Science.gov

Sample records for mammalian photoreceptor transcriptional

  1. Distribution of cone photoreceptors in the mammalian retina.

    PubMed

    Szél, A; Röhlich, P; Caffé, A R; van Veen, T

    1996-12-15

    The retina of mammals contains various amounts of cone photoreceptors that are relatively evenly distributed and display a radially or horizontally oriented area of peak density. In most mammalian species two spectrally different classes of cone can be distinguished with various histochemical and physiological methods. These cone classes occur in a relatively constant ratio, middle-to-longwave sensitive cones being predominant over short-wave cones. Recent observations do not support the idea that each cone subpopulation is uniformly distributed across the retina. With appropriate type-specific markers, unexpected patterns of colour cone topography have been revealed in certain species. In the mouse and the rabbit, the "standard" uniform pattern was found to be confined exclusively to the dorsal retina. In a ventral zone of variable width all cones express short-wave pigment, a phenomenon whose biological significance is not known yet. Dorso-ventral asymmetries have been described in lower vertebrates, matching the spectral distribution of light reaching the retina from various sectors of the visual field. It is not clear, however, whether the retinal cone fields in mammals carry out a function similar to that of their counterparts in fish and amphibians. Since in a number of mammalian species short-wave cones are the first to differentiate, and the expression of the short-wave pigment seems to be the default pathway of cone differentiation, we suggest that the short-wave sensitive cone fields are rudimentary areas conserving an ancestral stage of the photopigment evolution. PMID:9016448

  2. Common Transcriptional Mechanisms for Visual Photoreceptor Cell Differentiation among Pancrustaceans

    PubMed Central

    Mahato, Simpla; Morita, Shinichi; Tucker, Abraham E.; Liang, Xulong; Jackowska, Magdalena; Friedrich, Markus; Shiga, Yasuhiro; Zelhof, Andrew C.

    2014-01-01

    A hallmark of visual rhabdomeric photoreceptors is the expression of a rhabdomeric opsin and uniquely associated phototransduction molecules, which are incorporated into a specialized expanded apical membrane, the rhabdomere. Given the extensive utilization of rhabdomeric photoreceptors in the eyes of protostomes, here we address whether a common transcriptional mechanism exists for the differentiation of rhabdomeric photoreceptors. In Drosophila, the transcription factors Pph13 and Orthodenticle (Otd) direct both aspects of differentiation: rhabdomeric opsin transcription and rhabdomere morphogenesis. We demonstrate that the orthologs of both proteins are expressed in the visual systems of the distantly related arthropod species Tribolium castaneum and Daphnia magna and that their functional roles are similar in these species. In particular, we establish that the Pph13 homologs have the ability to bind a subset of Rhodopsin core sequence I sites and that these sites are present in key phototransduction genes of both Tribolium and Daphnia. Furthermore, Pph13 and Otd orthologs are capable of executing deeply conserved functions of photoreceptor differentiation as evidenced by the ability to rescue their respective Drosophila mutant phenotypes. Pph13 homologs are equivalent in their ability to direct both rhabdomere morphogenesis and opsin expression within Drosophila, whereas Otd paralogs demonstrate differential abilities to regulate photoreceptor differentiation. Finally, loss-of-function analyses in Tribolium confirm the conserved requirement of Pph13 and Otd in regulating both rhabdomeric opsin transcription and rhabdomere morphogenesis. Taken together, our data identify components of a regulatory framework for rhabdomeric photoreceptor differentiation in Pancrustaceans, providing a foundation for defining ancestral regulatory modules of rhabdomeric photoreceptor differentiation. PMID:24991928

  3. Transcriptional Regulation of Rod Photoreceptor Homeostasis Revealed by In Vivo NRL Targetome Analysis

    PubMed Central

    Hao, Hong; Kim, Douglas S.; Klocke, Bernward; Johnson, Kory R.; Cui, Kairong; Gotoh, Norimoto; Zang, Chongzhi; Gregorski, Janina; Gieser, Linn; Peng, Weiqun; Fann, Yang; Seifert, Martin; Zhao, Keji; Swaroop, Anand

    2012-01-01

    A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP–Seq) data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP–Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP–Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s) for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis. PMID:22511886

  4. The locations of mitochondria in mammalian photoreceptors: relation to retinal vasculature.

    PubMed

    Stone, Jonathan; van Driel, Diana; Valter, Krisztina; Rees, Sandra; Provis, Jan

    2008-01-16

    Adult mammalian photoreceptors are elongated cells, and their mitochondria are sequestered to the ends of the cell, to the inner segments and (in some species) to axon terminals in the outer plexiform layer (OPL). We hypothesised that mitochondria migrate to these locations towards sources of oxygen, from the choroid and (in some species) from the deep capillaries of the retinal circulation. Six mammalian species were surveyed, using electron and light microscopy, including immunohistochemistry for the mitochondrial enzyme cytochrome oxidase (CO). In all 6 species, mitochondria were absent from photoreceptor somas and were numerous in inner segments. Mitochondria were prominent in axon terminals in 3 species (mouse, rat, human) with a retinal circulation and were absent from those terminals in 3 species (wallaby, rat, guinea pig) with avascular retinas. Further, in a human developmental series, it was evident that mitochondria migrate within rods and cones, towards and eventually past the outer limiting membrane (OLM), into the inner segment. In Müller and RPE cells also, mitochondria concentrated at the external surface of the cells. Neurones located in the inner layers of avascular retinas have mitochondria, but their expression of CO is low. Mitochondrial locations in photoreceptors, Müller and RPE cells are economically explained as the result of migration within the cell towards sources of oxygen. In photoreceptors, this migration results in a separation of mitochondria from the nuclear genome; this separation may be a factor in the vulnerability of photoreceptors to mutations, toxins and environmental stresses, which other retinal neurones survive. PMID:18048005

  5. Genetic Dissection of Dual Roles for the Transcription Factor six7 in Photoreceptor Development and Patterning in Zebrafish

    PubMed Central

    Sotolongo-Lopez, Mailin; Alvarez-Delfin, Karen; Saade, Carole J.; Vera, Daniel L.; Fadool, James M.

    2016-01-01

    The visual system of a particular species is highly adapted to convey detailed ecological and behavioral information essential for survival. The consequences of structural mutations of opsins upon spectral sensitivity and environmental adaptation have been studied in great detail, but lacking is knowledge of the potential influence of alterations in gene regulatory networks upon the diversity of cone subtypes and the variation in the ratio of rods and cones observed in numerous diurnal and nocturnal species. Exploiting photoreceptor patterning in cone-dominated zebrafish, we uncovered two independent mechanisms by which the sine oculis homeobox homolog 7 (six7) regulates photoreceptor development. In a genetic screen, we isolated the lots-of-rods-junior (ljrp23ahub) mutation that resulted in an increased number and uniform distribution of rods in otherwise normal appearing larvae. Sequence analysis, genome editing using TALENs and knockdown strategies confirm ljrp23ahub as a hypomorphic allele of six7, a teleost orthologue of six3, with known roles in forebrain patterning and expression of opsins. Based on the lack of predicted protein-coding changes and a deletion of a conserved element upstream of the transcription start site, a cis-regulatory mutation is proposed as the basis of the reduced expression of six7 in ljrp23ahub. Comparison of the phenotypes of the hypomorphic and knock-out alleles provides evidence of two independent roles in photoreceptor development. EdU and PH3 labeling show that the increase in rod number is associated with extended mitosis of photoreceptor progenitors, and TUNEL suggests that the lack of green-sensitive cones is the result of cell death of the cone precursor. These data add six7 to the small but growing list of essential genes for specification and patterning of photoreceptors in non-mammalian vertebrates, and highlight alterations in transcriptional regulation as a potential source of photoreceptor variation across species

  6. Genetic Dissection of Dual Roles for the Transcription Factor six7 in Photoreceptor Development and Patterning in Zebrafish.

    PubMed

    Sotolongo-Lopez, Mailin; Alvarez-Delfin, Karen; Saade, Carole J; Vera, Daniel L; Fadool, James M

    2016-04-01

    The visual system of a particular species is highly adapted to convey detailed ecological and behavioral information essential for survival. The consequences of structural mutations of opsins upon spectral sensitivity and environmental adaptation have been studied in great detail, but lacking is knowledge of the potential influence of alterations in gene regulatory networks upon the diversity of cone subtypes and the variation in the ratio of rods and cones observed in numerous diurnal and nocturnal species. Exploiting photoreceptor patterning in cone-dominated zebrafish, we uncovered two independent mechanisms by which the sine oculis homeobox homolog 7 (six7) regulates photoreceptor development. In a genetic screen, we isolated the lots-of-rods-junior (ljrp23ahub) mutation that resulted in an increased number and uniform distribution of rods in otherwise normal appearing larvae. Sequence analysis, genome editing using TALENs and knockdown strategies confirm ljrp23ahub as a hypomorphic allele of six7, a teleost orthologue of six3, with known roles in forebrain patterning and expression of opsins. Based on the lack of predicted protein-coding changes and a deletion of a conserved element upstream of the transcription start site, a cis-regulatory mutation is proposed as the basis of the reduced expression of six7 in ljrp23ahub. Comparison of the phenotypes of the hypomorphic and knock-out alleles provides evidence of two independent roles in photoreceptor development. EdU and PH3 labeling show that the increase in rod number is associated with extended mitosis of photoreceptor progenitors, and TUNEL suggests that the lack of green-sensitive cones is the result of cell death of the cone precursor. These data add six7 to the small but growing list of essential genes for specification and patterning of photoreceptors in non-mammalian vertebrates, and highlight alterations in transcriptional regulation as a potential source of photoreceptor variation across species

  7. Transcription Coactivators p300 and CBP Are Necessary for Photoreceptor-Specific Chromatin Organization and Gene Expression

    PubMed Central

    Hennig, Anne K.; Peng, Guang-Hua; Chen, Shiming

    2013-01-01

    Rod and cone photoreceptor neurons in the mammalian retina possess specialized cellular architecture and functional features for converting light to a neuronal signal. Establishing and maintaining these characteristics requires appropriate expression of a specific set of genes, which is tightly regulated by a network of photoreceptor transcription factors centered on the cone-rod homeobox protein CRX. CRX recruits transcription coactivators p300 and CBP to acetylate promoter-bound histones and activate transcription of target genes. To further elucidate the role of these two coactivators, we conditionally knocked out Ep300 and/or CrebBP in differentiating rods or cones, using opsin-driven Cre recombinase. Knockout of either factor alone exerted minimal effects, but loss of both factors severely disrupted target cell morphology and function: the unique nuclear chromatin organization seen in mouse rods was reversed, accompanied by redistribution of nuclear territories associated with repressive and active histone marks. Transcription of many genes including CRX targets was severely impaired, correlating with reduced histone H3/H4 acetylation (the products of p300/CBP) on target gene promoters. Interestingly, the presence of a single wild-type allele of either coactivator prevented many of these defects, with Ep300 more effective than Cbp. These results suggest that p300 and CBP play essential roles in maintaining photoreceptor-specific structure, function and gene expression. PMID:23922782

  8. Discs of mammalian rod photoreceptors form through the membrane evagination mechanism

    PubMed Central

    Ding, Jin-Dong; Salinas, Raquel Y.

    2015-01-01

    Photoreceptor discs are membrane organelles harboring components of the visual signal transduction pathway. The mechanism by which discs form remains enigmatic and is the subject of a major controversy. Classical studies suggest that discs are formed as serial plasma membrane evaginations, whereas a recent alternative postulates that discs, at least in mammalian rods, are formed through intracellular vesicular fusion. We evaluated these models in mouse rods using methods that distinguish between the intracellular vesicular structures and plasma membrane folds independently of their appearance in electron micrographs. The first differentiated membranes exposed to the extracellular space from intracellular membranes; the second interrogated the orientation of protein molecules in new discs. Both approaches revealed that new discs are plasma membrane evaginations. We further demonstrated that vesiculation and plasma membrane enclosure at the site of new disc formation are artifacts of tissue fixation. These data indicate that all vertebrate photoreceptors use the evolutionary conserved membrane evagination mechanism to build their discs. PMID:26527746

  9. Separable transcriptional regulatory domains within Otd control photoreceptor terminal differentiation events

    PubMed Central

    McDonald, Elizabeth C.; Xie, Baotong; Workman, Michael; Charlton-Perkins, Mark; Terrell, David A.; Reischl, Joachim; Wimmer, Ernst A.; Gebelein, Brian A.

    2010-01-01

    Summary Orthodenticle (Otd)-related transcription factors are essential for anterior patterning and brain morphogenesis from Cnidaria to Mammals, and genetically underlie several human retinal pathologies. Despite their key developmental functions, relatively little is known regarding the molecular basis of how these factors regulate downstream effectors in a cell- or tissue-specific manner. Many invertebrate and vertebrate species encode two to three Otd proteins, whereas Drosophila encodes a single Otd protein. In the fly retina, Otd controls rhabdomere morphogenesis of all photoreceptors and regulates distinct Rhodopsin-encoding genes in a photoreceptor subtype-specific manner. Here, we performed a structure-function analysis of Otd during Drosophila eye development using in vivo rescue experiments and in vitro transcriptional regulatory assays. Our findings indicate that Otd requires at least three distinct transcriptional regulatory domains to control photoreceptor-specific rhodopsin gene expression and photoreceptor morphogenesis. Our results also uncover a previously unknown role for Otd in preventing co-expression of sensory receptors in blue vs. green-sensitive R8 photoreceptors. Sequence analysis indicates that many of the transcriptional regulatory domains identified here are conserved in multiple Diptera Otd-related proteins. Thus, these studies provide a basis for identifying shared molecular pathways involved in a wide range of developmental processes. PMID:20732315

  10. R7 Photoreceptor Specification in the Developing Drosophila Eye: The Role of the Transcription Factor Deadpan

    PubMed Central

    Mavromatakis, Yannis Emmanuel; Tomlinson, Andrew

    2016-01-01

    As cells proceed along their developmental pathways they make a series of sequential cell fate decisions. Each of those decisions needs to be made in a robust manner so there is no ambiguity in the state of the cell as it proceeds to the next stage. Here we examine the decision made by the Drosophila R7 precursor cell to become a photoreceptor and ask how the robustness of that decision is achieved. The transcription factor Tramtrack (Ttk) inhibits photoreceptor assignment, and previous studies found that the RTK-induced degradation of Ttk was critically required for R7 specification. Here we find that the transcription factor Deadpan (Dpn) is also required; it is needed to silence ttk transcription, and only when Ttk protein degradation and transcriptional silencing occur together is the photoreceptor fate robustly achieved. Dpn expression needs to be tightly restricted to R7 precursors, and we describe the role played by Ttk in repressing dpn transcription. Thus, Dpn and Ttk act as mutually repressive transcription factors, with Dpn acting to ensure that Ttk is effectively removed from R7, and Ttk acting to prevent Dpn expression in other cells. Furthermore, we find that N activity is required to promote dpn transcription, and only in R7 precursors does the removal of Ttk coincide with high N activity, and only in this cell does Dpn expression result. PMID:27427987

  11. ADAPTATION OF MAMMALIAN PHOTORECEPTORS TO BACKGROUND LIGHT: PUTATIVE ROLE FOR DIRECT MODULATION OF PHOSPHODIESTERASE

    PubMed Central

    Fain, Gordon L

    2011-01-01

    All sensory receptors adapt. As the mean level of light or sound or odor is altered, the sensitivity of the receptor is adjusted to permit the cell to function over as wide a range of ambient stimulation as possible. In a rod photoreceptor, adaptation to maintained background light produces a decrease (or “sag) in the response to the prolonged illumination, as well as an acceleration in response decay time and a Weber-Fechner-like decrease in sensitivity. Earlier work on salamander indicated that adaptation is controlled by the intracellular concentration of Ca2+. Three Ca2+-dependent mechanisms were subsequently identified, namely regulation of guanylyl cyclase, modulation of activated rhodopsin lifetime, and alteration of channel opening probability, with the contribution of the cyclase thought to be the most important. Later experiments on mouse that exploit the powerful techniques of molecular genetics have shown that cyclase does indeed play a significant role in mammalian rods, but that much of adaptation remains even when regulation of cyclase and both of the other proposed pathways have been genetically deleted. The identity of the missing mechanism or mechanisms is unclear, but recent speculation has focused on direct modulation of spontaneous and light-activated phosphodiesterase. PMID:21922272

  12. The bHLH Transcription Factor NeuroD Governs Photoreceptor Genesis and Regeneration Through Delta-Notch Signaling

    PubMed Central

    Taylor, Scott M.; Alvarez-Delfin, Karen; Saade, Carole J.; Thomas, Jennifer L.; Thummel, Ryan; Fadool, James M.; Hitchcock, Peter F.

    2015-01-01

    Purpose Photoreceptor genesis in the retina requires precise regulation of progenitor cell competence, cell cycle exit, and differentiation, although information around the mechanisms that govern these events currently is lacking. In zebrafish, the basic helix-loop-helix (bHLH) transcription factor NeuroD governs photoreceptor genesis, but the signaling pathways through which NeuroD functions are unknown. The purpose of this study was to identify these pathways, and during photoreceptor genesis, Notch signaling was investigated as the putative mediator of NeuroD function. Methods In embryos, genetic mosaic analysis was used to determine if NeuroD functions is cell- or non–cell-autonomous. Morpholino-induced NeuroD knockdown, CRISPR/Cas9 mutation, and pharmacologic and transgenic approaches were used, followed by in situ hybridization, immunocytochemistry, and quantitative RT-PCR (qRT-PCR), to identify mechanisms through which NeuroD functions. In adults, following photoreceptor ablation and NeuroD knockdown, similar methods as above were used to identify NeuroD function during photoreceptor regeneration. Results In embryos, NeuroD function is non–cell-autonomous, NeuroD knockdown increases Notch pathway gene expression, Notch inhibition rescues the NeuroD knockdown-induced deficiency in cell cycle exit but not photoreceptor maturation, and Notch activation and CRISPR/Cas9 mutation of neurod recapitulate NeuroD knockdown. In adults, NeuroD knockdown prevents cell cycle exit and photoreceptor regeneration and increases Notch pathway gene expression, and Notch inhibition rescues this phenotype. Conclusions These data demonstrate that during embryonic development, NeuroD governs photoreceptor genesis via non–cell-autonomous mechanisms and that, during photoreceptor development and regeneration, Notch signaling is a mechanistic link between NeuroD and cell cycle exit. In contrast, during embryonic development, NeuroD governs photoreceptor maturation via mechanisms

  13. Mammalian Transcription-Coupled Excision Repair

    PubMed Central

    Vermeulen, Wim; Fousteri, Maria

    2013-01-01

    Transcriptional arrest caused by DNA damage is detrimental for cells and organisms as it impinges on gene expression and thereby on cell growth and survival. To alleviate transcriptional arrest, cells trigger a transcription-dependent genome surveillance pathway, termed transcription-coupled nucleotide excision repair (TC-NER) that ensures rapid removal of such transcription-impeding DNA lesions and prevents persistent stalling of transcription. Defective TC-NER is causatively linked to Cockayne syndrome, a rare severe genetic disorder with multisystem abnormalities that results in patients’ death in early adulthood. Here we review recent data on how damage-arrested transcription is actively coupled to TC-NER in mammals and discuss new emerging models concerning the role of TC-NER-specific factors in this process. PMID:23906714

  14. No evidence for a genetic blueprint: The case of the “complex” mammalian photoreceptor

    PubMed Central

    Kumaramanickavel, G; Denton, M J; Legge, M

    2015-01-01

    Despite the intensity of the search for genes causing inherited retinal degenerations over the past 3 decades, of the approximately 200 disease genes identified to date, all appear to be ordinary housekeeping genes specifying proteins playing basic structural and functional roles in the mature photoreceptor cells. No genes or genetic elements have been identified which can be construed as having a specific morphogenic role, directing the development of the cytoarchitecture of any particular retinal cell. The evidence suggests that the cytoarchitecture of the retinal photoreceptors, although enormously complex, arises from the self-organization of the cells constituents without any regulation or direction from an external genetic blueprint. PMID:26044481

  15. Association of Shank 1A Scaffolding Protein with Cone Photoreceptor Terminals in the Mammalian Retina

    PubMed Central

    Stella, Salvatore L.; Vila, Alejandro; Hung, Albert Y.; Rome, Michael E.; Huynh, Uyenchi; Sheng, Morgan; Kreienkamp, Hans-Juergen; Brecha, Nicholas C.

    2012-01-01

    Photoreceptor terminals contain post-synaptic density (PSD) proteins e.g., PSD-95/PSD-93, but their role at photoreceptor synapses is not known. PSDs are generally restricted to post-synaptic boutons in central neurons and form scaffolding with multiple proteins that have structural and functional roles in neuronal signaling. The Shank family of proteins (Shank 1–3) functions as putative anchoring proteins for PSDs and is involved in the organization of cytoskeletal/signaling complexes in neurons. Specifically, Shank 1 is restricted to neurons and interacts with both receptors and signaling molecules at central neurons to regulate plasticity. However, it is not known whether Shank 1 is expressed at photoreceptor terminals. In this study we have investigated Shank 1A localization in the outer retina at photoreceptor terminals. We find that Shank 1A is expressed presynaptically in cone pedicles, but not rod spherules, and it is absent from mice in which the Shank 1 gene is deleted. Shank 1A co-localizes with PSD-95, peanut agglutinin, a marker of cone terminals, and glycogen phosphorylase, a cone specific marker. These findings provide convincing evidence for Shank 1A expression in both the inner and outer plexiform layers, and indicate a potential role for PSD-95/Shank 1 complexes at cone synapses in the outer retina. PMID:22984429

  16. Knockout of PARG110 confers resistance to cGMP-induced toxicity in mammalian photoreceptors

    PubMed Central

    Sahaboglu, A; Tanimoto, N; Bolz, S; Garrido, M G; Ueffing, M; Seeliger, M W; Löwenheim, H; Ekström, P; Paquet-Durand, F

    2014-01-01

    Hereditary retinal degeneration (RD) relates to a heterogeneous group of blinding human diseases in which the light sensitive neurons of the retina, the photoreceptors, die. RD is currently untreatable and the underlying cellular mechanisms remain poorly understood. However, the activity of the enzyme poly-ADP-ribose polymerase-1 (PARP1) and excessive generation of poly-ADP-ribose (PAR) polymers in photoreceptor nuclei have been shown to be causally involved in RD. The activity of PARP1 is to a large extent governed by its functional antagonist, poly-ADP-glycohydrolase (PARG), which thus also may have a role in RD. To investigate this, we analyzed PARG expression in the retina of wild-type (wt) mice and in the rd1 mouse model for human RD, and detected increased PARG protein in a subset of degenerating rd1 photoreceptors. Knockout (KO) animals lacking the 110 kDa nuclear PARG isoform were furthermore analyzed, and their retinal morphology and function were indistinguishable from wild-type animals. Organotypic wt retinal explants can be experimentally treated to induce rd1-like photoreceptor death, but PARG110 KO retinal explants were unexpectedly highly resistant to such treatment. The resistance was associated with decreased PAR accumulation and low PARP activity, indicating that PARG110 may positively regulate PARP1, an event that therefore is absent in PARG110 KO tissue. Our study demonstrates a causal involvement of PARG110 in the process of photoreceptor degeneration. Contrasting its anticipated role as a functional antagonist, absence of PARG110 correlated with low PARP activity, suggesting that PARG110 and PARP1 act in a positive feedback loop, which is especially active under pathologic conditions. This in turn highlights both PARG110 and PARP1 as potential targets for neuroprotective treatments for RD. PMID:24853412

  17. Regulation of mammalian transcription and splicing by Nuclear RNAi

    PubMed Central

    Kalantari, Roya; Chiang, Cheng-Ming; Corey, David R.

    2016-01-01

    RNA interference (RNAi) is well known as a mechanism for controlling mammalian mRNA translation in the cytoplasm, but what would be the consequences if it also functions in cell nuclei? Although RNAi has also been found in nuclei of plants, yeast, and other organisms, there has been relatively little progress towards understanding the potential involvement of mammalian RNAi factors in nuclear processes including transcription and splicing. This review summarizes evidence for mammalian RNAi factors in cell nuclei and mechanisms that might contribute to the control of gene expression. When RNAi factors bind small RNAs, they form ribonucleoprotein complexes that can be selective for target sequences within different classes of nuclear RNA substrates. The versatility of nuclear RNAi may supply a previously underappreciated layer of regulation to transcription, splicing, and other nuclear processes. PMID:26612865

  18. A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds

    PubMed Central

    Nakane, Yusuke; Ikegami, Keisuke; Ono, Hiroko; Yamamoto, Naoyuki; Yoshida, Shosei; Hirunagi, Kanjun; Ebihara, Shizufumi; Kubo, Yoshihiro; Yoshimura, Takashi

    2010-01-01

    It has been known for many decades that nonmammalian vertebrates detect light by deep brain photoreceptors that lie outside the retina and pineal organ to regulate seasonal cycle of reproduction. However, the identity of these photoreceptors has so far remained unclear. Here we report that Opsin 5 is a deep brain photoreceptive molecule in the quail brain. Expression analysis of members of the opsin superfamily identified as Opsin 5 (OPN5; also known as Gpr136, Neuropsin, PGR12, and TMEM13) mRNA in the paraventricular organ (PVO), an area long believed to be capable of phototransduction. Immunohistochemistry identified Opsin 5 in neurons that contact the cerebrospinal fluid in the PVO, as well as fibers extending to the external zone of the median eminence adjacent to the pars tuberalis of the pituitary gland, which translates photoperiodic information into neuroendocrine responses. Heterologous expression of Opsin 5 in Xenopus oocytes resulted in light-dependent activation of membrane currents, the action spectrum of which showed peak sensitivity (λmax) at ∼420 nm. We also found that short-wavelength light, i.e., between UV-B and blue light, induced photoperiodic responses in eye-patched, pinealectomized quail. Thus, Opsin 5 appears to be one of the deep brain photoreceptive molecules that regulates seasonal reproduction in birds. PMID:20679218

  19. Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways.

    PubMed

    Kianianmomeni, Arash; Hallmann, Armin

    2015-02-01

    Photosynthetic organisms, e.g., plants including green algae, use a sophisticated light-sensing system, composed of primary photoreceptors and additional downstream signaling components, to monitor changes in the ambient light environment towards adjust their growth and development. Although a variety of cellular processes, e.g., initiation of cleavage division and final cellular differentiation, have been shown to be light-regulated in the green alga Volvox carteri, little is known about the underlying light perception and signaling pathways. This multicellular alga possesses at least 12 photoreceptors, i.e., one phototropin (VcPhot), four cryptochromes (VcCRYa, VcCRYp, VcCRYd1, and VcCRYd2), and seven members of rhodopsin-like photoreceptors (VR1, VChR1, VChR2, VcHKR1, VcHKR2, VcHKR3, and VcHKR4), which display distinct light-dependent chemical processes based on their protein architectures and associated chromophores. Gene expression analyses could show that the transcript levels of some of the photoreceptor genes (e.g., VChR1 and VcHKR1) accumulate during division cleavages, while others (e.g., VcCRYa, VcCRYp, and VcPhot) accumulate during final cellular differentiation. However, the pattern of transcript accumulation changes when the alga switches to the sexual development. Eight photoreceptor genes, e.g., VcPhot, VcCRYp, and VcHKR1, are highly expressed in the somatic cells, while only the animal-type rhodopsin VR1 was found to be highly expressed in the reproductive cells/embryos during both asexual and sexual life cycles. Moreover, accumulation of VChR1 and VcCRYa transcripts is more sensitive to light and changes in response to more than one light quality. Obviously, different regulatory mechanisms underlying gene expression control transcript accumulation of photoreceptors not only during development, but also in a cell-type specific way and in response to various external signals such as light quality. The transcriptional patterns described in this study

  20. Modular construction of mammalian gene circuits using TALE transcriptional repressors.

    PubMed

    Li, Yinqing; Jiang, Yun; Chen, He; Liao, Weixi; Li, Zhihua; Weiss, Ron; Xie, Zhen

    2015-03-01

    An important goal of synthetic biology is the rational design and predictable implementation of synthetic gene circuits using standardized and interchangeable parts. However, engineering of complex circuits in mammalian cells is currently limited by the availability of well-characterized and orthogonal transcriptional repressors. Here, we introduce a library of 26 reversible transcription activator-like effector repressors (TALERs) that bind newly designed hybrid promoters and exert transcriptional repression through steric hindrance of key transcriptional initiation elements. We demonstrate that using the input-output transfer curves of our TALERs enables accurate prediction of the behavior of modularly assembled TALER cascade and switch circuits. We also show that TALER switches using feedback regulation exhibit improved accuracy for microRNA-based HeLa cancer cell classification versus HEK293 cells. Our TALER library is a valuable toolkit for modular engineering of synthetic circuits, enabling programmable manipulation of mammalian cells and helping elucidate design principles of coupled transcriptional and microRNA-mediated post-transcriptional regulation. PMID:25643171

  1. Direct Evidence for Daily Plasticity of Electrical Coupling between Rod Photoreceptors in the Mammalian Retina

    PubMed Central

    Jin, Nan Ge

    2016-01-01

    Rod photoreceptors are electrically coupled through gap junctions. Coupling is a key determinant of their light response properties, but whether rod electrical coupling is dynamically regulated remains elusive and controversial. Here, we have obtained direct measurements of the conductance between adjacent rods in mouse retina and present evidence that rod electrical coupling strength is dependent on the time of day, the lighting conditions, and the mouse strain. Specifically, we show in CBA/Ca mice that under circadian conditions, the rod junctional conductance has a median value of 98 pS during the subjective day and of 493 pS during the subjective night. In C57BL/6 mice, the median junctional conductance between dark-adapted rods is ∼140 pS, regardless of the time in the circadian cycle. Adaptation to bright light decreases the rod junctional conductance to ∼0 pS, regardless of the time of day or the mouse strain. Together, these results establish the high degree of plasticity of rod electrical coupling over the course of the day. Estimates of the rod coupling strength will provide a foundation for further investigations of rod interactions and the role of rod coupling in the ability of the visual system to anticipate, assimilate, and respond to the daily changes in ambient light intensity. SIGNIFICANCE STATEMENT Many cells in the CNS communicate via gap junctions, or electrical synapses, the regulation of which remains largely unknown. Here, we show that the strength of electrical coupling between rod photoreceptors of the retina is regulated by the time of day and the lighting conditions. This mechanism may help us understand some key aspects of day and night vision as well as some visual malfunctions. PMID:26740659

  2. A heteromeric transcription factor required for mammalian RNA polymerase II.

    PubMed Central

    Kitajima, S; Tanaka, Y; Kawaguchi, T; Nagaoka, T; Weissman, S M; Yasukochi, Y

    1990-01-01

    A general transcription factor, FC, essential for specific initiation of in vitro transcription by mammalian RNA polymerase II was identified and a procedure developed to purify it to near homogeneity from HeLa cell nuclei. Purified FC is composed of two polypeptides of apparent molecular masses 80 kDa and 30 kDa, on SDS-PAGE, and has a native size of 280 kDa estimated by gel filtration column. Both polypeptides were shown to be essential for reconstituting in vitro transcription activity. Biochemical analysis showed that the 80 kDa and 30 kDa components were present in a 1:1 molar ratio. FC was also demonstrated to interact directly or indirectly with purified RNA polymerase II. Similarities between FC and transcription factors reported by others from human, rat or Drosophila cells are discussed. Images PMID:2395645

  3. Noncoding RNAs: Regulators of the Mammalian Transcription Machinery.

    PubMed

    Eidem, Tess M; Kugel, Jennifer F; Goodrich, James A

    2016-06-19

    Transcription by RNA polymerase II (Pol II) is required to produce mRNAs and some noncoding RNAs (ncRNAs) within mammalian cells. This coordinated process is precisely regulated by multiple factors, including many recently discovered ncRNAs. In this perspective, we will discuss newly identified ncRNAs that facilitate DNA looping, regulate transcription factor binding, mediate promoter-proximal pausing of Pol II, and/or interact with Pol II to modulate transcription. Moreover, we will discuss new roles for ncRNAs, as well as a novel Pol II RNA-dependent RNA polymerase activity that regulates an ncRNA inhibitor of transcription. As the multifaceted nature of ncRNAs continues to be revealed, we believe that many more ncRNA species and functions will be discovered. PMID:26920110

  4. Minireview: The Role of Nuclear Receptors in Photoreceptor Differentiation and Disease

    PubMed Central

    Swaroop, Anand

    2012-01-01

    Rod and cone photoreceptors are specialized sensory cells that mediate vision. Transcriptional controls are critical for the development and long-term survival of photoreceptors; when these controls become ineffective, retinal dysfunction or degenerative disease may result. This review discusses the role of nuclear receptors, a class of ligand-regulated transcription factors, at key stages of photoreceptor life in the mammalian retina. Nuclear receptors with known ligands, such as retinoids or thyroid hormone, together with several orphan receptors without identified physiological ligands, complement other classes of transcription factors in directing the differentiation and functional maintenance of photoreceptors. The potential of nuclear receptors to respond to ligands introduces versatility into the control of photoreceptor development and function and may suggest new opportunities for treatments of photoreceptor disease. PMID:22556342

  5. The Transcription Factor ATF5 Mediates a Mammalian Mitochondrial UPR.

    PubMed

    Fiorese, Christopher J; Schulz, Anna M; Lin, Yi-Fan; Rosin, Nadine; Pellegrino, Mark W; Haynes, Cole M

    2016-08-01

    Mitochondrial dysfunction is pervasive in human pathologies such as neurodegeneration, diabetes, cancer, and pathogen infections as well as during normal aging. Cells sense and respond to mitochondrial dysfunction by activating a protective transcriptional program known as the mitochondrial unfolded protein response (UPR(mt)), which includes genes that promote mitochondrial protein homeostasis and the recovery of defective organelles [1, 2]. Work in Caenorhabditis elegans has shown that the UPR(mt) is regulated by the transcription factor ATFS-1, which is regulated by organelle partitioning. Normally, ATFS-1 accumulates within mitochondria, but during respiratory chain dysfunction, high levels of reactive oxygen species (ROS), or mitochondrial protein folding stress, a percentage of ATFS-1 accumulates in the cytosol and traffics to the nucleus where it activates the UPR(mt) [2]. While similar transcriptional responses have been described in mammals [3, 4], how the UPR(mt) is regulated remains unclear. Here, we describe a mammalian transcription factor, ATF5, which is regulated similarly to ATFS-1 and induces a similar transcriptional response. ATF5 expression can rescue UPR(mt) signaling in atfs-1-deficient worms requiring the same UPR(mt) promoter element identified in C. elegans. Furthermore, mammalian cells require ATF5 to maintain mitochondrial activity during mitochondrial stress and promote organelle recovery. Combined, these data suggest that regulation of the UPR(mt) is conserved from worms to mammals. PMID:27426517

  6. How to Build Transcriptional Network Models of Mammalian Pattern Formation

    PubMed Central

    Kioussi, Chrissa; Gross, Michael K.

    2008-01-01

    Background Genetic regulatory networks of sequence specific transcription factors underlie pattern formation in multicellular organisms. Deciphering and representing the mammalian networks is a central problem in development, neurobiology, and regenerative medicine. Transcriptional networks specify intermingled embryonic cell populations during pattern formation in the vertebrate neural tube. Each embryonic population gives rise to a distinct type of adult neuron. The homeodomain transcription factor Lbx1 is expressed in five such populations and loss of Lbx1 leads to distinct respecifications in each of the five populations. Methodology/Principal Findings We have purified normal and respecified pools of these five populations from embryos bearing one or two copies of the null Lbx1GFP allele, respectively. Microarrays were used to show that expression levels of 8% of all transcription factor genes were altered in the respecified pool. These transcription factor genes constitute 20–30% of the active nodes of the transcriptional network that governs neural tube patterning. Half of the 141 regulated nodes were located in the top 150 clusters of ultraconserved non-coding regions. Generally, Lbx1 repressed genes that have expression patterns outside of the Lbx1-expressing domain and activated genes that have expression patterns inside the Lbx1-expressing domain. Conclusions/Significance Constraining epistasis analysis of Lbx1 to only those cells that normally express Lbx1 allowed unprecedented sensitivity in identifying Lbx1 network interactions and allowed the interactions to be assigned to a specific set of cell populations. We call this method ANCEA, or active node constrained epistasis analysis, and think that it will be generally useful in discovering and assigning network interactions to specific populations. We discuss how ANCEA, coupled with population partitioning analysis, can greatly facilitate the systematic dissection of transcriptional networks that

  7. The transcription factor GTF2IRD1 regulates the topology and function of photoreceptors by modulating photoreceptor gene expression across the retina.

    PubMed

    Masuda, Tomohiro; Zhang, Xiaodong; Berlinicke, Cindy; Wan, Jun; Yerrabelli, Anitha; Conner, Elizabeth A; Kjellstrom, Sten; Bush, Ronald; Thorgeirsson, Snorri S; Swaroop, Anand; Chen, Shiming; Zack, Donald J

    2014-11-12

    The mechanisms that specify photoreceptor cell-fate determination, especially as regards to short-wave-sensitive (S) versus medium-wave-sensitive (M) cone identity, and maintain their nature and function, are not fully understood. Here we report the importance of general transcription factor II-I repeat domain-containing protein 1 (GTF2IRD1) in maintaining M cone cell identity and function as well as rod function. In the mouse, GTF2IRD1 is expressed in cell-fate determined photoreceptors at postnatal day 10. GTF2IRD1 binds to enhancer and promoter regions in the mouse rhodopsin, M- and S-opsin genes, but regulates their expression differentially. Through interaction with the transcription factors CRX and thyroid hormone receptor β 2, it enhances M-opsin expression, whereas it suppresses S-opsin expression; and with CRX and NRL, it enhances rhodopsin expression. In an apparent paradox, although GTF2IRD1 is widely expressed in multiple cell types across the retina, knock-out of GTF2IRD1 alters the retinal expression of only a limited number of annotated genes. Interestingly, however, the null mutation leads to altered topology of cone opsin expression in the retina, with aberrant S-opsin overexpression and M-opsin underexpression in M cones. Gtf2ird1-null mice also demonstrate abnormal M cone and rod electrophysiological responses. These findings suggest an important role for GTF2IRD1 in regulating the level and topology of rod and cone gene expression, and in maintaining normal retinal function. PMID:25392503

  8. The Transcription Factor GTF2IRD1 Regulates the Topology and Function of Photoreceptors by Modulating Photoreceptor Gene Expression across the Retina

    PubMed Central

    Masuda, Tomohiro; Zhang, Xiaodong; Berlinicke, Cindy; Wan, Jun; Yerrabelli, Anitha; Conner, Elizabeth A.; Kjellstrom, Sten; Bush, Ronald; Thorgeirsson, Snorri S.; Swaroop, Anand; Chen, Shiming

    2014-01-01

    The mechanisms that specify photoreceptor cell-fate determination, especially as regards to short-wave-sensitive (S) versus medium-wave-sensitive (M) cone identity, and maintain their nature and function, are not fully understood. Here we report the importance of general transcription factor II-I repeat domain-containing protein 1 (GTF2IRD1) in maintaining M cone cell identity and function as well as rod function. In the mouse, GTF2IRD1 is expressed in cell-fate determined photoreceptors at postnatal day 10. GTF2IRD1 binds to enhancer and promoter regions in the mouse rhodopsin, M- and S-opsin genes, but regulates their expression differentially. Through interaction with the transcription factors CRX and thyroid hormone receptor β 2, it enhances M-opsin expression, whereas it suppresses S-opsin expression; and with CRX and NRL, it enhances rhodopsin expression. In an apparent paradox, although GTF2IRD1 is widely expressed in multiple cell types across the retina, knock-out of GTF2IRD1 alters the retinal expression of only a limited number of annotated genes. Interestingly, however, the null mutation leads to altered topology of cone opsin expression in the retina, with aberrant S-opsin overexpression and M-opsin underexpression in M cones. Gtf2ird1-null mice also demonstrate abnormal M cone and rod electrophysiological responses. These findings suggest an important role for GTF2IRD1 in regulating the level and topology of rod and cone gene expression, and in maintaining normal retinal function. PMID:25392503

  9. Gap-junctional coupling of mammalian rod photoreceptors and its effect on visual detection

    PubMed Central

    Li, Peter H.; Verweij, Jan; Long, James H.; Schnapf, Julie L.

