A; Paul, C; Schnek, A G

    1989-01-01

    Human spectrin, when isolated, purified and stored in such conditions that preserve its tetrameric form, is able to associate with human hemoglobin as it is clearly shown by gel filtration. However, this hemoglobin-spectrin association does not seem to have a significant effect on hemoglobin oxygenation as indicated by equilibrium and rapid kinetics measurements. PMID:2713099

  16. Angiographic and volumetric effects of mammalian target of rapamycin inhibitors on angiomyolipomas in tuberous sclerosis

    PubMed Central

    Sheth, Rahul A; Feldman, Adam S; Paul, Elahna; Thiele, Elizabeth A; Walker, T Gregory

    2016-01-01

    AIM: To investigate the angiographic and volumetric effects of mammalian target of rapamycin (mTOR) inhibitors on angiomyolipomas (AMLs) in a case series of patients with tuberous sclerosis complex. METHODS: All patients who underwent catheter angiography prior to and following mTOR inhibitor therapy (n = 3) were evaluated. All cross-sectional imaging studies were analyzed with three-dimensional volumetrics, and tumor volume curves for all three tissue compartments (soft tissue, vascular, and fat) were generated. Segmentation analysis tools were used to automatically create a region of interest (ROI) circumscribing the AML. On magnetic resonance images, the “fat only” map calculated from the in- and opposed-phase gradient recalled echo sequences was used to quantify fat volume within tumors. Tumor vascularity was measured by applying a thresholding tool within the ROI on post-contrast subtraction images. On computed tomography images, volume histogram analysis of Hounsfield unit was performed to quantify tumor tissue composition. The angiography procedures were also reviewed, and tumor vascularity based on pre-embolization angiography was characterized in a semi-quantitative manner. RESULTS: Patient 1 presented at the age of 15 with a 6.8 cm right lower pole AML and a 4.0 cm right upper pole AML. Embolization was performed of both tumors, and after a few years of size control, the tumors began to grow, and the patient was initiated on mTOR inhibitor therapy. There was an immediate reduction in the size of both lesions. The patient then underwent repeat embolization and discontinuation of mTOR inhibition, after which point there was a substantial regrowth in both tumors across all tissue compartments. Patient 2 presented at the age of 18 with a right renal AML. Following a brief period of tumor reduction after embolization, she was initiated on mTOR inhibitor therapy, with successful reduction in tumor size across all tissue compartments. As with patient 1

  17. Comparing the Effects of Active and Passive Intradialytic Pedaling Exercises on Dialysis Efficacy, Electrolytes, Hemoglobin, Hematocrit, Blood Pressure and Health-Related Quality of Life

    PubMed Central

    Musavian, Azra Sadat; Soleimani, Alireza; Masoudi Alavi, Negin; Baseri, Alimohammad; Savari, Fatemeh

    2015-01-01

    Background: The effect of exercise during hemodialysis has been a controversial issue, however, there are just few studies about the effect of active exercise during hemodialysis. Objectives: This study aimed to compare the effects of passive and active intradialytic pedaling exercises on dialysis efficacy, electrolytes, hemoglobin, hematocrit, blood pressure and health-related quality of life in hemodialysis patients. Patients and Methods: This quasi-experimental study was conducted on 16 hemodialysis patients in Akhavan hemodialysis center in Kashan from April to November 2013. Active or passive intradialytic pedaling exercise was performed using a Mini-Bike for 30 minutes during the first two hours of the dialysis sessions. The quality of life (QOL) was assessed before and after the intervention. Blood pressure was examined at the beginning and then hourly during the dialysis sessions. Dialysis efficacy, levels of phosphorus, calcium, sodium, potassium and Blood urea nitrogen (BUN) were measured at the end of the intervention. Kolmogorov-Smirnov test, paired t test, Wilcoxon signed rank and Friedman tests and repeated measure analysis of variancewere used to analyze the data. Results: No significant changes were observed in serum potassium, phosphorus and calcium levels at the end of the passive exercise program compared to the baseline. However, phosphorus levels were significantly decreased in the active exercise program (P < 0.05). Moreover, the mean diastolic blood pressure was significantly decreased after the passive exercise (P = 0.039). Passive exercise did not significantly change the dialysis efficacy, urea reduction rate, hemoglobin and calcium levels. The mean overall QOL was 63.78 ± 21.15 at the beginning of the study, which was increased to 77.07 ± 21.14 at the end of eight weeks of the intradialytic exercise (P = 0.007). Conclusions: The passive intradialytic exercise had a positive effect on blood pressure. The active exercise could decrease

  18. Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis.

    PubMed

    Li, Xue; Oghi, Kenneth A; Zhang, Jie; Krones, Anna; Bush, Kevin T; Glass, Christopher K; Nigam, Sanjay K; Aggarwal, Aneel K; Maas, Richard; Rose, David W; Rosenfeld, Michael G

    2003-11-20

    The precise mechanistic relationship between gene activation and repression events is a central question in mammalian organogenesis, as exemplified by the evolutionarily conserved sine oculis (Six), eyes absent (Eya) and dachshund (Dach) network of genetically interacting proteins. Here, we report that Six1 is required for the development of murine kidney, muscle and inner ear, and that it exhibits synergistic genetic interactions with Eya factors. We demonstrate that the Eya family has a protein phosphatase function, and that its enzymatic activity is required for regulating genes encoding growth control and signalling molecules, modulating precursor cell proliferation. The phosphatase function of Eya switches the function of Six1-Dach from repression to activation, causing transcriptional activation through recruitment of co-activators. The gene-specific recruitment of a co-activator with intrinsic phosphatase activity provides a molecular mechanism for activation of specific gene targets, including those regulating precursor cell proliferation and survival in mammalian organogenesis. PMID:14628042

  19. Mammalian Collection on Noah's Ark: The Effects of Beauty, Brain and Body Size

    PubMed Central

    Frynta, Daniel; Šimková, Olga; Lišková, Silvie; Landová, Eva

    2013-01-01

    The importance of today's zoological gardens as the so-called “Noah's Ark” grows as the natural habitat of many species quickly diminishes. Their potential to shelter a large amount of individuals from many species gives us the opportunity to reintroduce a species that disappeared in nature. However, the selection of animals to be kept in zoos worldwide is highly selective and depends on human decisions driven by both ecological criteria such as population size or vulnerability and audience-driven criteria such as aesthetic preferences. Thus we focused our study on the most commonly kept and bred animal class, the mammals, and we asked which factors affect various aspects of the mammalian collection of zoos. We analyzed the presence/absence, population size, and frequency per species of each of the 123 mammalian families kept in the worldwide zoo collection. Our aim was to explain these data using the human-perceived attractiveness of mammalian families, their body weight, relative brain size and species richness of the family. In agreement with various previous studies, we found that the body size and the attractiveness of mammals significantly affect all studied components of the mammalian collection of zoos. There is a higher probability of the large and attractive families to be kept. Once kept, these animals are presented in larger numbers in more zoos. On the contrary, the relative mean brain size only affects the primary selection whether to keep the family or not. It does not affect the zoo population size or the number of zoos that keep the family. PMID:23690985

  20. The effects of non-thermal plasmas on selected mammalian cells

    NASA Astrophysics Data System (ADS)

    Leduc, Mathieu

    Non-thermal plasma surface modifications have become indispensable processing steps in various industry and research sectors. Applications range from semiconductor processing to biotechnology and recently, plasma medicine. Non-thermal plasma sources have the advantage that a number of electron-driven chemical reactions can be produced while maintaining the gas (heavy species) temperature low, thus enabling the treatment of temperature-sensitive surfaces such as polymers, tissues and live cells. In the fields of biology and medicine, non-thermal plasmas have been primarily used for the deposition or modification of biocompatible polymers and for sterilization. Recently, non-thermal plasmas have been used to treat tissues and cells. A new field of research has emerged, Plasma Medicine, which studies the effects of non-thermal plasmas on cells and tissues for clinical applications. The Atmospheric Pressure Glow Discharge torch (APGD-t), a non-thermal plasma source, built in our laboratory was used to study the effects of non-thermal plasmas on mammalian cells. In its first application, we indirectly used the APGD-t to deposit a plasma-polymer on a glass surface and studied its effects on cultured cells. It was shown that the cells grew preferentially on the plasma-polymer, and their proliferation rate increased. The second application of the APGD-t was to further investigate previous observations of cell permeabilization obtained by plasma treatments and to apply non-thermal plasmas to cell transfection. It was demonstrated that the APGD-t is able to locally transfect adherent cells. We estimated the diameter of the pores created to be below 10 nm and that the pores remain open for less than 5 seconds. However, while investigating the mechanisms involved in cell transfection we observed that the use of higher gas flows in the negative controls (using the APGD-t but with the plasma turned off) also resulted in cell transfection. To further study this phenomena, we

  1. Comparative study of the effect of BPA and its selected analogues on hemoglobin oxidation, morphological alterations and hemolytic changes in human erythrocytes.

    PubMed

    Maćczak, Aneta; Bukowska, Bożena; Michałowicz, Jaromir

    2015-01-01

    Bisphenol A (BPA) has been shown to provoke many deleterious impacts on human health, and thus it is now successively substituted by BPA analogues, whose effects have been poorly investigated. Up to now, only one study has been realized to assess the effect of BPA on human erythrocytes, which showed its significant hemolytic and oxidative potential. Moreover, no study has been conducted to evaluate the effect of BPA analogues on red blood cells. The purpose of the present study was to compare the impact of BPA and its selected analogues such as bisphenol F (BPF), bisphenol S (BPS) and bisphenol AF (BPAF) on hemolytic and morphological changes and hemoglobin oxidation (methemoglobin formation) of human erythrocytes. The erythrocytes were incubated with different bisphenols concentrations ranging from 0.5 to 500μg/ml for 1, 4 and 24h. The compounds examined caused hemolysis in human erythrocytes with BPAF exhibiting the strongest effect. All bisphenols examined caused methemoglobin formation with BPA inducing the strongest oxidative potential. Flow cytometry analysis showed that all bisphenols (excluding BPS) induced significant changes in erythrocytes size. Changes in red blood cells shape were conducted using phase contrast microscopy. It was noticed that BPA and BPAF induced echinocytosis, BPF caused stomatocytosis, while BPS did not provoke significant changes in shape of red blood cells. Generally, the results showed that BPS, which is the main substituent of bisphenol A in polymers and thermal paper production, exhibited significantly lower disturbance of erythrocyte functions than BPA. PMID:26232583

  2. Effects of large mammalian herbivores and ant symbionts on condensed tannins of Acacia drepanolobium in Kenya.

    PubMed

    Ward, David; Young, Truman P

    2002-05-01

    Condensed tannins have been considered to be important inducible defenses against mammalian herbivory. We tested for differences in condensed tannin defenses in Acacia drepanolobium in Kenya over two years among different large mammalian herbivore treatments [total exclusion, antelope only, and megaherbivore (elephants and giraffes) + antelope] and with four different ant symbiont species on the trees. We predicted that (1) condensed tannin concentrations would be lowest in the mammal treatment with the lowest level of herbivory (total exclusion), (2) trees occupied by mutualist ants that protect the trees most aggressively would have lower levels of tannins, and (3) if chemical defense production is costly, there would be a trade-off between tannin concentrations, growth, and mechanical defenses. Mean tannin concentrations increased from total exclusion treatments to wildlife-only treatments to megaherbivore + antelope treatments. In 1997, condensed tannin concentrations were significantly lower in trees occupied by the ant Crematogaster nigriceps, the only ant species that actively removed axillary buds. Contrary to our prediction, trees occupied by ant species that protect the trees more aggressively against mammalian herbivores did not have lower overall levels of condensed tannins. There was no consistent evidence of a trade-off between tannin concentrations and growth rate, but there was a positive correlation between mean thorn length and mean tannin concentrations across species of ant inhabitants and across herbivore treatments in 1997. Contrary to our expectation, trees had higher tannin concentrations in the upper parts of the canopy where there is little herbivory by mammals. PMID:12049231

  3. Effects of Aerobic and Resistance Training on Hemoglobin A1c Levels in Patients With Type 2 Diabetes

    PubMed Central

    Church, Timothy S.; Blair, Steven N.; Cocreham, Shannon; Johannsen, Neil; Johnson, William; Kramer, Kimberly; Mikus, Catherine R.; Myers, Valerie; Nauta, Melissa; Rodarte, Ruben Q.; Sparks, Lauren; Thompson, Angela; Earnest, Conrad P.

    2011-01-01

    Context Exercise guidelines for individuals with diabetes include both aerobic and resistance training although few studies have directly examined this exercise combination. Objective To examine the benefits of aerobic training alone, resistance training alone, and a combination of both on hemoglobin A1c (HbA1c) in individuals with type 2 diabetes. Design, Setting, and Participants A randomized controlled trial in which 262 sedentary men and women in Louisiana with type 2 diabetes and HbA1c levels of 6.5% or higher were enrolled in the 9-month exercise program between April 2007 and August 2009. Intervention Forty-one participants were assigned to the nonexercise control group, 73 to resistance training 3 days a week, 72 to aerobic exercise in which they expended 12 kcal/kg per week; and 76 to combined aerobic and resistance training in which they expended 10 kcal/kg per week and engaged in resistance training twice a week. Main Outcome Change in HbA1c level. Secondary outcomes included measures of anthropometry and fitness. Results The study included 63.0% women and 47.3% nonwhite participants who were a mean (SD) age of 55.8 years (8.7 years) with a baseline HbA1c level of 7.7% (1.0%). Compared with the control group, the absolute mean change in HbA1c in the combination training exercise group was −0.34% (95% confidence interval “CI”, −0.64% to −0.03%; P=.03). The mean changes in HbA1c were not statistically significant in either the resistance training (−0.16%; 95% CI, −0.46% to 0.15%; P=.32) or the aerobic (−0.24%; 95% CI, −0.55% to 0.07%; P=.14) groups compared with the control group. Only the combination exercise group improved maximum oxygen consumption (mean, 1.0 mL/kg per min; 95% CI, 0.5-1.5, P<.05) compared with the control group. All exercise groups reduced waist circumference from −1.9 to −2.8 cm compared with the control group. The resistance training group lost a mean of −1.4 kg fat mass (95% CI, −2.0 to −0.7 kg; P<.05

  4. Evaluation of activity of erythrocyte pyrimidine 5'-nucleotidase (P5N) in lead exposed workers: with focus on the effect on hemoglobin.

    PubMed

    Kim, Yangho; Yoo, Cheol-In; Lee, Choong Ryeol; Lee, Ji Ho; Lee, Hun; Kim, Sung-Ryul; Chang, Seoung-Hoon; Lee, Won-Jin; Hwang, Cheon-Hyun; Lee, Young Hwan

    2002-01-01

    Anemia that accompanies lead poisoning is in part the result of various inhibitory effects of lead on heme biosynthesis. Lead also increases the rate of red blood cell destruction due to the profoundly depressed activities of erythrocyte pyrimidine 5'-nucleotidase (P5N) activities. We studied parameters of the two metabolic pathways in the workers exposed to lead to evaluate P5N in the lead exposed workers and which pathway has an effect on hemoglobin (Hb) level. 29 male workers in the secondary lead smelting as high exposure group, 46 male workers in the manufacturer of inorganic pigment as low exposure group and 56 clerical male workers from another plant as non-exposed group were studied. Activity of P5N, lead concentration in whole blood (PbB), zinc protoporphyrin (ZPP), Hb, and ferritin were determined. In the present study, P5N activity of nucleotide metabolic pathway correlated with Hb after controlling indices of iron deficiency anemia (ferritin) occurring concurrently and heme biosynthetic pathway (ZPP) in the high exposure group while heme biosynthetic pathway did not correlate with Hb after controlling other two variables in exposure groups. These findings suggest that P5N rather than heme biosynthetic pathway has a major effect on Hb level even in workers without manifest hemolytic anemia. PMID:11926511

  5. High-fat diet-induced met-hemoglobin formation in rats prone (WOKW) or resistant (DA) to the metabolic syndrome: effect of CoQ10 supplementation.

    PubMed

    Orlando, Patrick; Silvestri, Sonia; Brugè, Francesca; Tiano, Luca; Kloting, Ingrid; Falcioni, Giancarlo; Polidori, Carlo

    2014-01-01

    The aim of this study was to evaluate the effects of a high-fat diet (HFD) on oxidative indexes in WistarOttawaKarlsburg W (WOKW) rats used as a model of metabolic syndrome in comparison with Dark Agouti (DA) rats used as a control strain. This syndrome is defined by the occurrence of two or more risk factors including obesity, hypertension, dyslipidemia, and insulin resistance. Forty rats were used in the study and the effect of HFD was evaluated in terms of body weight and both hemoglobin and CoQ oxidative status. Moreover, 16 rats (8 of each strain) were supplemented with 3 mg/100 g b.w. of CoQ10 for 1 month in view of its beneficial properties in cardiovascular disease due to its antioxidant activity in the lipid environment. HFD promoted an increase in body weight, in particular in WOKW males, and in the methemoglobin (met-Hb) index in both strains. Moreover, HFD promoted endogenous CoQ10 oxidation. CoQ10 supplementation was able to efficiently counteract the HFD pro-oxidant effects, preventing met-Hb formation and CoQ oxidation. PMID:25428841

  6. Simple, Efficient, and Cost-Effective Multiplex Genotyping with Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Hemoglobin Beta Gene Mutations

    PubMed Central

    Thongnoppakhun, Wanna; Jiemsup, Surasak; Yongkiettrakul, Suganya; Kanjanakorn, Chompunut; Limwongse, Chanin; Wilairat, Prapon; Vanasant, Anusorn; Rungroj, Nanyawan; Yenchitsomanus, Pa-thai

    2009-01-01

    A number of common mutations in the hemoglobin β (HBB) gene cause β-thalassemia, a monogenic disease with high prevalence in certain ethnic groups. As there are 30 HBB variants that cover more than 99.5% of HBB mutant alleles in the Thai population, an efficient and cost-effective screening method is required. Three panels of multiplex primer extensions, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were developed. The first panel simultaneously detected 21 of the most common HBB mutations, while the second panel screened nine additional mutations, plus seven of the first panel for confirmation; the third panel was used to confirm three HBB mutations, yielding a 9-Da mass difference that could not be clearly distinguished by the previous two panels. The protocol was both standardized using 40 samples of known genotypes and subsequently validated in 162 blind samples with 27 different genotypes (including a normal control), comprising heterozygous, compound heterozygous, and homozygous β-thalassemia. Results were in complete agreement with those from the genotyping results, conducted using three different methods overall. The method developed here permitted the detection of mutations missed using a single genotyping procedure. The procedure should serve as the method of choice for HBB genotyping due to its accuracy, sensitivity, and cost-effectiveness, and can be applied to studies of other gene variants that are potential disease biomarkers. PMID:19460936

  7. Comparative study on thiol drugs' effect on tert-butyl hydroperoxide induced luminol chemiluminescence in human erythrocyte lysate and hemoglobin oxidation.

    PubMed

    Sajewicz, Waldemar; Zalewska, Marta; Milnerowicz, Halina

    2015-02-01

    The current studies have investigated the effect of heterocyclic drugs with the single thiol group (thiamazole, mercaptopurine) and dithiol aliphatic drugs (dimercaptosuccinic acid, dithiothreitol) under oxidative stress conditions, using tert-butyl hydroperoxide (t-BuOOH), in human erythrocyte lysate with the luminol-enhanced chemiluminescence technique. Knowing that oxidative processes induced by t-BuOOH are triggered by (oxy)hemoglobin (Hb), the effect of different thiol drugs (RSH) on isolated human Hb oxidation to methemoglobin (MHb) and hemichromes (HChr) was further considered. Three types of chemiluminescence curves, fitting to logistic-exponential model, have been revealed under influence of RSH. Structure of the data (MHb and HChr production, and free radical activity of RSH) in Principal Component Analysis visualization and kinetic profiles of chemiluminescence integrate information in terms of the diversity of RSH reaction mechanisms depending on the specific molecular context of the given thiol: aliphatic or aromatic nature as well as the number and position of the -SH groups in the molecule. The study conducted in presented in vitro systems indicates the potential role of thiol drugs mediated toxicity in an oxidative stress dependent mechanism. PMID:25308193

  8. On Coupling Models Using Model-Checking: Effects of Irinotecan Injections on the Mammalian Cell Cycle

    NASA Astrophysics Data System (ADS)

    de Maria, Elisabetta; Fages, François; Soliman, Sylvain

    In systems biology, the number of models of cellular processes increases rapidly, but re-using models in different contexts or for different questions remains a challenging issue. In this paper, we show how the validation of a coupled model and the optimization of its parameters with respect to biological properties formalized in temporal logics, can be done automatically by model-checking. More specifically, we illustrate this approach with the coupling of existing models of the mammalian cell cycle, the p53-based DNA-damage repair network, and irinotecan metabolism, with respect to the biological properties of this anticancer drug.

  9. A cost-effective approach to microporate mammalian cells with the Neon Transfection System.

    PubMed

    Brees, Chantal; Fransen, Marc

    2014-12-01

    Electroporation is one of the most efficient nonviral methods for transferring exogenous DNA into mammalian cells. However, the relatively high costs of electroporation kits and reagents temper the routine use of this fast and easy to perform technique in many laboratories. Several years ago, a new flexible and easy to operate electroporation device was launched under the name Neon Transfection System. This device uses specialized pipette tips containing gold-plated electrodes as electroporation chamber. Here we report a protocol to regenerate these expensive tips as well as some other Neon kit accessories, thereby reducing the cost of electroporation at least 10-fold. PMID:25172131

  10. Seed-specific elevation of non-symbiotic hemoglobin AtHb1: beneficial effects and underlying molecular networks in Arabidopsis thaliana

    PubMed Central

    2011-01-01

    Background Seed metabolism is dynamically adjusted to oxygen availability. Processes underlying this auto-regulatory mechanism control the metabolic efficiency under changing environmental conditions/stress and thus, are of relevance for biotechnology. Non-symbiotic hemoglobins have been shown to be involved in scavenging of nitric oxide (NO) molecules, which play a key role in oxygen sensing/balancing in plants and animals. Steady state levels of NO are suggested to act as an integrator of energy and carbon metabolism and subsequently, influence energy-demanding growth processes in plants. Results We aimed to manipulate oxygen stress perception in Arabidopsis seeds by overexpression of the non-symbiotic hemoglobin AtHb1 under the control of the seed-specific LeB4 promoter. Seeds of transgenic AtHb1 plants did not accumulate NO under transient hypoxic stress treatment, showed higher respiratory activity and energy status compared to the wild type. Global transcript profiling of seeds/siliques from wild type and transgenic plants under transient hypoxic and standard conditions using Affymetrix ATH1 chips revealed a rearrangement of transcriptional networks by AtHb1 overexpression under non-stress conditions, which included the induction of transcripts related to ABA synthesis and signaling, receptor-like kinase- and MAP kinase-mediated signaling pathways, WRKY transcription factors and ROS metabolism. Overexpression of AtHb1 shifted seed metabolism to an energy-saving mode with the most prominent alterations occurring in cell wall metabolism. In combination with metabolite and physiological measurements, these data demonstrate that AtHb1 overexpression improves oxidative stress tolerance compared to the wild type where a strong transcriptional and metabolic reconfiguration was observed in the hypoxic response. Conclusions AtHb1 overexpression mediates a pre-adaptation to hypoxic stress. Under transient stress conditions transgenic seeds were able to keep low levels

  11. More Refined Experiments with Hemoglobin.

    ERIC Educational Resources Information Center

    Morin, Phillippe

    1985-01-01

    Discusses materials needed, procedures used, and typical results obtained for experiments designed to make a numerical stepwise study of the oxygenation of hemoglobin, myoglobin, and other oxygen carriers. (JN)

  12. Biophysical basis of hypoxic radioprotection by deoxygenated dextran-hemoglobin

    SciTech Connect

    Wong, J.T.; Hill, R.P.

    1986-08-01

    Perfusion with deoxygenated dextran-hemoglobin provides an effective method for inducing hypoxic radioprotection of normal tissues during radiation treatment of tumors. In this study, the dependence of P50, the half-saturation pressure of oxygen binding to dextran-hemoglobin, was analyzed as a function of solution temperature and pH. The variation of attainable radioprotection with P50, and with the amount of collateral blood entering into the perfused region, was calculated. Upon perfusion of canine gracilis muscle with deoxygenated dextran-hemoglobin, a rapid onset of extensive venous hypoxia was observed.

  13. Effects of maleimide-polyethylene glycol-modified human hemoglobin (MP4) on tissue necrosis in SKH1-hr hairless mice

    PubMed Central

    2009-01-01

    Objective Tissue hypoxia after blood loss, replantation and flap reperfusion remains a challenging task in surgery. Normovolemic hemodilution improves hemorheologic properties without increasing oxygen carrying capacity. Red blood cell transfusion is the current standard of treatment with its attendant risks. The aim of this study was to investigate the potential of the chemically modified hemoglobin, MP4, to reduce skin flap necrosis and its effect on selected blood markers and kidneys. Materials and methods Tissue ischemia was induced in the ear of hairless mice (n = 26). Hemodilution was performed by replacing one third of blood volume with the similar amount of MP4, dextran, or blood. The extent of non-perfused tissue was assessed by intravital fluorescent microscopy. Results Of all groups, MP4 showed the smallest area of no perfusion (in percentage of the ear ± SEM: 16.3% ± 2.4), the control group the largest (22.4% ± 3.5). Leukocytes showed a significant increase in the MP4 and dextran group (from 8.7 to 13.6 respectively 15.4*109/l). On histology no changes of the kidneys could be observed. Conclusion MP4 causes an increase of leukocytes, improves the oxygen supply of the tissue and shows no evidence of renal impairment. PMID:19380283

  14. Haptoglobin preferentially binds β but not α subunits cross-linked hemoglobin tetramers with minimal effects on ligand and redox reactions.

    PubMed

    Jia, Yiping; Wood, Francine; Buehler, Paul W; Alayash, Abdu I

    2013-01-01

    Human hemoglobin (Hb) and haptoglobin (Hp) exhibit an extremely high affinity for each other, and the dissociation of Hb tetramers into dimers is generally believed to be a prerequisite for complex formation. We have investigated Hp interactions with native Hb, αα, and ββ cross-linked Hb (ααXLHb and ββXLHb, respectively), and rapid kinetics of Hb ligand binding as well as the redox reactivity in the presence of and absence of Hp. The quaternary conformation of ββ subunit cross-linking results in a higher binding affinity than that of αα subunit cross-linked Hb. However, ββ cross-linked Hb exhibits a four fold slower association rate constant than the reaction rate of unmodified Hb with Hp. The Hp contact regions in the Hb dimer interfaces appear to be more readily exposed in ββXLHb than ααXLHb. In addition, apart from the functional changes caused by chemical modifications, Hp binding does not induce appreciable effects on the ligand binding and redox reactions of ββXLHb. Our findings may therefore be relevant to the design of safer Hb-based oxygen therapeutics by utilizing this preferential binding of ββXLHb to Hp. This may ultimately provide a safe oxidative inactivation and clearance pathway for chemically modified Hbs in circulation. PMID:23555800

  15. Two-photon excited fluorescence emission from hemoglobin

    NASA Astrophysics Data System (ADS)

    Sun, Qiqi; Zeng, Yan; Zhang, Wei; Zheng, Wei; Luo, Yi; Qu, Jianan Y.

    2015-03-01

    Hemoglobin, one of the most important proteins in blood, is responsible for oxygen transportation in almost all vertebrates. Recently, we discovered two-photon excited hemoglobin fluorescence and achieved label-free microvascular imaging based on the hemoglobin fluorescence. However, the mechanism of its fluorescence emission still remains unknown. In this work, we studied the two-photon excited fluorescence properties of the hemoglobin subunits, heme/hemin (iron (II)/(III) protoporphyrin IX) and globin. We first studied the properties of heme and the similar spectral and temporal characteristics of heme and hemoglobin fluorescence provide strong evidence that heme is the fluorophore in hemoglobin. Then we studied the fluorescence properties of hemin, globin and methemoglobin, and found that the hemin may have the main effect on the methemoglobin fluorescence and that globin has tryptophan fluorescence like other proteins. Finally, since heme is a centrosymmetric molecule, that the Soret band fluorescence of heme and hemoglobin was not observed in the single photon process in the previous study may be due to the parity selection rule. The discovery of heme two-photon excited fluorescence may open a new window for heme biology research, since heme as a cofactor of hemoprotein has many functions, including chemical catalysis, electron transfer and diatomic gases transportation.

  16. The effect of silver nanoparticles and silver ions on mammalian and plant cells in vitro.

    PubMed

    Jiravova, Jana; Tomankova, Katerina Barton; Harvanova, Monika; Malina, Lukas; Malohlava, Jakub; Luhova, Lenka; Panacek, Ales; Manisova, Barbora; Kolarova, Hana

    2016-10-01

    Silver nanoparticles (AgNPs) are the most frequently applied nanomaterials. In our experiments, we tested AgNPs (size 27 nm) manufactured by the Tollens process. Physico-chemical methods (TEM, DLS, AFM and spectrophotometry) were used for characterization and imaging of AgNPs. The effects of AgNPs and Ag(+) were studied in two experimental models (plant and mammalian cells). Human keratinocytes (SVK14) and mouse fibroblasts (NIH3T3) cell lines were selected to evaluate the cytotoxicity and genotoxicity effect on mammalian cells. Higher sensitivity to AgNPs and Ag(+) was observed in NIH3T3 than in SVK14 cells. AgNPs accumulated in the nucleus of NIH3T3 cells, caused DNA damage and increased the number of apoptotic and necrotic cells. Three genotypes of Solanum spp. (S. lycopersicum cv. Amateur, S. chmielewskii, S. habrochaites) were selected to test the toxicity of AgNPs and Ag(+) on the plant cells. The highest values of peroxidase activity and lipid peroxidation were recorded after the treatment of S. habrochaites genotype with AgNPs. Increased ROS levels were likely the reason for observed damaged membranes in S. habrochaites. We found that the cytotoxic and genotoxic effects of AgNPs depend not only on the characteristics of nanoparticles, but also on the type of cells that are treated with AgNPs. PMID:27456126

  17. Effects of track structure and cell inactivation on the calculation of heavy ion mutation rates in mammalian cells

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Shavers, M. R.; Katz, R.

    1996-01-01

    It has long been suggested that inactivation severely effects the probability of mutation by heavy ions in mammalian cells. Heavy ions have observed cross sections of inactivation that approach and sometimes exceed the geometric size of the cell nucleus in mammalian cells. In the track structure model of Katz the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated using the dose-response of the system to gamma-rays and the radial dose of the ions and may be equal to unity at small impact parameters for some ions. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections from heavy ions in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT mutations in Chinese hamster cells and good agreement is found. The resulting calculations qualitatively show that mutation cross sections for heavy ions display minima at velocities where inactivation cross sections display maxima. Also, calculations show the high probability of mutation by relativistic heavy ions due to the radial extension of ions track from delta-rays in agreement with the microlesion concept. The effects of inactivation on mutations rates make it very unlikely that a single parameter such as LET or Z*2/beta(2) can be used to specify radiation quality for heavy ion bombardment.

  18. Mammalian development in space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  19. Study of the Effects of Ultrasonic Waves on the Reproductive Integrity of Mammalian Cells Cultured in Vitro

    NASA Technical Reports Server (NTRS)

    Martins, B. I.

    1971-01-01

    The effects of monochromatic ultrasonic waves of 0.1, 0.5, 1.0, 2.0 and, 3.3 MHz frequency on the colony-forming ability of mammalian cells (M3-1,V79, Chang's and T-1) cultured in vitro have been studied to determine the nature of the action of ultrasonic energy on biological systems at the cellular level. The combined effect of ultrasound and X-rays has also been studied. It is concluded: (1) Ultrasonic irradiation causes both lethal and sublethal damage. (2) There is a threshold dose rate for lethal effects. (3) The effectiveness of ultrasonic waves in causing cell death probably depends on the frequency and the amplitude of the waves for a given cell line, indicating a possible resonance phenomenon.

  20. Development of an immunoassay to detect benzene adducts in hemoglobin

    SciTech Connect

    Grassman, J.A.

    1993-01-01

    The purpose of this project was to develop an immunoassay to detect the adducts formed in hemoglobin after exposure to benzene, which is known to cause bone marrow degeneration and acute myelogenous leukemia. The use of benzene-adduct detection as a biological monitoring method would permit measurement of low exposures and exposures sustained weeks earlier. The reactivity of hydroquinone, an important benzene metabolite, with blood proteins and amino acids was investigated in order to decide which antigens and analytes were likely to be suitable for immunoassay development. The second section determined the combination of benzene-metabolite and antigen need to produce an immunoassay with the requisite low detection limit and specificity. The immunoassays with the best performance were tested on hemoglobin from benzene-exposed mice. In vitro studies showed that hydroquinone efficiently formed adducts with erythrocyte membranes and hemoglobin but not with albumin. Adduction efficiency was greater in incubations using purified hemoglobin than whole blood. Cysteine accounted for 15 to 27% of the adducts formed by hydroquinone. The site of the other adducts were not identified although there was evidence that the hemoglobin heme was adducted. Adducts were found on only 1 of the 2 globin chains. Tryptic digestion of the globin failed to associate the adducts with a specific peptide. Antigens made from hydroquinone-adducted hemoglobin but not hydroquinone-adducted cysteines coupled to carrier proteins effectively elicited adduct-specific antibodies. Interference due to reactivity to hemoglobin was controlled by using uniform quantities of hemoglobin in all wells. The mid-range of the best assays were approximately 12 pmoles HQ per well. Antibodies directed toward hemoglobin adducted with the benzene metabolites phenol, catechol and 1,2,4-trihydroxybenzene were also made. The performance of the anti-1,2,4-trihydroxybenzene were suitable for quantitative immunoassays.

  1. Studies on the effects of microgravity on the ultrastructure and functions of cultured mammalian cells (L-6)

    NASA Technical Reports Server (NTRS)

    Sato, Atsushige

    1993-01-01

    The human body consists of 10(exp 13) cells. Understanding the mechanisms by which the cells sense and respond to microgravity is very important as the basis for space biology. The cells were originally isolated aseptically from mammalian bodies and cultured in vitro. A set of cell culture vessels was developed to be applied to three kinds of space flight experiments. Experiment 1 is to practice the cell culture technique in a space laboratory and obtain favorable growth of the cells. Aseptic handling in tryspin treatment and medium renewal will be tested. The cells, following space flight, will be returned to the ground and cultured continuously to investigate the effects of space flight on the cellular characteristics. Experiment 2 is to examine the cytoskeletal structure of the cells under microgravity conditions. The cytoskeletal structure plays essential roles in the morphological construction, movements, axonal transport, and differentiation of the cells. The cells fixed during space flight will be returned and the cytoskeleton and ultrastructure observed using electron microscopy and fluorescence microscopy. Experiment 3 is to study the cellular productivity of valuable substances. The waste medium harvested during space flight are returned and quantitated for the cellular products. The effects of microgravity on mammalian cells will be clarified from the various aspects.

  2. Bisphenol A Effects on Mammalian Oogenesis and Epigenetic Integrity of Oocytes: A Case Study Exploring Risks of Endocrine Disrupting Chemicals

    PubMed Central

    Eichenlaub-Ritter, Ursula; Pacchierotti, Francesca

    2015-01-01

    Bisphenol A (BPA), originally developed as a synthetic oestrogen, is nowadays extensively used in the production of polymeric plastics. Under harsh conditions, these plastics may release BPA, which then can leach into the environment. Detectable concentrations of BPA have been measured in most analysed samples of human serum, plasma, or urine, as well as in follicular fluid, foetal serum, and amniotic fluid. Here we summarize the evidence about adverse BPA effects on the genetic and epigenetic integrity of mammalian oocytes. We conclude that increasing evidence supports the notion that low BPA concentrations adversely affect the epigenome of mammalian female germ cells, with functional consequences on gene expression, chromosome dynamics in meiosis, and oocyte development. Specific time windows, during which profound chromatin remodelling occurs and maternal imprints are established or protected, appear particularly vulnerable to epigenetic deregulation by BPA. Transgenerational effects have been also observed in the offspring of BPA-treated rodents, although the epigenetic mechanisms of inheritance still need to be clarified. The relevance of these findings for human health protection still needs to be fully assessed, but they warrant further investigation in both experimental models and humans. PMID:26339634

  3. Overexpression of CHOP alone and in combination with chaperones is effective in improving antibody production in mammalian cells.

    PubMed

    Nishimiya, Daisuke; Mano, Takashi; Miyadai, Kenji; Yoshida, Hiroko; Takahashi, Tohru

    2013-03-01

    Secretory capacities including folding and assembly are believed to be limiting factors in the establishment of mammalian cell lines producing high levels of recombinant therapeutic proteins. To achieve industrial success, it is also important to improve protein folding, assembly, and secretory processes in combination with increasing transcription and translation. Here, we identified the expression of CHOP/Gadd153 and GRP78, which are unfolded protein response (UPR)-related genes, correlated with recombinant antibody production in stable CHO cells. Subsequently, CHOP overexpression resulted in increasing recombinant antibody production in some mammalian cell lines, and in addition a threefold further enhancement was obtained by combining expression with UPR-related genes or ER chaperones in transient assays. Overexpression of CHOP had no effect on the biochemical characteristics of the product. These results suggest overexpression of CHOP and its combinations may be an effective method to efficiently select a single cell line with a high level of antibody production in the development of cell lines for manufacturing. PMID:22926643

  4. Effect of the distal residues on the vibrational modes of the Fe-CO bond in hemoglobin studied by protein engineering

    SciTech Connect

    Lin, Shunhua; Yu, Naiteng ); Tame, J.; Shih, D.; Renaud, J.P.; Pagnier, J.; Nagai, Kiyoshi )

    1990-06-12

    Using an Escherichia coli gene expression system, the authors have engineered human hemoglobin (Hb) mutants having the distal histidine (E7) and valine (E11) residues replaced by other amino acids. The interaction between the mutated distal residues and bound carbon monoxide has been studied by Soret-excited resonance Raman spectroscopy. The replacement of Val-E11 by Ala, Leu, Ile, and Met has no effect on the {nu}(C-O), {nu}(Fe-CO) stretching or {delta}(Fe-C-O) bending frequencies in both the {alpha} and {beta} subunits of Hb, although some of these mutations affect the CO affinity as much as 40-fold. The strain imposed on the protein by the binding of CO is not localized in the Fe-CO bond and is probably distributed among many bonds in the globin. The replacement of His-E7 by Val or Gly brings the stretching frequencies {nu}(Fe-CO) and {nu}(C-O) close to those of free heme complexes. In contrast, the substitution of His-E7 by Gln, which is flexible and polar, produces no effects on the resonance Raman spectrum of either {alpha}- or {beta}-globin. The replacement of His-E7 of {beta}-globin by Phe shows the same effect as replacement by Gly or Val. Therefore, the steric bulk of the distal residues is not the primary determinant of the Fe-CO ligand vibrational frequencies. The ability of both histidine and glutamine to alter the {nu}(C-O), {nu}(Fe-CO), or {delta}(Fe-C-O) frequencies may be attributed to the polar nature of their side chains which can interact with bound CO in a similar manner.

  5. Effect of the distal residues on the vibrational modes of the Fe-CO bond in hemoglobin studied by protein engineering.

    PubMed

    Lin, S H; Yu, N T; Tame, J; Shih, D; Renaud, J P; Pagnier, J; Nagai, K

    1990-06-12

    Using an Escherichia coli gene expression system, we have engineered human hemoglobin (Hb) mutants having the distal histidine (E7) and valine (E11) residues replaced by other amino acids. The interaction between the mutated distal residues and bound carbon monoxide has been studied by Soret-excited resonance Raman spectroscopy. The replacement of Val-E11 by Ala, Leu, Ile, and Met has no effect on the v(C-O), v(Fe-CO) stretching or delta(Fe-C-O) bending frequencies in both the alpha and beta subunits of Hb, although some of these mutations affect the CO affinity as much as 40-fold. The strain imposed on the protein by the binding of CO is not localized in the Fe-CO bond and is probably distributed among many bonds in the globin. The replacement of His-E7 by Val or Gly brings the stretching frequencies v(Fe-CO) and v(C-O) close to those of free heme complexes. In contrast, the substitution of His-E7 by Gln, which is flexible and polar, produces no effects on the resonance Raman spectrum of either alpha- or beta-globin. The replacement of His-E7 of beta-globin by Phe shows the same effect as replacement by Gly or Val. Therefore, the steric bulk of the distal residues is not the primary determinant of the Fe-CO ligand vibrational frequencies. The ability of both histidine and glutamine to alter the v(C-O), v(Fe-CO), or delta(Fe-C-O) frequencies may be attributed to the polar nature of their side chains which can interact with bound CO in a similar manner. PMID:2201408

  6. The evolution of Root effect hemoglobins in the absence of intracellular pH protection of the red blood cell: insights from primitive fishes.

    PubMed

    Regan, Matthew D; Brauner, Colin J

    2010-06-01

    The Root effect, a reduction in blood oxygen (O(2)) carrying capacity at low pH, is used by many fish species to maximize O(2) delivery to the eye and swimbladder. It is believed to have evolved in the basal actinopterygian lineage of fishes, species that lack the intracellular pH (pH(i)) protection mechanism of more derived species' red blood cells (i.e., adrenergically activated Na(+)/H(+) exchangers; betaNHE). These basal actinopterygians may consequently experience a reduction in blood O(2) carrying capacity, and thus O(2) uptake at the gills, during hypoxia- and exercise-induced generalized blood acidoses. We analyzed the hemoglobins (Hbs) of seven species within this group [American paddlefish (Polyodon spathula), white sturgeon (Acipenser transmontanus), spotted gar (Lepisosteus oculatus), alligator gar (Atractosteus spatula), bowfin (Amia calva), mooneye (Hiodon tergisus), and pirarucu (Arapaima gigas)] for their Root effect characteristics so as to test the hypothesis of the Root effect onset pH value being lower than those pH values expected during a generalized acidosis in vivo. Analysis of the haemolysates revealed that, although each of the seven species displayed Root effects (ranging from 7.3 to 40.5% desaturation of Hb with O(2), i.e., Hb O(2) desaturation), the Root effect onset pH values of all species are considerably lower (ranging from pH 5.94 to 7.04) than the maximum blood acidoses that would be expected following hypoxia or exercise (pH(i) 7.15-7.3). Thus, although these primitive fishes possess Hbs with large Root effects and lack any significant red blood cell betaNHE activity, it is unlikely that the possession of a Root effect would impair O(2) uptake at the gills following a generalized acidosis of the blood. As well, it was shown that both maximal Root effect and Root effect onset pH values increased significantly in bowfin over those of the more basal species, toward values of similar magnitude to those of most of the more derived

  7. Effect of Tumor Necrosis Factor-Alpha on Erythropoietin- and Erythropoietin Receptor-Induced Erythroid Progenitor Cell Proliferation in β-Thalassemia/Hemoglobin E Patients

    PubMed Central

    Tanyong, Dalina I; Panichob, Prapaporn; Kheansaard, Wasinee; Fucharoen, Suthat

    2015-01-01

    Objective: Thalassemia is one of the genetic diseases that cause anemia and ineffective erythropoiesis. Increased levels of several inflammatory cytokines have been reported in β-thalassemia and might contribute to ineffective erythropoiesis. However, the mechanism by which tumor necrosis factor-alpha (TNF-α) is involved in ineffective erythropoiesis in thalassemic patients remains unclear. The objective of this study is to investigate the effect of TNF-α on the erythropoietin (EPO) and erythropoietin receptor (EPOR) expression involved in proliferation of β-thalassemia/hemoglobin (Hb) E erythroid progenitor cells compared with cells from healthy subjects. Materials and Methods: CD34-positive cells were isolated from heparinized blood by using the EasySep® CD34 selection kit. Cells were then cultured with suitable culture medium in various concentrations of EPO for 14 days. The effect of TNF-α on percent cell viability was analyzed by trypan blue staining. In addition, the percentage of apoptosis and levels of EPOR protein were measured by flow cytometry. Results: Upon EPO treatment, a higher cell number was observed for erythroid progenitor cells from both healthy participants and β-thalassemia/Hb E patients. However, a reduction of apoptosis was found in EPO-treated cells especially for β-thalassemia/Hb E patients. Interestingly, TNF-α caused higher levels of cell apoptosis and lower levels of EPOR protein in thalassemic erythroid progenitor cells. Conclusion: TNF-α caused a reduction in the level of EPOR protein and EPO-induced erythroid progenitor cell proliferation. It is possible that TNF-α could be involved in the mechanism of ineffective erythropoiesis in β-thalassemia/Hb E patients. PMID:26376749

  8. Effects of Total Dose Infusion of Iron Intravenously in Patients With Acute Heart Failure and Anemia (Hemoglobin < 13 g/dl).

    PubMed

    Kaminsky, Bonnie M; Pogue, Kristen T; Hanigan, Sarah; Koelling, Todd M; Dorsch, Michael P

    2016-06-15

    Iron deficiency is common in heart failure (HF), and intravenous (IV) iron therapy has been associated with improved clinical status in ambulatory patients with HF. There are limited data to support the safety and efficacy of IV iron administration in patients with acute HF. This was a retrospective cohort study of patients admitted to the University of Michigan Health System for HF with low iron studies during admission. Patients were grouped based on the receipt of IV iron therapy. Study outcomes included change in hemoglobin, 30-day readmission, and adverse events. Forty-four patients who received IV iron and 128 control patients were identified. The mean dose of IV iron received was 1,057 (±336) mg. IV iron resulted in a significantly greater increase in hemoglobin over time (p = 0.0001). The mean change in hemoglobin in the iron and control groups was 0.74 g/dl and 0.01 g/dl at day 7 and 2.61 g/dl and 0.23 g/dl at day 28, respectively. Thirty-day readmission rates were 30% and 22% for patients in the iron and control groups, respectively (p = 0.2787). In conclusion, total dose infusion IV iron is well tolerated and associated with significant improvement in hemoglobin in acute HF. PMID:27161817

  9. The Effects of 6 Isocaloric Meals Pattern on Blood Lipid Profile, Glucose, Hemoglobin A1c, Insulin and Malondialdehyde in Type 2 Diabetic Patients: A Randomized Clinical Trial

    PubMed Central

    Salehi, Moosa; Kazemi, Asma; Hasan Zadeh, Jafar

    2014-01-01

    Background: The present clinical trial study aims at investigating the effect of daily energy intake in 6 isocaloric meals in comparison with the current meal pattern (3 meals and 2 small snacks per day) on type 2 diabetes risk markers in diabetes during 3-month period. Methods: Eighty four type 2 diabetes patients were randomly divided into 6 isocaloric meal diet or a balanced diet (3 meals and 2 snacks previous meal pattern). The planned reduced calorie diets for both groups were identical except for the meal pattern. Blood samples were analyzed before and after the investigation for fasting blood sugar (FBS), two-hour post-prandial glucose (2hPP), insulin, hemoglobin A1c (HbA1c), total cholesterol, triglyceride, HDL-C, LDL-C, and molondialdehyde (MDA) concentrations. Results: HbA1c (P=0.00) and body mass index (BMI) (P=0.04) values decreased significantly in the 6 isocaloric meal pattern compared with the controls. There were no significant differences in fasting serum glucose (P=0.09), insulin (P=0.65), total cholesterol (P=0.32), LDL-C (P=0.43), HDL-C (P=0.40) cholesterol, triglyceride (P=0.40), MDA (P=0.13) and 2hPP serum glucose (P=0.30) concentrations between the 6 isocaloric meal and tradition meal pattern. Conclusion: Six isocaloric meal pattern in comparison with the current meal pattern led to weight loss and improved glycemic control. Serum lipid profile and MDA did not change significantly. Trial Registration Number: IRCT201205179780N1 PMID:25242841

  10. Effects of Age, Hemoglobin Type and Parasite Strain on IgG Recognition of Plasmodium falciparum–Infected Erythrocytes in Malian Children

    PubMed Central

    Zeituni, Amir E.; Miura, Kazutoyo; Diakite, Mahamadou; Doumbia, Saibou; Moretz, Samuel E.; Diouf, Ababacar; Tullo, Gregory; Lopera-Mesa, Tatiana M.; Bess, Cameron D.; Mita-Mendoza, Neida K.; Anderson, Jennifer M.; Fairhurst, Rick M.; Long, Carole A.

    2013-01-01

    Background Naturally-acquired antibody responses to antigens on the surface of Plasmodium falciparum-infected red blood cells (iRBCs) have been implicated in antimalarial immunity. To profile the development of this immunity, we have been studying a cohort of Malian children living in an area with intense seasonal malaria transmission. Methodology/Principal Findings We collected plasma from a sub-cohort of 176 Malian children aged 3-11 years, before (May) and after (December) the 2009 transmission season. To measure the effect of hemoglobin (Hb) type on antibody responses, we enrolled age-matched HbAA, HbAS and HbAC children. To quantify antibody recognition of iRBCs, we designed a high-throughput flow cytometry assay to rapidly test numerous plasma samples against multiple parasite strains. We evaluated antibody reactivity of each plasma sample to 3 laboratory-adapted parasite lines (FCR3, D10, PC26) and 4 short-term-cultured parasite isolates (2 Malian and 2 Cambodian). 97% of children recognized ≥1 parasite strain and the proportion of IgG responders increased significantly during the transmission season for most parasite strains. Both strain-specific and strain-transcending IgG responses were detected, and varied by age, Hb type and parasite strain. In addition, the breadth of IgG responses to parasite strains increased with age in HbAA, but not in HbAS or HbAC, children. Conclusions/Significance Our assay detects both strain-specific and strain-transcending IgG responses to iRBCs. The magnitude and breadth of these responses varied not only by age, but also by Hb type and parasite strain used. These findings indicate that studies of acquired humoral immunity should account for Hb type and test large numbers of diverse parasite strains. PMID:24124591

  11. Effect of Metformin Glycinate on Glycated Hemoglobin A1c Concentration and Insulin Sensitivity in Drug-Naive Adult Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Martínez-Abundis, Esperanza; Robles-Cervantes, José A.; Ramos-Zavala, Maria G.; Barrera-Durán, Carmelita; González-Canudas, Jorge

    2012-01-01

    Abstract Aim This study evaluated the effect of metformin glycinate on glycated hemoglobin A1c (A1C) concentration and insulin sensitivity in drug-naive adult patients with type 2 diabetes mellitus (T2DM). Subjects and Methods A randomized, double-blind, placebo-controlled clinical trial was carried out in 20 patients with drug-naive T2DM. Ten subjects received metformin glycinate (1,050.6 mg) once daily during the first month and force-titrated twice daily during the second month. Ten additional patients received placebo as the control group. Before and after the intervention, metabolic profile including A1C and insulin sensitivity (euglycemic-hyperinsulinemic clamp technique) was estimated. Results A1C concentrations decreased significantly with metformin glycinate administration (8.0±0.7% vs. 7.1±0.9%, P=0.008) before and after the intervention, respectively. There were significant differences in changes from baseline of A1C between groups (0.0±0.7% vs. −1.0±0.5% for placebo and metformin glycinate groups, respectively; P=0.004). A reduction of ≥1% in A1C levels was reached in 60.0% of patients with metformin glycinate administration (P=0.02). Insulin sensitivity was not modified by the intervention. Conclusions Administration of metformin glycinate during a 2-month period showed a greater decrease in A1C concentrations than placebo in a selected group of drug-naive adult patients with T2DM. PMID:22974412

  12. Differences in the effect of iron-deficient diet on tissue weight, hemoglobin concentration and serum triglycerides in Fischer-344, Sprague-Dawley and Wistar rats.

    PubMed

    Kasaoka, S; Yamagishi, H; Kitano, T

    1999-06-01

    This study was designed to examine the differences in the effect of an iron-deficient diet on iron metabolism in Fischer-344 (FC), Sprague-Dawley (SD) and Wistar (WT) rats based on hemoglobin (Hb), hematocrit (Hct), serum iron levels, growth rate and organ weight. Hb concentration was higher in FC rats (14 mg/100 mL) on the initial day than in SD (10) and WT (10) rats. Although the Hb level was significantly decreased in FC rats fed an iron-deficient (ID, 8 mg/kg) diet for 33 d compared to the FC rats fed an iron-adequate (IA, 50 mg/kg) diet, the relative concentration of Hb was high in FC rats fed the ID diet as compared to the SD and WT rats fed the same diet. A similar relationship was detected between Hct and serum iron concentrations. Although serum triglycerides (TG) were significantly increased in each rat strain fed the ID diet as compared to the IA diet, the percentage of the value for the IA diet was lowest in FC rats (119%) fed the ID diet as compared to the SD (328) and WT (394) rats fed the same diet. Retroperitoneal fat pad was decreased in FC, SD and WT rats fed the ID diet as compared to the IA diet. SD rats were particularly sensitive to the reduction of retroperitoneal fat pad. The results suggested that rat strains responded differently to dietary iron inadequacy, and that FC rats were less sensitive to an iron-deficient diet as compared to the SD and WT rats. PMID:10524355

  13. Free heme and sickle hemoglobin polymerization

    NASA Astrophysics Data System (ADS)

    Uzunova, Veselina V.

