Sample records for mangrove forest monitoring

  1. Mangrove Forests

    NSDL National Science Digital Library

    2012-07-28

    Where the tropical ocean meets the sea, a peculiar kind of plant thrives in shallow, salty water. These mangrove plants are incredibly important for shoreline protection and baby fish habitats. In this video, Jonathan investigates life in mangroves by visiting both Caribbean and Pacific mangroves. Please see the accompanying study guide for educational objectives and discussion points.

  2. Applications of ALOS PALSAR for monitoring biophysical parameters of a degraded black mangrove (Avicennia germinans) forest

    NASA Astrophysics Data System (ADS)

    Kovacs, J. M.; Lu, X. X.; Flores-Verdugo, F.; Zhang, C.; Flores de Santiago, F.; Jiao, X.

    2013-08-01

    Within the last few decades mangrove forests worldwide have been experiencing high annual rates of loss and many of those that remain have undergone considerable degradation. To understand the condition of these forests, various optical remote sensing platforms have been used to map and monitor these wetlands, including the use of these data for biophysical parameter mapping. For many mangrove forests a reliable source of optical imagery is not possible given their location in quasi-permanent cloud cover or smoke covered regions. In such cases it is recommended that Synthetic Aperture Radar (SAR) be considered. The purpose of this investigation was to examine the relationships between various ALOS-PALSAR modes, acquired from eight images, and mangrove biophysical parameter data collected from a black mangrove (Avicennia germinans) dominated forest that has experienced considerable degradation. In total, structural data were collected from 61 plots representing the four common stand types found in this degraded forest of the Mexican Pacific: tall healthy mangrove (n = 17), dwarf healthy mangrove (n = 15), poor condition mangrove (n = 13), and predominantly dead mangrove (n = 16). Based on backscatter coefficients, significant negative correlation coefficients were observed between filtered single polarization ALOS PALSAR (6.25 m) HH backscatter and Leaf Area Index (LAI). When the dead stands were excluded (n = 45) the strength of these relationships increased. Moreover, significant negative correlation coefficients were observed with stand height, Basal Area (BA) and to a lesser degree with stem density and mean DBH. With the coarser spatial resolution dual-polarization and quad polarization data (12.5 m) only a few, and weaker, correlation coefficients were calculated between the mangrove parameters and the filtered HH backscatter. However, significant negative values were once again calculated for the HH when the 16 dead mangrove stands were removed from the sample. Conversely, strong positive significant correlation coefficients were calculated between the cross-polarization HV backscatter and LAI when the dead mangrove stands were considered. Although fewer in comparison to the HH correlations, a number of VV backscatter based relationships with mangrove parameters were observed from the quad polarization mode and, to a lesser extent, with the one single VV polarization data. In addition to backscatter coefficients, stepwise multiple regression models of the mangrove biophysical parameter data were developed based on texture parameters derived from the grey level co-occurrence matrix (GLCM) of the ALOS data. A similar pattern to the backscatter relationships was observed for models based on the single polarization unfiltered data, with fairly strong coefficients of determination calculated for LAI and stem height when the dead stands were excluded. In contrast, similar coefficients of determination with biophysical parameters were observed for the dual and quad polarization multiple regression models when the dead stands were both included and excluded from the analyses. An estimated mangrove LAI map of the study area, derived from a multiple regression model of the quad polarization texture parameters, showed comparable spatial patterns of degradation to a map derived from higher spatial resolution optical satellite data.

  3. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000

    Microsoft Academic Search

    Chandra Giri; Bruce Pengra; Zhiliang Zhu; Ashbindu Singh; Larry L. Tieszen

    2007-01-01

    Mangrove forests in many parts of the world are declining at an alarming rate—possibly even more rapidly than inland tropical forests. The rate and causes of such changes are not known. The forests themselves are dynamic in nature and are undergoing constant changes due to both natural and anthropogenic forces. Our research objective was to monitor deforestation and degradation arising

  4. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000

    USGS Publications Warehouse

    Giri, C.; Pengra, B.; Zhu, Z.; Singh, A.; Tieszen, L.L.

    2007-01-01

    Mangrove forests in many parts of the world are declining at an alarming rate-possibly even more rapidly than inland tropical forests. The rate and causes of such changes are not known. The forests themselves are dynamic in nature and are undergoing constant changes due to both natural and anthropogenic forces. Our research objective was to monitor deforestation and degradation arising from both natural and anthropogenic forces. We analyzed multi-temporal satellite data from 1970s, 1990s, and 2000s using supervised classification approach. Our spatio-temporal??analysis shows that despite having the highest population density in the world in its periphery, areal extent of the mangrove forest of the Sundarbans has not changed significantly (approximately 1.2%) in the last ???25 years. The forest is however constantly changing due to erosion, aggradation, deforestation and mangrove rehabilitation programs. The net forest area increased by 1.4% from the 1970s to 1990 and decreased by 2.5% from 1990 to 2000. The change is insignificant in the context of classification errors and the dynamic nature of mangrove forests. This is an excellent example of the co-existence of humans with terrestrial and aquatic plant and animal life. The strong commitment of governments under various protection measures such as forest reserves, wildlife sanctuaries, national parks, and international designations, is believed to be responsible for keeping this forest relatively intact (at least in terms of area). While the measured net loss of mangrove forest is not that high, the change matrix shows that turnover due to erosion, aggradation, reforestation and deforestation was much greater than net change. The forest is under threat from natural and anthropogenic forces leading to forest degradation, primarily due to top-dying disease and over-exploitation of forest resources. ?? 2007 Elsevier Ltd. All rights reserved.

  5. Mangrove forest distributions and dynamics in Madagascar (1975-2005)

    USGS Publications Warehouse

    Giri, C.; Muhlhausen, J.

    2008-01-01

    Mangrove forests of Madagascar are declining, albeit at a much slower rate than the global average. The forests are declining due to conversion to other land uses and forest degradation. However, accurate and reliable information on their present distribution and their rates, causes, and consequences of change have not been available. Earlier studies used remotely sensed data to map and, in some cases, to monitor mangrove forests at a local scale. Nonetheless, a comprehensive national assessment and synthesis was lacking. We interpreted time-series satellite data of 1975, 1990, 2000, and 2005 using a hybrid supervised and unsupervised classification approach. Landsat data were geometrically corrected to an accuracy of ?? one-half pixel, an accuracy necessary for change analysis. We used a postclassification change detection approach. Our results showed that Madagascar lost 7% of mangrove forests from 1975 to 2005, to a present extent of ???2,797 km2. Deforestation rates and causes varied both spatially and temporally. The forests increased by 5.6% (212 km2) from 1975 to 1990, decreased by 14.3% (455 km 2) from 1990 to 2000, and decreased by 2.6% (73 km2) from 2000 to 2005. Similarly, major changes occurred in Bombekota Bay, Mahajamba Bay, the coast of Ambanja, the Tsiribihina River, and Cap St Vincent. The main factors responsible for mangrove deforestation include conversion to agriculture (35%), logging (16%), conversion to aquaculture (3%), and urban development (1%). ?? 2008 by MDPI.

  6. Mangrove Forest Distributions and Dynamics in Madagascar (1975–2005)

    PubMed Central

    Giri, Chandra; Muhlhausen, Joseph

    2008-01-01

    Mangrove forests of Madagascar are declining, albeit at a much slower rate than the global average. The forests are declining due to conversion to other land uses and forest degradation. However, accurate and reliable information on their present distribution and their rates, causes, and consequences of change have not been available. Earlier studies used remotely sensed data to map and, in some cases, to monitor mangrove forests at a local scale. Nonetheless, a comprehensive national assessment and synthesis was lacking. We interpreted time-series satellite data of 1975, 1990, 2000, and 2005 using a hybrid supervised and unsupervised classification approach. Landsat data were geometrically corrected to an accuracy of ± one-half pixel, an accuracy necessary for change analysis. We used a postclassification change detection approach. Our results showed that Madagascar lost 7% of mangrove forests from 1975 to 2005, to a present extent of ?2,797 km2. Deforestation rates and causes varied both spatially and temporally. The forests increased by 5.6% (212 km2) from 1975 to 1990, decreased by 14.3% (455 km2) from 1990 to 2000, and decreased by 2.6% (73 km2) from 2000 to 2005. Similarly, major changes occurred in Bombekota Bay, Mahajamba Bay, the coast of Ambanja, the Tsiribihina River, and Cap St Vincent. The main factors responsible for mangrove deforestation include conversion to agriculture (35%), logging (16%), conversion to aquaculture (3%), and urban development (1%).

  7. Regeneration in fringe mangrove forests damaged by Hurricane Andrew

    Microsoft Academic Search

    Andrew Baldwin; Michael Egnotovich; Mark Ford; William Platt

    2001-01-01

    Mangrove forests along many tropical coastlines are frequently andseverely damaged by hurricanes. The ability of mangrove forests to regeneratefollowing hurricanes has been noted, but changes that occur in vegetationfollowing disturbance by hurricane winds and storm tides have not been studied.We measured changes in plant community structure and environmental variables intwo fringe mangrove forests in south Florida, USA that experienced high

  8. Seasonal evapotranspiration patterns in mangrove forests

    NASA Astrophysics Data System (ADS)

    Barr, Jordan G.; DeLonge, Marcia S.; Fuentes, Jose D.

    2014-04-01

    Diurnal and seasonal controls on water vapor fluxes were investigated in a subtropical mangrove forest in Everglades National Park, Florida. Energy partitioning between sensible and latent heat fluxes was highly variable during the 2004-2005 study period. During the dry season, the mangrove forest behaved akin to a semiarid ecosystem as most of the available energy was partitioned into sensible heat, which gave Bowen ratio values exceeding 1.0 and minimum latent heat fluxes of 5 MJ d-1. In contrast, during the wet season the mangrove forest acted as a well-watered, broadleaved deciduous forest, with Bowen ratio values of 0.25 and latent heat fluxes reaching 18 MJ d-1. During the dry season, high salinity levels (> 30 parts per thousand, ppt) caused evapotranspiration to decline and correspondingly resulted in reduced canopy conductance. From multiple linear regression, daily average canopy conductance to water vapor declined with increasing salinity, vapor pressure deficit, and daily sums of solar irradiance but increased with air temperature and friction velocity. Using these relationships, appropriately modified Penman-Monteith and Priestley-Taylor models reliably reproduced seasonal trends in daily evapotranspiration. Such numerical models, using site-specific parameters, are crucial for constructing seasonal water budgets, constraining hydrological models, and driving regional climate models over mangrove forests.

  9. Coastal mangrove forests mitigated tsunami

    Microsoft Academic Search

    Kandasamy Kathiresan; Narayanasamy Rajendran

    2005-01-01

    A study conducted after the 26th of December 2004 tsunami in 18 coastal hamlets along the south-east coast of India reiterates the importance of coastal mangrove vegetations and location characteristics of human inhabitation to protect lives and wealth from the fury of tsunami. The tsunami caused human death and loss of wealth and these decreased with the area of coastal

  10. Carbon cycling and storage in mangrove forests.

    PubMed

    Alongi, Daniel M

    2014-01-01

    Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y(-1)) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y(-1)) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests. PMID:24405426

  11. Floods and mangrove forests, friends or foes? Perceptions of relationships and risks in Cameroon coastal mangroves

    NASA Astrophysics Data System (ADS)

    Munji, Cecilia A.; Bele, Mekou Y.; Idinoba, Monica E.; Sonwa, Denis J.

    2014-03-01

    Faced with the growing influence of climate change on climate driven perturbations such as flooding and biodiversity loss, managing the relationship between mangroves and their environment has become imperative for their protection. Hampering this is the fact that the full scope of the threats faced by specific mangrove forests is not yet well documented. Amongst some uncertainties is the nature of the relationship/interaction of mangroves with climate driven perturbations prevalent in their habitat such as coastal floods. We investigated the relationship between coastal flooding and mangrove forest stabilization, identify perceptions of flood risk and responses to offset identified effects. Random household surveys were carried out within four communities purposively sampled within the Cap Cameroon. Coastal changes were investigated over a period of 43 years (1965-2008). Seasonal flooding improved access to mangrove forests and hence promoted their exploitation for non-timber forest products (NTFPs) such as fuel wood and mangrove poles. 989 ha of mangrove forests were estimated to be lost over a period of 43 years in Cap Cameroon with implications on forest resources base, ecosystem stability, and livelihoods. Alternative livelihood activities were found to be carried out to moderate interruptions in fishing, with associated implications for mangrove forest dynamics. Respondents were of the opinion that risks associated with floods and mangrove deforestation will pose a major challenge for sustainable management of mangroves. These locally relevant perceptions and responses should however enable the identification of pertinent needs, challenges and opportunities to inform and orient effective decision-making, and to facilitate the development and participation in adaptive management strategies.

  12. The mangrove pump: The tidal flushing of animal burrows in a tropical mangrove forest determined from radionuclide budgets

    E-print Network

    Paris-Sud XI, Université de

    The mangrove pump: The tidal flushing of animal burrows in a tropical mangrove forest determined. The tidal circulation through animal macro-burrows in the Coral Creek mangrove forest (area 3 km2 discharge along the ca. 400 km long coastline of this region. Ó 2012 Elsevier Ltd. All rights reserved. 1

  13. Measuring surface energy and evapotranspiration across Caribbean mangrove forests

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Fatoyinbo, T. E.; Price, R.

    2014-12-01

    Coastal mangroves lose large amounts of water through evapotranspiration (ET) that can be equivalent to the amount of annual rainfall in certain years. Satellite remote sensing has been used to estimate surface energy and ET variability in many forested ecosystems, yet has been widely overlooked in mangrove forests. Using a combination of long-term datasets (30-year) acquired from the NASA Landsat 5 and 7 satellite databases, the present study investigated ET and surface energy balance variability between two mangrove forest sites in the Caribbean: 1) Everglades National Park (ENP; Florida, USA) and 2) Sian Ka'an Biosphere Reserve (SKBR; Quintana Roo, Mexico). A satellite-derived surface energy balance model was used to estimate ET in tall and scrub mangroves environments at ENP and SKBR. Results identified significant differences in soil heat flux measurements and ET between the tall and scrub mangrove environments. Scrub mangroves exhibited the highest soil heat flux coincident with the lowest biophysical indices (i.e., Fractional Vegetation Cover, Normalized Difference Vegetation Index, and Soil-Adjusted Vegetation Index) and ET rates. Mangrove damage and mortality was observed on the satellite images following strong tropical storms and associated with anthropogenic modifications and resulted in low values in spectral vegetation indices, higher soil heat flux, and higher ET. Recovery of the spectral characteristics, soil heat flux and ET was within 1-2 years following hurricane disturbance while, degradation caused by human disturbance persisted for many years. Remotely sensed ET of mangrove forests can provide estimates over a few decades and provide us with some understanding of how these environments respond to disturbances to the landscape in periods where no ground data exists or in locations that are difficult to access. Moreover, relationships between energy and water balance components developed for the coastal mangroves of Florida and Mexico could be extrapolated to other mangroves systems in the Caribbean to measure changes caused by natural events and human modifications.

  14. Degradation of mangrove forests in South Sulawesi, Indonesia

    Microsoft Academic Search

    Baharuddin Nurkin; N. Marshall; D. J. Macintosh

    1994-01-01

    In South Sulawesi forests contain a large variety of genera and species of plants. These forests are important as sources of timber, fuelwood, food and many other minor products. The major concern over this important coastal resource is its increasing rate of exploitation. Prior to 1965 it was estimated that there were at least 110 000 hectares of mangrove forests

  15. Distribution and dynamics of mangrove forests of South Asia.

    PubMed

    Giri, Chandra; Long, Jordan; Abbas, Sawaid; Murali, R Mani; Qamer, Faisal M; Pengra, Bruce; Thau, David

    2015-01-15

    Mangrove forests in South Asia occur along the tidal sea edge of Bangladesh, India, Pakistan, and Sri Lanka. These forests provide important ecosystem goods and services to the region's dense coastal populations and support important functions of the biosphere. Mangroves are under threat from both natural and anthropogenic stressors; however the current status and dynamics of the region's mangroves are poorly understood. We mapped the current extent of mangrove forests in South Asia and identified mangrove forest cover change (gain and loss) from 2000 to 2012 using Landsat satellite data. We also conducted three case studies in Indus Delta (Pakistan), Goa (India), and Sundarbans (Bangladesh and India) to identify rates, patterns, and causes of change in greater spatial and thematic details compared to regional assessment of mangrove forests. Our findings revealed that the areal extent of mangrove forests in South Asia is approximately 1,187,476 ha representing ?7% of the global total. Our results showed that from 2000 to 2012, 92,135 ha of mangroves were deforested and 80,461 ha were reforested with a net loss of 11,673 ha. In all three case studies, mangrove areas have remained the same or increased slightly, however, the turnover was greater than the net change. Both, natural and anthropogenic factors are responsible for the change and turnover. The major causes of forest cover change are similar throughout the region; however, specific factors may be dominant in specific areas. Major causes of deforestation in South Asia include (i) conversion to other land use (e.g. conversion to agriculture, shrimp farms, development, and human settlement), (ii) over-harvesting (e.g. grazing, browsing and lopping, and fishing), (iii) pollution, (iv) decline in freshwater availability, (v) floodings, (vi) reduction of silt deposition, (vii) coastal erosion, and (viii) disturbances from tropical cyclones and tsunamis. Our analysis in the region's diverse socio-economic and environmental conditions highlights complex patterns of mangrove distribution and change. Results from this study provide important insight to the conservation and management of the important and threatened South Asian mangrove ecosystem. PMID:24735705

  16. Evaluating the condition of a mangrove forest of the Mexican Pacific based on an estimated leaf area index mapping approach.

    PubMed

    Kovacs, J M; King, J M L; Flores de Santiago, F; Flores-Verdugo, F

    2009-10-01

    Given the alarming global rates of mangrove forest loss it is important that resource managers have access to updated information regarding both the extent and condition of their mangrove forests. Mexican mangroves in particular have been identified as experiencing an exceptional high annual rate of loss. However, conflicting studies, using remote sensing techniques, of the current state of many of these forests may be hindering all efforts to conserve and manage what remains. Focusing on one such system, the Teacapán-Agua Brava-Las Haciendas estuarine-mangrove complex of the Mexican Pacific, an attempt was made to develop a rapid method of mapping the current condition of the mangroves based on estimated LAI. Specifically, using an AccuPAR LP-80 Ceptometer, 300 indirect in situ LAI measurements were taken at various sites within the black mangrove (Avicennia germinans) dominated forests of the northern section of this system. From this sample, 225 measurements were then used to develop linear regression models based on their relationship with corresponding values derived from QuickBird very high resolution optical satellite data. Specifically, regression analyses of the in situ LAI with both the normalized difference vegetation index (NDVI) and the simple ration (SR) vegetation index revealed significant positive relationships [LAI versus NDVI (R (2) = 0.63); LAI versus SR (R (2) = 0.68)]. Moreover, using the remaining sample, further examination of standard errors and of an F test of the residual variances indicated little difference between the two models. Based on the NDVI model, a map of estimated mangrove LAI was then created. Excluding the dead mangrove areas (i.e. LAI = 0), which represented 40% of the total 30.4 km(2) of mangrove area identified in the scene, a mean estimated LAI value of 2.71 was recorded. By grouping the healthy fringe mangrove with the healthy riverine mangrove and by grouping the dwarf mangrove together with the poor condition mangrove, mean estimated LAI values of 4.66 and 2.39 were calculated, respectively. Given that the former healthy group only represents 8% of the total mangrove area examined, it is concluded that this mangrove system, considered one of the most important of the Pacific coast of the Americas, is currently experiencing a considerable state of degradation. Furthermore, based on the results of this investigation it is suggested that this approach could provide resource managers and scientists alike with a very rapid and effective method for monitoring the state of remaining mangrove forests of the Mexican Pacific and, possibly, other areas of the tropics. PMID:19023672

  17. Mangrove forests: a potent nexus of coastal biogeochemical cycling

    NASA Astrophysics Data System (ADS)

    Barr, J. G.; Fuentes, J. D.; Shoemaker, B.; O'Halloran, T. L.; Lin, G., Sr.; Engel, V. C.

    2014-12-01

    Mangrove forests cover just 0.1% of the Earth's terrestrial surface, yet they provide a disproportionate source (~10 % globally) of terrestrially derived, refractory dissolved organic carbon to the oceans. Mangrove forests are biogeochemical reactors that convert biomass into dissolved organic and inorganic carbon at unusually high rates, and many studies recognize the value of mangrove ecosystems for the substantial amounts of soil carbon storage they produce. However, questions remain as to how mangrove forest ecosystem services should be valuated and quantified. Therefore, this study addresses several objectives. First, we demonstrate that seasonal and annual net ecosystem carbon exchange in three selected mangrove forests, derived from long-term eddy covariance measurements, represent key quantities in defining the magnitude of biogeochemical cycling and together with other information on carbon cycle parameters serves as a proxy to estimate ecosystem services. Second, we model ecosystem productivity across the mangrove forests of Everglades National Park and southern China by relating net ecosystem exchange values to remote sensing data. Finally, we develop a carbon budget for the mangrove forests in the Everglades National Park for the purposes of demonstrating that these forests and adjacent estuaries are sites of intense biogeochemical cycling. One conclusion from this study is that much of the carbon entering from the atmosphere as net ecosystem exchange (~1000 g C m-2 yr-1) is not retained in the net ecosystem carbon balance. Instead, a substantial fraction of the carbon entering the system as net ecosystem exchange is ultimately exported to the oceans or outgassed as reaction products within the adjacent estuary.

  18. Socio-institutional dynamics and the political ecology of mangrove forest conservation in Central Sulawesi, Indonesia

    Microsoft Academic Search

    Derek Armitage

    2002-01-01

    Mangrove forests provide a range of ecological and socio-economic benefits in coastal zones throughout the world's tropical regions. Yet the conversion of mangrove forest, due in particular to aquaculture development, is occurring at a dramatic rate. Drawing on insights and concepts offered by political ecology and complex systems, processes of mangrove forest conversion and aquaculture development in the coastal zone

  19. Soil Respiration and Belowground Carbon Allocation in Mangrove Forests

    Microsoft Academic Search

    Catherine E. Lovelock

    2008-01-01

    Mangrove forests cover large areas of tropical and subtropical coastlines. They provide a wide range of ecosystem services\\u000a that includes carbon storage in above- and below ground biomass and in soils. Carbon dioxide (CO2) emissions from soil, or soil respiration is important in the global carbon budget and is sensitive to increasing global\\u000a temperature. To understand the magnitude of mangrove

  20. Mangrove forest recovery in the Everglades following Hurricane Wilma

    USGS Publications Warehouse

    Sarmiento, Daniel; Barr, Jordan; Engel, Vic; Fuentes, Jose D.; Smith, Thomas J., III; Zieman, Jay C.

    2009-01-01

    On October 24th, 2005, Hurricane Wilma made landfall on the south western shore of the Florida peninsula. This major disturbance destroyed approximately 30 percent of the mangrove forests in the area. However, the damage to the ecosystem following the hurricane provided researchers at the Florida Coastal Everglades (FCE) LTER site with the rare opportunity to track the recovery process of the mangroves as determined by carbon dioxide (CO2) and energy exchanges, measured along daily and seasonal time scales.