    2012-01-01

    The presence of gap junctions between rods in mammalian retina suggests a role for rod-rod coupling in human vision. Rod coupling is known to reduce response variability, but because junctional conductances are not known, the downstream effects on visual performance are uncertain. Here we assessed rod coupling in guinea pig retina by measuring: 1) the variability in responses to dim flashes, 2) Neurobiotin tracer coupling, and 3) junctional conductances. Results were consolidated into an electrical network model and a model of human psychophysical detection. Guinea pig rods form tracer pools of 1 to ~20 rods, with junctional conductances averaging ~350 pS. We calculate that coupling will reduce human dark-adapted sensitivity ~10% by impairing the noise filtering of the synapse between rods and rod bipolar cells. However, coupling also mitigates synaptic saturation and is thus calculated to improve sensitivity when stimuli are spatially restricted or are superimposed over background illumination. PMID:22399777

  10. Synthetic mammalian trigger-controlled bipartite transcription factors

    PubMed Central

    Folcher, Marc; Xie, Mingqi; Spinnler, Andrea; Fussenegger, Martin

    2013-01-01

    Synthetic biology has significantly advanced the design of synthetic control devices, gene circuits and networks that can reprogram mammalian cells in a trigger-inducible manner. Prokaryotic helix-turn-helix motifs have become the standard resource to design synthetic mammalian transcription factors that tune chimeric promoters in a small molecule-responsive manner. We have identified a family of Actinomycetes transcriptional repressor proteins showing a tandem TetR-family signature and have used a synthetic biology-inspired approach to reveal the potential control dynamics of these bi-partite regulators. Daisy-chain assembly of well-characterized prokaryotic repressor proteins such as TetR, ScbR, TtgR or VanR and fusion to either the Herpes simplex transactivation domain VP16 or the Krueppel-associated box domain (KRAB) of the human kox-1 gene resulted in synthetic bi- and even tri-partite mammalian transcription factors that could reversibly program their individual chimeric or hybrid promoters for trigger-adjustable transgene expression using tetracycline (TET), γ-butyrolactones, phloretin and vanillic acid. Detailed characterization of the bi-partite ScbR-TetR-VP16 (ST-TA) transcription factor revealed independent control of TET- and γ-butyrolactone-responsive promoters at high and double-pole double-throw (DPDT) relay switch qualities at low intracellular concentrations. Similar to electromagnetically operated mechanical DPDT relay switches that control two electric circuits by a fully isolated low-power signal, TET programs ST-TA to progressively switch from TetR-specific promoter-driven expression of transgene one to ScbR-specific promoter-driven transcription of transgene two while ST-TA flips back to exclusive transgene 1 expression in the absence of the trigger antibiotic. We suggest that natural repressors and activators with tandem TetR-family signatures may also provide independent as well as DPDT-mediated control of two sets of transgenes in

  11. Structural models of mammalian mitochondrial transcription factor B2.

    PubMed

    Moustafa, Ibrahim M; Uchida, Akira; Wang, Yao; Yennawar, Neela; Cameron, Craig E

    2015-08-01

    Mammalian mitochondrial DNA (mtDNA) encodes 13 core proteins of oxidative phosphorylation, 12S and 16S ribosomal RNAs, and 22 transfer RNAs. Mutations and deletions of mtDNA and/or nuclear genes encoding mitochondrial proteins have been implicated in a wide range of diseases. Thus, cell survival and health of the organism require some steady-state level of the mitochondrial genome and its expression. In mammalian systems, the mitochondrial transcription factor B2 (mtTFB2 or TFB2M) is indispensable for transcription initiation. TFB2M along with two other proteins, mitochondrial RNA polymerase (mtRNAP or POLRMT) and mitochondrial transcription factor A (mtTFA or TFAM), are key components of the core mitochondrial transcription apparatus. Structural information for POLRMT and TFAM from humans is available; however, there is no available structure for TFB2M. In the present study, three-dimensional structure of TFB2M from humans was modeled using a combination of homology modeling and small-angle X-ray scattering (SAXS). The TFB2M structural model adds substantively to our understanding of TFB2M function. An explanation for the low or absent RNA methyltransferase activity is provided. A putative nucleic acid-binding site is revealed. The amino and carboxy termini, while likely lacking defined secondary structure, appear to adopt compact, globular conformations, thus "capping" the ends of the protein. Finally, sites of interaction of TFB2M with other factors, protein and/or nucleic acid, are suggested by the identification of species-specific clusters on the surface of the protein. PMID:26066983

  12. Optical Control of Mammalian Endogenous Transcription and Epigenetic States

    PubMed Central

    Trevino, Alexandro; Hsu, Patrick D.; Heidenreich, Matthias; Cong, Le; Platt, Randall J.; Scott, David A.; Church, George M.; Zhang, Feng

    2013-01-01

    The dynamic nature of gene expression enables cellular programming, homeostasis, and environmental adaptation in living systems. Dissection of causal gene functions in cellular and organismal processes therefore necessitates approaches that enable spatially and temporally precise modulation of gene expression. Recently, a variety of microbial and plant-derived light-sensitive proteins have been engineered as optogenetic actuators, enabling high precision spatiotemporal control of many cellular functions1-11. However, versatile and robust technologies that enable optical modulation of transcription in the mammalian endogenous genome remain elusive. Here, we describe the development of Light-Inducible Transcriptional Effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALE DNA-binding domain12-14 with the light-sensitive cryptochrome 2 protein and its interacting partner CIB1 from Arabidopsis thaliana. LITEs do not require additional exogenous chemical co-factors, are easily customized to target many endogenous genomic loci, and can be activated within minutes with reversibility3,4,6,7,15. LITEs can be packaged into viral vectors and genetically targeted to probe specific cell populations. We have applied this system in primary mouse neurons, as well as in the brain of awake mice in vivo to mediate reversible modulation of mammalian endogenous gene expression as well as targeted epigenetic chromatin modifications. The LITE system establishes a novel mode of optogenetic control of endogenous cellular processes and enables direct testing of the causal roles of genetic and epigenetic regulation in normal biological processes and disease states. PMID:23877069

  13. Mammalian transcription factor A is a core component of the mitochondrial transcription machinery.

    PubMed

    Shi, Yonghong; Dierckx, Anke; Wanrooij, Paulina H; Wanrooij, Sjoerd; Larsson, Nils-Göran; Wilhelmsson, L Marcus; Falkenberg, Maria; Gustafsson, Claes M

    2012-10-01

    Transcription factor A (TFAM) functions as a DNA packaging factor in mammalian mitochondria. TFAM also binds sequence-specifically to sites immediately upstream of mitochondrial promoters, but there are conflicting data regarding its role as a core component of the mitochondrial transcription machinery. We here demonstrate that TFAM is required for transcription in mitochondrial extracts as well as in a reconstituted in vitro transcription system. The absolute requirement of TFAM can be relaxed by conditions that allow DNA breathing, i.e., low salt concentrations or negatively supercoiled DNA templates. The situation is thus very similar to that described in nuclear RNA polymerase II-dependent transcription, in which the free energy of supercoiling can circumvent the need for a subset of basal transcription factors at specific promoters. In agreement with these observations, we demonstrate that TFAM has the capacity to induce negative supercoils in DNA, and, using the recently developed nucleobase analog FRET-pair tC(O)-tC(nitro), we find that TFAM distorts significantly the DNA structure. Our findings differ from recent observations reporting that TFAM is not a core component of the mitochondrial transcription machinery. Instead, our findings support a model in which TFAM is absolutely required to recruit the transcription machinery during initiation of transcription. PMID:23012404

  14. Transcriptional regulation of mammalian autophagy at a glance.

    PubMed

    Füllgrabe, Jens; Ghislat, Ghita; Cho, Dong-Hyung; Rubinsztein, David C

    2016-08-15

    Macroautophagy, hereafter referred to as autophagy, is a catabolic process that results in the lysosomal degradation of cytoplasmic contents ranging from abnormal proteins to damaged cell organelles. It is activated  under diverse conditions, including nutrient deprivation and hypoxia. During autophagy, members of the core autophagy-related (ATG) family of proteins mediate membrane rearrangements, which lead to the engulfment and degradation of cytoplasmic cargo. Recently, the nuclear regulation of autophagy, especially by transcription factors and histone modifiers, has gained increased attention. These factors are not only involved in rapid responses to autophagic stimuli, but also regulate the long-term outcome of autophagy. Now there are more than 20 transcription factors that have been shown to be linked to the autophagic process. However, their interplay and timing appear enigmatic as several have been individually shown to act as major regulators of autophagy. This Cell Science at a Glance article and the accompanying poster highlights the main cellular regulators of transcription involved in mammalian autophagy and their target genes. PMID:27528206

  15. Regulatory Divergence of Transcript Isoforms in a Mammalian Model System

    PubMed Central

    Thybert, David; Stefflova, Klara; Watt, Stephen; Flicek, Paul; Brazma, Alvis; Marioni, John C.; Odom, Duncan T.

    2015-01-01

    Phenotypic differences between species are driven by changes in gene expression and, by extension, by modifications in the regulation of the transcriptome. Investigation of mammalian transcriptome divergence has been restricted to analysis of bulk gene expression levels and gene-internal splicing. Using allele-specific expression analysis in inter-strain hybrids of Mus musculus, we determined the contribution of multiple cellular regulatory systems to transcriptome divergence, including: alternative promoter usage, transcription start site selection, cassette exon usage, alternative last exon usage, and alternative polyadenylation site choice. Between mouse strains, a fifth of genes have variations in isoform usage that contribute to transcriptomic changes, half of which alter encoded amino acid sequence. Virtually all divergence in isoform usage altered the post-transcriptional regulatory instructions in gene UTRs. Furthermore, most genes with isoform differences between strains contain changes originating from multiple regulatory systems. This result indicates widespread cross-talk and coordination exists among different regulatory systems. Overall, isoform usage diverges in parallel with and independently to gene expression evolution, and the cis and trans regulatory contribution to each differs significantly. PMID:26339903

  16. Nuclear Import of the Parsley bZIP Transcription Factor CPRF2 Is Regulated by Phytochrome Photoreceptors

    PubMed Central

    Kircher, Stefan; Wellmer, Frank; Nick, Peter; Rügner, Alexander; Schäfer, Eberhard; Harter, Klaus

    1999-01-01

    In plants, light perception by photoreceptors leads to differential expression of an enormous number of genes. An important step for differential gene expression is the regulation of transcription factor activities. To understand these processes in light signal transduction we analyzed the three well-known members of the common plant regulatory factor (CPRF) family from parsley (Petroselinum crispum). Here, we demonstrate that these CPRFs, which belong to the basic- region leucine-zipper (bZIP) domain-containing transcription factors, are differentially distributed within parsley cells, indicating different regulatory functions within the regulatory networks of the plant cell. In particular, we show by cell fractionation and immunolocalization approaches that CPRF2 is transported from the cytosol into the nucleus upon irradiation due to action of phytochrome photoreceptors. Two NH2-terminal domains responsible for cytoplasmic localization of CPRF2 in the dark were characterized by deletion analysis using a set of CPRF2-green fluorescent protein (GFP) gene fusion constructs transiently expressed in parsley protoplasts. We suggest that light-induced nuclear import of CPRF2 is an essential step in phytochrome signal transduction. PMID:9922448

  17. Nr2e3-directed transcriptional regulation of genes involved in photoreceptor development and cell-type specific phototransduction.

    PubMed

    Haider, Neena B; Mollema, Nissa; Gaule, Meghan; Yuan, Yang; Sachs, Andrew J; Nystuen, Arne M; Naggert, Jürgen K; Nishina, Patsy M

    2009-09-01

    The retinal transcription factor Nr2e3 plays a key role in photoreceptor development and function. In this study we examine gene expression in the retina of Nr2e3(rd7/rd7) mutants with respect to wild-type control mice, to identify genes that are misregulated and hence potentially function in the Nr2e3 transcriptional network. Quantitative candidate gene real time PCR and subtractive hybridization approaches were used to identify transcripts that were misregulated in Nr2e3(rd7/rd7) mice. Chromatin immunoprecipitation assays were then used to determine which of the misregulated transcripts were direct targets of NR2E3. We identified 24 potential targets of NR2E3. In the developing retina, NR2E3 targets transcription factors such as Ror1, Rorg, and the nuclear hormone receptors Nr1d1 and Nr2c1. In the mature retina NR2E3 targets several genes including the rod specific gene Gnb1 and cone specific genes blue opsin, and two of the cone transducin subunits, Gnat2 and Gnb3. In addition, we identified 5 novel transcripts that are targeted by NR2E3. While mislocalization of proteins between rods and cones was not observed, we did observe diminished concentration of GNB1 protein in adult Nr2e3(rd7/rd7) retinas. These studies identified novel transcriptional pathways that are potentially targeted by Nr2e3 in the retina and specifically demonstrate a novel role for NR2E3 in regulating genes involved in phototransduction. PMID:19379737

  18. Mammalian Glutaminase Gls2 Gene Encodes Two Functional Alternative Transcripts by a Surrogate Promoter Usage Mechanism

    PubMed Central

    Campos-Sandoval, José A.; Manzanares, Elisa; Lobo, Carolina; Segura, J. A.; Alonso, Francisco J.; Matés, José M.; Márquez, Javier

    2012-01-01

    Background Glutaminase is expressed in most mammalian tissues and cancer cells, but the regulation of its expression is poorly understood. An essential step to accomplish this goal is the characterization of its species- and cell-specific isoenzyme pattern of expression. Our aim was to identify and characterize transcript variants of the mammalian glutaminase Gls2 gene. Methodology/Principal Findings We demonstrate for the first time simultaneous expression of two transcript variants from the Gls2 gene in human, rat and mouse. A combination of RT-PCR, primer-extension analysis, bioinformatics, real-time PCR, in vitro transcription and translation and immunoblot analysis was applied to investigate GLS2 transcripts in mammalian tissues. Short (LGA) and long (GAB) transcript forms were isolated in brain and liver tissue of human, rat and mouse. The short LGA transcript arises by a combination of two mechanisms of transcriptional modulation: alternative transcription initiation and alternative promoter. The LGA variant contains both the transcription start site (TSS) and the alternative promoter in the first intron of the Gls2 gene. The full human LGA transcript has two in-frame ATGs in the first exon, which are missing in orthologous rat and mouse transcripts. In vitro transcription and translation of human LGA yielded two polypeptides of the predicted size, but only the canonical full-length protein displayed catalytic activity. Relative abundance of GAB and LGA transcripts showed marked variations depending on species and tissues analyzed. Conclusions/Significance This is the first report demonstrating expression of alternative transcripts of the mammalian Gls2 gene. Transcriptional mechanisms giving rise to GLS2 variants and isolation of novel GLS2 transcripts in human, rat and mouse are presented. Results were also confirmed at the protein level, where catalytic activity was demonstrated for the human LGA protein. Relative abundance of GAB and LGA transcripts was

  19. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins

    NASA Astrophysics Data System (ADS)

    Mitchell, Pamela J.; Tjian, Robert

    1989-07-01

    The cloning of genes encoding mammalian DNA binding transcription factors for RNA polymerase II has provided the opportunity to analyze the structure and function of these proteins. This review summarizes recent studies that define structural domains for DNA binding and transcriptional activation functions in sequence-specific transcription factors. The mechanisms by which these factors may activate transcriptional initiation and by which they may be regulated to achieve differential gene expression are also discussed.

  20. Extensive Polycistronism and Antisense Transcription in the Mammalian Hox Clusters

    PubMed Central

    Mainguy, Gaëll; Koster, Jan; Woltering, Joost; Jansen, Hans; Durston, Antony

    2007-01-01

    The Hox clusters play a crucial role in body patterning during animal development. They encode both Hox transcription factor and micro-RNA genes that are activated in a precise temporal and spatial sequence that follows their chromosomal order. These remarkable collinear properties confer functional unit status for Hox clusters. We developed the TranscriptView platform to establish high resolution transcriptional profiling and report here that transcription in the Hox clusters is far more complex than previously described in both human and mouse. Unannotated transcripts can represent up to 60% of the total transcriptional output of a cluster. In particular, we identified 14 non-coding Transcriptional Units antisense to Hox genes, 10 of which (70%) have a detectable mouse homolog. Most of these Transcriptional Units in both human and mouse present conserved sizeable sequences (>40 bp) overlapping Hox transcripts, suggesting that these Hox antisense transcripts are functional. Hox clusters also display at least seven polycistronic clusters, i.e., different genes being co-transcribed on long isoforms (up to 30 kb). This work provides a reevaluated framework for understanding Hox gene function and dys-function. Such extensive transcriptions may provide a structural explanation for Hox clustering. PMID:17406680

  1. Synthetic Biology Platform for Sensing and Integrating Endogenous Transcriptional Inputs in Mammalian Cells.

    PubMed

    Angelici, Bartolomeo; Mailand, Erik; Haefliger, Benjamin; Benenson, Yaakov

    2016-08-30

    One of the goals of synthetic biology is to develop programmable artificial gene networks that can transduce multiple endogenous molecular cues to precisely control cell behavior. Realizing this vision requires interfacing natural molecular inputs with synthetic components that generate functional molecular outputs. Interfacing synthetic circuits with endogenous mammalian transcription factors has been particularly difficult. Here, we describe a systematic approach that enables integration and transduction of multiple mammalian transcription factor inputs by a synthetic network. The approach is facilitated by a proportional amplifier sensor based on synergistic positive autoregulation. The circuits efficiently transduce endogenous transcription factor levels into RNAi, transcriptional transactivation, and site-specific recombination. They also enable AND logic between pairs of arbitrary transcription factors. The results establish a framework for developing synthetic gene networks that interface with cellular processes through transcriptional regulators. PMID:27545896

  2. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters

    PubMed Central

    Lavender, Christopher A.; Hoffman, Jackson A.; Trotter, Kevin W.; Gilchrist, Daniel A.; Bennett, Brian D.; Burkholder, Adam B.; Fargo, David C.; Archer, Trevor K.

    2016-01-01

    Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment. PMID:27487356

  3. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters.

    PubMed

    Lavender, Christopher A; Cannady, Kimberly R; Hoffman, Jackson A; Trotter, Kevin W; Gilchrist, Daniel A; Bennett, Brian D; Burkholder, Adam B; Burd, Craig J; Fargo, David C; Archer, Trevor K

    2016-08-01

    Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment. PMID:27487356

  4. Unbiased reconstruction of a mammalian transcriptional network mediating the differential response to pathogens

    PubMed Central

    Amit, Ido; Garber, Manuel; Chevrier, Nicolas; Leite, Ana Paula; Donner, Yoni; Eisenhaure, Thomas; Guttman, Mitchell; Grenier, Jennifer K.; Li, Weibo; Zuk, Or; Schubert, Lisa A.; Birditt, Brian; Shay, Tal; Goren, Alon; Zhang, Xiaolan; Smith, Zachary; Deering, Raquel; McDonald, Rebecca C.; Cabili, Moran; Bernstein, Bradley E; Rinn, John L.; Meissner, Alex; Root, David E.; Hacohen, Nir; Regev, Aviv

    2010-01-01

    Models of mammalian regulatory networks controlling gene expression have been inferred from genomic data, yet have largely not been validated. We present an unbiased strategy to systematically perturb candidate regulators and monitor cellular transcriptional responses. We apply this approach to derive regulatory networks that control the transcriptional response of mouse primary dendritic cells (DCs) to pathogens. Our approach revealed the regulatory functions of 125 transcription factors, chromatin modifiers, and RNA binding proteins and constructed a network model consisting of two dozen core regulators and 76 fine-tuners that help explain how pathogen-sensing pathways achieve specificity. This study establishes a broadly-applicable, comprehensive and unbiased approach to reveal the wiring and functions of a regulatory network controlling a major transcriptional response in primary mammalian cells. PMID:19729616

  5. CRISPR transcriptional repression devices and layered circuits in mammalian cells

    PubMed Central

    Kiani, Samira; Beal, Jacob; Ebrahimkhani, Mohammad R; Huh, Jin; Hall, Richard N; Xie, Zhen; Li, Yinqing; Weiss, Ron

    2014-01-01

    A key obstacle to creating sophisticated genetic circuits has been the lack of scalable device libraries. Here we present a modular transcriptional repression architecture based on clustered regularly interspaced palindromic repeats (CRISPR) system and examine approaches for regulated expression of guide RNAs in human cells. Subsequently we demonstrate that CRISPR regulatory devices can be layered to create functional cascaded circuits, which provide a valuable toolbox for engineering purposes. PMID:24797424

  6. CRISPR transcriptional repression devices and layered circuits in mammalian cells.

    PubMed

    Kiani, Samira; Beal, Jacob; Ebrahimkhani, Mohammad R; Huh, Jin; Hall, Richard N; Xie, Zhen; Li, Yinqing; Weiss, Ron

    2014-07-01

    A key obstacle to creating sophisticated genetic circuits has been the lack of scalable device libraries. Here we present a modular transcriptional repression architecture based on clustered regularly interspaced palindromic repeats (CRISPR) system and examine approaches for regulated expression of guide RNAs in human cells. Subsequently we demonstrate that CRISPR regulatory devices can be layered to create functional cascaded circuits, which provide a valuable toolbox for engineering purposes. PMID:24797424

  7. Hindsight regulates photoreceptor axon targeting through transcriptional control of jitterbug/Filamin and multiple genes involved in axon guidance in Drosophila.

    PubMed

    Oliva, Carlos; Molina-Fernandez, Claudia; Maureira, Miguel; Candia, Noemi; López, Estefanía; Hassan, Bassem; Aerts, Stein; Cánovas, José; Olguín, Patricio; Sierralta, Jimena

    2015-09-01

    During axon targeting, a stereotyped pattern of connectivity is achieved by the integration of intrinsic genetic programs and the response to extrinsic long and short-range directional cues. How this coordination occurs is the subject of intense study. Transcription factors play a central role due to their ability to regulate the expression of multiple genes required to sense and respond to these cues during development. Here we show that the transcription factor HNT regulates layer-specific photoreceptor axon targeting in Drosophila through transcriptional control of jbug/Filamin and multiple genes involved in axon guidance and cytoskeleton organization.Using a microarray analysis we identified 235 genes whose expression levels were changed by HNT overexpression in the eye primordia. We analyzed nine candidate genes involved in cytoskeleton regulation and axon guidance, six of which displayed significantly altered gene expression levels in hnt mutant retinas. Functional analysis confirmed the role of OTK/PTK7 in photoreceptor axon targeting and uncovered Tiggrin, an integrin ligand, and Jbug/Filamin, a conserved actin- binding protein, as new factors that participate of photoreceptor axon targeting. Moreover, we provided in silico and molecular evidence that supports jbug/Filamin as a direct transcriptional target of HNT and that HNT acts partially through Jbug/Filamin in vivo to regulate axon guidance. Our work broadens the understanding of how HNT regulates the coordinated expression of a group of genes to achieve the correct connectivity pattern in the Drosophila visual system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1018-1032, 2015. PMID:25652545

  8. Deep Vertebrate Roots for Mammalian Zinc Finger Transcription Factor Subfamilies

    PubMed Central

    Liu, Hui; Chang, Li-Hsin; Sun, Younguk; Lu, Xiaochen; Stubbs, Lisa

    2014-01-01

    While many vertebrate transcription factor (TF) families are conserved, the C2H2 zinc finger (ZNF) family stands out as a notable exception. In particular, novel ZNF gene types have arisen, duplicated, and diverged independently throughout evolution to yield many lineage-specific TF genes. This evolutionary dynamic not only raises many intriguing questions but also severely complicates identification of those ZNF genes that remain functionally conserved. To address this problem, we searched for vertebrate “DNA binding orthologs” by mining ZNF loci from eight sequenced genomes and then aligning the patterns of DNA-binding amino acids, or “fingerprints,” extracted from the encoded ZNF motifs. Using this approach, we found hundreds of lineage-specific genes in each species and also hundreds of orthologous groups. Most groups of orthologs displayed some degree of fingerprint divergence between species, but 174 groups showed fingerprint patterns that have been very rigidly conserved. Focusing on the dynamic KRAB-ZNF subfamily—including nearly 400 human genes thought to possess potent KRAB-mediated epigenetic silencing activities—we found only three genes conserved between mammals and nonmammalian groups. These three genes, members of an ancient familial cluster, encode an unusual KRAB domain that functions as a transcriptional activator. Evolutionary analysis confirms the ancient provenance of this activating KRAB and reveals the independent expansion of KRAB-ZNFs in every vertebrate lineage. Most human ZNF genes, from the most deeply conserved to the primate-specific genes, are highly expressed in immune and reproductive tissues, indicating that they have been enlisted to regulate evolutionarily divergent biological traits. PMID:24534434

  9. Photoreceptor engineering

    PubMed Central

    Ziegler, Thea; Möglich, Andreas

    2015-01-01

    Sensory photoreceptors not only control diverse adaptive responses in Nature, but as light-regulated actuators they also provide the foundation for optogenetics, the non-invasive and spatiotemporally precise manipulation of cellular events by light. Novel photoreceptors have been engineered that establish control by light over manifold biological processes previously inaccessible to optogenetic intervention. Recently, photoreceptor engineering has witnessed a rapid development, and light-regulated actuators for the perturbation of a plethora of cellular events are now available. Here, we review fundamental principles of photoreceptors and light-regulated allostery. Photoreceptors dichotomize into associating receptors that alter their oligomeric state as part of light-regulated allostery and non-associating receptors that do not. A survey of engineered photoreceptors pinpoints light-regulated association reactions and order-disorder transitions as particularly powerful and versatile design principles. Photochromic photoreceptors that are bidirectionally toggled by two light colors augur enhanced spatiotemporal resolution and use as photoactivatable fluorophores. By identifying desirable traits in engineered photoreceptors, we provide pointers for the design of future, light-regulated actuators. PMID:26137467

  10. Stimulus-induced modulation of transcriptional bursting in a single mammalian gene.

    PubMed

    Molina, Nacho; Suter, David M; Cannavo, Rosamaria; Zoller, Benjamin; Gotic, Ivana; Naef, Félix

    2013-12-17

    Mammalian genes are often transcribed discontinuously as short bursts of RNA synthesis followed by longer silent periods. However, how these "on" and "off" transitions, together with the burst sizes, are modulated in single cells to increase gene expression upon stimulation is poorly characterized. By combining single-cell time-lapse luminescence imaging with stochastic modeling of the time traces, we quantified the transcriptional responses of the endogenous connective tissue growth factor gene to different physiological stimuli: serum and TGF-β1. Both stimuli caused a rapid and acute increase in burst sizes. Whereas TGF-β1 showed prolonged transcriptional activation mediated by an increase of transcription rate, serum stimulation resulted in a large and temporally tight first transcriptional burst, followed by a refractory period in the range of hours. Our study thus reveals how different physiological stimuli can trigger kinetically distinct transcriptional responses of the same gene. PMID:24297917

  11. Transcriptional Regulation with CRISPR/Cas9 Effectors in Mammalian Cells.

    PubMed

    Pham, Hannah; Kearns, Nicola A; Maehr, René

    2016-01-01

    CRISPR/Cas9-based regulation of gene expression provides the scientific community with a new high-throughput tool to dissect the role of genes in molecular processes and cellular functions. Single-guide RNAs allow for recruitment of a nuclease-dead Cas9 protein and transcriptional Cas9-effector fusion proteins to specific genomic loci, thereby modulating gene expression. We describe the application of a CRISPR-Cas9 effector system from Streptococcus pyogenes for transcriptional regulation in mammalian cells resulting in activation or repression of transcription. We present methods for appropriate target site selection, sgRNA design, and delivery of dCas9 and dCas9-effector system components into cells through lentiviral transgenesis to modulate transcription. PMID:26463376

  12. System-level identification of transcriptional circuits underlying mammalian circadian clocks.

    PubMed

    Ueda, Hiroki R; Hayashi, Satoko; Chen, Wenbin; Sano, Motoaki; Machida, Masayuki; Shigeyoshi, Yasufumi; Iino, Masamitsu; Hashimoto, Seiichi

    2005-02-01

    Mammalian circadian clocks consist of complexly integrated regulatory loops, making it difficult to elucidate them without both the accurate measurement of system dynamics and the comprehensive identification of network circuits. Toward a system-level understanding of this transcriptional circuitry, we identified clock-controlled elements on 16 clock and clock-controlled genes in a comprehensive surveillance of evolutionarily conserved cis elements and measurement of their transcriptional dynamics. Here we report the roles of E/E' boxes, DBP/E4BP4 binding elements and RevErbA/ROR binding elements in nine, seven and six genes, respectively. Our results indicate that circadian transcriptional circuits are governed by two design principles: regulation of E/E' boxes and RevErbA/ROR binding elements follows a repressor-precedes-activator pattern, resulting in delayed transcriptional activity, whereas regulation of DBP/E4BP4 binding elements follows a repressor-antiphasic-to-activator mechanism, which generates high-amplitude transcriptional activity. Our analysis further suggests that regulation of E/E' boxes is a topological vulnerability in mammalian circadian clocks, a concept that has been functionally verified using in vitro phenotype assay systems. PMID:15665827

  13. Pol I Transcription and Pre-rRNA Processing Are Coordinated in a Transcription-dependent Manner in Mammalian Cells

    PubMed Central

    Kopp, K.; Gasiorowski, J. Z.; Chen, D.; Gilmore, R.; Norton, J. T.; Wang, C.; Leary, D. J.; Chan, E.K.L.; Dean, D. A.

    2007-01-01

    Pre-rRNA synthesis and processing are key steps in ribosome biogenesis. Although recent evidence in yeast suggests that these two processes are coupled, the nature of their association is unclear. In this report, we analyze the coordination between rDNA transcription and pre-rRNA processing in mammalian cells. We found that pol I transcription factor UBF interacts with pre-rRNA processing factors as analyzed by immunoprecipitations, and the association depends on active rRNA synthesis. In addition, injections of plasmids containing the human rDNA promoter and varying lengths of 18S rDNA into HeLa nuclei show that pol I transcription machinery can be recruited to rDNA promoters regardless of the product that is transcribed, whereas subgroups of pre-rRNA processing factors are recruited to plasmids only when specific pre-rRNA fragments are produced. Our observations suggest a model for sequential recruitment of pol I transcription factors and pre-rRNA processing factors to elongating pre-rRNA on an as-needed basis rather than corecruitment to sites of active transcription. PMID:17108330

  14. Post-Transcriptional Regulation of the Sef1 Transcription Factor Controls the Virulence of Candida albicans in Its Mammalian Host

    PubMed Central

    Chen, Changbin; Noble, Suzanne M.

    2012-01-01

    The yeast Candida albicans transitions between distinct lifestyles as a normal component of the human gastrointestinal microbiome and the most common agent of disseminated fungal disease. We previously identified Sef1 as a novel Cys6Zn2 DNA binding protein that plays an essential role in C. albicans virulence by activating the transcription of iron uptake genes in iron-poor environments such as the host bloodstream and internal organs. Conversely, in the iron-replete gastrointestinal tract, persistence as a commensal requires the transcriptional repressor Sfu1, which represses SEF1 and genes for iron uptake. Here, we describe an unexpected, transcription-independent role for Sfu1 in the direct inhibition of Sef1 function through protein complex formation and localization in the cytoplasm, where Sef1 is destabilized. Under iron-limiting conditions, Sef1 forms an alternative complex with the putative kinase, Ssn3, resulting in its phosphorylation, nuclear localization, and transcriptional activity. Analysis of sfu1 and ssn3 mutants in a mammalian model of disseminated candidiasis indicates that these post-transcriptional regulatory mechanisms serve as a means for precise titration of C. albicans virulence. PMID:23133381

  15. DcpS is a transcript-specific modulator of RNA in mammalian cells

    PubMed Central

    Zhou, Mi; Bail, Sophie; Plasterer, Heather L.; Rusche, James

    2015-01-01

    The scavenger decapping enzyme DcpS is a multifunctional protein initially identified by its property to hydrolyze the resulting cap structure following 3′ end mRNA decay. In Saccharomyces cerevisiae, the DcpS homolog Dcs1 is an obligate cofactor for the 5′-3′ exoribonuclease Xrn1 while the Caenorhabditis elegans homolog Dcs-1, facilitates Xrn1 mediated microRNA turnover. In both cases, this function is independent of the decapping activity. Whether DcpS and its decapping activity can affect mRNA steady state or stability in mammalian cells remains unknown. We sought to determine DcpS target genes in mammalian cells using a cell-permeable DcpS inhibitor compound, RG3039 initially developed for therapeutic treatment of spinal muscular atrophy. Global mRNA levels were examined following DcpS decapping inhibition with RG3039. The steady-state levels of 222 RNAs were altered upon RG3039 treatment. Of a subset selected for validation, two transcripts that appear to be long noncoding RNAs HS370762 and BC011766, were dependent on DcpS and its scavenger decapping catalytic activity and referred to as DcpS-responsive noncoding transcripts (DRNT) 1 and 2, respectively. Interestingly, only the increase in DRNT1 transcript was accompanied with an increase of its RNA stability and this increase was dependent on both DcpS and Xrn1. Importantly, unlike in yeast where the DcpS homolog is an obligate cofactor for Xrn1, stability of additional Xrn1 dependent RNAs were not altered by a reduction in DcpS levels. Collectively, our data demonstrate that DcpS in conjunction with Xrn1 has the potential to regulate RNA stability in a transcript-selective manner in mammalian cells. PMID:26001796

  16. Viral Nucleases Induce an mRNA Degradation-Transcription Feedback Loop in Mammalian Cells.

    PubMed

    Abernathy, Emma; Gilbertson, Sarah; Alla, Ravi; Glaunsinger, Britt

    2015-08-12

    Gamma-herpesviruses encode a cytoplasmic mRNA-targeting endonuclease, SOX, that cleaves most cellular mRNAs. Cleaved fragments are subsequently degraded by the cellular 5'-3' mRNA exonuclease Xrn1, thereby suppressing cellular gene expression and facilitating viral evasion of host defenses. We reveal that mammalian cells respond to this widespread cytoplasmic mRNA decay by altering RNA Polymerase II (RNAPII) transcription in the nucleus. Measuring RNAPII recruitment to promoters and nascent mRNA synthesis revealed that the majority of affected genes are transcriptionally repressed in SOX-expressing cells. The transcriptional feedback does not occur in response to the initial viral endonuclease-induced cleavage, but instead to degradation of the cleaved fragments by cellular exonucleases. In particular, Xrn1 catalytic activity is required for transcriptional repression. Notably, viral mRNA transcription escapes decay-induced repression, and this escape requires Xrn1. Collectively, these results indicate that mRNA decay rates impact transcription and that gamma-herpesviruses use this feedback mechanism to facilitate viral gene expression. PMID:26211836

  17. Improved transgene expression fine-tuning in mammalian cells using a novel transcription-translation network.

    PubMed

    Malphettes, Laetitia; Fussenegger, Martin

    2006-08-01

    Following the discovery of RNA interference (RNAi) and related phenomena, novel regulatory processes, attributable to small non-protein-coding RNAs, continue to emerge. Capitalizing on the ability of artificial short interfering RNAs (siRNAs) to trigger degradation of specific target transcripts, and thereby silence desired gene expression, we designed and characterized a generic transcription-translation network in which it is possible to fine-tune heterologous protein production by coordinated transcription and translation interventions using macrolide and tetracycline antibiotics. Integration of siRNA-specific target sequences (TAGs) into the 5' or 3' untranslated regions (5'UTR, 3'UTR) of a desired constitutive transcription unit rendered transgene-encoded protein (erythropoietin, EPO; human placental alkaline phosphatase, SEAP; human vascular endothelial growth factor 121, VEGF(121)) production in mammalian cells responsive to siRNA levels that can be fine-tuned by macrolide-adjustable RNA polymerase II- or III-dependent promoters. Coupling of such macrolide-responsive siRNA-triggered translation control with tetracycline-responsive transcription of tagged transgene mRNAs created an antibiotic-adjustable two-input transcription-translation network characterized by elimination of detectable leaky expression with no reduction in maximum protein production levels. This transcription-translation network revealed transgene mRNA depletion to be dependent on siRNA and mRNA levels and that translation control was able to eliminate basal expression inherent to current transcription control modalities. Coupled transcription-translation circuitries have the potential to lead the way towards composite artificial regulatory networks, to enable complex therapeutic interventions in future biopharmaceutical manufacturing, gene therapy and tissue engineering initiatives. PMID:16488500

  18. Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis.

    PubMed

    Li, Xue; Oghi, Kenneth A; Zhang, Jie; Krones, Anna; Bush, Kevin T; Glass, Christopher K; Nigam, Sanjay K; Aggarwal, Aneel K; Maas, Richard; Rose, David W; Rosenfeld, Michael G

    2003-11-20

    The precise mechanistic relationship between gene activation and repression events is a central question in mammalian organogenesis, as exemplified by the evolutionarily conserved sine oculis (Six), eyes absent (Eya) and dachshund (Dach) network of genetically interacting proteins. Here, we report that Six1 is required for the development of murine kidney, muscle and inner ear, and that it exhibits synergistic genetic interactions with Eya factors. We demonstrate that the Eya family has a protein phosphatase function, and that its enzymatic activity is required for regulating genes encoding growth control and signalling molecules, modulating precursor cell proliferation. The phosphatase function of Eya switches the function of Six1-Dach from repression to activation, causing transcriptional activation through recruitment of co-activators. The gene-specific recruitment of a co-activator with intrinsic phosphatase activity provides a molecular mechanism for activation of specific gene targets, including those regulating precursor cell proliferation and survival in mammalian organogenesis. PMID:14628042

  19. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin.

    PubMed

    Ortells, M Carmen; Morancho, Beatriz; Drews-Elger, Katherine; Viollet, Benoit; Laderoute, Keith R; López-Rodríguez, Cristina; Aramburu, Jose

    2012-05-01

    Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses. PMID:22287635

  20. A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs

    PubMed Central

    Suzuki, Takeo; Suzuki, Tsutomu

    2014-01-01

    In mammalian mitochondria, 22 species of tRNAs encoded in mitochondrial DNA play crucial roles in the translation of 13 essential subunits of the respiratory chain complexes involved in oxidative phosphorylation. Following transcription, mitochondrial tRNAs are modified by nuclear-encoded tRNA-modifying enzymes. These modifications are required for the proper functioning of mitochondrial tRNAs (mt tRNAs), and the absence of these modifications can cause pathological consequences. To date, however, the information available about these modifications has been incomplete. To address this issue, we isolated all 22 species of mt tRNAs from bovine liver and comprehensively determined the post-transcriptional modifications in each tRNA by mass spectrometry. Here, we describe the primary structures with post-transcriptional modifications of seven species of mt tRNAs which were previously uncharacterized, and provide revised information regarding base modifications in five other mt tRNAs. In the complete set of bovine mt tRNAs, we found 15 species of modified nucleosides at 118 positions (7.48% of total bases). This result provides insight into the molecular mechanisms underlying the decoding system in mammalian mitochondria and enables prediction of candidate tRNA-modifying enzymes responsible for each modification of mt tRNAs. PMID:24831542

  1. Exploiting ancestral mammalian genomes for the prediction of human transcription factor binding sites

    PubMed Central

    2012-01-01

    Background The computational prediction of Transcription Factor Binding Sites (TFBS) remains a challenge due to their short length and low information content. Comparative genomics approaches that simultaneously consider several related species and favor sites that have been conserved throughout evolution improve the accuracy (specificity) of the predictions but are limited due to a phenomenon called binding site turnover, where sequence evolution causes one TFBS to replace another in the same region. In parallel to this development, an increasing number of mammalian genomes are now sequenced and it is becoming possible to infer, to a surprisingly high degree of accuracy, ancestral mammalian sequences. Results We propose a TFBS prediction approach that makes use of the availability of inferred ancestral mammalian genomes to improve its accuracy. This method aims to identify binding loci, which are regions of a few hundred base pairs that have preserved their potential to bind a given transcription factor over evolutionary time. After proposing a neutral evolutionary model of predicted TFBS counts in a DNA region of a given length, we use it to identify regions that have preserved the number of predicted TFBS they contain to an unexpected degree given their divergence. The approach is applied to human chromosome 1 and shows significant gains in accuracy as compared to both existing single-species and multi-species TFBS prediction approaches, in particular for transcription factors that are subject to high turnover rates. Availability The source code and predictions made by the program are available at http://www.cs.mcgill.ca/~blanchem/bindingLoci. PMID:23281809

  2. Function of the mammalian La protein: evidence for its action in transcription termination by RNA polymerase III.

    PubMed Central

    Gottlieb, E; Steitz, J A

    1989-01-01

    We have tested the hypothesis that the mammalian La protein, which appears to be required for accurate and efficient RNA polymerase III transcription, is a transcription termination factor. Our data suggest that 3' foreshortened transcripts generated in La's absence are components of a novel transcription intermediate containing a paused polymerase. These transcripts are produced by fractionated transcription complexes, are synthesized with kinetics different from full-length transcripts, and are chasable to completion from the stalled transcription complexes. Together, these findings argue that termination by RNA polymerase III requires auxilliary factor(s) and implicate La as such a factor. Since La appears to facilitate transcript completion and release and also binds the resulting RNA product, it may be a regulator of RNA polymerase III transcription. Images PMID:2470590

  3. A putative transcriptional elongation factor hIws1 is essential for mammalian cell proliferation

    SciTech Connect

    Liu Zhangguo; Zhou Zhongwei; Chen Guohong; Bao Shilai . E-mail: slbao@genetics.ac.cn

    2007-02-02

    Iws1 has been implicated in transcriptional elongation by interaction with RNA polymerase II (RNAP II) and elongation factor Spt6 in budding yeast Saccharomyces cerevisiae, and association with transcription factor TFIIS in mammalian cells, but its role in controlling cell growth and proliferation remains unknown. Here we report that the human homolog of Iws1, hIws1, physically interacts with protein arginine methyltransferases PRMT5 which methylates elongation factor Spt5 and regulates its interaction with RNA polymerase II. Gene-specific silencing of hIws1 by RNA interference reveals that hIws1 is essential for cell viability. GFP fusion protein expression approaches demonstrate that the hIws1 protein is located in the nucleus, subsequently, two regions harbored within the hIws1 protein are demonstrated to contain nuclear localization signals (NLSs). In addition, mouse homolog of hiws1 is found to express ubiquitously in various tissues.

  4. Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain

    PubMed Central

    de la Torre-Ubieta, Luis; Bonni, Azad

    2012-01-01

    The highly specialized morphology of a neuron, typically consisting of a long axon and multiple branching dendrites, lies at the core of the principle of dynamic polarization, whereby information flows from dendrites toward the soma and to the axon. For more than a century neuroscientists have been fascinated by how shape is important for neuronal function and how neurons acquire their characteristic morphology. During the past decade, substantial progress has been made in our understanding of the molecular underpinnings of neuronal polarity and morphogenesis. In these studies, transcription factors have emerged as key players governing multiple aspects of neuronal morphogenesis from neuronal polarization and migration to axon growth and pathfinding to dendrite growth and branching to synaptogenesis. In this review, we will highlight the role of transcription factors in shaping neuronal morphology with emphasis on recent literature in mammalian systems. PMID:21982366

  5. Ehrlichia chaffeensis Transcriptome in Mammalian and Arthropod Hosts Reveals Differential Gene Expression and Post Transcriptional Regulation

    PubMed Central

    Kuriakose, Jeeba A.; Miyashiro, Simone; Luo, Tian; Zhu, Bing; McBride, Jere W.

