Science.gov

Sample records for mammalian spinal cord

  1. Spinal cord trauma

    MedlinePlus

    Spinal cord injury; Compression of spinal cord; SCI; Cord compression ... them more likely to fall may also have spinal cord injury. ... vary depending on the location of the injury. Spinal cord injury causes weakness and loss of feeling at, and ...

  2. Non-mammalian model systems for studying neuro-immune interactions after spinal cord injury.

    PubMed

    Bloom, Ona

    2014-08-01

    Mammals exhibit poor recovery after injury to the spinal cord, where the loss of neurons and neuronal connections can be functionally devastating. In contrast, it has long been appreciated that many non-mammalian vertebrate species exhibit significant spontaneous functional recovery after spinal cord injury (SCI). Identifying the biological responses that support an organism's inability or ability to recover function after SCI is an important scientific and medical question. While recent advances have been made in understanding the responses to SCI in mammals, we remain without an effective clinical therapy for SCI. A comparative biological approach to understanding responses to SCI in non-mammalian vertebrates will yield important insights into mechanisms that promote recovery after SCI. Presently, mechanistic studies aimed at elucidating responses, both intrinsic and extrinsic to neurons, that result in different regenerative capacities after SCI across vertebrates are just in their early stages. There are several inhibitory mechanisms proposed to impede recovery from SCI in mammals, including reactive gliosis and scarring, myelin associated proteins, and a suboptimal immune response. One hypothesis to explain the robust regenerative capacity of several non-mammalian vertebrates is a lack of some or all of these inhibitory signals. This review presents the current knowledge of immune responses to SCI in several non-mammalian species that achieve anatomical and functional recovery after SCI. This subject is of growing interest, as studies increasingly show both beneficial and detrimental roles of the immune response following SCI in mammals. A long-term goal of biomedical research in all experimental models of SCI is to understand how to promote functional recovery after SCI in humans. Therefore, understanding immune responses to SCI in non-mammalian vertebrates that achieve functional recovery spontaneously may identify novel strategies to modulate immune

  3. Non-mammalian model systems for studying neuro-immune interactions after spinal cord injury.

    PubMed Central

    Bloom, Ona

    2014-01-01

    Mammals exhibit poor recovery after injury to the spinal cord, where the loss of neurons and neuronal connections can be functionally devastating. In contrast, it has long been appreciated that many non-mammalian vertebrate species exhibit significant spontaneous functional recovery after spinal cord injury (SCI). Identifying the biological responses that support an organism's inability or ability to recover function after SCI is an important scientific and medical question. While recent advances have been made in understanding the responses to SCI in mammals, we remain without an effective clinical therapy for SCI. A comparative biological approach to understanding responses to SCI in non-mammalian vertebrates will yield important insights into mechanisms that promote recovery after SCI. Presently, mechanistic studies aimed at elucidating responses, both intrinsic and extrinsic to neurons, that result in different regenerative capacities after SCI across vertebrates are just in their early stages. There are several inhibitory mechanisms proposed to impede recovery from SCI in mammals, including reactive gliosis and scarring, myelin associated proteins, and a suboptimal immune response. One hypothesis to explain the robust regenerative capacity of several non-mammalian vertebrates is a lack of some or all of these inhibitory signals. This review presents the current knowledge of immune responses to SCI in several non-mammalian species that achieve anatomical and functional recovery after SCI. This subject is of growing interest, as studies increasingly show both beneficial and detrimental roles of the immune response following SCI in mammals. A long-term goal of biomedical research in all experimental models of SCI is to understand how to promote functional recovery after SCI in humans. Therefore, understanding immune responses to SCI in non-mammalian vertebrates that achieve functional recovery spontaneously may identify novel strategies to modulate immune

  4. Spinal Cord Injuries

    MedlinePlus

    Your spinal cord is a bundle of nerves that runs down the middle of your back. It carries signals back ... forth between your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually ...

  5. Tethered Spinal Cord Syndrome

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Tethered Spinal Cord Syndrome Information Page Table of Contents (click to ... being done? Clinical Trials Organizations What is Tethered Spinal Cord Syndrome? Tethered spinal cord syndrome is a neurological ...

  6. Spinal Cord Infarction

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Spinal Cord Infarction Information Page Table of Contents (click to ... Organizations Related NINDS Publications and Information What is Spinal Cord Infarction? Spinal cord infarction is a stroke either ...

  7. Spinal Cord Diseases

    MedlinePlus

    Your spinal cord is a bundle of nerves that runs down the middle of your back. It carries signals back ... of the spine, this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such ...

  8. Spinal Cord Injury Map

    MedlinePlus

    ... on the severity of the injury. Tap this spinal column to see how the level of injury affects loss of function and control. Learn more about spinal cord injuries. A spinal cord injury affects the ...

  9. Spinal Cord Diseases

    MedlinePlus

    ... this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such as meningitis and polio Inflammatory diseases Autoimmune diseases Degenerative diseases such as amyotrophic lateral ...

  10. Spinal cord stimulation

    MedlinePlus

    Spinal cord stimulation is a treatment for pain that uses a mild electric current to block nerve impulses ... stretched into the space on top of your spinal cord. These wires will be connected to a small ...

  11. An efficient device to experimentally model compression injury of mammalian spinal cord.

    PubMed

    Ropper, Alexander E; Zeng, Xiang; Anderson, Jamie E; Yu, Dou; Han, InBo; Haragopal, Hariprakash; Teng, Yang D

    2015-09-01

    We report an efficient and effective device to reproducibly model clinically relevant spinal cord injury (SCI) via controlled mechanical compression. In the present study, following skin incision, dorsal laminectomy was performed to expose T10 spinal cord of adult female Sprague-Dawley rats (230-250 g). The vertebral column was suspended and stabilized by Allis clamps at T8 and 12 spinous processes. A metal impounder was then gently loaded onto T10 dura (20, 35 or 50 g × 5 min; n=7/group), resulting in acute mild, moderate, or severe standing weight compression, respectively. Neurobehavioral outcomes were evaluated using the BBB locomotor scale and inclined plane test for coordinated hindlimb function, and a battery of spinal reflex tests for sensorimotor functions, at 1 day following SCI and weekly thereafter for 7 weeks. Quantitative histopathology was used to assess injury-triggered loss of white matter, gray matter and ventral horn motor neurons. Immunocytochemical levels of glial fibrillary acidic protein (GFAP) and β-amyloid precursor protein (APP) at the cervical and lumbar regions were measured to determine the distal segment impact of T10 compression. The data demonstrates that the standardized protocol generates weight-dependent hindlimb motosensory deficits and neurodegeneration primarily at and near the lesion epicenter. Importantly, there are significantly increased GFAP and APP expressions in spinal cord segments involved in eliciting post-SCI allodynia. Therefore, the described system reliably produces compression trauma in manners partially emulating clinical quasi-static insults to the spinal cord, providing a pragmatic model to investigate pathophysiological events and potential therapeutics for compression SCI. PMID:26210871

  12. Spinal Cord Injuries

    MedlinePlus

    ... forth between your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... down on the nerve parts that carry signals. Spinal cord injuries can be complete or incomplete. With a complete ...

  13. Cholinergic Enhancement of Cell Proliferation in the Postnatal Neurogenic Niche of the Mammalian Spinal Cord

    PubMed Central

    Corns, Laura F.; Atkinson, Lucy; Daniel, Jill; Edwards, Ian J.; New, Lauryn

    2015-01-01

    Abstract The region surrounding the central canal (CC) of the spinal cord is a highly plastic area, defined as a postnatal neurogenic niche. Within this region are ependymal cells that can proliferate and differentiate to form new astrocytes and oligodendrocytes following injury and cerebrospinal fluid contacting cells (CSFcCs). The specific environmental conditions, including the modulation by neurotransmitters that influence these cells and their ability to proliferate, are unknown. Here, we show that acetylcholine promotes the proliferation of ependymal cells in mice under both in vitro and in vivo conditions. Using whole cell patch clamp in acute spinal cord slices, acetylcholine directly depolarized ependymal cells and CSFcCs. Antagonism by specific nicotinic acetylcholine receptor (nAChR) antagonists or potentiation by the α7 containing nAChR (α7*nAChR) modulator PNU 120596 revealed that both α7*nAChRs and non‐α7*nAChRs mediated the cholinergic responses. Using the nucleoside analogue EdU (5‐ethynyl‐2'‐deoxyuridine) as a marker of cell proliferation, application of α7*nAChR modulators in spinal cord cultures or in vivo induced proliferation in the CC region, producing Sox‐2 expressing ependymal cells. Proliferation also increased in the white and grey matter. PNU 120596 administration also increased the proportion of cells coexpressing oligodendrocyte markers. Thus, variation in the availability of acetylcholine can modulate the rate of proliferation of cells in the ependymal cell layer and white and grey matter through α7*nAChRs. This study highlights the need for further investigation into how neurotransmitters regulate the response of the spinal cord to injury or during aging. Stem Cells 2015;33:2864–2876 PMID:26038197

  14. Motor axon exit from the mammalian spinal cord is controlled by the homeodomain protein Nkx2.9 via Robo-Slit signaling

    PubMed Central

    Bravo-Ambrosio, Arlene; Mastick, Grant; Kaprielian, Zaven

    2012-01-01

    Mammalian motor circuits control voluntary movements by transmitting signals from the central nervous system (CNS) to muscle targets. To form these circuits, motor neurons (MNs) must extend their axons out of the CNS. Although exit from the CNS is an indispensable phase of motor axon pathfinding, the underlying molecular mechanisms remain obscure. Here, we present the first identification of a genetic pathway that regulates motor axon exit from the vertebrate spinal cord, utilizing spinal accessory motor neurons (SACMNs) as a model system. SACMNs are a homogeneous population of spinal MNs with axons that leave the CNS through a discrete lateral exit point (LEP) and can be visualized by the expression of the cell surface protein BEN. We show that the homeodomain transcription factor Nkx2.9 is selectively required for SACMN axon exit and identify the Robo2 guidance receptor as a likely downstream effector of Nkx2.9; loss of Nkx2.9 leads to a reduction in Robo2 mRNA and protein within SACMNs and SACMN axons fail to exit the spinal cord in Robo2-deficient mice. Consistent with short-range interactions between Robo2 and Slit ligands regulating SACMN axon exit, Robo2-expressing SACMN axons normally navigate through LEP-associated Slits as they emerge from the spinal cord, and fail to exit in Slit-deficient mice. Our studies support the view that Nkx2.9 controls SACMN axon exit from the mammalian spinal cord by regulating Robo-Slit signaling. PMID:22399681

  15. Modeling spinal cord biomechanics

    NASA Astrophysics Data System (ADS)

    Luna, Carlos; Shah, Sameer; Cohen, Avis; Aranda-Espinoza, Helim

    2012-02-01

    Regeneration after spinal cord injury is a serious health issue and there is no treatment for ailing patients. To understand regeneration of the spinal cord we used a system where regeneration occurs naturally, such as the lamprey. In this work, we analyzed the stress response of the spinal cord to tensile loading and obtained the mechanical properties of the cord both in vitro and in vivo. Physiological measurements showed that the spinal cord is pre-stressed to a strain of 10%, and during sinusoidal swimming, there is a local strain of 5% concentrated evenly at the mid-body and caudal sections. We found that the mechanical properties are homogeneous along the body and independent of the meninges. The mechanical behavior of the spinal cord can be characterized by a non-linear viscoelastic model, described by a modulus of 20 KPa for strains up to 15% and a modulus of 0.5 MPa for strains above 15%, in agreement with experimental data. However, this model does not offer a full understanding of the behavior of the spinal cord fibers. Using polymer physics we developed a model that relates the stress response as a function of the number of fibers.

  16. Spinal cord abscess

    MedlinePlus

    ... abscess is caused by an infection inside the spine. An abscess of the spinal cord itself is ... by a staphylococcus infection that spreads through the spine. It may be caused by tuberculosis in some ...

  17. Spinal Cord Injury

    MedlinePlus

    ... Dramatically Improves Function After Spinal Cord Injury in Rats May 2004 press release on an experimental treatment ... NINDS). Signaling Molecule Improves Nerve Cell Regeneration in Rats August 2002 news summary on a signaling molecule ...

  18. Spinal Cord Injury 101

    MedlinePlus Videos and Cool Tools

    ... Braingate" research? What is the status of stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? What does stem-cell research on animals tell us? When can we ...

  19. The organization of spinal motor neurons in a monotreme is consistent with a six-region schema of the mammalian spinal cord.

    PubMed

    Mitchelle, Amer; Watson, Charles

    2016-09-01

    The motor neurons in the spinal cord of an echidna (Tachyglossus aculeatus) have been mapped in Nissl-stained sections from spinal cord segments defined by spinal nerve anatomy. A medial motor column of motor neurons is found at all spinal cord levels, and a hypaxial column is found at most levels. The organization of the motor neuron clusters in the lateral motor column of the brachial (C5 to T3) and crural (L2 to S3) limb enlargements is very similar to the pattern previously revealed by retrograde tracing in placental mammals, and the motor neuron clusters have been tentatively identified according to the muscle groups they are likely to supply. The region separating the two limb enlargements (T4 to L1) contains preganglionic motor neurons that appear to represent the spinal sympathetic outflow. Immediately caudal to the crural limb enlargement is a short column of preganglionic motor neurons (S3 to S4), which it is believed represents the pelvic parasympathetic outflow. The rostral and caudal ends of the spinal cord contain neither a lateral motor column nor a preganglionic column. Branchial motor neurons (which are believed to supply the sternomastoid and trapezius muscles) are present at the lateral margin of the ventral horn in rostral cervical segments (C2-C4). These same segments contain the phrenic nucleus, which belongs to the hypaxial column. The presence or absence of the main spinal motor neuron columns in the different regions echidna spinal cord (and also in that of other amniote vertebrates) provides a basis for dividing the spinal cord into six main regions - prebrachial, brachial, postbrachial, crural, postcrural and caudal. The considerable biological and functional significance of this subdivision pattern is supported by recent studies on spinal cord hox gene expression in chicks and mice. On the other hand, the familiar 'segments' of the spinal cord are defined only by the anatomy of adjacent vertebrae, and are not demarcated by intrinsic gene

  20. Spinal cord schistosomiasis

    PubMed Central

    Adeel, Ahmed Awad

    2015-01-01

    Acute myelopathy is increasingly being recognized as a common neurological complication of schistosomiasis. Schistosome eggs reach the spinal cord either as egg emboli or as eggs produced by ectopic worms. This leads to inflammatory reaction and granuloma formation around the eggs. Patients with spinal schistosomiasis may not have clinical evidence of schistosomiasis. The typical clinical picture is that of lumbar pain preceded by other symptoms by hours or up to 3 weeks. Patients may present with paraparesis, urinary retention or paraplegia. Definitive diagnosis of spinal cord schistosomiasis is by detection of the eggs in a spinal cord biopsy or at autopsy. However, most cases are diagnosed based on a presumptive diagnosis that depends on a suggestive clinical picture, history or evidence of active schistosomiasis and exclusion of other conditions. Investigations include stools and urine examination for schistosome eggs, blood tests, magnetic resonance imaging (MRI) and examination of the cerebrospinal fluid. Treatment of cases is mainly by praziquantel, corticosteroids, surgical intervention and rehabilitation.

  1. Spinal cord injury pain.

    PubMed

    Beric, Aleksandar

    2003-01-01

    Awareness that SCI pain is common emerged during the past decade. However, there are a number of unresolved issues. There is a need for variety of experimental models to reflect diversity of SCI pains. Current classification is not as user-friendly as it should be. More attention should be given to a condition of the spinal cord below and above the SCI lesion. A consensus for what is an optimal SCI functional assessment for patients with sensory complaints and pain should be developed. Further extensive SCI pain research is needed prior to spinal cord regeneration trials in order to be able to cope with a potential for newly developed pains that may appear during incomplete spinal cord regenerative attempts. PMID:12821403

  2. Learning with the Spinal Cord.

    PubMed

    Robinson, Richard

    2015-06-01

    To what extent does the spinal cord play a role in the learning of motor tasks? A new study that simultaneously images the brain and spinal cord shows that the spinal cord is actively and independently involved in the earliest stages of motor learning. PMID:26125625

  3. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Roy, R. R.; Hodgson, J. A.; Prober, R. J.; de Guzman, C. P.; de Leon, R.

    1992-01-01

    The neural circuitry of the lumbar spinal cord can generate alternating extension and flexion of the hindlimbs. The hindlimbs of adult cats with complete transection of the spinal cord at a low thoracic level (T12-T13) can perform full weight-supporting locomotion on a treadmill belt moving at a range of speeds. Some limitations in the locomotor capacity can be associated with a deficit in the recruitment level of the fast extensors during the stance phase and the flexors during the swing phase of a step cycle. The level of locomotor performance, however, can be enhanced by daily training on a treadmill while emphasizing full weight-support stepping and by providing appropriately timed sensory stimulation, loading, and/or pharmacologic stimulation of the hindlimb neuromuscular apparatus. Furthermore, there appears to be an interactive effect of these interventions. For example, the maximum treadmill speed that a spinal adult cat can attain and maintain is significantly improved with daily full weight-supporting treadmill training, but progressive recruitment of fast extensors becomes apparent only when the hindlimbs are loaded by gently pulling down on the tail during the stepping. Stimulation of the sural nerve at the initiation of the flexion phase of the step cycle can likewise markedly improve the locomotor capability. Administration of clonidine, in particular in combination with an elevated load, resulted in the most distinct and consistent alternating bursts of electromyographic activity during spinal stepping. These data indicate that the spinal cord has the ability to execute alternating activation of the extensor and flexor musculature of the hindlimbs (stepping) and that this ability can be improved by several interventions such as training, sensory stimulation, and use of some pharmacologic agents. Thus, it appears that the spinal cord, without supraspinal input, is highly plastic and has the potential to "learn," that is, to acquire and improve its

  4. Spinal Cord Injury

    MedlinePlus

    ... How much do you know about taking good care of yourself? Links to more information girlshealth glossary girlshealth.gov home http://www.girlshealth.gov/ Home Illness & disability Types of ... Spinal cord injury Read advice from Dr. Jeffrey Rabin , a pediatric rehabilitation specialist at the Children’s National Medical Center. ...

  5. Anterior spinal cord syndrome of unknown etiology

    PubMed Central

    Klakeel, Merrine; Thompson, Justin; McDonald, Frank

    2015-01-01

    A spinal cord injury encompasses a physical insult to the spinal cord. In the case of anterior spinal cord syndrome, the insult is a vascular lesion at the anterior spinal artery. We present the cases of two 13-year-old boys with anterior spinal cord syndrome, along with a review of the anatomy and vasculature of the spinal cord and an explanation of how a lesion in the cord corresponds to anterior spinal cord syndrome. PMID:25552812

  6. Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord

    PubMed Central

    Gozal, Elizabeth A.; O'Neill, Brannan E.; Sawchuk, Michael A.; Zhu, Hong; Halder, Mallika; Chou, Ching-Chieh; Hochman, Shawn

    2014-01-01

    The trace amines (TAs), tryptamine, tyramine, and β-phenylethylamine, are synthesized from precursor amino acids via aromatic-L-amino acid decarboxylase (AADC). We explored their role in the neuromodulation of neonatal rat spinal cord motor circuits. We first showed that the spinal cord contains the substrates for TA biosynthesis (AADC) and for receptor-mediated actions via trace amine-associated receptors (TAARs) 1 and 4. We next examined the actions of the TAs on motor activity using the in vitro isolated neonatal rat spinal cord. Tyramine and tryptamine most consistently increased motor activity with prominent direct actions on motoneurons. In the presence of N-methyl-D-aspartate, all applied TAs supported expression of a locomotor-like activity (LLA) that was indistinguishable from that ordinarily observed with serotonin, suggesting that the TAs act on common central pattern generating neurons. The TAs also generated distinctive complex rhythms characterized by episodic bouts of LLA. TA actions on locomotor circuits did not require interaction with descending monoaminergic projections since evoked LLA was maintained following block of all Na+-dependent monoamine transporters or the vesicular monoamine transporter. Instead, TA (tryptamine and tyramine) actions depended on intracellular uptake via pentamidine-sensitive Na+-independent membrane transporters. Requirement for intracellular transport is consistent with the TAs having much slower LLA onset than serotonin and for activation of intracellular TAARs. To test for endogenous actions following biosynthesis, we increased intracellular amino acid levels with cycloheximide. LLA emerged and included distinctive TA-like episodic bouts. In summary, we provided anatomical and functional evidence of the TAs as an intrinsic spinal monoaminergic modulatory system capable of promoting recruitment of locomotor circuits independent of the descending monoamines. These actions support their known sympathomimetic function

  7. Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury

    PubMed Central

    Zou, Yixiao; Stagi, Massimiliano; Wang, Xingxing; Yigitkanli, Kazim; Siegel, Chad S.; Nakatsu, Fubito; Cafferty, William B. J.

    2015-01-01

    Axonal growth and neuronal rewiring facilitate functional recovery after spinal cord injury. Known interventions that promote neural repair remain limited in their functional efficacy. To understand genetic determinants of mammalian CNS axon regeneration, we completed an unbiased RNAi gene-silencing screen across most phosphatases in the genome. We identified one known and 17 previously unknown phosphatase suppressors of injury-induced CNS axon growth. Silencing Inpp5f (Sac2) leads to robust enhancement of axon regeneration and growth cone reformation. Results from cultured Inpp5f−/− neurons confirm lentiviral shRNA results from the screen. Consistent with the nonoverlapping substrate specificity between Inpp5f and PTEN, rapamycin does not block enhanced regeneration in Inpp5f−/− neurons, implicating mechanisms independent of the PI3K/AKT/mTOR pathway. Inpp5f−/− mice develop normally, but show enhanced anatomical and functional recovery after mid-thoracic dorsal hemisection injury. More serotonergic axons sprout and/or regenerate caudal to the lesion level, and greater numbers of corticospinal tract axons sprout rostral to the lesion. Functionally, Inpp5f-null mice exhibit enhanced recovery of motor functions in both open-field and rotarod tests. This study demonstrates the potential of an unbiased high-throughput functional screen to identify endogenous suppressors of CNS axon growth after injury, and reveals Inpp5f (Sac2) as a novel suppressor of CNS axon repair after spinal cord injury. SIGNIFICANCE STATEMENT The extent of axon regeneration is a critical determinant of neurological recovery from injury, and is extremely limited in the adult mammalian CNS. We describe an unbiased gene-silencing screen that uncovered novel molecules suppressing axonal regeneration. Inpp5f (Sac2) gene deletion promoted recovery from spinal cord injury with no side effects. The mechanism of action is distinct from another lipid phosphatase implicated in regeneration

  8. FAQs about Spinal Cord Injury (SCI)

    MedlinePlus

    ... Website Managing Bowel Function After Spinal Cord Injury Resilience, Depression and Bouncing Back after SCI Getting to ... a “complete” and “incomplete” spinal cord injury? What recovery is expected following spinal cord injury? Where is ...

  9. Adjustment to Spinal Cord Injury

    MedlinePlus

    ... of injury are alive and easily get educational information on the Internet. Web happy. sites such as the National Spinal Cord Injury Association (www.spinalcord.org) and SPINAL CORD Injury ♦ “Because of my injury, it is now impossible for me Information Network (www.spinalcord.uab.edu) have to ever ...

  10. Retraining the injured spinal cord

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Leon, R. D.; Harkema, S. J.; Hodgson, J. A.; London, N.; Reinkensmeyer, D. J.; Roy, R. R.; Talmadge, R. J.; Tillakaratne, N. J.; Timoszyk, W.; Tobin, A.

    2001-01-01

    The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.

  11. Attitudes Towards Individuals with Spinal Cord Injuries

    ERIC Educational Resources Information Center

    Conway, Cassandra Sligh D.; Gooden, Randy; Nowell, Jennifer; Wilson, Navodda

    2010-01-01

    This paper will shed light on the lives of persons with spinal cord injuries by revealing the literature on spinal cord injuries that focuses on research that can shed light on attitudes towards persons with spinal cord injuries. The background literature related to incidences, the definition of spinal cord injury, and vocational opportunities are…

  12. Overview of Spinal Cord Disorders

    MedlinePlus

    ... temperature from the body to the spinal cord. Did You Know... Doctors can often tell where the ... on symptoms and results of a physical examination. Did You Know... Nerves from the lowest parts of ...

  13. What Is Spinal Cord Injury?

    MedlinePlus

    ... lowest point on the spinal cord below which sensory feeling and motor movement diminish or disappear. The ... injury is so severe that almost all feeling (sensory function) and all ability to control movement (motor ...

  14. Spinal Cord Injury Model System Information Network

    MedlinePlus

    ... Go New to Website Managing Bowel Function After Spinal Cord Injury Resilience, Depression and Bouncing Back after SCI Getting ... the UAB-SCIMS Contact the UAB-SCIMS UAB Spinal Cord Injury Model System Newly Injured Health Daily Living Consumer ...

  15. Spinal cord trauma

    MedlinePlus

    ... that can be removed or reduced before the spinal nerves are completely destroyed, paralysis may improve. Surgery may be needed to: Realign the spinal bones (vertebrae) Remove fluid or tissue that presses ...

  16. Isolated intramedullary spinal cord cysticercosis

    PubMed Central

    Agale, Shubhangi V.; Bhavsar, Shweta; Choudhury, Barnik; Manohar, Vidhya

    2012-01-01

    We report a case of intradural, intramedullary, spinal cord neurocysticercosis at dorsal 10-11 (D10-11) level in a mentally retarded male. A 38-year-old, mentally retarded male presented with weakness and stiffness in both the lower limbs and waist since one year. Magnetic resonance imaging revealed a D10-D11 intradural space occupying lesion with cord compression. Intraoperatively, the tumor was grayish white, soft, cystic, and intramedullary with a well-defined plane with surrounding cord tissue. Gross examination revealed a cystic lesion of 1.5×1×0.8 cm, with a whitish nodule of 0.3 cm in diameter. The cyst wall was thin, shiny, and translucent. Microscopic examination revealed cysticercous cyst. Spinal neurocysticercosis should be considered in differential diagnosis of spinal mass lesion in patients residing in endemic area such as India. PMID:22870160

  17. Learning from the spinal cord

    PubMed Central

    Loeb, Gerald E

    2001-01-01

    The graceful control of multiarticulated limbs equipped with slow, non-linear actuators (muscles) is a difficult problem for which robotic engineering affords no general solution. The vertebrate spinal cord provides an existence proof that such control is, indeed, possible. The biological solution is complex and incompletely known, despite a century of meticulous neurophysiological research, celebrated in part by this symposium. This is frustrating for those who would reanimate paralysed limbs either through promoting regeneration of the injured spinal cord or by functional electrical stimulation. The importance of and general role played by the spinal cord might be more easily recognized by analogy to marionette puppets, another system in which a brain (the puppeteer's) must cope with a large number of partially redundant actuators (strings) moving a mechanical linkage with complex intrinsic properties. PMID:11351019

  18. Evaluation of spinal cord injury animal models

    PubMed Central

    Zhang, Ning; Fang, Marong; Chen, Haohao; Gou, Fangming; Ding, Mingxing

    2014-01-01

    Because there is no curative treatment for spinal cord injury, establishing an ideal animal model is important to identify injury mechanisms and develop therapies for individuals suffering from spinal cord injuries. In this article, we systematically review and analyze various kinds of animal models of spinal cord injury and assess their advantages and disadvantages for further studies. PMID:25598784

  19. Melatonin lowers edema after spinal cord injury

    PubMed Central

    Li, Cheng; Chen, Xiao; Qiao, Suchi; Liu, Xinwei; Liu, Chang; Zhu, Degang; Su, Jiacan; Wang, Zhiwei

    2014-01-01

    Melatonin has been shown to diminish edema in rats. Melatonin can be used to treat spinal cord injury. This study presumed that melatonin could relieve spinal cord edema and examined how it might act. Our experiments found that melatonin (100 mg/kg, i.p.) could reduce the water content of the spinal cord, and suppress the expression of aquaporin-4 and glial fibrillary acidic protein after spinal cord injury. This suggests that the mechanism by which melatonin alleviates the damage to the spinal cord by edema might be related to the expression of aquaporin-4 and glial fibrillary acidic protein. PMID:25657743

  20. SPINAL CORD INJURY (SCI) DATABASE

    EPA Science Inventory

    The National Spinal Cord Injury Database has been in existence since 1973 and captures data from SCI cases in the United States. Since its inception, 24 federally funded Model SCI Care Systems have contributed data to the National SCI Database. Statistics are derived from this da...

  1. Psychological Aspects of Spinal Cord Injury

    ERIC Educational Resources Information Center

    Cook, Daniel W.

    1976-01-01

    Reviewing literature on the psychological impact of spinal cord injury suggests: (a) depression may not be a precondition for injury adjustment; (b) many persons sustaining cord injury may have experienced psychological disruption prior to injury; and (c) indexes of rehabilitation success need to be developed for the spinal cord injured. (Author)

  2. Recognising metastatic spinal cord compression.

    PubMed

    Bowers, Ben

    2015-04-01

    Metastatic spinal cord compression (MSCC) is a potentially life changing oncological emergency. Neurological function and quality of life can be preserved if patients receive an early diagnosis and rapid access to acute interventions to prevent or reduce nerve damage. Symptoms include developing spinal pain, numbness or weakness in arms or legs, or unexplained changes in bladder and bowel function. Community nurses are well placed to pick up on the 'red flag' symptoms of MSCC and ensure patients access prompt, timely investigations to minimise damage. PMID:25839873

  3. Therapeutic approaches for spinal cord injury

    PubMed Central

    Cristante, Alexandre Fogaça; de Barros Filho, Tarcísio Eloy Pessoa; Marcon, Raphael Martus; Letaif, Olavo Biraghi; da Rocha, Ivan Dias

    2012-01-01

    This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a “disease that should not be treated.” Over the last two decades, several studies have been performed to obtain more effective treatments for spinal cord injury. Most of these studies approach a patient with acute spinal cord injury in one of four manners: corrective surgery or a physical, biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life. PMID:23070351

  4. Ganglioglioma of the Spinal Cord

    PubMed Central

    Oppenheimer, Daniel C; Johnson, Mahlon D; Judkins, Alexander R

    2015-01-01

    Ganglioglioma is a rare tumor consisting of neoplastic glial and neuronal elements. It accounts for only 0.5% of all primary central nervous system (CNS) neoplasms. We report an unusual case of extensive intramedullary thoracic spinal cord ganglioglioma in a 14-month-old girl who underwent subtotal resection followed by adjuvant chemotherapy. The epidemiology, histopathologic features, imaging findings, treatment, and prognosis are subsequently reviewed. PMID:26605127

  5. Epidemiology of spinal cord injury.

    PubMed

    Kurtzke, J F

    1977-01-01

    Accidents are the cause of some 50 deaths per 100 000 population each year in the US; some 3% of these are from traumatic spinal cord injury alone. Traumatic spinal cord injury in socioeconomically advanced countries, has a probably annual incidence rate of 3 per 100 000 population. Males are affected five times as often as females, and in the US, Negroes have twice the rates of whites. Half the cases are due to motor vehicle accidents, 1/4 to falls, and 1/10 to sports injuries. Maximal ages at risk are 15 to 34; only for cord damage due to falls do this risk differ, and here elderly are the more prone. Associated injuries are common in traumatic cord injury, and head injury and pulmonary dysfunction are frequent causes of the acute deaths in traumatic SCI which is why complete quadriplegia has a high early case-fatality ratio. Late deaths in SCI are principally the direct or indirect result of the neurogenic bladder. With treatment in comprehensive spinal cord injury centers, more than 4 of 5 traumatic SCI patients will survive ten years with an average of almost 18 years. Median survival may be almost 14 years for complete quadriplegia, 17 for complete paraplegia, 19 for incomplete quadriplegia, 20 for incomplete paraplegia and 28 for cauda equina lesions. Prevalence is likely to be some 50 per 100 000 population with about 20 per 100 000 completely paralyzed (3 quadriplegic and 19 paraplegic). Some 4 out of 5 survivors of traumatic SCI should be able to live at home and perform gainful work after such treatment. PMID:616527

  6. Management of acute spinal cord injury.

    PubMed

    Wagner, F C

    1977-06-01

    Based on the experience with 58 patients with acute spinal cord injuries, a system for rapidly evaluating such patients has been developed. With the knowledge that has been acquired clinically and experimentally of spinal cord injury and with the information provided by laminography and by either air or Pantopaque myelography, a reasonably certain diagnosis of the type of spinal cord injury may be made. Treatment designed to restore neurological function may then be instituted promptly. PMID:882906

  7. How Are Brain and Spinal Cord Tumors in Children Diagnosed?

    MedlinePlus

    ... spinal cord tumors in children staged? How are brain and spinal cord tumors diagnosed in children? Brain ... resonance angiography (MRA) or computerized tomographic angiography (CTA). Brain or spinal cord tumor biopsy Imaging tests such ...

  8. Testosterone Plus Finasteride Treatment After Spinal Cord Injury

    ClinicalTrials.gov

    2016-07-07

    Spinal Cord Injury; Spinal Cord Injuries; Trauma, Nervous System; Wounds and Injuries; Central Nervous System Diseases; Nervous System Diseases; Spinal Cord Diseases; Gonadal Disorders; Endocrine System Diseases; Hypogonadism; Genital Diseases, Male

  9. Neurologic foundations of spinal cord fusion (GEMINI).

    PubMed

    Canavero, Sergio; Ren, XiaoPing; Kim, C-Yoon; Rosati, Edoardo

    2016-07-01

    Cephalosomatic anastomosis has been carried out in both monkeys and mice with preservation of brain function. Nonetheless the spinal cord was not reconstructed, leaving the animals unable to move voluntarily. Here we review the details of the GEMINI spinal cord fusion protocol, which aims at restoring electrophysiologic conduction across an acutely transected spinal cord. The existence of the cortico-truncoreticulo-propriospinal pathway, a little-known anatomic entity, is described, and its importance concerning spinal cord fusion emphasized. The use of fusogens and electrical stimulation as adjuvants for nerve fusion is addressed. The possibility of achieving cephalosomatic anastomosis in humans has become reality in principle. PMID:27180142

  10. Nutrition of People with Spinal Cord Injuries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This conference proceeding summarizes current knowledge about the nutritional status and needs of the spinal cord injured patient. Topics covered include the aspects of spinal cord injury that influence nutrient intakes and status, and the nutrients most likely to be problematic in this diverse gro...

  11. Sphingolipids in spinal cord injury

    PubMed Central

    Jones, Zachary B; Ren, Yi

    2016-01-01

    Spinal cord injury (SCI) is a debilitating condition that affects millions of individuals worldwide. Despite progress over the last few decades, the molecular mechanisms of secondary SCI that continue to occur days and weeks after the original trauma remain poorly understood. As a result, current therapies for SCI are only marginally effective. Sphingolipids, a diverse class of bioactive lipids, have been shown to regulate SCI repair and key secondary injury processes such as apoptosis, ischemia and inflammation. This review will discuss the numerous roles of sphingolipids and highlight the potential of sphingolipid-targeted therapies for SCI. PMID:27570580

  12. Sphingolipids in spinal cord injury.

    PubMed

    Jones, Zachary B; Ren, Yi

    2016-01-01

    Spinal cord injury (SCI) is a debilitating condition that affects millions of individuals worldwide. Despite progress over the last few decades, the molecular mechanisms of secondary SCI that continue to occur days and weeks after the original trauma remain poorly understood. As a result, current therapies for SCI are only marginally effective. Sphingolipids, a diverse class of bioactive lipids, have been shown to regulate SCI repair and key secondary injury processes such as apoptosis, ischemia and inflammation. This review will discuss the numerous roles of sphingolipids and highlight the potential of sphingolipid-targeted therapies for SCI. PMID:27570580

  13. Relationship between Spinal Cord Volume and Spinal Cord Injury due to Spinal Shortening

    PubMed Central

    Qiu, Feng; Yang, Jin-Cheng; Ma, Xiang-Yang; Xu, Jun-Jie; Yang, Qing-Lei; Zhou, Xin; Xiao, Yao-Sheng; Hu, Hai-Sheng; Xia, Li-Hui

    2015-01-01

    Vertebral column resection is associated with a risk of spinal cord injury. In the present study, using a goat model, we aimed to investigate the relationship between changes in spinal cord volume and spinal cord injury due to spinal shortening, and to quantify the spinal cord volume per 1-mm height in order to clarify a safe limit for shortening. Vertebral column resection was performed at T10 in 10 goats. The spinal cord was shortened until the somatosensory-evoked potential was decreased by 50% from the baseline amplitude or delayed by 10% relative to the baseline peak latency. A wake-up test was performed, and the goats were observed for two days postoperatively. Magnetic resonance imaging was used to measure the spinal cord volume, T10 height, disc height, osteotomy segment height, and spinal segment height pre- and postoperatively. Two of the 10 goats were excluded, and hence, only data from eight goats were analyzed. The somatosensory-evoked potential of these eight goats demonstrated meaningful changes. With regard to neurologic function, five and three goats were classified as Tarlov grades 5 and 4 at two days postoperatively. The mean shortening distance was 23.6 ± 1.51 mm, which correlated with the d-value (post-pre) of the spinal cord volume per 1-mm height of the osteotomy segment (r = 0.95, p < 0.001) and with the height of the T10 body (r = 0.79, p = 0.02). The mean d-value (post-pre) of the spinal cord volume per 1-mm height of the osteotomy segment was 142.87 ± 0.59 mm3 (range, 142.19–143.67 mm3). The limit for shortening was approximately 106% of the vertebral height. The mean volumes of the osteotomy and spinal segments did not significantly change after surgery (t = 0.310, p = 0.765 and t = 1.241, p = 0.255, respectively). Thus, our results indicate that the safe limit for shortening can be calculated using the change in spinal cord volume per 1-mm height. PMID:26001196

  14. Spinal Cord Ring Enhancement in Multiple Sclerosis

    PubMed Central

    Klawiter, Eric C; Benzinger, Tammie; Roy, Abhik; Naismith, Robert T; Parks, Becky J; Cross, Anne H

    2010-01-01

    Objective Describe the clinical and imaging characteristics of spinal cord ring enhancement in multiple sclerosis (MS). Design Clinical case series. Setting Academic referral center. Patients Twenty MS subjects with spinal cord ring enhancement were retrospectively identified from 322 cervical and thoracic spinal cord MRI studies over a 3 year period. Main Outcome Measures Demographics, disability, pattern of enhancement on spinal cord imaging, and concomitant brain magnetic resonance imaging (MRI) were determined. Results Ring enhancement was seen in 20 subjects with spinal cord enhancement, most commonly in the cervical cord. Incomplete or ‘open’ ring enhancement was the dominant pattern in 19 of 20 (95%) subjects. Concurrent ring enhancing brain lesions were present in 40% of subjects. At the time of the MRI, the Expanded Disability Status Scale (EDSS) ranged from 1.0–7.0 (median 3.0). Conclusion Ring enhancement is not an uncommon pattern for MS spinal cord lesions, occurring with a prevalence of 6.2% (20/322). The most common pattern was incomplete ring enhancement in the cervical spinal cord. Recognition of this pattern may improve and expedite the diagnosis of MS and preclude need for invasive diagnostic interventions. PMID:21060017

  15. Rehabilitation of spinal cord injuries

    PubMed Central

    Nas, Kemal; Yazmalar, Levent; Şah, Volkan; Aydın, Abdulkadir; Öneş, Kadriye

    2015-01-01

    Spinal cord injury (SCI) is the injury of the spinal cord from the foramen magnum to the cauda equina which occurs as a result of compulsion, incision or contusion. The most common causes of SCI in the world are traffic accidents, gunshot injuries, knife injuries, falls and sports injuries. There is a strong relationship between functional status and whether the injury is complete or not complete, as well as the level of the injury. The results of SCI bring not only damage to independence and physical function, but also include many complications from the injury. Neurogenic bladder and bowel, urinary tract infections, pressure ulcers, orthostatic hypotension, fractures, deep vein thrombosis, spasticity, autonomic dysreflexia, pulmonary and cardiovascular problems, and depressive disorders are frequent complications after SCI. SCI leads to serious disability in the patient resulting in the loss of work, which brings psychosocial and economic problems. The treatment and rehabilitation period is long, expensive and exhausting in SCI. Whether complete or incomplete, SCI rehabilitation is a long process that requires patience and motivation of the patient and relatives. Early rehabilitation is important to prevent joint contractures and the loss of muscle strength, conservation of bone density, and to ensure normal functioning of the respiratory and digestive system. An interdisciplinary approach is essential in rehabilitation in SCI, as in the other types of rehabilitation. The team is led by a physiatrist and consists of the patients’ family, physiotherapist, occupational therapist, dietician, psychologist, speech therapist, social worker and other consultant specialists as necessary. PMID:25621206

  16. Pain following spinal cord injury.

    PubMed

    Siddall, P J; Loeser, J D

    2001-02-01

    Chronic pain is an important problem following spinal cord injury (SCI) and is a major impediment to effective rehabilitation. The reported prevalence of chronic SCI pain is variable but averages 65% with around one third of these people rating their pain as severe. The mechanisms responsible for the presence of pain are poorly understood. However, evidence from clinical observations and the use of animal models of SCI pain suggests that a number of processes may be important. These include functional and structural plastic changes in the central nervous system following injury, with changes in receptor function and loss of normal inhibition resulting in an increased neuronal excitability. A number of specific types of SCI pain can be distinguished based on descriptors, location and response to treatment. Nociceptive pain can arise from musculoskeletal structures and viscera and neuropathic pain can arise from spinal cord and nerve damage. The role of psychological and environmental factors also needs to be considered. Accurate identification of these pain types will help in selecting appropriate treatment approaches. Current treatments employ a variety of pharmacological, surgical, physical and psychological approaches. However, evidence for many of the treatments in use is still limited. It is hoped that future research will identify effective treatment strategies that accurately target specific mechanisms. PMID:11402361

  17. Segmentation of the human spinal cord.

    PubMed

    De Leener, Benjamin; Taso, Manuel; Cohen-Adad, Julien; Callot, Virginie

    2016-04-01

    Segmenting the spinal cord contour is a necessary step for quantifying spinal cord atrophy in various diseases. Delineating gray matter (GM) and white matter (WM) is also useful for quantifying GM atrophy or for extracting multiparametric MRI metrics into specific WM tracts. Spinal cord segmentation in clinical research is not as developed as brain segmentation, however with the substantial improvement of MR sequences adapted to spinal cord MR investigations, the field of spinal cord MR segmentation has advanced greatly within the last decade. Segmentation techniques with variable accuracy and degree of complexity have been developed and reported in the literature. In this paper, we review some of the existing methods for cord and WM/GM segmentation, including intensity-based, surface-based, and image-based methods. We also provide recommendations for validating spinal cord segmentation techniques, as it is important to understand the intrinsic characteristics of the methods and to evaluate their performance and limitations. Lastly, we illustrate some applications in the healthy and pathological spinal cord. One conclusion of this review is that robust and automatic segmentation is clinically relevant, as it would allow for longitudinal and group studies free from user bias as well as reproducible multicentric studies in large populations, thereby helping to further our understanding of the spinal cord pathophysiology and to develop new criteria for early detection of subclinical evolution for prognosis prediction and for patient management. Another conclusion is that at the present time, no single method adequately segments the cord and its substructure in all the cases encountered (abnormal intensities, loss of contrast, deformation of the cord, etc.). A combination of different approaches is thus advised for future developments, along with the introduction of probabilistic shape models. Maturation of standardized frameworks, multiplatform availability, inclusion

  18. General Information about Childhood Brain and Spinal Cord Tumors

    MedlinePlus

    ... Cord Tumors Treatment Overview (PDQ®)–Patient Version General Information About Childhood Brain and Spinal Cord Tumors Go ... types of brain and spinal cord tumors. The information from tests and procedures done to detect (find) ...

  19. Advance in spinal cord ischemia reperfusion injury: Blood-spinal cord barrier and remote ischemic preconditioning.

    PubMed

    Yu, Qijing; Huang, Jinxiu; Hu, Ji; Zhu, Hongfei

    2016-06-01

    The blood-spinal cord barrier (BSCB) is the physiological and metabolic substance diffusion barrier between blood circulation and spinal cord tissues. This barrier plays a vital role in maintaining the microenvironment stability of the spinal cord. When the spinal cord is subjected to ischemia/reperfusion (I/R) injury, the structure and function of the BSCB is disrupted, further destroying the spinal cord homeostasis and ultimately leading to neurological deficit. Remote ischemic preconditioning (RIPC) is an approach in which interspersed cycles of preconditioning ischemia is followed by reperfusion to tissues/organs to protect the distant target tissues/organs against subsequent lethal ischemic injuries. RIPC is an innovation of the treatment strategies that protect the organ from I/R injury. In this study, we review the morphological structure and function of the BSCB, the injury mechanism of BSCB resulting from spinal cord I/R, and the effect of RIPC on it. PMID:27060223

  20. Nanomedicine for Treating Spinal Cord Injury

    PubMed Central

    Tyler, Jacqueline Y.; Xu, Xiao-Ming; Cheng, Ji-Xin

    2015-01-01

    Spinal cord injury results in significant mortality and morbidity, lifestyle changes, and difficult rehabilitation. Treatment of spinal cord injury is challenging because the spinal cord is both complex to treat acutely and difficult to regenerate. Nanomaterials can be used to provide effective treatments; their unique properties can facilitate drug delivery to the injury site, enact as neuroprotective agents, or provide platforms to stimulate regrowth of damaged tissues. We review recent uses of nanomaterials including nanowires, micelles, nanoparticles, liposomes, and carbon-based nanomaterials for neuroprotection in the acute phase. We also review the design and neural regenerative application of electrospun scaffolds, conduits, and self-assembling peptide scaffolds. PMID:23945984

  1. Microsurgical resection of intramedullary spinal cord hemangioblastoma.

    PubMed

    McCormick, Paul C

    2014-09-01

    Spinal cord hemangioblastomas account for about 10% of spinal cord tumors. They usually arise from the dorsolateral pia mater and are characterized by their significant vascularity. The principles and techniques of safe resection are different than those employed for the more commonly occurring intramedullary glial tumors (e.g. ependymoma, astrocytoma) and consist of circumferential detachment of the tumor margin from the surrounding normal pia. This video demonstrates the microsurgical techniques of resection of a thoracic spinal cord hemangioblastoma. The video can be found here: http://youtu.be/yT5KLi4VyAo. PMID:25175571

  2. Nanomedicine for treating spinal cord injury

    NASA Astrophysics Data System (ADS)

    Tyler, Jacqueline Y.; Xu, Xiao-Ming; Cheng, Ji-Xin

    2013-09-01

    Spinal cord injury results in significant mortality and morbidity, lifestyle changes, and difficult rehabilitation. Treatment of spinal cord injury is challenging because the spinal cord is both complex to treat acutely and difficult to regenerate. Nanomaterials can be used to provide effective treatments; their unique properties can facilitate drug delivery to the injury site, enact as neuroprotective agents, or provide platforms to stimulate regrowth of damaged tissues. We review recent uses of nanomaterials including nanowires, micelles, nanoparticles, liposomes, and carbon-based nanomaterials for neuroprotection in the acute phase. We also review the design and neural regenerative application of electrospun scaffolds, conduits, and self-assembling peptide scaffolds.

  3. Malignancies of the spinal cord.

    PubMed

    Waters, J Dawn; Peran, Encarnacion Maria Navarro; Ciacci, Joseph

    2012-01-01

    The management of intramedullary spinal cord tumors (IMSCT) is primarily concerned with the preservation of existing neurologic function. To this end, clinical scientists are continually seeking tools and techniques to improve the safety and efficacy of tumor resection and control. Further advances in safety and efficacy can be proposed at each phase of management, from pre-operative screening to post-treatment monitoring. Innovations within the areas of molecular biology and genetics, intraoperative imaging and stereotactic radiosurgery offer exciting new options to explore in the management of IMSCT. This section will review the pathophysiology and epidemiology of IMSCT and the state-of-the-art management before delving into the promising new tools and techniques for each phase of management. PMID:23281516

  4. Pain in spinal cord injury.

    PubMed

    Baastrup, Cathrine; Finnerup, Nanna Brix

    2012-01-01

    SUMMARY An important and detrimental effect of spinal cord injury (SCI) is pain, which develops in approximately two-thirds of all SCI patients, while approximately half of SCI patients develop chronic neuropathic pain (NP). Thus far, there is no cure for SCI NP, and oral pharmacological intervention is often inadequate, commonly resulting in a pain reduction of only 20-30%. In this short review, we will present an overview of the important features of SCI pain including taxonomy, epidemiology and classification, as well as a suggested oral pharmacological treatment strategy for SCI NP and the current evidence available from randomized placebo-controlled trials. Considerations and evidence for the nonpharmacological treatment of SCI will be discussed briefly. PMID:24654622

  5. Spinal cord injury in youth.

    PubMed

    Apple, D F; Anson, C A; Hunter, J D; Bell, R B

    1995-02-01

    To identify special characteristics of the pediatric spinal cord-injured (SCI) population, we analyzed a database of 1,770 traumatic SCI patients; 88 (5%) fell into the two pediatric subgroups: 0-12 years (n = 26) and 13-15 years (n = 62) at time of injury. Differences between age groups were identified with regard to demographics, neurologic characteristics, associated injuries and complications, and management. Mode level of bony injury was C2 in preteens, C4 in teens, and C4-C5 in adults. Scoliosis developed far more frequently in children, particularly preteens (23%), than in adults (5%). Violent etiologies, predominantly gunshots, accounted for a disproportionate share of injuries to preteens (19%) and African-Americans (28%), as compared with adults (12%) and Caucasians (7%). This last finding underscores the urgent need to mount a response to the nationwide proliferation of gunshot-related SCI in children and minorities. PMID:7729113

  6. Brain and Spinal Cord Tumors in Adults

    MedlinePlus

    ... saved articles window. My Saved Articles » My ACS » Brain and Spinal Cord Tumors in Adults Download Printable ... the topics below to get started. What Is Brain/CNS Tumors In Adults? What are adult brain ...

  7. Spinal Cord Injury: Hope through Research

    MedlinePlus

    ... chronic pain in people with spinal cord injury. Robotic-assisted therapy Most recovery following SCI takes place ... the safety and efficacy of a type of robotic therapy device known as the AMES device. The ...

  8. Spinal cord protection in aortic endovascular surgery.

    PubMed

    Scott, D A; Denton, M J

    2016-09-01

    A persistent neurological deficit, such as paraplegia or paraparesis, secondary to spinal cord injury remains one of the most feared complications of surgery on the descending thoracic or abdominal aorta. This is despite sophisticated advances in imaging and the use of less invasive endovascular procedures. Extensive fenestrated endovascular aortic graft prostheses still carry a risk of spinal cord injury of up to 10%; thus, this risk should be identified and strategies implemented to protect the spinal cord and maintain perfusion. The patients at highest risk are those undergoing extensive thoracic aortic stenting including thoracic, abdominal, and pelvic vessels. Although many techniques are available, lumbar cerebrospinal fluid drainage remains the most frequent intervention, along with maintenance of perfusion pressure and possibly staged procedures to allow collateral vessel stabilization. Many questions remain regarding other technical aspects, spinal cord monitoring and cooling, pharmacological protection, and the optimal duration of interventions into the postoperative period. PMID:27566805

  9. Staging Childhood Brain and Spinal Cord Tumors

    MedlinePlus

    ... before the cancer is diagnosed and continue for months or years. Childhood brain and spinal cord tumors ... after treatment. Some cancer treatments cause side effects months or years after treatment has ended. These are ...

  10. Perturbed cholesterol homeostasis in aging spinal cord.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging. PMID:27459933

  11. Detrusor function in suprasacral spinal cord injuries.

    PubMed

    Light, J K; Beric, A

    1992-08-01

    A total of 21 patients with chronic, stable suprasacral spinal cord injuries underwent a comprehensive neurological evaluation. A second lumbosacral lesion was excluded. The urodynamic findings were relatively constant as 95% of the patients showed detrusor hyperreflexia with elevated pressures, sphincteric dyssynergia and a competent bladder neck during the filling phase. The urodynamic findings of unexpected detrusor function in high spinal cord injury, for example areflexia and hypocontractility, should raise the clinician's suspicion that there is a lesion or dysfunction involving the sacral cord. PMID:1635134

  12. Microsurgical resection of intramedullary spinal cord ependymoma.

    PubMed

    McCormick, Paul C

    2014-09-01

    Ependymomas are the most commonly occurring intramedullary spinal cord tumor in adults. With few exceptions these tumors are histologically benign, although they exhibit some biologic variability with respect to growth rate. While unencapsulated, spinal ependymomas are non-infiltrative and present a clear margin of demarcation from the surrounding spinal cord that serves as an effective dissection plane. This video demonstrates the technique of microsurgical resection of an intramedullary ependymoma through a posterior midline myelotomy. The video can be found here: http://youtu.be/lcHhymSvSqU. PMID:25175587

  13. Adiposity and spinal cord injury

    PubMed Central

    Gorgey, Ashraf S; Wells, Kathryn M; Austin, Timothy L

    2015-01-01

    The drastic changes in body composition following spinal cord injury (SCI) have been shown to play a significant role in cardiovascular and metabolic health. The pattern of storage and distribution of different types of adipose tissue may impact metabolic health variables similar to carbohydrate, lipid and bone metabolism. The use of magnetic resonance imaging provides insights on the interplay among different regional adipose tissue compartments and their role in developing chronic diseases. Regional adipose tissue can be either distributed centrally or peripherally into subcutaneous and ectopic sites. The primary ectopic adipose tissue sites are visceral, intramuscular and bone marrow. Dysfunction in the central nervous system following SCI impacts the pattern of distribution of adiposity especially between tetraplegia and paraplegia. The current editorial is focused primarily on introducing different types of adipose tissue and establishing scientific basis to develop appropriate dietary, rehabilitation or pharmaceutical interventions to manage the negative consequences of increasing adiposity after SCI. We have also summarized the clinical implications and future recommendations relevant to study adiposity after SCI. PMID:26396933

  14. Imaging of Spinal Cord Injury: Acute Cervical Spinal Cord Injury, Cervical Spondylotic Myelopathy, and Cord Herniation.

    PubMed

    Talekar, Kiran; Poplawski, Michael; Hegde, Rahul; Cox, Mougnyan; Flanders, Adam

    2016-10-01

    We review the pathophysiology and imaging findings of acute traumatic spinal cord injury (SCI), cervical spondylotic myelopathy, and briefly review the much less common cord herniation as a unique cause of myelopathy. Acute traumatic SCI is devastating to the patient and the costs to society are staggering. There are currently no "cures" for SCI and the only accepted pharmacologic treatment regimen for traumatic SCI is currently being questioned. Evaluation and prognostication of SCI is a demanding area with significant deficiencies, including lack of biomarkers. Accurate classification of SCI is heavily dependent on a good clinical examination, the results of which can vary substantially based upon the patient׳s condition or comorbidities and the skills of the examiner. Moreover, the full extent of a patients׳ neurologic injury may not become apparent for days after injury; by then, therapeutic response may be limited. Although magnetic resonance imaging (MRI) is the best imaging modality for the evaluation of spinal cord parenchyma, conventional MR techniques do not appear to differentiate edema from axonal injury. Recently, it is proposed that in addition to characterizing the anatomic extent of injury, metrics derived from conventional MRI and diffusion tensor imaging, in conjunction with the neurological examination, can serve as a reliable objective biomarker for determination of the extent of neurologic injury and early identification of patients who would benefit from treatment. Cervical spondylosis is a common disorder affecting predominantly the elderly with a potential to narrow the spinal canal and thereby impinge or compress upon the neural elements leading to cervical spondylotic myelopathy and radiculopathy. It is the commonest nontraumatic cause of spinal cord disorder in adults. Imaging plays an important role in grading the severity of spondylosis and detecting cord abnormalities suggesting myelopathy. PMID:27616315

  15. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    PubMed Central

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID

  16. Rehabilitation and treatment of spinal cord tumors

    PubMed Central

    Raj, Vishwa S.; Lofton, LaTanya

    2013-01-01

    Context Due to advances in acute oncological treatment, patients with spinal cord tumors exhibit improved survival. However, these patients have not received the full benefits of rehabilitation services to address their neurological deficits and rehabilitation goals. Objective To evaluate the epidemiology and pathophysiology of spinal cord tumors, address methods of acute oncological management, review treatment for neurological sequelae, and understand the implications as they relate to rehabilitation. Methods An extensive literature review was performed regarding the epidemiology, pathophysiology, acute oncological management, neurological sequelae, and rehabilitation for patients with spinal cord tumors. Databases used included pubmed.gov and OVID, as well as individual journal and textbook articles. Results Access to treatment should be increased given improved survival and functional deficits for patients with spinal cord tumors. Individuals can benefit from inpatient rehabilitation programs, in spite of increased medical co-morbidity and neurological deficits. Specific areas of improvement include functionality, mood, quality of life, and survival. Adjustments to treatment plans must incorporate medical complications from cancer and its treatment, perceived quality of life, and prognosis. Conclusions Patients with spinal cord tumors who participate in rehabilitation programs show general improvement in function, mood, quality of life, and survival. Adaptations to care plans should be made to accommodate medical co-morbidities from cancer and its treatment, patient perceptions, and prognosis. PMID:23433329

  17. Radiation tolerance of the cervical spinal cord

    SciTech Connect

    McCunniff, A.J.; Liang, M.J.

    1989-03-01

    The incidence of permanent injury to the spinal cord as a complication of radiation therapy generally correlates positively with total radiation dosage. However, several reports in the literature have indicated that fraction size is also an important factor in the development or nondevelopment of late injuries in normal tissue. To determine the effect of fraction size on the incidence of radiation-induced spinal cord injuries, we reviewed 144 cases of head and neck cancer treated at our institution between 1971 and 1980 with radiation greater than 5600 cGy to a portion of the cervical spinal cord. Most of these patients received greater than or equal to 6000 cGy, with fraction sizes ranging from 133 cGy to 200 cGy. Fifty-three of the 144 patients have been followed up for 2 years or more. Nearly half of these (26 patients) received greater than 6000 cGy with fraction sizes of 133 cGy to 180 cGy. Only 1 of the 53 (1.9%) has sustained permanent spinal cord injury; 20 months after completion of radiation treatments he developed Brown-Sequard syndrome. Our experience suggests that radiation injuries to the spinal cord correlate not only with total radiation dosage, but also with fraction size; low fraction sizes appear to decrease the incidence of such injuries.

  18. Vocational Rehabilitation of Persons with Spinal Cord Injuries

    ERIC Educational Resources Information Center

    Poor, Charles R.

    1975-01-01

    Reviews historical development of organized vocational rehabilitation programming for the spinal cord injured in the United States. Significant factors that affect vocational rehabilitation outcomes with spinal cord injured persons are listed and discussed. (Author)

  19. What Are the Treatments for Spinal Cord Injury (SCI)?

    MedlinePlus

    ... Resources and Publications What are the treatments for spinal cord injury (SCI)? Skip sharing on social media links ... no known ways to reverse damage to the spinal cord. However, researchers are continually working on new treatments, ...

  20. Characteristics and rehabilitation for patients with spinal cord stab injury

    PubMed Central

    Wang, Fangyong; Zhang, Junwei; Tang, Hehu; Li, Xiang; Jiang, Shudong; Lv, Zhen; Liu, Shujia; Chen, Shizheng; Liu, Jiesheng; Hong, Yi

    2015-01-01

    [Purpose] The objective of the study was to compare the incidence, diagnosis, treatment, and prognosis of patients with spinal cord stab injury to those with the more common spinal cord contusion injury. [Subjects] Of patients hospitalized in China Rehabilitation Research Center from 1994 to 2014, 40 of those having a spinal cord stab injury and 50 with spinal cord contusion were selected. [Methods] The data of all patients were analyzed retrospectively. The cases were evaluated by collecting admission and discharge ASIA (American Spinal Injury Association) and ADL (activity of daily living) scores. [Results] After a comprehensive rehabilitation program, ASIA and ADL scores of patients having both spinal cord stab injury and spinal cord contusion significantly increase. However, the increases were noted to be higher in patients having a spinal cord stab injury than those having spinal cord contusion. [Conclusion] Comprehensive rehabilitation is effective both for patients having spinal cord stab injury and those with spinal cord contusion injury. However, the prognosis of patients having spinal cord stab injury is better than that of patients with spinal cord contusion. PMID:26834329

  1. Surgical resection of subependymoma of the cervical spinal cord.

    PubMed

    Tan, Lee A; Kasliwal, Manish K; Mhanna, Nakhle; Fontes, Ricardo B V; Traynelis, Vincent C

    2014-09-01

    Subependymomas can rarely occur in the spinal cord, and account for about 2% of symptomatic spinal cord tumors. It most often occurs in the cervical spinal cord, followed by cervicothoracic junction, thoracic cord and conus medullaris. It often has an eccentric location in the spinal cord and lacks gadolinium enhancement on magnetic resonance imaging. We present a rare case of symptomatic subependymoma of the cervical spinal cord, which underwent successful gross total resection. Surgical pearls and nuances are discussed to help surgeons to avoid potential complications. The video can be found here: http://youtu.be/Rsm9KxZX7Yo. PMID:25175581

  2. Spinal cord infarction: a rare cause of paraplegia

    PubMed Central

    Patel, Sonali; Naidoo, Khimara; Thomas, Peter

    2014-01-01

    Spinal cord infarction is rare and represents a diagnostic challenge for many physicians. There are few reported cases worldwide with a prevalence of 1.2% of all strokes. Circulation to the spinal cord is supplied by a rich anastomosis. The anterior spinal artery supplies the anterior two thirds of the spinal cord and infarction to this area is marked by paralysis, spinothalamic sensory deficit and loss of sphincter control depending on where the lesion is. Treatment of spinal cord infarction focuses on rehabilitation with diverse outcomes. This report presents a case of acute spinal cord infarction with acquisition of MRI to aid diagnosis. PMID:24966260

  3. Acute care management of spinal cord injuries.

    PubMed

    Mitcho, K; Yanko, J R

    1999-08-01

    Meeting the health care needs of the spinal cord-injured patient is an immense challenge for the acute care multidisciplinary team. The critical care nurse clinician, as well as other members of the team, needs to maintain a comprehensive knowledge base to provide the care management that is essential to the care of the spinal cord-injured patient. With the active participation of the patient and family in care delivery decisions, the health care professionals can help to meet the psychosocial and physical needs of the patient/family unit. This article provides an evidence-based, comprehensive review of the needs of the spinal cord-injured patient in the acute care setting including optimal patient outcomes, methods to prevent complications, and a plan that provides an expeditious transition to rehabilitation. PMID:10646444

  4. Ovarian Carcinoma With Isolated Spinal Cord Metastasis

    PubMed Central

    Safadi, Sarah; Rendon, Patrick; Rutledge, Teresa; Mayasy, Shadi

    2016-01-01

    Ovarian cancer metastasis to the spinal cord is quite rare, and few case reports have been published previously. Herein, we present a case of a patient who was treated for ovarian cancer and was thought to be disease free for 17 months, then presented with lower limb weakness. She was found to have a T11-T12 metastatic intramedullary spinal cord lesion. On pathology, the diagnosis of metastatic ovarian adenocarcinoma was made. This report highlights the importance of maintaining a low threshold for ovarian cancer metastases to the spinal cord when patients present with neurologic sequelae, even in the setting of normal laboratory values, as early detection can prevent permanent neurological consequences. PMID:27493975

  5. Intractable Pruritus After Traumatic Spinal Cord Injury

    PubMed Central

    Crane, Deborah A; Jaffee, Kenneth M; Kundu, Anjana

    2009-01-01

    Background: This report describes a young woman with incomplete traumatic cervical spinal cord injury and intractable pruritus involving her dorsal forearm. Method: Case report. Findings: Anatomic distribution of the pruritus corresponded to the dermatomal distribution of her level of spinal cord injury and vertebral fusion. Symptoms were attributed to the spinal cord injury and possible cervical root injury. Pruritus was refractory to all treatments, including topical lidocaine, gabapentin, transcutaneous electrical nerve stimulation, intravenous Bier block, stellate ganglion block, and acupuncture. Conclusions: Further understanding of neuropathic pruritus is needed. Diagnostic workup of intractable pruritus should include advanced imaging to detect ongoing nerve root compression. If diagnostic studies suggest radiculopathy, epidural steroid injection should be considered. Because the autonomic nervous system may be involved in complex chronic pain or pruritic syndromes, sympatholysis via such techniques as stellate ganglion block might be effective. PMID:19777867

  6. Primary Multifocal Gliosarcoma of the Spinal Cord

    PubMed Central

    Kumar, Ramesh M.; Finn, Michael

    2016-01-01

    Gliosarcoma (GS) is a rare and exceedingly malignant neoplasm of the central nervous system. It displays clinical features similar to glioblastoma, yet is histologically unique as it harbors both gliomatous and sarcomatous cellular components. Involvement of the neuro-axis is predominantly limited to the cerebral parenchyma and meninges. Primary GS of the spinal cord is rarely encountered. We report a case of a 54 year old male who presented with 2 months of progressive, bilateral lower extremity sensory deficits. Magnetic resonance imaging of the neuro-axis revealed multiple intradural lesions involving the cervical and thoracic spinal cord without evidence of intracranial involvement. Surgical resection of a dural based, extramedullary cervical lesion and two exophytic, intramedullary thoracic lesions revealed gliosarcoma, WHO grade IV. The patient died approximately 11 months after presentation. This report confirms that GS is not limited to supratentorial involvement and can primarily affect the spinal cord. PMID:27134708

  7. Sexuality Counseling with Clients Who Have Spinal Cord Injuries.

    ERIC Educational Resources Information Center

    Farrow, Jeff

    1990-01-01

    Examines effects of spinal cord injury on sexuality. Discusses areas of sexual concern. Provides suggestions for treating clients with spinal cord injuries experiencing sexual difficulties. Concludes that major goal in working with clients with spinal cord injuries who have sexual difficulties should be the facilitation of a creative and…

  8. Turkish Adaptation of Spinal Cord Independence Measure--Version III

    ERIC Educational Resources Information Center

    Kesiktas, Nur; Paker, Nurdan; Bugdayci, Derya; Sencan, Sureyya; Karan, Ayse; Muslumanoglu, Lutfiye

    2012-01-01

    Various rating scales have been used to assess ability in individuals with spinal cord injury. There is no specific functional assessment scale for Turkish patients with spinal cord injury. The Spinal Cord Independence Measure (SCIM) is a specific test, which has become popular in the last decade. A study was conducted to validate and evaluate the…

  9. Proprioceptive pathways of the spinal cord.

    PubMed Central

    Schneider, R J; Kulics, A T; Ducker, T B

    1977-01-01

    In the Macaque, surgical lesions were made in the dorsal funiculus, in the dorsolateral funiculus, and through half of the spinal cord. The somatosensory and motor capacity of the animal were examined neurologically and electrophysiologically. The exact lesion was then confirmed pathologically in detail. The results of these experiments indicate that limb position information from the distal limb and proximal limb are relayed to the brain in two different fashions. Distal limb position information, especially the cortical representation of the limbs' volar surface as it moves in space, is drastically impaired by dorsal funiculus or posterior white column lesions. Proximal limb position may or may not be impaired by similar lesions, for this information while initially in the dorsal or posterior white columns is sorted out (as it ascends in the spinal cord) to the dorsolateral funiculus or white columns. For example, in the lower thoracic spinal cord, both distal and proximal hind limb sensation are impaired by posterior white column damage; in the cervical cord, only distal sensation is impaired by the same lesion, and proximal information is spared. We refer to this neuroanatomic rearranging as "fibre sorting", and we believe that it is clinically significant in spinal cord disease. Images PMID:408463

  10. Imaging diagnosis--spinal cord histiocytic sarcoma in a dog.

    PubMed

    Taylor, Amanda; Eichelberger, Bunita; Hodo, Carolyn; Cooper, Jocelyn; Porter, Brian

    2015-01-01

    A 12-year-old mixed breed dog was presented for evaluation of progressive paraparesis and ataxia. Magnetic resonance (MR) imaging was performed and identified multifocal intradural spinal cord mass lesions. The lesions were hyperintense in T2-weighted sequences, isointense to mildly hyperintense in T1-weighted sequences with strong contrast enhancement of the intradural lesions and spinal cord meninges. Spinal cord neoplasia was suspected. A diagnosis of intramedullary spinal cord histiocytic sarcoma, confined to the central nervous system, was confirmed histopathologically. Spinal cord histiocytic sarcoma is a rare neoplasm, but should be included in the differential diagnosis for dogs with clinical signs of myelopathy. PMID:24382300

  11. The changing landscape of spinal cord injury.

    PubMed

    Juknis, Neringa; Cooper, Justin M; Volshteyn, Oksana

    2012-01-01

    In the past quarter century, spinal cord injury medicine has welcomed the proliferation of new medications and technologies that improve the survival and quality of life for people with spinal cord injury, but also endured the failure of strategies we hoped would salvage the cord in the acute phase. Surgical decompression and spinal stabilization should be pursued whenever indicated and feasible; however, there is no compelling evidence that early decompression facilitates neurological improvement. Methylprednisolone, the subject of over two decades of trials, has proven to be of marginal benefit in improving functional outcome. Recent advances in the management of the respiratory, cardiovascular, autonomic, endocrine, skeletal and integumentary systems have not only changed morbidity and survival of spinal cord injury patients but also improved quality of life. Progress has been made in the early diagnosis and effective treatment of cardiac arrhythmias, neurogenic shock, autonomic dysreflexia and orthostatic hypotension. Aggressive respiratory care for high cervical level of injury patients should include an option for phrenic nerve pacing as it is a viable rehabilitative strategy for appropriately selected patients. Pressure ulcers remain a significant psychological, financial, and functional burden for many people with SCI and for healthcare providers. This area will continue to require further work on early prevention and education. Despite extensive scientific and clinical data on neurogenic osteoporosis, there is no consensus regarding the best pharmacotherapeutic agents, dosing regimens, or rehabilitative strategies for prevention and treatment of bone loss. This chapter will focus on the advances. PMID:23098711

  12. Employment Outcomes Following Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Engel, S.; Murphy, G. S.; Athanasou, J. A.; Hickey, L.