  1. Hydrological classification of mangrove forests: a tool for successful mangrove rehabilitation

    NASA Astrophysics Data System (ADS)

    van Huijgevoort, Marjolein; van Loon, Anne; te Brake, Bram; Dijksma, Roel

    2015-04-01

    Mangrove forests are very valuable for coastal protection, ecosystem functioning and supporting livelihoods of coastal communities. Nevertheless, the size, number and ecological quality of mangrove forests are declining worldwide due to human influence like logging, aquaculture, and coastal development. To restore mangrove forests, rehabilitation projects are necessary. Unfortunately, many of these projects fail, because the hydrological conditions are not taken into account. This is understandable because hydrological conditions in mangrove forests are highly variable in time and space. To increase the success rate of rehabilitation projects a hydrological classification, which links hydrological site characteristics, such as inundation duration, to common mangrove species, could be a useful tool. This study investigates the potential of such a classification at a number of locations with natural and disturbed hydrological conditions. The hydrological classification has been developed from field data of two natural sites in Vietnam based on an existing classification (Watson, 1928). For all sites, data of water levels in the open water and at various locations across the mangrove forest were collected, and the vegetation composition at the measurement locations was determined during various field campaigns. From the water level data, the tidal regime, tidal frequency, and duration of inundation in minutes per day and minutes per inundation were derived. Testing has shown that, because of the irregular tidal regime and the effect of stagnant water due to (micro-)topography, tidal regime and frequency are not representative for the hydrological conditions determining mangrove species distribution. Duration of inundation in minutes per day and minutes per inundation are, however, both crucial factors for mangrove zonation and are therefore essential in a hydrological classification for mangroves. Six distinct classes were distinguished that are linked to the occurrence of mangrove species common in Southeast Asia. This classification was then tested for several sites, natural and disturbed, in Indonesia. Validation of the classification in the natural sites showed that classes derived from the classification were very similar to the expected classes based on the observed vegetation for the different sites. Application of the classification to disturbed sites learned that within abandoned shrimp ponds large differences exist in hydrological suitability for mangrove species. Therefore, the classification can give important information about which species to plant at which location if reforestation is desired, but also about how the restore the hydrology to natural conditions to improve natural regeneration. Since the hydrological classification needs relatively little data, i.e. good results can already be obtained using water levels for a period of only one tidal cycle, it can be a very useful tool in improving the effectiveness of mangrove rehabilitation projects. Watson, J.G., 1928. Mangrove forests of the Malay Peninsula. Malayan Forest Records No. 6, Forest Department, Federated Malay States, Kuala Lumpur.

  2. Ecophysiology of a Mangrove Forest in Jobos Bay, Puerto Rico

    Microsoft Academic Search

    ARIEL E. LUGO; E RNESTO MEDINA; E LVIRA CUEVAS; G ILBERTO CINTRÓN; EDDIE N. LABOY NIEVES; YARA SCHÄEFFER NOVELLI

    2007-01-01

    We studied gas exchange, leaf dimensions, litter production, leaf and litterfall chemistry, nutrient flux to the forest floor, retranslocation rates, and nutrient use efficiency of mangroves in Jobos Bay, Puerto Rico. The fringe forest had a salinity gradient from the ocean (35‰) to a salt flat (100‰) and a basin (about 80‰). Red (Rhizophora mangle), white (Laguncularia racemosa), and black

  3. Determination of mangrove change in Matang Mangrove Forest using multi temporal satellite imageries

    NASA Astrophysics Data System (ADS)

    Ibrahim, N. A.; Mustapha, M. A.; Lihan, T.; Ghaffar, M. A.

    2013-11-01

    Mangrove protects shorelines from damaging storm and hurricane winds, waves, and floods. Mangroves also help prevent erosion by stabilizing sediments with their tangled root systems. They maintain water quality and clarity, filtering pollutants and trapping sediments originating from land. However, mangrove has been reported to be threatened by land conversion for other activities. In this study, land use and land cover changes in Matang Mangrove Forest during the past 18 years (1993 to 2011) were determined using multi-temporal satellite imageries by Landsat TM and RapidEye. In this study, classification of land use and land cover approach was performed using the maximum likelihood classifier (MCL) method along with vegetation index differencing (NDVI) technique. Data obtained was evaluated through Kappa coefficient calculation for accuracy and results revealed that the classification accuracy was 81.25% with Kappa Statistics of 0.78. The results indicated changes in mangrove forest area to water body with 2,490.6 ha, aquaculture with 890.7 ha, horticulture with 1,646.1 ha, palm oil areas with 1,959.2 ha, dry land forest with 2,906.7 ha and urban settlement area with 224.1 ha. Combinations of these approaches were useful for change detection and for indication of the nature of these changes.

  4. Remotely based monitoring of the mangroves over Penang Island, Malaysia

    NASA Astrophysics Data System (ADS)

    Beh, B. C.; MatJafri, M. Z.; Lim, H. S.

    2010-11-01

    Mangrove vegetations are normally present in river estuaries and along the coast where the land meets the sea. Remote sensing can be used to obtain mangrove distribution information. The objective of this study was to study the current condition of mangrove forest using remote sensing over Penang Island, Malaysia. An attempt has been made based on supervised Maximum Likelihood Classification (MLC), various land use and land cover classes have been mapped and classified. A red-green-blue (RGB) colour was used to display and quantify mangrove forest distribution using Thailand Earth Observation System (THEOS) satellite imagery. Reference data was based on ground truth. High accuracy of 91.7% was obtained in mapping of mangrove cover.

  5. Remote Characterization of Biomass Measurements: Case Study of Mangrove Forests

    NASA Technical Reports Server (NTRS)

    Fatoyinbo, Temilola E.

    2010-01-01

    Accurately quantifying forest biomass is of crucial importance for climate change studies. By quantifying the amount of above and below ground biomass and consequently carbon stored in forest ecosystems, we are able to derive estimates of carbon sequestration, emission and storage and help close the carbon budget. Mangrove forests, in addition to providing habitat and nursery grounds for over 1300 animal species, are also an important sink of biomass. Although they only constitute about 3% of the total forested area globally, their carbon storage capacity -- in forested biomass and soil carbon -- is greater than that of tropical forests (Lucas et al, 2007). In addition, the amount of mangrove carbon -- in the form of litter and leaves exported into offshore areas is immense, resulting in over 10% of the ocean's dissolved organic carbon originating from mangroves (Dittmar et al, 2006) The measurement of forest above ground biomass is carried out on two major scales: on the plot scale, biomass can be measured using field measurements through allometric equation derivation and measurements of forest plots. On the larger scale, the field data are used to calibrate remotely sensed data to obtain stand-wide or even regional estimates of biomass. Currently, biomass can be calculated using average stand biomass values and optical data, such as aerial photography or satellite images (Landsat, Modis, Ikonos, SPOT, etc.). More recent studies have concentrated on deriving forest biomass values using radar (JERS, SIR-C, SRTM, Airsar) and/or lidar (ICEsat/GLAS, LVIS) active remote sensing to retrieve more accurate and detailed measurements of forest biomass. The implementation of a generation of new active sensors (UAVSar, DesdynI, Alos/Palsar, TerraX) has prompted the development of new tecm'liques of biomass estimation that use the combination of multiple sensors and datasets, to quantify past, current and future biomass stocks. Focusing on mangrove forest biomass estimation, this book chapter has 3 main objectives: a) To describe in detail the field methodologies used to derive accurate estimates of biomass in mangrove forests b) To explain how mangrove forest biomass can be measured using several remote sensing techniques and datasets c) To give a detailed explanation of the measurement challenges and errors that arise in each estimate of forest biomass

  6. Mangroves among the most carbon-rich forests in the tropics

    Microsoft Academic Search

    Daniel C. Donato; J. Boone Kauffman; Daniel Murdiyarso; Sofyan Kurnianto; Melanie Stidham; Markku Kanninen

    2011-01-01

    Mangrove forests occur along ocean coastlines throughout the tropics, and support numerous ecosystem services, including fisheries production and nutrient cycling. However, the areal extent of mangrove forests has declined by 30-50% over the past half century as a result of coastal development, aquaculture expansion and over-harvesting. Carbon emissions resulting from mangrove loss are uncertain, owing in part to a lack

  7. Mangrove forest structure and productivity in the Fly River estuary, Papua New Guinea

    Microsoft Academic Search

    A. I. Robertson; P. A. Daniel; P. Dixon

    1991-01-01

    In April, July and August 1989 and February 1990, the delta region of the Fly River was surveyed to establish the aerial extent of mangrove forests, their species composition, tree densities and basal areas, and potential net primary production. Mangrove forests cover 87 400 ha, mainly on islands within the delta. Twentynine mangrove plant species were recorded, but there were

  8. Carbon stocks and potential carbon storage in the mangrove forests of China.

    PubMed

    Liu, Hongxiao; Ren, Hai; Hui, Dafeng; Wang, Wenqing; Liao, Baowen; Cao, Qingxian

    2014-01-15

    Mangrove forests provide important ecosystem services, and play important roles in terrestrial and oceanic carbon (C) cycling. Although the C stocks or storage in terrestrial ecosystems in China have been frequently assessed, the C stocks in mangrove forests have often been overlooked. In this study, we estimated the C stocks and the potential C stocks in China's mangrove forests by combining our own field data with data from the National Mangrove Resource Inventory Report and from other published literature. The results indicate that mangrove forests in China store about 6.91 ± 0.57 Tg C, of which 81.74% is in the top 1 m soil, 18.12% in the biomass of mangrove trees, and 0.08% in the ground layer (i.e. mangrove litter and seedlings). The potential C stocks are as high as 28.81 ± 4.16 Tg C. On average, mangrove forests in China contain 355.25 ± 82.19 Mg C ha(-1), which is consistent with the global average of mangrove C density at similar latitudes, but higher than the average C density in terrestrial forests in China. Our results suggest that C storage in mangroves can be increased by selecting high C-density species for afforestation and stand improvement, and even more by increasing the mangrove area. The information gained in this study will facilitate policy decisions concerning the restoration of mangrove forests in China. PMID:24374165

  9. Are mangroves in the tropical Atlantic ripe for invasion? Exotic mangrove trees in the forests of South Florida

    Microsoft Academic Search

    James W. FourqureanThomas; Thomas J. Smith III; Jennifer Possley; Timothy M. Collins; David W. Lee; Sandra Namoff

    2010-01-01

    Two species of mangrove trees of Indo-Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida\\u000a after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed\\u000a with native mangrove species Rhizophora mangle, Avicennia

  10. Mangrove forest composition and structure in Las Perlas Archipelago, Pacific Panama.

    PubMed

    McGowan, Tom; Cunningham, Sarah L; Guzmán, Héctor M; Mair, James M; Guevara, José M; Betts, Tanja

    2010-09-01

    Mangrove forest is an important ecosystem that provides many services, but in Panama, as in other countries, they are under threat due to a variety of human activities. Nowadays, large areas of mangroves continue to be lost without been described and lack of management strategies. This study focused on the mangrove structure in the two largest islands, Isla del Rey and Isla San Jose, of Las Perlas Archipelago (LPA), Pacific Panama. Assessment of Landsat satellite imagery revealed loss of mangroves in the LPA of 965ha in the period 1974-1986, and 248ha in the period 1986-2000. The majority of the loss (>77%) from the two study islands was due to timber extraction and agricultural development. In May 2006, permanent plots following the CARICOMP protocol were established at two sites on Isla del Rey (R1 and R2) and one site on Isla San Jose (SJ) where standardized metrics such as species, height and diameter at breast height of adult trees and seedlings were recorded. Forest structure differed at the three sites, although R1 and R2 were most similar. At R1, Laguncularia racemosa was the important species and R2 was dominated by Pelliciera rhizophorae. Examination of the forest structure and classified imagery indicated that these sites are spatially dynamic and appear to be rejuvenating. The forest structure would indicate that the sites have been growth-limited previously by human activities and possibly by other factors. SJ was dominated by Rhizophora mangle and appears to have a mature forest with large adult trees and few seedlings. It does not appear to have shown the same extent of spatial regrowth as the other two sites between 1986 and 2000 and is relatively static. The establishment of permanent plots and monitoring will be useful as part of the management plan, as the LPA shows a variety of mangrove structures and could be subject to further coastal development. PMID:20737843

  11. Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments

    USGS Publications Warehouse

    Sweetman, A.K.; Middelburg, J.J.; Berle, A.M.; Bernardino, A.F.; Schander, C.; Demopoulos, A.W.J.; Smith, C.R.

    2010-01-01

    To evaluate how mangrove invasion and removal can modify benthic carbon cycling processes and ecosystem functioning, we used stable-isotopically labelled algae as a deliberate tracer to quantify benthic respiration and C-flow through macrofauna and bacteria in sediments collected from (1) an invasive mangrove forest, (2) deforested mangrove sites 2 and 6 years after removal of above-sediment mangrove biomass, and (3) two mangrove-free, control sites in the Hawaiian coastal zone. Sediment oxygen consumption (SOC) rates were significantly greater in the mangrove and mangrove removal site experiments than in controls and were significantly correlated with total benthic (macrofauna and bacteria) biomass and sedimentary mangrove biomass (SMB). Bacteria dominated short-term C-processing of added microalgal-C and benthic biomass in sediments from the invasive mangrove forest habitat. In contrast, macrofauna were the most important agents in the short-term processing of microalgal-C in sediments from the mangrove removal and control sites. Mean faunal abundance and short term C-uptake rates in sediments from both removal sites were significantly higher than in control cores, which collectively suggest that community structure and short-term C-cycling dynamics in habitats where mangroves have been cleared can remain fundamentally different from un-invaded mudflat sediments for at least 6-yrs following above-sediment mangrove removal. In summary, invasion by mangroves can lead to large shifts in benthic ecosystem function, with sediment metabolism, benthic community structure and short-term C-remineralization dynamics being affected for years following invader removal. ?? 2010 Author(s).

  12. Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments

    NASA Astrophysics Data System (ADS)

    Sweetman, A. K.; Middelburg, J. J.; Berle, A. M.; Bernardino, A. F.; Schander, C.; Demopoulos, A. W. J.; Smith, C. R.

    2010-07-01

    To evaluate how mangrove invasion and removal can modify short-term benthic carbon cycling and ecosystem functioning, we used stable-isotopically labeled algae as a deliberate tracer to quantify benthic respiration and C-flow over 48 h through macrofauna and bacteria in sediments collected from (1) an invasive mangrove forest, (2) deforested mangrove sites 2 and 6 years after removal of above-sediment mangrove biomass, and (3) two mangrove-free control sites in the Hawaiian coastal zone. Sediment oxygen consumption (SOC) rates averaged over each 48 h investigation were significantly greater in the mangrove and mangrove removal site experiments than in controls and were significantly correlated with total benthic (macrofauna and bacteria) biomass and sedimentary mangrove biomass (SMB). Bacteria dominated short-term C-processing of added microalgal-C and benthic biomass in sediments from the invasive mangrove forest habitat and in the 6-yr removal site. In contrast, macrofauna were the most important agents in the short-term processing of microalgal-C in sediments from the 2-yr mangrove removal site and control sites. However, mean faunal abundance and C-uptake rates in sediments from both removal sites were significantly higher than in control cores, which collectively suggest that community structure and short-term C-cycling dynamics of sediments in habitats where mangroves have been cleared can remain fundamentally different from un-invaded mudflat sediments for at least 6-yrs following above-sediment mangrove removal. In summary, invasion by mangroves can lead to dramatic shifts in benthic ecosystem function, with sediment metabolism, benthic community structure and short-term C-remineralization dynamics being affected for years following invader removal.

  13. Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments

    NASA Astrophysics Data System (ADS)

    Sweetman, A. K.; Middelburg, J. J.; Berle, A. M.; Bernardino, A. F.; Schander, C.; Demopoulos, A. W. J.; Smith, C. R.

    2010-04-01

    To evaluate how mangrove invasion and removal can modify benthic carbon cycling processes and ecosystem functioning, we used stable-isotopically labelled algae as a deliberate tracer to quantify benthic respiration and C-flow through macrofauna and bacteria in sediments collected from (1) an invasive mangrove forest, (2) deforested mangrove sites 2 and 6 years after removal of above-sediment mangrove biomass, and (3) two mangrove-free, control sites in the Hawaiian coastal zone. Sediment oxygen consumption (SOC) rates were significantly greater in the mangrove and mangrove removal site experiments than in controls and were significantly correlated with total benthic (macrofauna and bacteria) biomass and sedimentary mangrove biomass (SMB). Bacteria dominated short-term C-processing of added microalgal-C and benthic biomass in sediments from the invasive mangrove forest habitat. In contrast, macrofauna were the most important agents in the short-term processing of microalgal-C in sediments from the mangrove removal and control sites. Mean faunal abundance and short term C-uptake rates in sediments from both removal sites were significantly higher than in control cores, which collectively suggest that community structure and short-term C-cycling dynamics in habitats where mangroves have been cleared can remain fundamentally different from un-invaded mudflat sediments for at least 6-yrs following above-sediment mangrove removal. In summary, invasion by mangroves can lead to large shifts in benthic ecosystem function, with sediment metabolism, benthic community structure and short-term C-remineralization dynamics being affected for years following invader removal.

  14. Discrimination of mangrove species in Matang Mangrove Forest Reserve, Perak using in-situ measurement of hyperspectral leaf reflectance

    NASA Astrophysics Data System (ADS)

    Chun, Beh Boon; Keat, Sim Chong; Syahreza, Saumi; Jafri, Mohd Zubir Mat; San, Lim Hwee

    2015-04-01

    Studies of mangrove species's reflectance characteristic are important in order to have a deep understanding of mangrove vegetation. In this paper, the significant wavelengths which can be used to separate the six mangrove species at Matang Mangrove Forest Reserve (MMFR), Perak were examined. The investigated mangrove species comprise of Rhizophora apiculata, Acrostichum aurem, Acrostichum speciosum, Acanthus ilicifolius, Ceriops tagal and Sonneratia ovata. In-situ spectral reflectance data of six mangrove species's leaf were obtained using ASD FieldSpec3 spectroradiometer and were statistically tested using SPSS program. First, wavelengths which exhibited significant differences (P value<0.05) among the mean reflectance of six mangrove species were identified using a series of one way ANOVA. Second, the identified wavelengths were further analyzed using canonical stepwise discriminant analysis and 26 significant wavelengths were obtained which can be utilized to distinguish among the six mangrove species. In conclusion, each mangrove species in MMFR have it own unique reflectance properties and these characteristic enable the mangrove species can be discriminated among each other under proper analysis and data extraction.

  15. Material flux in mangrove forest based on the field observation.

    NASA Astrophysics Data System (ADS)

    Terada, K.; Koibuchi, Y.; Isobe, M.

    2008-12-01

    Mangrove ecosystems play important roles in conservation of seashore lines and spawning and nursery of aquatic creatures. It is important to understand nutrient budgets and links between human activities and their effects on mangrove ecosystems. However, we have less knowledge about mangrove ecosystems than that about many other ecosystems. To quantify total material balances in the estuary centered in mangrove forest, we have measured nutrient cycling and CH4 and CO2 gas fluxes in Fukido mangrove creek, Ishigaki island, Okinawa, Japan. It was conducted over tidal cycles from 2006 to 2008. To understand the difference between weather conditions, we investigated on both of rainy day and fine day. Water budget in the river was controlled by tidal exchange at estuary and the input budget from upriver was not dominant for the total budget even if it"fs rain"DFrom estimation of suspended solids (SS) budgets, SS was flowed in the river from upriver significantly on rainy day (more than 5 times inflow of fine day). The amount of SS accumulation in mangrove forest on rainy day (316 kg/day) was about 10 times amount of fine day. Total nitrogen (T-N) and total phosphorus (T-P) budgets also showed accumulation in mangrove. The outflow of T-P to coastal area on rainy day was 0.046 kgPO4/day and nearly equal to fine day. In contrast, T-N outflow to coastal on rainy day (0.58 kgN/day) was about 100 times of fine day. T-N budget showed different behavior from T-P. Ammonia nitrogen (NH4+-N) was dissolved from mangrove forest (~3.83 kgN/day by the nutrient dissolution experiments) and flowed out to estuary under certain conditions. In addition"Cconcentrations of total organic carbon (TOC) in mangrove creeks increased on fine days (11.2~15.5 mgC/L) and decreased on rainy days(1.8~4.9 mgC/L). It suggested the TOC dissolution to creek water from mangrove carbon-rich sediments and dilution effects by rain. Continuous measurements of gas fluxes showed that the CH4 and CO2 emissions from the water were accelerated due to the drop in hydrostatic pressure during the falling tide. The magnitude of total carbon gas fluxes (~116kgC/day) was about ~50 percent of the carbon accumulation in the creek. Estimation of net carbon cycling in Fukido mangrove estuary including carbon gas emission indicated that the estuary functioned as sinks for carbon. We conclude that a mangrove ecosystem had unique functions different from common urban rivers, preventing excess sediment outflow on rainy day and supplying nutrients to coastal area on fine day. It would affect the coastal ecosystems and offer habitats to marine life including fish and coral.

  16. Mapping and monitoring Louisiana's mangroves in the aftermath of the 2010 Gulf of Mexico Oil spill

    USGS Publications Warehouse

    Giri, C.; Long, J.; Tieszen, L.

    2011-01-01

    Information regarding the present condition, historical status, and dynamics of mangrove forests is needed to study the impacts of the Gulf of Mexico oil spill and other stressors affecting mangrove ecosystems. Such information is unavailable for Louisiana at sufficient spatial and thematic detail. We prepared mangrove forest distribution maps of Louisiana (prior to the oil spill) at 1 m and 30 m spatial resolution using aerial photographs and Landsat satellite data, respectively. Image classification was performed using a decision-tree classification approach. We also prepared land-cover change pairs for 1983, 1984, and every 2 y from 1984 to 2010 depicting ecosystem shifts (e.g., expansion, retraction, and disappearance). This new spatiotemporal information could be used to assess short-term and long-term impacts of the oil spill on mangroves. Finally, we propose an operational methodology based on remote sensing (Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer [ASTER], hyperspectral, light detection and ranging [LIDAR], aerial photographs, and field inventory data) to monitor the existing and emerging mangrove areas and their disturbance and regrowth patterns. Several parameters such as spatial distribution, ecosystem shifts, species composition, and tree height/biomass could be measured to assess the impact of the oil spill and mangrove recovery and restoration. Future research priorities will be to quantify the impacts and recovery of mangroves considering multiple stressors and perturbations, including oil spill, winter freeze, sea-level rise, land subsidence, and land-use/land-cover change for the entire Gulf Coast. ?? 2011 Coastal Education & Research Foundation.

  17. Plastic debris retention and exportation by a mangrove forest patch.

    PubMed

    Ivar do Sul, Juliana A; Costa, Monica F; Silva-Cavalcanti, Jacqueline S; Araújo, Maria Christina B

    2014-01-15

    An experiment observed the behavior of selected tagged plastic items deliberately released in different habitats of a tropical mangrove forest in NE Brazil in late rainy (September) and late dry (March) seasons. Significant differences were not reported among seasons. However, marine debris retention varied among habitats, according to characteristics such as hydrodynamic (i.e., flow rates and volume transported) and relative vegetation (Rhizophora mangle) height and density. The highest grounds retained significantly more items when compared to the borders of the river and the tidal creek. Among the used tagged items, PET bottles were more observed and margarine tubs were less observed, being easily transported to adjacent habitats. Plastic bags were the items most retained near the releasing site. The balance between items retained and items lost was positive, demonstrating that mangrove forests tend to retain plastic marine debris for long periods (months-years). PMID:24321881

  18. Are mangroves in the tropical Atlantic ripe for invasion? Exotic mangrove trees in the forests of South Florida

    USGS Publications Warehouse

    Fourqurean, James W.; Smith, Thomas J., III; Possley, Jennifer; Collins, Timothy M.; Lee, David; Namoff, Sandra

    2010-01-01

    Two species of mangrove trees of Indo-Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year-1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximumnumber of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha-1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year-1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.

  19. Vegetation and sediment characteristics in an expanding mangrove forest in New Zealand

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Gao, Jay; Cheung, Alan; Liu, Baolin; Schwendenmann, Luitgard; Costello, Mark John

    2013-12-01

    Mangrove expansion in inlets has been widely observed in the North Island of New Zealand over recent decades. There is just one mangrove species in New Zealand, Avicennia marina var. resinifera. Our main objective was to investigate the response of mangroves to sedimentary patterns. Remote sensing and GIS was used to quantify the change in mangrove area. Vegetation and sediment characteristics were studied across seasons from December 2009 to August 2010. Comparison of digital images in 1940 and 2003 revealed that the mangrove area in our study inlet had increased by 21%. The mangroves created a rim of high fringe mangroves surrounding high-density but low height trees in the interior. The relatively low pH level and seasonally fluctuating pore water total dissolved salt (TDS) concentration reveal potentially stressful conditions in the interior mangrove zone, which may influence the forest structure in the interior.

  20. Identification of Lightning Gaps in Mangrove Forests Using Airborne LIDAR Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, K.