    This work investigates further the mechanism of one of the most interesting of the protein self-assembly systems---the polymerization of sickle hemoglobin and the role of free heme in it. Polymerization of sickle hemoglobin is the primary event in the pathology of a chronic hemolytic condition called sickle cell anemia with complex pathogenesis, unexplained variability and symptomatic treatment. Auto-oxidation develops in hemoglobin solutions exposed to room temperature and causes release of ferriheme. The composition of such solutions is investigated by mass spectrometry. Heme dimers whose amount corresponds to the initial amounts of heme released from the protein are followed. Differences in the dimer peak height are established for hemoglobin variants A, S and C and depending on the exposure duration. The effects of free heme on polymerization kinetics are studied. Growth rates and two characteristic parameters of nucleation are measured for stored Hb S. After dialysis of polymerizing solutions, no spherulites are detected at moderately high supersaturation and prolonged exposure times. The addition of 0.16-0.26 mM amounts of heme to dialyzed solutions leads to restoration of polymerization. The measured kinetic parameters have higher values compared to the ones before dialysis. The amount of heme in non-dialyzed aged solution is characterized using spectrophotometry. Three methods are used: difference in absorbance of dialyzed and non-dialyzed solutions, characteristic absorbance of heme-albumin complex and absorbance of non-dialyzed solutions with added potassium cyanide. The various approaches suggest the presence of 0.12 to 0.18 mM of free ferriheme in such solutions. Open questions are whether the same amounts of free heme are present in vivo and whether the same mechanism operates intracellulary. If the answer to those questions is positive, then removal of free heme from erythrocytes can influence their readiness to sickle.

  14. Fetal hemoglobin in sickle cell anemia.

    PubMed

    Akinsheye, Idowu; Alsultan, Abdulrahman; Solovieff, Nadia; Ngo, Duyen; Baldwin, Clinton T; Sebastiani, Paola; Chui, David H K; Steinberg, Martin H

    2011-07-01

    Fetal hemoglobin (HbF) is the major genetic modulator of the hematologic and clinical features of sickle cell disease, an effect mediated by its exclusion from the sickle hemoglobin polymer. Fetal hemoglobin genes are genetically regulated, and the level of HbF and its distribution among sickle erythrocytes is highly variable. Some patients with sickle cell disease have exceptionally high levels of HbF that are associated with the Senegal and Saudi-Indian haplotype of the HBB-like gene cluster; some patients with different haplotypes can have similarly high HbF. In these patients, high HbF is associated with generally milder but not asymptomatic disease. Studying these persons might provide additional insights into HbF gene regulation. HbF appears to benefit some complications of disease more than others. This might be related to the premature destruction of erythrocytes that do not contain HbF, even though the total HbF concentration is high. Recent insights into HbF regulation have spurred new efforts to induce high HbF levels in sickle cell disease beyond those achievable with the current limited repertory of HbF inducers. PMID:21490337

  15. Mammalian aromatases.

    PubMed

    Conley, A; Hinshelwood, M

    2001-05-01

    Aromatase is the enzyme complex that catalyses the synthesis of oestrogens from androgens, and therefore it has unique potential to influence the physiological balance between the sex steroid hormones. Both aromatase cytochrome P450 (P450arom) and NADPH-cytochrome P450 reductase (reductase), the two essential components of the enzyme complex, are highly conserved among mammals and vertebrates. Aromatase expression occurs in the gonads and brain, and is essential for reproductive development and fertility. Of interest are the complex mechanisms involving alternative promoter utilization that have evolved to control tissue-specific expression in these tissues. In addition, in a number of species, including humans, expression of aromatase has a broader tissue distribution, including placenta, adipose and bone. The relevance of oestrogen synthesis and possibly androgen metabolism in these peripheral sites of expression is now becoming clear from studies in P450arom knockout (ArKO) mice and from genetic defects recognized recently in both men and women. Important species differences in the physiological roles of aromatase expression are also likely to emerge, despite the highly conserved nature of the enzyme system. The identification of functionally distinct, tissue-specific isozymes of P450arom in at least one mammal, pigs, and several species of fish indicates that there are additional subtle, but physiologically significant, species-specific roles for aromatase. Comparative studies of mammalian and other vertebrate aromatases will expand understanding of the role played by this ancient enzyme system in the evolution of reproduction and the adaptive influence of oestrogen synthesis on general health and well being. PMID:11427156

  16. Pancreatic ascites hemoglobin contributes to the systemic response in acute pancreatitis.

    PubMed

    Pérez, Salvador; Pereda, Javier; Sabater, Luis; Sastre, Juan

    2015-04-01

    Upon hemolysis extracellular hemoglobin causes oxidative stress and cytotoxicity due to its peroxidase activity. Extracellular hemoglobin may release free hemin, which increases vascular permeability, leukocyte recruitment, and adhesion molecule expression. Pancreatitis-associated ascitic fluid is reddish and may contain extracellular hemoglobin. Our aim has been to determine the role of extracellular hemoglobin in the local and systemic inflammatory response during severe acute pancreatitis in rats. To this end we studied taurocholate-induced necrotizing pancreatitis in rats. First, extracellular hemoglobin in ascites and plasma was quantified and the hemolytic action of ascitic fluid was tested. Second, we assessed whether peritoneal lavage prevented the increase in extracellular hemoglobin in plasma during pancreatitis. Third, hemoglobin was purified from rat erythrocytes and administered intraperitoneally to assess the local and systemic effects of ascitic-associated extracellular hemoglobin during acute pancreatitis. Extracellular hemoglobin and hemin levels markedly increased in ascitic fluid and plasma during necrotizing pancreatitis. Peroxidase activity was very high in ascites. The peritoneal lavage abrogated the increase in extracellular hemoglobin in plasma. The administration of extracellular hemoglobin enhanced ascites; dramatically increased abdominal fat necrosis; upregulated tumor necrosis factor-α, interleukin-1β, and interleukin-6 gene expression; and decreased expression of interleukin-10 in abdominal adipose tissue during pancreatitis. Extracellular hemoglobin enhanced the gene expression and protein levels of vascular endothelial growth factor (VEGF) and other hypoxia-inducible factor-related genes in the lung. Extracellular hemoglobin also increased myeloperoxidase activity in the lung. In conclusion, extracellular hemoglobin contributes to the inflammatory response in severe acute pancreatitis through abdominal fat necrosis and inflammation

  17. Beneficial effects of x-irradiation on recovery of lesioned mammalian central nervous tissue

    SciTech Connect

    Kalderon, N.; Alfieri, A.A.; Fuks, Z. )

    1990-12-01

    We examined the potential of x-irradiation, at clinical dose levels, to manipulate the cellular constituents and thereby change the consequences of transection injury to adult mammalian central nervous tissue (rat olfactory bulb). Irradiation resulted in reduction or elimination of reactive astrocytes at the site of incision provided that it was delivered within a defined time window postinjury. Under conditions optimal for the elimination of gliosis (15-18 days postinjury), irradiation of severed olfactory bulbs averted some of the degenerative consequences of lesion. We observed that irradiation was accompanied by prevention of tissue degeneration around the site of lesion, structural healing with maintenance of the typical cell lamination, and rescue of some axotomized mitral cells (principal bulb neurons). Thus radiation resulted in partial preservation of normal tissue morphology. It is postulated that intrusive cell populations are generated in response to injury and reactive astrocytes are one such group. Our results suggest that selective elimination of these cells by irradiation enabled some of the regenerative processes that are necessary for full recovery to maintain their courses. The cellular targets of these cells, their modes of intervention in recovery, and the potential role of irradiation as a therapeutic modality for injured central nervous system are discussed.

  18. Living with a killer: the effects of hypochlorous acid on mammalian cells.

    PubMed

    Pullar, J M; Vissers, M C; Winterbourn, C C

    2000-01-01

    The production of hypochlorous acid (HOCl) by the myeloperoxidase-H2O2-Cl- system of phagocytes plays a vital role in the ability of these cells to kill a wide range of pathogens. However, the generation of a potent oxidant is not without risk to the host, and there is evidence that HOCl contributes to the tissue injury associated with inflammation. In this review, we discuss the biological reactivity of HOCl, and detail what is known of how it interacts with mammalian cells. The outcome of exposure is dependent on the dose of oxidant, with higher doses causing necrosis, and apoptosis or growth arrest occurring with lower amounts. Glutathione (GSH) and protein thiols are easily oxidized, and are preferred targets with low, sublethal amounts of HOCl. Thiol enzymes vary in their sensitivity to HOCl, with glyceraldehyde-3-phosphate dehydrogenase being most susceptible. Indeed, loss of activity occurred before GSH oxidation. The products of these reactions and the ability of cells to regenerate oxidized thiols are discussed. Recent reports have indicated that HOCl can activate cell signaling pathways, and these studies may provide important information on the role of this oxidant in inflammation. PMID:11327319

  19. Reactions of arsine with hemoglobin

    SciTech Connect

    Hatlelid, K.M.; Brailsford, C.; Carter, D.E.

    1996-02-09

    The mechanism of arsine (AsH{sub 3}) induced hemolysis was studied in vitro using isolated red blood cells (RBCs) from the rat or dog. AsH{sub 3}-induced hemolysis of dog red blood cells was completely blocked by carbon monoxide (CO) preincubation and was reduced by pure oxygen (O{sub 2}) compared to incubations in air. Since CO and O{sub 2} bind to heme and also reduced hemolysis, these results suggested a reaction between AsH{sub 3} and hemoglobin in the hemeligand binding pocket or with the heme iron. Further, sodium nitrite induction of methemoglobin (metHb) to 85% and 34% of total Hb in otherwise intact RBCs resulted in 56% and 16% decreases in hemolysis, respectively, after incubation for 4 h. This provided additional evidence for the involvement of hemoglobin in the AsH{sub 3}-induced hemolysis mechanism. Reactions between AsH{sub 3} and hemoglobin were studied in solutions of purified dog hemoglobin. Spectrophotometric studies of the reaction of AsH{sub 3} with various purified hemoglobin species revealed that AsH{sub 3} reacted with HbO{sub 2} to produce metHb and, eventually, degraded Hb characterized by gross precipitation of the protein. AsH{sub 3} did not alter the spectrum of deoxyHb and did not cause degradation of metHb in oxygen, but bound to and reduced metHb in the absence of oxygen. These data indicate that a reaction of AsH{sub 3} with oxygenated hemoglobin, HbO{sub 2}, may lead to hemolysis, but there are reactions between AsH{sub 3} and metHb that may not be directly involved in the hemolytic process. 17 refs., 6 figs.

  20. Erythrocytosis associated with hemoglobin Rainier: oxygen equilibria and marrow regulation

    PubMed Central

    Adamson, John W.; Parer, Julian T.; Stamatoyannopoulos, George; Heinenberg, S.

    1969-01-01

    Hemoglobin Rainier (β145 tyrosine→histidine) is an abnormal hemoglobin associated with increased oxygen affinity, decreased heme-heme interaction, presence of a Bohr effect, and erythrocytosis, but without obvious clinical sequelae. Regulation of erythropoiesis was studied in affected members of families having either hemoglobin Rainier or Yakima, abnormal hemoglobins associated with erythrocytosis. Apart from the elevated but stable hemoglobin concentration and red cell mass, parameters of red cell production in the subjects were normal. Initially normal values of erythropoietin excretion were increased by phlebotomy indicating a significant hypoxic stress at an otherwise normal hematocrit. This stress led to increased reticulocyte production and an eventual return to the prephlebotomy hematocrit. The erythrocytosis in carriers of hemoglobins Rainer and Yakima appears to be secondary to the increased oxygen affinity and this, with the response to phlebotomy, is consistent with the postulate that the renal sensor tissue regulating erythropoietin production is primarily influenced by the oxygen tensions of venous rather than arterial blood. Images PMID:5796352

  1. Effects of intermediates between vitamins K(2) and K(3) on mammalian DNA polymerase inhibition and anti-inflammatory activity.

    PubMed

    Mizushina, Yoshiyuki; Maeda, Jun; Irino, Yasuhiro; Nishida, Masayuki; Nishiumi, Shin; Kondo, Yasuyuki; Nishio, Kazuyuki; Kuramochi, Kouji; Tsubaki, Kazunori; Kuriyama, Isoko; Azuma, Takeshi; Yoshida, Hiromi; Yoshida, Masaru

    2011-01-01

    Previously, we reported that vitamin K(3) (VK(3)), but not VK(1) or VK(2) (=MK-4), inhibits the activity of human DNA polymerase γ (pol γ). In this study, we chemically synthesized three intermediate compounds between VK(2) and VK(3), namely MK-3, MK-2 and MK-1, and investigated the inhibitory effects of all five compounds on the activity of mammalian pols. Among these compounds, MK-2 was the strongest inhibitor of mammalian pols α, κ and λ, which belong to the B, Y and X families of pols, respectively; whereas VK(3) was the strongest inhibitor of human pol γ, an A-family pol. MK-2 potently inhibited the activity of all animal species of pol tested, and its inhibitory effect on pol λ activity was the strongest with an IC(50) value of 24.6 μM. However, MK-2 did not affect the activity of plant or prokaryotic pols, or that of other DNA metabolic enzymes such as primase of pol α, RNA polymerase, polynucleotide kinase or deoxyribonuclease I. Because we previously found a positive relationship between pol λ inhibition and anti-inflammatory action, we examined whether these compounds could inhibit inflammatory responses. Among the five compounds tested, MK-2 caused the greatest reduction in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced acute inflammation in mouse ear. In addition, in a cell culture system using mouse macrophages, MK-2 displayed the strongest suppression of the production of tumor necrosis factor (TNF)-α induced by lipopolysaccharide (LPS). Moreover, MK-2 was found to inhibit the action of nuclear factor (NF)-κB. In an in vivo mouse model of LPS-evoked acute inflammation, intraperitoneal injection of MK-2 in mice led to suppression of TNF-α production in serum. In conclusion, this study has identified VK(2) and VK(3) intermediates, such as MK-2, that are promising anti-inflammatory candidates. PMID:21541047

  2. The effect of space microgravity on the physiological activity of mammalian resident cardiac stem cells

    NASA Astrophysics Data System (ADS)

    Belostotskaya, Galina; Zakharov, Eugeny

    Prolonged exposure to weightlessness during space flights is known to cause depression of heart function in mammals. The decrease in heart weight and its remodeling under the influence of prolonged weightlessness (or space microgravity) is assumed to be due to both morphological changes of working cardiomyocytes and their progressive loss, as well as to possible depletion of resident cardiac stem cells (CSCs) population, or their inability to self-renewal and regeneration of muscle tissue under conditions of weightlessness. We have previously shown that the presence of different maturity clones formed by resident CSCs not only in culture but also in the mammalian myocardium can be used as an indicator of the regenerative activity of myocardial cells [Belostotskaya, et al., 2013: 2014]. In this study, we were interested to investigate whether the 30-day near-Earth space flight on the spacecraft BION-M1 affects the regenerative potential of resident CSCs. Immediately after landing of the spacecraft, we had examined the presence of resident c-kit+, Sca-1+ and Isl1+ CSCs and their development in suspension of freshly isolated myocardial cells of C57BL mice in comparison to controls. Cardiac cell suspension was obtained by enzymatic digestion of the heart [Belostotskaya and Golovanova, 2014]. Immunocytochemically stained preparations of fixed cells were analyzed with confocal microscope Leica TCS SP5 (Germany) in the Resource Center of St-Petersburg State University. CSCs were labeled with appropriate antibodies. CSCs differentiation into mature cardiomyocytes was verified using antibodies to Sarcomeric α-Actinin and Cardiac Troponin T. Antibodies to Connexin43 were used to detect cell-cell contacts. All antibodies were conjugated with Alexa fluorochromes (488, 532, 546, 568, 594 and/or 647 nm), according to Zenon-technology (Invitrogen). It has been shown that, under identical conditions of cell isolation, more complete digestion of heart muscle was observed in

  3. Switching Patients with Non-Dialysis Chronic Kidney Disease from Oral Iron to Intravenous Ferric Carboxymaltose: Effects on Erythropoiesis-Stimulating Agent Requirements, Costs, Hemoglobin and Iron Status

    PubMed Central

    Toblli, Jorge Eduardo; Di Gennaro, Federico

    2015-01-01

    Background Patients with non-dialysis-dependent chronic kidney disease (ND-CKD) often receive an erythropoiesis-stimulating agent (ESA) and oral iron treatment. This study evaluated whether a switch from oral iron to intravenous ferric carboxymaltose can reduce ESA requirements and improve iron status and hemoglobin in patients with ND-CKD. Methods This prospective, single arm and single-center study included adult patients with ND-CKD (creatinine clearance ≤40 mL/min), hemoglobin 11–12 g/dL and iron deficiency (ferritin <100 μg/L or transferrin saturation <20%), who were regularly treated with oral iron and ESA during 6 months prior to inclusion. Study patients received an intravenous ferric carboxymaltose dose of 1,000 mg iron, followed by a 6-months ESA/ ferric carboxymaltose maintenance regimen (target: hemoglobin 12 g/dL, transferrin saturation >20%). Outcome measures were ESA dose requirements during the observation period after initial ferric carboxymaltose treatment (primary endpoint); number of hospitalizations and transfusions, renal function before and after ferric carboxymaltose administration, number of adverse reactions (secondary endpoints). Hemoglobin, mean corpuscular volume, ferritin and transferrin saturation were measured monthly from baseline until end of study. Creatinine clearance, proteinuria, C-reactive protein, aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase bimonthly from baseline until end of study. Results Thirty patients were enrolled (age 70.1±11.4 years; mean±SD). Mean ESA consumption was significantly reduced by 83.2±10.9% (from 41,839±3,668 IU/patient to 6,879±4,271 IU/patient; p<0.01). Hemoglobin increased by 0.7±0.3 g/dL, ferritin by 196.0±38.7 μg/L and transferrin saturation by 5.3±2.9% (month 6 vs. baseline; all p<0.01). No ferric carboxymaltose-related adverse events were reported and no patient withdrew or required transfusions during the study. Conclusion Among patients with ND

  4. Metabonomic Analysis Reveals Efficient Ameliorating Effects of Acupoint Stimulations on the Menopause-caused Alterations in Mammalian Metabolism

    NASA Astrophysics Data System (ADS)

    Zhang, Limin; Wang, Yulan; Xu, Yunxiang; Lei, Hehua; Zhao, Ying; Li, Huihui; Lin, Xiaosheng; Chen, Guizhen; Tang, Huiru

    2014-01-01

    Acupoint stimulations are effective in ameliorating symptoms of menopause which is an unavoidable ageing consequence for women. To understand the mechanistic aspects of such treatments, we systematically analyzed the effects of acupoint laser-irradiation and catgut-embedding on the ovariectomy-induced rat metabolic changes using NMR and GC-FID/MS methods. Results showed that ovariectomization (OVX) caused comprehensive metabolic changes in lipid peroxidation, glycolysis, TCA cycle, choline and amino acid metabolisms. Both acupoint laser-irradiation and catgut-embedding ameliorated the OVX-caused metabonomic changes more effectively than hormone replacement therapy (HRT) with nilestriol. Such effects of acupoint stimulations were highlighted in alleviating lipid peroxidation, restoring glucose homeostasis and partial reversion of the OVX-altered amino acid metabolism. These findings provided new insights into the menopause effects on mammalian biochemistry and beneficial effects of acupoint stimulations in comparison with HRT, demonstrating metabonomics as a powerful approach for potential applications in disease prognosis and developments of effective therapies.

  5. The intrauterine diagnosis of hemoglobin disorders.

    PubMed

    Wong, S C; Ali, M A; Benzie, R

    1984-06-01

    This article presents an overview of the use of fetal blood and DNA for prenatal testing. The molecular organization of the human hemoglobin genes, the structure of human hemoglobins, and the molecular defects of hemoglobinopathies are also discussed. PMID:6086205

  6. The Effect of Periodontal Treatment on Hemoglobin A1c Levels of Diabetic Patients: A Systematic Review and Meta-Analysis

    PubMed Central

    Wang, Xingxing; Han, Xu; Guo, Xiaojing; Luo, Xiaolong; Wang, Dalin

    2014-01-01

    Background There is growing evidence that periodontal treatment may affect glycemic control in diabetic patients. And several systematic reviews have been conducted to assess the effect of periodontal treatment on diabetes outcomes. Researches of this aspect are widely concerned, and several new controlled trials have been published. The aim of this study was to update the account for recent findings. Methods A literature search (until the end of January 2014) was carried out using various databases with language restriction to English. A randomized controlled trial (RCT) was selected if it investigated periodontal therapy for diabetic subjects compared with a control group received no periodontal treatment for at least 3 months of the follow-up period. The primary outcome was hemoglobin A1c (HbA1c), and secondary outcomes were periodontal parameters included probing pocket depth (PPD) and clinical attachment level (CAL). Results Ten trials of 1135 patients were included in the analysis. After the follow-up of 3 months, treatment substantially lowered HbA1c compared with no treatment after periodontal therapy (–0.36%, 95%CI, −0.52% to −0.19%, P<0.0001). Clinically substantial and statistically significant reduction of PPD and CAL were found between subjects with and without treatment after periodontal therapy (PPD −0.42 mm, 95%CI: −0.60 to −0.23, P<0.00001; CAL −0.34 mm, 95%CI: −0.52 to −0.16, P = 0.0002). And there is no significant change of the level of HbA1c at the 6-month comparing with no treatment (–0.30%, 95%CI, −0.69% to 0.09%, P = 0.13). Conclusions Periodontal treatment leads to the modest reduction in HbA1c along with the improvement of periodontal status in diabetic patients for 3 months, and this result is consistent with previous systematic reviews. And the effect of periodontal treatment on HbA1c cannot be observed at 6-month after treatment. PMID:25255331

  7. Effect of the synthesis of rice non-symbiotic hemoglobins 1 and 2 in the recombinant Escherichia coli TB1 growth

    PubMed Central

    Álvarez-Salgado, Emma; Arredondo-Peter, Raúl

    2016-01-01

    Non-symbiotic hemoglobins (nsHbs) are widely distributed in land plants, including rice. These proteins are classified into type 1 (nsHbs-1) and type 2. The O 2-affinity of nsHbs-1 is very high mostly because of an extremely low O 2-dissociation rate constant resulting in that nsHbs-1 apparently do not release O 2 after oxygenation. Thus, it is possible that the in vivo function of nsHbs-1 is other than O 2-transport. Based on the properties of multiple Hbs it was proposed that nsHbs-1 could play diverse roles in rice organs, however the in vivo activity of rice nsHbs-1 has been poorly analyzed. An in vivo analysis for rice nsHbs-1 is essential to elucidate the biological function(s) of these proteins. Rice Hb1 and Hb2 are nsHbs-1 that have been generated in recombinant Es cherichia coli TB1. The rice Hb1 and Hb2 amino acid sequence, tertiary structure and rate and equilibrium constants for the reaction of O 2 are highly similar. Thus, it is possible that rice Hb1 and Hb2 function similarly in vivo. As an initial approach to test this hypothesis we analyzed the effect of the synthesis of rice Hb1 and Hb2 in the recombinant E. coli TB1 growth. Effect of the synthesis of the O 2-carrying soybean leghemoglobin a, cowpea leghemoglobin II and Vitreoscilla Hb in the recombinant E. coli TB1 growth was also analyzed as an O 2-carrier control. Our results showed that synthesis of rice Hb1, rice Hb2, soybean Lb a, cowpea LbII and Vitreoscilla Hb inhibits the recombinant E. coli TB1 growth and that growth inhibition was stronger when recombinant E. coli TB1 synthesized rice Hb2 than when synthesized rice Hb1. These results suggested that rice Hb1 and Hb2 could function differently in vivo. PMID:26973784

  8. Oxygen binding by single crystals of hemoglobin.

    PubMed

    Rivetti, C; Mozzarelli, A; Rossi, G L; Henry, E R; Eaton, W A

    1993-03-23

    Reversible oxygen binding curves for single crystals of hemoglobin in the T quaternary structure have been measured using microspectrophotometry. Saturations were determined from complete visible spectra measured with light linearly polarized parallel to the a and c crystal axes. Striking differences were observed between the binding properties of hemoglobin in the crystal and those of hemoglobin in solution. Oxygen binding to the crystal is effectively noncooperative, the Bohr effect is absent, and there is no effect of chloride ion. Also, the oxygen affinity is lower than that of the T quaternary structure in solution. The absence of the Bohr effect supports Perutz's hypothesis on the key role of the salt bridges, which are known from X-ray crystallography to remain intact upon oxygenation. The low affinity and absence of the Bohr effect can be explained by a generalization of the MWC-PSK model (Monod, Wyman, & Changeux, 1965; Perutz, 1970; Szabo & Karplus, 1972) in which both high- and low-affinity tertiary conformations, with broken and unbroken salt bridges, respectively, are populated in the T quaternary structure. Because the alpha and beta hemes make different projections onto the two crystal axes, separate binding curves for the alpha and beta subunits could be calculated from the two measured binding curves. The approximately 5-fold difference between the oxygen affinities of the alpha and beta subunits is much smaller than that predicted from the crystallographic study of Dodson, Liddington, and co-workers, which suggested that oxygen binds only to the alpha hemes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8457555

  9. Hemoglobin C Trait Provides Protection From Clinical Falciparum Malaria in Malian Children

    PubMed Central

    Travassos, Mark A.; Coulibaly, Drissa; Laurens, Matthew B.; Dembélé, Ahmadou; Tolo, Youssouf; Koné, Abdoulaye K.; Traoré, Karim; Niangaly, Amadou; Guindo, Aldiouma; Wu, Yukun; Berry, Andrea A.; Jacob, Christopher G.; Takala-Harrison, Shannon; Adams, Matthew; Shrestha, Biraj; Mu, Amy Z.; Kouriba, Bourema; Lyke, Kirsten E.; Diallo, Dapa A.; Doumbo, Ogobara K.; Plowe, Christopher V.; Thera, Mahamadou A.

    2015-01-01

    Background. Hemoglobin C trait, like hemoglobin S trait, protects against severe malaria in children, but it is unclear whether hemoglobin C trait also protects against uncomplicated malaria. We hypothesized that Malian children with hemoglobin C trait would have a lower risk of clinical malaria than children with hemoglobin AA. Methods. Three hundred children aged 0–6 years were enrolled in a cohort study of malaria incidence in Bandiagara, Mali, with continuous passive and monthly active follow-up from June 2009 to June 2010. Results. Compared to hemoglobin AA children (n = 242), hemoglobin AC children (n = 39) had a longer time to first clinical malaria episode (hazard ratio [HR], 0.19; P = .001; 364 median malaria-free days vs 181 days), fewer episodes of clinical malaria, and a lower cumulative parasite burden. Similarly, hemoglobin AS children (n = 14) had a longer time to first clinical malaria episode than hemoglobin AA children (HR, 0.15; P = .015; 364 median malaria-free days vs 181 days), but experienced the most asymptomatic malaria infections of any group. Conclusions. Both hemoglobin C and S traits exerted a protective effect against clinical malaria episodes, but appeared to do so by mechanisms that differentially affect the response to infecting malaria parasites. PMID:26019283

  10. 70-year old female patient with mismatch between hematocrit and hemoglobin values: the effects of cold agglutinin on complete blood count

    PubMed Central

    Ercan, Şerif; Çalışkan, Mustafa; Koptur, Erhan

    2014-01-01

    Introduction: There are a number of pre-analytical and analytical factors, which cause false results in the complete blood count. The present case identifies cold agglutinins as the cause for the mismatch between hematocrit and hemoglobin values. Materials and methods: 70-year old female patient had a history of cerebrovascular diseases and rheumatoid arthritis. During routine laboratory examination, the patient had normal leukocyte and platelet counts; however, the hemoglobin (Hb: 105 g/L) and hematocrit (HCT: 0.214 L/L) results were discordant. Hemolysis, lipemia and cold agglutinin were evaluated as possible reasons for the mismatch between hematocrit and hemoglobin values. Results: First blood sample was slightly hemolysed. Redrawn sample without hemolysis or lipemia was analyzed but the mismatch became even more distinct (Hb: 104 g/L and HCT: 0.08 L/L). In this sample, the titration of the cold agglutinin was determined and found to be positive at 1:64 dilution ratios. After an incubation of the sample at 37°C for 2 hours, reversibility of agglutination was observed. Conclusion: We conclude that cold agglutinins may interfere with the analysis of erythrocyte and erythrocyte-related parameters (HCT, MCV, MCH and MCHC); however, Hb, leukocyte and platelet counts are not affected. PMID:25351358

  11. Visualizing the Bohr effect in hemoglobin: neutron structure of equine cyanomethemoglobin in the R state and comparison with human deoxyhemoglobin in the T state

    PubMed Central

    Dajnowicz, Steven; Seaver, Sean; Hanson, B. Leif; Fisher, S. Zoë; Langan, Paul; Kovalevsky, Andrey Y.; Mueser, Timothy C.

    2016-01-01

    Neutron crystallography provides direct visual evidence of the atomic positions of deuterium-exchanged H atoms, enabling the accurate determination of the protonation/deuteration state of hydrated biomolecules. Comparison of two neutron structures of hemoglobins, human deoxyhemoglobin (T state) and equine cyanomethemoglobin (R state), offers a direct observation of histidine residues that are likely to contribute to the Bohr effect. Previous studies have shown that the T-state N-terminal and C-terminal salt bridges appear to have a partial instead of a primary overall contribution. Four conserved histidine residues [αHis72(EF1), αHis103(G10), αHis89(FG1), αHis112(G19) and βHis97(FG4)] can become protonated/deuterated from the R to the T state, while two histidine residues [αHis20(B1) and βHis117(G19)] can lose a proton/deuteron. αHis103(G10), located in the α1:β1 dimer interface, appears to be a Bohr group that undergoes structural changes: in the R state it is singly protonated/deuterated and hydrogen-bonded through a water network to βAsn108(G10) and in the T state it is doubly protonated/deuterated with the network uncoupled. The very long-term H/D exchange of the amide protons identifies regions that are accessible to exchange as well as regions that are impermeable to exchange. The liganded relaxed state (R state) has comparable levels of exchange (17.1% non-exchanged) compared with the deoxy tense state (T state; 11.8% non-exchanged). Interestingly, the regions of non-exchanged protons shift from the tetramer interfaces in the T-state interface (α1:β2 and α2:β1) to the cores of the individual monomers and to the dimer interfaces (α1:β1 and α2:β2) in the R state. The comparison of regions of stability in the two states allows a visualization of the conservation of fold energy necessary for ligand binding and release. PMID:27377386

  12. Visualizing the Bohr effect in hemoglobin: neutron structure of equine cyanomethemoglobin in the R state and comparison with human deoxyhemoglobin in the T state.

    PubMed

    Dajnowicz, Steven; Seaver, Sean; Hanson, B Leif; Fisher, S Zoë; Langan, Paul; Kovalevsky, Andrey Y; Mueser, Timothy C

    2016-07-01

    Neutron crystallography provides direct visual evidence of the atomic positions of deuterium-exchanged H atoms, enabling the accurate determination of the protonation/deuteration state of hydrated biomolecules. Comparison of two neutron structures of hemoglobins, human deoxyhemoglobin (T state) and equine cyanomethemoglobin (R state), offers a direct observation of histidine residues that are likely to contribute to the Bohr effect. Previous studies have shown that the T-state N-terminal and C-terminal salt bridges appear to have a partial instead of a primary overall contribution. Four conserved histidine residues [αHis72(EF1), αHis103(G10), αHis89(FG1), αHis112(G19) and βHis97(FG4)] can become protonated/deuterated from the R to the T state, while two histidine residues [αHis20(B1) and βHis117(G19)] can lose a proton/deuteron. αHis103(G10), located in the α1:β1 dimer interface, appears to be a Bohr group that undergoes structural changes: in the R state it is singly protonated/deuterated and hydrogen-bonded through a water network to βAsn108(G10) and in the T state it is doubly protonated/deuterated with the network uncoupled. The very long-term H/D exchange of the amide protons identifies regions that are accessible to exchange as well as regions that are impermeable to exchange. The liganded relaxed state (R state) has comparable levels of exchange (17.1% non-exchanged) compared with the deoxy tense state (T state; 11.8% non-exchanged). Interestingly, the regions of non-exchanged protons shift from the tetramer interfaces in the T-state interface (α1:β2 and α2:β1) to the cores of the individual monomers and to the dimer interfaces (α1:β1 and α2:β2) in the R state. The comparison of regions of stability in the two states allows a visualization of the conservation of fold energy necessary for ligand binding and release. PMID:27377386

  13. Carbon Monoxide Poisoning: Some Surprising Aspects of the Equilibrium between Hemoglobin, Carbon Monoxide, and Oxygen

    NASA Astrophysics Data System (ADS)

    Senozan, N. M.; Devore, J. A.

    1996-08-01

    Carbon monoxide poisoning and some aspects of the equilibrium between carbon monoxide, oxygen, and hemoglobin are discussed within the framework of Haldane's laws. The effect of CO on respiration is analyzed quantitatively using oxygen dissociation curves of hemoglobin in presence of carboxyhemoglobin. The analysis shows that the adverse cardiovascular consequences of chronic CO exposure are unlikely to be due to reduced O2 transport capability of hemoglobin.

  14. Molecular imaging of hemoglobin using ground state recovery pump-probe optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Applegate, Brian E.; Izatt, Joseph A.

    2007-02-01

    We have undertaken an effort to further develop ground state recovery Pump-Probe Optical Coherence Tomograpy (gsrPPOCT) to specifically target and measure 3-D images of hemoglobin concentration with the goals of mapping tissue vasculature, total hemoglobin, and hemoglobin oxygen saturation. As a first step toward those goals we have measured the gsrPPOCT signal from the hemoglobin in the filament arteries of a zebra danio fish. We have further processed the resulting signal to extract a qualitative map of the hemoglobin concentration. We have also demonstrated the potential to use ground state recovery times to differentiate between two chromophores which may prove to be an effective tool for differentiating between oxy and deoxy hemoglobin.

  15. Expression of fully functional tetrameric human hemoglobin in Escherichia coli.

    PubMed Central

    Hoffman, S J; Looker, D L; Roehrich, J M; Cozart, P E; Durfee, S L; Tedesco, J L; Stetler, G L

    1990-01-01

    Synthetic genes encoding the human alpha- and beta-globin polypeptides have been expressed from a single operon in Escherichia coli. The alpha- and beta-globin polypeptides associate into soluble tetramers, incorporate heme, and accumulate to greater than 5% of the total cellular protein. Purified recombinant hemoglobin has the correct stoichiometry of alpha- and beta-globin chains and contains a full complement of heme. Each globin chain also contains an additional methionine as an extension to the amino terminus. The recombinant hemoglobin has a C4 reversed-phase HPLC profile essentially identical to that of human hemoglobin A0 and comigrates with hemoglobin A0 on SDS/PAGE. The visible spectrum and oxygen affinity are similar to that of native human hemoglobin A0. The recombinant protein shows a reduction in Bohr and phosphate effects, which may be attributed to the presence of methionine at the amino termini of the alpha and beta chains. We have also expressed the alpha- and beta-globin genes separately and found that the expression of the alpha-globin gene alone results in a marked decrease in the accumulation of alpha-globin in the cell. Separate expression of the beta-globin gene results in high levels of insoluble beta-globin. These observations suggest that the presence of alpha- and beta-globin in the same cell stabilizes alpha-globin and aids the correct folding of beta-globin. This system provides a simple method for expressing large quantities of recombinant hemoglobin and allows facile manipulation of the genes encoding hemoglobin to produce functionally altered forms of this protein. Images PMID:2236062

  16. Effects of enhanced UV-B radiation on secondary metabolites in forage plants and potential consequences for multiple trophic responses involving mammalian herbivores

    NASA Astrophysics Data System (ADS)

    Thines, Nicole J.; Bassman, John H.; Shipley, Lisa A.; Slusser, James R.

    2004-10-01

    Herbivores represent the interface between primary production and higher trophic levels. The effects of enhanced UV-B radiation on microbes, invertebrate herbivores, and detritivores has received limited study in both terrestrial and aquatic ecosystems. However, although direct effects (e.g. melanoma, cataracts) on mammals have been documented, indirect effects (e.g., resulting from changes in plant chemistry) of enhanced UV-B on mammalian herbivores have not been evaluated. Although the diet of mammalian herbivores has little effect on nutritional quality for their associated predators, to the extent changes in plant chemistry affect aspects of population dynamics (e.g., growth, fecundity, densities), higher trophic levels can be affected. In this study, different forage species of varying inherent levels of key secondary metabolites are being grown in the field under either ambient or ambient plus supplemental UV-B radiation simulating a 15% stratospheric ozone depletion for Pullman, Washington. At various time intervals, foliage is being sampled and analyzed for changes in secondary metabolites and other attributes. Using controlled feeding trials, changes in plant secondary metabolites are being related to preference and digestibility in specialist and generalist mammalian hindgut herbivores, digestion in ruminants and non-ruminants, and to selected aspects of population dynamics in mammalian herbivores. Results suggest how UV-B-induced changes in plant secondary chemistry affect animal nutrition, and thus animal productivity in a range of mammalian herbivores. Reductions in palatability and digestibility of plant material along with reductions in fecundity and other aspects of population dynamics could have significant economic ramifications for farmers, ranchers and wildlife biologists.

  17. Muscarinic receptors mediate negative and positive inotropic effects in mammalian ventricular myocardium: differentiation by agonists.

    PubMed Central

    Korth, M.; Kühlkamp, V.

    1987-01-01

    The concentration-dependence of the negative and positive inotropic effect of choline esters and of oxotremorine was studied in isometrically contracting papillary muscles of the guinea-pig. The preparations were obtained from reserpine-pretreated animals and were electrically driven at a frequency of 0.2 Hz. In the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methyl xanthine (IBMX, 100 mumol l-1), choline esters and oxotremorine produced concentration-dependent negative inotropic effects. Oxotremorine exhibited the highest negative inotropic potency (with a half-maximal effective concentration, EC50, of 20 nmol l-1) followed by carbachol (139 nmol l-1), methacholine (490 nmol l-1), acetylcholine in the presence of 10 mumol l-1 physostigmine (1.36 mumol l-1) and bethanechol (10 mumol l-1). Atropine was a competitive antagonist of the negative inotropic effects. Carbachol and oxotremorine decreased Vmax, overshoot and duration of slow Ca2+-dependent action potentials which had been elicited in the presence of 100 mumol l-1 IBMX. Choline esters produced a concentration-dependent positive inotropic effect. With an EC50 of 32 mumol l-1, carbachol was the most potent compound, followed by methacholine (35 mumol l-1), acetylcholine in the presence of 10 mumol l-1 physostigmine (46 mumol l-1) and bethanechol (142 mumol l-1). Compared to carbachol and methacholine which increased force by 100% of control, the increase induced by acetylcholine and bethanechol was only 64 and 58%, respectively. Atropine shifted the concentration-effect curves of all choline esters to higher concentrations. Choline esters caused intracellular Na+ activity to increase in the quiescent papillary muscle. This effect was reversed by atropine. Oxotremorine produced a small concentration-dependent positive inotropic effect (about 30% of the maximal effect of carbachol) which was resistant to atropine. Oxotremorine was a potent inhibitor of the positive inotropic effect of choline esters

  18. Long-Term Single and Joint Effects of Excessive Daytime Napping on the HOMA-IR Index and Glycosylated Hemoglobin: A Prospective Cohort Study.

    PubMed

    Li, Xue; Pang, Xiuyu; Zhang, Qiao; Qu, Qiannuo; Hou, Zhigang; Liu, Zhipeng; Lv, Lin; Na, Guanqiong; Zhang, Wei; Sun, Changhao; Li, Ying

    2016-02-01

    This prospective cohort study was conducted to assess the duration of daytime napping and its effect combined with night sleep deprivation on the risk of developing high HOMA-IR (homeostasis model assessment of insulin resistance) index and disadvantageous changes in glycosylated hemoglobin (HbA1c) levels.A total of 5845 diabetes-free subjects (2736 women and 3109 men), 30 to 65 years of age, were targeted for this cohort study since 2008. Multiple adjusted Cox regression models were performed to evaluate the single and joint effects of daytime napping on the risk of an elevated HbA1c level and high HOMA-IR index.After an average of 4.5 years of follow-up, >30 minutes of daytime napping was significantly associated with an increased risk of an elevated HbA1c level (>6.5%) in men and women (all P trend < 0.05). Hazard ratios (HRs) for an HbA1c level between 5.7% and 6.4% were also significant in the entire cohort and women, but nonsignificant in men. HRs (95% confidence interval, CIs) for the high HOMA-IR index in the entire cohort, men, and women were 1.33 (1.10-1.62), 1.46 (1.08-1.98), and 1.47 (1.12-1.91), respectively. The combination of sleep deprivation with no naps or >30 minutes napping and the combination of no sleep deprivation with >30 minutes daytime napping were all associated with an HbA1c level >6.5% (HR = 2.08, 95% CI = 1.24-3.51; HR = 4.00, 95% CI = 2.03-7.90; and HR = 2.05, 95% CI = 1.29-3.27, respectively). No sleep deprivation combined with >30 minutes daytime napping correlated with a high risk of an HbA1c level between 5.7% and 6.4% and high HOMA-IR index (HR = 2.12, 95% CI = 1.48-3.02; and HR = 1.35, 95% CI = 1.10-1.65, respectively).Daytime napping >30 minutes was associated with a high risk of an elevated HbA1c level and high HOMA-IR index. No sleep deprivation combined with napping >30 minutes carries a risk of abnormal glucose metabolism. Sleep deprivation combined with brief daytime napping <30

  19. Broadband diffuse optical spectroscopy assessment of hemorrhage- and hemoglobin-based blood substitute resuscitation

    NASA Astrophysics Data System (ADS)

    Lee, Jangwoen; Kim, Jae G.; Mahon, Sari; Tromberg, Bruce J.; Mukai, David; Kreuter, Kelly; Saltzman, Darin; Patino, Renee; Goldberg, Robert; Brenner, Matthew

    2009-07-01

    Hemoglobin-based oxygen carriers (HBOCs) are solutions of cell-free hemoglobin (Hb) that have been developed for replacement or augmentation of blood transfusion. It is important to monitor in vivo tissue hemoglobin content, total tissue hemoglobin [THb], oxy- and deoxy-hemoglobin concentrations ([OHb], [RHb]), and tissue oxygen saturation (StO2=[OHb]/[THb]×100%) to evaluate effectiveness of HBOC transfusion. We designed and constructed a broadband diffuse optical spectroscopy (DOS) prototype system to measure bulk tissue absorption and scattering spectra between 650 and 1000 nm capable of accurately determining these tissue hemoglobin component concentrations in vivo. Our purpose was to assess the feasibility of using DOS to optically monitor tissue [OHb], [RHb], StO2, and total tissue hemoglobin concentration ([THb]=[OHb]+[RHb]) during HBOC infusion using a rabbit hypovolemic shock model. The DOS prototype probe was placed on the shaved inner thigh muscle of the hind leg to assess concentrations of [OHb], [RHb], [THb], as well as StO2. Hemorrhagic shock was induced in intubated New Zealand white rabbits (N=6) by withdrawing blood via a femoral arterial line to 20% blood loss (10-15 cc/kg). Hemoglobin glutamer-200 (Hb-200) 1:1 volume resuscitation was administered following the hemorrhage. These values were compared against traditional invasive measurements, serum hemoglobin concentration (sHGB), systemic blood pressure, heart rate, and blood gases. DOS revealed increases of [THb], [OHb], and tissue hemoglobin oxygen saturation after Hb-200 infusion, while blood total hemoglobin values continued did not increase; we speculate, due to hyperosmolality induced hemodilution. DOS enables noninvasive in vivo monitoring of tissue hemoglobin and oxygenation parameters during shock and volume expansion with HBOC and potentially enables the assessment of efficacy of resuscitation efforts using artificial blood substitutes.

  20. Induction of a bystander mutagenic effect of alpha particles in mammalian cells

    NASA Technical Reports Server (NTRS)

    Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Vannais, D.; Hall, E. J.; Hei, T. K.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    Ever since the discovery of X-rays was made by Rontgen more than a hundred years ago, it has always been accepted that the deleterious effects of ionizing radiation such as mutation and carcinogenesis are attributable mainly to direct damage to DNA. Although evidence based on microdosimetric estimation in support of a bystander effect appears to be consistent, direct proof of such extranuclear/extracellular effects are limited. Using a precision charged particle microbeam, we show here that irradiation of 20% of randomly selected A(L) cells with 20 alpha particles each results in a mutant fraction that is 3-fold higher than expected, assuming no bystander modulation effect. Furthermore, analysis by multiplex PCR shows that the types of mutants induced are significantly different from those of spontaneous origin. Pretreatment of cells with the radical scavenger DMSO had no effect on the mutagenic incidence. In contrast, cells pretreated with a 40 microM dose of lindane, which inhibits cell-cell communication, significantly decreased the mutant yield. The doses of DMSO and lindane used in these experiments are nontoxic and nonmutagenic. We further examined the mutagenic yield when 5-10% of randomly selected cells were irradiated with 20 alpha particles each. Results showed, likewise, a higher mutant yield than expected assuming no bystander effects. Our studies provide clear evidence that irradiated cells can induce a bystander mutagenic response in neighboring cells not directly traversed by alpha particles and that cell-cell communication process play a critical role in mediating the bystander phenomenon.

  1. Effect of intron A from human cytomegalovirus (Towne) immediate-early gene on heterologous expression in mammalian cells.

    PubMed Central

    Chapman, B S; Thayer, R M; Vincent, K A; Haigwood, N L

    1991-01-01

    A 2.4 kb fragment of hCMV (Towne strain), containing the 5' end of the major immediate-early gene, has been cloned, sequenced, and used to construct a series of mammalian cell expression plasmids. The effects of regulatory regions present on this fragment were assessed using human glycoproteins as reporter molecules. We compared secreted levels of Factor VIII, t-PA, and HIV-1 envelope glycoproteins in cells transfected with plasmids in which intron A of the immediate-early gene was present or absent. Secretion of several glycoproteins was significantly higher when cells were transfected with intron A-containing plasmids. Mutation of three basepairs in the strong nuclear factor 1 (NF1) binding site in intron A led to reduced transient expression levels, but not to the level observed in the absence of intron A. Reduced expression from NF1 mutant plasmids was roughly correlated with reduced binding in vitro of NF1 proteins to a synthetic oligonucleotide containing the mutation. The evidence indicates that sequences in intron A positively regulate expression from the hCMV immediate-early enhancer/promoter in transformed monkey kidney cells. Images PMID:1650459

  2. Mammalian target of rapamycin hyperactivity mediates the detrimental effects of a high sucrose diet on Alzheimer's disease pathology.

    PubMed

    Orr, Miranda E; Salinas, Angelica; Buffenstein, Rochelle; Oddo, Salvatore

    2014-06-01

    High sugar consumption and diabetes increase the risk of developing Alzheimer's disease (AD) by unknown mechanisms. Using an animal model of AD, here we show that high sucrose intake induces obesity with changes in central and peripheral insulin signaling. These pre-diabetic changes are associated with an increase in amyloid-β production and deposition. Moreover, high sucrose ingestion exacerbates tau phosphorylation by increasing Cdk5 activity. Mechanistically, the sucrose-mediated increase in AD-like pathology results from hyperactive mammalian target of rapamycin (mTOR), a key nutrient sensor important in regulating energy homeostasis. Specifically, we show that rapamycin, an mTOR inhibitor, prevents the detrimental effects of sucrose in the brain without altering changes in peripheral insulin resistance. Overall, our data suggest that high sucrose intake and dysregulated insulin signaling, which are known to contribute to the occurrence of diabetes, increase the risk of developing AD by upregulating brain mTOR signaling. Therefore, early interventions to modulate mTOR activity in individuals at high risk of developing diabetes may decrease their AD susceptibility. PMID:24411482

  3. Actions of mammalian insulin on a Neurospora variant: effects on intracellular metabolite levels as monitored by P-31 NMR spectroscopy

    SciTech Connect

    Greenfield, N.J.; McKenzie, M.A.; Jordan, F.; Takahashi, M.; Lenard, J.

    1986-05-01

    Fourier transform P-31 NMR spectroscopy (81 MHz) was used to investigate the biochemical nature of insulin action upon the cell wall-deficient slime mutant of Neurospora crassa. Spectra of oxygenated, living cells (ca.10/sup 9//ml.) in late logarithmic-early stationary phase of growth were accumulated for approximately 20 min. (350-450 pulses). Pronounced differences were seen in the metabolite levels of cells cultured for 18-21 hours in the presence of insulin (100 nM) as compared to cells cultured in its absence. Differences in the insulin-grown cells included higher levels of sugar phosphates, inorganic (cytoplasmic) phosphate, NAD+/NADH and UDP-glucose (UDPG) compared to control cells, in which UDP-N-acetylglucosamine (UDPNAG) was the prominent sugar nucleotide. When 100 mM glucose was administered with insulin immediately prior to measurement, short term effects were seen. There were significant increases of sugar phosphates, inorganic phosphate, NAD+/NADH, phosphodiesters and UDPG relative to the case of glucose addition alone. These results are wholly consistent with the known influence of insulin upon mammalian metabolism: stimulation of glucose uptake, phosphorylation and oxidation, phosphatide synthesis and Pi uptake.

  4. Mutant quantity and quality in mammalian cells (AL) exposed to cesium-137 gamma radiation: effect of caffeine

    NASA Technical Reports Server (NTRS)

    McGuinness, S. M.; Shibuya, M. L.; Ueno, A. M.; Vannais, D. B.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    We examined the effect of caffeine (1,3,7-trimethylxanthine) on the quantity and quality of mutations in cultured mammalian AL human-hamster hybrid cells exposed to 137Cs gamma radiation. At a dose (1.5 mg/ml for 16 h) that reduced the plating efficiency (PE) by 20%, caffeine was not itself a significant mutagen, but it increased by approximately twofold the slope of the dose-response curve for induction of S1- mutants by 137Cs gamma radiation. Molecular analysis of 235 S1- mutants using a series of DNA probes mapped to the human chromosome 11 in the AL hybrid cells revealed that 73 to 85% of the mutations in unexposed cells and in cells treated with caffeine alone, 137Cs gamma rays alone or 137Cs gamma rays plus caffeine were large deletions involving millions of base pairs of DNA. Most of these deletions were contiguous with the region of the MIC1 gene at 11p13 that encodes the S1 cell surface antigen. In other mutants that had suffered multiple marker loss, the deletions were intermittent along chromosome 11. These "complex" mutations were rare for 137Cs gamma irradiation (1/63 = 1.5%) but relatively prevalent (23-50%) for other exposure conditions. Thus caffeine appears to alter both the quantity and quality of mutations induced by 137Cs gamma irradiation.

  5. The Effect of 5α-Reductase Inhibition With Dutasteride and Finasteride on Bone Mineral Density, Serum Lipoproteins, Hemoglobin, Prostate Specific Antigen and Sexual Function in Healthy Young Men

    PubMed Central

    Amory, John K.; Anawalt, Bradley D.; Matsumoto, Alvin M.; Page, Stephanie T.; Bremner, William J.; Wang, Christina; Swerdloff, Ronald S.; Clark, Richard V.

    2009-01-01

    Purpose Dutasteride and finasteride are 5α-reductase inhibitors that dramatically decrease serum levels of dihydrotestosterone. Because androgens affect bone, lipids, hematopoiesis, prostate and sexual function, we determined the impact of 5α-reductase inhibitors on these end points. Materials and Methods We conducted a randomized, double-blinded, placebo controlled trial of 99 men 18 to 55 years old randomly assigned to receive 0.5 mg dutasteride (33), 5 mg finasteride (34) or placebo (32) daily for 1 year. Bone mineral density was measured at baseline, after 1 year of treatment and 6 months after drug discontinuation. In addition, markers of bone turnover, fasting serum lipoprotein concentrations, hemoglobin and prostate specific antigen were measured at baseline, after 26 and 52 weeks of treatment, and again 24 weeks after drug discontinuation. Sexual function was assessed at these points by a validated questionnaire. Results Significant suppression of circulating dihydrotestosterone levels with the administration of dutasteride or finasteride did not significantly affect bone mineral density or markers of bone metabolism. Similarly serum lipoproteins and hemoglobin were unaffected. Serum prostate specific antigen and self-assessed sexual function decreased slightly during treatment with both 5α-reductase inhibitors but returned to baseline during followup. Conclusions Profound suppression of circulating serum dihydrotestosterone induced by 5α-reductase inhibitors during 1 year does not adversely impact bone, serum lipoproteins or hemoglobin, and has a minimal, reversible effect on serum prostate specific antigen and sexual function in normal men. Circulating dihydrotestosterone does not appear to have a clinically significant role in modulating bone mass, hematopoiesis or lipid metabolism in normal men. PMID:18423697

  6. Effect of disordered hemes and dimerization in isolated a-subunits of hemoglobin detected by time-resolved fluorescence spectroscopy in the picosecond range

    NASA Astrophysics Data System (ADS)

    Gryczynski, Zygmunt; Fronticelli, Clara; Gratton, Enrico; Lubkowski, Jacek; Bucci, Enrico

    1994-08-01

    Our recent linear dichroism study of transition moment directions for protoporphyrin derivatives [1,2] demonstrate that heme cannot be considered a planar oscillator when it acts as an acceptor of radiationless excitation energy transfer from tryptophan. The linear nature of the heme absorption transition moment implies a strong dependence of the transfer rate factors on the relative angular position of the heme and tryptophan, i.e. on the k2 orientation parameter of the Forster equation. Using the atomic coordinates of human hemoglobin and taking into account the direction of the transition moment of the near UV (300-380 nm) heme absorption band we have estimated the rate of energy transfer from tryptophan to heme in the isolated a chains, which are a single tryptophan protein. It appears that the rate of energy transfer is very sensitive to the orientation of the transition moment of the heme and similarly to myoglobin [3] natural heme disorder significantly reduces the transfer efficiency in isolated a subunits. On this basis we were able to predict very accurately the two lifetimes detectable in the systems, of 32 and 1050 ps respectively, where the amplitude of the longer lifetime is very consistent with the amount of disordered hemes found by La Mar [4,5] for the a subunits of hemoglobin.