    2011-01-01

    Background Human monocytotropic ehrlichiosis is an emerging life-threatening zoonosis caused by obligately intracellular bacterium, Ehrlichia chaffeensis. E. chaffeensis is transmitted by the lone star tick, Amblyomma americanum, and replicates in mononuclear phagocytes in mammalian hosts. Differences in the E. chaffeensis transcriptome in mammalian and arthropod hosts are unknown. Thus, we determined host-specific E. chaffeensis gene expression in human monocyte (THP-1) and in Amblyomma and Ixodes tick cell lines (AAE2 and ISE6) using a whole genome microarray. Methodology/Principal Findings The majority (∼80%) of E. chaffeensis genes were expressed during infection in human and tick cells. There were few differences observed in E. chaffeensis gene expression between the vector Amblyomma and non-vector Ixodes tick cells, but extensive host-specific and differential gene expression profiles were detected between human and tick cells, including higher transcriptional activity in tick cells and identification of gene subsets that were differentially expressed in the two hosts. Differentially and host-specifically expressed ehrlichial genes encoded major immunoreactive tandem repeat proteins (TRP), the outer membrane protein (OMP-1) family, and hypothetical proteins that were 30–80 amino acids in length. Consistent with previous observations, high expression of p28 and OMP-1B genes was detected in human and tick cells, respectively. Notably, E. chaffeensis genes encoding TRP32 and TRP47 were highly upregulated in the human monocytes and expressed as proteins; however, although TRP transcripts were expressed in tick cells, the proteins were not detected in whole cell lysates demonstrating that TRP expression was post transcriptionally regulated. Conclusions/Significance Ehrlichia gene expression is highly active in tick cells, and differential gene expression among a wide variety of host-pathogen associated genes occurs. Furthermore, we demonstrate that genes

  6. MEF2 Transcription Factors Regulate Distinct Gene Programs in Mammalian Skeletal Muscle Differentiation*

    PubMed Central

    Estrella, Nelsa L.; Desjardins, Cody A.; Nocco, Sarah E.; Clark, Amanda L.; Maksimenko, Yevgeniy; Naya, Francisco J.

    2015-01-01

    Skeletal muscle differentiation requires precisely coordinated transcriptional regulation of diverse gene programs that ultimately give rise to the specialized properties of this cell type. In Drosophila, this process is controlled, in part, by MEF2, the sole member of an evolutionarily conserved transcription factor family. By contrast, vertebrate MEF2 is encoded by four distinct genes, Mef2a, -b, -c, and -d, making it far more challenging to link this transcription factor to the regulation of specific muscle gene programs. Here, we have taken the first step in molecularly dissecting vertebrate MEF2 transcriptional function in skeletal muscle differentiation by depleting individual MEF2 proteins in myoblasts. Whereas MEF2A is absolutely required for proper myoblast differentiation, MEF2B, -C, and -D were found to be dispensable for this process. Furthermore, despite the extensive redundancy, we show that mammalian MEF2 proteins regulate a significant subset of nonoverlapping gene programs. These results suggest that individual MEF2 family members are able to recognize specific targets among the entire cohort of MEF2-regulated genes in the muscle genome. These findings provide opportunities to modulate the activity of MEF2 isoforms and their respective gene programs in skeletal muscle homeostasis and disease. PMID:25416778

  7. FIREWACh: High-throughput Functional Detection of Transcriptional Regulatory Modules in Mammalian Cells

    PubMed Central

    Murtha, Matthew; Tokcaer-Keskin, Zeynep; Tang, Zuojian; Strino, Francesco; Chen, Xi; Wang, Yatong; Xi, Xiangmei; Basilico, Claudio; Brown, Stuart; Bonneau, Richard; Kluger, Yuval; Dailey, Lisa

    2014-01-01

    Promoters and enhancers establish precise gene transcription patterns. The development of functional approaches for their identification in mammalian cells has been complicated by the size of these genomes. Here we report a new method called FIREWACh (Functional Identification of Regulatory Elements Within Accessible Chromatin), a high-throughput functional assay for directly identifying active promoter and enhancer elements. FIREWACh simultaneously assessed over 80,000 DNA fragments derived from “nucleosome-free regions” within embryonic stem cell (ESC) chromatin to identify 6,364 new active regulatory elements. Many FIREWACh DNAs represent newly discovered ESC-specific enhancers and their analyses identified enriched binding site motifs for ESC transcription factors including SOX2, OCT4 (POU5f1), and KLF4. Thus FIREWACh identifies endogenous regulators of gene expression and can be used for the discovery of key cell-specific transcription factors. The application of FIREWACh to additional cultured cell types will facilitate functional annotation of the genome and expand our view of transcriptional network dynamics. PMID:24658142

  8. Lineage-specific and ubiquitous biological roles of the mammalian transcription factor LSF

    PubMed Central

    Veljkovic, Jelena; Hansen, Ulla

    2012-01-01

    Transcriptional regulation in mammalian cells is driven by a complex interplay of multiple transcription factors that respond to signals from either external or internal stimuli. A single transcription factor can control expression of distinct sets of target genes, dependent on its state of post-translational modifications, interacting partner proteins, and the chromatin environment of the cellular genome. Furthermore, many transcription factors can act as either transcriptional repressors or activators, depending on promoter and cellular contexts (Alvarez, et al., 2003). Even in this light, the versatility of LSF (Late SV40 Factor) is remarkable. A hallmark of LSF is its unusual DNA binding domain, as evidenced both by lack of homology to any other established DNA-binding domains and by its DNA recognition sequence. Although a dimer in solution, LSF requires additional multimerization with itself or partner proteins in order to interact with DNA. Transcriptionally, LSF can function as an activator or a repressor. It is a direct target of an increasing number of signal transduction pathways. Biologically, LSF plays roles in cell cycle progression and cell survival, as well as in cell lineage-specific functions, shown most strikingly to date in hematopoietic lineages. This review discusses how the unique aspects of LSF DNA-binding activity may make it particularly susceptible to regulation by signal transduction pathways and may relate to its distinct biological roles. We present current progress in elucidation of both tissue-specific and more universal cellular roles of LSF. Finally, we discuss suggestive data linking LSF to signaling by the amyloid precursor protein and to Alzheimer's disease, as well as to the regulation of latency of the human immunodeficiency virus (HIV). PMID:15563829

  9. Transcriptome profiling of developing photoreceptor subtypes reveals candidate genes involved in avian photoreceptor diversification

    PubMed Central

    Enright, Jennifer M.; Lawrence, Karen A.; Hadzic, Tarik; Corbo, Joseph C.

    2015-01-01

    Avian photoreceptors are a diverse class of neurons, comprised of four single cones, the two members of the double cone, and rods. The signaling events and transcriptional regulators driving the differentiation of these diverse photoreceptors are currently unknown. In addition, many distinctive features of photoreceptor subtypes, including spectral tuning, oil droplet size and pigmentation, synaptic targets and spatial patterning, have been well characterized, but the molecular mechanisms underlying these attributes have not been explored. To identify genes specifically expressed in distinct chicken (Gallus gallus) photoreceptor subtypes, we developed fluorescent reporters that label photoreceptor subpopulations, isolated these subpopulations using fluorescence-activated cell sorting and subjected them to next-generation sequencing. By comparing the expression profiles of photoreceptors labeled with rhodopsin, red opsin, green opsin, and violet opsin reporters, we have identified hundreds of differentially expressed genes that may underlie the distinctive features of these photoreceptor subtypes. These genes are involved in a variety of processes, including phototransduction, transcriptional regulation, cell adhesion, maintenance of intra- and extra-cellular structure, and metabolism. Of particular note are a variety of differentially expressed transcription factors, which may drive and maintain photoreceptor diversity, and cell adhesion molecules that may mediate spatial patterning of photoreceptors and act to establish retinal circuitry. These analyses provide a framework for future studies that will dissect the role of these various factors in the differentiation of avian photoreceptor subtypes. PMID:25349106

  10. Transcriptome profiling of developing photoreceptor subtypes reveals candidate genes involved in avian photoreceptor diversification.

    PubMed

    Enright, Jennifer M; Lawrence, Karen A; Hadzic, Tarik; Corbo, Joseph C

    2015-03-01

    Avian photoreceptors are a diverse class of neurons, comprised of four single cones, the two members of the double cone, and rods. The signaling events and transcriptional regulators driving the differentiation of these diverse photoreceptors are largely unknown. In addition, many distinctive features of photoreceptor subtypes, including spectral tuning, oil droplet size and pigmentation, synaptic targets, and spatial patterning, have been well characterized, but the molecular mechanisms underlying these attributes have not been explored. To identify genes specifically expressed in distinct chicken (Gallus gallus) photoreceptor subtypes, we developed fluorescent reporters that label photoreceptor subpopulations, isolated these subpopulations by using fluorescence-activated cell sorting, and subjected them to next-generation sequencing. By comparing the expression profiles of photoreceptors labeled with rhodopsin, red opsin, green opsin, and violet opsin reporters, we have identified hundreds of differentially expressed genes that may underlie the distinctive features of these photoreceptor subtypes. These genes are involved in a variety of processes, including phototransduction, transcriptional regulation, cell adhesion, maintenance of intra- and extracellular structure, and metabolism. Of particular note are a variety of differentially expressed transcription factors, which may drive and maintain photoreceptor diversity, and cell adhesion molecules, which may mediate spatial patterning of photoreceptors and act to establish retinal circuitry. These analyses provide a framework for future studies that will dissect the role of these various factors in the differentiation of avian photoreceptor subtypes. PMID:25349106

  11. Mammalian Heat Shock Response and Mechanisms Underlying Its Genome-wide Transcriptional Regulation.

    PubMed

    Mahat, Dig B; Salamanca, H Hans; Duarte, Fabiana M; Danko, Charles G; Lis, John T

    2016-04-01

    The heat shock response (HSR) is critical for survival of all organisms. However, its scope, extent, and the molecular mechanism of regulation are poorly understood. Here we show that the genome-wide transcriptional response to heat shock in mammals is rapid and dynamic and results in induction of several hundred and repression of several thousand genes. Heat shock factor 1 (HSF1), the "master regulator" of the HSR, controls only a fraction of heat shock-induced genes and does so by increasing RNA polymerase II release from promoter-proximal pause. Notably, HSF2 does not compensate for the lack of HSF1. However, serum response factor appears to transiently induce cytoskeletal genes independently of HSF1. The pervasive repression of transcription is predominantly HSF1-independent and is mediated through reduction of RNA polymerase II pause release. Overall, mammalian cells orchestrate rapid, dynamic, and extensive changes in transcription upon heat shock that are largely modulated at pause release, and HSF1 plays a limited and specialized role. PMID:27052732

  12. Quantifying the transcriptional output of single alleles in single living mammalian cells

    PubMed Central

    Yunger, Sharon; Rosenfeld, Liat; Garini, Yuval; Shav-Tal, Yaron

    2013-01-01

    Transcription kinetics of actively transcribing genes in vivo have generally been measured using tandem gene arrays. However, tandem arrays do not reflect the endogenous state of genome organization where genes appear as single alleles. We present here a robust technique for the quantification of mRNA synthesis from a single allele in real-time, in single living mammalian cells. The protocol describes how to generate cell clones harboring a tagged allele and how to detect in vivo transcription from this tagged allele at high spatial and temporal resolution throughout the cell cycle. Quantification of nascent mRNAs produced from the single tagged allele is performed using RNA fluorescence in situ hybridization (FISH) and live-cell imaging. Subsequent analyses and data modeling detailed in the protocol include measurements of: transcription rates of RNA polymerase II; determining the number of polymerases recruited to the tagged allele; and measuring the spacing between polymerases. Generating the cells containing the single tagged alleles should take up to a month; RNA FISH or live-cell imaging will require an additional week. PMID:23424748

  13. Isolation of the protein and RNA content of active sites of transcription from mammalian cells.

    PubMed

    Melnik, Svitlana; Caudron-Herger, Maïwen; Brant, Lilija; Carr, Ian M; Rippe, Karsten; Cook, Peter R; Papantonis, Argyris

    2016-03-01

    Mammalian cell nuclei contain three RNA polymerases (RNAP I, RNAP II and RNAP III), which transcribe different gene subsets, and whose active forms are contained in supramolecular complexes known as 'transcription factories.' These complexes are difficult to isolate because they are embedded in the 3D structure of the nucleus. Factories exchange components with the soluble nucleoplasmic pool over time as gene expression programs change during development or disease. Analysis of their content can provide information on the nascent transcriptome and its regulators. Here we describe a protocol for the isolation of large factory fragments under isotonic salt concentrations in <72 h. It relies on DNase I-mediated detachment of chromatin from the nuclear substructure of freshly isolated, unfixed cells, followed by caspase treatment to release multi-megadalton factory complexes. These complexes retain transcriptional activity, and isolation of their contents is compatible with downstream analyses by mass spectrometry (MS) or RNA-sequencing (RNA-seq) to catalog the proteins and RNA associated with sites of active transcription. PMID:26914315

  14. Structure of silent transcription intervals and noise characteristics of mammalian genes

    PubMed Central

    Zoller, Benjamin; Nicolas, Damien; Molina, Nacho; Naef, Felix

    2015-01-01

    Mammalian transcription occurs stochastically in short bursts interspersed by silent intervals showing a refractory period. However, the underlying processes and consequences on fluctuations in gene products are poorly understood. Here, we use single allele time-lapse recordings in mouse cells to identify minimal models of promoter cycles, which inform on the number and durations of rate-limiting steps responsible for refractory periods. The structure of promoter cycles is gene specific and independent of genomic location. Typically, five rate-limiting steps underlie the silent periods of endogenous promoters, while minimal synthetic promoters exhibit only one. Strikingly, endogenous or synthetic promoters with TATA boxes show simplified two-state promoter cycles. Since transcriptional bursting constrains intrinsic noise depending on the number of promoter steps, this explains why TATA box genes display increased intrinsic noise genome-wide in mammals, as revealed by single-cell RNA-seq. These findings have implications for basic transcription biology and shed light on interpreting single-cell RNA-counting experiments. PMID:26215071

  15. Coregulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers.

    PubMed

    Barozzi, Iros; Simonatto, Marta; Bonifacio, Silvia; Yang, Lin; Rohs, Remo; Ghisletti, Serena; Natoli, Gioacchino

    2014-06-01

    Transcription factors (TFs) preferentially bind sites contained in regions of computationally predicted high nucleosomal occupancy, suggesting that nucleosomes are gatekeepers of TF binding sites. However, because of their complexity mammalian genomes contain millions of randomly occurring, unbound TF consensus binding sites. We hypothesized that the information controlling nucleosome assembly may coincide with the information that enables TFs to bind cis-regulatory elements while ignoring randomly occurring sites. Hence, nucleosomes would selectively mask genomic sites that can be contacted by TFs and thus be potentially functional. The hematopoietic pioneer TF Pu.1 maintained nucleosome depletion at macrophage-specific enhancers that displayed a broad range of nucleosome occupancy in other cell types and in reconstituted chromatin. We identified a minimal set of DNA sequence and shape features that accurately predicted both Pu.1 binding and nucleosome occupancy genome-wide. These data reveal a basic organizational principle of mammalian cis-regulatory elements whereby TF recruitment and nucleosome deposition are controlled by overlapping DNA sequence features. PMID:24813947

  16. Mammalian transcription in support of hybrid mRNA and protein synthesis in testis and lung.

    PubMed

    Fitzgerald, Carolyn; Sikora, Curtis; Lawson, Vannice; Dong, Karen; Cheng, Min; Oko, Richard; van der Hoorn, Frans A

    2006-12-15

    Post-transcriptional mechanisms including differential splicing expand the protein repertoire beyond that provided by the one gene-one protein model. Trans-splicing has been observed in mammalian systems but is low level (sometimes referred to as noise), and a contribution to hybrid protein expression is unclear. In the study of rat sperm tail proteins a cDNA, called 1038, was isolated representing a hybrid mRNA derived in part from the ornithine decarboxylase antizyme 3 (Oaz3) gene located on rat chromosome 2 fused to sequences encoded by a novel gene on chromosome 4. Cytoplasmic Oaz3 mRNA is completely testis specific. However, in several tissues Oaz3 is transcribed and contributes to hybrid 1038 mRNA synthesis, without concurrent Oaz3 mRNA synthesis. 1038 mRNA directs synthesis of a hybrid 14-kDa protein, part chromosome 2- and part chromosome 4-derived as shown in vitro and in transfected cells. Antisera that recognize a chromosome 4-encoded C-terminal peptide confirm the hybrid character of endogenous 14-kDa protein and its presence in sperm tail structures and 1038-positive tissue. Our data suggest that the testis-specific OAZ3 gene may be an example of a mammalian gene that in several tissues is transcribed to contribute to a hybrid mRNA and protein. This finding expands the repertoire of known mechanisms available to cells to generate proteome diversity. PMID:17040916

  17. Abundant and broad expression of transcription-induced chimeras and protein products in mammalian genomes.

    PubMed

    Lu, Guanting; Wu, Jin; Zhao, Gangbin; Wang, Zhiqiang; Chen, Weihua; Mu, Shijie

    2016-02-12

    The expression of transcription-induced chimeras (TICs) was underestimated due to strategic and logical reasons. In order to thoroughly examine TICs, systematic survey of TIC events was conducted in mammalian genomes using ESTs, followed by experimental validation using RT-PCR and real-time quantitative PCR (qPCR). The expression of ∼98% TIC events in at least one tissue or cell line from both mouse and human was verified. Besides, ∼40% TICs were broadly expressed, and ∼33% of TICs showed expression levels comparable to or higher than their upstream parental genes. We further identified putative chimeric proteins in public databases and validated two using Western blotting. GO analysis revealed that proteins resided in one multi-protein complex or functioning in metabolic or signaling pathway tended to produce fused products. Taken together, we have shown substantial evidence for the underestimated TIC events; and TICs could be a novel regulated way to further increases the proteome complexity in mammalian genomes. Possible regulation mechanisms and evolution of TICs were also discussed. PMID:26718406

  18. Post-transcriptional control of the mammalian circadian clock: implications for health and disease.

    PubMed

    Preußner, Marco; Heyd, Florian

    2016-06-01

    Many aspects of human physiology and behavior display rhythmicity with a period of approximately 24 h. Rhythmic changes are controlled by an endogenous time keeper, the circadian clock, and include sleep-wake cycles, physical and mental performance capability, blood pressure, and body temperature. Consequently, many diseases, such as metabolic, sleep, autoimmune and mental disorders and cancer, are connected to the circadian rhythm. The development of therapies that take circadian biology into account is thus a promising strategy to improve treatments of diverse disorders, ranging from allergic syndromes to cancer. Circadian alteration of body functions and behavior are, at the molecular level, controlled and mediated by widespread changes in gene expression that happen in anticipation of predictably changing requirements during the day. At the core of the molecular clockwork is a well-studied transcription-translation negative feedback loop. However, evidence is emerging that additional post-transcriptional, RNA-based mechanisms are required to maintain proper clock function. Here, we will discuss recent work implicating regulated mRNA stability, translation and alternative splicing in the control of the mammalian circadian clock, and its role in health and disease. PMID:27108448

  19. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms

    PubMed Central

    Padovan-Merhar, Olivia; Nair, Gautham P.; Biaesch, Andrew; Mayer, Andreas; Scarfone, Steven; Foley, Shawn W.; Wu, Angela R.; Churchman, L. Stirling; Singh, Abhyudai; Raj, Arjun

    2015-01-01

    Summary Individual mammalian cells exhibit large variability in cellular volume even with the same absolute DNA content and so must compensate for differences in DNA concentration in order to maintain constant concentration of gene expression products. Using single molecule counting and computational image analysis, we show that transcript abundance correlates with cellular volume at the single cell level due to increased global transcription in larger cells. Cell fusion experiments establish that increased cellular content itself can directly increase transcription. Quantitative analysis shows that this mechanism measures the ratio of cellular volume to DNA content, mostly likely through sequestration of a transcriptional factor to DNA. Analysis of transcriptional bursts reveals a separate mechanism for gene dosage compensation after DNA replication that enables proper transcriptional output during early and late S-phase. Our results provide a framework for quantitatively understanding the relationships between DNA content, cell size and gene expression variability in single cells. PMID:25866248

  20. The regulation of mammalian mRNA transcription by long non-coding RNAs: Recent discoveries and current concepts

    PubMed Central

    Kugel, Jennifer F.; Goodrich, James A.

    2013-01-01

    Summary Transcription by RNA polymerase II (Pol II) is a tightly controlled process critical to normal cellular metabolism. Understanding how transcriptional regulation is orchestrated has mainly involved identifying and characterizing proteins that function as transcription factors. During the past decade, however, an increasing number of long non-coding RNAs (lncRNAs) have been identified as transcriptional regulators. This revelation has spurred new discoveries, novel techniques, and paradigm shifts, which together are redefining our understanding of transcriptional control and broadening our view of RNA function. Here we summarize recent discoveries concerning the role of lncRNAs as regulators of mammalian mRNA transcription, with a focus on key concepts that are guiding current research in the field. PMID:23414324

  1. The leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) does not activate transcription in mammalian mitochondria.

    PubMed

    Harmel, Julia; Ruzzenente, Benedetta; Terzioglu, Mügen; Spåhr, Henrik; Falkenberg, Maria; Larsson, Nils-Göran

    2013-05-31

    Regulation of mtDNA expression is critical for controlling oxidative phosphorylation capacity and has been reported to occur at several different levels in mammalian mitochondria. LRPPRC (leucine-rich pentatricopeptide repeat-containing protein) has a key role in this regulation and acts at the post-transcriptional level to stabilize mitochondrial mRNAs, to promote mitochondrial mRNA polyadenylation, and to coordinate mitochondrial translation. However, recent studies have suggested that LRPPRC may have an additional intramitochondrial role by directly interacting with the mitochondrial RNA polymerase POLRMT to stimulate mtDNA transcription. In this study, we have further examined the intramitochondrial roles for LRPPRC by creating bacterial artificial chromosome transgenic mice with moderately increased LRPPRC expression and heterozygous Lrpprc knock-out mice with moderately decreased LRPPRC expression. Variation of LRPPRC levels in mice in vivo, occurring within a predicted normal physiological range, strongly affected the levels of an unprocessed mitochondrial precursor transcript (ND5-cytochrome b) but had no effect on steady-state levels of mitochondrial transcripts or de novo transcription of mtDNA. We further assessed the role of LRPPRC in mitochondrial transcription by performing size exclusion chromatography and immunoprecipitation experiments in human cell lines and mice, but we found no interaction between LRPPRC and POLRMT. Furthermore, addition of purified LRPPRC to a recombinant human in vitro transcription system did not activate mtDNA transcription. On the basis of these data, we conclude that LRPPRC does not directly regulate mtDNA transcription but rather acts as a post-transcriptional regulator of mammalian mtDNA expression. PMID:23599432

  2. The Leucine-rich Pentatricopeptide Repeat-containing Protein (LRPPRC) Does Not Activate Transcription in Mammalian Mitochondria*

    PubMed Central

    Harmel, Julia; Ruzzenente, Benedetta; Terzioglu, Mügen; Spåhr, Henrik; Falkenberg, Maria; Larsson, Nils-Göran

    2013-01-01

    Regulation of mtDNA expression is critical for controlling oxidative phosphorylation capacity and has been reported to occur at several different levels in mammalian mitochondria. LRPPRC (leucine-rich pentatricopeptide repeat-containing protein) has a key role in this regulation and acts at the post-transcriptional level to stabilize mitochondrial mRNAs, to promote mitochondrial mRNA polyadenylation, and to coordinate mitochondrial translation. However, recent studies have suggested that LRPPRC may have an additional intramitochondrial role by directly interacting with the mitochondrial RNA polymerase POLRMT to stimulate mtDNA transcription. In this study, we have further examined the intramitochondrial roles for LRPPRC by creating bacterial artificial chromosome transgenic mice with moderately increased LRPPRC expression and heterozygous Lrpprc knock-out mice with moderately decreased LRPPRC expression. Variation of LRPPRC levels in mice in vivo, occurring within a predicted normal physiological range, strongly affected the levels of an unprocessed mitochondrial precursor transcript (ND5-cytochrome b) but had no effect on steady-state levels of mitochondrial transcripts or de novo transcription of mtDNA. We further assessed the role of LRPPRC in mitochondrial transcription by performing size exclusion chromatography and immunoprecipitation experiments in human cell lines and mice, but we found no interaction between LRPPRC and POLRMT. Furthermore, addition of purified LRPPRC to a recombinant human in vitro transcription system did not activate mtDNA transcription. On the basis of these data, we conclude that LRPPRC does not directly regulate mtDNA transcription but rather acts as a post-transcriptional regulator of mammalian mtDNA expression. PMID:23599432

  3. Distinct transcriptional responses elicited by unfolded nuclear or cytoplasmic protein in mammalian cells

    PubMed Central

    Miyazaki, Yusuke; Chen, Ling-chun; Chu, Bernard W; Swigut, Tomek; Wandless, Thomas J

    2015-01-01

    Eukaryotic cells possess a variety of signaling pathways that prevent accumulation of unfolded and misfolded proteins. Chief among these is the heat shock response (HSR), which is assumed to respond to unfolded proteins in the cytosol and nucleus alike. In this study, we probe this axiom further using engineered proteins called ‘destabilizing domains’, whose folding state we control with a small molecule. The sudden appearance of unfolded protein in mammalian cells elicits a robust transcriptional response, which is distinct from the HSR and other known pathways that respond to unfolded proteins. The cellular response to unfolded protein is strikingly different in the nucleus and the cytosol, although unfolded protein in either compartment engages the p53 network. This response provides cross-protection during subsequent proteotoxic stress, suggesting that it is a central component of protein quality control networks, and like the HSR, is likely to influence the initiation and progression of human pathologies. DOI: http://dx.doi.org/10.7554/eLife.07687.001 PMID:26314864

  4. Identification and use of zinc finger transcription factors that increase production of recombinant proteins in yeast and mammalian cells.

    PubMed

    Park, Kyung-Soon; Seol, Wongi; Yang, Hyo-Young; Lee, Seong-Il; Kim, Sung Keun; Kwon, Ryuk Jun; Kim, Eui-Joong; Roh, Young-Hoon; Seong, Baik Lin; Kim, Jin-Soo

    2005-01-01

    Randomized ZFP-TF libraries could induce a specific phenotype without detailed knowledge about the phenotype of interest because, theoretically, the libraries could modulate any gene in the target organism. We have developed a novel method for enhancing the efficiency of recombinant protein production in mammalian and microbial cells using combinatorial libraries of zinc finger protein transcription factors. To this end, we constructed tens of thousands of zinc finger proteins (ZFPs) with distinct DNA-binding specificities and fused these ZFPs to either a transcriptional activation or repression domain to make transcriptional activators or repressors, respectively. Expression vectors that encode these artificial transcription factors were delivered into Saccharomyces cerevisiae or HEK 293 cells along with reporter plasmids that code for human growth hormone (hGH) or SEAP (secreted alkaline phosphatase) (for yeast or HEK, respectively). Expression of the reporter genes was driven by either the cytomegalovirus (CMV) or SV40 virus promoters. After transfection, we screened the cells for increased synthesis of the reporter proteins. From these cells, we then isolated several ZFP-transcription factors (ZFP-TFs) that significantly increased hGH or SEAP synthesis and subjected these regulatory proteins to further characterization. Our results show that randomized ZFP-TF libraries are useful tools for improving the yield of heterologous recombinant protein both in yeast and mammalian cells. PMID:15932240

  5. Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice

    NASA Astrophysics Data System (ADS)

    de Boer, Ernie; Rodriguez, Patrick; Bonte, Edgar; Krijgsveld, Jeroen; Katsantoni, Eleni; Heck, Albert; Grosveld, Frank; Strouboulis, John

    2003-06-01

    Proteomic approaches require simple and efficient protein purification methodologies that are amenable to high throughput. Biotinylation is an attractive approach for protein complex purification due to the very high affinity of avidin/streptavidin for biotinylated templates. Here, we describe an approach for the single-step purification of transcription factor complex(es) based on specific in vivo biotinylation. We expressed the bacterial BirA biotin ligase in mammalian cells and demonstrated very efficient biotinylation of a hematopoietic transcription factor bearing a small (23-aa) artificial peptide tag. Biotinylation of the tagged transcription factor altered neither the factor's protein interactions or DNA binding properties in vivo nor its subnuclear distribution. Using this approach, we isolated the biotin-tagged transcription factor and at least one other known interacting protein from crude nuclear extracts by direct binding to streptavidin beads. Finally, this method works efficiently in transgenic mice, thus raising the prospect of using biotinylation tagging in protein complex purification directly from animal tissues. Therefore, BirA-mediated biotinylation of tagged proteins provides the basis for the single-step purification of proteins from mammalian cells.

  6. Transcriptional activation of muscle atrophy promotes cardiac muscle remodeling during mammalian hibernation

    PubMed Central

    Zhang, Yichi; Aguilar, Oscar A.

    2016-01-01

    Background. Mammalian hibernation in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) is characterized by dramatic changes on a physiological and molecular level. During hibernation, mammalian hearts show a propensity to hypertrophy due to the need for increasing contractility to pump colder and more viscous blood. While cardiac hypertrophy is quite often a process characterized by decompensation, the ground squirrel studied is an excellent model of cardiac plasticity and cardioprotection under conditions of hypothermia and ischemia. The forkhead box O (Foxo) family of proteins and myogenin (MyoG) are transcription factors that control protein degradation and muscle atrophy by regulating the expression of the E3 ubiquitin ligases, MAFbx and MuRF1. These ligases are part of the ubiquitin proteasome system by transferring ubiquitin to proteins and targeting these proteins for degradation. Regulation of Foxo1 and 3a occurs through phosphorylation at different residues. The threonine-24 (Thr-24) and serine-319 (Ser-319) residues on Foxo1, and the Thr-32 residue on Foxo3a are phosphorylated by Akt, leading to cytoplasmic localization of Foxo. We propose that the described mechanism contributes to the changes taking place in cardiac muscle throughout hibernation. Methods. Total and phosphorylated protein levels of Foxo1 and Foxo3a, as well as total protein levels of MyoG, MAFbx, and MuRF1, were studied using immunoblotting. Results. Immunoblotting results demonstrated upregulations in Foxo1 and Foxo3a total protein levels (1.3- and 4.5-fold increases relative to euthermic control, for Foxo1 and 3a respectively) during late torpor, and protein levels remained elevated throughout the rest of torpor and at interbout arousal. We also observed decreases in inactive, phosphorylated Foxo1 and 3a proteins during throughout torpor, where levels of p-Foxo1 Ser319 and Thr24, as well as p-Foxo3a Thr32 decreased by at least 45% throughout torpor. MyoG was upregulated only

  7. Transcriptional activation of muscle atrophy promotes cardiac muscle remodeling during mammalian hibernation.

    PubMed

    Zhang, Yichi; Aguilar, Oscar A; Storey, Kenneth B

    2016-01-01

    Background. Mammalian hibernation in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) is characterized by dramatic changes on a physiological and molecular level. During hibernation, mammalian hearts show a propensity to hypertrophy due to the need for increasing contractility to pump colder and more viscous blood. While cardiac hypertrophy is quite often a process characterized by decompensation, the ground squirrel studied is an excellent model of cardiac plasticity and cardioprotection under conditions of hypothermia and ischemia. The forkhead box O (Foxo) family of proteins and myogenin (MyoG) are transcription factors that control protein degradation and muscle atrophy by regulating the expression of the E3 ubiquitin ligases, MAFbx and MuRF1. These ligases are part of the ubiquitin proteasome system by transferring ubiquitin to proteins and targeting these proteins for degradation. Regulation of Foxo1 and 3a occurs through phosphorylation at different residues. The threonine-24 (Thr-24) and serine-319 (Ser-319) residues on Foxo1, and the Thr-32 residue on Foxo3a are phosphorylated by Akt, leading to cytoplasmic localization of Foxo. We propose that the described mechanism contributes to the changes taking place in cardiac muscle throughout hibernation. Methods. Total and phosphorylated protein levels of Foxo1 and Foxo3a, as well as total protein levels of MyoG, MAFbx, and MuRF1, were studied using immunoblotting. Results. Immunoblotting results demonstrated upregulations in Foxo1 and Foxo3a total protein levels (1.3- and 4.5-fold increases relative to euthermic control, for Foxo1 and 3a respectively) during late torpor, and protein levels remained elevated throughout the rest of torpor and at interbout arousal. We also observed decreases in inactive, phosphorylated Foxo1 and 3a proteins during throughout torpor, where levels of p-Foxo1 Ser(319) and Thr(24), as well as p-Foxo3a Thr(32) decreased by at least 45% throughout torpor. MyoG was

  8. Photoreceptor phagocytosis is mediated by phosphoinositide signaling

    PubMed Central

    Mustafi, Debarshi; Kevany, Brian M.; Genoud, Christel; Bai, Xiaodong; Palczewski, Krzysztof

    2013-01-01

    Circadian oscillations in peripheral tissues, such as the retinal compartment of the eye, are critical to anticipating changing metabolic demands. Circadian shedding of retinal photoreceptor cell discs with subsequent phagocytosis by the neighboring retinal pigmented epithelium (RPE) is essential for removal of toxic metabolites and lifelong survival of these postmitotic neurons. Defects in photoreceptor phagocytosis can lead to severe retinal pathology, but the biochemical mechanisms remain poorly defined. By first documenting a 2.8-fold burst of photoreceptor phagocytosis events in the mouse eye in the morning compared with the afternoon by serial block face imaging, we established time points to assess transcriptional readouts by RNA sequencing (RNA-Seq). We identified 365 oscillating protein-coding transcripts that implicated the phosphoinositide lipid signaling network mediating the discrete steps of photoreceptor phagocytosis. Moreover, examination of overlapping cistromic sites by core clock transcription factors and promoter elements of these effector genes provided a functional basis for the circadian cycling of these transcripts. RNA-Seq also revealed oscillating expression of 16 long intergenic noncoding RNAs and key histone modifying enzymes critical for circadian gene expression. Our phenotypic and genotypic characterization reveals a complex global landscape of overlapping and temporally controlled networks driving the essential circadian process in the eye.—Mustafi, D., Kevany, B. M., Genoud, C., Bai, X., Palczewski, K. Photoreceptor phagocytosis is mediated by phosphoinositide signaling. PMID:23913857

  9. An engineered L-arginine sensor of Chlamydia pneumoniae enables arginine-adjustable transcription control in mammalian cells and mice.

    PubMed

    Hartenbach, Shizuka; Daoud-El Baba, Marie; Weber, Wilfried; Fussenegger, Martin

    2007-01-01

    For optimal compatibility with biopharmaceutical manufacturing and gene therapy, heterologous transgene control systems must be responsive to side-effect-free physiologic inducer molecules. The arginine-inducible interaction of the ArgR repressor and the ArgR-specific ARG box, which synchronize arginine import and synthesis in the intracellular human pathogen Chlamydia pneumoniae, was engineered for arginine-regulated transgene (ART) expression in mammalian cells. A synthetic arginine-responsive transactivator (ARG), consisting of ArgR fused to the Herpes simplex VP16 transactivation domain, reversibly adjusted transgene transcription of chimeric ARG box-containing mammalian minimal promoters (P(ART)) in an arginine-inducible manner. Arginine-controlled transgene expression showed rapid induction kinetics in a variety of mammalian cell lines and was adjustable and reversible at concentrations which were compatible with host cell physiology. ART variants containing different transactivation domains, variable spacing between ARG box and minimal promoter and several tandem ARG boxes showed modified regulation performance tailored for specific expression scenarios and cell types. Mice implanted with microencapsulated cells engineered for ART-inducible expression of the human placental secreted alkaline phosphatase (SEAP) exhibited adjustable serum phosphatase levels after treatment with different arginine doses. Using a physiologic inducer, such as the amino acid l-arginine, to control heterologous transgenes in a seamless manner which is devoid of noticeable metabolic interference will foster novel opportunities for precise expression dosing in future gene therapy scenarios as well as the manufacturing of difficult-to-produce protein pharmaceuticals. PMID:17947334

  10. MiRNA-Target Interaction Reveals Cell-Specific Post-Transcriptional Regulation in Mammalian Cell Lines

    PubMed Central

    Kulkarni, Varun; Naqvi, Afsar Raza; Uttamani, Juhi Raju; Nares, Salvador

    2016-01-01

    MicroRNAs are 18–22 nucleotides long, non-coding RNAs that bind transcripts with complementary sequences leading to either mRNA degradation or translational suppression. However, the inherent differences in preferred mode of miRNA regulation among cells of different origin have not been examined. In our previous transcriptome profiling studies, we observed that post-transcriptional regulation can differ substantially depending on the cell in context. Here we examined mechanistic differences in the regulation of a let-7a targeted (wild type) or resistant (mutant) engineered renilla transcript across various mammalian cell lines of diverse origin. Dual luciferase assays show that compared to mutant (mut), the reporter gene containing wild type (wt) let-7a binding sites was efficiently suppressed upon transfection in various cell lines. Importantly, the strength of miRNA regulation varied across the cell lines. Total RNA analysis demonstrates that wt renilla mRNA was expressed to similar or higher levels compared to mut suggesting that translation repression is a predominant mode of miRNA regulation. Nonetheless, transcript degradation was observed in some cell lines. Ago-2 immunoprecipitation show that miRNA repressed renilla mRNA are associated with functional mi-RISC (miRNA-RNA induced silencing complex). Given the immense potential of miRNA as a therapeutic option, these findings highlight the necessity to thoroughly examine the mode of mRNA regulation in order to achieve the beneficial effects in targeting cells. PMID:26761000

  11. Protein kinase NII and the regulation of rDNA transcription in mammalian cells.

    PubMed Central

    Belenguer, P; Baldin, V; Mathieu, C; Prats, H; Bensaid, M; Bouche, G; Amalric, F

    1989-01-01

    Transcription of ribosomal RNA genes is generally accepted to correlate with cell growth. Using primary cultures of adult bovine aortic endothelial (ABAE) cells, we have shown that transcription of rDNA in confluent cells falls to 5% of the transcription level in growing cells. Protein kinase NII appears to be a limiting factor to promote rDNA transcription in isolated nuclei of confluent cells. Protein kinase NII was detected by immunocytochemistry in the cytoplasm, nuclei and nucleoli of growing cells while it was no longer present in nucleoli of confluent cells. The kinase activity, in isolated nuclei, was estimated by endogenous phosphorylation of a specific substrate, nucleolin. A 10% residual activity was present in confluent cell nuclei compared to growing cell nuclei. Concomitantly, the transcription 'in vitro' of rDNA in the corresponding nuclei was also highly reduced (by 85%). Addition of exogenous protein kinase NII to confluent cell nuclei induced a strong increase in the phosphorylation of specific proteins including nucleolin. In parallel, the transcription of rDNA was increased by a factor of 5, to nearly the level observed in nuclei prepared from growing cells. These data suggest that, in confluent cells, factors necessary for rDNA transcription machinery are present but inactive in the nucleolus and that the phosphorylation of one or several of these factors (nucleolin, topoisomerase I,...) by protein kinase NII is a key event in the regulation of rDNA transcription. Images PMID:2780290

  12. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells

    PubMed Central

    Arner, Erik; Daub, Carsten O.; Vitting-Seerup, Kristoffer; Andersson, Robin; Lilje, Berit; Drabløs, Finn; Lennartsson, Andreas; Rönnerblad, Michelle; Hrydziuszko, Olga; Vitezic, Morana; Freeman, Tom C.; Alhendi, Ahmad M. N.; Arner, Peter; Axton, Richard; Baillie, J. Kenneth; Beckhouse, Anthony; Bodega, Beatrice; Briggs, James; Brombacher, Frank; Davis, Margaret; Detmar, Michael; Ehrlund, Anna; Endoh, Mitsuhiro; Eslami, Afsaneh; Fagiolini, Michela; Fairbairn, Lynsey; Faulkner, Geoffrey J.; Ferrai, Carmelo; Fisher, Malcolm E.; Forrester, Lesley; Goldowitz, Daniel; Guler, Reto; Ha, Thomas; Hara, Mitsuko; Herlyn, Meenhard; Ikawa, Tomokatsu; Kai, Chieko; Kawamoto, Hiroshi; Khachigian, Levon M.; Klinken, S. Peter; Kojima, Soichi; Koseki, Haruhiko; Klein, Sarah; Mejhert, Niklas; Miyaguchi, Ken; Mizuno, Yosuke; Morimoto, Mitsuru; Morris, Kelly J.; Mummery, Christine; Nakachi, Yutaka; Ogishima, Soichi; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry; Passier, Robert; Patrikakis, Margaret; Pombo, Ana; Qin, Xian-Yang; Roy, Sugata; Sato, Hiroki; Savvi, Suzana; Saxena, Alka; Schwegmann, Anita; Sugiyama, Daisuke; Swoboda, Rolf; Tanaka, Hiroshi; Tomoiu, Andru; Winteringham, Louise N.; Wolvetang, Ernst; Yanagi-Mizuochi, Chiyo; Yoneda, Misako; Zabierowski, Susan; Zhang, Peter; Abugessaisa, Imad; Bertin, Nicolas; Diehl, Alexander D.; Fukuda, Shiro; Furuno, Masaaki; Harshbarger, Jayson; Hasegawa, Akira; Hori, Fumi; Ishikawa-Kato, Sachi; Ishizu, Yuri; Itoh, Masayoshi; Kawashima, Tsugumi; Kojima, Miki; Kondo, Naoto; Lizio, Marina; Meehan, Terrence F.; Mungall, Christopher J.; Murata, Mitsuyoshi; Nishiyori-Sueki, Hiromi; Sahin, Serkan; Nagao-Sato, Sayaka; Severin, Jessica; de Hoon, Michiel J. L.; Kawai, Jun; Kasukawa, Takeya; Lassmann, Timo; Suzuki, Harukazu; Kawaji, Hideya; Summers, Kim M.; Wells, Christine; Hume, David A.; Forrest, Alistair R. R.; Sandelin, Albin; Carninci, Piero; Hayashizaki, Yoshihide

    2015-01-01

    Although it is generally accepted that cellular differentiation requires changes to transcriptional networks, dynamic regulation of promoters and enhancers at specific sets of genes has not been previously studied en masse. Exploiting the fact that active promoters and enhancers are transcribed, we simultaneously measured their activity in 19 human and 14 mouse time courses covering a wide range of cell types and biological stimuli. Enhancer RNAs, then messenger RNAs encoding transcription factors, dominated the earliest responses. Binding sites for key lineage transcription factors were simultaneously overrepresented in enhancers and promoters active in each cellular system. Our data support a highly generalizable model in which enhancer transcription is the earliest event in successive waves of transcriptional change during cellular differentiation or activation. PMID:25678556

  13. A novel transforming growth factor beta2 antisense transcript in mammalian lung.

    PubMed Central

    Coker, R K; Laurent, G J; Dabbagh, K; Dawson, J; McAnulty, R J

    1998-01-01

    Transforming growth factor (TGF) beta2 gene expression was examined in murine, rat and human lung by in situ hybridization with riboprobes. Hybridization signal was observed in a variety of cells with the sense probe, and Northern-blot analysis with this probe demonstrated the presence of a novel 3.5 kb transcript. This first report suggesting the existance of a natural TGFbeta2 antisense transcript raises the possibility that such a transcript may play a role in regulating TGFbeta2 production. PMID:9601055

  14. An evolutionary, structural and functional overview of the mammalian TEAD1 and TEAD2 transcription factors.

    PubMed

    Landin-Malt, André; Benhaddou, Ataaillah; Zider, Alain; Flagiello, Domenico

    2016-10-10

    TEAD proteins constitute a family of highly conserved transcription factors, characterized by a DNA-binding domain called the TEA domain and a protein-binding domain that permits association with transcriptional co-activators. TEAD proteins are unable to induce transcription on their own. They have to interact with transcriptional cofactors to do so. Once TEADs bind their co-activators, the different complexes formed are known to regulate the expression of genes that are crucial for embryonic development, important for organ formation (heart, muscles), and involved in cell death and proliferation. In the first part of this review we describe what is known of the structure of TEAD proteins. We then focus on two members of the family: TEAD1 and TEAD2. First the different transcriptional cofactors are described. These proteins can be classified in three categories: i), cofactors regulating chromatin conformation, ii), cofactors able to bind DNA, and iii), transcriptional cofactors without DNA binding domain. Finally we discuss the recent findings that identified TEAD1 and 2 and its coactivators involved in cancer progression. PMID:27421669

  15. Recruitment of Rod Photoreceptors from Short-Wavelength-Sensitive Cones during the Evolution of Nocturnal Vision in Mammals.