    2006-12-01

    Mangrove forests are highly dynamic ecosystems and change frequently due to tropical storms, frost, and lightning. These factors can cause gaps in mangrove forests by damaging trees. Compared to gaps generated by storms and frost, gaps caused by lightning strikes are small, ranging from 50 to 300 m2. However, these small gaps may play a critical role in mangrove forest dynamics because of the frequent occurrence of lightning in tropical areas. It has been hypothesized that the turnover of mangrove forests is mainly due to the death and regeneration of trees in lightning gaps. However, there is a lack of data for gap occurrence in mangrove forests to verify this hypothesis. It is impractical to measure gaps through a field survey on a large scale because of the logistic difficulties of muddy mangrove forests. Airborne light detection and ranging (LIDAR) technology is an effective alternative because it provides direct measurements of ground and canopy elevations remotely. This study developed a method to identify lightning gaps in mangrove forests in terms of LIDAR measurements. First, LIDAR points are classified into vegetation and ground measurements using the progressive morphological filter. Second, a digital canopy model (DCM) is generated by subtracting a digital terrain model (DTM) from a digital surface model (DSM). The DSM is generated by interpolating raw LIDAR measurements, and DTM is produced by interpolating ground measurements. Third, a black top-hat mathematical morphological transformation is used to identify canopy gaps. Comparison of identified gap polygons with raw LIDAR measurements and field surveys shows that the proposed method identifies lightning gaps in mangrove forests successfully. The area of lightning gaps in mangrove forests in Everglades National Park is about 3% of total forest area, which verifies that lightning gaps play a critical role in mangrove forest turnover.

  1. Mangrove forest distributions and dynamics (19752005) of the tsunami-affected region of Asia

    USGS Publications Warehouse

    Giri, C.; Zhu, Z.; Tieszen, L.L.; Singh, A.; Gillette, S.; Kelmelis, J.A.

    2008-01-01

    Aim: We aimed to estimate the present extent of tsunami-affected mangrove forests and determine the rates and causes of deforestation from 1975 to 2005. Location: Our study region covers the tsunami-affected coastal areas of Indonesia, Malaysia, Thailand, Burma (Myanmar), Bangladesh, India and Sri Lanka in Asia. Methods: We interpreted time-series Landsat data using a hybrid supervised and unsupervised classification approach. Landsat data were geometrically corrected to an accuracy of plus-or-minus half a pixel, an accuracy necessary for change analysis. Each image was normalized for solar irradiance by converting digital number values to the top-of-the atmosphere reflectance. Ground truth data and existing maps and data bases were used to select training samples and also for iterative labelling. We used a post-classification change detection approach. Results: were validated with the help of local experts and/or high-resolution commercial satellite data. Results The region lost 12% of its mangrove forests from 1975 to 2005, to a present extent of c. 1,670,000 ha. Rates and causes of deforestation varied both spatially and temporally. Annual deforestation was highest in Burma (c. 1%) and lowest in Sri Lanka (0.1%). In contrast, mangrove forests in India and Bangladesh remained unchanged or gained a small percentage. Net deforestation peaked at 137,000 ha during 1990-2000, increasing from 97,000 ha during 1975-90, and declining to 14,000 ha during 2000-05. The major causes of deforestation were agricultural expansion (81%), aquaculture (12%) and urban development (2%). Main conclusions: We assessed and monitored mangrove forests in the tsunami-affected region of Asia using the historical archive of Landsat data. We also measured the rates of change and determined possible causes. The results of our study can be used to better understand the role of mangrove forests in saving lives and property from natural disasters such as the Indian Ocean tsunami, and to identify possible areas for conservation, restoration and rehabilitation. ?? 2007 The Authors.

  2. Mangrove recruitment after forest disturbance is facilitated by herbaceous species in the Caribbean.

    PubMed

    McKee, Karen L; Rooth, Jill E; Feller, Ilka C

    2007-09-01

    Plant communities along tropical coastlines are often affected by natural and human disturbances, but little is known about factors influencing recovery. We focused on mangrove forests, which are among the most threatened ecosystems globally, to examine how facilitation by herbaceous vegetation might improve forest restoration after disturbance. We specifically investigated whether recovery of mangrove forests in harsh environments is accelerated by nurse plants and whether the beneficial effects are species-specific. Quantification of standardized effects allowed comparisons across performance parameters and over time for: (1) net effect of each herbaceous species on mangrove survival and growth, (2) effects of pre- and post-establishment factors associated with each herbaceous species, and (3) need for artificial planting to enhance growth or survival of mangrove seedlings. Mangrove recruitment in a clear-cut forest in Belize was accelerated by the presence of Sesuvium portulacastrum (succulent forb) and Distichlis spicata (grass), two coastal species common throughout the Caribbean region. The net effect of herbaceous vegetation was positive, but the magnitude of effects on mangrove survival and growth differed by species. Because of differences in their vegetative structure and other features, species effects on mangroves also varied by mechanism: (1) trapping of dispersing propagules (both species), (2) structural support of the seedling (Distichlis), and/or (3) promotion of survival (Sesuviumn) or growth (Distichlis) through amelioration of soil conditions (temperature, aeration). Artificial planting had a stronger positive effect on mangrove survival than did edaphic conditions, but planting enhanced mangrove growth more in Sesuvium than in Distichlis patches. Our study indicates that beneficial species might be selected based on features that provide multiple positive effects and that species comparisons may be improved using standardized effects. Our findings are not only relevant to the coastal environments found in the Caribbean region, but our assessment methods may be useful for developing site-specific information to restore disturbed mangrove forests worldwide, especially given the large pool of mangrove associates (>45 genera) available for screening. PMID:17913132

  3. Material flux in mangrove forest based on the field observation

    Microsoft Academic Search

    K. Terada; Y. Koibuchi; M. Isobe

    2008-01-01

    Mangrove ecosystems play important roles in conservation of seashore lines and spawning and nursery of aquatic creatures. It is important to understand nutrient budgets and links between human activities and their effects on mangrove ecosystems. However, we have less knowledge about mangrove ecosystems than that about many other ecosystems. To quantify total material balances in the estuary centered in mangrove

  4. Nutrients and heavy metal contamination of plants and sediments in Futian mangrove forest

    Microsoft Academic Search

    N. F. Y. Tam; S. H. Li; C. Y. Lan; G. Z. Chen; M. S. Li; Y. S. Wong

    1995-01-01

    An ecological survey was carried out to determine the levels of nutrients and heavy metals in the sediments and leaf tissues of two dominant mangrove plant species, Kandelia candel and Aegiceras corniculatum, in Futian mangrove forest, Shenzhen, the People's Republic of China. The spatial and seasonal variations of these elements were also investigated. The results show that there was no

  5. Geoinformatics in mangrove monitoring: damage and recovery after the 2004 Indian Ocean tsunami in Phang Nga, Thailand

    NASA Astrophysics Data System (ADS)

    Kamthonkiat, D.; Rodfai, C.; Saiwanrungkul, A.; Koshimura, S.; Matsuoka, M.

    2011-07-01

    In the aftermath of the 2004 Indian Ocean Tsunami, it has been proven that mangrove ecosystems provide protection against coastal disasters by acting as bioshields. Satellite data have been effectively used to detect, assess, and monitor the changes in mangroves during the pre- and post- tsunami periods. However, not much information regarding mangrove restoration or reforestation is available. Rather than undertaking time-consuming fieldwork, this study proposed using geoinformatic technologies such as Remote Sensing (RS), Geographic Information System (GIS), and Global Positioning System (GPS) to monitor the mangrove recovery. The analysis focused only on the tsunami-impacted mangrove areas along the western coast of the Tai Muang, Takuapa and Khuraburi Districts of Phang Nga Province, southern region of Thailand. The results consisted of 2 parts, first: the supervised classification of main land uses, namely forest, mangrove, agricultural land, built-up area, bare soil, water body, and miscellaneous covers in ASTER images, was conducted using the maximum likelihood method with higher than 75 % for overall accuracy. Once the confusion between classes was improved in post-processing, the accuracy of mangrove class was greater than 85 % for all dates. The results showed that the mangrove area in 2005 was reduced by approximately 5 % (1054.5 ha) from 2003 due to the impact of the 2004 Indian Ocean Tsunami. Although the recovery program (replacing the same species of dead mangrove trees, mainly the Rhizophora apiculata Bl and Rhizophora mucronata Poir, in situ) had started by mid-2005, the areas gradually decreased to approximately 7-8 % in 2006 and 2010 compared with the reference year of 2003. Second, the recovery trend was observed in the Normalized Difference Vegetation Index (NDVI) fluctuation curve and the supporting field survey data. The recovery patterns were summarized into 2 categories: (i) gradually recovery, and (ii) fluctuating recovery. The gradually recovery category that implied the homogeneous pattern or uniform reforestation was observed in the seriously damaged area where most of the mangrove trees were swept away during the tsunami. This pattern covered approximately 50.35 % of the total reforested area. The NDVI time series of the uniform or homogeneous reforested mangrove at the sampled plots has gradually increased after 2005. The fluctuating recovery category that implied the heterogeneous pattern or non-uniform reforestation was observed in partially damaged areas where some of the mangrove trees were swept away and broken but still some trees were remained in the area. The heterogeneous patterns covered approximately 49.65 % of the total reforested area.

  6. Plant biomass and nutrient flux in a managed mangrove forest in Malaysia

    NASA Astrophysics Data System (ADS)

    Gong, Wooi-Khoon; Ong, Jin-Eong

    1990-11-01

    This paper summarizes previously reported and new data. Data on biomass and nutrient content in different components of the mangrove trees are presented and estimates of the flux of these are attempted. As a first step to determining the quantitative relationship between the export of material and the areal extent of mangroves, the biomass and nutrients contained in the mangrove trees and the release of these to the ecosystem annually were determined for the 40 800-ha Matang Mangrove Forest Reserve—a managed mangrove forest in Malaysia. The total standing biomass of the Matang Mangrove Forest is estimated to be 8·26 milion tonnes (of dry matter). Biomass released annually from the mangrove trees in the Matang system is 1 015 980 tonnes. Of these, 559 500 tonnes or 55% is in the form of dead trees, 396 840 tonnes (39%) is in the form of small litter and 59 640 (6%) in the slash left behind after thinning and harvesting. The amounts of macro-nutrients (N,P,K, Ca, Mg and Na) released annually are 12 210, 11 870 and 2690 tonnes through litter, dead trees and slash respectively. The fate of these materials is discussed. Using the figure of 50% export, the export of biomass and nutrients from the Matang Mangroves through leaf litter alone is estimated as 158 300 and 5100 tonnes annually or 3·9 and 0·1 tonne ha -1 year -1 respectively.

  7. EMERSION IN THE MANGROVE FOREST FISH 'RIVULUS MARMORATUS': A UNIQUE RESPONSE TO HYDROGEN SULFIDE

    EPA Science Inventory

    The mangrove forest fish Rivulus marmoratus (Cyprinodontidae) has frequently been observed out of water, a phenomenon generally attributed to habitat drying. The authors tested the hypothesis that hydrogen sulfide, a substance characteristically found in their environment, can se...

  8. Cyanobacterial diversity in the phyllosphere of a mangrove forest.

    PubMed

    Rigonato, Janaina; Alvarenga, Danillo Oliveira; Andreote, Fernando Dini; Dias, Armando Cavalcante Franco; Melo, Itamar Soares; Kent, Angela; Fiore, Marli Fátima

    2012-05-01

    The cyanobacterial community colonizing phyllosphere in a well-preserved Brazilian mangrove ecosystem was assessed using cultivation-independent molecular approaches. Leaves of trees that occupy this environment (Rhizophora mangle,Avicennia schaueriana and Laguncularia racemosa) were collected along a transect beginning at the margin of the bay and extending upland. The results demonstrated that the phyllosphere of R. mangle and L. racemosa harbor similar assemblages of cyanobacteria at each point along the transect. A. schaueriana, found only in the coastal portions of the transect, was colonized by assemblages with lower richness than the other trees. However, the results indicated that spatial location was a stronger driver of cyanobacterial community composition than plant species. Distinct cyanobacterial communities were observed at each location along the coast-to-upland transect. Clone library analysis allowed identification of 19 genera of cyanobacteria and demonstrated the presence of several uncultivated taxa. A predominance of sequences affiliated with the orders Nostocales and Oscillatoriales was observed, with a remarkable number of sequences similar to genera Symphyonemopsis/Brasilonema (order Nostocales). The results demonstrated that phyllosphere cyanobacteria in this mangrove forest ecosystem are influenced by environmental conditions as the primary driver at the ecosystem scale, with tree species exerting some effect on community structure at the local scale. PMID:22611551

  9. Carbon and nutrient exchange of mangrove forests with the coastal ocean

    Microsoft Academic Search

    María Fernanda Adame; Catherine E. Lovelock

    2011-01-01

    Mangrove forests exchange materials with the coastal ocean through tidal inundation. In this study, we aim to provide an overview\\u000a of the published data of carbon (C) and nutrient exchange of mangrove forests with the coastal ocean at different spatial\\u000a scales to assess whether the exchange is correlated with environmental parameters. We collected data on C (dissolved and particulate\\u000a organic

  10. Formation, transformation, and removal of aerosol over a tropical mangrove forest

    Microsoft Academic Search

    A. Chatterjee; C. Dutta; S. Sen; K. Ghosh; N. Biswas; D. Ganguly; T. K. Jana

    2006-01-01

    A comprehensive size-segregated characterization of the chemical properties (water-soluble inorganic fraction) of the sea-salt aerosol originated from the surf zone at the land-ocean boundary of Sundarban Mangrove forest, NE coast of Bay of Bengal, and an analysis of the relevant meteorological parameters revealed how the combined effect of anthropogenic gases and aerosol advected to the virgin mangrove forest and micrometeorological

  11. Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia

    USGS Publications Warehouse

    Rogers, K.; Saintilan, N.; Cahoon, D.

    2005-01-01

    Following the dieback of an interior portion of a mangrove forest at Homebush Bay, Australia, surface elevation tables and feldspar marker horizons were installed in the impacted, intermediate and control forest to measure vertical accretion, elevation change, and shallow subsidence. The objectives of the study were to determine current vertical accretion and elevation change rates as a guide to understanding mangrove dieback, ascertain the factors controlling surface elevation change, and investigate the sustainability of the mangrove forest under estimated sea-level rise conditions. The study demonstrates that the influences on surface dynamics are more complex than soil accretion and soil autocompaction alone. During strong vegetative regrowth in the impacted forest, surface elevation increase exceeded vertical accretion apparently as a result of belowground biomass production. In addition, surface elevation in all forest zones was correlated with total monthly rainfall during a severe El Ni?o event, highlighting the importance of rainfall to groundwater recharge and surface elevation. Surface elevation increase for all zones exceeded the 85-year sea level trend for Sydney Harbour. Since mean sea-level also decreased during the El Ni?o event, the decrease in surface elevation did not translate to an increase in inundation frequency or influence the sustainability of the mangrove forest. These findings indicate that subsurface soil processes such as organic matter accumulation and groundwater flux can significantly influence mangrove surface elevation, and contribute to the long-term sustainability of mangrove systems under a scenario of rising sea levels.

  12. Status and distribution of mangrove forests of the world using earth observation satellite data

    USGS Publications Warehouse

    Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N.

    2011-01-01

    Aim Our scientific understanding of the extent and distribution of mangrove forests of the world is inadequate. The available global mangrove databases, compiled using disparate geospatial data sources and national statistics, need to be improved. Here, we mapped the status and distributions of global mangroves using recently available Global Land Survey (GLS) data and the Landsat archive.Methods We interpreted approximately 1000 Landsat scenes using hybrid supervised and unsupervised digital image classification techniques. Each image was normalized for variation in solar angle and earth-sun distance by converting the digital number values to the top-of-the-atmosphere reflectance. Ground truth data and existing maps and databases were used to select training samples and also for iterative labelling. Results were validated using existing GIS data and the published literature to map 'true mangroves'.Results The total area of mangroves in the year 2000 was 137,760 km2 in 118 countries and territories in the tropical and subtropical regions of the world. Approximately 75% of world's mangroves are found in just 15 countries, and only 6.9% are protected under the existing protected areas network (IUCN I-IV). Our study confirms earlier findings that the biogeographic distribution of mangroves is generally confined to the tropical and subtropical regions and the largest percentage of mangroves is found between 5?? N and 5?? S latitude.Main conclusions We report that the remaining area of mangrove forest in the world is less than previously thought. Our estimate is 12.3% smaller than the most recent estimate by the Food and Agriculture Organization (FAO) of the United Nations. We present the most comprehensive, globally consistent and highest resolution (30 m) global mangrove database ever created. We developed and used better mapping techniques and data sources and mapped mangroves with better spatial and thematic details than previous studies. ?? 2010 Blackwell Publishing Ltd.

  13. Status and distribution of mangrove forests of the world using earth observation satellite data

    USGS Publications Warehouse

    Giri, Chandra; Ochieng, E.; Tieszen, Larry L.; Zhu, Zhi-Liang; Singh, Ashbindu; Loveland, Thomas R.; Masek, Jeffery G.; Duke, Norm

    2011-01-01

    Aim? Our scientific understanding of the extent and distribution of mangrove forests of the world is inadequate. The available global mangrove databases, compiled using disparate geospatial data sources and national statistics, need to be improved. Here, we mapped the status and distributions of global mangroves using recently available Global Land Survey (GLS) data and the Landsat archive. Methods? We interpreted approximately 1000 Landsat scenes using hybrid supervised and unsupervised digital image classification techniques. Each image was normalized for variation in solar angle and earth–sun distance by converting the digital number values to the top-of-the-atmosphere reflectance. Ground truth data and existing maps and databases were used to select training samples and also for iterative labelling. Results were validated using existing GIS data and the published literature to map ‘true mangroves’. Results? The total area of mangroves in the year 2000 was 137,760 km2 in 118 countries and territories in the tropical and subtropical regions of the world. Approximately 75% of world's mangroves are found in just 15 countries, and only 6.9% are protected under the existing protected areas network (IUCN I-IV). Our study confirms earlier findings that the biogeographic distribution of mangroves is generally confined to the tropical and subtropical regions and the largest percentage of mangroves is found between 5° N and 5° S latitude. Main conclusions? We report that the remaining area of mangrove forest in the world is less than previously thought. Our estimate is 12.3% smaller than the most recent estimate by the Food and Agriculture Organization (FAO) of the United Nations. We present the most comprehensive, globally consistent and highest resolution (30 m) global mangrove database ever created. We developed and used better mapping techniques and data sources and mapped mangroves with better spatial and thematic details than previous studies.

  14. Monitoring urban forest health

    Microsoft Academic Search

    E. Gregory Mcpherson

    1993-01-01

    Renewed interest in urban forestry has resulted in significant public investment in trees during the past few years, yet comprehensive urban forest monitoring programs are uncommon. Monitoring is an integral component of a program to sustain healthy community forests and long term flows of net benefits. Volunteer-based monitoring will promote continued public involvement and support in community forestry. To overcome

  15. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States.

    PubMed

    Osland, Michael J; Enwright, Nicholas; Day, Richard H; Doyle, Thomas W

    2013-05-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970-2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh-mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services. PMID:23504931

  16. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Doyle, Thomas W.; Enwright, Nicholas

    2013-01-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970–2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh–mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services.

  17. RS Application for conducting change detection within the Sundarban Mangrove Forest, Bangladesh to meet REDD+ initiatives

    NASA Astrophysics Data System (ADS)

    Biswas, T.; Maus, P.; Megown, K.

    2011-12-01

    The U.S. Forest Service (USFS) provided technical support to the Resource Information Management System (RIMS) unit of the Forest Department (FD) of Bangladesh in developing a method to monitor changes within the Sundarbans Reserve Forest using remote sensing and GIS technology to meet the Reducing Emissions from Deforestation and Degradation (REDD+) initiatives within Bangladesh. It included comparing the simple image differencing method with the Z-score outlier change detection method to examine changes within the mangroves of Bangladesh. Landsat data from three time periods (1989, 1999, 2009) were used to quantify change within four canopy cover classes (High, Medium, Low, and Very Low) within Sundarbans. The Z-score change analysis and image differencing was done for all the 6 reflective bands obtained from Landsat and two spectral indices NDVI and NDMI, derived from these bands for each year. Our results indicated very subtle changes in the mangrove forest within the past twenty years and the Z-score analysis was found to be more useful in capturing these subtle changes than the simple image difference method. Percent change in Z-score of NDVI provided the most meaningful index of vegetation change. It was used to summarize change for the entire study area by pixel, by canopy cover classes and the management compartment during this analysis. Our analysis showed less than 5% overall change in area within the mangroves for the entire study period. Percent change in forest canopy cover reduced from 4% in 1989-99 to 2% by 1999-2009 indicating an increase in forest canopy cover. Percent change in NDVI Z-score of each pixel was used to compute the overall percent change in z-score within the entire study area, mean percent change within each canopy cover class and management compartments from 1989 to 1999 and from 1999 to 2009. The above analysis provided insight to the spatial distribution of percent change in NDVI between the study periods and helped in identifying potential area for management intervention. The mean distribution of change from both study periods was observed within ± 20% SD.Our results were in agreement with the independent field study conducted by the US Forest Service earlier the same year for biomass and carbon stock estimation. The 10m field plots that showed a decline in carbon stock between 1995 and 2010 overall coincided with the compartments or region that showed a decline in forest canopy cover between 1999 and 2009 from the present analysis. These results led us to believe that the Z-score analysis can be a potential quantitatively rigorous tool to quantify change in ecosystems that are mostly stable and do not undergo drastic land use or land cover change. The field and remote sensing study together provided important scientific information and direction for future management of the forest resources, baseline information for long term monitoring of the forest, and identifying potential REDD+ Carbon financing projects in Sundarbans, as well as other potential REDD+ sites within forested area of Bangladesh. Given the rising concern and interest in REDD+ initiative we consider the Z-score analysis to be a potential tool in monitoring and providing a quick spatial assessment of change using remote sensing technology.

  18. Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama

    USGS Publications Warehouse

    Lovelock, C.E.; Feller, Ilka C.; McKee, K.L.; Thompson, R.

    2005-01-01

    Mangrove forest structure and sediment characteristics were examined in the extensive mangroves of Bocas del Toro, Republic of Panama. Forest structure was characterized to determine if spatial vegetation patterns were repeated over the Bocas del Toro landscape. Using a series of permanent plots and transects we found that the forests of Bocas del Toro were dominated by Rhizophora mangle with very few individuals of Avicennia germinans and Laguncularia racemosa. Despite this low species diversity, there was large variation in forest structure and in edaphic conditions (salinity, concentration of available phosphorus, Eh and sulphide concentration). Aboveground biomass varied 20-fold, from 6.8 Mg ha-1 in dwarf forests to 194.3 Mg ha-1 in the forests fringing the land. But variation in forest structure was predictable across the intertidal zone. There was a strong tree height gradient from seaward fringe (mean tree height 3.9 m), decreasing in stature in the interior dwarf forests (mean tree height 0.7 m), and increasing in stature in forests adjacent to the terrestrial forest (mean tree height 4.1 m). The predictable variation in forest structure emerges due to the complex interactions among edaphic and plant factors. Identifying predictable patterns in forest structure will aid in scaling up the ecosystem services provided by mangrove forests in coastal landscapes. Copyright 2005 College of Arts and Sciences.

  19. Community perceptions of state forest ownership and management: a case study of the Sundarbans Mangrove Forest in Bangladesh.