  7. Mitogenic effects of hydroxyapatite and calcium pyrophosphate dihydrate crystals on cultured mammalian cells.

    PubMed

    Cheung, H S; Story, M T; McCarty, D J

    1984-06-01

    Synthetic hydroxyapatite (HA) crystals in 1% serum stimulated 3H thymidine uptake into quiescent canine synovial fibroblasts and human foreskin fibroblast cultures, as did 10% serum. The onset of stimulation and peak uptake of thymidine after crystal addition were delayed by 2-3 hours as compared with the effects produced by 10% serum. Stimulation of 3H thymidine uptake was proportional to the serum concentration used. HA crystals (50 micrograms/ml) stimulated nuclide uptake at each serum concentration used. 3H thymidine uptake was also proportional to the dose of HA or calcium pyrophosphate dihydrate crystals, although larger doses of the latter crystal were required to produce equivalent effects. Not all particulates were effective mitogenic agents. Latex beads and diamond crystals had no effect. Monosodium urate crystals modestly stimulated and calcium urate crystals markedly stimulated nuclide uptake. The more complex crystals found in a naturally occurring condition (calcinosis) were as mitogenic as the pure synthetic HA. The synovial cell hyperplasia sometimes associated with crystals might be explained in part by their mitogenic activity. PMID:6329235

  8. Effects of pethidine and nalorphine on the mechanical and electrical activities of mammalian isolated ventricular muscle.

    PubMed

    Grundy, H F; Tritthart, H

    1972-09-01

    1. The strength of the isometric mechanical contraction of electricallydriven ventricular muscle has been recorded simultaneously with the resting and action potentials; the effects of pethidine and of nalorphine on these parameters have been studied.2. When lower concentrations of pethidine (0.22-6.5 mug/ml) were perfused, isometric peak tension was decreased in parallel with the maximum upstroke velocity of the action potential; these actions are considered to result from membrane stabilization. At higher concentrations (11.8-109 mug/ml) pethidine usually produced, in addition, a progressive decrease in the resting and action potentials associated with marked irregularities in, or even abolition of, the mechanical response. It is suggested that these effects of the higher doses might be due to a depression of ATPase activity in the myocardial membrane.3. Compared with pethidine, nalorphine had similar, but weaker, actions. PMID:4263795

  9. Radiation-induced bystander effect and adaptive response in mammalian cells

    NASA Technical Reports Server (NTRS)

    Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Hei, T. K.

    2004-01-01

    Two conflicting phenomena, bystander effect and adaptive response, are important in determining the biological responses at low doses of radiation and have the potential to impact the shape of the dose-response relationship. Using the Columbia University charged-particle microbeam and the highly sensitive AL cell mutagenic assay, we show here that non-irradiated cells acquire mutagenesis through direct contact with cells whose nuclei have been traversed with a single alpha particle each. Pretreatment of cells with a low dose of X-rays four hours before alpha particle irradiation significantly decreased this bystander mutagenic response. Results from the present study address some of the fundamental issues regarding both the actual target and radiation dose effect and can contribute to our current understanding in radiation risk assessment. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  10. The potential of Angeli’s salt to decrease nitric oxide scavenging by plasma hemoglobin

    PubMed Central

    He, Xiaojun; Azarov, Ivan; Jeffers, Anne; Presley, Tennille; Richardson, Jodi; King, S. Bruce; Gladwin, Mark T.; Kim-Shapiro, Daniel B.

    2008-01-01

    Release of hemoglobin from the erythrocyte during intravascular hemolysis contributes to the pathology of a variety of diseased states. This effect is partially due to the enhanced ability of cell-free plasma hemoglobin, which is primarily found in the ferrous, oxygenated state, to scavenge nitric oxide. Oxidation of the cell-free hemoglobin to methemoglobin, which does not effectively scavenge nitric oxide, using inhaled nitric oxide has been shown to be effective in limiting pulmonary and systemic vasoconstriction. However, the ferric heme species may be reduced back to ferrous hemoglobin in plasma and has the potential to drive injurious redox chemistry. We propose that compounds that selectively convert cell-free hemoglobin to ferric, and ideally iron-nitrosylated heme species that do not actively scavenge nitric oxide would effectively treat intravascular hemolysis. We show here that nitroxyl, generated by Angeli’s salt (Sodium α-oxyhyponitrite, Na2N2O3), preferentially reacts with cell-free hemoglobin compared to that encapsulated in the red blood cell under physiologically relevant conditions. Nitroxyl oxidizes oxygenated ferrous hemoglobin to methemoglobin and can convert the methemoglobin to a more stable, less toxic species, iron-nitrosyl hemoglobin. These results support the notion that Angeli’s salt or a similar compound could be used to effectively treat conditions associated with intravascular hemolysis. PMID:18243145

  11. The Bisphenol A Experience: A Primer for the Analysis of Environmental Effects on Mammalian Reproduction1

    PubMed Central

    Hunt, Patricia A.; Susiarjo, Martha; Rubio, Carmen; Hassold, Terry J.

    2009-01-01

    It is increasingly evident that environmental factors are a veritable Pandora's box from which new concerns and complications continue to emerge. Although previously considered the domain of toxicologists, it is now clear that an understanding of the effects of the environment on reproduction requires a far broader range of expertise and that, at least for endocrine-disrupting chemicals, many of the tenets of classical toxicology need to be revisited. Indeed, because of the wide range of reproductive effects induced by these chemicals, interest among reproductive biologists has grown rapidly: in 2000, the program for the annual Society for the Study of Reproduction meeting included a single minisymposium on the fetal origins of adult disease, one platform session on endocrine disruption, and 23 toxicology poster presentations. In contrast, environmental factors featured prominently at the 2009 meeting, with strong representation in the plenary, minisymposia, platform, and poster sessions. Clearly, a lot has happened in a decade, and environmental issues have become an increasingly important research focus for reproductive biologists. In this review, we summarize some of the inherent difficulties in assessing environmental effects on reproductive performance, focusing on the endocrine disruptor bisphenol A (BPA) to illustrate important emerging concerns. In addition, because the BPA experience serves as a prototype for scientific activism, public education, and advocacy, these issues are also discussed. PMID:19458313

  12. UV-B effects on the nutritional chemistry of plants and the responses of a mammalian herbivore.

    PubMed

    Thines, Nicole J; Shipley, Lisa A; Bassman, John H; Slusser, James R; Gao, Wei

    2008-05-01

    Stratospheric ozone depletion has caused ground-level ultraviolet-B (UV-B) radiation to rise in temperate latitudes of both hemispheres. Because the effects of enhanced UV-B radiation on the nutrition of food consumed by mammalian herbivores are unknown, we measured nutritional and chemical constituents of 18 forages and related changes to in vitro dry matter digestibility. We also measured intake and in vivo digestibility of Pacific willow (Salix lasiandra) and alfalfa (Medicago sativa L.) by blue duikers (Cephalophus monticola). Forages were irradiated for 3 months with ambient (1x) or supplemental (1.6 x) UV-B radiation representing a 15% ozone depletion for Pullman, Washington, USA. Enhanced UV-B radiation had minimal and inconsistent effects on the nutritional content, in vitro dry matter digestibility, and protein-binding capacity of forages. However, flavonoid compounds increased in seven of the 13 forbs and woody dicots that were evaluated. Flavonoids were found to decrease only in yarrow (Achillea millefolium). When offered simultaneously, blue duikers preferred 1x and 1.6 x UV-B irradiated plants of alfalfa equally, but ate 26% less willow grown under 1.6 x UV-B radiation. However, when fed to duikers in separate feeding experiments, total dry matter intake and in vivo digestibility of dry matter, fiber, protein, and apparent energy did not differ between alfalfa and willow grown under 1x and 1.6 x UV-B radiation. We conclude that expected increases in UV-B radiation from ozone depletion would have minimal effects on intake and digestion of ruminant herbivores. PMID:18274780

  13. A comparison of the effects of three GM corn varieties on mammalian health.

    PubMed

    de Vendômois, Joël Spiroux; Roullier, François; Cellier, Dominique; Séralini, Gilles-Eric

    2009-01-01

    We present for the first time a comparative analysis of blood and organ system data from trials with rats fed three main commercialized genetically modified (GM) maize (NK 603, MON 810, MON 863), which are present in food and feed in the world. NK 603 has been modified to be tolerant to the broad spectrum herbicide Roundup and thus contains residues of this formulation. MON 810 and MON 863 are engineered to synthesize two different Bt toxins used as insecticides. Approximately 60 different biochemical parameters were classified per organ and measured in serum and urine after 5 and 14 weeks of feeding. GM maize-fed rats were compared first to their respective isogenic or parental non-GM equivalent control groups. This was followed by comparison to six reference groups, which had consumed various other non-GM maize varieties. We applied nonparametric methods, including multiple pairwise comparisons with a False Discovery Rate approach. Principal Component Analysis allowed the investigation of scattering of different factors (sex, weeks of feeding, diet, dose and group). Our analysis clearly reveals for the 3 GMOs new side effects linked with GM maize consumption, which were sex- and often dose-dependent. Effects were mostly associated with the kidney and liver, the dietary detoxifying organs, although different between the 3 GMOs. Other effects were also noticed in the heart, adrenal glands, spleen and haematopoietic system. We conclude that these data highlight signs of hepatorenal toxicity, possibly due to the new pesticides specific to each GM corn. In addition, unintended direct or indirect metabolic consequences of the genetic modification cannot be excluded. PMID:20011136

  14. The effect of optical substrates on micro-FTIR analysis of single mammalian cells.

    PubMed

    Wehbe, Katia; Filik, Jacob; Frogley, Mark D; Cinque, Gianfelice

    2013-02-01

    The study of individual cells with infrared (IR) microspectroscopy often requires living cells to be cultured directly onto a suitable substrate. The surface effect of the specific substrates on the cell growth-viability and associated biochemistry-as well as on the IR analysis-spectral interference and optical artifacts-is all too often ignored. Using the IR beamline, MIRIAM (Diamond Light Source, UK), we show the importance of the substrate used for IR absorption spectroscopy by analyzing two different cell lines cultured on a range of seven optical substrates in both transmission and reflection modes. First, cell viability measurements are made to determine the preferable substrates for normal cell growth. Successively, synchrotron radiation IR microspectroscopy is performed on the two cell lines to determine any genuine biochemically induced changes or optical effect in the spectra due to the different substrates. Multivariate analysis of spectral data is applied on each cell line to visualize the spectral changes. The results confirm the advantage of transmission measurements over reflection due to the absence of a strong optical standing wave artifact which amplifies the absorbance spectrum in the high wavenumber regions with respect to low wavenumbers in the mid-IR range. The transmission spectra reveal interference from a more subtle but significant optical artifact related to the reflection losses of the different substrate materials. This means that, for comparative studies of cell biochemistry by IR microspectroscopy, it is crucial that all samples are measured on the same substrate type. PMID:23151654

  15. Effects of N-, P- and Q-type neuronal calcium channel antagonists on mammalian peripheral neurotransmission.

    PubMed Central

    Wright, C. E.; Angus, J. A.

    1996-01-01

    1. The effects of N-, P- and Q-type neuronal voltage-operated calcium (Ca2+) channel antagonists on neurotransmission were determined in a range of cardiovascular and urogenital tissues, as well as the diaphragm, isolated from rat or mouse. 2. The pharmacological tools chosen were omega-conotoxin GVIA (CTX GVIA), a selective N-type Ca2+ channel antagonist, the P-type channel blocker (< or = 100 nM) omega-agatoxin IVA (AGA IVA) and omega-conotoxin MVIIC (CTX MVIIC), a non-selective antagonist of N-, P- and Q-type channels. The effects of these antagonists on nerve-mediated responses were assessed in right atria, vasa deferentia, phrenic nerve-hemidiaphragms and small mesenteric arteries. 3. Rat mesenteric artery contractile responses to perivascular nerve stimulation were concentration-dependently inhibited by CTX GVIA (1-10 nM); inhibition was 92% with 10 nM. CTX MVIIC was > 100 fold less potent and only caused an inhibition of 46% at the highest concentration (1000 nM). AGA IVA (100 nM) had no effect. 4. In rat vas deferens stimulated at 0.05 Hz, CTX GVIA (10 nM) completely inhibited the twitch response and CTX MVIIC, about 100 fold less potent, caused total inhibition at 1000 nM. AGA IVA did not affect the twitch. In rat preparations stimulated at 20 Hz, a CTX GVIA-resistant (< or = 1000 nM) twitch response of 25% was apparent which could be blocked by 1000 nM AGA IVA or CTX MVIIC. In mouse vas deferens (20 Hz stimulation), CTX GVIA 10 nM caused an 87% inhibition of the twitch, the remainder being resistant to CTX GVIA, 100 nM. CTX MVIIC was only 10 fold less potent than CTX GVIA and completely inhibited the response at 1000 nM. AGA IVA (100 nM) inhibited the twitch by 55%. 5. The twitch response of the mouse phrenic nerve-hemidiaphragm was concentration-dependently inhibited by AGA IVA (1-100 nM); inhibition was 92% at 100 nM. CTX MVIIC was about 10 fold less potent than AGA IVA with an inhibition of 80% at 1000 nM. CTX GVIA was without effect. In the rat

  16. Hemoglobin

    MedlinePlus

    ... the anemia is severe Some conditions affect RBC production in the bone marrow and may cause an ... there is a problem with red blood cell production and/or lifespan, but it cannot determine the ...

  17. Hemoglobin

    MedlinePlus

    ... and after major surgery During pregnancy Presence of chronic kidney disease or many other chronic medical problems Monitoring of ... from digestive tract or bladder, heavy menstrual periods Chronic kidney disease Bone marrow being unable to produce new blood ...

  18. The biology of mammalian parenting and its effect on offspring social development.

    PubMed

    Rilling, James K; Young, Larry J

    2014-08-15

    Parents know the transformative nature of having and caring for a child. Among many mammals, giving birth leads from an aversion to infant stimuli to irresistible attraction. Here, we review the biological mechanisms governing this shift in parental motivation in mammals. Estrogen and progesterone prepare the uterus for embryo implantation and placental development. Prolactin stimulates milk production, whereas oxytocin initiates labor and triggers milk ejection during nursing. These same molecules, interacting with dopamine, also activate specific neural pathways to motivate parents to nurture, bond with, and protect their offspring. Parenting in turn shapes the neural development of the infant social brain. Recent work suggests that many of the principles governing parental behavior and its effect on infant development are conserved from rodent to humans. PMID:25124431

  19. Novel antiviral effect of lithium chloride on mammalian orthoreoviruses in vitro.

    PubMed

    Chen, Ye; Kong, Deyang; Cai, Gengyuan; Jiang, Zhiguo; Jiao, Yiren; Shi, Yuzhen; Li, Huaqin; Wang, Chong

    2016-04-01

    Reovirus not only causes considerable economic loss in the swine industry of the United States and other countries, but also threatens the public health due to its zoonotic potential. According to previous reports, LiCl has antiviral activity against a number of viruses. The inhibitory effects of LiCl on reovirus life cycle in Vero cells were evaluated. The unpaired t-test and one-way ANOVA were used to analyze the differences between experimental groups. We first found that LiCl treatment significantly inhibited reovirus replication in a dose-dependent manner. Furthermore, we found that this antiviral activity of LiCl targets the early stage of viral replication. LiCl could be a potential drug against reovirus infection. PMID:26835657

  20. Effects of exogenous amines on mammalian cells, with particular reference to membrane flow.

    PubMed Central

    Dean, R T; Jessup, W; Roberts, C R

    1984-01-01

    We have reviewed the evidence that amines accumulate in intracellular vesicles of low pH, such as lysosomes and endosomes. There is consequent elevation of intravesicular pH, and inhibition of receptor-ligand dissociation often results from this pH change. We have argued that the capacity for fusion of such vesicles is also reduced by the high pH. We suggest that the variety of effects of amines on membrane flow and macromolecular transport we describe are at least partly due to such reduced fusion (Figs. 1 and 2). We propose that an internal low pH may facilitate heterologous vesicle-vesicle and vesicle-plasma membrane fusion. There is some evidence that clathrin can accelerate phospholipid vesicle fusion in vitro at low pH (Blumenthal et al., 1983) but no direct evidence on the role of intravesicular pH. This idea is consistent not only with the preceding discussion, but also with the fact that the intracellular membrane-bound compartments least involved in fusion events (e.g. mitochondria) are of neutral or alkaline internal pH. Membrane fusion is certainly required for the formation of vesicles at the periphery of the Golgi apparatus, and possibly earlier in the transport and processing of biosynthetic products in the Golgi (Bergeron et al., 1982). Thus the accumulation of amines in the Golgi may be responsible for several effects on the flow of macromolecules along their translocation pathways. The status of the plasma membrane in this view is complex. It might be argued that the pH dictating the fusion step in endocytosis is that of the extracellular fluid, in which case the inhibitory effects of amines on this process are not explained. However, the rapidity of acidification of the newly formed endocytic vesicles allows the possibility that plasma membrane invaginations might temporarily sequester areas which are of lower pH than that of the bulk extracellular fluid even before fusion, since the proton pumping enzyme(s) are probably present on the plasma

  1. Antigenotoxic effect of allicin against estradiol-17beta-induced genotoxic damage in cultured mammalian cells.

    PubMed

    Siddique, Yasir Hasan; Beg, Tanveer; Ara, Gulshan; Gupta, Jyoti; Afzal, Mohammad

    2010-07-01

    Antigenotoxic activity of allicin, one of the sulphur compounds of garlic (Allium sativum) which possesses antioxidant and thiol disulphide exchange activity, was studied against estradiol-17beta-induced genotoxic damage using chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs) as parameters. Approximately 10, 20 and 40 microM of estradiol-17beta was tested for its genotoxic effect in the presence of metabolic activation and was found to be genotoxic at 20 and 40 microM. Approximately 20 microM of estradiol-17beta was treated along with 5, 10 and 15 microM of allicin, separately, in the presence of metabolic activation. Similar treatments were given with 40 microM of estradiol-17beta. Treatments along with allicin result in the reduction of CAs and SCEs, suggesting its anti-genotoxic activity in human lymphocytes in vitro against estradiol-17beta-induced genotoxic damage. PMID:20582805

  2. Cytoprotective effects of graphene oxide for mammalian cells against internalization of exogenous materials

    NASA Astrophysics Data System (ADS)

    Na, Hee-Kyung; Kim, Mi-Hee; Lee, Jieon; Kim, Young-Kwan; Jang, Hongje; Lee, Kyung Eun; Park, Hyerim; Do Heo, Won; Jeon, Hyesung; Choi, Insung S.; Lee, Younghoon; Min, Dal-Hee

    2013-01-01

    To date, graphene oxide (GO), an oxidized version of graphene, has been utilized in many research areas including bioapplications such as drug delivery and bioanalysis. Unlike other spherical or polygonal nanomaterials, GO exhibits a sheet-like structure, which in itself suggests interesting applications based on its shape. Here we show that GO can protect cells from internalization of toxic hydrophobic molecules, nanoparticles, and nucleic acids such as siRNA and plasmid DNA by interacting with cell surface lipid bilayers without noticeably reducing cell viability. Furthermore, the cytoprotective effect of GO against the internalization of extracellular materials enabled spatial control over gene transfection through region-selective gene delivery only into GO-untreated cells, and not into the GO-treated cells.To date, graphene oxide (GO), an oxidized version of graphene, has been utilized in many research areas including bioapplications such as drug delivery and bioanalysis. Unlike other spherical or polygonal nanomaterials, GO exhibits a sheet-like structure, which in itself suggests interesting applications based on its shape. Here we show that GO can protect cells from internalization of toxic hydrophobic molecules, nanoparticles, and nucleic acids such as siRNA and plasmid DNA by interacting with cell surface lipid bilayers without noticeably reducing cell viability. Furthermore, the cytoprotective effect of GO against the internalization of extracellular materials enabled spatial control over gene transfection through region-selective gene delivery only into GO-untreated cells, and not into the GO-treated cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33800a

  3. CD73 and AMPD3 deficiency enhance metabolic performance via erythrocyte ATP that decreases hemoglobin oxygen affinity

    PubMed Central

    O’Brien III, William G.; Berka, Vladimir; Tsai, Ah-Lim; Zhao, Zhaoyang; Lee, Cheng Chi

    2015-01-01

    Erythrocytes are the key target in 5′-AMP induced hypometabolism. To understand how regulation of endogenous erythrocyte AMP levels modulates systemic metabolism, we generated mice deficient in both CD73 and AMPD3, the key catabolic enzymes for extracellular and intra-erythrocyte AMP, respectively. Under physiological conditions, these mice displayed enhanced capacity for physical activity accompanied by significantly higher food and oxygen consumption, compared to wild type mice. Erythrocytes from Ampd3−/− mice exhibited higher half-saturation pressure of oxygen (p50) and about 3-fold higher levels of ATP and ADP, while they maintained normal 2,3-bisphosphoglycerate (2,3-BPG), methemoglobin levels and intracellular pH. The affinity of mammalian hemoglobin for oxygen is thought to be regulated primarily by 2,3-BPG levels and pH (the Bohr effect). However, our results show that increased endogenous levels of ATP and ADP, but not AMP, directly increase the p50 value of hemoglobin. Additionally, the rise in erythrocyte p50 directly correlates with an enhanced capability of systemic metabolism. PMID:26249166

  4. Determination Of Ph Including Hemoglobin Correction

    DOEpatents

    Maynard, John D.; Hendee, Shonn P.; Rohrscheib, Mark R.; Nunez, David; Alam, M. Kathleen; Franke, James E.; Kemeny, Gabor J.

    2005-09-13

    Methods and apparatuses of determining the pH of a sample. A method can comprise determining an infrared spectrum of the sample, and determining the hemoglobin concentration of the sample. The hemoglobin concentration and the infrared spectrum can then be used to determine the pH of the sample. In some embodiments, the hemoglobin concentration can be used to select an model relating infrared spectra to pH that is applicable at the determined hemoglobin concentration. In other embodiments, a model relating hemoglobin concentration and infrared spectra to pH can be used. An apparatus according to the present invention can comprise an illumination system, adapted to supply radiation to a sample; a collection system, adapted to collect radiation expressed from the sample responsive to the incident radiation; and an analysis system, adapted to relate information about the incident radiation, the expressed radiation, and the hemoglobin concentration of the sample to pH.

  5. Temperature dependence of active tension in mammalian (rabbit psoas) muscle fibres: effect of inorganic phosphate.

    PubMed

    Coupland, M E; Puchert, E; Ranatunga, K W

    2001-11-01

    1. The effect of added inorganic phosphate (P(i), range 3-25 mM) on active tension was examined at a range of temperatures (5-30 degrees C) in chemically skinned (0.5 % Brij) rabbit psoas muscle fibres. Three types of experiments were carried out. 2. In one type of experiment, a muscle fibre was maximally activated at low temperature (5 degrees C) and its tension change was recorded during stepwise heating to high temperature in approximately 60 s. As found in previous studies, the tension increased with temperature and the normalised tension-(reciprocal) temperature relation was sigmoidal, with a half-maximal tension at 8 degrees C. In the presence of 25 mM added P(i), the temperature for half-maximal tension of the normalised curve was approximately 5 degrees C higher than in the control. The difference in the slope was small. 3. In a second type of experiment, the tension increment during a large temperature jump (from 5 to 30 degrees C) was examined during an active contraction. The relative increase of active tension on heating was significantly higher in the presence of 25 mM added P(i) (30/5 degrees C tension ratio of 6-7) than in the control with no added P(i) (tension ratio of approximately 3). 4. In a third type of experiment, the effect on the maximal Ca(2+)-activated tension of different levels of added P(i) (3-25 mM) (and P(i) mop adequate to reduce contaminating P(i) to micromolar levels) was examined at 5, 10, 20 and 30 degrees C. The tension was depressed with increased [P(i)] in a concentration-dependent manner at all temperatures, and the data could be fitted with a hyperbolic relation. The calculated maximal tension depression in excess [P(i)] was approximately 65 % of the control at 5-10 degrees C, in contrast to a maximal depression of 40 % at 20 degrees C and 30 % at 30 degrees C. 5. These experiments indicate that the active tension depression induced by P(i) in psoas fibres is temperature sensitive, the depression becoming less marked at

  6. Gene-Chemical Interactions in the Developing Mammalian Nervous System: Effects on Proliferation, Neurogenesis and Differentiation

    PubMed Central

    Fox, Donald A.; Opanashuk, Lisa; Zharkovsky, Aleksander; Weiss, Bernie

    2010-01-01

    The orderly formation of the nervous system requires a multitude of complex, integrated and simultaneously occurring processes. Neural progenitor cells expand through proliferation, commit to different cell fates, exit the cell cycle, generate different neuronal and glial cell types, and new neurons migrate to specified areas and establish synaptic connections. Gestational and perinatal exposure to environmental toxicants, pharmacological agents and drugs of abuse produce immediate, persistent or late-onset alterations in behavioral, cognitive, sensory and/or motor functions. These alterations reflect the disruption of the underlying processes of CNS formation and development. To determine the neurotoxic mechanisms that underlie these deficits it is necessary to analyze and dissect the complex molecular processes that occur during the proliferation, neurogenesis and differentiation of cells. This symposium will provide a framework for understanding the orchestrated events of neurogenesis, the coordination of proliferation and cell fate specification by selected genes, and the effects of well-known neurotoxicants on neurogenesis in the retina, hippocampus and cerebellum. These three tissues share common developmental profiles, mediate diverse neuronal activities and function, and thus provide important substrates for analysis. This paper summarizes four invited talks that were presented at the 12th International Neurotoxicology Association meeting held in Jerusalem, Israel during the summer of 2009. Donald A. Fox described the structural and functional alterations following low-level gestational lead exposure in children and rodents that produced a supernormal electroretinogram and selective increases in neurogenesis and cell proliferation of late-born retinal neurons (rod photoreceptors and bipolar cells), but not Müller glia cells, in mice. Lisa Opanashuk discussed how dioxin [TCDD] binding to the arylhydrocarbon receptor [AhR], a transcription factor that

  7. Effects of trimebutine maleate on electrical activities of isolated mammalian cardiac preparations.

    PubMed

    Igawa, O; Kotake, H; Hirai, S; Hisatome, I; Hasegawa, J; Mashiba, H

    1989-05-01

    The effects of trimebutine maleate on electrical activity in guinea-pig isolated papillary muscles and rabbit sino-atrial nodes have been studied by means of a standard microelectrode method. In papillary muscles, trimebutine (above 10 microM) decreased the maximum rate of rise (Vmax) and the action potential duration at 90% repolarization (APD90), whereas the resting potential was not significantly altered. As to a decrease in Vmax, trimebutine produced a negative shift of the curve relating Vmax to the resting potential along the voltage axis. Trimebutine also depressed the slow action potentials of papillary muscles produced by 27 mM K and 0.2 mM Ba. In spontaneously beating sino-atrial node preparations, trimebutine (above 10 microM) decreased the heart rate, Vmax and the rate of diastolic depolarization. These results indicate that trimebutine maleate possesses a depressant action on the electrical activities of the fast- and slow-response fibres of the heart mainly due to inhibitions of both fast Na+ and slow Ca2+ channels. PMID:2569517

  8. Adjudin, a potential male contraceptive, exerts its effects locally in the seminiferous epithelium of mammalian testes

    PubMed Central

    Mok, Ka-Wai; Mruk, Dolores D; Lie, Pearl P Y; Lui, Wing-Yee; Cheng, C Yan

    2015-01-01

    Adjudin is a derivative of 1H-indazole-3-carboxylic acid that was shown to have potent anti-spermatogenic activity in rats, rabbits, and dogs. It exerts its effects most notably locally in the apical compartment of the seminiferous epithelium, behind the blood–testis barrier, by disrupting adhesion of germ cells, most notably spermatids to the Sertoli cells, thereby inducing release of immature spermatids from the epithelium that leads to infertility. After adjudin is metabolized, the remaining spermatogonial stem cells and spermatogonia repopulate the seminiferous epithelium gradually via spermatogonial self-renewal and differentiation, to be followed by meiosis and spermiogenesis, and thus fertility rebounds. Recent studies in rats have demonstrated unequivocally that the primary and initial cellular target of adjudin in the testis is the apical ectoplasmic specialization, a testis-specific anchoring junction type restricted to the interface between Sertoli cells and elongating spermatids (from step 8 to 19 spermatids). In this review, we highlight some of the recent advances and obstacles regarding the possible use of adjudin as a male contraceptive. PMID:21307270

  9. The Cytolethal Distending Toxin Effects on Mammalian Cells: A DNA Damage Perspective

    PubMed Central

    Bezine, Elisabeth; Vignard, Julien; Mirey, Gladys

    2014-01-01

    The cytolethal distending toxin (CDT) is produced by many pathogenic Gram-negative bacteria and is considered as a virulence factor. In human cells, CDT exposure leads to a unique cytotoxicity associated with a characteristic cell distension and induces a cell cycle arrest dependent on the DNA damage response (DDR) triggered by DNA double-strand breaks (DSBs). CDT has thus been classified as a cyclomodulin and a genotoxin. Whereas unrepaired damage can lead to cell death, effective, but improper repair may be detrimental. Indeed, improper repair of DNA damage may allow cells to resume the cell cycle and induce genetic instability, a hallmark in cancer. In vivo, CDT has been shown to induce the development of dysplastic nodules and to lead to genetic instability, defining CDT as a potential carcinogen. It is therefore important to characterize the outcome of the CDT-induced DNA damage and the consequences for intoxicated cells and organisms. Here, we review the latest results regarding the host cell response to CDT intoxication and focus on DNA damage characteristics, cell cycle modulation and cell outcomes. PMID:24921185

  10. Stimulus and recording variables and their effects on mammalian vestibular evoked potentials

    NASA Technical Reports Server (NTRS)

    Jones, Sherri M.; Subramanian, Geetha; Avniel, Wilma; Guo, Yuqing; Burkard, Robert F.; Jones, Timothy A.

    2002-01-01

    Linear vestibular evoked potentials (VsEPs) measure the collective neural activity of the gravity receptor organs in the inner ear that respond to linear acceleration transients. The present study examined the effects of electrode placement, analog filtering, stimulus polarity and stimulus rate on linear VsEP thresholds, latencies and amplitudes recorded from mice. Two electrode-recording montages were evaluated, rostral (forebrain) to 'mastoid' and caudal (cerebellum) to 'mastoid'. VsEP thresholds and peak latencies were identical between the two recording sites; however, peak amplitudes were larger for the caudal recording montage. VsEPs were also affected by filtering. Results suggest optimum high pass filter cutoff at 100-300 Hz, and low pass filter cutoff at 10,000 Hz. To evaluate stimulus rate, linear jerk pulses were presented at 9.2, 16, 25, 40 and 80 Hz. At 80 Hz, mean latencies were longer (0.350-0.450 ms) and mean amplitudes reduced (0.8-1.8 microV) for all response peaks. In 50% of animals, late peaks (P3, N3) disappeared at 80 Hz. The results offer options for VsEP recording protocols. Copyright 2002 Elsevier Science B.V.

  11. Modelling antibiotic and cytotoxic isoquinoline effects in Staphylococcus aureus, Staphylococcus epidermidis and mammalian cells.

    PubMed

    Cecil, Alexander; Ohlsen, Knut; Menzel, Thomas; François, Patrice; Schrenzel, Jacques; Fischer, Adrien; Dörries, Kirsten; Selle, Martina; Lalk, Michael; Hantzschmann, Julia; Dittrich, Marcus; Liang, Chunguang; Bernhardt, Jörg; Ölschläger, Tobias A; Bringmann, Gerhard; Bruhn, Heike; Unger, Matthias; Ponte-Sucre, Alicia; Lehmann, Leane; Dandekar, Thomas

    2015-01-01

    Isoquinolines (IQs) are natural substances with an antibiotic potential we aim to optimize. Specifically, IQ-238 is a synthetic analog of the novel-type N,C-coupled naphthylisoquinoline (NIQ) alkaloid ancisheynine. Recently, we developed and tested other IQs such as IQ-143. By utilizing genome-wide gene expression data, metabolic network modelling and Voronoi tessalation based data analysis - as well as cytotoxicity measurements, chemical properties calculations and principal component analysis of the NIQs - we show that IQ-238 has strong antibiotic potential for staphylococci and low cytotoxicity against murine or human cells. Compared to IQ-143, systemic effects are less pronounced. Most enzyme activity changes due to IQ-238 are located in the carbohydrate metabolism. Validation includes metabolite measurements on biological replicates. IQ-238 delineates key properties and a chemical space for a good therapeutic window. The combination of analysis methods allows suggestions for further lead development and yields an in-depth look at staphylococcal adaptation and network changes after antibiosis. Results are compared to eukaryotic host cells. PMID:25500547

  12. Effects of subacute pyridostigmine administration on mammalian skeletal muscle function. (Reannouncement with new availability information)

    SciTech Connect

    Adler, M.; Deshpande, S.S.; Foster, R.E.; Maxwell, D.M.; Albuquerque, E.X.

    1992-12-31

    The subacute effects of pyridostigmine bromide were investigated on the contractile properties of rat extensor digitorum longus (EDL) and diaphragm muscles. The cholinesterase inhibitor was delivered via subcutaneously implanted osmotic minipumps (Alzet) at 9 microns g h-1 (low dose) or 60 micro g h-1 (high dose). Animals receiving high-dose pyridostigmine pumps exhibited marked alterations in muscle properties within the first day of exposure that persisted for the remaining 13 days. With 0.1 Hz stimulation, EDL twitch tensions of treated animals were elevated relative to control. Repetitive stimulation at frequencies > 1 Hz led a use-dependent depression in the amplitude of successive twitches during the train. Recovery from pyridostigmine was essentially complete by 1 day of withdrawal. Rats implanted with low-dose pyridostigmine pumps showed little or no alteration of in vivo twitch tensions during the entire 14 days of treatment. Diaphragm and EDL muscles excised from pyridostigmine-treated rats and tested in vitro showed no significant alterations in twitch and tetanic tensions and displayed the same sensitivity as muscles of control animals to subsequent pyridostigmine exposures. In the presence of atropine, subacutely administered pyridostigmine protected rats from two LD5O doses of the irreversible cholinesterase inhibitor, soman. In the absence of atropine, the LD50 of soman was not altered by subacute pyridostigmine treatment. Extensor digitorum longus; diaphragm; twitch tension; ACh release; subacute; Alzet pumps; tolerance; anticholinesterase; pyridostigmine; soman.

  13. Beyond the detergent effect: a binding site for sodium dodecyl sulfate (SDS) in mammalian apoferritin

    SciTech Connect

    Liu, Renyu Bu, Weiming; Xi, Jin; Mortazavi, Shirin R.; Cheung-Lau, Jasmina C.; Dmochowski, Ivan J.; Loll, Patrick J.

    2012-05-01

    Using X-ray crystallography and isothermal titration calorimetry, we show that sodium dodecyl sulfate (SDS) binds specifically to a pre-formed internal cavity in horse-spleen apoferritin. Although sodium dodecyl sulfate (SDS) is widely used as an anionic detergent, it can also exert specific pharmacological effects that are independent of the surfactant properties of the molecule. However, structural details of how proteins recognize SDS are scarce. Here, it is demonstrated that SDS binds specifically to a naturally occurring four-helix bundle protein: horse apoferritin. The X-ray crystal structure of the apoferritin–SDS complex was determined at a resolution of 1.9 Å and revealed that the SDS binds in an internal cavity that has previously been shown to recognize various general anesthetics. A dissociation constant of 24 ± 9 µM at 293 K was determined by isothermal titration calorimetry. SDS binds in this cavity by bending its alkyl tail into a horseshoe shape; the charged SDS head group lies in the opening of the cavity at the protein surface. This crystal structure provides insights into the protein–SDS interactions that give rise to binding and may prove useful in the design of novel SDS-like ligands for some proteins.

  14. Hemoglobin Labeled by Radioactive Lysine

    DOE R&D Accomplishments Database

    Bale, W. F.; Yuile, C. L.; DeLaVergne, L.; Miller, L. L.; Whipple, G. H.

    1949-12-08

    This paper reports on the utilization of tagged epsilon carbon of DL-lysine by a dog both anemic and hypoproteinemic due to repeated bleeding plus a diet low in protein. The experiment extended over period of 234 days, a time sufficient to indicate an erythrocyte life span of at least 115 days based upon the rate of replacement of labeled red cell proteins. The proteins of broken down red cells seem not to be used with any great preference for the synthesis of new hemoglobin.

  15. Mutagenic effects of a single and an exact number of alpha particles in mammalian cells.

    PubMed

    Hei, T K; Wu, L J; Liu, S X; Vannais, D; Waldren, C A; Randers-Pehrson, G

    1997-04-15

    One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single alpha particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human-hamster hybrid (A(L)) cells by either a single or an exact number of alpha particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 alpha particles at a linear energy transfer of 90 keV/microm consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to A(L) cells (survival fraction approximately 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 10(5) survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single a particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses. PMID:9108052

  16. Mutagenic effects of a single and an exact number of alpha particles in mammalian cells

    NASA Technical Reports Server (NTRS)

    Hei, T. K.; Wu, L. J.; Liu, S. X.; Vannais, D.; Waldren, C. A.; Randers-Pehrson, G.

    1997-01-01

    One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single alpha particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human-hamster hybrid (A(L)) cells by either a single or an exact number of alpha particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 alpha particles at a linear energy transfer of 90 keV/microm consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to A(L) cells (survival fraction approximately 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 10(5) survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single a particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.

  17. Effect of tannic acid on brush border disaccharidases in mammalian intestine.

    PubMed

    Chauhan, Ayesha; Gupta, Shiffalli; Mahmood, Akhtar

    2007-04-01

    Tannic acid is a glucoside (penta-m-digallolyl-glucose), which exhibits a wide variety of physiological functions. Around neutral pH, 0.4 mM tannic acid produced 84% inhibition of rat brush border sucrase activity, but 35-40% enzyme inhibition was observed in the rabbit intestine at 0.08 mM concentration. In the mice, 74-77% enzyme inhibition was observed at 0.05 mM concentration of tannic acid. The observed inhibition was reversible in rat intestine. Tannic acid (0.2 mM) also inhibited lactase (18% in adult and 71% in suckling animals), maltase (76%) and trehalase (88%) activities in rat intestine. pH versus activity curves showed that 0.2 mM tannic acid inhibited enzyme activity in rat by 91% at pH 5.5 which was reduced to 14% at pH 8.5 compared to the respective controls. In the rabbit 18-60% enzyme inhibition was noticed below pH 7.0, however at pH 8.5, it was of the order of 38%. Kinetic analysis revealed that tannic acid is a competitive inhibitor of rat brush border sucrase at pH 6.8. Effect of tannic acid together with various -SH group reacting reagents revealed that the enzyme inhibition is additive in nature, suggesting the distinct nature of binding sites on the enzyme for these compounds. The results suggest that tannic acid is a potent inhibitor of intestinal brush border disaccharidases, and could modulate the intestinal functions. PMID:17477307

  18. Effect of Near-Ultraviolet and Visible Light on Mammalian Cells in Culture II. Formation of Toxic Photoproducts in Tissue Culture Medium by Blacklight*

    PubMed Central

    Stoien, James D.; Wang, Richard J.

    1974-01-01

    Near-ultraviolet radiation was found to be lethal for mammalian cells in Dulbecco's modified Eagle's medium without serum or phenol red. Irradiation of the cells with near-ultraviolet light while the cells were in phosphate-buffered-saline abolished the lethal effect. When only the medium was irradiated followed by the addition of unirradiated cells and serum, the cells were still killed. The photoactive components of the medium for this effect were riboflavin, tryptophan, and tyrosine. When riboflavin was deleted from the medium being irradiated and added later, almost no killing was detected. Irradiation of salt solution of riboflavin and tryptophan or riboflavin and tyrosine, resulted in cell killing. Little or no killing resulted when riboflavin, tryptophan, or tyrosine was irradiated singly. The formation of photoproducts toxic for mammalian cells appears to involve photodynamic action. Experiments utilizing Dulbecco's or similar media without proper controls may produce anomalous results from light illuminating the laboratory. PMID:4530275

  19. Rodent Habitat on ISS: Advances in Capability for Determining Spaceflight Effects on Mammalian Physiology

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Choi, S.; Gong, C.; Leveson-Gower, D.; Ronca, A.; Taylor, E.; Beegle, J.

    2016-01-01

    -flight showed that there were no differences between FLT and GC groups in adrenal gland and spleen weights, whereas FLT thymus and liver weights exceeded those of GC. Minimal differences between the control groups (GC and VIV) were observed. In addition, Over 3,000 aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for the Biospecimen Sharing Program and Genelab project. New capabilities recently developed include DEXA scanning, grip strength tests and male mice. In conclusion, new capability for long duration rodent habitation of group-housed rodents was developed and includes in-flight sample collection, thus avoiding the complication of reentry. Results obtained to date reveal the possibility of striking differences between the effects of short duration vs. long duration spaceflight. This Rodent Research system enables achievement of both basic science and translational research objectives to advance human exploration of space.

  20. Mammalian Endogenous Retroviruses.

    PubMed

    Mager, Dixie L; Stoye, Jonathan P

    2015-02-01

    Over 40% of mammalian genomes comprise the products of reverse transcription. Among such retrotransposed sequences are those characterized by the presence of long terminal repeats (LTRs), including the endogenous retroviruses (ERVs), which are inherited genetic elements closely resembling the proviruses formed following exogenous retrovirus infection. Sequences derived from ERVs make up at least 8 to 10% of the human and mouse genomes and range from ancient sequences that predate mammalian divergence to elements that are currently still active. In this chapter we describe the discovery, classification and origins of ERVs in mammals and consider cellular mechanisms that have evolved to control their expression. We also discuss the negative effects of ERVs as agents of genetic disease and cancer and review examples of ERV protein domestication to serve host functions, as in placental development. Finally, we address growing evidence that the gene regulatory potential of ERV LTRs has been exploited multiple times during evolution to regulate genes and gene networks. Thus, although recently endogenized retroviral elements are often pathogenic, those that survive the forces of negative selection become neutral components of the host genome or can be harnessed to serve beneficial roles. PMID:26104559

  1. Mutant quantity and quality in mammalian cells (A{sub L}) exposed to cesium-137 gamma radiation: Effect of caffeine

    SciTech Connect

    McGuinness, S.M.; Shibuya, M.L.; Ueno, A.M.

    1995-06-01

    We examined the effect of caffeine (1,3,7-trimethylxanthine) on the quantity and quality of mutations in cultured mammalian A{sub L} human-hamster hybrid cells exposed to {sup 137}Cs {gamma} radiation. At a dose (1.5 mg/ml for 16 h) that reduced the plating efficiency (PE) by 20%, caffeine was not itself a significant mutagen, but it increased by approximately twofold the slope of the dose-response curve for induction of S1{sup {minus}} mutants by {sup 137}Cs {gamma} radiation. Molecular analysis of 235 S1{sup {minus}} mutants using a series of DNA probes mapped to the human chromosome 11 in the A{sub L} hybrid cells revealed that 73 to 85% of the mutations in unexposed cells and in cells treated with caffeine alone, {sup 137}Cs {gamma} rays alone or {sup 137}Cs {gamma} rays plus caffeine were large deletions involving millions of base pairs of DNA. Most of these deletions were contiguous with the region of the MIC1 gene at 11p13 that encodes the S1 cell surface antigen. In other mutants that had suffered multiple marker loss, the deletions were intermittent along chromosome 11. These {open_quotes}complex{close_quotes} mutations were rare for {sup 137}Cs {gamma} irradiation (1/63 = 1.5%) but relatively prevalent (23-50%) for other exposure conditions. Thus caffeine appears to alter both the quantity and quality of mutations induced by {sup 137}Cs {gamma} irradiation. 62 refs., 3 figs., 3 tabs.

  2. Effect of neohesperidin dihydrochalcone on the activity and stability of alpha-amylase: a comparative study on bacterial, fungal, and mammalian enzymes.

    PubMed

    Kashani-Amin, Elaheh; Ebrahim-Habibi, Azadeh; Larijani, Bagher; Moosavi-Movahedi, Ali Akbar

    2015-10-01

    Neohesperidin dihydrochalcone (NHDC) was recently introduced as an activator of mammalian alpha-amylase. In the current study, the effect of NHDC has been investigated on bacterial and fungal alpha-amylases. Enzyme assays and kinetic analysis demonstrated the capability of NHDC to significantly activate both tested alpha-amylases. The ligand activation pattern was found to be more similar between the fungal and mammalian enzyme in comparison with the bacterial one. Further, thermostability experiments indicated a stability increase in the presence of NHDC for the bacterial enzyme. In silico (docking) test locates a putative binding site for NHDC on alpha-amylase surface in domain B. This domain shows differences in various alpha-amylase types, and the different behavior of the ligand toward the studied enzymes may be attributed to this fact. PMID:25808616

  3. Synergistic Effect of S224P and N383D Substitutions in the PA of H5N1 Avian Influenza Virus Contributes to Mammalian Adaptation

    PubMed Central

    Song, Jiasheng; Xu, Jing; Shi, Jianzhong; Li, Yanbing; Chen, Hualan

    2015-01-01

    The adaptation of H5N1 avian influenza viruses to human poses a great threat to public health. Previous studies indicate the adaptive mutations in viral polymerase of avian influenza viruses are major contributors in overcoming the host species barrier, with the majority of mammalian adaptive mutations occurring in the PB2 protein. However, the adaptive mutations in the PA protein of the H5N1 avian influenza virus are less defined and poorly understood. In this study, we identified the synergistic effect of the PA/224P + 383D of H5N1 avian influenza viruses and its ability to enhance the pathogenicity and viral replication in a mammalian mouse model. Interestingly, the signature of PA/224P + 383D mainly exists in mammalian isolates of the H5N1 influenza virus and pdmH1N1 influenza virus, providing a potential pathway for the natural adaptation to mammals which imply the effects of natural adaptation to mammals. Notably, the mutation of PA/383D, which is highly conserved in avian influenza viruses, increases the polymerase activity in both avian and human cells, and may have roles in maintaining the avian influenza virus in their avian reservoirs, and jumping species to infect humans. PMID:26000865

  4. Led Astray by Hemoglobin A1c

    PubMed Central

    Chen, Jean; Diesburg-Stanwood, Amy; Bodor, Geza; Rasouli, Neda

    2016-01-01

    Hemoglobin A1c (A1c) is used frequently to diagnose and treat diabetes mellitus. Therefore, it is important be aware of factors that may interfere with the accuracy of A1c measurements. This is a case of a rare hemoglobin variant that falsely elevated a nondiabetic patient’s A1c level and led to a misdiagnosis of diabetes. A 67-year-old male presented to endocrine clinic for further management after he was diagnosed with diabetes based on an elevated A1c of 10.7%, which is approximately equivalent to an average blood glucose of 260 mg/dL. Multiple repeat A1c levels remained >10%, but his home fasting and random glucose monitoring ranged from 92 to 130 mg/dL. Hemoglobin electrophoresis and subsequent genetic analysis diagnosed the patient with hemoglobin Wayne, a rare hemoglobin variant. This variant falsely elevates A1c levels when A1c is measured using cation-exchange high-performance liquid chromatography. When the boronate affinity method was applied instead, the patient’s A1c level was actually 4.7%. Though hemoglobin Wayne is clinically silent, this patient was erroneously diagnosed with diabetes and started on an antiglycemic medication. Due to this misdiagnosis, the patient was at risk of escalation in his “diabetes management” and hypoglycemia. Therefore, it is important that providers are aware of factors that may result in hemoglobin A1c inaccuracy including hemoglobin variants. PMID:26848480

  5. Spectrophotometric Properties of Hemoglobin: Classroom Applications.

    ERIC Educational Resources Information Center

    Frary, Roger

    1997-01-01

    Discusses simple and safe techniques that can be used in the educational laboratory to study hemoglobin. Discusses the spectral properties of hemoglobin, spectral-absorbence curves of oxyhemoglobin and carboxyhemoglobin, tracking the conversion of oxyhemoglobin to methemoglobin, and changing from the oxyhemoglobin to deoxyhemoglobin conformation.…

  6. Haptoglobin and CD163: captor and receptor gating hemoglobin to macrophage lysosomes.

    PubMed

    Madsen, M; Graversen, J H; Moestrup, S K

    2001-01-01

    The plasma protein haptoglobin and the endocytic hemoglobin receptor HbSR/CD163 are key molecules in the process of removing hemoglobin released from ruptured erythrocytes. Hemoglobin in plasma is instantly bound with high affinity to haptoglobin--an interaction leading to the recognition of the complex by HbSR/CD163 and endocytosis in macrophages. The haptoglobin-dependent HbSR/CD163 scavenging system for hemoglobin clearance prevents toxic effects of hemoglobin in plasma and kidney and explains the decrease in the haptoglobin plasma concentration in patients with accelerated hemolysis. The HbSR/CD163 activity may be of quantitative importance for iron uptake in macrophages in general and for some iron-associated pathological processes, e.g. the atherogenesis-promoting oxidation of LDL leading to foam cell formation and apoptosis in the vessel wall. PMID:11865982

  7. Mycobacterial truncated hemoglobins: from genes to functions.

    PubMed

    Ascenzi, Paolo; Bolognesi, Martino; Milani, Mario; Guertin, Michel; Visca, Paolo

    2007-08-15

    Infections caused by bacteria belonging to genus Mycobacterium are among the most challenging threats for human health. The ability of mycobacteria to persist in vivo in the presence of reactive nitrogen and oxygen species implies the presence in these bacteria of effective detoxification mechanisms. Mycobacterial truncated hemoglobins (trHbs) have recently been implicated in scavenging of reactive nitrogen species. Individual members from each trHb family (N, O, and P) can be present in the same mycobacterial species. The distinct features of the heme active site structure combined with different ligand binding properties and in vivo expression patterns of mycobacterial trHbs suggest that these globins may accomplish diverse functions. Here, recent genomic, structural and biochemical information on mycobacterial trHbs is reviewed, with the aim of providing further insights into the role of these globins in mycobacterial physiology. PMID:17532149

  8. Hemoglobin loaded polymeric nanoparticles: preparation and characterizations.

    PubMed

    Dessy, Alberto; Piras, Anna M; Schirò, Giorgio; Levantino, Matteo; Cupane, Antonio; Chiellini, Federica

    2011-05-18

    In the present work polymeric nanoparticles based on Poly (maleic anhydride-alt-butyl vinyl ether) 5% grafted with m-PEG (2000) and 95% grafted with 2-methoxyethanol (VAM41-PEG) were loaded with human hemoglobin (Hb) and characterized from a physicochemical point of view. The assessment of structural and functional features of the loaded Hb was performed and the effect of the introduction of different reducing agents as aimed at minimizing Hb oxidation during the nanoparticles formulation process, was also investigated. Nanoparticles possessing an average diameter of 138±10 nm and physicochemical features suitable for this kind of application were successfully obtained. Although the oxidation of the protein was not avoided during its loading into nanoparticles, the presence of acidic moieties in the polymeric structure is proposed to be directly involved in the protein inactivation mechanism. PMID:21443949

  9. Monoclonal antibodies specific for sickle cell hemoglobin

    SciTech Connect

    Jensen, R.H.; Vanderlaan, M.; Grabske, R.J.; Branscomb, E.W.; Bigbee, W.L.; Stanker, L.H.

    1985-01-01

    Two mouse hybridoma cell lines were isolated which produce monoclonal antibodies that bind hemoglobin S. The mice were immunized with peptide-protein conjugates to stimulate a response to the amino terminal peptide of the beta chain of hemoglobin S, where the single amino acid difference between A and S occurs. Immunocharacterization of the antibodies shows that they bind specifically to the immunogen peptide and to hemoglobin S. The specificity for S is high enough that one AS cell in a mixture with a million AA cells is labeled by antibody, and such cells can be analyzed by flow cytometry. Immunoblotting of electrophoretic gels allows definitive identification of hemoglobin S as compared with other hemoglobins with similar electrophoretic mobility. 12 references, 4 figures.

  10. The Biochemistry of Vitreoscilla hemoglobin

    PubMed Central

    Stark, Benjamin C.; Dikshit, Kanak L.; Pagilla, Krishna R.

    2012-01-01

    The hemoglobin (VHb) from Vitreoscilla was the first bacterial hemoglobin discovered. Its structure and function have been extensively investigated, and engineering of a wide variety of heterologous organisms to express VHb has been performed to increase their growth and productivity. This strategy has shown promise in applications as far-ranging as the production of antibiotics and petrochemical replacements by microorganisms to increasing stress tolerance in plants. These applications of “VHb technology” have generally been of the “black box” variety, wherein the endpoint studied is an increase in the levels of a certain product or improved growth and survival. Their eventual optimization, however, will require a thorough understanding of the various functions and activities of VHb, and how VHb expression ripples to affect metabolism more generally. Here we review the current knowledge of these topics. VHb's functions all involve oxygen binding (and often delivery) in one way or another. Several biochemical and structure-function studies have provided an insight into the molecular details of this binding and delivery. VHb activities are varied. They include supply of oxygen to oxygenases and the respiratory chain, particularly under low oxygen conditions; oxygen sensing and modulation of transcription factor activity; and detoxification of NO, and seem to require interactions of VHb with “partner proteins”. VHb expression affects the levels of ATP and NADH, although not enormously. VHb expression may affect the level of many compounds of intermediary metabolism, and, apparently, alters the levels of expression of many genes. Thus, the metabolic changes in organisms engineered to express VHb are likely to be numerous and complicated. PMID:24688662

  11. Lipopolysaccharides of Actinobacillus pleuropneumoniae bind pig hemoglobin.

    PubMed Central

    Bélanger, M; Bégin, C; Jacques, M

    1995-01-01

    A previous study indicated that lipopolysaccharides (LPS) extracted from Actinobacillus pleuropneumoniae bind two low-molecular-mass proteins, of approximately 10 and 11 kDa, present in porcine respiratory tract secretions (M. Bélanger, D. Dubreuil, and M. Jacques, Infect. Immun. 62:868-873, 1994). In the present study, we determined the N-terminal amino acid sequences of these two proteins, which revealed high homology with the alpha and beta chains of pig hemoglobin. Some isolates of A. pleuropneumoniae were able to use hemoglobin from various animal species as well as other heme compounds as sole sources of iron for growth, while other isolates were unable to use them. Immunoelectron microscopy showed binding of pig hemoglobin at the surface of all A. pleuropneumoniae isolates as well as labeling of outer membrane blebs. We observed, using Western blotting (immunoblotting), that the lipid A-core region of LPS of all isolates was binding pig hemoglobin. Furthermore, lipid A obtained after acid hydrolysis of LPS extracted from A. pleuropneumoniae was able to bind pig hemoglobin and this binding was completely abolished by preincubation of lipid A with polymyxin B but was not inhibited by preincubation with glucosamines. Fatty acids constituting the lipid A of A. pleuropneumoniae, namely, dodecanoic acid, tetradecanoic acid, 3-hydroxytetradecanoic acid, hexadecanoic acid, and octadecanoic acid, were also binding pig hemoglobin. Our results indicate that LPS of all A. pleuropneumoniae isolates tested bind pig hemoglobin and that lipid A is involved in this binding. Our results also indicate that some A. pleuropneumoniae isolates are, in addition, able to use hemoglobin for growth. Binding of hemoglobin to LPS might represent an important means by which A. pleuropneumoniae acquires iron in vivo from hemoglobin released from erythrocytes lysed by the action of its hemolysins. PMID:7822035

  12. Degradation of bioabsorbable Mg-based alloys: Assessment of the effects of insoluble corrosion products and joint effects of alloying components on mammalian cells.