    PubMed

    Kim, Jung-Woong; Yang, Hyun-Jin; Oel, Adam Phillip; Brooks, Matthew John; Jia, Li; Plachetzki, David Charles; Li, Wei; Allison, William Ted; Swaroop, Anand

    2016-06-20

    Vertebrate ancestors had only cone-like photoreceptors. The duplex retina evolved in jawless vertebrates with the advent of highly photosensitive rod-like photoreceptors. Despite cones being the arbiters of high-resolution color vision, rods emerged as the dominant photoreceptor in mammals during a nocturnal phase early in their evolution. We investigated the evolutionary and developmental origins of rods in two divergent vertebrate retinas. In mice, we discovered genetic and epigenetic vestiges of short-wavelength cones in developing rods, and cell-lineage tracing validated the genesis of rods from S cones. Curiously, rods did not derive from S cones in zebrafish. Our study illuminates several questions regarding the evolution of duplex retina and supports the hypothesis that, in mammals, the S-cone lineage was recruited via the Maf-family transcription factor NRL to augment rod photoreceptors. We propose that this developmental mechanism allowed the adaptive exploitation of scotopic niches during the nocturnal bottleneck early in mammalian evolution. PMID:27326930

  16. Transcriptional Profiling the 150 kb Linear Megaplasmid of Borrelia turicatae Suggests a Role in Vector Colonization and Initiating Mammalian Infection

    PubMed Central

    Wilder, Hannah K.; Raffel, Sandra J.; Barbour, Alan G.; Porcella, Stephen F.; Sturdevant, Daniel E.; Vaisvil, Benjamin; Kapatral, Vinayak; Schmitt, Daniel P.; Schwan, Tom G.; Lopez, Job E.

    2016-01-01

    Adaptation is key for survival as vector-borne pathogens transmit between the arthropod and vertebrate, and temperature change is an environmental signal inducing alterations in gene expression of tick-borne spirochetes. While plasmids are often associated with adaptation, complex genomes of relapsing fever spirochetes have hindered progress in understanding the mechanisms of vector colonization and transmission. We utilized recent advances in genome sequencing to generate the most complete version of the Borrelia turicatae 150 kb linear megaplasmid (lp150). Additionally, a transcriptional analysis of open reading frames (ORFs) in lp150 was conducted and identified regions that were up-regulated during in vitro cultivation at tick-like growth temperatures (22°C), relative to bacteria grown at 35°C and infected murine blood. Evaluation of the 3’ end of lp150 identified a cluster of ORFs that code for putative surface lipoproteins. With a microbe’s surface proteome serving important roles in pathogenesis, we confirmed the ORFs expression in vitro and in the tick compared to spirochetes infecting murine blood. Transcriptional evaluation of lp150 indicates the plasmid likely has essential roles in vector colonization and/or initiating mammalian infection. These results also provide a much needed transcriptional framework to delineate the molecular mechanisms utilized by relapsing fever spirochetes during their enzootic cycle. PMID:26845332

  17. Transcriptional Profiling the 150 kb Linear Megaplasmid of Borrelia turicatae Suggests a Role in Vector Colonization and Initiating Mammalian Infection.

    PubMed

    Wilder, Hannah K; Raffel, Sandra J; Barbour, Alan G; Porcella, Stephen F; Sturdevant, Daniel E; Vaisvil, Benjamin; Kapatral, Vinayak; Schmitt, Daniel P; Schwan, Tom G; Lopez, Job E

    2016-01-01

    Adaptation is key for survival as vector-borne pathogens transmit between the arthropod and vertebrate, and temperature change is an environmental signal inducing alterations in gene expression of tick-borne spirochetes. While plasmids are often associated with adaptation, complex genomes of relapsing fever spirochetes have hindered progress in understanding the mechanisms of vector colonization and transmission. We utilized recent advances in genome sequencing to generate the most complete version of the Borrelia turicatae 150 kb linear megaplasmid (lp150). Additionally, a transcriptional analysis of open reading frames (ORFs) in lp150 was conducted and identified regions that were up-regulated during in vitro cultivation at tick-like growth temperatures (22°C), relative to bacteria grown at 35°C and infected murine blood. Evaluation of the 3' end of lp150 identified a cluster of ORFs that code for putative surface lipoproteins. With a microbe's surface proteome serving important roles in pathogenesis, we confirmed the ORFs expression in vitro and in the tick compared to spirochetes infecting murine blood. Transcriptional evaluation of lp150 indicates the plasmid likely has essential roles in vector colonization and/or initiating mammalian infection. These results also provide a much needed transcriptional framework to delineate the molecular mechanisms utilized by relapsing fever spirochetes during their enzootic cycle. PMID:26845332

  18. Transcription of Mammalian cis-Regulatory Elements Is Restrained by Actively Enforced Early Termination.

    PubMed

    Austenaa, Liv M I; Barozzi, Iros; Simonatto, Marta; Masella, Silvia; Della Chiara, Giulia; Ghisletti, Serena; Curina, Alessia; de Wit, Elzo; Bouwman, Britta A M; de Pretis, Stefano; Piccolo, Viviana; Termanini, Alberto; Prosperini, Elena; Pelizzola, Mattia; de Laat, Wouter; Natoli, Gioacchino

    2015-11-01

    Upon recruitment to active enhancers and promoters, RNA polymerase II (Pol II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adaptor protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1 H3K4 methyltransferases and the nuclear protein phosphatase 1 (PP1) complexes to the initiating Pol II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1, or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes and active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs. PMID:26593720

  19. Synthesis of reinitiated transcripts by mammalian RNA polymerase II is controlled by elongation factor SII.

    PubMed Central

    Szentirmay, M N; Sawadogo, M

    1993-01-01

    Previous studies have revealed that the in vitro synthesis of reinitiated transcripts by RNA polymerase II requires an additional activity, designated reinitiation transcription factor (RTF), which is distinct from all of the general class II initiation factors. While further characterizing this activity, it was found that RTF displays properties indistinguishable from those of the RNA polymerase II elongation factor SII. In addition, Western blot analysis using SII-specific antibodies revealed that human SII is a major component in purified RTF preparations. The functional equivalence of the two proteins was established using recombinant SII, which proved fully capable of substituting for RTF in the reinitiation assay. In these reconstituted reactions, transcription complexes resulting from reinitiation events required SII to proceed through a 400 bp G-free cassette, while complexes resulting from the first round of initiations were SII-independent. Reinitiations can take place in the absence of SII; however, addition of the elongation factor is essential for full extension of the reinitiated transcripts. These results suggest that events taking place at the promoter (e.g. first-round initiations versus reinitiations) can create marked differences in the properties of RNA polymerase II elongation complexes. Images PMID:8223477

  20. Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases.

    PubMed

    Johnson, Sandra S; Zhang, Cheng; Fromm, Jody; Willis, Ian M; Johnson, Deborah L

    2007-05-11

    Most eukaryotic transcriptional regulators act in an RNA polymerase (Pol)-selective manner. Here we show that the human Maf1 protein negatively regulates transcription by all three nuclear Pols. Changes in Maf1 expression affect Pol I- and Pol III-dependent transcription in human glioblastoma lines. These effects are mediated, in part, through the ability of Maf1 to repress transcription of the TATA binding protein, TBP. Maf1 targets an Elk-1-binding site in the TBP promoter, and its occupancy of this region is reciprocal with that of Elk-1. Similarly, Maf1 occupancy of Pol III genes is inversely correlated with that of the initiation factor TFIIIB and Pol III. The phenotypic consequences of reducing Maf1 expression include changes in cell morphology and the accumulation of actin stress fibers, whereas Maf1 overexpression suppresses anchorage-independent growth. Together with the ability of Maf1 to reduce biosynthetic capacity, these findings support the idea that Maf1 regulates the transformation state of cells. PMID:17499043

  1. Increasing the dynamic control space of mammalian transcription devices by combinatorial assembly of homologous regulatory elements from different bacterial species.

    PubMed

    Bacchus, William; Weber, Wilfried; Fussenegger, Martin

    2013-01-01

    Prokaryotic transcriptional regulatory elements are widely utilized building blocks for constructing regulatory genetic circuits adapted for mammalian cells and have found their way into a broad range of biotechnological applications. Prokaryotic transcriptional repressors, fused to eukaryotic transactivation or repression domains, compose the transcription factor, which binds and adjusts transcription from chimeric promoters containing the repressor-specific operator sequence. Escherichia coli and Chlamydia trachomatis share common features in the regulatory mechanism of the biosynthesis of l-tryptophan. The repressor protein TrpR of C. trachomatis regulates the trpRBA operon and the TrpR of E. coli regulates the trpEDCBA operon, both requiring l-tryptophan as a co-repressor. Fusion of these bacterial repressors to the VP16 transactivation domain of Herpes simplex virus creates synthetic transactivators that could bind and activate chimeric promoters, assembled by placing repressor-specific operator modules adjacent to a minimal promoter, in an l-tryptophan-adjustable manner. Combinations of different transactivator and promoter variants from the same or different bacterial species resulted in a multitude of regulatory systems where l-tryptophan regulation properties, background noise, and maximal gene expression levels were significantly diverse. Different l-tryptophan analogues showed diverse regulatory capacity depending on the promoter/transactivator combination. We believe the systems approach to rationally choose promoters, transactivators and inducer molecules, to obtain desired and predefined genetic expression dynamics and control profiles, will significantly advance the design of new regulatory circuits as well as improving already existing ones. PMID:23178502

  2. Disruption of the human cone photoreceptor mosaic from a defect in NR2E3 transcription factor function in young adults

    PubMed Central

    Park, Sung Pyo; Hong, In Hwan; Lee, Winston; Horowitz, Jason; Yzer, Suzanne; Allikmets, Rando; Chang, Stanley

    2013-01-01

    Background Enhanced S-cone syndrome is an orphan disease caused by mutations in the NR2E3 gene which result in an increased number of S-cones overpopulating the retina. Although the characteristic onset of enhanced S-cone syndrome can be well-documented by current ophthalmic imaging modalities, techniques such as spectral-domain optical coherence tomography (SD-OCT) and scanning laser ophthalmoscopy (SLO) fail to provide sufficient details regarding the microstructure of photoreceptors in retinal diseases. Adaptive optics (AO) provides a unique opportunity to analyze the effects of genetic mutations on photoreceptors by compensating aberrations of human eyes. Methods Three eyes of three young adults with enhanced Scone syndrome were studied by clinical examination, genetic screening, fundus autofluorescence (FAF) imaging, SD-OCT, and electroretinography (ERG). Cone mosaic imaging was accomplished by an AO-SLO equipped with a dual crystal on silicon spatial light modulator. Qualitative image analyses and genetic findings were investigated in each patient. Results The diagnosis of patients was confirmed by ERG finding. Genetic screening confirmed the presence of two disease-causing mutations in the NR2E3 gene in each study patient, as well as identified a novel mutation (202 A > G, S68G). Fundus photograph, FAF, and SD-OCT found rosette-like lesion within the mid-periphery along the vascular arcades of the retina. In all AO-SLO images of patients, sparse distribution and asymmetric size of cone mosaic pattern were found within central retina. There were regions of dark space between groups of photoreceptors, distinguishable from shadowing and artifacts. Conclusions AO-SLO provided an in-depth window into the retina of live enhanced S-cone syndrome patients beyond the ability of other current imaging modalities. Dark lesions within the central retina in each patient contain structurally dysfunctional cones which account for retinal mosaic disorganization, and may

  3. Two temporal functions of Glass: Ommatidium patterning and photoreceptor differentiation.

    PubMed

    Liang, Xulong; Mahato, Simpla; Hemmerich, Chris; Zelhof, Andrew C

    2016-06-01

    Much progress has been made in elucidating the molecular networks required for specifying retinal cells, including photoreceptors, but the downstream mechanisms that maintain identity and regulate differentiation remain poorly understood. Here, we report that the transcription factor Glass has a dual role in establishing a functional Drosophila eye. Utilizing conditional rescue approaches, we confirm that persistent defects in ommatidium patterning combined with cell death correlate with the overall disruption of eye morphology in glass mutants. In addition, we reveal that Glass exhibits a separable role in regulating photoreceptor differentiation. In particular, we demonstrate the apparent loss of glass mutant photoreceptors is not only due to cell death but also a failure of the surviving photoreceptors to complete differentiation. Moreover, the late reintroduction of Glass in these developmentally stalled photoreceptors is capable of restoring differentiation in the absence of correct ommatidium patterning. Mechanistically, transcription profiling at the time of differentiation reveals that Glass is necessary for the expression of many genes implicated in differentiation, i.e. rhabdomere morphogenesis, phototransduction, and synaptogenesis. Specifically, we show Glass directly regulates the expression of Pph13, which encodes a transcription factor necessary for opsin expression and rhabdomere morphogenesis. Finally, we demonstrate the ability of Glass to choreograph photoreceptor differentiation is conserved between Drosophila and Tribolium, two holometabolous insects. Altogether, our work identifies a fundamental regulatory mechanism to generate the full complement of cells required for a functional rhabdomeric visual system and provides a critical framework to investigate the basis of differentiation and maintenance of photoreceptor identity. PMID:27105580

  4. Methylation of RNA polymerase II non-consensus Lysine residues marks early transcription in mammalian cells

    PubMed Central

    Dias, João D; Rito, Tiago; Torlai Triglia, Elena; Kukalev, Alexander; Ferrai, Carmelo; Chotalia, Mita; Brookes, Emily; Kimura, Hiroshi; Pombo, Ana

    2015-01-01

    Dynamic post-translational modification of RNA polymerase II (RNAPII) coordinates the co-transcriptional recruitment of enzymatic complexes that regulate chromatin states and processing of nascent RNA. Extensive phosphorylation of serine residues at the largest RNAPII subunit occurs at its structurally-disordered C-terminal domain (CTD), which is composed of multiple heptapeptide repeats with consensus sequence Y1-S2-P3-T4-S5-P6-S7. Serine-5 and Serine-7 phosphorylation mark transcription initiation, whereas Serine-2 phosphorylation coincides with productive elongation. In vertebrates, the CTD has eight non-canonical substitutions of Serine-7 into Lysine-7, which can be acetylated (K7ac). Here, we describe mono- and di-methylation of CTD Lysine-7 residues (K7me1 and K7me2). K7me1 and K7me2 are observed during the earliest transcription stages and precede or accompany Serine-5 and Serine-7 phosphorylation. In contrast, K7ac is associated with RNAPII elongation, Serine-2 phosphorylation and mRNA expression. We identify an unexpected balance between RNAPII K7 methylation and acetylation at gene promoters, which fine-tunes gene expression levels. DOI: http://dx.doi.org/10.7554/eLife.11215.001 PMID:26687004

  5. Dynamic transcriptional symmetry-breaking in pre-implantation mammalian embryo development revealed by single-cell RNA-seq.

    PubMed

    Shi, Junchao; Chen, Qi; Li, Xin; Zheng, Xiudeng; Zhang, Ying; Qiao, Jie; Tang, Fuchou; Tao, Yi; Zhou, Qi; Duan, Enkui

    2015-10-15

    During mammalian pre-implantation embryo development, when the first asymmetry emerges and how it develops to direct distinct cell fates remain longstanding questions. Here, by analyzing single-blastomere transcriptome data from mouse and human pre-implantation embryos, we revealed that the initial blastomere-to-blastomere biases emerge as early as the first embryonic cleavage division, following a binomial distribution pattern. The subsequent zygotic transcriptional activation further elevated overall blastomere-to-blastomere biases during the two- to 16-cell embryo stages. The trends of transcriptional asymmetry fell into two distinct patterns: for some genes, the extent of asymmetry was minimized between blastomeres (monostable pattern), whereas other genes, including those known to be lineage specifiers, showed ever-increasing asymmetry between blastomeres (bistable pattern), supposedly controlled by negative or positive feedbacks. Moreover, our analysis supports a scenario in which opposing lineage specifiers within an early blastomere constantly compete with each other based on their relative ratio, forming an inclined 'lineage strength' that pushes the blastomere onto a predisposed, yet flexible, lineage track before morphological distinction. PMID:26395495

  6. Rapid evolution of a recently retroposed transcription factor YY2 in mammalian genomes

    SciTech Connect

    Luo, C; Lu, X; Stubbs, L; Kim, J

    2005-11-11

    YY2 was originally identified due to its unusual similarity to the evolutionarily well conserved, zinc-finger gene YY1. In this study, we have determined the evolutionary origin and conservation of YY2 using comparative genomic approaches. Our results indicate that YY2 is a retroposed copy of YY1 that has been inserted into another gene locus named Mbtps2 (membrane-bound transcription factor protease site 2). This retroposition is estimated to have occurred after the divergence of placental mammals from other vertebrates based on the detection of YY2 only in the placental mammals. The N-terminal and C-terminal regions of YY2 have evolved under different selection pressures. The N-terminal region has evolved at a very fast pace with very limited functional constraints whereas the DNA-binding, C-terminal region still maintains very similar sequence structure as YY1 and is also well conserved among placental mammals. In situ hybridizations using different adult mouse tissues indicate that mouse YY2 is expressed at relatively low levels in Purkinje and granular cells of cerebellum, and neuronal cells of cerebrum, but at very high levels in testis. The expression levels of YY2 is much lower than YY1, but the overall spatial expression patterns are similar to those of Mbtps2, suggesting a possible shared transcriptional control between YY2 and Mbtps2. Taken together, the formation and evolution of YY2 represent a very unusual case where a transcription factor was first retroposed into another gene locus encoding a protease and survived with different selection schemes and expression patterns.

  7. Modulation of the cytoplasmic functions of mammalian post-transcriptional regulatory proteins by methylation and acetylation: a key layer of regulation waiting to be uncovered?

    PubMed

    Blee, Tajekesa K P; Gray, Nicola K; Brook, Matthew

    2015-12-01

    Post-transcriptional control of gene expression is critical for normal cellular function and viability and many of the proteins that mediate post-transcriptional control are themselves subject to regulation by post-translational modification (PTM), e.g. phosphorylation. However, proteome-wide studies are revealing new complexities in the PTM status of mammalian proteins, in particular large numbers of novel methylated and acetylated residues are being identified. Here we review studied examples of methylation/acetylation-dependent regulation of post-transcriptional regulatory protein (PTRP) function and present collated PTM data that points to the huge potential for regulation of mRNA fate by these PTMs. PMID:26614674

  8. Structure-aided prediction of mammalian transcription factor complexes in conserved non-coding elements.

    PubMed

    Guturu, Harendra; Doxey, Andrew C; Wenger, Aaron M; Bejerano, Gill

    2013-12-19

    Mapping the DNA-binding preferences of transcription factor (TF) complexes is critical for deciphering the functions of cis-regulatory elements. Here, we developed a computational method that compares co-occurring motif spacings in conserved versus unconserved regions of the human genome to detect evolutionarily constrained binding sites of rigid TF complexes. Structural data were used to estimate TF complex physical plausibility, explore overlapping motif arrangements seldom tackled by non-structure-aware methods, and generate and analyse three-dimensional models of the predicted complexes bound to DNA. Using this approach, we predicted 422 physically realistic TF complex motifs at 18% false discovery rate, the majority of which (326, 77%) contain some sequence overlap between binding sites. The set of mostly novel complexes is enriched in known composite motifs, predictive of binding site configurations in TF-TF-DNA crystal structures, and supported by ChIP-seq datasets. Structural modelling revealed three cooperativity mechanisms: direct protein-protein interactions, potentially indirect interactions and 'through-DNA' interactions. Indeed, 38% of the predicted complexes were found to contain four or more bases in which TF pairs appear to synergize through overlapping binding to the same DNA base pairs in opposite grooves or strands. Our TF complex and associated binding site predictions are available as a web resource at http://bejerano.stanford.edu/complex. PMID:24218641

  9. Identification of Transcriptional and Metabolic Programs Related to Mammalian Cell Size

    PubMed Central

    Miettinen, Teemu P.; Pessa, Heli K.J.; Caldez, Matias J.; Fuhrer, Tobias; Diril, M. Kasim; Sauer, Uwe; Kaldis, Philipp; Björklund, Mikael

    2014-01-01

    Summary Background Regulation of cell size requires coordination of growth and proliferation. Conditional loss of cyclin-dependent kinase 1 in mice permits hepatocyte growth without cell division, allowing us to study cell size in vivo using transcriptomics and metabolomics. Results Larger cells displayed increased expression of cytoskeletal genes but unexpectedly repressed expression of many genes involved in mitochondrial functions. This effect appears to be cell autonomous because cultured Drosophila cells induced to increase cell size displayed a similar gene-expression pattern. Larger hepatocytes also displayed a reduction in the expression of lipogenic transcription factors, especially sterol-regulatory element binding proteins. Inhibition of mitochondrial functions and lipid biosynthesis, which is dependent on mitochondrial metabolism, increased the cell size with reciprocal effects on cell proliferation in several cell lines. Conclusions We uncover that large cell-size increase is accompanied by downregulation of mitochondrial gene expression, similar to that observed in diabetic individuals. Mitochondrial metabolism and lipid synthesis are used to couple cell size and cell proliferation. This regulatory mechanism may provide a possible mechanism for sensing metazoan cell size. PMID:24613310

  10. A Vector with a Single Promoter for In Vitro Transcription and Mammalian Cell Expression of CRISPR gRNAs

    PubMed Central

    Romanienko, Peter J.; Giacalone, Joseph; Ingenito, Joanne; Wang, Yijie; Isaka, Mayumi; Johnson, Thomas; You, Yun; Mark, Willie H.

    2016-01-01

    The genomes of more than 50 organisms have now been manipulated due to rapid advancement of gene editing technology. One way to perform gene editing in the mouse using the CRISPR/CAS system, guide RNA (gRNA) and CAS9 mRNA transcribed in vitro are microinjected into fertilized eggs that are then allowed to develop to term. As a rule, gRNAs are tested first in tissue culture cells and the one with the highest locus-specific cleavage activity is chosen for microinjection. For cell transfections, gRNAs are typically expressed using the human U6 promoter (hU6). However, gRNAs for microinjection into zygotes are obtained by in vitro transcription from a T7 bacteriophage promoter in a separate plasmid vector. Here, we describe the design and construction of a combined U6T7 hybrid promoter from which the same gRNA sequence can be expressed. An expression vector containing such a hybrid promoter can now be used to generate gRNA for testing in mammalian cells as well as for microinjection purposes. The gRNAs expressed and transcribed from this vector are found to be functional in cells as well as in mice. PMID:26849369

  11. Real-time analysis of the transcriptional regulation of HIV and hCMV promoters in single mammalian cells.

    PubMed

    White, M R; Masuko, M; Amet, L; Elliott, G; Braddock, M; Kingsman, A J; Kingsman, S M

    1995-02-01

    The regulation of human cytomegalovirus (hCMV) and human immunodeficiency virus (HIV) gene expression has been studied in single intact mammalian cells. Viral promoters were placed upstream of the firefly luciferase reporter gene and the resulting hybrid reporter constructs were stably integrated into the HeLa cell genome. A highly sensitive photon-counting camera system was used to study the level of gene expression in single intact cells. Luciferase expression was studied in the absence of activators of viral gene expression, in the presence of the HIV-1 TAT transactivator protein, or in the presence of sodium butyrate, a non-viral activator of gene expression. In the absence of any activator of gene expression, while expression was undetectable in most cells, significant levels of basal luciferase activity were observed in a few cells, indicating heterogeneity in gene expression in the cell population. In the presence of the general activator of viral gene expression, sodium butyrate, transcriptional activation from the viral promoters gave rise to significant and relatively homogeneous levels of luciferase expression in a majority of cells. The luciferase imaging technology was used for the real-time analysis of changes of gene expression within a single cell. This non-invasive reporter assay should become important for studies of the temporal regulation of gene expression in single cells. PMID:7768992

  12. The identification and characterization of human Sister-of-Mammalian Grainyhead (SOM) expands the grainyhead-like family of developmental transcription factors.

    PubMed Central

    Ting, Stephen B; Wilanowski, Tomasz; Cerruti, Loretta; Zhao, Lin-Lin; Cunningham, John M; Jane, Stephen M

    2003-01-01

    The Drosophila gene grainyhead is the founding member of a large family of genes encoding developmental transcription factors that are highly conserved from fly to human. The family consists of two main branches, with grainyhead as the ancestral gene for one branch and the recently cloned Drosophila CP2 as the ancestral gene for the other. We now extend this family with the identification of another novel mammalian member, Sister-of-Mammalian Grainyhead (SOM), which is phylogenetically aligned with grainyhead. SOM is closely related to the other mammalian homologues of grainyhead, including Mammalian Grainyhead (MGR) and Brother-of-MGR, sharing a high degree of sequence identity with these factors in the functional DNA-binding, protein dimerization and activation domains. Protein interaction studies demonstrate that SOM can heterodimerize with MGR and Brother-of-MGR, but not with the more distant members of the family. Like grainyhead, the SOM gene too produces several distinct isoforms with differing functional properties through alternative splicing. The tissue distributions of these isoforms differ and all display highly restricted expression patterns. These findings indicate that SOM, like its family members, may play important roles in mammalian development. PMID:12549979

  13. Neurogenin1 effectively reprograms cultured chick RPE cells to differentiate towards photoreceptors

    PubMed Central

    Yan, Run-Tao; Liang, Lina; Ma, Wenxin; Li, Xiumei; Xie, Wenlian; Wang, Shu-Zhen

    2009-01-01

    Photoreceptors are highly specialized sensory neurons in the retina, and their degeneration results in blindness. Replacement with developing photoreceptor cells promises to be an effective therapy, but it requires a supply of new photoreceptors, because the neural retina in human eyes lacks regeneration capability. We report efficient generation of differentiating, photoreceptor-like neurons from chick retinal pigment epithelial (RPE) cells propagated in culture through reprogramming with neurogenin1 (ngn1). In reprogrammed culture, a large number of the cells (85.0 ± 5.9%) began to differentiate towards photoreceptors. Reprogrammed cells expressed transcription factors that set in motion photoreceptor differentiation, including Crx, Nr2E3, NeuroD, and RXRγ, and phototransduction pathway components, including transducin, cGMP-gated channel, and red opsin of cone photoreceptors (equivalent to rhodopsin of rod photoreceptors). They developed inner segments rich in mitochondria. Furthermore, they responded to light by decreasing their cellular free calcium (Ca2+) levels and responded to 9-cis-retinal by increasing their Ca2+ levels after photobleaching, hallmarks of photoreceptor physiology. The high efficiency and the advanced photoreceptor differentiation indicate ngn1 as a gene of choice to reprogram RPE progeny cells to differentiate into photoreceptor neurons in future cell replacement studies. PMID:20029995

  14. Organic photoreceptors: an overview

    NASA Astrophysics Data System (ADS)

    Melnyk, Andrew R.; Pai, David M.

    1990-07-01

    When Chester Carison invented xerography, he employed sulfur and anthracene as photoconductors. Although the initial commercialization of his idea relied on inorganic photoconductors, the current trend is towards use of organic photoconductors because of their material variety, economy and flexibility. High speed copying and printing machines use belts coated with organic photoreceptors, while personal copiers and printers use aluminum drums dip-coated with organic photoreceptors. Multilayered, organic photoreceptors are now routinely mass produced by the millions with both visible sensitivity for copiers and infrared sensitivity for printers. This paper presents a brief overview of key photoreceptor properties and follow with a survey of electronic organic materials of current interest. The photodischarge characteristic is determined mainly by three factors: the photogeneration, the injection, and the transport of charge carriers. These functions can be accomplished by separate electronic material layers; photogeneration by organic pigments and charge transport by aromatic-amine electron-donor molecules. The photogeneration layers are usually fabricated by solvent coating a dispersion of a pigment in a polymeric binder while the charge transport layers are solvent coated to form a solid solution of the aromatic amine in a polymeric binder. Examples and characteristics of organic pigments and charge transport molecules of current interest are discussed.

  15. Dynamical Adaptation in Photoreceptors

    PubMed Central

    Clark, Damon A.; Benichou, Raphael; Meister, Markus; Azeredo da Silveira, Rava

    2013-01-01

    Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over ∼ 300 ms—i. e., over the time scale of the response itself—and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant. PMID:24244119

  16. In vivo analysis of developmentally and evolutionarily dynamic protein-DNA interactions regulating transcription of the Pgk2 gene during mammalian spermatogenesis.

    PubMed

    Yoshioka, Hirotaka; Geyer, Christopher B; Hornecker, Jacey L; Patel, Krishan T; McCarrey, John R

    2007-11-01

    Transcription of the testis-specific Pgk2 gene is selectively activated in primary spermatocytes to provide a source of phosphoglycerate kinase that is critical to normal motility and fertility of mammalian spermatozoa. We examined dynamic changes in protein-DNA interactions at the Pgk2 gene promoter during murine spermatogenesis in vivo by performing genomic footprinting and chromatin immunoprecipitation assays with enriched populations of murine spermatogenic cells at stages prior to, during, and following transcription of this gene. We found that genes encoding the testis-specific homeodomain factor PBX4 and its coactivator, PREP1, are expressed in patterns that mirror expression of the Pgk2 gene and that these factors become bound to the Pgk2 enhancer in cells in which this gene is actively expressed. We therefore suggest that these factors, along with CREM and SP3, direct stage- and cell type-specific transcription of the Pgk2 gene during spermatogenesis. We propose that binding of PBX4, plus its coactivator PREP1, is a rate-limiting step leading to the initiation of tissue-specific transcription of the Pgk2 gene. This study provides insight into the developmentally dynamic establishment of tissue-specific protein-DNA interactions in vivo. It also allows us to speculate about the events that led to tissue-specific regulation of the Pgk2 gene during mammalian evolution. PMID:17875925

  17. Transcription of fractionated mammalian chromatin by mammalian ribonucleic acid polymerase. Demonstration of temperature-dependent rifampicin-resistant initiation sites in euchromatin deoxyribonucleic acid

    PubMed Central

    Chesterton, C. James; Coupar, Barbara E. H.; Butterworth, Peter H. W.

    1974-01-01

    The chromatin fractionation method of Frenster et al. (1963) as modified by Leake et al. (1972) was used to prepare fragments of euchromatin from rat liver nuclei. These remain soluble in 5mm-MgCl2, and contain DNA of maximum mol.wt. 1×106–2×106. The fragments were separated from condensable chromatin on a sucrose gradient. Euchromatin contains endogenous DNA-dependent RNA polymerase, and most of the nascent RNA labelled in vivo or in vitro. Euchromatin fragments allow initiation of transcription by added purified rat liver form-B RNA polymerase and contain temperature-dependent rifampicin-resistant initiation sites for the form-B enzyme. These findings indicate that transcription of the euchromatin regions of interphase chromosomes is not initiated in condensed chromatin, but is initiated within the euchromatin stretches. Condensable chromatin also contains most of these activities, but is not associated with nascent RNA. PMID:4464858

  18. Evolutionary aspects of plant photoreceptors.

    PubMed

    Li, Fay-Wei; Mathews, Sarah

    2016-03-01

    Plant photoreceptors link environmental light cues with physiological responses, determining how individual plants complete their life cycles. Structural and functional evolution of photoreceptors has co-occurred as plants diversified and faced the challenge of new light environments, during the transition of plants to land and as substantial plant canopies evolved. Large-scale comparative sequencing projects allow us for the first time to document photoreceptor evolution in understudied clades, revealing some surprises. Here we review recent progress in evolutionary studies of three photoreceptor families: phytochromes, phototropins and neochromes. PMID:26843269

  19. Plant Flavoprotein Photoreceptors

    PubMed Central

    Christie, John M.; Blackwood, Lisa; Petersen, Jan; Sullivan, Stuart

    2015-01-01

    Plants depend on the surrounding light environment to direct their growth. Blue light (300–500 nm) in particular acts to promote a wide variety of photomorphogenic responses including seedling establishment, phototropism and circadian clock regulation. Several different classes of flavin-based photoreceptors have been identified that mediate the effects of blue light in the dicotyledonous genetic model Arabidopsis thaliana. These include the cryptochromes, the phototropins and members of the Zeitlupe family. In this review, we discuss recent advances, which contribute to our understanding of how these photosensory systems are activated by blue light and how they initiate signaling to regulate diverse aspects of plant development. PMID:25516569

  20. Effects of Tet-mediated Oxidation Products of 5-Methylcytosine on DNA Transcription in vitro and in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    You, Changjun; Ji, Debin; Dai, Xiaoxia; Wang, Yinsheng

    2014-11-01

    5-methylcytosine (5-mC) is a well-characterized epigenetic regulator in mammals. Recent studies showed that Ten-eleven translocation (Tet) proteins can catalyze the stepwise oxidation of 5-mC to produce 5-hydroxymethylcytosine (5-HmC), 5-formylcytosine (5-FoC) and 5-carboxylcytosine (5-CaC). The exciting discovery of these novel cytosine modifications has stimulated substantial research interests about their roles in epigenetic regulation. Here we systematically examined the effects of the oxidized 5-mC derivatives on the efficiency and fidelity of DNA transcription using a recently developed competitive transcription and adduct bypass assay. Our results showed that, when located on the transcribed strand, 5-FoC and 5-CaC exhibited marginal mutagenic and modest inhibitory effects on DNA transcription mediated by single-subunit T7 RNA polymerase or multi-subunit human RNA polymerase II in vitro and in human cells. 5-HmC displayed relatively milder blocking effects on transcription, and no mutant transcript could be detectable for 5-HmC in vitro or in cells. The lack of considerable mutagenic effects of the oxidized 5-mC derivatives on transcription was in agreement with their functions in epigenetic regulation. The modest blocking effects on transcription suggested that 5-FoC and 5-CaC may function in transcriptional regulation. These findings provided new evidence for the potential functional interplay between cytosine methylation status and transcription.

  1. Effects of Tet-mediated oxidation products of 5-methylcytosine on DNA transcription in vitro and in mammalian cells.

    PubMed

    You, Changjun; Ji, Debin; Dai, Xiaoxia; Wang, Yinsheng

    2014-01-01

    5-methylcytosine (5-mC) is a well-characterized epigenetic regulator in mammals. Recent studies showed that Ten-eleven translocation (Tet) proteins can catalyze the stepwise oxidation of 5-mC to produce 5-hydroxymethylcytosine (5-HmC), 5-formylcytosine (5-FoC) and 5-carboxylcytosine (5-CaC). The exciting discovery of these novel cytosine modifications has stimulated substantial research interests about their roles in epigenetic regulation. Here we systematically examined the effects of the oxidized 5-mC derivatives on the efficiency and fidelity of DNA transcription using a recently developed competitive transcription and adduct bypass assay. Our results showed that, when located on the transcribed strand, 5-FoC and 5-CaC exhibited marginal mutagenic and modest inhibitory effects on DNA transcription mediated by single-subunit T7 RNA polymerase or multi-subunit human RNA polymerase II in vitro and in human cells. 5-HmC displayed relatively milder blocking effects on transcription, and no mutant transcript could be detectable for 5-HmC in vitro or in cells. The lack of considerable mutagenic effects of the oxidized 5-mC derivatives on transcription was in agreement with their functions in epigenetic regulation. The modest blocking effects on transcription suggested that 5-FoC and 5-CaC may function in transcriptional regulation. These findings provided new evidence for the potential functional interplay between cytosine methylation status and transcription. PMID:25394478

  2. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response.

    PubMed Central

    Haze, K; Okada, T; Yoshida, H; Yanagi, H; Yura, T; Negishi, M; Mori, K

    2001-01-01

    Eukaryotic cells control the levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element consisting of 19 nt (CCAATN(9)CCACG), the CCACG part of which is considered to provide specificity. We recently identified the basic leucine zipper (bZIP) protein ATF6 as a mammalian UPR-specific transcription factor; ATF6 is activated by ER stress-induced proteolysis and binds directly to CCACG. Here we report that eukaryotic cells express another bZIP protein closely related to ATF6 in both structure and function. This protein encoded by the G13 (cAMP response element binding protein-related protein) gene is constitutively synthesized as a type II transmembrane glycoprotein anchored in the ER membrane and processed into a soluble form upon ER stress as occurs with ATF6. The proteolytic processing of ATF6 and the G13 gene product is accompanied by their relocation from the ER to the nucleus; their basic regions seem to function as a nuclear localization signal. Overexpression of the soluble form of the G13 product constitutively activates the UPR, whereas overexpression of a mutant lacking the activation domain exhibits a strong dominant-negative effect. Furthermore, the soluble forms of ATF6 and the G13 gene product are unable to bind to several point mutants of the cis-acting ER stress response element in vitro that hardly respond to ER stress in vivo. We thus concluded that the two related bZIP proteins are crucial transcriptional regulators of the mammalian UPR, and propose calling the ATF6 gene product ATF6alpha and the G13 gene product ATF6beta. PMID:11256944

  3. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion

    PubMed Central

    Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W.; Kulozik, Andreas E.

    2016-01-01

    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. PMID:27407180

  4. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion.

    PubMed

    Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W; Kulozik, Andreas E

    2016-09-01

    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. PMID:27407180

  5. The BPV-1 E2 DNA-contact helix cysteine is required for transcriptional activation but not replication in mammalian cells.

    PubMed

    Grossel, M J; Barsoum, J; Prakash, S S; Androphy, E J

    1996-03-01

    The papillomavirus E2 protein contains an amino-terminal region thought necessary and sufficient to support transcriptional activation and a carboxy-terminal region shown to direct sequence-specific DNA binding and dimerization. A cysteine residue in the center of the E2 DNA recognition helix is highly conserved among papillomavirus E2 proteins. Mutations of this cysteine in bovine papillomavirus type 1 E2 to serine and glycine resulted in proteins which failed to activate E2-dependent promoters in mammalian cells. These E2 mutants were DNA-binding competent, dimeric, and nuclear. When fused to the VP16 transactivation domain, C-terminal regions of E2 containing the mutations at 340 supported transcriptional activation, indicating that the heterologous trans-activation domain did not require cysteine in the DNA-binding helix as did the full-length E2 transactivating protein. Although cysteine-340 was required for transcriptional activation it was not required for DNA replication in vivo. Together, these results suggest that the E2 DNA-binding domain may directly contribute to functions of transcriptional activation previously thought limited to the N-terminal domain. PMID:8599215

  6. Multisite light-induced phosphorylation of the transcription factor PIF3 is necessary for both its rapid degradation and concomitant negative feedback modulation of photoreceptor phyB levels in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants constantly monitor informational light signals using sensory photoreceptors, which include the phytochrome (phy) family (phyA to phyE), and adjust their growth and development accordingly. Following light-induced nuclear translocation, photoactivated phy molecules bind to and induce rapid pho...

  7. Rapamycin attenuates visible light-induced injury in retinal photoreceptor cells via inhibiting endoplasmic reticulum stress.