    1998-01-01

    A study of 83 Australian adults with spinal cord injuries found that at least 56% had worked at some time post-injury and those who were working when surveyed had done so for an average of close to 10 years. Clerical, office, and administrative occupations proved to be the most suitable. (Author/CR)

  13. Accommodating Workers with Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Dowler, Denetta; Batiste, Linda; Whidden, Eddie

    1998-01-01

    Examination of over 1,000 calls to the Job Accommodation Network involving workers with spinal cord injury identified the nature of the industry, job, career progression, and accessibility solutions. The number of calls increased dramatically after passage of the Americans with Disabilities Act. (SK)

  14. Simplified spinal cord phantom for evaluation of SQUID magnetospinography

    NASA Astrophysics Data System (ADS)

    Adachi, Y.; Oyama, D.; Somchai, N.; Kawabata, S.; Uehara, G.

    2014-05-01

    Spinal cord functional imaging by magnetospinography (MSG) is a noninvasive diagnostic method for spinal cord diseases. However, the accuracy and spatial resolution of lesion localization by MSG have barely been evaluated in detail so far. We developed a simplified spinal cord phantom for MSG evaluation. The spinal cord phantom is composed of a cylindrical vessel filled with saline water, which acts as a model of a neck. A set of modeled vertebrae is arranged in the cylindrical vessel, which has a neural current model made from catheter electrodes. The neural current model emulates the current distribution around the activated site along the axon of the spinal cord nerve. Our MSG system was used to observe the magnetic field from the phantom; a quadrupole-like pattern of the magnetic field distribution, which is a typical distribution pattern for spinal cord magnetic fields, was successfully reproduced by the phantom. Hence, the developed spinal cord phantom can be used to evaluate MSG source analysis methods.

  15. Female sexual function after spinal cord injury.

    PubMed

    Sipski, Marca L; Arenas, Adriana

    2006-01-01

    Over the past 10 years, studies of the impact of spinal cord injuries on female sexuality have expanded from questionnaire studies in small populations with unknown levels and degrees of injury to laboratory-based analyses of women with known injury patterns. These studies have provided detailed information on how specific injury patterns affect specific aspects of the female sexual response. Research findings have supported the hypothesis that the sympathetic nervous system is regulatory for psychogenic genital vasocongestion and that orgasm is a reflex response of the autonomic nervous system. Based on these results, a new system for the classification of sexual function in women with spinal cord injury (SCI) is proposed. Moreover, studies related to the treatment of sexual dysfunction in women with cord injury are reviewed. PMID:16198719

  16. Multiple sclerosis of the spinal cord: Magnetic resonance appearance

    SciTech Connect

    Thielen, K.R.; Miller, G.M.

    1996-05-01

    To determine the MR appearance of spinal cord multiple sclerosis (MS) plaques in patients presenting with myclopathy by using a high-field (1.5 T) imager. We studied 119 patients who underwent high-field (1.5 T) MR studies of the spinal cord for evaluation of myelopathy. All 119 patients were thought to have possible findings of spinal cord MS at the time of the MRI interpretation. Sixty-four plaques were studied in 47 patients with clinically definite MS and adequate quality MRI. Of these patients 68% had a single spinal cord plaque, 19% had two plaques, and 13% had three or more plaques. Sixty-two percent of the plaques occurred in the cervical spinal cord and most frequently involved the posterior (41%) and lateral (25%) aspects of the spinal cord. None of the 64 lesions involved the entire thickness of the spinal cord. The lesion length varied from 2 to 60 mm, with 84% of the lesions <15 mm in length. The spinal cord diameter was unchanged in 84% of plaques, enlarged at the level of the lesion in 14%, and atrophic in 2%. Just over half (55%) of the plaques enhanced with intravenously administered gadolinium. Of the patients who received synchronous head and spinal cord examinations on the same day, 24% had normal findings on the MR study of the head. Follow-up spinal cord studies were available in nine patients. New lesions developed in two patients, while previously described lesions resolved. In three patients only new lesions developed. In four patients no change occurred in the existing number of cord plaques. Spinal cord demyelinating plaques present as well-circumscribed foci of increased T2 signal that asymmetrically involve the spinal cord parenchyma. Knowledge of their usual appearance may prevent unnecessary biopsy. An MR examination of the head may confirm the imaging suggestion of spinal cord demyelinating disease, because up to 76% of patients have abnormal intracranial findings. 15 refs., 7 figs.

  17. Gene therapy approaches for spinal cord injury

    NASA Astrophysics Data System (ADS)

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide

  18. Traumatic spinal cord injuries in Turkey.

    PubMed

    Dincer, F; Oflazer, A; Beyazova, M; Celiker, R; Basgöze, O; Altioklar, K

    1992-09-01

    Spinal cord lesions have various aetiologies, and trauma is one of the leading causes. Patients with spinal cord injuries (SCI) often have motor, sensory and autonomic dysfunctions and require a multidisciplinary rehabilitation programme. In this study 1694 SCI patients were investigated, including the frequency, and the distribution by age, sex, profession, aetiology, clinical status and year of occurrence. Traumatic SCI is more frequent among males than females and among those between the ages of 15 and 39 years. Regarding the aetiology, traffic accident comprised 35.41% of the total cases, the second most common cause was falls with 29.51%, and the third was high velocity bullet wounds: 21.95%. PMID:1408341

  19. Hydrogels in Spinal Cord Injury Repair Strategies

    PubMed Central

    2011-01-01

    Nowadays there are at present no efficient therapies for spinal cord injury (SCI), and new approaches have to be proposed. Recently, a new regenerative medicine strategy has been suggested using smart biomaterials able to carry and deliver cells and/or drugs in the damaged spinal cord. Among the wide field of emerging materials, research has been focused on hydrogels, three-dimensional polymeric networks able to swell and absorb a large amount of water. The present paper intends to give an overview of a wide range of natural, synthetic, and composite hydrogels with particular efforts for the ones studied in the last five years. Here, different hydrogel applications are underlined, together with their different nature, in order to have a clearer view of what is happening in one of the most sparkling fields of regenerative medicine. PMID:22816020

  20. Spinal cord cysticercosis: a case report.

    PubMed

    Bouree, Patrice; Dumazedier, Deborah; Bisaro, Francine; Resende, Paula; Comoy, Jean; Aghakhani, Nozar

    2006-12-01

    Cysticercosis caused by the infection with the larva of Taenia solium, common through out the world, is located in the muscles, the eyes and the central nervous system, but mostly in the brain. Spinal cord infection is rare. The authors report a case of a young girl, living in Paris who had traveled in Latin America, and complained of back pains and troublesome walking. MRI showed a cyst in spinal cord, but other examinations were normal. Diagnosis was confirmed by a pathologist. It was a pure intramedullary cysticercosis, the check-up to find other locations was negative. Only approximately 130 cases are reported in the literature, with motor and sensory disorders. The diagnosis was based on MRI and pathological examination. Antiparasitic medical treatment was useful when combined with surgery. PMID:17153691

  1. Anorgasmia in anterior spinal cord syndrome.

    PubMed Central

    Berić, A; Light, J K

    1993-01-01

    Three male and two female patients with anorgasmia and dissociated sensory loss due to an anterior spinal cord syndrome are described. Clinical, neurophysiological and quantitative sensory evaluation revealed preservation of the large fibre dorsal column functions from the lumbosacral segments with concomitant severe dysfunction or absence of the small fibre neospinothalamic mediated functions. These findings indicate a role for the spinothalamic system in orgasm. PMID:8505649

  2. Anorgasmia in anterior spinal cord syndrome.

    PubMed

    Berić, A; Light, J K

    1993-05-01

    Three male and two female patients with anorgasmia and dissociated sensory loss due to an anterior spinal cord syndrome are described. Clinical, neurophysiological and quantitative sensory evaluation revealed preservation of the large fibre dorsal column functions from the lumbosacral segments with concomitant severe dysfunction or absence of the small fibre neospinothalamic mediated functions. These findings indicate a role for the spinothalamic system in orgasm. PMID:8505649

  3. Spinal cord evolution in early Homo.

    PubMed

    Meyer, Marc R; Haeusler, Martin

    2015-11-01

    The discovery at Nariokotome of the Homo erectus skeleton KNM-WT 15000, with a narrow spinal canal, seemed to show that this relatively large-brained hominin retained the primitive spinal cord size of African apes and that brain size expansion preceded postcranial neurological evolution. Here we compare the size and shape of the KNM-WT 15000 spinal canal with modern and fossil taxa including H. erectus from Dmanisi, Homo antecessor, the European middle Pleistocene hominins from Sima de los Huesos, and Pan troglodytes. In terms of shape and absolute and relative size of the spinal canal, we find all of the Dmanisi and most of the vertebrae of KNM-WT 15000 are within the human range of variation except for the C7, T2, and T3 of KNM-WT 15000, which are constricted, suggesting spinal stenosis. While additional fossils might definitively indicate whether H. erectus had evolved a human-like enlarged spinal canal, the evidence from the Dmanisi spinal canal and the unaffected levels of KNM-WT 15000 show that unlike Australopithecus, H. erectus had a spinal canal size and shape equivalent to that of modern humans. Subadult status is unlikely to affect our results, as spinal canal growth is complete in both individuals. We contest the notion that vertebrae yield information about respiratory control or language evolution, but suggest that, like H. antecessor and European middle Pleistocene hominins from Sima de los Huesos, early Homo possessed a postcranial neurological endowment roughly commensurate to modern humans, with implications for neurological, structural, and vascular improvements over Pan and Australopithecus. PMID:26553817

  4. Corticospinal reorganization after spinal cord injury

    PubMed Central

    Oudega, Martin; Perez, Monica A

    2012-01-01

    The corticospinal tract (CST) is a major descending pathway contributing to the control of voluntary movement in mammals. During the last decades anatomical and electrophysiological studies have demonstrated significant reorganization in the CST after spinal cord injury (SCI) in animals and humans. In animal models of SCI, anatomical evidence showed corticospinal sprouts rostral and caudal to the lesion and their integration into intraspinal axonal circuits. Electrophysiological data suggested that indirect connections from the primary motor cortex to forelimb motoneurons, via brainstem nuclei and spinal cord interneurons, or direct connections from slow uninjured corticospinal axons, might contribute to the control of movement after a CST injury. In humans with SCI, post mortem spinal cord tissue revealed anatomical changes in the CST some of which were similar but others markedly different from those found in animal models of SCI. Human electrophysiological studies have provided ample evidence for corticospinal reorganization after SCI that may contribute to functional recovery. Together these studies have revealed a large plastic capacity of the CST after SCI. There is also a limited understanding of the relationship between anatomical and electrophysiological changes in the CST and control of movement after SCI. Increasing our knowledge of the role of CST plasticity in functional restoration after SCI may support the development of more effective repair strategies. PMID:22586214

  5. Spinal cord ischemia is multifactorial: what is the best protocol?

    PubMed

    Melissano, Germano; Bertoglio, Luca; Mascia, Daniele; Rinaldi, Enrico; Del Carro, Ubaldo; Nardelli, Pasquale; Chiesa, Roberto

    2016-04-01

    Despite the improved understanding of spinal cord anatomy and spinal cord ischemia pathophysiology, the rate of debilitating postoperative paraparesis or paraplegia is still not negligible after procedures for thoracic or thoracoabdominal aortic disease. Single studies have demonstrated the role of different treatment modalities to prevent or treat spinal cord ischemia. A multimodal approach, however, is advocated by most authors. Even after the employment of endovascular techniques become routine, the rate of spinal cord ischemia after treatment of thoracoabdominal aortic pathology remained unchanged over time. Spinal cord ischemia is often treatable by different means that concur to improve indirect spinal perfusion through collateral circulation; it should, therefore, be managed promptly and aggressively due to its potential reversibility. Ongoing technical improvements of non-invasive diagnostic tools may allow a better preoperative assessment of the spinal vascular network and a better planning of both open and endovascular thoracic or thoracoabdominal repair. PMID:26731537

  6. Symptomatic spinal cord metastasis from cerebral oligodendroglioma.

    PubMed

    Elefante, A; Peca, C; Del Basso De Caro, M L; Russo, C; Formicola, F; Mariniello, G; Brunetti, A; Maiuri, F

    2012-06-01

    Spinal subarachnoid spread is not uncommon in brain oligodendrogliomas; on the other hand, symptomatic involvement of the spinal cord and cauda is very rare, with only 16 reported cases. We report the case of a 41-year-old man who underwent resection of a low-grade frontal oligodendroglioma 4 years previously. He was again observed because of bilateral sciatic pain followed by left leg paresis. A spine MRI showed an intramedullary T12-L1 tumor with root enhancement. At operation, an intramedullary anaplastic oligodendroglioma with left exophytic component was found and partially resected. Two weeks later, a large left frontoparietal anaplastic oligodendroglioma was diagnosed and completely resected. The patient was neurologically stable for 8 months and died 1 year after the spinal surgery because of diffuse brain and spinal leptomeningeal spread. The review of the reported cases shows that spinal symptomatic metastases can occur in both low-grade and anaplastic oligodendrogliomas, even many years after surgery of the primary tumor; however, they exceptionally occur as first clinical manifestation or as anaplastic progression. The spinal seeding represents a negative event leading to a short survival. PMID:21927882

  7. Disordered cardiovascular control after spinal cord injury.

    PubMed

    Weaver, Lynne C; Fleming, Jennifer C; Mathias, Christopher J; Krassioukov, Andrei V

    2012-01-01

    Damage to the spinal cord disrupts autonomic pathways, perturbing cardiovascular homeostasis. Cardiovascular dysfunction increases with higher levels of injury and greater severity. Disordered blood pressure control after spinal cord injury (SCI) has significant ramifications as cord-injured people have an increased risk of developing heart disease and stroke; cardiovascular dysfunction is currently a leading cause of death among those with SCI. Despite the clinical significance of abnormal cardiovascular control following SCI, this problem has been generally neglected by both the clinical and research community. Both autonomic dysreflexia and orthostatic hypotension are known to prevent and delay rehabilitation, and significantly impair the overall quality of life after SCI. Starting with neurogenic shock immediately after a higher SCI, ensuing cardiovascular dysfunctions include orthostatic hypotension, autonomic dysreflexia and cardiac arrhythmias. Disordered temperature regulation accompanies these autonomic dysfunctions. This chapter reviews the human and animal studies that have furthered our understanding of the pathophysiology and mechanisms of orthostatic hypotension, autonomic dysreflexia and cardiac arrhythmias. The cardiovascular dysfunction that occurs during sexual function and exercise is elaborated. New awareness of cardiovascular dysfunction after SCI has led to progress toward inclusion of this important autonomic problem in the overall assessment of the neurological condition of cord-injured people. PMID:23098715

  8. Optical Monitoring and Detection of Spinal Cord Ischemia

    PubMed Central

    Mesquita, Rickson C.; D’Souza, Angela; Bilfinger, Thomas V.; Galler, Robert M.; Emanuel, Asher; Schenkel, Steven S.; Yodh, Arjun G.; Floyd, Thomas F.

    2013-01-01

    Spinal cord ischemia can lead to paralysis or paraparesis, but if detected early it may be amenable to treatment. Current methods use evoked potentials for detection of spinal cord ischemia, a decades old technology whose warning signs are indirect and significantly delayed from the onset of ischemia. Here we introduce and demonstrate a prototype fiber optic device that directly measures spinal cord blood flow and oxygenation. This technical advance in neurological monitoring promises a new standard of care for detection of spinal cord ischemia and the opportunity for early intervention. We demonstrate the probe in an adult Dorset sheep model. Both open and percutaneous approaches were evaluated during pharmacologic, physiological, and mechanical interventions designed to induce variations in spinal cord blood flow and oxygenation. The induced variations were rapidly and reproducibly detected, demonstrating direct measurement of spinal cord ischemia in real-time. In the future, this form of hemodynamic spinal cord diagnosis could significantly improve monitoring and management in a broad range of patients, including those undergoing thoracic and abdominal aortic revascularization, spine stabilization procedures for scoliosis and trauma, spinal cord tumor resection, and those requiring management of spinal cord injury in intensive care settings. PMID:24358279

  9. Clinical radiology of the spine and spinal cord

    SciTech Connect

    Banna, M.

    1985-01-01

    This book is a source of information about aspects of radiology of the spine and spinal column. It presents coverage of both normal and abnormal conditions. Contents: Spinal fractures and dislocations. Degenerative diseases of the spine. Gross anatomy of the spinal cord and meninges. Intraspinal mass lesions. Spinal dysraphism. Congenital anomalies. Tumors of the vertebral column, and more.

  10. Molecular basis of vascular events following spinal cord injury

    PubMed Central

    Popa, F; Grigorean, VT; Onose, G; Sandu, A; Popescu, M; Burnei, G; Strambu, V; Popa, C

    2010-01-01

    The aim of this article is to analyze the effects of the molecular basis of vascular events following spinal cord injury and their contribution in pathogenesis. First of all, we reviewed the anatomy of spinal cord vessels. The pathophysiology of spinal cord injuries revealed two types of pathogenic mechanisms. The primary event, the mechanic trauma, results in a disruption of neural and vascular structures into the spinal cord. It is followed by secondary pathogenesis that leads to the progression of the initial lesion. We reviewed vascular responses following spinal cord injury, focusing on both primary and secondary events. The intraparenchymal hemorrhage is a direct consequence of trauma; it has a typical pattern of distribution into the contused spinal cord, inside the gray matter and, it is radially extended into the white matter. The intraparenchymal hemorrhage is restricted to the dorsal columns, into adjacent rostral and caudal spinal segments. Distribution of chronic lesions overlaps the pattern of the early intraparenchymal hemorrhage. We described the mechanisms of action, role, induction and distribution of the heme oxygenase isoenzymes 1 and 2. Posttraumatic inflammatory response contributes to secondary pathogenesis. We analyzed the types of cells participating in the inflammatory response, the moment of appearance after the injury, the decrease in number, and the nature of their actions. The disruption of the blood–spinal cord barrier is biphasic. It exposes the spinal cord to inflammatory cells and to toxic effects of other molecules. Endothelin 1 mediates oxidative stress into the spinal cord through the modulation of spinal cord blood flow. The role of matrix metalloproteinases in blood–spinal cord barrier disruption, inflammation, and angiogenesis are reviewed. PMID:20945816

  11. RhoA/Rho kinase in spinal cord injury

    PubMed Central

    Wu, Xiangbing; Xu, Xiao-ming

    2016-01-01

    A spinal cord injury refers to an injury to the spinal cord that is caused by a trauma instead of diseases. Spinal cord injury includes a primary mechanical injury and a much more complex secondary injury process involving inflammation, oxidation, excitotoxicity, and cell death. During the secondary injury, many signal pathways are activated and play important roles in mediating the pathogenesis of spinal cord injury. Among them, the RhoA/Rho kinase pathway plays a particular role in mediating spinal degeneration and regeneration. In this review, we will discuss the role and mechanism of RhoA/Rho kinase-mediated spinal cord pathogenesis, as well as the potential of targeting RhoA/Rho kinase as a strategy for promoting both neuroprotection and axonal regeneration. PMID:26981071

  12. Beyond the brain: Optogenetic control in the spinal cord and peripheral nervous system.

    PubMed

    Montgomery, Kate L; Iyer, Shrivats M; Christensen, Amelia J; Deisseroth, Karl; Delp, Scott L

    2016-05-01

    Optogenetics offers promise for dissecting the complex neural circuits of the spinal cord and peripheral nervous system and has therapeutic potential for addressing unmet clinical needs. Much progress has been made to enable optogenetic control in normal and disease states, both in proof-of-concept and mechanistic studies in rodent models. In this Review, we discuss challenges in using optogenetics to study the mammalian spinal cord and peripheral nervous system, synthesize common features that unite the work done thus far, and describe a route forward for the successful application of optogenetics to translational research beyond the brain. PMID:27147590

  13. The Gastrin-Releasing Peptide Receptor (GRPR) in the Spinal Cord as a Novel Pharmacological Target

    PubMed Central

    Takanami, Keiko; Sakamoto, Hirotaka

    2014-01-01

    Gastrin-releasing peptide (GRP) is a mammalian neuropeptide that acts through the G protein-coupled receptor, GRP receptor (GRPR). Increasing evidence indicates that GRPR-mediated signaling in the central nervous system plays an important role in many physiological processes in mammals. Additionally, we have recently reported that the GRP system within the lumbosacral spinal cord not only controls erection but also triggers ejaculation in male rats. This system of GRP neurons is sexually dimorphic, being prominent in male rats but vestigial or absent in females. It is suggested that the sexually dimorphic GRP/GRPR system in the lumbosacral spinal cord plays a critical role in the regulation of male sexual function. In parallel, it has been reported that the somatosensory GRP/GRPR system in the spinal cord contributes to the regulation of itch specific transmission independently of the pain transmission. Interestingly, these two distinct functions in the same spinal region are both regulated by the neuropeptide, GRP. In this report, we review findings on recently identified GRP/GRPR systems in the spinal cord. These GRP/GRPR systems in the spinal cord provide new insights into pharmacological treatments for psychogenic erectile dysfunction as well as for chronic pruritus. PMID:25426011

  14. Autonomic consequences of spinal cord injury.

    PubMed

    Hou, Shaoping; Rabchevsky, Alexander G

    2014-10-01

    Spinal cord injury (SCI) results not only in motor and sensory deficits but also in autonomic dysfunctions. The disruption of connections between higher brain centers and the spinal cord, or the impaired autonomic nervous system itself, manifests a broad range of autonomic abnormalities. This includes compromised cardiovascular, respiratory, urinary, gastrointestinal, thermoregulatory, and sexual activities. These disabilities evoke potentially life-threatening symptoms that severely interfere with the daily living of those with SCI. In particular, high thoracic or cervical SCI often causes disordered hemodynamics due to deregulated sympathetic outflow. Episodic hypertension associated with autonomic dysreflexia develops as a result of massive sympathetic discharge often triggered by unpleasant visceral or sensory stimuli below the injury level. In the pelvic floor, bladder and urethral dysfunctions are classified according to upper motor neuron versus lower motor neuron injuries; this is dependent on the level of lesion. Most impairments of the lower urinary tract manifest in two interrelated complications: bladder storage and emptying. Inadequate or excessive detrusor and sphincter functions as well as detrusor-sphincter dyssynergia are examples of micturition abnormalities stemming from SCI. Gastrointestinal motility disorders in spinal cord injured-individuals are comprised of gastric dilation, delayed gastric emptying, and diminished propulsive transit along the entire gastrointestinal tract. As a critical consequence of SCI, neurogenic bowel dysfunction exhibits constipation and/or incontinence. Thus, it is essential to recognize neural mechanisms and pathophysiology underlying various complications of autonomic dysfunctions after SCI. This overview provides both vital information for better understanding these disorders and guides to pursue novel therapeutic approaches to alleviate secondary complications. PMID:25428850

  15. Prognosis and Treatment of Spinal Cord Astrocytoma

    SciTech Connect

    Minehan, Kiernan J. Brown, Paul D.; Scheithauer, Bernd W.; Krauss, William E.; Wright, Michael P.

    2009-03-01

    Purpose: To identify the prognostic factors for spinal cord astrocytoma and determine the effects of surgery and radiotherapy on outcome. Methods and Materials: This retrospective study reviewed the cases of consecutive patients with spinal cord astrocytoma treated at Mayo Clinic Rochester between 1962 and 2005. Results: A total of 136 consecutive patients were identified. Of these 136 patients, 69 had pilocytic and 67 had infiltrative astrocytoma. The median follow-up for living patients was 8.2 years (range, 0.08-37.6), and the median survival for deceased patients was 1.15 years (range, 0.01-39.9). The extent of surgery included incisional biopsy only (59%), subtotal resection (25%), and gross total resection (16%). Patients with pilocytic tumors survived significantly longer than those with infiltrative astrocytomas (median overall survival, 39.9 vs. 1.85 years; p < 0.001). Patients who underwent resection had a worse, although nonsignificant, median survival than those who underwent biopsy only (pilocytic, 18.1 vs. 39.9 years, p = 0.07; infiltrative, 19 vs. 30 months, p = 0.14). Postoperative radiotherapy, delivered in 75% of cases, gave no significant survival benefit for those with pilocytic tumors (39.9 vs. 18.1 years, p = 0.33) but did for those with infiltrative astrocytomas (24 vs. 3 months; Wilcoxon p = 0.006). On multivariate analysis, pilocytic histologic type, diagnosis after 1984, longer symptom duration, younger age, minimal surgical extent, and postoperative radiotherapy predicted better outcome. Conclusion: The results of our study have shown that histologic type is the most important prognostic variable affecting the outcome of spinal cord astrocytomas. Surgical resection was associated with shorter survival and thus remains an unproven treatment. Postoperative radiotherapy significantly improved survival for patients with infiltrative astrocytomas but not for those with pilocytic tumors.

  16. Volume effects in Rhesus monkey spinal cord

    SciTech Connect

    Schultheiss, T.E. ); Stephens, L.C.; Price, R.E.; Ang, K.K.; Peters, L.J. )

    1994-04-30

    An experiment was conducted to test for the existence of a volume effect in radiation myelopathy using Rhesus monkeys treated with clinically relevant field sizes and fractionation schedules. Five groups of Rhesus monkeys were irradiated using 2.2 Gy per fraction to their spinal cords. Three groups were irradiated with 8 cm fields to total doses of 70.4, 77, and 83.6 Gy. Two additional groups were irradiated to 70.4 Gy using 4 and 16 cm fields. The incidence of paresis expressed within 2 years following the completion of treatment was determined for each group. Maximum likelihood estimation was used to determine parameters of a logistic dose response function. The volume effect was modeled using the probability model in which the probability of producing a lesion in an irradiated volume is governed by the probability of the occurrence of independent events. This is a two parameter model requiring only the estimates of the parameters of the dose-response function for the reference volume, but not needing any additional parameters for describing the volume effect. The probability model using a logistic dose-response function fits the data well with the D[sub 50] = 75.8 Gy for the 8-cm field. No evidence was seen for a difference in sensitivities for different anatomical levels of the spinal cord. Most lesions were type 3, combined white matter parenchymal and vascular lesions. Latent periods did not differ significantly from those of type 3 lesions in humans. The spinal cord exhibits a volume effect that is well described by the probability model. Because the dose response function for radiation myelopathy is steep, the volume effect is modest. The Rhesus monkey remains the animal model most similar to humans in dose response, histopathology, and latency for radiation myelopathy. 22 refs., 3 figs., 1 tab.

  17. Spinal Cord Anatomy and Clinical Syndromes.

    PubMed

    Diaz, Eric; Morales, Humberto

    2016-10-01

    We review the anatomy of the spinal cord, providing correlation with key functional and clinically relevant neural pathways, as well as magnetic resonance imaging. Peripherally, the main descending (corticospinal tract) and ascending (gracilis or cuneatus fasciculi and spinothalamic tracts) pathways compose the white matter. Centrally, the gray matter can be divided into multiple laminae. Laminae 1-5 carry sensitive neuron information in the posterior horn, and lamina 9 carries most lower motor neuron information in the anterior horn. Damage to the unilateral corticospinal tract (upper motor neuron information) or gracillis-cuneatus fasciculi (touch and vibration) correlates with ipsilateral clinical findings, whereas damage to unilateral spinothalamic tract (pain-temperature) correlates with contralateral clinical findings. Damage to commissural fibers correlates with a suspended bilateral "girdle" sensory level. Autonomic dysfunction is expected when there is bilateral cord involvement. PMID:27616310

  18. Spinal Cord Diseases - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Spinal Cord Diseases URL of this page: https://www.nlm.nih. ... V W XYZ List of All Topics All Spinal Cord Diseases - Multiple Languages To use the sharing features on ...

  19. Pediatric spinal cord injury: a review by organ system.

    PubMed

    Powell, Aaron; Davidson, Loren

    2015-02-01

    In this article, an overview is provided of pediatric spinal cord injury, organized by effects of this injury on various organ systems. Specific management differences between children and adults with spinal cord injury are highlighted. A detailed management approach is offered for particularly complex topics, such as spasticity and upper extremity reconstruction. PMID:25479784

  20. Personal Adjustment Training for the Spinal Cord Injured

    ERIC Educational Resources Information Center

    Roessler, Richard; And Others

    1976-01-01

    This article describes experiences with Personal Achievement Skills (PAS), a group counseling process in a spinal cord injury project, emphasizing training in communication and goal setting in the context of group process. Issues in conducting such training and providing comprehensive service to the spinal cord injured are discussed in detail.…

  1. Shriners Hospital Spinal Cord Injury Self Care Manual.

    ERIC Educational Resources Information Center

    Fox, Carol

    This manual is intended for young people with spinal cord injuries who are receiving rehabilitation services within the Spinal Cord Injury Unit at Shriners Hospital (San Francisco, California). An introduction describes the rehabilitation program, which includes family conferences, an individualized program, an independent living program,…

  2. Early elective colostomy following spinal cord injury.

    PubMed

    Boucher, Michelle

    Elective colostomy is an accepted method of bowel management for patients who have had a spinal cord injury (SCI). Approximately 2.4% of patients with SCI have a colostomy, and traditionally it is performed as a last resort several years after injury, and only if bowel complications persist when all other methods have failed. This is despite evidence that patients find a colostomy easier to manage and frequently report wishing it had been performed earlier. It was noticed in the author's spinal unit that increasing numbers of patients were requesting colostomy formation during inpatient rehabilitation following SCI. No supporting literature was found for this; it appears to be an emerging and untested practice. This article explores colostomy formation as a method of bowel management in patients with SCI, considers the optimal time for colostomy formation after injury and examines issues for health professionals. PMID:26973012

  3. Functional electrical stimulation and spinal cord injury.

    PubMed

    Ho, Chester H; Triolo, Ronald J; Elias, Anastasia L; Kilgore, Kevin L; DiMarco, Anthony F; Bogie, Kath; Vette, Albert H; Audu, Musa L; Kobetic, Rudi; Chang, Sarah R; Chan, K Ming; Dukelow, Sean; Bourbeau, Dennis J; Brose, Steven W; Gustafson, Kenneth J; Kiss, Zelma H T; Mushahwar, Vivian K

    2014-08-01

    Spinal cord injuries (SCI) can disrupt communications between the brain and the body, resulting in loss of control over otherwise intact neuromuscular systems. Functional electrical stimulation (FES) of the central and peripheral nervous system can use these intact neuromuscular systems to provide therapeutic exercise options to allow functional restoration and to manage medical complications following SCI. The use of FES for the restoration of muscular and organ functions may significantly decrease the morbidity and mortality following SCI. Many FES devices are commercially available and should be considered as part of the lifelong rehabilitation care plan for all eligible persons with SCI. PMID:25064792

  4. Diaphragmatic pacing in spinal cord injury.

    PubMed

    Dalal, Kevin; DiMarco, Anthony F

    2014-08-01

    After cervical spinal cord injuries, many patients are unable to sustain independent ventilation because of a disruption of diaphragm innervation and respiratory functioning. If phrenic nerve function is preserved, the patient may be able to tolerate exogenous pacing of the diaphragm via electrical stimulation. Previously this was accomplished by stimulation directly to the phrenic nerves, but may be accomplished less invasively by percutaneously stimulating the diaphragm itself. The benefits, when compared with mechanical ventilation, include a lower rate of pulmonary complications, improved venous return, more normal breathing and speech, facilitation of eating, cost-effectiveness, and increased patient mobility. PMID:25064791

  5. Evaluation of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord injured rats

    PubMed Central

    Alam, Monzurul; Garcia-Alias, Guillermo; Shah, Prithvi K.; Gerasimenko, Yury; Zhong, Hui; Roy, Roland R.; Edgerton, V. Reggie

    2015-01-01

    Background Epidural spinal cord stimulation is a promising technique for modulating the level of excitability and reactivation of dormant spinal neuronal circuits after spinal cord injury (SCI). We examined the ability of chronically implanted epidural stimulation electrodes within the cervical spinal cord to (1) directly elicit spinal motor evoked potentials (sMEPs) in forelimb muscles and (2) determine whether these sMEPs can serve as a biomarker of forelimb motor function after SCI. New method We implanted EMG electrodes in forelimb muscles and epidural stimulation electrodes at C6 and C8 in adult rats. After recovering from a dorsal funiculi crush (C4), rats were tested with different stimulation configurations and current intensities to elicit sMEPs and determined forelimb grip strength. Results: sMEPs were evoked in all muscles tested and their characteristics were dependent on electrode configurations and current intensities. C6(−) stimulation elicited more robust sMEPs than stimulation at C8(−). Stimulating C6 and C8 simultaneously produced better muscle recruitment and higher grip strengths than stimulation at one site. Comparison with existing method(s) Classical method to select the most optimal stimulation configuration is to empirically test each combination individually for every subject and relate to functional improvements. This approach is impractical, requiring extensively long experimental time to determine the more effective stimulation parameters. Our proposed method is fast and physiologically sound. Conclusions Results suggest that sMEPs from forelimb muscles can be useful biomarkers for identifying optimal parameters for epidural stimulation of the cervical spinal cord after SCI. PMID:25791014

  6. Lizard tail spinal cord: a new experimental model of spinal cord injury without limb paralysis.

    PubMed

    Szarek, Dariusz; Marycz, Krzysztof; Lis, Anna; Zawada, Zbigniew; Tabakow, Paweł; Laska, Jadwiga; Jarmundowicz, Włodzimierz

    2016-04-01

    Spinal cord injury (SCI) is a well-known devastating lesion that sadly is very resistant to all treatment attempts. This fact has stimulated the exploration of multiple regenerative strategies that are examined at both the basic and clinical level. For laboratory research, differentin vivomodels are used, but each has many important limitations. The main limitation of these models is the high level of animal suffering related to the inflicted neurologic injury. It has caused a growing tendency to limit the injury, but this, in turn, produces incomplete SCI models and uncertainties in the neuroregeneration interpretation. To overcome such limitations, a new experimental SCI model is proposed. Geckos have been extensively examined as a potential animal model of SCI. Their spinal cord extends into the tail and can be transected without causing the typical neurologic consequences observed in rat models. In this study, we compared the gecko tail SCI model with the rat model of thoracic SCI. Anatomic and histologic analyses showed comparability between the gecko and rat in diameter of spinal canal and spinal cord, as well as applicability of multiple staining techniques (hematoxylin and eosin, immunostaining, and scanning and transmission electron microscopy). We tested the suitability ofin vivostudy with 3 prototype implants for the reconstruction of SCI: a multichannel sponge, a multilaminar tube, and a gel cylinder. These were compared with a spinal cord excision (control). A 20-wk observation revealed no adverse effects of SCI on the animals' well-being. The animals were easily housed and observed. Histologic analysis showed growth of nervous tissue elements on implant surface and implant cellular colonization. The study showed that the gecko SCI model can be used as a primary model for the assessment of SCI treatment methods. It provides a platform for testing multiple solutions with limited animal suffering before performing tests on mammals. Detailed results of

  7. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury.

    PubMed

    Yang, Zhaoyang; Zhang, Aifeng; Duan, Hongmei; Zhang, Sa; Hao, Peng; Ye, Keqiang; Sun, Yi E; Li, Xiaoguang

    2015-10-27

    Neural stem cells (NSCs) in the adult mammalian central nervous system (CNS) hold the key to neural regeneration through proper activation, differentiation, and maturation, to establish nascent neural networks, which can be integrated into damaged neural circuits to repair function. However, the CNS injury microenvironment is often inhibitory and inflammatory, limiting the ability of activated NSCs to differentiate into neurons and form nascent circuits. Here we report that neurotrophin-3 (NT3)-coupled chitosan biomaterial, when inserted into a 5-mm gap of completely transected and excised rat thoracic spinal cord, elicited robust activation of endogenous NSCs in the injured spinal cord. Through slow release of NT3, the biomaterial attracted NSCs to migrate into the lesion area, differentiate into neurons, and form functional neural networks, which interconnected severed ascending and descending axons, resulting in sensory and motor behavioral recovery. Our study suggests that enhancing endogenous neurogenesis could be a novel strategy for treatment of spinal cord injury. PMID:26460015

  8. Mineral metabolism in spinal cord injury.

    PubMed

    Naftchi, N E; Viau, A T; Sell, G H; Lowman, E W

    1980-03-01

    In 10 paraplegic and 10 quadroplegic subjects, bone resorption was investigated by determining urinary excretion of hydroxyproline, calcium, and phosphorus. Measurements were performed weekly from the onset to 4 months after injury. During the first 7 weeks following injury, urinary excretion of calcium in paraplegic and quadriplegic subjects reached the highest level (380 +/- 180 mg/24hr). From 7 to 16 weeks after injury average urinary excretion of calcium (245 +/- 72 mg/24hr) remained significantly greater than that in controls (100 +/- 25 mg/24hr; p less than 0.05). Urinary hydroxyproline was elevated in paraplegic subjects (80 +/- 18 mg/24hr) for 8 weeks and in quadriplegic subjects (102 +/- 37 mg/24hr) for the entire 16 weeks following injury compared with that in controls (48 +/- 12 mg/24hr; p less than 0.05). Both paraplegic and quadriplegic subjects excreted more phosphorus (1.6 +/- 0.4 gm/24hr) than controls (0.85 +/- 0.2 gm/24hr; p less than 0.05) only during the first 2 weeks following spinal cord injury. During the acute phase of the injury (0-3 months), urinary excretion of calcium and magnesium was significantly higher (p less than 0.05) in subjects with complete compared with incomplete spinal cord lesions. PMID:7369852

  9. Neurogenic bladder in spinal cord injury patients

    PubMed Central

    Taweel, Waleed Al; Seyam, Raouf

    2015-01-01

    Neurogenic bladder dysfunction due to spinal cord injury poses a significant threat to the well-being of patients. Incontinence, renal impairment, urinary tract infection, stones, and poor quality of life are some complications of this condition. The majority of patients will require management to ensure low pressure reservoir function of the bladder, complete emptying, and dryness. Management typically begins with anticholinergic medications and clean intermittent catheterization. Patients who fail this treatment because of inefficacy or intolerability are candidates for a spectrum of more invasive procedures. Endoscopic managements to relieve the bladder outlet resistance include sphincterotomy, botulinum toxin injection, and stent insertion. In contrast, patients with incompetent sphincters are candidates for transobturator tape insertion, sling surgery, or artificial sphincter implantation. Coordinated bladder emptying is possible with neuromodulation in selected patients. Bladder augmentation, usually with an intestinal segment, and urinary diversion are the last resort. Tissue engineering is promising in experimental settings; however, its role in clinical bladder management is still evolving. In this review, we summarize the current literature pertaining to the pathology and management of neurogenic bladder dysfunction in patients with spinal cord injury. PMID:26090342

  10. MiR-93 Targeting EphA4 Promotes Neurite Outgrowth from Spinal Cord Neurons.

    PubMed

    Chen, Xiaogang; Yang, Huilin; Zhou, Xiaoqing; Zhang, Lin; Lu, Xiaoqing

    2016-04-01

    The failure of neurite outgrowth in the adult mammalian spinal cord injury is thought to be attributed to the intrinsic growth ability of mature neurons. Ephrin/Eph system is a major growth regulator of many axonal guidance processes. EphA4 is expressed specifically in traumatic central nervous system (CNS) and dynamically regulate target gene expression, suggesting that it may be associated with neural regeneration. Here, we found an alteration in temporal expression of miR-93 following a contusive spinal cord injury (SCI) in adult rats. The messenger RNA (mRNA) expression level of miR-93 was upregulated and the protein expression levels of EphA4, p-Ephexin, and active RhoA were all decreased in traumatic spinal cord relative to those with an intact spinal cord. Infection of cultured spinal cord neurons (SCNs) with miR-93 mimic led to neuronal growth promotion and decreased levels of EphA4, p-Ephexin, and active RhoA protein expression. Dual-luciferase reporter assay confirmed that miR-93 bound to the three prime untranslated region (3' UTR) of EphA4 and inhibited the expression of EphA4 mRNA. These findings provide evidence that miR-93 inhibits EphA4 expression, decreased EphA4 expression could promote neurite outgrowth in SCNs due to reduced levels of p-Ephexin and active RhoA. PMID:26798048

  11. Expansion Duroplasty Improves Intraspinal Pressure, Spinal Cord Perfusion Pressure, and Vascular Pressure Reactivity Index in Patients with Traumatic Spinal Cord Injury: Injured Spinal Cord Pressure Evaluation Study

    PubMed Central

    Phang, Isaac; Werndle, Melissa C.; Saadoun, Samira; Varsos, Georgios; Czosnyka, Marek; Zoumprouli, Argyro

    2015-01-01

    Abstract We recently showed that, after traumatic spinal cord injury (TSCI), laminectomy does not improve intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), or the vascular pressure reactivity index (sPRx) at the injury site sufficiently because of dural compression. This is an open label, prospective trial comparing combined bony and dural decompression versus laminectomy. Twenty-one patients with acute severe TSCI had re-alignment of the fracture and surgical fixation; 11 had laminectomy alone (laminectomy group) and 10 had laminectomy and duroplasty (laminectomy+duroplasty group). Primary outcomes were magnetic resonance imaging evidence of spinal cord decompression (increase in intradural space, cerebrospinal fluid around the injured cord) and spinal cord physiology (ISP, SCPP, sPRx). The laminectomy and laminectomy+duroplasty groups were well matched. Compared with the laminectomy group, the laminectomy+duroplasty group had greater increase in intradural space at the injury site and more effective decompression of the injured cord. In the laminectomy+duroplasty group, ISP was lower, SCPP higher, and sPRx lower, (i.e., improved vascular pressure reactivity), compared with the laminectomy group. Laminectomy+duroplasty caused cerebrospinal fluid leak that settled with lumbar drain in one patient and pseudomeningocele that resolved completely in five patients. We conclude that, after TSCI, laminectomy+duroplasty improves spinal cord radiological and physiological parameters more effectively than laminectomy alone. PMID:25705999

  12. The thoracic anterior spinal cord adhesion syndrome

    PubMed Central

    Taylor, T R; Dineen, R; White, B; Jaspan, T

    2012-01-01

    Objectives This study included a series of middle-aged male and female patients who presented with chronic anterior hemicord dysfunction progressing to paraplegia. Imaging of anterior thoracic cord displacement by either a dural adhesion or a dural defect with associated cord herniation is presented. Methods This is a retrospective review of cases referred to a tertiary neuroscience centre over a 19-year period. Imaging series were classified by two experienced neuroradiologists against several criteria and correlated with clinical examination and/or findings at surgery. Results 16 cases were available for full review. Nine were considered to represent adhesions (four confirmed surgically) and four to represent true herniation (three confirmed surgically). In the three remaining cases the diagnosis was radiologically uncertain. Conclusion The authors propose “thoracic anterior spinal cord adhesion syndrome” as a novel term to describe this patient cohort and suggest appropriate clinicoradiological features for diagnosis. Several possible aetiologies are also suggested, with disc rupture and inflammation followed by disc resorption and dural pocket formation being a possible mechanism predisposing to herniation at the extreme end of a clinicopathological spectrum. PMID:22665931

  13. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted spinal cord stimulator for pain relief... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to...

  14. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted spinal cord stimulator for pain relief... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to...

  15. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted spinal cord stimulator for pain relief... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to...

  16. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted spinal cord stimulator for pain relief... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to...

  17. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted spinal cord stimulator for pain relief... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to...

  18. Revisiting the segmental organization of the human spinal cord.

    PubMed

    Leijnse, J N; D'Herde, K

    2016-09-01

    In classic anatomic atlases, the spinal cord is standardly represented in its anatomical form with symmetrically emerging anterior and posterior roots, which at the level of the intervertebral foramen combine into the spinal nerves. The parts of the cord delimited by the boundaries of the roots are called segments or myelomeres. Associated with their regular repetitive appearance is the notion that the cord is segmentally organized. This segmental view is reinforced by clinical practice. Spinal cord roots innervate specific body parts. The level of cord trauma is diagnosed by the de-innervation symptoms of these parts. However, systemically, the case for a segmentally organized cord is not so clear. To date, developmental and genetic research points to a regionally rather than a segmentally organized cord. In the present study, to what degree the fila radicularia are segmentally implanted along the cord was investigated. The research hypothesis was that if the fila radicularia were non-segmentally implanted at the cord surface, it would be unlikely that the internal neuron stratum would be segmented. The visual segmented aspect of the myelomeres would then be the consequence of the necessary bundling of axons towards the vertebral foramen as the only exits of the vertebral canal, rather than of an underlying segment organization of the cord itself. To investigate the research hypothesis, the fila radicularia in the cervical-upper thoracic part of five spinal cords were detached from their spinal nerves and dissected in detail. The principal research question was if the fila radicularia are separated from their spinal nerves and dissected from their connective tissues up to the cord, would it be possible to reconstruct the original spinal segments from the morphology and interspaces of the fila? The dissections revealed that the anterior fila radicularia emerge from the cord at regular regionally modulated interspaces without systematic segmental delineations. The

  19. Curcumin protects against ischemic spinal cord injury: The pathway effect.

    PubMed

    Zhang, Jinhua; Wei, Hao; Lin, Meimei; Chen, Chunmei; Wang, Chunhua; Liu, Maobai

    2013-12-25

    Inducible nitric oxide synthase and N-methyl-D-aspartate receptors have been shown to participate in nerve cell injury during spinal cord ischemia. This study observed a protective effect of curcumin on ischemic spinal cord injury. Models of spinal cord ischemia were established by ligating the lumbar artery from the left renal artery to the bifurcation of the abdominal aorta. At 24 hours after model establishment, the rats were intraperitoneally injected with curcumin. Reverse transcription-polymerase chain reaction and immunohistochemical results demonstrated that after spinal cord ischemia, inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression significantly increased. However, curcumin significantly decreased inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression in the ischemic spinal cord. Tarlov scale results showed that curcumin significantly improved motor function of the rat hind limb after spinal cord ischemia. The results demonstrate that curcumin exerts a neuroprotective fect against ischemic spinal cord injury by decreasing inducible nitric oxide synthase and N-methyl-D-aspartate receptor expression. PMID:25206661

  20. Hyperbaric oxygen therapy improves local microenvironment after spinal cord injury

    PubMed Central

    Wang, Yang; Zhang, Shuquan; Luo, Min; Li, Yajun

    2014-01-01

    Clinical studies have shown that hyperbaric oxygen therapy improves motor function in patients with spinal cord injury. In the present study, we explored the mechanisms associated with the recovery of neurological function after hyperbaric oxygen therapy in a rat model of spinal cord injury. We established an acute spinal cord injury model using a modification of the free-falling object method, and treated the animals with oxygen at 0.2 MPa for 45 minutes, 4 hours after injury. The treatment was administered four times per day, for 3 days. Compared with model rats that did not receive the treatment, rats exposed to hyperbaric oxygen had fewer apoptotic cells in spinal cord tissue, lower expression levels of aquaporin 4/9 mRNA and protein, and more NF-200 positive nerve fibers. Furthermore, they had smaller spinal cord cavities, rapid recovery of somatosensory and motor evoked potentials, and notably better recovery of hindlimb motor function than model rats. Our findings indicate that hyperbaric oxygen therapy reduces apoptosis, downregulates aquaporin 4/9 mRNA and protein expression in injured spinal cord tissue, improves the local microenvironment for nerve regeneration, and protects and repairs the spinal cord after injury. PMID:25657740

  1. Recovery of airway protective behaviors after spinal cord injury

    PubMed Central

    Bolser, Donald C.; Jefferson, Stephanie C.; Rose, Melanie J.; Tester, Nicole J.; Reier, Paul J.; Fuller, David D.; Davenport, Paul W.; Howland, Dena R.

    2009-01-01

    Pulmonary morbidity is high following spinal cord injury and is due, in part, to impairment of airway protective behaviors. These airway protective behaviors include augmented breaths, the cough reflex, and expiration reflexes. Functional recovery of these behaviors has been reported after spinal cord injury. In humans, evidence for functional recovery is restricted to alterations in motor strategy and changes in the frequency of occurrence of these behaviors. In animal models, compensatory alterations in motor strategy have been identified. Crossed descending respiratory motor pathways at the thoracic spinal cord levels exist that are composed of crossed premotor axons, local circuit interneurons, and propriospinal neurons. These pathways can collectively form a substrate that supports maintenance and/or recovery of function, especially after asymmetric spinal cord injury. Local sprouting of premotor axons in the thoracic spinal cord also can occur following chronic spinal cord injury. These mechanisms may contribute to functional resiliency of the cough reflex that has been observed following chronic spinal cord injury in the cat. PMID:19635591

  2. Cocaine-induced vasospasm causing spinal cord transient ischemia.

    PubMed

    Gorelik, N; Tampieri, D

    2012-07-01

    A 25-year-old woman developed a spinal cord infarction leading to quadriplegia and respiratory insufficiency after consuming cocaine and vodka for several days. Within five months, she regained full motor and respiratory function. A literature review revealed 11 cases of cocaine-induced spinal cord infarction. A complete recovery from quadriplegia and respiratory failure following cocaine abuse has never been reported to date. The value of diffusion-weighted imaging in cocaine-induced spinal cord infarction is here presented and discussed. The literature proposes several mechanisms for cocaine-induced infarction including vasospasm, arteritis, and thrombosis. In this case, the imaging studies and the full recovery suggest that the spinal cord ischemia was secondary to a transient vasospasm of the anterior spinal artery. PMID:24028991

  3. Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans.

    PubMed

    Minassian, Karen; Hofstoetter, Ursula S

    2016-04-01

    Severe spinal cord injury is a devastating condition, tearing apart long white matter tracts and causing paralysis and disability of body functions below the lesion. But caudal to most injuries, the majority of neurons forming the distributed propriospinal system, the localized gray matter spinal interneuronal circuitry, and spinal motoneuron populations are spared. Epidural spinal cord stimulation can gain access to this neural circuitry. This review focuses on the capability of the human lumbar spinal cord to generate stereotyped motor output underlying standing and stepping, as well as full weight-bearing standing and rhythmic muscle activation during assisted treadmill stepping in paralyzed individuals in response to spinal cord stimulation. By enhancing the excitability state of the spinal circuitry, the stimulation can have an enabling effect upon otherwise "silent" translesional volitional motor control. Strategies for achieving functional movement in patients with severe injuries based on minimal translesional intentional control, task-specific proprioceptive feedback, and next-generation spinal cord stimulation systems will be reviewed. The role of spinal cord stimulation can go well beyond the immediate generation of motor output. With recently developed training paradigms, it can become a major rehabilitation approach in spinal cord injury for augmenting and steering trans- and sublesional plasticity for lasting therapeutic benefits. PMID:26890324

  4. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish

    PubMed Central

    Hui, Subhra Prakash; Nag, Tapas Chandra; Ghosh, Sukla

    2015-01-01

    Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration. PMID:26630262

  5. What Are the Key Statistics about Brain and Spinal Cord Cancers?

    MedlinePlus

    ... and spinal cord tumors? What are the key statistics about brain and spinal cord tumors? The American ... cord tumors .” Visit the American Cancer Society’s Cancer Statistics Center for more key statistics. Last Medical Review: ...

  6. Cooling athletes with a spinal cord injury.

    PubMed

    Griggs, Katy E; Price, Michael J; Goosey-Tolfrey, Victoria L

    2015-01-01

    Cooling strategies that help prevent a reduction in exercise capacity whilst exercising in the heat have received considerable research interest over the past 3 decades, especially in the lead up to a relatively hot Olympic and Paralympic Games. Progressing into the next Olympic/Paralympic cycle, the host, Rio de Janeiro, could again present an environmental challenge for competing athletes. Despite the interest and vast array of research into cooling strategies for the able-bodied athlete, less is known regarding the application of these cooling strategies in the thermoregulatory impaired spinal cord injured (SCI) athletic population. Individuals with a spinal cord injury (SCI) have a reduced afferent input to the thermoregulatory centre and a loss of both sweating capacity and vasomotor control below the level of the spinal cord lesion. The magnitude of this thermoregulatory impairment is proportional to the level of the lesion. For instance, individuals with high-level lesions (tetraplegia) are at a greater risk of heat illness than individuals with lower-level lesions (paraplegia) at a given exercise intensity. Therefore, cooling strategies may be highly beneficial in this population group, even in moderate ambient conditions (~21 °C). This review was undertaken to examine the scientific literature that addresses the application of cooling strategies in individuals with an SCI. Each method is discussed in regards to the practical issues associated with the method and the potential underlying mechanism. For instance, site-specific cooling would be more suitable for an athlete with an SCI than whole body water immersion, due to the practical difficulties of administering this method in this population group. From the studies reviewed, wearing an ice vest during intermittent sprint exercise has been shown to decrease thermal strain and improve performance. These garments have also been shown to be effective during exercise in the able-bodied. Drawing on

  7. Spinal cord atrophy in neuromyelitis optica spectrum disorders.

    PubMed

    Wang, Yanqiang; Wang, Yuge; Tan, Sa; Lu, Zhengqi

    2016-07-01

    Neuromyelitis optica spectrum disorders (NMOSDs) is an immune mediated inflammatory disease of the central nervous system (CNS) and often displays a monophasic or relapsing-remitting course. Spinal cord lesions is one of the predominant characteristics in NMOSD. Assessment of spinal cord atrophy (SCA) is of growing interest in monitoring disease progression in multiple sclerosis (MS), and correlates closely with the neurological disability. However, the studies of the SCA in NMOSD are still scarce. In this review, we describe the recent progress about the SCA in NMOSD, mainly the NMOSD with spinal cord lesions. PMID:27456868

  8. Imaging of noninfectious inflammatory disorders of the spinal cord.

    PubMed

    Klein, Joshua P

    2016-01-01

    Myelitis, or inflammation of the spinal cord, produces a characteristic clinical syndrome. Among the many causes of myelitis are the prototypical demyelinating diseases multiple sclerosis and neuromyelitis optica, each of which has distinct clinical, pathologic, and radiographic features. Less distinct are the myelitides associated with systemic autoimmune conditions like sarcoidosis and lupus. Nondemyelinating conditions such as arachnoiditis, dural arteriovenous fistula, and tumor infiltration may also produce inflammation of the spinal cord. The objective of this review is to aid the clinician in the radiographic diagnosis of noninfectious inflammatory diseases of the spinal cord. PMID:27430439

  9. [Pre-hospital care management of acute spinal cord injury].

    PubMed

    Hess, Thorsten; Hirschfeld, Sven; Thietje, Roland; Lönnecker, Stefan; Kerner, Thoralf; Stuhr, Markus

    2016-04-01

    Acute injury to the spine and spinal cord can occur both in isolation as also in the context of multiple injuries. Whereas a few decades ago, the cause of paraplegia was almost exclusively traumatic, the ratio of traumatic to non-traumatic causes in Germany is currently almost equivalent. In acute treatment of spinal cord injury, restoration and maintenance of vital functions, selective control of circulation parameters, and avoidance of positioning or transport-related additional damage are in the foreground. This article provides information on the guideline for emergency treatment of patients with acute injury of the spine and spinal cord in the preclinical phase. PMID:27070515

  10. Internet-based atlas of the primate spinal cord.

    PubMed

    Tokuno, Hironobu; Tanaka, Ikuko; Senoo, Aya; Umitsu, Yoshitomo; Akazawa, Toshikazu; Nakamura, Yasuhisa; Watson, Charles

    2011-05-01

    In 2009, we reported an online brain atlas of the common marmoset (Callithrix jacchus) at http://marmoset-brain.org:2008. Here we report new digital images of the primate spinal cord sections added to the website. We prepared histological sections of every segment of the spinal cord of the common marmoset, rhesus monkey and Japanese monkey with various staining techniques. The sections were scanned with Carl Zeiss MIRAX SCAN at light microscopic resolution. Obtained digital data were processed and converted into multi-resolutionary images with Adobe Photoshop and Zoomify Design. These images of the primate spinal cords are now available on the web via the Internet. PMID:21291922

  11. Biological Basis of Exercise-based Treatments: Spinal Cord Injury

    PubMed Central

    Basso, D. Michele; Hansen, Christopher N.

    2016-01-01

    Despite intensive neurorehabilitation, extensive functional recovery after spinal cord injury is unattainable for most individuals. Optimal recovery will likely depend on activity-based, task-specific training that personalizes the timing of intervention with the severity of injury. Exercise paradigms elicit both beneficial and deleterious biophysical effects after spinal cord injury. Modulating the type, intensity, complexity, and timing of training may minimize risk and induce greater recovery. This review discusses the following: (a) the biological underpinning of training paradigms that promote motor relearning and recovery, and (b) how exercise interacts with cellular cascades after spinal cord injury. Clinical implications are discussed throughout. PMID:21703584

  12. Spinal cord injury pain: mechanisms and management.

    PubMed

    Finnerup, Nanna Brix; Baastrup, Cathrine

    2012-06-01

    Patients with spinal cord injury (SCI) may experience several types of chronic pain, including peripheral and central neuropathic pain, pain secondary to overuse, painful muscle spasms, and visceral pain. An accurate classification of the patient's pain is important for choosing the optimal treatment strategy. In particular, neuropathic pain appears to be persistent despite various treatment attempts. In recent years, we have gained increasing knowledge of SCI pain mechanisms from experimental models and clinical studies. Nevertheless, treatment remains difficult and inadequate. In line with the recommendations for peripheral neuropathic pain, evidence from randomized controlled treatment trials suggests that tricyclic antidepressants and pregabalin are first-line treatments. This review highlights the diagnosis and classification of SCI pain and recent improvements in the understanding of underlying mechanisms, and provides an update on treatment of SCI pain. PMID:22392531

  13. Functional Electrical Stimulation and Spinal Cord Injury

    PubMed Central

    Ho, Chester H.; Triolo, Ronald J.; Elias, Anastasia L.; Kilgore, Kevin L.; DiMarco, Anthony F.; Bogie, Kath; Vette, Albert H.; Audu, Musa; Kobetic, Rudi; Chang, Sarah R.; Chan, K. Ming; Dukelow, Sean; Bourbeau, Dennis J.; Brose, Steven W.; Gustafson, Kenneth J.; Kiss, Zelma; Mushahwar, Vivian K.

    2015-01-01

    Synopsis Spinal cord injuries (SCI) can disrupt communications between the brain and the body, leading to a loss of control over otherwise intact neuromuscular systems. The use of electrical stimulation (ES) of the central and peripheral nervous system can take advantage of these intact neuromuscular systems to provide therapeutic exercise options, to allow functional restoration, and even to manage or prevent many medical complications following SCI. The use of ES for the restoration of upper extremity, lower extremity and truncal functions can make many activities of daily living a potential reality for individuals with SCI. Restoring bladder and respiratory functions and preventing pressure ulcers may significantly decrease the morbidity and mortality following SCI. Many of the ES devices are already commercially available and should be considered by all SCI clinicians routinely as part of the lifelong rehabilitation care plan for all eligible individuals with SCI. PMID:25064792

  14. Spinal Cord Stimulation for Chronic Limb Ischemia

    PubMed Central

    Naoum, Joseph J.; Arbid, Elias J.

    2013-01-01

    The treatment of chronic limb ischemia involves the restoration of pulsatile blood flow to the distal extremity. Some patients cannot be treated with endovascular means or with open surgery; some may have medical comorbidities that render them unfit for surgery, while others may have persistent ischemia or pain even in the face of previous attempts at reperfusion. In spinal cord stimulation (SCS), a device with electrodes is implanted in the epidural space to stimulate sensory fibers. This activates cell-signaling molecules that in turn cause the release of vasodilatory molecules, a decrease in vascular resistance, and relaxation of smooth muscle cells. SCS also suppresses sympathetic vasoconstriction and pain transmission. When patient selection is based on microcirculatory parameters, SCS therapy can significantly improve pain relief, halt the progression of ulcers, and potentially achieve limb salvage. PMID:23805343

  15. Spinal Cord Schistosomiasis: Two Different Outcomes

    PubMed Central

    Alsomaili, Mohammed; Abulaban, Ahmad A.

    2016-01-01

    Spinal cord schistosomiasis is difficult to diagnose in nonendemic areas. We report the clinical profile of 2 young Saudi males who presented with myelopathy. The first patient arrived at our hospital relatively late, i.e. 3 months following the presentation of initial symptoms, and had received both pulse steroid therapy and a plasma exchange. Praziquantel was administered late and the patient did not recover. The second case presented early, i.e. within around 8 weeks of initial symptoms. This patient received praziquantel without any kind of steroid and had a complete recovery. We concluded that prompt recognition and early treatment with praziquantel is crucial for a better outcome. The role of steroids in these cases still needs to be proven. PMID:27293404

  16. Ischemic spinal cord infarction in children without vertebral fracture

    PubMed Central

    Nance, Jessica R.; Golomb, Meredith R.

    2007-01-01

    Spinal cord infarction in children is a rare condition which is becoming more widely recognized. There are few reports in the pediatric literature characterizing etiology, diagnosis, treament and prognosis. The risk factors for pediatric ischemic spinal cord infarction include obstruction of blood flow associated with cardiovascular compromise or malformation, iatrogenic or traumatic vascular inujury, cerebellar herniation, thrombotic or embolic disease, infection, and vasculitis. In many children the cause of spinal cord ischemia in the absence of vertebral fracture is unknown. Imaging diagnosis of spinal cord ischemia is often difficult due to the small transverse area of the cord, cerebrospinal fluid artifact and inadequate resolution of MRI. Physical therapy is the most important treatment option. The prognosis is dependent on the level of spinal cord damage, early identification and reversal of ischemia, and follow-up with intensive physical therapy and medical support. In addition to summarizing the literature regarding spinal cord infarction in children without vertebral fracture, this review article adds two cases to the literature which highlight the difficulties and controversies in the management of this condition. PMID:17437902

  17. Use of intraoperative ultrasonography in canine spinal cord lesions.

    PubMed

    Nanai, Beatrix; Lyman, Ronald; Bichsel, Pierre S

    2007-01-01

    The purpose of this retrospective study was to describe the intraoperative appearance of various spinal cord conditions, and to investigate how intraoperative ultrasonography assisted in modification of surgical and postoperative treatment plans. Intraoperative ultrasonography (B-mode, and power Doppler mode) was used in 25 dogs undergoing spinal surgery. The neurologic conditions included cervical spondylomyelopathy, intervertebral disc (IVD) protrusion, IVD extrusion, spinal tumors, nerve sheath mass, granulomatous myelitis, and discospondylitis. All of these diagnoses were supported by histopathologic and/or cytologic evaluation. It was possible to visualize the spinal cord and the abnormal spinal tissue in all of the patients. Power Doppler imaging allowed assessment of the spinal cord microcirculation, and assisted in judgment of the degree of decompression. Ultrasound imaging directly impacted the surgical and the medical treatment plans in four patients. Owing to the intraoperative imaging, two hemilaminectomies were extended cranially and caudally, and additional disc spaces were fenestrated, one hemilaminectomy site was extended dorsally to retrieve the disc material from the opposite side, and one intramedullary cervical spinal cord lesion was discovered, aspirated, and consequently diagnosed as granulomatous inflammation, which altered the long-term medication protocol in that dog. This study suggests that intraoperative sonographic spinal cord imaging is a useful and viable technique. PMID:17508514

  18. Hypocretinergic control of spinal cord motoneurons.

    PubMed

    Yamuy, Jack; Fung, Simon J; Xi, Mingchu; Chase, Michael H

    2004-06-01

    Hypocretinergic (orexinergic) neurons in the lateral hypothalamus project to motor columns in the lumbar spinal cord. Consequently, we sought to determine whether the hypocretinergic system modulates the electrical activity of motoneurons. Using in vivo intracellular recording techniques, we examined the response of spinal motoneurons in the cat to electrical stimulation of the lateral hypothalamus. In addition, we examined the membrane potential response to orthodromic stimulation and intracellular current injection before and after both hypothalamic stimulation and the juxtacellular application of hypocretin-1. It was found that (1) hypothalamic stimulation produced a complex sequence of depolarizing- hyperpolarizing potentials in spinal motoneurons; (2) the depolarizing potentials decreased in amplitude after the application of SB-334867, a hypocretin type 1 receptor antagonist; (3) the EPSP induced by dorsal root stimulation was not affected by the application of SB-334867; (4) subthreshold stimulation of dorsal roots and intracellular depolarizing current steps produced spike potentials when applied in concert to stimulation of the hypothalamus or after the local application of hypocretin-1; (5) the juxtacellular application of hypocretin-1 induced motoneuron depolarization and, frequently, high-frequency discharge; (6) hypocretin-1 produced a significant decrease in rheobase (36%), membrane time constant (16.4%), and the equalizing time constant (23.3%); (7) in a small number of motoneurons, hypocretin-1 produced an increase in the synaptic noise; and (8) the input resistance was not affected after hypocretin-1. The juxtacellular application of vehicle (saline) and denatured hypocretin-1 did not produce changes in the preceding electrophysiological properties. We conclude that hypothalamic hypocretinergic neurons are capable of modulating the activity of lumbar motoneurons through presynaptic and postsynaptic mechanisms. The lack of hypocretin

  19. Dynamic loading characteristics of an intradural spinal cord stimulator

    NASA Astrophysics Data System (ADS)

    Oliynyk, M. S.; Gillies, G. T.; Oya, H.; Wilson, S.; Reddy, C. G.; Howard, M. A.