    PubMed

    Grillo, Claudia A; Alvarez, Florencia; Fernández Lorenzo de Mele, Mónica A

    2016-01-01

    This work is focused on the processes occurring at the bioabsorbable metallic biomaterial/cell interfaces that may lead to toxicity. A critical analysis of the results obtained when degradable metal disks (pure Mg and rare earth-containing alloys (ZEK100 alloys)) are in direct contact with cell culture and those obtained with indirect methods such as the use of metal salts and extracts was made. Viability was assessed by Acridine Orange dye, neutral red and clonogenic assays. The effects of concentration of corrosion products and possible joint effects of the binary and ternary combinations of La, Zn and Mg ions, as constituents of ZEK alloys, were evaluated on a mammalian cell culture. In all cases more detrimental effects were found for pure Mg than for the alloys. Experiments with disks showed that gradual alterations in pH and in the amount of corrosion products were better tolerated by cells and resulted in higher viability than abrupt changes. In addition, viability was dependent on the distance from the source of ions. Experiments with extracts showed that the effect of insoluble degradation products was highly detrimental. Indirect tests with Zn ions revealed that harmful effects may be found at concentrations ≥ 150 μM and at ≥ 100 μM in mixtures with Mg. These mixtures lead to more deleterious effects than single ions. Results highlight the need to develop a battery of tests to evaluate the biocompatibility of bioabsorbable biomaterials. PMID:26478323

  13. Effects of simultaneous radiofrequency radiation and chemical exposure of mammalian cells. Volume 1. Annual report, 2 January-31 December 1984

    SciTech Connect

    Meltz, M.L.

    1987-08-01

    The major objective of this project was to determine whether radiofrequency radiation (RFR), at power densities and specific absorption rate (SAR) values which can result in temperature increases in the exposure medium, can affect the extent of chemically induced toxicity, mutagenicity, sister chromatid exchange, or chromosome aberrations in mammalian cells. The in-vitro system used for toxicity and mutagenicity studies is the mouse leukemic L5178Y cell thymidine kinase locus mutation assay.

  14. Recent advances in mammalian protein production

    PubMed Central

    Bandaranayake, Ashok D.; Almo, Steven C.

    2014-01-01

    Mammalian protein production platforms have had a profound impact in many areas of basic and applied research, and an increasing number of blockbuster drugs are recombinant mammalian proteins. With global sales of these drugs exceeding US$120 billion per year, both industry and academic research groups continue to develop cost effective methods for producing mammalian proteins to support preclinical and clinical evaluations of potential therapeutics. While a wide range of platforms have been successfully exploited for laboratory use, the bulk of recent biologics have been produced in mammalian cell lines due to the requirement for post translational modification and the biosynthetic complexity of the target proteins. In this review we highlight the range of mammalian expression platforms available for recombinant protein production, as well as advances in technologies for the rapid and efficient selection of highly productive clones. PMID:24316512

  15. Therapeutic Strategies to Alter Oxygen Affinity of Sickle Hemoglobin

    PubMed Central

    Safo, Martin K.; Kato, Gregory J.

    2014-01-01

    The fundamental pathophysiology of sickle cell disease involves the polymerization of sickle hemoglobin in its T-state which develops under low oxygen saturation. One therapeutic strategy is to develop pharmacologic agents to stabilize the R-state of hemoglobin, which has higher oxygen affinity and would be expected to have slower kinetics of polymerization, potentially delaying the sickling of red cells during circulation. This therapeutic strategy has stimulated the laboratory investigation of aromatic aldehydes, aspirin derivatives, thiols and isothiocyanates that can stabilize the R-state of hemoglobin in vitro. One representative aromatic aldehyde agent, 5-hydoxymethyl-2-furfural (5-HMF, also known as Aes-103) increases oxygen affinity of sickle hemoglobin and reduces hypoxia-induced sickling in vitro and protects sickle cell mice from effects of hypoxia. It has completed pre-clinical testing and has entered clinical trials. The development of Hb allosteric modifiers as direct anti-sickling agents is an attractive investigational goal for the treatment of sickle cell disease. PMID:24589263

  16. Novel hemoglobin particles--promising new-generation hemoglobin-based oxygen carriers.

    PubMed

    Bäumler, Hans; Xiong, Yu; Liu, Zhi Zhao; Patzak, Andreas; Georgieva, Radostina

    2014-08-01

    During the last 30 years, artificial oxygen carriers have been investigated intensively with the aim to develop universal blood substitutes. Favorably, hemoglobin-based oxygen carriers (HBOCs) are expected to meet the sophisticated requirements. However, the HBOCs tested until now show serious side effects, which resulted in failure of clinical trials and Food and Drug Administration disapproval. The main problem consists in vasoconstriction triggered by nitric oxide (NO) scavenging or/and oxygen oversupply in the pre-capillary arterioles. HBOCs with a size between 100 nm and 1 µm and high oxygen affinity are needed. Here we present a highly effective and simple fabrication procedure, which can provide hemoglobin particles (HbPs) with a narrow size distribution of around 700 nm, nearly uniform morphology, high oxygen affinity, and low immunogenicity. Isolated mouse glomeruli are successfully perfused with concentrated HbP suspensions without any observable vasoconstriction of the afferent arterioles. The results suggest no oxygen oversupply and limited NO scavenging by these particles, featuring them as a highly promising blood substitute. PMID:24962099

  17. The effect of functional differences in the alpha and beta chains on the cooperativity of the osidation reduction reaction of hemoglobin.

    PubMed

    Edelstein, S J; Gibson, W H

    1975-02-10

    Partially oxidized solutions of hemoglobin have been reacted with azide to determine the extent of oxidation, of the alpha and beta chains according to the method of McQuarrie and Gibson (J. Biol. Chem. (1971) 246, 517-522) In 2, 2'2'' nitriloethanol buffer the fraction of oxidized material represented by the beta chains decreases with decreasing extent of total oxidation, of the alpha chains. Upon addition of insitol hexaphosphate, the degree of perferntial oxidation in terms of a two-state model similar to the description of oxygenation by Edelstein (nature(1971) 230, 224-227) but with the incorporation of chain heterogeneity. The results indicate that the pH-dependent cooperativity of the oxidation-reduction reaction can be described in terms of a bell curbe of n versus log l, the allosteric somewhat lower and shifted slightly to the left, due in part to an affnity of beta chains for electrons approximately twince that of alpha chains. Because the curve is shifted to the left, oxidation-reduction equilibria at l values corresponding to pH 6 to lie on the right side of the bell curve where cooperativity the preferntial affity of beta chains for electrons rises to about 4 times that of alpha chains. As a consequence, the coreesponding bell curve is lowered with the Hill coeficient falling to unity or below in the range of l encountered. Thus the principal cause of decreased cooperativity is chain heterogeneity and not stabilization in the t state as suggested by Perutz; under these conditions the molecules of methemoglobin in the t state are only a fractional part of the population. PMID:234445

  18. Interaction of Human Hemoglobin with Methotrexate

    NASA Astrophysics Data System (ADS)

    Zaharia, M.; Gradinaru, R.

    2015-05-01

    This study focuses on the interaction between methotrexate and human hemoglobin using steady-state ultraviolet-visible and fluorescence quenching methods. Fluorescence quenching was found to be valuable in assessing drug binding to hemoglobin. The quenching of methotrexate is slightly smaller than the quenching observed with related analogs (dihydrofolate and tetrahydrofolate). The quenching studies were performed at four different temperatures and various pH values. The number of binding sites for tryptophan is ~1. Parameter-dependent assays revealed that electrostatic forces play an essential role in the methotrexate-hemoglobin interaction. Furthermore, the complex was easily eluted using gel filtration chromatography.

  19. Impact of low hemoglobin on the development of contrast-induced nephropathy: A retrospective cohort study

    PubMed Central

    Xu, Jinzhong; Zhang, Meiling; Ni, Yinghua; Shi, Jiana; Gao, Ranran; Wang, Fan; Dong, Zhibing; Zhu, Lingjun; Liu, Yanlong; Xu, Huimin

    2016-01-01

    An increase in the use of iodinated contrast media, such as iohexol, iodixanol, iopamidol and iopromide, occasionally causes contrast-induced nephropathy (CIN) in patients undergoing coronary angiography (CAG) and/or percutaneous coronary intervention (PCI). The present study aimed to assess the effects of low levels of hemoglobin on the development of CIN in patients with normal renal function following CAG/PCI. A total of 841 consecutive patients undergoing CAG/PCI were divided into two groups: Patients with low levels of hemoglobin (male, <120 g/l; female, <110 g/l; n=156) and normal levels of hemoglobin (male, 120–160 g/l; female, 110–150 g/l; n=685). Multiple logistic regression analysis was performed to identify risk factors for CIN, which developed in 14.7% of patients with low levels of hemoglobin (relative risk, 3.07) and 5% of patients with normal levels of hemoglobin (P<0.01). Independent risk factors for developing CIN in patients with low levels of hemoglobin were a contrast media volume ≥200 ml, diuretic usage, low levels of hemoglobin and diabetes mellitus. For the patients with normal hemoglobin levels, the independent risk factors for developing CIN were a contrast media volume ≥200 ml and diuretic usage. The change in serum creatinine in patients with low levels of hemoglobin was significantly greater compared with patients with normal levels of hemoglobin (7.35±22.60 vs. 1.40±12.00; P<0.01). A similar incidence of developing CIN was observed when patients were administered each type of contrast media: Iohexol, iodixanol, iopamidol and iopromide. The optimal cut-off point at which the serum hemoglobin concentration resulted in a high probability of developing CIN was determined as 111.5 g/l in females and 115.5 g/l in males. In conclusion, low levels of hemoglobin were observed to be an independent risk factor for developing CIN. Patients with reduced hemoglobin levels should, therefore, be closely monitored prior to, and during, the

  20. The Effect of Non-surgical Periodontal Therapy on Hemoglobin A1c Levels in Persons with Type 2 Diabetes and Chronic Periodontitis: A Randomized Clinical Trial

    PubMed Central

    Engebretson, Steven P.; Hyman, Leslie G.; Michalowicz, Bryan S.; Schoenfeld, Elinor R.; Gelato, Marie C.; Hou, Wei; Seaquist, Elizabeth R.; Reddy, Michael S.; Lewis, Cora E.; Oates, Thomas W.; Tripathy, Devjit; Katancik, James A.; Orlander, Philip R.; Paquette, David W.; Hanson, Naomi Q.; Tsai, Michael Y.

    2014-01-01

    Importance Chronic periodontitis, a destructive inflammatory disorder of the supporting structures of the teeth, is prevalent in patients with diabetes. Limited evidence suggests that periodontal therapy may improve glycemic control. Objective To determine if non-surgical periodontal treatment reduces hemoglobin A1c (HbA1c) in persons with type 2 diabetes (DM) and moderate to advanced chronic periodontitis. Design, Setting and Participants The Diabetes and Periodontal Therapy Trial (DPTT) is a 6-month, single-masked, randomized, multi-center clinical trial. Participants had DM, were taking stable doses of medications, had HbA1c ≥7% and <9%, and untreated periodontitis. Five hundred fourteen participants were enrolled between November 2009 and March 2012 from diabetes and dental clinics and communities affiliated with five academic medical centers. Intervention The treatment group (n=257) received scaling and root planing plus chlorhexidine oral rinse at baseline, and supportive periodontal therapy at three and six months. The control group (n=257) received no treatment for six months. Main Outcome Measure Difference in HbA1c change from baseline between groups at six months. Secondary outcomes included changes in probing pocket depths, clinical attachment loss, bleeding on probing, gingival index, fasting glucose, and the Homeostasis Model Assessment (HOMA2). Results Enrollment was stopped early due to futility. At 6 months, the periodontal therapy group increased HbA1c 0.17% (1.0) (mean (SD)) compared to 0.11% (1.0) in the control group, with no significant difference between groups based on a linear regression model adjusting for clinical site (mean difference = -0.05%; 95% Confidence Interval (CI): -0.23%, 0.12%; p=0.55). Probing depth, clinical attachment loss, bleeding on probing and gingival index measures improved in the treatment group compared to the control group at six months with adjusted between-group differences of 0.33mm (95% CI: 0.26, 0.39), 0

  1. Blood Test: Hemoglobin A1C

    MedlinePlus

    ... the person's average blood sugar levels over that time. Why It's Done Doctors use the hemoglobin A1c test to determine if your child's diabetes management plan needs to be adjusted. Typically the test ...

  2. Effects of Pleistocene environmental changes on the distribution and community structure of the mammalian fauna of Mexico

    NASA Astrophysics Data System (ADS)

    Ceballos, Gerardo; Arroyo-Cabrales, Joaquín; Ponce, Eduardo

    2010-05-01

    Biological communities in Mexico experienced profound changes in species composition and structure as a consequence of the environmental fluctuations during the Pleistocene. Based on the recent and fossil Mexican mammal checklists, we determine the distribution, composition, diversity, and community structure of late Pleistocene mammalian faunas, and analyze extinction patterns and response of individual species to environmental changes. We conclude that (1) differential extinctions occurred at family, genus, and species level, with a major impact on species heavier than 100 kg, including the extinction all proboscideans and several ruminants; (2) Pleistocene mammal communities in Mexico were more diverse than recent ones; and (3) the current assemblages of species are relatively young. Furthermore, Pleistocene relicts support the presence of biogeographic corridors; important refugia existed as well as centers of speciation in isolated regions. We identified seven corridors: eastern USA-Sierra Madre Oriental corridor, Rocky Mountains-Sierra Madre Occidental corridor, Central United States-Northern Mexico corridor, Transvolcanic Belt-Sierra Madre del Sur corridor, western USA-Baja California corridor, Tamaulipas-Central America gulf lowlands corridor, and Sonora-Central America Pacific lowlands corridor. Our study suggests that present mammalian assemblages are very different than the ones in the late Pleistocene.

  3. Cloned Hemoglobin Genes Enhance Growth Of Cells

    NASA Technical Reports Server (NTRS)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.

  4. Gas transfer system in Alvinella pompejana (Annelida polychaeta, Terebellida): functional properties of intracellular and extracellular hemoglobins.

    PubMed

    Hourdez, S; Lallier, F H; De Cian, M C; Green, B N; Weber, R E; Toulmond, A

    2000-01-01

    Alvinella pompejana is a tubicolous polychaete that dwells in the hottest part of the hydrothermal vent ecosystem in a highly variable mixture of vent (350 degrees C, anoxic, CO(2)- and sulfide-rich) and deep-sea (2 degrees C, mildly hypoxic) waters. This species has developed distinct-and specifically respiratory-adaptations to this challenging environment. An internal gas exchange system has recently been described, along with the report of an intracellular coelomic hemoglobin, in addition to the previously known extracellular vascular hemoglobin. This article reports the structure of coelomic hemoglobin and the functional properties of both hemoglobins in order to assess possible oxygen transfer. Coelomocytes contain a unique monomeric hemoglobin with a molecular weight of 14,810+/-1.5 Da, as determined by mass spectrometry. The functional properties of both hemoglobins are unexpectedly very similar under the same conditions of pH (6.1-8.2) and temperature (10 degrees -40 degrees C). The oxygen affinity of both proteins is relatively high (P50=0.66 Torr at 20 degrees C and pH 7), which facilitates oxygen uptake from the hypoxic environment. A strong Bohr effect (Phi ranging from -0.8 to -1.0) allows the release of oxygen to acidic tissues. Such similar properties imply a possible bidirectional transfer of oxygen between the two hemoglobins in the perioesophagal pouch, a mechanism that could moderate environmental variations of oxygen concentration and maintain brain oxygenation. PMID:10893176

  5. 21 CFR 866.5470 - Hemoglobin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hemoglobin immunological test system. 866.5470... Hemoglobin immunological test system. (a) Indentification. A hemoglobin immunological test system is a device... hemoglobin (the oxygen-carrying pigment in red blood cells) in blood, urine, plasma, or other body...

  6. Oxygenation properties of hemoglobin from the turtle Geochelone carbonaria.

    PubMed

    Torsoni, M A; Ogo, S H

    1995-01-01

    The oxygen-binding properties of hemoglobin (Hb) from the adult terrestrial turtle Geochelone carbonaria are described. Turtle hemoglobins have a low intrinsic oxygen affinity and a low sensitivity to an endogenous cofactor (ATP) usually present at high concentrations in the reptile erythrocytes. The amplitude of the Bohr effect for O2 binding was virtually the same in the absence and presence of saturating ATP concentrations (delta logP50/delta pH, about -0.60) and increased in the total hemolysate (-0.83). The large Bohr effect found in G. carbonaria Hb may be important for O2 delivery to the tissue. The degree of cooperativity displayed by Hb for O2 binding ranged between 1.5 and 2.0 in stripped solution and total hemolysate. These observations suggest that stability of the low affinity conformation, which needs to be confirmed by additional experiments. PMID:8728839

  7. Anti-Tumor Effects of Novel 5-O-Acyl Plumbagins Based on the Inhibition of Mammalian DNA Replicative Polymerase Activity

    PubMed Central

    Kawamura, Moe; Kuriyama, Isoko; Maruo, Sayako; Kuramochi, Kouji; Tsubaki, Kazunori; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2014-01-01

    We previously found that vitamin K3 (menadione, 2-methyl-1,4-naphthoquinone) inhibits the activity of human mitochondrial DNA polymerase γ (pol γ). In this study, we focused on plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), and chemically synthesized novel plumbagins conjugated with C2:0 to C22:6 fatty acids (5-O-acyl plumbagins). These chemically modified plumbagins enhanced mammalian pol inhibition and their cytotoxic activity. Plumbagin conjugated with chains consisting of more than C18-unsaturated fatty acids strongly inhibited the activities of calf pol α and human pol γ. Plumbagin conjugated with oleic acid (C18:1-acyl plumbagin) showed the strongest suppression of human colon carcinoma (HCT116) cell proliferation among the ten synthesized 5-O-acyl plumbagins. The inhibitory activity on pol α, a DNA replicative pol, by these compounds showed high correlation with their cancer cell proliferation suppressive activity. C18:1-Acyl plumbagin selectively inhibited the activities of mammalian pol species, but did not influence the activities of other pols and DNA metabolic enzymes tested. This compound inhibited the proliferation of various human cancer cell lines, and was the cytotoxic inhibitor showing strongest inhibition towards HT-29 colon cancer cells (LD50 = 2.9 µM) among the nine cell lines tested. In an in vivo anti-tumor assay conducted on nude mice bearing solid tumors of HT-29 cells, C18:1-acyl plumbagin was shown to be a promising tumor suppressor. These data indicate that novel 5-O-acyl plumbagins act as anti-cancer agents based on mammalian DNA replicative pol α inhibition. Moreover, the results suggest that acylation of plumbagin is an effective chemical modification to improve the anti-cancer activity of vitamin K3 derivatives, such as plumbagin. PMID:24520419

  8. Discovery of the magnetic behavior of hemoglobin: A beginning of bioinorganic chemistry

    PubMed Central

    Bren, Kara L.; Eisenberg, Richard; Gray, Harry B.

    2015-01-01

    Two articles published by Pauling and Coryell in PNAS nearly 80 years ago described in detail the magnetic properties of oxy- and deoxyhemoglobin, as well as those of closely related compounds containing hemes. Their measurements revealed a large difference in magnetism between oxygenated and deoxygenated forms of the protein and, along with consideration of the observed diamagnetism of the carbonmonoxy derivative, led to an electronic structural formulation of oxyhemoglobin. The key role of hemoglobin as the main oxygen carrier in mammalian blood had been established earlier, and its allosteric behavior had been described in the 1920s. The Pauling–Coryell articles on hemoglobin represent truly seminal contributions to the field of bioinorganic chemistry because they are the first to make connections between active site electronic structure and the function of a metalloprotein. PMID:26508205

  9. Discovery of the magnetic behavior of hemoglobin: A beginning of bioinorganic chemistry.

    PubMed

    Bren, Kara L; Eisenberg, Richard; Gray, Harry B

    2015-10-27

    Two articles published by Pauling and Coryell in PNAS nearly 80 years ago described in detail the magnetic properties of oxy- and deoxyhemoglobin, as well as those of closely related compounds containing hemes. Their measurements revealed a large difference in magnetism between oxygenated and deoxygenated forms of the protein and, along with consideration of the observed diamagnetism of the carbonmonoxy derivative, led to an electronic structural formulation of oxyhemoglobin. The key role of hemoglobin as the main oxygen carrier in mammalian blood had been established earlier, and its allosteric behavior had been described in the 1920s. The Pauling-Coryell articles on hemoglobin represent truly seminal contributions to the field of bioinorganic chemistry because they are the first to make connections between active site electronic structure and the function of a metalloprotein. PMID:26508205

  10. Effect of lead chromate on chromosome aberration, sister-chromatid exchange and DNA damage in mammalian cells in vitro.

    PubMed

    Douglas, G R; Bell, R D; Grant, C E; Wytsma, J M; Bora, K C

    1980-02-01

    Possible mutagenic activity of lead chromate in mammalian cells was studied using assays for chromosome aberrations and sister-chromatid exchanges in cultured human lymphocytes, and DNA fragmentation as detected by alkaline-sucrose gradient sedimentation in cultured Chinese hamster ovary (CHO) cells. Lead chromate caused dose-related increases in chromosome aberration and sister-chromatid exchange in human lymphocytes. No increase in DNA damage was observed in CHO cells, possibly due to the relative insensitivity of the CHO cells and the limited solubility of lead chromate in tissue culture medium. The mutagenicity of lead chromate in human lymphocytes appears to be entirely due to the chromate ion since chromosome aberrations were induced by potassium chromate but not lead chloride. PMID:7374664

  11. Effective Targeted Gene Knockdown in Mammalian Cells Using the piggyBac Transposase-based Delivery System

    PubMed Central

    Owens, Jesse B; Mathews, Juanita; Davy, Philip; Stoytchev, Ilko; Moisyadi, Stefan; Allsopp, Rich

    2013-01-01

    Nonviral gene delivery systems are rapidly becoming a desirable and applicable method to overexpress genes in various types of cells. We have recently developed a piggyBac transposase-based, helper-independent and self-inactivating delivery system (pmGENIE-3) capable of high-efficiency transfection of mammalian cells including human cells. In the following study, we have assessed the potential of this delivery system to drive the expression of short hairpin RNAs to knock down genes in human cells. Two independent pmGENIE-3 vectors were developed to specifically target knockdown of an endogenous gene, telomerase reverse transcriptase (TERT), in telomerase-positive human immortalized cell lines. As compared with a transposase-deficient vector, pmGENIE-3 showed significantly improved short-term transfection efficiency (~4-fold enhancement, 48 hours posttransfection) and long-term integration efficiency (~5-fold enhancement) following antibiotic selection. We detected a significant reduction of both TERT expression and telomerase activity in both HEK293 and MCF-7 breast carcinoma cells transfected with two pmGENIE-3 construct targeting distinct regions of TERT. Importantly, this knockdown of expression was sufficient to abrogate telomerase function since telomeres were significantly shortened (3–4 Kb, P < 0.001) in both TERT-targeted cell lines following antibiotic selection of stable integrants. Together, these data show the capacity of the piggyBac nonviral delivery system to stably knockdown gene expression in mammalian cells and indicate the potential to develop novel tumor-targeting therapies. PMID:24326734

  12. Hemoglobin Status and Externalizing Behavioral Problems in Children

    PubMed Central

    Su, Jianhua; Cui, Naixue; Zhou, Guoping; Ai, Yuexian; Sun, Guiju; Zhao, Sophie R.; Liu, Jianghong

    2016-01-01

    Background: Still considered one of the most prevalent nutritional problems in the world, anemia has been shown in many studies to have deleterious effects on neurobehavioral development. While most research efforts have focused on investigating the effects of anemia on social and emotional development of infants by using a cross-sectional design, research is still needed to investigate whether early childhood anemia, beyond infantile years, is linked with behavioral problems. Objective: This study assessed whether (1) hemoglobin (Hb) levels in early childhood are associated with externalizing behavior; and (2) this relationship is confounded by social adversity. Methods: Hemoglobin levels were taken from children (N = 98) of the China Jintan Cohort Study at age 4 years, and externalizing behaviors (attention and aggression) were assessed with the Child Behavior Checklist (ASEBA-CBCL) at age 6 years (mean age 5.77 ± 0.39 years old). Results: Compared with other children in the sample, children with relatively lower Hb levels at age 4 had more behavioral problems in both attention and aggression at age 6, independent of social adversity. For boys, this association was significant for attention problems, which did not interact with social adversity. For girls, the association was significant for aggression, which interacted with social adversity. While girls on average exhibited higher social adversity than boys, the main effect of Hb was only significant in girls with low social adversity. Conclusions: These results indicate that there is an inverse association between hemoglobin levels and later behavioral problems. Findings of this study suggest that regular monitoring of children’s hemoglobin levels and appropriate intervention may help with early identification of behavioral problems. PMID:27472352

  13. Identification of C-terminal motifs responsible for transmission of inhibition by ATP of mammalian phosphofructokinase, and their contribution to other allosteric effects.

    PubMed Central

    Martínez-Costa, Oscar H; Hermida, Carmen; Sánchez-Martínez, Cristina; Santamaría, Belén; Aragón, Juan J

    2004-01-01

    Systematic deletions and point mutations in the C-terminal extension of mammalian PFK (phosphofructokinase) led us to identify Leu-767 and Glu-768 of the M-type isoform (PFK-M) as the motifs responsible for the role of this region in inhibition by MgATP. These amino acids are the only residues of the C-terminus that are conserved in all mammalian isoforms, and were found to have a similar function in the C-type isoenzyme. Both residues in PFK-C and Leu-767 in PFK-M were also observed to be critical for inhibition by citrate, which is synergistic with that by MgATP. Binding studies utilizing titration of intrinsic protein fluorescence indicated that the C-terminal part of the enzyme participates in the signal transduction route from the MgATP inhibitory site to the catalytic site, but does not contribute to the binding of this inhibitor, whereas it is essential for the binding of citrate. Mutations of the identified structural motifs did not alter either the action of other allosteric effectors that also interact with MgATP, such as the inhibitor phosphoenolpyruvate and the strong activator fructose 2,6-bisphosphate, or the co-operative effect of fructose 6-phosphate. The latter data provide evidence that activation by fructose 2,6-bisphosphate and fructose 6-phosphate co-operativity are not linked to the same allosteric transition as that mediating inhibition by MgATP. PMID:12974670

  14. Δ²,³-ivermectin ethyl secoester, a conjugated ivermectin derivative with leishmanicidal activity but without inhibitory effect on mammalian P-type ATPases.

    PubMed

    Noël, François; Pimenta, Paulo Henrique Cotrim; Dos Santos, Anderson Rouge; Tomaz, Erick Carlos Loureiro; Quintas, Luis Eduardo Menezes; Kaiser, Carlos Roland; Silva, Claudia Lucia Martins; Férézou, Jean-Pierre

    2011-01-01

    Looking at a new putative target for the large spectrum antiparasitic drug ivermectin, we recently showed that avermectin-derived drugs are active against promastigote and amastigote forms of Leishmania amazonensis at low micromolar concentrations. However, we then reported that at this concentration range ivermectin is also able to inhibit three important mammalian P-type ATPases so that unacceptable adverse effects could occur if this drug were used at such high doses therapeutically. The present work aimed to test the activity of ten ivermectin analogs on these rat ATPases in search of a compound with similar leishmanicidal activity but with no effect on the mammalian (host) ATPases at effective concentrations. We synthesized three new ivermectin analogs for testing on rat SERCA (1a and 1b), Na+, K+-ATPase (α₁ and α₂/α₃ isoforms) and H+/K+-ATPase activity, along with seven analogs already characterized for their leishmanicidal activity. Our main finding is that one of the prepared derivatives, Δ²,³-ivermectin ethyl secoester 8, is equipotent to ivermectin 1 for the in vitro leishmanicidal effects but is nearly without effect on the rat ATPases, indicating that it could have a better therapeutic index in vivo and could serve as a candidate for hit-to-lead progression. This conclusion is further supported by the fact that compound 8 produced only 6% (vs 77% for ivermectin) inhibition of the human kidney enzyme at 5 μM, a concentration corresponding to the IC₅₀ for the activity against L. amazonensis amastigotes. PMID:21088826

  15. Functional behavior of tortoise hemoglobin Geochelone denticulata.

    PubMed

    Torsoni, M A; Stoppa, G R; Turra, A; Ogo, S H

    2002-11-01

    The hemolysate from Geochelone denticulata contains two main hemoglobin components, as shown by ion exchange chromatography and polyacrylamide gel electrophoresis (PAGE). Electrophoresis under dissociating conditions showed three types of globin chains. The apparent molecular mass, as determined by gel filtration on Sephadex G-200, was compatible with tetrameric Hb, which was unable to polymerize. The G. denticulata Hb has a P50 value of 9.56 mm Hg at pH 7.4. The Hb oxygenation appears to be under the control of organic phosphates and hydrogen ion since it is strongly affected by those species. In the presence ATP or IHP the P50 values increased to 29.51 mm Hg and 54.95 mm Hg, respectively, at pH 7.4. The n50 was generally lower than 1.5 in stripped Hb, suggesting a dissociation of tetramers. In the presence of organic phosphates n50 values increased to approximately 2.5. The Bohr effect was evident in oxygen equilibrium experiments. The hematocrit (32%) and Hb concentration (5.7 mM as heme) of G. denticulata blood were substantially larger than those of G. carbonaria, but the methemoglobin levels were similar in both species, approximately 1%. Thus, the oxygen capacity of blood appears to be higher in G. denticulata than in G. carbonaria, particularly considering the functional properties of their Hbs, which would guarantee the survival of animals. PMID:12659022

  16. MP4, a vasodilatory PEGylated hemoglobin.

    PubMed

    Cole, Russell H; Vandegriff, Kim D

    2011-01-01

    A vasodilatory hemoglobin (Hb)-based O(2) carrier (HBOC) has been developed by surface conjugation polyethylene glycol to tetrameric human Hb (MP4, Sangart, San Diego). Because the NO-binding kinetics of MP4 are similar to vasoconstrictive HBOCs, we propose that the decoupling of NO scavenging from vascular response is a consequence of MP4's high O(2) affinity (p50 = 5 mmHg) and unique surface chemistry. The release of ATP from erythrocytes is vasodilatory and the application of a high O(2) affinity HBOC minimizes ATP interference with intravascular ATP signaling. A second potential mechanism of action for MP4 involves the surface conjugation of polyethylene glycol (PEG) to tetrameric human Hb. It has been shown that the addition of unconjugated high molecular weight (Mw) PEG to cultured lung endothelial cells causes an immediate and significant reduction in endothelial permeability; an effect opposite to that of endothelial agonists such as cell-free Hb. It appears that some of the benefits of the PEG-endothelium interaction are carried onto molecules such as PEGylated Hb and PEGylated albumin, as demonstrated by favorable hemodynamic responses in vivo. PEGylation of ß93 cysteine residues, as in MP4, has also been reported to increase the nitrite reductase activity of Hb and enhance conversion of endogenous nitrite to bioactive NO. PMID:21445773

  17. PARALLEL ASSAY OF OXYGEN EQUILIBRIA OF HEMOGLOBIN

    PubMed Central

    Lilly, Laura E.; Blinebry, Sara K.; Viscardi, Chelsea M.; Perez, Luis; Bonaventura, Joe; McMahon, Tim J.

    2013-01-01

    Methods to systematically analyze in parallel the function of multiple protein or cell samples in vivo or ex vivo (i.e. functional proteomics) in a controlled gaseous environment have thus far been limited. Here we describe an apparatus and procedure that enables, for the first time, parallel assay of oxygen equilibria in multiple samples. Using this apparatus, numerous simultaneous oxygen equilibrium curves (OECs) can be obtained under truly identical conditions from blood cell samples or purified hemoglobins (Hbs). We suggest that the ability to obtain these parallel datasets under identical conditions can be of immense value, both to biomedical researchers and clinicians who wish to monitor blood health, and to physiologists studying non-human organisms and the effects of climate change on these organisms. Parallel monitoring techniques are essential in order to better understand the functions of critical cellular proteins. The procedure can be applied to human studies, wherein an OEC can be analyzed in light of an individual’s entire genome. Here, we analyzed intraerythrocytic Hb, a protein that operates at the organism’s environmental interface and then comes into close contact with virtually all of the organism’s cells. The apparatus is theoretically scalable, and establishes a functional proteomic screen that can be correlated with genomic information on the same individuals. This new method is expected to accelerate our general understanding of protein function, an increasingly challenging objective as advances in proteomic and genomic throughput outpace the ability to study proteins’ functional properties. PMID:23827235

  18. Geminate recombination of O2 and hemoglobin.

    PubMed Central

    Chernoff, D A; Hochstrasser, R M; Steele, A W

    1980-01-01

    The photolysis of HbO2 and HbCO has been studied by measuring transient absorption spectra in the Soret region after excitation with picosecond pulses at 530 nm. Dissociation occurred promptly in both cases, followed (for HbO2) by geminate recombination of ca. 40% of the photodissociated O2 with a lifetime of 200 +/- 70 psec (25 degrees C). No recombination of Hb + CO was observed up to 1200 psec after photolysis. The HbO2 and HbCO photoproduct spectra were broader, weaker, and red-shifted in comparison to the spectrum of stable Hb and Gibson's fast-reacting form, Hb. For HbO2 the spectrum was initially much broader to longer wavelengths but relaxed to a constant shape within 90 psec, whereas for HbCO there was no spectral evolution. The photophysics is analyzed by considering the effect of spin constraints as well as spin--orbit coupling and orbital correlation among the various electronic states of liganded and deoxy hemoglobins. The small quantum yield of HbO2 dissociation is not primarily due to rebinding but rather to electronic relaxation to nonreactive states. PMID:6932659

  19. Association between diabetic retinopathy and hemoglobin level

    PubMed Central

    Bahar, Adele; Kashi, Zahra; Ahmadzadeh Amiri, Ahmad; Nabipour, Majid

    2013-01-01

    Background: Anemia may be considered to be an independent risk factor for the development of diabetic retinopathy (DR) in patients with renal failure. The purpose of this study was to investigate the association between blood hemoglobin level and retinopathy in diabetic patients with normal renal function tests. Methods: From 2009 to 2011, 1100 diabetic patients underwent retinal examination. Among them, 159 subjects were diagnosed to have DR and were compared with 318 diabetic subjects with normal retinal examination as the control group. The level of hemoglobin (Hb), Hb A1C, serum iron, ferritin, and total iron binding capacity were compared between these two groups. Results: Among the 159 patients with DR, 112 (70.4%) had mild to moderate no proliferative retinopathy (NPDR) and 47 (29.6%) had advanced retinopathy (severe NPDR or proliferative). The mean hemoglobin level in case and control group was 12.15±1.50 and 12.73±1.38 g/dl, respectively (p<0.001). Anemia was seen in 45.9% and 26.1% in the case and the control groups, respectively (p<0.001). Ferritin <15ng/ml was seen in 7.4% and 6.1% of patients with and without DR, respectively (p=0.8). Conclusion: The results show that diabetic patients with retinopathy have lower level of hemoglobin and higher frequency of anemia. It is suggested that the level of hemoglobin should be evaluated periodically in diabetic patients. PMID:24294469

  20. Ligand binding and hexacoordination in synechocystis hemoglobin.

    PubMed

    Hvitved, A N; Trent, J T; Premer, S A; Hargrove, M S

    2001-09-14

    A large and phylogenetically diverse group of organisms contain truncated hemoglobins, including the unicellular cyanobacterium Synechocystis (Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., and Bolognesi, M. (2000) EMBO J. 19, 2424-2434). Synechocystis hemoglobin is also hexacoordinate, with a heme pocket histidine that reversibly coordinates the ligand binding site. Hexacoordinate hemoglobins are ubiquitous in plants and are now being identified in a diverse array of organisms including humans (Arredondo-Peter, R., Hargrove, M. S., Moran, J. F., Sarath, G., and Klucas, R. V. (1998) Plant Physiol. 118, 1121-1125; Trent, J. T., III, Watts, R. A., and Hargrove, M. S. (2001) J. Biol. Chem. 276, 30106-30110). Rate constants for association and dissociation of the hexacoordinating amino acid side chain in Synechocystis hemoglobin have been measured along with bimolecular rate constants for association of oxygen and carbon monoxide following laser flash photolysis. These values were compared with ligand binding initiated by rapid mixing. Site-directed mutagenesis was used to determine the roles of several heme pocket amino acids in facilitating hexacoordination and stabilizing bound oxygen. It is demonstrated that Synechocystis hemoglobin contains a very reactive binding site and that ligand migration through the protein is rapid. Rate constants for hexacoordination by His(46) are also large and facilitated by other heme pocket amino acids including Gln(43). PMID:11438545

  1. Neurons Lacking Iron Regulatory Protein-2 Are Highly Resistant to the Toxicity of Hemoglobin

    PubMed Central

    Regan, Raymond F.; Chen, Mai; Li, Zhi; Zhang, Xuefeng; Benvenisti-Zarom, Luna; Chen-Roetling, Jing

    2008-01-01

    The effect of iron regulatory protein-2 (IRP2) on ferritin expression and neuronal vulnerability to hemoglobin was assessed in primary cortical cell cultures prepared from wild-type and IRP2 knockout mice. Baseline levels of H and L-ferritin subunits were significantly increased in IRP2 knockout neurons and astrocytes. Hemoglobin was toxic to wild-type neurons in mixed neuron-astrocyte cultures, with an LC50 near 3 µM for a 24 hour exposure. Neuronal death was reduced by 85–95% in knockout cultures, and also in cultures containing knockout neurons plated on wild-type astrocytes. Protein carbonylation, reactive oxygen species formation, and heme oxygenase-1 expression after hemoglobin treatment were also attenuated by IRP2 gene deletion. These results suggest that IRP2 binding activity increases the vulnerability of neurons to hemoglobin, possibly by reducing ferritin expression. Therapeutic strategies that target this regulatory mechanism may be beneficial after hemorrhagic CNS injuries. PMID:18571425

  2. Mammalian cardiolipin biosynthesis.

    PubMed

    Mejia, Edgard M; Nguyen, Hieu; Hatch, Grant M

    2014-04-01

    Cardiolipin is a major phospholipid in mitochondria and is involved in the generation of cellular energy in the form of ATP. In mammalian and eukaryotic cells it is synthesized via the cytidine-5'-diphosphate-1,2-diacyl-sn-glycerol phosphate pathway. This brief review will describe some of the more recent studies on mammalian cardiolipin biosynthesis and provide an overview of regulation of cardiolipin biosynthesis. In addition, the important role that this key phospholipid plays in disease processes including heart failure, diabetes, thyroid hormone disease and the genetic disease Barth Syndrome will be discussed. PMID:24144810

  3. Investigation of Hemoglobin/Gold Nanoparticle Heterolayer on Micro-Gap for Electrochemical Biosensor Application

    PubMed Central

    Lee, Taek; Kim, Tae-Hyung; Yoon, Jinho; Chung, Yong-Ho; Lee, Ji Young; Choi, Jeong-Woo

    2016-01-01

    In the present study, we fabricated a hemoglobin/gold nanoparticle (Hb/GNP) heterolayer immobilized on the Au micro-gap to confirm H2O2 detection with a signal-enhancement effect. The hemoglobin which contained the heme group catalyzed the reduction of H2O2. To facilitate the electron transfer between hemoglobin and Au micro-gap electrode, a gold nanoparticle was introduced. The Au micro-gap electrode that has gap size of 5 µm was fabricated by conventional photolithographic technique to locate working and counter electrodes oppositely in a single chip for the signal sensitivity and reliability. The hemoglobin was self-assembled onto the Au surface via chemical linker 6-mercaptohexanoic acid (6-MHA). Then, the gold nanoparticles were adsorbed onto hemoglobin/6-MHA heterolayers by the layer-by-layer (LbL) method. The fabrication of the Hb/GNP heterolayer was confirmed by atomic force microscopy (AFM) and surface-enhanced Raman spectroscopy (SERS). The redox property and H2O2 detection of Hb/GNP on the micro-gap electrode was investigated by a cyclic voltammetry (CV) experiment. Taken together, the present results show that the electrochemical signal-enhancement effect of a hemoglobin/nanoparticle heterolayer was well confirmed on the micro-scale electrode for biosensor applications. PMID:27171089

  4. Vibrational modes of hemoglobin in red blood cells.

    PubMed Central

    Martel, P; Calmettes, P; Hennion, B

    1991-01-01

    Equine red blood cells were washed in saline heavy water (2H2O) to exchange the hydrogen atoms of the non-hemoglobin components with deuterons. This led to novel neutron scattering measurements of protein vibrations within a cellular system and permitted a comparison with inelastic neutron scattering measurements on purified horse hemoglobin, either dry or wetted with 2H2O. As a function of wavevector transfer Q and the frequency transfer v the neutron response typified by the dynamic structure factor S(Q, v) was found to be similar for extracted and cellular hemoglobin at low and high temperatures. At 77 K, in the cells, a peak in S(Q, v) due to the protein was found near 0.7 THz, approximately half the frequency of a strong peak in the aqueous medium. Measurements at higher temperatures (170 and 230 K) indicated similar small shifts downwards in the peak frequencies of both components. At 260 K the low frequency component became predominantly quasielastic, but a significant inelastic component could still be ascribed to the aqueous scattering. Near 295 K the frequency responses of both components were similar and centered near zero. When scattering due to water is taken into account it appears that the protein neutron response in, or out of, red blood cells is little affected by hydration in the low frequency regime where Van der Waals forces are thought to be effective. PMID:1849028

  5. Classification of the disorders of hemoglobin.

    PubMed

    Forget, Bernard G; Bunn, H Franklin

    2013-02-01

    Over the years, study of the disorders of hemoglobin has served as a paradigm for gaining insights into the cellular and molecular biology, as well as the pathophysiology, of inherited genetic disorders. To date, more than 1000 disorders of hemoglobin synthesis and/or structure have been identified and characterized. Study of these disorders has established the principle of how a mutant genotype can alter the function of the encoded protein, which in turn can lead to a distinct clinical phenotype. Genotype/phenotype correlations have provided important understanding of pathophysiological mechanisms of disease. Before presenting a brief overview of these disorders, we provide a summary of the structure and function of hemoglobin, along with the mechanism of assembly of its subunits, as background for the rationale and basis of the different categories of disorders in the classification. PMID:23378597

  6. The functional, oxygen-linked chloride binding sites of hemoglobin are contiguous within a channel in the central cavity.

    PubMed

    Ueno, H; Manning, J M

    1992-04-01

    Chloride ion is a major allosteric regulator for many hemoglobins and particularly for bovine hemoglobin. A site-directed reagent for amino groups, methyl acetyl phosphate, when used for global rather than selective modification of R (oxy) and T (deoxy) state bovine hemoglobin, can acetylate those functional amino groups involved in binding of chloride; the extensively acetylated hemoglobin tetramer retains nearly full cooperativity. The chloride-induced decrease in the oxygen affinity parallels the acetylation of bovine hemoglobin (i.e., their effects are mutually exclusive), suggesting that methyl acetyl phosphate is a good probe for the functional chloride binding sites in hemoglobins. Studies on the overall alkaline Bohr effect indicates that the part of the contribution dependent on chloride and reduced by 60% after acetylation is due to amino groups, Val-1(alpha) and Lys-81(beta); the remaining 40% is contributed by the imidazole side chain of His-146(beta), which is not acetylated by methyl acetyl phosphate, and is not dependent on chloride. The five amino groups--Val-1(alpha), Lys-99(alpha), Met-1(beta), Lys-81(beta), and Lys-103(beta)--of bovine hemoglobin that are acetylated in an oxygen-linked fashion are considered functional chloride binding sites. Molecular modeling indicates that these functional chloride binding sites are contiguous from one end of the central cavity of hemoglobin to the other; some of them are aligned within a chloride channel connecting each end of the dyad axis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1326985

  7. Characterization of Polyethylene Glycol Modified Hemoglobins

    NASA Astrophysics Data System (ADS)

    Salazar, Gil; Barr, James; Morgan, Wayne; Ma, Li

    2011-03-01

    Polyethylene glycol modified hemoglobins (PEGHbs) was characterized by liquid chromatography and fluorescence methods. We prepared four samples of two different molecular weight PEG, 5KDa and 20KDa, modified bovine and human hemoglobin. We studied the oxygen affinities, stabilities, and peroxidase activities of PEGHbs. We have related oxygen affinities with different degrees of modifications. The data showed that the modification on the beta subunits was less stable than that of the alpha subunits on the human Hb based samples especially. We also compared peroxidase activities among different modified PEGHbs.

  8. Hemoglobin redux: combining neutron and X-ray diffraction with mass spectrometry to analyse the quaternary state of oxidized hemoglobins

    SciTech Connect

    Mueser, Timothy C. Griffith, Wendell P.; Kovalevsky, Andrey Y.; Guo, Jingshu; Seaver, Sean; Langan, Paul; Hanson, B. Leif

    2010-11-01

    X-ray and neutron diffraction studies of cyanomethemoglobin are being used to evaluate the structural waters within the dimer–dimer interface involved in quaternary-state transitions. Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence. X-ray crystal studies of Tibetan snow leopard CNmetHb have shown that this protein crystallizes in the B state, a structure with a more open dyad, which possibly has relevance to RBC band 3 protein binding and erythrocyte senescence. R-state equine CNmetHb crystal studies elaborate the solvent differences in the switch and hinge region compared with a human deoxyhemoglobin T-state neutron structure. Lastly, comparison of histidine protonation between the T and R state should enumerate the Bohr-effect protons.

  9. Hemoglobin redux: combining neutron and X-ray diffraction with mass spectrometry to analyse the quaternary state of oxidized hemoglobins

    PubMed Central

    Mueser, Timothy C.; Griffith, Wendell P.; Kovalevsky, Andrey Y.; Guo, Jingshu; Seaver, Sean; Langan, Paul; Hanson, B. Leif

    2010-01-01

    Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence. X-ray crystal studies of Tibetan snow leopard CNmetHb have shown that this protein crystallizes in the B state, a structure with a more open dyad, which possibly has relevance to RBC band 3 protein binding and erythrocyte senescence. R-state equine CNmetHb crystal studies elaborate the solvent differences in the switch and hinge region compared with a human deoxyhemoglobin T-­state neutron structure. Lastly, comparison of histidine protonation between the T and R state should enumerate the Bohr-effect protons. PMID:21041946

  10. Hemoglobin redux: combining neutron and X-ray diffraction with mass spectrometry to analyse the quaternary state of oxidized hemoglobins.

    PubMed

    Mueser, Timothy C; Griffith, Wendell P; Kovalevsky, Andrey Y; Guo, Jingshu; Seaver, Sean; Langan, Paul; Hanson, B Leif

    2010-11-01

    Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence. X-ray crystal studies of Tibetan snow leopard CNmetHb have shown that this protein crystallizes in the B state, a structure with a more open dyad, which possibly has relevance to RBC band 3 protein binding and erythrocyte senescence. R-state equine CNmetHb crystal studies elaborate the solvent differences in the switch and hinge region compared with a human deoxyhemoglobin T-state neutron structure. Lastly, comparison of histidine protonation between the T and R state should enumerate the Bohr-effect protons. PMID:21041946

  11. Effect of Marine Omega 3 Fatty Acids on Methylmercury-Induced Toxicity in Fish and Mammalian Cells In Vitro

    PubMed Central

    Nøstbakken, O. J.; Bredal, I. L.; Olsvik, P. A.; Huang, T. S.; Torstensen, B. E.

    2012-01-01

    Methylmercury (MeHg) is a ubiquitous environmental contaminant which bioaccumulates in marine biota. Fish constitute an important part of a balanced human diet contributing with health beneficial nutrients but may also contain contaminants such as MeHg. Interactions between the marine n-3 fatty acids eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA) with MeHg-induced toxicity were investigated. Different toxic and metabolic responses were studied in Atlantic salmon kidney (ASK) cell line and the mammalian kidney-derived HEK293 cell line. Both cell lines were preincubated with DHA or EPA prior to MeHg-exposure, and cell toxicity was assessed differently in the cell lines by MeHg-uptake in cells (ASK and HEK293), proliferation (HEK293 and ASK), apoptosis (ASK), oxidation of the red-ox probe roGFP (HEK293), and regulation of selected toxicological and metabolic transcriptional markers (ASK). DHA was observed to decrease the uptake of MeHg in HEK293, but not in ASK cells. DHA also increased, while EPA decreased, MeHg-induced apoptosis in ASK. MeHg exposure induced changes in selected metabolic and known MeHg biomarkers in ASK cells. Both DHA and MeHg, but not EPA, oxidized roGFP in HEK293 cells. In conclusion, marine n-3 fatty acids may ameliorate MeHg toxicity, either by decreasing apoptosis (EPA) or by reducing MeHg uptake (DHA). However, DHA can also augment MeHg toxicity by increasing oxidative stress and apoptosis when combined with MeHg. PMID:22654480

  12. Hemoglobin D-Punjab: origin, distribution and laboratory diagnosis

    PubMed Central

    Torres, Lidiane de Souza; Okumura, Jéssika Viviani; Silva, Danilo Grünig Humberto da; Bonini-Domingos, Claudia Regina

    2015-01-01

    This review discusses hemoglobin D-Punjab, also known as hemoglobin D-Los Angeles, one of the most common hemoglobin variants worldwide. It is derived from a point mutation in the beta-globin gene (HBB: c.364G>C; rs33946267) prevalent in the Punjab region, Northwestern Indian. Hemoglobin D-Punjab can be inherited in heterozygosis with hemoglobin A causing no clinical or hematological alterations, or in homozygosis, the rarest form of inheritance, a condition that is commonly not related to clinical symptomatology. Moreover, this variant can exist in association with other hemoglobinopathies, such as thalassemias; the most noticeable clinical alterations occur when hemoglobin D-Punjab is associated to hemoglobin S. The clinical manifestations of this association can be similar to homozygosis for hemoglobin S. Although hemoglobin D-Punjab is a common variant globally with clinical importance especially in cases of double heterozygosis, hemoglobin S/D-Punjab is still understudied. In Brazil, for example, hemoglobin D-Punjab is the third most common hemoglobin variant. Thus, this paper summarizes information about the origin, geographic distribution, characterization and occurrence of hemoglobin D-Punjab haplotypes to try to improve our knowledge of this variant. Moreover, a list of the main techniques used in its identification is provided emphasizing the importance of complementary molecular analysis for accurate diagnosis. PMID:25818823

  13. Unrecognized hemoglobin SE disease as microcytosis

    PubMed Central

    Cooper, Barry; Guileyardo, Joseph; Mora, Adan

    2016-01-01

    Hemoglobin SE disease was first described during the 1950s as a relatively benign microcytosis, but increasing prevalence has revealed a predisposition towards vasoocclusive sickling. Recognition of SE hemoglobinopathies’ potential complications is crucial so medical measures can be utilized to avoid multiorgan injury. PMID:27365881

  14. Hemoglobin: A Nitric-Oxide Dioxygenase

    PubMed Central

    Gardner, Paul R.

    2012-01-01

    Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs). Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry. PMID:24278729

  15. BINDING OF CHEMICAL CARCINOGENS AND MUTAGENS TO RAT HEMOGLOBIN

    EPA Science Inventory

    The alkylation of hemoglobin is a proposed dose monitor for chemical carcinogens and mutagens. The binding of fifteen chemical carcinogens and mutagens to rat hemoglobin was determined. Direct acting carcinogens and indirect acting carcinogens including aromatic amines, halogenat...