    PubMed

    Li, Guang-Yu; Fan, Bin; Jiao, Ying-Ying

    2014-05-14

    An extended exposure of the retina to visible light may lead to photochemical damage in retinal photoreceptor cells. The exact mechanism of retinal light damage remains unknown, and an effective therapy is still unavailable. Here, we demonstrated that rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), markedly protected 661W photoreceptor cells from visible light exposure-induced damage at the nanomolar level. We also observed by transmission electron microscopy that light exposure led to severe endoplasmic reticulum (ER) stress in 661W cells as well as abnormal endomembranes and ER membranes. In addition, obvious upregulated ER stress markers were monitored by western blot at the protein level and by quantitative reverse transcription-polymerase chain reaction (RT-PCR) at the mRNA level. Interestingly, rapamycin pretreatment significantly suppressed light-induced ER stress and all three major branches of the unfolded protein response (UPR), including the RNA-dependent protein kinase-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6) pathways both at the protein and mRNA levels. Additionally, the inhibition of ER stress by rapamycin was further confirmed with a dithiothreitol (DTT; a classical ER stress inducer)-damaged 661W cell model. Meanwhile, our results also revealed that rapamycin was able to remarkably inhibit the activation of mTOR and its downstream factors eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), p-4EBP1, p70, p-p70, and phosphorylated ribosomal protein S6 kinase (p-S6K) in the light-injured 661W cells. Thus, these data indicate that visible light induces ER stress in 661W cells; whereas the mTOR inhibitor, rapamycin, effectively protects 661W cells from light injury through suppressing the ER stress pathway. PMID:24607296

  8. BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system

    PubMed Central

    Kondratov, Roman V.; Chernov, Mikhail V.; Kondratova, Anna A.; Gorbacheva, Victoria Y.; Gudkov, Andrei V.; Antoch, Marina P.

    2003-01-01

    Mammalian CLOCK and BMAL1 are two members of bHLH-PAS-containing family of transcription factors that represent the positive elements of circadian autoregulatory feedback loop. In the form of a heterodimer, they drive transcription from E-box enhancer elements in the promoters of responsive genes. We have examined abundance, posttranslational modifications, cellular localization of endogenous and ectopically expressed CLOCK and BMAL1 proteins. Nuclear/cytoplasm distribution of CLOCK was found to be under circadian regulation. Analysis of subcellular localization of CLOCK in embryo fibroblasts of mice carrying different germ-line circadian mutations showed that circadian regulation of nuclear accumulation of CLOCK is BMAL1-dependent. Formation of CLOCK/BMAL1 complex following ectopic coexpression of both proteins is followed by their codependent phosphorylation, which is tightly coupled to CLOCK nuclear translocation and degradation. This binding-dependent coregulation is specific for CLOCK/BMAL1 interaction, as no other PAS domain protein that can form a complex with either CLOCK or BMAL1 was able to induce similar effects. Importantly, all posttranslational events described in our study are coupled with active transactivation complex formation, which argues for their significant functional role. Altogether, these results provide evidence for an additional level of circadian system control, which is based on regulation of transcriptional activity or/and availability of CLOCK/BMAL1 complex. PMID:12897057

  9. The Mammalian “Obesogen” Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish

    PubMed Central

    Lyssimachou, Angeliki; Santos, Joana G.; André, Ana; Soares, Joana; Lima, Daniela; Guimarães, Laura; Almeida, C. Marisa R.; Teixeira, Catarina; Castro, L. Filipe C.; Santos, Miguel M.

    2015-01-01

    Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an “obesogenic” phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound. PMID:26633012

  10. Fly Photoreceptors Encode Phase Congruency.

    PubMed

    Friederich, Uwe; Billings, Stephen A; Hardie, Roger C; Juusola, Mikko; Coca, Daniel

    2016-01-01

    More than five decades ago it was postulated that sensory neurons detect and selectively enhance behaviourally relevant features of natural signals. Although we now know that sensory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what statistical features of the stimuli they encode and how. Here we reverse-engineer the neural code of Drosophila photoreceptors and show for the first time that photoreceptors exploit nonlinear dynamics to selectively enhance and encode phase-related features of temporal stimuli, such as local phase congruency, which are invariant to changes in illumination and contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors are tuned to suppress random phase signals, which explains why photoreceptor responses to naturalistic stimuli are significantly different from their responses to white noise stimuli. PMID:27336733

  11. Fly Photoreceptors Encode Phase Congruency

    PubMed Central

    Friederich, Uwe; Billings, Stephen A.; Hardie, Roger C.; Juusola, Mikko; Coca, Daniel

    2016-01-01

    More than five decades ago it was postulated that sensory neurons detect and selectively enhance behaviourally relevant features of natural signals. Although we now know that sensory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what statistical features of the stimuli they encode and how. Here we reverse-engineer the neural code of Drosophila photoreceptors and show for the first time that photoreceptors exploit nonlinear dynamics to selectively enhance and encode phase-related features of temporal stimuli, such as local phase congruency, which are invariant to changes in illumination and contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors are tuned to suppress random phase signals, which explains why photoreceptor responses to naturalistic stimuli are significantly different from their responses to white noise stimuli. PMID:27336733

  12. The Transcriptional Response of Cryptococcus neoformans to Ingestion by Acanthamoeba castellanii and Macrophages Provides Insights into the Evolutionary Adaptation to the Mammalian Host

    PubMed Central

    Paes, Hugo Costa; Albuquerque, Patrícia; Tavares, Aldo Henrique F. P.; Fernandes, Larissa; Silva-Pereira, Ildinete; Casadevall, Arturo

    2013-01-01

    Virulence of Cryptococcus neoformans for mammals, and in particular its intracellular style, was proposed to emerge from evolutionary pressures on its natural environment by protozoan predation, which promoted the selection of strategies that allow intracellular survival in macrophages. In fact, Acanthamoeba castellanii ingests yeast cells, which then can replicate intracellularly. In addition, most fungal factors needed to establish infection in the mammalian host are also important for survival within the amoeba. To better understand the origin of C. neoformans virulence, we compared the transcriptional profile of yeast cells internalized by amoebae and murine macrophages after 6 h of infection. Our results showed 656 and 293 genes whose expression changed at least 2-fold in response to the intracellular environments of amoebae and macrophages, respectively. Among the genes that were found in both groups, we focused on open reading frame (ORF) CNAG_05662, which was potentially related to sugar transport but had no determined biological function. To characterize its function, we constructed a mutant strain and evaluated its ability to grow on various carbon sources. The results showed that this gene, named PTP1 (polyol transporter protein 1), is involved in the transport of 5- and 6-carbon polyols such as mannitol and sorbitol, but its presence or absence had no effect on cryptococcal virulence for mice or moth larvae. Overall, these results are consistent with the hypothesis that the capacity for mammalian virulence originated from fungus-protozoan interactions in the environment and provide a better understanding of how C. neoformans adapts to the mammalian host. PMID:23524994

  13. Heat shock protein hsp70 accelerates the recovery of heat-shocked mammalian cells through its modulation of heat shock transcription factor HSF1.

    PubMed Central

    Kim, D; Ouyang, H; Li, G C

    1995-01-01

    The role of mammalian 70-kDa heat shock protein (hsp70) in regulating cellular response to heat shock was examined by using three closely related rat cells: control Rat-1 cells, thermotolerant Rat-1 (TT Rat-1) cells, and heat-resistant M21 cells, a derivative of Rat-1 cells that constitutively overexpress human hsp70. In all these cells, after a prescribed heat shock, the level of the phosphorylated form of heat shock transcription factor HSF1 and that of HSF1 capable of binding to its cognitive DNA sequence heat shock element (HSE) exhibit similar time dependence. The amount of a constitutive HSE-binding activity (CHBA), on the other hand, inversely correlates with those of the two aforementioned forms of HSF1. The recovery kinetics from heat shock are different for the three cell lines, with the thermal-resistant TT Rat-1 and M21 cells showing faster recovery in terms of the state of phosphorylation of HSF1 and its ability to bind HSE or in terms of the reappearance of CHBA. Treatment with okadaic acid, a serine/threonine phosphatase inhibitor, delays the recovery kinetics of Rat-1 cells but not that of thermal-resistant M21 cells. These results are interpreted in terms of a role for hsp70 in the recovery of heat-shocked mammalian cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7892235

  14. Expression pattern in retinal photoreceptors of POMGnT1, a protein involved in muscle-eye-brain disease

    PubMed Central

    Uribe, Mary Luz; Haro, Carmen; Campello, Laura; Cruces, Jesús; Martín-Nieto, José

    2016-01-01

    Purpose The POMGNT1 gene, encoding protein O-linked-mannose β-1,2-N-acetylglucosaminyltransferase 1, is associated with muscle-eye-brain disease (MEB) and other dystroglycanopathies. This gene’s lack of function or expression causes hypoglycosylation of α-dystroglycan (α-DG) in the muscle and the central nervous system, including the brain and the retina. The ocular symptoms of patients with MEB include retinal degeneration and detachment, glaucoma, and abnormal electroretinogram. Nevertheless, the POMGnT1 expression pattern in the healthy mammalian retina has not yet been investigated. In this work, we address the expression of the POMGNT1 gene in the healthy retina of a variety of mammals and characterize the distribution pattern of this gene in the adult mouse retina and the 661W photoreceptor cell line. Methods Using reverse transcription (RT)–PCR and immunoblotting, we studied POMGNT1 expression at the mRNA and protein levels in various mammalian species, from rodents to humans. Immunofluorescence confocal microscopy analyses were performed to characterize the distribution profile of its protein product in mouse retinal sections and in 661W cultured cells. The intranuclear distribution of POMT1 and POMT2, the two enzymes preceding POMGnT1 in the α-DG O-mannosyl glycosylation pathway, was also analyzed. Results POMGNT1 mRNA and its encoded protein were expressed in the neural retina of all mammals studied. POMGnT1 was located in the cytoplasmic fraction in the mouse retina and concentrated in the myoid portion of the photoreceptor inner segments, where the protein colocalized with GM130, a Golgi complex marker. The presence of POMGnT1 in the Golgi complex was also evident in 661W cells. However, and in contrast to retinal tissue, POMGnT1 additionally accumulated in the nucleus of the 661W photoreceptors. Colocalization was found within this organelle between POMGnT1 and POMT1/2, the latter associated with euchromatic regions of the nucleus. Conclusions

  15. Regulation of Transcription through Light-Activation and Light-Deactivation of Triplex-Forming Oligonucleotides in Mammalian Cells

    PubMed Central

    Govan, Jeane M.; Uprety, Rajendra; Hemphill, James; Lively, Mark O.

    2012-01-01

    Triplex-forming oligonucleotides (TFOs) are efficient tools to regulate gene expression through the inhibition of transcription. Here, nucleobase-caging technology was applied to the first temporal regulation of transcription through light-activated TFOs. Through site-specific incorporation of caged thymidine nucleotides, the TFO:DNA triplex formation is blocked, rendering the TFO inactive. However, after a brief UV irradiation, the caging groups are removed, activating the TFO, and leading to the inhibition of gene transcription. Furthermore, the synthesis and site-specific incorporation of caged deoxycytidine nucleotides within TFO inhibitor sequences was developed, and allows for the light-deactivation of TFO function and thus photochemical activation of gene expression. After UV-induced removal of the caging groups, the TFO forms a DNA dumbbell structure, rendering it inactive, releasing it from the DNA, and activating transcription. These are the first examples of light-regulated TFOs and their application in the photochemical activation and deactivation of gene expression. In addition, hairpin loop structures were found to significantly increase the efficacy of phosphodiester DNA-based TFOs in tissue culture. PMID:22540192

  16. Regulation of transcription through light-activation and light-deactivation of triplex-forming oligonucleotides in mammalian cells.

    PubMed

    Govan, Jeane M; Uprety, Rajendra; Hemphill, James; Lively, Mark O; Deiters, Alexander

    2012-07-20

    Triplex-forming oligonucleotides (TFOs) are efficient tools to regulate gene expression through the inhibition of transcription. Here, nucleobase-caging technology was applied to the temporal regulation of transcription through light-activated TFOs. Through site-specific incorporation of caged thymidine nucleotides, the TFO:DNA triplex formation is blocked, rendering the TFO inactive. However, after a brief UV irradiation, the caging groups are removed, activating the TFO and leading to the inhibition of transcription. Furthermore, the synthesis and site-specific incorporation of caged deoxycytidine nucleotides within TFO inhibitor sequences was developed, allowing for the light-deactivation of TFO function and thus photochemical activation of gene expression. After UV-induced removal of the caging groups, the TFO forms a DNA dumbbell structure, rendering it inactive, releasing it from the DNA, and activating transcription. These are the first examples of light-regulated TFOs and their application in the photochemical activation and deactivation of gene expression. In addition, hairpin loop structures were found to significantly increase the efficacy of phosphodiester DNA-based TFOs in tissue culture. PMID:22540192

  17. Photoreceptor Cells Produce Inflammatory Mediators That Contribute to Endothelial Cell Death in Diabetes

    PubMed Central

    Tonade, Deoye; Liu, Haitao; Kern, Timothy S.

    2016-01-01

    Purpose Recent studies suggest that photoreceptor cells regulate local inflammation in the retina in diabetes. The purpose of this study was to determine if photoreceptor cells themselves produce inflammatory proteins in diabetes and if soluble factors released by photoreceptors in elevated glucose induce inflammatory changes in nearby cells. Methods Laser capture microdissection was used to isolate the outer retina (photoreceptors) from the inner retina in nondiabetic and diabetic mice. Diabetes-induced changes in the expression of inflammatory targets were assessed by reverse transcription polymerase chain reaction and immunohistochemistry. Cell culture experiments were carried out to determine if photoreceptors in vitro and ex vivo release soluble mediators that can stimulate nearby cells. Photoreceptor contribution to leukocyte-mediated endothelial cell death was tested using coculture models. Results Messenger ribonucleic acid and protein expression levels for inflammatory proteins intercellular adhesion molecule 1 (ICAM1), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX2) were increased in photoreceptors cells in diabetes. In vitro and ex vivo studies show that photoreceptor cells in elevated glucose release mediators that can induce tumor necrosis factor-α in leukocytes and endothelial cells, but not in glia. The soluble mediators released by photoreceptor cells in elevated glucose are regulated by transforming growth factor β-activated kinase 1 and nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) signaling. In contrast to enhanced leukocyte-mediated killing of endothelial cells by leukocytes from wild-type diabetic mice, leukocytes from diabetic mice lacking photoreceptor cells (opsin−/−) did not kill endothelial cells. Conclusions These data indicate that photoreceptor cells are a source of inflammatory proteins in diabetes, and their release of soluble mediators can contribute to the death of retinal capillaries

  18. MEF2D drives photoreceptor development through a genome-wide competition for tissue-specific enhancers

    PubMed Central

    Andzelm, Milena M.; Cherry, Timothy J.; Harmin, David A.; Boeke, Annabel C.; Lee, Charlotte; Hemberg, Martin; Pawlyk, Basil; Malik, Athar N.; Flavell, Steven W.; Sandberg, Michael A.; Raviola, Elio; Greenberg, Michael E.

    2015-01-01

    Summary Organismal development requires the precise coordination of genetic programs to regulate cell fate and function. MEF2 transcription factors (TFs) play essential roles in this process but how these broadly expressed factors contribute to the generation of specific cell types during development is poorly understood. Here we show that despite being expressed in virtually all mammalian tissues, in the retina MEF2D binds to retina-specific enhancers and controls photoreceptor cell development. MEF2D achieves specificity by cooperating with a retina-specific factor CRX, which recruits MEF2D away from canonical MEF2 binding sites, and redirects it to retina-specific enhancers that lack the consensus MEF2-binding sequence. Once bound to retina-specific enhancers, MEF2D and CRX co-activate the expression of photoreceptor-specific genes that are critical for retinal function. These findings demonstrate that broadly expressed TFs acquire specific functions through competitive recruitment to enhancers by tissue-specific TFs, and through selective activation of these enhancers to regulate tissue-specific genes. PMID:25801704

  19. Reprogramming Müller glia via in vivo cell fusion regenerates murine photoreceptors.

    PubMed

    Sanges, Daniela; Simonte, Giacoma; Di Vicino, Umberto; Romo, Neus; Pinilla, Isabel; Nicolás, Marta; Cosma, Maria Pia

    2016-08-01

    Vision impairments and blindness caused by retinitis pigmentosa result from severe neurodegeneration that leads to a loss of photoreceptors, the specialized light-sensitive neurons that enable vision. Although the mammalian nervous system is unable to replace neurons lost due to degeneration, therapeutic approaches to reprogram resident glial cells to replace retinal neurons have been proposed. Here, we demonstrate that retinal Müller glia can be reprogrammed in vivo into retinal precursors that then differentiate into photoreceptors. We transplanted hematopoietic stem and progenitor cells (HSPCs) into retinas affected by photoreceptor degeneration and observed spontaneous cell fusion events between Müller glia and the transplanted cells. Activation of Wnt signaling in the transplanted HSPCs enhanced survival and proliferation of Müller-HSPC hybrids as well as their reprogramming into intermediate photoreceptor precursors. This suggests that Wnt signaling drives the reprogrammed cells toward a photoreceptor progenitor fate. Finally, Müller-HSPC hybrids differentiated into photoreceptors. Transplantation of HSPCs with activated Wnt functionally rescued the retinal degeneration phenotype in rd10 mice, a model for inherited retinitis pigmentosa. Together, these results suggest that photoreceptors can be generated by reprogramming Müller glia and that this approach may have potential as a strategy for reversing retinal degeneration. PMID:27427986

  20. Nonvisual photoreceptors of the deep brain, pineal organs and retina.

    PubMed

    Vigh, B; Manzano, M J; Zádori, A; Frank, C L; Lukáts, A; Röhlich, P; Szél, A; Dávid, C

    2002-04-01

    , pineal organs also contain neurons and glial elements. Extracranial pineal organs of submammalians are cone-dominated photoreceptors sensitive to different wavelengths of light, while intracranial pineal organs predominantly contain rod-like photoreceptor cells and thus scotopic light receptors. Vitamin B-based light-sensitive cryptochromes localized immunocytochemically in some pineal cells may take part in both the photoreception and the pacemaker function of the pineal organ. In spite of expressing phototransduction cascade molecules and forming outer segment-like cilia in some species, the mammalian pineal is considered by most of the authors as a light-insensitive organ. Expression of phototransduction cascade molecules, predominantly in young animals, is a photoreceptor-like characteristic of pinealocytes in higher vertebrates that may contribute to a light-percepting task in the perinatal entrainment of rhythmic functions. In adult mammals, adrenergic nerves--mediating daily fluctuation of sympathetic activity rather than retinal light information as generally supposed--may sustain circadian periodicity already entrained by light perinatally. Altogether three phases were supposed to exist in pineal entrainment of internal pacemakers: an embryological synchronization by light and in viviparous vertebrates by maternal effects (1); a light-based, postnatal entrainment (2); and in adults, a maintenance of periodicity by daily sympathetic rhythm of the hypothalamus. In addition to its visual function, the lateral eye retina performs a nonvisual task. Nonvisual retinal light perception primarily entrains genetically-determined periodicity, such as rod-cone dominance, EEG rhythms or retinomotor movements. It also influences the suprachiasmatic nucleus, the primary pacemaker of the brain. As neither rods nor cones seem to represent the nonvisual retinal photoreceptors, the presence of additional photoreceptors has been supposed. Cryptochrome 1, a photosensitive molecule

  1. Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response.

    PubMed Central

    Okada, Tetsuya; Yoshida, Hiderou; Akazawa, Rieko; Negishi, Manabu; Mori, Kazutoshi

    2002-01-01

    In response to accumulation of unfolded proteins in the endoplasmic reticulum (ER), a homoeostatic response, termed the unfolded protein response (UPR), is activated in all eukaryotic cells. The UPR involves only transcriptional regulation in yeast, and approx. 6% of all yeast genes, encoding not only proteins to augment the folding capacity in the ER, but also proteins working at various stages of secretion, are induced by ER stress [Travers, Patil, Wodicka, Lockhart, Weissman and Walter (2000) Cell (Cambridge, Mass.) 101, 249-258]. In the present study, we conducted microarray analysis of HeLa cells, although our analysis covered only a small fraction of the human genome. A great majority of human ER stress-inducible genes (approx. 1% of 1800 genes examined) were classified into two groups. One group consisted of genes encoding ER-resident molecular chaperones and folding enzymes, and these genes were directly regulated by the ER-membrane-bound transcription factor activating transcription factor (ATF) 6. The ER-membrane-bound protein kinase double-stranded RNA-activated protein kinase-like ER kinase (PERK)-mediated signalling pathway appeared to be responsible for induction of the remaining genes, which are not involved in secretion, but may be important after cellular recovery from ER stress. In higher eukaryotes, the PERK-mediated translational-attenuation system is known to operate in concert with the transcriptional-induction system. Thus we propose that mammalian cells have evolved a strategy to cope with ER stress different from that of yeast cells. PMID:12014989

  2. Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: evidence for Ca(2+)i-independent excitation-transcription coupling.

    PubMed

    Koltsova, Svetlana V; Trushina, Yulia; Haloui, Mounsif; Akimova, Olga A; Tremblay, Johanne; Hamet, Pavel; Orlov, Sergei N

    2012-01-01

    indicate that Ca(2+) (i)-independent mechanisms of excitation-transcription coupling are involved in transcriptomic alterations triggered by elevation of the [Na(+)](i)/[K(+)](i) ratio. There results likely have profound implications for normal and pathological regulation of mammalian cells, including sustained excitation of neuronal cells, intensive exercise and ischemia-triggered disorders. PMID:22666440

  3. Ubiquitous [Na+]i/[K+]i-Sensitive Transcriptome in Mammalian Cells: Evidence for Ca2+i-Independent Excitation-Transcription Coupling

    PubMed Central

    Koltsova, Svetlana V.; Trushina, Yulia; Haloui, Mounsif; Akimova, Olga A.; Tremblay, Johanne; Hamet, Pavel; Orlov, Sergei N.

    2012-01-01

    Stimulus-dependent elevation of intracellular Ca2+ ([Ca2+]i) affects the expression of numerous genes – a phenomenon known as excitation-transcription coupling. Recently, we found that increases in [Na+]i trigger c-Fos expression via a novel Ca2+i-independent pathway. In the present study, we identified ubiquitous and tissue-specific [Na+]i/[K+]i-sensitive transcriptomes by comparative analysis of differentially expressed genes in vascular smooth muscle cells from rat aorta (RVSMC), the human adenocarcinoma cell line HeLa, and human umbilical vein endothelial cells (HUVEC). To augment [Na+]i and reduce [K+]i, cells were treated for 3 hrs with the Na+,K+-ATPase inhibitor ouabain or placed for the same time in the K+-free medium. Employing Affymetrix-based technology, we detected changes in expression levels of 684, 737 and 1839 transcripts in HeLa, HUVEC and RVSMC, respectively, that were highly correlated between two treatments (p<0.0001; R2>0.62). Among these Na+i/K+i-sensitive genes, 80 transcripts were common for all three types of cells. To establish if changes in gene expression are dependent on increases in [Ca2+]i, we performed identical experiments in Ca2+-free media supplemented with extracellular and intracellular Ca2+ chelators. Surprisingly, this procedure elevated rather than decreased the number of ubiquitous and cell-type specific Na+i/K+i-sensitive genes. Among the ubiquitous Na+i/K+i-sensitive genes whose expression was regulated independently of the presence of Ca2+ chelators by more than 3-fold, we discovered several transcription factors (Fos, Jun, Hes1, Nfkbia), interleukin-6, protein phosphatase 1 regulatory subunit, dual specificity phosphatase (Dusp8), prostaglandin-endoperoxide synthase 2, cyclin L1, whereas expression of metallopeptidase Adamts1, adrenomedulin, Dups1, Dusp10 and Dusp16 was detected exclusively in Ca2+-depleted cells. Overall, our findings indicate that Ca2+i-independent mechanisms of excitation-transcription coupling are

  4. Elucidation of the transcription network governing mammalian sex determination by exploiting strain-specific susceptibility to sex reversal

    PubMed Central

    Munger, Steven C.; Aylor, David L.; Syed, Haider Ali; Magwene, Paul M.; Threadgill, David W.; Capel, Blanche

    2009-01-01

    Despite the identification of some key genes that regulate sex determination, most cases of disorders of sexual development remain unexplained. Evidence suggests that the sexual fate decision in the developing gonad depends on a complex network of interacting factors that converge on a critical threshold. To elucidate the transcriptional network underlying sex determination, we took the first expression quantitative trait loci (eQTL) approach in a developing organ. We identified reproducible differences in the transcriptome of the embryonic day 11.5 (E11.5) XY gonad between C57BL/6J (B6) and 129S1/SvImJ (129S1), indicating that the reported sensitivity of B6 to sex reversal is consistent with a higher expression of a female-like transcriptome in B6. Gene expression is highly variable in F2 XY gonads from B6 and 129S1 intercrosses, yet strong correlations emerged. We estimated the F2 coexpression network and predicted roles for genes of unknown function based on their connectivity and position within the network. A genetic analysis of the F2 population detected autosomal regions that control the expression of many sex-related genes, including Sry (sex-determining region of the Y chromosome) and Sox9 (Sry-box containing gene 9), the key regulators of male sex determination. Our results reveal the complex transcription architecture underlying sex determination, and provide a mechanism by which individuals may be sensitized for sex reversal. PMID:19884258

  5. Ubiquitous expression of the 43- and 44-kDa forms of transcription factor USF in mammalian cells.

    PubMed Central

    Sirito, M; Lin, Q; Maity, T; Sawadogo, M

    1994-01-01

    USF is a helix-loop-helix transcription factor that, like Myc, recognizes the DNA binding motif CACGTG. Two different forms of USF, characterized by apparent molecular weights of 43,000 and 44,000, were originally identified in HeLa cells by biochemical analysis. Clones for the 43-kDa USF were first characterized, but only partial clones for the human 44-kDa USF (USF2, or FIP) have been reported. Here we describe a complete cDNA for the 44-kDa USF from murine cells. Analysis of this clone has revealed that the various USF family members are quite divergent in their N-terminal amino acid sequences, while a high degree of conservation characterizes their dimerization and DNA-binding domains. Interestingly, the 3' noncoding region of the 44-kDa USF cDNAs displayed an unusual degree of conservation between human and mouse. In vitro transcription/translation experiments indicated a possible role for this region in translation regulation. Alternative splicing forms of the 44-kDa USF messages exist in both mouse and human. Examination of the tissue and cell-type distribution of USF by Northern blot and gel retardation assays revealed that while expression of both the 43- and 44-kDa USF species is ubiquitous, different ratios of USF homo- and heterodimers are found in different cells. Images PMID:8127680

  6. Synthetic dual-input mammalian genetic circuits enable tunable and stringent transcription control by chemical and light.

    PubMed

    Chen, Xianjun; Li, Ting; Wang, Xue; Du, Zengmin; Liu, Renmei; Yang, Yi

    2016-04-01

    Programmable transcription factors can enable precise control of gene expression triggered by a chemical inducer or light. To obtain versatile transgene system with combined benefits of a chemical inducer and light inducer, we created various chimeric promoters through the assembly of different copies of thetetoperator andGal4operator module, which simultaneously responded to a tetracycline-responsive transcription factor and a light-switchable transactivator. The activities of these chimeric promoters can be regulated by tetracycline and blue light synergistically or antagonistically. Further studies of the antagonistic genetic circuit exhibited high spatiotemporal resolution and extremely low leaky expression, which therefore could be used to spatially and stringently control the expression of highly toxic protein Diphtheria toxin A for light regulated gene therapy. When transferring plasmids engineered for the gene switch-driven expression of a firefly luciferase (Fluc) into mice, the Fluc expression levels of the treated animals directly correlated with the tetracycline and light input program. We suggest that dual-input genetic circuits using TET and light that serve as triggers to achieve expression profiles may enable the design of robust therapeutic gene circuits for gene- and cell-based therapies. PMID:26673714

  7. Targeted DNA methylation by homology-directed repair in mammalian cells. Transcription reshapes methylation on the repaired gene

    PubMed Central

    Morano, Annalisa; Angrisano, Tiziana; Russo, Giusi; Landi, Rosaria; Pezone, Antonio; Bartollino, Silvia; Zuchegna, Candida; Babbio, Federica; Bonapace, Ian Marc; Allen, Brittany; Muller, Mark T.; Chiariotti, Lorenzo; Gottesman, Max E.; Porcellini, Antonio; Avvedimento, Enrico V.

    2014-01-01

    We report that homology-directed repair of a DNA double-strand break within a single copy Green Fluorescent Protein (GFP) gene in HeLa cells alters the methylation pattern at the site of recombination. DNA methyl transferase (DNMT)1, DNMT3a and two proteins that regulate methylation, Np95 and GADD45A, are recruited to the site of repair and are responsible for selective methylation of the promoter-distal segment of the repaired DNA. The initial methylation pattern of the locus is modified in a transcription-dependent fashion during the 15–20 days following repair, at which time no further changes in the methylation pattern occur. The variation in DNA modification generates stable clones with wide ranges of GFP expression. Collectively, our data indicate that somatic DNA methylation follows homologous repair and is subjected to remodeling by local transcription in a discrete time window during and after the damage. We propose that DNA methylation of repaired genes represents a DNA damage code and is source of variation of gene expression. PMID:24137009

  8. Synthetic dual-input mammalian genetic circuits enable tunable and stringent transcription control by chemical and light

    PubMed Central

    Chen, Xianjun; Li, Ting; Wang, Xue; Du, Zengmin; Liu, Renmei; Yang, Yi

    2016-01-01

    Programmable transcription factors can enable precise control of gene expression triggered by a chemical inducer or light. To obtain versatile transgene system with combined benefits of a chemical inducer and light inducer, we created various chimeric promoters through the assembly of different copies of the tet operator and Gal4 operator module, which simultaneously responded to a tetracycline-responsive transcription factor and a light-switchable transactivator. The activities of these chimeric promoters can be regulated by tetracycline and blue light synergistically or antagonistically. Further studies of the antagonistic genetic circuit exhibited high spatiotemporal resolution and extremely low leaky expression, which therefore could be used to spatially and stringently control the expression of highly toxic protein Diphtheria toxin A for light regulated gene therapy. When transferring plasmids engineered for the gene switch-driven expression of a firefly luciferase (Fluc) into mice, the Fluc expression levels of the treated animals directly correlated with the tetracycline and light input program. We suggest that dual-input genetic circuits using TET and light that serve as triggers to achieve expression profiles may enable the design of robust therapeutic gene circuits for gene- and cell-based therapies. PMID:26673714

  9. Mammalian mediator of transcriptional regulation and its possible role as an end-point of signal transduction pathways.

    PubMed

    Jiang, Y W; Veschambre, P; Erdjument-Bromage, H; Tempst, P; Conaway, J W; Conaway, R C; Kornberg, R D

    1998-07-21

    A multiprotein complex isolated from murine cells is identified as a counterpart of the yeast Mediator of transcriptional regulation on the basis of the following: homologs of two subunits of yeast Mediator, Srb7 and Med7, copurify with the complex; peptide sequencing reveals, in addition, homologs of the yeast Mediator subunits Rgr1 and Med6; as with yeast Mediator, the mouse complex binds to the RNA polymerase II C-terminal domain (CTD) and stimulates phosphorylation of the CTD by TFIIH. Peptide sequencing also identifies a component of mouse Mediator as a relative of Ring-3 protein, a mitogen-activated nuclear protein kinase, raising the possibility of Mediator as an end point of signal transduction pathways. PMID:9671713

  10. Mammalian Lysine Histone Demethylase KDM2A Regulates E2F1-Mediated Gene Transcription in Breast Cancer Cells

    PubMed Central

    Rizwani, Wasia; Schaal, Courtney; Kunigal, Sateesh; Coppola, Domenico; Chellappan, Srikumar

    2014-01-01

    It is established that histone modifications like acetylation, methylation, phosphorylation and ubiquitination affect chromatin structure and modulate gene expression. Lysine methylation/demethylation on Histone H3 and H4 is known to affect transcription and is mediated by histone methyl transferases and histone demethylases. KDM2A/JHDM1A/FBXL11 is a JmjC-containing histone demethylase that targets mono- and dimethylated Lys36 residues of Histone H3; its function in breast cancer is not fully understood. Here we show that KDM2A is strongly expressed in myoepithelial cells (MEPC) in breast cancer tissues by immunohistochemistry. Ductal cells from ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDC) show positive staining for KDM2A, the expression decreases with disease progression to metastasis. Since breast MEPCs have tumor-suppressive and anti-angiogenic properties, we hypothesized that KDM2A could be contributing to some of these functions. Silencing KDM2A with small interfering RNAs demonstrated increased invasion and migration of breast cancer cells by suppressing a subset of matrix metalloproteinases (MMP-2, -9, -14 and -15), as seen by real-time PCR. HUVEC cells showed increased angiogenic tubule formation ability in the absence of KDM2A, with a concomitant increase in the expression of VEGF receptors, FLT-1 and KDR. KDM2A physically bound to both Rb and E2F1 in a cell cycle dependent manner and repressed E2F1 transcriptional activity. Chromatin immunoprecipitation (ChIP) assays revealed that KDM2A associates with E2F1-regulated proliferative promoters CDC25A and TS in early G-phase and dissociates in S-phase. Further, KDM2A could also be detected on MMP9, 14 and 15 promoters, as well as promoters of FLT1 and KDR. KDM2A could suppress E2F1-mediated induction of these promoters in transient transfection experiments. These results suggest a regulatory role for KDM2A in breast cancer cell invasion and migration, through the regulation of E2F1

  11. The Snail Transcription Factor Regulates the Numbers of Neural Precursor Cells and Newborn Neurons throughout Mammalian Life

    PubMed Central

    Zander, Mark A.; Cancino, Gonzalo I.; Gridley, Thomas; Kaplan, David R.; Miller, Freda D.

    2014-01-01

    The Snail transcription factor regulates diverse aspects of stem cell biology in organisms ranging from Drosophila to mammals. Here we have asked whether it regulates the biology of neural precursor cells (NPCs) in the forebrain of postnatal and adult mice, taking advantage of a mouse containing a floxed Snail allele (Snailfl/fl mice). We show that when Snail is inducibly ablated in the embryonic cortex, this has long-term consequences for cortical organization. In particular, when Snailfl/fl mice are crossed to Nestin-cre mice that express Cre recombinase in embryonic neural precursors, this causes inducible ablation of Snail expression throughout the postnatal cortex. This loss of Snail causes a decrease in proliferation of neonatal cortical neural precursors and mislocalization and misspecification of cortical neurons. Moreover, these precursor phenotypes persist into adulthood. Adult neural precursor cell proliferation is decreased in the forebrain subventricular zone and in the hippocampal dentate gyrus, and this is coincident with a decrease in the number of adult-born olfactory and hippocampal neurons. Thus, Snail is a key regulator of the numbers of neural precursors and newborn neurons throughout life. PMID:25136812

  12. Visual Coding in Locust Photoreceptors

    PubMed Central

    Faivre, Olivier; Juusola, Mikko

    2008-01-01

    Information capture by photoreceptors ultimately limits the quality of visual processing in the brain. Using conventional sharp microelectrodes, we studied how locust photoreceptors encode random (white-noise, WN) and naturalistic (1/f stimuli, NS) light patterns in vivo and how this coding changes with mean illumination and ambient temperature. We also examined the role of their plasma membrane in shaping voltage responses. We found that brightening or warming increase and accelerate voltage responses, but reduce noise, enabling photoreceptors to encode more information. For WN stimuli, this was accompanied by broadening of the linear frequency range. On the contrary, with NS the signaling took place within a constant bandwidth, possibly revealing a ‘preference’ for inputs with 1/f statistics. The faster signaling was caused by acceleration of the elementary phototransduction current - leading to bumps - and their distribution. The membrane linearly translated phototransduction currents into voltage responses without limiting the throughput of these messages. As the bumps reflected fast changes in membrane resistance, the data suggest that their shape is predominantly driven by fast changes in the light-gated conductance. On the other hand, the slower bump latency distribution is likely to represent slower enzymatic intracellular reactions. Furthermore, the Q10s of bump duration and latency distribution depended on light intensity. Altogether, this study suggests that biochemical constraints imposed upon signaling change continuously as locust photoreceptors adapt to environmental light and temperature conditions. PMID:18478123

  13. Modulation of the intracellular calcium concentration in photoreceptor terminals by a presynaptic metabotropic glutamate receptor

    PubMed Central

    Koulen, Peter; Kuhn, Rainer; Wässle, Heinz; Brandstätter, Johann Helmut

    1999-01-01

    Fast excitatory neurotransmission in the central nervous system is mediated through glutamate acting on ionotropic glutamate receptors. However, glutamate acting on metabotropic glutamate receptors (mGluRs) can also exert an inhibitory action. Here, we report by immunocytochemistry and physiology, to our knowledge, the first glutamate receptor to be found in terminals of photoreceptors in the mammalian retina—the group III metabotropic glutamate receptor mGluR8. Glutamate is the transmitter of photoreceptors, and thus mGluR8 functions as an autoreceptor. Activation of mGluR8 by the group III mGluR agonists l-2-amino-4-phosphonobutyrate and l-serine-O-phosphate, or by glutamate itself, evokes a decrease in the intracellular calcium ion concentration ([Ca2+]i) in isolated photoreceptors. This effect is blocked by the group III mGluR antagonists (RS)-α-methyl-4-phosphonophenylglycine and (RS)-α-methylserine-O-phosphate. Agonists for other classes of glutamate receptors—n-methyl-d-aspartic acid, quisqualic acid, kainic acid, or (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid—have no effect on the [Ca2+]i in isolated photoreceptors. The down-regulation of the [Ca2+]i in photoreceptors by mGluR8 provides evidence for an inhibitory feedback loop at the photoreceptor synapse in the mammalian retina. This negative feedback may be a mechanism for the fine adjustment of the light-regulated release of glutamate from photoreceptors and may serve as a safety device against excitotoxic levels of release at this tonic synapse. Such a mechanism may provide a model for feedback inhibition in other parts of the central nervous system. PMID:10449793

  14. Functional conservation of Drosophila FTZ-F1 and its mammalian homologs suggests ligand-independent regulation of NR5A family transcriptional activity.

    PubMed

    Lu, Yong; Anderson, W Ray; Zhang, Hua; Feng, Siqian; Pick, Leslie

    2013-05-01

    Drosophila Ftz-F1 is an orphan nuclear receptor required for segmentation and metamorphosis. Its mammalian orthologs, SF-1 and LRH-1, function in sexual development and homeostasis, and have been implicated in stem cell pluripotency maintenance and tumorigenesis. These NR5A family members bind DNA as monomers and strongly activate transcription. However, controversy exists as to whether their activity is regulated by ligand-binding. Structural evidence suggested that SF-1 and human LRH-1 bind regulatory ligands, but mouse LRH-1 and Drosophila FTZ-F1 are active in the absence of ligand. We found that Dm-Ftz-F1 and mLRH-1, thought not to bind ligand, or mSF-1 and hLRH-1, predicted to bind ligand, each efficiently rescued the defects of Drosophila ftz-f1 mutants. Further, each correctly activated expression of a Dm-Ftz-F1 target gene in Drosophila embryos. The functional equivalence of ftz-f1 orthologs in these sensitive in vivo assays argues against specific activating ligands for NR5A family members. PMID:23340581

  15. Disruption of the three cytoskeletal networks in mammalian cells does not affect transcription, translation, or protein translocation changes induced by heat shock.