    PubMed

    Roy, Anjan Kumer Dev; Alam, Khorshed; Gow, Jeff

    2013-03-15

    The Sundarbans Mangrove Forest (SMF) is the world's largest mangrove forest and it provides livelihoods to 3.5 million forest-dependent people in coastal Bangladesh. The first study aim was to analyse the efficacy of the state property regime in managing the forest through a close examination of the relationship between property rights and mangrove conservation practices. The second study aim was to explore forest-dependent communities' (FDCs) perceptions about their participation in management and conservation practices. The Schlager and Ostrom theoretical framework was adopted to examine the role of potential ownership variations in a common property resource regime. A survey of 412 FDC households was undertaken. Current management by the Bangladesh Forest Department (BFD) does not result in implementation of mandated mangrove conservation practices. It was found that allocation of property rights to FDCs would be expected to increase conservation practices. 92% of respondents expressed the view that the evidenced rapid degradation over the past 30 years was due primarily to corruption in the BFD. About half of FDCs (46%) surveyed are willing to participate in mangrove conservation through involvement in management as proprietors. Consistent with Schlager and Ostrom's theory, the results indicate the necessity for de facto and de jure ownership and management change from a state to common property regime to ensure FDCs' participation in conservation practices. PMID:23376299

  20. Zonation and seasonality of benthic primary production and community respiration in tropical mangrove forests

    Microsoft Academic Search

    D. M. Alongi

    1994-01-01

    Benthic oxygen consumption and primary production were measured using the bell jar technique in deltaic and fringing mangrove forests of tropical northeastern Australia. In a deltaic forest, rates of sediment respiration ranged from 197 to 1645 µmol O2 m-2 h-1 (mean=836), but did not vary significantly with season or intertidal zone. Gross primary production varied among intertidal zones and seasons,

  1. Assessment of mangrove forests in the Pacific region using Landsat imagery

    NASA Astrophysics Data System (ADS)

    Bhattarai, Bibek; Giri, Chandra

    2011-01-01

    The information on the mangrove forests for the Pacific region is scarce or outdated. A regional assessment based on a consistent methodology and data sources was needed to understand their true extent. Our investigation offers a regionally consistent, high resolution (30 m), and the most comprehensive mapping of mangrove forests on the islands of American Samoa, Fiji, French Polynesia, Guam, Hawaii, Kiribati, Marshall Islands, Micronesia, Nauru, New Caledonia, Northern Mariana Islands, Palau, Papua New Guinea, Samoa, Solomon Islands, Tonga, Tuvalu, Vanuatu, and Wallis and Futuna Islands for the year 2000. We employed a hybrid supervised and unsupervised image classification technique on a total of 128 Landsat scenes gathered between 1999 and 2004, and validated the results using existing geographic information science (GIS) datasets, high resolution imagery, and published literature. We also draw a comparative analysis with the mangrove forests inventory published by the Food and Agriculture Association (FAO) of the United Nations. Our estimate shows a total of 623755 hectares of mangrove forests in the Pacific region; an increase of 18% from FAO's estimates. Although mangrove forests are disproportionately distributed toward a few larger islands on the western Pacific, they are also significant in many smaller islands.

  2. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change

    NASA Astrophysics Data System (ADS)

    Alongi, Daniel M.

    2008-01-01

    This review assesses the degree of resilience of mangrove forests to large, infrequent disturbance (tsunamis) and their role in coastal protection, and to chronic disturbance events (climate change) and the future of mangroves in the face of global change. From a geological perspective, mangroves come and go at considerable speed with the current distribution of forests a legacy of the Holocene, having undergone almost chronic disturbance as a result of fluctuations in sea-level. Mangroves have demonstrated considerable resilience over timescales commensurate with shoreline evolution. This notion is supported by evidence that soil accretion rates in mangrove forests are currently keeping pace with mean sea-level rise. Further support for their resilience comes from patterns of recovery from natural disturbances (storms, hurricanes) which coupled with key life history traits, suggest pioneer-phase characteristics. Stand composition and forest structure are the result of a complex interplay of physiological tolerances and competitive interactions leading to a mosaic of interrupted or arrested succession sequences, in response to physical/chemical gradients and landform changes. The extent to which some or all of these factors come into play depends on the frequency, intensity, size, and duration of the disturbance. Mangroves may in certain circumstances offer limited protection from tsunamis; some models using realistic forest variables suggest significant reduction in tsunami wave flow pressure for forests at least 100 m in width. The magnitude of energy absorption strongly depends on tree density, stem and root diameter, shore slope, bathymetry, spectral characteristics of incident waves, and tidal stage upon entering the forest. The ultimate disturbance, climate change, may lead to a maximum global loss of 10-15% of mangrove forest, but must be considered of secondary importance compared with current average annual rates of 1-2% deforestation. A large reservoir of below-ground nutrients, rapid rates of nutrient flux and microbial decomposition, complex and highly efficient biotic controls, self-design and redundancy of keystone species, and numerous feedbacks, all contribute to mangrove resilience to various types of disturbance.

  3. Tsunami damage reduction performance of a mangrove forest in Banda Aceh, Indonesia inferred from field data and a numerical model

    NASA Astrophysics Data System (ADS)

    Yanagisawa, H.; Koshimura, S.; Miyagi, T.; Imamura, F.

    2010-06-01

    Since the 26 December 2004 Indian Ocean tsunami, the role of mangrove forests as natural defenses protecting coastal communities from tsunami disaster has been highlighted. However, some mangrove forests were destroyed by that tsunami. They are expected to have lost their protective functions. In this study, we develop a fragility function to assess the mangrove trees' vulnerability, expressed as the damage probability of mangrove trees, based on field surveys and numerical modeling of the 2004 Indian Ocean tsunami in Banda Aceh, Indonesia. Based on the fragility function, we reconstruct a numerical model of tsunami inundation including the performance of mangrove forests in terms of reducing tsunami damage. The model reveals that a 10 year old mangrove forest in a 500 m wide area can reduce a tsunami's hydrodynamic force by approximately 70% for an incident wave of 3.0 m inundation depth and a wave period of 40 min at the shoreline. The model also shows, for a tsunami inundation depth of greater than 4 m, that a 10 year old mangrove forest would be mostly destroyed and that it would lose its force reduction capacity. Moreover, approximately 80% of a 30 year old mangrove forest would survive a 5 m tsunami and absorb 50% of the tsunami's hydrodynamic force.

  4. Tidal-scale flow routing and sedimentation in mangrove forests: Combining field data and numerical modelling

    NASA Astrophysics Data System (ADS)

    Horstman, E. M.; Dohmen-Janssen, C. M.; Bouma, T. J.; Hulscher, S. J. M. H.

    2015-01-01

    Tidal-scale biophysical interactions establish particular flow routing and sedimentation patterns in coastal mangroves. Sluggish water flows through the mangrove vegetation and enhanced sediment deposition are essential to maintain these valuable ecosystems, thereby enabling their contribution to coastal protection and stabilization. Spatially explicit field observations of tidal-scale flow routing and sediment deposition were obtained in an elevated mangrove stand dissected by tidal creeks, located in the Trang river estuary at the Thai Andaman coast. An accurate and efficient depth-averaged process-based numerical model of this field site was developed in Delft3D to study the contributions of various biogeophysical mangrove settings to the observed tidal dynamics and to study the impacts of changes of these environmental conditions. The creeks are found to form the major pathway for the tidal inflow during the lower tides, while the sheltered interior of the forest is an effective sediment sink during the higher tides. A numerical sensitivity analysis of the initial response-or adaptive capacity-of the studied mangrove system to instantaneous environmental changes reveals the stable state of the study site: deposition rates are largely imposed by the topography and relative elevation, while they are rather independent of the vegetation density. Deeper inundations of the mangroves favor sheet flows through the forest and spatially averaged deposition rates decrease, particularly when this coincides with decreasing vegetation densities. Moreover, the sediment trapping efficiency is found to reduce significantly with diminishing sediment inputs and with mangrove area losses. These results clearly indicate the sensitivity of mangroves' ecosystem engineering ability-in terms of sedimentation-to climate change and anthropogenic threats.

  5. Habitat creation and biodiversity maintenance in mangrove forests: teredinid bivalves as ecosystem engineers.

    PubMed

    Hendy, Ian W; Michie, Laura; Taylor, Ben W

    2014-01-01

    Substantial amounts of dead wood in the intertidal zone of mature mangrove forests are tunnelled by teredinid bivalves. When the tunnels are exposed, animals are able to use tunnels as refuges. In this study, the effect of teredinid tunnelling upon mangrove forest faunal diversity was investigated. Mangrove forests exposed to long emersion times had fewer teredinid tunnels in wood and wood not containing teredinid tunnels had very few species and abundance of animals. However, with a greater cross-sectional percentage surface area of teredinid tunnels, the numbers of species and abundance of animals was significantly higher. Temperatures within teredinid-attacked wood were significantly cooler compared with air temperatures, and animal abundance was greater in wood with cooler temperatures. Animals inside the tunnels within the wood may avoid desiccation by escaping the higher temperatures. Animals co-existing in teredinid tunnelled wood ranged from animals found in terrestrial ecosystems including centipedes, crickets and spiders, and animals found in subtidal marine ecosystems such as fish, octopods and polychaetes. There was also evidence of breeding within teredinid-attacked wood, as many juvenile individuals were found, and they may also benefit from the cooler wood temperatures. Teredinid tunnelled wood is a key low-tide refuge for cryptic animals, which would otherwise be exposed to fishes and birds, and higher external temperatures. This study provides evidence that teredinids are ecosystem engineers and also provides an example of a mechanism whereby mangrove forests support intertidal biodiversity and nurseries through the wood-boring activity of teredinids. PMID:25276505

  6. Habitat creation and biodiversity maintenance in mangrove forests: teredinid bivalves as ecosystem engineers

    PubMed Central

    Michie, Laura; Taylor, Ben W.

    2014-01-01

    Substantial amounts of dead wood in the intertidal zone of mature mangrove forests are tunnelled by teredinid bivalves. When the tunnels are exposed, animals are able to use tunnels as refuges. In this study, the effect of teredinid tunnelling upon mangrove forest faunal diversity was investigated. Mangrove forests exposed to long emersion times had fewer teredinid tunnels in wood and wood not containing teredinid tunnels had very few species and abundance of animals. However, with a greater cross-sectional percentage surface area of teredinid tunnels, the numbers of species and abundance of animals was significantly higher. Temperatures within teredinid-attacked wood were significantly cooler compared with air temperatures, and animal abundance was greater in wood with cooler temperatures. Animals inside the tunnels within the wood may avoid desiccation by escaping the higher temperatures. Animals co-existing in teredinid tunnelled wood ranged from animals found in terrestrial ecosystems including centipedes, crickets and spiders, and animals found in subtidal marine ecosystems such as fish, octopods and polychaetes. There was also evidence of breeding within teredinid-attacked wood, as many juvenile individuals were found, and they may also benefit from the cooler wood temperatures. Teredinid tunnelled wood is a key low-tide refuge for cryptic animals, which would otherwise be exposed to fishes and birds, and higher external temperatures. This study provides evidence that teredinids are ecosystem engineers and also provides an example of a mechanism whereby mangrove forests support intertidal biodiversity and nurseries through the wood-boring activity of teredinids. PMID:25276505

  7. Interactive effects of salinity and irradiance on growth: implications for mangrove forest structure along salinity gradients

    Microsoft Academic Search

    Marilyn C. Ball

    2002-01-01

    Early growth of Ceriops australis and C. decandra was studied in response to salinity and irradiance under laboratory conditions. These results provided a basis for interpretation of growth patterns during seedling establishment by seven species of Rhizophoraceae with variation in irradiance under natural low and high salinity regimes in a tropical mangrove forest. Survival declined with decrease in irradiance, except

  8. The reduction effects of mangrove forest on a tsunami based on field surveys at Pakarang Cape, Thailand and numerical analysis

    Microsoft Academic Search

    Hideaki Yanagisawa; Shunichi Koshimura; Kazuhisa Goto; Toyohiko Miyagi; Fumihiko Imamura; Anat Ruangrassamee; Charlchai Tanavud

    2009-01-01

    Using an integrated approach including satellite imagery analysis, field measurements, and numerical modeling, we investigated the damage to mangroves caused by the 2004 Indian Ocean tsunami at Pakarang Cape in Pang Nga Province, Thailand. Comparing pre- and post-tsunami satellite imagery of the study area, we found that approximately 70% of the mangrove forest was destroyed by the tsunami. Based on

  9. Redox conditions and heavy metals distribution in mangrove forests receiving shrimp farm effluents (Teremba bay, New Caledonia)

    E-print Network

    Paris-Sud XI, Université de

    heavy metals distributions in mangroves receiving shrimp farm effluents. Materials and methods Samples rocks and lateritic soils that are exploited for their richness in some heavy metals. We will endeavour1 Redox conditions and heavy metals distribution in mangrove forests receiving shrimp farm

  10. Petroleum pollution in mangrove forests sediments from Qeshm Island and Khamir Port-Persian Gulf, Iran.

    PubMed

    Ebrahimi-Sirizi, Zohreh; Riyahi-Bakhtiyari, Alireza

    2013-05-01

    The concentrations of total polycyclic aromatic hydrocarbons (PAHs) and 22 individual PAH compounds in 42 surface sediments collected from the mangrove forest of Qeshm Island and Khamir Port (Persian Gulf) were analyzed. PAHs concentrations ranged from 259 to 5,376 ng g(-1) dry weight with mean and median values of 1,585 and 1,146 ng g(-1), respectively. The mangrove sediments had higher percentages of lower molecular weight PAHs and the PAH profiles were dominated by naphthalene. Ratio values of specific PAH compounds were calculated to evaluate the possible source of PAH contamination. This ratios suggesting that the mangrove sediments have a petrogenic input of PAHs. Sediment quality guidelines were conducted to assess the toxicity of PAH compounds. The levels of total PAHs at all of stations except one station, namely Q6, were below the effects range low. Also, concentrations of naphthalene in some stations exceeded the effects range median. PMID:22930186

  11. Leaf production and nutrient contents of the seagrass Thalassodendron ciliatum in the proximity of a mangrove forest (Gazi Bay, Kenya)

    Microsoft Academic Search

    M. A. Hemminga; Gwada M. P; F. J. Slim; P. de Koeyer; J. Kazungu

    1995-01-01

    Mangrove forests, seagrass meadows and coral reefs may occur as adjacent ecosystems in tropical coastal zones, where tide-mediated chemical fluxes allow one system to influence another. Previously, stable carbon isotope (13C12C) analyses have been used to show that outwelling of carbon from the mangrove forest of Gazi Bay (Kenya) was followed by trapping of this element in the adjacent seagrass

  12. Ecuador's mangrove forest carbon stocks: A spatiotemporal analysis of living carbon holdings and their depletion since the advent of commercial aquaculture

    E-print Network

    Hamilton, Stuart

    2014-01-01

    In this paper we estimate the living carbon lost from Ecuador's mangrove forests since the advent of export-focused shrimp aquaculture. We use remote sensing techniques to delineate the extent of mangroves and aquaculture at approximately decadal periods since the arrival of aquaculture in each Ecuadorian estuary. We then spatiotemporally calculate the carbon values of the mangrove forests and estimate the amount of carbon lost due to direct displacement by aquaculture. Additionally, we calculate the new carbon stocks generated due to mangrove reforestation or afforestation. This research introduces time and land use / land cover change (LUCC) into the tropical forest carbon literature and examines forest carbon loss at a higher spatiotemporal resolution than in many earlier analyses. We find that 80%, or 7,014,517 t of the living carbon lost in Ecuadorian mangrove forests can be attributed to direct displacement of mangrove forests by shrimp aquaculture. We also find that Intergovernmental Panel on Climate C...

  13. Airborne Laser Scanning Quantification of Disturbances from Hurricanes and Lightning Strikes to Mangrove Forests in Everglades National Park, USA

    PubMed Central

    Zhang, Keqi; Simard, Marc; Ross, Michael; Rivera-Monroy, Victor H.; Houle, Patricia; Ruiz, Pablo; Twilley, Robert R.; Whelan, Kevin R. T.

    2008-01-01

    Airborne light detection and ranging (LIDAR) measurements derived before and after Hurricanes Katrina and Wilma (2005) were used to quantify the impact of hurricanes and lightning strikes on the mangrove forest at two sites in Everglades National Park (ENP). Analysis of LIDAR measurements covering 61 and 68 ha areas of mangrove forest at the Shark River and Broad River sites showed that the proportion of high tree canopy detected by the LIDAR after the 2005 hurricane season decreased significantly due to defoliation and breakage of branches and trunks, while the proportion of low canopy and the ground increased drastically. Tall mangrove forests distant from tidal creeks suffered more damage than lower mangrove forests adjacent to the tidal creeks. The hurricanes created numerous canopy gaps, and the number of gaps per square kilometer increased from about 400?500 to 4000 after Katrina and Wilma. The total area of gaps in the forest increased from about 1?2% of the total forest area to 12%. The relative contribution of hurricanes to mangrove forest disturbance in ENP is at least 2 times more than that from lightning strikes. However, hurricanes and lightning strikes disturb the mangrove forest in a related way. Most seedlings in lightning gaps survived the hurricane impact due to the protection of trees surrounding the gaps, and therefore provide an important resource for forest recovery after the hurricane. This research demonstrated that LIDAR is an effective remote sensing tool to quantify the effects of disturbances such as hurricanes and lightning strikes in the mangrove forest.

  14. Mangrove Action Project

    NSDL National Science Digital Library

    This nonprofit organization provides information about the biology and ecology of mangrove species, the distribution of mangrove forests and importance of mangrove ecosystems to wildlife and people worldwide. Photos, slide show, current issues and links to related sites are provided. Threats to mangroves are described and sustainable alternatives, based on pilot projects, are presented. Appropriate for grades 8 and up.

  15. Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, U.S.A

    Microsoft Academic Search

    Donald R. Cahoon; James C. Lynch

    1997-01-01

    Simultaneous measurements of vertical accretion from artificial soilmarker horizons and soil elevation change from sedimentation-erosion table(SET) plots were used to evaluate the processes related to soil building infringe, basin, and overwash mangrove forests located in a low-energy lagoonwhich receives minor inputs of terrigenous sediments. Vertical accretionmeasures reflect the contribution of surficial sedimentation (sedimentdeposition and surface root growth). Measures of elevation

  16. Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala.

    PubMed

    Lu, Weizhi; Yang, Shengchang; Chen, Luzhen; Wang, Wenqing; Du, Xiaona; Wang, Canmou; Ma, Yan; Lin, Guangxuan; Lin, Guanghui

    2014-01-01

    In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p = 0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration. PMID:24618793

  17. Changes in Carbon Pool and Stand Structure of a Native Subtropical Mangrove Forest after Inter-Planting with Exotic Species Sonneratia apetala

    PubMed Central

    Lu, Weizhi; Yang, Shengchang; Chen, Luzhen; Wang, Wenqing; Du, Xiaona; Wang, Canmou; Ma, Yan; Lin, Guangxuan; Lin, Guanghui

    2014-01-01

    In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p?=?0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration. PMID:24618793

  18. Interhabitat differences in ant activity on plant foliage: ants at extrafloral nectaries of Hibiscus pernambucensis in sandy and mangrove forests

    Microsoft Academic Search

    Rodrigo Cogni; Andre V. L. Freitas; Paulo S. Oliveira

    2003-01-01

    The association between visiting ants and the extrafloral nectaries (EFN)-bearing shrub Hibiscus pernambucensis Arruda (Malvaceae) was investigated in two different coastal habitats - a permanently dry sandy forest and a regularly inundated mangrove forest. In both habitats the frequency of plants with ants and the mean number of ants per plant were much higher on H. pernambucensis than on non-nectariferous

  19. Degradation of mangrove tissues and implications for peat formation in Belizean island forests

    USGS Publications Warehouse

    Middleton, B.A.; McKee, K.L.

    2001-01-01

    1. Macrofaunal leaf consumption and degradation of leaves, woody twigs and roots were studied in mangrove island forests on a Belizean island. Factors influencing accumulation of organic matter deposited both above and below ground in this oligotrophic, autochothonous system were assessed. 2. Leaf degradation rates of Rhizophora mangle (red mangrove), Avicennia germinans (black mangrove) and Laguncularia racemosa (white mangrove) measured in mesh bags, were much faster in the lower than the upper intertidal zone. Mass loss was most rapid in A. germinans but zonal effects were much larger than species differences. 3. Exposure to invertebrates such as crabs and amphipods tripled overall rates of leaf litter breakdown. In the lower intertidal, crabs completely consumed some unbagged leaves within 23 days. Crabs also had an effect on some upper intertidal sites, where degradation of leaves placed in artificial burrows was 2.4 times faster than when placed on the soil surface. 4. In contrast to leaves (27??5% remaining after 230 days), roots and woody twigs were highly refractory (40??2% and 51??6% remaining after 584 and 540 days, respectively). Root degradation did not vary by soil depth, zone or species. Twigs of R. mangle and A. germinans degraded faster on the ground than in the canopy, whereas those of L. racemosa were highly resistant to decay regardless of position. 5. Peat formation at Twin Cays has occurred primarily through deposition and slow turnover of mangrove roots, rather than above-ground tissues that are either less abundant (woody twigs) or more readily removed (leaves).

  20. Formation, transformation, and removal of aerosol over a tropical mangrove forest

    NASA Astrophysics Data System (ADS)

    Chatterjee, A.; Dutta, C.; Sen, S.; Ghosh, K.; Biswas, N.; Ganguly, D.; Jana, T. K.

    2006-12-01

    A comprehensive size-segregated characterization of the chemical properties (water-soluble inorganic fraction) of the sea-salt aerosol originated from the surf zone at the land-ocean boundary of Sundarban Mangrove forest, NE coast of Bay of Bengal, and an analysis of the relevant meteorological parameters revealed how the combined effect of anthropogenic gases and aerosol advected to the virgin mangrove forest and micrometeorological conditions could change the marine character of the aerosol before the onset of SW monsoon. The average aerosol mass concentration was 99.94 ± 41.9 ?g m-3 with production rate of 0.19 ?g m-2 s-1 (during January) to 4.29 ?g m-2 s-1 (during April) and dry deposition rate of 0.019 ?g m-2 s-1 (during January) to 13.21 ?g m-2 s-1 (during June). 72.35% of the total aerosol mass was leachable by water, and relatively large concentrations of phosphorus were observed. More chloride depletion from the coarse (2.0 < dp < 10 ?m) and nucleation (dp < 0.4 ?m) modes compared to the accumulation mode (0.4 < dp < 2.0 ?m) was observed in winter (Cl/Na = 0.6023 ± 0.1798), and a reverse trend was observed in summer (Cl/Na = 0.644 ± 0.262). A significant positive correlation was obtained for chloride loss with non-sea-sulphate and nitrate for particles > 2.0 ?m. Distributions of Na+, K+, Ca2+, Mg2+, NH4+, Cl-, NO2-, NO3-, SO42-, and PO43- in different size modes were considered to collate their source apportionment. The proximity of Calcutta and Haldia metropolis to the mangrove forest could influence the forest air quality and depositional processes.

  1. Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida

    USGS Publications Warehouse

    Feller, Ilka C.; Whigham, D.F.; McKee, K.L.; Lovelock, C.E.

    2003-01-01

    The objectives of this study were to determine effects of nutrient enrichment on plant growth, nutrient dynamics, and photosynthesis in a disturbed mangrove forest in an abandoned mosquito impoundment in Florida. Impounding altered the hydrology and soil chemistry of the site. In 1997, we established a factorial experiment along a tree-height gradient with three zones, i.e., fringe, transition, dwarf, and three fertilizer treatment levels, i.e., nitrogen (N), phosphorus (P), control, in Mosquito Impoundment 23 on the eastern side of Indian River. Transects traversed the forest perpendicular to the shoreline, from a Rhizophora mangle-dominated fringe through an Avicennia germinans stand of intermediate height, and into a scrub or dwarf stand of A. germinans in the hinterland. Growth rates increased significantly in response to N fertilization. Our growth data indicated that this site is N-limited along the tree-height gradient. After 2 years of N addition, dwarf trees resembled vigorously growing saplings. Addition of N also affected internal dynamics of N and P and caused increases in rates of photosynthesis. These findings contrast with results for a R. mangle-dominated forest in Belize where the fringe is N-limited, but the dwarf zone is P-limited and the transition zone is co-limited by N and P. This study demonstrated that patterns of nutrient limitation in mangrove ecosystems are complex, that not all processes respond similarly to the same nutrient, and that similar habitats are not limited by the same nutrient when different mangrove forests are compared.

  2. Utilizing NASA Earth Observations to Monitor, Map, and Forecast Mangrove Extent and Deforestation in Myanmar for Enhanced Conservation

    NASA Astrophysics Data System (ADS)

    Ferraro, C. P.; Jensen, D.; Disla, C.

    2013-12-01

    Mangrove ecosystems offer several significant services including providing habitat and spawning grounds for a diverse range of species, protecting coastal communities from storms and other natural disasters, and contributing resources and income for local residents. Currently, Myanmar is undergoing a period of rapid economic development which has led to increased pressure on the extensive mangrove habitat in the Ayeyarwady River Delta in southern Myanmar. In this study, we partnered with the Smithsonian Conservation Biology Institute to examine changes to mangrove extent between 1989 and 2013 using Landsat 4, 7, and 8 imagery in combination with a Digital Elevation Model (DEM) generated from ASTER stereoscopic imagery. Classification was performed using a Random Forests model and accuracy was assessed using higher resolution ASTER imagery and local expertise on mangrove distribution. Results show a large and consistent decline in mangrove cover during the study period. The data provided by this assessment was subsequently used to forecast potential vulnerability and changes to mangrove habitat up to 2030. A multi-layered perceptron was used to model transition potentials for vulnerability forecasting. Forest managers in Myanmar will be able to use the mangrove change maps and forecasts to evaluate current policies and focus future ones to maximize effectiveness. Data and methodology resulting from this project will be useful for future mangrove and land-cover mapping projects in this region.