    2013-01-01

    We have measured the forces that act on the electrode-bearing surface of an intradural neuromodulator designed to be in direct contact with the pial surface of the spinal cord, as part of our effort to develop a new method for treating intractable pain. The goal was to investigate the pressures produced by this device on the spinal cord and compare them with normal intrathecal pressure. For this purpose, we employed a dual-sensor arrangement that allowed us to measure the response of a custom-designed silicone spinal cord surrogate to the forces applied by the device. We found that the device had a mean compliance of ≈63 μN μm-1, and that over a 3 mm range of compression, the mid-span pressure it exerted on the spinal cord was ≈1.88 × 103 Pa = 14.1 mm Hg, which lies within the range of normal intrathecal pressure in humans.

  20. Senegenin inhibits neuronal apoptosis after spinal cord contusion injury

    PubMed Central

    Zhang, Shu-quan; Wu, Min-fei; Gu, Rui; Liu, Jia-bei; Li, Ye; Zhu, Qing-san; Jiang, Jin-lan

    2016-01-01

    Senegenin has been shown to inhibit neuronal apoptosis, thereby exerting a neuroprotective effect. In the present study, we established a rat model of spinal cord contusion injury using the modified Allen's method. Three hours after injury, senegenin (30 mg/g) was injected into the tail vein for 3 consecutive days. Senegenin reduced the size of syringomyelic cavities, and it substantially reduced the number of apoptotic cells in the spinal cord. At the site of injury, Bax and Caspase-3 mRNA and protein levels were decreased by senegenin, while Bcl-2 mRNA and protein levels were increased. Nerve fiber density was increased in the spinal cord proximal to the brain, and hindlimb motor function and electrophysiological properties of rat hindlimb were improved. Taken together, our results suggest that senegenin exerts a neuroprotective effect by suppressing neuronal apoptosis at the site of spinal cord injury. PMID:27212931

  1. Features of spinal cord injury in Taiwan (1977-1989).

    PubMed

    Yeh, Y S; Lee, S T; Lui, T N; Fairholm, D J; Chen, W J; Wong, M K

    1993-09-01

    In order to establish an etiological and statistical base for spinal cord injuries, 1,617 spinal cord injured patients admitted to the Chang Gung Memorial Hospital in Taiwan during the period of 1977 to 1989 were reviewed. The most common causes of injury were pedestrian (29.31%) and motorcycle (28.88%) accidents. The greatest incidence of injury was in the 26-35 year age group. The complete tetraplegic patients had the highest mortality rate (26.5%). Additional features studied were the time of occurrence and pattern of injury. Information gathered from this study suggest the need to establish a Spinal Cord Injury Prevention Program, to develop a Prehospital Care System and set up comprehensive Spinal Cord Injury Units in Taiwan. We expect this study to be adaptable to other similar developing countries. PMID:8221290

  2. Spinal cord injury I: A synopsis of the basic science

    PubMed Central

    Webb, Aubrey A.; Ngan, Sybil; Fowler, J. David

    2010-01-01

    Substantial knowledge has been gained in the pathological findings following naturally occurring spinal cord injury (SCI) in dogs and cats. The molecular mechanisms involved in failure of neural regeneration within the central nervous system, potential therapeutics including cellular transplantation therapy, neural plasticity, and prognostic indicators of recovery from SCI have been studied. This 2-part review summarizes 1) basic science perspectives regarding treating and curing spinal cord injury, 2) recent studies that shed light on prognosis and recovery from SCI, 3) current thinking regarding standards of care for dogs with SCI, 4) experimental approaches in the laboratory setting, and 5) current clinical trials being conducted in veterinary medicine. Part I presents timely information on the pathophysiology of spinal cord injury, challenges associated with promoting regeneration of neurons of the central nervous system, and experimental approaches aimed at developing treatments for spinal cord injury. PMID:20676289

  3. Molecular and cellular development of spinal cord locomotor circuitry

    PubMed Central

    Lu, Daniel C.; Niu, Tianyi; Alaynick, William A.

    2015-01-01

    The spinal cord of vertebrate animals is comprised of intrinsic circuits that are capable of sensing the environment and generating complex motor behaviors. There are two major perspectives for understanding the biology of this complicated structure. The first approaches the spinal cord from the point of view of function and is based on classic and ongoing research in electrophysiology, adult behavior, and spinal cord injury. The second view considers the spinal cord from a developmental perspective and is founded mostly on gene expression and gain-of-function and loss-of-function genetic experiments. Together these studies have uncovered functional classes of neurons and their lineage relationships. In this review, we summarize our knowledge of developmental classes, with an eye toward understanding the functional roles of each group. PMID:26136656

  4. Senegenin inhibits neuronal apoptosis after spinal cord contusion injury.

    PubMed

    Zhang, Shu-Quan; Wu, Min-Fei; Gu, Rui; Liu, Jia-Bei; Li, Ye; Zhu, Qing-San; Jiang, Jin-Lan

    2016-04-01

    Senegenin has been shown to inhibit neuronal apoptosis, thereby exerting a neuroprotective effect. In the present study, we established a rat model of spinal cord contusion injury using the modified Allen's method. Three hours after injury, senegenin (30 mg/g) was injected into the tail vein for 3 consecutive days. Senegenin reduced the size of syringomyelic cavities, and it substantially reduced the number of apoptotic cells in the spinal cord. At the site of injury, Bax and Caspase-3 mRNA and protein levels were decreased by senegenin, while Bcl-2 mRNA and protein levels were increased. Nerve fiber density was increased in the spinal cord proximal to the brain, and hindlimb motor function and electrophysiological properties of rat hindlimb were improved. Taken together, our results suggest that senegenin exerts a neuroprotective effect by suppressing neuronal apoptosis at the site of spinal cord injury. PMID:27212931

  5. Clinical and Experimental Advances in Regeneration of Spinal Cord Injury

    PubMed Central

    Hyun, Jung Keun; Kim, Hae-Won

    2010-01-01

    Spinal cord injury (SCI) is one of the major disabilities dealt with in clinical rehabilitation settings and is multifactorial in that the patients suffer from motor and sensory impairments as well as many other complications throughout their lifetimes. Many clinical trials have been documented during the last two decades to restore damaged spinal cords. However, only a few pharmacological therapies used in clinical settings which still have only limited effects on the regeneration, recovery speed, or retraining of the spinal cord. In this paper, we will introduce recent clinical trials, which performed pharmacological treatments and cell transplantations for patients with SCI, and evaluate recent in vivo studies for the regeneration of injured spinal cord, including stem-cell transplantation, application of neurotrophic factors and suppressor of inhibiting factors, development of biomaterial scaffolds and delivery systems, rehabilitation, and the combinations of these therapies to evaluate what can be appropriately applied in the future to the patients with SCI. PMID:21350645

  6. Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries

    PubMed Central

    Straley, Karin S.; Po Foo, Cheryl Wong

    2010-01-01

    Abstract The highly debilitating nature of spinal cord injuries has provided much inspiration for the design of novel biomaterials that can stimulate cellular regeneration and functional recovery. Many experts agree that the greatest hope for treatment of spinal cord injuries will involve a combinatorial approach that integrates biomaterial scaffolds, cell transplantation, and molecule delivery. This manuscript presents a comprehensive review of biomaterial-scaffold design strategies currently being applied to the development of nerve guidance channels and hydrogels that more effectively stimulate spinal cord tissue regeneration. To enhance the regenerative capacity of these two scaffold types, researchers are focusing on optimizing the mechanical properties, cell-adhesivity, biodegradability, electrical activity, and topography of synthetic and natural materials, and are developing mechanisms to use these scaffolds to deliver cells and biomolecules. Developing scaffolds that address several of these key design parameters will lead to more successful therapies for the regeneration of spinal cord tissue. PMID:19698073

  7. Toxoplasmosis of the spinal cord in an immunocompromised patient

    PubMed Central

    Martínez, Ernesto; Bolívar, Guillermo; Sánchez, Sandra; Carrascal, Edwin

    2013-01-01

    We, herein, describe an HIV-positive patient with toxoplasmosis of the spinal cord. We also carried out a comprehensive literature review of this topic, with emphasis on the diagnostic tools and therapeutic approach. PMID:24892240

  8. Childhood Brain and Spinal Cord Tumors Treatment Overview

    MedlinePlus

    ... before the cancer is diagnosed and continue for months or years. Childhood brain and spinal cord tumors ... after treatment. Some cancer treatments cause side effects months or years after treatment has ended. These are ...

  9. Influence of Spinal Cord Integrity on Gait Control in Human Spinal Cord Injury.

    PubMed

    Awai, Lea; Bolliger, Marc; Ferguson, Adam R; Courtine, Grégoire; Curt, Armin

    2016-07-01

    Background Clinical trials in spinal cord injury (SCI) primarily rely on simplified outcome metrics (ie, speed, distance) to obtain a global surrogate for the complex alterations of gait control. However, these assessments lack sufficient sensitivity to identify specific patterns of underlying impairment and to target more specific treatment interventions. Objective To disentangle the differential control of gait patterns following SCI beyond measures of time and distance. Methods The gait of 22 individuals with motor-incomplete SCI and 21 healthy controls was assessed using a high-resolution 3-dimensional motion tracking system and complemented by clinical and electrophysiological evaluations applying unbiased multivariate analysis. Results Motor-incomplete SCI patients showed varying degrees of spinal cord integrity (spinal conductivity) with severe limitations in walking speed and altered gait patterns. Principal component (PC) analysis applied on all the collected data uncovered robust coherence between parameters related to walking speed, distortion of intralimb coordination, and spinal cord integrity, explaining 45% of outcome variance (PC 1). Distinct from the first PC, the modulation of gait-cycle variables (step length, gait-cycle phases, cadence; PC 2) remained normal with respect to regained walking speed, whereas hip and knee ranges of motion were distinctly altered with respect to walking speed (PC 3). Conclusions In motor-incomplete SCI, distinct clusters of discretely controlled gait parameters can be discerned that refine the evaluation of gait impairment beyond outcomes of walking speed and distance. These findings are specifically different from that in other neurological disorders (stroke, Parkinson) and are more discrete at targeting and disentangling the complex effects of interventions to improve walking outcome following motor-incomplete SCI. PMID:26428035

  10. An investigation of motion correction algorithms for pediatric spinal cord DTI in healthy subjects and patients with spinal cord injury.

    PubMed

    Middleton, Devon M; Mohamed, Feroze B; Barakat, Nadia; Hunter, Louis N; Shellikeri, Sphoorti; Finsterbusch, Jürgen; Faro, Scott H; Shah, Pallav; Samdani, Amer F; Mulcahey, M J

    2014-06-01

    Patient and physiological motion can cause artifacts in DTI of the spinal cord which can impact image quality and diffusion indices. The purpose of this investigation was to determine a reliable motion correction method for pediatric spinal cord DTI and show effects of motion correction on DTI parameters in healthy subjects and patients with spinal cord injury. Ten healthy subjects and ten subjects with spinal cord injury were scanned using a 3T scanner. Images were acquired with an inner field-of-view DTI sequence covering cervical spine levels C1 to C7. Images were corrected for motion using two types of transformation (rigid and affine) and three cost functions. Corrected images and transformations were examined qualitatively and quantitatively using in-house developed code. Fractional anisotropy (FA) and mean diffusivity (MD) indices were calculated and tested for statistical significance pre- and post- motion correction. Images corrected using rigid methods showed improvements in image quality, while affine methods frequently showed residual distortions in corrected images. Blinded evaluation of pre and post correction images showed significant improvement in cord homogeneity and edge conspicuity in corrected images (p<0.0001). The average FA changes were statistically significant (p<0.0001) in the spinal cord injury group, while healthy subjects showed less FA change and were not significant. In both healthy subjects and subjects with spinal cord injury, quantitative and qualitative analysis showed the rigid scaled-least-squares registration technique to be the most reliable and effective in improving image quality. PMID:24629515

  11. Spinal cord stress injury assessment (SCOSIA): clinical applications of mechanical modeling of the spinal cord and brainstem

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth H.; Choi, Jae; Wilson, William; Berry, Joel; Henderson, Fraser C., Sr.

    2009-02-01

    Abnormal stretch and strain is a major cause of injury to the spinal cord and brainstem. Such forces can develop from age-related degeneration, congenital malformations, occupational exposure, or trauma such as sporting accidents, whiplash and blast injury. While current imaging technologies provide excellent morphology and anatomy of the spinal cord, there is no validated diagnostic tool to assess mechanical stresses exerted upon the spinal cord and brainstem. Furthermore, there is no current means to correlate these stress patterns with known spinal cord injuries and other clinical metrics such as neurological impairment. We have therefore developed the spinal cord stress injury assessment (SCOSIA) system, which uses imaging and finite element analysis to predict stretch injury. This system was tested on a small cohort of neurosurgery patients. Initial results show that the calculated stress values decreased following surgery, and that this decrease was accompanied by a significant decrease in neurological symptoms. Regression analysis identified modest correlations between stress values and clinical metrics. The strongest correlations were seen with the Brainstem Disability Index (BDI) and the Karnofsky Performance Score (KPS), whereas the weakest correlations were seen with the American Spinal Injury Association (ASIA) scale. SCOSIA therefore shows encouraging initial results and may have wide applicability to trauma and degenerative disease involving the spinal cord and brainstem.

  12. Robust, accurate and fast automatic segmentation of the spinal cord.

    PubMed

    De Leener, Benjamin; Kadoury, Samuel; Cohen-Adad, Julien

    2014-09-01

    Spinal cord segmentation provides measures of atrophy and facilitates group analysis via inter-subject correspondence. Automatizing this procedure enables studies with large throughput and minimizes user bias. Although several automatic segmentation methods exist, they are often restricted in terms of image contrast and field-of-view. This paper presents a new automatic segmentation method (PropSeg) optimized for robustness, accuracy and speed. The algorithm is based on the propagation of a deformable model and is divided into three parts: firstly, an initialization step detects the spinal cord position and orientation using a circular Hough transform on multiple axial slices rostral and caudal to the starting plane and builds an initial elliptical tubular mesh. Secondly, a low-resolution deformable model is propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a local contrast-to-noise adaptation at each iteration. Thirdly, a refinement process and a global deformation are applied on the propagated mesh to provide an accurate segmentation of the spinal cord. Validation was performed in 15 healthy subjects and two patients with spinal cord injury, using T1- and T2-weighted images of the entire spinal cord and on multiecho T2*-weighted images. Our method was compared against manual segmentation and against an active surface method. Results show high precision for all the MR sequences. Dice coefficients were 0.9 for the T1- and T2-weighted cohorts and 0.86 for the T2*-weighted images. The proposed method runs in less than 1min on a normal computer and can be used to quantify morphological features such as cross-sectional area along the whole spinal cord. PMID:24780696

  13. Care of spinal cord injury in non-specialist settings.

    PubMed

    Rodger, Sian

    Patient with spinal cord injuries have individualised care routines to help prevent complications. Disruption to these routines following admission to non-specialist settings can have long-term consequences. This article focuses on the key long-term problems of pressure ulcers, bladder and bowel dysfunction, and autonomic dysreflexia. Nurses working on general wards need to consider how to manage these problems when caring for patients with spinal cord injury. PMID:27544957

  14. Cystic Abnormalities of the Spinal Cord and Vertebral Column.

    PubMed

    da Costa, Ronaldo C; Cook, Laurie B

    2016-03-01

    Cystic lesions of the vertebral column and spinal cord are important differential diagnoses in dogs with signs of spinal cord disease. Synovial cysts are commonly associated with degenerative joint disease and usually affect the cervical and lumbosacral regions. Arachnoid diverticulum (previously known as cyst) is seen in the cervical region of large breed dogs and thoracolumbar region of small breed dogs. This article reviews the causes, diagnosis, and treatment of these and other, less common, cystic lesions. PMID:26706913

  15. Long-Distance Growth and Connectivity of Neural Stem Cells After Severe Spinal Cord Injury

    PubMed Central

    Lu, Paul; Wang, Yaozhi; Graham, Lori; McHale, Karla; Gao, Mingyong; Wu, Di; Brock, John; Blesch, Armin; Rosenzweig, Ephron S.; Havton, Leif A.; Zheng, Binhai; Conner, James M.; Marsala, Martin; Tuszynski, Mark H.

    2012-01-01

    SUMMARY Neural stem cells (NSCs) expressing GFP were embedded into fibrin matrices containing growth factor cocktails and grafted to sites of severe spinal cord injury. Grafted cells differentiated into multiple cellular phenotypes, including neurons, which extended large numbers of axons over remarkable distances. Extending axons formed abundant synapses with host cells. Axonal growth was partially dependent on mammalian target of rapamycin (mTOR) but not Nogo signaling. Grafted neurons supported formation of electrophysiological relays across sites of complete spinal transection, resulting in functional recovery. Two human stem cell lines (566RSC and HUES7) embedded in growth factor-containing fibrin exhibited similar growth, and 566RSC cells supported functional recovery. Thus, properties intrinsic to early stage neurons can overcome the inhibitory milieu of the injured adult spinal cord to mount remarkable axonal growth resulting in formation of novel relay circuits that significantly improve function. These therapeutic properties extend across stem cell sources and species. PMID:22980985

  16. Spontaneous resolution of idiopathic thoracic spinal cord herniation: case report.

    PubMed

    Samuel, Nardin; Goldstein, Christina L; Santaguida, Carlo; Fehlings, Michael G

    2015-09-01

    Spinal cord herniation is a relatively rare but increasingly recognized clinical entity, with fewer than 200 cases reported in the literature to date. The etiology of this condition remains unknown, and surgery is used as the primary treatment to correct the herniation and consequent spinal cord compromise. Some patients without clinical progression have been treated with nonoperative measures, including careful follow-up and symptomatic physical therapy. To date, however, there has been no published report on the resolution of spinal cord herniation without surgical intervention. The patient in the featured case is a 58-year-old man who presented with mild thoracic myelopathy and imaging findings consistent with idiopathic spinal cord herniation. Surprisingly, updated MRI studies, obtained to better delineate the pathology, showed spontaneous resolution of the herniation. Subsequent MRI 6 months later revealed continued resolution of the previous spinal cord herniation. This is the first report of spontaneous resolution of a spinal cord herniation in the literature. At present, the treatment of this disorder is individualized, with microsurgical correction used in patients with progressive neurological impairment. The featured case highlights the potential variability in the natural history of this condition and supports considering an initial trial of nonoperative management for patients with mild, nonprogressive neurological deficits. PMID:26023901

  17. Spinal Cord Stimulation for Neuropathic Pain

    PubMed Central

    2005-01-01

    Executive Summary Objective The objective of this health technology policy assessment was to determine the effectiveness of spinal cord stimulation (SCS) to manage chronic intractable neuropathic pain and to evaluate the adverse events and Ontario-specific economic profile of this technology. Clinical Need SCS is a reversible pain therapy that uses low-voltage electrical pulses to manage chronic, intractable neuropathic pain of the trunk or limbs. Neuropathic pain begins or is caused by damage or dysfunction to the nervous system and can be difficult to manage. The prevalence of neuropathic pain has been estimated at about 1.5% of the population in the United States and 1% of the population in the United Kingdom. These prevalence rates are generalizable to Canada. Neuropathic pain is extremely difficult to manage. People with symptoms that persist for at least 6 months or who have symptoms that last longer than expected for tissue healing or resolution of an underlying disease are considered to have chronic pain. Chronic pain is an emotional, social, and economic burden for those living with it. Depression, reduced quality of life (QOL), absenteeism from work, and a lower household income are positively correlated with chronic pain. Although the actual number is unknown, a proportion of people with chronic neuropathic pain fail to obtain pain relief from pharmacological therapies despite adequate and reasonable efforts to use them. These people are said to have intractable neuropathic pain, and they are the target population for SCS. The most common indication for SCS in North America is chronic intractable neuropathic pain due to failed back surgery syndrome (FBSS), a term that describes persistent leg or back and leg pain in patients who have had back or spine surgery. Neuropathic pain due to complex regional pain syndrome (CRPS), which can develop in the distal aspect of a limb a minor injury, is another common indication. To a lesser extent, chronic intractable

  18. Regional differences in radiosensitivity across the rat cervical spinal cord

    SciTech Connect

    Bijl, Hendrik P. . E-mail: h.p.bijl@rt.azg.nl; Luijk, Peter van; Coppes, Rob P.; Schippers, Jacobus M.; Konings, Antonius W.T.; Kogel, Albert J. van der

    2005-02-01

    Purpose: To study regional differences in radiosensitivity within the rat cervical spinal cord. Methods and materials: Three types of inhomogeneous dose distributions were applied to compare the radiosensitivity of the lateral and central parts of the rat cervical spinal cord. The left lateral half of the spinal cord was irradiated with two grazing proton beams, each with a different penumbra (20-80% isodoses): lateral wide (penumbra = 1.1 mm) and lateral tight (penumbra = 0.8 mm). In the third experiment, the midline of the cord was irradiated with a narrow proton beam with a penumbra of 0.8 mm. The irradiated spinal cord length (CT-2) was 20 mm in all experiments. The animals were irradiated with variable single doses of unmodulated protons (150 MeV) with the shoot-through method, whereby the plateau of the depth-dose profile is used rather than the Bragg peak. The endpoint for estimating isoeffective dose (ED{sub 50}) values was paralysis of fore and/or hind limbs within 210 days after irradiation. Histology of the spinal cords was performed to assess the radiation-induced tissue damage. Results: High-precision proton irradiation of the lateral or the central part of the spinal cord resulted in a shift of dose-response curves to higher dose values compared with the homogeneously irradiated cervical cord to the same 20-mm length. The ED{sub 50} values were 28.9 Gy and 33.4 Gy for the lateral wide and lateral tight irradiations, respectively, and as high as 71.9 Gy for the central beam experiment, compared with 20.4 Gy for the homogeneously irradiated 20-mm length of cervical cord. Histologic analysis of the spinal cords showed that the paralysis was due to white matter necrosis. The radiosensitivity was inhomogeneously distributed across the spinal cord, with a much more radioresistant central white matter (ED{sub 50} = 71.9 Gy) compared with lateral white matter (ED{sub 50} values = 28.9 Gy and 33.4 Gy). The gray matter did not show any noticeable lesions, such

  19. 21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted spinal cord stimulator for bladder....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal... paraplegic patient who has a complete transection of the spinal cord and who is unable to empty his or...

  20. 21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted spinal cord stimulator for bladder....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal... paraplegic patient who has a complete transection of the spinal cord and who is unable to empty his or...

  1. 21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted spinal cord stimulator for bladder....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal... paraplegic patient who has a complete transection of the spinal cord and who is unable to empty his or...

  2. An Imaging-Based Approach to Spinal Cord Infection.

    PubMed

    Talbott, Jason F; Narvid, Jared; Chazen, J Levi; Chin, Cynthia T; Shah, Vinil

    2016-10-01

    Infections of the spinal cord, nerve roots, and surrounding meninges are uncommon, but highly significant given their potential for severe morbidity and even mortality. Prompt diagnosis can be lifesaving, as many spinal infections are treatable. Advances in imaging technology have now firmly established magnetic resonance imaging (MRI) as the gold standard for spinal cord imaging evaluation, enabling the depiction of infectious myelopathies with exquisite detail and contrast. In this article, we aim to provide an overview of MRI findings for spinal cord infections with special focus on imaging patterns of infection that are primarily confined to the spinal cord, spinal meninges, and spinal nerve roots. In this context, we describe and organize this review around 5 distinct patterns of transverse spinal abnormality that may be detected with MRI as follows: (1) extramedullary, (2) centromedullary, (3) eccentric, (4) frontal horn, and (5) irregular. We seek to classify the most common presentations for a wide variety of infectious agents within this image-based framework while realizing that significant overlap and variation exists, including some infections that remain occult with conventional imaging techniques. PMID:27616314

  3. Surgical Outcomes of High-Grade Spinal Cord Gliomas

    PubMed Central

    Hida, Kazutoshi; Yano, Syunsuke; Aoyama, Takeshi; Koyanagi, Izumi; Houkin, Kiyohiro

    2015-01-01

    Study Design A retrospective study. Purpose The purpose of this study was to obtain useful information for establishing the guidelines for treating high-grade spinal cord gliomas. Overview of Literature The optimal management of high-grade spinal cord gliomas remains controversial. We report the outcomes of the surgical management of 14 high-grade spinal glioma. Methods We analyzed the outcomes of 14 patients with high-grade spinal cord gliomas who were surgically treated between 1989 and 2012. Survival was charted with the Kaplan-Meier plots and comparisons were made with the log-rank test. Results None of the patients with high-grade spinal cord gliomas underwent total resection. Subtotal resection was performed in two patients, partial resection was performed in nine patients, and open biopsy was performed in three patients. All patients underwent postoperative radiotherapy and six patients further underwent radiation cordotomy. The median survival time for patients with high-grade spinal cord gliomas was 15 months, with a 5-year survival rate of 22.2%. The median survival time for patients with World Health Organization grade III tumors was 25.5 months, whereas the median survival time for patients with glioblastoma multiforme was 12.5 months. Both univariate and multivariate Cox proportional hazards models demonstrated a significant effect only in the group that did not include cervical cord lesion as a factor associated with survival (p=0.04 and 0.03). Conclusions The surgical outcome of patients diagnosed with high-grade spinal cord gliomas remains poor. Notably, only the model which excluded cervical cord lesions as a factor significantly predicted survival. PMID:26713128

  4. Models of spinal cord injury: Part 3. Dynamic load technique.

    PubMed

    Black, P; Markowitz, R S; Damjanov, I; Finkelstein, S D; Kushner, H; Gillespie, J; Feldman, M

    1988-01-01

    Having previously studied a static load model of cord injury in rats, we report here an evaluation of a dynamic (weight drop) technique. Under general anesthesia, Sprague-Dawley rats were subjected to a laminectomy at T12, after which a 10-g weight was dropped onto a force transducer and impounder resting on the spinal cord; the weight drop distances varied in different groups from 0 (control) in increments of 2.5 cm to a maximal height of 17.5 cm. A strain gauge attached to the force transducer yielded an oscilloscopic wave form from which force of impact (peak force and impulse) was calculated. Eighty-six animals were used in this parametric study. The animals were observed for 4 weeks postinjury with two tests of motor recovery (Tarlov score for locomotion and the inclined plane test). After sacrifice at 4 weeks, the spinal cords were removed and, with the use of preset criteria, qualitative histopathological scoring of the extent of tissue damage was carried out. We found that the variable height of weight drop was capable of producing a graded injury that correlated with the force of injury (as measured by the force transducer) and with the outcome parameters of functional recovery and degree of morphological damage in the spinal cord. Histopathologically, there was a tendency to central cavitation of the cord. Both the static load and the dynamic load techniques seem to be valid models of spinal cord injury. Pathologically, however, the tissue damage after static load injury involved primarily the dorsal half of the cord. By contrast, the dynamic load technique produced central cavitation comparable to that observed in human spinal cord injury. In this respect, the dynamic model seems to be superior and its use is therefore recommended for studies of therapeutic intervention for spinal cord injury. PMID:3344087

  5. [Magnetic resonance tomography in late sequelae of spinal and spinal cord injuries].

    PubMed

    Kravtsov, A K; Akhadov, T A; Sachkova, I Iu; Belov, S A; Chernenko, O A; Panova, M M

    1993-01-01

    Magnetic-resonance tomography (MRT) helped obtain a high-resolution image characterized by high sensitivity in respect of soft tissue contrast visualization and providing direct imaging of the spinal cord and its radicles. This method is useful in the diagnosis of injuries to the spine and cord. A total of 64 patients of both sexes aged 6 to 67 were examined. The primary diagnosis of traumatic changes in the spine and cord was confirmed by MRT in only 62% of cases. Two groups of patients were singled out: with acute and chronic injuries, subdivided into subgroups with and without spinal cord dysfunction. The detected changes were divided into extramedullary (traumatic disk hernias, compression of the cord or radicles with a dislocated bone fragment, epidural hematoma) and intramedullary (edema, hemorrhages, spinal cord disruption); MRT diagnosis of intramedullary changes is particularly important, more so in the absence of bone injuries. In remote periods after the trauma the clinical picture was determined by spinal canal stenosis, cicatricial atrophic and adhesive changes eventually blocking the liquor space. Intramedullary changes presented as spinal cord cysts or syringomyelia. A classification of the detected changes by the types of injuries and their aftereffects is presented in the paper. The authors emphasize the desirability of MRT in spinal injuries with signs of cord dysfunction. PMID:7801568

  6. Quantifying the internal deformation of the rodent spinal cord during acute spinal cord injury - the validation of a method.

    PubMed

    Bhatnagar, Tim; Liu, Jie; Yung, Andrew; Cripton, Peter; Kozlowski, Piotr; Tetzlaff, Wolfram; Oxland, Thomas

    2016-01-01

    Visualization and analysis of the rodent spinal cord subject to experimental spinal cord injury (SCI) has almost completely been limited to naked-eye observations, and a single measure of gross spinal cord motion due to injury. This study introduces a novel method which utilizes MRI to quantify the deformation of the rodent spinal cord due to imposed, clinically-relevant injuries - specifically, cervical contusion and dislocation mechanisms. The image registration methods were developed using the Advanced Normalization Tools package, which incorporate rigid, affine and deformable registration steps. The proposed method is validated against a fiducial-based, 'gold-standard' measure of spinal cord tissue motion. The validation analysis yielded accuracy (and precision) values of 62 μm (49 μm), 73 μm (79 μm) and 112 μm (110 μm), for the medio-lateral, dorso-ventral and cranio-caudal directions, respectively. The internal morphological change of the spinal cord has never before been quantified, experimentally. This study demonstrates the capability of this method and its potential for future application to in vivo rodent models of SCI. PMID:25894327

  7. In Vivo Measurement of Cervical Spinal Cord Deformation During Traumatic Spinal Cord Injury in a Rodent Model.

    PubMed

    Bhatnagar, Tim; Liu, Jie; Yung, Andrew; Cripton, Peter A; Kozlowski, Piotr; Oxland, Thomas

    2016-04-01

    The spinal cord undergoes physical deformation during traumatic spinal cord injury (TSCI), which results in biological damage. This study demonstrates a novel approach, using magnetic resonance imaging and image registration techniques, to quantify the three-dimensional deformation of the cervical spinal cord in an in vivo rat model. Twenty-four male rats were subjected to one of two clinically relevant mechanisms of TSCI (i.e. contusion and dislocation) inside of a MR scanner using a novel apparatus, enabling imaging of the deformed spinal cords. The displacement fields demonstrated qualitative differences between injury mechanisms. Three-dimensional Lagrangian strain fields were calculated, and the results from the contusion injury mechanism were deemed most reliable. Strain field error was assessed using a Monte Carlo approach, which showed that simulated normal strain error experienced a bias, whereas shear strain error did not. In contusion injury, a large region of dorso-ventral compressive strain was observed under the impactor which extended into the ventral region of the spinal cord. High tensile lateral strains under the impactor and compressive lateral strains in the lateral white matter were also observed in contusion. The ability to directly observe and quantify in vivo spinal cord deformation informs our knowledge of the mechanics of TSCI. PMID:26294007

  8. Inflammogenesis of Secondary Spinal Cord Injury.

    PubMed

    Anwar, M Akhtar; Al Shehabi, Tuqa S; Eid, Ali H

    2016-01-01

    Spinal cord injury (SCI) and spinal infarction lead to neurological complications and eventually to paraplegia or quadriplegia. These extremely debilitating conditions are major contributors to morbidity. Our understanding of SCI has certainly increased during the last decade, but remains far from clear. SCI consists of two defined phases: the initial impact causes primary injury, which is followed by a prolonged secondary injury consisting of evolving sub-phases that may last for years. The underlying pathophysiological mechanisms driving this condition are complex. Derangement of the vasculature is a notable feature of the pathology of SCI. In particular, an important component of SCI is the ischemia-reperfusion injury (IRI) that leads to endothelial dysfunction and changes in vascular permeability. Indeed, together with endothelial cell damage and failure in homeostasis, ischemia reperfusion injury triggers full-blown inflammatory cascades arising from activation of residential innate immune cells (microglia and astrocytes) and infiltrating leukocytes (neutrophils and macrophages). These inflammatory cells release neurotoxins (proinflammatory cytokines and chemokines, free radicals, excitotoxic amino acids, nitric oxide (NO)), all of which partake in axonal and neuronal deficit. Therefore, our review considers the recent advances in SCI mechanisms, whereby it becomes clear that SCI is a heterogeneous condition. Hence, this leads towards evidence of a restorative approach based on monotherapy with multiple targets or combinatorial treatment. Moreover, from evaluation of the existing literature, it appears that there is an urgent requirement for multi-centered, randomized trials for a large patient population. These clinical studies would offer an opportunity in stratifying SCI patients at high risk and selecting appropriate, optimal therapeutic regimens for personalized medicine. PMID:27147970

  9. Inflammogenesis of Secondary Spinal Cord Injury

    PubMed Central

    Anwar, M. Akhtar; Al Shehabi, Tuqa S.; Eid, Ali H.

    2016-01-01

    Spinal cord injury (SCI) and spinal infarction lead to neurological complications and eventually to paraplegia or quadriplegia. These extremely debilitating conditions are major contributors to morbidity. Our understanding of SCI has certainly increased during the last decade, but remains far from clear. SCI consists of two defined phases: the initial impact causes primary injury, which is followed by a prolonged secondary injury consisting of evolving sub-phases that may last for years. The underlying pathophysiological mechanisms driving this condition are complex. Derangement of the vasculature is a notable feature of the pathology of SCI. In particular, an important component of SCI is the ischemia-reperfusion injury (IRI) that leads to endothelial dysfunction and changes in vascular permeability. Indeed, together with endothelial cell damage and failure in homeostasis, ischemia reperfusion injury triggers full-blown inflammatory cascades arising from activation of residential innate immune cells (microglia and astrocytes) and infiltrating leukocytes (neutrophils and macrophages). These inflammatory cells release neurotoxins (proinflammatory cytokines and chemokines, free radicals, excitotoxic amino acids, nitric oxide (NO)), all of which partake in axonal and neuronal deficit. Therefore, our review considers the recent advances in SCI mechanisms, whereby it becomes clear that SCI is a heterogeneous condition. Hence, this leads towards evidence of a restorative approach based on monotherapy with multiple targets or combinatorial treatment. Moreover, from evaluation of the existing literature, it appears that there is an urgent requirement for multi-centered, randomized trials for a large patient population. These clinical studies would offer an opportunity in stratifying SCI patients at high risk and selecting appropriate, optimal therapeutic regimens for personalized medicine. PMID:27147970

  10. Intradural lipomas of the spinal cord. A clinicopathological correlation.

    PubMed

    Ammerman, B J; Henry, J M; De Girolami, U; Earle, K M

    1976-03-01

    Nine original cases of intradural spinal cord lipomas have been examined from a clinical and pathological standpoint. These tumors occur more commonly in men in the second to fourth decade and are found most frequently in the thoracic spinal cord. Paraparesis, sensory changes, urinary incontinence, and pain are frequent presenting complaints. Myelography is the diagnostic study of choice. All lipomas in this series were located primarily within the cord; four of these also presented an extramedullary extension. Admixed nerve bundles were present in five cases with associated hypertrophic onion-bulb formation in three. Decompression with biopsy or subtotal resection is the operative procedure of choice. PMID:1249612

  11. [Spinal and spinal cord injuries. Therapeutic approach in Gabon].

    PubMed

    Loembe, P M; Bouger, D; Dukuly, L; Ndong-Launay, M

    1991-01-01

    The authors present their experience with 81 cases (66.4%) of acute cervical spine injuries (C.S.I.) and 41 cases (33.6%) of acute thoracolumbar spine injuries (T.L.S.I.) treated by a multidisciplinary approach, at Jeanne Ebori Hospital (Libreville, Gabon) between the years 1981 and 1987. Traffic accidents were the leading cause of injury. The largest group consisted of patients in their third decade. The anatomic localizations were: upper cervical spine: 22 cases (27%); lower cervical spine: 56 (69%); upper thoracic spine: 11 (26.8%); lower thoracic spine or thoracolumbar area: 19 (46.3%); lumbar spine: 7 (17%). There were osteoligamental lesions in 3 cases (3.7%) of C.S.I. and 4 (9.7%) of T.L.S.I. Clinically, 44 patients (54.3%) with C.S.I. and 37 (90.2%) with T.L.S.I. had neurological deficits. Surgical indications depended upon the osseous as well as neurologic lesions. There were five important steps in the treatment of spinal injuries associated with neurological deficit: (1) immobilization, (2) medical stabilization, (3) spinal alignment (skeletal traction), (4) operative decompression if there was proven cord compression, and (5) spinal stabilization. Twenty patients (24.6%) with cervical injuries were treated conservatively (traction, collar, kinesitherapy); 53 (65.4%) underwent a surgical intervention (anterior approach - 21, posterior fusion - 30, combined approach - 2); and in 8 patients (9.8%) refraining from surgery seemed the best alternative. After lengthy multidisciplinary discussion, the authors elected not to operate on tetraplegic patients with respiratory problems that necessitated assisted ventilation, because of its fatal outcome. Of injuries to the thoracolumbar spine, 13 (31.7%) were treated conservatively (bedrest, orthopedic treatment). Twenty-eight patients (68.2%) with unstable thoracic and lumbar fractures associated with neurologic deficit required acute surgical intervention (stabilization with or without decompression of the neural

  12. Optical measurement of blood flow changes in spinal cord injury

    NASA Astrophysics Data System (ADS)

    Phillips, J. P.; Kyriacou, P. A.; George, K. J.; Langford, R. M.

    2010-07-01

    Little is known about cell death in spinal cord tissue following compression injury, despite compression being a key component of spinal injuries. Currently models are used to mimic compression injury in animals and the effects of the compression evaluated by observing the extent and duration of recovery of normal motor function in the days and weeks following the injury. A fibreoptic photoplethysmography system was used to investigate whether pulsation of the small arteries in the spinal cord occurred before, during and after compressive loads were applied to the tissue. It was found that the signal amplitudes were reduced and this reduction persisted for at least five minutes after the compression ceased. It is hoped that results from this preliminary study may improve knowledge of the mechanism of spinal cord injury.

  13. Management of severe spinal cord injury following hyperbaric exposure.

    PubMed

    Mathew, Bruce; Laden, Gerard

    2015-09-01

    There is an increasing body of evidence that drainage of lumbar cerebrospinal fluid (CSF) improves functional neurological outcome after reperfusion injury to the spinal cord that occasionally follows aortic reconstructive surgery. This beneficial effect is considered owing to lowering of the CSF pressure thereby normalising spinal cord blood flow and reducing the 'secondary' cord injury caused by vascular congestion and cord swelling in the relatively confined spinal canal. Whilst lacking definitive proof, there are convincing randomised controlled trials (RCTs), cohort data and systematic reviews supporting this intervention. The therapeutic window for lumbar CSF drainage requires further elucidation; however, it appears to be days rather than hours post insult. We contend that the same benefit is likely to be achieved following other primary spinal cord injuries that cause cord swelling and elicit the 'secondary' injury. Traditionally the concept of CSF drainage has been considered more applicable to the brain as contained in a 'closed box' by lowering intracranial pressure (ICP) to improve cerebral perfusion pressure (CPP). The control of CPP is intended to limit 'secondary' brain injury and is a key concept of brain injury management. Using microdialysis in the spinal cords of trauma patients, it has been shown that intraspinal pressure (ISP) needs to be kept below 20 mmHg and spinal cord perfusion pressure (SCPP) above 70 mmHg to avoid biochemical evidence of secondary cord damage. Vasopressor have also been used in spinal cord injury to improve perfusion, however complications are common, typically cardiac in nature, and require very careful monitoring; the evidence supporting this approach is notably less convincing. Decompression illness (DCI) of the spinal cord is treated with recompression, hyperbaric oxygen, various medications designed to reduce the inflammatory response and fluid administration to normalise blood pressure and haematocrit. These

  14. Cardiovascular dysfunction following spinal cord injury

    PubMed Central

    Partida, Elizabeth; Mironets, Eugene; Hou, Shaoping; Tom, Veronica J.

    2016-01-01

    Both sensorimotor and autonomic dysfunctions often occur after spinal cord injury (SCI). Particularly, a high thoracic or cervical SCI interrupts supraspinal vasomotor pathways and results in disordered hemodynamics due to deregulated sympathetic outflow. As a result of the reduced sympathetic activity, patients with SCI may experience hypotension, cardiac dysrhythmias, and hypothermia post-injury. In the chronic phase, changes within the CNS and blood vessels lead to orthostatic hypotension and life-threatening autonomic dysreflexia (AD). AD is characterized by an episodic, massive sympathetic discharge that causes severe hypertension associated with bradycardia. The syndrome is often triggered by unpleasant visceral or sensory stimuli below the injury level. Currently the only treatments are palliative – once a stimulus elicits AD, pharmacological vasodilators are administered to help reduce the spike in arterial blood pressure. However, a more effective means would be to mitigate AD development by attenuating contributing mechanisms, such as the reorganization of intraspinal circuits below the level of injury. A better understanding of the neuropathophysiology underlying cardiovascular dysfunction after SCI is essential to better develop novel therapeutic approaches to restore hemodynamic performance. PMID:27073353

  15. Spinal cord involvement in patients with cirrhosis

    PubMed Central

    Nardone, Raffaele; Höller, Yvonne; Storti, Monica; Lochner, Piergiorgio; Tezzon, Frediano; Golaszewski, Stefan; Brigo, Francesco; Trinka, Eugen

    2014-01-01

    A severe spinal cord involvement may rarely occur in patients with cirrhosis and other chronic liver diseases; this complication is usually associated with overt liver failure and surgical or spontaneous porto-systemic shunt. Hepatic myelopathy (HM) is characterized by progressive weakness and spasticity of the lower extremities, while sensory and sphincter disturbances have rarely been described and are usually less important. The diagnosis is assigned in the appropriate clinical setting on clinical grounds after the exclusion of other clinical entities leading to spastic paraparesis. Magnetic resonance imaging is often unremarkable; however, also intracerebral corticospinal tract abnormalities have been reported recently. The study of motor evoked potentials may disclose central conduction abnormalities even before HM is clinically manifest. HM responds poorly to blood ammonia-lowering and other conservative medical therapy. Liver transplantation represents a potentially definitive treatment for HM in patients with decompensated cirrhosis of Child-Pugh B and C grades. Other surgical treatment options in HM include surgical ligation, shunt reduction, or occlusion by interventional procedures. PMID:24627593

  16. Acute complications of spinal cord injuries.

    PubMed

    Hagen, Ellen Merete

    2015-01-18

    The aim of this paper is to give an overview of acute complications of spinal cord injury (SCI). Along with motor and sensory deficits, instabilities of the cardiovascular, thermoregulatory and broncho-pulmonary system are common after a SCI. Disturbances of the urinary and gastrointestinal systems are typical as well as sexual dysfunction. Frequent complications of cervical and high thoracic SCI are neurogenic shock, bradyarrhythmias, hypotension, ectopic beats, abnormal temperature control and disturbance of sweating, vasodilatation and autonomic dysreflexia. Autonomic dysreflexia is an abrupt, uncontrolled sympathetic response, elicited by stimuli below the level of injury. The symptoms may be mild like skin rash or slight headache, but can cause severe hypertension, cerebral haemorrhage and death. All personnel caring for the patient should be able to recognize the symptoms and be able to intervene promptly. Disturbance of respiratory function are frequent in tetraplegia and a primary cause of both short and long-term morbidity and mortality is pulmonary complications. Due to physical inactivity and altered haemostasis, patients with SCI have a higher risk of venous thromboembolism and pressure ulcers. Spasticity and pain are frequent complications which need to be addressed. The psychological stress associated with SCI may lead to anxiety and depression. Knowledge of possible complications during the acute phase is important because they may be life threatening and/ or may lead to prolonged rehabilitation. PMID:25621207

  17. Cardiovascular dysfunction following spinal cord injury.

    PubMed

    Partida, Elizabeth; Mironets, Eugene; Hou, Shaoping; Tom, Veronica J

    2016-02-01

    Both sensorimotor and autonomic dysfunctions often occur after spinal cord injury (SCI). Particularly, a high thoracic or cervical SCI interrupts supraspinal vasomotor pathways and results in disordered hemodynamics due to deregulated sympathetic outflow. As a result of the reduced sympathetic activity, patients with SCI may experience hypotension, cardiac dysrhythmias, and hypothermia post-injury. In the chronic phase, changes within the CNS and blood vessels lead to orthostatic hypotension and life-threatening autonomic dysreflexia (AD). AD is characterized by an episodic, massive sympathetic discharge that causes severe hypertension associated with bradycardia. The syndrome is often triggered by unpleasant visceral or sensory stimuli below the injury level. Currently the only treatments are palliative - once a stimulus elicits AD, pharmacological vasodilators are administered to help reduce the spike in arterial blood pressure. However, a more effective means would be to mitigate AD development by attenuating contributing mechanisms, such as the reorganization of intraspinal circuits below the level of injury. A better understanding of the neuropathophysiology underlying cardiovascular dysfunction after SCI is essential to better develop novel therapeutic approaches to restore hemodynamic performance. PMID:27073353

  18. Cardiac arrhythmias associated with spinal cord injury

    PubMed Central

    Hector, Sven Magnus; Biering-Sørensen, Tor; Krassioukov, Andrei; Biering-Sørensen, Fin

    2013-01-01

    Context/Objectives To review the current literature to reveal the incidence of cardiac arrhythmias and its relation to spinal cord injury (SCI). Methods Data source: MEDLINE database, 304 hits, and 32 articles were found to be relevant. The relevant articles all met the inclusion criteria: (1) contained original data (2) on cardiac arrhythmias (3) in humans with (4) traumatic SCI. Results In the acute phase of SCI (1–14 days after injury) more cranial as well as more severe injuries seemed to increase the incidence of bradycardia. Articles not covering the first 14 days after injury, thus describing the chronic phase of SCI, showed that individuals with SCI did not have a higher incidence of cardiac arrhythmias compared with able-bodied controls. Furthermore, their heart rate did not differ significantly. Penile vibro-stimulation was the procedure investigated most likely to cause bradycardia, which in turn was associated with episodes of autonomic dysreflexia. The incidence of bradycardia was found to be 17–77% for individuals with cervical SCI. For individuals with thoracolumbar SCI, the incidence was 0–13%. Conclusion Bradycardia was commonly seen in the acute stage after SCI as well as during procedures such as penile vibro-stimulation and tracheal suction. These episodes of bradycardia were seen more often in individuals with cervical injuries. Longitudinal studies with continuous electrocardiogram recordings are needed to uncover the true relation between cardiac arrhythmias and SCI. PMID:24090076

  19. Central Neuropathic Pain in Spinal Cord Injury

    PubMed Central

    Lee, Sujin; Zhao, Xing; Hatch, Maya; Chun, Sophia; Chang, Eric

    2015-01-01

    Spinal cord injury (SCI) is a devastating medical condition affecting 1.2 million people in the United States. Central neuropathic pain is one of the most common medical complications of SCI. Current treatment options include opioids, antiepileptic agents such as gabapentin, antispastic agents such as baclofen or tizanidine, and tricyclic acid. Other options include complementary, nonpharmacological treatment such as exercise or acupuncture, interventional treatments, and psychological approaches. Although these treatment options exist, central neuropathic pain in patients with SCI is still extremely difficult to treat because of its complexity. To develop and provide more effective treatment options to these patients, proper assessment of and classification tools for central neuropathic pain, as well as a better understanding of the pathophysiology, are needed. A combination of approaches, from standard general pain assessments to medically specific questions unique to SCI pathophysiology, is essential for this population. A multidisciplinary approach to patient care, in addition with a better understanding of pathophysiology and diagnosis, will lead to improved management and treatment of patients with SCI displaying central neuropathic pain. Here we summarize the most recent classification tools, pathophysiology, and current treatment options for patients with SCI with central neuropathic pain. PMID:25750485

  20. Chronic complications of spinal cord injury

    PubMed Central

    Sezer, Nebahat; Akkuş, Selami; Uğurlu, Fatma Gülçin

    2015-01-01

    Spinal cord injury (SCI) is a serious medical condition that causes functional, psychological and socioeconomic disorder. Therefore, patients with SCI experience significant impairments in various aspects of their life. The goals of rehabilitation and other treatment approaches in SCI are to improve functional level, decrease secondary morbidity and enhance health-related quality of life. Acute and long-term secondary medical complications are common in patients with SCI. However, chronic complications especially further negatively impact on patients’ functional independence and quality of life. Therefore, prevention, early diagnosis and treatment of chronic secondary complications in patients with SCI is critical for limiting these complications, improving survival, community participation and health-related quality of life. The management of secondary chronic complications of SCI is also important for SCI specialists, families and caregivers as well as patients. In this paper, we review data about common secondary long-term complications after SCI, including respiratory complications, cardiovascular complications, urinary and bowel complications, spasticity, pain syndromes, pressure ulcers, osteoporosis and bone fractures. The purpose of this review is to provide an overview of risk factors, signs, symptoms, prevention and treatment approaches for secondary long-term complications in patients with SCI. PMID:25621208

  1. Acute complications of spinal cord injuries

    PubMed Central

    Hagen, Ellen Merete

    2015-01-01

    The aim of this paper is to give an overview of acute complications of spinal cord injury (SCI). Along with motor and sensory deficits, instabilities of the cardiovascular, thermoregulatory and broncho-pulmonary system are common after a SCI. Disturbances of the urinary and gastrointestinal systems are typical as well as sexual dysfunction. Frequent complications of cervical and high thoracic SCI are neurogenic shock, bradyarrhythmias, hypotension, ectopic beats, abnormal temperature control and disturbance of sweating, vasodilatation and autonomic dysreflexia. Autonomic dysreflexia is an abrupt, uncontrolled sympathetic response, elicited by stimuli below the level of injury. The symptoms may be mild like skin rash or slight headache, but can cause severe hypertension, cerebral haemorrhage and death. All personnel caring for the patient should be able to recognize the symptoms and be able to intervene promptly. Disturbance of respiratory function are frequent in tetraplegia and a primary cause of both short and long-term morbidity and mortality is pulmonary complications. Due to physical inactivity and altered haemostasis, patients with SCI have a higher risk of venous thromboembolism and pressure ulcers. Spasticity and pain are frequent complications which need to be addressed. The psychological stress associated with SCI may lead to anxiety and depression. Knowledge of possible complications during the acute phase is important because they may be life threatening and/ or may lead to prolonged rehabilitation. PMID:25621207

  2. Neuromuscular interaction is required for neurotrophins-mediated locomotor recovery following treadmill training in rat spinal cord injury

    PubMed Central

    Wu, Qinfeng; Cao, Yana; Dong, Chuanming; Wang, Hongxing; Wang, Qinghua; Tong, Weifeng; Li, Xiangzhe

    2016-01-01

    Recent results have shown that exercise training promotes the recovery of injured rat distal spinal cords, but are still unclear about the function of skeletal muscle in this process. Herein, rats with incomplete thoracic (T10) spinal cord injuries (SCI) with a dual spinal lesion model were subjected to four weeks of treadmill training and then were treated with complete spinal transection at T8. We found that treadmill training allowed the retention of hind limb motor function after incomplete SCI, even with a heavy load after complete spinal transection. Moreover, treadmill training alleviated the secondary injury in distal lumbar spinal motor neurons, and enhanced BDNF/TrkB expression in the lumbar spinal cord. To discover the influence of skeletal muscle contractile activity on motor function and gene expression, we adopted botulinum toxin A (BTX-A) to block the neuromuscular activity of the rat gastrocnemius muscle. BTX-A treatment inhibited the effects of treadmill training on motor function and BDNF/TrKB expression. These results indicated that treadmill training through the skeletal muscle-motor nerve-spinal cord retrograde pathway regulated neuralplasticity in the mammalian central nervous system, which induced the expression of related neurotrophins and promoted motor function recovery. PMID:27190721

  3. Neuromuscular interaction is required for neurotrophins-mediated locomotor recovery following treadmill training in rat spinal cord injury.

    PubMed

    Wu, Qinfeng; Cao, Yana; Dong, Chuanming; Wang, Hongxing; Wang, Qinghua; Tong, Weifeng; Li, Xiangzhe; Shan, Chunlei; Wang, Tong

    2016-01-01

    Recent results have shown that exercise training promotes the recovery of injured rat distal spinal cords, but are still unclear about the function of skeletal muscle in this process. Herein, rats with incomplete thoracic (T10) spinal cord injuries (SCI) with a dual spinal lesion model were subjected to four weeks of treadmill training and then were treated with complete spinal transection at T8. We found that treadmill training allowed the retention of hind limb motor function after incomplete SCI, even with a heavy load after complete spinal transection. Moreover, treadmill training alleviated the secondary injury in distal lumbar spinal motor neurons, and enhanced BDNF/TrkB expression in the lumbar spinal cord. To discover the influence of skeletal muscle contractile activity on motor function and gene expression, we adopted botulinum toxin A (BTX-A) to block the neuromuscular activity of the rat gastrocnemius muscle. BTX-A treatment inhibited the effects of treadmill training on motor function and BDNF/TrKB expression. These results indicated that treadmill training through the skeletal muscle-motor nerve-spinal cord retrograde pathway regulated neuralplasticity in the mammalian central nervous system, which induced the expression of related neurotrophins and promoted motor function recovery. PMID:27190721

  4. Spinal cord compression in two related Ursus arctos horribilis.

    PubMed

    Thomovsky, Stephanie A; Chen, Annie V; Roberts, Greg R; Schmidt, Carrie E; Layton, Arthur W

    2012-09-01

    Two 15-yr-old grizzly bear littermates were evaluated within 9 mo of each other with the symptom of acute onset of progressive paraparesis and proprioceptive ataxia. The most significant clinical examination finding was pelvic limb paresis in both bears. Magnetic resonance examinations of both bears showed cranial thoracic spinal cord compression. The first bear had left-sided extradural, dorsolateral spinal cord compression at T3-T4. Vertebral canal stenosis was also observed at T2-T3. Images of the second bear showed lateral spinal cord compression from T2-T3 to T4-T5. Intervertebral disk disease and associated spinal cord compression was also observed at T2-T3 and T3-T4. One grizzly bear continued to deteriorate despite reduced exercise, steroid, and antibiotic therapy. The bear was euthanized, and a necropsy was performed. The postmortem showed a spinal ganglion cyst that caused spinal cord compression at the level of T3-T4. Wallerian-like degeneration was observed from C3-T6. The second bear was prescribed treatment that consisted of a combination of reduced exercise and steroid therapy. He continued to deteriorate with these medical therapies and was euthanized 4 mo after diagnosis. A necropsy showed hypertrophy and protrusion of the dorsal longitudinal ligament at T2-T3 and T3-T4, with resulting spinal cord compression in this region. Wallerian-like degeneration was observed from C2-L1. This is one of few case reports that describes paresis in bears. It is the only case report, to the authors' knowledge, that describes spinal magnetic resonance imaging findings in a grizzly bear and also the only report that describes a cranial thoracic myelopathy in two related grizzly bears with neurologic signs. PMID:23082524

  5. Spinal Cord Tolerance in the Age of Spinal Radiosurgery: Lessons From Preclinical Studies

    SciTech Connect

    Medin, Paul M.; Boike, Thomas P.

    2011-04-01

    Clinical implementation of spinal radiosurgery has increased rapidly in recent years, but little is known regarding human spinal cord tolerance to single-fraction irradiation. In contrast, preclinical studies in single-fraction spinal cord tolerance have been ongoing since the 1970s. The influences of field length, dose rate, inhomogeneous dose distributions, and reirradiation have all been investigated. This review summarizes literature regarding single-fraction spinal cord tolerance in preclinical models with an emphasis on practical clinical significance. The outcomes of studies that incorporate uniform irradiation are surprisingly consistent among multiple small- and large-animal models. Extensive investigation of inhomogeneous dose distributions in the rat has demonstrated a significant dose-volume effect while preliminary results from one pig study are contradictory. Preclinical spinal cord dose-volume studies indicate that dose distribution is more critical than the volume irradiated suggesting that neither dose-volume histogram analysis nor absolute volume constraints are effective in predicting complications. Reirradiation data are sparse, but results from guinea pig, rat, and pig studies are consistent with the hypothesis that the spinal cord possesses a large capacity for repair. The mechanisms behind the phenomena observed in spinal cord studies are not readily explained and the ability of dose response models to predict outcomes is variable underscoring the need for further investigation. Animal studies provide insight into the phenomena and mechanisms of radiosensitivity but the true significance of animal studies can only be discovered through clinical trials.

  6. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury.

    PubMed

    Figley, Sarah A; Khosravi, Ramak; Legasto, Jean M; Tseng, Yun-Fan; Fehlings, Michael G

    2014-03-15

    Significant vascular changes occur subsequent to spinal cord injury (SCI), which contribute to progressive pathophysiology. In the present study, we used female Wistar rats (300-350 g) and a 35-g clip-compression injury at T6 to T7 to characterize the spatial and temporal vascular changes that ensue post-SCI. Before sacrifice, animals were injected with vascular tracing dyes (2% Evans Blue (EB) or fluorescein isothiocyanate/Lycopersicon esculentum agglutinin [FITC-LEA]) to assess blood-spinal cord barrier (BSCB) integrity or vascular architecture, respectively. Spectrophotometry of EB tissue showed maximal BSCB disruption at 24 h postinjury, with significant disruption observed until 5 days postinjury (p<0.01). FITC-LEA-identified functional vasculature was dramatically reduced by 24 h. Similarly, RECA-1 immunohistochemistry showed a significant decrease in the number of vessels at 24 h postinjury, compared to uninjured animals (p<0.01), with slight increases in endogenous revascularization by 10 days postinjury. White versus gray matter (GM) quantification showed that GM vessels are more susceptible to SCI. Finally, we observed an endogenous angiogenic response between 3 and 7 days postinjury: maximal endothelial cell proliferation was observed at day 5. These data indicate that BSCB disruption and endogenous revascularization occur at specific time points after injury, which may be important for developing effective therapeutic interventions for SCI. PMID:24237182

  7. Anterior spinal cord infarction owing to possible fibrocartilaginous embolism.

    PubMed

    Raghavan, Ashok; Onikul, Ella; Ryan, Monique M; Prelog, Kristina; Taranath, Ajay; Chennapragada, Murthy

    2004-06-01

    Anterior spinal artery syndrome is characterised by acute flaccid quadriparesis or paraparesis, disturbance of pain and temperature sensation, and loss of sphincter control. Fibrocartilaginous embolism is a rarely recognised, but important cause of spinal cord infarction. Fibrocartilaginous embolisation usually occurs after minor trauma without major bony lesions, typically with an intervening symptom-free interval and progressive 'stroke-in-evolution' course. There is evidence that the embolus originates from the intervertebral disc, but the mechanism whereby disc fragments enter the spinal vessels is not well understood. We describe the evolution of MRI findings in a case of anterior spinal artery territory infarction thought to be secondary to fibrocartilaginous embolism. PMID:14747876

  8. Stem cell therapy in spinal cord injuries: current concepts.

    PubMed

    Chhabra, H S

    2012-05-01

    The list of experimental therapies that have been developed in animal models to improve functional outcomes after spinal cord injury is extensive. Though preclinical trials have shown a good potential for cellular therapies in spinal cord injury, there is no documentary proof as of now that any form of cellular therapy definitely improves outcome in management of human spinal cord injury. The adverse effects of many such therapies are well-documented. There is a need to conduct proper clinical trials. Some early-stage spinal cord injury clinical trials have recently been done and some have been started. However, some experimental therapies have been introduced into clinical practice without a clinical trial being completed. Undue hype by the media and claims by professionals have a profound psychological effect on the spinal cord injured and interferes in their rehabilitation. While we know that the future holds a good promise, this should not prevent patients from aggressively pursuing rehabilitation since we are not sure when a clinical breakthrough will be achieved. PMID:23155794

  9. In vivo NIRS monitoring in pig Spinal Cord tissues.

    PubMed

    Tsiakaka, Olivier; Terosiet, Mehdi; Romain, Olivier; Histace, Aymeric; Benali, Habib; Pradat, Pierre-Franois; Vallette, Farouk; Feher, Michael; Feruglio, Sylvain

    2015-08-01

    Little is known about the processes occurring after Spinal Cord damage. Whether permanent or recoverable, those processes have not been precisely characterized because their mechanism is complex and information on the functioning of this organ are partial. This study demonstrates the feasibility of Spinal Cord activity monitoring using Near Infra-Red Spectroscopy in a pig animal model. This animal has been chosen because of its comparable size and its similarities with humans. In the first step, optical characterization of the Spinal Cord tissues was performed in different conditions using a spectrophotometer. Optical Density was evaluated between 3.5 and 6.5 in the [500; 950] nm range. Secondly, adapted light sources with custom probes were used to observe autonomic functions in the spine. Results on the measured haemodynamics at rest and under stimulation show in real time the impact of a global stimulus on a local section of the Spinal Cord. The photoplethysmogram signal of the Spinal Cord showed low AC-to-DC ratio (below to 1 %). PMID:26737236

  10. Neuroprotection and its molecular mechanism following spinal cord injury☆

    PubMed Central

    Liu, Nai-Kui; Xu, Xiao-Ming

    2012-01-01

    Acute spinal cord injury initiates a complex cascade of molecular events termed ‘secondary injury’, which leads to progressive degeneration ranging from early neuronal apoptosis at the lesion site to delayed degeneration of intact white matter tracts, and, ultimately, expansion of the initial injury. These secondary injury processes include, but are not limited to, inflammation, free radical-induced cell death, glutamate excitotoxicity, phospholipase A2 activation, and induction of extrinsic and intrinsic apoptotic pathways, which are important targets in developing neuroprotective strategies for treatment of spinal cord injury. Recently, a number of studies have shown promising results on neuroprotection and recovery of function in rodent models of spinal cord injury using treatments that target secondary injury processes including inflammation, phospholipase A2 activation, and manipulation of the PTEN-Akt/mTOR signaling pathway. The present review outlines our ongoing research on the molecular mechanisms of neuroprotection in experimental spinal cord injury and briefly summarizes our earlier findings on the therapeutic potential of pharmacological treatments in spinal cord injury. PMID:25624837

  11. Frequency Mapping of Rat Spinal Cord at 7T

    NASA Astrophysics Data System (ADS)

    Chen, Evan; Rauscher, Alexander; Kozlowski, Piotr; Yung, Andrew

    2012-10-01

    The spinal cord is an integral part of the nervous system responsible for sensory, motor, and reflex control crucial to all bodily function. Due to its non-invasive nature, MRI is well matched for characterizing and imaging of spinal cord, and is used extensively for clinical applications. Recent developments in magnetic resonance imaging (MRI) at high field (7T) using phase represents a new approach of characterizing spinal cord myelin. Theory suggests that microstructure differences in myelinated white matter (WM) and non-myelinated gray matter (GM) affect MR phase, measurable frequency shifts. Data from pilot experiments using a multi-gradient echo (MGE) sequence to image rat spinal cords placed parallel to main magnetic field B0 has shown frequency shifts between not only between WM and GM, but also between specific WM tracts of the dorsal column, including the fasciculus gracilis, fasciculus cuneatus, and corticospinal tract. Using MGE, frequency maps at multiple echo times (TE) between 4ms and 22ms show a non-linear relationship between WM frequency, contrary to what was previously expected. These results demonstrate the effectiveness of MGE in revealing new information about spinal cord tissue microstructure, and lays important groundwork for in-vivo and human studies.

  12. Simultaneous Brain–Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning

    PubMed Central

    Cohen-Adad, Julien; Marchand-Pauvert, Veronique; Benali, Habib; Doyon, Julien

    2015-01-01

    The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6–C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain–spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations. PMID:26125597

  13. Nonlinear Viscoelastic Characterization of the Porcine Spinal Cord

    PubMed Central

    Shetye, Snehal; Troyer, Kevin; Streijger, Femke; Lee, Jae H. T.; Kwon, Brian K.; Cripton, Peter; Puttlitz, Christian M.

    2014-01-01

    Although quasi-static and quasi-linear viscoelastic properties of the spinal cord have been reported previously, there are no published studies that have investigated the fully (strain-dependent) nonlinear viscoelastic properties of the spinal cord. In this study, stress relaxation experiments and dynamic cycling were performed on six fresh porcine lumbar cord specimens to examine their viscoelastic mechanical properties. The stress relaxation data were fitted to a modified superposition formulation and a novel finite ramp time correction technique was applied. The parameters obtained from this fitting methodology were used to predict the average dynamic cyclic viscoelastic behavior of the porcine cord. The data indicate that the porcine spinal cord exhibited fully nonlinear viscoelastic behavior. The average weighted RMSE for a Heaviside ramp fit was 2.8kPa, which was significantly greater (p < 0.001) than that of the nonlinear (comprehensive viscoelastic characterization (CVC) method) fit (0.365kPa). Further, the nonlinear mechanical parameters obtained were able to accurately predict the dynamic behavior, thus exemplifying the reliability of the obtained nonlinear parameters. These parameters will be important for future studies investigating various damage mechanisms of the spinal cord and studies developing high resolution finite elements models of the spine. PMID:24211612

  14. Electrophysiological and Anatomical Correlates of Spinal Cord Optical Coherence Tomography

    PubMed Central

    Valente, Maurizio; Krstajic, Nikola; Biella, Gabriele E. M.