    PubMed Central

    Welch, W J; Feramisco, J R

    1985-01-01

    Mammalian cells show a complex series of transcriptional and translational switching events in response to heat shock treatment which ultimately lead to the production and accumulation of a small number of proteins, the so-called heat shock (or stress) proteins. We investigated the heat shock response in both qualitative and quantitative ways in cells that were pretreated with drugs that specifically disrupt one or more of the three major cytoskeletal networks. (These drugs alone, cytochalasin E and colcemid, do not result in induction of the heat shock response.) Our results indicated that disruption of the actin microfilaments, the vimentin-containing intermediate filaments, or the microtubules in living cells does not hinder the ability of the cell to undergo an apparently normal heat shock response. Even when all three networks were simultaneously disrupted (resulting in a loose, baglike appearance of the cells), the cells still underwent a complete heat shock response as assayed by the appearance of the heat shock proteins. In addition, the major induced 72-kilodalton heat shock protein was efficiently translocated from the cytoplasm into its proper location in the nucleus and nucleolus irrespective of the condition of the three cytoskeletal elements. Images PMID:4040602

  16. DNA methylation and differential gene regulation in photoreceptor cell death

    PubMed Central

    Farinelli, P; Perera, A; Arango-Gonzalez, B; Trifunovic, D; Wagner, M; Carell, T; Biel, M; Zrenner, E; Michalakis, S; Paquet-Durand, F; Ekström, P A R

    2014-01-01

    Retinitis pigmentosa (RP) defines a group of inherited degenerative retinal diseases causing progressive loss of photoreceptors. To this day, RP is still untreatable and rational treatment development will require a thorough understanding of the underlying cell death mechanisms. Methylation of the DNA base cytosine by DNA methyltransferases (DNMTs) is an important epigenetic factor regulating gene expression, cell differentiation, cell death, and survival. Previous studies suggested an involvement of epigenetic mechanisms in RP, and in this study, increased cytosine methylation was detected in dying photoreceptors in the rd1, rd2, P23H, and S334ter rodent models for RP. Ultrastructural analysis of photoreceptor nuclear morphology in the rd1 mouse model for RP revealed a severely altered chromatin structure during retinal degeneration that coincided with an increased expression of the DNMT isozyme DNMT3a. To identify disease-specific differentially methylated DNA regions (DMRs) on a genomic level, we immunoprecipitated methylated DNA fragments and subsequently analyzed them with a targeted microarray. Genome-wide comparison of DMRs between rd1 and wild-type retina revealed hypermethylation of genes involved in cell death and survival as well as cell morphology and nervous system development. When correlating DMRs with gene expression data, we found that hypermethylation occurred alongside transcriptional repression. Consistently, motif analysis showed that binding sites of several important transcription factors for retinal physiology were hypermethylated in the mutant model, which also correlated with transcriptional silencing of their respective target genes. Finally, inhibition of DNMTs in rd1 organotypic retinal explants using decitabine resulted in a substantial reduction of photoreceptor cell death, suggesting inhibition of DNA methylation as a potential novel treatment in RP. PMID:25476906

  17. DNA methylation and differential gene regulation in photoreceptor cell death.

    PubMed

    Farinelli, P; Perera, A; Arango-Gonzalez, B; Trifunovic, D; Wagner, M; Carell, T; Biel, M; Zrenner, E; Michalakis, S; Paquet-Durand, F; Ekström, P A R

    2014-01-01

    Retinitis pigmentosa (RP) defines a group of inherited degenerative retinal diseases causing progressive loss of photoreceptors. To this day, RP is still untreatable and rational treatment development will require a thorough understanding of the underlying cell death mechanisms. Methylation of the DNA base cytosine by DNA methyltransferases (DNMTs) is an important epigenetic factor regulating gene expression, cell differentiation, cell death, and survival. Previous studies suggested an involvement of epigenetic mechanisms in RP, and in this study, increased cytosine methylation was detected in dying photoreceptors in the rd1, rd2, P23H, and S334ter rodent models for RP. Ultrastructural analysis of photoreceptor nuclear morphology in the rd1 mouse model for RP revealed a severely altered chromatin structure during retinal degeneration that coincided with an increased expression of the DNMT isozyme DNMT3a. To identify disease-specific differentially methylated DNA regions (DMRs) on a genomic level, we immunoprecipitated methylated DNA fragments and subsequently analyzed them with a targeted microarray. Genome-wide comparison of DMRs between rd1 and wild-type retina revealed hypermethylation of genes involved in cell death and survival as well as cell morphology and nervous system development. When correlating DMRs with gene expression data, we found that hypermethylation occurred alongside transcriptional repression. Consistently, motif analysis showed that binding sites of several important transcription factors for retinal physiology were hypermethylated in the mutant model, which also correlated with transcriptional silencing of their respective target genes. Finally, inhibition of DNMTs in rd1 organotypic retinal explants using decitabine resulted in a substantial reduction of photoreceptor cell death, suggesting inhibition of DNA methylation as a potential novel treatment in RP. PMID:25476906

  18. Cobalamin's (Vitamin B12) Surprising Function as a Photoreceptor.

    PubMed

    Cheng, Zhuo; Yamamoto, Haruki; Bauer, Carl E

    2016-08-01

    Cobalamin (Vitamin B12) is an adenosyl- or methyl-donating cofactor for many enzymes, yet many proteins with unknown or nonenzymatic function also contain B12-binding domains. Recent studies show that light excitation energy can promote covalent linkage of B12 to transcription factors with this linkage, affecting gene expression. Thus, B12 now has a newly described regulatory function. Here, our bioinformatics analysis reveals other transcription factors, photoreceptors, kinases, and oxygen sensors that harbor a B12-binding domain that could also regulate activity in response to light absorption. PMID:27217104

  19. Classical Photoreceptors Are Primarily Responsible for the Pupillary Light Reflex in Mouse

    PubMed Central

    Jain, Varsha; Srivastava, Ipsit; Palchaudhuri, Shriya; Goel, Manvi; Sinha-Mahapatra, Sumit K.; Dhingra, Narender K.

    2016-01-01

    Pupillary light reflex (PLR) is an important clinical tool to assess the integrity of visual pathways. The available evidence suggests that melanopsin-expressing retinal ganglion cells (mRGCs) mediate PLR—driven by the classical photoreceptors (rods and cones) at low irradiances and by melanopsin activation at high irradiances. However, genetic or pharmacological elimination of melanopsin does not completely abolish PLR at high irradiances, raising the possibility that classical photoreceptors may have a role even at high irradiances. Using an inducible mouse model of photoreceptor degeneration, we asked whether classical photoreceptors are responsible for PLR at all irradiances, and found that the PLR was severely attenuated at all irradiances. Using multiple approaches, we show that the residual PLR at high irradiances in this mouse was primarily from the remnant rods and cones, with a minor contribution from melanopsin activation. In contrast, in rd1 mouse where classical photoreceptor degeneration occurs during development, the PLR was absent at low irradiances but intact at high irradiances, as reported previously. Since mRGCs receive inputs from classical photoreceptors, we also asked whether developmental loss of classical photoreceptors as in rd1 mouse leads to compensatory takeover of the high-irradiance PLR by mRGCs. Specifically, we looked at a distinct subpopulation of mRGCs that express Brn3b transcription factor, which has been shown to mediate PLR. We found that rd1 mouse had a significantly higher proportion of Brn3b-expressing M1 type of mRGCs than in the inducible model. Interestingly, inducing classical photoreceptor degeneration during development also resulted in a higher proportion of Brn3b-expressing M1 cells and partially rescued PLR at high irradiances. These results suggest that classical photoreceptors are primarily responsible for PLR at all irradiances, while melanopsin activation makes a minor contribution at very high irradiances

  20. Origin and Impact of Phototransduction Noise in Primate Cone Photoreceptors

    PubMed Central

    Angueyra, Juan Manuel; Rieke, Fred

    2013-01-01

    Noise in the responses of cone photoreceptors sets a fundamental limit to visual sensitivity, yet the origin of noise in mammalian cones and its relation to behavioral sensitivity are poorly understood. Our work here on primate cones improves understanding of these issues in three ways. First, we find that cone noise is not dominated by spontaneous photopigment activation or by quantal fluctuations in photon absorption but instead by other sources, namely channel noise and fluctuations in cGMP. Second, we find that adaptation in cones, unlike that in rods, affects signals and noise differently. This difference helps explain why thresholds for rod- and cone-mediated signals have different dependencies on background light level. Third, past estimates of noise in mammalian cones are too high to explain behavioral sensitivity. Our measurements indicate a lower level of cone noise, and thus help reconcile physiological and behavioral estimates of cone noise and sensitivity. PMID:24097042

  1. Missed connections: photoreceptor axon seeks target neuron for synaptogenesis.

    PubMed

    Astigarraga, Sergio; Hofmeyer, Kerstin; Treisman, Jessica E

    2010-08-01

    Extending axons must choose the appropriate synaptic target cells in order to assemble functional neural circuitry. The axons of the Drosophila color-sensitive photoreceptors R7 and R8 project as a single fascicle from each ommatidium, but their terminals are segregated into distinct layers within their target region. Recent studies have begun to reveal the molecular mechanisms that establish this projection pattern. Both homophilic adhesion molecules and specific ligand-receptor interactions make important contributions to stabilizing R7 and R8 terminals in the appropriate target layers. These cell recognition molecules are regulated by the same transcription factors that control R7 and R8 cell fates. Autocrine and repulsive signaling mechanisms prevent photoreceptor terminals from encroaching on their neighbors, preserving the spatial resolution of visual information. PMID:20434326

  2. Derivation of Human Differential Photoreceptor-like Cells from the Iris by Defined Combinations of CRX, RX and NEUROD

    PubMed Central

    Seko, Yuko; Azuma, Noriyuki; Kaneda, Makoto; Nakatani, Kei; Miyagawa, Yoshitaka; Noshiro, Yuuki; Kurokawa, Reiko; Okano, Hideyuki; Umezawa, Akihiro

    2012-01-01

    Examples of direct differentiation by defined transcription factors have been provided for beta-cells, cardiomyocytes and neurons. In the human visual system, there are four kinds of photoreceptors in the retina. Neural retina and iris-pigmented epithelium (IPE) share a common developmental origin, leading us to test whether human iris cells could differentiate to retinal neurons. We here define the transcription factor combinations that can determine human photoreceptor cell fate. Expression of rhodopsin, blue opsin and green/red opsin in induced photoreceptor cells were dependent on combinations of transcription factors: A combination of CRX and NEUROD induced rhodopsin and blue opsin, but did not induce green opsin; a combination of CRX and RX induced blue opsin and green/red opsin, but did not induce rhodopsin. Phototransduction-related genes as well as opsin genes were up-regulated in those cells. Functional analysis; i.e. patch clamp recordings, clearly revealed that generated photoreceptor cells, induced by CRX, RX and NEUROD, responded to light. The response was an inward current instead of the typical outward current. These data suggest that photosensitive photoreceptor cells can be generated by combinations of transcription factors. The combination of CRX and RX generate immature photoreceptors: and additional NEUROD promotes maturation. These findings contribute substantially to a major advance toward eventual cell-based therapy for retinal degenerative diseases. PMID:22558175

  3. 3',5'-cyclic adenosine monophosphate and adenylate cyclase in phototransduction by limulus ventral photoreceptors.

    PubMed Central

    Brown, J E; Kaupp, U B; Malbon, C C

    1984-01-01

    Biochemical and electrophysiological measurements were made on photoreceptor cells from Limulus ventral eyes to investigate the possible role of cyclic AMP and adenylate cyclase in the visual transduction mechanism. Cyclic AMP content in a photoreceptor-enriched fraction (the end organs) of Limulus ventral eyes was approximately 15 pmol/mg protein. The cyclic AMP content was increased by bathing eyes in 1-methyl-3-isobutyl xanthine or forskolin and was increased almost 100-fold when bathed in both. Illumination did not change cyclic AMP content significantly in any of these conditions. Discrete events that can be recorded electrophysiologically occur spontaneously in darkness. An increase in the frequency of discrete events is evoked by dim illumination. The discrete events are a sign of excitation of Limulus photoreceptor cells. Drug-induced changes in the rate of occurrence of discrete events recorded electrophysiologically in darkness were not correlated with changes in cyclic AMP content. Adenylate cyclase activity measured from a small number of pooled photoreceptor clusters was stimulated by fluoride and vanadate ions, hydrolysis-resistant analogues of GTP, cholera toxin and forskolin. The Limulus enzyme is similar pharmacologically to mammalian and avian adenylate cyclases. Activation of adenylate cyclase by drugs was not correlated with changes in the rate of occurrence of discrete events recorded electrophysiologically in darkness. A heat-treated Lubrol extract of membranes from Limulus ventral eyes reconstituted the adenylate cyclase activity of membranes from S49 mouse lymphoma cyc- mutant cells which lack a functional regulatory protein. These findings suggest that Limulus ventral eye photoreceptors contain a regulatory protein that mediates the activation of adenylate cyclase by guanine nucleotides, fluoride or cholera toxin. This regulatory protein is homologous with that found in mammalian and avian adenylate cyclases. Our findings suggest that

  4. The Musashi 1 Controls the Splicing of Photoreceptor-Specific Exons in the Vertebrate Retina.

    PubMed

    Murphy, Daniel; Cieply, Benjamin; Carstens, Russ; Ramamurthy, Visvanathan; Stoilov, Peter

    2016-08-01

    Alternative pre-mRNA splicing expands the coding capacity of eukaryotic genomes, potentially enabling a limited number of genes to govern the development of complex anatomical structures. Alternative splicing is particularly prevalent in the vertebrate nervous system, where it is required for neuronal development and function. Here, we show that photoreceptor cells, a type of sensory neuron, express a characteristic splicing program that affects a broad set of transcripts and is initiated prior to the development of the light sensing outer segments. Surprisingly, photoreceptors lack prototypical neuronal splicing factors and their splicing profile is driven to a significant degree by the Musashi 1 (MSI1) protein. A striking feature of the photoreceptor splicing program are exons that display a "switch-like" pattern of high inclusion levels in photoreceptors and near complete exclusion outside of the retina. Several ubiquitously expressed genes that are involved in the biogenesis and function of primary cilia produce highly photoreceptor specific isoforms through use of such "switch-like" exons. Our results suggest a potential role for alternative splicing in the development of photoreceptors and the conversion of their primary cilia to the light sensing outer segments. PMID:27541351

  5. The Musashi 1 Controls the Splicing of Photoreceptor-Specific Exons in the Vertebrate Retina

    PubMed Central

    Murphy, Daniel; Carstens, Russ

    2016-01-01

    Alternative pre-mRNA splicing expands the coding capacity of eukaryotic genomes, potentially enabling a limited number of genes to govern the development of complex anatomical structures. Alternative splicing is particularly prevalent in the vertebrate nervous system, where it is required for neuronal development and function. Here, we show that photoreceptor cells, a type of sensory neuron, express a characteristic splicing program that affects a broad set of transcripts and is initiated prior to the development of the light sensing outer segments. Surprisingly, photoreceptors lack prototypical neuronal splicing factors and their splicing profile is driven to a significant degree by the Musashi 1 (MSI1) protein. A striking feature of the photoreceptor splicing program are exons that display a "switch-like" pattern of high inclusion levels in photoreceptors and near complete exclusion outside of the retina. Several ubiquitously expressed genes that are involved in the biogenesis and function of primary cilia produce highly photoreceptor specific isoforms through use of such “switch-like” exons. Our results suggest a potential role for alternative splicing in the development of photoreceptors and the conversion of their primary cilia to the light sensing outer segments. PMID:27541351

  6. In vitro transdifferentiation of human peripheral blood mononuclear cells to photoreceptor-like cells

    PubMed Central

    Komuta, Yukari; Ishii, Toshiyuki; Kaneda, Makoto; Ueda, Yasuji; Miyamoto, Kiyoko; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    ABSTRACT Direct reprogramming is a promising, simple and low-cost approach to generate target cells from somatic cells without using induced pluripotent stem cells. Recently, peripheral blood mononuclear cells (PBMCs) have attracted considerable attention as a somatic cell source for reprogramming. As a cell source, PBMCs have an advantage over dermal fibroblasts with respect to the ease of collecting tissues. Based on our studies involving generation of photosensitive photoreceptor cells from human iris cells and human dermal fibroblasts by transduction of photoreceptor-related transcription factors via retrovirus vectors, we transduced these transcription factors into PBMCs via Sendai virus vectors. We found that retinal disease-related genes were efficiently detected in CRX-transduced cells, most of which are crucial to photoreceptor functions. In functional studies, a light-induced inward current was detected in some CRX-transduced cells. Moreover, by modification of the culture conditions including additional transduction of RAX1 and NEUROD1, we found a greater variety of retinal disease-related genes than that observed in CRX-transduced PBMCs. These data suggest that CRX acts as a master control gene for reprogramming PBMCs into photoreceptor-like cells and that our induced photoreceptor-like cells might contribute to individualized drug screening and disease modeling of inherited retinal degeneration. PMID:27170256

  7. In vitro transdifferentiation of human peripheral blood mononuclear cells to photoreceptor-like cells.

    PubMed

    Komuta, Yukari; Ishii, Toshiyuki; Kaneda, Makoto; Ueda, Yasuji; Miyamoto, Kiyoko; Toyoda, Masashi; Umezawa, Akihiro; Seko, Yuko

    2016-01-01

    Direct reprogramming is a promising, simple and low-cost approach to generate target cells from somatic cells without using induced pluripotent stem cells. Recently, peripheral blood mononuclear cells (PBMCs) have attracted considerable attention as a somatic cell source for reprogramming. As a cell source, PBMCs have an advantage over dermal fibroblasts with respect to the ease of collecting tissues. Based on our studies involving generation of photosensitive photoreceptor cells from human iris cells and human dermal fibroblasts by transduction of photoreceptor-related transcription factors via retrovirus vectors, we transduced these transcription factors into PBMCs via Sendai virus vectors. We found that retinal disease-related genes were efficiently detected in CRX-transduced cells, most of which are crucial to photoreceptor functions. In functional studies, a light-induced inward current was detected in some CRX-transduced cells. Moreover, by modification of the culture conditions including additional transduction of RAX1 and NEUROD1, we found a greater variety of retinal disease-related genes than that observed in CRX-transduced PBMCs. These data suggest that CRX acts as a master control gene for reprogramming PBMCs into photoreceptor-like cells and that our induced photoreceptor-like cells might contribute to individualized drug screening and disease modeling of inherited retinal degeneration. PMID:27170256

  8. The photochemical mechanism of a B12-dependent photoreceptor protein

    NASA Astrophysics Data System (ADS)

    Kutta, Roger J.; Hardman, Samantha J. O.; Johannissen, Linus O.; Bellina, Bruno; Messiha, Hanan L.; Ortiz-Guerrero, Juan Manuel; Elías-Arnanz, Montserrat; Padmanabhan, S.; Barran, Perdita; Scrutton, Nigel S.; Jones, Alex R.

    2015-08-01

    The coenzyme B12-dependent photoreceptor protein, CarH, is a bacterial transcriptional regulator that controls the biosynthesis of carotenoids in response to light. On binding of coenzyme B12 the monomeric apoprotein forms tetramers in the dark, which bind operator DNA thus blocking transcription. Under illumination the CarH tetramer dissociates, weakening its affinity for DNA and allowing transcription. The mechanism by which this occurs is unknown. Here we describe the photochemistry in CarH that ultimately triggers tetramer dissociation; it proceeds via a cob(III)alamin intermediate, which then forms a stable adduct with the protein. This pathway is without precedent and our data suggest it is independent of the radical chemistry common to both coenzyme B12 enzymology and its known photochemistry. It provides a mechanistic foundation for the emerging field of B12 photobiology and will serve to inform the development of a new class of optogenetic tool for the control of gene expression.

  9. Studying rod photoreceptor development in zebrafish

    PubMed Central

    Morris, A.C.; Fadool, J.M.

    2009-01-01

    The zebrafish has rapidly become a favored model vertebrate organism, well suited for studies of developmental processes using large-scale genetic screens. In particular, zebrafish morphological and behavioral genetic screens have led to the identification of genes important for development of the retinal photoreceptors. This may help clarify the genetic mechanisms underlying human photoreceptor development and dysfunction in retinal diseases. In this review, we present the advantages of zebrafish as a vertebrate model organism, summarize retinal and photoreceptor cell development in zebrafish, with emphasis on the rod photoreceptors, and describe zebrafish visual behaviors that can be used for genetic screens. We then describe some of the photoreceptor cell mutants that have been isolated in morphological and behavioral screens and discuss the limitations of current screening methods for uncovering mutations that specifically affect rod function. Finally, we present some alternative strategies to target the rod developmental pathway in zebrafish. PMID:16199068

  10. Calcium Stores in Vertebrate Photoreceptors

    PubMed Central

    Križaj, David

    2012-01-01

    This review lays out the emerging evidence for the fundamental role of Ca2+ stores and store-operated channels in the Ca2+ homeostasis of rods and cones. Calcium-induced calcium release (CICR) is a major contributor to steady-state and light-evoked photoreceptor Ca2+ homeostasis in the darkness whereas store-operated Ca2+ channels play a more significant role under sustained illumination conditions. The homeostatic response includes dynamic interactions between the plasma membrane, endoplasmic reticulum (ER), mitochondria and/or outer segment disk organelles which dynamically sequester, accumulate and release Ca2+. Coordinated activation of SERCA transporters, ryanodine receptors (RyR), inositol triphosphate receptors (IP3Rs) and TRPC channels amplifies cytosolic voltage-operated signals but also provides a memory trace of previous exposures to light. Store-operated channels, activated by the STIM1 sensor, prevent pathological decrease in [Ca2+]i mediated by excessive activation of PMCA transporters in saturating light. CICR and SOCE may also modulate the transmission of afferent and efferent signals in the outer retina. Thus, Ca2+ stores provide additional complexity, adaptability, tuneability and speed to photoreceptor signaling. PMID:22453974

  11. Bat Eyes Have Ultraviolet-Sensitive Cone Photoreceptors

    PubMed Central

    Müller, Brigitte; Glösmann, Martin; Peichl, Leo; Knop, Gabriel C.; Hagemann, Cornelia; Ammermüller, Josef

    2009-01-01

    Mammalian retinae have rod photoreceptors for night vision and cone photoreceptors for daylight and colour vision. For colour discrimination, most mammals possess two cone populations with two visual pigments (opsins) that have absorption maxima at short wavelengths (blue or ultraviolet light) and long wavelengths (green or red light). Microchiropteran bats, which use echolocation to navigate and forage in complete darkness, have long been considered to have pure rod retinae. Here we use opsin immunohistochemistry to show that two phyllostomid microbats, Glossophaga soricina and Carollia perspicillata, possess a significant population of cones and express two cone opsins, a shortwave-sensitive (S) opsin and a longwave-sensitive (L) opsin. A substantial population of cones expresses S opsin exclusively, whereas the other cones mostly coexpress L and S opsin. S opsin gene analysis suggests ultraviolet (UV, wavelengths <400 nm) sensitivity, and corneal electroretinogram recordings reveal an elevated sensitivity to UV light which is mediated by an S cone visual pigment. Therefore bats have retained the ancestral UV tuning of the S cone pigment. We conclude that bats have the prerequisite for daylight vision, dichromatic colour vision, and UV vision. For bats, the UV-sensitive cones may be advantageous for visual orientation at twilight, predator avoidance, and detection of UV-reflecting flowers for those that feed on nectar. PMID:19636375

  12. Simple photoreceptors in Limulus polyphemus.

    PubMed

    Millecchia, R; Bradbury, J; Mauro, A

    1966-12-01

    The "olfactory nerve," the endoparietal eye, and the rudimentary lateral eyes of Limulus (polyphemus) contain simple photoreceptor cells that duplicate many of the electrical responses of the retinular cells of the lateral eye; the responses are a receptor potential consisting of aninitial transient phase and a subsequent steady phase,low-amplitude fluctuations, and a small locally regenerative response to pulses of both light and current. Photic stimulation does not induce conducted action potentials, but does increase the membrane conductance. The receptor potentialrequires the presence of sodium ions in the external medium. Measurements of action and absorption spectra indicate a photopigment whose maximum absorption is of light with wavelength of 535 nanometers. The functional significance of these cells has not been ascertained. PMID:5921383

  13. Using neurogenin to Reprogram Chick RPE to Produce Photoreceptor-like Neurons

    PubMed Central

    Li, Xiumei; Ma, Wenxin; Zhuo, Yehong; Yan, Run-Tao

    2010-01-01

    Purpose. One potential therapy for vision loss from photoreceptor degeneration is cell replacement, but this approach presents a need for photoreceptor cells. This study explores whether the retinal pigment epithelium (RPE) could be a convenient source of developing photoreceptors. Methods. The RPE of chick embryos was subjected to reprogramming by proneural genes neurogenin (ngn)1 and ngn3. The genes were introduced into the RPE through retrovirus RCAS-mediated transduction, with the virus microinjected into the eye or added to retinal pigment epithelial explant culture. The retinal pigment epithelia were then analyzed for photoreceptor traits. Results. In chick embryos infected with retrovirus RCAS-expressing ngn3 (RCAS-ngn3), the photoreceptor gene visinin (the equivalent of mammalian recoverin) was expressed in cells of the retinal pigment epithelial layer. When isolated and cultured as explants, retinal pigment epithelial tissues from embryos infected with RCAS-ngn3 or RCAS-ngn1 gave rise to layers of visinin-positive cells. These reprogrammed cells expressed genes of phototransduction and synapses, such as red opsin, the α-subunit of cone transducin, SNAP-25, and PSD-95. Reprogramming occurred with retinal pigment epithelial explants derived from virally infected embryos and with retinal pigment epithelial explants derived from normal embryos, with the recombinant viruses added at the onset of the explant culture. In addition, reprogramming took place in retinal pigment epithelial explants from both young and old embryos, from embryonic day (E)6 to E18, when the visual system becomes functional in the chick. Conclusions. The results support the prospect of exploring the RPE as a convenient source of developing photoreceptors for in situ cell replacement. PMID:19628733

  14. Neuronal Organization of Deep Brain Opsin Photoreceptors in Adult Teleosts

    PubMed Central

    Hang, Chong Yee; Kitahashi, Takashi; Parhar, Ishwar S.

    2016-01-01

    Biological impacts of light beyond vision, i.e., non-visual functions of light, signify the need to better understand light detection (or photoreception) systems in vertebrates. Photopigments, which comprise light-absorbing chromophores bound to a variety of G-protein coupled receptor opsins, are responsible for visual and non-visual photoreception. Non-visual opsin photopigments in the retina of mammals and extra-retinal tissues of non-mammals play an important role in non-image-forming functions of light, e.g., biological rhythms and seasonal reproduction. This review highlights the role of opsin photoreceptors in the deep brain, which could involve conserved neurochemical systems that control different time- and light-dependent physiologies in in non-mammalian vertebrates including teleost fish. PMID:27199680

  15. Neuronatin is a stress-responsive protein of rod photoreceptors.

    PubMed

    Shinde, Vishal; Pitale, Priyamvada M; Howse, Wayne; Gorbatyuk, Oleg; Gorbatyuk, Marina

    2016-07-22

    Neuronatin (NNAT) is a small transmembrane proteolipid that is highly expressed in the embryonic developing brain and several other peripheral tissues. This study is the first to provide evidence that NNAT is detected in the adult retina of various adult rod-dominant mammals, including wild-type (WT) rodents, transgenic rodents expressing mutant S334ter, P23H, or T17M rhodopsin, non-human primates, humans, and cone-dominant tree shrews. Immunohistochemical and quantitative real time polymerase chain reaction (qRT-PCR) analyses were applied to detect NNAT. Confocal microscopy analysis revealed that NNAT immunofluorescence is restricted to the outer segments (OSs) of photoreceptors without evidence of staining in other retinal cell types across all mammalian species. Moreover, in tree shrew retinas, we found NNAT to be co-localized with rhodopsin, indicating its predominant expression in rods. The rod-derived expression of NNAT was further confirmed by qRT-PCR in isolated rod photoreceptor cells. We also used these cells to mimic cellular stress in transgenic retinas by treating them with the endoplasmic reticulum stress inducer, tunicamycin. Thus, our data revealed accumulation of NNAT around the nucleus as compared to dispersed localization of NNAT within control cells. This distribution coincided with the partial intracellular mislocalization of NNAT to the outer nuclear layer observed in transgenic retinas. In addition, stressed retinas demonstrated an increase of NNAT mRNA and protein levels. Therefore, our study demonstrated that NNAT is a novel stress-responsive protein with a potential structural and/or functional role in adult mammalian retinas. PMID:27109921

  16. NEURONATIN IS A STRESS-RESPONSIVE PROTEIN OF ROD PHOTORECEPTORS

    PubMed Central

    SHINDE, VISHAL; PITALE, PRIYAMVADA M.; HOWSE, WAYNE; GORBATYUK, OLEG; GORBATYUK, MARINA

    2016-01-01

    Neuronatin (NNAT) is a small transmembrane proteolipid that is highly expressed in the embryonic developing brain and several other peripheral tissues. This study is the first to provide evidence that NNAT is detected in the adult retina of various adult rod-dominant mammals, including wild-type (WT) rodents, transgenic rodents expressing mutant S334ter, P23H, or T17M rhodopsin, non-human primates, humans, and cone-dominant tree shrews. Immunohistochemical and quantitative real time polymerase chain reaction (qRT-PCR) analyses were applied to detect NNAT. Confocal microscopy analysis revealed that NNAT immunofluorescence is restricted to the outer segments (OSs) of photoreceptors without evidence of staining in other retinal cell types across all mammalian species. Moreover, in tree shrew retinas, we found NNAT to be co-localized with rhodopsin, indicating its predominant expression in rods. The rod-derived expression of NNAT was further confirmed by qRT-PCR in isolated rod photoreceptor cells. We also used these cells to mimic cellular stress in transgenic retinas by treating them with the endoplasmic reticulum stress inducer, tunicamycin. Thus, our data revealed accumulation of NNAT around the nucleus as compared to dispersed localization of NNAT within control cells. This distribution coincided with the partial intracellular mislocalization of NNAT to the outer nuclear layer observed in transgenic retinas. In addition, stressed retinas demonstrated an increase of NNAT mRNA and protein levels. Therefore, our study demonstrated that NNAT is a novel stress-responsive protein with a potential structural and/or functional role in adult mammalian retinas. PMID:27109921

  17. Photoreceptor Sensory Cilium: Traversing the Ciliary Gate

    PubMed Central

    Khanna, Hemant

    2015-01-01

    Cilia are antenna-like extensions of the plasma membrane found in nearly all cell types. In the retina of the eye, photoreceptors develop unique sensory cilia. Not much was known about the mechanisms underlying the formation and function of photoreceptor cilia, largely because of technical limitations and the specific structural and functional modifications that cannot be modeled in vitro. With recent advances in microscopy techniques and molecular and biochemical approaches, we are now beginning to understand the molecular basis of photoreceptor ciliary architecture, ciliary function and its involvement in human diseases. Here, I will discuss the studies that have revealed new knowledge of how photoreceptor cilia regulate their identity and function while coping with high metabolic and trafficking demands associated with processing light signal. PMID:26501325

  18. CREB-H: a novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box-B element with a liver-specific expression.

    PubMed

    Omori, Y; Imai, J; Watanabe, M; Komatsu, T; Suzuki, Y; Kataoka, K; Watanabe, S; Tanigami, A; Sugano, S

    2001-05-15

    The expression of liver-specific genes is regulated by unequivocally allocated transcription factors via proper responsible elements within their promoters. We identified a novel transcription factor, CREB-H, and found that its expression was restricted in the liver among 16 human tissues tested. A region of CREB-H exhibited significant homology to the basic leucine zipper (b-Zip) domain of members of the CREB/ATF family: mammalian LZIP and Drosophila BBF-2 that binds to box-B, a Drosophila enhancer modulating the fat-body-specific gene expression. CREB-H contained a hydrophobic region representing a putative transmembrane domain, like LZIP. Constructing a variety of CREB-H fusion proteins with the GAL4 DNA-binding domain disclosed that CREB-H functioned as a transcriptional activator and its N-terminal 149 amino acids accounted for the activation ability. Gel mobility sift assays revealed that CREB-H did not bind to the C/EBP, AP-1 and NF-kappaB elements but specifically bound to CRE and the box-B element. Luciferase reporter assays demonstrated that like BBF-2, CREB-H activated transcription via the box-B element and that a deletion of the putative transmembrane domain increased the activation of reporter expression significantly. Furthermore, a fusion protein of GFP and full-length CREB-H was localized in reticular structures surrounding the nucleus, whereas a fusion protein of GFP and a deletion mutant lacking the putative transmembrane domain was mainly in the nucleus. These findings suggest that CREB-H plays an important role in transcriptional regulation of genes specifically expressed in the liver, and that the putative transmembrane domain may be associated with modulation of its function as the transcriptional activator. PMID:11353085

  19. Functional coupling of a Ca2+/calmodulin-dependent nitric oxide synthase and a soluble guanylyl cyclase in vertebrate photoreceptor cells.

    PubMed Central

    Koch, K W; Lambrecht, H G; Haberecht, M; Redburn, D; Schmidt, H H

    1994-01-01

    Electrophysiological recordings on retinal rod cells, horizontal cells and on-bipolar cells indicate that exogenous nitric oxide (NO) has neuromodulatory effects in the vertebrate retina. We report here endogenous NO formation in mammalian photoreceptor cells. Photoreceptor NO synthase resembled the neuronal NOS type I from mammalian brain. NOS activity utilized the substrate L-arginine (Km = 4 microM) and the cofactors NADPH, FAD, FMN and tetrahydrobiopterin. The activity showed a complete dependence on the free calcium concentration ([Ca2+]) and was mediated by calmodulin. NO synthase activity was sufficient to activate an endogenous soluble guanylyl cyclase that copurified in photoreceptor preparations. This functional coupling was strictly controlled by the free [Ca2+] (EC50 = 0.84 microM). Activation of the soluble guanylyl cyclase by endogenous NO was up to 100% of the maximal activation of this enzyme observed with the exogenous NO donor compound sodium nitroprusside. This NO/cGMP pathway was predominantly localized in inner and not in outer segments of photoreceptors. Immunocytochemically, we localized NO synthase type I mainly in the ellipsoid region of the inner segments and a soluble guanylyl cyclase in cell bodies of cone photoreceptor cells. We conclude that in photoreceptors endogenous NO is functionally coupled to a soluble guanylyl cyclase and suggest that it has a neuromodulatory role in visual transduction and in synaptic transmission in the outer retina. Images PMID:7519146

  20. Retinophilin is a light-regulated phosphoprotein required to suppress photoreceptor dark noise in Drosophila

    PubMed Central

    Mecklenburg, Kirk L.; Takemori, Nobuaki; Komori, Naoka; Chu, Brian; Hardie, Roger C.; Matsumoto, Hiroyuki; O’Tousa, Joseph. E.

    2010-01-01

    Photoreceptor cells achieve high sensitivity, reliably detecting single photons, while limiting the spontaneous activation events responsible for dark noise. We used proteomic, genetic, and electrophysiological approaches to characterize Retinophilin (RTP/CG10233) in Drosophila photoreceptors, and establish its involvement in dark noise suppression. RTP possesses MORN (Membrane Occupation and Recognition Nexus) motifs, a structure shared with mammalian junctophilins and other membrane-associated proteins found within excitable cells. We show the MORN repeats, and both the N- and C-terminal domains, are required for RTP localization in the microvillar light gathering organelle, the rhabdomere. RTP exists in multiple phosphorylated isoforms under dark conditions and is dephosphorylated by light exposure. An RTP deletion mutant exhibits a high rate of spontaneous membrane depolarization events in dark conditions but retains the normal kinetics of the light response. Photoreceptors lacking NINAC myosin III, a motor protein/kinase, also display a similar dark noise phenotype as the RTP deletion. We show that NINAC mutants are depleted for RTP. These results suggest the increase in dark noise in NINAC mutants is due to lack of RTP, and further, defines a novel role for NINAC in the rhabdomere. We propose that RTP is a light-regulated phosphoprotein that organizes rhabdomeric components to suppress random activation of the phototransduction cascade and thus increases the signaling fidelity of dark-adapted photoreceptors. PMID:20107052

  1. Melanopsin-Expressing Amphioxus Photoreceptors Transduce Light via a Phospholipase C Signaling Cascade

    PubMed Central

    Angueyra, Juan Manuel; Pulido, Camila; Malagón, Gerardo; Nasi, Enrico; Gomez, Maria del Pilar

    2012-01-01

    Melanopsin, the receptor molecule that underlies light sensitivity in mammalian ‘circadian’ receptors, is homologous to invertebrate rhodopsins and has been proposed to operate via a similar signaling pathway. Its downstream effectors, however, remain elusive. Melanopsin also expresses in two distinct light-sensitive cell types in the neural tube of amphioxus. This organism is the most basal extant chordate and can help outline the evolutionary history of different photoreceptor lineages and their transduction mechanisms; moreover, isolated amphioxus photoreceptors offer unique advantages, because they are unambiguously identifiable and amenable to single-cell physiological assays. In the present study whole-cell patch clamp recording, pharmacological manipulations, and immunodetection were utilized to investigate light transduction in amphioxus photoreceptors. A Gq was identified and selectively localized to the photosensitive microvillar membrane, while the pivotal role of phospholipase C was established pharmacologically. The photocurrent was profoundly depressed by IP3 receptor antagonists, highlighting the importance of IP3 receptors in light signaling. By contrast, surrogates of diacylglycerol (DAG), as well as poly-unsaturated fatty acids failed to activate a membrane conductance or to alter the light response. The results strengthen the notion that calcium released from the ER via IP3-sensitive channels may fulfill a key role in conveying - directly or indirectly - the melanopsin-initiated light signal to the photoconductance; moreover, they challenge the dogma that microvillar photoreceptors and phoshoinositide-based light transduction are a prerogative of invertebrate eyes. PMID:22235344

  2. An extraretinally expressed insect cryptochrome with similarity to the blue light photoreceptors of mammals and plants.

    PubMed

    Egan, E S; Franklin, T M; Hilderbrand-Chae, M J; McNeil, G P; Roberts, M A; Schroeder, A J; Zhang, X; Jackson, F R

    1999-05-15

    Photic entrainment of insect circadian rhythms can occur through either extraretinal (brain) or retinal photoreceptors, which mediate sensitivity to blue light or longer wavelengths, respectively. Although visual transduction processes are well understood in the insect retina, almost nothing is known about the extraretinal blue light photoreceptor of insects. We now have identified and characterized a candidate blue light photoreceptor gene in Drosophila (DCry) that is homologous to the cryptochrome (Cry) genes of mammals and plants. The DCry gene is located in region 91F of the third chromosome, an interval that does not contain other genes required for circadian rhythmicity. The protein encoded by DCry is approximately 50% identical to the CRY1 and CRY2 proteins recently discovered in mammalian species. As expected for an extraretinal photoreceptor mediating circadian entrainment, DCry mRNA is expressed within the adult brain and can be detected within body tissues. Indeed, tissue in situ hybridization demonstrates prominent expression in cells of the lateral brain, which are close to or coincident with the Drosophila clock neurons. Interestingly, DCry mRNA abundance oscillates in a circadian manner in Drosophila head RNA extracts, and the temporal phasing of the rhythm is similar to that documented for the mouse Cry1 mRNA, which is expressed in clock tissues. Finally, we show that changes in DCry gene dosage are associated predictably with alterations of the blue light resetting response for the circadian rhythm of adult locomotor activity. PMID:10233998

  3. Long-Term Survival of Photoreceptors Transplanted into the Adult Murine Neural Retina Requires Immune Modulation

    PubMed Central

    West, Emma L.; Pearson, Rachael A.; Barker, Susie E.; Luhmann, Ulrich F. O.; Maclaren, Robert E.; Barber, Amanda C.; Duran, Yanai; Smith, Alexander J.; Sowden, Jane C.; Ali, Robin R.

    2012-01-01

    Stem cell therapy presents an opportunity to replace photoreceptors that are lost as a result of inherited and age-related degenerative disease. We have previously shown that murine postmitotic rod photoreceptor precursor cells, identified by expression of the rod-specific transcription factor Nrl, are able to migrate into and integrate within the adult murine neural retina. However, their long-term survival has yet to be determined. Here, we found that integrated Nrl.gfp+ve photoreceptors were present up to 12 months post-transplantation, albeit in significantly reduced numbers. Surviving cells had rod-like morphology, including inner/outer segments and spherule synapses. In a minority of eyes, we observed an early, marked reduction in integrated photoreceptors within 1 month post-transplantation, which correlated with increased numbers of amoeboid macrophages, indicating acute loss of transplanted cells due to an inflammatory response. In the majority of transplants, similar numbers of integrated cells were observed between 1 and 2 months post-transplantation. By 4 months, however, we observed a significant decrease in integrated cell survival. Macrophages and T cells were present around the transplantation site, indicating a chronic immune response. Immune suppression of recipients significantly increased transplanted photoreceptor survival, indicating that the loss observed in unsuppressed recipients resulted from T cell-mediated host immune responses. Thus, if immune responses are modulated, correctly integrated transplanted photoreceptors can survive for extended periods of time in hosts with partially mismatched H-2 haplotypes. These findings suggest that autologous donor cells are optimal for therapeutic approaches to repair the neural retina, though with immune suppression nonautologous donors may be effective. PMID:20857496

  4. Accumulation of non-outer segment proteins in the outer segment underlies photoreceptor degeneration in Bardet–Biedl syndrome

    PubMed Central

    Datta, Poppy; Allamargot, Chantal; Hudson, Joseph S.; Andersen, Emily K.; Bhattarai, Sajag; Drack, Arlene V.; Sheffield, Val C.; Seo, Seongjin

    2015-01-01

    Compartmentalization and polarized protein trafficking are essential for many cellular functions. The photoreceptor outer segment (OS) is a sensory compartment specialized for phototransduction, and it shares many features with primary cilia. As expected, mutations disrupting protein trafficking to cilia often disrupt protein trafficking to the OS and cause photoreceptor degeneration. Bardet–Biedl syndrome (BBS) is one of the ciliopathies associated with defective ciliary trafficking and photoreceptor degeneration. However, precise roles of BBS proteins in photoreceptor cells and the underlying mechanisms of photoreceptor degeneration in BBS are not well understood. Here, we show that accumulation of non-OS proteins in the OS underlies photoreceptor degeneration in BBS. Using a newly developed BBS mouse model [Leucine zipper transcription factor-like 1 (Lztfl1)/Bbs17 mutant], isolated OSs, and quantitative proteomics, we determined 138 proteins that are enriched more than threefold in BBS mutant OS. In contrast, only eight proteins showed a more than threefold reduction. We found striking accumulation of Stx3 and Stxbp1/Munc18-1 and loss of polarized localization of Prom1 within the Lztfl1 and Bbs1 mutant OS. Ultrastructural analysis revealed that large vesicles are formed in the BBS OS, disrupting the lamellar structure of the OS. Our findings suggest that accumulation (and consequent sequestration) of non-OS proteins in the OS is likely the primary cause of photoreceptor degeneration in BBS. Our data also suggest that a major function of BBS proteins in photoreceptors is to transport proteins from the OS to the cell body or to prevent entry of non-OS proteins into the OS. PMID:26216965

  5. Mammalian heat shock p70 and histone H4 transcripts, which derive from naturally intronless genes, are immune to nonsense-mediated decay.

    PubMed Central

    Maquat, L E; Li, X

    2001-01-01

    Nonsense-mediated decay (NMD), also called mRNA surveillance, is an evolutionarily conserved pathway that degrades mRNAs that prematurely terminate translation. To date, the pathway in mammalian cells has been shown to depend on the presence of a cis-acting destabilizing element that usually consists of an exon-exon junction generated by the process of pre-mRNA splicing. Whether or not mRNAs that derive from naturally intronless genes, that is, mRNAs not formed by the process of splicing, are also subject to NMD has yet to be investigated. The possibility of NMD is certainly reasonable considering that mRNAs of Saccharomyces cerevisiae are subject to NMD even though most derive from naturally intronless genes. In fact, mRNAs of S. cerevisiae generally harbor a loosely defined splicing-independent destabilizing element that has been proposed to function in NMD analogously to the spliced exon-exon junction of mammalian mRNAs. Here, we demonstrate that nonsense codons introduced into naturally intronless genes encoding mouse heat shock protein 70 or human histone H4 fail to elicit NMD. Failure is most likely because each mRNA lacks a cis-acting destabilizing element, because insertion of a spliceable intron a sufficient distance downstream of a nonsense codon within either gene is sufficient to elicit NMD. PMID:11333024

  6. Analysis of transcripts encoding novel members of the mammalian metalloprotease-like, disintegrin-like, cysteine-rich (MDC) protein family and their expression in reproductive and non-reproductive monkey tissues.