  16. Alpha chain hemoglobins with electrophoretic mobility similar to that of hemoglobin S in a newborn screening program

    PubMed Central

    Silva, Marcilene Rezende; Sendin, Shimene Mascarenhas; Araujo, Isabela Couto de Oliveira; Pimentel, Fernanda Silva; Viana, Marcos Borato

    2013-01-01

    Objective To characterize alpha-chain variant hemoglobins with electric mobility similar to that of hemoglobin S in a newborn screening program. Methods βS allele and alpha-thalassemia deletions were investigated in 14 children who had undefined hemoglobin at birth and an electrophoretic profile similar to that of hemoglobin S when they were six months old. Gene sequencing and restriction enzymes (DdeI, BsaJI, NlaIV, Bsu36I and TaqI) were used to identify hemoglobins. Clinical and hematological data were obtained from children who attended scheduled medical visits. Results The following alpha chain variants were found: seven children with hemoglobin Hasharon [alpha2 47(CE5) Asp>His, HbA2:c.142G>C], all associated with alpha-thalassemia, five with hemoglobin Ottawa [alpha1 15(A13) Gly>Arg, HBA1:c.46G>C], one with hemoglobin St Luke's [alpha1 95(G2) Pro>Arg, HBA1:c.287C>G] and another one with hemoglobin Etobicoke [alpha212 84(F5) Ser>Arg, HBA212:c.255C>G]. Two associations with hemoglobin S were found: one with hemoglobin Ottawa and one with hemoglobin St Luke's. The mutation underlying hemoglobin Etobicoke was located in a hybrid α212 allele in one child. There was no evidence of clinically relevant hemoglobins detected in this study. Conclusion Apparently these are the first cases of hemoglobin Ottawa, St Luke's, Etobicoke and the α212 gene described in Brazil. The hemoglobins detected in this study may lead to false diagnosis of sickle cell trait or sickle cell disease when only isoelectric focusing is used in neonatal screening. Additional tests are necessary for the correct identification of hemoglobin variants. PMID:23741188

  17. Mammalian Septins Nomenclature

    PubMed Central

    Macara, Ian G.; Baldarelli, Richard; Field, Christine M.; Glotzer, Michael; Hayashi, Yasuhide; Hsu, Shu-Chan; Kennedy, Mary B.; Kinoshita, Makoto; Longtine, Mark; Low, Claudia; Maltais, Lois J.; McKenzie, Louise; Mitchison, Timothy J.; Nishikawa, Toru; Noda, Makoto; Petty, Elizabeth M.; Peifer, Mark; Pringle, John R.; Robinson, Phillip J.; Roth, Dagmar; Russell, S.E. Hilary; Stuhlmann, Heidi; Tanaka, Manami; Tanaka, Tomoo; Trimble, William S.; Ware, Jerry; Zeleznik-Le, Nancy J.; Zieger, Barbara

    2002-01-01

    There are 10 known mammalian septin genes, some of which produce multiple splice variants. The current nomenclature for the genes and gene products is very confusing, with several different names having been given to the same gene product and distinct names given to splice variants of the same gene. Moreover, some names are based on those of yeast or Drosophila septins that are not the closest homologues. Therefore, we suggest that the mammalian septin field adopt a common nomenclature system, based on that adopted by the Mouse Genomic Nomenclature Committee and accepted by the Human Genome Organization Gene Nomenclature Committee. The human and mouse septin genes will be named SEPT1–SEPT10 and Sept1–Sept10, respectively. Splice variants will be designated by an underscore followed by a lowercase “v” and a number, e.g., SEPT4_v1. PMID:12475938

  18. Mammalian sweet taste receptors.

    PubMed

    Nelson, G; Hoon, M A; Chandrashekar, J; Zhang, Y; Ryba, N J; Zuker, C S

    2001-08-10

    The sense of taste provides animals with valuable information about the quality and nutritional value of food. Previously, we identified a large family of mammalian taste receptors involved in bitter taste perception (the T2Rs). We now report the characterization of mammalian sweet taste receptors. First, transgenic rescue experiments prove that the Sac locus encodes T1R3, a member of the T1R family of candidate taste receptors. Second, using a heterologous expression system, we demonstrate that T1R2 and T1R3 combine to function as a sweet receptor, recognizing sweet-tasting molecules as diverse as sucrose, saccharin, dulcin, and acesulfame-K. Finally, we present a detailed analysis of the patterns of expression of T1Rs and T2Rs, thus providing a view of the representation of sweet and bitter taste at the periphery. PMID:11509186

  19. 21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrophoretic hemoglobin analysis system. 864....7440 Electrophoretic hemoglobin analysis system. (a) Identification. An electrophoretic hemoglobin analysis system is a device that electrophoretically separates and identifies normal and...

  20. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13 grams per deciliter of polymerized hemoglobin of bovine origin in modified Lactated Ringer's...

  1. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13 grams per deciliter of polymerized hemoglobin of bovine origin in modified Lactated Ringer's...

  2. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13 grams per deciliter of polymerized hemoglobin of bovine origin in modified Lactated Ringer's...

  3. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13 grams per deciliter of polymerized hemoglobin of bovine origin in modified Lactated Ringer's...

  4. Self-Assembly of a Functional Triple Protein: Hemoglobin-Avidin-Hemoglobin via Biotin-Avidin Interactions.

    PubMed

    Singh, Serena; Kluger, Ronald

    2016-05-24

    Hypertension resulting from vasoconstriction in clinical trials of cross-linked tetrameric (α2β2) human hemoglobins implicates the extravasation of the hemoglobins into endothelia where they scavenge nitric oxide (NO), which is the signal for relaxation of the surrounding smooth muscle. Thus, we sought an efficient route to create a larger species that avoids extravasation while maintaining the oxygenation function of hemoglobin. Selectively formed cysteine-linked biotin conjugates of hemoglobin undergo self-assembly with avidin into a stable triple protein, hemoglobin-avidin-hemoglobin (HbAvHb), which binds and releases oxygen with moderate affinity and cooperativity. The triple protein is likely to be stabilized by interactions of each constituent hemoglobin (pI 6.9) with the oppositely charged avidin (pI 10.5) as well as the strong association of the biotin moieties on hemoglobin with avidin. PMID:27126305

  5. Asymmetric hemoglobins, their thiol content, and blood glutathione of the scalloped hammerhead shark, Sphyrna lewini.

    PubMed

    Dafré, A L; Reischl, E

    1997-03-01

    Starch gel electrophoresis pH 8.6, or PAGE pH 8.9, of the scalloped hammerhead shark hemolysates showed three hemoglobins (Hb). An additional Hb between the two most mobile electrophoretic components was seen in starch gel electrophoresis, pH 8.1, and also in highly loaded PAGE gels. The relative concentration of these Hbs was variable among individuals, when accessed at pH 8.1. Dilution of hemolysates led to a redistribution of the Hb tetramer subunits. Under denaturing conditions, the unfractionated hemolysate was resolved in 3 Hb subunits. Isolated Hbs, named SL I-SL IV, showed unusual subunit compositions: SL I, the least mobile, is "b3c"; SL II is "a2bc"; SL III and SL IV are composed only by "a" subunits. Hemoglobins in the whole hemolysate have an average of two reactive cysteines per tetramer, which were not easily S-thiolated by glutathione, as is the case for related species. After hemoglobin denaturation, six additional -SH groups were titrated by Ellman's reagent. Methemoglobin content was low in the erythrocytes of nine examined specimens, 1.13 +/- 1.90%. High values for total erythrocyte glutathione (GSH) were found: 4.5 +/- 0.7 mM; n = 7. The ratio of 1.4 +/- 0.4 GSH/Hb is higher than usually reported for mammalians. PMID:9114492

  6. Rheotaxis guides mammalian sperm

    PubMed Central

    Miki, Kiyoshi; Clapham, David E

    2013-01-01

    Background In sea urchins, spermatozoan motility is altered by chemotactic peptides, giving rise to the assumption that mammalian eggs also emit chemotactic agents that guide spermatozoa through the female reproductive tract to the mature oocyte. Mammalian spermatozoa indeed undergo complex adaptations within the female (the process of capacitation) that are initiated by agents ranging from pH to progesterone, but these factors are not necessarily taxic. Currently, chemotaxis, thermotaxis, and rheotaxis have not been definitively established in mammals. Results Here, we show that positive rheotaxis, the ability of organisms to orient and swim against the flow of surrounding fluid, is a major taxic factor for mouse and human sperm. This flow is generated within 4 hours of sexual stimulation and coitus in female mice; prolactin-triggered oviductal fluid secretion clears the oviduct of debris, lowers viscosity, and generates the stream that guides sperm migration in the oviduct. Rheotaxic movement is demonstrated in capacitated and uncapacitated spermatozoa in low and high viscosity medium. Finally, we show that a unique sperm motion we quantify using the sperm head's rolling rate reflects sperm rotation that generates essential force for positioning the sperm in the stream. Rotation requires CatSper channels, presumably by enabling Ca2+ influx. Conclusions We propose that rheotaxis is a major determinant of sperm guidance over long distances in the mammalian female reproductive tract. Coitus induces fluid flow to guide sperm in the oviduct. Sperm rheotaxis requires rotational motion during CatSper channel-dependent hyperactivated motility. PMID:23453951

  7. Evolutionary paths to mammalian cochleae.

    PubMed

    Manley, Geoffrey A

    2012-12-01

    Evolution of the cochlea and high-frequency hearing (>20 kHz; ultrasonic to humans) in mammals has been a subject of research for many years. Recent advances in paleontological techniques, especially the use of micro-CT scans, now provide important new insights that are here reviewed. True mammals arose more than 200 million years (Ma) ago. Of these, three lineages survived into recent geological times. These animals uniquely developed three middle ear ossicles, but these ossicles were not initially freely suspended as in modern mammals. The earliest mammalian cochleae were only about 2 mm long and contained a lagena macula. In the multituberculate and monotreme mammalian lineages, the cochlea remained relatively short and did not coil, even in modern representatives. In the lineage leading to modern therians (placental and marsupial mammals), cochlear coiling did develop, but only after a period of at least 60 Ma. Even Late Jurassic mammals show only a 270 ° cochlear coil and a cochlear canal length of merely 3 mm. Comparisons of modern organisms, mammalian ancestors, and the state of the middle ear strongly suggest that high-frequency hearing (>20 kHz) was not realized until the early Cretaceous (~125 Ma). At that time, therian mammals arose and possessed a fully coiled cochlea. The evolution of modern features of the middle ear and cochlea in the many later lineages of therians was, however, a mosaic and different features arose at different times. In parallel with cochlear structural evolution, prestins in therian mammals evolved into effective components of a new motor system. Ultrasonic hearing developed quite late-the earliest bat cochleae (~60 Ma) did not show features characteristic of those of modern bats that are sensitive to high ultrasonic frequencies. PMID:22983571

  8. Adding of Sitagliptin on Insulin Therapy Effectively and Safely Reduces a Hemoglobin A1c Level and Glucose Fluctuation in Japanese Patients with Type 2 Diabetes

    PubMed Central

    Tajiri, Yuji; Kawano, Seiko; Hirao, Saori; Oshige, Tamami; Iwata, Shinpei; Ono, Yasuhiro; Inada, Chizuko; Akashi, Tomoyuki; Hayashi, Hideki; Tojikubo, Masayuki; Yamada, Kentaro

    2014-01-01

    Aims. Efficacy and safety of DPP-4 inhibitor, sitagliptin, add-on therapy to insulin were investigated in Japanese patients with type 2 diabetes. Subjects and Methods. Two hundred and sixteen patients (126 men, 65 ± 12 years old, BMI 24.9 ± 4.5, means ± S.D.) who had been treated by insulin alone or insulin combined with other oral hypoglycemic agents (OHAs) were recruited, and sitagliptin was added for 3 months. Results. HbA1c was significantly decreased after 3 months of add-on therapy as a whole (8.56 ± 1.50% to 7.88 ± 1.25%, P < 0.0001). Body weight did not change and insulin dosage was significantly (P < 0.0001) decreased for 3 months. Furthermore, day-to-day glucose variability was significantly reduced (18.3 ± 9.1 to 16.1 ± 8.1%, P < 0.05). In stepwise multiple regression analysis on ΔHbA1c as an outcome variable, the higher baseline HbA1c value and a preserved CPR were selected as significant predictive variables. Fifteen patients complained of mild hypoglycemia without any assistance during 3 months of sitagliptin add-on, while no severe hypoglycemic episode was reported. Conclusions. Add-on of sitagliptin to ongoing insulin therapy effectively reduced either HbA1c level or glucose fluctuation and could be a practical and well-tolerated alternative to treat Japanese patients with type 2 diabetes who had been inadequately controlled by insulin with or without other OHAs.

  9. [Research on Early Diagnosis of Gastric Cancer by the Surface Enhanced Raman Spectroscopy of Human Hemoglobin].

    PubMed

    Wang, Wei; Pan, Zhi-feng; Tang, Wei-yue; Li, Yun-tao; Fan, Chun-zhen

    2015-12-01

    Early diagnosis have great positive effect on the treatment of gastric cancer patients. Raman spectroscopy can provide a useful monitor for hemoglobin dynamics. Besides, Raman spectroscopy has notable advantages in the fields of abnormal hemoglobin diagnosis, hemoglobin oxygen saturation deter mination and blood methemoglobin analysis. In this paper, novel silver colloid was synthesized by microwave heated method. The surface enhanced Raman spectrums of hemoglobin from 11 normal persons and 20 gastric cancer patients are measured and analyzed in order to obtain spectrums which are high repeatability and characteristic peaks protruding. By analyzing the assignations of the SERS bands, it found that the content of asparagine, tyrosine and phenylalanine in the hemoglobin are significantly lower than healthy people. Discussing the structure of hemoglobin, when hemoglobin combines with oxygen, Fe²⁺ is in a low spin state, ionic radius shrinks and moves 0. 075 nm and fall into the pore in the middle of the heme porphyrin ring plane. This spatial variation affects F8His connected with the iron, will narrow the gap between the globin in the two strands of the helix, as a result, HC2 tyrosine pushed out of the void. Using this mechanism, the absorption peak of 1 560 cm⁻¹ confirmed that the tyrosine content in patients with gastric cancer was lower than that of normal people. Principal component analysis(PCA) is employed to get a three-dimensional scatter plot of PC scores for the health and cancer groups, and it can be learned that they are distributed in separate areas. By using the method of discriminate analysis, it is found that the diagnostic algorithm separates the two groups with sensitivity of 90.0% and diagnostic specificity of 90.9%, the overall diagnostic accuracy was 90.3%. The results from this exploratory study demonstrate that, SERS detection of oxyhemoglobin combined with multivariate analysis would be an effective method for early diagnosis of gastric

  10. Direct sGC Activation Bypasses NO Scavenging Reactions of Intravascular Free Oxy-Hemoglobin and Limits Vasoconstriction

    PubMed Central

    Tabima, D. Marcela; Specht, Patricia A.C.; Tejero, Jesús; Champion, Hunter C.; Kim-Shapiro, Daniel B.; Baust, Jeff; Mik, Egbert G.; Hildesheim, Mariana; Stasch, Johannes-Peter; Becker, Eva-Maria; Truebel, Hubert

    2013-01-01

    Abstract Aims: Hemoglobin-based oxygen carriers (HBOC) provide a potential alternative to red blood cell (RBC) transfusion. Their clinical application has been limited by adverse effects, in large part thought to be mediated by the intravascular scavenging of the vasodilator nitric oxide (NO) by cell-free plasma oxy-hemoglobin. Free hemoglobin may also cause endothelial dysfunction and platelet activation in hemolytic diseases and after transfusion of aged stored RBCs. The new soluble guanylate cyclase (sGC) stimulator Bay 41-8543 and sGC activator Bay 60-2770 directly modulate sGC, independent of NO bioavailability, providing a potential therapeutic mechanism to bypass hemoglobin-mediated NO inactivation. Results: Infusions of human hemoglobin solutions and the HBOC Oxyglobin into rats produced a severe hypertensive response, even at low plasma heme concentrations approaching 10 μM. These reactions were only observed for ferrous oxy-hemoglobin and not analogs that do not rapidly scavenge NO. Infusions of L-NG-Nitroarginine methyl ester (L-NAME), a competitive NO synthase inhibitor, after hemoglobin infusion did not produce additive vasoconstriction, suggesting that vasoconstriction is related to scavenging of vascular NO. Open-chest hemodynamic studies confirmed that hypertension occurred secondary to direct effects on increasing vascular resistance, with limited negative cardiac inotropic effects. Intravascular hemoglobin reduced the vasodilatory potency of sodium nitroprusside (SNP) and sildenafil, but had no effect on vasodilatation by direct NO-independent activation of sGC by BAY 41-8543 and BAY 60-2770. Innovation and Conclusion: These data suggest that both sGC stimulators and sGC activators could be used to restore cyclic guanosine monophosphate-dependent vasodilation in conditions where cell-free plasma hemoglobin is sufficient to inhibit endogenous NO signaling. Antioxid. Redox Signal. 19, 2232–2243. PMID:23697678

  11. Computation of the unsteady facilitated transport of oxygen in hemoglobin

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1990-01-01

    The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.

  12. Universal metastability of sickle hemoglobin polymerization

    NASA Astrophysics Data System (ADS)

    Weng, Weijun

    Sickle hemoglobin (HbS) is a natural mutation of the normal hemoglobin (HbA) found in the red blood cells of human body. Polymerization of HbS occurs when the concentration of deoxyHbS exceeds a well-defined solubility, which is the underlying cause of the Sickle Cell Disease. It has long been assumed that thermodynamic equilibrium is reached when polymerization comes to an end. However, in this thesis we demonstrate that in confined volume as well as in bulk solution, HbS polymerization terminates prematurely, leaving the solution in a metastable state. A newly developed Reservoir method as well as modulated excitation method were adopted for the study. This discovery of universal metastability gives us new insights into understanding the mechanism of sickle cell disease.

  13. New antibacterial peptide derived from bovine hemoglobin.

    PubMed

    Daoud, Rachid; Dubois, Veronique; Bors-Dodita, Loredana; Nedjar-Arroume, Naima; Krier, Francois; Chihib, Nour-Eddine; Mary, Patrice; Kouach, Mostafa; Briand, Gilbert; Guillochon, Didier

    2005-05-01

    Peptic digestion of bovine hemoglobin at low degree of hydrolysis yields an intermediate peptide fraction exhibiting antibacterial activity against Micrococcus luteus A270, Listeria innocua, Escherichia coli and Salmonella enteritidis after separation by reversed-phase HPLC. From this fraction a pure peptide was isolated and analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). This peptide correspond to the 107-136 fragment of the alpha chain of bovine hemoglobin. The minimum inhibitory concentrations (MIC) towards the four strains and its hemolytic activity towards bovine erythrocytes were determined. A MIC of 38 microM was reported against L. innocua and 76 microM for other various bacterial species. This peptide had no hemolytic activity up to 380 microM concentration. PMID:15808900

  14. Measurement of phenol concentrations using hemoglobin

    SciTech Connect

    Woodward, J.; Allen, B.F.; Scott, M.A.

    1984-01-01

    A major pollutant found in coal conversion wastewaters is phenol. Its removal by methods such as gravity separation, steam stripping, solvent extraction, biotreatment, and carbon adsorption must be monitored in order to determine that the water has been made safe for release back into the environment. Monitoring phenol concentrations in aqueous waste solutions is usually by the aminoantipyrine method. Other methods described for phenol determination include the use of enzyme electrodes based on immobilized tyrosinase and immobilized phenol hydroxylase. The authors present preliminary data upon which a new assay for phenols could be based. It concerns the peroxidatic activity of hemoglobin. When phenol, hemoglobin, and hydrogen peroxide are incubated together, there is an increase in absorbance at 260 nm which is proportional to the concentration of phenol. 5 references, 2 figures.

  15. Mast cells in mammalian brain.

    PubMed

    Dropp, J J

    1976-01-01

    Mast cells, which had until recently been believed to be not present in the mammalian brain, were studied in the brains of 29 mammalian species. Although there was considerable intraspecific and interspecific variation, mast cells were most numerous within the leptomeninges (especially in those overlying the cerebrum and the dorsal thalamus - most rodents, most carnivores, chimpanzees, squirrel monkeys and elephant), the cerebral cortex (most rodents, tiger, fox, chimpanzee, tarsier, and elephant) and in many nuclei of the dorsal thalamus (most rodents, tiger, lion, and fox). In some mammals, mast cells were also numerous in the stroma of the telencephalic choroid plexuses (chimpanzee, squirrel monkey), the putamen and the claustrum (chimpanzee), the subfornical organ (pack rat, tiger, chimpanzee), the olfactory peduncles (hooded rat, albino rat), the stroma of the diencephalic choroid plexus (lion, chimpanzee, squirrel monkey), the pineal organ (chimpanzee, squirrel monkey), some nuclei of the hypothalamus (tiger), the infundibulum (hooded rat, tiger, fox) the area postrema (pack rat, chinchilla, lion, spider monkey, chimpanzee, fox) and some nuclei and tracts of the metencephalon and the myelencephalon (tiger). Neither the sex of the animal nor electrolytic lesions made in the brains of some of the animals at various times prior to sacrifice appeared to effect the number and the distribution of mast cells. Age-related changes in mast cell number and distribution were detected in the albino rat. PMID:961335

  16. Comparison of S9 mix and hepatocytes as external metabolizing systems in mammalian cell cultures: cytogenetic effects of 7,12-dimethylbenzanthracene and aflatoxin B1

    SciTech Connect

    Madle, E.; Tiedemann, G.; Madle, S.; Oett, A.; Kaufmann, G.

    1986-01-01

    Two external metabolizing systems, S9 mix from Aroclor-induced rat livers and freshly isolated hepatocytes, were used for activation in cultures of human lymphocytes and V79 cells. 7, 12-dimethylbenzanthracene (DMBA) and aflatoxin B1 (AFB1) were employed as indirectly acting reference mutagens. Mutagenic effects were measured by induction of sister chromatid exchange (SCE). With DMBA, SCE-inducing effects were found to be quite similar after activation by S9 mix and activation by hepatocytes. In contrast with AFB1, S9 activation led to a stronger SCE induction than hepatocyte activation in both target cells. The induction of chromosomal aberrations by AFB1 after activation by the two metabolizing systems was also analyzed in V79 cells. This experiment again revealed that AFB1 was more efficiently activated by S9 mix than by hepatocytes. The experiments have shown that the suitability of hepatocytes as an activation system is not restricted to microbial or eukaryotic point mutation assays, but that hepatocyte metabolism can also be successfully included in cytogenetic tests with short- and long-term cultures of mammalian target cells.

  17. The German ISS-Experiment Cellular Responses to Radiation in Space (CERASP): The Effects of Single and Combined Space Flight Conditions on Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, C.; Hellweg, C. E.; Arenz, A.

    The combined action of ionizing radiation and microgravity will continue to influence future space missions with special risks for astronauts on the Moon surface or for long duration missions to Mars Previous space flight experiments have reported additive neither sensitization nor protection as well as synergistic increased radiation effect under microgravity interactions of radiation and microgravity in different cell systems Although a direct effect of microgravity on enzymatic mechanisms can be excluded on thermo dynamical reasons modifications of cellular repair can not be excluded as such processes are under the control of cellular signal transduction systems which are controlled by environmental parameters presumably also by gravity DNA repair studies in space on bacteria yeast cells and human fibroblasts which were irradiated before flight gave contradictory results from inhibition of repair by microgravity to enhancement whereas others did not detect any influence of microgravity on repair At the Radiation Biology Department of the German Aerospace Center DLR recombinant bacterial and mammalian cell systems were developed as reporters for cellular signal transduction modulation by genotoxic environmental conditions The space experiment CERASP Cellular Responses to Radiation in Space to be performed at the International Space Station ISS will make use of such reporter cell lines thereby supplying basic information on the cellular response to radiation applied in microgravity One of the biological endpoints will be survival

  18. Human hemoglobin structural and functional alterations and heme degradation upon interaction with benzene: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Reza; Moosavi-Movahedi, Ali Akbar

    2016-03-01

    Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation.

  19. Human hemoglobin structural and functional alterations and heme degradation upon interaction with benzene: A spectroscopic study.

    PubMed

    Hosseinzadeh, Reza; Moosavi-Movahedi, Ali Akbar

    2016-03-15

    Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation. PMID:26710175

  20. Low concentration of exogenous carbon monoxide protects mammalian cells against proliferation induced by radiation-induced bystander effect.

    PubMed

    Tong, Liping; Yu, K N; Bao, Lingzhi; Wu, Wenqing; Wang, Hongzhi; Han, Wei

    2014-01-01

    Radiation-induced bystander effect (RIBE) has been proposed to have tight relationship with the irradiation-caused secondary cancers beyond the irradiation-treated area after radiotherapy. Our previous studies demonstrated a protective effect of low concentration carbon monoxide (CO) on the genotoxicity of RIBE after α-particle irradiation. In the present work, a significant inhibitory effect of low-dose exogenous CO, generated by tricarbonyldichlororuthenium (II) dimer [CO-releasing molecule (CORM-2)], on both RIBE-induced proliferation and chromosome aberration was observed. Further studies on the mechanism revealed that the transforming growth factor β1/nitric oxide (NO) signaling pathway, which mediated RIBE signaling transduction, could be modulated by CO involved in the protective effects. Considering the potential of exogenous CO in clinical applications and its protective effect on RIBE, the present work aims to provide a foundation for potential application of CO in radiotherapy. PMID:24333162

  1. Detection of apoptosis in mammalian development.

    PubMed

    Lin, Lin; Penaloza, Carlos; Ye, Yixia; Lockshin, Richard A; Zakeri, Zahra

    2009-01-01

    Mammalian development is dependent on an intricate orchestration of cell proliferation and death. Deregulation in the levels, localization, and type of cell death can lead to disease and even death of the developing embryo. The mechanisms involved in such deregulation are many; alterations and or manipulations of these can aid in the detection, prevention and possible treatments of any effects this de-regulation may have. Here we describe how cell death can be detected during mammalian development, using diverse staining and microscopy methods, while taking advantage of the advancements in cell death mechanisms, derived from biochemical and teratological studies in the field. PMID:19609762

  2. Mass Spectra and Ion Collision Cross Sections of Hemoglobin

    NASA Astrophysics Data System (ADS)

    Kang, Yang; Terrier, Peran; Douglas, D. J.

    2011-02-01

    Mass spectra of commercially obtained hemoglobin (Hb) show higher levels of monomer and dimer ions, heme-deficient dimer ions, and apo-monomer ions than hemoglobin freshly prepared from blood. This has previously been attributed to oxidation of commercial Hb. Further, it has been reported that that dimer ions from commercial bovine Hb have lower collision cross sections than low charge state monomer ions. To investigate these effects further, we have recorded mass spectra of fresh human Hb, commercial human and bovine Hb, fresh human Hb oxidized with H2O2, lyophilized fresh human Hb, fresh human Hb both lyophilized and chemically oxidized, and commercial human Hb oxidized with H2O2. Masses of α-monomer ions of all hemoglobins agree with the masses expected from the sequences within 3 Da or better. Mass spectra of the β chains of commercial Hb and oxidized fresh human Hb show a peak or shoulder on the high mass side, consistent with oxidation of the protein. Both commercial proteins and oxidized fresh human Hb produce heme-deficient dimers with masses 32 Da greater than expected and higher levels of monomer and dimer ions than fresh Hb. Lyophilization or oxidation of Hb both produce higher levels of monomer and dimer ions in mass spectra. Fresh human Hb, commercial human Hb, commercial bovine Hb, and oxidized commercial human Hb all give dimer ions with cross sections greater than monomer ions. Thus, neither oxidation of Hb or the difference in sequence between human and bovine Hb make substantial differences to cross sections of ions.

  3. Interference with hemoglobin A(1C) determination by the hemoglobin variant Shelby.

    PubMed

    Scuderi, Richard T; Griffin, Terrance L; Mehta, Shruti P; Herold, David A; Fitzgerald, Robert L

    2007-09-01

    Hemoglobin variant carrier status was found in a 46-year-old African American man following detection of a falsely elevated hemoglobin A1c (HbA1c) by ionexchange high-performance liquid chromatography (HPLC, VARIANT A1c, Bio-Rad Laboratories, Hercules, CA). Additional analysis of the hemoglobin variant using the Beta Thal Short program (Bio-Rad) revealed an unknown peak with a retention time of 4.84 minutes and a proportion of 26.3%. No mass shift in alpha-globin or beta-globin proteins was observed by mass spectrometry. DNA sequencing revealed a missense mutation in 1 beta-globin allele corresponding to the hemoglobin Shelby trait. The patient was asymptomatic with a normal hemoglobin value of 13.6 g/dL (136 g/L) but had increased target cells on a peripheral blood smear. An alternative method for HbA1c determination using boronate-affinity HPLC provided a value of 3.9% (0.04; reference range, 4.0%-6.9% [0.04-0.07]), more consistent with the patient's recent blood glucose values in the normal range. PMID:17709318

  4. Studies on hemoglobin tryptophanyl contact residues in the haptoglobin-hemoglobin complex.

    PubMed

    Rogard, M; Waks, M

    1977-07-15

    Hemoglobin and apohemoglobin bind heptoglobin in the same molar ratio. Structural studies on haptoglobin-hemoglobin complex do not suggest any important structural changes in either protein upon binding. However, when apohemoglobin is bound to haptoglobin, a marked reduction in secondary structure, attributed to unfolding of globin chains, has been observed. Here we describe some properties of the haptoglobin-apohemoglobin (Hp-apoHb) complex, prepared by isoelectric focusing in the presence of an excess of haptoglobin. This complex does not exhibit the irreversibility of complexes obtained with hemoglobin in identical experimental conditions. The 'freezing' of the conformation of apohemoglobin upon binding to haptoglobin has been studied by fluorescence quenching experiments carried out in the presence of 8 M acrylamide. Changes in conformation of haptoglobin upon binding to apohemoglobin have been detected by titration of the exposed tryptophans using N-bromosuccinimide. Comparison of the additivity of exposed tryptophans in the complexes reveal that two tryptophans become inaccessible in the complex formation of haptoglobin with hemoglobin but not with apohemoglobin. These tryptophans, probably located on the alpha1beta2 contact interface of hemoglobin, have been tentatively identified as Trp-C3(37)beta. PMID:891540

  5. Implementation of a Permeable Membrane Insert-based Infection System to Study the Effects of Secreted Bacterial Toxins on Mammalian Host Cells.

    PubMed

    Flaherty, Rebecca A; Lee, Shaun W

    2016-01-01

    Many bacterial pathogens secrete potent toxins to aid in the destruction of host tissue, to initiate signaling changes in host cells or to manipulate immune system responses during the course of infection. Though methods have been developed to successfully purify and produce many of these important virulence factors, there are still many bacterial toxins whose unique structure or extensive post-translational modifications make them difficult to purify and study in in vitro systems. Furthermore, even when pure toxin can be obtained, there are many challenges associated with studying the specific effects of a toxin under relevant physiological conditions. Most in vitro cell culture models designed to assess the effects of secreted bacterial toxins on host cells involve incubating host cells with a one-time dose of toxin. Such methods poorly approximate what host cells actually experience during an infection, where toxin is continually produced by bacterial cells and allowed to accumulate gradually during the course of infection. This protocol describes the design of a permeable membrane insert-based bacterial infection system to study the effects of Streptolysin S, a potent toxin produced by Group A Streptococcus, on human epithelial keratinocytes. This system more closely mimics the natural physiological environment during an infection than methods where pure toxin or bacterial supernatants are directly applied to host cells. Importantly, this method also eliminates the bias of host responses that are due to direct contact between the bacteria and host cells. This system has been utilized to effectively assess the effects of Streptolysin S (SLS) on host membrane integrity, cellular viability, and cellular signaling responses. This technique can be readily applied to the study of other secreted virulence factors on a variety of mammalian host cell types to investigate the specific role of a secreted bacterial factor during the course of infection. PMID:27585035

  6. Producing Newborn Synchronous Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  7. Hemoglobin induced NO/cGMP suppression Deteriorate Microcirculation via Pericyte Phenotype Transformation after Subarachnoid Hemorrhage in Rats

    PubMed Central

    Li, Qiang; Chen, Yujie; Li, Bo; Luo, Chunxia; Zuo, Shilun; Liu, Xin; Zhang, John H.; Ruan, Huaizhen; Feng, Hua

    2016-01-01

    Subarachnoid hemorrhage (SAH) usually results from ruptured aneurysm, but how leaked hemoglobin regulates the microcirculation in the pathophysiology of early brain injury after SAH is still unclear. In the present study, we sought to investigate the role and possible mechanism of hemoglobin induced pericyte phenotype transformation in the regulation of microcirculation after SAH. Endovascular perforation SAH rat model, brain slices and cultured pericytes were used, and intervened with endothelial nitric oxide synthase (eNOS) antagonist L-NNA and its agonist scutellarin, hemoglobin, DETA/NO (nitric oxide(NO) donor), PITO (NO scavenger), 8-Br-cGMP (cGMP analog). We found modulating eNOS regulated pericyte α-SMA phenotype transformation, microcirculation, and neurological function in SAH rats. Modulating eNOS also affected eNOS expression, eNOS activity and NO availability after SAH. In addition, we showed hemoglobins penetrated into brain parenchyma after SAH. And hemoglobins significantly reduced the microvessel diameters at pericyte sites, due to the effects of hemoglobin inducing α-SMA expressions in cultured pericytes and brain slices via inhibiting NO/cGMP pathway. In conclusion, pericyte α-SMA phenotype mediates acute microvessel constriction after SAH possibly by hemoglobin suppressing NO/cGMP signaling pathway. Therefore, by targeting the eNOS and pericyte α-SMA phenotype, our present data may shed new light on the management of SAH patients. PMID:26911739

  8. Effects of Tet-mediated Oxidation Products of 5-Methylcytosine on DNA Transcription in vitro and in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    You, Changjun; Ji, Debin; Dai, Xiaoxia; Wang, Yinsheng

    2014-11-01

    5-methylcytosine (5-mC) is a well-characterized epigenetic regulator in mammals. Recent studies showed that Ten-eleven translocation (Tet) proteins can catalyze the stepwise oxidation of 5-mC to produce 5-hydroxymethylcytosine (5-HmC), 5-formylcytosine (5-FoC) and 5-carboxylcytosine (5-CaC). The exciting discovery of these novel cytosine modifications has stimulated substantial research interests about their roles in epigenetic regulation. Here we systematically examined the effects of the oxidized 5-mC derivatives on the efficiency and fidelity of DNA transcription using a recently developed competitive transcription and adduct bypass assay. Our results showed that, when located on the transcribed strand, 5-FoC and 5-CaC exhibited marginal mutagenic and modest inhibitory effects on DNA transcription mediated by single-subunit T7 RNA polymerase or multi-subunit human RNA polymerase II in vitro and in human cells. 5-HmC displayed relatively milder blocking effects on transcription, and no mutant transcript could be detectable for 5-HmC in vitro or in cells. The lack of considerable mutagenic effects of the oxidized 5-mC derivatives on transcription was in agreement with their functions in epigenetic regulation. The modest blocking effects on transcription suggested that 5-FoC and 5-CaC may function in transcriptional regulation. These findings provided new evidence for the potential functional interplay between cytosine methylation status and transcription.

  9. Effects of Tet-mediated oxidation products of 5-methylcytosine on DNA transcription in vitro and in mammalian cells.

    PubMed

    You, Changjun; Ji, Debin; Dai, Xiaoxia; Wang, Yinsheng

    2014-01-01

    5-methylcytosine (5-mC) is a well-characterized epigenetic regulator in mammals. Recent studies showed that Ten-eleven translocation (Tet) proteins can catalyze the stepwise oxidation of 5-mC to produce 5-hydroxymethylcytosine (5-HmC), 5-formylcytosine (5-FoC) and 5-carboxylcytosine (5-CaC). The exciting discovery of these novel cytosine modifications has stimulated substantial research interests about their roles in epigenetic regulation. Here we systematically examined the effects of the oxidized 5-mC derivatives on the efficiency and fidelity of DNA transcription using a recently developed competitive transcription and adduct bypass assay. Our results showed that, when located on the transcribed strand, 5-FoC and 5-CaC exhibited marginal mutagenic and modest inhibitory effects on DNA transcription mediated by single-subunit T7 RNA polymerase or multi-subunit human RNA polymerase II in vitro and in human cells. 5-HmC displayed relatively milder blocking effects on transcription, and no mutant transcript could be detectable for 5-HmC in vitro or in cells. The lack of considerable mutagenic effects of the oxidized 5-mC derivatives on transcription was in agreement with their functions in epigenetic regulation. The modest blocking effects on transcription suggested that 5-FoC and 5-CaC may function in transcriptional regulation. These findings provided new evidence for the potential functional interplay between cytosine methylation status and transcription. PMID:25394478

  10. Grape skin phenolics as inhibitors of mammalian α-glucosidase and α-amylase--effect of food matrix and processing on efficacy.

    PubMed

    Lavelli, V; Sri Harsha, P S C; Ferranti, P; Scarafoni, A; Iametti, S

    2016-03-01

    Type-2 diabetes is continuously increasing worldwide. Hence, there is a need to develop functional foods that efficiently alleviate damage due to hyperglycaemia complications while meeting the criteria for a sustainable food processing technology. Inhibition of mammalian α-amylase and α-glucosidase was studied for white grape skin samples recovered from wineries and found to be higher than that of the drug acarbose. In white grape skins, quercetin and kaempferol derivatives, analysed by UPLC-DAD-MS, and the oligomeric series of catechin/epicatechin units and their gallic acid ester derivatives up to nonamers, analysed by MALDI-TOF-MS were identified. White grape skin was then used for enrichment of a tomato puree (3%) and a flat bread (10%). White grape skin phenolics were found in the extract obtained from the enriched foods, except for the higher mass proanthocyanidin oligomers, mainly due to their binding to the matrix and to a lesser extent to heat degradation. Proanthocyanidin solubility was lower in bread, most probably due to formation of binary proanthocyanin/protein complexes, than in tomato puree where possible formation of ternary proanthocyanidin/protein/pectin complexes can enhance solubility. Enzyme inhibition by the enriched foods was significantly higher than for unfortified foods. Hence, this in vitro approach provided a platform to study potential dietary agents to alleviate hyperglycaemia damage and suggested that grape skin phenolics could be effective even if the higher mass proanthocyanidins are bound to the food matrix. PMID:26943361

  11. Effect-based assessment of persistent organic pollutant and pesticide dumpsite using mammalian CALUX reporter cell lines.

    PubMed

    Pieterse, B; Rijk, I J C; Simon, E; van Vugt-Lussenburg, B M A; Fokke, B F H; van der Wijk, M; Besselink, H; Weber, R; van der Burg, B

    2015-10-01

    A combined chemical and biological analysis of samples from a major obsolete pesticide and persistent organic pollutant (POP) dumpsite in Northern Tajikistan was carried out. The chemical analytical screening focused on a range of prioritized compounds and compounds known to be present locally. Since chemical analytics does not allow measurements of hazards in complex mixtures, we tested the use of a novel effect-based approach using a panel of quantitative high-throughput CALUX reporter assays measuring distinct biological effects relevant in hazard assessment. Assays were included for assessing effects related to estrogen, androgen, and progestin signaling, aryl hydrocarbon receptor-mediated signaling, AP1 signaling, genotoxicity, oxidative stress, chemical hypoxia, and ER stress. With this panel of assays, we first quantified the biological activities of the individual chemicals measured in chemical analytics. Next, we calculated the expected sum activity by these chemicals in the samples of the pesticide dump site and compared the results with the measured CALUX bioactivity of the total extracts of these samples. The results showed that particularly endocrine disruption-related effects were common among the samples. This was consistent with the toxicological profiles of the individual chemicals that dominated these samples. However, large discrepancies between chemical and biological analysis were found in a sample from a burn place present in this site, with biological activities that could not be explained by chemical analysis. This is likely to be caused by toxic combustion products or by spills of compounds that were not targeted in the chemical analysis. PMID:26022396

  12. Protecting effects specifically from low doses of ionizing radiation to mammalian cells challenge the concept of linearity

    SciTech Connect

    Feinendegen, L.E.; Bond, V.P.; Sondhaus, C.A.; Altman, K.I.

    1998-12-31

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced changes in intracellular signaling that induce mechanisms of DNA damage control different from those operating at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. The aim of this paper is to demonstrate that by use of microdosimetric concepts, the energy deposited in cell mass can be related to the occurrence of cellular responses, both damaging and defensive.

  13. Radiation protection of in vitro mammalian cells: effects of hydroxyl radical scavengers on the slopes and shoulders of survival curves

    SciTech Connect

    Ewing, D.; Walton, H.L. )

    1991-05-01

    We have tested several chemical compounds, characterized and widely used as hydroxyl radical (.OH) scavengers, for their effects on the radiation sensitivity of Chinese hamster V79 cells irradiated in air or nitrogen. Our purpose is to reexamine the proposed relationship between the level of protection and the rates at which the scavengers react with .OH. We found that the additives can have two apparently independent effects on the shape of survival curves: a reduction in sensitivity (i.e., 'protection,' a decrease in the value of k) and an increase in the size of the shoulder of the survival curve (an increase in the value of Dq). We measured intracellular scavenger concentrations, and, using these values in our analysis, we found that neither of the two effects is correlated with the rates at which the scavengers react with .OH. Although these results could mean that .OH do not cause lethal damage, the interpretation we believe most probably correct is that these scavengers protect in multiple ways. The protection would occur in addition to or instead of simple .OH removal.

  14. Peroxisome proliferator-activated receptor-γ agonist inhibits the mammalian target of rapamycin signaling pathway and has a protective effect in a rat model of status epilepticus.

    PubMed

    San, Yong-Zhi; Liu, Yu; Zhang, Yu; Shi, Ping-Ping; Zhu, Yu-Lan

    2015-08-01

    Peroxisome proliferator-activated receptor γ (PPAR-γ) has a protective role in several neurological diseases. The present study investigated the effect of the PPAR-γ agonist, pioglitazone, on the mammalian target of rapamycin (mTOR) signaling pathway in a rat model of pentylenetetrazol (PTZ)-induced status epilepticus (SE). The investigation proceeded in two stages. First, the course of activation of the mTOR signaling pathway in PTZ-induced SE was examined to determine the time-point of peak activity, as reflected by phopshorylated (p)-mTOR/mTOR and p-S6/S6 ratios. Subsequently, pioglitazone was administrated intragastrically to investigate its effect on the mTOR signaling pathway, through western blot and immunochemical analyses. The levels of the interleukin (IL)-1β and IL-6 inflammatory cytokines were detected using ELISA, and neuronal loss was observed via Nissl staining. In the first stage of experimentation, the mTOR signaling pathway was activated, and the p-mTOR/mTOR and p-S6/S6 ratios peaked on the third day. Compared with the vehicle treated-SE group, pretreatment with pioglitazone was associated with the loss of fewer neurons, lower levels of IL-1β and IL-6, and inhibition of the activation of the mTOR signaling pathway. Therefore, the mTOR signaling pathway was activated in the PTZ-induced SE rat model, and the PPAR-γ agonist, pioglitazone, had a neuroprotective effect, by inhibiting activation of the mTOR pathway and preventing the increase in the levels of IL-1β and IL-6. PMID:25891824

  15. Effects on in Vivo and in Vitro Exposure to Excess Gravity on Growth and Differentiation of Mammalian Embryos

    NASA Technical Reports Server (NTRS)

    Duke, J.

    1985-01-01

    Studies on the development of embryonic mouse tissues exposed to excess gravity in vitro and in vivo are discussed. Suppression is seen in limb buds cultured under 3G. Mouse palates were exposed to excess G in vitro, 13- and 14-day palates were exposed to 2.6G for 24 hours. For in vivo studies, a small animal centrifuge was constructed. When the centrifuge is operated at 40 and 45 rpm, the linear accelerations generated range from 1.8 to 3.5G. The effects of gravity on body weights and on reproduction is also presented.

  16. The effect of injection using narrow‐bore needles on mammalian cells: administration and formulation considerations for cell therapies

    PubMed Central

    Amer, Mahetab H.; White, Lisa J.

    2015-01-01

    Abstract Objectives This study focuses on the effect of the injection administration process on a range of cell characteristics. Methods Effects of different ejection rates, needle sizes and cell suspension densities were assessed in terms of viability, membrane integrity, apoptosis and senescence of NIH 3T3 fibroblasts. For ratiometric measurements, a multiplex assay was used to verify cell viability, cytotoxicity and apoptosis independent of cell number. Co‐delivery with alginate hydrogels and viscosity‐modifying excipients was also assessed. Key findings Ejections at 150 μl/min resulted in the highest percentage of dose being delivered as viable cells among ejection rates tested. The difference in proportions of apoptotic cells became apparent 48 h after ejection, with proportions being higher in samples ejected at slower rates. Co‐delivery with alginate hydrogels demonstrated a protective action on the cell payload. Conclusions This study demonstrates the importance of careful consideration of administration protocols required for successful delivery of cell suspensions, according to their nature and cellular responses post‐ejection. PMID:25623928

  17. Development of an in situ mammalian biomonitor to assess the effect of environmental contaminants on population and community health

    SciTech Connect

    McMurray, S.T.

    1993-01-01

    The influence of environmental contaminants (e.g., lead, benzene, organic hydrocarbons) on immune function of laboratory and field cotton rats (Sigmodon hispidus) and population and community dynamics of small mammals residing on an oil refinery were studied. Cellular immune function in benzene and lead exposed cotton rats were assessed to determine the sensitivity of immune function as a potential biomarker of toxicant exposure. Additionally, cellular immune function, population density, reproduction, recruitment, and survival were assessed for wild cotton rats collected from an abandoned oil refinery to field test the utility of cotton rats as an in situ bioindicator. Cellular immune function in juvenile and adult cotton rats was sensitive to the immunosuppressive effects of lead and benzene. However, benzene-induced immunosuppression was marginal presumably due to the ability of cotton rats to quickly metabolize the compound and recover from the toxic effects. Wild cotton rats collected on the refinery also demonstrated sensitivity in immune function to the complex mixtures of contaminants found on site. Lymphoproliferative responses of splenocytes was the most consistent indicator toxicant exposure. Population parameters of cotton rats indicated marked depression in density, recruitment, and survival. Results also indicated a shift in community structure due to large numbers of house mice (Mus musculus) on toxic sites. Immune function and population parameters appear to be good prospects in situ bioindicators of environmental contamination.

  18. Effect of blocking the Na+/K+ ATPase on Ca2+ extrusion and light adaptation in mammalian retinal rods.

    PubMed Central

    Demontis, G C; Ratto, G M; Bisti, S; Cervetto, L

    1995-01-01

    Membrane current and light response were recorded from rods of monkey and guinea pig by means of suction electrodes. The correlation between adaptation and the Na+/K+ pump was investigated by measuring light-dependent changes in sensitivity with and without inhibition of Na+/K+ ATPase by strophanthidin. Strophanthidin was found to reduce the dark current, to slow the time course of the photoresponse, and to increase light sensitivity. At concentrations between 20 and 500 nM, the pump inhibitor suppressed in a reversible way the current re-activation occurring during prolonged illumination and modified the light-dependent decrease in sensitivity, which in control conditions approximates to a Weber-Fechner function. The effects of the pump inhibitor on the adaptive properties of rods are associated with an increased time constant of the membrane current attributed to the operation of the Na+:Ca2+,K+ exchanger. The effects of rapid application of the pump inhibitor on the current re-activation are consistent with the idea that significant changes in the internal sodium occur in rods of mammals during background illumination and that they play an important role in the process of light adaptation. PMID:8527658

  19. Red cell substitutes from hemoglobin--do we start all over again?

    PubMed

    Kluger, Ronald

    2010-08-01

    Red cells are the oxygen-carrying components of blood. In modern medical practice, transfusions are given as suspensions of type-matched red cells in saline to replace lost blood, preventing organ damage and allowing for recovery. Since red cells cannot be stored for more than about 40 days and because they can transmit infections, alternative materials for transfusions were developed to replace the oxygenation function of the red cells. One approach involves chemically stabilizing hemoglobin, the oxygen-carrying protein of the red cell, while also adjusting its oxygenation properties to replicate that of the red cell. Evaluation of clinical trials of all products led to the conclusion that none that were tested would be suitable for clinical use [Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM: Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. J Am Med Assoc 2008, 299:2304-2312]. Most notably, the materials increased blood pressure and some were associated with increased risk of heart attacks. More recently, it was found that materials from covalent addition of polyethylene glycol polymers (PEG) to hemoglobin do not elicit the undesired effects on blood pressure [Vandegriff K, Bellelli A, Samaja M, Malavalli A, Brunori M, Winslow RM: Rates of NO binding to MP4, a non-hypertensive polyethylene glycol-conjugated hemoglobin. FASEB J 2003, 17:A183; Vandegriff KD, Malavalli A, Wooldridge J, Lohman J, Winslow RM: MP4: a new nonvasoactive PEG-Hb conjugate. Transfusion 2003, 43:509-516]. Also, materials with higher oxygen affinity than red cells are able to provide oxygenation at the sites in capillaries that have the most critical need for oxygen [Villela NR, Cabrales P, Tsai AG, Intaglietta M: Microcirculatory effects of changing blood hemoglobin oxygen affinity during hemorrhagic shock resuscitation in an experimental model. Shock 2009, 31:645-652]. It had been considered that the origin of the negative effects

  20. Triplet state magnetic resonance and fluorescence spectroscopy of metal-substituted hemoglobins.

    PubMed

    Polm, M W; Schaafsma, T J

    1997-01-01

    Fluorescence detected magnetic resonance (FDMR) spectra detected at 596 nm of zinc-substituted hemoglobins at 4.2 K show a split D-E transition, which is not observed for zinc protoporphyrins ligated by methylimidazole in glasses. Incorporation of the zinc heme into the globin pocket is also accompanied by a blue shift of the fluorescence of 20 nm at 4.2 K. FDMR spectra recorded at 576 nm do not show the D-E splitting. The D-E splitting and the huge blue shift are not observed for the magnesium-substituted hemoglobins. Fluorescence measurements at 4.2 K and 77 K, and EPR measurements at 110 K, were carried out to obtain information about the ligation states of the zinc and magnesium protoporphyrins in glasses and in hemoglobin. The results are explained by considering ligation effects and distortion of the porphyrin plane. PMID:8994622

  1. Effects of solar ultraviolet photons on mammalian cell DNA. [UVA (320-400 nm):a2

    SciTech Connect

    Peak, M.J.; Peak, J.G.

    1991-01-01

    This document presents information on the possible mechanisms of carcinogenesis caused by UVA (ultraviolet radiation in the 320--400 nm region). Most studies showing the carcinogenic effects of ultraviolet light have concentrated on UVB (280--320 nm). UVA had been considered harmless even though it penetrates biological tissues better than UVB. Recently, it has become apparent that UVA is also capable of causing damage to cellular DNA. This was unexpected because the DNA UV absorption spectrum indicates a negligible probability that photons of wavelengths longer than 320 nm will be directly absorbed. The most common defects induced in DNA by UVB are pyrimidine photoproducts, such as thymidine dimers. UVA photons produce defects resembling those caused by ionizing radiations: single- and double-strand breaks, and DNA-protein crosslinks. This paper also discusses the role of DNA repair mechanisms in UVA-induced defects and the molecular mechanisms of UVA damage induction. 38 refs. (MHB)

  2. Carbonic anhydrase activators: gold nanoparticles coated with derivatized histamine, histidine, and carnosine show enhanced activatory effects on several mammalian isoforms.

    PubMed

    Saada, Mohamed-Chiheb; Montero, Jean-Louis; Vullo, Daniela; Scozzafava, Andrea; Winum, Jean-Yves; Supuran, Claudiu T

    2011-03-10

    Lipoic acid moieties were attached to amine or amino acids showing activating properties against the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). The obtained lipoic acid conjugates of histamine, L-histidine methyl ester, and L-carnosine methyl ester were attached to gold nanoparticles (NPs) by reaction with Au(III) salts in reducing conditions. The CA activators (CAAs)-coated NPs showed low nanomolar activation (K(A)s of 1-9 nM) of relevant cytosolic, membrane-bound, mitochondrial, and transmembrane CA isoforms, such as CA I, II, IV, VA, VII, and XIV. These NPs also effectively activated CAs ex vivo, in whole blood experiments, with an increase of 200-280% of the CA activity. This is the first example of enzyme activation with nanoparticles and may lead to biomedical applications for conditions in which the CA activity is diminished, such as aging, Alzheimer's disease, or CA deficiency syndrome. PMID:21291238

  3. Relationship of Baseline Hemoglobin Level with Serum Ferritin, Postphlebotomy Hemoglobin Changes, and Phlebotomy Requirements among HFE C282Y Homozygotes.