    2016-01-01

    Despite the continuous improvement in medical imaging technology, visualizing the spinal cord poses severe problems due to structural or incidental causes, such as small access space and motion artifacts. In addition, positional guidance on the spinal cord is not commonly available during surgery, with the exception of neuronavigation techniques based on static pre-surgical data and of radiation-based methods, such as fluoroscopy. A fast, bedside, intraoperative real-time imaging, particularly necessary during the positioning of endoscopic probes or tools, is an unsolved issue. The objective of our work, performed on experimental rats, is to demonstrate potential intraoperative spinal cord imaging and probe guidance by optical coherence tomography (OCT). Concurrently, we aimed to demonstrate that the electromagnetic OCT irradiation exerted no particular effect at the neuronal and synaptic levels. OCT is a user-friendly, low-cost and endoscopy-compatible photonics-based imaging technique. In particular, by using a Fourier-domain OCT imager, operating at 850 nm wavelength and scanning transversally with respect to the spinal cord, we have been able to: 1) accurately image tissue structures in an animal model (muscle, spine bone, cerebro-spinal fluid, dura mater and spinal cord), and 2) identify the position of a recording microelectrode approaching and inserting into the cord tissue 3) check that the infrared radiation has no actual effect on the electrophysiological activity of spinal neurons. The technique, potentially extendable to full three-dimensional image reconstruction, shows prospective further application not only in endoscopic intraoperative analyses and for probe insertion guidance, but also in emergency and adverse situations (e.g. after trauma) for damage recognition, diagnosis and fast image-guided intervention. PMID:27050096

  15. Neuroprotective Effect of Ginsenoside Rd in Spinal Cord Injury Rats.

    PubMed

    Cong, Lin; Chen, Wenting

    2016-08-01

    In this study, the neuroprotective effects of ginsenoside Rd (GS Rd) were evaluated in a rat model of spinal cord injury (SCI). Rats in SCI groups received a T8 laminectomy and a spinal contusion injury. GS Rd 12.5, 25 and 50 mg/kg were administered intraperitoneally 1 hr before the surgery and once daily for 14 days. Dexamethasone 1 mg/kg was administered as a positive control. Locomotor function was evaluated using the BBB score system. H&E staining and Nissl staining were performed to observe the histological changes in the spinal cord. The levels of MDA and GSH and the activity of SOD were assessed to reflect the oxidative stress state. The production of TNF-α, IL-1β and IL-1 was assessed using ELISA kits to examine the inflammatory responses in the spinal cord. TUNEL staining was used to detect the cell apoptosis in the spinal cord. Western blot analysis was used to examine the expression of apoptosis-associated proteins and MAPK proteins. The results demonstrated that GS Rd 25 and 50 mg/kg significantly improved the locomotor function of rats after SCI, reduced tissue injury and increased neuron survival in the spinal cord. Mechanically, GS Rd decreased MDA level, increased GSH level and SOD activity, reduced the production of pro-inflammatory cytokines and prevented cell apoptosis. The effects were equivalent to those of dexamethasone. In addition, GS Rd effectively inhibited the activation of MAPK signalling pathway induced by SCI, which might be involved in the protective effects of GS Rd against SCI. In conclusion, GS Rd attenuates SCI-induced secondary injury through reversing the redox-state imbalance, inhibiting the inflammatory response and apoptosis in the spinal cord tissue. PMID:26833867

  16. Electrophysiological and Anatomical Correlates of Spinal Cord Optical Coherence Tomography.

    PubMed

    Giardini, Mario E; Zippo, Antonio G; Valente, Maurizio; Krstajic, Nikola; Biella, Gabriele E M

    2016-01-01

    Despite the continuous improvement in medical imaging technology, visualizing the spinal cord poses severe problems due to structural or incidental causes, such as small access space and motion artifacts. In addition, positional guidance on the spinal cord is not commonly available during surgery, with the exception of neuronavigation techniques based on static pre-surgical data and of radiation-based methods, such as fluoroscopy. A fast, bedside, intraoperative real-time imaging, particularly necessary during the positioning of endoscopic probes or tools, is an unsolved issue. The objective of our work, performed on experimental rats, is to demonstrate potential intraoperative spinal cord imaging and probe guidance by optical coherence tomography (OCT). Concurrently, we aimed to demonstrate that the electromagnetic OCT irradiation exerted no particular effect at the neuronal and synaptic levels. OCT is a user-friendly, low-cost and endoscopy-compatible photonics-based imaging technique. In particular, by using a Fourier-domain OCT imager, operating at 850 nm wavelength and scanning transversally with respect to the spinal cord, we have been able to: 1) accurately image tissue structures in an animal model (muscle, spine bone, cerebro-spinal fluid, dura mater and spinal cord), and 2) identify the position of a recording microelectrode approaching and inserting into the cord tissue 3) check that the infrared radiation has no actual effect on the electrophysiological activity of spinal neurons. The technique, potentially extendable to full three-dimensional image reconstruction, shows prospective further application not only in endoscopic intraoperative analyses and for probe insertion guidance, but also in emergency and adverse situations (e.g. after trauma) for damage recognition, diagnosis and fast image-guided intervention. PMID:27050096

  17. Automated identification of spinal cord and vertebras on sagittal MRI

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Chan, Heang-Ping; Dong, Qian; He, Bo; Wei, Jun; Hadjiiski, Lubomir M.; Couriel, Daniel

    2014-03-01

    We are developing an automated method for the identification of the spinal cord and the vertebras on spinal MR images, which is an essential step for computerized analysis of bone marrow diseases. The spinal cord segment was first enhanced by a newly developed hierarchical multiscale tubular (HMT) filter that utilizes the complementary hyper- and hypo- intensities in the T1-weighted (T1W) and STIR MRI sequences. An Expectation-Maximization (EM) analysis method was then applied to the enhanced tubular structures to extract candidates of the spinal cord. The spinal cord was finally identified by a maximum-likelihood registration method by analysis of the features extracted from the candidate objects in the two MRI sequences. Using the identified spinal cord as a reference, the vertebras were localized based on the intervertebral disc locations extracted by another HMT filter applied to the T1W images. In this study, 5 and 30 MRI scans from 35 patients who were diagnosed with multiple myeloma disease were collected retrospectively with IRB approval as training and test set, respectively. The vertebras manually outlined by a radiologist were used as reference standard. A total of 422 vertebras were marked in the 30 test cases. For the 30 test cases, 100% (30/30) of the spinal cords were correctly segmented with 4 false positives (FPs) mistakenly identified on the back muscles in 4 scans. A sensitivity of 95.0% (401/422) was achieved for the identification of vertebras, and 5 FPs were marked in 4 scans with an average FP rate of 0.17 FPs/scan.

  18. Biomechanical Behaviors in Three Types of Spinal Cord Injury Mechanisms.

    PubMed

    Khuyagbaatar, Batbayar; Kim, Kyungsoo; Man Park, Won; Hyuk Kim, Yoon

    2016-08-01

    Clinically, spinal cord injuries (SCIs) are radiographically evaluated and diagnosed from plain radiographs, computed tomography (CT), and magnetic resonance imaging. However, it is difficult to conclude that radiographic evaluation of SCI can directly explain the fundamental mechanism of spinal cord damage. The von-Mises stress and maximum principal strain are directly associated with neurological damage in the spinal cord from a biomechanical viewpoint. In this study, the von-Mises stress and maximum principal strain in the spinal cord as well as the cord cross-sectional area (CSA) were analyzed under various magnitudes for contusion, dislocation, and distraction SCI mechanisms, using a finite-element (FE) model of the cervical spine with spinal cord including white matter, gray matter, dura mater with nerve roots, and cerebrospinal fluid (CSF). A regression analysis was performed to find correlation between peak von-Mises stress/peak maximum principal strain at the cross section of the highest reduction in CSA and corresponding reduction in CSA of the cord. Dislocation and contusion showed greater peak stress and strain values in the cord than distraction. The substantial increases in von-Mises stress as well as CSA reduction similar to or more than 30% were produced at a 60% contusion and a 60% dislocation, while the maximum principal strain was gradually increased as injury severity elevated. In addition, the CSA reduction had a strong correlation with peak von-Mises stress/peak maximum principal strain for the three injury mechanisms, which might be fundamental information in elucidating the relationship between radiographic and mechanical parameters related to SCI. PMID:27276391

  19. Forensic imaging-guided recovery of nuclear DNA from the spinal cord*.

    PubMed

    Theodore Harcke, H; Monaghan, Timothy; Yee, Nicole; Finelli, Louis

    2009-09-01

    Our objective is to document the recovery of DNA from the spinal cord or surrounding dura mater in 11 cases of severely burned human remains. Radiographs established that portions of charred tissue contained spine segments. Multidetector computed tomography (MDCT) revealed that each spine specimen contained an intact spinal cord remnant. A full DNA profile was obtained from seven specimens using spinal cord dura mater in six specimens and spinal cord medulla in one specimen. A partial profile was obtained from four specimens (spinal cord dura mater, 2; spinal cord medulla, 2). Bone and muscle surrounding the spinal cord appear to insulate nucleic acid containing tissue from critical thermal degradation. The spinal cord, which is easily identified by MDCT examination of remains and easily recovered at the postmortem examination, can be a source of DNA with extraction yields comparable with other tissue sources. Specimens of dura mater are preferable as processing time is faster than bone. PMID:19686394

  20. 76 FR 56504 - Proposed Information Collection (Spinal Cord Injury Patient Care Survey) Activity: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... AFFAIRS Proposed Information Collection (Spinal Cord Injury Patient Care Survey) Activity: Comment Request... spinal cord patients' satisfaction with VA rehabilitation and health care system. Affected Public... of automated collection techniques or the use of other forms of information technology. Title:...

  1. The Crossed Phrenic Phenomenon and Recovery of Function Following Spinal Cord Injury

    PubMed Central

    Goshgarian, Harry G.

    2009-01-01

    This review will focus on neural plasticity and recovery of respiratory function after spinal cord injury and feature the “crossed phrenic phenomenon” (CPP) as a model for demonstrating such plasticity and recovery. A very brief summary of the earlier literature on the CPP will be followed by a more detailed review of the more recent studies. Two aspects of plasticity associated with the CPP that have been introduced in the literature recently have been spontaneous recovery of ipsilateral hemidiaphragmatic function following chronic spinal cord injury and drug-induced persistent recovery of the ipsilateral hemidiaphragm lasting long after animals have been weaned from drug treatment. The underlying mechanisms for this plasticity and resultant recovery will be discussed in this review. Moreover, two new models involving the CPP have been introduced: a mouse model which now provides for an opportunity to study CPP plasticity at a molecular level using a genetic approach and light-stimulated induction of the CPP accomplished by transfecting mammalian cells with channelrhodopsin. Both models provide an opportunity to sort out the intracellular signaling cascades that may be involved in motor recovery in the respiratory system after spinal cord injury. Finally, the review will examine developmental plasticity of the CPP and discuss how the expression of the CPP changes in neonatal rats as they mature to adults. Understanding the underlying mechanisms behind the spontaneous expression of the crossed phrenic pathway either in the developing animal or after chronic spinal cord injury in the adult animal may provide clues to initiating respiratory recovery sooner to alleviate human suffering and eventually eliminate the leading cause of death in human cases of spinal cord injury. PMID:19539790

  2. An ADL measure for spinal cord injury.

    PubMed

    Bryden, Anne; Bezruczko, Nikolaus

    2011-01-01

    Occupational therapists do not have a comprehensive, objective method for measuring how persons with tetraplegia perform activities of daily living (ADL) in their homes and communities, because SCI ADL performance is usually determined in rehabilitation. The ADL Habits Survey (ADLHS) is designed specifically to address this knowledge gap by surveying performance on relevant and meaningful activities in homes and communities. After a comprehensive task analysis and pilot development, 30 activities were selected that emphasize a broad range of hand and wrist, reaching, and grasping movements in compound activities. A sample of 49 persons with cervical spinal cord injuries responded to items. The sample was predominantly male, median age was 41 years, and ASIA motor classification levels ranged from C2 through C8/T1 with majority concentration in C4, C5, or C6 (68%). Each participant report was rated by an occupational therapist using a seven category rating scale, and the item by participant response matrix (30 X 49) was analyzed with a Rasch model for rating scales. Results showed excellent participant separation (>4) and very high reliability (>.95), and both item and participant fit values were adequate (STANDARDIZED INFIT less than absolute value of 3). With only two exceptions, all participants fit the Rasch rating scale model, and only one item "Light housekeeping" presented significant fit issues. Principal Components Analysis an analysis of item residuals did not reveal serious threats to unidimensionality. A between group fit comparison of participants with more versus less movement found invariant item calibrations, and ANOVA of participant measures found statistically significant differences across ASIA motor classification levels. These ADLHS results offer occupational therapists a new method for measuring ADL that is potentially more sensitive to functional changes in tetraplegia than most instruments in common use. Accommodation of step disorder with a

  3. Sensory axon regeneration: rebuilding functional connections in the spinal cord

    PubMed Central

    Smith, George M.; Falone, Anthony E.; Frank, Eric

    2011-01-01

    Functional regeneration within the adult spinal cord remains a formidable task. A major barrier to regeneration of sensory axons into the spinal cord is the dorsal root entry zone. This region displays many of the inhibitory features characteristic of other central nervous system injuries. Several experimental treatments, including inactivation of inhibitory molecules (such as Nogo and chondroitin sulfate proteoglycans) or administration of neurotrophic factors (such as nerve growth factor, neurotrophin3, glial derived neurotrophic factor and artemin), have been found to promote anatomical and functional regeneration across this barrier. There have been relatively few experiments, however, to determine if regenerating axons project back to their appropriate target areas within the spinal cord. This review focuses on recent advances in sensory axon regeneration, including studies assessing the ability of sensory axons to reconnect with their original synaptic targets. PMID:22137336

  4. Respiration following Spinal Cord Injury: Evidence for Human Neuroplasticity

    PubMed Central

    Hoh, Daniel J.; Mercier, Lynne M.; Hussey, Shaunn P.; Lane, Michael A.

    2013-01-01

    Respiratory dysfunction is one of the most devastating consequences of cervical spinal cord injury (SCI) with impaired breathing being a leading cause of morbidity and mortality in this population. However, there is mounting experimental and clinical evidence for moderate spontaneous respiratory recovery, or “plasticity”, after some spinal cord injuries. Pre-clinical models of respiratory dysfunction following SCI have demonstrated plasticity at neural and behavioral levels that result in progressive recovery of function. Temporal changes in respiration after human SCI have revealed some functional improvements suggesting plasticity paralleling that seen in experimental models – a concept that has been previously under-appreciated. While the extent of spontaneous recovery remains limited, it is possible that enhancing or facilitating neuroplastic mechanisms may have significant therapeutic potential. The next generation of treatment strategies for SCI and related respiratory dysfunction should aim to optimize these recovery processes of the injured spinal cord for lasting functional restoration. PMID:23891679

  5. Malnutrition in spinal cord injury: more than nutritional deficiency.

    PubMed

    Dionyssiotis, Yannis

    2012-08-01

    Denervation of the spinal cord below the level of injury leads to complications producing malnutrition. Nutritional status affects mortality and pathology of injured subjects and it has been reported that two thirds of individuals enrolled in rehabilitation units are malnourished. Therefore, the aim should be either to maintain an optimal nutritional status, or supplement these subjects in order to overcome deficiencies in nutrients or prevent obesity. This paper reviews methods of nutritional assessment and describes the physiopathological mechanisms of malnutrition based on the assumption that spinal cord injured subjects need to receive adequate nutrition to promote optimal recovery, placing nutrition as a first line treatment and not an afterthought in the rehabilitation of spinal cord injury. PMID:22870169

  6. Intramedullary cavernous malformation of the spinal cord in two dogs.

    PubMed

    MacKillop, E; Olby, N J; Linder, K E; Brown, T T

    2007-07-01

    Intramedullary cavernous malformations (CVMs) of the spinal cord were diagnosed in 2 adult dogs that presented for paraparesis. An intramedullary spinal cord lesion was identified on a myelogram in the first dog, and expansion of the vertebral canal was evident on radiographs in the second. Extensive intraparenchymal hemorrhage was found on gross postmortem examination in both dogs, and a distinct lobulated intramedullary mass was evident in the second dog. Microscopically, both lesions were composed of dilated, thin-walled vascular channels with little-to-no intervening neural parenchyma. Both dogs had evidence of channel thrombosis along with perilesional hemorrhage and hemosiderin accumulation. The second dog had additional degenerative changes, including thickened fibrous channel walls with hyalinization, foci of mineralization, and occasional tongues of entrapped gliotic neuropil. CVMs appear to be an uncommon cause of both acute and chronic spinal cord disease in the dog. PMID:17606517

  7. [MR imaging of the spinal cord--with special emphasis on the factors influencing spinal cord measurement].

    PubMed

    Miyasaka, K

    1992-03-01

    On MR images the spinal cord is seen differently in size depending on imaging parameters and displaying window; consequently the findings may be interpreted erroneously as swelling or atrophy of the spinal cord. The purpose of this paper was to evaluate factors influencing spinal cord size on images and to determine the optimal condition estimating the size of the spinal cord. At first we selected 4 cases suspected of cervical spinal disorders which had been examined by both MRI and myelography with tomography. Sagittal diameter of the spinal cord was measured on a film and it was significantly different of those three. That is, the measurement value was greater on T1 weighted image (T1WI) and smaller on T2 weighted image (T2WI) than myelo-tomography. To evaluate the effect of imaging parameters, image reconstruction and image displaying window quantitatively, studied were the cadaveric cervical spinal cord and gelatin phantom tube with a diameter of 13 mm and 9 mm placed in a saline-filled plastic tube. The measurement value was significantly greater on T1WI and smaller on T2WI than true size of the objects. Numbers of phase encoding (128 and 256) significantly affected the measurement value, both on T1WI and T2WI, as well. Ringing artifact of high or low signal was observed at the boundary area of the objects and saline (so-called truncation artifact). However, when the window-level of displaying image was raised stepwisely the measurement value was proportionally decreased and it reached to real value when the level was adjusted at the mean MR signal intensity of the object and saline.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1591101

  8. Spinal epidural abscess complicating vertebral osteomyelitis: an insidious cause of deteriorating spinal cord function.

    PubMed

    Lee, H J; Bach, J R; White, R E

    1992-01-01

    Spinal epidural abscess may complicate vertebral osteomyelitis. The purpose of this report is to discuss its course in two patients with sensory/motor and cognitive impairment and to demonstrate the need for its early detection. Delayed detection may lead to spinal cord injury or meningitis. It may also delay functional return and hinder intensive rehabilitation efforts. Two patients are presented. PMID:1545229

  9. Intramedullary Spinal Cord and Leptomeningeal Metastases from Intracranial Low-grade Oligodendroglioma

    PubMed Central

    Verma, Nipun; Nolan, Craig; Hirano, Miki; Young, Robert J

    2015-01-01

    We present an unusual case of a patient with an intracranial low-grade oligodendroglioma who developed recurrence with an intramedullary spinal cord metastasis and multiple spinal leptomeningeal metastases. The intramedullary spinal cord metastasis showed mild enhancement similar to the original intracranial primary, while the multiple spinal leptomeningeal metastases revealed no enhancement. This is the seventh reported case of symptomatic intramedullary spinal cord metastasis from a low-grade oligodendroglioma. PMID:24667044

  10. Vascular malformations of the spinal cord (angiodysgenetic myelomalacia): a critique on its pathogenesis.

    PubMed

    Badejo, L; Sangalang, V E

    1979-02-01

    Two cases of angiodysgenetic myelomalacia are presented. Both patients had progressive weakness and sensory deficits in the lower extremities and vascular malformations of their spinal cords. The lesions were located on the dorsum of the spinal cord and the dorso-spinal roots. We believe the symptoms that developed later in life were due to spinal cord ischemia resulting from late degenerative changes in the vessels of the malformation and an ever increasing spinal "steal". PMID:424976

  11. 76 FR 71623 - Agency Information Collection (Spinal Cord Injury Patient Care Survey) Under OMB Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... AFFAIRS Agency Information Collection (Spinal Cord Injury Patient Care Survey) Under OMB Review AGENCY.... 2900-New (VA Form 10-0515).'' SUPPLEMENTARY INFORMATION: Title: Spinal Cord Injury Patient Care Survey... Collection. Abstract: Information collected on VA Form 10-0515 will be used to determine spinal cord...

  12. Osteoporotic fractures and hospitalization risk in chronic spinal cord injury

    PubMed Central

    Battaglino, R. A.; Stolzmann, K. L.; Hallett, L. D.; Waddimba, A.; Gagnon, D.; Lazzari, A. A.; Garshick, E.

    2008-01-01

    Summary Osteoporosis is a well acknowledged complication of spinal cord injury. We report that motor complete spinal cord injury and post-injury alcohol consumption are risk factors for hospitalization for fracture treatment. The clinical assessment did not include osteoporosis diagnosis and treatment considerations, indicating a need for improved clinical protocols. Introduction Treatment of osteoporotic long bone fractures often results in lengthy hospitalizations for individuals with spinal cord injury. Clinical features and factors that contribute to hospitalization risk have not previously been described. Methods Three hundred and fifteen veterans ≥ 1 year after spinal cord injury completed a health questionnaire and underwent clinical exam at study entry. Multivariate Cox regression accounting for repeated events was used to assess longitudinal predictors of fracture-related hospitalizations in Veterans Affairs Medical Centers 1996–2003. Results One thousand four hundred and eighty-seven hospital admissions occurred among 315 participants, and 39 hospitalizations (2.6%) were for fracture treatment. Median length of stay was 35 days. Fracture-related complications occurred in 53%. Independent risk factors for admission were motor complete versus motor incomplete spinal cord injury (hazard ratio = 3.73, 95% CI = 1.46–10.50). There was a significant linear trend in risk with greater alcohol consumption after injury. Record review indicated that evaluation for osteoporosis was not obtained during these admissions. Conclusions Assessed prospectively, hospitalization in Veterans Affairs Medical Centers for low-impact fractures is more common in motor complete spinal cord injury and is associated with greater alcohol use after injury. Osteoporosis diagnosis and treatment considerations were not part of a clinical assessment, indicating the need for improved protocols that might prevent low-impact fractures and related admissions. PMID:18581033

  13. Nogo-A expression dynamically varies after spinal cord injury

    PubMed Central

    Wang, Jian-wei; Yang, Jun-feng; Ma, Yong; Hua, Zhen; Guo, Yang; Gu, Xiao-lin; Zhang, Ya-feng

    2015-01-01

    The mechanism involved in neural regeneration after spinal cord injury is unclear. The myelin-derived protein Nogo-A, which is specific to the central nervous system, has been identified to negatively affect the cytoskeleton and growth program of axotomized neurons. Studies have shown that Nogo-A exerts immediate and chronic inhibitory effects on neurite outgrowth. In vivo, inhibitors of Nogo-A have been shown to lead to a marked enhancement of regenerative axon extension. We established a spinal cord injury model in rats using a free-falling weight drop device to subsequently investigate Nogo-A expression. Nogo-A mRNA and protein expression and immunoreactivity were detected in spinal cord tissue using real-time quantitative PCR, immunohistochemistry and western blot analysis. At 24 hours after spinal cord injury, Nogo-A protein and mRNA expression was low in the injured group compared with control and sham-operated groups. The levels then continued to drop further and were at their lowest at 3 days, rapidly rose to a peak after 7 days, and then gradually declined again after 14 days. These changes were observed at both the mRNA and protein level. The transient decrease observed early after injury followed by high levels for a few days indicates Nogo-A expression is time dependent. This may contribute to the lack of regeneration in the central nervous system after spinal cord injury. The dynamic variation of Nogo-A should be taken into account in the treatment of spinal cord injury. PMID:25883620

  14. Aquaporin 1 - a novel player in spinal cord injury.

    PubMed

    Nesic, O; Lee, J; Unabia, G C; Johnson, K; Ye, Z; Vergara, L; Hulsebosch, C E; Perez-Polo, J R

    2008-05-01

    The role of water channel aquaporin 1 (AQP-1) in uninjured or injured spinal cords is unknown. AQP-1 is weakly expressed in neurons and gray matter astrocytes, and more so in white matter astrocytes in uninjured spinal cords, a novel finding. As reported before, AQP-1 is also present in ependymal cells, but most abundantly in small diameter sensory fibers of the dorsal horn. Rat contusion spinal cord injury (SCI) induced persistent and significant four- to eightfold increases in AQP-1 levels at the site of injury (T10) persisting up to 11 months post-contusion, a novel finding. Delayed AQP-1 increases were also found in cervical and lumbar segments, suggesting the spreading of AQP-1 changes over time after SCI. Given that the antioxidant melatonin significantly decreased SCI-induced AQP-1 increases and that hypoxia inducible factor-1alpha was increased in acutely and chronically injured spinal cords, we propose that chronic hypoxia contributes to persistent AQP-1 increases after SCI. Interestingly; AQP-1 levels were not affected by long-lasting hypertonicity that significantly increased astrocytic AQP-4, suggesting that the primary role of AQP-1 is not regulating isotonicity in spinal cords. Based on our results we propose possible novel roles for AQP-1 in the injured spinal cords: (i) in neuronal and astrocytic swelling, as AQP-1 was increased in all surviving neurons and reactive astrocytes after SCI and (ii) in the development of the neuropathic pain after SCI. We have shown that decreased AQP-1 in melatonin-treated SCI rats correlated with decreased AQP-1 immunolabeling in the dorsal horns sensory afferents, and with significantly decreased mechanical allodynia, suggesting a possible link between AQP-1 and chronic neuropathic pain after SCI. PMID:18248364

  15. Aquaporin 1 – a novel player in spinal cord injury

    PubMed Central

    Nesic, O.; Lee, J.; Unabia, G. C.; Johnson, K.; Ye, Z.; Vergara, L.; Hulsebosch, C. E.; Perez-Polo, J. R.

    2008-01-01

    The role of water channel aquaporin 1 (AQP-1) in uninjured or injured spinal cords is unknown. AQP-1 is weakly expressed in neurons and gray matter astrocytes, and more so in white matter astrocytes in uninjured spinal cords, a novel finding. As reported before, AQP-1 is also present in ependymal cells, but most abundantly in small diameter sensory fibers of the dorsal horn. Rat contusion spinal cord injury (SCI) induced persistent and significant four- to eightfold increases in AQP-1 levels at the site of injury (T10) persisting up to 11 months post-contusion, a novel finding. Delayed AQP-1 increases were also found in cervical and lumbar segments, suggesting the spreading of AQP-1 changes over time after SCI. Given that the antioxidant melatonin significantly decreased SCI-induced AQP-1 increases and that hypoxia inducible factor-1α was increased in acutely and chronically injured spinal cords, we propose that chronic hypoxia contributes to persistent AQP-1 increases after SCI. Interestingly; AQP-1 levels were not affected by long-lasting hypertonicity that significantly increased astrocytic AQP-4, suggesting that the primary role of AQP-1 is not regulating isotonicity in spinal cords. Based on our results we propose possible novel roles for AQP-1 in the injured spinal cords: (i) in neuronal and astrocytic swelling, as AQP-1 was increased in all surviving neurons and reactive astrocytes after SCI and (ii) in the development of the neuropathic pain after SCI. We have shown that decreased AQP-1 in melatonin-treated SCI rats correlated with decreased AQP-1 immunolabeling in the dorsal horns sensory afferents, and with significantly decreased mechanical allodynia, suggesting a possible link between AQP-1 and chronic neuropathic pain after SCI. PMID:18248364

  16. Potential associations between chronic whiplash and incomplete spinal cord injury

    PubMed Central

    Smith, Andrew C.; Parrish, Todd B.; Hoggarth, Mark A.; McPherson, Jacob G.; Tysseling, Vicki M.; Wasielewski, Marie; Kim, Hyosub E.; Hornby, T. George; Elliott, James M.

    2016-01-01

    Study Design This research utilized a cross-sectional design with control group inclusion. Objectives Preliminary evidence suggests that a portion of the patient population with chronic whiplash may have sustained spinal cord damage. Our hypothesis is that in some cases of chronic whiplash-associated disorders (WAD), observed muscle weakness in the legs will be associated with local signs of a partial spinal cord injury of the cervical spine. Setting University based laboratory in Chicago, IL, USA. Methods Five participants with chronic WAD were compared with five gender/age/height/weight/body mass index (BMI) control participants. For a secondary investigation, the chronic WAD group was compared with five unmatched participants with motor incomplete spinal cord injury (iSCI). Spinal cord motor tract integrity was assessed using magnetization transfer imaging. Muscle fat infiltration (MFI) was quantified using fat/water separation magnetic resonance imaging. Central volitional muscle activation of the plantarflexors was assessed using a burst superimposition technique. Results We found reduced spinal cord motor tract integrity, increased MFI of the neck and lower extremity muscles and significantly impaired voluntary plantarflexor muscle activation in five participants with chronic WAD. The lower extremity structural changes and volitional weakness in chronic WAD were comparable to participants with iSCI. Conclusion The results support the position that a subset of the chronic whiplash population may have sustained partial damage to the spinal cord. Sponsorship NIH R01HD079076-01A1, NIH T32 HD057845 and the Foundation for Physical Therapy Promotion of Doctoral Studies program.

  17. Solitary lumbar osteochondroma presenting with spinal cord compression.

    PubMed

    Natale, Massimo; Rotondo, Michele; D'Avanzo, Raffaele; Scuotto, Assunta

    2013-01-01

    We report a case of a middle-aged woman with a solitary osteochondroma of the L2 right lamina with intraspinal extension and spinal cord compression. The case is unusual in terms of localisation and age at clinical presentation. In fact, spinal osteochondromas as solitary lesions-especially when affecting the lumbar segment-are rare tumours of a maturing adolescent skeleton, infrequently affecting the neurological structures, because most of the lesions grow out of the spinal canal. Although unusual, they should be considered in the differential diagnosis. Prompt and accurate radiological investigations are important in planning appropriate management. Surgical total excision is the best treatment modality to remove spinal cord and/or nerve root compression, and to avoid the risk of recurrence or malignant transformation. PMID:23904422

  18. Spontaneous Lead Breakage in Implanted Spinal Cord Stimulation Systems

    PubMed Central

    Kim, Tae Hun; Son, Hye Min; Choi, Jong Bum; Moon, Jee Youn

    2010-01-01

    Spinal cord stimulation (SCS) has become an established clinical option for treatment of refractory chronic pain. Current hardware and implantation techniques for SCS are already highly developed and continuously improving; however, equipment failures over the course of long-term treatment are still encountered in a relatively high proportion of the cases treated with it. Percutaneous SCS leads seem to be particularly prone to dislocation and insulation failures. We describe our experience of lead breakage in the inserted spinal cord stimulator to a complex regional pain syndrome patient who obtained satisfactory pain relief after the revision of SCS. PMID:20552080

  19. Spinal Cord Stimulation in Pain Management: A Review

    PubMed Central

    2012-01-01

    Spinal cord stimulation has become a widely used and efficient alternative for the management of refractory chronic pain that is unresponsive to conservative therapies. Technological improvements have been considerable and the current neuromodulation devices are both extremely sophisticated and reliable in obtaining good results for various clinical situations of chronic pain, such as failed back surgery syndrome, complex regional pain syndrome, ischemic and coronary artery disease. This technique is likely to possess a savings in costs compared with alternative therapy strategies despite its high initial cost. Spinal cord stimulation continues to be a valuable tool in the treatment of chronic disabling pain. PMID:22787543

  20. Acute Management of Nutritional Demands after Spinal Cord Injury

    PubMed Central

    Thibault-Halman, Ginette; Casha, Steven; Singer, Shirley

    2011-01-01

    Abstract A systematic review of the literature was performed to address pertinent clinical questions regarding nutritional management in the setting of acute spinal cord injury (SCI). Specific metabolic challenges are present following spinal cord injury. The acute stage is characterized by a reduction in metabolic activity, as well as a negative nitrogen balance that cannot be corrected, even with aggressive nutritional support. Metabolic demands need to be accurately monitored to avoid overfeeding. Enteral feeding is the optimal route following SCI. When oral feeding is not possible, nasogastric, followed by nasojejunal, then by percutaneous endoscopic gastrostomy, if necessary, is suggested. PMID:20373845

  1. Erdheim–Chester disease associated with intramedullary spinal cord lesion

    PubMed Central

    Takeuchi, T; Sato, M; Sonomura, T; Itakura, T

    2012-01-01

    Erdheim–Chester disease (ECD) is a rare non-Langerhans cell histiocytosis. We present a case of a 56-year-old male with ECD. As time progressed, involvement of the orbital fossa, cranial convexity, spinal cord, brain stem, thyroid, lung, retroperitoneum, lower extremity bones and skin were found. Previously reported cases reveal the frequency of ECD with spinal cord involvement is rare. Although this was a presumed diagnosis based on other lesions, our case is the first in which both intramedullary and epidural masses are present. PMID:22391503

  2. Rodent Models and Behavioral Outcomes of Cervical Spinal Cord Injury

    PubMed Central

    Geissler, Sydney A.; Schmidt, Christine E.; Schallert, Timothy

    2014-01-01

    Rodent spinal cord injury (SCI) models have been developed to examine functional and physiological deficits after spinal cord injury with the hope that these models will elucidate information about human SCI. Models are needed to examine possible treatments and to understand histopathology after SCI; however, they should be considered carefully and chosen based on the goals of the study being performed. Contusion, compression, transection, and other models exist and have the potential to reveal important information about SCI that may be related to human SCI and the outcomes of treatment and timing of intervention. PMID:25309824

  3. Expression of Lymphatic Markers in the Adult Rat Spinal Cord

    PubMed Central

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A.; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  4. [Spinal cord stimulation for the management of chronic pain].

    PubMed

    Perruchoud, Christophe; Mariotti, Nicolas

    2016-06-22

    Neuromodulation techniques modify the activity of the central or peripheral nervous system. Spinal cord stimulation is a reversible and minimally invasive treatment whose efficacy and cost effectiveness are recognized for the treatment of chronic neuropathic pain or ischemic pain. Spinal cord stimulation is not the option of last resort and should be considered among other options before prescribing long-term opioids or considering reoperation. The selection and regular follow-up of patients are crucial to the success of the therapy. PMID:27506068

  5. Spinal cord stimulation for neuropathic pain: current perspectives

    PubMed Central

    Wolter, Tilman

    2014-01-01

    Neuropathic pain constitutes a significant portion of chronic pain. Patients with neuropathic pain are usually more heavily burdened than patients with nociceptive pain. They suffer more often from insomnia, anxiety, and depression. Moreover, analgesic medication often has an insufficient effect on neuropathic pain. Spinal cord stimulation constitutes a therapy alternative that, to date, remains underused. In the last 10 to 15 years, it has undergone constant technical advancement. This review gives an overview of the present practice of spinal cord stimulation for chronic neuropathic pain and current developments such as high-frequency stimulation and peripheral nerve field stimulation. PMID:25429237

  6. Cell therapy for spinal cord injury informed by electromagnetic waves.

    PubMed

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments. PMID:27599240

  7. Spinal cord response to laser treatment of injured peripheral nerve

    SciTech Connect

    Rochkind, S.; Vogler, I.; Barr-Nea, L. )

    1990-01-01

    The authors describe the changes occurring in the spinal cord of rats subjected to crush injury of the sciatic nerve followed by low-power laser irradiation of the injured nerve. Such laser treatment of the crushed peripheral nerve has been found to mitigate the degenerative changes in the corresponding neurons of the spinal cord and induce proliferation of neuroglia both in astrocytes and oligodendrocytes. This suggests a higher metabolism in neurons and a better ability for myelin production under the influence of laser treatment.

  8. Tumefactive demyelinating disease with isolated spinal cord involvement

    PubMed Central

    Kirsch, Claudia F

    2014-01-01

    Tumefactive multiple sclerosis (TMS) is an unusual variant of demyelinating disease. TMS has a variable and unknown progression and presents with features similar to a neoplasm making the determination a diagnostic challenge to clinicians. This report presents one of the very few reported cases of isolated spinal cord TMS, and the second case to describe TMS of the lower spinal cord, given that the lesions are typically cervical. This case study presents a diagnostic approach based on clinical, laboratory, and imaging characteristics, as well as sheds some light on the response to therapy and disease evolution. PMID:25298871

  9. Protective effect of rosemary on acrylamide motor neurotoxicity in spinal cord of rat offspring: postnatal follow-up study

    PubMed Central

    Al-Gholam, Marwa A.; El-Mehi, Abeer E.; El-Barbary, Abd El-Moneum; Fokar, Ahmed Zo El

    2016-01-01

    The direct interactive effects of rosemary and acrylamide on the development of motor neurons in the spinal cord remains unknown. Our goal is to confirm the protective effects of rosemary against motor neuronal degeneration induced by acrylamide in the developing postnatal rat spinal cord using a postnatal rat model. We assigned the offspring of treated female rats into control, rosemary; acrylamide group; and recovery groups. This work depended on clinical, histopathological, morphometrically, immunohistochemical and genetic methods. In the acrylamide group, we observed oxidation, motor neuron degeneration, apoptosis, myelin degeneration, neurofilament reduction, reactive gliosis. Whoever, concomitant rosemary intake and withdrawal of acrylamide modulate these effects. These findings proof that dietary rosemary can directly protect motor neuron against acrylamide toxicity in the mammalian developing spinal cord. PMID:27051566

  10. Protective effect of rosemary on acrylamide motor neurotoxicity in spinal cord of rat offspring: postnatal follow-up study.

    PubMed

    Al-Gholam, Marwa A; Nooh, Hanaa Zakaria; El-Mehi, Abeer E; El-Barbary, Abd El-Moneum; Fokar, Ahmed Zo El

    2016-03-01

    The direct interactive effects of rosemary and acrylamide on the development of motor neurons in the spinal cord remains unknown. Our goal is to confirm the protective effects of rosemary against motor neuronal degeneration induced by acrylamide in the developing postnatal rat spinal cord using a postnatal rat model. We assigned the offspring of treated female rats into control, rosemary; acrylamide group; and recovery groups. This work depended on clinical, histopathological, morphometrically, immunohistochemical and genetic methods. In the acrylamide group, we observed oxidation, motor neuron degeneration, apoptosis, myelin degeneration, neurofilament reduction, reactive gliosis. Whoever, concomitant rosemary intake and withdrawal of acrylamide modulate these effects. These findings proof that dietary rosemary can directly protect motor neuron against acrylamide toxicity in the mammalian developing spinal cord. PMID:27051566

  11. Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation.

    PubMed

    Lukovic, Dunja; Moreno-Manzano, Victoria; Lopez-Mocholi, Eric; Rodriguez-Jiménez, Francisco Javier; Jendelova, Pavla; Sykova, Eva; Oria, Marc; Stojkovic, Miodrag; Erceg, Slaven

    2015-01-01

    Spinal cord injury (SCI) results in neural loss and consequently motor and sensory impairment below the injury. There are currently no effective therapies for the treatment of traumatic SCI in humans. Various animal models have been developed to mimic human SCI. Widely used animal models of SCI are complete or partial transection or experimental contusion and compression, with both bearing controversy as to which one more appropriately reproduces the human SCI functional consequences. Here we present in details the widely used procedure of complete spinal cord transection as a faithful animal model to investigate neural and functional repair of the damaged tissue by exogenous human transplanted cells. This injury model offers the advantage of complete damage to a spinal cord at a defined place and time, is relatively simple to standardize and is highly reproducible. PMID:25860664

  12. [Spinal multiple sclerosis mimicking a spinal cord tumor: a case report].

    PubMed

    Maezawa, H; Takano, M; Nagai, S; Iida, H; Tachibana, S

    1995-11-01

    Since the advent of magnetic resonance imaging (MRI), to visualize lesions of multiple sclerosis has become easy to do. However, in some cases with primary spinal cord multiple sclerosis, it is not always easy to obtain a diagnosis in the first instance. We reported a case of primary spinal multiple sclerosis diagnosed through histological examination of a surgical specimen taken by an open biopsy. A 35-year-old woman was admitted with complaints of two-months duration of progressive weakness and sensory disturbance in the legs and buttocks. On radiological examinations including metrizamide CT myelography and MRI, enlargement of the conus medullaris was the only positive finding. Respective to her clinical course, intramedullary spinal cord tumor could not be ruled out, so an open biopsy was performed. Histological examination revealed that the cord lesion was acute demyelination with perivascular inflammation. Her neurological signs were almost completely cured with administration of corticosteroid, though new brainstem signs took place two months later and then a concrete diagnosis of her having multiple sclerosis was finally achieved. Since preoperative examinations can not differentiate spinal cord tumor from any other intramedullary cord lesions such as demyelinating foci of multiple sclerosis, surgical intervention would be approved in such atypical primary spinal cord multiple sclerosis. PMID:7477708

  13. [Acute ischemic spinal cord disease. Spinal cord infarction. A clinical study and MRI in 8 cases].

    PubMed

    Pau Serradell, A

    1994-01-01

    Acute spinal cord infarction (ASCI) occurs infrequently and may have diverse causes. The diagnosis of ASCI, and particularly of an anterior spinal artery syndrome (ASAS) can be confirmed nowadays by MRI, whereas in the past only necropsy confirmation was possible. Pathophysiology and long-term prognosis may be better known at present and treatments more consistent. We present the longitudinal study and clinical features of 8 patients suffering from ASCI. All of them were personally studied and had MRI examinations, often with sequential studies. three groups must be considered: one included 4 cases of ASAS at cervical level, the second 2 cases of ASAS at thoracic level and the third group with infarction of the conus medullaris (ICM), one of them developed during surgical repair of an infrarenal aortic aneurysm. Motor and sensory sequelae were assessed in each case together with possible etiological factors. In conclusion, recovery after ASAS tends to be dependent on the severity of the initial deficit. At cervical level, clinical and morphological findings argue in favour of an extrinsic selective compression of the C7 right radiculo-medullary artery as responsible for the ASA. At thoracic level, the artery preferentially occluded seems to be the sulco-commisural artery as a consequence of disc compression. Finally, an underlying peculiarity of the pattern of arterial supply is a probable predisposing factor for ICM. Generally, the long-term prognosis of ASCI is not necessarily bad. PMID:7801036

  14. Partly shared spinal cord networks for locomotion and scratching.

    PubMed

    Berkowitz, Ari; Hao, Zhao-Zhe

    2011-12-01

    Animals produce a variety of behaviors using a limited number of muscles and motor neurons. Rhythmic behaviors are often generated in basic form by networks of neurons within the central nervous system, or central pattern generators (CPGs). It is known from several invertebrates that different rhythmic behaviors involving the same muscles and motor neurons can be generated by a single CPG, multiple separate CPGs, or partly overlapping CPGs. Much less is known about how vertebrates generate multiple, rhythmic behaviors involving the same muscles. The spinal cord of limbed vertebrates contains CPGs for locomotion and multiple forms of scratching. We investigated the extent of sharing of CPGs for hind limb locomotion and for scratching. We used the spinal cord of adult red-eared turtles. Animals were immobilized to remove movement-related sensory feedback and were spinally transected to remove input from the brain. We took two approaches. First, we monitored individual spinal cord interneurons (i.e., neurons that are in between sensory neurons and motor neurons) during generation of each kind of rhythmic output of motor neurons (i.e., each motor pattern). Many spinal cord interneurons were rhythmically activated during the motor patterns for forward swimming and all three forms of scratching. Some of these scratch/swim interneurons had physiological and morphological properties consistent with their playing a role in the generation of motor patterns for all of these rhythmic behaviors. Other spinal cord interneurons, however, were rhythmically activated during scratching motor patterns but inhibited during swimming motor patterns. Thus, locomotion and scratching may be generated by partly shared spinal cord CPGs. Second, we delivered swim-evoking and scratch-evoking stimuli simultaneously and monitored the resulting motor patterns. Simultaneous stimulation could cause interactions of scratch inputs with subthreshold swim inputs to produce normal swimming, acceleration

  15. A Neonatal Mouse Spinal Cord Compression Injury Model.

    PubMed

    Züchner, Mark; Glover, Joel C; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life(1), this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques(1). Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections(1). PMID:27078037

  16. Transcutaneous electrical spinal-cord stimulation in humans

    PubMed Central

    Gerasimenko, Yury; Gorodnichev, Ruslan; Moshonkina, Tatiana; Sayenko, Dimitry; Gad, Parag; Edgerton, V. Reggie

    2016-01-01

    Locomotor behavior is controlled by specific neural circuits called central pattern generators primarily located at the lumbosacral spinal cord. These locomotor-related neuronal circuits have a high level of automaticity; that is, they can produce a “stepping” movement pattern also seen on electromyography (EMG) in the absence of supraspinal and/or peripheral afferent inputs. These circuits can be modulated by epidural spinal-cord stimulation and/or pharmacological intervention. Such interventions have been used to neuromodulate the neuronal circuits in patients with motor-complete spinal-cord injury (SCI) to facilitate postural and locomotor adjustments and to regain voluntary motor control. Here, we describe a novel non-invasive stimulation strategy of painless transcutaneous electrical enabling motor control (pcEmc) to neuromodulate the physiological state of the spinal cord. The technique can facilitate a stepping performance in non-injured subjects with legs placed in a gravity-neutral position. The stepping movements were induced more effectively with multi-site than single-site spinal-cord stimulation. From these results, a multielectrode surface array technology was developed. Our preliminary data indicate that use of the multielectrode surface array can fine-tune the control of the locomotor behavior. As well, the pcEmc strategy combined with exoskeleton technology is effective for improving motor function in paralyzed patients with SCI. The potential impact of using pcEmc to neuromodulate the spinal circuitry has significant implications for furthering our understanding of the mechanisms controlling locomotion and for rehabilitating sensorimotor function even after severe SCI. PMID:26205686

  17. Activated spinal cord ependymal stem cells rescue neurological function.

    PubMed

    Moreno-Manzano, Victoria; Rodríguez-Jiménez, Francisco Javier; García-Roselló, Mireia; Laínez, Sergio; Erceg, Slaven; Calvo, Maria Teresa; Ronaghi, Mohammad; Lloret, Maria; Planells-Cases, Rosa; Sánchez-Puelles, Jose María; Stojkovic, Miodrag

    2009-03-01

    Spinal cord injury (SCI) is a major cause of paralysis. Currently, there are no effective therapies to reverse this disabling condition. The presence of ependymal stem/progenitor cells (epSPCs) in the adult spinal cord suggests that endogenous stem cell-associated mechanisms might be exploited to repair spinal cord lesions. epSPC cells that proliferate after SCI are recruited by the injured zone, and can be modulated by innate and adaptive immune responses. Here we demonstrate that when epSPCs are cultured from rats with a SCI (ependymal stem/progenitor cells injury [epSPCi]), these cells proliferate 10 times faster in vitro than epSPC derived from control animals and display enhanced self renewal. Genetic profile analysis revealed an important influence of inflammation on signaling pathways in epSPCi after injury, including the upregulation of Jak/Stat and mitogen activated protein kinase pathways. Although neurospheres derived from either epSPCs or epSPCi differentiated efficiently to oligodendrocites and functional spinal motoneurons, a better yield of differentiated cells was consistently obtained from epSPCi cultures. Acute transplantation of undifferentiated epSPCi or the resulting oligodendrocyte precursor cells into a rat model of severe spinal cord contusion produced a significant recovery of motor activity 1 week after injury. These transplanted cells migrated long distances from the rostral and caudal regions of the transplant to the neurofilament-labeled axons in and around the lesion zone. Our findings demonstrate that modulation of endogenous epSPCs represents a viable cell-based strategy for restoring neuronal dysfunction in patients with spinal cord damage. PMID:19259940

  18. A Neonatal Mouse Spinal Cord Compression Injury Model

    PubMed Central

    Züchner, Mark; Glover, Joel C.; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life1, this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques1. Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections1. PMID:27078037

  19. Spinal cord metastasis in small cell carcinoma of the lung

    SciTech Connect

    Holoye, P.; Libnoch, J.; Cox, J.; Kun, L.; Byhardt, R.; Almagro, U.; McCelland, S.; Chintapali, K.

    1984-03-01

    Among 50 patients with small cell bronchogenic carcinoma who were placed on a protocol of combined chemotherapy and radiation therapy, seven patients developed recurrence in the spinal cord. Five cases terminated in paraplegia and death. One patient with pontine recurrence recovered with local radiation therapy. One patient, diagnosed early, responded to local radiation therapy and is ambulatory. Methods of diagnosis were myelogram, computerized axial tomography, cerebro spinal fluid, chemistry and cytologies. The poor prognosis and the difficulty of diagnosis suggest that prophylactic therapy of the entire cranio-spinal axis should be evaluated.

  20. A procedure for implanting a spinal chamber for longitudinal in vivo imaging of the mouse spinal cord.

    PubMed

    Farrar, Matthew J; Schaffer, Chris B

    2014-01-01

    Studies in the mammalian neocortex have enabled unprecedented resolution of cortical structure, activity, and response to neurodegenerative insults by repeated, time-lapse in vivo imaging in live rodents. These studies were made possible by straightforward surgical procedures, which enabled optical access for a prolonged period of time without repeat surgical procedures. In contrast, analogous studies of the spinal cord have been previously limited to only a few imaging sessions, each of which required an invasive surgery. As previously described, we have developed a spinal chamber that enables continuous optical access for upwards of 8 weeks, preserves mechanical stability of the spinal column, is easily stabilized externally during imaging, and requires only a single surgery. Here, the design of the spinal chamber with its associated surgical implements is reviewed and the surgical procedure is demonstrated in detail. Briefly, this video will demonstrate the preparation of the surgical area and mouse for surgery, exposure of the spinal vertebra and appropriate tissue debridement, the delivery of the implant and vertebral clamping, the completion of the chamber, the removal of the delivery system, sealing of the skin, and finally, post-operative care. The procedure for chronic in vivo imaging using nonlinear microscopy will also be demonstrated. Finally, outcomes, limitations, typical variability, and a guide for troubleshooting are discussed. PMID:25548864

  1. A Procedure for Implanting a Spinal Chamber for Longitudinal In Vivo Imaging of the Mouse Spinal Cord

    PubMed Central

    Farrar, Matthew J.; Schaffer, Chris B.

    2014-01-01

    Studies in the mammalian neocortex have enabled unprecedented resolution of cortical structure, activity, and response to neurodegenerative insults by repeated, time-lapse in vivo imaging in live rodents. These studies were made possible by straightforward surgical procedures, which enabled optical access for a prolonged period of time without repeat surgical procedures. In contrast, analogous studies of the spinal cord have been previously limited to only a few imaging sessions, each of which required an invasive surgery. As previously described, we have developed a spinal chamber that enables continuous optical access for upwards of 8 weeks, preserves mechanical stability of the spinal column, is easily stabilized externally during imaging, and requires only a single surgery. Here, the design of the spinal chamber with its associated surgical implements is reviewed and the surgical procedure is demonstrated in detail. Briefly, this video will demonstrate the preparation of the surgical area and mouse for surgery, exposure of the spinal vertebra and appropriate tissue debridement, the delivery of the implant and vertebral clamping, the completion of the chamber, the removal of the delivery system, sealing of the skin, and finally, post-operative care. The procedure for chronic in vivo imaging using nonlinear microscopy will also be demonstrated. Finally, outcomes, limitations, typical variability, and a guide for troubleshooting are discussed. PMID:25548864

  2. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed Central

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-01-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia. PMID:26807119

  3. Autoregulation of spinal cord blood flow: is the cord a microcosm of the brain

    SciTech Connect

    Hickey, R.; Albin, M.S.; Bunegin, L.; Gelineau, J.

    1986-11-01

    The autoregulatory capability of regional areas of the brain and spinal cord was demonstrated in 18 rats anesthetized with a continuous infusion of intravenous pentothal. Blood flow was measured by the injection of radioactive microspheres (Co57, Sn113, Ru103, Sc46). Blood flow measurements were made at varying levels of mean arterial pressure (MAP) which was altered by neosynephrine to raise MAP or trimethaphan to lower MAP. Autoregulation of the spinal cord mirrored that of the brain, with an autoregulatory range of 60 to 120 mm Hg for both tissues. Within this range, cerebral blood flow (CBF) was 59.2 +/- 3.2 ml/100 g/min (SEM) and spinal cord blood flow (SCBF) was 61.1 +/- 3.6. There was no significant difference in CBF and SCBF in the autoregulatory range. Autoregulation was also demonstrated regionally in the left cortex, right cortex, brainstem, thalamus, cerebellum, hippocampus and cervical, thoracic and lumbar cord. This data provides a coherent reference point in establishing autoregulatory curves under barbiturate anesthesia. Further investigation of the effects of other anesthetic agents on autoregulation of the spinal cord is needed. It is possible that intraspinal cord compliance, like intracranial compliance, might be adversely affected by the effects of anesthetics on autoregulation.

  4. Primary culture of axolotl spinal cord ependymal cells.

    PubMed

    Chernoff, E A; Munck, C M; Mendelsohn, L G; Egar, M W

    1990-01-01

    In order to examine the role of ependymal cells in the spinal cord regeneration of urodele amphibians, procedures were established to identify and culture these cells. Cell isolation and culture conditions were determined for ependymal cells from larval and adult axolotls (Ambystoma mexicanum). Dissociated cells prepared from intact spinal cords were cultured on fibronectin- or laminin-coated dishes. Dissociated cells attached more rapidly to fibronectin, but attached and spread on both fibronectin and laminin. Essentially pure populations of ependymal cells were obtained by removing 2 week old ependymal outgrowth from lesion sites of adult spinal cords. These ependymal outgrowths attached and grew only on fibronectin-coated dishes. Growth and trophic factors were tested to formulate a medium that would support ependymal cell proliferation. The necessary peptide hormones were PDGF, EGF, and insulin. TGF-beta(1) affected the organization of cell outgrowth. Initially, longterm culture required the presence of high levels of axolotl serum. Addition of purified bovine hemaglobin in the culture medium reduced the serum requirement. Outgrowth from expiants was subcultured by transferring groups of cells. Intrinsic markers were used to identify ependymal cells in culture. The ependymal cells have characteristic ring-shaped nucleoli in both intact axolotl spinal cords and in culture. Indirect immunofluorescence examination of intermediate filaments showed that ependymal cells were glial fibrillary acidic protein (GFAP) negative and vimentin positive in culture. Identification of dividing cells was made using (3)H-thymidine incorporation and autoradiography, and by the presence of mitotic figures in the cultured cells. PMID:18620322

  5. Glycoconjugates Distribution during Developing Mouse Spinal Cord Motor Organizers

    PubMed Central

    Vojoudi, Elham; Ebrahimi, Vahid; Ebrahimzadeh-Bideskan, Alireza; Fazel, Alireza

    2015-01-01

    Background: The aim of this research was to study the distribution and changes of glycoconjugates particularly their terminal sugars by using lectin histochemistry during mouse spinal cord development. Methods: Formalin-fixed sections of mouse embryo (10-16 fetal days) were processed for lectin histochemical method. In this study, two groups of horseradish peroxidase-labeled specific lectins were used: N-acetylgalactosamine, including Dolichos biflorus, Wisteria floribunda agglutinin (WFA), Vicia villosa, Glycine max as well as focuse-binding lectins, including tetragonolobus, Ulex europaeus, and Orange peel fungus (OFA). All sections were counterstained with alcian blue (pH 2.5). Results: Our results showed that only WFA and OFA reacted strongly with the floor plate cells from early to late embryonic period of developing spinal cord. The strongest reactions were related to the 14, 15, and 16 days of tissue sections incubated with OFA and WFA lectins. Conclusion: The present study demonstrated that cellular and molecular differentiation of the spinal cord organizers is a wholly regulated process, and α-L-fucose, α-D-GalNAc, and α/β-D-GalNAc terminal sugars play a significant role during the prenatal spinal cord development. PMID:25605492

  6. Spinal Cord Stimulation for Refractory Neuropathic Pain of Neuralgic Amyotrophy

    PubMed Central

    Kim, Jae-hun; Ha, Sang-woo

    2015-01-01

    The aim of this paper was to report the effect of temporary and chronic spinal cord stimulation for refractory neuropathic pain in neuralgic amyotrophy (NA). A 35-year-old female presented with two-months history of a severe, relentless neuropathic pain of the left shoulder, forearm, palm, and fingers. The neuropathic pain was refractory to various medical treatments, including nonsteroidal anti-inflammatory drugs, opiates, epidural and stellate ganglion blocks, and typically unrelenting. The diagnosis of NA was made with the characteristic clinical history and magnetic resonance imaging. The patient underwent a temporary spinal cord stimulation to achieve an adequate pain relief because her pain was notoriously difficult to control and lasted longer than the average duration (about 4 weeks on average) of a painful phase of NA. Permanent stimulation was given with paddle lead. The neuropathic pain in her NA persisted and she continued using the spinal cord stimulation with 12 months after development of NA. The temporary spinal cord stimulation was effective in a patient with an extraordinary prolonged, acute painful phase of NA attack, and the subsequent chronic stimulation was also useful in achieving an adequate analgesia during the chronic phase of NA. PMID:27169086

  7. Reducing synuclein accumulation improves neuronal survival after spinal cord injury.

    PubMed

    Fogerson, Stephanie M; van Brummen, Alexandra J; Busch, David J; Allen, Scott R; Roychaudhuri, Robin; Banks, Susan M L; Klärner, Frank-Gerrit; Schrader, Thomas; Bitan, Gal; Morgan, Jennifer R

    2016-04-01

    Spinal cord injury causes neuronal death, limiting subsequent regeneration and recovery. Thus, there is a need to develop strategies for improving neuronal survival after injury. Relative to our understanding of axon regeneration, comparatively little is known about the mechanisms that promote the survival of damaged neurons. To address this, we took advantage of lamprey giant reticulospinal neurons whose large size permits detailed examination of post-injury molecular responses at the level of individual, identified cells. We report here that spinal cord injury caused a select subset of giant reticulospinal neurons to accumulate synuclein, a synaptic vesicle-associated protein best known for its atypical aggregation and causal role in neurodegeneration in Parkinson's and other diseases. Post-injury synuclein accumulation took the form of punctate aggregates throughout the somata and occurred selectively in dying neurons, but not in those that survived. In contrast, another synaptic vesicle protein, synaptotagmin, did not accumulate in response to injury. We further show that the post-injury synuclein accumulation was greatly attenuated after single dose application of either the "molecular tweezer" inhibitor, CLR01, or a translation-blocking synuclein morpholino. Consequently, reduction of synuclein accumulation not only improved neuronal survival, but also increased the number of axons in the spinal cord proximal and distal to the lesion. This study is the first to reveal that reducing synuclein accumulation is a novel strategy for improving neuronal survival after spinal cord injury. PMID:26854933

  8. The Rehabilitation of the Spinal Cord-Injured Street Person.

    ERIC Educational Resources Information Center

    Coven, Arnold B.; Glazeroff, Herbert

    1978-01-01

    The spinal cord-injured street person is especially resistant to rehabilitation. His life style is characterized by the use of physical power and mobility to survive and gain respect. He loses this main form of control and attempts to manipulate the treatment environment to care for him while he avoids confronting his disability. (Author)

  9. The Role of Hope in Spinal Cord Injury Rehabilitation.

    ERIC Educational Resources Information Center

    Heinemann, Allen; And Others

    Hope has motivational importance to individuals who have suffered a major physical loss. Theories of adjustment to a spinal cord injury take one of three approaches: (1) premorbid personality, which highlights the individual's past experiences, personal meanings, and body image; (2) typologies of injury reactions, which range from normal to…

  10. Substance Use by Persons with Recent Spinal Cord Injuries.

    ERIC Educational Resources Information Center

    Heinemann, Allen W.; And Others

    Substance use histories were obtained from 103 persons (16 to 63 years of age) with recent spinal cord injuries (SCI). Lifetime exposure to and current use of substances with abuse potential were substantially greater in this sample compared to a like-age national sample. Exposure to and recent use of substances with abuse potential was…

  11. Acute inflammatory response in spinal cord following impact injury.

    PubMed

    Carlson, S L; Parrish, M E; Springer, J E; Doty, K; Dossett, L

    1998-05-01

    Numerous factors are involved in the spread of secondary damage in spinal cord after traumatic injury, including ischemia, edema, increased excitatory amino acids, and oxidative damage to the tissue from reactive oxygen species. Neutrophils and macrophages can produce reactive oxygen species when activated and thus may contribute to the lipid peroxidation that is known to occur after spinal cord injury. This study examined the rostral-caudal distribution of neutrophils and macrophages/microglia at 4, 6, 24, and 48 h after contusion injury to the T10 spinal cord of rat (10 g weight, 50 mm drop). Neutrophils were located predominantly in necrotic regions, with a time course that peaked at 24 h as measured with assays of myeloperoxidase activity (MPO). The sharpest peak of MPO activity was localized between 4 mm rostral and caudal to the injury. Macrophages/microglia were visualized with antibodies against ED1 and OX-42. Numerous cells with a phagocytic morphology were present by 24 h, with a higher number by 48 h. These cells were predominantly located within the gray matter and dorsal funiculus white matter. The number of cells gradually declined through 6 mm rostral and caudal to the lesion. OX-42 staining also revealed reactive microglia with blunt processes, particularly at levels distant to the lesion. The number of macrophages/microglia was significantly correlated with the amount of tissue damage at each level. Treatments to decrease the inflammatory response are likely to be beneficial to recovery of function after traumatic spinal cord injury. PMID:9582256

  12. Incidence of Secondary Complications in Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Anson, C. A.; Shepherd, C.

    1996-01-01

    Data from 348 patients (mean age 37) with postacute spinal cord injury revealed that 95% reported at least 1 secondary problem, and 58% reported 3 or more. The number and severity of complications varied with time since the injury. Obesity, pain, spasticity, urinary tract infections, pressure sores, and lack of social integration were common…

  13. Perceptions of Positive Attitudes toward People with Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Lys, K.; Pernice, R.

    1995-01-01

    This New Zealand study examined attitudes toward persons with spinal cord injury (SCI) via a survey of 35 people with SCI, 27 SCI rehabilitation workers, 16 outpatient hospital rehabilitation workers, and 37 people from the general population. Results were analyzed in terms of age, ethnic identity, gender, professional training, and amount of…

  14. The Relationship between Productivity and Adjustment Following Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Krause, James S.

    1990-01-01

    Examined adjustment and productivity of persons (N=344) with spinal cord injuries. Found 45 percent of subjects gainfully employed, 14 percent engaged in unpaid productive activities, 41 percent not engaged in any productive activities. Employed subjects had best overall adjustment. Injury level was not related to level of productive activity,…

  15. Race-Ethnicity, Education, and Employment after Spinal Cord Injury

    ERIC Educational Resources Information Center

    Krause, James S.; Saunders, Lee; Staten, David

    2010-01-01

    The objective of this article was to identify the relationship between race-ethnicity and employment after spinal cord injury (SCI), while evaluating interrelationships with gender, injury severity, and education. The authors used a cohort design using the most current status from a post-injury interview from the National SCI Statistical Center.…

  16. Vocational Interests of Persons with Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Rohe, Daniel E.; Athelstan, Gary T.

    1982-01-01

    Studied vocational interests of persons with spinal cord injury. Using the Strong Campbell Interest Inventory, participants' scores were compared to norms for men and women in general on the inventory. Showed their interests were often incongruent with their physical limitations and suggested that counselors must assist in identifying vocational…

  17. Employment after Spinal Cord Injury: Transition and Life Adjustment.

    ERIC Educational Resources Information Center

    Krause, J. Stuart

    1996-01-01

    Tested two competing hypotheses regarding employment, adjustment, and spinal cord injury (SCI). Longitudinal data collected on 142 participants with SCI on two occasions separated by an 11-year interval showed a correlation between enhanced adjustment and a positive transition from unemployment to employment. Results support hypothesis that…

  18. Self-Esteem Differences among Persons with Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Marini, Irmo; And Others

    1995-01-01

    Surveyed 63 people with spinal cord injury (SCI) in either their first, second, or fifth year post-injury. Results indicated that perceived levels of self-esteem decreased following the SCI. Found that self-esteem was lowest in the second year of injury. Self-esteem may be connected to loss of employment. (RJM)

  19. Quality of Life in Patients with Spinal Cord Injury

    ERIC Educational Resources Information Center

    Gurcay, Eda; Bal, Ajda; Eksioglu, Emel; Cakci, Aytul

    2010-01-01

    The primary objective of this study was to assess the quality of life (QoL) in spinal cord injury (SCI) survivors. Secondary objectives were to determine the effects of various sociodemographic and clinical characteristics on QoL. This cross-sectional study included 54 patients with SCI. The Turkish version of the Short-Form-36 Health Survey was…

  20. Drinking Patterns, Drinking Expectancies, and Coping after Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Heinemann, Allen W.; And Others

    1994-01-01

    Drinking patterns, alcohol expectancies, and coping strategies were assessed for 121 persons with recent spinal cord injuries during hospitalization, 3 months after surgery, and 12 months after surgery. Although the rate of heavy drinking decreased, preinjury problem drinkers still had the lowest rate of positive reappraisal, problem solving, and…

  1. The Animal Model of Spinal Cord Injury as an Experimental Pain Model

    PubMed Central

    Nakae, Aya; Nakai, Kunihiro; Yano, Kenji; Hosokawa, Ko; Shibata, Masahiko; Mashimo, Takashi

    2011-01-01

    Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of pathology. However, results can be easily misunderstood and falsely interpreted. Therefore, it is important to fully understand the symptoms of human spinal cord injury, as well as the various spinal cord injury models and the possible pathologies. The present paper summarizes results from animal models of spinal cord injury, as well as the most effective use of these models. PMID:21436995

  2. Wnt/β-catenin signaling promotes regeneration after adult zebrafish spinal cord injury.

    PubMed

    Strand, Nicholas S; Hoi, Kimberly K; Phan, Tien M T; Ray, Catherine A; Berndt, Jason D; Moon, Randall T

    2016-09-01

    Unlike mammals, zebrafish can regenerate their injured spinal cord and regain control of caudal tissues. It was recently shown that Wnt/β-catenin signaling is necessary for spinal cord regeneration in the larval zebrafish. However, the molecular mechanisms of regeneration may or may not be conserved between larval and adult zebrafish. To test this, we assessed the role of Wnt/β-catenin signaling after spinal cord injury in the adult zebrafish. We show that Wnt/β-catenin signaling is increased after spinal cord injury in the adult zebrafish. Moreover, overexpression of Dkk1b inhibited Wnt/β-catenin signaling in the regenerating spinal cord of adult zebrafish. Dkk1b overexpression also inhibited locomotor recovery, axon regeneration, and glial bridge formation in the injured spinal cord. Thus, our data illustrate a conserved role for Wnt/β-catenin signaling in adult and larval zebrafish spinal cord regeneration. PMID:27387232

  3. Metachronous Multiplicity of Spinal Cord Arteriovenous Fistula and Spinal Dural AVF in a Patient with Hereditary Haemorrhagic Telangiectasia

    PubMed Central

    Ling, J.C.M.; Agid, R.; Nakano, S.; Souza, M.P.S.; Reintamm, G.; TerBrugge, K.G.