    PubMed Central

    Perry, A C; Jones, R; Hall, L

    1995-01-01

    A number of sequence-related, cysteine-rich proteins containing metalloprotease-like and disintegrin-like domains (the MDC protein family), at least one of which has been shown to play a role in egg recognition during fertilization, are abundantly expressed in the mammalian male reproductive tract. In this paper we report the cloning and sequence analysis of three closely related isoforms of a novel member of this family which are expressed not only in the testis, but also in the liver, albeit at a lower level. Using a PCR-based approach we also demonstrate the presence of transcripts encoding additional, novel, disintegrin-containing proteins, in the liver and epididymis. We conclude that while some members of the MDC family are specific to the reproductive tract, suggesting functions peculiar to those tissues, others have a broader tissue distribution and may therefore play a more general role in integrin-mediated cell-cell recognition, adhesion or signalling. PMID:7492319

  7. Mapping Mammalian Cell-type-specific Transcriptional Regulatory Networks Using KD-CAGE and ChIP-seq Data in the TC-YIK Cell Line.

    PubMed

    Lizio, Marina; Ishizu, Yuri; Itoh, Masayoshi; Lassmann, Timo; Hasegawa, Akira; Kubosaki, Atsutaka; Severin, Jessica; Kawaji, Hideya; Nakamura, Yukio; Suzuki, Harukazu; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R

    2015-01-01

    Mammals are composed of hundreds of different cell types with specialized functions. Each of these cellular phenotypes are controlled by different combinations of transcription factors. Using a human non islet cell insulinoma cell line (TC-YIK) which expresses insulin and the majority of known pancreatic beta cell specific genes as an example, we describe a general approach to identify key cell-type-specific transcription factors (TFs) and their direct and indirect targets. By ranking all human TFs by their level of enriched expression in TC-YIK relative to a broad collection of samples (FANTOM5), we confirmed known key regulators of pancreatic function and development. Systematic siRNA mediated perturbation of these TFs followed by qRT-PCR revealed their interconnections with NEUROD1 at the top of the regulation hierarchy and its depletion drastically reducing insulin levels. For 15 of the TF knock-downs (KD), we then used Cap Analysis of Gene Expression (CAGE) to identify thousands of their targets genome-wide (KD-CAGE). The data confirm NEUROD1 as a key positive regulator in the transcriptional regulatory network (TRN), and ISL1, and PROX1 as antagonists. As a complimentary approach we used ChIP-seq on four of these factors to identify NEUROD1, LMX1A, PAX6, and RFX6 binding sites in the human genome. Examining the overlap between genes perturbed in the KD-CAGE experiments and genes with a ChIP-seq peak within 50 kb of their promoter, we identified direct transcriptional targets of these TFs. Integration of KD-CAGE and ChIP-seq data shows that both NEUROD1 and LMX1A work as the main transcriptional activators. In the core TRN (i.e., TF-TF only), NEUROD1 directly transcriptionally activates the pancreatic TFs HSF4, INSM1, MLXIPL, MYT1, NKX6-3, ONECUT2, PAX4, PROX1, RFX6, ST18, DACH1, and SHOX2, while LMX1A directly transcriptionally activates DACH1, SHOX2, PAX6, and PDX1. Analysis of these complementary datasets suggests the need for caution in interpreting Ch

  8. Mapping Mammalian Cell-type-specific Transcriptional Regulatory Networks Using KD-CAGE and ChIP-seq Data in the TC-YIK Cell Line

    PubMed Central

    Lizio, Marina; Ishizu, Yuri; Itoh, Masayoshi; Lassmann, Timo; Hasegawa, Akira; Kubosaki, Atsutaka; Severin, Jessica; Kawaji, Hideya; Nakamura, Yukio; Suzuki, Harukazu; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.

    2015-01-01

    Mammals are composed of hundreds of different cell types with specialized functions. Each of these cellular phenotypes are controlled by different combinations of transcription factors. Using a human non islet cell insulinoma cell line (TC-YIK) which expresses insulin and the majority of known pancreatic beta cell specific genes as an example, we describe a general approach to identify key cell-type-specific transcription factors (TFs) and their direct and indirect targets. By ranking all human TFs by their level of enriched expression in TC-YIK relative to a broad collection of samples (FANTOM5), we confirmed known key regulators of pancreatic function and development. Systematic siRNA mediated perturbation of these TFs followed by qRT-PCR revealed their interconnections with NEUROD1 at the top of the regulation hierarchy and its depletion drastically reducing insulin levels. For 15 of the TF knock-downs (KD), we then used Cap Analysis of Gene Expression (CAGE) to identify thousands of their targets genome-wide (KD-CAGE). The data confirm NEUROD1 as a key positive regulator in the transcriptional regulatory network (TRN), and ISL1, and PROX1 as antagonists. As a complimentary approach we used ChIP-seq on four of these factors to identify NEUROD1, LMX1A, PAX6, and RFX6 binding sites in the human genome. Examining the overlap between genes perturbed in the KD-CAGE experiments and genes with a ChIP-seq peak within 50 kb of their promoter, we identified direct transcriptional targets of these TFs. Integration of KD-CAGE and ChIP-seq data shows that both NEUROD1 and LMX1A work as the main transcriptional activators. In the core TRN (i.e., TF-TF only), NEUROD1 directly transcriptionally activates the pancreatic TFs HSF4, INSM1, MLXIPL, MYT1, NKX6-3, ONECUT2, PAX4, PROX1, RFX6, ST18, DACH1, and SHOX2, while LMX1A directly transcriptionally activates DACH1, SHOX2, PAX6, and PDX1. Analysis of these complementary datasets suggests the need for caution in interpreting Ch

  9. Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages.

    PubMed

    Tallam, Aravind; Perumal, Thaneer M; Antony, Paul M; Jäger, Christian; Fritz, Joëlle V; Vallar, Laurent; Balling, Rudi; Del Sol, Antonio; Michelucci, Alessandro

    2016-01-01

    Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions. Its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalysing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. To this end, we studied IRG1 expression in human immune cells under different inflammatory stimuli, such as TNFα and IFNγ, in addition to lipopolysaccharides. Under these conditions, as previously shown in mouse macrophages, IRG1/CAD accumulates in mitochondria. Furthermore, using literature information and transcription factor prediction models, we re-constructed raw gene regulatory networks (GRNs) for IRG1 in mouse and human macrophages. We further implemented a contextualization algorithm that relies on genome-wide gene expression data to infer putative cell type-specific gene regulatory interactions in mouse and human macrophages, which allowed us to predict potential transcriptional regulators of IRG1. Among the computationally identified regulators, siRNA-mediated gene silencing of interferon regulatory factor 1 (IRF1) in macrophages significantly decreased the expression of IRG1/CAD at the gene and protein level, which correlated with a reduced production of itaconic acid. Using a synergistic approach of both computational and experimental methods, we here shed more light on the transcriptional machinery of IRG1 expression and could pave the way to therapeutic approaches targeting itaconic acid levels

  10. Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages

    PubMed Central

    Tallam, Aravind; Perumal, Thaneer M.; Antony, Paul M.; Jäger, Christian; Fritz, Joëlle V.; Vallar, Laurent; Balling, Rudi; del Sol, Antonio; Michelucci, Alessandro

    2016-01-01

    Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions. Its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalysing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. To this end, we studied IRG1 expression in human immune cells under different inflammatory stimuli, such as TNFα and IFNγ, in addition to lipopolysaccharides. Under these conditions, as previously shown in mouse macrophages, IRG1/CAD accumulates in mitochondria. Furthermore, using literature information and transcription factor prediction models, we re-constructed raw gene regulatory networks (GRNs) for IRG1 in mouse and human macrophages. We further implemented a contextualization algorithm that relies on genome-wide gene expression data to infer putative cell type-specific gene regulatory interactions in mouse and human macrophages, which allowed us to predict potential transcriptional regulators of IRG1. Among the computationally identified regulators, siRNA-mediated gene silencing of interferon regulatory factor 1 (IRF1) in macrophages significantly decreased the expression of IRG1/CAD at the gene and protein level, which correlated with a reduced production of itaconic acid. Using a synergistic approach of both computational and experimental methods, we here shed more light on the transcriptional machinery of IRG1 expression and could pave the way to therapeutic approaches targeting itaconic acid levels

  11. The Hippo Pathway Controls a Switch between Retinal Progenitor Cell Proliferation and Photoreceptor Cell Differentiation in Zebrafish

    PubMed Central

    Asaoka, Yoichi; Hata, Shoji; Namae, Misako; Furutani-Seiki, Makoto; Nishina, Hiroshi

    2014-01-01

    The precise regulation of numbers and types of neurons through control of cell cycle exit and terminal differentiation is an essential aspect of neurogenesis. The Hippo signaling pathway has recently been identified as playing a crucial role in promoting cell cycle exit and terminal differentiation in multiple types of stem cells, including in retinal progenitor cells. When Hippo signaling is activated, the core Mst1/2 kinases activate the Lats1/2 kinases, which in turn phosphorylate and inhibit the transcriptional cofactor Yap. During mouse retinogenesis, overexpression of Yap prolongs progenitor cell proliferation, whereas inhibition of Yap decreases this proliferation and promotes retinal cell differentiation. However, to date, it remains unknown how the Hippo pathway affects the differentiation of distinct neuronal cell types such as photoreceptor cells. In this study, we investigated whether Hippo signaling regulates retinogenesis during early zebrafish development. Knockdown of zebrafish mst2 induced early embryonic defects, including altered retinal pigmentation and morphogenesis. Similar abnormal retinal phenotypes were observed in zebrafish embryos injected with a constitutively active form of yap [(yap (5SA)]. Loss of Yap’s TEAD-binding domain, two WW domains, or transcription activation domain attenuated the retinal abnormalities induced by yap (5SA), indicating that all of these domains contribute to normal retinal development. Remarkably, yap (5SA)-expressing zebrafish embryos displayed decreased expression of transcription factors such as otx5 and crx, which orchestrate photoreceptor cell differentiation by activating the expression of rhodopsin and other photoreceptor cell genes. Co-immunoprecipitation experiments revealed that Rx1 is a novel interacting partner of Yap that regulates photoreceptor cell differentiation. Our results suggest that Yap suppresses the differentiation of photoreceptor cells from retinal progenitor cells by repressing Rx1

  12. Metformin attenuates graft-versus-host disease via restricting mammalian target of rapamycin/signal transducer and activator of transcription 3 and promoting adenosine monophosphate-activated protein kinase-autophagy for the balance between T helper 17 and Tregs.

    PubMed

    Park, Min-Jung; Lee, Seon-Yeong; Moon, Su-Jin; Son, Hye-Jin; Lee, Sung-Hee; Kim, Eun-Kyung; Byun, Jae-Kyeong; Shin, Dong Yun; Park, Sung-Hwan; Yang, Chul-Woo; Cho, Mi-La

    2016-07-01

    Acute graft-versus-host disease (aGVHD), caused by donor T cell-mediated injury to host tissues, is a problem in allogeneic bone marrow transplantation. The transition from naïve to effector T cells is accompanied by shift in metabolism main pathway; from glucose oxidative phosphorylation to aerobic glycolysis. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine kinase that is a metabolic sensor that helps maintain cellular energy homeostasis. Although AMPK activation can exert anti-inflammatory properties by negatively regulating pro-inflammatory mediators, its role as a therapeutic potential of graft-versus-host disease development remains unclear. In this study, we found that the intraperitoneal administration of metformin, which activates AMPK signaling significantly, ameliorated the clinical severity of aGHVD and lethality. This was associated with reductions in type I T helper (Th1) and Th17 and rises in Th2 and regulatory T (Treg) cell. The enhanced signal transducer and activator of transcription 3 activation noted during the development of aGVHD was reduced by metformin treatment. Furthermore, metformin-treated Th17 cells became converted into Treg cells via enhanced autophagy. The reduction in mortality associated with metformin treatment was associated with inhibition of the mammalian target of rapamycin/signal transducer and activator of transcription 3 pathway. These results suggest that metformin might be of significant use in the treatment of patients with aGVHD. PMID:27126953

  13. Cone Photoreceptors Develop Normally in the Absence of Functional Rod Photoreceptors in a Transgenic Swine Model of Retinitis Pigmentosa

    PubMed Central

    Fernandez de Castro, Juan P.; Scott, Patrick A.; Fransen, James W.; Demas, James; DeMarco, Paul J.; Kaplan, Henry J.; McCall, Maureen A.

    2014-01-01

    Purpose. Human and swine retinas have morphological and functional similarities. In the absence of primate models, the swine is an attractive model to study retinal function and disease, with its cone-rich visual streak, our ability to manipulate their genome, and the differences in susceptibility of rod and cone photoreceptors to disease. We characterized the normal development of cone function and its subsequent decline in a P23H rhodopsin transgenic (TgP23H) miniswine model of autosomal dominant RP. Methods. Semen from TgP23H miniswine 53-1 inseminated domestic swine and produced TgP23H and Wt hybrid littermates. Retinal function was evaluated using ERGs between postnatal days (P) 14 and 120. Retinal ganglion cell (RGC) responses were recorded to full-field stimuli at several intensities. Retinal morphology was assessed using light and electron microscopy. Results. Scotopic retinal function matures in Wt pigs up to P60, but never develops in TgP23H pigs. Wt and TgP23H photopic vision matures similarly up to P30 and diverges at P60 where TgP23H cone vision declines. There are fewer TgP23H RGCs with visually evoked responses at all ages and their response to light is compromised. Photoreceptor morphological changes mirror these functional changes. Conclusions. Lack of early scotopic function in TgP23H swine suggests it as a model of an aggressive form of RP. In this mammalian model of RP, normal cone function develops independent of rod function. Therefore, its retina represents a system in which therapies to rescue cones can be developed to prolong photopic visual function in RP patients. PMID:24618325

  14. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  15. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  16. Photoreceptors mapping from past history till date.

    PubMed

    Parihar, Parul; Singh, Rachana; Singh, Samiksha; Tripathi, Durgesh Kumar; Chauhan, Devendra Kumar; Singh, Vijay Pratap; Prasad, Sheo Mohan

    2016-09-01

    The critical source of information in plants is light, which is perceived by receptors present in plants and animals. Receptors present in plant and animal system regulate important processes, and knowing the chromophores and signalling domains for each receptor could pave a way to trace out links between these receptors. The signalling mechanism for each receptor will give insight knowledge. This review has focussed on the photoreceptors from past history till date, that have evolved in the plant as well as in the animal system (to lesser extent). We have also focussed our attention on finding the links between the receptors by showing the commonalities as well as the differences between them, and also tried to trace out the links with the help of chromophores and signalling domain. Several photoreceptors have been traced out, which share similarity in the chromophore as well as in the signalling domain, which indicate towards the evolution of photoreceptors from one another. For instance, cryptochrome has been found to evolve three times from CPD photolyase as well as evolution of different types of phytochrome is a result of duplication and divergence. In addition, similarity between the photoreceptors suggested towards evolution from one another. This review has also discussed possible mechanism for each receptor i.e. how they regulate developmental processes and involve what kinds of regulators and also gives an insight on signalling mechanisms by these receptors. This review could also be a new initiative in the study of UVR8 associated studies. PMID:27387671

  17. Dynamic behavior of rod photoreceptor disks.

    PubMed

    Chen, Chunhe; Jiang, Yunhai; Koutalos, Yiannis

    2002-09-01

    Eukaryotic cells use membrane organelles, like the endoplasmic reticulum or the Golgi, to carry out different functions. Vertebrate rod photoreceptors use hundreds of membrane sacs (the disks) for the detection of light. We have used fluorescent tracers and single cell imaging to study the properties of rod photoreceptor disks. Labeling of intact rod photoreceptors with membrane markers and polar tracers revealed communication between intradiskal and extracellular space. Internalized tracers moved along the length of the rod outer segment, indicating communication between the disks as well. This communication involved the exchange of both membrane and aqueous phase and had a time constant in the order of minutes. The communication pathway uses approximately 2% of the available membrane disk area and does not allow the passage of molecules larger than 10 kDa. It was possible to load the intradiskal space with fluorescent Ca(2+) and pH dyes, which reported an intradiskal Ca(2+) concentration in the order of 1 microM and an acidic pH 6.5, both of them significantly different than intracellular and extracellular Ca(2+) concentrations and pH. The results suggest that the rod photoreceptor disks are not discrete, passive sacs but rather comprise an active cellular organelle. The communication between disks may be important for membrane remodeling as well as for providing access to the intradiskal space of the whole outer segment. PMID:12202366

  18. Processing of polarized light by squid photoreceptors.

    PubMed

    Saidel, W M; Lettvin, J Y; MacNichol, E F

    Behavioural tests have demonstrated that cephalopods can discriminate light polarized in different planes, and the receptors have been localized by electrophysiological studies of the eye. Discrimination of the plane of polarization is a consequence of both the structure of the microvilli in the outer segments of the photoreceptors and the orientation of the photosensitive chromophore on these membranes. However, between the depolarizing receptor response resulting from photoreception and the behaviour of the animal, nothing is known about neuronal processing of polarized light by cephalopods. Here we show that some squid photoreceptors discriminate the plane of polarization within the spike train, and that any particular plane is seen as a variable intensity. Given the well known orthogonal orientation of microvilli in outer segments of adjacent photoreceptors and the physiological preference for one of two mutually perpendicular planes of polarization by single photoreceptors, we conclude that cephalopod vision is based on two complementary views of the world, each determined by the transformation of polarization-sensitive receptors into complementary intensity scales. A visual system based on this transformation would lead to enhanced contrast underwater and visualization of object details obscured by confounding highlights. PMID:6877374

  19. Hypoxia reduces the effect of photoreceptor bleaching.

    PubMed

    Lin, Yun-Bin; Liu, Jorn-Hon; Chang, Yin

    2012-07-01

    Hypoxia and light illumination can both decrease oxygen consumption in the photoreceptor layers. The purpose of the present study was to investigate whether the mutual effects of hypoxia and intense illumination to the photoreceptors are additive. The a-wave of flash electroretinogram (fERG) was recorded to indirectly measure the photoreceptors function under given conditions. Six normal healthy subjects, mean age 34.0 ± 3.8 years, all of whom had high-altitude (>3,000 m) mountain hiking experience, were recruited for the study. Flash a-wave electroretinography was examined under four conditions: (1) normal (D/N); (2) systemic hypoxia induced by inhaling a mixture of O(2) and N(2) gases, which caused oxyhemoglobin saturation (SaO(2)) ≈ 80% (D/H); (3) intense light illumination, which resulted in photoreceptor bleaching (B/N); and (4) a combination of conditions b and c (B/H). Thirty light stimuli, each with a 20-ms ON and 1,980-ms OFF cycle, were given and ERG performed to probe the photoreceptor function. The results showed that a-wave at the various conditions did not respond to all stimuli. The average a-wave amplitudes were 91.4 ± 46.5, 22.8 ± 42.5, 15.5 ± 28.9, and 35.2 ± 41.1 μV for D/N, D/H, B/N, and B/H, respectively. Nonparametric Friedman test for a-wave amplitude indicated that significant differences occurred in D/N-D/H, D/N-B/N, D/N-B/H, D/H-B/H, and B/N-B/H (all p values were <0.001, but D/H-B/N was 0.264). Thus, systemic hypoxia or strong illumination to the retina can cause an absence of the ERG a-wave or change its response, although individual differences were observed. In this study, systemic hypoxia appeared to reduce photoreceptor bleaching, an interesting finding in itself. The mechanisms underlying the disappearance of the ERG a-wave following hypoxia or intense illumination to the photoreceptors seem to differ. PMID:22544448

  20. The photochemical mechanism of a B12-dependent photoreceptor protein.

    PubMed

    Kutta, Roger J; Hardman, Samantha J O; Johannissen, Linus O; Bellina, Bruno; Messiha, Hanan L; Ortiz-Guerrero, Juan Manuel; Elías-Arnanz, Montserrat; Padmanabhan, S; Barran, Perdita; Scrutton, Nigel S; Jones, Alex R

    2015-01-01

    The coenzyme B12-dependent photoreceptor protein, CarH, is a bacterial transcriptional regulator that controls the biosynthesis of carotenoids in response to light. On binding of coenzyme B12 the monomeric apoprotein forms tetramers in the dark, which bind operator DNA thus blocking transcription. Under illumination the CarH tetramer dissociates, weakening its affinity for DNA and allowing transcription. The mechanism by which this occurs is unknown. Here we describe the photochemistry in CarH that ultimately triggers tetramer dissociation; it proceeds via a cob(III)alamin intermediate, which then forms a stable adduct with the protein. This pathway is without precedent and our data suggest it is independent of the radical chemistry common to both coenzyme B12 enzymology and its known photochemistry. It provides a mechanistic foundation for the emerging field of B12 photobiology and will serve to inform the development of a new class of optogenetic tool for the control of gene expression. PMID:26264192

  1. The photochemical mechanism of a B12-dependent photoreceptor protein

    PubMed Central

    Kutta, Roger J.; Hardman, Samantha J. O.; Johannissen, Linus O.; Bellina, Bruno; Messiha, Hanan L.; Ortiz-Guerrero, Juan Manuel; Elías-Arnanz, Montserrat; Padmanabhan, S.; Barran, Perdita; Scrutton, Nigel S.; Jones, Alex R.

    2015-01-01

    The coenzyme B12-dependent photoreceptor protein, CarH, is a bacterial transcriptional regulator that controls the biosynthesis of carotenoids in response to light. On binding of coenzyme B12 the monomeric apoprotein forms tetramers in the dark, which bind operator DNA thus blocking transcription. Under illumination the CarH tetramer dissociates, weakening its affinity for DNA and allowing transcription. The mechanism by which this occurs is unknown. Here we describe the photochemistry in CarH that ultimately triggers tetramer dissociation; it proceeds via a cob(III)alamin intermediate, which then forms a stable adduct with the protein. This pathway is without precedent and our data suggest it is independent of the radical chemistry common to both coenzyme B12 enzymology and its known photochemistry. It provides a mechanistic foundation for the emerging field of B12 photobiology and will serve to inform the development of a new class of optogenetic tool for the control of gene expression. PMID:26264192

  2. Exploring avian deep-brain photoreceptors and their role in activating the neuroendocrine regulation of gonadal development1

    PubMed Central

    Kuenzel, Wayne J.; Kang, Seong W.; Zhou, Z. Jimmy

    2015-01-01

    In the eyes of mammals, specialized photoreceptors called intrinsically photosensitive retinal ganglion cells (ipRGC) have been identified that sense photoperiodic or daylight exposure, providing them over time with seasonal information. Detectors of photoperiods are critical in vertebrates, particularly for timing the onset of reproduction each year. In birds, the eyes do not appear to monitor photoperiodic information; rather, neurons within at least 4 different brain structures have been proposed to function in this capacity. Specialized neurons, called deep brain photoreceptors (DBP), have been found in the septum and 3 hypothalamic areas. Within each of the 4 brain loci, one or more of 3 unique photopigments, including melanopsin, neuropsin, and vertebrate ancient opsin, have been identified. An experiment was designed to characterize electrophysiological responses of neurons proposed to be avian DBP following light stimulation. A second study used immature chicks raised under short-day photoperiods and transferred to long day lengths. Gene expression of photopigments was then determined in 3 septal-hypothalamic regions. Preliminary electrophysiological data obtained from patch-clamping neurons in brain slices have shown that bipolar neurons in the lateral septal organ responded to photostimulation comparable with mammalian ipRGC, particularly by showing depolarization and a delayed, slow response to directed light stimulation. Utilizing real-time reverse-transcription PCR, it was found that all 3 photopigments showed significantly increased gene expression in the septal-hypothalamic regions in chicks on the third day after being transferred to long-day photoperiods. Each dissected region contained structures previously proposed to have DBP. The highly significant increased gene expression for all 3 photopigments on the third, long-day photoperiod in brain regions proposed to contain 4 structures with DBP suggests that all 3 types of DBP (melanopsin, neuropsin

  3. Early termination of heterogeneous nuclear RNA transcripts in mammalian cells: accentuation by 5,6-dichloro 1-beta-D-ribofuranosylbenzimidazole.

    PubMed Central

    Tamm, I; Kikuchi, T

    1979-01-01

    Labeling of RNA in isolated HeLa cell nuclei in vitro reveals an abundance of short RNA chains made by RNA polymerase II. These short chains were initiated prior to isolation of the nuclei. The short abundant chains are increased in amount in nuclei isolated from cells treated with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). Kinetic evidence indicates that the bulk of the putative heterogeneous nuclear RNA (hnRNA) precursor molecules that are terminated early in vivo are terminated approximately 100-300 nucleotides from sites of initiation. DRB increases the frequency of early termination, but there is a fraction of hnRNA precursor molecules whose elongation is not affected by DRB. Heparin is useful in studies of hnRNA transcription in isolated nuclei because it enhances chain elongation. Images PMID:293679

  4. RPGR: Its role in photoreceptor physiology, human disease, and future therapies

    PubMed Central

    Megaw, Roly D.; Soares, Dinesh C.; Wright, Alan F.

    2015-01-01

    Mammalian photoreceptors contain specialised connecting cilia that connect the inner (IS) to the outer segments (OS). Dysfunction of the connecting cilia due to mutations in ciliary proteins are a common cause of the inherited retinal dystrophy retinitis pigmentosa (RP). Mutations affecting the Retinitis Pigmentosa GTPase Regulator (RPGR) protein is one such cause, affecting 10–20% of all people with RP and the majority of those with X-linked RP. RPGR is located in photoreceptor connecting cilia. It interacts with a wide variety of ciliary proteins, but its exact function is unknown. Recently, there have been important advances both in our understanding of RPGR function and towards the development of a therapy. This review summarises the existing literature on human RPGR function and dysfunction, and suggests that RPGR plays a role in the function of the ciliary gate, which controls access of both membrane and soluble proteins to the photoreceptor outer segment. We discuss key models used to investigate and treat RPGR disease and suggest that gene augmentation therapy offers a realistic therapeutic approach, although important questions still remain to be answered, while cell replacement therapy based on retinal progenitor cells represents a more distant prospect. PMID:26093275

  5. Progranulin promotes the retinal precursor cell proliferation and the photoreceptor differentiation in the mouse retina

    PubMed Central

    Kuse, Yoshiki; Tsuruma, Kazuhiro; Sugitani, Sou; Izawa, Hiroshi; Ohno, Yuta; Shimazawa, Masamitsu; Hara, Hideaki

    2016-01-01

    Progranulin (PGRN) is a secreted growth factor associated with embryo development, tissue repair, and inflammation. In a previous study, we showed that adipose-derived stem cell-conditioned medium (ASC-CM) is rich in PGRN. In the present study, we investigated whether PGRN is associated with retinal regeneration in the mammalian retina. We evaluated the effect of ASC-CM using the N-methyl-N-nitrosourea-induced retinal damage model in mice. ASC-CM promoted the differentiation of photoreceptor cells following retinal damage. PGRN increased the number of BrdU+ cells in the outer nuclear layer following retinal damage some of which were Rx (retinal precursor cell marker) positive. PGRN also increased the number of rhodopsin+ photoreceptor cells in primary retinal cell cultures. SU11274, a hepatocyte growth factor (HGF) receptor inhibitor, attenuated the increase. These findings suggest that PGRN may affect the differentiation of retinal precursor cells to photoreceptor cells through the HGF receptor signaling pathway. PMID:27030285

  6. Competitive binding of viral E2 protein and mammalian core-binding factor to transcriptional control sequences of human papillomavirus type 8 and bovine papillomavirus type 1.

    PubMed Central

    Schmidt, H M; Steger, G; Pfister, H

    1997-01-01

    The promoter P7535 of human papillomavirus type 8 and the promoter P7185 of bovine papillomavirus type 1 are negatively regulated by viral E2 proteins via the promoter proximal binding sites P2 and BS1, respectively. Mutations of these E2 binding sites can reduce basal promoter activity. This suggests binding of a transcription-stimulating factor and may indicate that repression by E2 is due to competitive binding of viral and cellular proteins. A computer search revealed putative binding sites for core-binding factor (CBF; also referred to as PEA2, PEBP2, or AML), overlapping with P2 and BS1. Binding of recombinant CBF proteins to these sites was confirmed by band shift analysis. Competition of CBF and E2 protein for DNA binding was shown for both human papillomavirus type 8 and bovine papillomavirus type 1. The importance of CBF-E2 competition in E2-mediated repression could be demonstrated by comparing the E2 effect on P7185 activity in two cell lines containing different amounts of endogenous CBF. In cells with large amounts of CBF, E2 repressed P7185 wild-type constructs to the basal promoter activity of a mutant (50%) that could not bind this protein any more. In contrast, in a cell line containing small amounts of CBF, the promoter activities of constructs with wild-type and mutated CBF binding sites hardly differed and specific repression by E2 was not detectable. PMID:9311900

  7. Proximity of H2A.Z containing nucleosome to the transcription start site influences gene expression levels in the mammalian liver and brain

    PubMed Central

    Bargaje, Rhishikesh; Alam, Mohammad Parwez; Patowary, Ashok; Sarkar, Maharnob; Ali, Tamer; Gupta, Shivani; Garg, Manali; Singh, Meghna; Purkanti, Ramya; Scaria, Vinod; Sivasubbu, Sridhar; Brahmachari, Vani; Pillai, Beena

    2012-01-01

    Nucleosome positioning maps of several organisms have shown that Transcription Start Sites (TSSs) are marked by nucleosome depleted regions flanked by strongly positioned nucleosomes. Using genome-wide nucleosome maps and histone variant occupancy in the mouse liver, we show that the majority of genes were associated with a single prominent H2A.Z containing nucleosome in their promoter region. We classified genes into clusters depending on the proximity of H2A.Z to the TSS. The genes with no detectable H2A.Z showed lowest expression level, whereas H2A.Z was positioned closer to the TSS of genes with higher expression levels. We confirmed this relation between the proximity of H2A.Z and expression level in the brain. The proximity of histone variant H2A.Z, but not H3.3 to the TSS, over seven consecutive nucleosomes, was correlated with expression. Further, a nucleosome was positioned over the TSS of silenced genes while it was displaced to expose the TSS in highly expressed genes. Our results suggest that gene expression levels in vivo are determined by accessibility of the TSS and proximity of H2A.Z. PMID:22821566

  8. Roles of Glucose in Photoreceptor Survival*

    PubMed Central

    Chertov, Andrei O.; Holzhausen, Lars; Kuok, Iok Teng; Couron, Drew; Parker, Ed; Linton, Jonathan D.; Sadilek, Martin; Sweet, Ian R.; Hurley, James B.

    2011-01-01

    Vertebrate photoreceptor neurons have a high demand for metabolic energy, and their viability is very sensitive to genetic and environmental perturbations. We investigated the relationship between energy metabolism and cell death by evaluating the metabolic effects of glucose deprivation on mouse photoreceptors. Oxygen consumption, lactate production, ATP, NADH/NAD+, TCA cycle intermediates, morphological changes, autophagy, and viability were evaluated. We compared retinas incubated with glucose to retinas deprived of glucose or retinas treated with a mixture of mitochondrion-specific fuels. Rapid and slow phases of cell death were identified. The rapid phase is linked to reduced mitochondrial activity, and the slower phase reflects a need for substrates for cell maintenance and repair. PMID:21840997

  9. Spontaneous Regeneration of Human Photoreceptor Outer Segments

    PubMed Central

    Horton, Jonathan C.; Parker, Alicia B.; Botelho, James V.; Duncan, Jacque L.

    2015-01-01

    Photoreceptors are damaged in many common eye diseases, such as macular degeneration, retinal detachment, and retinitis pigmentosa. The development of methods to promote the repair or replacement of affected photoreceptors is a major goal of vision research. In this context, it would be useful to know whether photoreceptors are capable of undergoing some degree of spontaneous regeneration after injury. We report a subject who lost retinal function in a wide zone around the optic disc, giving rise to massive enlargement of the physiological blind spot. Imaging with an adaptive optics scanning laser ophthalmoscope (AOSLO) showed depletion of cone outer segments in the affected retina. A year later visual function had improved, with shrinkage of the enlarged blind spot. AOSLO imaging showed repopulation of cone outer segments, although their density remained below normal. There was a one-to-one match between sites of formerly missing outer segments and new outer segments that had appeared over the course of the year’s recovery. This correspondence provided direct morphological evidence that damaged cones are capable, under some circumstances, of generating new outer segments. PMID:26213154

  10. Brain photoreceptor pathways contributing to circadian rhythmicity in crayfish.

    PubMed

    Sullivan, Jeremy M; Genco, Maria C; Marlow, Elizabeth D; Benton, Jeanne L; Beltz, Barbara S; Sandeman, David C

    2009-08-01

    Freshwater crayfish have three known photoreceptive systems: the compound eyes, extraretinal brain photoreceptors, and caudal photoreceptors. The primary goal of the work described here was to explore the contribution of the brain photoreceptors to circadian locomotory activity and define some of the underlying neural pathways. Immunocytochemical studies of the brain photoreceptors in the parastacid (southern hemisphere) crayfish Cherax destructor reveal their expression of the blue light-sensitive photopigment cryptochrome and the neurotransmitter histamine. The brain photoreceptors project to two small protocerebral neuropils, the brain photoreceptor neuropils (BPNs), where they terminate among fibers expressing the neuropeptide pigment-dispersing hormone (PDH), a signaling molecule in arthropod circadian systems. Comparable pathways are also described in the astacid (northern hemisphere) crayfish Procambarus clarkii. Despite exhibiting markedly different diurnal locomotor activity rhythms, removal of the compound eyes and caudal photoreceptors in both C. destructor and P. clarkii (leaving the brain photoreceptors intact) does not abolish the normal light/dark activity cycle in either species, nor prevent the entrainment of their activity cycles to phase shifts of the light/dark period. These results suggest, therefore, that crayfish brain photoreceptors are sufficient for the entrainment of locomotor activity rhythms to photic stimuli, and that they can act in the absence of the compound eyes and caudal photoreceptors. We also demonstrate that the intensity of PDH expression in the BPNs varies in phase with the locomotor activity rhythm of both crayfish species. Together, these findings suggest that the brain photoreceptor cells can function as extraretinal circadian photoreceptors and that the BPN represents part of an entrainment pathway synchronizing locomotor activity to environmental light/dark cycles, and implicating the neuropeptide PDH in these functions

  11. Kinesin-2 Family Motors in the Unusual Photoreceptor Cilium

    PubMed Central

    Malicki, Jarema; Besharse, Joseph C.

    2012-01-01

    This review focuses on recent advances in the understanding of kinesin-2 family motors in vertebrate photoreceptor development. Zebrafish photoreceptors develop by the 3rd day of embryogenesis, making it possible to study mutant phenotypes without the use of conditional alleles. Recent work using a zebrafish kif3b mutant allele validates the concept that the heterotrimeric kinesin II motor is generally required for ciliogenesis. In zebrafish photoreceptors, however, loss of kif3b function delays but does not block cilium formation. This is thought to occur because both kif3b or kif3c can dimerize with kif3a and function redundantly. The second ciliary kinesin thought to function in photoreceptor cells is kif17. Prior work has shown that either morpholino knockdown of this gene or the overexpression of its dominant negative form can reduce or delay photoreceptor cilium development without any evident impact on ciliogenesis in general. This has led to the idea that kif17 may play an important role only in some specialized cilium types, such the one in photoreceptor cells. In a recently identified kif17 mutant, however, photoreceptor outer segments are formed by 5 dpf and an obvious delay of outer segment formation is seen only at the earliest stage analyzed (3 dpf). This work suggests that kif17 plays a significant role mainly at an early stage of photoreceptor development. Taken together, these studies lead to an intriguing concept that as they differentiate photoreceptors alter their kinesin repertoire. PMID:23123805

  12. Kinesin-2 family motors in the unusual photoreceptor cilium.

    PubMed

    Malicki, Jarema; Besharse, Joseph C

    2012-12-15

    This review focuses on recent advances in the understanding of kinesin-2 family motors in vertebrate photoreceptor development. Zebrafish photoreceptors develop by the 3rd day of embryogenesis, making it possible to study mutant phenotypes without the use of conditional alleles. Recent work using a zebrafish kif3b mutant allele validates the concept that the heterotrimeric kinesin II motor is generally required for ciliogenesis. In zebrafish photoreceptors, however, loss of kif3b function delays but does not block cilium formation. This is thought to occur because both kif3b or kif3c can dimerize with kif3a and function redundantly. The second ciliary kinesin thought to function in photoreceptor cells is kif17. Prior work has shown that either morpholino knockdown of this gene or the overexpression of its dominant negative form can reduce or delay photoreceptor cilium development without any evident impact on ciliogenesis in general. This has led to the idea that kif17 may play an important role only in some specialized cilium types, such the one in photoreceptor cells. In a recently identified kif17 mutant, however, photoreceptor outer segments are formed by 5 dpf and an obvious delay of outer segment formation is seen only at the earliest stage analyzed (3 dpf). This work suggests that kif17 plays a significant role mainly at an early stage of photoreceptor development. Taken together, these studies lead to an intriguing concept that as they differentiate photoreceptors alter their kinesin repertoire. PMID:23123805

  13. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  14. Mammalian synthetic biology: emerging medical applications

    PubMed Central

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob

    2015-01-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  15. Mammalian synthetic biology: emerging medical applications.

    PubMed

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  16. Mammalian Endogenous Retroviruses.

    PubMed

    Mager, Dixie L; Stoye, Jonathan P

    2015-02-01

    Over 40% of mammalian genomes comprise the products of reverse transcription. Among such retrotransposed sequences are those characterized by the presence of long terminal repeats (LTRs), including the endogenous retroviruses (ERVs), which are inherited genetic elements closely resembling the proviruses formed following exogenous retrovirus infection. Sequences derived from ERVs make up at least 8 to 10% of the human and mouse genomes and range from ancient sequences that predate mammalian divergence to elements that are currently still active. In this chapter we describe the discovery, classification and origins of ERVs in mammals and consider cellular mechanisms that have evolved to control their expression. We also discuss the negative effects of ERVs as agents of genetic disease and cancer and review examples of ERV protein domestication to serve host functions, as in placental development. Finally, we address growing evidence that the gene regulatory potential of ERV LTRs has been exploited multiple times during evolution to regulate genes and gene networks. Thus, although recently endogenized retroviral elements are often pathogenic, those that survive the forces of negative selection become neutral components of the host genome or can be harnessed to serve beneficial roles. PMID:26104559

  17. Cryptochrome 1 in Retinal Cone Photoreceptors Suggests a Novel Functional Role in Mammals

    PubMed Central

    Nießner, Christine; Denzau, Susanne; Malkemper, Erich Pascal; Gross, Julia Christina; Burda, Hynek; Winklhofer, Michael; Peichl, Leo

    2016-01-01

    Cryptochromes are a ubiquitous group of blue-light absorbing flavoproteins that in the mammalian retina have an important role in the circadian clock. In birds, cryptochrome 1a (Cry1a), localized in the UV/violet-sensitive S1 cone photoreceptors, is proposed to be the retinal receptor molecule of the light-dependent magnetic compass. The retinal localization of mammalian Cry1, homologue to avian Cry1a, is unknown, and it is open whether mammalian Cry1 is also involved in magnetic field sensing. To constrain the possible role of retinal Cry1, we immunohistochemically analysed 90 mammalian species across 48 families in 16 orders, using an antiserum against the Cry1 C-terminus that in birds labels only the photo-activated conformation. In the Carnivora families Canidae, Mustelidae and Ursidae, and in some Primates, Cry1 was consistently labeled in the outer segment of the shortwave-sensitive S1 cones. This finding would be compatible with a magnetoreceptive function of Cry1 in these taxa. In all other taxa, Cry1 was not detected by the antiserum that likely also in mammals labels the photo-activated conformation, although Western blots showed Cry1 in mouse retinal cell nuclei. We speculate that in the mouse and the other negative-tested mammals Cry1 is involved in circadian functions as a non-light-responsive protein. PMID:26898837

  18. Cryptochrome 1 in Retinal Cone Photoreceptors Suggests a Novel Functional Role in Mammals.

    PubMed

    Nießner, Christine; Denzau, Susanne; Malkemper, Erich Pascal; Gross, Julia Christina; Burda, Hynek; Winklhofer, Michael; Peichl, Leo

    2016-01-01

    Cryptochromes are a ubiquitous group of blue-light absorbing flavoproteins that in the mammalian retina have an important role in the circadian clock. In birds, cryptochrome 1a (Cry1a), localized in the UV/violet-sensitive S1 cone photoreceptors, is proposed to be the retinal receptor molecule of the light-dependent magnetic compass. The retinal localization of mammalian Cry1, homologue to avian Cry1a, is unknown, and it is open whether mammalian Cry1 is also involved in magnetic field sensing. To constrain the possible role of retinal Cry1, we immunohistochemically analysed 90 mammalian species across 48 families in 16 orders, using an antiserum against the Cry1 C-terminus that in birds labels only the photo-activated conformation. In the Carnivora families Canidae, Mustelidae and Ursidae, and in some Primates, Cry1 was consistently labeled in the outer segment of the shortwave-sensitive S1 cones. This finding would be compatible with a magnetoreceptive function of Cry1 in these taxa. In all other taxa, Cry1 was not detected by the antiserum that likely also in mammals labels the photo-activated conformation, although Western blots showed Cry1 in mouse retinal cell nuclei. We speculate that in the mouse and the other negative-tested mammals Cry1 is involved in circadian functions as a non-light-responsive protein. PMID:26898837

  19. Mammalian aromatases.

    PubMed

    Conley, A; Hinshelwood, M

    2001-05-01

    Aromatase is the enzyme complex that catalyses the synthesis of oestrogens from androgens, and therefore it has unique potential to influence the physiological balance between the sex steroid hormones. Both aromatase cytochrome P450 (P450arom) and NADPH-cytochrome P450 reductase (reductase), the two essential components of the enzyme complex, are highly conserved among mammals and vertebrates. Aromatase expression occurs in the gonads and brain, and is essential for reproductive development and fertility. Of interest are the complex mechanisms involving alternative promoter utilization that have evolved to control tissue-specific expression in these tissues. In addition, in a number of species, including humans, expression of aromatase has a broader tissue distribution, including placenta, adipose and bone. The relevance of oestrogen synthesis and possibly androgen metabolism in these peripheral sites of expression is now becoming clear from studies in P450arom knockout (ArKO) mice and from genetic defects recognized recently in both men and women. Important species differences in the physiological roles of aromatase expression are also likely to emerge, despite the highly conserved nature of the enzyme system. The identification of functionally distinct, tissue-specific isozymes of P450arom in at least one mammal, pigs, and several species of fish indicates that there are additional subtle, but physiologically significant, species-specific roles for aromatase. Comparative studies of mammalian and other vertebrate aromatases will expand understanding of the role played by this ancient enzyme system in the evolution of reproduction and the adaptive influence of oestrogen synthesis on general health and well being. PMID:11427156

  20. Progesterone receptor signalling in retinal photoreceptor neuroprotection.

    PubMed

    Jackson, Alice C Wyse; Roche, Sarah L; Byrne, Ashleigh M; Ruiz-Lopez, Ana M; Cotter, Thomas G

    2016-01-01

    'Norgestrel', a synthetic form of the female hormone progesterone has been identified as potential drug candidate for the treatment of the degenerative eye disease retinitis pigmentosa. However, to date, no work has looked at the compound's specific cellular target. Therefore, this study aimed to identify the receptor target of Norgestrel and begin to examine its potential mechanism of action in the retina. In this work, we identify and characterize the expression of progesterone receptors present in the C57 wild type and rd10 mouse model of retinitis pigmentosa. Classical progesterone receptors A and B (PR A/B), progesterone receptor membrane components 1 and 2 (PGRMC1, PGRMC2) and membrane progesterone receptors α, β and γ were found to be expressed. All receptors excluding PR A/B were also found in the 661W photoreceptor cell line. PGRMC1 is a key regulator of apoptosis and its expression is up-regulated in the degenerating rd10 mouse retina. Activated by Norgestrel through nuclear trafficking, siRNA knock down of PGRMC1 abrogated the protective properties of Norgestrel on damaged photoreceptors. Furthermore, specific inhibition of PGRMC1 by AG205 blocked Norgestrel-induced protection in stressed retinal explants. Therefore, we conclude that PGRMC1 is crucial to the neuroprotective effects of Norgestrel on stressed photoreceptors. The synthetic progestin 'Norgestrel' has been identified as a potential therapeutic for the treatment of Retinitis Pigmentosa, a degenerative eye disease. However, the mechanism behind this neuroprotection is currently unknown. In this work, we identify 'Progesterone Receptor Membrane Component 1' as the major progesterone receptor eliciting the protective effects of Norgestrel, both in vitro and ex vivo. This furthers our understanding of Norgestrel's molecular mechanism, which we hope will help bring Norgestrel one step closer to the clinic. PMID:26447367

  1. Modal content of living human cone photoreceptors

    PubMed Central

    Liu, Zhuolin; Kocaoglu, Omer P.; Turner, Timothy L.; Miller, Donald T.