  3. Spatial and Temporal Patterns of Soil Organic Carbon in Mangrove Forest Ecosystems (Invited)

    NASA Astrophysics Data System (ADS)

    McKee, K. L.

    2010-12-01

    Wetlands are recognized as potentially important carbon sinks, but few studies have focused on tropical and sub-tropical systems that accumulate organic carbon. Soil organic carbon (SOC) density was analyzed in multiple mangrove forests, representing 30 geographic locations and six forest types (total of 230 study plots overall). SOC density varied from 0.002 to 0.1 g cm-3, with an overall average of 0.019 and 0.058 g cm-3 in mineral and organic soils, respectively. Sites spanned a latitudinal range from 37° S to 29° N, and carbon density was correlated with average annual temperature. However, high variation in SOC density within latitude indicated additional influences. At a regional scale, SOC density varied with forest type and generally increased with hydrologic energy. At a site in Panama, SOC density varied spatially with soil pore space, which influenced bulk density and soil temperature—indicating an influence of compaction and/or degree of decomposition. Carbon sequestration rates estimated from surface accretion of organic C were similar in organic (216 g C m-2 yr-1) and mineral (145 g C m-2 yr-1) soil types, but varied across geographic locations (41 to 591 g C m-2 yr-1). Subsurface inputs of carbon, which were estimated using measured rates of root matter accumulation and root carbon content, averaged 121 g m-2 yr-1, but exceeded 400 g m-2 yr-1 at several sites. Depths of mangrove peat varied across sites from < 1 m to over 10 m, indicating the potentially large carbon stores that can develop under certain conditions. Rates of carbon accretion at a site in Belize have varied from 90 to 300 g C m-2 yr-1 over 8000 yr. These patterns indicate spatial and temporal variability in SOC and suggest multiple controls on rates of carbon accumulation in mangrove ecosystems.

  4. Modifications to the bottomless lift net for sampling nekton in tidal mangrove forests

    USGS Publications Warehouse

    McIvor, C.C.; Silverman, N.L.

    2010-01-01

    Sampling fishes in vegetated intertidal wetlands is logistically challenging. We modified the 2 ?? 3-m2 bottomless lift net developed for sampling nekton (fish and decapod crustaceans) on the surface of salt marshes for use in tidal mangrove forests with a woody (as opposed to herbaceous) underground root system. As originally designed (Rozas, Mar Ecol Prog Ser 89:287-292, 1992), the lift net was buried directly in the marsh substrate. The net was raised at slack high tide thereby encircling nekton within the enclosed area. A chain-line on the net bottom prevented escape under the net once deployed. However, when we used this same design in tidal mangrove forests, the extensive woody roots and occasional slumping sediments resulted in uneven trenches that could not be cleared effectively during sample recovery. We made 3 modifications to the original net design: (i) lined the peat trenches with aluminum channels of uniform width and depth; (ii) replaced the previous chain-line with Velcro closures that directly attached the net to the inner face of the outer wall of the aluminum channel; and (iii) removed the subtidal pan previously used for concentrating the enclosed nekton at low tide, and filled in those depressions with on-site peat. In the modified version, the aluminum trench became the only subtidal refuge available to nekton, and it was from here that we collected the sample after the forest drained. These modifications permitted high clearing efficiency (93-100%) of fin-clipped individuals of two common species of estuarine resident fishes, Kryptolebias marmoratus (mangrove rivulus) and Bathygobius soporator (frillfin goby). Additionally, the density estimates of grass shrimp (Palaemonetes spp.) increased 10-fold post-modification. ?? 2010 US Government.

  5. Contribution of anammox bacteria to benthic nitrogen cycling in a mangrove forest and shrimp ponds, Haiphong, Vietnam.

    PubMed

    Amano, Teruki; Yoshinaga, Ikuo; Yamagishi, Takao; Thuoc, Chu Van; Thu, Pham The; Ueda, Shingo; Kato, Kenji; Sako, Yoshihiko; Suwa, Yuichi

    2011-01-01

    Mangrove forests are common in subtropical regions, and have received considerable attention as vegetative buffers against anthropogenic N-loading. In this study, we investigated anaerobic ammonium oxidation (anammox) as one of potentially important microbial N-removing pathways in mangrove and shrimp pond sediment in Haiphong, Vietnam. Measurements with (15)N-labeled compounds demonstrated the occurrence of anammox in sediment of mangrove forest and a water channel connecting shrimp ponds to the sea in both 2005 and 2007, and of a semi-intensive shrimp pond in 2005. The rate of potential anammox activity reached to 0.7 nmol-N(2) cm(-3) h(-1), although the contribution of anammox was less significant than denitrification. Anammox-type 16S rRNA gene fragments phylogenetically related to 'Scalindua' species were predominantly recovered from mangrove forest and water channel sediment in a PCR-clone library analysis targeting anammox bacteria. 'Kuenenia'-like gene fragments were also recovered from shrimp pond sediment as the major component. We demonstrated the occurrence of potential anammox activity, and suggested the possibility that diverse species of uncultured anammox bacteria contribute to the nitrogen cycle in subtropical mangrove-aquaculture ecosystems. Furthermore, this study provides new insight into the biogeography of anammox bacteria: 'Scalindua' and 'Kuenenia'-like species coexisted in the blackish sediment as in some temperate estuarine sediment. PMID:21487196

  6. Creation of a high spatiotemporal resolution global database of continuous mangrove forest cover for the 21st Century (CGMFC-21): A big-data fusion approach

    E-print Network

    Hamilton, Stuart

    2014-01-01

    CGMFC-21 provides high resolution local, regional, national, and global estimates of annual mangrove forest levels using continuous data from 2000 through to 2012 with the goal of driving mangrove research questions pertaining to biodiversity, climate change, food security, livelihoods, fisheries support, and conservation that have been hindered until now by a lack of suitable data. CGMFC-21 provides the required spatiotemporal resolutions to not only set REDD baseline measures globally in a systematic manner, but also to account for forest degradation as well as deforestation on an annual basis. Countries showing relatively high levels of 21st Century mangrove loss include Myanmar, Guatemala, Malaysia, Cambodia, and Indonesia. Many nations that have reported mangrove deforestation in earlier periods such as Ecuador, Bangladesh and Nigeria, have stabilized their mangrove levels during this period. Indonesia remains by far the largest mangrove holding nation containing between 26.16% and 28.50% of the global m...

  7. Changes in mass and nutrient content of wood during decomposition in a south Florida mangrove forest

    USGS Publications Warehouse

    Romero, L.M.; Smith, T. J., III; Fourqurean, J.W.

    2005-01-01

    1 Large pools of dead wood in mangrove forests following disturbances such as hurricanes may influence nutrient fluxes. We hypothesized that decomposition of wood of mangroves from Florida, USA (Avicennia germinans, Laguncularia racemosa and Rhizophora mangle), and the consequent nutrient dynamics, would depend on species, location in the forest relative to freshwater and marine influences and whether the wood was standing, lying on the sediment surface or buried. 2 Wood disks (8-10 cm diameter, 1 cm thick) from each species were set to decompose at sites along the Shark River, either buried in the sediment, on the soil surface or in the air (above both the soil surface and high tide elevation). 3 A simple exponential model described the decay of wood in the air, and neither species nor site had any effect on the decay coefficient during the first 13 months of decomposition. 4 Over 28 months of decomposition, buried and surface disks decomposed following a two-component model, with labile and refractory components. Avicennia germinans had the largest labile component (18 ?? 2% of dry weight), while Laguncularia racemosa had the lowest (10 ?? 2%). Labile components decayed at rates of 0.37-23.71% month -1, while refractory components decayed at rates of 0.001-0.033% month-1. Disks decomposing on the soil surface had higher decay rates than buried disks, but both were higher than disks in the air. All species had similar decay rates of the labile and refractory components, but A. germinans exhibited faster overall decay because of a higher proportion of labile components. 5 Nitrogen content generally increased in buried and surface disks, but there was little change in N content of disks in the air over the 2-year study. Between 17% and 68% of total phosphorus in wood leached out during the first 2 months of decomposition, with buried disks having the greater losses, P remaining constant or increasing slightly thereafter. 6 Newly deposited wood from living trees was a short-term source of N for the ecosystem but, by the end of 2 years, had become a net sink. Wood, however, remained a source of P for the ecosystem. 7 As in other forested ecosystems, coarse woody debris can have a significant impact on carbon and nutrient dynamics in mangrove forests. The prevalence of disturbances, such as hurricanes, that can deposit large amounts of wood on the forest floor accentuates the importance of downed wood in these forests. ?? 2005 British Ecological Society.

  8. Is Matang Mangrove Forest in Malaysia Sustainably Rejuvenating after More than a Century of Conservation and Harvesting Management?

    PubMed Central

    Van der Stocken, Tom; Quispe Zuniga, Melissa; Mohd-Lokman, Husain; Sulong, Ibrahim

    2014-01-01

    Matang Mangrove Forest Reserve (MMFR) in Peninsular Malaysia is under systematic management since 1902 and still considered as the best managed mangrove forest in the world. The present study on silvimetrics assessed the ongoing MMFR forest management, which includes a first thinning after 15 years, a second thinning after 20 years and clear-felling of 30-year old forest blocks, for its efficiency and productivity in comparison to natural mangroves. The estimated tree structural parameters (e.g. density, frequency) from three different-aged mangrove blocks of fifteen (MF15), twenty (MF20), and thirty (MF30) years old indicated that Bruguiera and Excoecaria spp. did not constitute a significant proportion of the vegetation (<5%), and hence the results focused majorly on Rhizophora apiculata. The density of R. apiculata at MF15, MF20 and MF30 was 4,331, 2,753 and 1,767 stems ha?1, respectively. In relation to ongoing practices of the artificial thinnings at MMFR, the present study suggests that the first thinning could be made earlier to limit the loss of exploitable wood due to natural thinning. In fact, the initial density at MF15 was expected to drop down from 6,726 to 1,858 trees ha?1 before the first thinning. Therefore the trees likely to qualify for natural thinning, though having a smaller stem diameter, should be exploited for domestic/commercial purposes at an earlier stage. The clear-felling block (MF30) with a maximum stem diameter of 30 cm was estimated to yield 372 t ha?1 of the above-ground biomass and suggests that the mangrove management based on a 30-year rotation is appropriate for the MMFR. Since Matang is the only iconic site that practicing sustainable wood production, it could be an exemplary to other mangrove locations for their improved management. PMID:25144689

  9. VOLUNTEER MONITORING OF FOREST RESTORATION

    Microsoft Academic Search

    Nikki Susan May

    A great deal of effort goes into forest restoration but very little is devoted to monitoring the results. In consequence, the progress of many restoration projects is unknown. This thesis discusses the assessment of a suite of straightforward methods that might be used by volunteers to evaluate the progress of forest restoration projects. The effectiveness of these methods was determined

  10. Wave Attenuation in Mangrove Forests Numerical modelling of wave attenuation by implementation of a physical description of vegetation in SWAN

    E-print Network

    Langendoen, Koen

    . In Guyana, Royal Haskoning participates as a consultant in an Integrated Coastal Zone Management project to saline environments, which enable them to grow in the inter-tidal zone. Very diverse flora and fauna can. Mangrove forests act as a natural coastal protection. The most important features of this protection

  11. Leaf litter removal by the snail Terebralia palustris (Linnaeus) and sesarmid crabs in an East African mangrove forest (Gazi Bay, Kenya)

    Microsoft Academic Search

    F. J Slim; M. A. Hemminga; C. Ochieng; N. T Jannink; E Cocheret de la Morinière; G. Van der Velde

    1997-01-01

    Quantitative data on leaf litter removal activity of macrozoobenthic organisms in the mangrove forests of East Africa are virtually non-existent. In the present study, litter removal activity was determined in two contrasting types of mangrove stands in Gazi Bay (Kenya). In the relatively elevated Ceriops tagal vegetation, which is only flooded during spring tides, the detritivorous snail Terebralia palustris (Linnaeus)

  12. Nitrogen fixation (acetylene reduction) associated with communities of heterocystous and non-heterocystous blue-green algae in mangrove forests of Sinai

    Microsoft Academic Search

    M. Potts; Heinz Steinitz

    1979-01-01

    High rates of nitrogen fixation (acetylene reduction) are associated with communities of heterocystous and non-heterocystous blue-green algae, which are widespread and abundant in the coastal mangrove forests of the Sinai Peninsula.

  13. Mangroves: Living Filters

    NSDL National Science Digital Library

    Pulse of the Planet

    2008-03-26

    In this two-minute radio program, a marine biology professor points out a number of the ecological functions that coastal mangrove forests perform. For example, he explains that mangrove forests serve as filters and nursery areas for fish. He contends that there are ecological and economic reasons to conserve mangroves. The archived program, part of the Pulse of the Planet radio show, is available here in text and audio formats. Copyright 2005 Eisenhower National Clearinghouse

  14. Gas-phase carbon exchange between mangrove forests and the atmosphere

    NASA Astrophysics Data System (ADS)

    Rayment, Mark

    2013-04-01

    Mangrove ecosystems are believed to be highly productive, storing carbon at rates as high as or higher than terrestrial tropical rainforests. Their high productivity is reflected in the high levels of organic carbon stored within, and exported from, these ecosystems. This includes so-called blue carbon - carbon of terrestrial origin sequestered in coastal margins. Despite their potential importance, significant knowledge gaps exist both in the magnitudes of the components of mangrove carbon balance, and the factors controlling them. These gaps result from the lack of primary datasets, which is itself a consequence of the complex nature of mangrove ecosystems, and of the difficult working conditions found there. Here, we report on a study designed to elucidate some of the environmental controls on the exchange of CO2 and CH4 to and from intact mangrove ecosystems in East Africa. Gazi Bay (4° 25'S, 39° 30'E), south of Mombasa, Kenya, encompasses around 600 ha of mangrove forest, including partially and severely degraded stands as well as restored areas. The area contains all 10 species of mangrove found in East Africa, including mono-specific areas of the two most common species, Avicennia marina and Rhizophora mucronata, sufficiently extensive for robust eddy covariance (EC) measurements. During 2012, open path EC measurements were made at both Avicennia marina and Rhizophora mucronata sites throughout a spring/neap tidal cycle. Flux data were fitted to a simple model describing the ecosystem level response to environmental variables. Stands of both species exhibited higher maximum net ecosystem uptake, but lower apparent quantum efficiency and lower dark respiration when inundated by high tides. Maximum net ecosystem uptake was higher in Rhizophora (12.8 (dry) - 16.5 (wet) ?mol m-2 s-1) than in Avicennia (5.1 (dry) - 5.9 (wet) ?mol m-2 s-1). Apparent quantum efficiency was twice as high in Rhizophora (0.09 (wet) - 0.12 (dry) mol mol-1) than in Avicennia (0.03 (wet) - 0.06 (dry) mol mol-1). Dark respiration rates were broadly similar when the tide was out (8.3 ?mol m-2 s-1 (Rhizophora), 7.3 ?mol m-2 s-1 (Avicennia)), but high tide reduced respiration much more in Avicennia (0.5 ?mol m-2 s-1) than in Rhizophora (7.5 ?mol m-2 s-1). Methane exchange between the Rhizophora ecosystem and the atmosphere was small and dependant on tidal state, varying between a methane consumption of around 0.2 mg (C) m-2 hr-1 at low and incoming tide to a methane production of around 2.5 mg (C) m-2 hr-1 during outgoing tides. The Avicennia ecosystem was consistently a small consumer of methane (ca. 0.2 mg (C) m-2 hr-1).

  15. Hurricane Wilma’s impact on overall soil elevation and zones within the soil profile in a mangrove forest

    Microsoft Academic Search

    Kevin R. T. Whelan; Thomas J. Smith III; Gordon H. Anderson; Michelle L. Ouellette

    2009-01-01

    Soil elevation affects tidal inundation period, inundation frequency, and overall hydroperiod, all of which are important\\u000a ecological factors affecting species recruitment, composition, and survival in wetlands. Hurricanes can dramatically affect\\u000a a site’s soil elevation. We assessed the impact of Hurricane Wilma (2005) on soil elevation at a mangrove forest location\\u000a along the Shark River in Everglades National Park, Florida, USA.

  16. Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia

    USGS Publications Warehouse

    Cormier, Nicole; Twilley, Robert R.; Ewel, Katherine C.; Krauss, Ken W.

    2015-01-01

    Belowground biomass is thought to account for much of the total biomass in mangrove forests and may be related to soil fertility. The Yela River and the Sapwalap River, Federated States of Micronesia, contain a natural soil resource gradient defined by total phosphorus (P) density ranging from 0.05 to 0.42 mg cm?3 in different hydrogeomorphic settings. We used this fertility gradient to test the hypothesis that edaphic conditions constrain mangrove productivity through differential allocation of biomass to belowground roots. We removed sequential cores and implanted root ingrowth bags to measure in situ biomass and productivity, respectively. Belowground root biomass values ranged among sites from 0.448 ± 0.096 to 2.641 ± 0.534 kg m?2. Root productivity (roots ?20 mm) did not vary significantly along the gradient (P = 0.3355) or with P fertilization after 6 months (P = 0.2968). Fine root productivity (roots ?2 mm), however, did vary significantly among sites (P = 0.0363) and ranged from 45.88 ± 21.37 to 118.66 ± 38.05 g m?2 year?1. The distribution of total standing root biomass and fine root productivity followed patterns of N:P ratios as hypothesized, with larger root mass generally associated with lower relative P concentrations. Many of the processes of nutrient acquisition reported from nutrient-limited mangrove forests may also occur in forests of greater biomass and productivity when growing along soil nutrient gradients.

  17. Spatio-temporal assessment of ecological disturbance and its intensity in the Mangrove forest using MODIS derived disturbance index

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Das, P. K.; Paul, S.; Sharma, J. R.; Dadhwal, V. K.

    2014-11-01

    The mangrove ecosystem of Sundarbans region plays an important ecological and socio-economical role in both India and Bangladesh. The ecological disturbance in the coastal mangrove forests are mainly attributed to the periodic cyclones caused by deep depression formed over the Bay of Bengal. In the present study, three of the major cyclones in the Sundarbans region were analyzed to establish the cause-and-effect relationship between cyclones and the resultant ecological disturbance. The Moderate Resolution Imaging Spectroradiometer (MODIS) time-series data was used to generate MODIS global disturbance index (MGDI) and its potential was explored to assess the instantaneous ecological disturbance caused by cyclones with varying landfall intensities and at different stages of mangrove phenology. The time-series MGDI was converted into the percentage change in MGDI using its multi-year mean for each pixel, and its response towards several cyclonic events was studied. The affected areas were identified by analyzing the Landsat-8 satellite data before and after the cyclone and the MGDI values of the affected areas were utilized to develop the threshold for delineation of the disturbed pixels. The selected threshold was applied on the time-series MGDI images to delineate the disturbed areas for each year individually to identify the frequently disturbed areas. The classified intensity map could able to detect the chronically affected areas, which can serve as a valuable input towards modelling the biomigration of the invasive species and efficient forest management.

  18. Sedimentation within and among mangrove forests along a gradient of geomorphological settings

    NASA Astrophysics Data System (ADS)

    Adame, María Fernanda; Neil, David; Wright, Sara F.; Lovelock, Catherine E.

    2010-01-01

    Coastal wetlands provide important ecological services to the coastal zone, one of which is sediment retention. In this study we investigated sediment retention across a range of geomorphological settings and across vegetation zones comprising coastal wetlands. We selected six coastal wetlands dominated by mangroves over a gradient from riverine to tidal settings in Southeast Queensland, Australia. Each site was comprised of three distinct vegetation communities distributed as parallel zones to the coast line: seaward fringe mangroves, landward scrub mangroves and saltmarsh/ cyanobacteria mat of the high intertidal zone. We measured suspended sediment retention and sedimentation rates. Additionally, in order to assess the origin of sediment transported and deposited in the mangroves, glomalin, a novel terrestrial soil carbon tracer, was used. Our results show a mean average sedimentation of 0.64 ± 0.01 mg cm -2 spring tide -1, which was variable within sites, regardless of geomorphological setting. However, geomorphological setting influenced spatial patterns of sediment deposition. Riverine mangroves had a more homogeneous distribution of sediments across the intertidal zone than tidal mangroves, where most sedimentation occurred in the fringe zone. Overall, the fringe zone retained the majority of sediment entering the coastal wetland during a tidal cycle with 0.90 ± 0.22 mg cm -2 spring tide -1, accounting for 52.5 ± 12.5% of the total sedimentation. The presence of glomalin in suspended sediments, and thus the relative importance of terrigenous sediment, was strongly influenced by geomorphological setting, with riverine mangroves receiving more glomalin in suspended solids than tidal mangroves. Glomalin was also differentially deposited within the vegetation zones at different geomorphological settings: primarily at the fringe zone of tidal mangroves and within the scrub zone of riverine mangroves. The differences we observed in the spatial distribution of sedimentation and the difference in the origin of the sediment deposited in riverine and tidal mangroves are likely to have an impact on ecological processes.

  19. FOREST HEALTH MONITORING FIELD METHODS GUIDE

    EPA Science Inventory

    This EMAP-FHM methods Guide is intended to instruct forest Health Monitors when collecting data on forest health indicators; site condition, growth and regeneration, crown condition, tree damage and mortality assessment, photosynthetically active radiation, vegetation structure, ...

  20. Influence of human disturbance on patterns of leaf herbivory at Gazi Bay mangrove forest, Kenya

    Microsoft Academic Search

    C M Kihia; J M Mathooko; R K Ruwa; W A Shivoga

    2011-01-01

    Mangrove herbivores cause leaf serration, perforation and galls prior to leaf abscission. This study compared damage by herbivores on leaves of four mangrove species at sites under different levels of human physical disturbance, and provides further evidence of the indirect effects of man on these valuable habitats. From 2001 to 2003 leaves collected fortnightly using litter traps were examined for

  1. Nutrient dynamics and leaf litter decomposition in a subtropical mangrove forest at Oura Bay, Okinawa, Japan

    Microsoft Academic Search

    P. L. Mfilinge; N. Atta; M. Tsuchiya

    2002-01-01

    Dynamics of nutrients (carbon, nitrogen and phosphorus) in decomposing leaves was studied using litterbags in a subtropical mangrove dominated by Bruguiera gymnorrhiza (L.) Lamk and Kandelia candel (L.) Druce (Okinawa, Japan). In addition to fresh yellow leaves, degradation of treated leaves (dried at 50°C and 80°C) was also investigated. Comparison was made between species, locations (lower and upper mangroves) and

  2. Coastal erosion due to long-term human impact on mangrove forests

    Microsoft Academic Search

    Yoshihiro Mazda; Michimasa Magi; Hitonori Nanao; Motohiko Kogo; Toyohiko Miyagi; Nobuyuki Kanazawa; Daijiro Kobashi

    2002-01-01

    A coast in southern Vietnam, which is located in a wide and flat alluvial fan and neighbors tidal rivers fringed by wide mangrove swamps, has been eroded continuously by approximately 50 m\\/year since the early 20th century. Based on field observations and numerical experiments, it is inferred that this large scale erosion is caused by the transition of mangrove vegetation

  3. Oviposition and Larval Habitat Preferences of the Saltwater Mosquito, Aedes vigilax, in a Subtropical Mangrove Forest in Queensland, Australia

    PubMed Central

    Knight, Jon; Griffin, Lachlan; Dale, Pat; Phinn, Stuart

    2012-01-01

    Our aim was to investigate the oviposition and larval habitats of the saltwater mosquito Aedes vigilax (Skuse) (Diptera: Culicidae) in a mangrove forest system in subtropical Queensland, Australia. Eggshells (indicators of oviposition) and larvae were sampled in three habitat classes that were depicted in a schematic model. Two classes were in depressions or basins, either with hummocks or dense pneumatophore substrates, both of which retained water after tidal flooding. The third class was in freely flushed mangroves that corresponded with more frequent tidal connections than the depression classes. ANOVA and Tukey-Kramer tests were used to analyze the data. The null hypotheses were rejected: the hummock class was a significant habitat based on both eggshell and larval data. The conclusion was that mosquito production in the mangrove system was distributed unevenly between habitat classes, and that the hummock class had conditions suited to the requirements of the immature stages of Ae. vigilax. This research has the potential to inform mosquito management strategies by focusing treatment on the problem habitats and underpinning habitat modifications including reducing water retention in the basins. PMID:22938052

  4. Forest fire monitoring with multiple small UAVs

    Microsoft Academic Search

    David W. Casbeer; Randal W. Beard; T. W. McLain; Sai-Ming Li; R. K. Mehra

    2005-01-01

    Frequent updates concerning the progress of a forest fire are essential for effective and safe fire fighting. Since a forest fire is typically inaccessible by ground vehicles due to mountainous terrain, small unmanned air vehicles (UAVs) are emerging as a promising means of monitoring large forest fires. We present an effective UAV path planning algorithm utilizing infrared images that are

  5. FOREST HEALTH MONITORING - 1991 STATISTICAL SUMMARY

    EPA Science Inventory

    This is a statistical summary of forest measurement data from the Forest Health Monitoring Network. here are now 925 plots in the FHM national network, of which 628 plots are forested. sing a probability sampling design, the installed plots are located systematically throughout t...