    2005-01-01

    Summary HHT (Hereditary Haemorrhagic Telangiectasia or Rendu Osler Weber disease) is a known autosomal dominant dysplasia. The first clinical presentation of HHT in a child may be a cerebral or spinal AVM. We present the case of a young boy with HHT who had a previous spinal cord AVF treated by surgical obliteration and then presented with a spinal dural AVF nine months later. This patient had surgical obliteration of a spinal cord perimedullary AVF and subsequently developed a new spinal dural AVF at a different level. The diagnosis was made by spinal MR imaging and spinal angiography PMID:20584440

  4. Salmon fibrin treatment of spinal cord injury promotes functional recovery and density of serotonergic innervation.

    PubMed

    Sharp, Kelli G; Dickson, Amanda R; Marchenko, Steve A; Yee, Kelly M; Emery, Pauline N; Laidmåe, Ivo; Uibo, Raivo; Sawyer, Evelyn S; Steward, Oswald; Flanagan, Lisa A

    2012-05-01

    The neural degeneration caused by spinal cord injury leaves a cavity at the injury site that greatly inhibits repair. One approach to promoting repair is to fill the cavity with a scaffold to limit further damage and encourage regrowth. Injectable materials are advantageous scaffolds because they can be placed as a liquid in the lesion site then form a solid in vivo that precisely matches the contours of the lesion. Fibrin is one type of injectable scaffold, but risk of infection from blood borne pathogens has limited its use. We investigated the potential utility of salmon fibrin as an injectable scaffold to treat spinal cord injury since it lacks mammalian infectious agents and encourages greater neuronal extension in vitro than mammalian fibrin or Matrigel®, another injectable material. Female rats received a T9 dorsal hemisection injury and were treated with either salmon or human fibrin at the time of injury while a third group served as untreated controls. Locomotor function was assessed using the BBB scale, bladder function was analyzed by measuring residual urine, and sensory responses were tested by mechanical stimulation (von Frey hairs). Histological analyses quantified the glial scar, lesion volume, and serotonergic fiber density. Rats that received salmon fibrin exhibited significantly improved recovery of both locomotor and bladder function and a greater density of serotonergic innervation caudal to the lesion site without exacerbation of pain. Rats treated with salmon fibrin also exhibited less autophagia than those treated with human fibrin, potentially pointing to amelioration of sensory dysfunction. Glial scar formation and lesion size did not differ significantly among groups. The pattern and timing of salmon fibrin's effects suggest that it acts on neuronal populations but not by stimulating long tract regeneration. Salmon fibrin clearly has properties distinct from those of mammalian fibrin and is a beneficial injectable scaffold for treatment

  5. Radiation Dose-Volume Effects in the Spinal Cord

    SciTech Connect

    Kirkpatrick, John P.; Kogel, Albert J. van der; Schultheiss, Timothy E.

    2010-03-01

    Dose-volume data for myelopathy in humans treated with radiotherapy (RT) to the spine is reviewed, along with pertinent preclinical data. Using conventional fractionation of 1.8-2 Gy/fraction to the full-thickness cord, the estimated risk of myelopathy is <1% and <10% at 54 Gy and 61 Gy, respectively, with a calculated strong dependence on dose/fraction (alpha/beta = 0.87 Gy.) Reirradiation data in animals and humans suggest partial repair of RT-induced subclinical damage becoming evident about 6 months post-RT and increasing over the next 2 years. Reports of myelopathy from stereotactic radiosurgery to spinal lesions appear rare (<1%) when the maximum spinal cord dose is limited to the equivalent of 13 Gy in a single fraction or 20 Gy in three fractions. However, long-term data are insufficient to calculate a dose-volume relationship for myelopathy when the partial cord is treated with a hypofractionated regimen.

  6. Radionuclide assessment of heterotopic ossification in spinal cord injury patients

    SciTech Connect

    Prakash, V.

    1983-01-01

    Whole body /sup 99m/T-pyrophosphate bone scans were obtained and correlated with skeletal radiographs for detection of heterotopic ossification in 135 spinal injury patients. There were 40 patients with recent injury (less than 6 months) and 95 with injury of over 6 months duration. Heterotopic new bone was detected on the bone scan in 33.7% of 95 patients with spinal cord injuries of more than 6 months duration and 30% of 40 patients with injuries of less than 6 months. The radionuclide scan was found to be useful in detection of heterotopic ossification at its early stage and in its differentiation from other complications in spinal cord injury patients.

  7. Membrane lipid changes in laminectomized and traumatized cat spinal cord.

    PubMed Central

    Demediuk, P; Saunders, R D; Anderson, D K; Means, E D; Horrocks, L A

    1985-01-01

    Free fatty acid (FFA), diacylglycerol (acyl2Gro), icosanoid, phospholipid, and cholesterol levels were measured in samples of cat spinal cord (L2) that were frozen in situ with vertebrae intact, at various times after laminectomy, and at various times after laminectomy with compression trauma to the spinal cord. Tissue samples either were grossly dissected into gray and white portions prior to FFA and acyl2Gro analysis or were used whole for the other lipid types. Gray matter total FFA and acyl2Gro values were abnormally high in samples frozen with vertebrae intact and in those frozen 10 min after laminectomy. This indicates that the surgical procedures resulted in some perturbation of spinal cord lipid metabolism. If the experimental animals were allowed to recover for 90 min after laminectomy, the gray matter FFA and acyl2Gro levels were greatly reduced. Compression of the spinal cord with a 170-g weight for 1, 3, or 5 min (following 90 min of recovery after laminectomy) caused significant elevations of total FFA, acyl2Gro, icosanoids, and phosphatidic acid and significant decreases in ethanolamine plasmalogens and cholesterol. Among the total FFA, arachidonic acid was found to have the largest relative increase. Comparisons of gray and white matter demonstrate that, in general, changes in white matter FFA and acyl2Gro were similar to those seen in gray matter. However, the increases in white matter levels of FFA and acyl2Gro were delayed, occurring after the elevations in gray matter. For some FFA (e.g., arachidonate), the rise in white matter occurred as gray matter levels were decreasing. This suggests that the initial alteration in spinal cord lipid metabolism after trauma was in gray matter but, with time, spread radially into white matter. PMID:3863139

  8. Spinal Cord and Spinal Nerve Root Involvement (Myeloradiculopathy) in Tuberculous Meningitis

    PubMed Central

    Gupta, Rahul; Garg, Ravindra Kumar; Jain, Amita; Malhotra, Hardeep Singh; Verma, Rajesh; Sharma, Praveen Kumar

    2015-01-01

    Abstract Most of the information about spinal cord and nerve root involvement in tuberculous meningitis is available in the form of isolated case reports or case series. In this article, we evaluated the incidence, predictors, and prognostic impact of spinal cord and spinal nerve root involvement in tuberculous meningitis. In this prospective study, 71 consecutive patients of newly diagnosed tuberculous meningitis were enrolled. In addition to clinical evaluation, patients were subjected to magnetic resonance imaging (MRI) of brain and spine. Patients were followed up for at least 6 months. Out of 71 patients, 33 (46.4%) had symptoms/signs of spinal cord and spinal nerve root involvement, 22 (30.9%) of whom had symptoms/signs at enrolment. Eleven (15.4%) patients had paradoxical involvement. Paraparesis was present in 22 (31%) patients, which was of upper motor neuron type in 6 (8.4%) patients, lower motor neuron type in 10 (14%) patients, and mixed type in 6 (8.4%) patients. Quadriparesis was present in 3 (4.2%) patients. The most common finding on spinal MRI was meningeal enhancement, seen in 40 (56.3%) patients; in 22 (30.9%), enhancement was present in the lumbosacral region. Other MRI abnormalities included myelitis in 16 (22.5%), tuberculoma in 4 (5.6%), cerebrospinal fluid (CSF) loculations in 4 (5.6%), cord atrophy in 3 (4.2%), and syrinx in 2 (2.8%) patients. The significant predictor associated with myeloradiculopathy was raised CSF protein (>250 mg/dL). Myeloradiculopathy was significantly associated with poor outcome. In conclusion, spinal cord and spinal nerve root involvement in tuberculous meningitis is common. Markedly raised CSF protein is an important predictor. Patients with myeloradiculopathy have poor outcome. PMID:25621686

  9. B cells produce pathogenic antibodies and impair recovery after spinal cord injury in mice

    PubMed Central

    Ankeny, Daniel P.; Guan, Zhen; Popovich, Phillip G.

    2009-01-01

    Traumatic injury to the mammalian spinal cord activates B cells, which culminates in the synthesis of autoantibodies. The functional significance of this immune response is unclear. Here, we show that locomotor recovery was improved and lesion pathology was reduced after spinal cord injury (SCI) in mice lacking B cells. After SCI, antibody-secreting B cells and Igs were present in the cerebrospinal fluid and/or injured spinal cord of WT mice but not mice lacking B cells. In mice with normal B cell function, large deposits of antibody and complement component 1q (C1q) accumulated at sites of axon pathology and demyelination. Antibodies produced after SCI caused pathology, in part by activating intraspinal complement and cells bearing Fc receptors. These data indicate that B cells, through the production of antibodies, affect pathology in SCI. One or more components of this pathologic immune response could be considered as novel therapeutic targets for minimizing tissue injury and/or promoting repair after SCI. PMID:19770513

  10. Post-translational modification of cortical GluA receptors in rodents following spinal cord lesion.

    PubMed

    Jiang, L; Voulalas, P; Ji, Y; Masri, R

    2016-03-01

    Previous studies investigating the pathophysiology of neuropathic pain caused by injury to the spinal cord suggest that pain may result, at least in part, from maladaptive plasticity in the somatosensory cortex and associated pain networks. However, little is known about the molecular and cellular mechanisms leading to maladaptive plasticity in the cortex and how they contribute to the development of neuropathic pain. AMPA-type glutamate receptors (GluARs) mediate fast excitatory synaptic transmission in the mammalian brain and play an important role in pain processing. Here we used an electrolytic lesion model of spinal cord injury in animals to study the expression and phosphorylation of GluA1 and 2 in the primary somatosensory cortex (S1). Experiments in rats and mice revealed that maladaptive plasticity and hypersensitivity after spinal cord lesion (SCL) are associated with a reduction in the fraction of GluA1 subunits that are phosphorylated at serine 831 (S831) in the hindlimb representation of S1 (S1HL). Manipulations that reduce the fraction of phosphorylated S831 in S1HL of non-lesioned animals, including low-frequency electrical stimulation and viral-mediated gene transfer of mutant S831, were associated with the development of hypersensitivity. Taken together, these findings suggest that phosphorylation of GluA1 at S831 plays an important role in the development of hypersensitivity after SCL. PMID:26724583

  11. Phenylbutyrate prevents disruption of blood-spinal cord barrier by inhibiting endoplasmic reticulum stress after spinal cord injury

    PubMed Central

    Zhou, Yulong; Ye, Libing; Zheng, Binbin; Zhu, Sipin; Shi, Hongxue; Zhang, Hongyu; Wang, Zhouguang; Wei, Xiaojie; Chen, Daqing; Li, Xiaokun; Xu, Huazi; Xiao, Jian

    2016-01-01

    This study aims to investigate the role of endocytoplasmic reticulum (ER) stress induced by spinal cord injury (SCI) in blood-spinal cord barrier (BSCB) disruption and the effect of phenylbutyrate (PBA) on BSCB disruption after SCI. After a moderate contusion injury at the T9 level of spinal cord with a vascular clip, PBA was immediately administered into injured rat via intraperitoneal injection (100 mg/kg) and then further treated once a day for 2 weeks for behavior test. Spinal cord was collected at 1 day post-injury for evaluation of the effects of ER stress and PBA on BSCB disruption after SCI. PBA significantly attenuated BSCB permeability and degradation of tight junction molecules such as P120, β-catenin, Occludin and Claudin5 at 1 day after injury and improved functional recovery in the rat model of trauma. The BSCB protective effect of PBA is related to the inhibition of ER stress induced by SCI. In addition, PBA significantly inhibited the increase of ER stress markers and prevents loss of tight junction and adherens junction proteins in TG-treated human brain microvascular endothelial cells (HBMEC). Taken together, our data demonstrate that therapeutic strategies targeting ER stress may be suitable for the therapy of preserving BSCB integrity after SCI. PBA may be a new candidate as a therapeutic agent for protecting SCI by a compromised BSCB. PMID:27186310

  12. Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury.

    PubMed

    Shahdoost, Shahab; Frost, Shawn; Van Acker, Gustaf; DeJong, Stacey; Dunham, Caleb; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2014-01-01

    Nearly 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress towards developing a miniaturized brain-machine-spinal cord interface (BMSI) that is envisioned to convert in real time the neural command signals recorded from the brain to electrical stimuli delivered to the spinal cord below the injury level. Specifically, the paper reports on a corticospinal interface integrated circuit (IC) as a core building block for such a BMSI that is capable of low-noise recording of extracellular neural spikes from the cerebral cortex as well as muscle activation using intraspinal microstimulation (ISMS) in a rat with contusion injury to the thoracic spinal cord. The paper further presents results from a neurobiological study conducted in both normal and SCI rats to investigate the effect of various ISMS parameters on movement thresholds in the rat hindlimb. Coupled with proper signal-processing algorithms in the future for the transformation between the cortically recorded data and ISMS parameters, such a BMSI has the potential to facilitate functional recovery after an SCI by re-establishing corticospinal communication channels lost due to the injury. PMID:25570002

  13. An Intermediate Animal Model of Spinal Cord Stimulation

    PubMed Central

    Guiho, Thomas; Coste, Christine Azevedo; Delleci, Claire; Chenu, Jean-Patrick; Vignes, Jean-Rodolphe; Bauchet, Luc; Guiraud, David

    2016-01-01

    Spinal cord injuries (SCI) result in the loss of movement and sensory feedback as well as organs dysfunctions. For example, nearly all SCI subjects loose their bladder control and are prone to kidney failure if they do not proceed to intermittent (self-) catheterization. Electrical stimulation of the sacral spinal roots with an implantable neuroprosthesis is a promising approach, with commercialized products, to restore continence and control micturition. However, many persons do not ask for this intervention since a surgical deafferentation is needed and the loss of sensory functions and reflexes become serious side effects of this procedure. Recent results renewed interest in spinal cord stimulation. Stimulation of existing pre-cabled neural networks involved in physiological processes regulation is suspected to enable synergic recruitment of spinal fibers. The development of direct spinal stimulation strategies aiming at bladder and bowel functions restoration would therefore appear as a credible alternative to existent solutions. However, a lack of suitable large animal model complicates these kinds of studies. In this article, we propose a new animal model of spinal stimulation -pig- and will briefly introduce results from one first acute experimental validation session. PMID:27478570

  14. Host induction by transplanted neural stem cells in the spinal cord: further evidence for an adult spinal cord neurogenic niche

    PubMed Central

    Xu, Leyan; Mahairaki, Vasiliki; Koliatsos, Vassilis E

    2013-01-01

    Aim To explore the hypothesis that grafts of exogenous stem cells in the spinal cord of athymic rats or rats with transgenic motor neuron disease can induce endogenous stem cells and initiate intrinsic repair mechanisms that can be exploited in amyotrophic lateral sclerosis therapeutics. Materials & methods Human neural stem cells (NSCs) were transplanted into the lower lumbar spinal cord of healthy rats or rats with transgenic motor neuron disease to explore whether signals related to stem cells can initiate intrinsic repair mechanisms in normal and amyotrophic lateral sclerosis subjects. Patterns of migration and differentiation of NSCs in the gray and white matter, with emphasis on the central canal region and ependymal cell-driven neurogenesis, were analyzed. Results Findings suggest that there is extensive cross-signaling between transplanted NSCs and a putative neurogenic niche in the ependyma of the lower lumbar cord. The formation of a neuronal cord from NSC-derived cells next to ependyma suggests that this structure may serve a mediating or auxiliary role for ependymal induction. Conclusion These findings raise the possibility that NSCs may stimulate endogenous neurogenesis and initiate intrinsic repair mechanisms in the lower spinal cord. PMID:23164079

  15. Diffusion Tensor Imaging of the Spinal Cord: Insights From Animal and Human Studies

    PubMed Central

    Vedantam, Aditya; Jirjis, Michael B.; Schmit, Brian D.; Wang, Marjorie C.; Ulmer, John L.; Kurpad, Shekar N.

    2016-01-01

    Diffusion tensor imaging (DTI) provides a measure of the directional diffusion of water molecules in tissues. The measurement of DTI indices within the spinal cord provides a quantitative assessment of neural damage in various spinal cord pathologies. DTI studies in animal models of spinal cord injury indicate that DTI is a reliable imaging technique with important histological and functional correlates. These studies demonstrate that DTI is a non-invasive marker of microstructural change within the spinal cord. In human studies, spinal cord DTI shows definite changes in subjects with acute and chronic spinal cord injury, as well as cervical spondylotic myelopathy. Interestingly, changes in DTI indices are visualized in regions of the cord, which appear normal on conventional MRI and are remote from the site of cord compression. Spinal cord DTI provides data that can help us understand underlying microstructural changes within the cord, and assist in prognostication and planning of therapies. In this article, we review the use of DTI to investigate spinal cord pathology in animals and humans, and describe advances in this technique that establish DTI as a promising biomarker for spinal cord disorders. PMID:24064483

  16. Efficacy of a metalloproteinase inhibitor in spinal cord injured dogs.

    PubMed

    Levine, Jonathan M; Cohen, Noah D; Heller, Michael; Fajt, Virginia R; Levine, Gwendolyn J; Kerwin, Sharon C; Trivedi, Alpa A; Fandel, Thomas M; Werb, Zena; Modestino, Augusta; Noble-Haeusslein, Linda J

    2014-01-01

    Matrix metalloproteinase-9 is elevated within the acutely injured murine spinal cord and blockade of this early proteolytic activity with GM6001, a broad-spectrum matrix metalloproteinase inhibitor, results in improved recovery after spinal cord injury. As matrix metalloproteinase-9 is likewise acutely elevated in dogs with naturally occurring spinal cord injuries, we evaluated efficacy of GM6001 solubilized in dimethyl sulfoxide in this second species. Safety and pharmacokinetic studies were conducted in naïve dogs. After confirming safety, subsequent pharmacokinetic analyses demonstrated that a 100 mg/kg subcutaneous dose of GM6001 resulted in plasma concentrations that peaked shortly after administration and were sustained for at least 4 days at levels that produced robust in vitro inhibition of matrix metalloproteinase-9. A randomized, blinded, placebo-controlled study was then conducted to assess efficacy of GM6001 given within 48 hours of spinal cord injury. Dogs were enrolled in 3 groups: GM6001 dissolved in dimethyl sulfoxide (n = 35), dimethyl sulfoxide (n = 37), or saline (n = 41). Matrix metalloproteinase activity was increased in the serum of injured dogs and GM6001 reduced this serum protease activity compared to the other two groups. To assess recovery, dogs were a priori stratified into a severely injured group and a mild-to-moderate injured group, using a Modified Frankel Scale. The Texas Spinal Cord Injury Score was then used to assess long-term motor/sensory function. In dogs with severe spinal cord injuries, those treated with saline had a mean motor score of 2 (95% CI 0-4.0) that was significantly (P<0.05; generalized linear model) less than the estimated mean motor score for dogs receiving dimethyl sulfoxide (mean, 5; 95% CI 2.0-8.0) or GM6001 (mean, 5; 95% CI 2.0-8.0). As there was no independent effect of GM6001, we attribute improved neurological outcomes to dimethyl sulfoxide, a pleotropic agent that may target diverse secondary pathogenic

  17. The sources of supraspinal afferents to the spinal cord in a variety of limbed reptiles. I. Reticulospinal systems.

    PubMed

    Newman, D B; Cruce, W L; Bruce, L L

    1983-03-20

    Horseradish peroxidase was injected into various levels of the spinal cord of turtles (Pseudemys and Chrysemys), lizards (Tupinambis, Iquana, Gekko, Sauromelus, and Gerrhonotus), and a crocodilian (Caiman). The results suggest that brainstem reticulospinal projections in limbed reptiles rival mammalian reticulospinal systems in complexity. The reptilian myelencephalic reticular formation can be divided into four distinct reticulospinal nuclei. Reticularis inferior pars dorsalis (RID) contains multipolar neurons which project bilaterally to the spinal cord. Reticularis inferior pars ventralis (RIV), which is only found in lizards and crocodilians, contains fusiform neurons with horizontally running dendrites and it projects ipsilaterally to the spinal cord. Reticularis ventrolateralis (RVL), which is found only in field lizards, contains triangular neurons whose dendrites parallel the ventrolateral edge of the brainstem and it projects ipsilaterally to the spinal cord. The myelencephalic raphe (RaI) varies considerably. RaI of turtles contains large reticulospinal neurons which form a continuous population with more laterally situated RID cells. RaI of lizards contains a few small reticulospinal neurons. RaI of the crocodilian Caiman contains giant reticulospinal neurons with laterally directed dendrites. The caudal metencephalic reticular formation of reptiles can be divided into two distinct reticulospinal nuclei. Reticularis medius (RM) contains large neurons with long, ventrally directed dendrites; it projects ipsilaterally to the spinal cord. Reticularis medius pars lateralis (RML) contains small neurons with laterally directed dendrites; it projects contralaterally to the spinal cord. The rostral mesencephalic and caudal mesencephalic reticular formation of reptiles can be divided into three distinct reticulospinal nuclei. Reticularis superior pars medialis (RSM) consists mostly of small, spindle-shaped neurons which project bilaterally to the spinal cord. In

  18. Cecal bascule after spinal cord injury: A case series report

    PubMed Central

    Ishida, Yuichi; McLean, Susan F.; Tyroch, Alan H.

    2016-01-01

    Introduction Cecal bascule is a rare cause of intestinal obstruction associated with upward and anterior folding of the ascending colon. We report three patients who presented with spinal cord injury complicated with a cecal bascule. Diagnosis and management of cecal bascule is discussed. Presentation of cases Patient 1: 59-year-old male sustained a traumatic brain injury and cervical spinal cord injury after a motorcycle crash. He had abdominal distension and the diagnosis of cecal bascule was made. Cecopexy was performed. Patient 2: 51-year-old male sustained an unstable C7 vertebral fracture with a cord contusion and quadriplegia after a diving incident. After an unsuccessful medical management of the colonic distension, the patient was taken for a laparotomy and cecal bascule was found. A cecostomy and a cecopexy were performed. Patient 3: 63-year-old male was transferred after a fall. He had diffuse degenerative changes in the thoracic and lumbar spine. He was found to have a perforated cecal bascule. He had a right hemicolectomy with an ileocolic anastomosis. Discussion We suggest the possibility of spinal cord injury being a risk factor for cecal bascule. Currently, right hemicolectomy is recommended for the treatment of cecal bascule. Cecopexy is also acceptable treatment option for a case in which the patient will be undergoing an operation with an insertion of hardware. Conclusion The diagnosis of cecal bascule should be considered for trauma patients with cecal distention without delay in order to prevent disastrous complications. PMID:27077698

  19. Role of Plasminogen Activator in Spinal Cord Remodeling after Spinal Cord Injury

    PubMed Central

    Seeds, Nicholas W.; Akison, Lisa; Minor, Kenneth

    2009-01-01

    Plasminogen activators play an active role in synaptic plasticity associated with the crossed phrenic phenomenon (CPP) and recovery of respiratory function following spinal cord injury. A genetic approach has been used to identify molecular mechanisms underlying this synaptic plasticity. Knockout mice lacking different genes in the plasminogen activator/plasmin system demonstrate that expression of urokinase plasminogen activator (uPA) is required during the critical 1-2h delay period following C2-hemisection for acquisition of a good CPP response. uPA knockout mice fail to show the structural remodeling of phrenic motor neuron synapses that underlie the CPP response. Potential mechanisms by which uPA may promote phrenic motor neuron synaptic plasticity have been explored. Expression of uPA receptors, uPAR and LRP-1, are both up-regulated in the ipsilateral phrenic motor nucleus (PMN) following C2-hemisection. A comparison of microarray data and real-time PCR analysis of mRNAs induced in the PMN after hemisection indicate potential cell signaling pathways downstream of uPA’s interaction with these cell surface receptors in the PMN. Knowledge of these uPA-mediated signaling pathways may identify potential means for pharmacological activation of the synaptic plasticity required for recovery of phrenic motor neuron activity. PMID:19651246

  20. Role of plasminogen activator in spinal cord remodeling after spinal cord injury.

    PubMed

    Seeds, Nicholas W; Akison, Lisa; Minor, Kenneth

    2009-11-30

    Plasminogen activators play an active role in synaptic plasticity associated with the crossed phrenic phenomenon (CPP) and recovery of respiratory function following spinal cord injury. A genetic approach has been used to identify molecular mechanisms underlying this synaptic plasticity. Knockout mice lacking different genes in the plasminogen activator/plasmin system demonstrate that expression of urokinase plasminogen activator (uPA) is required during the critical 1-2h delay period following C2-hemisection for the acquisition of a good CPP response. uPA knockout mice fail to show the structural remodeling of phrenic motorneuron synapses that underlie the CPP response. Potential mechanisms by which uPA may promote phrenic motorneuron synaptic plasticity have been explored. Expression of uPA receptors, uPAR and LRP-1, are both up-regulated in the ipsilateral phrenic motor nucleus (PMN) following C2-hemisection. A comparison of microarray data and real-time PCR analysis of mRNAs induced in the PMN after hemisection indicate potential cell signaling pathways downstream of uPA's interaction with these cell surface receptors in the PMN. Knowledge of these uPA-mediated signaling pathways may identify potential means for the pharmacological activation of the synaptic plasticity required for recovery of phrenic motorneuron activity. PMID:19651246

  1. A Clinical Perspective and Definition of Spinal Cord Injury.

    PubMed

    Kretzer, Ryan M

    2016-04-01

    Spinal cord injury (SCI) can be complete or incomplete. The level of injury in SCI is defined as the most caudal segment with motor function rated at greater than or equal to 3/5, with pain and temperature preserved. The standard neurological classification of SCI provided by the American Spinal Injury Association (ASIA) assigns grades from ASIA A (complete SCI) through ASIA E (normal sensory/motor), with B, C, and D representing varying degrees of injury between these extremes. The most common causes of SCI include trauma (motor vehicle accidents, sports, violence, falls), degenerative spinal disease, vascular injury (anterior spinal artery syndrome, epidural hematoma), tumor, infection (epidural abscess), and demyelinating processes (). (SDC Figure 1, http://links.lww.com/BRS/B91)(Figure is included in full-text article.). PMID:27015067

  2. Thalassemia, extramedullary hematopoiesis, and spinal cord compression: A case report

    PubMed Central

    Bukhari, Syed Sarmad; Junaid, Muhammad; Rashid, Mamoon Ur

    2016-01-01

    Background: Extramedullary hematopoiesis (EMH) refers to hematopoiesis outside of the medulla of the bone. Chronic anemia states such as thalassemia can cause hematopoietic tissue to expand in certain locations. We report a case of spinal cord compression due to recurrent spinal epidural EMH, which was treated with a combination of surgery and radiotherapy. Pakistan has one of the highest incidence and prevalence of thalassemia in the world. We describe published literature on diagnosis and management of such cases. Case Description: An 18-year-old male presented with bilateral lower limb paresis. He was a known case of homozygous beta thalassemia major. He had undergone surgery for spinal cord compression due to EMH 4 months prior to presentation. Symptom resolution was followed by deterioration 5 days later. He was operated again at our hospital with complete resection of the mass. He underwent local radiotherapy to prevent recurrence. At 2 years follow-up, he showed complete resolution of symptoms. Follow-up imaging demonstrated no residual mass. Conclusion: The possibility of EMH should be considered in every patient with ineffective erythropoiesis as a cause of spinal cord compression. Treatment of such cases is usually done with blood transfusions, which can reduce the hematopoietic drive for EMH. Other options include surgery, hydroxyurea, radiotherapy, or a combination of these on a case to case basis. PMID:27069747

  3. Fibronectin Inhibits Chronic Pain Development after Spinal Cord Injury

    PubMed Central

    Lee, Yu-Shang; Lin, Vernon W.; Silver, Jerry

    2012-01-01

    Abstract Chronic pain following spinal cord injury (SCI) is a highly prevalent clinical condition that is difficult to treat. Using both von Frey filaments and radiant infrared heat to assess mechanical allodynia and thermal hyperalgesia, respectively, we have demonstrated that a one-time injection of fibronectin (50 μg/mL) into the spinal dorsal column (1 μL/min each injection for a total of 5 μL) immediately after SCI inhibits the development of mechanical allodynia (but not thermal hyperalgesia) over an 8-month observation period following spinal cord dorsal column crush (DCC). DCC will only induce mechanical Allodynia, but not thermal hyperalgesia or overt motor deficits. By applying various fibronectin fragments as well as competitive inhibitors, these effects were shown to be dependent on the connecting segment-1 (CS-1) motif of fibronectin. Furthermore, we found that acute fibronectin treatment diminished inflammation and blood–spinal cord barrier permeability, which in turn leads to enhanced fiber sparing and sprouting. In particular, the reduction of serotonin (5-HT) in the superficial dorsal horn, an important descending brainstem system in the modulation of pain, was blocked with fibronectin treatment. We conclude that treatment of SCI with fibronectin preserves sensory regulation and prevents the development of chronic allodynia, providing a potential therapeutic intervention to treat chronic pain following SCI. PMID:22022865

  4. The coding of cutaneous temperature in the spinal cord.

    PubMed

    Ran, Chen; Hoon, Mark A; Chen, Xiaoke

    2016-09-01

    The spinal cord is the initial stage that integrates temperature information from peripheral inputs. Here we used molecular genetics and in vivo calcium imaging to investigate the coding of cutaneous temperature in the spinal cord in mice. We found that heating or cooling the skin evoked robust calcium responses in spinal neurons, and their activation threshold temperatures distributed smoothly over the entire range of stimulation temperatures. Once activated, heat-responding neurons encoded the absolute skin temperature without adaptation and received major inputs from transient receptor potential (TRP) channel V1 (TRPV1)-positive dorsal root ganglion (DRG) neurons. By contrast, cold-responding neurons rapidly adapted to ambient temperature and selectively encoded temperature changes. These neurons received TRP channel M8 (TRPM8)-positive DRG inputs as well as novel TRPV1(+) DRG inputs that were selectively activated by intense cooling. Our results provide a comprehensive examination of the temperature representation in the spinal cord and reveal fundamental differences in the coding of heat and cold. PMID:27455110

  5. Sexually dimorphic nuclei in the spinal cord control male sexual functions

    PubMed Central

    Sakamoto, Hirotaka

    2014-01-01

    Lower spinal cord injuries frequently cause sexual dysfunction in men, including erectile dysfunction and an ejaculation disorder. This indicates that the important neural centers for male sexual function are located within the lower spinal cord. It is interesting that the lumbar spinal segments contain several neural circuits, showing a clear sexually dimorphism that, in association with neural circuits of the thoracic and sacral spinal cord, are critical in expressing penile reflexes during sexual behavior. To date, many sex differences in the spinal cord have been discovered. Interestingly, most of these are male dominant. Substantial evidence of sexually dimorphic neural circuits in the spinal cord have been reported in many animal models, but major issues remain unknown. For example, it is not known how the different circuits cooperatively function during male sexual behavior. In this review, therefore, the anatomical and functional significance of the sexually dimorphic nuclei in the spinal cord corresponding to the expression of male sexual behavior is discussed. PMID:25071429

  6. Changes in corticospinal facilitation of lower limb spinal motor neurons after spinal cord lesions.

    PubMed Central

    Brouwer, B; Bugaresti, J; Ashby, P

    1992-01-01

    The projections from the cortex to the motor neurons of lower limb muscles were examined in 33 normal subjects and 16 patients with incomplete spinal cord lesions. Corticospinal neurons were excited by transcranial magnetic stimulation and the effects on single spinal motor neurons determined from peristimulus time histograms (PSTHs) of single tibialis anterior (TA) and soleus (SOL) motor units. In normal subjects magnetic stimulation produced a short latency facilitation of TA motor units but had little or no effect on SOL motor units. In the patients with spinal cord lesions magnetic stimulation also produced facilitation of TA but not SOL motor units; however, the mean latency of the TA facilitation was significantly longer (by about 14 ms) in the patient group. The F wave latencies were normal in all patients tested, suggesting that central rather than peripheral conduction was slowed. The duration of the period of increased firing probability (in TA motor units) was also significantly longer in the patients with spinal cord lesions. These changes may reflect the slowing of conduction and dispersal of conduction velocities in the corticospinal pathways as a consequence of the spinal cord lesion. No significant correlations were found between the delay of the TA facilitation and the clinical deficits in this group of patients. Images PMID:1312579

  7. Learning from the spinal cord: How the study of spinal cord plasticity informs our view of learning

    PubMed Central

    Grau, James W.

    2013-01-01

    The paper reviews research examining whether and how training can induce a lasting change in spinal cord function. A framework for the study of learning, and some essential issues in experimental design, are discussed. A core element involves delayed assessment under common conditions. Research has shown that brain systems can induce a lasting (memory-like) alteration in spinal function. Neurons within the lower (lumbosacral) spinal cord can also adapt when isolated from the brain by means of a thoracic transection. Using traditional learning paradigms, evidence suggests that spinal neurons support habituation and sensitization as well as Pavlovian and instrumental conditioning. At a neurobiological level, spinal systems support phenomena (e.g., long-term potentiation), and involve mechanisms (e.g., NMDA mediated plasticity, protein synthesis) implicated in brain-dependent learning and memory. Spinal learning also induces modulatory effects that alter the capacity for learning. Uncontrollable/unpredictable stimulation disables the capacity for instrumental learning and this effect has been linked to the cytokine tumor necrosis factor (TNF). Predictable/controllable stimulation enables learning and counters the adverse effects of uncontrollable simulation through a process that depends upon brain-derived neurotrophic factor (BDNF). Finally, uncontrollable, but not controllable, nociceptive stimulation impairs recovery after a contusion injury. A process-oriented approach (neurofunctionalism) is outlined that encourages a broader view of learning phenomena. PMID:23973905

  8. Surgical management of multilevel cervical spinal stenosis and spinal cord injury complicated by cervical spine fracture

    PubMed Central

    2014-01-01

    Background There are few reports regarding surgical management of multilevel cervical spinal stenosis with spinal cord injury. Our purpose is to evaluate the safety and feasibility of open-door expansive laminoplasty in combination with transpedicular screw fixation for the treatment of multilevel cervical spinal stenosis and spinal cord injury in the trauma population. Methods This was a retrospective study of 21 patients who had multilevel cervical spinal stenosis and spinal cord injury with unstable fracture. An open-door expansive posterior laminoplasty combined with transpedicular screw fixation was performed under persistent intraoperative skull traction. Outcome measures included postoperative improvement in Japanese Orthopedic Association (JOA) score and incidence of complications. Results The average operation time was 190 min, with an average blood loss of 437 ml. A total of 120 transpedicular screws were implanted into the cervical vertebrae between vertebral C3 and C7, including 20 into C3, 34 into C4, 36 into C5, 20 into C6, and 10 into C7. The mean preoperative JOA score was 3.67 ± 0.53. The patients were followed for an average of 17.5 months, and the average JOA score improved to 8.17 ± 1.59, significantly higher than the preoperative score (t = 1.798, P < 0.05), with an average improvement of 44.7 ± 11.7%. Postoperative complications in four patients included cerebrospinal fluid leakage, delayed wound healing, pulmonary infection, and urinary system infection. All four patients were responsive to antibiotic treatment; one died from respiratory failure 3 months postoperatively. Conclusions The open-door expansive laminoplasty combined with posterior transpedicular screw fixation is feasible for treating multilevel cervical spinal stenosis and spinal cord injury complicated by unstable fracture. Its advantages include minimum surgical trauma, less intraoperative blood loss, and satisfactory stable supportive effect for

  9. Spinal transection induces widespread proliferation of cells along the length of the spinal cord in a weakly electric fish

    PubMed Central

    Allen, Antiño R.; Smith, G. Troy

    2013-01-01

    The ability to regenerate spinal cord tissue after tail amputation has been well studied in several species of teleost fish. The present study examined proliferation and survival of cells following complete spinal cord transection rather than tail amputation in the weakly electric fish Apteronotus leptorhynchus. To quantify cell proliferation along the length of the spinal cord, fish were given a single bromodeoxyuridine (BrdU) injection immediately after spinal transection or sham surgery. Spinal transection significantly increased the density of BrdU+ cells along the entire length of the spinal cord at 1 day post transection (dpt), and most newly generated cells survived up to 14 dpt. To examine longer term survival of the newly proliferated cells, BrdU was injected for 5 days after the surgery, and fish were sacrificed 14 or 30 dpt. Spinal transection significantly increased proliferation and/or survival, as indicated by an elevated density of BrdU+ cells in the spinal cords of spinally transected compared to sham-operated and intact fish. At 14 dpt, BrdU+ cells were abundant at all levels of the spinal cord. By 30 dpt, the density of BrdU+ cells decreased at all levels of the spinal cord except at the tip of the tail. Thus, newly generated cells in the caudal-most segment of the spinal cord survived longer than those in more rostral segments. Our findings indicate that spinal cord transection stimulates widespread cellular proliferation; however, there were regional differences in the survival of the newly generated cells. PMID:23147638

  10. Spinal tumor

    MedlinePlus

    Tumor - spinal cord ... spinal tumors occur in the nerves of the spinal cord itself. Most often these are ependymomas and other ... gene mutations. Spinal tumors can occur: Inside the spinal cord (intramedullary) In the membranes (meninges) covering the spinal ...

  11. Placebo-induced changes in spinal cord pain processing.

    PubMed

    Matre, Dagfinn; Casey, Kenneth L; Knardahl, Stein

    2006-01-11

    Pain is an essential sensory modality, signaling injury or threat of injury. Pain perception depends on both biological and psychological factors. However, it is not known whether psychological factors modify spinal mechanisms or if its effect is limited to cortical processing. Here, we use a placebo analgesic model to show that psychological factors affect human spinal nociceptive processes. Mechanical hyperalgesia (hypersensitivity) after an injury is attributable to sensitized sensory neurons in the spinal cord. After a 5 min, 46 degrees C heating of the skin, subjects developed areas of mechanical hyperalgesia. This area was smaller in a placebo condition compared with a baseline condition. This result suggests that placebo analgesia affects the spinal cord as well as supra-spinal pain mechanisms in humans and provides strong supporting evidence that placebo analgesia is not simply altered reporting behavior. Central sensitization is thought to mediate the exaggerated pain after innocuous sensory stimulation in several clinical pain conditions that follow trauma and nervous-system injury. These new data indicate that expectation about pain and analgesia is an important component of the cognitive control of central sensitization. PMID:16407554

  12. Complications after spinal anesthesia in adult tethered cord syndrome.

    PubMed

    Liu, Jing-Jie; Guan, Zheng; Gao, Zhen; Xiang, Li; Zhao, Feng; Huang, Sheng-Li

    2016-07-01

    Since little has been reported about complications of spinal anesthesia in adult tethered cord syndrome (TCS), we sought to delineate the characteristics of the condition.A total of 4 cases of adult TCS after spinal anesthesia were reviewed. The medical charts of the patients were obtained. Anesthesia, which was combined spinal and epidural anesthesia or spinal anesthesia was performed, and follow-up were carried out in all patients.The most common neurological symptom of adult TCS before surgery was occasional severe pain in back, perineal region, or legs. Frequent micturition, diminished knee and ankle reflexes, and difficulty in bending were exhibited in partial patients. Paraesthesia of perineal region or/and lower extremities existed 2 to 3 days after spinal anesthesia in all the cases. Weakness of lower extremities existed in 1 case. Lumbar magnetic resonance imaging showed the low location of conus medullaris. At follow-up, 3 cases recovered completely within 3 weeks, and 1 case underwent permanent disability.These cases suggest anesthesiologists and surgeons alert to the association of adult TCS and spinal anesthesia. Spinal anesthesia should be prohibited in patients with adult TCS to prevent neurological damages. PMID:27442670

  13. Spinal cord concussion in a professional ice hockey player.

    PubMed

    Winder, Mark J; Brett, Kelly; Hurlbert, R John

    2011-05-01

    Spinal cord concussion (SCC) is an uncommon injury resulting in transient quadriplegia. The pathophysiology of SCC has been related to underlying spinal canal stenosis in many cases, yet is not always identified. The authors present the case of a professional ice hockey player, without evidence of canal compromise, who sustained an SCC during a regulation game after being struck by a puck in the upper cervical spine. The unusual mechanism of injury is discussed along with a comprehensive review of the literature. PMID:21332276

  14. Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord.

    PubMed

    Zhang, B; Gensel, J C

    2014-08-01

    The field of neuroimmunology is rapidly advancing. There is a growing appreciation for heterogeneity, both in inflammatory composition and region-specific inflammatory responses. This understanding underscores the importance of developing targeted immunomodulatory therapies for treating neurological disorders. Concerning neurotrauma, there is a dearth of publications directly comparing inflammatory responses in the brain and spinal cord after injury. The question therefore remains as to whether inflammatory cells responding to spinal cord vs. brain injury adopt similar functions and are therefore amenable to common therapies. In this review, we address this question while revisiting and modernizing the conclusions from publications that have directly compared inflammation across brain and spinal cord injuries. By examining molecular differences, anatomical variations, and inflammatory cell phenotypes between the injured brain and spinal cord, we provide insight into how neuroinflammation relates to neurotrauma and into fundamental differences between the brain and spinal cord. PMID:25017892

  15. The use of dual growing rods to correct spinal deformity secondary to a low-grade spinal cord astrocytoma

    PubMed Central

    Kuhn, Elizabeth N.; Muthigi, Akhil; Frino, John; Powers, Alexander K.

    2015-01-01

    Pediatric intramedullary spinal cord astrocytomas are rare, and the majority are low grade, typically carrying a low risk of mortality, but a high risk of morbidity. Quality of life is, therefore, an important consideration in treating concomitant progressive kyphoscoliosis. Compared with fusion-based spinal stabilization, fusionless techniques may limit some complications related to early instrumentation of the developing spine. Another consideration is the timing of radiation therapy relative to both spinal maturity and spinal instrumentation. To date, there have been no reports of the use of a fusionless technique to treat spinal deformity secondary to an intramedullary spinal cord tumor. Herein, we report the use of fusionless spinal stabilization with dual growing rods in a boy with low-grade spinal cord astrocytoma after radiation therapy. PMID:26468485

  16. Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury.

    PubMed

    Ueno, Masaki; Ueno-Nakamura, Yuka; Niehaus, Jesse; Popovich, Phillip G; Yoshida, Yutaka

    2016-06-01

    Spinal cord injury (SCI) at high spinal levels (e.g., above thoracic level 5) causes systemic immune suppression; however, the underlying mechanisms are unknown. Here we show that profound plasticity develops within spinal autonomic circuitry below the injury, creating a sympathetic anti-inflammatory reflex, and that chemogenetic silencing of this reflex circuitry blocks post-SCI immune suppression. These data provide new insights and potential therapeutic options for limiting the devastating consequences of post-traumatic autonomic hyperreflexia and post-injury immune suppression. PMID:27089020

  17. Collagen-omental graft in experimental spinal cord transection.

    PubMed

    de la Torre, J C; Goldsmith, H S

    1990-01-01

    Spinal cord transection was induced in 3 groups of cats. The gap was surgically reconstructed using a collagen matrix bridge (Group COL), collagen matrix + pedicled omentum graft (Group COM), or gelfoam (Group GEF). After a variable observation period, animals underwent distal cord horse-radish peroxidase (HRP) injections, somatosensory evoked potentials recordings and polarographic measurement of local spinal cord blood flow (1SCBF) using the hydrogen clearance technique. The cord tissue was removed for histologic and immunohistochemical analysis. Results showed retrograde HRP labelling of proximal segmental cord neurons and somatosensory evoked potentials were present in group COM but not in COL or GEF treated animals. Local SCBF was 66% and 87% higher in COM than COL or GEF animals respectively but this increase could be reversed if flow from the pedicled omentum was clamped-off. Histologic examination of cord tissue after 45 days revealed the presence of catecholaminergic axons distal to the transection site in COM but not COL or GEF groups. Moreover, after 90 days, the rate and density of tyrosine hydroxylase immunoreactive (TH-IR) axons was 10-fold higher in COM than COL group and this was accompanied by a proportionate increase in the vascular density between the two groups. GEF treated animals showed no regeneration of transected fibers and poor blood flow pattern. These findings indicate that the placement of a pedicled omentum on a collagen matrix bridge results in near restoration of normal SCBF to the reconstructed cord region and is associated with marked regeneration of axons below the lesion site. PMID:2336984

  18. Respiratory rhythm generation in the in vitro brain stem-spinal cord preparation of the neonatal rat.

    PubMed Central

    Suzue, T

    1984-01-01

    An in vitro preparation was described for studying electrical activity of mammalian brain stem and spinal cord. The brain stem and the spinal cord were isolated from 0-4-day-old rats, placed in a bath and perfused with modified Krebs solution. Various reflex responses could be recorded from cranial nerves by stimulation of other cranial nerves. The preparation was viable for more than 7 h. Spontaneous periodic neural activity could be recorded from phrenic, hypoglossal and other spinal nerves. The periodic discharges of phrenic nerves are synchronized with those of ventral roots C4 and the upward movements of the thorax which was isolated together with the spinal cord. The rhythm of periodic activity seems to be generated in the brain stem. The periodic activity was enhanced by perfusion with low pH solution and depressed by high pH solution. It was markedly depressed by opioid compounds such as enkephalin. It is suggested that this periodic activity corresponds to the respiratory rhythm generated in the brain stem of intact animals. The present preparation may be valuable for elucidating cellular mechanisms of generation and control of respiratory rhythm in the mammalian central nervous system. Images Plate 1 PMID:6148410

  19. Prognostic value of cortical magnetic stimulation in spinal cord injury.

    PubMed

    Clarke, C E; Modarres-Sadeghi, H; Twomey, J A; Burt, A A

    1994-08-01

    Cortical magnetic stimulation was performed in a consecutive series of 10 patients presenting within 15 days of traumatic spinal cord injury. In those patients with complete paraplegia or quadriplegia, motor evoked potentials at presentation were absent below the level of the lesion. Six months after the injury, potentials had returned in the biceps brachii and abductor pollicis brevis muscles in some quadriplegic cases, but remained absent from the tibialis anterior in all of this group. None of those with a complete lesion made a significant functional recovery. Of the three patients with incomplete quadriplegia, two showed a significant recovery after 6 months. Motor evoked potentials were recordable below the level of the lesion at presentation in these cases, although the latencies were prolonged. In the remaining patient who failed to improve, potentials were unrecordable throughout the study. This small pilot study suggests that cortical magnetic stimulation may be useful in refining the prognosis in patients with an incomplete spinal cord injury. PMID:7970860

  20. Plasma glutamine concentration in spinal cord injured patients.

    PubMed

    Rogeri, P S; Costa Rosa, L F B P

    2005-09-23

    Glutamine, a non-essential amino acid, is the most important source of energy for macrophages and lymphocytes. Reduction in its plasma concentration is related with loss of immune function, as leukocyte proliferation and cytokine production. It is well known that glutamine is largely produced by the skeletal muscle which is severely compromised as a consequence of the paralysis due to the damage of the spinal cord. In spinal cord injury (SCI) patients, infections, such as pneumonia and sepsis in general, are a major cause of morbidity and mortality. In comparison with the control group, a 54% decrease in plasma glutamine concentration was observed as well as a decrease in the production of TNF and IL-1 by peripheral blood mononuclear cells cultivated for 48 h in SCI patients. Therefore, we propose that a decrease in plasma glutamine concentration is an important contributor to the immunosuppression seen in SCI patients. PMID:16024049

  1. In Vivo Reprogramming for Brain and Spinal Cord Repair.

    PubMed

    Chen, Gong; Wernig, Marius; Berninger, Benedikt; Nakafuku, Masato; Parmar, Malin; Zhang, Chun-Li

    2015-01-01

    Cell reprogramming technologies have enabled the generation of various specific cell types including neurons from readily accessible patient cells, such as skin fibroblasts, providing an intriguing novel cell source for autologous cell transplantation. However, cell transplantation faces several difficult hurdles such as cell production and purification, long-term survival, and functional integration after transplantation. Recently, in vivo reprogramming, which makes use of endogenous cells for regeneration purpose, emerged as a new approach to circumvent cell transplantation. There has been evidence for in vivo reprogramming in the mouse pancreas, heart, and brain and spinal cord with various degrees of success. This mini review summarizes the latest developments presented in the first symposium on in vivo reprogramming glial cells into functional neurons in the brain and spinal cord, held at the 2014 annual meeting of the Society for Neuroscience in Washington, DC. PMID:26730402

  2. Nanomedicine strategies for treatment of secondary spinal cord injury

    PubMed Central

    White-Schenk, Désirée; Shi, Riyi; Leary, James F

    2015-01-01

    Neurological injury, such as spinal cord injury, has a secondary injury associated with it. The secondary injury results from the biological cascade after the primary injury and affects previous uninjured, healthy tissue. Therefore, the mitigation of such a cascade would benefit patients suffering a primary injury and allow the body to recover more quickly. Unfortunately, the delivery of effective therapeutics is quite limited. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Incorporating nanomedicine into the treatment of neuronal injury and disease would likely push nanomedicine into a new light. This review highlights the various pathological issues involved in secondary spinal cord injury, current treatment options, and the improvements that could be made using a nanomedical approach. PMID:25673988

  3. Spinal Cord Stimulation: The Clinical Application of New Technology

    PubMed Central

    Hegarty, Dominic

    2012-01-01

    The use of neuromodulation for pain relief is among the fastest-growing areas of medicine, involving many diverse specialties and impacting on hundreds of thousands of patients with numerous disorders worldwide. As the evidence of efficacy improves, the interest in spinal cord stimulation (SCS) will increase because it is minimally invasive, safe, and a reversible treatment modality with limited side effect profile. While the mechanism of action evades complete understanding, the technological improvements have been considerable and current neuromodulation developments have been coupled with the rapid growth of the neuromodulation device industry resulting in the development of the next-generation neuromodulation systems. The development, the newest technicaliti and the future for the clinical application of spinal cord stimulation (SCS) are reviewed here. PMID:22007205

  4. Macrophage and microglial plasticity in the injured spinal cord.

    PubMed

    David, S; Greenhalgh, A D; Kroner, A

    2015-10-29

    Macrophages in the injured spinal cord arise from resident microglia and from infiltrating peripheral myeloid cells. Microglia respond within minutes after central nervous system (CNS) injury and along with other CNS cells signal the influx of their peripheral counterpart. Although some of the functions they carry out are similar, they appear to be specialized to perform particular roles after CNS injury. Microglia and macrophages are very plastic cells that can change their phenotype drastically in response to in vitro and in vivo conditions. They can change from pro-inflammatory, cytotoxic cells to anti-inflammatory, pro-repair phenotypes. The microenvironment of the injured CNS importantly influences macrophage plasticity. This review discusses the phagocytosis and cytokine-mediated effects on macrophage plasticity in the context of spinal cord injury. PMID:26342747

  5. Spinal cord injury rehabilitation outcome: the impact of age.

    PubMed

    Yarkony, G M; Roth, E J; Heinemann, A W; Lovell, L L

    1988-01-01

    The effect of age on self-care and mobility skill performance after spinal cord injury was studied using a 15-task modified Barthel Index (MBI) to score functional abilities for 708 patients aged 6 through 88 years. Analysis of covariance showed no relationship between age and discharge MBI score; however, patients with paraplegia, incomplete lesions, and greater admission functional ratings had greater discharge functional scores than did those with quadriplegia, complete lesions, and lower admission scores, respectively. Advancing age was associated with increased dependence in only seven functional skills (bathing, upper and lower body dressing, stair climbing, and transfers to chair, toilet and bath) and only for patients with complete paraplegia. Other MBI component tasks and patients with complete quadriplegia, incomplete paraplegia and incomplete quadriplegia demonstrated no relationship between age and skill performance. Results of this study support the practice of providing comprehensive rehabilitation services to all patients following spinal cord injury regardless of age. PMID:3335882

  6. Developing clinical practice guidelines for spinal cord medicine. Lessons learned.

    PubMed

    Biddle, A K; Fraher, E P

    2000-02-01

    This article describes the process used by the Consortium for Spinal Cord Medicine to develop evidence-based clinical practice guidelines for managing and treating individuals with spinal cord injury and provides important information on lessons learned and the potential problems to avoid. Issues to consider during the guideline development process include topic selection and explication, methods for selecting the panel chair and panel members, the writing of recommendations and supporting scientific rationales, peer-reviewing guidelines, and the process for disseminating, implementing, and evaluating guidelines. The applicability, advantages, and disadvantages of available evidence and guideline recommendation grading systems and issues arising from the lack of scientific evidence supporting particular recommendations are also discussed. PMID:10680167

  7. Shedding Light on Restoring Respiratory Function After Spinal Cord Injury

    PubMed Central

    Alilain, Warren J.; Silver, Jerry

    2009-01-01

    Loss of respiratory function is one of the leading causes of death following spinal cord injury. Because of this, much work has been done in studying ways to restore respiratory function following spinal cord injury (SCI) – including pharmacological and regeneration strategies. With the emergence of new and powerful tools from molecular neuroscience, new therapeutically relevant alternatives to these approaches have become available, including expression of light sensitive proteins called channelrhodopsins. In this article we briefly review the history of various attempts to restore breathing after C2 hemisection, and focus on our recent work using the activation of light sensitive channels to restore respiratory function after experimental SCI. We also discuss how such light-induced activity can help shed light on the inner workings of the central nervous system respiratory circuitry that controls diaphragmatic function. PMID:19893756

  8. A telerehabilitation intervention for persons with spinal cord dysfunction.

    PubMed

    Houlihan, Bethlyn Vergo; Jette, Alan; Paasche-Orlow, Michael; Wierbicky, Jane; Ducharme, Stan; Zazula, Judi; Cuevas, Penelope; Friedman, Robert H; Williams, Steve

    2011-09-01

    Pressure ulcers and depression are common preventable conditions secondary to a spinal cord dysfunction. However, few successful, low-cost preventive approaches have been identified. We have developed a dynamic automated telephone calling system, termed Care Call, to empower and motivate people with spinal cord dysfunction to improve their skin care, seek treatment for depression, and appropriately use the healthcare system. Herein, we describe the design and development of Care Call, its novel features, and promising preliminary results of our pilot testing. Voice quality testing showed that Care Call was able to understand all voice characteristics except very soft-spoken speech. Importantly, pilot study subjects felt Care Call could be particularly useful for people who are depressed, those with acute injury, and those without access to quality care. The results of a randomized controlled trial currently underway to evaluate Care Call will be available in 2011. PMID:21389846

  9. Assessment of Hyperactive Reflexes in Patients with Spinal Cord Injury

    PubMed Central

    Yang, Chung-Yong

    2015-01-01

    Hyperactive reflexes are commonly observed in patients with spinal cord injury (SCI) but there is a lack of convenient and quantitative characterizations. Patellar tendon reflexes were examined in nine SCI patients and ten healthy control subjects by tapping the tendon using a hand-held instrumented hammer at various knee flexion angles, and the tapping force, quadriceps EMG, and knee extension torque were measured to characterize patellar tendon reflexes quantitatively in terms of the tendon reflex gain (Gtr), contraction rate (Rc), and reflex loop time delay (td). It was found that there are significant increases in Gtr and Rc and decrease in td in patients with spinal cord injury as compared to the controls (P < 0.05). This study presented a convenient and quantitative method to evaluate reflex excitability and muscle contraction dynamics. With proper simplifications, it can potentially be used for quantitative diagnosis and outcome evaluations of hyperreflexia in clinical settings. PMID:25654084

  10. Outcomes in Treatment for Intradural Spinal Cord Ependymomas

    SciTech Connect

    Volpp, P. Brian Han, Khanh; Kagan, A. Robert; Tome, Michael

    2007-11-15

    Purpose: Spinal cord ependymomas are rare tumors, accounting for <2% of all primary central nervous system tumors. This study assessed the treatment outcomes for patients diagnosed with spinal cord ependymomas within the Southern California Kaiser Permanente system. Methods and Materials: We studied 23 patients treated with surgery with or without external beam radiotherapy (EBRT). The local and distant control rates and overall survival rates were determined. Results: The overall local control, overall recurrence, and 9-year overall survival rate was 96%, 17.4%, and 63.9%, respectively. Conclusions: The results of our study indicate that en bloc gross total resection should be the initial treatment, with radiotherapy reserved primarily for postoperative cases with unfavorable characteristics such as residual tumor, anaplastic histologic features, or piecemeal resection. Excellent local control and overall survival rates can be achieved using modern microsurgical techniques, with or without local radiotherapy.

  11. Spinal Cord Injury—Past, Present, and Future

    PubMed Central

    Donovan, William H

    2007-01-01

    Summary: This special report traces the path of spinal cord injury (SCI) from ancient times through the present and provides an optimistic overview of promising clinical trials and avenues of basic research. The spinal cord injuries of Lord Admiral Sir Horatio Nelson, President James A. Garfield, and General George Patton provide an interesting perspective on the evolution of the standard of care for SCI. The author details the contributions of a wide spectrum of professionals in the United States, Europe, and Australia, as well as the roles of various government and professional organizations, legislation, and overall advances in surgery, anesthesia, trauma care, imaging, pharmacology, and infection control, in the advancement of care for the individual with SCI. PMID:17591221

  12. Photoplethysmographic sensors for perfusion measurements in spinal cord tissue

    NASA Astrophysics Data System (ADS)

    Phillips, J. P.; Kyriacou, P. A.

    2011-08-01

    Sensors for recording photoplethysmographic signals from the nervous tissue of the spinal cord are described. The purpose of these sensors is to establish whether perfusion is compromised in various states of injury which occur in certain animal models of spinal cord injury, for example compression injury. Various measures of perfusion are applicable such as the amplitude of the photoplethysmograph signal and the oxygen saturation, measured using a dual wavelength configuration. Signals are usually compared to baseline measurements made in uninjured subjects. This paper describes two types of probe, one based on optical fibres, and one in which optotes are placed in direct contact with the tissue surface. Results from a study based on a compression model utilising a fibreoptic sensor are presented.

  13. Calcium channel alpha-2-delta-1 protein upregulation in dorsal spinal cord mediates spinal cord injury induced neuropathic pain states

    PubMed Central

    Boroujerdi, Amin; Zeng, Jun; Sharp, Kelli; Kim, Donghyun; Steward, Oswald; Luo, Z. David

    2011-01-01

    Spinal cord injury (SCI) commonly results in the development of neuropathic pain, which can dramatically impair the quality of life for SCI patients. SCI induced neuropathic pain can be manifested as both tactile allodynia (a painful sensation to a non-noxious stimulus) and or hyperalgesia (an enhanced sensation to a painful stimulus). The mechanisms underlying these pain states are poorly understood. Clinical studies have shown that gabapentin, a drug that binds to the voltage gated calcium channel alpha-2-delta-1 subunit (Cavα2δ-1) proteins is effective in the management of SCI induced neuropathic pain. Accordingly, we hypothesized that tactile allodynia post SCI is mediated by an upregulation of Cavα2δ-1 in dorsal spinal cord (DSC). To test this hypothesis, we examined if SCI-induced dysregulation of spinal Cavα2δ-1 plays a contributory role in below-level allodynia development in a rat spinal T9 contusion injury model. We found that Cavα2δ-1 expression levels were significantly increased in L4-6 dorsal, but not ventral, spinal cord of SCI rats that correlated with tactile allodynia development in the hindpaw plantar surface. Furthermore, both intrathecal gabapentin treatment and blocking SCI induced Cavα2δ-1 protein upregulation by intrathecal Cavα2δ-1 antisense oligodeoxynucleotides could reverse tactile allodynia in SCI rats. These findings support that SCI induced Cavα2δ-1 upregulation in spinal dorsal horn is a key component in mediating below-level neuropathic pain development and selectively targeting this pathway may provide effective pain relief for SCI patients. PMID:21239111

  14. [Spinal cord compression disclosing rib hydatidosis].

    PubMed

    Ousehal, A; Adil, A; El Azhari, A; Kadiri, R

    1995-12-01

    The authors report an exceptional case of spinal compression following an isolate rib hydatidosis. The CT scan has suspected the diagnosis. The authors recall the anatomoclinic features and specify the radiologic aspects of the osseous hydatidosis, especially the rib's localization which is very rare. MR imaging in addition of its diagnosis role showing a very evocative cyst images, is the exam of choice in order to appreciate the disease's extent and the degree of medular sufferance. PMID:8676297

  15. Fertility treatment in spinal cord injury and other neurologic disease

    PubMed Central

    Trofimenko, Vera

    2016-01-01

    Infertility in individuals with neurologic disorders is complex in etiology and manifestation. Its management therefore often requires a multimodal approach. This review addresses the implications of spinal cord injury (SCI) and other neurologic disease on fertility, including the high prevalence of sexual dysfunction, ejaculation disorders and compromised semen parameters. Available treatment approaches discussed include assisted ejaculation techniques and assisted reproductive technology including surgical sperm retrieval and intracytoplasmic sperm injection (ICSI). PMID:26904416

  16. Oscillating field stimulation in the treatment of spinal cord injury.

    PubMed

    Walters, Beverly C

    2010-12-01

    The application of electrical current to injured tissue is known to promote healing. The use of this modality in healing the injured spinal cord to promote neurologic recovery has been introduced as a potential treatment for patients who previously had minimal hope of recovery. In in vitro and in vivo experiments, neural regeneration has been seen to occur, especially when an oscillating field is used. With this modality, an electrical current is applied in which the polarity changes direction on a periodic basis, preventing the "die-back" phenomenon of severed neural pathways. This mechanism of recovery has been demonstrated in several species in which sacrifice has been undertaken and spinal cords examined. In a study of humans, a small number of patients participated in a single phase Ia trial in which the safety of an implantable device was demonstrated, with indications of probable benefit, consistent with laboratory and animal studies. In addition, a number of additional patients were treated, and their results were examined along with the original cohort and were compared with historical control subjects. The device used in this mode of treatment has not been approved for use in the general spinal cord-injured population, pending further study. A larger multi-institutional trial needs to be done to further demonstrate efficacy and effectiveness, and outcomes will need to be agreed upon by spinal cord injury researchers, patients, and regulators before widespread use will be permitted. Unfortunately, some subtle changes experienced and valued by patients are not recognized as important or desirable by regulators or by all researchers. PMID:21172690

  17. Spinal cord compression by extramedullary haematopoiesis in myelofibrosis.

    PubMed Central

    Crawford, D. C.; Nightingale, S.; Bates, D.; Tomlinson, B. E.

    1984-01-01

    A 50-year-old man with a 20-year history of myelofibrosis developed mild impairment of dorsal column sensation and ataxia of gait. A myelogram and subsequent peroperative biopsy demonstrated spinal cord compression due to extramedullary haematopoiesis. There was an excellent clinical response to surgery and radiotherapy. The characteristic clinical features and the pathogenesis of this unusual complication of myelofibrosis and extramedullary haematopoiesis are discussed. Images Fig. 1 PMID:6694952

  18. Fertility treatment in spinal cord injury and other neurologic disease.

    PubMed

    Trofimenko, Vera; Hotaling, James M

    2016-02-01

    Infertility in individuals with neurologic disorders is complex in etiology and manifestation. Its management therefore often requires a multimodal approach. This review addresses the implications of spinal cord injury (SCI) and other neurologic disease on fertility, including the high prevalence of sexual dysfunction, ejaculation disorders and compromised semen parameters. Available treatment approaches discussed include assisted ejaculation techniques and assisted reproductive technology including surgical sperm retrieval and intracytoplasmic sperm injection (ICSI). PMID:26904416

  19. Astrocytoma with involvement of medulla oblongata, spinal cord and spinal nerves in a raccoon (Procyon lotor)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neoplasms affecting the central and peripheral nervous systems of wild animals are extremely rare. Described are clinical signs, pathologic and immunohistochemical findings in an adult female raccoon (Procyon lotor) with an astrocytoma which involved brainstem, cervical spinal cord and roots of the ...