    2015-01-01

    Decades of experimental and theoretical investigations have established that photoreceptors capture light based on the principles of optical waveguiding. Yet considerable uncertainty remains, even for the most basic prediction as to whether photoreceptors support more than a single waveguide mode. To test for modal behavior in human cone photoreceptors in the near infrared, we took advantage of adaptive-optics optical coherence tomography (AO-OCT, λc = 785 nm) to noninvasively image in three dimensions the reflectance profile of cones. Modal content of reflections generated at the cone inner segment and outer segment junction (IS/OS) and cone outer segment tip (COST) was examined over a range of cone diameters in 1,802 cones from 0.6° to 10° retinal eccentricity. Second moment analysis in conjunction with theoretical predictions indicate cone IS and OS have optical properties consistent of waveguides, which depend on segment diameter and refractive index. Cone IS was found to support a single mode near the fovea (≤3°) and multiple modes further away (>4°). In contrast, no evidence of multiple modes was found in the cone OSs. The IS/OS and COST reflections share a common optical aperture, are most circular near the fovea, show no orientation preference, and are temporally stable. We tested mode predictions of a conventional step-index fiber model and found that in order to fit our AO-OCT results required a lower estimate of the IS refractive index and introduction of an IS focusing/tapering effect. PMID:26417509

  2. Comparative integromics on FZD7 orthologs: conserved binding sites for PU.1, SP1, CCAAT-box and TCF/LEF/SOX transcription factors within 5'-promoter region of mammalian FZD7 orthologs.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2007-03-01

    that the binding sites for PU.1, SP1/Krüppel-like, CCAAT-box, and TCF/LEF/SOX transcription factors were conserved among 5'-promoter regions of mammalian FZD7 orthologs. PMID:17273804

  3. Protein sorting, targeting and trafficking in photoreceptor cells

    PubMed Central

    Pearring, Jillian N.; Salinas, Raquel Y.; Baker, Sheila A.; Arshavsky, Vadim Y.

    2013-01-01

    Vision is the most fundamental of our senses initiated when photons are absorbed by the rod and cone photoreceptor neurons of the retina. At the distal end of each photoreceptor resides a light-sensing organelle, called the outer segment, which is a modified primary cilium highly enriched with proteins involved in visual signal transduction. At the proximal end, each photoreceptor has a synaptic terminal, which connects this cell to the downstream neurons for further processing of the visual information. Understanding the mechanisms involved in creating and maintaining functional compartmentalization of photoreceptor cells remains among the most fascinating topics in ocular cell biology. This review will discuss how photoreceptor compartmentalization is supported by protein sorting, targeting and trafficking, with an emphasis on the best-studied cases of outer segment-resident proteins. PMID:23562855

  4. Transplantation of photoreceptors labeled with tritiated thymidine into RCS rats

    SciTech Connect

    Gouras, P.; Du, J.; Gelanze, M.; Kwun, R.; Kjeldbye, H.; Lopez, R. )

    1991-04-01

    Tritiated thymidine was administered to newborn rats to label photoreceptors, about 50% of which are still dividing. These photoreceptors were enzymatically dissociated and separated from the remainder of the retina after the infant rat matured. These labeled photoreceptors were then transplanted into a foreign host retina in the region of the outer nuclear layer. The hosts were ocular, albinotic, Royal College of Surgeons (RCS) rats, congenic to the normal donors and at least 4 months old, a time when virtually all the photoreceptors have degenerated from their retinas. The transplant site was examined at various times after transplantation by light microscope autoradiography. Labeled photoreceptor cell bodies were found in clusters in the outer nuclear layer region for as long as 3 months after transplantation surgery.

  5. Internal dialysis of Limulus ventral photoreceptors.

    PubMed Central

    Stern, J H; Lisman, J E

    1982-01-01

    The internal dialysis technique has been applied to Limulus ventral photoreceptors. This method potentially allows quantitative control of the concentration of diffusible molecules within living cells. During dialysis, Limulus photoreceptors retained their ability to respond to light. Under conditions of dim illumination, responses were normal for close to an hour. In bright light, abnormalities developed more rapidly. The reversible effects of raising the dialysate Mg2+ concentration and the entrance of rhodamine-labeled albumin into cells shows that the dialysis method is useful for assaying the effects of small or large molecules on visual transduction. This method has been used to examine the effects of nucleotide triphosphates and cyclic nucleotides. The results show that nucleotide triphosphates (5-10 mM) are required to maintain a low rate of spontaneous quantum bumps. The importance of cyclic nucleotides in transduction is less clear; the light response was reduced by either cGMP or cAMP but only at very high concentrations (10 mM). Images PMID:6961434

  6. Photoreceptor IRBP prevents light induced injury.

    PubMed

    Sun, Zhongcui; Zhang, Meng; Liu, Wei; Tian, Jie; Xu, Gezhi

    2016-01-01

    Interphotoreceptor retinoid-binding protein (IRBP) is a classic inducer of experimental autoimmune uveoretinitis (EAU). Although IRBP causes neuronal loss in susceptible animals, resistant animals such as Sprague-Dawley (SPD) rats can benefit from the evoked protective autoimmune responses. The aim of the present study was to analyze the neuroprotective effects of IRBP against light-induced photoreceptor degeneration. We immunized 75 male SPD rats with IRBP and the rats were then exposed to blue light for 24 hours (IRBP group). Seventy five rats were included in the control group. We found that the number of apoptotic cells in the outer nuclear layer (ONL) peaked on 1 day after light exposure, and the ONL thickness decreased significantly on day 3. OX42-positive cells appeared in the ONL immediately after light exposure, and their number peaked on day 3, and changed from resting ramified cells to activated amoeboid cells. Compared with the control group (n=75), the IRBP group showed less apoptotic cells, a thicker ONL, and reduced expression of tumor necrosis factor-alpha. These outcomes indicate the IRPB might protect retinal photoreceptors against light-induced injury. PMID:27100484

  7. Spectroscopic characterization of the Stentor photoreceptor.

    PubMed

    Walker, E B; Lee, T Y; Song, P S

    1979-09-20

    1. On the basis of chromatographic and spectroscopic (absorption, fluorescence and its polarization, fluorescence lifetime, circular dichroism) characterization of the Stentor photoreceptor (stentorin) for photophobic response, the photoreceptor chromophore released from mild acid hydrolysis has been identified as hypericin. 2. The native chromophore is apparently linked to a protein (65 K) containing Lys and several hydrophobic residues, which is soluble in acetone and n-pentane. The peptide-linked stentorin (I) chromophore exhibits circular dichroism in the visible region due to the induced optical activity provided by the peptide. 3. The sodium dodecyl sulfate polyacrylamide gel electrophoresis of a 38% fraction of the sucrose density centrifugation has resolved stentorin II proteins having molecular weights of 13 000, 16 000, 65 000 and 130 000. These proteins, as well as the acetone-soluble peptide, have been spectroscopically characterized with particular emphasis on their primary photoreactivity as the photophobic receptor of Stentor coeruleus. 4. Irradiation of whole living Stentor in dilute buffer solutions induces a decrease in the pH of the medium. A strong dependence upon pH in the fluorescence spectra of both synthetic and native chromophores is also evident, showing a significant drop in the pKa of one or more hydroxyl groups in the excited state. A mechanism for the photophobic response, based on this lowering of the pKa as the primary photoprocess, has been discussed. PMID:39631

  8. Sonic hedgehog promotes stem-cell potential of Mueller glia in the mammalian retina

    SciTech Connect

    Wan Jin; Zheng Hua; Xiao Honglei; She Zhenjue; Zhou Guomin

    2007-11-16

    Mueller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Mueller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Mueller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then adopt cell fate of rod photoreceptor. Inhibition of signaling by cyclopamine inhibits proliferation and dedifferentiation. Intraocular injection of Shh promotes Mueller glia activation in the photoreceptor-damaged retina, Shh also enhances neurogenic potential by producing more rhodopsin-positive photoreceptors from Mueller glia-derived cells. Together, these results provide evidences that Mueller glia act as potential stem cells in mammalian retina, Shh may have therapeutic effects on these cells for promoting the regeneration of retinal neurons.

  9. Photoreceptor cell death and rescue in retinal detachment and degenerations

    PubMed Central

    Murakami, Yusuke; Notomi, Shoji; Hisatomi, Toshio; Nakazawa, Toru; Ishibashi, Tatsuro; Miller, Joan W.; Vavvas, Demetrios G.

    2013-01-01

    Photoreceptor cell death is the ultimate cause of vision loss in various retinal disorders, including retinal detachment (RD). Photoreceptor cell death has been thought to occur mainly through apoptosis, which is the most characterized form of programmed cell death. The caspase family of cysteine proteases plays a central role for inducing apoptosis, and in experimental models of RD, dying photoreceptor cells exhibit caspase activation; however, there is a paradox that caspase inhibition alone does not provide a sufficient protection against photoreceptor cell loss, suggesting that other mechanisms of cell death are involved. Recent accumulating evidence demonstrates that non-apoptotic forms of cell death, such as autophagy and necrosis, are also regulated by specific molecular machinery, such as those mediated by autophagy-related proteins and receptor-interacting protein kinases, respectively. Here we summarize the current knowledge of cell death signaling and its roles in photoreceptor cell death after RD and other retinal degenerative diseases. A body of studies indicate that not only apoptotic but also autophagic and necrotic signaling are involved in photoreceptor cell death, and that combined targeting of these pathways may be an effective neuroprotective strategy for retinal diseases associated with photoreceptor cell loss. PMID:23994436

  10. L-glutamic acid: a neurotransmitter candidate for cone photoreceptors in human and rat retinas.

    PubMed Central

    Brandon, C; Lam, D M

    1983-01-01

    We have combined immunocytochemical localization of L-aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1; glutamic-oxaloacetic transaminase) with autoradiographic localization of high-affinity uptake sites for L-glutamate or L-aspartate to identify the neurotransmitters of mammalian photoreceptors. In both human and rat retinas, high aspartate aminotransferase immunoreactivity is found in cones but not in rods; certain putative bipolar and amacrine cells are also heavily stained. In the human retina, and perhaps also in the rat retina, cones possess a high-affinity uptake mechanism for L-glutamate but not L-aspartate, whereas rods and Müller (glial) cells take up both L-glutamate and L-aspartate. Taken together, our results indicate that (i) L-glutamate is much more likely than L-aspartate to be the transmitter for human cones, and possibly for cones of other mammalian species as well, and (ii) major differences exist between mammalian cones and rods in the transport and metabolism or utilization of L-aspartate and L-glutamate. Images PMID:6136039

  11. In Vivo Imaging of Human Cone Photoreceptor Inner Segments

    PubMed Central

    Scoles, Drew; Sulai, Yusufu N.; Langlo, Christopher S.; Fishman, Gerald A.; Curcio, Christine A.; Carroll, Joseph; Dubra, Alfredo

    2014-01-01

    Purpose. An often overlooked prerequisite to cone photoreceptor gene therapy development is residual photoreceptor structure that can be rescued. While advances in adaptive optics (AO) retinal imaging have recently enabled direct visualization of individual cone and rod photoreceptors in the living human retina, these techniques largely detect strongly directionally-backscattered (waveguided) light from normal intact photoreceptors. This represents a major limitation in using existing AO imaging to quantify structure of remnant cones in degenerating retina. Methods. Photoreceptor inner segment structure was assessed with a novel AO scanning light ophthalmoscopy (AOSLO) differential phase technique, that we termed nonconfocal split-detector, in two healthy subjects and four subjects with achromatopsia. Ex vivo preparations of five healthy donor eyes were analyzed for comparison of inner segment diameter to that measured in vivo with split-detector AOSLO. Results. Nonconfocal split-detector AOSLO reveals the photoreceptor inner segment with or without the presence of a waveguiding outer segment. The diameter of inner segments measured in vivo is in good agreement with histology. A substantial number of foveal and parafoveal cone photoreceptors with apparently intact inner segments were identified in patients with the inherited disease achromatopsia. Conclusions. The application of nonconfocal split-detector to emerging human gene therapy trials will improve the potential of therapeutic success, by identifying patients with sufficient retained photoreceptor structure to benefit the most from intervention. Additionally, split-detector imaging may be useful for studies of other retinal degenerations such as AMD, retinitis pigmentosa, and choroideremia where the outer segment is lost before the remainder of the photoreceptor cell. PMID:24906859

  12. Natural Photoreceptors as a Source of Fluorescent Proteins, Biosensors, and Optogenetic Tools

    PubMed Central

    Shcherbakova, Daria M.; Shemetov, Anton A.; Kaberniuk, Andrii A.; Verkhusha, Vladislav V.

    2015-01-01

    Genetically encoded optical tools have revolutionized modern biology by allowing detection and control of biological processes with exceptional spatiotemporal precision and sensitivity. Natural photoreceptors provide researchers with a vast source of molecular templates for engineering of fluorescent proteins, biosensors, and optogenetic tools. Here, we give a brief overview of natural photoreceptors and their mechanisms of action. We then discuss fluorescent proteins and biosensors developed from light-oxygen-voltage-sensing (LOV) domains and phytochromes, as well as their properties and applications. These fluorescent tools possess unique characteristics not achievable with green fluorescent protein–like probes, including near-infrared fluorescence, independence of oxygen, small size, and photo-sensitizer activity. We next provide an overview of available optogenetic tools of various origins, such as LOV and BLUF (blue-light-utilizing flavin adenine dinucleotide) domains, cryptochromes, and phytochromes, enabling control of versatile cellular processes. We analyze the principles of their function and practical requirements for use. We focus mainly on optical tools with demonstrated use beyond bacteria, with a specific emphasis on their applications in mammalian cells. PMID:25706899

  13. Local adaptation in the ventral photoreceptors of Limulus

    PubMed Central

    1975-01-01

    Local adaptation was demonstrated in the ventral photoreceptors of Lumulus using either flashes or continuous illumination. Spots of light locally desensitized the region of the photoreceptor on which they were focused. In dark-adapted photoreceptors where "quantum bumps" were clearly discernible, local adaptation of the quantum bumps was observed. Local adaptation could induce differences of threshold of 1 decade over distances of 50-80 mum. With continuous local illumination these gradients could be maintained from 2 s to 30 min. In addition, the decrease in time scale associated with light adaptation was also found to be localized to the region of illumination. PMID:1194890

  14. GENE EXPRESSION IN PRE-IMPLANTATION MAMMALIAN EMBRYOS

    EPA Science Inventory

    The pre-implantation mammalian embryo is initially under the control of maternal informational macromolecules that are accumulated during oogenesis. ubsequently, the genetic program of development becomes dependent upon new transcription derived from activation of the embryonic g...

  15. Light Adaptation in Pecten Hyperpolarizing Photoreceptors

    PubMed Central

    Gomez, Maria del Pilar; Nasi, Enrico

    1997-01-01

    The ability of scallop hyperpolarizing photoreceptors to respond without attenuation to repetitive flashes, together with their low light sensitivity, lack of resolvable quantum bumps and fast photoresponse kinetics, had prompted the suggestion that these cells may be constitutively in a state akin to light adaptation. We here demonstrate that their photocurrent displays all manifestations of sensory adaptation: (a) The response amplitude to a test flash is decreased in a graded way by background or conditioning lights. This attenuation of the response develops with a time constant of 200–800 ms, inversely related to background intensity. (b) Adapting stimuli shift the stimulus-response curve and reduce the size of the saturating photocurrent. (c) The fall kinetics of the photoresponse are accelerated by light adaptation, and the roll-off of the modulation transfer function is displaced to higher frequencies. This light-induced desensitization exhibits a rapid recovery, on the order of a few seconds. Based on the notion that Ca mediates light adaptation in other cells, we examined the consequences of manipulating this ion. Removal of external Ca reversibly increased the photocurrent amplitude, without affecting light sensitivity, photoresponse kinetics, or susceptibility to background adaptation; the effect, therefore, concerns ion permeation, rather than the regulation of the visual response. Intracellular dialysis with 10 mM BAPTA did not reduce the peak-to-plateau decay of the photocurrent elicited by prolonged light steps, not the background-induced compression of the response amplitude range and the acceleration of its kinetics. Conversely, high levels of buffered free [Ca]i (10 μM) only marginally shifted the sensitivity curve (Δσ = 0.3 log) and spared all manifestations of light adaptation. These results indicate that hyperpolarizing invertebrate photoreceptors adapt to light, but the underlying mechanisms must utilize pathways that are largely

  16. Visual transduction in human rod photoreceptors.

    PubMed Central

    Kraft, T W; Schneeweis, D M; Schnapf, J L

    1993-01-01

    1. Photocurrents were recorded with suction electrodes from rod photoreceptors of seven humans. 2. Brief flashes of light evoked transient outward currents of up to 20 pA. With increasing light intensity the peak response amplitude increased along an exponential saturation function. A half-saturating peak response was evoked by approximately sixty-five photoisomerizations. 3. Responses to brief dim flashes rose to a peak in about 200 ms. The waveform was roughly like the impulse response of a series of four to five low-pass filters. 4. The rising phases of the responses to flashes of increasing strength were found to fit with a biochemical model of phototransduction with an 'effective delay time' and 'characteristic time' of about 2 and 800 ms, respectively. 5. Spectral sensitivities were obtained over a wavelength range from 380 to 760 nm. The action spectrum, which peaked at 495 nm, followed the template described for photoreceptors in the macaque retina. Variation between rods in the position of the spectrum on the wavelength axis was small. 6. The scotopic luminosity function derived from human psychophysical experiments was found to agree well with the measured rod action spectrum after adjustments were made for lens absorption and photopigment self-screening in the intact eye. 7. Responses to steps of light rose monotonically to a maintained level, showing little or no relaxation. Nevertheless, the relationship between light intensity and steady-state response amplitude was shallower than that expected from simple response saturation. This is consistent with an adaptation mechanism acting on a rapid time scale. 8. Flash sensitivity fell with increasing intensities of background light according to Weber's law. Sensitivity was reduced twofold by lights evoking about 120 photoisomerizations per second. Background lights decreased the time to peak and the integration time of the flash response by up to 20%. PMID:8229828

  17. SNAP25 Expression in Mammalian Retinal Horizontal Cells

    PubMed Central

    Hirano, Arlene A.; Brandstätter, Johann Helmut; Morgans, Catherine W.; Brecha, Nicholas C.

    2014-01-01

    Horizontal cells mediate inhibitory feedforward and feedback lateral interactions in the outer retina at photoreceptor terminals and bipolar cell dendrites; however, the mechanisms that underlie synaptic transmission from mammalian horizontal cells are poorly understood. The localization of a vesicular γ-aminobutyric acid (GABA) transporter (VGAT) to horizontal cell processes in primate and rodent retinae suggested that mammalian horizontal cells release transmitter in a vesicular manner. Toward determining whether the molecular machinery for vesicular transmitter release is present in horizontal cells, we investigated the expression of SNAP25 (synaptosomal-associated protein of 25 kDa), a key SNARE protein, by immunocytochemistry with cell type-specific markers in the retinae of mouse, rat, rabbit, and monkey. Different commercial antibodies to SNAP25 were tested on vertical sections of retina. We report the robust expression of SNAP25 in both plexiform layers. Double labeling with SNAP25 and calbindin antibodies demonstrated that horizontal cell processes and their endings in photoreceptor triad synapses were strongly labeled for both proteins in mouse, rat, rabbit, and monkey retinae. Double labeling with parvalbumin antibodies in monkey retina verified SNAP25 immunoreactivity in all horizontal cells. Pre-embedding immunoelectron microscopy in rabbit retina confirmed expression of SNAP25 in lateral elements within photoreceptor triad synapses. The SNAP25 immunoreactivity in the plexiform layers and outer nuclear layer fell into at least three patterns depending on the antibody, suggesting a differential distribution of SNAP25 isoforms. The presence of SNAP25a and SNAP25b isoforms in mouse retina was established by reverse transcriptase-polymerase chain reaction. SNAP25 expression in mammalian horizontal cells along with other SNARE proteins is consistent with vesicular exocytosis. PMID:21280047

  18. Structural basis for gene regulation by a B12-dependent photoreceptor.

    PubMed

    Jost, Marco; Fernández-Zapata, Jésus; Polanco, María Carmen; Ortiz-Guerrero, Juan Manuel; Chen, Percival Yang-Ting; Kang, Gyunghoon; Padmanabhan, S; Elías-Arnanz, Montserrat; Drennan, Catherine L

    2015-10-22

    Photoreceptor proteins enable organisms to sense and respond to light. The newly discovered CarH-type photoreceptors use a vitamin B12 derivative, adenosylcobalamin, as the light-sensing chromophore to mediate light-dependent gene regulation. Here we present crystal structures of Thermus thermophilus CarH in all three relevant states: in the dark, both free and bound to operator DNA, and after light exposure. These structures provide visualizations of how adenosylcobalamin mediates CarH tetramer formation in the dark, how this tetramer binds to the promoter -35 element to repress transcription, and how light exposure leads to a large-scale conformational change that activates transcription. In addition to the remarkable functional repurposing of adenosylcobalamin from an enzyme cofactor to a light sensor, we find that nature also repurposed two independent protein modules in assembling CarH. These results expand the biological role of vitamin B12 and provide fundamental insight into a new mode of light-dependent gene regulation. PMID:26416754

  19. Structural basis for gene regulation by a B12-dependent photoreceptor

    PubMed Central

    Jost, Marco; Fernández-Zapata, Jésus; Polanco, María Carmen; Ortiz-Guerrero, Juan Manuel; Chen, Percival Yang-Ting; Kang, Gyunghoon; Padmanabhan, S.; Elías-Arnanz, Montserrat; Drennan, Catherine L.

    2015-01-01

    Summary Photoreceptor proteins enable organisms to sense and respond to light. The newly discovered CarH-type photoreceptors use a vitamin B12 derivative, adenosylcobalamin, as the light-sensing chromophore to mediate light-dependent gene regulation. Here, we present crystal structures of Thermus thermophilus CarH in all three relevant states: in the dark, both free and bound to operator DNA, and after light exposure. These structures provide a visualization of how adenosylcobalamin mediates CarH tetramer formation in the dark, how this tetramer binds to the promoter −35 element to repress transcription, and how light exposure leads to a large-scale conformational change that activates transcription. In addition to the remarkable functional repurposing of adenosylcobalamin from an enzyme cofactor to a light sensor, we find that nature also repurposed two independent protein modules in assembling CarH. These results expand the biological role of vitamin B12 and provide fundamental insight into a new mode of light-dependent gene regulation. PMID:26416754

  20. Direct rod input to cone BCs and direct cone input to rod BCs challenge the traditional view of mammalian BC circuitry

    PubMed Central

    Pang, Ji-Jie; Gao, Fan; Lem, Janis; Bramblett, Debra E.; Paul, David L.; Wu, Samuel M.

    2009-01-01

    Bipolar cells are the central neurons of the retina that transmit visual signals from rod and cone photoreceptors to third-order neurons in the inner retina and the brain. A dogma set forth by early anatomical studies is that bipolar cells in mammalian retinas receive segregated rod/cone synaptic inputs (either from rods or from cones), and here, we present evidence that challenges this traditional view. By analyzing light-evoked cation currents from morphologically identified depolarizing bipolar cells (DBCs) in the wild-type and three pathway-specific knockout mice (rod transducin knockout [Trα−/−], connexin36 knockout [Cx36−/−], and transcription factor beta4 knockout [Bhlhb4−/−]), we show that a subpopulation of rod DBCs (DBCR2s) receives substantial input directly from cones and a subpopulation of cone DBCs (DBCC1s) receives substantial input directly from rods. These results provide evidence of the existence of functional rod-DBCC and cone-DBCR synaptic pathways in the mouse retina as well as the previously proposed rod hyperpolarizing bipolar-cells pathway. This is grounds for revising the mammalian rod/cone bipolar cell dogma. PMID:20018684

  1. A promoter-level mammalian expression atlas

    PubMed Central

    2015-01-01

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research. PMID:24670764

  2. The UV-B Photoreceptor UVR8: From Structure to Physiology

    PubMed Central

    Jenkins, Gareth I.

    2014-01-01

    Low doses of UV-B light (280 to 315 nm) elicit photomorphogenic responses in plants that modify biochemical composition, photosynthetic competence, morphogenesis, and defense. UV RESISTANCE LOCUS8 (UVR8) mediates photomorphogenic responses to UV-B by regulating transcription of a set of target genes. UVR8 differs from other known photoreceptors in that it uses specific Trp amino acids instead of a prosthetic chromophore for light absorption during UV-B photoreception. Absorption of UV-B dissociates the UVR8 dimer into monomers, initiating signal transduction through interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1. However, much remains to be learned about the physiological role of UVR8 and its interaction with other signaling pathways, the molecular mechanism of UVR8 photoreception, how the UVR8 protein initiates signaling, how it is regulated, and how UVR8 regulates transcription of its target genes. PMID:24481075

  3. Simultaneous Whole-cell Recordings from Photoreceptors and Second-order Neurons in an Amphibian Retinal Slice Preparation

    PubMed Central

    Van Hook, Matthew J.; Thoreson, Wallace B.

    2013-01-01

    One of the central tasks in retinal neuroscience is to understand the circuitry of retinal neurons and how those connections are responsible for shaping the signals transmitted to the brain. Photons are detected in the retina by rod and cone photoreceptors, which convert that energy into an electrical signal, transmitting it to other retinal neurons, where it is processed and communicated to central targets in the brain via the optic nerve. Important early insights into retinal circuitry and visual processing came from the histological studies of Cajal1,2 and, later, from electrophysiological recordings of the spiking activity of retinal ganglion cells - the output cells of the retina3,4. A detailed understanding of visual processing in the retina requires an understanding of the signaling at each step in the pathway from photoreceptor to retinal ganglion cell. However, many retinal cell types are buried deep in the tissue and therefore relatively inaccessible for electrophysiological recording. This limitation can be overcome by working with vertical slices, in which cells residing within each of the retinal layers are clearly visible and accessible for electrophysiological recording. Here, we describe a method for making vertical sections of retinas from larval tiger salamanders (Ambystoma tigrinum). While this preparation was originally developed for recordings with sharp microelectrodes5,6, we describe a method for dual whole-cell voltage clamp recordings from photoreceptors and second-order horizontal and bipolar cells in which we manipulate the photoreceptor's membrane potential while simultaneously recording post-synaptic responses in horizontal or bipolar cells. The photoreceptors of the tiger salamander are considerably larger than those of mammalian species, making this an ideal preparation in which to undertake this technically challenging experimental approach. These experiments are described with an eye toward probing the signaling properties of the

  4. Cone photoreceptor definition on adaptive optics retinal imaging

    PubMed Central

    Muthiah, Manickam Nick; Gias, Carlos; Chen, Fred Kuanfu; Zhong, Joe; McClelland, Zoe; Sallo, Ferenc B; Peto, Tunde; Coffey, Peter J; da Cruz, Lyndon

    2014-01-01

    Aims To quantitatively analyse cone photoreceptor matrices on images captured on an adaptive optics (AO) camera and assess their correlation to well-established parameters in the retinal histology literature. Methods High resolution retinal images were acquired from 10 healthy subjects, aged 20–35 years old, using an AO camera (rtx1, Imagine Eyes, France). Left eye images were captured at 5° of retinal eccentricity, temporal to the fovea for consistency. In three subjects, images were also acquired at 0, 2, 3, 5 and 7° retinal eccentricities. Cone photoreceptor density was calculated following manual and automated counting. Inter-photoreceptor distance was also calculated. Voronoi domain and power spectrum analyses were performed for all images. Results At 5° eccentricity, the cone density (cones/mm2 mean±SD) was 15.3±1.4×103 (automated) and 13.9±1.0×103 (manual) and the mean inter-photoreceptor distance was 8.6±0.4 μm. Cone density decreased and inter-photoreceptor distance increased with increasing retinal eccentricity from 2 to 7°. A regular hexagonal cone photoreceptor mosaic pattern was seen at 2, 3 and 5° of retinal eccentricity. Conclusions Imaging data acquired from the AO camera match cone density, intercone distance and show the known features of cone photoreceptor distribution in the pericentral retina as reported by histology, namely, decreasing density values from 2 to 7° of eccentricity and the hexagonal packing arrangement. This confirms that AO flood imaging provides reliable estimates of pericentral cone photoreceptor distribution in normal subjects. PMID:24729030

  5. Morphological and physiological characteristics of dermal photoreceptors in Lymnaea stagnalis

    PubMed Central

    Takigami, Satoshi; Sunada, Hiroshi; Horikoshi, Tetsuro; Sakakibara, Manabu

    2014-01-01

    Dermal photoreceptors located in the mantle of Lymnaea stagnalis were histologically and physiologically characterized. Our previous study demonstrated that the shadow response from dermal photoreceptors induces the whole-body withdrawal response. Through the interneuron, RPeD11, we detected that the light-off response indirectly originated from a dermal photoreceptor. Previous observations, based on behavioral pharmacology, revealed that cyclic guanosine monophosphate acts as a second messenger in the dermal photoreceptor. Furthermore, gastropods possess dermal photoreceptors containing rhodopsin, as a photopigment, and another photo-sensitive protein, arrestin, responsible for terminating the light response. Thus, we chose three antibodies, anti-cGMP, anti-rhodopsin, and anti-β-arrestin, to identify the dermal photoreceptor molecules in Lymnaea mantle. Extracellular recording, using a suction electrode on the mantle, revealed a light off-response from the right parietal nerve. Overlapping structures, positive against each of the antibodies, were also observed. Numerous round, granular particles of 3–47 μm in diameter with one nucleus were distributed around pneumostome and/or inside the mantle. The cells surrounding the pneumostome area, located 10 μm beneath the surface, tended to have smaller cell soma ranging from 3 to 25 μm in diameter, while cells located in other areas were distributed uniformly inside the mantle, with a larger diameter ranging from 12 to 47 μm. The histological examination using back-filing Lucifer Yellow staining of the right parietal nerve with the three dermal photoreceptor antibodies confirmed that these overlapping-stained structures were dermal photoreceptors in Lymnaea. PMID:27493502

  6. Repair of the degenerate retina by photoreceptor transplantation

    PubMed Central

    Barber, Amanda C.; Hippert, Claire; Duran, Yanai; West, Emma L.; Bainbridge, James W. B.; Warre-Cornish, Katherine; Luhmann, Ulrich F. O.; Lakowski, Jorn; Sowden, Jane C.; Ali, Robin R.; Pearson, Rachael A.

    2013-01-01

    Despite different aetiologies, age-related macular degeneration and most inherited retinal disorders culminate in the same final common pathway, the loss of photoreceptors. There are few treatments and none reverse the loss of vision. Photoreceptor replacement by transplantation is proposed as a broad treatment strategy applicable to all degenerations. Recently, we demonstrated restoration of vision following rod-photoreceptor transplantation into a mouse model of stationary night-blindness, raising the critical question of whether photoreceptor replacement is equally effective in different types and stages of degeneration. We present a comprehensive assessment of rod-photoreceptor transplantation across six murine models of inherited photoreceptor degeneration. Transplantation is feasible in all models examined but disease type has a major impact on outcome, as assessed both by the morphology and number of integrated rod-photoreceptors. Integration can increase (Prph2+/Δ307), decrease (Crb1rd8/rd8, Gnat1−/−, Rho−/−), or remain constant (PDE6βrd1/rd1, Prph2rd2/rd2) with disease progression, depending upon the gene defect, with no correlation with severity. Robust integration is possible even in late-stage disease. Glial scarring and outer limiting membrane integrity, features that change with degeneration, significantly affect transplanted photoreceptor integration. Combined breakdown of these barriers markedly increases integration in a model with an intact outer limiting membrane, strong gliotic response, and otherwise poor transplantation outcome (Rho−/−), leading to an eightfold increase in integration and restoration of visual function. Thus, it is possible to achieve robust integration across a broad range of inherited retinopathies. Moreover, transplantation outcome can be improved by administering appropriate, tailored manipulations of the recipient environment. PMID:23248312

  7. Targeted Deletion of Vesicular GABA Transporter from Retinal Horizontal Cells Eliminates Feedback Modulation of Photoreceptor Calcium Channels123

    PubMed Central

    Liu, Xue; Boulter, Jim; Grove, James; Pérez de Sevilla Müller, Luis; Barnes, Steven; Brecha, Nicholas C.

    2016-01-01

    Abstract The cellular mechanisms underlying feedback signaling from horizontal cells to photoreceptors, which are important for the formation of receptive field surrounds of early visual neurons, remain unsettled. Mammalian horizontal cells express a complement of synaptic proteins that are necessary and sufficient for calcium-dependent exocytosis of inhibitory neurotransmitters at their contacts with photoreceptor terminals, suggesting that they are capable of releasing GABA via vesicular release. To test whether horizontal cell vesicular release is involved in feedback signaling, we perturbed inhibitory neurotransmission in these cells by targeted deletion of the vesicular GABA transporter (VGAT), the protein responsible for the uptake of inhibitory transmitter by synaptic vesicles. To manipulate horizontal cells selectively, an iCre mouse line with Cre recombinase expression controlled by connexin57 (Cx57) regulatory elements was generated. In Cx57-iCre mouse retina, only horizontal cells expressed Cre protein, and its expression occurred in all retinal regions. After crossing with a VGATflox/flox mouse line, VGAT was selectively eliminated from horizontal cells, which was confirmed immunohistochemically. Voltage-gated ion channel currents in horizontal cells of Cx57-VGAT−/− mice were the same as Cx57-VGAT+/+ controls, as were the cell responses to the ionotropic glutamate receptor agonist kainate, but the response to the GABAA receptor agonist muscimol in Cx57-VGAT−/− mice was larger. In contrast, the feedback inhibition of photoreceptor calcium channels, which in control animals is induced by horizontal cell depolarization, was completely absent in Cx57-VGAT−/− mice. The results suggest that vesicular release of GABA from horizontal cells is required for feedback inhibition of photoreceptors. PMID:27022629

  8. Targeted Deletion of Vesicular GABA Transporter from Retinal Horizontal Cells Eliminates Feedback Modulation of Photoreceptor Calcium Channels.

    PubMed

    Hirano, Arlene A; Liu, Xue; Boulter, Jim; Grove, James; Pérez de Sevilla Müller, Luis; Barnes, Steven; Brecha, Nicholas C

    2016-01-01

    The cellular mechanisms underlying feedback signaling from horizontal cells to photoreceptors, which are important for the formation of receptive field surrounds of early visual neurons, remain unsettled. Mammalian horizontal cells express a complement of synaptic proteins that are necessary and sufficient for calcium-dependent exocytosis of inhibitory neurotransmitters at their contacts with photoreceptor terminals, suggesting that they are capable of releasing GABA via vesicular release. To test whether horizontal cell vesicular release is involved in feedback signaling, we perturbed inhibitory neurotransmission in these cells by targeted deletion of the vesicular GABA transporter (VGAT), the protein responsible for the uptake of inhibitory transmitter by synaptic vesicles. To manipulate horizontal cells selectively, an iCre mouse line with Cre recombinase expression controlled by connexin57 (Cx57) regulatory elements was generated. In Cx57-iCre mouse retina, only horizontal cells expressed Cre protein, and its expression occurred in all retinal regions. After crossing with a VGAT(flox/flox) mouse line, VGAT was selectively eliminated from horizontal cells, which was confirmed immunohistochemically. Voltage-gated ion channel currents in horizontal cells of Cx57-VGAT(-/-) mice were the same as Cx57-VGAT(+/+) controls, as were the cell responses to the ionotropic glutamate receptor agonist kainate, but the response to the GABAA receptor agonist muscimol in Cx57-VGAT(-/-) mice was larger. In contrast, the feedback inhibition of photoreceptor calcium channels, which in control animals is induced by horizontal cell depolarization, was completely absent in Cx57-VGAT(-/-) mice. The results suggest that vesicular release of GABA from horizontal cells is required for feedback inhibition of photoreceptors. PMID:27022629

  9. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina

    NASA Astrophysics Data System (ADS)

    Ooto, Sotaro; Akagi, Tadamichi; Kageyama, Ryoichiro; Akita, Joe; Mandai, Michiko; Honda, Yoshihito; Takahashi, Masayo

    2004-09-01

    It has long been believed that the retina of mature mammals is incapable of regeneration. In this study, using the N-methyl-D-aspartate neurotoxicity model of adult rat retina, we observed that some Müller glial cells were stimulated to proliferate in response to a toxic injury and produce bipolar cells and rod photoreceptors. Although these newly produced neurons were limited in number, retinoic acid treatment promoted the number of regenerated bipolar cells. Moreover, misexpression of basic helix-loop-helix and homeobox genes promoted the induction of amacrine, horizontal, and rod photoreceptor specific phenotypes. These findings demonstrated that retinal neurons regenerated even in adult mammalian retina after toxic injury. Furthermore, we could partially control the fate of the regenerated neurons with extrinsic factors or intrinsic genes. The Müller glial cells constitute a potential source for the regeneration of adult mammalian retina and can be a target for drug delivery and gene therapy in retinal degenerative diseases.

  10. Substituting mouse transcription factor Pou4f2 with a sea urchin orthologue restores retinal ganglion cell development

    PubMed Central

    Mocko-Strand, Julie A.; Wang, Jing; Ullrich-Lüter, Esther; Pan, Ping; Wang, Steven W.; Arnone, Maria Ina; Frishman, Laura J.; Klein, William H.

    2016-01-01

    Pou domain transcription factor Pou4f2 is essential for the development of retinal ganglion cells (RGCs) in the vertebrate retina. A distant orthologue of Pou4f2 exists in the genome of the sea urchin (class Echinoidea) Strongylocentrotus purpuratus (SpPou4f1/2), yet the photosensory structure of sea urchins is strikingly different from that of the mammalian retina. Sea urchins have no obvious eyes, but have photoreceptors clustered around their tube feet disc. The mechanisms that are associated with the development and function of photoreception in sea urchins are largely unexplored. As an initial approach to better understand the sea urchin photosensory structure and relate it to the mammalian retina, we asked whether SpPou4f1/2 could support RGC development in the absence of Pou4f2. To answer this question, we replaced genomic Pou4f2 with an SpPou4f1/2 cDNA. In Pou4f2-null mice, retinas expressing SpPou4f1/2 were outwardly identical to those of wild-type mice. SpPou4f1/2 retinas exhibited dark-adapted electroretinogram scotopic threshold responses, indicating functionally active RGCs. During retinal development, SpPou4f1/2 activated RGC-specific genes and in S. purpuratus, SpPou4f2 was expressed in photoreceptor cells of tube feet in a pattern distinct from Opsin4 and Pax6. Our results suggest that SpPou4f1/2 and Pou4f2 share conserved components of a gene network for photosensory development and they maintain their conserved intrinsic functions despite vast morphological differences in mouse and sea urchin photosensory structures. PMID:26962139