    PubMed

    Mousavi, Seyed Ali; Mahmood, Faiza; Aandahl, Astrid; Knutsen, Teresa Risopatron; Llohn, Abid Hussain

    2015-01-01

    Objectives. We aimed to examine whether baseline hemoglobin levels in C282Y-homozygous patients are related to the degree of serum ferritin (SF) elevation and whether patients with different baseline hemoglobin have different phlebotomy requirements. Methods. A total of 196 patients (124 males and 72 females) who had undergone therapeutic phlebotomy and had SF and both pre- and posttreatment hemoglobin values were included in the study. Results. Bivariate correlation analysis suggested that baseline SF explains approximately 6 to 7% of the variation in baseline hemoglobin. The results also showed that males who had higher (≥150 g/L) baseline hemoglobin levels had a significantly greater reduction in their posttreatment hemoglobin despite requiring fewer phlebotomies to achieve iron depletion than those who had lower (<150 g/L) baseline hemoglobin, regardless of whether baseline SF was below or above 1000 µg/L. There were no significant differences between hemoglobin subgroups regarding baseline and treatment characteristics, except for transferrin saturation between male subgroups with SF above 1000 µg/L. Similar differences were observed when females with higher (≥138 g/L) baseline hemoglobin were compared with those with lower (<138 g/L) baseline hemoglobin. Conclusion. Dividing C282Y-homozygous patients into just two subgroups according to the degree of baseline SF elevation may obscure important subgroup variations. PMID:26380265

  4. Thalassemia and Hemoglobin E in Southern Thai Blood Donors

    PubMed Central

    Kruachan, Kwanta; Sengking, Warachaya; Horpet, Dararat; Sungyuan, Ubol

    2014-01-01

    Thalassemia and hemoglobin E (Hb E) are common in Thailand. Individuals with thalassemia trait usually have a normal hemoglobin concentration or mild anemia. Therefore, thalassemic individuals who have minimum acceptable Hb level may be accepted as blood donors. This study was aimed at determining the frequency of α-thalassemia 1 trait, β-thalassemia trait, and Hb E-related syndromes in Southern Thai blood donors. One hundred and sixteen voluntary blood donors, Southern Thailand origin, were recruited for thalassemia and Hb E screening by red blood cell indices/dichlorophenolindophenol precipitation test. β-Thalassemia and Hb E were then identified by high performance liquid chromatography and 4 common α-thalassemia deletions were characterized by a single tube-multiplex gap-polymerase chain reaction. Overall frequency of hemoglobinopathies was 12.9%, classified as follows: homozygous α-thalassemia 2 (1.7%), heterozygous α-thalassemia 1 (1.7%), heterozygous β-thalassemia without α-thalassemia (0.9%), heterozygous Hb E without α-thalassemia (5.2%), double heterozygotes for Hb E/α-thalassemia 1 (1.7%), homozygous Hb E without α-thalassemia (0.9%), and homozygous Hb E with heterozygous α-thalassemia 2 (0.9%). The usefulness of thalassemia screening is not only for receiving highly effective red blood cells in the recipients but also for encouraging the control and prevention program of thalassemia in blood donors. PMID:25050123

  5. Redox reactions of hemoglobin: mechanisms of toxicity and control.

    PubMed

    Mollan, Todd L; Alayash, Abdu I

    2013-06-10

    In the last several years, significant work has been done studying hemoglobin (Hb) oxidative reactions and clearance mechanisms using both in vitro and in vivo model systems. One active research area involves the study of molecular chaperones and other proteins that are thought to mitigate the toxicity of acellular Hb. For example, the plasma protein haptoglobin (Hp) and the pre-erythroid protein alpha-hemoglobin-stabilizing protein (AHSP) bind to acellular Hb and alpha-subunits of Hb, respectively, to reduce these adverse effects. Moreover, there has been significant work studying hemopexin and alpha-1 microglobulin, both of which are thought to be involved with hemin degradation. These studies have coincided with the timely publication of the first crystal structure of the Hb-Hp complex. In constructing this Forum, we have invited a number of researchers in the area of Hb and myoglobin (Mb) redox biochemistry, as well as those who have contributed fundamentally to our knowledge of Hp function. Our goal has been to update this critically important research area, because we believe that it will ultimately impact the practice of transfusion medicine in a number of important ways. PMID:23330885

  6. Interaction of recombinant octameric hemoglobin with endothelial cells.

    PubMed

    Gaucher, Caroline; Domingues-Hamdi, Élisa; Prin-Mathieu, Christine; Menu, Patrick; Baudin-Creuza, Véronique

    2015-02-01

    Hemoglobin-based oxygen carriers (HBOCs) may generate oxidative stress, vasoconstriction and inflammation. To reduce these undesirable vasoactive properties, we increased hemoglobin (Hb) molecular size by genetic engineering with octameric Hb, recombinant (r) HbβG83C. We investigate the potential side effects of rHbβG83C on endothelial cells. The rHbβG83C has no impact on cell viability, and induces a huge repression of endothelial nitric oxide synthase gene transcription, a marker of vasomotion. No induction of Intermolecular-Adhesion Molecule 1 and E-selectin (inflammatory markers) transcription was seen. In the presence of rHbβG83C, the transcription of heme oxygenase-1 (oxidative stress marker) is weakly increased compared to the two other HBOCs (references) or Voluven (control). This genetically engineered octameric Hb, based on a human Hb βG83C mutant, leads to little impact at the level of endothelial cell inflammatory response and thus appears as an interesting molecule for HBOC development. PMID:25543885

  7. Effects of troponin C isoforms on pH sensitivity of contraction in mammalian fast and slow skeletal muscle fibres.

    PubMed Central

    Metzger, J M

    1996-01-01

    1. The effects of troponin C (TnC) isoforms on the acidic pH-induced rightward shift in the tension-pCa (-log[Ca2+]) relationship were examined in slow soleus and fast psoas skeletal muscle fibers. Endogenous TnC was partially extracted from skinned single fibres and the extracted fibres were subsequently reconstituted with purified TnC. The pCa producing one-half maximal tension (pCa50) was determined at pH 7.00 and 6.20 in each fibre and then the pH-induced shift in pCa50 (delta pCa50) was calculated. 2. In control fast fibres which express fast skeletal TnC (sTnC), the delta pCa50 was 0.64 +/- 0.02 pCa units (n = 10), and this increased significantly to 0.78 +/- 0.04 pCa units (n = 8) following extraction and reconstitution with cardiac TnC (cTnC). In each fibre, the reconstituted delta pCa50 was subtracted from the control delta pCa50 which yielded a significant shift of -0.13 +/- 0.05 pCa units (n = 8; P < 0.05). Thus, the pH sensitivity of contraction was increased in the cTnC-reconstituted psoas fibres. 3. In extracted psoas fibres that were reconstituted with fast sTnC the pH sensitivity of contraction was unchanged, indicating that the above effects were related to the TnC isoform and not a non-specific effect of the extraction procedure. 4. In a second series of experiments cTnC was specifically extracted from slow soleus fibres which were subsequently reconstituted with purified fast sTnC. Skeletal TnC reconstituted soleus fibres demonstrated a significant decrease in pH sensitivity. In each fibre, the reconstituted delta pCa50 (mean, 0.58 +/- 0.02 pCa units) was subtracted from the control delta pCa50 (mean, 0.63 +/- 0.02 pCa units) which yielded a significant shift of 0.05 +/- 0.01 pCa units (n = 4; P < 0.05). The pH sensitivity was not altered in cTnC-reconstituted soleus fibres (-0.01 +/- 0.01 pCa units, n = 4). 5. These findings indicate that TnC isoforms alter the pH sensitivities of contraction in slow and fast skeletal muscle fibres. However, the

  8. The mammalian blastocyst.

    PubMed

    Frankenberg, Stephen R; de Barros, Flavia R O; Rossant, Janet; Renfree, Marilyn B

    2016-01-01

    The blastocyst is a mammalian invention that carries the embryo from cleavage to gastrulation. For such a simple structure, it exhibits remarkable diversity in its mode of formation, morphology, longevity, and intimacy with the uterine endometrium. This review explores this diversity in the light of the evolution of viviparity, comparing the three main groups of mammals: monotremes, marsupials, and eutherians. The principal drivers in blastocyst evolution were loss of yolk coupled with evolution of the placenta. An important outcome of blastocyst development is differentiation of two extraembryonic lineages (trophoblast and hypoblast) that contribute to the placenta. While in many species trophoblast segregation is often coupled with blastocyst formation, in marsupials and at least some Afrotherians, these events do not coincide. Thus, many questions regarding the conservation of molecular mechanisms controlling these events are of great interest but currently unresolved. For further resources related to this article, please visit the WIREs website. PMID:26799266

  9. Mammalian phospholipase C.

    PubMed

    Kadamur, Ganesh; Ross, Elliott M

    2013-01-01

    Phospholipase C (PLC) converts phosphatidylinositol 4,5-bisphosphate (PIP(2)) to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol (DAG). DAG and IP(3) each control diverse cellular processes and are also substrates for synthesis of other important signaling molecules. PLC is thus central to many important interlocking regulatory networks. Mammals express six families of PLCs, each with both unique and overlapping controls over expression and subcellular distribution. Each PLC also responds acutely to its own spectrum of activators that includes heterotrimeric G protein subunits, protein tyrosine kinases, small G proteins, Ca(2+), and phospholipids. Mammalian PLCs are autoinhibited by a region in the catalytic TIM barrel domain that is the target of much of their acute regulation. In combination, the PLCs act as a signaling nexus that integrates numerous signaling inputs, critically governs PIP(2) levels, and regulates production of important second messengers to determine cell behavior over the millisecond to hour timescale. PMID:23140367

  10. Protective effects of antioxidants on micronuclei induced by camphorquinone/N,N-dimethyl-p-toluidine employing in vitro mammalian test system.

    PubMed

    Li, Yi-Ching; Huang, Fu-Mei; Lee, Shiaun-Shinn; Lin, Ruey-Hseng; Chang, Yu-Chao

    2007-07-01

    Camphorquinone (CQ) is widely used as an initiator in modern visible-light (VL) cured resin systems. CQ is also characterized as a potential allergenic compound. To date, there is growing concern that CQ may produce genetic damage by inducing mutation. In this study, CQ in the presence of reducing agent N,N-dimethyl-p-toluidine (DMT) with or without VL irradiation was analyzed for the induction of chromosomal aberrations indicated by micronuclei (MN) induced in CHO cells. Our data demonstrated that an increase in the numbers of MN was observed with CQ/DMT with or without VL irradiation (p < 0.05). Significant prolongation of cell cycles was observed by the treatment with CQ/DMT with or without VL irradiation (p < 0.05). In addition, VL irradiated CQ/DMT was found to exhibit significantly genotoxic and cytotoxic effects as compared with CQ/DMT alone (p < 0.05). Furthermore, to determine whether oxidative stress could modulate the MN induced by CQ/DMT with or without VL irradiation in CHO cells, cells were pre-treated with various antioxidants 10 mM N-acetyl-L-cysteine (NAC), 2 mM ascorbic acid, and 2 mM alpha-tocopherol. The pre-treatment with antioxidants could antagonize not only the increased MN cells but also the prolonged cell cycle induced by CQ/DMT with or without VL irradiation in CHO cells (p < 0.05). Our findings provide the evidences for the induction of MN by CQ/DMT employing mammalian test system, indicating clastogenic activity of CQ/DMT with or without VL irradiation in vitro. In addition, VL irradiated CQ/DMT exhibits higher genotoxic and cytotoxic effects than CQ/DMT alone. Moreover, NAC, ascorbic acid, and alpha-tocopherol act as the antagonists against the genotoxicity and cytotoxicity of CQ/DMT with or without VL irradiation. PMID:17041928

  11. Genetic effects of microwave exposure on mammalian cells in vitro. Volume 1. Annual report February 1980-June 1981

    SciTech Connect

    Meltz, M.L.; Walker, K.A.

    1984-06-01

    The effects of radiofrequency radiation (RFR) on the DNA repair process in MRC-5 normal human fibroblast cells grown in vitro have been investigated. The power levels chosen, 1 and 10 mW/sq cm, did not result in measurable temperature above the 37 C incubation temperature at either 350 MHz or 1.2 GHz (continuous or pulse-wave modes). DNA repair was induced by exposure of the cells to ultraviolet light (UV). Repair synthesis was measured by means of a repair replication protocol; i.e., a repair labeling incubation with 3H-thymidine and nonradioactive 5-bromodeoxyuridine (or 3H-BrUdR in early experiments), followed by DNA isolation and two sequential alkali cesium chloride-cesium sulfate density gradient centrifugations. In summary, 1.2-GHz continuous wave (CW) and 350 pulse-wave and continuous-wave RFR, at power levels of 1 and 10 mW/sq cm, did not appear to perturb UV light-induced DNA repair synthesis. A possible stimulation by 350-MHz CW radiation of repair label incorporation during the first hour after UV exposure, at 1 mW/sq cm (but not at 10 mW/sq cm), remains to be confirmed. No evidence exists of RFR induction, by itself, of DNA damage and repair at 1.2 GHz and 350-MHz (CW) at a power level of 10 mW/sq cm.

  12. Biological Effects of Particles with Very High Energy Deposition on Mammalian Cells Utilizing the Brookhaven Tandem Van de Graaff Accelerator

    NASA Technical Reports Server (NTRS)

    Saha, Janapriya; Cucinotta, Francis A.; Wang, Minli

    2013-01-01

    High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of high charge and energy (HZE) nuclei and secondary protons and neutrons, and secondaries from protons in SPE (Solar Particle Event) pose a major health risk to astronauts due to induction of DNA damage and oxidative stress. Experiments with high energy particles mimicking the space environment for estimation of radiation risk are being performed at NASA Space Radiation Laboratory at BNL. Experiments with low energy particles comparing to high energy particles of similar LET are of interest for investigation of the role of track structure on biological effects. For this purpose, we report results utilizing the Tandem Van de Graaff accelerator at BNL. The primary objective of our studies is to elucidate the influence of high vs low energy deposition on track structure, delta ray contribution and resulting biological responses. These low energy ions are of special relevance as these energies may occur following absorption through the spacecraft and shielding materials in human tissues and nuclear fragments produced in tissues by high energy protons and neutrons. This study will help to verify the efficiency of these low energy particles and better understand how various cell types respond to them.

  13. Organ culture of mammalian skin and the effects of ultraviolet light and testosterone on melanocyte morphology and function.

    PubMed

    Glimcher, M E; Garcia, R I; Szabó, G

    1978-05-01

    Scrotal skin of black Long-Evans rats and human thigh skin were maintained in vitro as organ cultures for as long as 14 days, and examined histologically using the combined skin splitting and Dopa techniques. Selected rat skin cultures received testosterone in the culture medium and/or were irradiated with ultraviolet light (290-320 nm UVL). With increased time in culture, scrotal melanocytes round up and there is an increase in epidermal pigmentation. Human skin behaves similarly; after eight days in vitro human melanocytes also become rounded, but remain strongly Dopa-positive. Addition of exogenous testosterone to cultured rat skin maintains dendritic morphology of melanocytes, but cell body size is still reduced. UVL irradiation stimulates melanocytes in rat skin cultures, maintaining their dendritic morphology and increasing epidermal and dermal pigmentation. Cultured skin receiving both UVL and testosterone illustrates a synergistic effect. Electron microscopic examination of cultured rat skin shows the presence of large melanosome complexes in keratinocytes, much larger than those found in vivo. Melanocytes appear to be active as they contain an extensive Golgi zone, rough endoplasmic reticulum, and melanosomes in various stages of formation. Dermis contained many dermal melanocytes and macrophages laden with melanosomes, correlating with the increased visible dermal pigmentation in vitro. This UVL stimulation of melanocytes in our skin organ cultures contrasts with the lack of melanogenic stimulation found in melanoma cell cultures. Our findings suggest that the intact epidermal melanin unit may be necessary for UVL stimulation of melanocytes. PMID:641488

  14. The effect of fire on habitat selection of mammalian herbivores: the role of body size and vegetation characteristics.

    PubMed

    Eby, Stephanie L; Anderson, T Michael; Mayemba, Emilian P; Ritchie, Mark E

    2014-09-01

    Given the role of fire in shaping ecosystems, especially grasslands and savannas, it is important to understand its broader impact on these systems. Post-fire stimulation of plant nutrients is thought to benefit grazing mammals and explain their preference for burned areas. However, fire also reduces vegetation height and increases visibility, thereby potentially reducing predation risk. Consequently, fire may be more beneficial to smaller herbivores, with higher nutritional needs and greater risks of predation. We tested the impacts of burning on different sized herbivores' habitat preference in Serengeti National Park, as mediated by burning's effects on vegetation height, live : dead biomass ratio and leaf nutrients. Burning caused a less than 4 month increase in leaf nitrogen (N), and leaf non-N nutrients [copper (Cu), potassium (K), and magnesium (Mg)] and a decrease in vegetation height and live : dead biomass. During this period, total herbivore counts were higher on burned areas. Generally, smaller herbivores preferred burned areas more strongly than larger herbivores. Unfortunately, it was not possible to determine the vegetation characteristics that explained burned area preference for each of the herbivore species observed. However, total herbivore abundance and impala (Aepyceros melampus) preference for burned areas was due to the increases in non-N nutrients caused by burning. These findings suggest that burned area attractiveness to herbivores is mainly driven by changes to forage quality and not potential decreases in predation risk caused by reductions in vegetation height. PMID:24697568

  15. Universal Metastability of Sickle Hemoglobin Polymerization

    PubMed Central

    Weng, Weijun; Aprelev, Alexey; Briehl, Robin W.; Ferrone, Frank A.

    2008-01-01

    Summary Sickle hemoglobin (HbS) polymerization occurs when deoxy HbS concentration exceeds a well-defined solubility. In experiments using sickle hemoglobin droplets suspended in oil, it has been shown that when polymerization ceases the monomer concentration is above equilibrium solubility. We find that the final concentration in uniform bulk solutions (i.e. with negligible boundaries) agrees with the droplet measurements, and both exceed the expected solubility. To measure hemoglobin in uniform solutions we used modulated excitation of trace amounts of CO in gels of HbS. In this method, a small amount of CO is introduced to a spatially uniform deoxyHb sample, so that less than 2% of the sample is liganded. The liganded fraction is repeatedly photolyzed and the rate of recombination allows the concentration of deoxyHbS in the solution phase to be determined, even if polymers have formed. Both uniform and droplet samples exhibit the same quantitative behavior, exceeding solubility by an amount that depends on the initial concentration of the sample, as well as conditions under which the gel was formed. We hypothesize that the early termination of polymerization is due to the obstruction in polymer growth, which is consistent with the observation that pressing on slides lowers the final monomer concentration, making it closer to solubility. The thermodynamic solubility in free solution is thus only achieved in conditions with low polymer density or under external forces (such as found in sedimentation) that disrupt polymers. Since we find that only about 67% of the expected polymer mass forms, this result will impact any analysis predicated on predicting the polymer fraction in a given experiment. PMID:18308336

  16. Numerical calculations for diffusion effects in the well-of-the-well culture system for mammalian embryos.

    PubMed

    Matsuura, Koji

    2014-06-01

    Recent studies suggest that the microenvironment and embryo density used during embryo culture considerably affect development to the blastocyst stage. High embryo density allows for autocrine secretions to diffuse to neighbouring embryos during group culture, with a positive effect on further development. A variation of group culture is the well-of-the-well (WOW) culture system, allowing for individual identification of embryos cultured in small holes in a microdroplet. Bovine blastocyst development is higher in the WOW culture system than in conventional group culture. To compare the concentration of chemical factors between conventional and WOW culture, a model was constructed to calculate the concentration of secreted factors based on Fick's second law of diffusion using spreadsheet software. Furthermore, model was used to determine the concentration of growth factors and waste materials adjacent to the embryo periphery. The results of these calculations suggest that the highest difference in the concentration of secreted small molecules and macromolecules was at the most two- to threefold, with the concentrations reduced more and diffusion kinetics facilitated to a greater extent in the WOW culture system. The average ratio of the concentration of secreted macromolecules (10nm diameter) around the embryos was also compared between systems with well widths of 0.1 and 0.3mm. The concentration of secreted materials surrounding embryos increased in a narrow tapered well. The findings suggest that the WOW culture system is better than conventional group culture because of the increased final concentration of autocrine factors and higher diffusion kinetics of waste materials. PMID:23697480

  17. A model for mammalian cochlear hair cell differentiation in vitro: effects of retinoic acid on cytoskeletal proteins and potassium conductances.

    PubMed

    Helyer, R; Cacciabue-Rivolta, D; Davies, D; Rivolta, M N; Kros, C J; Holley, M C

    2007-02-01

    We have established a model for the in-vitro differentiation of mouse cochlear hair cells and have used it to explore the influence of retinoic acid on proliferation, cytoskeletal proteins and voltage-gated potassium conductances. The model is based on the conditionally immortal cell line University of Sheffield/ventral otocyst-epithelial cell line clone 36 (US/VOT-E36), derived from ventral otic epithelial cells of the mouse at embryonic day 10.5 and transfected with a reporter for myosin VIIa. Retinoic acid did not increase cell proliferation but led to up-regulation of myosin VIIa and formation of prominent actin rings that gave rise to numerous large, linear actin bundles. Cells expressing myosin VIIa had larger potassium conductances and did not express the cyclin-dependent kinase inhibitor p27(kip1). US/VOT-E36 endogenously expressed the voltage-gated potassium channel alpha-subunits Kv1.3 and Kv2.1, which we subsequently identified in embryonic and neonatal hair cells in both auditory and vestibular sensory epithelia in vivo. These subunits could underlie the embryonic and neonatal delayed-rectifiers recorded in nascent hair cells in vivo. Kv2.1 was particularly prominent on the basolateral membrane of cochlear inner hair cells. Kv1.3 was distributed throughout all hair cells but tended to be localized to the cuticular plates. US/VOT-E36 recapitulates a coherent pattern of cell differentiation under the influence of retinoic acid and will provide a convenient model for screening the effects of other extrinsic factors on the differentiation of cochlear epithelial cell types in vitro. PMID:17331193

  18. Neutral changes during divergent evolution of hemoglobins

    NASA Technical Reports Server (NTRS)

    Jukes, T. H.

    1978-01-01

    A comparison of the mRNAs for rabbit and human beta-hemoglobins shows that synonymous changes in codons have accumulated three times as rapidly as nucleotide replacements that produced changes in amino acids. This agrees with predictions based on the so-called neutral theory. In addition, seven codon changes that appear to be single-base changes (according to maximum parsimony) are actually two-base changes. This indicates that the construction of primordial sequences is of limited significance when based on inferences that assume minimum base changes for amino acid replacements.

  19. Mini-hemoglobins from nemertean worms.

    PubMed

    Vandergon, Thomas L; Riggs, Austen F

    2008-01-01

    Hemoglobins (Hbs) found in members of the phylum Nemertea are smaller than any other known Hb molecules. These mini-Hbs have been of great interest because of their unique three-dimensional structure and their stable ligand-binding properties. Also of interest is the expression of mini-Hb in neural tissue, body wall muscle tissue, and red blood cells. This chapter outlines methods that may be used to isolate and purify functional mini-Hbs from all three tissue types in nemertean worms. PMID:18237651

  20. [Structural anomalies of dog hemoglobin after ionizing irradiation].

    PubMed

    Sukhomlinov, B F; Savich, A V; Shal'no, M I; Starikovich, L S; Dudok, E P

    1981-01-01

    Heterogeneity of dog hemoglobin is established with application of chromatographic analysis. Ionizing radiation (4 Grey) induces no changes in the ratio of hemoglobin components. The comparative dactylographical analysis of the hemoglobin components in norm and in different periods after irradiation revealed differences in responses to tryptophan in peptide T-25. The changes found are connected with disturbances in the structure of the DNA molecule as well as with modification of the protein molecule under conditions of radiation injury. PMID:7324186

  1. Light Scattering and Absorption Studies of Sickle Cell Hemoglobin

    NASA Astrophysics Data System (ADS)

    Kim-Shapiro, Daniel

    1997-11-01

    The use of physical techniques has been very important in understanding the pathophysiology of sickle cell disease. In particular, light scattering and absorption studies have been used to measure the kinetics of sickle cell hemoglobin polymerization and depolymerization (melting). The theory of sickle cell polymerization that has been derived and tested by these methods has not only led to an increased understanding of the pathophysiology of the disease but has also led to improved treatment strategies. Sickle cell disease effects about 1 out of 600 people of African descent born in the United States. The disease is caused by a mutant form of hemoglobin (the oxygen transporting molecule in the blood), hemoglobin S (HbS), which differs from normal adult hemoglobin by the substitution of a single amino acid for another. The polymerization of HbS, which occurs under conditions of low oxygen pressure, causes distortion and increased rigidity of the sickle red blood cell that leads to blockage of the capillaries and a host of resulting complications. The disease is associated with tissue damage, severe painful crises and a high degree of mortality. Light scattering studies of purified HbS and whole cells (conducted by F.A. Ferrone, J. Hofrichter, W.A. Eaton, and their associates) have been used to determine the mechanism of HbS polymerization. Polymerization will generally not occur when the hemoglobin is in an oxygen-rich environment. The question is, when HbS is rapidly deoxygenated (as it is when going from the lungs to the tissues) what is the kinetics of polymerization? Photolysis methods were used to rapidly deoxygenate HbS and light scattering was used as a function of time to measure the kinetics of polymerization. Polarized light scattering may be a more effective way to measure polymer content than total intensity light scattering. It was found that no polymerization occurs during a period of time called the delay time and subsequent polymerization occurs

  2. Electronic Spin Tunneling in the Binding of Carbon - to Hemoglobin.

    NASA Astrophysics Data System (ADS)

    Gerstman, Bernard Scott

    1981-11-01

    A non-adiabatic quantum tunneling process is investigated as the mechanism for effecting the electronic spin change of the hemoglobin's iron upon the binding of carbon monoxide. As the carbon monoxide approaches there is a spin state change in the Fe('2+) from S = 2 to S = 0. The Born -Oppenheimer approximation can be used to separate the recombination of the CO to the iron in the heme at low temperatures into a nuclear tunneling and an electronic tunneling. Based upon the spin change of the Fe as well as the size of the tunneling matrix element and the energy splitting of the two states in the transition region, we assume the reaction to be a non-adiabatic electronic Landau-Zener state to state tunneling. The tunneling involves a spin change of the Fe and thus a spin-orbit interaction is used as the perturbation that couples the S = 2 and S = 0 manifolds. Since the matrix element for the transition is due to spin-orbit coupling the size of the matrix element can be changed, and hence the tunneling rate, by changing the spin magnetic sublevel of the initially CO unbound Fe. This is accomplished by applying a strong magnetic field of approximately 100 000 gauss which will tend to align the Fe spin at low enough temperature. The L vector will be affected only slightly by the external magnetic field since the Zeeman effect on the orbital levels is much smaller (10('-2)) than that of the internal crystal field of the molecule. Hence the crystal field of the heme determines the L quantization axis in each local heme coordinate system. Thus in a random oriented distribution of hemes frozen in place we expect faster CO recombination for those hemes who have their L vector aligned in the direction of the magnetic field than for those hemes whose L vector is perpendicular to the magnetic field. Hemoglobin has a strong absorption band at 436 nm when CO is bound. This absorption is also orientation dependent for the absorption is predominantly for light polarized in the plane

  3. The Role of Alpha-Hemoglobin Stabilizing Protein in Redox Chemistry, Denaturation, and Hemoglobin Assembly

    PubMed Central

    Mollan, Todd L.; Yu, Xiang; Weiss, Mitchell J.

    2010-01-01

    Abstract Hemoglobin biosynthesis in erythrocyte precursors involves several steps. The correct ratios and concentrations of normal alpha (α) and beta (β) globin proteins must be expressed; apoproteins must be folded correctly; heme must be synthesized and incorporated into these globins rapidly; and the individual α and β subunits must be rapidly and correctly assembled into heterotetramers. These events occur on a large scale in vivo, and dysregulation causes serious clinical disorders such as thalassemia syndromes. Recent work has implicated a conserved erythroid protein known as Alpha-Hemoglobin Stabilizing Protein (AHSP) as a participant in these events. Current evidence suggests that AHSP enhances α subunit stability and diminishes its participation in harmful redox chemistry. There is also evidence that AHSP facilitates one or more early-stage post-translational hemoglobin biosynthetic events. In this review, recent experimental results are discussed in light of several current models describing globin subunit folding, heme uptake, assembly, and denaturation during hemoglobin synthesis. Particular attention is devoted to molecular interactions with AHSP that relate to α chain oxidation and the ability of α chains to associate with partner β chains. Antioxid. Redox Signal. 12, 219–232. PMID:19659437

  4. Characterization of the hemoglobin of the backswimmer Anisops deanei (Hemiptera).

    PubMed

    Wawrowski, Agnes; Matthews, Philip G D; Gleixner, Eva; Kiger, Laurent; Marden, Michael C; Hankeln, Thomas; Burmester, Thorsten

    2012-09-01

    While O(2)-binding hemoglobin-like proteins are present in many insects, prominent amounts of hemoglobin have only been found in a few species. Backswimmers of the genera Anisops and Buenoa (Notonectidae) have high concentrations of hemoglobin in the large tracheal cells of the abdomen. Oxygen from the hemoglobin is delivered to a gas bubble and controls the buoyant density, which enables the bugs to maintain their position without swimming and to remain stationary in the mid-water zone where they hunt for prey. We have obtained the cDNA sequences of three Anisops deanei hemoglobin chains by RT-PCR and RACE techniques. The deduced amino acid sequences show an unusual insertion of a single amino acid in the conserved helix E, but this does not affect protein stability or ligand binding kinetics. Recombinant A. deanei hemoglobin has an oxygen affinity of P(50) = 2.4 kPa (18 torr) and reveals the presence of a dimeric fraction or two different conformations. The absorption spectra demonstrate that the Anisops hemoglobin is a typical pentacoordinate globin. Phylogenetic analyses show that the backswimmer hemoglobins evolved within Heteroptera and most likely originated from an intracellular hemoglobin with divergent function. PMID:22575160

  5. WAXS studies of the structural diversity of hemoglobin in solution.

    SciTech Connect

    Makowski, L.; Bardhan, J.; Gore, D.; Lal, J.; Mandava, S.; Park, S.; Rodi, D. J.; Ho, N. T.; Ho, C.; Fischetti, R. F.

    2011-01-01

    Specific ligation states of hemoglobin are, when crystallized, capable of taking on multiple quaternary structures. The relationship between these structures, captured in crystal lattices, and hemoglobin structure in solution remains uncertain. Wide-angle X-ray solution scattering (WAXS) is a sensitive probe of protein structure in solution that can distinguish among similar structures and has the potential to contribute to these issues. We used WAXS to assess the relationships among the structures of human and bovine hemoglobins in different liganded forms in solution. WAXS data readily distinguished among the various forms of hemoglobins. WAXS patterns confirm some of the relationships among hemoglobin structures that have been defined through crystallography and NMR and extend others. For instance, methemoglobin A in solution is, as expected, nearly indistinguishable from HbCO A. Interestingly, for bovine hemoglobin, the differences between deoxy-Hb, methemoglobin and HbCO are smaller than the corresponding differences in human hemoglobin. WAXS data were also used to assess the spatial extent of structural fluctuations of various hemoglobins in solution. Dynamics has been implicated in allosteric control of hemoglobin, and increased dynamics has been associated with lowered oxygen affinity. Consistent with that notion, WAXS patterns indicate that deoxy-Hb A exhibits substantially larger structural fluctuations than HbCO A. Comparisons between the observed WAXS patterns and those predicted on the basis of atomic coordinate sets suggest that the structures of Hb in different liganded forms exhibit clear differences from known crystal structure.

  6. 21 CFR 864.7470 - Glycosylated hemoglobin assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... diabetes and to determine the proper insulin dosage for a patient. Elevated levels of glycosylated hemoglobin indicate uncontrolled diabetes in a patient. (b) Classification. Class II (performance standards)....

  7. 21 CFR 864.7470 - Glycosylated hemoglobin assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... diabetes and to determine the proper insulin dosage for a patient. Elevated levels of glycosylated hemoglobin indicate uncontrolled diabetes in a patient. (b) Classification. Class II (performance standards)....

  8. Architecture of mammalian respiratory complex I

    PubMed Central

    Hirst, Judy

    2014-01-01

    Complex I (NADH:ubiquinone oxidoreductase) is essential for oxidative phosphorylation in mammalian mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the energy-transducing inner membrane, providing electrons for respiration and driving ATP synthesis. Mammalian complex I contains 44 different nuclear- and mitochondrial-encoded subunits, with a combined mass of 1 MDa. The fourteen conserved ‘core’ subunits have been structurally defined in the minimal, bacterial complex, but the structures and arrangement of the 30 ‘supernumerary’ subunits are unknown. Here, we describe a 5 Å resolution structure of complex I from Bos taurus heart mitochondria, a close relative of the human enzyme, determined by single-particle electron cryo-microscopy. We present the structures of the mammalian core subunits that contain eight iron-sulphur clusters and 60 transmembrane helices, identify 18 supernumerary transmembrane helices, and assign and model 14 supernumerary subunits. Thus, we significantly advance knowledge of the structure of mammalian complex I and the architecture of its supernumerary ensemble around the core domains. Our structure provides insights into the roles of the supernumerary subunits in regulation, assembly and homeostasis, and a basis for understanding the effects of mutations that cause a diverse range of human diseases. PMID:25209663

  9. Structure of mammalian respiratory complex I.

    PubMed

    Zhu, Jiapeng; Vinothkumar, Kutti R; Hirst, Judy

    2016-08-18

    Complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in the cell, powers ATP synthesis in mammalian mitochondria by using the reducing potential of NADH to drive protons across the inner mitochondrial membrane. Mammalian complex I (ref. 1) contains 45 subunits, comprising 14 core subunits that house the catalytic machinery (and are conserved from bacteria to humans) and a mammalian-specific cohort of 31 supernumerary subunits. Knowledge of the structures and functions of the supernumerary subunits is fragmentary. Here we describe a 4.2-Å resolution single-particle electron cryomicroscopy structure of complex I from Bos taurus. We have located and modelled all 45 subunits, including the 31 supernumerary subunits, to provide the entire structure of the mammalian complex. Computational sorting of the particles identified different structural classes, related by subtle domain movements, which reveal conformationally dynamic regions and match biochemical descriptions of the 'active-to-de-active' enzyme transition that occurs during hypoxia. Our structures therefore provide a foundation for understanding complex I assembly and the effects of mutations that cause clinically relevant complex I dysfunctions, give insights into the structural and functional roles of the supernumerary subunits and reveal new information on the mechanism and regulation of catalysis. PMID:27509854

  10. Inhibition of cell-free oxidative bactericidal activity by erythrocytes and hemoglobin.

    PubMed Central

    Hand, W L

    1984-01-01

    Sickle cell anemia and other chronic hemolytic anemias are associated with an increased frequency of bacterial infections. There is evidence to suggest that in hemolytic states massive erythrocyte (RBC) ingestion by macrophages interferes with their antibacterial function, thereby predisposing infection. Stimulated by this possibility, we recently demonstrated that erythrophagocytosis by macrophages markedly inhibited intracellular killing of bacteria, and that zymosan-stimulated superoxide generation and chemiluminescence were also suppressed by RBC ingestion. We examined the effects of RBC components on generation of chemiluminescence, superoxide, and bactericidal activity by cell-free oxidative systems. Generation of chemiluminescence by hypoxanthine-xanthine oxidase was depressed in the presence of human RBC lysate or column-fractionated hemoglobin but not crystallized human hemoglobin (methemoglobin) (peak cpms of 15,522 [P = 0.00024], 28,360 [P = 0.0088], and 50,041 [P = 0.37], respectively, compared with 59,898 for positive controls). Similarly, hypoxanthine-xanthine oxidase production of superoxide was inhibited in the presence of column-fractionated human hemoglobin (43.8 versus 17.4 nmol per tube, P = 0.000001). A cell-free bactericidal system, acetaldehyde and xanthine oxidase with or without myeloperoxidase and Cl-, was markedly inhibited by column-purified hemoglobin. For example, after 2 h of incubation, surviving numbers of Staphylococcus aureus were: control (buffer only), 2.5 X 10(6)/ml; bactericidal system, none; bactericidal system plus hemoglobin, 2.2 X 10(6)/ml (P less than or equal to 0.03, bactericidal system versus other systems). Our studies have documented that interactions between RBC (hemoglobin) and reactive products of oxygen metabolism inhibit oxidative bactericidal mechanisms in cell-free systems as well as in macrophages.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6325349

  11. Inhibitory potential of pure isoflavonoids, red clover, and alfalfa extracts on hemoglobin glycosylation

    PubMed Central

    Hosseini, Mohsen; Asgary, Sedigheh; Najafi, Somayeh

    2015-01-01

    BACKGROUND Non-enzymatic glycosylation of hemoglobin is complications of diabetes. Antioxidant system imbalance can result in the emergence of free radicals’ destructive effects in the long-term. Red clover (Trifolium pratense L.) and alfalfa (Medicago sativa L.) contain isoflavonoids and have antioxidant activity. This experimental study evaluated the inhibitory activity of pure isoflavonoids (daidzein and genistein), red clover and alfalfa extracts on hemoglobin glycosylation. METHODS This study was performed in Iran. Stock solution of hydroalcoholic extracts of red clover and alfalfa in concentrations of 1 and 10 g/100 ml and stock solution of daidzein and genistein in concentrations of 250 ng, 500 ng, 25 µg and 250 µg/100 ml were prepared as case groups. Control group was without hydroalcoholic extracts of plants and pure isoflavonoids. All experiments were performed in triplicate. Hemoglobin was prepared and antioxidant activities were investigated to estimate degree of nonenzymatic hemoglobin glycosylation. RESULTS There was no significantly difference between used extracts (extract of red clover and alfalfa) and control of the hemoglobin glycosylation but using daidzein (P = 0.046, 0.029 and 0.021, respectively) and genistein (P = 0.034, 0.036 and 0.028) significantly inhibited (P < 0.050) this reaction in 25 µg/100 ml, 250 and 500 ng/100 ml concentrations when compared to control. in 25 µg/100 ml, 250 ng and 500 ng/100 ml concentrations percentage of inhibition were 32, 80 and 74.5% respectively with used of daidzein and were 21, 83 and 76% respectively with consumption of genistein. CONCLUSION According to decrease of glycation of hemoglobin with isoflavonoids, two used plant in this study containing isoflavonoid may be useful on diabetes. PMID:26405442

  12. Influence of mutations at the proximal histidine position on the Fe-O2 bond in hemoglobin from density functional theory

    NASA Astrophysics Data System (ADS)

    Todde, Guido; Hovmöller, Sven; Laaksonen, Aatto

    2016-03-01

    Four mutated hemoglobin (Hb) variants and wild type hemoglobin as a reference have been investigated using density functional theory methods focusing on oxygen binding. Dispersion-corrected B3LYP functional is used and found to provide reliable oxygen binding energies. It also correctly reproduces the spin distribution of both bound and free heme groups as well as provides correct geometries at their close vicinity. Mutations in hemoglobin are not only an intrigued biological problem and it is also highly important to understand their effects from a clinical point of view. This study clearly shows how even small structural differences close to the heme group can have a significant effect in reducing the oxygen binding of mutated hemoglobins and consequently affecting the health condition of the patient suffering from the mutations. All of the studied mutated Hb variants did exhibit much weaker binding of molecular oxygen compared to the wild type of hemoglobin.

  13. Hemoglobin alpha in the blood vessel wall

    PubMed Central

    Butcher, Joshua T.; Johnson, Tyler; Beers, Jody; Columbus, Linda; Isakson, Brant E

    2014-01-01

    Hemoglobin has been studied and well haracterized in red blood cells for over one hundred years. However, new work has indicated that the hemoglobin alpha subunit (Hbα) is also found within the blood vessel wall, where it appears to localize at the myoendothelial junction (MEJ) and plays a role in regulating nitric oxide (NO) signaling between endothelium and smooth muscle. This discovery has created a new paradigm for control of endothelial nitric oxide synthase activity, nitric oxide diffusion, and ultimately, control of vascular tone and blood pressure. This review will discuss the current knowledge of hemoglobin’s properties as a gas exchange molecule in the blood stream, and extrapolate the properties of Hbα biology to the MEJ signaling domain. Specifically, we propose that Hbα is present at the MEJ to regulate NO release and diffusion in a restricted physical space, which would have powerful implications for the regulation of blood flow in peripheral resistance arteries. PMID:24832680

  14. Modeling and measuring extravascular hemoglobin: aging contusions

    NASA Astrophysics Data System (ADS)

    Lines, Collin; Kim, Oleg; Duffy, Susan; Alber, Mark; Crawford, Gregory P.

    2011-07-01

    Medical expertise is frequently elicited to aid in determining the age and the cause of the trauma or injury. Child protection and law enforcement frequently rely on the physical assessment of the trauma which involves delineating intentional from unintentional types of trauma. Recent studies have shown that current methods to assess the age of traumatic injuries are highly inaccurate and do not give reasonable predictions. Hemoglobin is one of the strongest chromophores in human tissues. Transport of hemoglobin and its breakdown products in tissue determines the spectrophotometric characteristics of the skin and its variations in time. Therefore, measurements of diffuse reflective spectra of the skin allow noninvasive screening. This paper reviews potential transmission and diffusive reflection spectroscopy based techniques and predictive and quantitative modeling methods assisting in efficient retrieval of the age of extravascular contusions. This paper then presents a novel Monte Carlo technique for 3D photon tracking and blood transport model. In future studies, clinically obtained spectra will be used to validate the model as well as fine-tune coefficients for absorption. It is the goal of this study to develop a model that would allow a non-invasive, accurate determination of the age of a bruise.

  15. Fetal hemoglobin reactivation in baboon and man: a short perspective.

    PubMed

    Lavelle, D; DeSimone, J; Heller, P

    1993-01-01

    Present concepts of the mechanism of reactivation of synthesis of fetal hemoglobin (HbF) in the adult under conditions of erythropoietic stress are briefly reviewed. Since HbF can be considered an effective natural antisickling agent, the reactivation of its synthesis in patients with sickle cell anemia as a desirable therapeutic goal has been extensively explored since the discovery in 1982 that 5-azacytidine increases HbF levels in the baboon. Hydroxyurea (HU) has become the most widely used agent, although its effectiveness in increasing HbF levels and the number of F cells is highly variable. Recent investigations are cited showing that other agents such as butyrate, and the addition of recombinant hemopoietic growth factors, such as erythropoietin and stem cell factor, especially in combination with HU, offer important therapeutic possibilities. Transacting nuclear proteins are briefly discussed as possibly having a future role in the efforts of stimulating gamma-chain synthesis. PMID:7677951

  16. The German ISS-experiment Cellular Responses to Radiation in Space (CERASP): The effects of single and combined space flight conditions on mammalian cells

    NASA Astrophysics Data System (ADS)

    Hellweg, C. E.; Thelen, M.; Arenz, A.; Baumstark-Khan, C.

    The combined action of ionizing radiation and microgravity will continue to influence future manned space missions, with special risks for astronauts on the Moon surface or for long duration missions to Mars. There is increasing evidence that basic cellular functions are sensitive not only to radiation but also to microgravity. Previous space flight experiments gave contradictory results: from inhibition of DNA repair by microgravity to enhancement, whereas others did not detect any influence of microgravity on repair. At the Radiation Biology Department of the German Aerospace Center (DLR), recombinant bacterial and mammalian cell systems were developed as reporters for cellular signal transduction modulation by genotoxic environmental conditions. The space experiment “Cellular Responses to Radiation in Space” (CERASP) to be performed at the International Space Station (ISS) will make use of such reporter cell lines thereby supplying basic information on the cellular response to radiation applied in microgravity. One of the biological endpoints will be survival reflected by radiation-dependent reduction of constitutive expression of the enhanced variant of green fluorescent protein (EGFP). A second end-point will be gene activation by space flight conditions in mammalian cells, based on fluorescent promoter reporter systems using the destabilized d2EGFP variant. The promoter element to be investigated reflects the activity of the nuclear factor kappa B (NF-κB) pathway. The NF-κB family of proteins plays a major role in the inflammatory and immune response, cell proliferation and differentiation, apoptosis and tumor genesis. Results obtained with X-rays and accelerated heavy ions produced at the French heavy ion accelerator GANIL imply that densely ionizing radiation has a stronger potential to activate NF-κB dependent gene expression than sparsely ionizing radiation. The correlation of NF-κB activation to negative regulation of apoptosis could favor

  17. Rate of Nitric Oxide Scavenging by hemoglobin bound to haptoglobin

    PubMed Central

    Azarov, Ivan; He, Xiaojun; Jeffers, Anne; Basu, Swati; Ucer, Burak; Hantgan, Roy R.; Levy, Andrew; Kim-Shapiro, Daniel B.

    2008-01-01

    Cell-free hemoglobin, released from the red cell, may play a major role in regulating the bioavailability of nitric oxide. The abundant serum protein haptoglobin, rapidly binds to free hemoglobin forming a stable complex accelerating its clearance. The haptoglobin gene is polymorphic with two classes of alleles denoted 1 and 2. We have previously demonstrated that the haptoglobin 1 protein-hemoglobin complex is cleared twice as fast as the haptoglobin 2 protein-hemoglobin complex. In this report we explored whether haptoglobin binding to hemoglobin reduces the rate of nitric oxide scavenging using time-resolved absorption spectroscopy. We found that both the haptoglobin 1 and haptoglobin 2 protein complexes react with nitric oxide at the same rate as unbound cell-free hemoglobin. To confirm these results we developed a novel assay where free hemoglobin and hemoglobin bound to haptoglobin competed in the reaction with NO. The relative rate of the NO reaction was then determined by examining the amount of reacted species using analytical ultracentrifugation. Since complexation of hemoglobin with haptoglobin does not reduce NO scavenging, we propose that the haptoglobin genotype may influence nitric oxide bioavailability by determining the clearance rate of the haptoglobin-hemoglobin complex. We provide computer simulations showing that a two-fold difference in the rate of uptake of the haptoglobin hemoglobin complex by macrophages significantly affects nitric oxide bioavailability thereby providing a plausible explanation for why there is more vasospasm after subarachnoid hemorrhage in individuals and transgenic mice homozygous for the Hp 2 allele. PMID:18364244

  18. Mammalian Wax Biosynthesis

    PubMed Central

    Cheng, Jeffrey B.; Russell, David W.

    2009-01-01

    Wax monoesters are synthesized by the esterification of fatty alcohols and fatty acids. A mammalian enzyme that catalyzes this reaction has not been isolated. We used expression cloning to identify cDNAs encoding a wax synthase in the mouse preputial gland. The wax synthase gene is located on the X chromosome and encodes a member of the acyltransferase family of enzymes that synthesize neutral lipids. Expression of wax synthase in cultured cells led to the formation of wax monoesters from straight chain saturated, unsaturated, and polyunsaturated fatty alcohols and acids. Polyisoprenols also were incorporated into wax monoesters by the enzyme. The wax synthase had little or no ability to synthesize cholesteryl esters, diacylglycerols, or triacylglycerols, whereas other acyltransferases, including the acyl-CoA:monoacylglycerol acyltransferase 1 and 2 enzymes and the acyl-CoA:diacylglycerol acyltransferase 1 and 2 enzymes, exhibited modest wax monoester synthesis activities. Confocal light microscopy indicated that the wax synthase was localized in membranes of the endoplasmic reticulum. Wax synthase mRNA was abundant in tissues rich in sebaceous glands such as the preputial gland and eyelid and was present at lower levels in other tissues. Coexpression of cDNAs specifying fatty acyl-CoA reductase 1 and wax synthase led to the synthesis of wax monoesters. The data suggest that wax monoester synthesis in mammals involves a two step biosynthetic pathway catalyzed by fatty acyl-CoA reductase and wax synthase enzymes. PMID:15220349

  19. Structure of mammalian metallothionein

    SciTech Connect

    Kaegi, J.H.R.; Vasak, M.; Lerch, K.; Gilg, D.E.O.; Hunziker, P.; Bernhard, W.R.; Good, M.

    1984-03-01

    All mammalian metallothioneins characterized contain a single polypeptide chain of 61 amino acid residues, among them 20 cysteines providing the ligands for seven metal-binding sites. Native metallothioneins are usually heterogeneous in metal composition, with Zn, Cd, and Cu occurring in varying proportions. However, forms containing only a single metal species, i.e., Zn, Cd, Ni, Co, Hg, Pb, Bi, have now been prepared by in vitro reconstitution from the metal-free apoprotein. By spectroscopic analysis of such derivatives it was established that all cysteine residues participate in metal binding, that each metal ion is bound to four thiolate ligands, and that the symmetry of each complex is close to that of a tetrahedron. To satisfy the requirements of the overall Me/sub 7/(Cys/sup -/)/sub 20/ stoichiometry, the complexes must be combined to form metal-thiolate cluster structures. The actual spatial organization of the clusters and the polypeptide chain remains to be established. An attractive possibility is the arrangement of the tetrahedral metal-thiolates in adamantane-like structures surrounded by properly folded segments of the chain providing the ligands. /sup 1/H-NMR data and infrared absorption measurements are consistent with a tightly folded structure rich in ..beta..-type conformation. 79 references, 11 figures, 4 tables.

  20. Mammalian Sirtuins and Energy Metabolism

    PubMed Central

    Li, Xiaoling; Kazgan, Nevzat

    2011-01-01

    Sirtuins are highly conserved NAD+-dependent protein deacetylases and/or ADP-ribosyltransferases that can extend the lifespan of several lower model organisms including yeast, worms and flies. The seven mammalian sirtuins, SIRT1 to SIRT7, have emerged as key metabolic sensors that directly link environmental signals to mammalian metabolic homeostasis and stress response. Recent studies have shed light on the critical roles of sirtuins in mammalian energy metabolism in response to nutrient signals. This review focuses on the involvement of two nuclear sirtuins, SIRT1 and SIRT6, and three mitochondrial sirtuins, SIRT3, SIRT4, and SIRT5, in regulation of diverse metabolic processes. PMID:21614150

  1. The LSD1 inhibitor RN-1 recapitulates the fetal pattern of hemoglobin synthesis in baboons (P. anubis).

    PubMed

    Rivers, Angela; Vaitkus, Kestis; Ibanez, Vinzon; Ruiz, Maria Armila; Jagadeeswaran, Ramasamy; Saunthararajah, Yogen; Cui, Shuaiying; Engel, James D; DeSimone, Joseph; Lavelle, Donald

    2016-06-01

    Increased fetal hemoglobin levels lessen the severity of symptoms and increase the lifespan of patients with sickle cell disease. Hydroxyurea, the only drug currently approved for the treatment of sickle cell disease, is not effective in a large proportion of patients and therefore new pharmacological agents that increase fetal hemoglobin levels have long been sought. Recent studies identifying LSD-1 as a repressor of γ-globin expression led to experiments demonstrating that the LSD-1 inhibitor RN-1 increased γ-globin expression in the sickle cell mouse model. Because the arrangement and developmental stage-specific expression pattern of the β-like globin genes is highly conserved between man and baboon, the baboon model remains the best predictor of activity of fetal hemoglobin-inducing agents in man. In this report, we demonstrate that RN-1 increases γ-globin synthesis, fetal hemoglobin, and F cells to high levels in both anemic and non-anemic baboons with activity comparable to decitabine, the most potent fetal hemoglobin-inducing agent known. RN-1 not only restores high levels of fetal hemoglobin but causes the individual 5' Iγ- and 3' Vγ-globin chains to be synthesized in the ratio characteristic of fetal development. Increased fetal hemoglobin was associated with increased levels of acetylated Histone H3, H3K4Me2, H3K4Me3, and RNA polymerase II at the γ-globin gene, and diminished γ-globin promoter DNA methylation. RN-1 is likely to induce clinically relevant levels of fetal hemoglobin in patients with sickle cell disease, although careful titration of the dose may be required to minimize myelotoxicity. PMID:26858356

  2. The LSD1 inhibitor RN-1 recapitulates the fetal pattern of hemoglobin synthesis in baboons (P. anubis)

    PubMed Central

    Rivers, Angela; Vaitkus, Kestis; Ibanez, Vinzon; Ruiz, Maria Armila; Jagadeeswaran, Ramasamy; Saunthararajah, Yogen; Cui, Shuaiying; Engel, James D.; DeSimone, Joseph; Lavelle, Donald

    2016-01-01

    Increased fetal hemoglobin levels lessen the severity of symptoms and increase the lifespan of patients with sickle cell disease. Hydroxyurea, the only drug currently approved for the treatment of sickle cell disease, is not effective in a large proportion of patients and therefore new pharmacological agents that increase fetal hemoglobin levels have long been sought. Recent studies identifying LSD-1 as a repressor of γ-globin expression led to experiments demonstrating that the LSD-1 inhibitor RN-1 increased γ-globin expression in the sickle cell mouse model. Because the arrangement and developmental stage-specific expression pattern of the β-like globin genes is highly conserved between man and baboon, the baboon model remains the best predictor of activity of fetal hemoglobin-inducing agents in man. In this report, we demonstrate that RN-1 increases γ-globin synthesis, fetal hemoglobin, and F cells to high levels in both anemic and non-anemic baboons with activity comparable to decitabine, the most potent fetal hemoglobin-inducing agent known. RN-1 not only restores high levels of fetal hemoglobin but causes the individual 5′ Iγ- and 3′ Vγ-globin chains to be synthesized in the ratio characteristic of fetal development. Increased fetal hemoglobin was associated with increased levels of acetylated Histone H3, H3K4Me2, H3K4Me3, and RNA polymerase II at the γ-globin gene, and diminished γ-globin promoter DNA methylation. RN-1 is likely to induce clinically relevant levels of fetal hemoglobin in patients with sickle cell disease, although careful titration of the dose may be required to minimize myelotoxicity. PMID:26858356

  3. Biology of Heme in Mammalian Erythroid Cells and Related Disorders

    PubMed Central

    Fujiwara, Tohru; Harigae, Hideo

    2015-01-01

    Heme is a prosthetic group comprising ferrous iron (Fe2+) and protoporphyrin IX and is an essential cofactor in various biological processes such as oxygen transport (hemoglobin) and storage (myoglobin) and electron transfer (respiratory cytochromes) in addition to its role as a structural component of hemoproteins. Heme biosynthesis is induced during erythroid differentiation and is coordinated with the expression of genes involved in globin formation and iron acquisition/transport. However, erythroid and nonerythroid cells exhibit distinct differences in the heme biosynthetic pathway regulation. Defects of heme biosynthesis in developing erythroblasts can have profound medical implications, as represented by sideroblastic anemia. This review will focus on the biology of heme in mammalian erythroid cells, including the heme biosynthetic pathway as well as the regulatory role of heme and human disorders that arise from defective heme synthesis. PMID:26557657

  4. Crosslinked, polymerized, and PEG-conjugated hemoglobin-based oxygen carriers: clinical safety and efficacy of recent and current products.