  20. Blood supply and vascular reactivity of the spinal cord under normal and pathological conditions.

    PubMed

    Martirosyan, Nikolay L; Feuerstein, Jeanne S; Theodore, Nicholas; Cavalcanti, Daniel D; Spetzler, Robert F; Preul, Mark C

    2011-09-01

    The authors present a review of spinal cord blood supply, discussing the anatomy of the vascular system and physiological aspects of blood flow regulation in normal and injured spinal cords. Unique anatomical functional properties of vessels and blood supply determine the susceptibility of the spinal cord to damage, especially ischemia. Spinal cord injury (SCI), for example, complicating thoracoabdominal aortic aneurysm repair is associated with ischemic trauma. The rate of this devastating complication has been decreased significantly by instituting physiological methods of protection. Traumatic SCI causes complex changes in spinal cord blood flow, which are closely related to the severity of injury. Manipulating physiological parameters such as mean arterial blood pressure and intrathecal pressure may be beneficial for patients with an SCI. Studying the physiopathological processes of the spinal cord under vascular compromise remains challenging because of its central role in almost all of the body's hemodynamic and neurofunctional processes. PMID:21663407

  1. Spinal Cord Lesions in Congenital Toxoplasmosis Demonstrated with Neuroimaging, Including Their Successful Treatment in an Adult

    PubMed Central

    Burrowes, Delilah; Boyer, Kenneth; Swisher, Charles N.; Noble, A. Gwendolyn; Sautter, Mari; Heydemann, Peter; Rabiah, Peter; Lee, Daniel; McLeod, Rima

    2012-01-01

    Neuroimaging studies for persons in the National Collaborative Chicago-Based Congenital Toxoplasmosis Study (NCCCTS) with symptoms and signs referable to the spinal cord were reviewed. Three infants had symptomatic spinal cord lesions, another infant a Chiari malformation, and another infant a symptomatic peri-spinal cord lipoma. One patient had an unusual history of prolonged spinal cord symptoms presenting in middle age. Neuroimaging was used to establish her diagnosis and response to treatment. This 43 year-old woman with congenital toxoplasmosis developed progressive leg spasticity, weakness, numbness, difficulty walking, and decreased visual acuity and color vision without documented re-activation of her chorioretinal disease. At 52 years of age, spinal cord lesions in locations correlating with her symptoms and optic atrophy were diagnosed with 3 Tesla MRI scan. Treatment with pyrimethamine and sulfadiazine decreased her neurologic symptoms, improved her neurologic examination, and resolved her enhancing spinal cord lesions seen on MRI. PMID:23487348

  2. Biomechanical properties of the spinal cord: implications for tissue engineering and clinical translation.

    PubMed

    Bartlett, Richard D; Choi, David; Phillips, James B

    2016-10-01

    Spinal cord injury is a severely debilitating condition which can leave individuals paralyzed and suffering from autonomic dysfunction. Regenerative medicine may offer a promising solution to this problem. Previous research has focused primarily on exploring the cellular and biological aspects of the spinal cord, yet relatively little remains known about the biomechanical properties of spinal cord tissue. Given that a number of regenerative strategies aim to deliver cells and materials in the form of tissue-engineered therapies, understanding the biomechanical properties of host spinal cord tissue is important. We review the relevant biomechanical properties of spinal cord tissue and provide the baseline knowledge required to apply these important physical concepts to spinal cord tissue engineering. PMID:27592549

  3. Ambulatory Blood Pressure Monitoring in Spinal Cord Injury: Clinical Practicability

    PubMed Central

    Hubli, Michèle

    2014-01-01

    Abstract Trauma to the spinal cord often results not only in sensorimotor but also autonomic impairments. The loss of autonomic control over the cardiovascular system can cause profound blood pressure (BP) derangements in subjects with spinal cord injury (SCI) and may therefore lead to increased cardiovascular disease (CVD) risk in this population. The use of ambulatory blood pressure monitoring (ABPM) allows insights into circadian BP profiles, which have been shown to be of good prognostic value for cardiovascular morbidity and mortality in able-bodied subjects. Past studies in SCI subjects using ABPM have shown that alterations in circadian BP patterns are dependent on the spinal lesion level. Tetraplegic subjects with sensorimotor complete lesions have a decreased daytime arterial BP, loss of the physiological nocturnal BP dip, and higher circadian BP variability, including potentially life-threatening hypertensive episodes known as autonomic dysreflexia (AD), compared with paraplegic and able-bodied subjects. The proposed underlying mechanisms of these adverse BP alterations mainly are attributed to a lost or decreased central drive to sympathetic spinal preganglionic neurons controlling the heart and blood vessels. In addition, several maladaptive anatomical changes within the spinal cord and the periphery, as well as the general decrease of physical daily activity in SCI subjects, account for adverse BP changes. ABPM enables the identification of adverse BP profiles and the associated increased risk for CVD in SCI subjects. Concurrently, it also might provide a useful clinical tool to monitor improvements of AD and lost nocturnal dip after appropriate treatments in the SCI population. PMID:24175653

  4. Induction of Fos protein immunoreactivity by spinal cord contusion.

    PubMed

    Del-Bel, E A; Borges, C A; Defino, H L; Guimarães, F S

    2000-05-01

    The objective of the present study was to identify neurons in the central nervous system that respond to spinal contusion injury in the rat by monitoring the expression of the nuclear protein encoded by the c-fos gene, an activity-dependent gene, in spinal cord and brainstem regions. Rats were anesthetized with urethane and the injury was produced by dropping a 5-g weight from 20.0 cm onto the exposed dura at the T10-L1 vertebral level (contusion group). The spinal cord was exposed but not lesioned in anesthetized control animals (laminectomy group); intact animals were also subjected to anesthesia (intact control). Behavioral alterations were analyzed by Tarlov/Bohlman scores, 2 h after the procedures and the animals were then perfused for immunocytochemistry. The patterns of Fos-like immunoreactivity (FLI) which were site-specific, reproducible and correlated with spinal laminae that respond predominantly to noxious stimulation or injury: laminae I-II (outer substantia gelatinosa) and X and the nucleus of the intermediolateral cell column. At the brain stem level FLI was detected in the reticular formation, area postrema and solitary tract nucleus of lesioned animals. No Fos staining was detected by immunocytochemistry in the intact control group. However, detection of FLI in the group submitted to anesthesia and surgical procedures, although less intense than in the lesion group, indicated that microtraumas may occur which are not detected by the Tarlov/Bohlman scores. There is both a local and remote effect of a distal contusion on the spinal cord of rats, implicating sensory neurons and centers related to autonomic control in the reaction to this kind of injury. PMID:10775883

  5. Vascular Endothelial Growth Factor and Spinal Cord Injury Pain

    PubMed Central

    Sundberg, Laura M.; Herrera, Juan J.; Mokkapati, Venkata U.L.; Lee, Julieann; Narayana, Ponnada A.

    2010-01-01

    Abstract Vascular endothelial growth factor (VEGF)-A mRNA was previously identified as one of the significantly upregulated transcripts in spinal cord injured tissue from adult rats that developed allodynia. To characterize the role of VEGF-A in the development of pain in spinal cord injury (SCI), we analyzed mechanical allodynia in SCI rats that were treated with either vehicle, VEGF-A isoform 165 (VEGF165), or neutralizing VEGF165-specific antibody. We have observed that exogenous administration of VEGF165 increased both the number of SCI rats that develop persistent mechanical allodynia, and the level of hypersensitivity to mechanical stimuli. Our analysis identified excessive and aberrant growth of myelinated axons in dorsal horns and dorsal columns of chronically injured spinal cords as possible mechanisms for both SCI pain and VEGF165-induced amplification of SCI pain, suggesting that elevated endogenous VEGF165 may have a role in the development of allodynia after SCI. However, the neutralizing VEGF165 antibody showed no effect on allodynia or axonal sprouting after SCI. It is possible that another endogenous VEGF isoform activates the same signaling pathway as the exogenously-administered 165 isoform and contributes to SCI pain. Our transcriptional analysis revealed that endogenous VEGF188 is likely to be the isoform involved in the development of allodynia after SCI. To the best of our knowledge, this is the first study to suggest a possible link between VEGF, nonspecific sprouting of myelinated axons, and mechanical allodynia following SCI. PMID:20698758

  6. Electrospun Fibers for Spinal Cord Injury Research and Regeneration.

    PubMed

    Schaub, Nicholas J; Johnson, Christopher D; Cooper, Blair; Gilbert, Ryan J

    2016-08-01

    Electrospinning is the process by which a scaffold containing micrometer and nanometer diameter fibers are drawn from a polymer solution or melt using a large voltage gradient between a polymer emitting source and a grounded collector. Ramakrishna and colleagues first investigated electrospun fibers for neural applications in 2004. After this initial study, electrospun fibers are increasingly investigated for neural tissue engineering applications. Electrospun fibers robustly support axonal regeneration within in vivo rodent models of spinal cord injury. These findings suggest the possibility of their eventual use within patients. Indeed, both spinal cord and peripheral nervous system regeneration research over the last several years shows that physical guidance cues induce recovery of limb, respiration, or bladder control in rodent models. Electrospun fibers may be an alternative to the peripheral nerve graft (PNG), because PNG autografts injure the patient and are limited in supply, and allografts risk host rejection. In addition, electrospun fibers can be engineered easily to confront new therapeutic challenges. Fibers can be modified to release therapies locally or can be physically modified to direct neural stem cell differentiation. This review summarizes the major findings and trends in the last decade of research, with a particular focus on spinal cord injury. This review also demonstrates how electrospun fibers can be used to study the central nervous system in vitro. PMID:26650778

  7. Mu opioid receptors in developing human spinal cord

    PubMed Central

    RAY, SUBRATA BASU; WADHWA, SHASHI

    1999-01-01

    The distribution of mu opioid receptors was studied in human fetal spinal cords between 12–13 and 24–25 wk gestational ages. Autoradiographic localisation using [3H] DAMGO revealed the presence of mu receptors in the dorsal horn at all age groups with a higher density in the superficial laminae (I–II). A biphasic expression was noted. Receptor density increased in the dorsal horn, including the superficial laminae, between 12–13 and 16–17 wk. This could be associated with a spurt in neurogenesis. The density increased again at 24–25 wk in laminae I–II which resembled the adult pattern of distribution. A dramatic proliferation of cells was noted from the region of the ventricular zone between 16–17 and 24–25 wk. These were considered to be glial cells from their histological features. Mu receptor expression was noted over a large area of the spinal cord including the lateral funiculus at 24–25 wk. This may be due to receptor expression by glial cells. The study presents evidence of mu receptor expression by both neurons and glia during early development of human spinal cord. PMID:10473288

  8. Caffeine treatment aggravates secondary degeneration after spinal cord injury.

    PubMed

    Yang, Cheng-Chang; Jou, I-Ming

    2016-03-01

    Spinal cord injury (SCI) often results in some form of paralysis. Recently, SCI therapy has been focused on preventing secondary injury to reduce both neuroinflammation and lesion size so that functional outcome after an SCI may be improved. Previous studies have shown that adenosine receptors (AR) are a major regulator of inflammation after an SCI. The current study was performed to examine the effect of caffeine, a pan-AR blocker, on spontaneous functional recovery after an SCI. Animals were assigned into 3 groups randomly, including sham, PBS and caffeine groups. The rat SCI was generated by an NYU impactor with a 10 g rod dropped from a 25 mm height at thoracic 9 spinal cord level. Caffeine and PBS were injected daily during the experiment period. Hind limb motor function was evaluated by the Basso, Beattie, Bresnahan (BBB) locomotor rating scale at 1 week and 4 weeks after the SCI. Spinal cord segments were collected after final behavior evaluation for morphological analysis. The tissue sparing was evaluated by luxol fast blue staining. Immunofluorescence stain was employed to assess astrocyte activation and neurofilament positioning, while microglia activation was examined by immunohistochemistry stain.The results showed that spontaneous functional recovery was blocked after the animals were subjected caffeine daily. Moreover, caffeine administration increased the demyelination area, promoted astrocyte and microglia activation and decreased the quantity of neurofilaments. These findings suggest that the neurotoxicity effect of caffeine may be associated with the inhibition of neural repair and the promotion of neuroinflammation. PMID:26746340

  9. Gene Delivery Strategies to Promote Spinal Cord Repair

    PubMed Central

    Walthers, Christopher M; Seidlits, Stephanie K

    2015-01-01

    Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed. PMID:25922572

  10. Prolotherapy-induced Cervical Spinal Cord Injury - A Case Report -

    PubMed Central

    Yun, Hyun-Sik; Sun, Hyung-Seok; Seon, Hyo-Jeong; Han, Jae-Young; Choi, In-Sung

    2011-01-01

    A 49-year-old man received prolotherapy in the upper cervical region at a local medical clinic. Immediately after the procedure, he felt a sensation resembling an electric shock in his right upper and lower extremities, and continuously complained of numbness and discomfort in the right hemibody. He visited our clinic a week later. Upon physical examination, there were no significant abnormal findings. The visual analog scale was 60 points. T2-weight magnetic resonance images of the cervical spine showed a 0.7 cm sized bright oval spot on the right side of the spinal cord at the level of C4-C5 disc, suggesting spinal cord injury. There were no definite electrodiagnostic abnormalities. Digital infrared thermal images showed moderately decreased surface temperature on lateral aspect of the right forearm and dorsum of the right hand compared with the other side. Considering that very rare complications like spinal cord injury may develop after prolotherapy, we suggest that special interventions such as prolotherapy be performed by professional experts. PMID:22506175

  11. The Sur1-Trpm4 Channel in Spinal Cord Injury.

    PubMed

    Simard, J Marc; Woo, Seung Kyoon; Aarabi, Bizhan; Gerzanich, Volodymyr

    2013-08-17

    Spinal cord injury (SCI) is a major unsolved challenge in medicine. Impact trauma to the spinal cord shears blood vessels, causing an immediate 'primary hemorrhage'. During the hours following trauma, the region of hemorrhage enlarges progressively, with delayed or 'secondary hemorrhage' adding to the primary hemorrhage, and effectively doubling its volume. The process responsible for the secondary hemorrhage that results in early expansion of the hemorrhagic lesion is termed 'progressive hemorrhagic necrosis' (PHN). PHN is a dynamic process of auto destruction whose molecular underpinnings are only now beginning to be elucidated. PHN results from the delayed, progressive, catastrophic failure of the structural integrity of capillaries. The resulting 'capillary fragmentation' is a unique, pathognomonic feature of PHN. Recent work has implicated the Sur1-Trpm4 channel that is newly upregulated in penumbral microvessels as being required for the development of PHN. Targeting the Sur1-Trpm4 channel by gene deletion, gene suppression, or pharmacological inhibition of either of the two channel subunits, Sur1 or Trpm4, yields exactly the same effects histologically and functionally, and exactly the same unique, pathognomonic phenotype - the prevention of capillary fragmentation. The potential advantage of inhibiting Sur1-Trpm4 channels using glibenclamide is a highly promising strategy for ameliorating the devastating sequelae of spinal cord trauma in humans. PMID:24834370

  12. Transplant restoration of spinal cord inhibitory controls ameliorates neuropathic itch

    PubMed Central

    Braz, Joao M.; Juarez-Salinas, Dina; Ross, Sarah E.; Basbaum, Allan I.

    2014-01-01

    The transmission of pruritoceptive (itch) messages involves specific neural circuits within the spinal cord that are distinct from those that transmit pain messages. These itch-specific circuits are tonically regulated by inhibitory interneurons in the dorsal horn. Consistent with these findings, it has previously been reported that loss of GABAergic interneurons in mice harboring a deletion of the transcription factor Bhlhb5 generates a severe, nonremitting condition of chronic itch. Here, we tested the hypothesis that the neuropathic itch in BHLHB5-deficient animals can be treated by restoring inhibitory controls through spinal cord transplantation and integration of precursors of cortical inhibitory interneurons derived from the embryonic medial ganglionic eminence. We specifically targeted the transplants to segments of the spinal cord innervated by areas of the body that were most severely affected. BHLHB5-deficient mice that received transplants demonstrated a substantial reduction of excessive scratching and dramatic resolution of skin lesions. In contrast, the scratching persisted and skin lesions worsened over time in sham-treated mice. Together, these results indicate that cell-mediated restoration of inhibitory controls has potential as a powerful, cell-based therapy for neuropathic itch that not only ameliorates symptoms of chronic itch, but also may modify disease. PMID:25003193

  13. Incidence of Primary Spinal Cord, Spinal Meninges, and Cauda Equina Tumors in Korea, 2006-2010

    PubMed Central

    Jung, Kyu-Won; Park, Kwang Hyon; Ha, Johyun; Lee, Seung Hoon; Won, Young-Joo; Yoo, Heon

    2015-01-01

    Purpose Primary spinal cord and appendage tumors (PSCAT) originating from the spinal cord, spinal meninges, and cauda equina are uncommon. Worldwide, population-based cancer registry data are mostly based on malignant tumors only, which means few data are available on PSCATs, including non-malignant tumors. Therefore, the objective of this study was to provide information regarding the incidence of both non-malignant and malignant PSCATs in Korea on a national level. Materials and Methods Incidence of PSCATs was estimated from cases diagnosed between 2006 and 2010 using the National Cancer Incidence Database in Korea. Age-adjusted rates were calculated using the world standard population, and male-to-female rate ratios were calculated by histology type. Results Of all PSCATs registered (n=3,312), 86.6% were non-malignant. The overall age-adjusted incidence of PSCATs was 1.08 per 100,000 person-years, with an incidence of 0.99 per 100,000 in females and 1.15 in males. The most common site of PSCATs was the spinal cord (83.4%), followed by spinal meninges (16.1%) and cauda equina (0.5%). The most common histological type was neurilemmoma (41.3%), followed by meningiomas (20.1%) and ependymomas (7.6%). Men had significantly higher rates than women for ependymomas and lymphomas but had lower rates for meningiomas. Conclusion This study provides the first population-based analysis of PSCATs in Korea. PMID:25544579

  14. An unusual case of spinal cord compression from concomitant spinal epidural lipomatosis and Hodgkin's lymphoma

    PubMed Central

    Ahmadzai, Hasib; Khalil, Ali; Mitchell, Ruth A.; Kwok, Bernard

    2016-01-01

    Spinal epidural lipomatosis (SEL) results from an abnormal accumulation of unencapsulated fat within the epidural space and is a rare cause of spinal cord compression, which needs to be considered with a high index of suspicion. It most commonly occurs secondary to chronic corticosteroid use and endocrinopathies. Idiopathic cases are highly associated with obesity. We report an unusual case of idiopathic thoracic SEL in a 69-year-old male, with an adjacent infiltrative Hodgkin's lymphoma and associated vertebral crush fracture, which resulted in ataxia and sensory loss. Magnetic resonance imaging scans displayed extensive SEL and an infiltrative disease process causing thoracic cord compression. Surgical decompression confirmed the presence of extensive epidural lipomatosis and Hodgkin's lymphoma and subsequently led to improvement in neurological symptoms. To our knowledge, this is the first reported case of concomitant SEL with an adjacent Hodgkin's lymphoma resulting in cord compression. PMID:26962199

  15. Improving outcome of sensorimotor functions after traumatic spinal cord injury

    PubMed Central

    Dietz, Volker

    2016-01-01

    In the rehabilitation of a patient suffering a spinal cord injury (SCI), the exploitation of neuroplasticity is well established. It can be facilitated through the training of functional movements with technical assistance as needed and can improve outcome after an SCI. The success of such training in individuals with incomplete SCI critically depends on the presence of physiological proprioceptive input to the spinal cord leading to meaningful muscle activations during movement performances. Some actual preclinical approaches to restore function by compensating for the loss of descending input to spinal networks following complete/incomplete SCI are critically discussed in this report. Electrical and pharmacological stimulation of spinal neural networks is still in the experimental stage, and despite promising repair studies in animal models, translations to humans up to now have not been convincing. It is possible that a combination of techniques targeting the promotion of axonal regeneration is necessary to advance the restoration of function. In the future, refinement of animal models according to clinical conditions and requirements may contribute to greater translational success. PMID:27303641

  16. The Radiation Dose-Response of the Human Spinal Cord

    SciTech Connect

    Schultheiss, Timothy E.

    2008-08-01

    Purpose: To characterize the radiation dose-response of the human spinal cord. Methods and Materials: Because no single institution has sufficient data to establish a dose-response function for the human spinal cord, published reports were combined. Requisite data were dose and fractionation, number of patients at risk, number of myelopathy cases, and survival experience of the population. Eight data points for cervical myelopathy were obtained from five reports. Using maximum likelihood estimation correcting for the survival experience of the population, estimates were obtained for the median tolerance dose, slope parameter, and {alpha}/{beta} ratio in a logistic dose-response function. An adequate fit to thoracic data was not possible. Hyperbaric oxygen treatments involving the cervical cord were also analyzed. Results: The estimate of the median tolerance dose (cervical cord) was 69.4 Gy (95% confidence interval, 66.4-72.6). The {alpha}/{beta} = 0.87 Gy. At 45 Gy, the (extrapolated) probability of myelopathy is 0.03%; and at 50 Gy, 0.2%. The dose for a 5% myelopathy rate is 59.3 Gy. Graphical analysis indicates that the sensitivity of the thoracic cord is less than that of the cervical cord. There appears to be a sensitizing effect from hyperbaric oxygen treatment. Conclusions: The estimate of {alpha}/{beta} is smaller than usually quoted, but values this small were found in some studies. Using {alpha}/{beta} = 0.87 Gy, one would expect a considerable advantage by decreasing the dose/fraction to less than 2 Gy. These results were obtained from only single fractions/day and should not be applied uncritically to hyperfractionation.

  17. Experimental and Clinical Advances in Immunotherapy Strategies for Spinal Cord Injury Target on MAIs and Their Receptors.

    PubMed

    Lu, Xiu-Min; Wei, Jing-Xiang; Xiao, Lan; Shu, Ya-Hai; Wang, Yong-Tang

    2016-01-01

    In the injured adult mammalian central nervous system (CNS), the failure of axonal regeneration is thought to be attributed, at least in part, to various myelin-associated inhibitors (MAIs), such as Nogo, myelinassociated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp) around the damaged site. Interestingly, these three structurally different inhibitors share two common receptors, Nogo-66 receptor (NgR) and paired immunoglobulin-like receptor B (PirB), and transduce the inhibitory signal into neurons via their complex combinant and co-receptors, such as p75 neurotrophin receptor (p75NTR), Nogo receptor-interacting protein 1 (LINGO-1), and TROY. Accordingly, targeting of the whole myelin or just portions by immunization has been proved to be neuroprotective and is able to promote regeneration in the injured spinal cords. In the past few years, vaccine approaches were initially achieved and could induce the production of antibodies against inhibitors in myelin to block the inhibitory effects and promote functional recovery in spinal cord injury (SCI) models by immunizing with MAIs, such as purified myelin, spinal cord homogenates, or their receptors with the concept of protective autoimmunity formulated. However, for safety consideration, further work is necessary before the immunotherapy strategies can be adopted to treat human injured spinal cords. PMID:26635269

  18. Monoaminergic Modulation of Spinal Viscero-Sympathetic Function in the Neonatal Mouse Thoracic Spinal Cord

    PubMed Central

    Zimmerman, Amanda L.; Sawchuk, Michael; Hochman, Shawn

    2012-01-01

    Descending serotonergic, noradrenergic, and dopaminergic systems project diffusely to sensory, motor and autonomic spinal cord regions. Using neonatal mice, this study examined monoaminergic modulation of visceral sensory input and sympathetic preganglionic output. Whole-cell recordings from sympathetic preganglionic neurons (SPNs) in spinal cord slice demonstrated that serotonin, noradrenaline, and dopamine modulated SPN excitability. Serotonin depolarized all, while noradrenaline and dopamine depolarized most SPNs. Serotonin and noradrenaline also increased SPN current-evoked firing frequency, while both increases and decreases were seen with dopamine. In an in vitro thoracolumbar spinal cord/sympathetic chain preparation, stimulation of splanchnic nerve visceral afferents evoked reflexes and subthreshold population synaptic potentials in thoracic ventral roots that were dose-dependently depressed by the monoamines. Visceral afferent stimulation also evoked bicuculline-sensitive dorsal root potentials thought to reflect presynaptic inhibition via primary afferent depolarization. These dorsal root potentials were likewise dose-dependently depressed by the monoamines. Concomitant monoaminergic depression of population afferent synaptic transmission recorded as dorsal horn field potentials was also seen. Collectively, serotonin, norepinephrine and dopamine were shown to exert broad and comparable modulatory regulation of viscero-sympathetic function. The general facilitation of SPN efferent excitability with simultaneous depression of visceral afferent-evoked motor output suggests that descending monoaminergic systems reconfigure spinal cord autonomic function away from visceral sensory influence. Coincident monoaminergic reductions in dorsal horn responses support a multifaceted modulatory shift in the encoding of spinal visceral afferent activity. Similar monoamine-induced changes have been observed for somatic sensorimotor function, suggesting an integrative

  19. Stereotactic Radiosurgery for Treatment of Spinal Metastases Recurring in Close Proximity to Previously Irradiated Spinal Cord

    SciTech Connect

    Choi, Clara Y.H.; Adler, John R.; Gibbs, Iris C.; Chang, Steven D.; Jackson, Paul S.; Minn, A. Yuriko; Lieberson, Robert E.; Soltys, Scott G.

    2010-10-01

    Purpose: As the spinal cord tolerance often precludes reirradiation with conventional techniques, local recurrence within a previously irradiated field presents a treatment challenge. Methods and Materials: We retrospectively reviewed 51 lesions in 42 patients treated from 2002 to 2008 whose spinal metastases recurred in a previous radiation field (median previous spinal cord dose of 40 Gy) and were subsequently treated with stereotactic radiosurgery (SRS). Results: SRS was delivered to a median marginal dose of 20 Gy (range, 10-30 Gy) in 1-5 fractions (median, 2), targeting a median tumor volume of 10.3 cm{sup 3} (range, 0.2-128.6 cm{sup 3}). Converting the SRS regimens with the linear quadratic model ({alpha}/{beta} = 3), the median spinal cord maximum single-session equivalent dose (SSED) was 12.1 Gy{sub 3} (range, 4.7-19.3 Gy{sub 3}). With a median follow-up of 7 months (range, 2-47 months), the Kaplan-Meier local control and overall survival rates at 6/12 months were 87%/73% and 81%/68%, respectively. A time to retreatment of {<=}12 months and the combination of time to retreatment of {<=}12 months with an SSED of <15 Gy{sub 10} were significant predictors of local failure on univariate and multivariate analyses. In patients with a retreatment interval of <12 months, 6/12 month local control rates were 88%/58%, with a SSED of >15 Gy{sub 10}, compared to 45%/0% with <15 Gy{sub 10}, respectively. One patient (2%) experienced Grade 4 neurotoxicity. Conclusion: SRS is safe and effective in the treatment of spinal metastases recurring in previously irradiated fields. Tumor recurrence within 12 months may correlate with biologic aggressiveness and require higher SRS doses (SSED >15 Gy{sub 10}). Further research is needed to define the partial volume retreatment tolerance of the spinal cord and the optimal target dose.

  20. A PARYLENE-BASED MICROELECTRODE ARRAY IMPLANT FOR SPINAL CORD STIMULATION IN RATS

    PubMed Central

    Nandra, Mandheerej. S.; Lavrov, Igor A.; Edgerton, V. Reggie; Tai, Yu-Chong

    2011-01-01

    The design and fabrication of an epidural spinal cord implant using a parylene-based microelectrode array is presented. Rats with hindlimb paralysis from a complete spinal cord transection were implanted with the device and studied for up to eight weeks, where we have demonstrated recovery of hindlimb stepping functionality through pulsed stimulation. The microelectrode array allows for a high degree of freedom and specificity in selecting the site of stimulation compared to wire-based implants, and triggers varied biological responses that can lead to an increased understanding of the spinal cord and locomotion recovery for victims of spinal cord injury. PMID:21841938

  1. Retinoic Acid Prevents Disruption of Blood-Spinal Cord Barrier by Inducing Autophagic Flux After Spinal Cord Injury.

    PubMed

    Zhou, Yulong; Zheng, Binbin; Ye, Libing; Zhang, Hongyu; Zhu, Sipin; Zheng, Xiaomeng; Xia, Qinghai; He, Zili; Wang, Qingqing; Xiao, Jian; Xu, Huazi

    2016-04-01

    Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB), which leads to infiltration of blood cells, inflammatory responses and neuronal cell death, with subsequent development of spinal cord secondary damage. Recent reports pointed to an important role of retinoic acid (RA), the active metabolite of the vitamin A, in the induction of the blood-brain barrier (BBB) during human and mouse development, however, it is unknown whether RA plays a role in maintaining BSCB integrity under the pathological conditions such as SCI. In this study, we investigated the BSCB protective role of RA both in vivo and in vitro and demonstrated that autophagy are involved in the BSCB protective effect of RA. Our data show that RA attenuated BSCB permeability and also attenuated the loss of tight junction molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in brain microvascular endothelial cells. In addition, RA administration improved functional recovery of the rat model of trauma. We also found that RA could significantly increase the expression of LC3-II and decrease the expression of p62 both in vivo and in vitro. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB and exacerbated the loss of tight junctions. Together, our studies indicate that RA improved functional recovery in part by the prevention of BSCB disruption via the activation of autophagic flux after SCI. PMID:26582233

  2. Descending pathways to the spinal cord: a comparative study of 22 mammals.

    PubMed

    Nudo, R J; Masterton, R B

    1988-11-01

    In order to estimate the qualitative commonalities and range of variation among major descending spinal pathways relevant to mankind's ancestral lineage, the supraspinal cell groups originating fibers descending directly to the spinal cord were examined in 22 mammalian species. In a standardized retrograde tract-tracing procedure, flakes of raw HRP were applied directly to the freshly cut fibers of the spinal cord after it had been hemisected at the C1-C2 junction. After a 72-hour survival period, brain and spinal cord tissues were processed by conventional HRP-processing techniques. This procedure was performed on 94 individual animals. Of this total, 41 individual cases were eliminated by a rigorous culling procedure. The results are based on 53 individuals representing 15 species selected for their successive kinship with mankind and seven species in two other lineages selected for the convergence of their visual or sensorimotor systems with anthropoids. The 22 species represent 19 genera, 14 families, eight orders, and two subclasses of Mammalia. The results show that at least 27 supraspinal cell groups, each containing intensely labeled cells, can be readily identified in each of the species. Despite vast quantitative differences in cell number and cell size, this qualitative uniformity among the relatively large number of diverse taxa suggests that the same pathways were probably present in the extinct ancestors throughout mankind's mammalian lineage and are probably still present in extant viviparous mammals as well. If so, these pathways are as old in phylogenetic history as the last common ancestor of marsupial and placental mammals--dating from the late Jurassic to early Cretaceous, perhaps 145-120 million years ago. Further comparison of the results with similar experimental findings in members of other vertebrate classes supports the notion that several of these same pathways can be traced to even more remote ancestry, with some possibly as old as the

  3. Vascular Diseases of the Spinal Cord: Infarction, Hemorrhage, and Venous Congestive Myelopathy.

    PubMed

    Vuong, Shawn M; Jeong, William J; Morales, Humberto; Abruzzo, Todd A

    2016-10-01

    Vascular pathologies of the spinal cord are rare and often overlooked. This article presents clinical and imaging approaches to the diagnosis and management of spinal vascular conditions most commonly encountered in clinical practice. Ischemia, infarction, hemorrhage, aneurysms, and vascular malformations of the spine and spinal cord are discussed. Pathophysiologic mechanisms, clinical classification schemes, clinical presentations, imaging findings, and treatment modalities are considered. Recent advances in genetic and syndromic vascular pathologies of the spinal cord are also discussed. Clinically relevant spinal vascular anatomy is reviewed in detail. PMID:27616317

  4. Pharmacological approaches to repair the injured spinal cord.

    PubMed

    Baptiste, Darryl C; Fehlings, Michael G

    2006-01-01

    Acute traumatic spinal cord injury (SCI) results in a devastating loss of neurological function below the level of injury and adversely affects multiple systems within the body. The pathobiology of SCI involves a primary mechanical insult to the spinal cord and activation of a delayed secondary cascade of events, which ultimately causes progressive degeneration of the spinal cord. Whereas cell death from the mechanical injury is predominated by necrosis, secondary injury events trigger a continuum of necrotic and apoptotic cell death mechanisms. These secondary events include vascular abnormalities, ischemia-reperfusion, glutamate excitotoxicity and disturbances in ionic homeostasis, oxidative cell injury, and a robust inflammatory response. No gold standard therapy for SCI has been established, although clinical trials with methylprednisolone (NASCIS II and III) and GM-1 ganglioside (Maryland and Sygen) have demonstrated modest, albeit potentially important therapeutic benefits. In light of the overwhelming impact of SCI on the individual, other therapeutic interventions are urgently needed. A number of promising pharmacological therapies are currently under investigation for neuroprotective abilities in animal models of SCI. These include the sodium (Na+) channel blocker riluzole, the tetracycline derivative minocycline, the fusogen copolymer polyethylene glycol (PEG), and the tissue-protective hormone erythropoietin (EPO). Moreover, clinical trials investigating the putative neuroprotective and neuroregenerative properties ascribed to the Rho pathway antagonist, Cethrin (BioAxone Therapeutic, Inc.), and implantation of activated autologous macrophages (ProCord; Proneuron Biotechnologies) in patients with thoracic and cervical SCI are now underway. We anticipate that these studies will harken an era of renewed interest in translational clinical trials. Ultimately, due to the multi-factorial pathophysiology of traumatic SCI, effective therapies will require

  5. Cortical reorganization after spinal cord injury: always for good?

    PubMed Central

    Moxon, Karen A.; Oliviero, Antonio; Aguilar, Juan; Foffani, Guglielmo

    2015-01-01

    Plasticity constitutes the basis of behavioral changes as a result of experience. It refers to neural network shaping and re-shaping at the global level and to synaptic contacts remodeling at the local level, either during learning or memory encoding, or as a result of acute or chronic pathological conditions. ‘Plastic’ brain reorganization after central nervous system lesions has a pivotal role in the recovery and rehabilitation of sensory and motor dysfunction, but can also be “maladaptive”. Moreover, it is clear that brain reorganization it is not a “static” phenomenon but rather a very dynamic process. Spinal cord injury immediately initiates a change in brain state and starts cortical reorganization. In the long term, the impact of injury – with or without accompanying therapy – on the brain is a complex balance between supraspinal reorganization and spinal recovery. The degree of cortical reorganization after spinal cord injury is highly variable, and can range from no reorganization (i.e. “silencing”) to massive cortical remapping. This variability critically depends on the species, the age of the animal when the injury occurs, the time after the injury has occurred, and the behavioral activity and possible therapy regimes after the injury. We will briefly discuss these dependencies, trying to highlight their translational value. Overall, it is not only necessary to better understand how the brain can reorganize after injury with or without therapy, it is also necessary to clarify when and why brain reorganization can be either “good” or “bad” in terms of its clinical consequences. This information is critical in order to develop and optimize cost-effective therapies to maximize functional recovery while minimizing maladaptive states after spinal cord injury. PMID:24997269

  6. Arterial peculiarities of the thoracolumbar spinal cord in rabbit.

    PubMed

    Mazensky, D; Danko, J; Petrovova, E; Mechirova, E; Prokes, M

    2014-10-01

    The aim of this study was to investigate the arterial blood supply of the thoracolumbar spinal cord in rabbit. The study was carried out on twenty adult New Zealand white rabbits. Ten rabbits were used in the corrosion technique and ten rabbits in the dissection technique. After the killing, the vascular network was perfused with saline. Batson's corrosion casting kit no. 17 © was used as a casting medium. After polymerisation of the medium, in ten rabbits the maceration was carried out in KOH solution, and in ten other rabbits, formaldehyde was injected by the dissection technique into the vertebral canal. We found high variability of segmental arteries supplying blood to the spinal cord. There are 12 intercostal arteries and 1 costo-abdominal artery. Dorsal branches arising from the dorsal surface of the aorta thoracica were found as follows: in 70% of the cases, 9 pairs were present; in 20% of the cases 8 pairs; and in 10% of the cases 10 pairs. The paired arteriae lumbales were present in 6 pairs in 90% of the cases and in 5 pairs in 10% of the cases. On the dorsal surface of spinal cord, we found two irregular longitudinal arteries in 70% of the cases, no longitudinal arteries in 20% of the cases and three irregular longitudinal arteries in 10% of the cases receiving dorsal branches of rami spinales. Among the dorsal branches observed in the thoracic region, 60.5% were left-sided, 39.5% right-sided and in the lumbar region, 52.5% were left-sided and 47.5% right-sided. PMID:23952724

  7. Spinal cord stimulation as a treatment for refractory neuropathic pain in tethered cord syndrome: a case report

    PubMed Central

    2010-01-01

    Introduction The spinal cord is a target for many neurosurgical procedures used to treat chronic severe pain. Neuromodulation and neuroablation are surgical techniques based on well-known specific anatomical structures. However, anatomical and electrophysical changes related to the tethered spinal cord make it more difficult to use these procedures. Case presentation We report the case of a 37-year-old Caucasian woman who had several surgical interventions for tethered cord syndrome. These interventions resulted in severe neuropathic pain in her lower back and right leg. This pain was treated by spinal cord stimulation using intra-operative sensory mapping, which allowed the cord's optimal placement in a more caudal position. Conclusion The low-voltage and more caudally placed electrodes are specific features of this treatment of tethered cord syndrome. PMID:20184768

  8. Photochemically induced spinal ischaemia: a model of spinal cord trauma in the rat

    NASA Astrophysics Data System (ADS)

    Olby, Natasha J.; Blakemore, W. F.

    1995-05-01

    Focal thrombosis was induced in the dorsal funiculus of the rat spinal cord by exposing the cord to light following intravenous injection of the photoactive dye, rose bengal. The light source was a 599 standing wave dye laser, pumped by an Innova 70 - 4 argon ion laser (Coherent Ltd, Cambridge, UK) and the light was delivered to the operative site via an optical fiber. The histological characteristics of the development and resolution of the lesion have been studied. Forty rats were examined with light and electron microscopy at various time points between 30 minutes and one month after irradiation and the lesion length was measured. Platelet aggregation, increased extracellular space in the white matter and vacuolation of the neurones and glia of the grey matter were present 30 minutes after injury. Progressive necrosis of the white and grey matter developed over the subsequent 24 hours to produce a fusiform lesion that occupied the dorsal funiculus and dorsal horns of the spinal cord at its center and tapered cranially and caudally along the dorsal columns for a total distance of seven millimeters. By one month after injury the area of necrosis had become a cyst lined by astrocytes ventrolaterally and meningeal cells dorsally. Measurements of lesion length showed a variability of 26%. This model of spinal cord trauma produces a lesion that is sufficiently reproducible to be suitable for performing studies aimed at tissue preservation and repair.

  9. Diffusion tensor imaging in the cervical spinal cord.

    PubMed

    Song, Ting; Chen, Wen-Jun; Yang, Bo; Zhao, Hong-Pu; Huang, Jian-Wei; Cai, Ming-Jin; Dong, Tian-Fa; Li, Tang-Sheng

    2011-03-01

    There are discrepancy between MR findings and clinical presentations. The compressed cervical cord in patients of the spondylotic myelopathy may be normal on conventional MRI when it is at the earlier stage or even if patients had severe symptoms. Therefore, it is necessary to take a developed MR technique--diffusion tensor imaging (DTI)--to detect the intramedullary lesions. Prospective MR and DTI were performed in 53 patients with cervical compressive myelopathy and twenty healthy volunteers. DTI was performed along six non-collinear directions with single-shot spin echo echo-planar imaging (EPI) sequence. Intramedullary apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured in four segments (C2/3, C3/4, C4/5, C5/6) for volunteers, in lesions (or the compressed cord) and normal cord for patients. DTI original images were processed to produce color DTI maps. In the volunteers' group, cervical cord exhibited blue on the color DTI map. FA values between four segments had a significant difference (P < 0.01), with the highest FA value (0.85 ± 0.03) at C2/3 level. However, ADC value between them had no significant difference (P > 0.05). For patients, only 24 cases showed hyperintense on T2-weighted image, while 39 cases shown patchy green signal on color DTI maps. ADC and FA values between lesions or the compressed cord and normal spinal cord of patients had a significant difference (both P < 0.01). FA value at C2/3 cord is the highest of other segments and it gradually decreases towards the caudal direction. Using single-shot spin echo EPI sequence and six non-collinear diffusion directions with b value of 400 s mm(-2), DTI can clearly show the intramedullary microstructure and more lesions than conventional MRI. PMID:20938788

  10. How to prevent spinal cord injury during endovascular repair of thoracic aortic disease.

    PubMed

    Uchida, Naomichi

    2014-07-01

    The incidence of spinal cord injury in thoracic endovascular aortic repair (TEVAR) has been 3-5 % from recent major papers where sacrifice of the critical intercostal arteries is inevitable by a stent graft. Hemodynamic stability, which depends on a network of blood vessels around the cord is most important not only during but also after stent-graft deployment. High risk factors of spinal cord injury during endovascular aortic repair are (1) coverage of the left subclavian artery, (2) extensive coverage of long segments of the thoracic aorta, (3) prior downstream aortic repair, (4) compromising important intercostal (T8-L1), vertebral, pelvic and hypogastric collaterals, and (5) shaggy aorta. Preoperative, intraoperative, and postoperative managements have been required to prevent spinal cord injury with TEVAR. For imaging assessment of blood supply to spinal cord including Adamkiewicz artery, prophylactic cerebrospinal fluid drainage is mandatory, and monitoring motor-evoked potential is recommended for high risk factors of spinal cord injury. Mean arterial pressure should be maintained over 90 mmHg after stent-graft placement for a while to prevent delayed spinal cord ischemia in high-risk patients of spinal cord ischemia. Finally, because spinal cord injury during TEVAR is not rare and negligible, perioperative care during TEVAR should be strictly performed according to the protocol proposed by each cardiovascular team. PMID:24696427

  11. Cellular Transplantation Strategies for Spinal Cord Injury and Translational Neurobiology

    PubMed Central

    Reier, Paul J.

    2004-01-01

    Summary: Basic science advances in spinal cord injury and regeneration research have led to a variety of novel experimental therapeutics designed to promote functionally effective axonal regrowth and sprouting. Among these interventions are cell-based approaches involving transplantation of neural and non-neural tissue elements that have potential for restoring damaged neural pathways or reconstructing intraspinal synaptic circuitries by either regeneration or neuronal/glial replacement. Notably, some of these strategies (e.g., grafts of peripheral nerve tissue, olfactory ensheathing glia, activated macrophages, marrow stromal cells, myelin-forming oligodendrocyte precursors or stem cells, and fetal spinal cord tissue) have already been translated to the clinical arena, whereas others have imminent likelihood of bench-to-bedside application. Although this progress has generated considerable enthusiasm about treating what once was thought to be a totally incurable condition, there are many issues to be considered relative to treatment safety and efficacy. The following review reflects on different experimental applications of intraspinal transplantation with consideration of the underlying pathological, pathophysiological, functional, and neuroplastic responses to spinal trauma that such treatments may target along with related issues of procedural and biological safety. The discussion then moves to an overview of ongoing and completed clinical trials to date. The pros and cons of these endeavors are considered, as well as what has been learned from them. Attention is primarily directed at preclinical animal modeling and the importance of patterning clinical trials, as much as possible, according to laboratory experiences. PMID:15717046

  12. Symptomatic Thoracic Spinal Cord Herniation: Case Series and Technical Report

    PubMed Central

    Hawasli, Ammar H.; Ray, Wilson Z.; Wright, Neill M.

    2014-01-01

    Background and Importance Idiopathic spinal cord herniation (ISCH) is an uncommon condition located predominantly in the thoracic spine and often associated with a remote history of a major traumatic injury. ISCH has an incompletely described presentation and unknown etiology. There is no consensus on treatment algorithm and surgical technique, and there is little data on clinical outcomes. Clinical Presentation In this case series and technical report, we describe the atypical myelopathy presentation, remote history of traumatic injury, radiographic progression, treatment, and outcomes of 5 patients treated at Washington University for symptomatic ISCH. A video showing surgical repair is presented. In contrast to classic compressive myelopathy symptomology, ISCH patients presented with an atypical myelopathy, characterized by asymmetric motor and sensory deficits and early-onset urinary incontinence. Clinical deterioration correlated with progressive spinal cord displacement and herniation observed on yearly spinal imaging in a patient imaged serially due to multiple sclerosis. Finally compared to compressive myelopathy in the thoracic spine, surgical treatment of ISH led to rapid improvement despite long duration of symptoms. Conclusion Symptomatic ISCH presents with atypical myelopathy and slow temporal progression and can be successfully managed with surgical repair. PMID:24871148

  13. Cellular transplantation strategies for spinal cord injury and translational neurobiology.

    PubMed

    Reier, Paul J

    2004-10-01

    Basic science advances in spinal cord injury and regeneration research have led to a variety of novel experimental therapeutics designed to promote functionally effective axonal regrowth and sprouting. Among these interventions are cell-based approaches involving transplantation of neural and non-neural tissue elements that have potential for restoring damaged neural pathways or reconstructing intraspinal synaptic circuitries by either regeneration or neuronal/glial replacement. Notably, some of these strategies (e.g., grafts of peripheral nerve tissue, olfactory ensheathing glia, activated macrophages, marrow stromal cells, myelin-forming oligodendrocyte precursors or stem cells, and fetal spinal cord tissue) have already been translated to the clinical arena, whereas others have imminent likelihood of bench-to-bedside application. Although this progress has generated considerable enthusiasm about treating what once was thought to be a totally incurable condition, there are many issues to be considered relative to treatment safety and efficacy. The following review reflects on different experimental applications of intraspinal transplantation with consideration of the underlying pathological, pathophysiological, functional, and neuroplastic responses to spinal trauma that such treatments may target along with related issues of procedural and biological safety. The discussion then moves to an overview of ongoing and completed clinical trials to date. The pros and cons of these endeavors are considered, as well as what has been learned from them. Attention is primarily directed at preclinical animal modeling and the importance of patterning clinical trials, as much as possible, according to laboratory experiences. PMID:15717046

  14. Putaminal alteration in multiple sclerosis patients with spinal cord lesions.

    PubMed

    Zimmermann, Hilga; Rolfsnes, Hans O; Montag, Swantje; Wilting, Janine; Droby, Amgad; Reuter, Eva; Gawehn, Joachim; Zipp, Frauke; Gröger, Adriane

    2015-10-01

    Typical multiple sclerosis (MS) lesions occur in the brain as well as in the spinal cord. However, two extreme magnetic resonance imaging phenotypes appear occasionally: those with predominantly spinal cord lesions (MS + SL) and those with cerebral lesions and no detectable spinal lesions (MS + CL). We assessed whether morphological differences can be found between these two extreme phenotypes. We examined 19 patients with MS + SL, 18 with MS + CL and 20 controls. All subjects were examined using magnetic resonance imaging, including anatomical and diffusion tensor imaging sequences. Voxel-based morphologic and regions of interest-based analyses and tract-based spatial statistics were performed. Patients also underwent neuropsychological testing. Demographic, clinical and neuropsychological characteristics did not differ between MS + SL and MS + CL patients. Patients with MS + SL showed significantly larger putamen volumes than those with MS + CL which correlated negatively with disability. Compared to controls, only MS + CL revealed clear cortical and deep gray matter atrophy, which correlated with cerebral lesion volume. Additionally, extensive white matter microstructural damage was found only in MS + CL compared to MS + SL and controls in the tract-based spatial statistics. Higher putamen volumes in MS + SL could suggest compensatory mechanisms in this area responsible for motor control. Widely reduced fractional anisotropy values in MS + CL were caused by higher cerebral lesion volume and thus presumably stronger demyelination, which subsequently leads to higher global gray matter atrophy. PMID:25971605

  15. Changes in Pain Processing in the Spinal Cord and Brainstem after Spinal Cord Injury Characterized by Functional Magnetic Resonance Imaging.

    PubMed

    Stroman, Patrick W; Khan, Hamza S; Bosma, Rachel L; Cotoi, Andrea I; Leung, Roxanne; Cadotte, David W; Fehlings, Michael G

    2016-08-01

    Traumatic spinal cord injury (SCI) has a number of devastating consequences, including high prevalence of chronic pain and altered pain sensitivity. The causes of altered pain states vary depending on the injury and are difficult to diagnose and treat. A better understanding of pain mechanisms after SCI is expected to lead to better diagnostic capabilities and improved treatments. We therefore applied functional magnetic resonance imaging (fMRI) of the brainstem and spinal cord in a group of participants with previous traumatic SCI to characterize changes in pain processing as a result of their injuries. The same thermal stimulus was applied to the medial palm (C8 dermatome) as a series of repeated brief noxious thermal pulses in a group of 16 participants with a cervical (n = 14) and upper thoracic (n = 2) injuries. Functional MRI of the brainstem and spinal cord was used to determine the neuronal activity evoked by the noxious stimulation, and connectivity between regions was characterized with structural equation modeling (SEM). The results show that pain ratings, the location and magnitude of blood oxygenation-level dependent fMRI results, and connectivity assessed with SEM varied widely across participants. However, the results varied in relation to the perceived pain and the level/severity of injuries, particularly in terms of hypothalamus connectivity with other regions, and descending modulation via the periaqueductal gray matter-rostral ventromedial medulla-cord pathway. The results, therefore, appear to provide sensitive indicators of each individual's pain response, and information about the mechanisms of altered pain sensitivity. The ability to characterize changes in pain processing in individuals with SCI represents a significant technological advance. PMID:26801315

  16. Neuroprotective Effects of Perflurocarbon (Oxycyte) after Contusive Spinal Cord Injury

    PubMed Central

    Yacoub, Adly; Hajec, Marygrace C.; Stanger, Richard; Wan, Wen; Young, Harold

    2014-01-01

    Abstract Spinal cord injury (SCI) often results in irreversible and permanent neurological deficits and long-term disability. Vasospasm, hemorrhage, and loss of microvessels create an ischemic environment at the site of contusive or compressive SCI and initiate the secondary injury cascades leading to progressive tissue damage and severely decreased functional outcome. Although the initial mechanical destructive events cannot be reversed, secondary injury damage occurs over several hours to weeks, a time frame during which therapeutic intervention could be achieved. One essential component of secondary injury cascade is the reduction in spinal cord blood flow with resultant decrease in oxygen delivery. Our group has recently shown that administration of fluorocarbon (Oxycyte) significantly increased parenchymal tissue oxygen levels during the usual postinjury hypoxic phase, and fluorocarbon has been shown to be effective in stroke and head injury. In the current study, we assessed the beneficial effects of Oxycyte after a moderate-to-severe contusion SCI was simulated in adult Long-Evans hooded rats. Histopathology and immunohistochemical analysis showed that the administration of 5 mL/kg of Oxycyte perfluorocarbon (60% emulsion) after SCI dramatically reduced destruction of spinal cord anatomy and resulted in a marked decrease of lesion area, less cell death, and greater white matter sparing at 7 and 42 days postinjury. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining showed a significant reduced number of apoptotic cells in Oxycyte-treated animals, compared to the saline group. Collectively, these results demonstrate the potential neuroprotective effect of Oxycyte treatment after SCI, and its beneficial effects may be, in part, a result of reducing apoptotic cell death and tissue sparing. Further studies to determine the most efficacious Oxycyte dose and its mechanisms of protection are warranted. PMID:24025081

  17. Neuroprotective effects of sulforaphane after contusive spinal cord injury.

    PubMed

    Benedict, Andrea L; Mountney, Andrea; Hurtado, Andres; Bryan, Kelley E; Schnaar, Ronald L; Dinkova-Kostova, Albena T; Talalay, Paul

    2012-11-01

    Traumatic spinal cord injury (SCI) leads to oxidative stress, calcium mobilization, glutamate toxicity, the release of proinflammatory factors, and depletion of reduced glutathione (GSH) at the site of injury. Induction of the Keap1/Nrf2/ARE pathway can alleviate neurotoxicity by protecting against GSH depletion, oxidation, intracellular calcium overload, mitochondrial dysfunction, and excitotoxicity. Sulforaphane (SF), an isothiocyanate derived from broccoli, is a potent naturally-occurring inducer of the Keap1/Nrf2/ARE pathway, leading to upregulation of genes encoding cytoprotective proteins such as NAD(P)H: quinone oxidoreductase 1, and GSH-regulatory enzymes. Additionally, SF can attenuate inflammation by inhibiting the nuclear factor-κB (NF-κB) pathway, and the enzymatic activity of the proinflammatory cytokine macrophage inhibitory factor (MIF). Our study examined systemic administration of SF in a rat model of contusion SCI, in an effort to utilize its indirect antioxidant and anti-inflammatory properties to decrease secondary injury. Two doses of SF (10 or 50 mg/kg) were administered at 10 min and 72 h after contusion SCI. SF (50 mg/kg) treatment resulted in both acute and long-term beneficial effects, including upregulation of the phase 2 antioxidant response at the injury site, decreased mRNA levels of inflammatory cytokines (i.e., MMP-9) in the injured spinal cord, inactivation of urinary MIF tautomerase activity, enhanced hindlimb locomotor function, and an increased number of serotonergic axons caudal to the lesion site. These findings demonstrate that SF provides neuroprotective effects in the spinal cord after injury, and could be a candidate for therapy of SCI. PMID:22853439

  18. Clinical applications of electrical stimulation after spinal cord injury.

    PubMed

    Creasey, Graham H; Ho, Chester H; Triolo, Ronald J; Gater, David R; DiMarco, Anthony F; Bogie, Kath M; Keith, Michael W

    2004-01-01

    During the last one-half century, electrical stimulation has become clinically significant for improving health and restoring useful function after spinal cord injury. Short-term stimulation can be provided by electrodes on the skin or percutaneous fine wires, but implanted systems are preferable for long-term use. Electrical stimulation of intact lower motor neurons can exercise paralyzed muscles and reverse wasting; improve strength, endurance, and cardiovascular fitness; and may reduce the progression of osteoporosis. Other potential therapeutic uses being investigated include reduction of spasticity, prevention of deep vein thrombosis, and improvement of tissue health. Pacing of intact phrenic nerves in high tetraplegia can produce effective respiration without mechanical ventilation, allowing improved speech, increased mobility, and increased sense of well-being. Improvement of cough has also been demonstrated. Stimulation of intact sacral nerves can produce effective micturition and reduce urinary tract infection; it can also improve bowel function and erection. It is usually combined with posterior sacral rhizotomy to improve continence and bladder capacity, and the combination has been shown to reduce costs of care. Electroejaculation can now produce semen in most men with spinal cord injury. Significant achievements have also been made in restoring limb function. Useful hand grasp can be provided in C5 and C6 tetraplegia, reducing dependence on adapted equipment and assistants. Standing, assistance with transfers, and walking for short distances can be provided to selected persons with paraplegia, improving their access to objects, places, and opportunities that are inaccessible from a wheelchair. This review summarizes the current state of therapeutic and neuroprosthetic applications of electrical stimulation after spinal cord injury and identifies some future directions of research and clinical and commercial development. PMID:15484667

  19. Differential Neuroproteomic and Systems Biology Analysis of Spinal Cord Injury.

    PubMed

    Moghieb, Ahmed; Bramlett, Helen M; Das, Jyotirmoy H; Yang, Zhihui; Selig, Tyler; Yost, Richard A; Wang, Michael S; Dietrich, W Dalton; Wang, Kevin K W

    2016-07-01

    Acute spinal cord injury (SCI) is a devastating condition with many consequences and no known effective treatment. Although it is quite easy to diagnose traumatic SCI, the assessment of injury severity and projection of disease progression or recovery are often challenging, as no consensus biomarkers have been clearly identified. Here rats were subjected to experimental moderate or severe thoracic SCI. At 24h and 7d postinjury, spinal cord segment caudal to injury center versus sham samples was harvested and subjected to differential proteomic analysis. Cationic/anionic-exchange chromatography, followed by 1D polyacrylamide gel electrophoresis, was used to reduce protein complexity. A reverse phase liquid chromatography-tandem mass spectrometry proteomic platform was then utilized to identify proteome changes associated with SCI. Twenty-two and 22 proteins were up-regulated at 24 h and 7 day after SCI, respectively; whereas 19 and 16 proteins are down-regulated at 24 h and 7 day after SCI, respectively, when compared with sham control. A subset of 12 proteins were identified as candidate SCI biomarkers - TF (Transferrin), FASN (Fatty acid synthase), NME1 (Nucleoside diphosphate kinase 1), STMN1 (Stathmin 1), EEF2 (Eukaryotic translation elongation factor 2), CTSD (Cathepsin D), ANXA1 (Annexin A1), ANXA2 (Annexin A2), PGM1 (Phosphoglucomutase 1), PEA15 (Phosphoprotein enriched in astrocytes 15), GOT2 (Glutamic-oxaloacetic transaminase 2), and TPI-1 (Triosephosphate isomerase 1), data are available via ProteomeXchange with identifier PXD003473. In addition, Transferrin, Cathepsin D, and TPI-1 and PEA15 were further verified in rat spinal cord tissue and/or CSF samples after SCI and in human CSF samples from moderate/severe SCI patients. Lastly, a systems biology approach was utilized to determine the critical biochemical pathways and interactome in the pathogenesis of SCI. Thus, SCI candidate biomarkers identified can be used to correlate with disease progression or

  20. FGF-2 in Astroglial Cells During Vertebrate Spinal Cord Recovery

    PubMed Central

    Fahmy, Gehan H.; Moftah, Marie Z.

    2010-01-01

    Fibroblast growth factor-2 is a pleiotrophic cytokine with neurotrophic and gliogenic properties. It is known to regulate CNS injury responses, which include transformation of reactive astrocytes, neurogenesis, and promotion of neurotrophic activities. In the brain, it is localized in astrocytes and discrete neuronal populations. Following both central and peripheral nervous system injury, astrocytes become reactive. These activated cells undergo hypertrophy. A key indicator of astrocyte activation is the increased accumulation of intermediate filaments composed of glial fibrillary acidic protein (GFAP). Following physical insult of brain or spinal cord, reactive astrocytes show increased FGF-2 immunoreactivity. Thus, FGF-2 appears to participate in astrocytic differentiation and proliferation and a good candidate for astrocytic function regulation in healthy, injured, or diseased CNS. To further investigate the cellular mechanisms underlying FGF-2 restorative actions and to analyze the changes within astroglial cells, we studied the localization of GFAP and FGF-2 in adult intact and injured Pleurodeles CNS. Our results show that spinal cord injury triggers a significant increase in FGF-2 immunoreactivity in reactive astrocytes at sites of insult. In addition, these results were time-dependent. Increase in FGF-2 immunoreactivity along the CNS axis, starting 1-week post-injury, was long-lasting extending to 6 weeks. This increase was accompanied by an increase in GFAP immunoreactivity in the same spatial pattern except in SC3 where its level was almost similar to sham-operated animals. Therefore, we suggest that FGF-2 may be involved in cell proliferation and/or astroglial cells differentiation after body spinal cord transection, and could thus play an important role in locomotion recovery. PMID:21119776

  1. Ambulation following spinal cord injury and its correlates

    PubMed Central

    Menon, Nitin; Gupta, Anupam; Khanna, Meeka; Taly, Arun B.

    2015-01-01

    Objectives: To assess walking ability of spinal cord injury (SCI) patients and observe its correlation with functional and neurological outcomes. Patients and Methods: The present prospective, observational study was conducted in a tertiary research hospital in India with 66 patients (46 males) between January 2012 and December 2013. Mean age was 32.62 ± 11.85 years (range 16-65 years), mean duration of injury was 85.3 ± 97.6 days (range 14-365 days) and mean length of stay in the rehabilitation unit was 38.08 ± 21.66 days (range 14-97 days) in the study. Walking Index for spinal cord injury (WISCI II) was used to assess ambulation of the SCI patients. Functional recovery was assessed using Barthel Index (BI) and Spinal Cord Independence Measures (SCIM). Neurological recovery was assessed using ASIA impairment scale (AIS). We tried to correlate ambulatory ability of the patients with functional and neurological recovery. Results: Ambulatory ability of the patients improved significantly using WISCI II (P < 0.001) when admission and discharge scores were compared (1.4 ± 3.5 vs 7.6 ± 6.03). Similarly, functional (BI: 31.7 ± 20.5 vs 58.4 ± 23.7 and SCIM: 29.9 ± 15.1 vs 56.2 ± 20.6) and neurological recovery were found to be very significant (P < 0.001) when admission vs discharge scores were compared. Improvement in WISCI II scores was significantly correlated with improvement in neurological (using AIS scores) and functional status (using BI and SCIM scores) (P < 0.001). Conclusions: Significant improvement was seen in WISCI II, BI, and SCIM scores after in-patient rehabilitation. Improvement in WISCI II scores also significantly correlated with functional and neurological recovery. PMID:26019413

  2. Irradiation of Pediatric High-Grade Spinal Cord Tumors

    SciTech Connect

    Tendulkar, Rahul D.; Pai Panandiker, Atmaram S.; Wu Shengjie; Kun, Larry E.; Broniscer, Alberto; Sanford, Robert A.; Merchant, Thomas E.

    2010-12-01

    Purpose: To report the outcome using radiation therapy (RT) for pediatric patients with high-grade spinal cord tumors. Methods and Materials: A retrospective chart review was conducted that included 17 children with high-grade spinal cord tumors treated with RT at St. Jude Children's Research Hospital between 1981 and 2007. Three patients had gross total resection, 11 had subtotal resection, and 3 underwent biopsy. The tumor diagnosis was glioblastoma multiforme (n = 7), anaplastic astrocytoma (n = 8), or anaplastic oligodendroglioma (n = 2). Seven patients received craniospinal irradiation (34.2-48.6 Gy). The median dose to the primary site was 52.2 Gy (range, 38-66 Gy). Results: The median progression-free and overall survivals were 10.8 and 13.8 months, respectively. Local tumor progression at 12 months (79% vs. 30%, p = 0.02) and median survival (13.1 vs. 27.2 months, p = 0.09) were worse for patients with glioblastoma multiforme compared with anaplastic astrocytoma or oligodendroglioma. The median overall survival was shorter for patients when failure included neuraxis dissemination (n = 8) compared with local failure alone (n = 5), 9.6 vs. 13.8 months, p = 0.08. Three long-term survivors with World Health Organization Grade III tumors were alive with follow-up, ranging from 88-239 months. Conclusions: High-grade spinal cord primary tumors in children have a poor prognosis. The propensity for neuraxis metastases as a component of progression after RT suggests the need for more aggressive therapy.

  3. Functional Regeneration Following Spinal Transection Demonstrated in the Isolated Spinal Cord of the Larval Sea Lamprey

    NASA Astrophysics Data System (ADS)

    Cohen, A. H.; Mackler, S. A.; Selzer, M. E.

    1986-04-01

    Axons in the larval sea lamprey can regenerate across the site of a spinal cord transection and form functioning synapses with some of their normal target neurons. The animals recover normal-appearing locomotion, but whether the regenerating axons and their synaptic connections are capable of playing a functional role during this behavior is unknown. To test this, ``fictive'' swimming was induced in the isolated spinal cord by the addition of D-glutamate to the bathing solution. Ventral root discharges of segments above and below a healed transection showed a high degree of phase-locking. This strongly suggests that the behavioral recovery is mediated by regenerated functional synaptic connections subserving intersegmental coordination of the central pattern generator for locomotion.

  4. A walking disaster: a case of incomplete spinal cord injury with symptomatic orthostatic hypotension.

    PubMed

    Currie, Katharine D; Krassioukov, Andrei V

    2015-10-01

    Eight months post-injury, an ambulatory 58-year-old male with an incomplete spinal cord injury experienced syncope and a 52-mmHg drop in his systolic blood pressure during a tilt-table assessment. This case study highlights the necessity to examine autonomic function in all cases of spinal cord injury, regardless of injury severity. PMID:26264838

  5. Posterior reversible encephalopathy syndrome with spinal cord involvement (PRES-SCI): A case report.

    PubMed

    Khokhar, Harsh Vardhan; Choudhary, Pradeep; Saxena, Sangeeta; Arif, Mohamed

    2016-01-01

    Posterior reversible encephalopathy syndrome with spinal cord involvement (PRES-SCI) is a recently described entity with a handful of cases reported in literature. We describe a case of PRES in setting of Henoch-Schönlein purpura (HSP) with involvement of brain stem and spinal cord. PMID:27011648

  6. Granulocyte colony-stimulating factor improves alternative activation of microglia under microenvironment of spinal cord injury.

    PubMed

    Guo, Y; Zhang, H; Yang, J; Liu, S; Bing, L; Gao, J; Hao, A

    2013-05-15

    Granulocyte colony-stimulating factor (G-CSF) was investigated in the present study to examine whether it could affect the activation status of microglia under microenvironment of spinal cord injury and provide a potential therapeutic treatment for spinal cord injury. We established mouse spinal cord hemisection model and injected recombinant human G-CSF (rhG-CSF) subcutaneously. The results demonstrated that G-CSF could recruit microglia to the injury site in the first 72h after spinal cord injury. Moreover, G-CSF inhibits the expression of pro-inflammatory factors and promotes the expression of neurotrophic factors. Additionally, G-CSF also increases the expression of markers of M2 macrophage and inhibits the expression of markers of M1 macrophage in BV2 microglia in vitro model, favoring the M2 polarization of microglia under the microenvironment of spinal cord hemisection. NFκB signal pathway was involved in G-CSF-induced polarization of BV2 microglia. As a conclusion, we suggested that administration of G-CSF within the first 72h after spinal cord injury might reduce early inflammation-induced detrimental effect and promote an anti-inflammatory response that favors repair via improving alternative activation of microglia. Administration of G-CSF in the acute phase of spinal cord injury may be a promising strategy in restorative therapy after spinal cord injury. PMID:23419550

  7. Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells

    PubMed Central

    2012-01-01

    Background In contrast to mammals, amphibians, such as adult urodeles (for example, newts) and anuran larvae (for example, Xenopus) can regenerate their spinal cord after injury. However, the cellular and molecular mechanisms involved in this process are still poorly understood. Results Here, we report that tail amputation results in a global increase of Sox2 levels and proliferation of Sox2+ cells. Overexpression of a dominant negative form of Sox2 diminished proliferation of spinal cord resident cells affecting tail regeneration after amputation, suggesting that spinal cord regeneration is crucial for the whole process. After spinal cord transection, Sox2+ cells are found in the ablation gap forming aggregates. Furthermore, Sox2 levels correlated with regenerative capabilities during metamorphosis, observing a decrease in Sox2 levels at non-regenerative stages. Conclusions Sox2+ cells contribute to the regeneration of spinal cord after tail amputation and transection. Sox2 levels decreases during metamorphosis concomitantly with the lost of regenerative capabilities. Our results lead to a working hypothesis in which spinal cord damage activates proliferation and/or migration of Sox2+ cells, thus allowing regeneration of the spinal cord after tail amputation or reconstitution of the ependymal epithelium after spinal cord transection. PMID:22537391

  8. Modeling of spontaneous zero-lag synchronization and wave propagation in cat spinal cord

    NASA Astrophysics Data System (ADS)

    Kato, H.; Cuellar, C. A.; Delgado-Lezama, R.; Rudomin, P.; Jiménez, I.; Manjarrez, E.; Mirasso, C. R.

    2013-01-01

    In this study, we proposed a simple but physiologically plausible network model that can reproduce both the sinusoidal electrical wave propagation and the spontaneous zero-lag synchronization experimentally observed in the cat spinal cord. Our model enhances the hypothesis of the coexistence of two alternative assemblies in the cat spinal cord.