  6. Participatory monitoring of changes in coastal and marine biodiversity

    Microsoft Academic Search

    Greg M. Wagner

    This study reports results obtained from participatory monitoring conducted in Tanzania in two types of keystone ecosystems, mangrove forests and coral reefs. The report also analyses participatory monitoring as an effective tool in environmental conservation and management. Participatory monitoring data collected from three mangrove areas subjected to different levels of human impacts, low, moderate and high, clearly indicated the effects

  7. Sinomonas humi sp. nov., an amylolytic actinobacterium isolated from mangrove forest soil.

    PubMed

    Lee, Learn-Han; Azman, Adzzie-Shazleen; Zainal, Nurullhudda; Yin, Wai-Fong; Mutalib, Nurul-Syakima Ab; Chan, Kok-Gan

    2015-03-01

    Strain MUSC 117(T) was isolated from mangrove soil of the Tanjung Lumpur forest in Pahang, Malaysia. This bacterium was yellowish-white pigmented, Gram-staining-positive, rod-coccus shaped and non-motile. On the basis of 16S rRNA gene sequence, strain MUSC 117(T) exhibited highest sequence similarity to Sinomonas atrocyanea DSM 20127(T) (98.0?%), Sinomonas albida LC13(T) (97.9?%) and Sinomonas soli CW 59(T) (97.8?%), and lower (<97.6?%) sequence similarity to other species of the genus Sinomonas. DNA-DNA hybridization experiments revealed a low level of DNA-DNA relatedness (less than 27?%) between strain MUSC 117(T) and closely related species. Chemotaxonomically, the peptidoglycan type was A3?, containing the amino acids lysine, serine, glycine, alanine, glutamic acid and muramic acid. The whole-cell sugars detected were rhamnose, ribose, glucose, galactose and a smaller amount of mannose. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and five unidentified glycolipids. The major fatty acids (>10.0?%) of the cell membrane were anteiso-C15?:?0 (39.4?%), C18?:?1?7c (17.7?%), anteiso-C17?:?0 (17.2?%) and iso-C16?:?0 (11.4?%). The predominant respiratory quinones detected were MK-9(H2) and MK-9. The DNA G+C content was 67.3 mol%. A comparison of BOX-PCR fingerprints indicated that strain MUSC 117(T) represented a unique DNA profile. Results based on a polyphasic approach showed that strain MUSC 117(T) represents a novel species of the genus Sinomonas, for which the name Sinomonas humi sp. nov. is proposed. The type strain of Sinomonas humi sp. nov. is MUSC 117(T) (?=?DSM 29362(T)?=?MCCC 1K00410(T)?=?NBRC 110653(T)). PMID:25563924

  8. Seasonal variability of leaf litter removal by crabs in a Kandelia candel mangrove forest in Jiulongjiang Estuary, China

    NASA Astrophysics Data System (ADS)

    Chen, G. C.; Ye, Y.; Lu, C. Y.

    2008-09-01

    The seasonal variability of leaf litter removal by crabs was observed from May 2006 to April 2007 in a Kandelia candel mangrove forest in Jiulongjiang Estuary, China. Daily average quantities of leaf fall ranged 0.85-3.86 gDW m -2 d -1, with high values in May, August, October and November. The whole-year's leaf fall was 6.48 t ha -1 yr -1 (1.81 gDW m -2 d -1). The standing stock of leaf litter on the forest floor was 7.78 gDW m -2 averaged from the whole year's data, with the lowest value in December (1.23 gDW m -2) and the highest in April (16.18 gDW m -2). Annually averaged removal (consumption on mangrove floor + burial in burrows) rate of leaf litter by crabs was 0.59 gDW m -2 d -1. High seasonal variability was observed in the removal rates of leaf litter by crabs. Removal rates in the winter months (December, January and February) were 0.07-0.09 gDW m -2 d -1, much lower than those in other months with values of 0.59-1.18 gDW m -2 d -1. Annually averaged percentage of leaf fall removed by crabs was 33%, with the highest values in September (reached 76%) and the lowest values in winter months. Of leaf litter removed by crabs, a large proportion was buried by crabs, and only 12% was consumed by crabs on the forest floor. Leaf litter removal rate, consumption rate on the forest floor, percentages of leaf fall and standing stock removed on the forest floor were significantly positively correlated with air temperature, indicating that leaf removal ability by crabs was higher in warm months than in cold months.

  9. Understanding sources of carbon from a coastal mangrove forest: Shark River - Everglades National Park

    NASA Astrophysics Data System (ADS)

    Palya, A. P.; Anderson, W. T.; Jaffe, R.; Swart, P. K.

    2012-12-01

    Tropical and subtropical estuaries, particularly those occupied by mangrove forests, sequester a large amount of carbon dioxide from the atmosphere to be stored in biomass and ultimately in sediments. However, a significant portion of this carbon is lost as dissolved organic carbon (DOC) exported to the ocean. Therefore, the processes that transform and transport DOC within estuarine systems are an important part of the global carbon cycle. Analysis of stable carbon isotopes can provide insight on carbon dynamics in these coastal environments. Although DOC is the largest pool of reduced carbon in the ocean, few measurements of ?13C-DOC have been made for marine waters. Low DOC:DIC ratios and interference from large halide concentrations make such measurements difficult, time consuming, and costly. We have developed an approach that allows for the simultaneous measurement of DOC and ?13C-DOC in marine waters. By coupling a carbon analyzer utilizing a wet chemical oxidation technique to a high sensitivity cavity ring down spectrometer (WCO-CRDS), we are able to analyze ?13C-DOC of marine waters with DOC concentrations as low as 3 ppm C. Our approach uses an ambient atmospheric CO2 CRDS system originally designed to measure at 300 ppm (pCO2) which is an order-of-magnitude more sensitive than standard CRDS systems. This method for seawater analysis was developed by maximizing both the sample and sodium persulfate reagent volumes used in the oxidation reaction, as well as increasing the sodium persulfate concentration. Additionally, we operate the WCO-CRDS system using ultra high purity nitrogen as a carrier gas to prevent the oxidation of halides which reduces damage to the machines. These parameters allow for complete oxidation of the DOC in the sample, which was confirmed using two DOC standards mixed in an artificial seawater with a salinity around 30 g/L, and produces a sufficient volume of CO2 for detection and measurement by the CRDS. This configuration enables us to analyze up to 24 samples per day, allowing for a more rapid sample throughput than alternative ?13C-DOC analytical methods including WCO-IRMS. This method was applied to marine samples collected from Shark River (SR) located on the western edge of Everglades National Park. DOC concentrations for water in this estuary typically fall between 2 and 18 ppm, with salinities that range from fresh to marine (~30) where SR empties into the Gulf of Mexico. Water samples were collected from Florida Coastal Everglades LTER sampling sites located in SR and analyzed for DOC concentration and ?13C-DOC composition. DOC concentration ranged from 6 to 15 ppm and ?13C-DOC values were between -32 and -27.8‰. These results are also compared to the ?13C-DIC data from the same samples. These results indicate that mangroves are the major contributor to the DOC pool in SR. The new WCO-CRDS method will enable us to continue analysis of DOC and ?13C-DOC in marine waters, such as the Shark River estuary, to better understand C dynamics. With this approach will be able to build a dataset to help identify spatial and temporal variations in and controls on DOC and ?13C-DOC in these coastal marine settings, which are an important interface between atmospheric and oceanic carbon reservoirs.

  10. Sedimentation within and among mangrove forests along a gradient of geomorphological settings

    Microsoft Academic Search

    María Fernanda Adame; David Neil; Sara F. Wright; Catherine E. Lovelock

    2010-01-01

    Coastal wetlands provide important ecological services to the coastal zone, one of which is sediment retention. In this study we investigated sediment retention across a range of geomorphological settings and across vegetation zones comprising coastal wetlands. We selected six coastal wetlands dominated by mangroves over a gradient from riverine to tidal settings in Southeast Queensland, Australia. Each site was comprised

  11. Mangrove Rehabilitation and Intertidal Biodiversity: a Study in the Ranong Mangrove Ecosystem, Thailand

    NASA Astrophysics Data System (ADS)

    Macintosh, D. J.; Ashton, E. C.; Havanon, S.

    2002-09-01

    The diversity, abundance, biomass and community structure of crustacean and molluscan macrofauna were studied in the Ranong mangrove forest ecosystem on the Andaman Sea coast of southern Thailand. After a history of commercial exploitation the mangroves along the Klong Ngao tidal creek have been assigned conservation status within a new Ranong Biosphere Reserve established in 1997. Over the past 12 years, several areas of mangrove destroyed or degraded by wood harvesting, tin mining and aquaculture, have been rehabilitated on a pilot basis by planting monocultures of mangrove seedlings using four common local species ( Rhizophora apiculata, R. mucronata, Bruguiera cyclindrica and Ceriops tagal). These plantation forests with different past management histories were compared with a natural, mixed, mature mangrove forest which has been conserved for about 40 years. Macrofauna were sampled within a 100 m 2 vegetation quadrat in each study site. Crustaceans were sampled quantitatively by 3×15 min timed hand catches per site. Molluscs were sampled in 3× m 2 quadrats positioned around three randomly selected trees in each vegetation quadrat. The lowest crustacean and molluscan diversity was recorded from the former tin mining site. The highest diversity was recorded from a Rhizophora plantation in the natural mixed forest area for both crustaceans and molluscs. The vegetation community structure was not correlated with the environmental variables measured, or with macrofauna community structure. Of the environmental parameters chosen, the crustacean community structure was best expressed by shore level, while for molluscan diversity and abundance it was soil moisture content. The macrofauna community structure at the tin mining site was significantly different to the other sites, and was dominated by a single species of crab, Metaplax elegans. Grapsid crabs, especially sesarmid species, dominated over ocypodid crabs in the mature forest site, whereas Uca species and other ocypodids were more abundant than grapsids in the degraded concession forest area. Snails of the families Neritidae and Ellobiidae were the most abundant molluscs in the mature forest, whereas Littoriinidae, Assimineidae and Potamidae species were more representative of the younger plantation sites. The findings from this study suggest that some of these well represented families of mangrove macrofauna could be used as indicators of ecological change as part of a long term environmental monitoring programme in Ranong and other areas in Southeast Asia where mangroves are being rehabilitated.

  12. Comparing annual MODIS and PRODES forest cover change data for advancing monitoring of Brazilian forest cover

    E-print Network

    Camara, Gilberto

    Comparing annual MODIS and PRODES forest cover change data for advancing monitoring of Brazilian Keywords: Forest Land cover Monitoring Change detection Deforestation MODIS Annual forest cover loss Resolution Imaging Spectroradiometer (MODIS) were compared with annual deforestation data from the PRODES

  13. Differential Responses of Net Ecosystem Exchange of Carbon Dioxide to Light and Temperature between Spring and Neap Tides in Subtropical Mangrove Forests

    PubMed Central

    Li, Qing; Lu, Weizhi; Chen, Hui; Luo, Yiqi; Lin, Guanghui

    2014-01-01

    The eddy flux data with field records of tidal water inundation depths of the year 2010 from two mangroves forests in southern China were analyzed to investigate the tidal effect on mangrove carbon cycle. We compared the net ecosystem exchange (NEE) and its responses to light and temperature, respectively, between spring tide and neap tide inundation periods. For the most time of the year 2010, higher daytime NEE values were found during spring tides than during neap tides at both study sites. Regression analysis of daytime NEE to photosynthetically active radiation (PAR) using the Landsberg model showed increased sensitivity of NEE to PAR with higher maximum photosynthetic rate during spring tides than neap tides. In contrast, the light compensation points acquired from the regression function of the Landsberg model were smaller during spring tides than neap tides in most months. The dependence of nighttime NEE on soil temperature was lower under spring tide than under neap tides. All these results above indicated that ecosystem carbon uptake rates of mangrove forests were strengthened, while ecosystem respirations were inhibited during spring tides in comparison with those during neap tides, which needs to be considered in modeling mangrove ecosystem carbon cycle under future sea level rise scenarios. PMID:25133267

  14. Differential responses of net ecosystem exchange of carbon dioxide to light and temperature between spring and neap tides in subtropical mangrove forests.

    PubMed

    Li, Qing; Lu, Weizhi; Chen, Hui; Luo, Yiqi; Lin, Guanghui

    2014-01-01

    The eddy flux data with field records of tidal water inundation depths of the year 2010 from two mangroves forests in southern China were analyzed to investigate the tidal effect on mangrove carbon cycle. We compared the net ecosystem exchange (NEE) and its responses to light and temperature, respectively, between spring tide and neap tide inundation periods. For the most time of the year 2010, higher daytime NEE values were found during spring tides than during neap tides at both study sites. Regression analysis of daytime NEE to photosynthetically active radiation (PAR) using the Landsberg model showed increased sensitivity of NEE to PAR with higher maximum photosynthetic rate during spring tides than neap tides. In contrast, the light compensation points acquired from the regression function of the Landsberg model were smaller during spring tides than neap tides in most months. The dependence of nighttime NEE on soil temperature was lower under spring tide than under neap tides. All these results above indicated that ecosystem carbon uptake rates of mangrove forests were strengthened, while ecosystem respirations were inhibited during spring tides in comparison with those during neap tides, which needs to be considered in modeling mangrove ecosystem carbon cycle under future sea level rise scenarios. PMID:25133267

  15. FOREST HEALTH MONITORING PLOT DESIGN AND LOGISTICS STUDY

    EPA Science Inventory

    Concern over the condition of forests in relation to natural and manmade stresses has led to an interagency Forest Health Monitoring program. o improve the efficiency of forest monitoring, the forest group of EPA's Environmental Monitoring and Assessment Program conducted a field...

  16. Decomposition of mangrove roots: Effects of location, nutrients, species identity and mix in a Kenyan forest

    NASA Astrophysics Data System (ADS)

    Huxham, Mark; Langat, Joseph; Tamooh, Fredrick; Kennedy, Hilary; Mencuccini, Maurizio; Skov, Martin W.; Kairo, James

    2010-06-01

    Mangrove trees may allocate >50% of their biomass to roots. Dead roots often form peat, which can make mangroves significant carbon sinks and allow them to raise the soil surface and thus survive rising sea levels. Understanding mangrove root production and decomposition is hence of theoretical and applied importance. The current work explored the effects of species, site, and root size and root nutrients on decomposition. Decomposition of fine (?3 mm diameter) and coarse (>3 mm diameter, up to a maximum of ˜9 mm) roots from three mangrove species, Avicennia marina, Bruguiera gymnorrhiza and Ceriops tagal was measured over 12 months at 6 sites along a tidal gradient in Gazi Bay, Kenya. C:N and P:N ratios in fresh and decomposed roots were measured, and the effects on decomposition of root size and age, of mixing roots from A. marina and C. tagal, of enriching B. gymnorrhiza roots with N and P and of artefacts caused by bagging roots were recorded. There were significant differences between species, with 76, 47 and 44 % mean dry weight lost after one year for A. marina, B. gymnorrhiza and C. tagal respectively, and between sites, with generally slower decomposition at dryer, high tidal areas. N enriched B. gymnorrhiza roots decomposed significantly faster than un-enriched controls; there was no effect of P enrichment. Mixing A. marina and C. tagal roots caused significantly enhanced decomposition in C. tagal. These results suggest that N availability was an important determinant of decomposition, since differences between species reflected the initial C: N ratios. The relatively slow decomposition rates recorded concur with other studies, and may overestimate natural rates, since larger (10-20 mm diameter), more mature and un-bagged roots all showed significantly slower rates.

  17. Influence of a microhabitat on the structuring of the benthic macrofaunal community in a mangrove forest

    Microsoft Academic Search

    Koetsu Kon; Hisashi Kurokura; Prasert Tongnunui

    2011-01-01

    Habitat heterogeneity contributes to the maintenance of species diversity; however, little is known about the influence of\\u000a microhabitat heterogeneity on the diversity of mangrove invertebrates. We tested the hypothesis that the structures of benthic\\u000a faunal communities differ among microhabitats because each microhabitat function differs widely according to their physical\\u000a properties. The descriptors of invertebrate assemblages were determined every March (dry

  18. Assessing forest products usage and local residents' perception of environmental changes in peri-urban and rural mangroves of Cameroon, Central Africa

    PubMed Central

    2011-01-01

    Background Deforestation is one of the most ubiquitous forms of land degradation worldwide. Although remote sensing and aerial photographs can supply valuable information on land/use cover changes, they may not regularly be available for some tropical coasts (e.g., Cameroon estuary) where cloud cover is frequent. With respect to mangroves, researchers are now employing local knowledge as an alternative means of understanding forest disturbances. This paper was primarily aimed at assessing the mangrove forest products usage, along with the local people's perceptions on environmental changes, between Littoral (Cameroon estuary) and Southern (mouth of the Nyong River and Mpalla village) regions of Cameroon. Methods The data from both locations were obtained through conducting household interviews and field observations. Results In the Cameroon estuary (Littoral region), 69.23% of respondents (mostly elders) could distinguish two to four mangrove plants, whereas the informants (65.45%) in the mouth of the Nyong River and Mpalla village (mostly young people interviewed from the Southern region) are familiar with only one or two commonly found mangroves. Also, more respondents from the Cameroon estuary are depending on mangroves for fuelwood (Rhizophora spp.) and housing (Rhizophora spp., Avicennia germinans (L.) Stearn and Nypa fruticans (Thumb.) Wurmb.) purposes, in contrast to Nyong River mouth and Mpalla village. Although local people perceived wood extraction as a greater disruptive factor, there are several causes for mangrove depletion in the Cameroon estuary. Among others, over-harvesting, clear-felled corridors, sand extraction and housing were found important. Furthermore, a decline in mangrove fauna composition (in terms of fishery products) was recorded in the Littoral as well as Southern regions. However, the causes of such perceived negative changes were not similar in both cases. Conclusions Findings of this study highlight the need to improve sustainable management of the mangrove ecosystems through afforestation (in large impacted areas), selective removal of senescent tree stems and branches (in little damage stands), regulating sand extraction and housing activities, and creating awareness and law enforcement. PMID:22146073

  19. National Satellite Forest Monitoring systems for REDD+

    NASA Astrophysics Data System (ADS)

    Jonckheere, I. G.

    2012-12-01

    Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. "REDD+" goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. In the framework of getting countries ready for REDD+, the UN-REDD Programme assists developing countries to prepare and implement national REDD+ strategies. For the monitoring, reporting and verification, FAO supports the countries to develop national satellite forest monitoring systems that allow for credible measurement, reporting and verification (MRV) of REDD+ activities. These are among the most critical elements for the successful implementation of any REDD+ mechanism. The UN-REDD Programme through a joint effort of FAO and Brazil's National Space Agency, INPE, is supporting countries to develop cost- effective, robust and compatible national monitoring and MRV systems, providing tools, methodologies, training and knowledge sharing that help countries to strengthen their technical and institutional capacity for effective MRV systems. To develop strong nationally-owned forest monitoring systems, technical and institutional capacity building is key. The UN-REDD Programme, through FAO, has taken on intensive training together with INPE, and has provided technical help and assistance for in-country training and implementation for national satellite forest monitoring. The goal of the support to UN-REDD pilot countries in this capacity building effort is the training of technical forest people and IT persons from interested REDD+ countries, and to set- up the national satellite forest monitoring systems. The Brazilian forest monitoring system, TerraAmazon, which is used as a basis for this initiative, allows countries to adapt it to country needs and the training on the TerraAmazon system is a tool to enhance existing capacity on carbon monitoring systems. The support with the National Forest Monitoring System will allow these countries to follow all actions related to the implementation of its national REDD+ policies and measures. The monitoring system will work as a platform to obtain information on their REDD+ results and actions, related directly or indirectly to national REDD+ strategies and may also include actions unrelated to carbon assessment, such as forest law enforcement. With the technical assistance of FAO, INPE and other stakeholders, the countries will set up an autonomous operational forest monitoring system. An initial version and the methodologies of the system for DRC and PNG has been launched in Durban, South Africa during COP 17 and in 2012 Paraguay, Viet Nam and Zambia will be launched in Doha, Qatar at COP 18. The access to high-quality satellite data for these countries is crucial for the set-up.

  20. Distribution of actinomycetes, their antagonistic behaviour and the physico-chemical characteristics of the world’s largest tidal mangrove forest

    Microsoft Academic Search

    Anindita Mitra; Subhas Chandra Santra; Joydeep Mukherjee

    2008-01-01

    We examined the relationship between distribution of actinomycetes and antagonistic behaviour with the physico-chemical characteristics\\u000a of the Sundarbans, off the Bay of Bengal, India. Soil\\/sediment samples were collected from three regions: near to the sea,\\u000a intertidal regions and mangrove forests. For the enumeration of actinomycetes, four treatments combining dilution with distilled\\u000a or sea water with or without heating followed by

  1. Heavy metal concentrations in some macrobenthic fauna of the Sundarbans mangrove forest, south west coast of Bangladesh.

    PubMed

    Ahmed, Kawser; Mehedi, Yousuf; Haque, Rezaul; Mondol, Pulakesh

    2011-06-01

    Heavy metal concentrations in some macrobenthic fauna have been reported for the first time from the Sundarbans mangrove forest, south west coast of Bangladesh, in the northern part of Bay of Bengal. The concentration of Fe, Cu, Zn, Cd and Pb in macrobenthos ranged from 235 ± 10.11 to 1,051 ± 38.42, 3.66 ± 0.89 to 7.55 ± 1.29, 76.8 ± 8.55 to 98.5 ± 6.49, 0.46 ± 0.11 to 0.859 ± 0.2 and 4.66 ± 1.17 to 6.77 ± 2.1 ?g/g, respectively. Significant variations (p???0.05) in heavy metal concentrations have been observed among the mud crab, mudskipper and gastropod. However, heavy metal burdens did not vary significantly among the hermit and horseshoe crabs. In mud crab, horseshoe crab and gastropod, heavy metal concentrations were recorded in the sequence: Fe > Zn > Pb > Cu > Cd. Hermit crab and mudskipper contained heavy metals in the order of Fe > Zn > Cu > Pb > Cd. Fe and Zn concentrations were found significantly (p???0.05) higher in macrobenthos. The lead (Pb) concentration found in the edible portion of macrobenthos exceeded the international permissible limits certified by the WHO. Bioconcentration factors >1.00 obtained for Fe (17.05 in mudskipper) and Cd (1.87 in gastropod) indicated that these metals were highly bioaccumulated and biomagnified in benthic fauna of Sundarbans. The findings of this study refer to the potential impact of heavy metals in the mangrove ecosystem of Bangladesh. PMID:20711859

  2. Monitoring Change in Temperate Coniferous Forest Ecosystems

    NASA Technical Reports Server (NTRS)

    Williams, Darrel (Technical Monitor); Woodcock, Curtis E.