    PubMed

    Jahr, Jonathan S; Akha, Arezou Sadighi; Holtby, Randall J

    2012-09-01

    Blood substitutes, especially hemoglobin based oxygen carriers (HBOC) have been widely studied and reviewed over the past 30 years. The development of HBOCs was highlighted by crosslinking to minimize adverse effects. However, even early attempts at single crosslinking using alpha-alpha crosslinks or diaspirin crosslinking failed clinical trials due to renal morbidity and increased mortality. In fact, preclinical trials may have predicted failure of this first generation product, DCLHb (diaspirin-crosslinked Hb) (HemAssist ®, Baxter). In the 1980's, three small biopharmaceutical companies developed "second generation" HBOCs, the first being Hemosol with their raffinose crosslinked HBOC, hemoglobin- raffimer. The other two development programs modified the HBOC using glutaraldehyde polymerization, in an attempt to further alleviate the toxicities of the "first" generation HBOCs. This paper will review the definitive clinical trials of the two polymerized HBOCs, Biopure's hemoglobin glutamer-250 (bovine) and Northfield's polymerized human Hb, pegylated HBOC and Sangart's peg-conjugated HBOC, with an introductory brief review of Hemosol's hemoglobinraffimer. The paper will then introduce the newest polymerized hemoglobin, zero-linked hemoglobin polymer, which has not yet undergone clinical trials but has undergone some preclinical work that will be discussed in a section on this product. As a new generation HBOC, zero-linked hemoglobin polymer may begin to address the issues presented by the first two generations of HBOCs, and may hold promise as a universally applicable HBOC. PMID:21745179

  5. Hypergravity signal transduction and gene expression in cultured mammalian cells

    NASA Technical Reports Server (NTRS)

    Kumei, Y.; Whitson, P. A.

    1994-01-01

    A number of studies have been conducted during space flight and with clinostats and centrifuges, suggesting that gravity effects the proliferation and differentiation of mammalian cells in vitro. However, little is known about the mechanisms by which mammalian cells respond to changes in gravitational stress. This paper summarizes studies designed to clarify the effects of hypergravity on the cultured human HeLa cells and to investigate the mechanism of hypergravity signal transduction in these cells.

  6. Computation Of Facilitated Transport of O2 In Hemoglobin

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1991-01-01

    Report describes computations of unsteady facilitated transport of oxygen through liquid membrane of hemoglobin. Used here, "facilitated transport" means diffusion of permeant through membrane in which that diffusion enhanced by reversible chemical reaction between permeant and membrane. In this case, reversible reactions between hemoglobin and oxygen.

  7. Hemoglobin Screening Independently Predicts All-Cause Mortality.

    PubMed

    Fulks, Michael; Dolan, Vera F; Stout, Robert L

    2015-01-01

    Objective .- Determine if the addition of hemoglobin testing improves risk prediction for life insurance applicants. Method .- Hemoglobin results for insurance applicants tested from 1993 to 2007, with vital status determined by Social Security Death Master File follow-up in 2011, were analyzed by age and sex with and without accounting for the contribution of other test results. Results .- Hemoglobin values ≤12.0 g/dL (and possibly ≤13.0 g/dL) in females age 50+ (but not age <50) and hemoglobin values ≤13.0 g/dL in all males are associated with progressively increasing mortality risk independent of the contribution of other test values. Increased risk is also noted for hemoglobin values >15.0 g/dL (and possibly >14.0 g/dL) for all females and for hemoglobin values >16.0 g/dL for males. Conclusion .- Hemoglobin testing can add additional independent risk assessment to that obtained from other laboratory testing, BP and build in this relatively healthy insurance applicant population. Multiple studies support this finding at older ages, but data (and the prevalence of diseases impacting hemoglobin levels) are limited at younger ages. PMID:27584842

  8. 21 CFR 864.7400 - Hemoglobin A 2 assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hemoglobin A 2 assay. 864.7400 Section 864.7400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7400 Hemoglobin A...

  9. 21 CFR 864.7400 - Hemoglobin A2 assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hemoglobin A2 assay. 864.7400 Section 864.7400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7400 Hemoglobin...

  10. 21 CFR 864.7400 - Hemoglobin A2 assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hemoglobin A2 assay. 864.7400 Section 864.7400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7400 Hemoglobin...

  11. 21 CFR 864.7400 - Hemoglobin A2 assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hemoglobin A2 assay. 864.7400 Section 864.7400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7400 Hemoglobin...

  12. 21 CFR 864.7400 - Hemoglobin A 2 assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hemoglobin A 2 assay. 864.7400 Section 864.7400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7400 Hemoglobin A...

  13. On the fate of extracellular hemoglobin and heme in brain.

    PubMed

    Lara, Flavio A; Kahn, Suzana A; da Fonseca, Anna Cc; Bahia, Carlomagno P; Pinho, João Pc; Graca-Souza, Aurélio V; Houzel, Jean C; de Oliveira, Pedro L; Moura-Neto, Vivaldo; Oliveira, Marcus F

    2009-06-01

    Intracerebral hemorrhage (ICH) is a major cause of disability in adults worldwide. The pathophysiology of this syndrome is complex, involving both inflammatory and redox components triggered by the extravasation of blood into the cerebral parenchyma. Hemoglobin, heme, and iron released therein seem be important in the brain damage observed in ICH. However, there is a lack of information concerning hemoglobin traffic and metabolism in brain cells. Here, we investigated the fate of hemoglobin and heme in cultured neurons and astrocytes, as well as in the cortex of adult rats. Hemoglobin was made traceable by conjugation to Alexa 488, whereas a fluorescent heme analogue (tin-protoporphyrin IX) was prepared to allow heme tracking. Using fluorescence microscopy we observed that neurons were more efficient in uptake hemoglobin and heme than astrocytes. Exposure of cortical neurons to hemoglobin or heme resulted in an oxidative stress condition. Viability assays showed that neurons were more susceptible to both hemoglobin and heme toxicity than astrocytes. Together, these results show that neurons, rather than astrocytes, preferentially take up hemoglobin-derived products, indicating that these cells are actively involved in the ICH-associated brain damage. PMID:19337276

  14. 21 CFR 866.5470 - Hemoglobin immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hemoglobin immunological test system. 866.5470 Section 866.5470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... hemoglobin (the oxygen-carrying pigment in red blood cells) in blood, urine, plasma, or other body...

  15. 21 CFR 866.5470 - Hemoglobin immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hemoglobin immunological test system. 866.5470 Section 866.5470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... hemoglobin (the oxygen-carrying pigment in red blood cells) in blood, urine, plasma, or other body...

  16. 21 CFR 866.5470 - Hemoglobin immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hemoglobin immunological test system. 866.5470 Section 866.5470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... hemoglobin (the oxygen-carrying pigment in red blood cells) in blood, urine, plasma, or other body...

  17. 21 CFR 866.5470 - Hemoglobin immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hemoglobin immunological test system. 866.5470 Section 866.5470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... hemoglobin (the oxygen-carrying pigment in red blood cells) in blood, urine, plasma, or other body...

  18. HEMOGLOBIN BINDING AS A DOSE MONITOR FOR CHEMICAL CARCINOGENS

    EPA Science Inventory

    The covalent binding of chemical carcinogens and mutagens to hemoglobin has been proposed as a dose monitor for environmental exposure. The binding of chloroform and bromoform to hemoglobin in rats was demonstrated to result from the formation of adducts to amino acids in the glo...

  19. Pomalidomide and lenalidomide regulate erythropoiesis and fetal hemoglobin production in human CD34+ cells

    PubMed Central

    Moutouh-de Parseval, Laure A.; Verhelle, Dominique; Glezer, Emilia; Jensen-Pergakes, Kristen; Ferguson, Gregory D.; Corral, Laura G.; Morris, Christopher L.; Muller, George; Brady, Helen; Chan, Kyle

    2007-01-01

    Sickle-cell disease (SCD) and β thalassemia constitute worldwide public health problems. New therapies, including hydroxyurea, have attempted to augment the synthesis of fetal hemoglobin (HbF) and improve current treatment. Lenalidomide and pomalidomide are members of a class of immunomodulators used as anticancer agents. Because clinical trials have demonstrated that lenalidomide reduces or eliminates the need for transfusions in some patients with disrupted blood cell production, we investigated the effects of lenalidomide and pomalidomide on erythropoiesis and hemoglobin synthesis. We used an in vitro erythropoiesis model derived from human CD34+ progenitor cells from normal and SCD donors. We found that both compounds slowed erythroid maturation, increased proliferation of immature erythroid cells, and regulated hemoglobin transcription, resulting in potent induction of HbF without the cytotoxicity associated with other HbF inducers. When combined with hydroxyurea, pomalidomide and, to a lesser extent, lenalidomide were found to have synergistic effects on HbF upregulation. Our results elucidate what we believe to be a new mechanism of action of pomalidomide and lenalidomide and support the hypothesis that pomalidomide, used alone or in combination with hydroxyurea, may improve erythropoiesis and increase the ratio of fetal to adult hemoglobin. These findings support the evaluation of pomalidomide as an innovative new therapy for β-hemoglobinopathies. PMID:18064299

  20. Mammalian DNA Repair. Final Report

    SciTech Connect

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  1. Computational Study on Hemoglobin Protein Family

    NASA Astrophysics Data System (ADS)

    Craciun, Dana; Isvoran, Adriana; Avram, Nicolae M.

    2009-05-01

    We have analyzed 19 proteins belonging to hemoglobin protein family: 3 for plants, 4 for invertebrates and the others for vertebrates. For every protein we have determined the following parameters: the fractal dimension of its backbone, the fractal dimension of its surface, the radius of gyration, the area of its molecular surface and the area of the surface of its cavities. At global level, we did not notice significant differences for the fractal parameters for proteins belonging to different organisms and it underlines that all these proteins perform the same biological function. We have obtained different values of the local and global surface fractal dimensions reflecting distinct roughness of protein pockets in comparison to the entire surface, also in good correlation with the biological function. The geometric characteristics are distinct for the three investigated families of proteins.

  2. [The glycated hemoglobin: indication, interpretation and limitations].

    PubMed

    Zendjabil, M

    2015-09-01

    HbA1c is defined by the slow and irreversible binding of glucose to the N-terminal valine of one or both of the beta chains of hemoglobin A (HbA). It is a marker that is becoming increasingly important because of its role in both the diagnosis and monitoring of diabetic patients with type 1 and type 2. It reflects glycemic control of two or three months. Learned societies such as the IFCC and NGSP contributed to its standardization, which allows inter-laboratory comparison of results. Its assay uses chromatographic, electrophoretic or immunochemical methods. The HbA1c concentration is expressed in percent and in mmol/mol, and a number that is between 4 and 6% (20 and 42mmol/mol) is desirable. However, HbA1c cannot be used in some cases and fructosamine assay must be considered. PMID:25857744

  3. Haptoglobin: the hemoglobin detoxifier in plasma.

    PubMed

    Alayash, Abdu I; Andersen, Christian Brix Folsted; Moestrup, Søren Kragh; Bülow, Leif

    2013-01-01

    Hemoglobin (Hb) is one of the most studied proteins. However, oxidative toxicity associated with free Hb in circulation and its contribution to inflammation and complications of transfusion have only recently become active areas of research. New insights into the protective mechanisms of haptoglobin (Hp), a plasma protein, and a timely resolution of the crystal structure of the Hb-Hp complex made it possible to definitively link the functional and structural interplay between the two proteins. Here, we summarize current knowledge of the interactions between Hb and Hp under oxidative stress conditions, and how Hb's own damaging radicals are harnessed by complex formation. Potential therapeutic benefits of using Hp for inactivation and clearance of free Hb under a number of clinical settings are considered. PMID:23140673

  4. Mammalian Interphase Cdks

    PubMed Central

    2012-01-01

    Cyclin-dependent kinases (Cdks) drive cell cycle progression in all eukaryotes. Yeasts have a single major Cdk that mediates distinct cell cycle transitions via association with different cyclins. The closest homolog in mammals, Cdk1, drives mitosis. Mammals have additional Cdks—Cdk2, Cdk4, and Cdk6—that represent the major Cdks activated during interphase (iCdks). A large body of evidence has accrued that suggests that activation of iCdks dictates progression though interphase. In apparent contradiction, deficiency in each individual iCdk, respectively, in knockout mice proved to be compatible with live birth and in some instances fertility. Moreover, murine embryos could be derived with Cdk1 as the only functional Cdk. Thus, none of the iCdks is strictly essential for mammalian cell cycle progression, raising the possibility that Cdk1 is the dominant regulator in interphase. However, an absence of iCdks has been accompanied by major shifts in cyclin association to Cdk1, suggesting gain in function. After considerable tweaking, a chemical genetic approach has recently been able to examine the impact of acute inhibition of Cdk2 activity without marked distortion of cyclin/Cdk complex formation. The results suggest that, when expressed at its normal levels, Cdk2 performs essential roles in driving human cells into S phase and maintaining genomic stability. These new findings appear to have restored order to the cell cycle field, bringing it full circle to the view that iCdks indeed play important roles. They also underscore the caveat in knockdown and knockout approaches that protein underexpression can significantly perturb a protein interaction network. We discuss the implications of the new synthesis for future cell cycle studies and anti–Cdk-based therapy of cancer and other diseases. PMID:23634250

  5. Isotope Labeling in Mammalian Cells

    PubMed Central

    Dutta, Arpana; Saxena, Krishna; Klein-Seetharaman, Judith

    2011-01-01

    Isotope labeling of proteins represents an important and often required tool for the application of nuclear magnetic resonance (NMR) spectroscopy to investigate the structure and dynamics of proteins. Mammalian expression systems have conventionally been considered to be too weak and inefficient for protein expression. However, recent advances have significantly improved the expression levels of these systems. Here, we provide an overview of some of the recent developments in expression strategies for mammalian expression systems in view of NMR investigations. PMID:22167668

  6. Possible mechanisms of mammalian immunocontraception.

    PubMed

    Barber, M R; Fayrer-Hosken, R A

    2000-03-01

    Ecological and conservation programs in ecosystems around the world have experienced varied success in population management. One of the greatest problems is that human expansion has led to the shrinking of wildlife habitat and, as a result, the overpopulation of many different species has occurred. The pressures exerted by the increased number of animals has caused environmental damage. The humane and practical control of these populations has solicited the scientific community to arrive at a safe, effective, and cost-efficient means of population control. Immunocontraception using zona pellucida antigens, specifically porcine zona pellucida (pZP), has become one of the most promising population control tools in the world today, with notable successes in horses and elephants. A conundrum has risen where pZP, a single vaccine, successfully induces an immunocontraceptive effect in multiple species of mammals. This review describes the most current data pertaining to the mammalian zona pellucida and immunocontraception, and from these studies, we suggest several potential mechanisms of immunocontraception. PMID:10706942

  7. [Evaluation of D10 hemoglobin testing system for hemoglobin A1C assay].

    PubMed

    Marzullo, C; Minery, M

    2008-01-01

    Bio-Rad D10 hemoglobin testing system with rack loader for hemoglobinA1C assay was evaluated. Analytical qualities were satisfactory. Imprecision was good (within-run cv was 0,5% for 4,5% of HBA(1C), 0,63% for 7,4% of HBA1C, 0,46% for 11,1% of HBA1C, between-run cv was 1,16% for 4,7% of HBA1C, 1,01% for 7,6% of HBA1C, 1,04% for 11,2% of HBA1C). Results were very well correlated with those obtained on Bio-Rad Variant II (r = 0,998). Bland and Altman graph showed good agreement between the two methods for HbA1C under 15%. The measuring range was up to 18,3% of HBA1C. There was no specimen related carry over. Triglycerides under 5,5 mmol/L and bilirubin under 734 mumol/L did not interfere. Carbamylation of HBA1C did not interfere for urea concentration under 14 mmol/L. Practicability was very good. Detection of common hemoglobin variants (HbS, C, D, E, O) is available. Fast and easy switching between short and long program allows to perform HBA1C determination for patients with hemoglobin variants. So, D10 is an interesting and easy to use small HPLC automate witch offers accurate HBA1C quantification certified by NGSP. PMID:18227011

  8. Endothelial dysfunction enhances vasoconstriction due to scavenging of nitric oxide by a hemoglobin-based oxygen carrier

    PubMed Central

    Yu, Binglan; Shahid, Mohd; Egorina, Elena M.; Sovershaev, Mikhail A.; Raher, Michael J.; Lei, Chong; Wu, Mei X.; Bloch, Kenneth D.; Zapol, Warren M.

    2010-01-01

    Background At present, there is no safe and effective hemoglobin-based oxygen carrier (HBOC) to substitute for red blood cell transfusion. It is uncertain whether a deficiency of endothelial nitric oxide bioavailability (endothelial dysfunction) prevents or augments the HBOC-induced vasoconstriction. Methods Hemodynamic effects of infusion of PolyHeme (1.08 g hemoglobin/kg, Northfield Laboratories, Evanston, IL) or murine tetrameric hemoglobin (0.48 g hemoglobin/kg) were determined in awake healthy lambs, awake mice and anesthetized mice. In vitro, a cumulative dose-tension response was obtained by sequential addition of PolyHeme or tetrameric hemoglobin to phenylephrine-precontracted murine aortic rings. Results Infusion of PolyHeme did not cause systemic hypertension in awake lambs, but produced acute systemic and pulmonary vasoconstriction. Infusion of PolyHeme did not cause systemic hypertension in healthy wild-type mice, but induced severe systemic vasoconstriction in mice with endothelial dysfunction (either db/db mice or high-fat fed wild-type mice for 4–6 weeks). The db/db mice were more sensitive to systemic vasoconstriction than wild-type mice after the infusion of either tetrameric hemoglobin or PolyHeme. Murine aortic ring studies confirmed that db/db mice have an impaired response to an endothelial-dependent vasodilator and an enhanced vasoconstrictor response to a HBOC. Conclusions Reduction of low molecular weight hemoglobin concentrations to less than 1% is insufficient to abrogate the vasoconstrictor effects of HBOC infusion in healthy awake sheep or in mice with reduced vascular nitric oxide levels associated with endothelial dysfunction. These findings suggest that testing HBOCs in animals with endothelial dysfunction can provide a more sensitive indication of their potential vasoconstrictor effects. PMID:20179495

  9. A time- and cost-effective strategy to sequence mammalian Y Chromosomes: an application to the de novo assembly of gorilla Y.

    PubMed

    Tomaszkiewicz, Marta; Rangavittal, Samarth; Cechova, Monika; Campos Sanchez, Rebeca; Fescemyer, Howard W; Harris, Robert; Ye, Danling; O'Brien, Patricia C M; Chikhi, Rayan; Ryder, Oliver A; Ferguson-Smith, Malcolm A; Medvedev, Paul; Makova, Kateryna D

    2016-04-01

    The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species. PMID:26934921

  10. A time- and cost-effective strategy to sequence mammalian Y Chromosomes: an application to the de novo assembly of gorilla Y

    PubMed Central

    Tomaszkiewicz, Marta; Rangavittal, Samarth; Cechova, Monika; Sanchez, Rebeca Campos; Fescemyer, Howard W.; Harris, Robert; Ye, Danling; O'Brien, Patricia C.M.; Chikhi, Rayan; Ryder, Oliver A.; Ferguson-Smith, Malcolm A.; Medvedev, Paul; Makova, Kateryna D.

    2016-01-01

    The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species. PMID:26934921

  11. Interference of the Hope Hemoglobin With Hemoglobin A1c Results.

    PubMed

    Chakraborty, Sutirtha; Chanda, Dalia; Gain, Mithun; Krishnan, Prasad

    2015-01-01

    Hemoglobin A1c (HbA1c) is now considered to be the marker of choice in diagnosis and management of diabetes mellitus, based on the results of certain landmark clinical trials. Herein, we report the case of a 52-year-old ethnic Southeast Asian Indian man with impaired glucose tolerance whose glycated hemoglobin (ie, HbA1c) levels, as measured via Bio-Rad D10 high-performance liquid chromatography (HPLC) and Roche Tina-quant immunoassay were 47.8% and 44.0%, respectively. No variant hemoglobin (Hb) peak was observed via the D10 chromatogram. We assayed the patient specimen on the Sebia MINICAP capillary electrophoresis platform; the HbA1c level was 6.8%, with a large variant Hb peak of 42.0%. This finding suggested the possible presence of the heterozygous Hb Hope, which can result in spuriously elevated HbA1c results on HPLC and turbidimetric immunoassays. Although the capillary electrophoresis system was able to identify the variant, the A1c results should not be considered accurate due to overlapping of the variant and adult Hb peaks on the electrophoretogram reading. Hb Hope is usually clinically silent but can present such analytical challenges. Through this case study, we critically discuss the limitations of various HbA1c assay methods, highlighting the fact that laboratory professionals need to be aware of occurrences of Hb Hope, to help ensure patient safety. PMID:26199262

  12. Hemoglobin-oxygen equilibrium at different hemoglobin and 2,3-diphosphoglycerate concentrations.

    PubMed

    Torelli, G; Celantano, F; Cortili, G; D'Angelo, E; Cazzaniga, A; Radford, E P

    1977-01-01

    Hemoglobin-oxygen equilibrium curves at constant pH, ionic strength, and temperature were determined (a) on 2,3-DPG-free solutions at various hemoglobin (Hb) concentrations, (b) on solutions at various Hb concentrations but constant 2,3-DPG/Hb molar ratio, (c) on solutions at constant hemoglobin concentration but various 2,3-DPG/Hb molar ratios, and (d) on hemolysates at various Hb concentrations. Under all conditions the shape of the equilibrium curve was the same (n = 2.62 +/- 0.04, 33 experiments). Half-saturation pressure (P 1/2) did not change with increasing Hb concentration in case (a), whereas P 1/2 was linearly related to Hb concentration in case (b). In case (c) at 200 g/l Hb, P 1/2 increased sharply as 2,3-DPG/Hb molar ratio increased up to 0.4 but changed little as the ratio was further increased up to 1.5. This behavior is very different from that observed in diluted (5 g/l) solutions. P 1/2 of the hemolysates was also linearly related to Hb concentration but the slope was about twice that for case (b). These results cannot be explained by linked function theory or by a dimer-tetramer equilibrium. It is suggested that intermolecular interactions in the presence of organic phosphates may be responsible for the observed changes in Hb affinity for oxygen. PMID:909950

  13. A mathematical model relating cortical oxygenated and deoxygenated hemoglobin flows and volumes to neural activity

    NASA Astrophysics Data System (ADS)

    Cornelius, Nathan R.; Nishimura, Nozomi; Suh, Minah; Schwartz, Theodore H.; Doerschuk, Peter C.

    2015-08-01

    Objective. To describe a toolkit of components for mathematical models of the relationship between cortical neural activity and space-resolved and time-resolved flows and volumes of oxygenated and deoxygenated hemoglobin motivated by optical intrinsic signal imaging (OISI). Approach. Both blood flow and blood volume and both oxygenated and deoxygenated hemoglobin and their interconversion are accounted for. Flow and volume are described by including analogies to both resistive and capacitive electrical circuit elements. Oxygenated and deoxygenated hemoglobin and their interconversion are described by generalization of Kirchhoff's laws based on well-mixed compartments. Main results. Mathematical models built from this toolkit are able to reproduce experimental single-stimulus OISI results that are described in papers from other research groups and are able to describe the response to multiple-stimuli experiments as a sublinear superposition of responses to the individual stimuli. Significance. The same assembly of tools from the toolkit but with different parameter values is able to describe effects that are considered distinctive, such as the presence or absence of an initial decrease in oxygenated hemoglobin concentration, indicating that the differences might be due to unique parameter values in a subject rather than different fundamental mechanisms.

  14. Genetics of Hemoglobin in the Deer Mouse, PEROMYSCUS MANICULATUS . II. Multiple Alleles at Regulatory Loci

    PubMed Central

    Snyder, Lee R. G.

    1978-01-01

    Deer mice are polymorphic for electrophoretic hemoglobin phenotypes showing one, two, or three bands. Within the multibanded phenotypes, there is considerable variation in the hemoglobin partitioning, defined as the fraction of total hemoglobin made up by the secondary and tertiary bands. In subspecies sonoriensis, for example, hemoglobin partitionings range from 0.03 to 0.38. The inheritance of partitioning values is under remarkably strict genetic control. The genetic variation is additive and the narrow heritability is close to 1.0. The inheritance data can be modeled in precise detail by postulating multiple-allele polymorphisms at globin regulatory loci. Comparison of simulated versus actual inheritance data demonstrates that the so-called null structural alleles actually produce functional globins.—The genetic controls in Peromyscus may be analogous to those in primates. Unfortunately, the molecular mechanisms effecting the regulation are unknown. Different subspecies of P. maniculatus show strikingly different arrays of partitioning values, but the role of natural selection in maintaining the quantitative polymorphisms remains obscure. PMID:669256

  15. Hemoglobin and the origins of the concept of allosterism.

    PubMed

    Edsall, J T

    1980-02-01

    Bohr, Hasselbalch, and Krogh (1904) observed both what we now call the cooperative homotropic character of the binding of oxygen by hemoglobin and the heterotropic control exerted by CO2 in diminishing the oxygen affinity. Ten years later Christiansen, Douglas, and Haldane discovered the converse effect of oxygenation in diminishing CO2 uptake. It was then generally believed that hemoglobin contains only a single heme: A. V. Hill, to explain cooperative phenomena, postulated reversible aggregation of these monomer units (1910). After 1924, Adair and Svedberg independently showed that the molecule contained four hemes, and Adair's intermediate compound hypothesis, with four binding constants suitably chosen, could formally explain cooperative binding. Pauling proposed a simple model, involving only two constants, that fitted available data well. Haurowitz's demonstration that crystal structure changed on oxygenation (1938) gave the first evidence clearly pointing to a conformation change; in 1951 Wyman and Allen elaborated the idea in thermodynamic terms, and Perutz's crystallographic studies later revealed in molecular detail the nature of the change associated with ligand binding. The important heterotropic interactions that influence the binding of oxygen, necessarily with reciprocal interactions between oxygen binding and the uptake of the heterotropic ligands, are of three kinds: 1) proton binding by the "Bohr groups," 2) direct binding of CO2 as carbamate, and 3) binding of organic phosphate anions, such as diphosphoglycerate. The last of these, although fully as important as the first two, was not discovered for about half a century after the early work. Some major discoverers in the unraveling of these complicated relations were D. D. Van Slyke, F. J. W. Roughton, Linus Pauling, J. Wyman, and later Ruth and Reinhold Benesch, L. Rossi-Bernardi, and J. V. Kilmartin. All these, and numerous others, contributed to our understanding of both homogropic and

  16. Low Modulus Biomimetic Microgel Particles with High Loading of Hemoglobin

    PubMed Central

    Chen, Kai; Merkel, Timothy J.; Pandya, Ashish; Napier, Mary E.; Luft, J. Christopher; Daniel, Will; Sheiko, Sergei

    2012-01-01

    We synthesized extremely deformable red blood cell-like microgel particles and loaded them with bovine hemoglobin (Hb) to potentiate oxygen transport. With similar shape and size as red blood cells (RBCs), the particles were fabricated using the PRINT® (Particle Replication In Non-wetting Templates) technique. Low crosslinking of the hydrogel resulted in very low mesh density for these particles, allowing passive diffusion of hemoglobin throughout the particles. Hb was secured in the particles through covalent conjugation of the lysine groups of Hb to carboxyl groups in the particles via EDC/NHS coupling. Confocal microscopy of particles bound to fluorescent dye-labeled Hb confirmed the uniform distribution of Hb throughout the particle interior, as opposed to the surface conjugation only. High loading ratios, up to 5 times the amount of Hb to polymer by weight, were obtained, without a significant effect on particle stability, shape, though particle diameter decreased slightly with Hb conjugation. Analysis of the protein by circular dichroism (CD) spectroscopy showed that the secondary structure of Hb was unperturbed by conjugation to the particles. Methemoglobin in the particles could be maintained at a low level and the loaded Hb could still bind oxygen as studied by UV-vis spectroscopy. Hb-loaded particles with moderate loading ratios demonstrated excellent deformability in microfluidic devices, easily deforming to pass through restricted pores half as wide as the diameter of the particles. The suspension of concentrated particles with Hb concentration of 5.2 g/dL showed comparable viscosity to that of mouse blood, and the particles remained intact even after being sheared at a constant high rate (1,000 1/s) for 10 min. Armed with the ability to control size, shape, deformability, and loading of Hb into RBC mimics, we will discuss the implications for artificial blood. PMID:22852860

  17. Low modulus biomimetic microgel particles with high loading of hemoglobin.

    PubMed

    Chen, Kai; Merkel, Timothy J; Pandya, Ashish; Napier, Mary E; Luft, J Christopher; Daniel, Will; Sheiko, Sergei; DeSimone, Joseph M

    2012-09-10

    We synthesized extremely deformable red blood cell-like microgel particles and loaded them with bovine hemoglobin (Hb) to potentiate oxygen transport. With similar shape and size as red blood cells (RBCs), the particles were fabricated using the PRINT (particle replication in nonwetting templates) technique. Low cross-linking of the hydrogel resulted in very low mesh density for these particles, allowing passive diffusion of hemoglobin throughout the particles. Hb was secured in the particles through covalent conjugation of the lysine groups of Hb to carboxyl groups in the particles via EDC/NHS coupling. Confocal microscopy of particles bound to fluorescent dye-labeled Hb confirmed the uniform distribution of Hb throughout the particle interior, as opposed to the surface conjugation only. High loading ratios, up to 5 times the amount of Hb to polymer by weight, were obtained without a significant effect on particle stability and shape, though particle diameter decreased slightly with Hb conjugation. Analysis of the protein by circular dichroism (CD) spectroscopy showed that the secondary structure of Hb was unperturbed by conjugation to the particles. Methemoglobin in the particles could be maintained at a low level and the loaded Hb could still bind oxygen, as studied by UV-vis spectroscopy. Hb-loaded particles with moderate loading ratios demonstrated excellent deformability in microfluidic devices, easily deforming to pass through restricted pores half as wide as the diameter of the particles. The suspension of concentrated particles with a Hb concentration of 5.2 g/dL showed comparable viscosity to that of mouse blood, and the particles remained intact even after being sheared at a constant high rate (1000 1/s) for 10 min. Armed with the ability to control size, shape, deformability, and loading of Hb into RBC mimics, we will discuss the implications for artificial blood. PMID:22852860

  18. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability.

    PubMed

    Chung, Jacky; Bauer, Daniel E; Ghamari, Alireza; Nizzi, Christopher P; Deck, Kathryn M; Kingsley, Paul D; Yien, Yvette Y; Huston, Nicholas C; Chen, Caiyong; Schultz, Iman J; Dalton, Arthur J; Wittig, Johannes G; Palis, James; Orkin, Stuart H; Lodish, Harvey F; Eisenstein, Richard S; Cantor, Alan B; Paw, Barry H

    2015-01-01

    In multicellular organisms, the mechanisms by which diverse cell types acquire distinct amino acids and how cellular function adapts to their availability are fundamental questions in biology. We found that increased neutral essential amino acid (NEAA) uptake was a critical component of erythropoiesis. As red blood cells matured, expression of the amino acid transporter gene Lat3 increased, which increased NEAA import. Inadequate NEAA uptake by pharmacologic inhibition or RNAi-mediated knockdown of LAT3 triggered a specific reduction in hemoglobin production in zebrafish embryos and murine erythroid cells through the mTORC1 (mammalian target of rapamycin complex 1)/4E-BP (eukaryotic translation initiation factor 4E-binding protein) pathway. CRISPR-mediated deletion of members of the 4E-BP family in murine erythroid cells rendered them resistant to mTORC1 and LAT3 inhibition and restored hemoglobin production. These results identify a developmental role for LAT3 in red blood cells and demonstrate that mTORC1 serves as a homeostatic sensor that couples hemoglobin production at the translational level to sufficient uptake of NEAAs, particularly L-leucine. PMID:25872869

  19. Microscopic Diffusion and Hydrodynamic Interactions of Hemoglobin in Red Blood Cells

    PubMed Central

    Doster, Wolfgang; Longeville, Stéphane

    2007-01-01

    The cytoplasm of red blood cells is congested with the oxygen storage protein hemoglobin occupying a quarter of the cell volume. The high protein concentration leads to a reduced mobility; the self-diffusion coefficient of hemoglobin in blood cells is six times lower than in dilute solution. This effect is generally assigned to excluded volume effects in crowded media. However, the collective or gradient diffusion coefficient of hemoglobin is only weakly dependent on concentration, suggesting the compensation of osmotic and friction forces. This would exclude hydrodynamic interactions, which are of dynamic origin and do not contribute to the osmotic pressure. Hydrodynamic coupling between protein molecules is dominant at short time- and length scales before direct interactions are fully established. Employing neutron spin-echo-spectroscopy, we study hemoglobin diffusion on a nanosecond timescale and protein displacements on the scale of a few nanometers. A time- and wave-vector dependent diffusion coefficient is found, suggesting the crossover of self- and collective diffusion. Moreover, a wave-vector dependent friction function is derived, which is a characteristic feature of hydrodynamic interactions. The wave-vector and concentration dependence of the long-time self-diffusion coefficient of hemoglobin agree qualitatively with theoretical results on hydrodynamics in hard spheres suspensions. Quantitative agreement requires us to adjust the volume fraction by including part of the hydration shell: Proteins exhibit a larger surface/volume ratio compared to standard colloids of much larger size. It is concluded that hydrodynamic and not direct interactions dominate long-range molecular transport at high concentration. PMID:17513357

  20. The role of hemoglobin heme loss in Heinz body formation: studies with a partially heme-deficient hemoglobin and with genetically unstable hemoglobins

    PubMed Central

    Jacob, Harry S.; Winterhalter, Kaspar H.

    1970-01-01

    A number of mutant hemoglobins are inordinately unstable, denaturing in circulating red cells into Heinz bodies, resulting in congenital Heinz body hemolytic anemia (CHBHA). We have emphasized that most such hemoglobins involve amino acid substitutions at sites neighboring the heme group of the β-polypeptide chain, and have shown that heme binding to globin is diminished thereby. Thus, hemes were progressively lost from four unstable hemoglobins (Köln, Hammersmith, San Francisco, and Zürich) as they precipitated into Heinz bodies at 50°C. The role of heme loss, especially from beta chains, in Heinz body formation was supported by studies with a hemoglobin synthesized to contain hemes only on its alpha chains (α2hemeβ20). The behavior of this compound, postulated to be an intermediary in the formation of Heinz bodies, mimicked that of the genetically unstable hemoglobins in several ways: (a) it precipitated at 50°C into typical coccoid Heinz bodies; (b) as also observed with CHBHA hemoglobins this denaturation was virtually prevented by the heme ligands, cyanide or carbon monoxide, which inhibit further heme loss; it was potentiated by oxidation of hemes to the ferri- state, which accentuates heme loss; (c) the thiol groups of α2hemeβ20 were hyperreactive, forming mixed disulfides with glutathione and membrane sulfhydryls at rates similar to those of CHBHA hemoglobins and 10 or more times that of normal hemoglobin A; (d) heme repletion of the protein molecules by the addition of crystalline hemin to either α2hemeβ20 or to the genetically unstable hemoglobins, prevented their precipitation into Heinz bodies and normalized their aberrant electrophoretic behaviors; and (e) during Heinz body formation at 50°C both α2hemeβ20 and the genetically unstable hemoglobins released free αheme-chains into solution, suggesting that the bulk of the whitish, Heinz body precipitate is naked β8-chains. We conclude that heme loss from mutant beta chains is an early step

  1. Fate Mapping Mammalian Corneal Epithelia.

    PubMed

    Richardson, Alexander; Wakefield, Denis; Di Girolamo, Nick

    2016-04-01

    The anterior aspect of the cornea consists of a stratified squamous epithelium, thought to be maintained by a rare population of stem cells (SCs) that reside in the limbal transition zone. Although migration of cells that replenish the corneal epithelium has been studied for over a century, the process is still poorly understood and not well characterized. Numerous techniques have been employed to examine corneal epithelial dynamics, including visualization by light microscopy, the incorporation of vital dyes and DNA labels, and transplantation of genetically marked cells that have acted as cell and lineage beacons. Modern-day lineage tracing utilizes molecular methods to determine the fate of a specific cell and its progeny over time. Classically employed in developmental biology, lineage tracing has been used more recently to track the progeny of adult SCs in a number of organs to pin-point their location and understand their movement and influence on tissue regeneration. This review highlights key discoveries that have led researchers to develop cutting-edge genetic tools to effectively and more accurately monitor turnover and displacement of cells within the mammalian corneal epithelium. Collating information on the basic biology of SCs will have clinical ramifications in furthering our knowledge of the processes that govern their role in homeostasis, wound-healing, transplantation, and how we can improve current unsatisfactory SC-based therapies for patients suffering blinding corneal disease. PMID:26774909

  2. Mammalian cell cultivation in space

    NASA Astrophysics Data System (ADS)

    Gmünder, Felix K.; Suter, Robert N.; Kiess, M.; Urfer, R.; Nordau, C.-G.; Cogoli, A.

    Equipment used in space for the cultivation of mammalian cells does not meet the usual standard of earth bound bioreactors. Thus, the development of a space worthy bioreactor is mandatory for two reasons: First, to investigate the effect on single cells of the space environment in general and microgravity conditions in particular, and second, to provide researchers on long term missions and the Space Station with cell material. However, expertise for this venture is not at hand. A small and simple device for animal cell culture experiments aboard Spacelab (Dynamic Cell Culture System; DCCS) was developed. It provides 2 cell culture chambers, one is operated as a batch system, the other one as a perfusion system. The cell chambers have a volume of 200 μl. Medium exchange is achieved with an automatic osmotic pump. The system is neither mechanically stirred nor equipped with sensors. Oxygen for cell growth is provided by a gas chamber that is adjacent to the cell chambers. The oxygen gradient produced by the growing cells serves to maintain the oxygen influx by diffusion. Hamster kidney cells growing on microcarriers were used to test the biological performance of the DCCS. On ground tests suggest that this system is feasible.

  3. Cell death in mammalian development.

    PubMed

    Penaloza, C; Orlanski, S; Ye, Y; Entezari-Zaher, T; Javdan, M; Zakeri, Z

    2008-01-01

    During embryogenesis there is an exquisite orchestration of cellular division, movement, differentiation, and death. Cell death is one of the most important aspects of organization of the developing embryo, as alteration in timing, level, or pattern of cell death can lead to developmental anomalies. Cell death shapes the embryo and defines the eventual functions of the organs. Cells die using different paths; understanding which path a dying cell takes helps us define the signals that regulate the fate of the cell. Our understanding of cell death in development stems from a number of observations indicating genetic regulation of the death process. With today's increased knowledge of the pathways of cell death and the identification of the genes whose products regulate the pathways we know that, although elimination of some of these gene products has no developmental phenotype, alteration of several others has profound effects. In this review we discuss the types and distributions of cell death seen in developing mammalian embryos as well as the gene products that may regulate the process. PMID:18220829

  4. Relationship between hemoglobin and cardiovascular risk factors in young adults.

    PubMed

    Shimakawa, T; Bild, D E

    1993-11-01

    To understand mechanisms of association between hemoglobin and cardiovascular disease (CVD), the relationships between hemoglobin and CVD risk factors were examined in 5115 black and white men and women who participated in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Hemoglobin was higher in men than women, whites than blacks, and smokers than non-smokers (p < 0.001). After adjusting for age, body mass index, current smoking status, and clinical center, hemoglobin correlated with diastolic blood pressure (0.11 < or = r < or = 0.22, p < 0.001) and plasma total cholesterol (0.08 < or = r < or = 0.11, p < 0.01) in all four race-sex groups and with systolic blood pressure in all but black women (0.07 < or = r < or = 0.13, p < 0.05). Among other factors possibly related to CVD risk, only serum albumin and white blood cell count showed significant correlations with hemoglobin in all groups (0.19 < or = r < or = 0.27, 0.07 < or = r < or = 0.18, respectively). These findings suggest that an association of hemoglobin with CVD risk factors may explain the association of hemoglobin with CVD. PMID:8229103

  5. Molecular characterization of hemoglobin from the honeybee Apis mellifera.

    PubMed

    Hankeln, Thomas; Klawitter, Sabine; Krämer, Melanie; Burmester, Thorsten

    2006-07-01

    Due to the prevailing importance of the tracheal system for insect respiration, hemoglobins had been considered rare exceptions in this arthropod subphylum. Here we report the identification, cloning and expression analysis of a true hemoglobin gene in the honeybee Apis mellifera (Hymenoptera). The deduced amino acid sequence covers 171 residues (19.5kDa) and harbors all globin-typical features, including the proximal and the distal histidines. The protein has no signal peptide for transmembrane transport and was predicted to localize in the cytoplasm. The honeybee hemoglobin gene shows an ancient structure, with introns in positions B12.2 and G7.0, while most other insect globins have divergent intron positions. In situ hybridization studies showed that hemoglobin expression in the honeybee is mainly associated with the tracheal system. We also observe hemoglobin expression in the Malpighi tubes and testis. We further demonstrated that hemoglobins occur in other insect orders (Hemiptera, Coleoptera, Lepidoptera), suggesting that such genes belong to the standard repertoire of an insect genome. Phylogenetic analyses show that globins evolved along with the accepted insect systematics, with a remarkable diversification within the Diptera. Although insect hemoglobins may be in fact involved in oxygen metabolism, it remains uncertain whether they carry out a myoglobin-like function in oxygen storage and delivery. PMID:16698031

  6. Hemoglobin concentration of high-altitude Tibetans and Bolivian Aymara.

    PubMed

    Beall, C M; Brittenham, G M; Strohl, K P; Blangero, J; Williams-Blangero, S; Goldstein, M C; Decker, M J; Vargas, E; Villena, M; Soria, R; Alarcon, A M; Gonzales, C

    1998-07-01

    Elevated hemoglobin concentrations have been reported for high-altitude sojourners and Andean high-altitude natives since early in the 20th century. Thus, reports that have appeared since the 1970s describing relatively low hemoglobin concentration among Tibetan high-altitude natives were unexpected. These suggested a hypothesis of population differences in hematological response to high-altitude hypoxia. A case of quantitatively different responses to one environmental stress would offer an opportunity to study the broad evolutionary question of the origin of adaptations. However, many factors may confound population comparisons. The present study was designed to test the null hypothesis of no difference in mean hemoglobin concentration of Tibetan and Aymara native residents at 3,800-4,065 meters by using healthy samples that were screened for iron deficiency, abnormal hemoglobins, and thalassemias, recruited and assessed using the same techniques. The hypothesis was rejected, because Tibetan males had a significantly lower mean hemoglobin concentration of 15.6 gm/dl compared with 19.2 gm/dl for Aymara males, and Tibetan females had a mean hemoglobin concentration of 14.2 gm/dl compared with 17.8 gm/dl for Aymara females. The Tibetan hemoglobin distribution closely resembled that from a comparable, sea-level sample from the United States, whereas the Aymara distribution was shifted toward 3-4 gm/dl higher values. Genetic factors accounted for a very high proportion of the phenotypic variance in hemoglobin concentration in both samples (0.86 in the Tibetan sample and 0.87 in the Aymara sample). The presence of significant genetic variance means that there is the potential for natural selection and genetic adaptation of hemoglobin concentration in Tibetan and Aymara high-altitude populations. PMID:9696153

  7. Structural and Functional Significance of the N- and C-Terminal Appendages in Arabidopsis Truncated Hemoglobin.

    PubMed

    Mukhi, Nitika; Dhindwal, Sonali; Uppal, Sheetal; Kapoor, Abhijeet; Arya, Richa; Kumar, Pravindra; Kaur, Jagreet; Kundu, Suman

    2016-03-29

    Plant hemoglobins constitute three distinct groups: symbiotic, nonsymbiotic, and truncated hemoglobins. Structural investigation of symbiotic and nonsymbiotic (class I) hemoglobins revealed the presence of a vertebrate-like 3/3 globin fold in these proteins. In contrast, plant truncated hemoglobins are similar to bacterial truncated hemoglobins with a putative 2/2 α-helical globin fold. While multiple structures have been reported for plant hemoglobins of the first two categories, for plant truncated globins only one structure has been reported of late. Here, we report yet another crystal structure of the truncated hemoglobin from Arabidopsis thaliana (AHb3) with two water molecules in the heme pocket, of which one is distinctly coordinated to the heme iron, unlike the only available crystal structure of AHb3 with a hydroxyl ligand. AHb3 was monomeric in its crystallographic asymmetric unit; however, dimer was evident in the crystallographic symmetry, and the globin indeed existed as a stable dimer in solution. The tertiary structure of the protein exhibited a bacterial-like 2/2 α-helical globin fold with an additional N-terminal α-helical extension and disordered C-termini. To address the role of these extended termini in AHb3, which is yet unknown, N- and C-terminal deletion mutants were created and characterized and molecular dynamics simulations performed. The C-terminal deletion had an insignificant effect on most properties but perturbed the dimeric equilibrium of AHb3 and significantly influenced azide binding kinetics in the ferric state. These results along with the disordered nature of the C-terminus indicated its putative role in intramolecular or intermolecular interactions probably regulating protein-ligand and protein-protein interactions. While the N-terminal deletion did not change the overall globin fold, stability, or ligand binding kinetics, it seemed to have influenced coordination at the heme iron, the hydration status of the active site

  8. Treatment of β-Thalassemia/Hemoglobin E with Antioxidant Cocktails Results in Decreased Oxidative Stress, Increased Hemoglobin Concentration, and Improvement of the Hypercoagulable State

    PubMed Central

    Yanpanitch, Orn-uma; Hatairaktham, Suneerat; Charoensakdi, Ratiya; Panichkul, Narumol; Fucharoen, Suthat; Siritanaratkul, Noppadol; Kalpravidh, Ruchaneekorn W.

    2015-01-01

    Studies on the antioxidant treatment for thalassemia have reported variable outcomes. However, treatment of thalassemia with a combination of hydrophobic and hydrophilic antioxidants and an iron chelator has not been studied. This study investigated the effects of antioxidant cocktails for the treatment of β-thalassemia/hemoglobin E (HbE), which is the most common form of β-thalassemia in Southeast Asia. Sixty patients were divided into two groups receiving N-acetylcysteine, deferiprone, and either curcuminoids (CUR) or vitamin E (Vit-E), and their hematological parameters, iron load, oxidative stress, and blood coagulation potential were evaluated. Patients were classified as responders if they showed the improvements of the markers of iron load and oxidative stress, otherwise as nonresponders. During treatment, the responders in both groups had significantly decreased iron load, oxidative stress, and coagulation potential and significantly increased antioxidant capacity and hemoglobin concentration. The significantly maximum increase (P < 0.01) in hemoglobin concentration was 11% at month 4 in CUR group responders and 10% at month 10 in Vit-E group responders. In conclusion, the two antioxidant cocktails can improve anemia, iron overload, oxidative stress, and hypercoagulable state in β-thalassemia/HbE. PMID:26078808

  9. Sirtuins: Guardians of Mammalian Healthspan

    PubMed Central

    Giblin, William; Skinner, Mary E.; Lombard, David B.

    2014-01-01

    The first link between sirtuins and longevity was made 15 years ago in yeast. These initial studies sparked efforts by many laboratories working in diverse model organisms to elucidate the relationships between sirtuins, lifespan, and age-associated dysfunction. Here we discuss the current understanding of how sirtuins relate to aging. We focus primarily on mammalian sirtuins SIRT1, SIRT3, and SIRT6, the three sirtuins for which the most relevant data are available. Strikingly, a large body of evidence now indicates that these and other mammalian sirtuins suppress a variety of age-related pathologies and promote healthspan. Moreover, increased expression of SIRT1 or SIRT6 extends mouse lifespan. Overall, these data point to important roles for sirtuins in promoting mammalian health, and perhaps in modulating the aging process. PMID:24877878

  10. Electroporation into Cultured Mammalian Embryos

    NASA Astrophysics Data System (ADS)

    Nomura, Tadashi; Takahashi, Masanori; Osumi, Noriko

    Over the last century, mammalian embryos have been used extensively as a common animal model to investigate fundamental questions in the field of developmental biology. More recently, the establishment of transgenic and gene-targeting systems in laboratory mice has enabled researchers to unveil the genetic mechanisms under lying complex developmental processes (Mak, 2007). However, our understanding of cell—cell interactions and their molecular basis in the early stages of mammalian embryogenesis is still very fragmentary. One of the major problems is the difficulty of precise manipulation and limited accessibility to mammalian embryos via uterus wall. Unfortunately, existing tissue and organotypic culture systems per se do not fully recapitulate three-dimensional, dynamic processes of organogenesis observed in vivo. Although transgenic animal technology and virus-mediated gene delivery are useful to manipulate gene expression, these techniques take much time and financial costs, which limit their use.

  11. Kinetics of α-Globin Binding to α-Hemoglobin Stabilizing Protein (AHSP) Indicate Preferential Stabilization of Hemichrome Folding Intermediate*

    PubMed Central

    Mollan, Todd L.; Khandros, Eugene; Weiss, Mitchell J.; Olson, John S.

    2012-01-01

    Human α-hemoglobin stabilizing protein (AHSP) is a conserved mammalian erythroid protein that facilitates the production of Hemoglobin A by stabilizing free α-globin. AHSP rapidly binds to ferrous α with association (k′AHSP) and dissociation (kAHSP) rate constants of ≈10 μm−1 s−1 and 0.2 s−1, respectively, at pH 7.4 at 22 °C. A small slow phase was observed when AHSP binds to excess ferrous αCO. This slow phase appears to be due to cis to trans prolyl isomerization of the Asp29-Pro30 peptide bond in wild-type AHSP because it was absent when αCO was mixed with P30A and P30W AHSP, which are fixed in the trans conformation. This slow phase was also absent when met(Fe3+)-α reacted with wild-type AHSP, suggesting that met-α is capable of rapidly binding to either Pro30 conformer. Both wild-type and Pro30-substituted AHSPs drive the formation of a met-α hemichrome conformation following binding to either met- or oxy(Fe2+)-α. The dissociation rate of the met-α·AHSP complex (kAHSP ≈ 0.002 s−1) is ∼100-fold slower than that for ferrous α·AHSP complexes, resulting in a much higher affinity of AHSP for met-α. Thus, in vivo, AHSP acts as a molecular chaperone by rapidly binding and stabilizing met-α hemichrome folding intermediates. The low rate of met-α dissociation also allows AHSP to have a quality control function by kinetically trapping ferric α and preventing its incorporation into less stable mixed valence Hemoglobin A tetramers. Reduction of AHSP-bound met-α allows more rapid release to β subunits to form stable fully, reduced hemoglobin dimers and tetramers. PMID:22298770

  12. Identification of hemoglobin AC heterozygote status in a Malay family: a decision between hemoglobin electrophoresis and high performance liquid chromotography.

    PubMed

    Rosline, H; Roshan, T M; Ahmed, S A; Ilunihayati, I

    2007-05-01

    Thalassemia is a common public health problem among Malays. Hemoglobin C (Hb C) is a hemoglobin beta variant resulting from a single base mutation at the 6th position of the beta-globin gene leading to the substitution of glycine for glutamic acid. Hb C is commonly detected in West Africans and in African American but has not been reported in Malaysia. It can be falsely diagnosed as HbE trait in the Malaysian Thalassemia Screening Program which utilizes cellulose acetate hemoglobin electrophoresis. This is the first reported case of Hb AC heterozygote status in a Malay family, with unusual splenomegaly in one of the family members. PMID:17877232

  13. Free energy of sickle hemoglobin polymerization: a scaled-particle treatment for use with dextran as a crowding agent.

    PubMed

    Liu, Zenghui; Weng, Weijun; Bookchin, Robert M; Lew, Virgilio L; Ferrone, Frank A

    2008-05-01

    Fundamental to the analysis of protein polymerization is the free energy of association, typically determined from solubility. It has been previously shown that concentrated 70 kDa dextran lowers the solubility of sickle hemoglobin, due to molecular crowding, and provides a useful ranking tool for the effects of inhibitors and molecular modifications. Because hemoglobin occupies a substantial volume as well, crowding effects of both hemoglobin and dextran contribute to the nonideality of the solution. We show how scaled-particle theory can be used to account for both types of crowding, thus allowing the determination of solubility in the absence of dextran, given data measured in its presence. The approach adopted approximates dextran as a sphere with a volume that decreases as the concentration of dextran increases. We use an asymptotic relation to describe the volume, which decreases nearly linearly by a factor of two over the range studied, from 60 to 230 mg/ml. This compression is similar to previously observed compression of sephadex beads and ficoll solutions. In the limit of low hemoglobin concentrations, the theory reduces to the previously-used approach of Ogston. Our method therefore provides a means of measuring the free energy of association of molecules that occupy significant volume fractions, even when assisted by the crowding of dextran and we present a tabulation of all known free energies of polymerization of sickle hemoglobin measured in the presence of dextran. PMID:18212015

  14. Effects of simultaneous radiofrequency radiation and chemical exposure of mammalian cells. Volume 2. Final report, 2 January 1984-31 December 1986

    SciTech Connect

    Meltz, M.L.; Ciaravino, V.; Kerbacher, J.J.; Eagan, P.

    1988-07-01

    A circulating water-bath exposure system was designed for in vitro radio-frequency radiation (RFR) exposure studies in the 915- to 2450-MHz range. A continuously rotating styrofoam float, holding ten T-25 tissue-culture flasks, averages out field heterogeneity and allows mixing in the medium in the flasks. The presence of cells in the exposure flask (as attached monolayer or cell suspension) did not result in an SAR different from that measured in the medium without cells present. Two hypotheses are posed relative to the mutagenic activity of RFR: (a) that RFR by itself is genotoxic to mammalian cells in vitro; and (b) that a simultaneous exposure of mammalian cells to RFR during treatment with a genotoxic chemical will result in an alteration of the genotoxic activity of the chemical alone. RFR exposure alone (at moderate power levels which resulted in a temperature increase in the cell-culture medium of no more than 3 C) is not mutagenic. During simultaneous treatment, the RFR does not affect either the inhibition of cell growth or the extent of mutagenesis resulting from the chemical treatment alone. The same two hypotheses were explored for induction of sister chromatid exchanges (SCEs) and chromosome aberrations in Chinese hamster ovary cells which were similarly exposed to RFR and chemicals. The chemicals studied for SCE induction were mitomycin C (MMC) and Adriamycin.