  9. Macrophage activation and its role in repair and pathology after spinal cord injury.

    PubMed

    Gensel, John C; Zhang, Bei

    2015-09-01

    The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of the healing response. In the current review we compare and contrast the healing and inflammatory responses between spinal cord injuries and tissues that undergo complete wound resolution. Through this comparison, we identify key macrophage phenotypes that are inaptly triggered or absent after spinal cord injury and discuss spinal cord stimuli that contribute to this maladaptive response. Sequential activation of classic, pro-inflammatory, M1 macrophages and alternatively activated, M2a, M2b, and M2c macrophages occurs during normal healing and facilitates transitions through the inflammatory, proliferative, and remodeling phases of repair. In contrast, in the injured spinal cord, pro-inflammatory macrophages potentiate a prolonged inflammatory phase and remodeling is not properly initiated. The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury. PMID:25578260

  10. Atorvastatin activates autophagy and promotes neurological function recovery after spinal cord injury

    PubMed Central

    Gao, Shuang; Zhang, Zhong-ming; Shen, Zhao-liang; Gao, Kai; Chang, Liang; Guo, Yue; Li, Zhuo; Wang, Wei; Wang, Ai-mei

    2016-01-01

    Atorvastatin, a lipid-lowering medication, provides neuroprotective effects, although the precise mechanisms of action remain unclear. Our previous studies confirmed activated autophagy following spinal cord injury, which was conducive to recovery of neurological functions. We hypothesized that atorvastatin could also activate autophagy after spinal cord injury, and subsequently improve recovery of neurological functions. A rat model of spinal cord injury was established based on the Allen method. Atorvastatin (5 mg/kg) was intraperitoneally injected at 1 and 2 days after spinal cord injury. At 7 days post-injury, western blot assay, reverse transcription-polymerase chain reaction, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining results showed increased Beclin-1 and light chain 3B gene and protein expressions in the spinal cord injury + atorvastatin group. Additionally, caspase-9 and caspase-3 expression was decreased, and the number of TUNEL-positive cells was reduced. Compared with the spinal cord injury + saline group, Basso, Beattie, and Bresnahan locomotor rating scale scores significantly increased in the spinal cord injury + atorvastatin group at 14–42 days post-injury. These findings suggest that atorvastatin activated autophagy after spinal cord injury, inhibited apoptosis, and promoted recovery of neurological function. PMID:27482228

  11. Isolated intramedullary histiocytosis-X of the cervical spinal cord. Case report.

    PubMed

    Hamilton, B; Connolly, E S; Mitchell, W T

    1995-10-01

    Histiocytosis-X is known to involve the central nervous system, but rarely does this disease involve the spinal cord. To the authors' knowledge, this is the first case of isolated intramedullary histiocytosis-X of the spinal cord to be reported. PMID:7674022

  12. Activation of Lysophosphatidic Acid Receptor Type 1 Contributes to Pathophysiology of Spinal Cord Injury

    PubMed Central

    Santos-Nogueira, Eva; López-Serrano, Clara; Hernández, Joaquim; Lago, Natalia; Astudillo, Alma M.; Balsinde, Jesús; Estivill-Torrús, Guillermo; de Fonseca, Fernando Rodriguez; Chun, Jerold

    2015-01-01

    Lysophosphatidic acid (LPA) is an extracellular lipid mediator involved in many physiological functions that signals through six known G-protein-coupled receptors (LPA1–LPA6). A wide range of LPA effects have been identified in the CNS, including neural progenitor cell physiology, astrocyte and microglia activation, neuronal cell death, axonal retraction, and development of neuropathic pain. However, little is known about the involvement of LPA in CNS pathologies. Herein, we demonstrate for the first time that LPA signaling via LPA1 contributes to secondary damage after spinal cord injury. LPA levels increase in the contused spinal cord parenchyma during the first 14 d. To model this potential contribution of LPA in the spinal cord, we injected LPA into the normal spinal cord, revealing that LPA induces microglia/macrophage activation and demyelination. Use of a selective LPA1 antagonist or mice lacking LPA1 linked receptor-mediated signaling to demyelination, which was in part mediated by microglia. Finally, we demonstrate that selective blockade of LPA1 after spinal cord injury results in reduced demyelination and improvement in locomotor recovery. Overall, these results support LPA–LPA1 signaling as a novel pathway that contributes to secondary damage after spinal cord contusion in mice and suggest that LPA1 antagonism might be useful for the treatment of acute spinal cord injury. SIGNIFICANCE STATEMENT This study reveals that LPA signaling via LPA receptor type 1 activation causes demyelination and functional deficits after spinal cord injury. PMID:26180199

  13. Atorvastatin activates autophagy and promotes neurological function recovery after spinal cord injury.

    PubMed

    Gao, Shuang; Zhang, Zhong-Ming; Shen, Zhao-Liang; Gao, Kai; Chang, Liang; Guo, Yue; Li, Zhuo; Wang, Wei; Wang, Ai-Mei

    2016-06-01

    Atorvastatin, a lipid-lowering medication, provides neuroprotective effects, although the precise mechanisms of action remain unclear. Our previous studies confirmed activated autophagy following spinal cord injury, which was conducive to recovery of neurological functions. We hypothesized that atorvastatin could also activate autophagy after spinal cord injury, and subsequently improve recovery of neurological functions. A rat model of spinal cord injury was established based on the Allen method. Atorvastatin (5 mg/kg) was intraperitoneally injected at 1 and 2 days after spinal cord injury. At 7 days post-injury, western blot assay, reverse transcription-polymerase chain reaction, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining results showed increased Beclin-1 and light chain 3B gene and protein expressions in the spinal cord injury + atorvastatin group. Additionally, caspase-9 and caspase-3 expression was decreased, and the number of TUNEL-positive cells was reduced. Compared with the spinal cord injury + saline group, Basso, Beattie, and Bresnahan locomotor rating scale scores significantly increased in the spinal cord injury + atorvastatin group at 14-42 days post-injury. These findings suggest that atorvastatin activated autophagy after spinal cord injury, inhibited apoptosis, and promoted recovery of neurological function. PMID:27482228

  14. A 20-year Longitudinal Perspective on the Vocational Experiences of Persons with Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Crewe, Nancy M.

    2000-01-01

    Uses interviews conducted in 1974 and 1994 to investigate the vocational experiences of individuals with spinal cord injuries. Participants had received a spinal cord injury 22-45 years previously. Results revealed that all but seven of the participants had been in remunerative employment. Work experiences, comprehensive rehabilitation service,…

  15. Employment among Spinal Cord Injured Patients Living in Turkey: A Cross-Sectional Study

    ERIC Educational Resources Information Center

    Gunduz, Berrin; Erhan, Belgin; Bardak, Ayse Nur

    2010-01-01

    The aim of this study was to determine the rate of employment and to establish the factors affecting vocational status in spinal cord injured patients living in Turkey. One hundred and fifty-two traumatic spinal cord injured patients older than 18 years with injury duration of at least 1 year and living in the community were included in the study;…

  16. Religiosity and Spirituality among Persons with Spinal Cord Injury: Attitudes, Beliefs, and Practices

    ERIC Educational Resources Information Center

    Marini, Irmo; Glover-Graf, Noreen M.

    2011-01-01

    A total of 157 persons with spinal cord injury completed the "Spirituality and Spinal Cord Injury Survey" in relation to their spiritual and/or religious attitudes, beliefs, and practices in terms of adapting to their disability. Factor analysis accounting for 69% of the variance revealed four factors related to Spiritual Help and Improvement…

  17. Influence of Alcohol Intake on the Course and Consequences of Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Kiwerski, J. E.; Krasuski, M.

    1992-01-01

    This study compared the neurological state and results of treatment for patients with traumatic spinal cord injury who were intoxicated (n=424) or sober (n=769) on admission to a Warsaw (Poland) hospital. In the intoxicated group, the number of patients with symptoms of complete spinal cord injury was much greater than that of the sober group. (DB)

  18. Body composition of active persons with spinal cord injury and with poliomyelitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study sought to evaluate the body composition of subjects with active spinal cord injuries and polio. Two groups of males and females, active, free-living, of similar ages and body mass index (BMI), were distributed according to the source of deficiency: SCI – low spinal cord injury (T5-T12) an...

  19. Ginsenoside Rd inhibits apoptosis following spinal cord ischemia/reperfusion injury

    PubMed Central

    Wang, Baogang; Zhu, Qingsan; Man, Xiaxia; Guo, Li; Hao, Liming

    2014-01-01

    Ginsenoside Rd has a clear neuroprotective effect against ischemic stroke. We aimed to verify the neuroprotective effect of ginsenoside Rd in spinal cord ischemia/reperfusion injury and explore its anti-apoptotic mechanisms. We established a spinal cord ischemia/reperfusion injury model in rats through the occlusion of the abdominal aorta below the level of the renal artery for 1 hour. Successfully established models were injected intraperitoneally with 6.25, 12.5, 25 or 50 mg/kg per day ginsenoside Rd. Spinal cord morphology was observed at 1, 3, 5 and 7 days after spinal cord ischemia/reperfusion injury. Intraperitoneal injection of ginsenoside Rd in ischemia/reperfusion injury rats not only improved hindlimb motor function and the morphology of motor neurons in the anterior horn of the spinal cord, but it also reduced neuronal apoptosis. The optimal dose of ginsenoside Rd was 25 mg/kg per day and the optimal time point was 5 days after ischemia/reperfusion. Immunohistochemistry and western blot analysis showed ginsenoside Rd dose-dependently inhibited expression of pro-apoptotic Caspase 3 and down-regulated the expression of the apoptotic proteins ASK1 and JNK in the spinal cord of rats with spinal cord ischemia/reperfusion injury. These findings indicate that ginsenoside Rd exerts neuroprotective effects against spinal cord ischemia/reperfusion injury and the underlying mechanisms are achieved through the inhibition of ASK1-JNK pathway and the down-regulation of Caspase 3 expression. PMID:25374589

  20. Post-traumatic acute anterior spinal cord syndrome.

    PubMed

    Foo, D; Subrahmanyan, T S; Rossier, A B

    1981-01-01

    Thirteen patients with motor complete but sensory incomplete lesions following vertebral and spinal cord injuries are described. Sensory dissociation was present with more impairment of pain than touch or proprioception. The loss of pain sensation was complete in seven patients, but was incomplete in the other six subjects four of whom showed major motor recovery. The major point of interest of this study is to show that patients who retain not only touch but also pain sensation have a definitely better prognosis for neurological recovery. PMID:7290729

  1. Central dysesthesia syndrome in spinal cord injury patients.

    PubMed

    Berić, A; Dimitrijević, M R; Lindblom, U

    1988-08-01

    We have described 13 spinal cord injury patients with a complaint of diffuse, ongoing dysesthesias below the level of the lesion, which are burning in quality, and usually functionally limiting. Quantitative sensory and neurophysiological testing revealed relative preservation of the dorsal column functions in comparison to absence of spinothalamic system mediated functions. On the basis of these findings, we are speculating that such an imbalance between the spinothalamic and dorsal column systems is the main underlying mechanism of dysesthesias as a central nervous system misinterpretation of residual peripheral input. PMID:3174149

  2. Neuroprotection and Acute Spinal Cord Injury: A Reappraisal

    PubMed Central

    Hall, Edward D.; Springer, Joe E.

    2004-01-01

    Summary: It has long been recognized that much of the post-traumatic degeneration of the spinal cord following injury is caused by a multi-factorial secondary injury process that occurs during the first minutes, hours, and days after spinal cord injury (SCI). A key biochemical event in that process is reactive oxygen-induced lipid peroxidation (LP). In 1990 the results of the Second National Acute Spinal Cord Injury Study (NASCIS II) were published, which showed that the administration of a high-dose regimen of the glucocorticoid steroid methylprednisolone (MP), which had been previously shown to inhibit post-traumatic LP in animal models of SCI, could improve neurological recovery in spinal-cord-injured humans. This resulted in the registration of high-dose MP for acute SCI in several countries, although not in the U.S. Nevertheless, this treatment quickly became the standard of care for acute SCI since the drug was already on the U.S. market for many other indications. Subsequently, it was demonstrated that the non-glucocorticoid 21-aminosteroid tirilazad could duplicate the antioxidant neuroprotective efficacy of MP in SCI models, and evidence of human efficacy was obtained in a third NASCIS trial (NASCIS III). In recent years, the use of high-dose MP in acute SCI has become controversial largely on the basis of the risk of serious adverse effects versus what is perceived to be on average a modest neurological benefit. The opiate receptor antagonist naloxone was also tested in NASCIS II based upon the demonstration of its beneficial effects in SCI models. Although it did not a significant overall effect, some evidence of efficacy was seen in incomplete (i.e., paretic) patients. The monosialoganglioside GM1 has also been examined in a recently completed clinical trial in which the patients first received high-dose MP treatment. However, GM1 failed to show any evidence of a significant enhancement in the extent of neurological recovery over the level afforded by

  3. Spinal cord injury-induced pain: mechanisms and treatments.

    PubMed

    Siddall, Philip J; Middleton, James W

    2015-01-01

    Pain is a common consequence of a spinal cord injury (SCI) and has a major impact on quality of life through its impact on physical function, mood and participation in work, recreational and social activities. Several types of pain typically present following SCI with central neuropathic pain being a frequent and difficult to manage occurrence. Despite advances in our understanding of the mechanisms contributing to this type of pain and an increasing number of trials examining treatment efficacy, our ability to relieve neuropathic SCI pain is still very limited. Optimal management relies upon an integrated approach that uses a combination of pharmacological and nonpharmacological options. PMID:26402151

  4. Morphometry of an Ischemic Lesion of Cat Spinal Cord

    PubMed Central

    Shay, Jonathan

    1973-01-01

    Profiles in random electron micrographs of anterior gray matter of normal and ischemic cat spinal cord were measured with a planimetric computer. Analysis of 5600 area measurements revealed the following differences. Mitochondria of neuron cell bodies, axons, axon terminals and astrocytic processes were two to three times larger after ischemia. However, only 15% of mitochondria of axons and axon terminals and 5% of astrocytic processes lost their matrix density and pattern of cristae, compared to 49% of mitochondria of neuron cell bodies. Ischemia caused no significant changes in mean sizes of axons or axon terminals. Lysosomes in neurons were unchanged. The mean size of astrocytic processes increased more than threefold. PMID:4728890

  5. Pure intramedullary spinal cord metastasis secondary to gastric cancer.

    PubMed

    Gazzeri, Roberto; Galarza, Marcelo; Faiola, Andrea; Gazzeri, Giovanni

    2006-04-01

    Pure intramedullary spinal-cord metastases (ISCM) are a rare manifestation of cancer. We report a case of ISCM from gastric cancer. A 68-year-old man, treated with total gastrectomy for a gastric cancer, presented 9 months later with paresis of the left arm, pain and dissociated sensory loss. Magnetic resonance imaging revealed a pure intramedullary lesion at the C3-C5 level. After surgical resection, pathological findings revealed an undifferentiated adenocarcinoma of gastric origin. To our knowledge, this is only the second report of ISCM from gastric cancer in the literature. PMID:16465555

  6. Management of Pediatric Spinal Cord Astrocytomas: Outcomes With Adjuvant Radiation

    SciTech Connect

    Guss, Zachary D.; Moningi, Shalini; Jallo, George I.; Cohen, Kenneth J.; Wharam, Moody D.; Terezakis, Stephanie A.

    2013-04-01

    Purpose: Pediatric intramedullary spinal cord tumors are exceedingly rare; in the United States, 100 to 200 cases are recognized annually, of these, most are astrocytomas. The purpose of this study is to report the outcomes in pediatric patients with spinal cord astrocytomas treated at a tertiary care center. Methods and Materials: An institutional review board-approved retrospective single-institution study was performed for pediatric patients with spinal cord astrocytomas treated at our hospital from 1990 to 2010. The patients were evaluated on the extent of resection, progression-free survival (PFS), and development of radiation-related toxicities. Kaplan-Meier curves and multivariate regression model methods were used for analysis. Results: Twenty-nine patients were included in the study, 24 with grade 1 or 2 (low-grade) tumors and 5 with grade 3 or 4 (high-grade) tumors. The median follow-up time was 55 months (range, 1-215 months) for patients with low-grade tumors and 17 months (range, 10-52 months) for those with high-grade tumors. Thirteen patients in the cohort received chemotherapy. All patients underwent at least 1 surgical resection. Twelve patients received radiation therapy to a median radiation dose of 47.5 Gy (range, 28.6-54.0 Gy). Fifteen patients with low-grade tumors and 1 patient with a high-grade tumor exhibited stable disease at the last follow-up visit. Acute toxicities of radiation therapy were low grade, whereas long-term sequelae were infrequent and manageable when they arose. All patients with low-grade tumors were alive at the last follow-up visit, compared with 1 patient with a high-grade tumor. Conclusion: Primary pediatric spinal cord astrocytomas vary widely in presentation and clinical course. Histopathologic grade remains a major prognostic factor. Patients with low-grade tumors tend to have excellent disease control and long-term survival compared to those with high-grade tumors. This experience suggests that radiation therapy

  7. Spinal cord ischemia resulting in paraplegia following extrapleural pneumonectomy.

    PubMed

    Ural, Kelly; Jakob, Kyle; Lato, Scott; Gilly, George; Landreneau, Rodney

    2014-08-01

    A patient undergoing radical extrapleural pneumonectomy for epithelioid malignant mesothelioma developed acute paraplegia postoperatively related to long-segment spinal cord ischemia. The usual area of concern for this complication is the T9 to T12 area where the artery of Adamkiewicz is most likely to originate. In this patient, there was ligation of only upper thoracic, ipsilateral segmental arteries from the T3 to T6 level, yet he still developed paraplegia. Our hypothesis is variant mid-thoracic vascular anatomy. Previously unreported, to our knowledge, this should be understood as a rare complication of this surgery. PMID:25091760

  8. Spinal cord injury secondary to electrocution in a dog.

    PubMed

    Ros, C; de la Fuente, C; Pumarola, M; Añor, S

    2015-10-01

    A 13-year-old, female spayed, crossbreed dog of 32 kg was presented for evaluation of peracute onset of non-ambulatory tetraparesis after chewing an electrical wire. Neurological examination was consistent with a C1-C5 myelopathy. Magnetic resonance imaging revealed a focal intramedullary lesion over the C2-C3 vertebral bodies, which was confirmed to be an acute focal necrotising poliomyelopathy with subarachnoid and subdural haemorrhages on postmortem examination. This report describes the clinical, imaging and histopathological findings of this unusual type of spinal cord injury, and the effects of electrocution in the central nervous system of dogs. PMID:25615442

  9. Gastric dysreflexia after acute experimental spinal cord injury in rats

    PubMed Central

    Tong, M.; Holmes, G. M.

    2009-01-01

    Gastric reflexes are mediated mainly by vago-vagal reflex circuits in the caudal medulla. Despite the fact that brainstem vago-vagal circuitry remains intact after spinal cord injury (SCI), patients with SCI at the cervical level most often present gastric stasis with an increased risk of reflux and aspiration of gastric contents. Using a miniature strain gauge sutured to the gastric surface; we tested gastric motility and reflexive gastric relaxation following oesophageal distension (oesophageal-gastric relaxation reflex) in animals 3 days after a severe spinal contusion at either the third or ninth thoracic spinal segment (acute T3- or T9 SCI, respectively). Both basal gastric motility and the oesophageal-gastric relaxation reflex were significantly diminished in animals with T3 SCI. Conversely, both basal gastric motility and the oesophageal-gastric relaxation reflex were not significantly reduced in T9 SCI animals compared to controls. The reduced gastric motility and oesophageal-gastric reflex in T3 SCI rats was not ameliorated by celiac sympathectomy. Our results show that gastric stasis following acute SCI is independent of altered spinal sympathetic input to the stomach caudal to the lesion. Our data suggest that SCI may alter the sensitivity of vagal reflex function, perhaps by interrupting ascending spinosolitary input to brainstem vagal nuclei. PMID:19126185

  10. Role of interleukin-1beta in the control of neuroepithelial proliferation and differentiation of the spinal cord during development.

    PubMed

    de la Mano, A; Gato, A; Alonso, M I; Carnicero, E; Martín, C; Moro, J A

    2007-02-01

    Interleukin-1beta (IL-1beta) is an important trophic factor in the nervous system (NS). IL-1beta is ubiquitously expressed from very early stages during the development of the amphibian NS and its action has been demonstrated in vitro on survival, proliferation and differentiation in mammalian embryos. In this report, we show that IL-1beta is immunocytochemically expressed in embryonic spinal cord from early stages, both in rat (embryonic day 12) and in chicken (stage 17-HH), in neuroepithelial cells and nerve fibres, dorsal root ganglia, anterior and posterior roots of the spinal nerves, and in the fibres of these nerves. Our in vivo experiments on chick embryos, with microbeads impregnated with IL-1beta implanted laterally to the spinal cord at the level of the wing anlage, demonstrate that this cytokine produces a statistically significant increase in nuclear incorporation of BrdU at the dorsal level and a reduction of this at the ventral level, whereas local immunoblocking with anti-IL-1beta antibodies causes a dorsal reduction of BrdU incorporation and alters ventral differentiation. These data demonstrate that IL-1beta plays a part in controlling proliferation and early differentiation during the development of the spinal cord in chick embryos. PMID:17449272

  11. 34 CFR 359.1 - What is the Special Projects and Demonstrations for Spinal Cord Injuries Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Spinal Cord Injuries Program? 359.1 Section 359.1 Education Regulations of the Offices of the Department... EDUCATION DISABILITY AND REHABILITATION RESEARCH: SPECIAL PROJECTS AND DEMONSTRATIONS FOR SPINAL CORD INJURIES General § 359.1 What is the Special Projects and Demonstrations for Spinal Cord Injuries...

  12. 34 CFR 359.1 - What is the Special Projects and Demonstrations for Spinal Cord Injuries Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Spinal Cord Injuries Program? 359.1 Section 359.1 Education Regulations of the Offices of the Department... EDUCATION DISABILITY AND REHABILITATION RESEARCH: SPECIAL PROJECTS AND DEMONSTRATIONS FOR SPINAL CORD INJURIES General § 359.1 What is the Special Projects and Demonstrations for Spinal Cord Injuries...

  13. 34 CFR 359.1 - What is the Special Projects and Demonstrations for Spinal Cord Injuries Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Spinal Cord Injuries Program? 359.1 Section 359.1 Education Regulations of the Offices of the Department... EDUCATION DISABILITY AND REHABILITATION RESEARCH: SPECIAL PROJECTS AND DEMONSTRATIONS FOR SPINAL CORD INJURIES General § 359.1 What is the Special Projects and Demonstrations for Spinal Cord Injuries...

  14. 34 CFR 359.1 - What is the Special Projects and Demonstrations for Spinal Cord Injuries Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Spinal Cord Injuries Program? 359.1 Section 359.1 Education Regulations of the Offices of the Department... EDUCATION DISABILITY AND REHABILITATION RESEARCH: SPECIAL PROJECTS AND DEMONSTRATIONS FOR SPINAL CORD INJURIES General § 359.1 What is the Special Projects and Demonstrations for Spinal Cord Injuries...

  15. 76 FR 33734 - Applications for New Awards; Spinal Cord Injury Model Systems (SCIMS) Centers and SCIMS Multi...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Applications for New Awards; Spinal Cord Injury Model Systems (SCIMS) Centers and SCIMS Multi-Site... Rehabilitation Research Projects (DRRPs) and Special Projects and Demonstrations for Spinal Cord Injury Program--Spinal Cord Injury Model Systems (SCIMS) Centers and SCIMS Multi-Site Collaborative Research...

  16. Surgical management of thoracic idiopathic spinal cord herniation. Technical case report and review.

    PubMed

    Payer, Michael; Zumsteg, Dominik; De Tribolet, Nicolas; Wetzel, Stephan

    2016-08-01

    Idiopathic spinal cord herniation (ISCH) is a rare spinal disease, in which chronic cerebrospinal fluid pulsations push the arachnoid and adjacent thoracic spinal cord region through an antero-lateral dural defect of congenital, post-traumatic, or inflammatory/erosive origin. Symptomatic patients commonly present around the 5th decade of life with slowly progressive myelopathy. Diagnosis relies on high-resolution magnetic resonance imaging. Stable mild cases may be observed, whereas in progressive symptomatic situations, surgical spinal cord reposition and dural defect repair with a dural patch is the preferred treatment. We present a case of ISCH at T5/6 and a review the literature. PMID:27221089

  17. Spinal Cord in Multiple Sclerosis: Magnetic Resonance Imaging Features and Differential Diagnosis.

    PubMed

    Rovira, Alex; Auger, Cristina

    2016-10-01

    Multiple sclerosis (MS) is an idiopathic inflammatory disorder of the central nervous system that affects not only the brain but also the spinal cord. In the diagnostic and monitoring process of MS, spinal cord magnetic resonance imaging (MRI) is not performed as commonly as brain MRI, mainly because of certain technical difficulties and the increase in total acquisition time. Nonetheless, spinal cord MRI findings are important to establish a prompt accurate diagnosis of MS, impart prognostic information, and provide valuable data for monitoring the disease course in certain cases. In this article, we discuss the technical aspects of spinal cord MRI, the typical MRI features of the spinal cord in MS, the clinical indications for this examination, and the differential diagnosis with other disorders that may produce similar clinical or MRI findings. PMID:27616313

  18. A huge ependymoma of the cervical spinal cord with subtle atypical manifestations and hyperhidrosis: Case report

    PubMed Central

    Haddadi, Kaveh

    2015-01-01

    Introduction Ependymomas are the most common neuroepithelial tumors of the spinal cord, accounting for 50–60% of spinal cord gliomas. The nonspecific clinical presentation of a spinal cord tumor frequently results in delay of diagnosis with opposing outcomes. Presentation of case We report a 34-year-old man presented with abnormally enhanced sweating on the left side of his neck, upper extremity, and chest that had been occurring for 1 year. In the sagittal MRI there were a centrally localized mass lesion extending from medulla and C1 to T2 vertebra level and expanding the cord. Surgical elimination of the tumor was performed with posterior midline approach and near total resection of tumor was achieved. Conclusion Cervical intramedullary ependymal is a rare, slow growing spinal cord tumor. Attention to uncommon characteristics like hyperhidrosis might be an important key to early diagnosis of this rare spinal tumor. Surgical resection is the choice of treatment with infrequent recurrence. PMID:26741275

  19. Platelet-derived growth factor receptor (PDGFR) expression in primary spinal cord gliomas

    PubMed Central

    Canoll, Peter; McCormick, Paul C.; Feldstein, Neil A.; Anderson, Richard C.; Angevine, Peter D.; Kaiser, Michael G.; McCormick, Paul C.; Bruce, Jeffrey N.; Ogden, Alfred T.

    2013-01-01

    Abnormal signaling through the platelet-derived growth factor receptor (PDGFR) has been proposed as a possible mechanism of spinal cord glioma initiation and progression. However, the extent of PDGFR expression in human spinal cord gliomas remains unknown. In this study we perform immunohistochemical analysis of PDGFRα expression in a series of 33 primary intramedullary spinal cord gliomas of different types and grades. PDGFRα was seen to be expressed in a significant subset of these tumors across all major glioma types including ependymoma, oligodendroglioma, pilocytic astrocytoma, astrocytoma, and glioblastoma. These results support the hypothesis that growth factor signaling through the PDGFR may be important for the development of at least a subset of human spinal cord gliomas. Further studies investigating the prognostic significance of PDGFR expression as well as the role of PDGF signaling on the development of intramedullary spinal cord gliomas are warranted. PMID:21789698

  20. Anterograde labeling of ventrolateral funiculus pathways with spinal enlargement connections in the adult rat spinal cord

    PubMed Central

    Reed, William R.; Shum-Siu, Alice; Whelan, Ashley; Onifer, Stephen M.; Magnuson, David S.K.

    2009-01-01

    The ventrolateral funiculus in the spinal cord has been identified as containing important ascending and descending pathways related to locomotion and interlimb coordination. The purpose of this descriptive study was to investigate the patterns of axon termination of long ascending and descending ventrolateral pathways within the cervical and lumbar enlargements of the adult rat spinal cord. To accomplish this, we made discrete unilateral injections of the tracer biotinylated dextran-amine (BDA) into the ventrolateral white matter at T9. Although some BDA-labeled axons with varicosities were found bilaterally at all cervical levels, particularly dense BDA-labeling was observed in laminae VIII and IX ipsilaterally at the C6 and C8 levels. In the same animals, dense terminal labeling was found in the lumbar enlargement in medial lamina VII and ventromedial laminae VIII and IX contralaterally. This labeling was most apparent in the more rostral lumbar segments. These observations continue the characterization of inter-enlargement (long propriospinal) pathways, illustrating a substantial and largely reciprocal inter-enlargement network with large numbers of both ascending and descending ventrolateral commissural neurons. These pathways are anatomically well-suited to the task of interlimb coordination and to participate in the remarkable recovery of locomotor function seen in the rat following thoracic spinal cord injuries that spare as little as 20% of the total white matter cross sectional area. PMID:19766612

  1. Isolated Spinal Metastasis with Spinal Cord Compression Leads to a Diagnosis of a Follicular Thyroid Carcinoma

    PubMed Central

    Galgano, Michael; Libohova, Silva; Marawar, Satya

    2015-01-01

    Introduction: Thyroid carcinoma initially presents with clinical symptoms due to metastatic lesions in less than 5% of cases. Spinal cord compression from an epidural metastatic lesion as a first symptom is extremely rare. One would expect such a presentation to occur much later in the course of the disease. Methods: We are presenting a case report of a follicular thyroid carcinoma that presented with spinal cord compression from a thoracic epidural metastatic lesion in a previously healthy 55-year-old male. A single metastasis of follicular thyroid carcinoma presenting with posterior spinal cord compression is rare. In this particular case, our management included a mid-thoracic laminectomy, followed by resection of the epidural lesion. Once the surgical pathology confirmed the diagnosis of a follicular thyroid carcinoma, the general surgery team performed a near total thyroidectomy, after which he received radioactive iodine therapy. The patient is symptom-free at his three-year follow-up. Conclusion: Initial presentation of follicular thyroid carcinoma with symptomatic thoracic myelopathy from an epidural metastasis is very uncommon. An early diagnosis and prompt surgical intervention provided an excellent outcome. PMID:26623201

  2. Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes

    NASA Astrophysics Data System (ADS)

    Menet, V.; Prieto, M.; Privat, A.; Giménez Y Ribotta, M.

    2003-07-01

    The lack of axonal regeneration in the injured adult mammalian spinal cord leads to permanent functional disabilities. The inability of neurons to regenerate their axon is appreciably due to an inhospitable environment made of an astrocytic scar. We generated mice knock-out for glial fibrillary acidic protein and vimentin, the major proteins of the astrocyte cytoskeleton, which are upregulated in reactive astrocytes. These animals, after a hemisection of the spinal cord, presented reduced astroglial reactivity associated with increased plastic sprouting of supraspinal axons, including the reconstruction of circuits leading to functional restoration. Therefore, improved anatomical and functional recovery in the absence of both proteins highlights the pivotal role of reactive astrocytes in axonal regenerative failure in adult CNS and could lead to new therapies of spinal cord lesions.

  3. Spinal sensory projection neuron responses to spinal cord stimulation are mediated by circuits beyond gate control

    PubMed Central

    Zhang, Tianhe C.; Janik, John J.; Peters, Ryan V.; Chen, Gang; Ji, Ru-Rong

    2015-01-01

    Spinal cord stimulation (SCS) is a therapy used to treat intractable pain with a putative mechanism of action based on the Gate Control Theory. We hypothesized that sensory projection neuron responses to SCS would follow a single stereotyped response curve as a function of SCS frequency, as predicted by the Gate Control circuit. We recorded the responses of antidromically identified sensory projection neurons in the lumbar spinal cord during 1- to 150-Hz SCS in both healthy rats and neuropathic rats following chronic constriction injury (CCI). The relationship between SCS frequency and projection neuron activity predicted by the Gate Control circuit accounted for a subset of neuronal responses to SCS but could not account for the full range of observed responses. Heterogeneous responses were classifiable into three additional groups and were reproduced using computational models of spinal microcircuits representing other interactions between nociceptive and nonnociceptive sensory inputs. Intrathecal administration of bicuculline, a GABAA receptor antagonist, increased spontaneous and evoked activity in projection neurons, enhanced excitatory responses to SCS, and reduced inhibitory responses to SCS, suggesting that GABAA neurotransmission plays a broad role in regulating projection neuron activity. These in vivo and computational results challenge the Gate Control Theory as the only mechanism underlying SCS and refine our understanding of the effects of SCS on spinal sensory neurons within the framework of contemporary understanding of dorsal horn circuitry. PMID:25972582

  4. A single injection of recombinant adeno-associated virus into the lumbar cistern delivers transgene expression throughout the whole spinal cord

    PubMed Central

    Guo, Yansu; Wang, Dan; Qiao, Tao; Yang, Chunxing; Su, Qin; Gao, Guangping; Xu, Zuoshang

    2015-01-01

    The lack of methods to deliver transgene expression in spinal cord has hampered investigation of gene function and therapeutic targets for spinal cord diseases. Here we report that a single intrathecal injection of recombinant adeno-associated virus rhesus-10 (rAAVrh10) into the lumbar cistern led to transgene expression in sixty to ninety percent of the cells in the spinal cord. The transgene was expressed in all cell types, including neurons, glia, ependymal cells and endothelial cells. Additionally, the transgene was expressed in some brain areas up to the frontal cortex and the olfactory bulb. The rAAV was distributed predominantly in the spinal cord, where its genome copy was over ten times that of the peripheral organs. Compared with intravenous injection, another method for rAAV delivery to the broad CNS, the intrathecal injection reduced the dosage of rAAV required to achieve similar or higher levels of transgene expression in the CNS by ∼100 fold. Finally, the transduced areas were colocalized with the perivascular spaces of Virchow-Robin, from which the rAAV spreads further into the CNS parenchyma, thus suggesting that rAAV penetrated the CNS parenchyma through this pathway. Taken together, we have defined a fast and efficient method to deliver widespread transgene expression in mature spinal cord in mice. This method can be applied to stably overexpress or silence gene expression in the spinal cord to investigate gene functions in mammalian CNS. Additionally, this method can be applied to validate therapeutic targets for spinal cord diseases. PMID:26050084

  5. A Single Injection of Recombinant Adeno-Associated Virus into the Lumbar Cistern Delivers Transgene Expression Throughout the Whole Spinal Cord.

    PubMed

    Guo, Yansu; Wang, Dan; Qiao, Tao; Yang, Chunxing; Su, Qin; Gao, Guangping; Xu, Zuoshang

    2016-07-01

    The lack of methods to deliver transgene expression in spinal cord has hampered investigation of gene function and therapeutic targets for spinal cord diseases. Here, we report that a single intrathecal injection of recombinant adeno-associated virus rhesus-10 (rAAVrh10) into the lumbar cistern led to transgene expression in 60 to 90 % of the cells in the spinal cord. The transgene was expressed in all cell types, including neurons, glia, ependymal cells, and endothelial cells. Additionally, the transgene was expressed in some brain areas up to the frontal cortex and the olfactory bulb. The rAAV was distributed predominantly in the spinal cord, where its genome copy was over ten times that of the peripheral organs. Compared with intravenous injection, another method for rAAV delivery to the broad central nervous system (CNS), the intrathecal injection reduced the dosage of rAAV required to achieve similar or higher levels of transgene expression in the CNS by ~100-fold. Finally, the transduced areas were co-localized with the perivascular spaces of Virchow-Robin, from which the rAAV spreads further into the CNS parenchyma, thus suggesting that rAAV penetrated the CNS parenchyma through this pathway. Taken together, we have defined a fast and efficient method to deliver widespread transgene expression in mature spinal cord in mice. This method can be applied to stably overexpress or silence gene expression in the spinal cord to investigate gene functions in mammalian CNS. Additionally, this method can be applied to validate therapeutic targets for spinal cord diseases. PMID:26050084

  6. Contributions of Johann jacob Huber to the surface anatomy of the spinal cord and meninges.

    PubMed

    Rengachary, Setti S; Pelle, Dominic; Guthikonda, Murali

    2008-06-01

    From prehistoric times, man has been aware that injury to the spine may result in paralysis of the limbs; this is reflected in bas-relief figures found at Nineweh in ancient Mesopotamia, in a hunting scene that depicts a lioness wounded by King Ashurbanipal. The Edwin Smith papyrus gives many case illustrations of spinal cord injury resulting in paralysis, yet early physicians were unaware of the anatomy of the spinal cord. Galen performed prospective studies in animals by sectioning the spinal cord at varying levels and observing the commensurate paralysis and sensory loss. Real advances in the understanding of spinal cord anatomy did not occur until human cadaveric dissections were undertaken; even then, the knowledge of the anatomy of the spinal cord lagged behind that of other body structures. Johann Jacob Huber appears to be the first anatomist to focus on the spinal cord almost exclusively. His descriptions, and especially his illustrations that depict spinal cord surface anatomy, are impressive with regard to their accuracy and their sense of photorealism. Indeed, his illustrations seem to compare well with the anatomic drawings in contemporary anatomic texts. Yet, we were unable to find a single article in the entire English-language literature depicting his illustrations. We conclude that the description and anatomic illustrations by Johann Jacob Huber remain a hidden gem in the history of human spinal anatomy. PMID:18825005

  7. [Anesthesiological approach for patients with spinal cord injuries].

    PubMed

    Rand, A; Litz, R J; Zahn, P

    2016-07-01

    Spinal cord injuries (SCI) are serious medical conditions, which are associated with severe and potentially fatal risks and complications depending on the location and extent of injury. Traffic accidents, falls and recreational activities are the leading causes for traumatic SCI (TSCI) worldwide whereas non-traumatic spinal cord injuries (NTSCI) are mostly due to tumors and congenital diseases. As chronification of the injuries progresses other organ systems are affected including anatomical changes, the respiratory and cardiovascular systems and endocrinological pathways. All these effects have to be considered in the anesthesiological management of patients with SCI. Autonomic dysreflexia (AD) is the most dangerous and life-threatening complication in patients with chronic SCI above T6 that results from an overstimulation of sympathetic reflex circuits in the upper thoracic spine and can be fatal. This article summarizes the specific pathophysiology of SCI and how AD can be avoided as well as also providing anesthetists with strategies for perioperative and intensive care management of patients with SCI. PMID:27371543

  8. Neurobrucellosis presenting as an intra-medullary spinal cord abscess

    PubMed Central

    Vajramani, Girish V; Nagmoti, Mahantesh B; Patil, Chidanand S

    2005-01-01

    Background Of the diverse presentation of neurobrucellosis, intra-medullary spinal cord abscess is extremely rare. Only four other cases have been reported so far. We present a case of spinal cord intra-medullary abscess due to Brucella melitensis. Case presentation A forty-year-old female presented with progressive weakness of both lower limb with urinary incontinence of 6 months duration. She was febrile. Neurological examination revealed flaccid areflexic paraplegia with T10 below sensory impairment including perianal region. An intramedullary mass was diagnosed on Magnetic Resonance Image (MRI) scan extending from T12 to L2. At surgery, a large abscess was encountered at the conus medullaris, from which Brucella melitensis was grown on culture. She was started on streptomycin and doxycycline for 1 month, followed by rifampicin and doxycycline for 1 month. At 2-year follow-up, she had recovered only partially and continued to have impaired bladder function. Conclusion Neurobrucellosis, if not treated early, can result in severe neurological morbidity and sequale, which may be irreversible. Hence it is important to consider the possibility of neurobrucellosis in endemic region and treat aggressively. PMID:16168059

  9. Modeling blast induced neurotrauma in isolated spinal cord white matter.

    PubMed

    Connell, Sean; Ouyang, Hui; Shi, Riyi

    2011-10-01

    Blast-induced neurotrauma (BINT) is a common injury associated with the present military conflicts. Exposure to the shock-wave produced from exploding ordnances leads to significant neurological deficits throughout the brain and spinal cord. Prevention and treatment of this injury requires an appropriate understanding of the mechanisms governing the neurological response. Here, we present a novel ex-vivo BINT model where an isolated section of guinea pig spinal cord white matter is exposed to the shock-wave produced from a small scale explosive event. Additionally, we define the relationship between shock-wave impact, tissue deformation and resulting anatomical and functional deficits associated with BINT. Our findings suggest an inverse relationship between the magnitude of the shock-wave overpressure and the degree of functional deficits using a double sucrose gap recording chamber. Similar correlations are drawn between overpressure and degree of anatomical damage of neuronal processes using a dye-exclusion assay. The following approach is expected to significantly contribute to the detection, mitigation and eventual treatment of BINT. PMID:20703730

  10. Pseudomonas aeruginosa colonization in patients with spinal cord injuries.

    PubMed Central

    Gilmore, D S; Bruce, S K; Jimenez, E M; Schick, D G; Morrow, J W; Montgomerie, J Z

    1982-01-01

    The prevalence of Pseudomonas aeruginosa colonization of patients with spinal cord injury was studied annually from 1976 to 1980. The urethra, perineum, rectum, drainage bag, and urine of patients on the spinal cord injury service were cultured. A total of 224 men and 32 women were studied. Most patients were managed with an external urinary collection system or padding, with or without intermittent catheterization. P. aeruginosa was cultured from one or more body sites (urethra, perineum, or rectum) in 65% of men and 18% of women. Drainage bags on the beds were frequently colonized with P. aeruginosa (73%). Significant bacteriuria with P. aeruginosa was present in 19% of the men and 13% of the women. P. aeruginosa colonization of body sites in men was closely associated with the use of an external urinary collection system. Significantly greater urethral and perineal colonization was found in men using an external urinary collection system. P. aeruginosa serotype 11 was the predominant serotype for the first 3 years, and the number of patients colonized with serotype 11 increased with length of hospital stay. The prevalence of serotype 11 significantly decreased in the last 2 years. The antibiotic susceptibility of the strains of P. aeruginosa isolated from these patients did not change in the 5 years, except that there was increasing susceptibility to carbenicillin in later years. This increasing susceptibility to carbenicillin was a reflection of a decreased prevalence of serotype 11 in these patients, since serotype 11 was more resistant than other serotypes to carbenicillin. PMID:6818251

  11. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury.

    PubMed

    Doulames, Vanessa M; Plant, Giles W

    2016-01-01

    Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient's own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI-even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury. PMID:27070598

  12. Current research outcomes from the spinal cord injury model systems.

    PubMed

    Chen, Yuying; Deutsch, Anne; DeVivo, Michael J; Johnson, Kurt; Kalpakjian, Claire Z; Nemunaitis, Gregory; Tulsky, David

    2011-03-01

    This article serves as an introduction to this issue of the Archives of Physical Medicine and Rehabilitation that is devoted to current research findings of the Spinal Cord Injury Model Systems (SCIMS) program. The SCIMS program began in 1970, with funding from the National Institute on Disability and Rehabilitation Research in the U.S. Department of Education, to demonstrate a comprehensive care system for spinal cord injury (SCI) and also to conduct research to improve the health and quality of life of persons with SCI. Over the last 20 years, similar collaborative efforts for the dissemination of SCIMS research outcomes have produced conference proceedings in 1990, a book in 1995, and dedicated journal issues in 1999 and 2004. The collection of 24 articles in this issue shows the depth and breadth of work being carried out by the SCIMS investigators, from descriptive epidemiology to a randomized controlled trial, from neurologic recovery to community reintegration, and from health services utilization to assistive technology for mobility. Herein, we provide a brief overview of the SCIMS program, highlight the research initiatives currently underway, and describe the important findings of the original research articles contained in this issue. PMID:21353816

  13. Emerging Role of Spinal Cord TRPV1 in Pain Exacerbation

    PubMed Central

    Choi, Seung-In; Lim, Ji Yeon; Yoo, Sungjae; Kim, Hyun; Hwang, Sun Wook

    2016-01-01

    TRPV1 is well known as a sensor ion channel that transduces a potentially harmful environment into electrical depolarization of the peripheral terminal of the nociceptive primary afferents. Although TRPV1 is also expressed in central regions of the nervous system, its roles in the area remain unclear. A series of recent reports on the spinal cord synapses have provided evidence that TRPV1 plays an important role in synaptic transmission in the pain pathway. Particularly, in pathologic pain states, TRPV1 in the central terminal of sensory neurons and interneurons is suggested to commonly contribute to pain exacerbation. These observations may lead to insights regarding novel synaptic mechanisms revealing veiled roles of spinal cord TRPV1 and may offer another opportunity to modulate pathological pain by controlling TRPV1. In this review, we introduce historical perspectives of this view and details of the recent promising results. We also focus on extended issues and unsolved problems to fully understand the role of TRPV1 in pathological pain. Together with recent findings, further efforts for fine analysis of TRPV1's plastic roles in pain synapses at different levels in the central nervous system will promote a better understanding of pathologic pain mechanisms and assist in developing novel analgesic strategies. PMID:26885404

  14. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury

    PubMed Central

    Doulames, Vanessa M.; Plant, Giles W.

    2016-01-01

    Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury. PMID:27070598

  15. Methylprednisolone for acute spinal cord injury: an increasingly philosophical debate.

    PubMed

    Bowers, Christian A; Kundu, Bornali; Hawryluk, Gregory W J

    2016-06-01

    Following publication of NASCIS II, methylprednisolone sodium succinate (MPSS) was hailed as a breakthrough for patients with acute spinal cord injury (SCI). MPSS use for SCI has since become very controversial and it is our opinion that additional evidence is unlikely to break the stalemate amongst clinicians. Patient opinion has the potential to break this stalemate and we review our recent findings which reported that spinal cord injured patients informed of the risks and benefits of MPSS reported a preference for MPSS administration. We discuss the implications of the current MPSS debate on translational research and seek to address some misconceptions which have evolved. As science has failed to resolve the MPSS debate we argue that the debate is an increasingly philosophical one. We question whether SCI might be viewed as a serious condition like cancer where serious side effects of therapeutics are tolerated even when benefits may be small. We also draw attention to the similarity between the side effects of MPSS and isotretinoin which is prescribed for the cosmetic disorder acne vulgaris. Ultimately we question how patient autonomy should be weighed in the context of current SCI guidelines and MPSS's status as a historical standard of care. PMID:27482201

  16. Advances in the rehabilitation management of acute spinal cord injury.

    PubMed

    Ditunno, John F; Cardenas, Diana D; Formal, Christopher; Dalal, Kevin

    2012-01-01

    Aggressive assessment and management of the secondary complications in the hours and days following spinal cord injury (SCI) leads to restoration of function in patients through intervention by a team of rehabilitation professionals. The recent certification of SCI physicians, newly validated assessments of impairment and function measures, and international databases agreed upon by SCI experts should lead to documentation of improved rehabilitation care. This chapter highlights recent advances in assessment and treatment based on evidence-based classification of literature reviews and expert opinion in the acute phase of SCI. A number of these reviews are the product of the Consortium for Spinal Cord Medicine, which offers clinical practice guidelines for healthcare professionals. Recognition of and early intervention for problems such as bradycardia, orthostatic hypotension, deep vein thrombosis/pulmonary embolism, and early ventilatory failure will be addressed although other chapters may discuss some issues in greater detail. Early assessment and intervention for neurogenic bladder and bowel function has proven effective in the prevention of renal failure and uncontrolled incontinence. Attention to overuse and disuse with training and advanced technology such as functional electrical stimulation have reduced pain and disability associated with upper extremity deterioration and improved physical fitness. Topics such as chronic pain, spasticity, sexual dysfunction, and pressure sores will be covered in more detail in additional chapters. However, the comprehensive and integrated rehabilitation by specialized SCI teams of physicians, nurses, therapists, social workers, and psychologists immediately following SCI has become the standard of care throughout the world. PMID:23098713

  17. Microglial Activation in Rat Experimental Spinal Cord Injury Model

    PubMed Central

    Abdanipour, Alireza; Tiraihi, Taki; Taheri, Taher; Kazemi, Hadi

    2013-01-01

    Background: The present study was designed to evaluate the secondary microglial activation processes after spinal cord injury (SCI). Methods: A quantitative histological study was performed to determine ED-1 positive cells, glial cell density, and cavitation size in untreated SCI rats at days 1, 2, and 4, and weeks 1, 2, 3, and 4. Results: The results of glial cell quantification along the 4900-µm long injured spinal cord showed a significant increase in glial cell density percentage at day 2 as compared to other days. Whereas the highest increase in ED-1 immunoreactive cells (monocyte/phagocyte marker in rats) was observed at day 2 (23.15%) post-injury. Evaluation of cavity percentage showed a significant difference between weeks 3 and 4 post-injury groups. Conclusions: This study provides a new insight into the multiphase immune response to SCI, including cellular inflammation, macrophages/microglia activation, glial cell density, and cavitation. Better understanding of the inflammatory processes associated with acute SCI would permit the development of better therapeutic strategies. PMID:23999718

  18. Training a Spinal Cord Injury Rehabilitation Team in Motivational Interviewing

    PubMed Central

    Lusilla-Palacios, Pilar; Castellano-Tejedor, Carmina

    2015-01-01

    Background. An acute spinal cord injury (ASCI) is a severe condition that requires extensive and very specialized management of both physical and psychological dimensions of injured patients. Objective. The aim of the part of the study reported here was twofold: (1) to describe burnout, empathy, and satisfaction at work of these professionals and (2) to explore whether a tailored program based on motivational interviewing (MI) techniques modifies and improves such features. Methods. This paper presents findings from an intervention study into a tailored training for professionals (N = 45) working in a spinal cord injury (SCI) unit from a general hospital. Rehabilitation professionals' empathy skills were measured with the Jefferson Scale of Physician Empathy (JSPE), burnout was measured with the Maslach Burnout Inventory (MBI), and additional numeric scales were used to assess the perceived job-related stress and perceived satisfaction with job. Results. Findings suggest that professionals are performing quite well and they refer to satisfactory empathy, satisfaction at work, and no signs of burnout or significant stress both before and after the training. Conclusions. No training effect was observed in the variables considered in the study. Some possible explanations for these results and future research directions are discussed in depth in this paper. The full protocol of this study is registered in ClinicalTrials.gov (identifier: NCT01889940). PMID:26770827

  19. Spinal-cord injuries in Australian footballers, 1960-1985.

    PubMed

    Taylor, T K; Coolican, M R

    1987-08-01

    A review of 107 footballers who suffered a spinal-cord injury between 1960 and 1985 has been undertaken. Since 1977, the number of such injuries in Rugby Union, Rugby League and Australian Rules has increased, from an average of about two injuries a year before 1977 to over eight injuries a year since then. Rugby Union is clearly the most dangerous game, particularly for schoolboys; all of the injuries in schoolboy games for this code have occurred since 1977. This study has shown that collision at scrum engagement, and not at scrum collapse, is the way in which the majority of scrum injuries are sustained. These injuries are largely preventable, and suggestions for rule changes are made. Half the injured players recovered to Frankel grades D or E. The financial entitlements of those injured were grossly inadequate; this warrants action. A national register for spinal-cord injuries from football should be established to monitor the effects of desirable rule changes in Rugby Union and Rugby League. PMID:3600465

  20. Resting state functional connectivity in the human spinal cord

    PubMed Central

    Barry, Robert L; Smith, Seth A; Dula, Adrienne N; Gore, John C

    2014-01-01

    Functional magnetic resonance imaging using blood oxygenation level dependent (BOLD) contrast is well established as one of the most powerful methods for mapping human brain function. Numerous studies have measured how low-frequency BOLD signal fluctuations from the brain are correlated between voxels in a resting state, and have exploited these signals to infer functional connectivity within specific neural circuits. However, to date there have been no previous substantiated reports of resting state correlations in the spinal cord. In a cohort of healthy volunteers, we observed robust functional connectivity between left and right ventral (motor) horns, and between left and right dorsal (sensory) horns. Our results demonstrate that low-frequency BOLD fluctuations are inherent in the spinal cord as well as the brain, and by analogy to cortical circuits, we hypothesize that these correlations may offer insight into the execution and maintenance of sensory and motor functions both locally and within the cerebrum. DOI: http://dx.doi.org/10.7554/eLife.02812.001 PMID:25097248

  1. Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration

    PubMed Central

    Assunção-Silva, Rita C.; Gomes, Eduardo D.; Silva, Nuno A.; Salgado, António J.

    2015-01-01

    Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. Although promising, cell transplantation is often overturned by the poor cell survival in the treatment of spinal cord injuries. Alternatively, the therapeutic role of different cells has been used in tissue engineering approaches by engrafting cells with biomaterials. The latter have the advantages of physically mimicking the CNS tissue, while promoting a more permissive environment for cell survival, growth, and differentiation. The roles of both cell- and biomaterial-based therapies as single therapeutic approaches for SCI repair will be discussed in this review. Moreover, as the multifactorial inhibitory environment of a SCI suggests that combinatorial approaches would be more effective, the importance of using biomaterials as cell carriers will be herein highlighted, as well as the recent advances and achievements of these promising tools for neural tissue regeneration. PMID:26124844

  2. Musculoskeletal Deterioration and Hemicorporectomy After Spinal Cord Injury

    PubMed Central

    Dudley-Javoroski, Shauna

    2014-01-01

    Background and Purpose The long-term management following an hemicorporectomy (HCP) is not well documented in the scientific literature. The purpose of this case report is to describe the 25-year history of a man with a spinal cord injury who experienced severe musculoskeletal deterioration and hemicorporectomy. Case Description The client sustained T10 complete paraplegia at age 18 years, developed severe decubitus ulcers, and required an HCP as a lifesaving measure 13 years later. The authors describe the chronology of several rehabilitation and prosthetic strategies and speculate on factors that may have contributed to their successes and failures. Outcomes The client survived 12 years after the HCP and returned to independent mobility, self-care, and schooling despite complications with continued skin breakdown. Over the 12 years following discharge from the hospital after the spinal cord injury, he spent 749 days in the hospital. During the 12 years he lived after discharge from the hospital following the HCP, he was hospitalized 190 days. Discussion The authors discuss factors contributing to the client’s musculoskeletal deterioration including chronic wounds, postural deviations, and incomplete adherence to pressure-relief recommendations and raise considerations for physical therapists who treat patients after HCP. PMID:12620090

  3. Gap junction proteins and their role in spinal cord injury

    PubMed Central

    Tonkin, Ryan S.; Mao, Yilin; O’Carroll, Simon J.; Nicholson, Louise F. B.; Green, Colin R.; Gorrie, Catherine A.; Moalem-Taylor, Gila

    2015-01-01

    Gap junctions are specialized intercellular communication channels that are formed by two hexameric connexin hemichannels, one provided by each of the two adjacent cells. Gap junctions and hemichannels play an important role in regulating cellular metabolism, signaling, and functions in both normal and pathological conditions. Following spinal cord injury (SCI), there is damage and disturbance to the neuronal elements of the spinal cord including severing of axon tracts and rapid cell death. The initial mechanical disruption is followed by multiple secondary cascades that cause further tissue loss and dysfunction. Recent studies have implicated connexin proteins as playing a critical role in the secondary phase of SCI by propagating death signals through extensive glial networks. In this review, we bring together past and current studies to outline the distribution, changes and roles of various connexins found in neurons and glial cells, before and in response to SCI. We discuss the contribution of pathologically activated connexin proteins, in particular connexin 43, to functional recovery and neuropathic pain, as well as providing an update on potential connexin specific pharmacological agents to treat SCI. PMID:25610368

  4. Methylprednisolone for acute spinal cord injury: an increasingly philosophical debate

    PubMed Central

    Bowers, Christian A.; Kundu, Bornali; Hawryluk, Gregory W. J.

    2016-01-01

    Following publication of NASCIS II, methylprednisolone sodium succinate (MPSS) was hailed as a breakthrough for patients with acute spinal cord injury (SCI). MPSS use for SCI has since become very controversial and it is our opinion that additional evidence is unlikely to break the stalemate amongst clinicians. Patient opinion has the potential to break this stalemate and we review our recent findings which reported that spinal cord injured patients informed of the risks and benefits of MPSS reported a preference for MPSS administration. We discuss the implications of the current MPSS debate on translational research and seek to address some misconceptions which have evolved. As science has failed to resolve the MPSS debate we argue that the debate is an increasingly philosophical one. We question whether SCI might be viewed as a serious condition like cancer where serious side effects of therapeutics are tolerated even when benefits may be small. We also draw attention to the similarity between the side effects of MPSS and isotretinoin which is prescribed for the cosmetic disorder acne vulgaris. Ultimately we question how patient autonomy should be weighed in the context of current SCI guidelines and MPSS's status as a historical standard of care. PMID:27482201

  5. Effect of spinal cord compression on local vascular blood flow and perfusion capacity.

    PubMed

    Alshareef, Mohammed; Krishna, Vibhor; Ferdous, Jahid; Alshareef, Ahmed; Kindy, Mark; Kolachalama, Vijaya B; Shazly, Tarek

    2014-01-01

    Spinal cord injury (SCI) can induce prolonged spinal cord compression that may result in a reduction of local tissue perfusion, progressive ischemia, and potentially irreversible tissue necrosis. Due to the combination of risk factors and the varied presentation of symptoms, the appropriate method and time course for clinical intervention following SCI are not always evident. In this study, a three-dimensional finite element fluid-structure interaction model of the cervical spinal cord was developed to examine how traditionally sub-clinical compressive mechanical loads impact spinal arterial blood flow. The spinal cord and surrounding dura mater were modeled as linear elastic, isotropic, and incompressible solids, while blood was modeled as a single-phased, incompressible Newtonian fluid. Simulation results indicate that anterior, posterior, and anteroposterior compressions of the cervical spinal cord have significantly different ischemic potentials, with prediction that the posterior component of loading elevates patient risk due to the concomitant reduction of blood flow in the arterial branches. Conversely, anterior loading compromises flow through the anterior spinal artery but minimally impacts branch flow rates. The findings of this study provide novel insight into how sub-clinical spinal cord compression could give rise to certain disease states, and suggest a need to monitor spinal artery perfusion following even mild compressive loading. PMID:25268384

  6. Effect of Spinal Cord Compression on Local Vascular Blood Flow and Perfusion Capacity

    PubMed Central

    Alshareef, Mohammed; Krishna, Vibhor; Ferdous, Jahid; Alshareef, Ahmed; Kindy, Mark; Kolachalama, Vijaya B.; Shazly, Tarek

    2014-01-01

    Spinal cord injury (SCI) can induce prolonged spinal cord compression that may result in a reduction of local tissue perfusion, progressive ischemia, and potentially irreversible tissue necrosis. Due to the combination of risk factors and the varied presentation of symptoms, the appropriate method and time course for clinical intervention following SCI are not always evident. In this study, a three-dimensional finite element fluid-structure interaction model of the cervical spinal cord was developed to examine how traditionally sub-clinical compressive mechanical loads impact spinal arterial blood flow. The spinal cord and surrounding dura mater were modeled as linear elastic, isotropic, and incompressible solids, while blood was modeled as a single-phased, incompressible Newtonian fluid. Simulation results indicate that anterior, posterior, and anteroposterior compressions of the cervical spinal cord have significantly different ischemic potentials, with prediction that the posterior component of loading elevates patient risk due to the concomitant reduction of blood flow in the arterial branches. Conversely, anterior loading compromises flow through the anterior spinal artery but minimally impacts branch flow rates. The findings of this study provide novel insight into how sub-clinical spinal cord compression could give rise to certain disease states, and suggest a need to monitor spinal artery perfusion following even mild compressive loading. PMID:25268384

  7. Inhibition of spinal c-Jun-NH2-terminal kinase (JNK) improves locomotor activity of spinal cord injured rats.

    PubMed

    Martini, Alessandra C; Forner, Stefânia; Koepp, Janice; Rae, Giles Alexander

    2016-05-16

    Mitogen-activated protein kinases (MAPKs) have been implicated in central nervous system injuries, yet the roles within neurodegeneration following spinal cord injury (SCI) still remain partially elucidated. We aimed to investigate the changes in expression of the three MAPKs following SCI and the role of spinal c-jun-NH2-terminal kinase (JNK) in motor impairment following the lesion. SCI induced at the T9 level resulted in enhanced expression of phosphorylated MAPKs shortly after trauma. SCI increased spinal cord myeloperoxidase levels, indicating a local neutrophil infiltration, and elevated the number of spinal apoptotic cells. Intrathecal administration of a specific inhibitor of JNK phosphorylation, SP600125, given at 1 and 4h after SCI, reduced the p-JNK expression, the number of spinal apoptotic cells and many of the histological signs of spinal injury. Notably, restoration of locomotor performance was clearly ameliorated by SP600125 treatment. Altogether, the results demonstrate that SCI induces activation of spinal MAPKs and that JNK plays a major role in mediating the deleterious consequences of spinal injury, not only at the spinal level, but also those regarding locomotor function. Therefore, inhibition of JNK activation in the spinal cord shortly after trauma might constitute a feasible therapeutic strategy for the functional recovery from SCI. PMID:27080425

  8. Dental Apical Papilla as Therapy for Spinal Cord Injury.

    PubMed

    De Berdt, P; Vanacker, J; Ucakar, B; Elens, L; Diogenes, A; Leprince, J G; Deumens, R; des Rieux, A

    2015-11-01

    Stem cells of the apical papilla (SCAP) represent great promise regarding treatment of neural tissue damage, such as spinal cord injury (SCI). They derive from the neural crest, express numerous neurogenic markers, and mediate neurite outgrowth and axonal targeting. The goal of the present work was to investigate for the first time their potential to promote motor recovery after SCI in a rat hemisection model when delivered in their original stem cell niche-that is, by transplantation of the human apical papilla tissue itself into the lesion. Control groups consisted of animals subjected to laminectomy only (shams) and to lesion either untreated or injected with a fibrin hydrogel with or without human SCAP. Basso-Beattie-Bresnahan locomotor scores at 1 and 3 d postsurgery confirmed early functional decline in all SCI groups. This significant impairment was reversed, as seen in CatWalk analyses, after transplantation of apical papilla into the injured spinal cord wound, whereas the other groups demonstrated persistent functional impairment. Moreover, tactile allodynia did not develop as an unwanted side effect in any of the groups, even though the SCAP hydrogel group showed higher expression of the microglial marker Iba-1, which has been frequently associated with allodynia. Notably, the apical papilla transplant group presented with reduced Iba-1 expression level. Masson trichrome and human mitochondria staining showed the preservation of the apical papilla integrity and the presence of numerous human cells, while human cells could no longer be detected in the SCAP hydrogel group at the 6-wk postsurgery time point. Altogether, our data suggest that the transplantation of a human apical papilla at the lesion site improves gait in spinally injured rats and reduces glial reactivity. It also underlines the potential interest for the application of delivering SCAP in their original niche, as compared with use of a fibrin hydrogel. PMID:26341974

  9. Strong interactions between spinal cord networks for locomotion and scratching.

    PubMed

    Hao, Zhao-Zhe; Spardy, Lucy E; Nguyen, Edward B L; Rubin, Jonathan E; Berkowitz, Ari

    2011-10-01

    Distinct rhythmic behaviors involving a common set of motoneurons and muscles can be generated by separate central nervous system (CNS) networks, a single network, or partly overlapping networks in invertebrates. Less is known for vertebrates. Simultaneous activation of two networks can reveal overlap or interactions between them. The turtle spinal cord contains networks that generate locomotion and three forms of scratching (rostral, pocket, and caudal), having different knee-hip synergies. Here, we report that in immobilized spinal turtles, simultaneous delivery of types of stimulation, which individually evoked forward swimming and one form of scratching, could 1) increase the rhythm frequency; 2) evoke switches, hybrids, and intermediate motor patterns; 3) recruit a swim motor pattern even when the swim stimulation was reduced to subthreshold intensity; and 4) disrupt rhythm generation entirely. The strength of swim stimulation could influence the result. Thus even pocket scratching and caudal scratching, which do not share a knee-hip synergy with forward swimming, can interact with swim stimulation to alter both rhythm and pattern generation. Model simulations were used to explore the compatibility of our experimental results with hypothetical network architectures for rhythm generation. Models could reproduce experimental observations only if they included interactions between neurons involved in swim and scratch rhythm generation, with maximal consistency between simulations and experiments attained using a model architecture in which certain neurons participated actively in both swim and scratch rhythmogenesis. Collectively, these findings suggest that the spinal cord networks that generate locomotion and scratching have important shared components or strong interactions between them. PMID:21734103

  10. OPERANT CONDITIONING OF A SPINAL REFLEX CAN IMPROVE LOCOMOTION AFTER SPINAL CORD INJURY IN HUMANS

    PubMed Central

    Thompson, Aiko K.; Pomerantz, Ferne; Wolpaw, Jonathan R.

    2013-01-01

    Operant conditioning protocols can modify the activity of specific spinal cord pathways and can thereby affect behaviors that use these pathways. To explore the therapeutic application of these protocols, we studied the impact of down-conditioning the soleus H-reflex in people with impaired locomotion caused by chronic incomplete spinal cord injury. After a baseline period in which soleus H-reflex size was measured and locomotion was assessed, subjects completed either 30 H-reflex down-conditioning sessions (DC subjects) or 30 sessions in which the H-reflex was simply measured (Unconditioned (UC) subjects), and locomotion was reassessed. Over the 30 sessions, the soleus H-reflex decreased in two-thirds of the DC subjects (a success rate similar to that in normal subjects) and remained smaller several months later. In these subjects, locomotion became faster and more symmetrical, and the modulation of EMG activity across the step-cycle increased bilaterally. Furthermore, beginning about halfway through the conditioning sessions, all of these subjects commented spontaneously that they were walking faster and farther in their daily lives, and several noted less clonus, easier stepping, and/or other improvements. The H-reflex did not decrease in the other DC subjects or in any of the UC subjects; and their locomotion did not improve. These results suggest that reflex conditioning protocols can enhance recovery of function after incomplete spinal cord injuries and possibly in other disorders as well. Because they are able to target specific spinal pathways, these protocols could be designed to address each individual’s particular deficits, and might thereby complement other rehabilitation methods. PMID:23392666

  11. Effects of diet and/or exercise in enhancing spinal cord sensorimotor learning.

    PubMed

    Joseph, M Selvan; Ying, Zhe; Zhuang, Yumei; Zhong, Hui; Wu, Aiguo; Bhatia, Harsharan S; Cruz, Rusvelda; Tillakaratne, Niranjala J K; Roy, Roland R; Edgerton, V Reggie; Gomez-Pinilla, Fernando

    2012-01-01

    Given that the spinal cord is capable of learning sensorimotor tasks and that dietary interventions can influence learning involving supraspinal centers, we asked whether the presence of omega-3 fatty acid docosahexaenoic acid (DHA) and the curry spice curcumin (Cur) by themselves or in combination with voluntary exercise could affect spinal cord learning in adult spinal mice. Using an instrumental learning paradigm to assess spinal learning we observed that mice fed a diet containing DHA/Cur performed better in the spinal learning paradigm than mice fed a diet deficient in DHA/Cur. The enhanced performance was accompanied by increases in the mRNA levels of molecular markers of learning, i.e., BDNF, CREB, CaMKII, and syntaxin 3. Concurrent exposure to exercise was complementary to the dietary treatment effects on spinal learning. The diet containing DHA/Cur resulted in higher levels of DHA and lower levels of omega-6 fatty acid arachidonic acid (AA) in the spinal cord than the diet deficient in DHA/Cur. The level of spinal learning was inversely related to the ratio of AA:DHA. These results emphasize the capacity of select dietary factors and exercise to foster spinal cord learning. Given the non-invasiveness and safety of the modulation of diet and exercise, these interventions should be considered in light of their potential to enhance relearning of sensorimotor tasks during rehabilitative training paradigms after a spinal cord injury. PMID:22911773

  12. General surgery problems in patients with spinal cord injuries.

    PubMed

    Charney, K J; Juler, G L; Comarr, A E

    1975-09-01

    Twenty-four patients with spinal cord injuries were studied to correlate their responses to intra-abdominal disease with the level and completeness of the cord lesion. Patients with complete cervical lesions and lesions of the upper part of the thoracic region (C-4 to T-6) usually responded by early noniocalized abdominal pain associated with signs of autonomic dysreflexia. As the disease progressed to involve the parietal peritoneum, these patients were more capable of localizing pain to the corresponding dermatome, whereas patients with incomplete lesions were able to localize their pain earlier. Patients with lumbar lesions and lesions of the lower part of the thoracic region (T-7 to L-3) were able to localize their pain earlier than those with lesions located higher in the thoracic region. All patients had delayed diagnoses except those with hemorrhage of the upper part of the gastrointestinal tract. Irrespective of level of cord lesion, increased pulse rate was themost prominent objective acute intra-abdominal pathologic finding. Shoulder pain in the quadriplegic is a most helpful sign. PMID:1080412

  13. Comparison of polymer scaffolds in rat spinal cord: A step toward quantitative assessment of combinatorial approaches to spinal cord repair

    PubMed Central

    Chen, Bingkun K.; Knight, Andrew M.; Madigan, Nicolas N.; Gross, LouAnn; Dadsetan, Mahrokh; Nesbitt, Jarred J; Rooney, Gemma E.; Currier, Bradford L.; Yaszemski, Michael J.; Spinner, Robert J.; Windebank, Anthony J.