    2004-01-01

    The primary goal of this research was to improve monitoring of temperate forest change using remote sensing. In this context, change includes both clearing of forest due to effects such as fire, logging, or land conversion and forest growth and succession. The Landsat 7 ETM+ proved an extremely valuable research tool in this domain. The Landsat 7 program has generated an extremely valuable transformation in the land remote sensing community by making high quality images available for relatively low cost. In addition, the tremendous improvements in the acquisition strategy greatly improved the overall availability of remote sensing images. I believe that from an historical prespective, the Landsat 7 mission will be considered extremely important as the improved image availability will stimulate the use of multitemporal imagery at resolutions useful for local to regional mapping. Also, Landsat 7 has opened the way to global applications of remote sensing at spatial scales where important surface processes and change can be directly monitored. It has been a wonderful experience to have participated on the Landsat 7 Science Team. The research conducted under this project led to contributions in four general domains: I. Improved understanding of the information content of images as a function of spatial resolution; II. Monitoring Forest Change and Succession; III. Development and Integration of Advanced Analysis Methods; and IV. General support of the remote sensing of forests and environmental change. This report is organized according to these topics. This report does not attempt to provide the complete details of the research conducted with support from this grant. That level of detail is provided in the 16 peer reviewed journal articles, 7 book chapters and 5 conference proceedings papers published as part of this grant. This report attempts to explain how the various publications fit together to improve our understanding of how forests are changing and how to monitor forest change with remote sensing. There were no new inventions that resulted from this grant.

  3. Hidden in the mangrove forest: the cryptic intertidal mite Carinozetes mangrovi sp. nov. (Acari, Oribatida, Selenoribatidae).

    PubMed

    Pfingstl, Tobias; Lienhard, Andrea; Jagersbacher-Baumann, Julia

    2014-08-01

    The small archipelago of Bermuda is a geologically young landmass in the Western Atlantic Ocean and recently turned out to be inhabited by a number of intertidal oribatid mites. One newly described species, Carinozetes bermudensis, showed an unusual vast range of habitats like sandy beaches, rocky substrate and mangroves. In the present study, 13 Bermudian populations of C. bermudensis were analysed to verify species integrity of specimens from different microhabitats. A morphometric analysis of 17 continuous variables as well as a molecular genetic investigation of the mitochondrial cytochrome oxidase subunit I revealed the existence of a new species Carinozetes mangrovi sp. nov., inhabiting exclusively intertidal algae growing on mangrove roots. Although both species are morphologically nearly identical, the configuration of the genus-specific ventral carinae represents a clear diagnostic character. The high genetic divergence of approximately 12 % of the cytochrome oxidase subunit I gene sequence between C. bermudensis and C. mangrovi sp. nov. suggests that these two species diverged before the emergence of the Bermuda islands. Accordingly, both of them are older than the geologically young archipelago of Bermuda. PMID:24687175

  4. The application of satellite data for the quantification of mangrove loss and coastal management in the Godavari estuary, East Coast of India.

    PubMed

    Satapathy, D R; Krupadam, R J; Kumar, L Pawan; Wate, S R

    2007-11-01

    The mangrove formations of Godavari estuary are due to silting over many centuries. The estuary covers an area of 62,000 ha of which dense Coringa mangrove forest spread in 6,600 ha. Satellite sensor data was used to detect change in the mangrove cover for a period of 12 years (1992-2004). It was found that an area of about 1,250 ha of mangroves was destroyed by anthropogenic interference like aquaculture, and tree felling etc. It was found that mangrove's spectral response/digital number (DN) value is much lower than non-mangrove vegetation such as plantation and paddy fields in SWIR band. By taking this as an advantage, spectral data was utilized for clear demarcation of mangroves from nearby paddy fields and other vegetation. Simpson's diversity index, which is a measure of biodiversity, was found to be 0.09, showing mangroves dominance. Ecological parameters like mud-flats/swamps, mangrove cover alterations, and biodiversity status are studied in detail for a period of 12 years. The increase in mangrove front towards coast was delineated using remote sensing data. The major advantages of remote sensing data is monitoring of change periodically. The combination of moderate and high-resolution data provided detailed coastal land use maps for implementing coastal regulation measures. The classification accuracy has been achieved is 90%. Overall, simple and viable measures are suggested based on multi-spectral data to sustain this sensitive coastal ecology. PMID:17345010

  5. Occurrence of species-rich crab fauna in a human-impacted mangrove forest questions the application of community analysis as an environmental assessment tool

    NASA Astrophysics Data System (ADS)

    Geist, Simon Joscha; Nordhaus, Inga; Hinrichs, Saskia

    2012-01-01

    Diversity and composition of the intertidal brachyuran crab community in the Segara Anakan Lagoon (SAL), Java, Indonesia, during the dry season of 2005 and the rainy season of 2006, shows that crab community composition and structure alone appeared to be poor indicators for the state of a forest in terms of tree diversity and wood-cutting intensity. The lagoon is surrounded by the largest mangrove stand in Java and is under constant anthropogenic pressure, mainly due to logging, land conversion for agriculture, overfishing and industrial pollution. This study aims to determine the crab community composition at different sites of the lagoon in relation to vegetation composition and sediment parameters. In addition it investigates if mangrove crabs can be used as bioindicators to describe the environmental state of mangrove forests (tree diversity, degree of logging). It was assumed to find a low crab diversity and species richness and a strong dominance of a single species at highly disturbed forest sites compared to moderately disturbed sites. A stratified, hierarchical design was used to sample the crab fauna at 13 stations distributed over the entire lagoon. Additionally, abiotic parameters and vegetation composition were recorded. In total 6463 crabs were caught belonging to 49 species, 5 superfamilies and 10 families, with Ocypodidae and Sesarmidae being the families of most note. Mean density of adult crabs was 27.7 individuals*m -2 and mean biomass was 12.8 g wet mass*m -2 or 1.3 g ash free dry mass*m -2. Density and biomass varied strongly within and between stations but they where within the range reported for other mangrove forests of the Indo-West-Pacific. Species composition was significantly different between stations. The distribution of facultatively leaf-feeding grapsid crabs was related to vegetation parameters (tree, seedling and undergrowth density), but the occurrence of single crab and tree species was not correlated. The distribution of ocypodid crabs, feeding on detritus and microphytobenthos, correlated with sediment characteristics like median grain size and organic content. The crab community was strongly dominated by one species at six stations, however, this was not correlated to the degree of logging. Leaf-feeding crab and mangrove tree diversity was correlated at areas of one hectare (stations), but not at a lower spatial scale (areas of 100 m 2, "zone"). Species richness of leaf-feeding crabs was not linked to forest diversity. Hence a functional relation between leaf-feeding crab and tree species diversity could not be proven.

  6. Toward global baselines and monitoring of forest cover for REDD: the Global Forest Cover Change project

    Microsoft Academic Search

    J. O. Sexton; C. Huang; J. G. Masek; M. Feng; R. Narasimhan; E. F. Vermote; M. C. Hansen; R. E. Wolfe; S. Channan; J. R. Townshend

    2010-01-01

    Monitoring, Reporting, and Verification (MRV) procedures in support of Reducing Emissions from Deforestation and forest Degradation (REDD) require the establishment of historical baselines of forest cover and changes, as well as consistent monitoring of subsequent forest gains and losses over time. Under the NASA MEaSUREs program, the Global Forest Cover Change project is using the USGS Global Land Survey (GLS)

  7. Hyperspectral Indices for Retrieval of Chlorophyll and Nitrogen in Mangroves Using SLC and HYMAP

    NASA Astrophysics Data System (ADS)

    Fauzi, A.; Schlerf, M.; Skidmore, A.; van Gils, H.; Heitkonig, I. M.

    2011-12-01

    Coastal ecosystems, such as mangroves, pose a challenge for chlorophyll (CHL) and nitrogen (N) estimation using Hyperspectral. Mangroves have unique characteristics such as high humidity, wet soils (mud), water logged, and roots on the mangrove floors that provide strong influence to mangrove canopy spectra. This study aims to find optimum Hyperspectral indices for the estimation of CHL and N concentrations at canopy level using HYMAP data of mangrove forests. The common vegetation indices such as SR, NDVI, PVI, TSAVI, and OVI were applied on original spectra as well as first derivative spectra (using the Savitsky and Golay method). The first method was calculating the best indices to estimate CHL using radiative transfer model, SLC (soil-leaf-canopy). The results were tested to HYMAP data. The second method was calculating the best indices to estimate CHL and N from the HYMAP data which then tested to SLC. The first method provides disagreement between indices determined using SLC and applied to HYMAP data. The second method provides good agreement between indices determined using HYMAP data and applied to SLC. The best indices: for CHL estimation dSR=d?544/d?1736, for N estimation PVI = ?514 - 0.9*?676 - 0.1/1.3454. Information on CHL and N concentrations of mangroves are important to monitor nutrient enrichment of coastal zone and their effects to mangrove ecosystem.

  8. [Carbon storage and carbon sink of mangrove wetland: research progress].

    PubMed

    Zhang, Li; Guo, Zhi-hua; Li, Zhi-yong

    2013-04-01

    Mangrove forest is a special wetland forest growing in the inter-tidal zone of tropical and subtropical regions, playing important roles in windbreak, promoting silt sedimentation, resisting extreme events such as cyclones and tsunamis, and protecting coastline, etc. The total area of global mangrove forests is about 152000 km2, only accounting for 0. 4% of all forest area. There are about 230 km2 mangrove forests in China. The mangrove forests in the tropics have an average carbon storage as high as 1023 Mg hm-2, and the global mangrove forests can sequestrate about 0. 18-0. 228 Pg C a-1. In addition to plant species composition, a variety of factors such as air temperature, seawater temperature and salinity, soil physical and chemical properties, atmospheric CO2 concentration, and human activities have significant effects on the carbon storage and sink ability of mangrove forests. Many approaches based onfield measurements, including allometric equations, remote sensing, and model simulation, are applied to quantify the carbon storage and sink ability of mangrove forest wetland. To study the carbon storage and sink ability of mangrove wetland can promote the further understanding of the carbon cycle of mangrove wetland and related controlling mechanisms, being of significance for the protection and rational utilization of mangrove wetland. PMID:23898678

  9. Forest Health Monitoring Program in the United States

    Microsoft Academic Search

    K. W. Stoltel; H. G. Lund

    The United States Department of Agriculture's Forest Service and the U.S. Environmental Protection Agency (EPA) are conducting a multiagency Forest Health Monitoring (FHM) pro- Sam. This program has 4 main components: Detection Monitonng, Evaluation Monitorin g, Intensive Site Ecosystem Monitorin g, and Research on Monitoring Techniques. The focus of the program is to evaluate forest ecosystems for condition, changes, and

  10. Monotoring of mangrove ecosystem in relation with exploration and production activities

    SciTech Connect

    Alamsyah, C.; Dwistiadi, D.

    1996-11-01

    From Indonesia`s initial 13 million hectares of mangrove forests, presently only 2.6 million hectares remains which must be certainly protected. Mangrove swamps are of considerable ecological importance not only because of their use as spawning and feeding grounds for a many variety of fish and shrimps but also of economical importance and last but not least as coastal protection. In such a sensitive ecosystem, i.e. in the mangrove swamp area of Mahakam Delta in East Kalimantan, Indonesia, TOTAL Indonesie, an affiliate of the French oil company {open_quotes}TOTAL{close_quotes} and one of the production sharing contractors of PERTAMINA, the Indonesian owned state oil company, has undertaken its E&P operations since 1974. Realizing the sensitivity of the mangrove area, TOTAL Indonesie has undertaken continuous monitoring of the environment as part of its Environmental Management System. This monitoring is very important not only to measure the impact to the mangrove ecosystem in particular due to TOTAL Indonesie activities but also as a feed back for the environmental management. Physicochemical and biological aspects of the environment are monitored and various measurements are taken covering: (1) Hydrology and hydrodynamics of the water streams i.e. the water quality, productivity and flow characteristic of the region (2) Sedimentation and biodegradation (3) The influence of accidental and chronic pollution mangrove ecosystem (3) Sensitivity of the mangroves. The above monitoring has led to the conclusion that after more than 20 years of operation, there has significant adverse impact to the mangrove ecosystem by the exploration and production activities of Indonesie.

  11. Effects of flooding and warming on soil organic matter mineralization in Avicennia germinans mangrove forests and Juncus roemerianus salt marshes

    NASA Astrophysics Data System (ADS)

    Lewis, David Bruce; Brown, Jewel A.; Jimenez, Kristine L.

    2014-02-01

    Under a changing climate, coastal wetlands experience sea level rise, warming, and vegetation change, all of which may influence organic matter mineralization. In coastal wetlands of subtropical west-central Florida (USA), we investigated how soil carbon (C) and nitrogen (N) mineralization respond to soil water, temperature, and ecosystem type (Avicennia germinans mangrove forest vs. Juncus roemerianus salt marsh). We evaluated how soil respiration and mineral N concentration varied along a soil moisture gradient, and whether these relationships differed between ecosystem types. Then, we manipulated soils in a 28-d laboratory incubation to evaluate how potentially mineralizable C and N respond to temperature (23 vs. 27 °C), soil hydroperiod (inundated 4 vs. 20 h/d), and soil source. Soil saturation and inundation suppressed short-term (minutes to weeks) C mineralization from near-surface soils. Soil CO2 efflux declined by 65% as soil moisture increased from 75% to 85%, and potentially mineralizable C was 18% lower with a 20-h hydroperiod than with a 4-h hydroperiod. Organic C quality appears to be greater in A. germinans than in J. roemerianus soils, as A. germinans soils had higher field CO2 efflux rates and greater mineralizable C:N (despite lower total C:N). Increasing incubation temperature from 23 to 27 °C elevated potentially mineralizable C by 40%, indicating that two symptoms of climate change (increased inundation from sea level rise, and warming) may have opposing effects on soil C mineralization. Temperature sensitivity of C mineralization was high for long-hydroperiod soils, however, suggesting that protection of soil organic matter (SOM) due to prolonged inundation will be undermined by warming. Potentially mineralizable N was greater in J. roemerianus soils, although in situ mineral N was not different between ecosystems, instead correlating positively with SOM. These results indicate that models forecasting soil elevation responses to climate change might include inundation effects on mineralization rates.

  12. Burrow morphology of Uca uruguayensis and Uca leptodactylus (Decapoda: Ocypodidae) from a subtropical mangrove forest in the western Atlantic.

    PubMed

    Machado, Glauco B O; Gusmão-Junior, João B L; Costa, Tânia M

    2013-09-01

    The continuous excavation of burrows by fiddler crabs generates bioturbation in the sediment, which can be estimated from burrow morphology. The aim of the present study was to describe the burrow morphology of Uca uruguayensis and U. leptodactylus and its relationship with demography of resident individuals and to estimate the level of bioturbation in the sediment generated by each species. For all individuals from each of the 2 species, sex was determined and the carapace width (CW; mm) measured. Burrows were characterized according to burrow diameter (BD; mm), maximum burrow depth (MBD; mm) and burrow volume (BV; cm(3) ). The density of each species in the study area was also evaluated. In both species, the males were larger and occupied burrows with higher BV compared to females. Differences between sexes in relation to the burrow characteristics might reflect sexual dimorphism within the group and are probably related to the fact that males use the burrows for mating. BD and BV showed significant positive relationships with the size of resident crabs. The amount of sediment removed per burrow was estimated from mean BV: 10.78 cm(3) of sediment/burrow for U. uruguayensis and 12.38 cm(3) of sediment/burrow for U. leptodactylus. Despite the density and depth differences between the 2 species, the similarity in burrow volume suggests that U. uruguayensis and U. leptodactylus present the same importance in terms of the bioturbation process. Burrow morphology is highly associated with characteristics of the occupant, although extrinsic factors should also be considered, and its description can provide estimates on the bioturbation generated by Uca species in mangrove forests. PMID:24020469

  13. The role of mangroves in attenuating storm surges

    NASA Astrophysics Data System (ADS)

    Zhang, Keqi; Liu, Huiqing; Li, Yuepeng; Xu, Hongzhou; Shen, Jian; Rhome, Jamie; Smith, Thomas J.

    2012-05-01

    Field observations and numerical simulations indicate that the 6-to-30-km-wide mangrove forest along the Gulf Coast of South Florida effectively attenuated storm surges from a Category 3 hurricane, Wilma, and protected the inland wetland by reducing an inundation area of 1800 km2 and restricting surge inundation inside the mangrove zone. The surge amplitude decreases at a rate of 40-50 cm/km across the mangrove forest and at a rate of 20 cm/km across the areas with a mixture of mangrove islands with open water. In contrast, the amplitudes of storm surges at the front of the mangrove zone increase by about 10-30% because of the "blockage" of mangroves to surge water, which can cause greater impacts on structures at the front of mangroves than the case without mangroves. The mangrove forest can also protect the wetlands behind the mangrove zone against surge inundation from a Category 5 hurricane with a fast forward speed of 11.2 m/s (25 mph). However, the forest cannot fully attenuate storm surges from a Category 5 hurricane with a slow forward speed of 2.2 m/s (5 mph) and reduced surges can still affect the wetlands behind the mangrove zone. The effects of widths of mangrove zones on reducing surge amplitudes are nonlinear with large reduction rates (15-30%) for initial width increments and small rates (<5%) for subsequent width increments.

  14. Numerical modelling of tsunami mitigation by mangroves Putu Harry Gunawan

    E-print Network

    Mancini, Simona

    Numerical modelling of tsunami mitigation by mangroves Putu Harry Gunawan LAMA (Laboratoire d'Analyse et de Mathmatiques Appliques) UPEM putu-harry.gunawan@univ.paris-est.fr Abstract Figure 1: Mangrove-Tsunami Model. The role of mangroves (coastal forests) in the mitigation of tsunami impacts is a debated topic

  15. Distinguishing mangrove species with laboratory measurements of hyperspectral leaf reflectance

    Microsoft Academic Search

    Le Wang; Wayne P. Sousa

    2009-01-01

    As a first step in developing classification procedures for remotely acquired hyperspectral mapping of mangrove canopies, we conducted a laboratory study of mangrove leaf spectral reflectance at a study site on the Caribbean coast of Panama, where the mangrove forest canopy is dominated by Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle. Using a high?resolution spectrometer, we measured the reflectance of

  16. Coastal erosion and mangrove progradation of Southern Thailand

    Microsoft Academic Search

    U. Thampanya; J. E. Vermaat; S. Sinsakul; N. Panapitukkul

    2006-01-01

    Approximately 60% of the southern Thai coastline used to be occupied by mangroves according to the first mangrove forest assessment in 1961. During the past three decades, these mangrove areas have been reduced to about 50% with less than 10% left on the east coast. Coastal erosion and accretion occur irregularly along the coast but an intensification of erosion has

  17. Recent advances in understanding Colombian mangroves

    NASA Astrophysics Data System (ADS)

    Polanía, J.; Urrego, L. E.; Agudelo, C. M.

    2015-02-01

    Throughout the last 15 years, researchers at the National University of Colombia at Medellin have studied Colombian mangroves. Remote sensing, pollen analysis of superficial and deep sediments, Holocene coastal vegetation dynamics, sediment dating using 14C and 210Pb, sampling in temporary plots, sampling in temporary and permanent plots, and other techniques have been applied to elucidate long- and short-term mangrove community dynamics. The studied root fouling community is structured by several regulatory mechanisms; habitat heterogeneity increases species richness and abundance. Fringe mangroves were related to Ca concentration in the soil and the increased dominance of Laguncularia racemosa and other nonmangrove tree species, while the riverine mangroves were associated with Mg concentration and the dominance of Rhizophora mangle. The seedling and mangrove tree distributions are determined by a complex gradient of natural and anthropogenic disturbances. Mangrove pollen from surface sediments and the existing vegetation and geomorphology are close interrelated. Plant pollen of mangrove and salt marsh reflects environmental and disturbance conditions, and also reveals forest types. Forest dynamics in both coasts and their sensitivity of to anthropogenic processes are well documented in the Late Quaternary fossil record. Our studies of short and long term allow us to predict the dynamics of mangroves under different scenarios of climate change and anthropogenic stress factors that are operating in Colombian coasts. Future research arises from these results on mangrove forests dynamics, sea-level rise at a fine scale using palynology, conservation biology, and carbon dynamics.

  18. Microhabitat associations of a semi-terrestrial fish, Kryptolebias marmoratus (Poey 1880) in a mosquito-ditched mangrove forest, west-central Florida

    USGS Publications Warehouse

    Richards, Travis M.; Krebs, Justin M.; McIvor, Carole C.

    2011-01-01

    Mangrove rivulus (Kryptolebias marmoratus) is one of the few species of fish that is semi-terrestrial and able to use exposed intertidal and potentially supratidal habitats for prolonged periods of time. Based on previous work demonstrating frequent use of subterranean crab burrows as well as damp leaf litter and logs, we examined the microhabitat associations of rivulus in a mosquito-ditched mangrove forest on the Gulf coast of Florida near the northern limit of its distribution. We captured 161 rivulus on 20 dates between late April and mid-December 2007 using trench traps. Fish ranged in size from 7 to 35 mm SL. Peak abundance in mid-summer coincided with recruitment of a new year-class. The three study sites occurred within 0.5 km of one another, and experienced similar water temperatures and salinities. Nevertheless, they differed in their degree of tidal inundation, standing stock of leaf litter, and density of entrances to fiddler crab burrows. We consistently observed the highest mean catches of rivulus away from permanent subtidal waters of mosquito ditches, at intermediate relative elevations, and where leaf litter was locally abundant. Density of entrances to crab burrows was apparently unrelated to rivulus distribution or abundance in these forests.

  19. The effects of different gender harvesting practices on mangrove ecology and conservation in Cameroon

    Microsoft Academic Search

    Njisuh Z. Feka; Mario G. Manzano; Farid Dahdouh-Guebas

    2011-01-01

    Wood harvesting is an important source of income and a direct threat to mangrove forests in West-Central Africa. To understand the effects of this activity on mangrove ecology, it is necessary to assess harvesting practices of local communities. Knowledge on those is scarce for this region; we therefore examined implications of gender roles on the sustainability of mangrove forests in

  20. The Significance of Forest Monitoring Programmes: the Finnish Perspective

    NASA Astrophysics Data System (ADS)

    Merila, P.; Derome, J.; Lindgren, M.

    2007-12-01

    Finland has been participating in the ICP Forests programme (the International Co-operative Programme on the Assessment and Monitoring of Air Pollution Effects on Forests) based on international agreements on the long- range transportation of air pollutants (LRTAP) and other associated monitoring programmes (e.g. Forest Focus, ICP Integrated Monitoring, ICP Vegetation) since 1985. The knowledge gained during the years has greatly increased our understanding of the overall condition of our forests and the factors affecting forest condition, the processes underlying forest ecosystem functioning, and the potential threats to our forests posed by human activities, both at home and abroad. The success of the monitoring activities in Finland is largely based on the experience gained during the early 1980's with our own national acidification project and, during the late 1980's and early 1990"s, in a number of regional monitoring projects. Finland's membership of the European Union (entry in 1996) has enabled us to further develop the infrastructure and coverage of both our extensive and intensive level networks. This broadening of our ecological understanding and development of international collaboration are now providing us with an invaluable basis for addressing the new monitoring challenges (biodiversity, climate change). The results gained in our monitoring activities clearly demonstrate the value of long-term monitoring programmes. The main results have been regularly reported both at the European (e.g. http://www.icp- forests.org/Reports.htm) and national level (e.g. http://www.metla.fi/julkaisut/workingpapers/2007/mwp045- en.htm). However, the datasets have not been intensively explored and exploited, and few of the important methodological and ecological findings have been published in peer-reviewed scientific journals. This has, understandably, not been the first priority of the international monitoring programmes. A number of the intensive forest monitoring plots in Finland have recently been included in LTER platforms, thus potentially increasing scientific collaboration between researchers across different governmental institutes and education bodies.

  1. Organic carbon flux at the mangrove soil-water column interface in the Florida Coastal Everglades 

    E-print Network

    Romigh, Melissa Marie

    2006-08-16

    Coastal outwelling of organic carbon from mangrove wetlands contributes to near-shore productivity and influences biogeochemical cycling of elements. I used a flume to measure fluxes of dissolved organic carbon (DOC) between a mangrove forest...

  2. Organic carbon flux at the mangrove soil-water column interface in the Florida Coastal Everglades

    E-print Network

    Romigh, Melissa Marie

    2006-08-16

    Coastal outwelling of organic carbon from mangrove wetlands contributes to near-shore productivity and influences biogeochemical cycling of elements. I used a flume to measure fluxes of dissolved organic carbon (DOC) between a mangrove forest...