  15. Solid hemoglobin-polymer phantoms for evaluation of biophotonic systems.

    PubMed

    Jang, Hyounguk; Pfefer, T Joshua; Chen, Yu

    2015-09-15

    Stable tissue phantoms that incorporate the spectral absorption properties of hemoglobin would benefit a wide range of biophotonic technologies. Toward this end, we have developed and validated a novel polymer material incorporating hemoglobin. Our solid hemoglobin-polymer (SHP) material is fabricated by mixing liquid silicone base with a hemoglobin solution, followed by sonication and low temperature curing. The optical properties of samples were determined over 450-1000 nm using the inverse adding-doubling method and the Beer-Lambert law. Measurements indicated SHP optical stability over four months. Near-infrared spectroscopy and hyperspectral imaging measurements of SHP samples were performed to demonstrate the utility of this approach. SHP materials have the potential to improve tissue-simulating phantoms used for development, evaluation, and standardization of optical devices for oximetry and other applications. PMID:26371926

  16. On the tryptic peptides from hemoglobin chains of six carnivores.

    PubMed

    Brimhall, B; Stenzel, P; Dresler, S L; Hermodson, M; Stangland, K; Joyce, J; Jones, R T

    1977-05-13

    The amino acid compositions of the tryptic peptides of the following carnivore hemoglobin chains have been determined: gray fox (Urocyon cineroargenteus); raccoon (Procyon lotor); polar bear (Thalarctos maritimus); coati mundi (Nasua nasua) beta chain; coati mundi (Nasua narica) two beta chains; cat (Felis catus) alpha chain; and lion (Pantbera leo) beta chain. These provide a basis for future sequencing of these hemoglobins and construction of an evolutionary tree. The specific results are summarized in the following article (Stenzel and Brimhall, 1977). PMID:864727

  17. A unique loop extension in the serine protease domain of haptoglobin is essential for CD163 recognition of the haptoglobin-hemoglobin complex.

    PubMed

    Nielsen, Marianne Jensby; Petersen, Steen Vang; Jacobsen, Christian; Thirup, Søren; Enghild, Jan Johannes; Graversen, Jonas Heilskov; Moestrup, Søren Kragh

    2007-01-12

    Haptoglobin and haptoglobin-related protein are homologous hemoglobin-binding proteins consisting of a complement control repeat (alpha-chain) and a serine protease domain (beta-chain). Haptoglobin-hemoglobin complex formation promotes high affinity binding of hemoglobin to the macrophage scavenger receptor CD163 leading to endocytosis and degradation of the haptoglobin-hemoglobin complex. In contrast, complex formation between haptoglobin-related protein and hemoglobin does not promote high affinity interaction with CD163. To define structural components of haptoglobin important for CD163 recognition, we exploited this functional difference to design and analyze recombinant haptoglobin/haptoglobin-related protein chimeras complexed to hemoglobin. These data revealed that only the beta-chain of haptoglobin is involved in receptor recognition. Substitution of 4 closely spaced amino acid residues of the haptoglobin beta-chain (valine 259, glutamate 261, lysine 262, and threonine 264) abrogated the high affinity receptor binding. The 4 residues are encompassed by a part of the primary structure not present in other serine protease domain proteins. Structural modeling based on the well characterized serine protease domain fold suggests that this sequence represents a loop extension unique for haptoglobin and haptoglobin-related protein. A synthetic peptide representing the haptoglobin loop sequence exhibited a pronounced inhibitory effect on receptor binding of haptoglobin-hemoglobin. PMID:17102136

  18. Hemoglobin Uptake by Paracoccidioides spp. Is Receptor-Mediated

    PubMed Central

    Bailão, Elisa Flávia Luiz Cardoso; Parente, Juliana Alves; Pigosso, Laurine Lacerda; de Castro, Kelly Pacheco; Fonseca, Fernanda Lopes; Silva-Bailão, Mirelle Garcia; Báo, Sônia Nair; Bailão, Alexandre Melo; Rodrigues, Marcio L.; Hernandez, Orville; McEwen, Juan G.; Soares, Célia Maria de Almeida

    2014-01-01

    Iron is essential for the proliferation of fungal pathogens during infection. The availability of iron is limited due to its association with host proteins. Fungal pathogens have evolved different mechanisms to acquire iron from host; however, little is known regarding how Paracoccidioides species incorporate and metabolize this ion. In this work, host iron sources that are used by Paracoccidioides spp. were investigated. Robust fungal growth in the presence of the iron-containing molecules hemin and hemoglobin was observed. Paracoccidioides spp. present hemolytic activity and have the ability to internalize a protoporphyrin ring. Using real-time PCR and nanoUPLC-MSE proteomic approaches, fungal growth in the presence of hemoglobin was shown to result in the positive regulation of transcripts that encode putative hemoglobin receptors, in addition to the induction of proteins that are required for amino acid metabolism and vacuolar protein degradation. In fact, one hemoglobin receptor ortholog, Rbt5, was identified as a surface GPI-anchored protein that recognized hemin, protoporphyrin and hemoglobin in vitro. Antisense RNA technology and Agrobacterium tumefaciens-mediated transformation were used to generate mitotically stable Pbrbt5 mutants. The knockdown strain had a lower survival inside macrophages and in mouse spleen when compared with the parental strain, which suggested that Rbt5 could act as a virulence factor. In summary, our data indicate that Paracoccidioides spp. can use hemoglobin as an iron source most likely through receptor-mediated pathways that might be relevant for pathogenic mechanisms. PMID:24831516

  19. Reaction of tobacco smoke aldehydes with human hemoglobin.

    PubMed

    Hoberman, H D; San George, R C

    1988-01-01

    Formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, isobutyraldehyde, and acrolein, all of which are constituents of tobacco smoke, were reacted in 5 mM concentration with the purified major fraction of normal adult human hemoglobin (hemoglobin Ao) in 1 mM concentration. A cigarette smoke condensate, diluted to contain 5 mM total aldehydes, was also reacted with 1 mM hemoglobin Ao. Cationic exchange high-performance liquid chromatography (HPLC) showed that the products formed from simple aliphatic aldehydes, with the exception of formaldehyde, were analogues of those formed from acetaldehyde, earlier shown by us to be imidazolidinone derivatives, that is, cyclic addition products of the N-terminal aminoamide function of alpha and beta chains. Formaldehyde and acrolein produced a heterogeneous mixture of derivatives including cross-linked hemoglobin dimers. The greater proportion of modified hemoglobins produced by condensate aldehydes resembled those formed from acetaldehyde, the most abundant aldehyde in the condensate. A smaller fraction consisted of cross-linked hemoglobin dimers, presumably due to the action of formaldehyde. Mass spectrometric and HPLC analyses of the 2,4-dinitrophenylhydrazones precipitated from the condensate documented the presence of formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, furfural, and methylfurfural. The toxicity of aldehydes is briefly discussed in the context of the findings of this study. PMID:3236330

  20. Chemosignals, Hormones and Mammalian Reproduction

    PubMed Central

    Petrulis, Aras

    2013-01-01

    Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as “pheromones” but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking. PMID:23545474

  1. Ultrafast Dynamics of Carboxy-Hemoglobin: Two-Dimensional Infrared Spectroscopy Experiments and Simulations.

    PubMed

    Falvo, Cyril; Daniault, Louis; Vieille, Thibault; Kemlin, Vincent; Lambry, Jean-Christophe; Meier, Christoph; Vos, Marten H; Bonvalet, Adeline; Joffre, Manuel

    2015-06-18

    This Letter presents a comparison between experimental and simulated 2D mid-infrared spectra of carboxy-hemoglobin in the spectral region of the carbon monoxide stretching mode. The simulations rely on a fluctuating potential energy surface that includes both the effect of heme and the protein surroundings computed from molecular dynamics simulations. A very good agreement between theory and experiment is obtained with no adjustable parameters. The simulations show that the effect of the distal histidine through the hydrogen bond is strong and is directly responsible for the slow decay of the frequency-frequency correlation function on a 10 ps time scale. This study confirms that fluctuations in carboxy-hemoglobin are more inhomogeneous than those in the more frequently studied carboxy-myoglobin. The comparison between simulations and experiments brings valuable information on the complex relation between protein structure and spectral diffusion. PMID:26266594

  2. The primary structure of the hemoglobin of Malayan sun bear (Helarctos malayanus, Carnivora) and structural comparison to other hemoglobin sequences.

    PubMed

    Hofmann, O; Braunitzer, G; Göltenboth, R

    1987-05-01

    The complete primary structure of the alpha- and beta-chains of the hemoglobin of Malayan Sun Bear (Helarctos malayanus) is presented. After cleavage of the heme-protein link and chain separation by RP-HPLC, amino-acid sequences were determined by Edman degradation in liquid- and gas-phase sequenators. An interesting result of this work is the demonstration that the hemoglobin of Malayan Sun Bear is identical to the hemoglobins of Polar Bear (Ursus maritimus) and Asiatic Black Bear (Ursus tibetanus). The paper gives an updated table of identical hemoglobin chains from different species. This paper may be considered as a compilation of work on the genetic relationship of Pandas. PMID:3620104

  3. DNA repair in mammalian embryos.

    PubMed

    Jaroudi, Souraya; SenGupta, Sioban

    2007-01-01

    Mammalian cells have developed complex mechanisms to identify DNA damage and activate the required response to maintain genome integrity. Those mechanisms include DNA damage detection, DNA repair, cell cycle arrest and apoptosis which operate together to protect the conceptus from DNA damage originating either in parental gametes or in the embryo's somatic cells. DNA repair in the newly fertilized preimplantation embryo is believed to rely entirely on the oocyte's machinery (mRNAs and proteins deposited and stored prior to ovulation). DNA repair genes have been shown to be expressed in the early stages of mammalian development. The survival of the embryo necessitates that the oocyte be sufficiently equipped with maternal stored products and that embryonic gene expression commences at the correct time. A Medline based literature search was performed using the keywords 'DNA repair' and 'embryo development' or 'gametogenesis' (publication dates between 1995 and 2006). Mammalian studies which investigated gene expression were selected. Further articles were acquired from the citations in the articles obtained from the preliminary Medline search. This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages. PMID:17141556

  4. Regulation of Blood–Testis Barrier (BTB) Dynamics during Spermatogenesis via the “Yin” and “Yang” Effects of Mammalian Target of Rapamycin Complex 1 (mTORC1) and mTORC2

    PubMed Central

    Mok, Ka Wai; Mruk, Dolores D.; Cheng, C. Yan

    2014-01-01

    In mammalian testes, haploid spermatozoa are formed from diploid spermatogonia during spermatogenesis, which is a complicated cellular process. While these cellular events were reported in the 1960s and 1970s, the underlying molecular mechanism(s) that regulates these events remained unexplored until the past ~10 years. For instance, adhesion proteins were shown to be integrated components at the Sertoli cell–cell interface and/or the Sertoli–spermatid interface in the late 1980s. But only until recently, studies have demonstrated that some of the adhesion proteins serve as the platform for signal transduction that regulates cell adhesion. In this chapter, a brief summary and critical discussion are provided on the latest findings regarding these cell-adhesion proteins in the testis and their relationship to spermatogenesis. Moreover, antagonistic effects of two mammalian target of rapamycin (mTOR) complexes, known as mTORC1 and mTORC2, on cell-adhesion function in the testis are discussed. Finally, a hypothetic model is presented to depict how these two mTOR-signaling complexes having the “yin” and “yang” antagonistic effects on the Sertoli cell tight junction (TJ)-permeability barrier can maintain the blood–testis barrier (BTB) integrity during the epithelial cycle while preleptotene spermatocytes are crossing the BTB. PMID:23317821

  5. Glycosylated hemoglobin and hyperbaric oxygen coverage denials.

    PubMed

    Moffat, A D; Worth, E R; Weaver, L K

    2015-01-01

    Some Medicaid and Medicare fiscal intermediaries are denying hyperbaric oxygen (HBO2) therapy for diabetic foot ulcer (DFU) patients if the glycosylated hemoglobin (HbA1c) > 7.0%. We performed multiple PubMed searches for any diabetic wound healing clinical trial that documented HbA1c and had a wound healing endpoint. We scrutinized 30 peer-reviewed clinical trials, representing more than 4,400 patients. The average HbA1c from the intervention side of the studies was 8.6% (7.2% - 9.9%) and the control/sham side was 8.3% (6.0% - 10.6%). Twelve studies made a direct attempt to link HbA1c and wound healing. Four retrospective studies and one prospective cohort study assert that lower HbA1c favors wound healing, but review of the studies reveal design flaws that invalidate these conclusions. In total, 25 studies showed no direct correlation between HbA1c levels and wound healing. There was no randomized controlled trial (RCT) data demonstrating that HbA1c < 7.0% improves diabetic wound healing. In every study reviewed, wounds healed with high HbA1c levels that would be considered poorly controlled by the American Diabetes Association (ADA). Frequently, patients lack optimal blood glucose control when they have a limb-threatening DFU. The evidence supports that denying hyperbaric oxygen to those with HbA1c > 7.0% is unfounded. PMID:26152104

  6. Effects of Cr(VI) long-term and low-dose action on mammalian antioxidant enzymes (an in vitro study)

    SciTech Connect

    Asatiani, N.; Sapojnikova, N.; Abuladze, M.; Kartvelishvili, T.L.; Kulikova, N.; Kiziria, E.; Namchevadze, E.; Holman, H.-Y.N.

    2003-08-01

    In order to investigate the low-dose long-term Cr(VI) action on antioxidant enzymes in cultured mammalian cells we estimated the activity of glutathione dependent antioxidant enzymes, catalase and superoxide dismutase (SOD) under various chromium concentrations in human epithelial-like L-41 cells. The long-term action of 20 mu-M causes the toxicity that results in losing of the cell viability by activating the apoptotic process, as identified by morphological analysis, the activation of caspase-3, and DNA fragmentation. The toxic chromium concentration totally destroys glutathione antioxidant system, and diminishes the activity of catalase and cytosolic Cu, ZnSOD. The non-toxic concentration (2 mu-M) causes the activation of the antioxidant defense systems, and they neutralize the oxidative impact.

  7. Interaction of the chlorite-based drug WF10 and chlorite with hemoglobin, methemoglobin and ferryl hemoglobin.

    PubMed

    Pichert, Annelie; Arnhold, Jürgen

    2015-11-01

    The interaction of the chlorite-based drug solution WF10 with human oxyhemoglobin and oxidized hemoglobin forms was investigated monitoring the corresponding spectral changes in heme states. The chlorite component of WF10 converts oxyhemoglobin into methemoglobin with a rate of 35.4 M(-1)s(-1). Methemoglobin is also formed upon the interaction of ferryl hemoglobin and WF10/chlorite. The rate of this interconversion depends on the oxidation state of ferryl hemoglobin. This rate is 114 M(-1)s(-1), when ferryl hemoglobin was generated upon reaction of oxyhemoglobin and hydrogen peroxide. A considerable higher rate (6600 M(-1)s(-1)) is measured between the chlorite components of WF10 and ferryl hemoglobin after formation of the latter species from methemoglobin. WF10/chlorite inactivates also methemoglobin as evidenced by the continuous decrease of the Soret band and all other absorbances with a rate of 8.3 M(-1)s(-1). In all interconversions, the chlorite component of WF10 was the active principle as shown in experiments applying pure chlorite at the same concentration as in WF10. Thus, WF10 is able to diminish efficiently the yield of cytotoxic hemoglobin species that might appear after excessive hemolysis of red blood cells under pathologic situations. PMID:26391926

  8. Nitrite attenuated hypochlorous acid-mediated heme degradation in hemoglobin.

    PubMed

    Lu, Naihao; Li, Jiayu; Ren, Xiaoming; Tian, Rong; Peng, Yi-Yuan

    2015-08-01

    Hypochlorous acid (HOCl) is elevated in many inflammatory diseases and causes the accumulation of free iron. Through the Fenton reaction, free iron has the ability to generate free radicals and subsequently is toxic. Recent studies have demonstrated that HOCl participates in heme destruction of hemoglobin (Hb) and free iron release. In this study, it was showed that nitrite (NO2(-)) could prevent HOCl-mediated Hb heme destruction and free iron release. Also, NO2(-) prevented HOCl-mediated loss of Hb peroxidase activity. After the NO2(-)/HOCl treatment, Tyr 42 in α-chain was found to be nitrated in Hb, attenuating the electron transferring abilities of phenolic compounds. The protective effects of NO2(-) on HOCl-induced heme destruction were attributed to its reduction of ferryl Hb and/or direct scavenging of HOCl. Therefore, NO2(-) could show protective effects in some inflammatory diseases by preventing HOCl-mediated heme destruction of hemoproteins and free iron release. PMID:26051522

  9. Spectroscope and molecular model identify the behavior of doxorubicin-SPION binding to bovine hemoglobin.

    PubMed

    Liu, Yihong; Liu, Rutao

    2015-08-01

    To provide reference for the bio-safety evaluation of doxorubicin-loaded SPION, the interaction of bovine hemoglobin (BHb) with the drug delivery was investigated by multi-spectroscopic techniques and molecular modeling calculation. Multi-spectroscopic results indicated that DOX-SPION unfolded the conformation of BHb, decreased the content of α-helix from 38.89% to 35.08%, which verified the changes of protein's secondary structure quantificationally. Stern-Volmer analysis and molecular model showed there were two static interaction modes corresponding to the two reaction steps: DOX first immobilized on the particle adhered to the external region of BHb, leading to the increasing exposure of chromophore group, rendering particles to bond to the original hemoglobin central cavity (Site 2) in sequence. They finally generated a stable bioconjugate via hydrogen bonds. This work indicated that the drug delivery has deleterious effects on the frame conformation of BHb, affecting its physiological function. PMID:26033525

  10. In vitro photoacoustic measurement of hemoglobin oxygen saturation using a single pulsed broadband supercontinuum laser source.

    PubMed

    Lee, Changho; Jeon, Mansik; Jeon, Min Yong; Kim, Jeehyun; Kim, Chulhong

    2014-06-20

    We have utilized a single pulsed broadband supercontinuum laser source to photoacoustically sense total hemoglobin concentration (HbT) and oxygen saturation of hemoglobin (SO2) in bloods in vitro. Unlike existing expensive and bulky laser systems typically used for functional photoacoustic imaging (PAI), our laser system is relatively cost-effective and compact. Instead of using two single wavelengths, two wavelength bands were applied to distinguish the concentrations of two different chromophores in the mixture. In addition, we have successfully extracted the total dye concentration and the ratio of the red dye concentration to the total dye concentration in mixed red and blue dye solutions in phantoms. The results indicate that PAI with a cheap and compact fiber based laser source can potentially provide HbT and SO2 in live animals in vivo. PMID:24979418

  11. Glycation of wood frog (Rana sylvatica) hemoglobin and blood proteins: in vivo and in vitro studies

    PubMed Central

    MacDonald, Justin A.; Degenhardt, Thorsten; Baynes, John W.; Storey, Kenneth B.

    2010-01-01

    The effects of in vivo freezing and glucose cryoprotectant on protein glycation were investigated in the wood frog, Rana sylvatica. Our studies revealed no difference in the fructoselysine content of blood plasma sampled from control, 27 h frozen and 18 h thawed wood frogs. Glycated hemoglobin (GHb) decreased slightly with 48 h freezing exposure and was below control levels after 7 d recovery, while glycated serum albumin was unchanged by 48 h freezing but did increase after 7 d of recovery. In vitro exposure of blood lysates to glucose revealed that the GHb production in wood frogs was similar to that of the rat but was lower than in leopard frogs. We conclude that wood frog hemoglobin was glycated in vitro; however, GHb production was not apparent during freezing and recovery when in vivo glucose is highly elevated. It is possible that wood frog blood proteins have different in vivo susceptibilities to glycation. PMID:19540217

  12. The USA Multicenter Prehosptial Hemoglobin -based Oxygen Carrier Resuscitation Trial: Scientific Rationale, Study Design, and Results

    PubMed Central

    Moore, Ernest E.; Johnson, Jeffrey L.; Moore, Frederick A.; Moore, Hunter B.

    2013-01-01

    The current generation of blood substitutes tested in clinical trials are red blood cell (RBC) substitutes; that is, they are designed primarily to transport oxygen. The products now being used in advanced-phase clinical trials are derived from hemoglobin (Hb) and are thus often referred to as Hb-based oxygen carriers (HBOCs). The potential benefits of HBOCs are well known (Box 1). The objectives of this overview are to provide the scientific background and rationale for the study design of the USA Multi-center Prehospital HBOC Resuscitation Trial and to present the results and discuss clinical implications. Box 1Potential clinical benefits of hemoglobin-based oxygen carriers in trauma careAvailabilityAbundant supplyUniversally compatibleProlonged shelf-lifeStorage at room temperatureSafetyNo disease transmissionsNo antigenic reactionsNo immunologic effectsEfficacyEnhanced oxygen deliveryImproved rheologic properties PMID:19341912

  13. Voluntary resistance exercise improves blood hemoglobin concentration in severely iron-deficient rats.

    PubMed

    Matsuo, Tatsuhiro; Kang, Hyung-Sook; Suzuki, Hiroo; Suzuki, Masashige

    2002-04-01

    To evaluate the effects of long-term voluntary resistance exercise (climbing) compared with aerobic exercise (swimming) on iron status in severely (4 mg Fe/kg diet) and mildly (18-29 mg Fe/kg diet) iron-deficient rats, we trained male Wistar rats for 8 wk to climb a wire-mesh tower (phi20 cm x 200 cm, CLIMB) and to swim in a plastic pool (phi50 cm x 50 cm, SWIM). These rats were compared with sedentary (SED) rats. After the experimental period, blood hemoglobin level, plasma iron concentration, and transferrin saturation were significantly lower in the 4 mg Fe/kg diet rats than in the 18, 29, and 40 mg Fe/kg diet rats. In 4 mg Fe/kg diet rats, the hemoglobin level was significantly higher in the CLIMB group than in the SED and SWIM groups. On the other hand, neither exercise affected iron status in mildly iron-deficient rats. Bone marrow delta-aminolevulinic acid dehydratase activity was significantly higher in the CLIMB group than in the SWIM and SED groups. These results suggest that long-term resistance exercise is more effective than aerobic exercise in improving blood hemoglobin concentration in severely iron-deficient rats, probably because of an increase in heme biosynthesis. Resistance exercise may be a useful therapy for iron-deficient anemia. PMID:12171438

  14. Genetic effects of microwave exposure on mammalian cells in vitro. Volume 2. Appendix A. Cytogenetics and growth kinetics data, 850 MHz. Annual report, 1 July 1981-30 September 1982

    SciTech Connect

    Meltz, M.L.; Harris, C.R.; Walker, K.A.

    1984-10-01

    This work is a continuation of studies designed to answer the question of whether radiofrequency radiation (RFR) at lower power levels (no greater than 10 mW/sq cm), where measurable heating in the exposure system cannot be detected, causes any transient or permanent alteration in series of subtle biochemical processes elicited in the DNA of mammalian cells. The specific process(es) being studied are: the effects of RFR on repair synthesis in normal human fibroblasts after ultraviolet light damage of the DNA; and the possible induction by RFR of sister chromatid exchanges or chromosome aberrations in Chinese Hamster Ovary cells. Additional information obtained in the latter studies includes any effects on cell viability (by cloning efficiency) or on cell growth (increase in cell number).

  15. Genetic effects of microwave exposure on mammalian cells in vitro. Volume 2. Appendix B. Cytogenetics and growth kinetics data, 1. 2 GHz. Annual report, 1 July 1981-30 September 1982

    SciTech Connect

    Meltz, M.L.; Harris, C.R.; Walker, K.A.

    1984-10-01

    This work is a continuation of studies designed to answer the question of whether radiofrequency radiation (RFR) at lower levels (no greater than 10 mW/sq cm), where measurable heating in the exposure system cannot be detected, causes any transient or permanent alteration in a series of subtle biochemical processes elicited in the DNA of mammalian cells. The specific process(es) being studied are: the effects of RFR on repair synthesis in normal human fibroblasts after ultraviolet light damage of the DNA; and the possible induction by RFR of sister chromatid exchanges or chromosome aberrations in Chinese Hamster Ovary cells. Additional information obtained in the latter studies includes any effects on cell viability (by cloning efficiency) or on cell growth (increase in cell number).

  16. Purification, characterization, and crystallization of Crocodylus siamensis hemoglobin.

    PubMed

    Jandaruang, Jinda; Siritapetawee, Jaruwan; Songsiriritthigul, Chomphunuch; Preecharram, Sutthidech; Azuma, Taoka; Dhiravisit, Apisak; Fukumori, Yoshihiro; Thammasirirak, Sompong

    2014-08-01

    Crocodylus siamensis hemoglobin was purified by a size exclusion chromatography, Sephacryl S-100 with buffer containing dithiothreitol. The purified Hb was dissociated to be two forms (α chain and β chain) which observed by SDS-PAGE, indicated that the C. siamensis Hb was an unpolymerized form. The unpolymerized Hb (composed of two α chains and two β chains) showed high oxygen affinity at 3.13 mmHg (P(50)) and 1.96 (n value), and a small Bohr effect (δH(+) = -0.29) at a pH of 6.9-8.4. Adenosine triphosphate did not affect the oxygenation properties, whereas bicarbonate ions strongly depressed oxygen affinity. Crude C. siamensis Hb solutions were showed high O(2) affinity at P(50) of 2.5 mmHg which may assure efficient utilization of the lung O(2) reserve during breath holding and diving. The purified Hbs were changed to cyanmethemoglobin forms prior crystallization. Rod- and plate-shaped crystals were obtained by the sitting-drop vapor-diffusion method at 5 °C using equal volumes of protein solution (37 mg/ml) and reservoir [10-13 % (w/v) PEG 4000, with 0.1 M Tris buffer in present of 0.2 M MgCl(2)·6H(2)O] solution at a pH of 7.0-8.5. PMID:24928538

  17. Differential sensitivity of Chironomus and human hemoglobin to gamma radiation.

    PubMed

    Gaikwad, Pallavi S; Panicker, Lata; Mohole, Madhura; Sawant, Sangeeta; Mukhopadhyaya, Rita; Nath, Bimalendu B

    2016-08-01

    Chironomus ramosus is known to tolerate high doses of gamma radiation exposure. Larvae of this insect possess more than 95% of hemoglobin (Hb) in its circulatory hemolymph. This is a comparative study to see effect of gamma radiation on Hb of Chironomus and humans, two evolutionarily diverse organisms one having extracellular and the other intracellular Hb respectively. Stability and integrity of Chironomus and human Hb to gamma radiation was compared using biophysical techniques like Dynamic Light Scattering (DLS), UV-visible spectroscopy, fluorescence spectrometry and CD spectroscopy after exposure of whole larvae, larval hemolymph, human peripheral blood, purified Chironomus and human Hb. Sequence- and structure-based bioinformatics methods were used to analyze the sequence and structural similarities or differences in the heme pockets of respective Hbs. Resistivity of Chironomus Hb to gamma radiation is remarkably higher than human Hb. Human Hb exhibited loss of heme iron at a relatively low dose of gamma radiation exposure as compared to Chironomus Hb. Unlike human Hb, the heme pocket of Chironomus Hb is rich in aromatic amino acids. Higher hydophobicity around heme pocket confers stability of Chironomus Hb compared to human Hb. Previously reported gamma radiation tolerance of Chironomus can be largely attributed to its evolutionarily ancient form of extracellular Hb as evident from the present study. PMID:27237970

  18. Possibility of improvement of hemoglobin properties as biosensors' detection element

    NASA Astrophysics Data System (ADS)

    Martirosyan, A. S.; Vardapetyan, H. R.; Tiratsuyan, S. G.; Hovhannisyan, A. A.

    2010-04-01

    Biosensors are finding numerous applications in clinical diagnosis, drug discovery, biotechnology, environmental monitoring and etc. Hemoglobin (Hb), a natural heme containing protein, exhibits enzymatic activity towards hydrogen peroxide, which is possible to improve by altering the heme orientation and/or changing the microenvironment in the vicinity of the heme sites. It was shown that hypericin (HY), a naphthodianthrone from Hipericum perforatum and a potent photosensitizer, interacts with Hb and causes conformational changes of the protein. These results were gained both in dark and under visible light exposure by absorption and fluorescence spectroscopy. It was shown that photodynamic influence of HY leads to Hb absorption decrease at Soret band, depending on HY concentration and irradiation doze. Excitation of Hb/HY complexes leads to reduction of some emission peaks, correlating with the concentration of HY, incubation and irradiation time. The incubation and irradiation of complexes leads to an increase in electrophoretic mobility of Hb and its peroxidase activity. Under the HY influence Hb properties as a hydrogen peroxide detector could be improved and an effective determination of peroxide formation could be achieved. This makes Hb an attractive 'recognition' element for construction of third-generation biosensors.

  19. Hemoglobin detection using carbon dots as a fluorescence probe.

    PubMed

    Barati, Ali; Shamsipur, Mojtaba; Abdollahi, Hamid

    2015-09-15

    Herein, we have described the application of high fluorescent carbon dots (CDs) without any surface modification as a simple and fast responding fluorescence probe for sensitive and selective determination of hemoglobin (Hb) in the presence of H2O2. Although Hb itself was able to quench the fluorescence of CDs, based on the inner filter effect (IFE) of the protein that affects both excitation and emission spectra of CDs, the presence of H2O2 resulted in further improvement of the sensitivity of Hb detection. The assay is based on the reaction of Hb with H2O2 that generates reactive oxygen species including hydroxyl (OH•) and superoxide (O2(•-)) radicals under heme degradation and/or iron release from Hb and the subsequent reaction of hydroxyl radicals, as strong oxidizing agents, with CDs resulting in high fluorescence quenching. The proposed probe was used for determination of Hb in concentration range of 1-100 nM with a detection limit of 0.4 nM. The method was successfully applied to the determination of Hb in human blood samples. PMID:25988918

  20. Inherited hemoglobin disorders in an Afro-Amazonian community: Saracura

    PubMed Central

    Cardoso, Greice Lemos; Takanashi, Silvania Yukiko Lins; Guerreiro, João Farias

    2012-01-01

    The most common hemoglobinopathies, viz, hemoglobins S and C, and α- and β-thalassemias, were investigated through the molecular screening of 116 subjects from the community of Saracura, comprising fugitive African slaves from farms of the municipality of Santarém, in the west of Pará State, Brazilian Amazon. The observed frequency of the HBB*S gene (0.9%) was significantly lower than that encountered in other Afro-derived communities in the region. Concomitantly, the absence of the HBB*C allele has been reported for most of the Afro-Amazonian communities thus far studied. As remnant populations of quilombos are generally small, the heterogeneous distribution of HBB*S and HBB*C alleles among them is probably due to genetic drift and/or founder effect. The observed frequency of 3.7 kb deletion in Saracura (8.5%) was consistent with the African origin of the population, with a certain degree of local differentiation and admixture with individuals of Caucasian ancestry, placed in evidence by the occurrence of - -(MED) deletion (1.2%), a common mutation in Mediterranean regions. As regards β-thalassemia, among the seven different mutations found in Saracura, three βo and two β+ mutations were of Mediterranean origin, and two β+ of African. Thus, only 28% of the local β-thalassemia mutations found in Saracura were of African origin. PMID:23055791

  1. Mechanisms of mammalian iron homeostasis

    PubMed Central

    Pantopoulos, Kostas; Porwal, Suheel Kumar; Tartakoff, Alan; Devireddy, L.

    2012-01-01

    Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in acquisition or distribution of the metal causes anemia; whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways, as well as in mechanisms underlying intracellular iron trafficking, an important but less-studied area of mammalian iron homeostasis. PMID:22703180

  2. An overview of mammalian pluripotency.

    PubMed

    Wu, Jun; Yamauchi, Takayoshi; Izpisua Belmonte, Juan Carlos

    2016-05-15

    Mammalian pluripotency is the ability to give rise to all somatic cells as well as the germ cells of an adult mammal. It is a unique feature of embryonic epiblast cells, existing only transiently, as cells pass through early developmental stages. By contrast, pluripotency can be captured and stabilized indefinitely in cell culture and can also be reactivated in differentiated cells via nuclear reprogramming. Pluripotent stem cells (PSCs) are the in vitro carriers of pluripotency and they can inhabit discrete pluripotent states depending on the stage at which they were derived and their culture conditions. Here, and in the accompanying poster, we provide a summary of mammalian pluripotency both in vivo and in vitro, and highlight recent and future applications of PSCs for basic and translational research. PMID:27190034

  3. Cytometry of mammalian sperm

    SciTech Connect

    Gledhill, B.L.

    1983-10-11

    Male germ cells respond dramatically to a variety of insults and are important reproductive dosimeters. Semen analyses are very useful in studies on the effects of drugs, chemicals, and environmental hazards on testicular function, male fertility and heritable germinal mutations. The accessibility of male cells makes them well suited for analytical cytology. We might automate the process of determining sperm morphology but should not do so solely for increased speed. Rather, richer tangible benefits will derive from cytometric evaluation through increased sensitivity, reduced subjectivity, standardization between investigators and laboratories, enhanced archival systems, and the benefits of easily exchanged standardized data. Inroads on the standardization of assays for motility and functional integrity are being made. Flow cytometric analysis of total DNA content of individual sperm is an insensitive means to detect exposure to reproductive toxins because of the small size and low frequency of the DNA content errors. Flow cytometry can be applied to determine the proportions of X- and Y-sperm in semen samples.

  4. Hemoglobin research and the origins of molecular medicine

    PubMed Central

    2008-01-01

    Much of our understanding of human physiology, and of many aspects of pathology, has its antecedents in laboratory and clinical studies of hemoglobin. Over the last century, knowledge of the genetics, functions, and diseases of the hemoglobin proteins has been refined to the molecular level by analyses of their crystallographic structures and by cloning and sequencing of their genes and surrounding DNA. In the last few decades, research has opened up new paradigms for hemoglobin related to processes such as its role in the transport of nitric oxide and the complex developmental control of the α-like and β-like globin gene clusters. It is noteworthy that this recent work has had implications for understanding and treating the prevalent diseases of hemoglobin, especially the use of hydroxyurea to elevate fetal hemoglobin in sickle cell disease. It is likely that current research will also have significant clinical implications, as well as lessons for other aspects of molecular medicine, the origin of which can be largely traced to this research tradition. PMID:18988877

  5. Obtaining antimicrobial peptides by controlled peptic hydrolysis of bovine hemoglobin.

    PubMed

    Adje, Estelle Yaba; Balti, Rafik; Kouach, Mostafa; Dhulster, Pascal; Guillochon, Didier; Nedjar-Arroume, Naïma

    2011-08-01

    Under standard conditions, the peptides and specially the active peptides were obtained from either the denatured hemoglobin that all structures are completely modified or either the native hemoglobin where all structures are intact. In these conditions, antibacterial peptides were isolated from a very complex peptidic hydrolysate which contains more than one hundred peptides having various sizes and characteristics, involving a complex purification process. The new hydrolysis conditions were obtained by using 40% methanol, 30% ethanol, 20% propanol or 10% butanol. These conditions, where only the secondary structure of hemoglobin retains intact, were followed in order to enrich the hydrolyzed hemoglobin by active peptides or obtain new antibacterial peptides. In these controlled peptic hydrolysis of hemoglobin, a selective and restrictive hydrolysate contained only 29 peptides was obtained. 26 peptides have an antibacterial activity against Micrococcus luteus, Listeria innocua, and Escherichia coli with MIC from 187.1 to 1 μM. Among these peptides, 13 new antibacterial peptides are obtained only in these new hydrolysis conditions. PMID:21510973

  6. Olfactory sensitivity in mammalian species.

    PubMed

    Wackermannová, M; Pinc, L; Jebavý, L

    2016-07-18

    Olfaction enables most mammalian species to detect and discriminate vast numbers of chemical structures called odorants and pheromones. The perception of such chemical compounds is mediated via two major olfactory systems, the main olfactory system and the vomeronasal system, as well as minor systems, such as the septal organ and the Grueneberg ganglion. Distinct differences exist not only among species but also among individuals in terms of their olfactory sensitivity; however, little is known about the mechanisms that determine these differences. In research on the olfactory sensitivity of mammals, scientists thus depend in most cases on behavioral testing. In this article, we reviewed scientific studies performed on various mammalian species using different methodologies and target chemical substances. Human and non-human primates as well as rodents and dogs are the most frequently studied species. Olfactory threshold studies on other species do not exist with the exception of domestic pigs. Olfactory testing performed on seals, elephants, and bats focused more on discriminative abilities than on sensitivity. An overview of olfactory sensitivity studies as well as olfactory detection ability in most studied mammalian species is presented here, focusing on comparable olfactory detection thresholds. The basics of olfactory perception and olfactory sensitivity factors are also described. PMID:27070753

  7. Mammalian lipocalin allergens--insights into their enigmatic allergenicity.

    PubMed

    Virtanen, T; Kinnunen, T; Rytkönen-Nissinen, M

    2012-04-01

    Most of the important mammal-derived respiratory allergens, as well as a milk allergen and a few insect allergens, belong to the lipocalin protein family. As mammalian lipocalin allergens are found in dander, saliva and urine, they disperse effectively and are widely present in the indoor environments. Initially, lipocalins were characterized as transport proteins for small, principally hydrophobic molecules, but now they are known to be involved in many other biological functions. Although the amino acid identity between lipocalins is generally at the level of 20-30%, it can be considerably higher. Lipocalin allergens do not exhibit any known physicochemical, functional or structural property that would account for their allergenicity, that is, the capacity to induce T-helper type 2 immunity against them. A distinctive feature of mammalian lipocalin allergens is their poor capacity to stimulate the cellular arm of the human or murine immune system. Nevertheless, they induce IgE production in a large proportion of atopic individuals exposed to the allergen source. The poor capacity of mammalian lipocalin allergens to stimulate the cellular immune system does not appear to result from the function of regulatory T cells. Instead, the T cell epitopes of mammalian lipocalin allergens are few and those examined have proved to be suboptimal. Moreover, the frequency of mammalian lipocalin allergen-specific CD4(+) T cells is very low in the peripheral blood. Importantly, recent research suggests that the lipocalin allergen-specific T cell repertoires differ considerably between allergic and healthy subjects. These observations are compatible with our hypothesis that the way CD4(+) T-helper cells recognize the epitopes of mammalian lipocalin allergens may be implicated in their allergenicity. Indeed, as several lipocalins exhibit homologies of 40-60% over species, mammalian lipocalin allergens may be immunologically at the borderline of self and non-self, which would not

  8. Signs of iron deficiency in copper-deficient and control rats fed bovine hemoglobin as the sole source of iron

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined whether hemoglobin (Hgb) as the sole source of dietary Fe could sustain normal Fe status in growing rats. Because adequate Cu status is required for efficient Fe absorption in the rat, we also determined the effects of Cu deficiency on Fe status of rats fed Fe as Hgb. One group of 24 r...

  9. [Regulative mechanisms of mammalian target of rapamycin signaling pathway in glomerular hypertrophy in diabetic nephropathy and interventional effects of Chinese herbal medicine].

    PubMed

    Yang, Jing-Jing; Huang, Yan-ru; Wan, Yi-gang; Shen, Shan-mei; Mao, Zhi-min; Wu, Wei; Yao, Jian

    2015-08-01

    Glomerular hypertrophy is the main pathological characteristic in the early stage of diabetic nephropathy (DN), and its regulatory mechanism is closely related to mammalian target of rapamycin (mTOR) signaling pathway activity. mTOR includes mTOR complex 1 (mTORC1) and mTOR complex 2(mTORC2), in which, the upstream pathway of mTORC1 is phosphatidylinositol-3-kinase (PI3K)/serine-threonine kinase(Akt)/adenosine monophosphate activated protein kinase(AMPK), and the representative signaling molecules in the downstream pathway of mTORC1 are 4E-binding proteins(4EBP) and phosphoprotein 70 S6Kinase(p70S6K). Some Chinese herbal extracts could improve cell proliferation via intervening the expressions of the key molecules in the upstream or downstream of PIK/Akt/mTOR signaling pathway in vivo. As for glomerular mesangial cells(MC) and podocyte, mTOR plays an important role in regulating glomerular inherent cells, including adjusting cell cycle, energy metabolism and matrix protein synthesis. Rapamycin, the inhibitor of mTOR, could suppress glomerular inherent cell hypertrophy, cell proliferation, glomerular basement membrane (GBM) thickening and mesangial matrix deposition in model rats with DN. Some Chinese herbal extracts could alleviate glomerular lesions by intervening mTOR signaling pathway activity in renal tissue of DN animal models or in renal inherent cells in vivo and in vitro. PMID:26790279

  10. Small-molecule agonists of mammalian Diaphanous-related (mDia) formins reveal an effective glioblastoma anti-invasion strategy.

    PubMed

    Arden, Jessica D; Lavik, Kari I; Rubinic, Kaitlin A; Chiaia, Nicolas; Khuder, Sadik A; Howard, Marthe J; Nestor-Kalinoski, Andrea L; Alberts, Arthur S; Eisenmann, Kathryn M

    2015-11-01

    The extensive invasive capacity of glioblastoma (GBM) makes it resistant to surgery, radiotherapy, and chemotherapy and thus makes it lethal. In vivo, GBM invasion is mediated by Rho GTPases through unidentified downstream effectors. Mammalian Diaphanous (mDia) family formins are Rho-directed effectors that regulate the F-actin cytoskeleton to support tumor cell motility. Historically, anti-invasion strategies focused upon mDia inhibition, whereas activation remained unexplored. The recent development of small molecules directly inhibiting or activating mDia-driven F-actin assembly that supports motility allows for exploration of their role in GBM. We used the formin inhibitor SMIFH2 and mDia agonists IMM-01/-02 and mDia2-DAD peptides, which disrupt autoinhibition, to examine the roles of mDia inactivation versus activation in GBM cell migration and invasion in vitro and in an ex vivo brain slice invasion model. Inhibiting mDia suppressed directional migration and spheroid invasion while preserving intrinsic random migration. mDia agonism abrogated both random intrinsic and directional migration and halted U87 spheroid invasion in ex vivo brain slices. Thus mDia agonism is a superior GBM anti-invasion strategy. We conclude that formin agonism impedes the most dangerous GBM component-tumor spread into surrounding healthy tissue. Formin activation impairs novel aspects of transformed cells and informs the development of anti-GBM invasion strategies. PMID:26354425

  11. The Genetics of Hemoglobin A2 Regulation in Sickle Cell Anemia

    PubMed Central

    Griffin, Paula J.; Sebastiani, Paola; Edward, Heather; Baldwin, Clinton T.; Gladwin, Mark; Gordeuk, Victor; Chui, David H.K.; Steinberg, Martin H.

    2014-01-01

    Hemoglobin A2, a tetramer of α- and δ-globin chains, comprises less than 3% of total hemoglobin in normal adults. In northern Europeans, single nucleotide polymorphisms (SNPs) in the HBS1L-MYB locus on chromosome 6q and the HBB cluster on chromosome 11p were associated with HbA2 levels. We examined the genetic basis of HbA2 variability in sickle cell anemia using genome-wide association studies (GWAS). HbA2 levels were associated with SNPs in the HBS1L-MYB interval that affect erythropoiesis and HbF expression and SNPs in BCL11A that regulate the γ-globin genes. These effects are mediated by the association of these loci with γ-globin gene expression and fetal hemoglobin (HbF) levels. The association of polymorphisms downstream of the β-globin gene (HBB) cluster on chromosome 11 with HbA2 was not mediated by HbF. In sickle cell anemia, levels of HbA2 appear to be modulated by trans-acting genes that affect HBG expression and perhaps also elements within the β-globin gene cluster. HbA2 is expressed pancellularly and can inhibit HbS polymerization. It remains to be seen if genetic regulators of HbA2 can be exploited for therapeutic purposes. PMID:25042611

  12. Synthesis of the Hemoglobin-Conjugated Polymer Micelles by Thiol Michael Addition Reactions.

    PubMed

    Qi, Yanxin; Li, Taihang; Wang, Yupeng; Wei, Xing; Li, Bin; Chen, Xuesi; Xie, Zhigang; Jing, Xiabin; Huang, Yubin

    2016-06-01

    Amphiphilic triblock copolymers mPEG-b-PMAC-b-PCL are synthesized using methoxyl poly(ethylene glycol), cyclic carbonic ester monomer including acryloyl group, and ε-caprolactone. Copolymers are self-assembled into core-shell micelles in aqueous solution. Thiolated hemoglobin (Hb) is conjugated with micelles sufficiently through thiol Michael addition reaction to form hemoglobin nanoparticles (HbNs) with 200 nm in diameter. The conjugation of Hb onto the micelle surface is further confirmed by X-ray photoelectron spectroscopy. Feeding ratio of copolymer micelles to Hb at 1:3 would lead to the highest hemoglobin loading efficiency 36.7 wt%. The UV results demonstrate that the gas transporting capacity of HbNs is well remained after Hb is conjugated with polymeric micelles. Furthermore, the obtained HbNs have no obvious detrimental effects on blood components in vitro. This system may thus have great potential as one of the candidates to be developed as oxygen carriers and provide a reference for the modification of protein drugs. PMID:26938024

  13. Low frequency vibrational modes of oxygenated myoglobin, hemoglobins, and modified derivatives.

    PubMed

    Jeyarajah, S; Proniewicz, L M; Bronder, H; Kincaid, J R

    1994-12-01

    The low frequency resonance Raman spectra of the dioxygen adducts of myoglobin, hemoglobin, its isolated subunits, mesoheme-substituted hemoglobin, and several deuteriated heme derivatives are reported. The observed oxygen isotopic shifts are used to assign the iron-oxygen stretching (approximately 570 cm-1) and the heretofore unobserved delta (Fe-O-O) bending (approximately 420 cm-1) modes. Although the delta (Fe-O-O) is not enhanced in the case of oxymyoglobin, it is observed for all the hemoglobin derivatives, its exact frequency being relatively invariable among the derivatives. The lack of sensitivity to H2O/D2O buffer exchange is consistent with our previous interpretation of H2O/D2O-induced shifts of v(O-O) in the resonance Raman spectra of dioxygen adducts of cobalt-substituted heme proteins; namely, that those shifts are associated with alterations in vibrational coupling of v(O-O) with internal modes of proximal histidyl imidazole rather than to steric or electronic effects of H/D exchange at the active site. No evidence is obtained for enhancement of the v(Fe-N) stretching frequency of the linkage between the heme iron and the imidazole group of the proximal histidine. PMID:7983043

  14. Impact of hemoglobin concentration and affinity for oxygen on tissue oxygenation: the case of hemoglobin-based oxygen carriers.

    PubMed

    Samaja, Michele; Terraneo, Laura

    2012-02-01

    In patients undergoing exchange-transfusion with hemoglobin (Hb)-based oxygen (O₂) carriers (HBOC), native Hb coexists with newly transfused Hb. The two Hb types share the same arterial and venous PO₂, but their affinities for O₂ vary. A simple spreadsheet model is described aiming at evaluating the contribution of each Hb type to the overall O₂ transport characteristics as a function of the batch Hb concentration and O₂ affinity in the HBOC solution, of the fraction of exchange-transfused blood/HBOC, and of the arterial PO₂. This model helps to yield a quantitative estimate of how tissues with high or low O₂ extraction respond to the changes cited above. The results show that the higher the exchange-transfusion ratio, the O₂ transport to tissues becomes progressively impaired. However, this effect is more critical at low batch Hb concentration and high O₂ affinity of the HBOC, especially for tissues/organs with high O₂ extraction, whereas the arterial PO₂ does not appear as critical. PMID:21848930

  15. An Atomistic View on Human Hemoglobin Carbon Monoxide Migration Processes

    PubMed Central

    Lucas, M. Fátima; Guallar, Víctor

    2012-01-01

    A significant amount of work has been devoted to obtaining a detailed atomistic knowledge of the human hemoglobin mechanism. Despite this impressive research, to date, the ligand diffusion processes remain unclear and controversial. Using recently developed computational techniques, PELE, we are capable of addressing the ligand migration processes. First, the methodology was tested on myoglobin's CO migration, and the results were compared with the wealth of theoretical and experimental studies. Then, we explored both hemoglobin tense and relaxed states and identified the differences between the α-and β-subunits. Our results indicate that the proximal site, equivalent to the Xe1 cavity in myoglobin, is never visited. Furthermore, strategically positioned residues alter the diffusion processes within hemoglobin's subunits and suggest that multiple pathways exist, especially diversified in the α-globins. A significant dependency of the ligand dynamics on the tertiary structure is also observed. PMID:22385860

  16. Electro-enzymatic degradation of chlorpyrifos by immobilized hemoglobin.

    PubMed

    Tang, Tiantian; Dong, Jing; Ai, Shiyun; Qiu, Yanyan; Han, Ruixia

    2011-04-15

    Electro-enzymatic processes, which are enzyme catalysis combined with electrochemical reactions, have been used in the degradation of many environment pollutants. For some pollutants, the catalytic mechanisms of the electrochemical-enzyme reaction are still poorly understood. In this paper, the degradation of chlorpyrifos by a combination of immobilized hemoglobin and in situ generated hydrogen peroxide is reported for the first time. Hemoglobin was immobilized on graphite felts to catalyze the removal of chlorpyrifos in an electrochemical-enzyme system. Under the optimal conditions, more than 98% of the chlorpyrifos was degraded. Furthermore, the degradation products of chlorpyrifos were also studied and identified using liquid chromatography-mass spectrometry analysis. The results suggest a possible degradation mechanism for chlorpyrifos with low power and high efficiency, reveal the feasibility of hemoglobin as a substitute for some expensive natural enzymes, and demonstrate the application of an electro-enzymatic process in the treatment of organophosphorus compounds in wastewater. PMID:21316849

  17. Hemoglobin, Growth, and Attention of Infants in Southern Ethiopia

    PubMed Central

    Aubuchon-Endsley, Nicki L.; Grant, Stephanie L.; Berhanu, Getenesh; Thomas, David G.; Schrader, Sarah E.; Eldridge, Devon; Kennedy, Tay; Hambidge, Michael

    2011-01-01

    Researchers tested male and female infants from rural Ethiopia to investigate relations among hemoglobin, anthropometry, and attention. They utilized a longitudinal design to examine differences in attention performance from 6 (M = 24.9 weeks, n = 89) to 9 months of age (M = 40.6 weeks, n = 85), differences hypothesized to be related to changes in iron status and growth delays. Stunting (length-for-age z-scores < −2.0) and attention performance [t(30) = −2.42, p = .022] worsened over time. Growth and hemoglobin predicted attention at 9 months [R2 = .15, p < .05], but not at 6. The use of the attention task at 9 months was supported. The study contributes to the knowledge base of hemoglobin, growth, and attention. PMID:21545582

  18. Towards regenerating the mammalian heart: challenges in evaluating experimentally induced adult mammalian cardiomyocyte proliferation.

    PubMed

    Zebrowski, David C; Becker, Robert; Engel, Felix B

    2016-05-01

    In recent years, there has been a dramatic increase in research aimed at regenerating the mammalian heart by promoting endogenous cardiomyocyte proliferation. Despite many encouraging successes, it remains unclear if we are any closer to achieving levels of mammalian cardiomyocyte proliferation for regeneration as seen during zebrafish regeneration. Furthermore, current cardiac regenerative approaches do not clarify whether the induced cardiomyocyte proliferation is an epiphenomena or responsible for the observed improvement in cardiac function. Moreover, due to the lack of standardized protocols to determine cardiomyocyte proliferation in vivo, it remains unclear if one mammalian regenerative factor is more effective than another. Here, we discuss current methods to identify and evaluate factors for the induction of cardiomyocyte proliferation and challenges therein. Addressing challenges in evaluating adult cardiomyocyte proliferation will assist in determining 1) which regenerative factors should be pursued in large animal studies; 2) if a particular level of cell cycle regulation presents a better therapeutic target than another (e.g., mitogenic receptors vs. cyclins); and 3) which combinatorial approaches offer the greatest likelihood of success. As more and more regenerative studies come to pass, progress will require a system that not only can evaluate efficacy in an objective manner but can also consolidate observations in a meaningful way. PMID:26921436

  19. Structural significance of the amino terminal residues in human hemoglobin

    SciTech Connect

    Hefta, S.A.

    1986-01-01

    The amino terminal valine residues on the alpha chains of human hemoglobin are known to be important for the function of the molecule. Allosteric effectors such as protons, chloride ions and metabolic anions such as 2,3-diphosphoglycerate bind or associate with these residues and facilitate the release of oxygen. Carbon dioxide also functions as an effector as it is partly transported from the tissues to the lungs by binding to the amino terminal residues. This research describes the semisynthetic alteration of this region and the hemoglobin analogs produced were analyzed by /sup 13/C NMR.

  20. Spectroscopic properties of the nitric oxide derivative of ferrous man, horse, and ruminant hemoglobins: a comparative study.

    PubMed

    Ascenzi, P; Coletta, M; Desideri, A; Petruzzelli, R; Polizio, F; Bolognesi, M; Condò, S G; Giardina, B

    1992-01-01

    The spectroscopic (EPR and absorbance) properties of the nitric oxide derivative of ferrous man, horse, buffalo, deer, mouflon, musk ox, ox, and reindeer hemoglobin (HbNO) have been investigated in the absence of any allosteric effector at pH 6.5 (in 0.1 M 2-[N-morpholino]ethanesulphonic acid/NaOH chloride-free buffer system), as well as at 100 K and/or 20 degrees C. Man and horse HbNO show spectroscopic properties that are generally taken as typical of the high affinity state of ferrous tetrameric Hb's; on the other hand, the spectroscopic properties of ruminant (i.e., buffalo, deer, mouflon, musk ox, ox, and reindeer) HbNO are characteristic of the low affinity conformation. These results are in keeping with the functional properties of the mammalian Hb's considered and have been related to the peculiar low oxygen affinity of ruminant Hb's. PMID:1316949