    2011-01-01

    The transected rat thoracic (T9/10) spinal cord model is a platform for quantitatively compa0ring biodegradable polymer scaffolds. Schwann cell-loaded scaffolds constructed from poly (lactic co-glycolic acid) (PLGA), poly(ε-caprolactone fumarate) (PCLF), oligo(polyethylene glycol) fumarate (OPF) hydrogel or positively charged OPF (OPF+) hydrogel were implanted into the model. We demonstrated that the mechanical properties (3-point bending and stiffness) of OPF and OPF+ hydrogels closely resembled rat spinal cord. After one month, tissues were harvested and analyzed by morphometry of neurofilament-stained sections at rostral, midlevel, and caudal scaffold. All polymers supported axonal growth. Significantly higher numbers of axons were found in PCLF (P < 0.01) and OPF+ (P < 0.05) groups, compared to that of the PLGA group. OPF+ polymers showed more centrally distributed axonal regeneration within the channels while other polymers (PLGA, PCLF and OPF) tended to show more evenly dispersed axons within the channels. The centralized distribution was associated with significantly more axons regenerating (P < 0.05). Volume of scar and cyst rostral and caudal to the implanted scaffold was measured and compared. There were significantly smaller cyst volumes in PLGA compared to PCLF groups. The model provides a quantitative basis for assessing individual and combined tissue engineering strategies. PMID:21803415

  14. Characterizing phospholipase A2-induced spinal cord injury-a comparison with contusive spinal cord injury in adult rats.

    PubMed

    Liu, Nai-Kui; Titsworth, William Lee; Zhang, Yi Ping; Xhafa, Aurela I; Shields, Christopher B; Xu, Xiao-Ming

    2011-12-01

    To assess whether phospholipase A2 (PLA2) plays a role in the pathogenesis of spinal cord injury (SCI), we compared lesions either induced by PLA2 alone or by a contusive SCI. At 24-h post-injury, both methods induced a focal hemorrhagic pathology. The PLA2 injury was mainly confined within the ventrolateral white matter, whereas the contusion injury widely affected both the gray and white matter. A prominent difference between the two models was that PLA2 induced a massive demyelination with axons remaining in the lesion area, whereas the contusion injury induced axonal damage and myelin breakdown. At 4 weeks, no cavitation was found within the PLA2 lesion, and numerous axons were myelinated by host-migrated Schwann cells. Among them, 45% of animals had early transcranial magnetic motor-evoked potential (tcMMEP) responses. In contrast, the contusive SCI induced a typical centralized cavity with reactive astrocytes forming a glial border. Only 15% of rats had early tcMMEP responses after the contusion. BBB scores were similarly reduced in both models. Our study indicates that PLA2 may play a unique role in mediating secondary SCI likely by targeting glial cells, particularly those of oligodendrocytes. This lesion model could also be used for studying demyelination and remyelination in the injured spinal cord associated with PLA2-mediated secondary SCI. PMID:23585818

  15. Characterizing Phospholipase A2-Induced Spinal Cord Injury—A Comparison with Contusive Spinal Cord Injury in Adult Rats

    PubMed Central

    Liu, Nai-Kui; Titsworth, William Lee; Zhang, Yi Ping; Xhafa, Aurela I.; Shields, Christopher B.

    2012-01-01

    To assess whether phospholipase A2 (PLA2) plays a role in the pathogenesis of spinal cord injury (SCI), we compared lesions either induced by PLA2 alone or by a contusive SCI. At 24-h post-injury, both methods induced a focal hemorrhagic pathology. The PLA2 injury was mainly confined within the ventrolateral white matter, whereas the contusion injury widely affected both the gray and white matter. A prominent difference between the two models was that PLA2 induced a massive demyelination with axons remaining in the lesion area, whereas the contusion injury induced axonal damage and myelin breakdown. At 4 weeks, no cavitation was found within the PLA2 lesion, and numerous axons were myelinated by host-migrated Schwann cells. Among them, 45% of animals had early transcranial magnetic motor-evoked potential (tcMMEP) responses. In contrast, the contusive SCI induced a typical centralized cavity with reactive astrocytes forming a glial border. Only 15% of rats had early tcMMEP responses after the contusion. BBB scores were similarly reduced in both models. Our study indicates that PLA2 may play a unique role in mediating secondary SCI likely by targeting glial cells, particularly those of oligodendrocytes. This lesion model could also be used for studying demyelination and remyelination in the injured spinal cord associated with PLA2-mediated secondary SCI. PMID:23585818

  16. Short Hairpin RNA against PTEN Enhances Regenerative Growth of Corticospinal Tract Axons after Spinal Cord Injury

    PubMed Central

    Zukor, Katherine; Belin, Stephane; Wang, Chen; Keelan, Nadia; Wang, Xuhua

    2013-01-01

    Developing approaches to promote the regeneration of descending supraspinal axons represents an ideal strategy for rebuilding neuronal circuits to improve functional recovery after spinal cord injury (SCI). Our previous studies demonstrated that genetic deletion of phosphatase and tensin homolog (PTEN) in mouse corticospinal neurons reactivates their regenerative capacity, resulting in significant regeneration of corticospinal tract (CST) axons after SCI. However, it is unknown whether nongenetic methods of suppressing PTEN have similar effects and how regenerating axons interact with the extrinsic environment. Herein, we show that suppressing PTEN expression with short-hairpin RNA (shRNA) promotes the regeneration of injured CST axons, and these axons form anatomical synapses in appropriate areas of the cord caudal to the lesion. Importantly, this model of increased CST regrowth enables the analysis of extrinsic regulators of CST regeneration in vivo. We find that regenerating axons avoid dense clusters of fibroblasts and macrophages in the lesion, suggesting that these cell types might be key inhibitors of axon regeneration. Furthermore, most regenerating axons cross the lesion in association with astrocytes, indicating that these cells might be important for providing a permissive bridge for axon regeneration. Lineage analysis reveals that these bridge-forming astrocytes are not derived from ependymal stem cells within the spinal cord, suggesting that they are more likely derived from a subset of mature astrocytes. Overall, this study reveals insights into the critical extrinsic and intrinsic regulators of axon regeneration and establishes shRNA as a viable means to manipulate these regulators and translate findings into other mammalian models. PMID:24068802

  17. Hyperbaric oxygen preconditioning induces tolerance against spinal cord ischemia by upregulation of antioxidant enzymes in rabbits.

    PubMed

    Nie, Huang; Xiong, Lize; Lao, Ning; Chen, Shaoyang; Xu, Ning; Zhu, Zhenghua

    2006-05-01

    The present study examined the hypothesis that spinal cord ischemic tolerance induced by hyperbaric oxygen (HBO) preconditioning is triggered by an initial oxidative stress and is associated with an increase of antioxidant enzyme activities as one effector of the neuroprotection. New Zealand White rabbits were subjected to HBO preconditioning, hyperbaric air (HBA) preconditioning, or sham pretreatment once daily for five consecutive days before spinal cord ischemia. Activities of catalase (CAT) and superoxide dismutase were increased in spinal cord tissue in the HBO group 24 h after the last pretreatment and reached a higher level after spinal cord ischemia for 20 mins followed by reperfusion for 24 or 48 h, in comparison with those in control and HBA groups. The spinal cord ischemic tolerance induced by HBO preconditioning was attenuated when a CAT inhibitor, 3-amino-1,2,4-triazole,1 g/kg, was administered intraperitoneally 1 h before ischemia. In addition, administration of a free radical scavenger, dimethylthiourea, 500 mg/kg, intravenous, 1 h before each day's preconditioning, reversed the increase of the activities of both enzymes in spinal cord tissue. The results indicate that an initial oxidative stress, as a trigger to upregulate the antioxidant enzyme activities, plays an important role in the formation of the tolerance against spinal cord ischemia by HBO preconditioning. PMID:16136055

  18. Survival and neurite growth of chick embryo spinal cord cells in serum-free culture.

    PubMed

    Tanaka, H; Obata, K

    1982-07-01

    Cell survival and neurite growth were investigated in serum-free spinal cord cell cultures on polyornithine coating (PORN). Cells were obtained from 6- or 7-day-old chick embryos. Isolated spinal cord cells required promoting factors for their survival and neurite growth. The survival-promoting factors were initially present in spinal cord cells. High density cultures, co-cultures with spinal cord explants, and spinal cord extract promoted survival of isolated spinal cord cells in MEM with no additives. Other tissue extracts (brain, liver, heart and skeletal muscle), serum, and serum-free conditioned medium (SF-CM) of muscle or glioma C6 cells also promoted survival. The active substances in the brain extract and SF-CM were shown to be protein and were separated into 3 fractions (approximately molecular weight 150,000, 70,000, 40,000) by gel filtration chromatography. Survival and neurite growth were suggested to be promoted by different factors because: (1) survival was promoted by both tissue extract and SF-CM, but neurite growth was promoted only by SF-CM; (2) the neurite growth-stimulating activity of SF-CM was lost following dialysis and heat (100 degrees C, 2 min) treatment; however, the survival-promoting activity was not. It was also suggested that spinal cord cells produce neurite growth promoting factors, but did not initially contain these factors. PMID:7104764

  19. Computed tomographic evaluation of cervical vertebral canal and spinal cord morphometry in normal dogs

    PubMed Central

    Seo, Eunjeong; Choi, Jihye; Choi, Mincheol

    2014-01-01

    The height, width, and cross-sectional area of the vertebral canal and spinal cord along with the area ratio of spinal cord to vertebral canal in the cervical vertebra were evaluated in images obtained using computed tomography (CT). Measurements were taken at the cranial, middle, and caudal point of each cervical vertebra in eight clinically normal small breed dogs (two shih tzu, two miniature schnauzers, and four mixed breed), 10 beagles, and four German shepherds. CT myelography facilitated the delineation of the epidural space, subarachnoid space, and spinal cord except at the caudal portion of the 7th cervical vertebra. The spinal cord had a tendency to have a clear ventral border in the middle portion of the vertebral canal and lateral borders near both end plates. The height, width, and area of the vertebral canal and spinal cord in the cervical vertebra were increased as the size of dog increased. However, the ratio of the spinal cord area to vertebral canal area in the small dogs was higher than that of the larger dogs. Results of the present study could provide basic and quantitative information for CT evaluation of pathologic lesions in the cervical vertebra and spinal cord. PMID:24136210

  20. Imaging Serotonergic Fibers in the Mouse Spinal Cord Using the CLARITY/CUBIC Technique.

    PubMed

    Liang, Huazheng; Schofield, Emma; Paxinos, George

    2016-01-01

    Long descending fibers to the spinal cord are essential for locomotion, pain perception, and other behaviors. The fiber termination pattern in the spinal cord of the majority of these fiber systems have not been thoroughly investigated in any species. Serotonergic fibers, which project to the spinal cord, have been studied in rats and opossums on histological sections and their functional significance has been deduced based on their fiber termination pattern in the spinal cord. With the development of CLARITY and CUBIC techniques, it is possible to investigate this fiber system and its distribution in the spinal cord, which is likely to reveal previously unknown features of serotonergic supraspinal pathways. Here, we provide a detailed protocol for imaging the serotonergic fibers in the mouse spinal cord using the combined CLARITY and CUBIC techniques. The method involves perfusion of a mouse with a hydrogel solution and clarification of the tissue with a combination of clearing reagents. Spinal cord tissue was cleared in just under two weeks, and the subsequent immunofluorescent staining against serotonin was completed in less than ten days. With a multi-photon fluorescent microscope, the tissue was scanned and a 3D image was reconstructed using Osirix software. PMID:26967767

  1. Three-dimensional imaging of microvasculature in the rat spinal cord following injury

    PubMed Central

    Cao, Yong; Wu, Tianding; yuan, Zhou; Li, Dongzhe; Ni, Shuangfei; Hu, Jianzhong; Lu, Hongbin

    2015-01-01

    Research studies on the three-dimensional (3D) morphological alterations of the spinal cord microvasculature after injury provide insight into the pathology of spinal cord injury (SCI). Knowledge in this field has been hampered in the past by imaging technologies that provided only two-dimensional (2D) information on the vascular reactions to trauma. The aim of our study is to investigate the 3D microstructural changes of the rat spinal cord microvasculature on day 1 post-injury using synchrotron radiation micro-tomography (SRμCT). This technology provides high-resolution 3D images of microvasculature in both normal and injured spinal cords, and the smallest vessel detected is approximately 7.4 μm. Moreover, we optimized the 3D vascular visualization with color coding and accurately calculated quantitative changes in vascular architecture after SCI. Compared to the control spinal cord, the damaged spinal cord vessel numbers decreased significantly following injury. Furthermore, the area of injury did not remain concentrated at the epicenter; rather, the signs of damage expanded rostrally and caudally along the spinal cord in 3D. The observed pathological changes were also confirmed by histological tests. These results demonstrate that SRμCT is an effective technology platform for imaging pathological changes in small arteries in neurovascular disease and for evaluating therapeutic interventions. PMID:26220842

  2. Stress protein expression in early phase spinal cord ischemia/reperfusion injury.

    PubMed

    Zhang, Shanyong; Wu, Dankai; Wang, Jincheng; Wang, Yongming; Wang, Guoxiang; Yang, Maoguang; Yang, Xiaoyu

    2013-08-25

    Spinal cord ischemia/reperfusion injury is a stress injury to the spinal cord. Our previous studies using differential proteomics identified 21 differentially expressed proteins (n > 2) in rabbits with spinal cord ischemia/reperfusion injury. Of these proteins, stress-related proteins included protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70. In this study, we established New Zealand rabbit models of spinal cord ischemia/reperfusion injury by abdominal aorta occlusion. Results demonstrated that hind limb function initially improved after spinal cord ischemia/reperfusion injury, but then deteriorated. The pathological morphology of the spinal cord became aggravated, but lessened 24 hours after reperfusion. However, the numbers of motor neurons and interneurons in the spinal cord gradually decreased. The expression of protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70 was induced by ischemia/reperfusion injury. The expression of these proteins increased within 12 hours after reperfusion, and then decreased, reached a minimum at 24 hours, but subsequently increased again to similar levels seen at 6-12 hours, showing a characterization of induction-inhibition-induction. These three proteins were expressed only in cytoplasm but not in the nuclei. Moreover, the expression was higher in interneurons than in motor neurons, and the survival rate of interneurons was greater than that of motor neurons. It is assumed that the expression of stress-related proteins exhibited a protective effect on neurons. PMID:25206532

  3. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles

    NASA Astrophysics Data System (ADS)

    Shi, Yunzhou; Kim, Sungwon; Huff, Terry B.; Borgens, Richard B.; Park, Kinam; Shi, Riyi; Cheng, Ji-Xin

    2010-01-01

    Spinal cord injury results in immediate disruption of neuronal membranes, followed by extensive secondary neurodegenerative processes. A key approach for repairing injured spinal cord is to seal the damaged membranes at an early stage. Here, we show that axonal membranes injured by compression can be effectively repaired using self-assembled monomethoxy poly(ethylene glycol)-poly(D,L-lactic acid) di-block copolymer micelles. Injured spinal tissue incubated with micelles (60 nm diameter) showed rapid restoration of compound action potential and reduced calcium influx into axons for micelle concentrations much lower than the concentrations of polyethylene glycol, a known sealing agent for early-stage spinal cord injury. Intravenously injected micelles effectively recovered locomotor function and reduced the volume and inflammatory response of the lesion in injured rats, without any adverse effects. Our results show that copolymer micelles can interrupt the spread of primary spinal cord injury damage with minimal toxicity.

  4. Fast and Accurate Semi-Automated Segmentation Method of Spinal Cord MR Images at 3T Applied to the Construction of a Cervical Spinal Cord Template

    PubMed Central

    El Mendili, Mohamed-Mounir; Trunet, Stéphanie; Pélégrini-Issac, Mélanie; Lehéricy, Stéphane; Pradat, Pierre-François; Benali, Habib

    2015-01-01

    Objective To design a fast and accurate semi-automated segmentation method for spinal cord 3T MR images and to construct a template of the cervical spinal cord. Materials and Methods A semi-automated double threshold-based method (DTbM) was proposed enabling both cross-sectional and volumetric measures from 3D T2-weighted turbo spin echo MR scans of the spinal cord at 3T. Eighty-two healthy subjects, 10 patients with amyotrophic lateral sclerosis, 10 with spinal muscular atrophy and 10 with spinal cord injuries were studied. DTbM was compared with active surface method (ASM), threshold-based method (TbM) and manual outlining (ground truth). Accuracy of segmentations was scored visually by a radiologist in cervical and thoracic cord regions. Accuracy was also quantified at the cervical and thoracic levels as well as at C2 vertebral level. To construct a cervical template from healthy subjects’ images (n=59), a standardization pipeline was designed leading to well-centered straight spinal cord images and accurate probability tissue map. Results Visual scoring showed better performance for DTbM than for ASM. Mean Dice similarity coefficient (DSC) was 95.71% for DTbM and 90.78% for ASM at the cervical level and 94.27% for DTbM and 89.93% for ASM at the thoracic level. Finally, at C2 vertebral level, mean DSC was 97.98% for DTbM compared with 98.02% for TbM and 96.76% for ASM. DTbM showed similar accuracy compared with TbM, but with the advantage of limited manual interaction. Conclusion A semi-automated segmentation method with limited manual intervention was introduced and validated on 3T images, enabling the construction of a cervical spinal cord template. PMID:25816143

  5. Transgenic mice ectopically expressing HOXA5 in the dorsal spinal cord show structural defects of the cervical spinal cord along with sensory and motor defects of the forelimb.

    PubMed

    Krieger, Karin E; Abbott, Matthew A; Joksimovic, Milan; Lueth, Paul A; Sonea, Ioana M; Jeannotte, Lucie; Tuggle, Christopher K

    2004-06-21

    Mutation of murine Hoxa5 has shown that HOXA5 controls lung, gastrointestinal tract and vertebrae development. Hoxa5 is also expressed in the spinal cord, yet no central nervous system phenotype has been described in Hoxa5 knockouts. To identify the role of Hoxa5 in spinal cord development, we developed transgenic mice that express HOXA5 in the dorsal spinal cord in the brachial region. Using HOXA5-specific antibodies, we show this expression pattern is ectopic as the endogenous protein is expressed only in the ventral spinal cord at this anterio-posterior level. This transgenic line (Hoxa5SV2) also displays forelimb-specific motor and sensory defects. Hoxa5SV2 transgenic mice cannot support their body weight in a forelimb hang, and forelimb strength is decreased. However, Rotarod performance was not impaired in Hoxa5SV2 mice. Hoxa5SV2 mice also show a delayed forelimb response to noxious heat, although hindlimb response time was normal. Administration of an analgesic significantly reduced the hang test defect and decreased the transgene effect on forelimb strength, indicating that pain pathways may be affected. The morphology of transgenic cervical (but not lumbar) spinal cord is highly aberrant. Nissl staining indicates superficial laminae of the dorsal horn are severely disrupted. The distribution of cells and axons immunoreactive for substance P, neurokinin-B, and their primary receptors were aberrant only in transgenic cervical spinal cord. Further, we see increased levels of apoptosis in transgenic spinal cord at embryonic day 13.5. Our evidence suggests apoptosis due to HOXA5 misexpression is a major cause of loss of superficial lamina cells in Hoxa5SV2 mice. PMID:15158076

  6. Novel aspects of spinal cord evoked potentials (SCEPs) in the evaluation of dorso-ventral and lateral mechanical impacts on the spinal cord

    NASA Astrophysics Data System (ADS)

    Rad, Iman; Kouhzaei, Sogolie; Mobasheri, Hamid; Saberi, Hooshang

    2015-02-01

    Objectives. The aim of the current study was to mimic mechanical impacts on the spinal cord by manifesting the effects of dorsoventral (DVMP) and lateral (LMP) mechanical pressure on neural activity to address points to be considered during surgery for different purposes, including spinal cord decompression. Approaches. Spinal cords of anesthetized rats were compressed at T13. Different characteristics of axons, including vulnerability, excitability, and conduction velocity (CV), in response to promptness, severity, and duration of pressure were assessed by spinal cord evoked potentials (SCEPs). Real-time SCEPs recorded at L4-5 revealed N1, N2, and N3 peaks that were used to represent the activity of injured sensory afferents, interneurons, and MN fibers. The averaged SCEP recordings were fitted by trust-region algorithm to find the equivalent Gaussian and polynomial equations. Main results. The pyramidal and extrapyramidal pathways possessed CVs of 3-11 and 16-80 m s-1, respectively. DVMP decreased the excitability of myelinated neural fibers in antidromic and orthodromic pathways. The excitability of fibers in extrapyramidal and pyramidal pathways of lateral corticospinal (LCS) and anterior corticospinal (ACS) tracts decreased following LMP. A significant drop in the amplitude of N3 and its conduction velocity (CV) revealed higher susceptibility of less-myelinated fibers to both DVMP and LMP. The best parametric fitting model for triplet healthy spinal cord CAP was a six-term Gaussian equation (G6) that fell into a five-term equation (G5) at the complete compression stage. Significance. The spinal cord is more susceptible to dorsoventral than lateral mechanical pressures, and this should be considered in spinal cord operations. SCEPs have shown promising capabilities for evaluating the severity of SCI and thus can be applied for diagnostic or prognostic intraoperative monitoring (IOM).

  7. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury.

    PubMed

    Wenger, Nikolaus; Moraud, Eduardo Martin; Raspopovic, Stanisa; Bonizzato, Marco; DiGiovanna, Jack; Musienko, Pavel; Morari, Manfred; Micera, Silvestro; Courtine, Grégoire

    2014-09-24

    Neuromodulation of spinal sensorimotor circuits improves motor control in animal models and humans with spinal cord injury. With common neuromodulation devices, electrical stimulation parameters are tuned manually and remain constant during movement. We developed a mechanistic framework to optimize neuromodulation in real time to achieve high-fidelity control of leg kinematics during locomotion in rats. We first uncovered relationships between neuromodulation parameters and recruitment of distinct sensorimotor circuits, resulting in predictive adjustments of leg kinematics. Second, we established a technological platform with embedded control policies that integrated robust movement feedback and feed-forward control loops in real time. These developments allowed us to conceive a neuroprosthetic system that controlled a broad range of foot trajectories during continuous locomotion in paralyzed rats. Animals with complete spinal cord injury performed more than 1000 successive steps without failure, and were able to climb staircases of various heights and lengths with precision and fluidity. Beyond therapeutic potential, these findings provide a conceptual and technical framework to personalize neuromodulation treatments for other neurological disorders. PMID:25253676

  8. Posttraumatic spinal cord cysts: clinical features and characterization with metrizamide computed tomography

    SciTech Connect

    Quencer, R.M.; Green, B.A.; Eismont, F.J.

    1983-02-01

    Sixteen patients with posttraumatic spinal cord cysts (PTSCC) were evaluated clinically and studied with metrizamide computed tomography (MCT). These patients presented months to years following a severe spinal cord injury, usually with new or progressively worsening neurological symptoms. The development of the PTSCC was unrelated to the location, type, and severity of injury, or to the time interval from the original injury. MCT showed that these cysts occur most frequently in normal or atrophic cords, they may be multiple, they most frequently are found in the dorsal portion of the cord, and they may vary along their length in width and position within the cord. Knowledge of this radiographic morphology is crucial to the surgical planning. The location of the cysts and the mode of their enlargement are correlated with anatomic features of the spinal cord and changes in cerebrospinal fluid dynamics. Cyst-to-subarachnoid space shunting relieves the majority of symptoms.

  9. Dermatological problems following spinal cord injury in Korean patients

    PubMed Central

    Han, Zee-A; Choi, Ja Young; Ko, Young Jin

    2015-01-01

    Objective To identify dermatological conditions following spinal cord injury (SCI) and analyze these conditions in relation to various characteristics of SCI. Design Retrospective chart review. Setting National Health Insurance Corporation Ilsan Hospital of Korea, Rehabilitation Center, Spinal Cord Unit. Participants Patients treated for SCI who were referred to dermatology for dermatological problems, 2000–2012. Results Of the 1408 SCI patients treated at the spinal cord unit, 253 patients with SCI were identified to have been referred to dermatology for skin problems and a total of 335 dermatological conditions were diagnosed. The most common dermatological finding was infectious (n = 123, 36.7%) followed by eczematous lesions (n = 109, 32.5%). Among the infectious lesions, fungal infection (n = 76, 61.8%) was the most common, followed by bacterial (n = 27, 21.9%) lesions. Seborrheic dermatitis (n = 59, 64.1%) was the most frequent eczematous lesion. Ingrown toenail occurred more frequently in tetraplegics whereas vascular skin lesions occurred more commonly in patients with paraplegia (P < 0.05). Xerotic dermatitis showed a higher occurrence within 12 months of injury rather than thereafter (P < 0.05). Of these, 72.4% of the infectious and 94.7% of the fungal skin lesions manifested below the neurological level of injury (NLI; P < 0.001) and 61.5% of the eczematous lesions and 94.9% of seborrheic dermatitis cases occurred above the NLI (P < 0.001). There was no significant difference in dermatological diagnoses between patients with neurologically complete and incomplete SCI. Conclusion The most common dermatological condition in patients with SCI among those referred to dermatology was fungal infection, followed by seborrheic dermatitis. Although dermatological problems after SCI are not critical in SCI outcome, they negatively affect the quality of life. Patients and caregivers should be educated about appropriate skin care and routine

  10. Differential activation of microglia after experimental spinal cord injury.

    PubMed

    Watanabe, T; Yamamoto, T; Abe, Y; Saito, N; Kumagai, T; Kayama, H

    1999-03-01

    This study sought to experimentally clarify time-dependent, differential microglial activation at various spinal cord locations in response to injury. The spinal cords of Wistar rats were either sharply transected at the Th 11 or subjected to compression at the same site. Immediately to 4 weeks after injury, each spinal cord was fixed and cut into longitudinal frozen sections, and was immunostained with OX42 for resident and activated microglia, OX-6 for activated microglia, GFAP for activated astrocytes, and biotinylated BS-I, a lectin for both resident and activated microglia. From three to 24 hours after injury, we observed a narrow belt around the transection site in which OX42 positive microglia were dramatically reduced in number, or often absent. BS-I labeling of the zone disclosed the rapid transformation of those microglia possessing typical antler-like processes to macrophage-like cells. At day 1 and thereafter, the zone of reduced OX42 immunoreactivity was gradually replaced by macrophage-like OX42-positive round cells, and the lesion itself was ultimately capped by fibrogliotic scar tissue. By 2-4 weeks postinjury, another phase of microglial activation was observed in those white matter tracts undergoing Wallerian degeneration. These microglia characterized by the presence of newly-expressed MHC class II antigens. We posit that the decreased OX42 immunoreactivity suggests that CR3 is quickly saturated by activated iC3b and internalized, but not down-regulated. The trigger for this transformation most likely occurs through signaling by iC3b-saturated CR3. In contrast, microglia activation along those degenerating tracts undergoing Wallerian degeneration does not appear to be CR3-related, as the CR3 is upregulated. These observations indicate microglia have at least two different spatial and temporal patterns of activation. One is rapid and most likely involves the blood-borne complement activating system. The other accompanies Wallerian degeneration and

  11. Physiology of wheelchair racing in athletes with spinal cord injury.

    PubMed

    Bhambhani, Yagesh

    2002-01-01

    Wheelchair racing is one of the most popular sporting activities of individuals with spinal cord injury. Athletes with this impairment have unique changes in metabolic, cardiorespiratory, neuromuscular and thermoregulatory systems, which reduce their overall physiological capacity compared with able-bodied individuals or individuals with other types of impairments. This review on spinal cord injury: presents the International Stoke Mandeville Games Federation classification of wheelchair athletes; describes methods commonly used to characterise anaerobic and aerobic fitness; presents the findings of physiological studies that have evaluated wheelchair racing performance; identifies the risks associated with temperature regulation when competing in wheelchair races; and discusses special conditions that can influence wheelchair racing performance. Currently there is limited research that has examined the relationship between sprint or distance wheelchair racing performance and the anaerobic and aerobic components of physical fitness. Although the descriptive evidence indicates that the profiles of these athletes reflect their training and participation in these specific events, the association between their physiological profiles and real or simulated racing performance is unclear. The generally accepted concept that high values of aerobic and anaerobic power are strongly correlated with endurance and sprint racing performance, respectively, are not necessarily true in this population. Athletes with spinal cord injury have an impaired thermoregulatory capacity, because the compromised autonomic and somatic nervous system functions disrupt control of skin blood flow and sweating below the level of the lesion. As a result, they may be more susceptible to hyperthermia during distance wheelchair racing performance. Wheelchair athletes should follow recommendations advocated for able-bodied individuals to minimise their risks of heat stress during competition. Many

  12. Providers' Perceptions of Spinal Cord Injury Pressure Ulcer Guidelines

    PubMed Central

    Thomason, Susan S; Evitt, Celinda P; Harrow, Jeffrey J; Love, Linda; Moore, D. Helen; Mullins, Maria A; Powell-Cope, Gail; Nelson, Audrey L

    2007-01-01

    Background/Objective: Pressure ulcers are a serious complication for people with spinal cord injury (SCI). The Consortium for Spinal Cord Medicine (CSCM) published clinical practice guidelines (CPGs) that provided guidance for pressure ulcer prevention and treatment after SCI. The aim of this study was to assess providers' perceptions for each of the 32 CPG recommendations regarding their agreement with CPGs, degree of CPG implementation, and CPG implementation barriers and facilitators. Methods: This descriptive mixed-methods study included both qualitative (focus groups) and quantitative (survey) data collection approaches. The sample (n = 60) included 24 physicians and 36 nurses who attended the 2004 annual national conferences of the American Paraplegia Society or American Association of Spinal Cord Injury Nurses. This sample drew from two sources: a purposive sample from a list of preregistered participants and a convenience sample of conference attendee volunteers. We analyzed quantitative data using descriptive statistics and qualitative data using a coding scheme to capture barriers and facilitators. Results: The focus groups agreed unanimously on the substance of 6 of the 32 recommendations. Nurse and physician focus groups disagreed on the degree of CGP implementation at their sites, with nurses as a group perceiving less progress in implementation of the guideline recommendations. The focus groups identified only one recommendation, complications of surgery, as being fully implemented at their sites. Categories of barriers and facilitators for implementation of CPGs that emerged from the qualitative analysis included (a) characteristics of CPGs: need for research/evidence, (b) characteristics of CPGs: complexity of design and wording, (c) organizational factors, (d) lack of knowledge, and (e) lack of resources. Conclusions: Although generally SCI physicians and nurses agreed with the CPG recommendations as written, they did not feel these recommendations

  13. Effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration after spinal cord injury in rats

    PubMed Central

    Tian, Da-Sheng; Jing, Jue-Hua; Qian, Jun; Chen, Lei; Zhu, Bin

    2016-01-01

    [Purpose] The aim of this study was to evaluate the effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration in rats with spinal cord injury. [Subjects and Methods] A rat model of spinal cord injury was constructed by using the Allen weight-drop method. These rats were randomly divided into normal, spinal cord injury, and spinal cord injury + oscillating electrical field stimulation groups. The experimental group received the intervention with oscillating electrical field stimulation, and the control group received the intervention with an electrical field stimulator without oscillating electrical field stimulation. Each group was then randomly divided into seven subgroups according to observation time (1, 2, 4, 6, 8, 10, and 12 weeks). Basso-Beattie-Bresnahan score and inclined plate test score evaluation, motor evoked potential detection, and histological observation were performed. [Results] In the first 2 weeks of oscillating electrical field stimulation, the oscillating electrical field stimulation and inclined plate test scores of spinal cord injury group and spinal cord injury + oscillating electrical field stimulation group were not significantly different. In the fourth week, the scores of the spinal cord injury group were significantly lower than those of the spinal cord injury + oscillating electrical field stimulation group. The motor evoked potential incubation period in the spinal cord injury + oscillating electrical field stimulation group at the various time points was shorter than that in the spinal cord injury group. In the sixth week, the relative area of myelin in the spinal cord injury + oscillating electrical field stimulation group was evidently larger than that in the spinal cord injury group. [Conclusion] Oscillating electrical field stimulation could effectively improve spinal cord conduction function and promote motor function recovery in rats with spinal cord injury, as well as promote myelin

  14. Effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration after spinal cord injury in rats.

    PubMed

    Tian, Da-Sheng; Jing, Jue-Hua; Qian, Jun; Chen, Lei; Zhu, Bin

    2016-05-01

    [Purpose] The aim of this study was to evaluate the effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration in rats with spinal cord injury. [Subjects and Methods] A rat model of spinal cord injury was constructed by using the Allen weight-drop method. These rats were randomly divided into normal, spinal cord injury, and spinal cord injury + oscillating electrical field stimulation groups. The experimental group received the intervention with oscillating electrical field stimulation, and the control group received the intervention with an electrical field stimulator without oscillating electrical field stimulation. Each group was then randomly divided into seven subgroups according to observation time (1, 2, 4, 6, 8, 10, and 12 weeks). Basso-Beattie-Bresnahan score and inclined plate test score evaluation, motor evoked potential detection, and histological observation were performed. [Results] In the first 2 weeks of oscillating electrical field stimulation, the oscillating electrical field stimulation and inclined plate test scores of spinal cord injury group and spinal cord injury + oscillating electrical field stimulation group were not significantly different. In the fourth week, the scores of the spinal cord injury group were significantly lower than those of the spinal cord injury + oscillating electrical field stimulation group. The motor evoked potential incubation period in the spinal cord injury + oscillating electrical field stimulation group at the various time points was shorter than that in the spinal cord injury group. In the sixth week, the relative area of myelin in the spinal cord injury + oscillating electrical field stimulation group was evidently larger than that in the spinal cord injury group. [Conclusion] Oscillating electrical field stimulation could effectively improve spinal cord conduction function and promote motor function recovery in rats with spinal cord injury, as well as promote myelin

  15. Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies.

    PubMed

    Talac, R; Friedman, J A; Moore, M J; Lu, L; Jabbari, E; Windebank, A J; Currier, B L; Yaszemski, M J

    2004-04-01

    Tissue engineering approaches to spinal cord injury (SCI) treatment are attractive because they allow for manipulation of native regeneration processes involved in restoration of the integrity and function of damaged tissue. A clinically relevant spinal cord regeneration animal model requires that the model mimics specific pathologic processes that occur in human SCI. This manuscript discusses issues related to preclinical testing of tissue engineering spinal cord regeneration strategies from a number of perspectives. This discussion includes diverse causes, pathology and functional consequences of human SCI, general and species related considerations, technical and animal care considerations, and data analysis methods. PMID:14697853

  16. Spinal cord infarction following minor trauma in children: fibrocartilaginous embolism as a putative cause.

    PubMed

    Reisner, Andrew; Gary, Matthew F; Chern, Joshua J; Grattan-Smith, J Damien

    2013-04-01

    Spinal cord infarctions following seemingly innocuous trauma in children are rare, devastating events. In the majority of these cases, the pathophysiology is enigmatic. The authors present 3 cases of pediatric spinal cord infarction that followed minor trauma. An analysis of the clinical, radiographic, and laboratory features of these cases suggests that thromboembolism of the nucleus pulposus into the spinal cord microcirculation is the likely mechanism. A review of the human and veterinary literature supports this notion. To the authors' knowledge, this is the largest pediatric series of myelopathy due to thromboembolism of the nucleus pulposus reported to date, and it is the first report of this condition occurring in an infant. PMID:23414133

  17. Spinal cord injury-related bone impairment and fractures: an update on epidemiology and physiopathological mechanisms.

    PubMed

    Dionyssiotis, Y

    2011-09-01

    A sudden loss of motor function in segments of the spinal cord results in immobilisation and is complicated by bone loss and fractures in areas below the level of injury. Despite the acceptance of osteoporosis and fractures as two major public health problems, in people with spinal cord injuries, the mechanisms are not adequately investigated. Multiple risk factors for bone loss and fractures are present in this disabled population. This review is an update on the epidemiology and physiopathological mechanisms in spinal cord injury-related bone impairment and fractures. PMID:21885901

  18. Exercise awareness and barriers after spinal cord injury

    PubMed Central

    Gorgey, Ashraf S

    2014-01-01

    Exercise is an essential element in managing several of the non-communicable diseases after spinal cord injury (SCI). Awareness of the importance of prescribing a customized exercise program that meets the goals of persons with SCI should be highly considered in the rehabilitation community. The barriers of implementing specific exercise program as well as the factors that may mask the outcomes of regular exercise regimen need to be continuously addressed as a part of patients’ rehabilitation care. The focus of this editorial is to encourage the medical community to consider routine physical activity as one of the necessary vital signs that needs to be routinely checked in patients with SCI. Providing education tips, nutritional counseling and engaging in recreational programs may provide motivational route to the community of SCI. This may result in reinforcing active lifestyle in survivors with SCI as well as to reduce the impact of chronic life threatening medical disorders. PMID:25035817

  19. Respiratory Management in the Patient with Spinal Cord Injury

    PubMed Central

    Galeiras Vázquez, Rita; Rascado Sedes, Pedro; Montoto Marqués, Antonio; Ferreiro Velasco, M. Elena

    2013-01-01

    Spinal cord injuries (SCIs) often lead to impairment of the respiratory system and, consequently, restrictive respiratory changes. Paresis or paralysis of the respiratory muscles can lead to respiratory insufficiency, which is dependent on the level and completeness of the injury. Respiratory complications include hypoventilation, a reduction in surfactant production, mucus plugging, atelectasis, and pneumonia. Vital capacity (VC) is an indicator of overall pulmonary function; patients with severely impaired VC may require assisted ventilation. It is best to proceed with intubation under controlled circumstances rather than waiting until the condition becomes an emergency. Mechanical ventilation can adversely affect the structure and function of the diaphragm. Early tracheostomy following short orotracheal intubation is probably beneficial in selected patients. Weaning should start as soon as possible, and the best modality is progressive ventilator-free breathing (PVFB). Appropriate candidates can sometimes be freed from mechanical ventilation by electrical stimulation. Respiratory muscle training regimens may improve patients' inspiratory function following a SCI. PMID:24089664

  20. The impact of spinal cord injury on breathing during sleep

    PubMed Central

    Fuller, David D.; Lee, Kun-Ze; Tester, Nicole J.

    2014-01-01

    The prevalence of sleep disordered breathing (SDB) following spinal cord injury (SCI) is considerably greater than in the general population. While the literature on this topic is still relatively small, and in some cases contradictory, a few general conclusions can be drawn. First, while both central and obstructive sleep apnea (OSA) has been reported after SCI, OSA appears to be more common. Second, SDB after SCI likely reflects a complex interplay between multiple factors including body mass, lung volume, autonomic function, sleep position, and respiratory neuroplasticity. It is not yet possible to pinpoint a “primary factor” which will predispose an individual with SCI to SDB, and the underlying mechanisms may change during progression from acute to chronic injury. Given the prevalence and potential health implications of SDB in the SCI population, we suggest that additional studies aimed at defining the underlying mechanisms are warranted. PMID:23791824

  1. Clinical Features of Spinal Cord Hemangioblastoma in a Dog

    PubMed Central

    Michaels, Jennifer; Thomas, William; Ferguson, Sylvia; Hecht, Silke

    2015-01-01

    A 2-year-old male, intact Yorkshire terrier presented with a 1-month history of progressive paraparesis. Neurological examination revealed paraplegia with absent deep pain perception, decreased right pelvic limb withdrawal reflex, and lumbar pain consistent with an L4–S2 neurolocalization. Magnetic resonance imaging (MRI) showed a single, well-demarcated, intramedullary mass centered over the L3–4 disk space. A hemilaminectomy was performed, and the mass was removed en bloc. Histopathological evaluation was consistent with a hemangioblastoma. Follow-up MRI 9 months after surgery showed no evidence of tumor recurrence, and the dog was ambulatory paraparetic at that time. This case is consistent with a previous histopathological report of spinal cord hemangioblastoma in a dog and provides additional clinical information regarding diagnosis, treatment, and outcome associated with this tumor type. PMID:26664967

  2. Respiratory neuroplasticity and cervical spinal cord injury: translational perspectives

    PubMed Central

    Lane, Michael A.; Fuller, David D.; White, Todd E.; Reier, Paul J.

    2008-01-01

    Paralysis of the diaphragm is a severe consequence of cervical spinal cord injury. This condition can be experimentally modeled by lateralized, high cervical lesions that interrupt descending inspiratory drive to the corresponding phrenic nucleus. Although partial recovery of ipsilateral diaphragm function occurs over time, recent findings show persisting chronic deficits in ventilation and phrenic motoneuron activity. Some evidence suggests, however, that spontaneous recovery can be enhanced by modulating neural pathways to phrenic motoneurons via synaptic circuitries which appear more complex than previously envisioned. The present review highlights these and other recent experimental multi-disciplinary findings pertaining to respiratory neuroplasticity in the rat. Translational considerations are also emphasized, with specific attention directed at the clinical and interpretational strengths of different lesion models and outcome measures. PMID:18775573

  3. [Traumatic spinal cord injury in children; early and late effects].

    PubMed

    Peters, Jeroen P M; Kramer, William L M

    2013-01-01

    Spinal cord injuries (SCIs) have physical, emotional, psychological and economic consequences for patients. Although SCIs in children are rare, they have to cope with the consequences for the rest of their lives. In this article, three children who presented at our emergency department are discussed. These children had suffered SCIs from different etiologies. Most SCIs are caused by trauma and more males than females suffer SCIs. The younger children are, the more likely they will sustain cervical SCIs, which can be attributed to several distinct anatomical differences in the juvenile spine. Depending on the level of the spine injured, multiple secondary problems can occur. In this article, we paint a picture of the complex and multidisciplinary treatment and rehabilitation of young SCI patients and emphasise the need for treatment to take place in a specialised (children's) rehabilitation unit. PMID:23838399

  4. Diagnosis and management of malignant spinal cord compression: part 1.

    PubMed

    Drudge-Coates, Lawrence; Rajbabu, Krishnamoorthy

    2008-03-01

    Malignant spinal cord compression (MSCC) is a particularly challenging area of cancer care where early diagnosis and expert multidisciplinary care and rehabilitation are paramount in optimising quality of life for the affected individual. The effects of MSCC can range from minor sensory, motor and autonomic changes to severe pain and complete paralysis that significantly affects the remainder of a patient's quality of life. When caught early, the symptoms of MSCC can be prevented, minimised or possibly reversed. However, failure to recognise the condition and its serious nature, together with limited awareness of the importance of early referral for treatment, can result in irreversible paralysis. Therefore, it is essential that nurses providing clinical care for these at-risk patients are able to identify early symptoms, and undertake a thorough patient history and examination, educating the patient and their family about the signs and symptoms, which should be reported as soon as they occur. PMID:18414334

  5. Spinal cord stimulation for recurrent painful neuromas of the foot.

    PubMed

    Messina, Giuseppe; Nazzi, Vittoria; Sinisi, Marco; Dones, Ivano; Pollo, Bianca; Franzini, Angelo

    2011-08-01

    The authors report the case of a patient affected by recurrent neuromas of the interdigital nerves of the left foot that appeared after surgery for Morton's disease. Implantation of spinal cord stimulation (SCS) system was performed after three unsuccessful surgical revisions, which demonstrated the presence of multiple neuromas growing at endings of the stumps of the nerves and fasciculi. The patient developed chronic neuropathic pain localized within the third metatarsal region of the left foot. Conservative treatments failed and autonomous gait became impossible. SCS immediately abolished pain and the patient was able to perform her normal daily activities within 1 month. At our knowledge, this is the first report in literature of SCS successfully employed for recurrent and refractory pain due to Morton's neuroma. PMID:21678072

  6. RNA content in spinal cord motoneurons during hypokinesia

    NASA Technical Reports Server (NTRS)

    Gorbunova, A. V.

    1980-01-01

    The effect of a diminished motor activity of rats upon the ribonucleic and (RNA) content in a single isolated motoneuron of frontal of their spinal cord was studied. Within a 1 to 30 day exposure of rats to the hypokinetic conditions, RNA content was found to decrease on the 1st, 3rd, and 5th day and to return to the initial level by the 7th day. No changes in RNA content were observed during the subsequent stages of the xperiments. The volume of the nerve cells declined on the 3rd and 5th day, whereas RNA concentration reduced on the 1st, 3rd, 5th, and 30th day.

  7. Exercise awareness and barriers after spinal cord injury.

    PubMed

    Gorgey, Ashraf S

    2014-07-18

    Exercise is an essential element in managing several of the non-communicable diseases after spinal cord injury (SCI). Awareness of the importance of prescribing a customized exercise program that meets the goals of persons with SCI should be highly considered in the rehabilitation community. The barriers of implementing specific exercise program as well as the factors that may mask the outcomes of regular exercise regimen need to be continuously addressed as a part of patients' rehabilitation care. The focus of this editorial is to encourage the medical community to consider routine physical activity as one of the necessary vital signs that needs to be routinely checked in patients with SCI. Providing education tips, nutritional counseling and engaging in recreational programs may provide motivational route to the community of SCI. This may result in reinforcing active lifestyle in survivors with SCI as well as to reduce the impact of chronic life threatening medical disorders. PMID:25035817

  8. Neuroprosthetic technology for individuals with spinal cord injury

    PubMed Central

    Collinger, Jennifer L.; Foldes, Stephen; Bruns, Tim M.; Wodlinger, Brian; Gaunt, Robert; Weber, Douglas J.

    2013-01-01

    Context Spinal cord injury (SCI) results in a loss of function and sensation below the level of the lesion. Neuroprosthetic technology has been developed to help restore motor and autonomic functions as well as to provide sensory feedback. Findings This paper provides an overview of neuroprosthetic technology that aims to address the priorities for functional restoration as defined by individuals with SCI. We describe neuroprostheses that are in various stages of preclinical development, clinical testing, and commercialization including functional electrical stimulators, epidural and intraspinal microstimulation, bladder neuroprosthesis, and cortical stimulation for restoring sensation. We also discuss neural recording technologies that may provide command or feedback signals for neuroprosthetic devices. Conclusion/clinical relevance Neuroprostheses have begun to address the priorities of individuals with SCI, although there remains room for improvement. In addition to continued technological improvements, closing the loop between the technology and the user may help provide intuitive device control with high levels of performance. PMID:23820142

  9. Lipid peroxidation in brain or spinal cord mitochondria after injury.

    PubMed

    Hall, Edward D; Wang, Juan A; Bosken, Jeffrey M; Singh, Indrapal N

    2016-04-01

    Extensive evidence has demonstrated an important role of oxygen radical formation (i.e., oxidative stress) as a mediator of the secondary injury process that occurs following primary mechanical injury to the brain or spinal cord. The predominant form of oxygen radical-induced oxidative damage that occurs in injured nervous tissue is lipid peroxidation (LP). Much of the oxidative stress in injured nerve cells initially begins in mitochondria via the generation of the reactive nitrogen species peroxynitrite (PN) which then can generate multiple highly reactive free radicals including nitrogen dioxide (•NO2), hydroxyl radical (•OH) and carbonate radical (•CO3). Each can readily induce LP within the phospholipid membranes of the mitochondrion leading to respiratory dysfunction, calcium buffering impairment, mitochondrial permeability transition and cell death. Validation of the role of LP in central nervous system secondary injury has been provided by the mitochondrial and neuroprotective effects of multiple antioxidant agents which are briefly reviewed. PMID:25595872

  10. Neuromesodermal progenitors and the making of the spinal cord

    PubMed Central

    Henrique, Domingos; Abranches, Elsa; Verrier, Laure; Storey, Kate G.

    2016-01-01

    Neuromesodermal progenitors (NMps) contribute to both the elongating spinal cord and the adjacent paraxial mesoderm. It has been assumed that these cells arise as a result of patterning of the anterior neural plate. However, as the molecular mechanisms that specify NMps in vivo are uncovered, and as protocols for generating these bipotent cells from mouse and human pluripotent stem cells in vitro are established, the emerging data suggest that this view needs to be revised. Here, we review the characteristics, regulation, in vitro derivation and in vivo induction of NMps. We propose that these cells arise within primitive streak-associated epiblast via a mechanism that is separable from that which establishes neural fate in the anterior epiblast. We thus argue for the existence of two distinct routes for making central nervous system progenitors. PMID:26329597

  11. Recommendations for Mobility in Children with Spinal Cord Injury

    PubMed Central

    2013-01-01

    Background: Mobility is an important aspect of the rehabilitation of children with spinal cord injury (SCI), is a necessary component of life, and is critical in a child’s development. Depending upon the individual’s age and degree of neurological impairment, the nature of mobility may vary. Objectives: The objective of this article is to establish recommendations surrounding the selection of mobility for children with SCI. Methods: Extensive literature review and multidisciplinary peer review. Results: Types of mobility including power, manual, upright, and community are discussed, and recommendations are made based on medical necessity, neurological level, ASIA Impairment Scale score, and developmental considerations and challenges. Conclusion: Mobility is critical for proper development to occur in the pediatric population, and it may be challenging to make recommendations for mobility in children with SCI. It is essential for clinicians providing care to children with SCI to address mobility in a comprehensive and longitudinal manner across the children’s environments. PMID:23671384

  12. Cervical spinal cord injury upregulates ventral spinal 5-HT2A receptors.

    PubMed

    Fuller, David D; Baker-Herman, Tracy L; Golder, Francis J; Doperalski, Nicholas J; Watters, Jyoti J; Mitchell, Gordon S

    2005-02-01

    Following chronic C2 spinal hemisection (C2HS), crossed spinal pathways to phrenic motoneurons exhibit a slow, spontaneous increase in efficacy by a serotonin (5-HT)-dependent mechanism associated with 5-HT2A receptor activation. Further, the spontaneous appearance of cross-phrenic activity following C2HS is accelerated and enhanced by exposure to chronic intermittent hypoxia (CIH). We hypothesized that chronic C2HS would increase 5-HT and 5-HT2A receptor expression in ventral cervical spinal segments containing phrenic motoneurons. In addition, we hypothesized that CIH exposure would further increase 5-HT and 5-HT2A receptor density in this region. Control, sham-operated, and C2HS Sprague-Dawley rats were studied following normoxia or CIH (11% O2-air; 5-min intervals; nights 7-14 post-surgery). At 2 weeks post-surgery, ventral spinal gray matter extending from C4 and C5 was isolated ipsilateral and contralateral to C2HS. Neither C2HS nor CIH altered 5-HT concentration measured with an ELISA on either side of the spinal cord. However, 5-HT2A receptor expression assessed with immunoblots increased in ipsilateral gray matter following C2HS, an effect independent of CIH. Immunocytochemistry revealed increased 5-HT2A receptor expression on identified phrenic motoneurons (p<0.05), as well as in the surrounding gray matter. Contralateral to injury, 5-HT2A receptor expression was elevated in CIH, but not normoxic C2HS rats (p<0.05). Our data are consistent with the hypothesis that spontaneous increase in 5-HT2A receptor expression on or near phrenic motoneurons contributes to strengthened crossed-spinal synaptic pathways to phrenic motoneurons following C2HS. PMID:15716627

  13. Stimulation of Glia Reveals Modulation of Mammalian Spinal Motor Networks by Adenosine.

    PubMed

    Acton, David; Miles, Gareth B

    2015-01-01

    Despite considerable evidence that glia can release modulators to influence the excitability of neighbouring neurons, the importance of gliotransmission for the operation of neural networks and in shaping behaviour remains controversial. Here we characterise the contribution of glia to the modulation of the mammalian spinal central pattern generator for locomotion, the output of which is directly relatable to a defined behaviour. Glia were stimulated by specific activation of protease-activated receptor-1 (PAR1), an endogenous G-protein coupled receptor preferentially expressed by spinal glia during ongoing activity of the spinal central pattern generator for locomotion. Selective activation of PAR1 by the agonist TFLLR resulted in a reversible reduction in the frequency of locomotor-related bursting recorded from ventral roots of spinal cord preparations isolated from neonatal mice. In the presence of the gliotoxins methionine sulfoximine or fluoroacetate, TFLLR had no effect, confirming the specificity of PAR1 activation to glia. The modulation of burst frequency upon PAR1 activation was blocked by the non-selective adenosine-receptor antagonist theophylline and by the A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, but not by the A2A-receptor antagonist SCH5826, indicating production of extracellular adenosine upon glial stimulation, followed by A1-receptor mediated inhibition of neuronal activity. Modulation of network output following glial stimulation was also blocked by the ectonucleotidase inhibitor ARL67156, indicating glial release of ATP and its subsequent degradation to adenosine rather than direct release of adenosine. Glial stimulation had no effect on rhythmic activity recorded following blockade of inhibitory transmission, suggesting that glial cell-derived adenosine acts via inhibitory circuit components to modulate locomotor-related output. Finally, the modulation of network output by endogenous adenosine was found to scale with the

  14. Stimulation of Glia Reveals Modulation of Mammalian Spinal Motor Networks by Adenosine

    PubMed Central

    Acton, David; Miles, Gareth B.

    2015-01-01

    Despite considerable evidence that glia can release modulators to influence the excitability of neighbouring neurons, the importance of gliotransmission for the operation of neural networks and in shaping behaviour remains controversial. Here we characterise the contribution of glia to the modulation of the mammalian spinal central pattern generator for locomotion, the output of which is directly relatable to a defined behaviour. Glia were stimulated by specific activation of protease-activated receptor-1 (PAR1), an endogenous G-protein coupled receptor preferentially expressed by spinal glia during ongoing activity of the spinal central pattern generator for locomotion. Selective activation of PAR1 by the agonist TFLLR resulted in a reversible reduction in the frequency of locomotor-related bursting recorded from ventral roots of spinal cord preparations isolated from neonatal mice. In the presence of the gliotoxins methionine sulfoximine or fluoroacetate, TFLLR had no effect, confirming the specificity of PAR1 activation to glia. The modulation of burst frequency upon PAR1 activation was blocked by the non-selective adenosine-receptor antagonist theophylline and by the A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, but not by the A2A-receptor antagonist SCH5826, indicating production of extracellular adenosine upon glial stimulation, followed by A1-receptor mediated inhibition of neuronal activity. Modulation of network output following glial stimulation was also blocked by the ectonucleotidase inhibitor ARL67156, indicating glial release of ATP and its subsequent degradation to adenosine rather than direct release of adenosine. Glial stimulation had no effect on rhythmic activity recorded following blockade of inhibitory transmission, suggesting that glial cell-derived adenosine acts via inhibitory circuit components to modulate locomotor-related output. Finally, the modulation of network output by endogenous adenosine was found to scale with the

  15. An anatomical review of spinal cord blood supply.

    PubMed

    Melissano, G; Bertoglio, L; Rinaldi, E; Leopardi, M; Chiesa, R

    2015-10-01

    Knowledge of the spinal cord (SC) vascular supply is important in patients undergoing procedures that involve the thoracic and thoracoabdominal aorta. However, the SC vasculature has a complex anatomy, and teaching is often based only on anatomical sketches with highly variable accuracy; historically, this has required a "leap of faith" on the part of aortic surgeons. Fortunately, this "leap of faith" is no longer necessary given recent breakthroughs in imaging technologies and postprocessing software. Imaging methods have expanded the non-invasive diagnostic ability to determine a patient's SC vascular pattern, particularly in detecting the presence and location of the artery of Adamkiewicz. CT is the imaging modality of choice for most patients with thoracic and thoracoabdominal aortic disease, proving especially useful in the determination of feasibility and planning of endovascular treatment. Thus the data set required for analysis of SC vascular anatomy is usually already available. We have concentrated our efforts on CT angiography, which offers particularly good imaging capabilities with state-of-the-art multidetector scanners. Multidetector row helical CT provides examinations of an extensive range in the craniocaudal direction with thin collimation in a short time interval, giving excellent temporal and spatial resolution. This paper provides examples of the SC vasculature imaging quality that can be obtained with 64 row scanners and appropriate postprocessing. Knowledge of the principal anatomical features of the SC blood supply of individual patients undergoing open or endovascular thoracoabdominal procedures has several potential benefits. For open surgery, analysis of the SC vasculature could tell us the aortic region that feeds the Adamkiewicz artery and thus needs to be reimplanted. For endovascular procedures, we can determine whether the stent-graft will cover the Adamkiewicz artery, thus avoiding unnecessary coverage. CT data can also be used to

  16. Stem cells for spinal cord regeneration: Current status

    PubMed Central

    Sobani, Zain A.; Quadri, Syed A.; Enam, S. Ather

    2010-01-01

    Background: Nearly 11,000 cases of spinal cord injury (SCI) are reported in the United States annually. Current management options give a median survival time of 38 years; however, no rehabilitative measures are available. Stem cells have been under constant research given their ability to differentiate into neural cell lines replacing non functional tissue. Efforts have been made to establish new synapses and provide a conducive environment, by grafting cells from autologous and fetal sources; including embryonic or adult stem cells, Schwann cells, genetically modified fibroblasts, bone stromal cells, and olfactory ensheathing cells and combinations/ variants thereof. Methods: In order to discuss the underlying mechanism of SCI along with the previously mentioned sources of stem cells in context to SCI, a simple review of literature was conducted. An extensive literature search was conducted using the PubMed data base and online search engines and articles published in the last 15 years were considered along with some historical articles where a background was required. Results: Stem cell transplantation for SCI is at the forefront with animal and in vitro studies providing a solid platform to enable well-designed human studies. Olfactory ensheathing cells seem to be the most promising; whilst bone marrow stromal cells appear as strong candidates for an adjunctive role. Conclusion: The key strategy in developing the therapeutic basis of stem cell transplantation for spinal cord regeneration is to weed out the pseudo-science and opportunism. All the trials should be based on stringent scientific criteria and effort to bypass that should be strongly discouraged at the international level. PMID:21246060

  17. Psychosocial outcomes following spinal cord injury in Iran.

    PubMed

    Khazaeipour, Zahra; Norouzi-Javidan, Abbas; Kaveh, Mahboobeh; Khanzadeh Mehrabani, Fatemeh; Kazazi, Elham; Emami-Razavi, Seyed-Hasan

    2014-05-01

    Objective/background In patients with spinal cord injury (SCI), SCI causes psychosocial complications that vary based on culture, conditions, and the amenities of each community. Health planners and social services should have full knowledge of these issues in order to plan schedules that address them. In this study, we aimed to understand the psychosocial problems of persons with SCI in Iran and to explore the requirements for minimizing these difficulties. Design This was a descriptive cross-sectional study. Setting Brain and Spinal Cord Injury Research (BASIR) Center, Tehran University of Medical Sciences, Tehran, Iran. Participants One hundred nineteen persons with SCI referred to BASIR clinic to receive outpatient rehabilitation. Methods In this study, trained interviewers administered a questionnaire to the participants. The questionnaire consisted of socio-demographic variables and psychosocial questions about finances, employment, housing, education, and social communication problems. Results Psychosocial problems for persons with SCI are mainly associated with financial hardship due to unemployment and the high cost of living, followed by difficulties with transportation, house modification, education, marriage, social communication, sports, and entertainment. Psychological problems include sadness, depression, irritability/anger, suicidal thoughts, and a lack of self-confidence. The levels of the aforementioned problems differ with respect to sex. Conclusion Persons suffering from SCI can face some serious psychosocial problems that may vary according to sex. For example, transportation difficulties can lead to problems such as unsociability. After recognizing these problems, the next step would be providing services to facilitate a productive lifestyle, enhancing social communication and psychological health, and ultimately creating a higher quality of life. PMID:24621045

  18. Detrimental effects of antiapoptotic treatments in spinal cord injury.

    PubMed

    Cittelly, Diana M; Nesic, Olivera; Johnson, Kathia; Hulsebosch, Claire; Perez-Polo, J Regino

    2008-04-01

    Long-term functional impairments due to spinal cord injury (SCI) in the rat result from secondary apoptotic death regulated, in part, by SCI-induced decreases in protein levels of the antiapoptotic protein Bcl-xL. We have shown that exogenous administration of Bcl-xL spares neurons 24 h after SCI. However, long-term effects of chronic application of Bcl-xL have not been characterized. To counteract SCI-induced decreases in Bcl-xL and resulting apoptosis, we used the TAT protein transduction domain fused to the Bcl-xL protein (Tat-Bcl-xL), or its antiapoptotic domain BH4 (Tat-BH4). We used intrathecal delivery of Tat-Bcl-xL, or Tat-BH4, into injured spinal cords for 24 h or 7 days, and apoptosis, neuronal death and locomotor recovery were assessed up to 2 months after injury. Both, Tat-Bcl-xL and Tat-BH4, significantly decreased SCI-induced apoptosis in thoracic segments containing the site of injury (T10) at 24 h or 7 days after SCI. However, the 7-day delivery of Tat-Bcl-xL, or Tat-BH4, also induced a significant impairment of locomotor recovery that lasted beyond the drug delivery time. We found that the 7-day administration of Tat-Bcl-xL, or Tat-BH4, significantly increased non-apoptotic neuronal loss and robustly augmented microglia/macrophage activation. These results indicate that the antiapoptotic treatment targeting Bcl-xL shifts neuronal apoptosis to necrosis, increases the inflammatory response and impairs locomotor recovery. Our results suggest that a combinatorial treatment consisting of antiapoptotic and anti-inflammatory agents may be necessary to achieve tissue preservation and significant improvement in functional recovery after SCI. PMID:18302959

  19. Intramedullary spinal cord paracoccidioidomycosis. Report of two cases.

    PubMed

    Colli, B O; Assirati Júnior, J A; Machado, H R; Figueiredo, J F; Chimelli, L; Salvarani, C P; Dos Santos, F

    1996-09-01

    Two cases of intramedullary paracoccidioidomycosis are reported. Paracoccidioidomycosis is a systemic disease that involves the buccopharyngeal mucosa, lungs lymph nodes and viscera and infrequently the central nervous system. Localization in the spinal cord is rare. Case 1: a 55-year old male admitted with crural pararesis, tactile/painful hypesthesia and sphincter disturbances of 15 days duration. Cutaneous-pulmonary blastomycosis was diagnosed 17 years ago. Myelotomography showed a blockade of T3-T4 (intramedullary lesion). The lesion surgically removed was a Paracoccidioides brasiliensis granuloma. Treatment with sulfadiazine was started after the surgery. Follow-up of 15 month showed an improvement of the clinical signs. Case 2: a 57-year old male was admitted elsewhere 6 months ago and, with a radiologic diagnosis of pulmonary paracoccidioidomycosis, was treated with amphotericin B. He progressively developer paresthesia and tactile/pain anaesthesia on the left side, sphincter disturbances and tetraparesis with bilateral extensor plantar response and clonus of the feet. Myelotomography showed a blockade of C4-C6 (intramedullary lesion). The lesion was not found during surgical exploration and the patient deteriorated and died. Post-mortem examination revealed an intramedullary tumor above the site of the mielotomy (Paracoccidioides brasiliensis granuloma). The preoperative diagnosis of intramedullary paracoccidioidomycotic granulomas is difficult because the clinical and radiologic manifestations are uncharacteristic. Clinical suspicion was possible in our cases based on the history of previous systemic disease. Contrary to intracranial localizations, paracoccidioidomycotic granulomas causing progressive spinal cord compression may require early surgery because response to clinical treatment is slow and the reversibility of neurological deficits depends on the promptness of the decompression. PMID:9109993

  20. CD36 deletion improves recovery from spinal cord injury

    PubMed Central

    Myers, Scott A.; Andres, Kariena R.; Hagg, Theo; Whittemore, Scott R.

    2014-01-01

    CD36 is a pleiotropic receptor involved in several pathophysiological conditions, including cerebral ischemia, neurovascular dysfunction and atherosclerosis, and recent reports implicate its involvement in the endoplasmic reticulum stress response (ERSR). We hypothesized that CD36 signaling contributes to the inflammation and microvascular dysfunction following spinal cord injury. Following contusive injury, CD36−/− mice demonstrated improved hindlimb functional recovery and greater white matter sparing than CD36+/+ mice. CD36−/− mice exhibited a reduced macrophage, but not neutrophil, infiltration into the injury epicenter. Fewer infiltrating macrophages were either apoptotic or positive for the ERSR marker, phospho-ATF4. CD36−/− mice also exhibited significant improvements in injury heterodomain vascularity and function. These microvessels accumulated less of the oxidized lipid product 4-hydroxy-trans-2-nonenal (4HNE) and exhibited a reduced ERSR, as detected by vascular phospho-ATF4, CHOP and CHAC-1 expression. In cultured primary endothelial cells, deletion of CD36 diminished 4HNE-induced phospho-ATF4 and CHOP expression. A reduction in phospho-eIF2α and subsequent increase in KDEL-positive, ER-localized proteins suggest that 4HNE-CD36 signaling facilitates the detection of misfolded proteins upstream of eIF2α phosphorylation, ultimately leading to CHOP-induced apoptosis. We conclude that CD36 deletion modestly, but significantly, improves functional recovery from spinal cord injury by enhancing vascular function and reducing macrophage infiltration. These phenotypes may, in part, stem from reduced ER stress-induced cell death within endothelial and macrophage cells following injury. PMID:24690303