  3. Short-term dissolved oxygen patterns in sub-tropical mangroves

    NASA Astrophysics Data System (ADS)

    Knight, Jon M.; Griffin, Lachlan; Dale, Pat E. R.; Sheaves, Marcus

    2013-10-01

    Mangrove forests in subtropical areas are highly heterogeneous environments, influenced by diverse physical structures and tidal flushing regimes. An important component of tidal water is the concentration of dissolved oxygen (DO), as it affects aquatic organisms such as fish (directly: respiration and behaviour) and immature mosquitoes (directly: trigger for egg-hatch; indirectly: fish predation of larvae). Changes in DO may be important over relatively small time scales such as minutes and days, but, at such scales it has received little investigation. The aim of this study was to address this knowledge gap, monitoring DO at small time intervals (1 min) over tidal flooding events (hours - days) in two contrasting subtropical mangrove systems. These represented a range of mangrove tidal hydrology: a well-connected fringing mangrove forest in south-east Queensland and a more complex mangrove basin forest in northern New South Wales with impeded tidal connections. The results indicated that patterns of DO varied diurnally and by mangrove system. In the fringing forest, where the substrate was exposed before and after flooding, the highest mean DO concentration was during the day, followed by evening, with pre-dawn the lowest (6.8, 6.5 and 6.1 mg/l, respectively). DO patterns differed by tide stage and time of day with falling DO especially during late evening and pre-dawn as tides ebbed. In the mangrove basin forest the pattern was reversed, but also depended on the distance the tide had travelled across the basin. Before tidal incursion, standing water in the basin was anoxic (DO 0 mg/l). As tidal water flooded into the systems there was a greater increase in DO closer to the tide source than further away, with a DO concentration of 7.6 mg/l compared to 5.4 mg/l. The observations were interpreted in the light of processes and potential impacts on aquatic organisms (fish and immature mosquitoes). The most significant observation was that in the mangrove basin DO concentrations suitable for aquatic organisms (such as fish) persisted for only a relatively small period during the tide (?1 h), with hypoxic conditions for the remainder. This combination of conditions is favourable to immature mosquitoes.

  4. ANNUAL REPORT: FOREST HEALTH MONITORING, NEW ENGLAND 1990

    EPA Science Inventory

    This publication reports the findings of the 1990 (first) Northeastern Forest Health Monitoring field season. he objectives were to establish baseline conditions for assessing attributes of forest health. ield visits were made to 263 sample plots across the 6 New England states, ...

  5. Evidence for a mid-Holocene tsunami deposit along the Andaman coast of Thailand preserved in a mangrove environment

    Microsoft Academic Search

    Brady P. Rhodes; Matthew E. Kirby; Kruawun Jankaew; Montri Choowong

    2011-01-01

    Klong Thap Lamu, a large mangrove-fringed tidal channel along the northern Andaman Coast of Thailand, provides an ideal location to test the hypothesis that a paleotsunami record can be preserved in the sediments of a mangrove forest. The 2004 Indian Ocean tsunami destroyed local swaths of mangrove forest with highly variable widths — up to 300m. Left in the wake

  6. Evolution of the Sungei Buloh–Kranji mangrove coast, Singapore

    Microsoft Academic Search

    Michael Bird; Stephen Chua; L. Keith Fifield; Tiong Sa Teh; Joseph Lai

    2004-01-01

    The mangroves from Sungei Buloh Wetland Reserve to Kranji Dam represent the largest intact mangrove forest left on mainland Singapore. Mangroves colonized the area around 6820 BP, as sea level rose following the last glacial maximum and a variable thickness of Holocene sands, muds and peats (generally ~1 to >3.8 m thick) were deposited over the pre-transgression land surface.An analysis

  7. Baseline data on forest loss and associated uncertainty: advances in national forest monitoring

    NASA Astrophysics Data System (ADS)

    Pelletier, Johanne; Goetz, Scott J.

    2015-02-01

    Countries participating in climate change mitigation via the United Nations Framework Convention on Climate Change reducing emissions from deforestation and forest degradation mechanism are required to establish national forest monitoring systems. The design of national forest monitoring system includes provision of transparent, consistent and accurate estimates of emissions and removals from forests, while also taking into account national circumstances and capabilities. One key component of these systems lies in satellite remote sensing approaches and techniques to determine baseline data on forest loss against which future rates of change can be evaluated. Advances in approaches meeting these criteria for measuring, reporting and verification purposes are therefore of tremendous interest. A robust example advancing such approaches, focused on Peru, is provided in the recent paper of Potapov et al (2014 Environ. Res. Lett. 9 124012).

  8. Mangrove production and carbon sinks: A revision of global budget estimates

    Microsoft Academic Search

    Steven Bouillon; Alberto V. Borges; Edward Castañeda-Moya; Karen Diele; Thorsten Dittmar; Norman C. Duke; Erik Kristensen; Shing Y. Lee; Cyril Marchand; Jack J. Middelburg; Victor H. Rivera-Monroy; Thomas J. Smith; Robert R. Twilley

    2008-01-01

    Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ?218 ± 72 Tg

  9. The loss of species: mangrove extinction risk and geographic areas of global concern

    Microsoft Academic Search

    Beth A. Polidoro; Kent A. Carpenter; Lorna Collins; Norman C. Duke; Aaron M. Ellison; Joanne C. Ellison; Elizabeth J. Farnsworth; Edwino S. Fernando; Kandasamy Kathiresan; Nico E. Koedam; Suzanne R. Livingstone; Toyohiko Miyagi; Gregg E. Moore; Vien Ngoc Nam; Jin Eong Ong; Jurgenne H. Primavera; Salmo Severino G. III; Jonnell C. Sanciangco; Sukristijono Sukardjo; Yamin Wang; Jean Wan Hong Yong

    2010-01-01

    Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and logged for timber and fuel production. Little is

  10. Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph–mangrove interaction

    PubMed Central

    Alfaro-Espinoza, Gabriela; Ullrich, Matthias S.

    2015-01-01

    Mangrove forests are highly productive ecosystems but represent low nutrient environments. Nitrogen availability is one of the main factors limiting mangrove growth. Diazotrophs have been identified as key organisms that provide nitrogen to these environments. N2-fixation by such organisms was found to be higher in the mangrove roots than in surrounding rhizosphere. Moreover, previous studies showed that mangroves grew better in the presence of N2-fixers indicating a potentially mutualistic relationship. However, the molecular signals and mechanisms that govern these interactions are still poorly understood. Here we present novel insights in the interaction of a diazotroph with a mangrove species to improve our understanding of the molecular and ecophysiological relationship between these two organisms under controlled conditions. Our results showed that Marinobacterium mangrovicola is a versatile organism capable of competing with other organisms to survive for long periods in mangrove soils. N2-fixation by this bacterium was up-regulated in the presence of mangrove roots, indicating a possible beneficial interaction. The increase in N2-fixation was limited to cells of the exponential growth phase suggesting that N2-fixation differs over the bacterial growth cycle. Bacterial transformants harboring a transcriptional nifH::gusA fusion showed that M. mangrovicola successfully colonized mangrove roots and simultaneously conducted N2-fixation. The colonization process was stimulated by the lack of an external carbon source suggesting a possible mutualistic relationship. M. mangrovicola represents an interesting genetically accessible diazotroph, which colonize mangrove roots and exhibit higher N2-fixation in the presence of mangrove roots. Consequently, we propose this microorganism as a tool to study molecular interactions between N2-fixers and mangrove plants and to better understand how changes in the environment could impact these important and relatively unknown interactions. PMID:26029186

  11. The North American Carbon Program: Forest Monitoring and Modeling

    NASA Astrophysics Data System (ADS)

    Birdsey, R.; Hollinger, D.; Sundquist, E.

    2002-12-01

    The North American Carbon Program (NACP) addresses fundamental questions about the buildup of greenhouse gases in the atmosphere. What is the role of land use and management? How much of fossil fuel emissions is taken up by ecosystems? How can we enhance carbon sinks? These questions were identified by the National Academy of Sciences as critical uncertainties in understanding the global carbon budget and in particular the role of North American lands. U.S. Agencies are coordinating an effort to develop and implement a carbon monitoring system, building on existing monitoring efforts. The NACP includes enhanced remote sensing of biomass, new sampling schemes for atmospheric and ocean CO2 concentrations, enhancements to land inventories, and expansion of intensive monitoring sites. Increased efforts will be made to integrate these various monitoring programs through modeling and analysis, and to develop comprehensive reports and databases. The forest land component involves development of a hierarchical, 4-tier monitoring approach that integrates the ongoing Forest Inventory and Analysis (FIA) Program of the USDA Forest Service with intensive-site monitoring. The growing array of AmeriFlux sites, where net ecosystem-atmosphere CO2 and energy exchange is measured, is a key element of the monitoring approach. A new monitoring tier (tier 3) is proposed that will link extensive FIA monitoring with the intensive flux sites. Tier 3 will include clusters of monitoring sites that represent conditions over large landscapes surrounding a flux site. For example, tier 3 sites may be selected to represent a chronosequence of forest land affected by management or natural disturbance. Measurements at tier 3 sites will include key components of the carbon balance that will allow statistically representative scaling of the intensive flux measurements to the larger landscape through linkage with extensive FIA sample plots. In addition to forest monitoring, forest land data bases and modeling are key activites of the NACP. Current and historical data, with explicit geographical representation of trends in management and disturbance, are required to attribute causes to observed changes in CO2 flux. Spatial and temporal representation of currently available data will need enhancement to produce consistent and comprehensive coverage. Data content will need enhancement for some regions that have not historically been sampled in timber-oriented inventoried. Use of remote sensing, statistical imputation, and ecosystem modeling will be required to enhance data sets. Ecosystem models also have a significant role in integrating observations from the various land and atmospheric sensors, and compiling estimates for a comprehensive report on the status of the North American carbon budget.

  12. Breeding Bird Monitoring in Western Great Lakes National Forests 1991-2007

    E-print Network

    Netoff, Theoden

    Breeding Bird Monitoring in Western Great Lakes National Forests 1991-2007 Report to Chequamegon.J. Niemi. 2008. Breeding bird monitoring in Great Lakes National Forests 1991-2007. NRRI Technical Report

  13. Wind damage effects of Hurricane Andrew on mangrove communities along the southwest coast of Florida, USA

    USGS Publications Warehouse

    Doyle, T.W.; Smith, T. J., III; Robblee, M.B.

    1995-01-01

    On August 24, 1992, Hurricane Andrew downed and defoliated an extensive swath of mangrove trees across the lower Florida peninsula. Permanent field sites were established to assess the extent of forest damage and to monitor the rate and process of forest recovery. Canopy trees suffered the highest mortality particularly for sites within and immediately north of the storm's eyewall. The type and extent of site damage, windthrow, branch loss, and defoliation generally decreased exponentially with increasing distance from the storm track. Forest damage was greater for sites in the storm's right quadrant than in the left quadrant tor the same given distance from the storm center. Stand exposure, both horizontally and vertically, increased the susceptibility and probability of forest damage and accounted for much of the local variability. Slight species differences were found. Laguncularia racemosa exceeded Avicennia germinans and Rhizophora mangle in damage tendency under similar wind conditions. Azimuths of downed trees were strongly correlated with maximum wind speed and vector based on a hurricane simulation of the storm. Lateral branch loss and leaf defoliation on sites without windthrow damage indicated a degree of crown thinning and light penetration equivalent to treefall gaps under normally intact forest conditions. Mangrove species and forests are susceptible to catastrophic disturbance by hurricanes; the impacts of which are significant to changes in forest structure and function.

  14. Using Forest Health Monitoring to assess aspen forest cover change in the southern Rockies ecoregion

    Microsoft Academic Search

    Paul Rogers

    2002-01-01

    Long-term qualitative observations suggest a marked decline in quaking aspen (Populus tremuloides Michx.) primarily due to advancing succession and fire suppression. This study presents an ecoregional coarse-grid analysis of the current aspen situation using Forest Health Monitoring (FHM) data from Idaho, Wyoming, and Colorado.A unique feature of aspen forests in western North America is regeneration primarily by asexual “suckering” although

  15. Hurricane disturbance and recovery of energy balance, CO 2 fluxes and canopy structure in a mangrove forest of the Florida Everglades

    USGS Publications Warehouse

    Barr, J.G.; Engel, V.; Smith, T.J.; Fuentes, J.D.

    2012-01-01

    Eddy covariance (EC) estimates of carbon dioxide (CO 2) fluxes and energy balance are examined to investigate the functional responses of a mature mangrove forest to a disturbance generated by Hurricane Wilma on October 24, 2005 in the Florida Everglades. At the EC site, high winds from the hurricane caused nearly 100% defoliation in the upper canopy and widespread tree mortality. Soil temperatures down to -50cm increased, and air temperature lapse rates within the forest canopy switched from statically stable to statically unstable conditions following the disturbance. Unstable conditions allowed more efficient transport of water vapor and CO 2 from the surface up to the upper canopy layer. Significant increases in latent heat fluxes (LE) and nighttime net ecosystem exchange (NEE) were also observed and sensible heat fluxes (H) as a proportion of net radiation decreased significantly in response to the disturbance. Many of these impacts persisted through much of the study period through 2009. However, local albedo and MODIS (Moderate Resolution Imaging Spectro-radiometer) data (the Enhanced Vegetation Index) indicated a substantial proportion of active leaf area recovered before the EC measurements began 1year after the storm. Observed changes in the vertical distribution and the degree of clumping in newly emerged leaves may have affected the energy balance. Direct comparisons of daytime NEE values from before the storm and after our measurements resumed did not show substantial or consistent differences that could be attributed to the disturbance. Regression analyses on seasonal time scales were required to differentiate the storm's impact on monthly average daytime NEE from the changes caused by interannual variability in other environmental drivers. The effects of the storm were apparent on annual time scales, and CO 2 uptake remained approximately 250gCm -2yr -1 lower in 2009 compared to the average annual values measured in 2004-2005. Dry season CO 2 uptake was relatively more affected by the disturbance than wet season values. Complex leaf regeneration dynamics on damaged trees during ecosystem recovery are hypothesized to lead to the variable dry versus wet season impacts on daytime NEE. In contrast, nighttime CO 2 release (i.e., nighttime respiration) was consistently and significantly greater, possibly as a result of the enhanced decomposition of litter and coarse woody debris generated by the storm, and this effect was most apparent in the wet seasons compared to the dry seasons. The largest pre- and post-storm differences in NEE coincided roughly with the delayed peak in cumulative mortality of stems in 2007-2008. Across the hurricane-impacted region, cumulative tree mortality rates were also closely correlated with declines in peat surface elevation. Mangrove forest-atmosphere interactions are interpreted with respect to the damage and recovery of stand dynamics and soil accretion processes following the hurricane. ?? 2011.

  16. Hurricane disturbance and recovery of energy balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida Everglades

    USGS Publications Warehouse

    Barr, Jordan G.; Engel, Vic; Smith, Thomas J., III; Fuentes, Jose D.

    2012-01-01

    Eddy covariance (EC) estimates of carbon dioxide (CO2) fluxes and energy balance are examined to investigate the functional responses of a mature mangrove forest to a disturbance generated by Hurricane Wilma on October 24, 2005 in the Florida Everglades. At the EC site, high winds from the hurricane caused nearly 100% defoliation in the upper canopy and widespread tree mortality. Soil temperatures down to -50 cm increased, and air temperature lapse rates within the forest canopy switched from statically stable to statically unstable conditions following the disturbance. Unstable conditions allowed more efficient transport of water vapor and CO2 from the surface up to the upper canopy layer. Significant increases in latent heat fluxes (LE) and nighttime net ecosystem exchange (NEE) were also observed and sensible heat fluxes (H) as a proportion of net radiation decreased significantly in response to the disturbance. Many of these impacts persisted through much of the study period through 2009. However, local albedo and MODIS (Moderate Resolution Imaging Spectro-radiometer) data (the Enhanced Vegetation Index) indicated a substantial proportion of active leaf area recovered before the EC measurements began 1 year after the storm. Observed changes in the vertical distribution and the degree of clumping in newly emerged leaves may have affected the energy balance. Direct comparisons of daytime NEE values from before the storm and after our measurements resumed did not show substantial or consistent differences that could be attributed to the disturbance. Regression analyses on seasonal time scales were required to differentiate the storm's impact on monthly average daytime NEE from the changes caused by interannual variability in other environmental drivers. The effects of the storm were apparent on annual time scales, and CO2 uptake remained approximately 250 g C m-2 yr-1 lower in 2009 compared to the average annual values measured in 2004–2005. Dry season CO2 uptake was relatively more affected by the disturbance than wet season values. Complex leaf regeneration dynamics on damaged trees during ecosystem recovery are hypothesized to lead to the variable dry versus wet season impacts on daytime NEE. In contrast, nighttime CO2 release (i.e., nighttime respiration) was consistently and significantly greater, possibly as a result of the enhanced decomposition of litter and coarse woody debris generated by the storm, and this effect was most apparent in the wet seasons compared to the dry seasons. The largest pre- and post-storm differences in NEE coincided roughly with the delayed peak in cumulative mortality of stems in 2007–2008. Across the hurricane-impacted region, cumulative tree mortality rates were also closely correlated with declines in peat surface elevation. Mangrove forest–atmosphere interactions are interpreted with respect to the damage and recovery of stand dynamics and soil accretion processes following the hurricane.

  17. Application of Remote Sensing Technologies for Forest Cover Monitoring

    NASA Astrophysics Data System (ADS)

    Agoltsov, Alexander; Sizov, Oleg; Rubtsova, Natalia

    2014-05-01

    Today we don't have full and reliable information about forests in Russia, so it is impossible to make any well-timed decision for forest management. Update of all this information by means of traditional methods (fieldwork) is a time-consuming and in fact impossible task. Also we do not think that using of the reports without objective information for cameral data actualization is an appropriate method in such situation. So our company uses remote sensing data and technologies to resolve this problem. Nowadays numerous satellites record numerous images every day. Remote sensing data are widespread and accessible, so we can use them as the source of actual and reliable information about current status of the Forest Fund. Furthermore regular monitoring allows extracting the information about the location and intensity of forests' changes like degradation and destruction. First of all we create a georeferenced data set to cover the area of interest with orthomosaic in targeting scale depending on the goals of the project (1:25 000 - 1:10 000). For example, we can do a mosaic from RapidEye (Germany) imagery with GSD = 6.5 m or from WorldView-2 (USA) imagery with GSD = 0.5 m. The next step is to create vector layers to describe the content of images. We use visual and contemporary automatic interpretation techniques. The benefit of such approach that we can extract not only information about forests (like boundary) but also the information about roads, hydrographic objects, power lines and so on. During vectorization except relevant orthomosaic we can use multi-temporal composites of images based on archive of satellite imagery. This helps us not only to detect general changes but detect illegal logging, areas affected by fires, windfalls. Then this information can be used for different products e.g. forest cover statistics, forest cover change statistics, maps of forest management and also we can analyze transport accessibility and economic assessment of forests.

  18. Tropical forest monitoring and remote sensing: A new era of transparency in forest governance?

    Microsoft Academic Search

    Douglas O. Fuller

    2006-01-01

    The extent of tropical deforestation is now being tracked by actors in the nongovernmental, aca- demic, private and government sectors using several different sources of satellite imagery. This paper presents an overview of the satellite systems that can be used for operational forest monitor- ing in the tropics and examines some recent trends in their use. It also reviews various

  19. Mapping Belize´s Coastal Mangrove Forests: experiments with conjunctive use of SPOT, L- and X-band SAR and SRTM data. 

    E-print Network

    Marin Herrera, Mario A.

    2010-08-11

    Four experimental classifications of coastal mangroves in Belize were developed using Definiens software using various combinations of SPOT multispectral data and ALOS L-band PALSAR data combined with digital surface models obtained from airborne X...

  20. Estimating Mangrove Canopy Height and Above-Ground Biomass in Everglades National Park with Airbone LiDAR and TanDEM-X Data.

    NASA Astrophysics Data System (ADS)

    Feliciano, E. A.; Wdowinski, S.; Potts, M. D.; Fatoyinbo, T. E.; Lee, S. K.

    2014-12-01

    The coastal mangroves forests of Everglades National Park (ENP) are well protected from development. Nevertheless, climate change, hurricanes and other anthropogenic disturbances have affected these intertidal ecosystems. Understanding and monitoring forest structural parameters such as canopy height and above-ground biomass (AGB) are important for the establishment of an historical database for past, present and future ecosystem comparison. Forest canopy height has a well understood and directly proportional correlation with AGB. It is possible to derive it using (1) airborne LiDAR/Laser Scanning (ALS) or (2) space-borne radar systems such as Shuttle Radar Topography Mission (SRTM) and TanDEM-X (TDX). A previous study of the mangrove canopy height and AGB in the ENP was conducted a decade ago based on ALS data acquired in 2004 in conjunction with SRTM data, which were acquired in 2000 (Simard et al. 2006). In this study we estimated canopy height and AGB using an ALS dataset acquired in 2012 and TDX data acquired during the years 2012-2014. The ALS dataset was acquired along a 16.5 x 1.5 km swath of mangrove forest with variable canopy height. The sampled areas were representative of mangrove stature and structure in the whole ENP. Analysis of the ALS dataset showed that mangrove canopy height can reach up to ~25 meters close to the coastal ENP waters. Additionally, by comparing our ALS results with those of a previous study by Simard et al. (2006) we identified areas where mangrove height changes greater than ± 3 meters occurred. To expand the study area to the full ENP mangrove ecosystem we processed single-polarization TDX data to obtain a Digital Canopy Model (DCM) that represents the mangrove canopy height. In order to obtain the true canopy height we calibrated the TDX phase center height with ALS true canopy height. Preliminary results of a corrected single-polarized (HH) TDX scene show that mangrove canopy height can reach up to ~25 meters in the western region of the ENP.

  1. Coastal resource degradation in the tropics: does the tragedy of the commons apply for coral reefs, mangrove forests and seagrass beds.

    PubMed

    Wilkinson, Clive; Salvat, Bernard

    2012-06-01

    The keynote paper by Garrett Hardin 44 years ago introduced the term 'tragedy of the commons' into our language (Hardin, 1968); this term is now used widely, but it is neither universally accepted nor fully understood. Irrespective, the 'tragedy of the commons' is an increasing reality for more than 500 million people that rely on the biodiversity resources and services of tropical coral reefs, mangrove forests, seagrass beds and associated fisheries. These natural resources continue to decline despite major advances in our scientific understanding of how ecosystems and human populations interact, and the application of considerable conservation and management efforts at scales from local user communities to oceans. Greater effort will be required to avert increasing damage from over-exploitation, pollution and global climate change; all deriving from increasing exploitation driven by poverty and progress i.e. continuing to expand development indefinitely and extraction of resources at industrial scales. However, the 'tragedy' concept has been widely criticized as a simple metaphor for a much larger set of problems and solutions. We argue that the 'tragedy' is essentially real and will continue to threaten the lives of millions of people unless there are some major moral and policy shifts to reverse increasing damage to coastal habitats and resources. We agree with the conclusion by Hardin that the solution to the tragedy will not be through the application of natural sciences, but via implementing exceedingly difficult and controversial moral decisions. An extreme example of a moral and controversial direction suggested by Hardin was in re-examining the 'freedom to breed' as an inherent human value. The need for 'moral decisions' is even greater in 2012. PMID:22349467

  2. Monitoring Carbon Assimilation of South American Tropical Forests

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Nunes, E. L.

    2009-12-01

    Net primary production (NPP) is a key variable for monitoring and understanding the impacts of environmental change on ecosystems and for generating realistic global and regional carbon budgets. However, although assessment of NPP over broad spatial scales has been made possible through the development of MODIS products such as MOD17A3, such global remotely sensed estimations are often inaccurate due to algorithm failure and parameterization issues. These inadequacies can be partly remedied by the development of biome-specific geographically localized algorithms. In this paper we develop a regional algorithm (RATE) for the automatic monitoring the rate of carbon fixation (as measured by NPP) of tropical forests in South America. The algorithm is based on a modification of the SITE model and uses data from the MODIS sensor (MOD12Q1 and MOD15A2 products) and meteorological data from the National Centers for Environmental Prediction (NCEP). The effectiveness of the algorithm was tested in eight field sites from two types of tropical forests in South America: the Amazon rainforest and the Atlantic forest. In the Amazonian sites, the RATE algorithm produced NPP values closer to the observed values than estimates from the MODIS NPP product, while in the Atlantic forest sites it generated NPP values similar to the MODIS sensor. In conclusion, RATE appears to be a reliable estimator of carbon fixation by tropical forests in South America, with an average error of only 4.7%, and is therefore a more precise way of monitoring regional environmental change in these globally important ecosystems.

  3. Net Change in Forest Density, 1873-2001: Using Historical Maps to Monitor

    E-print Network

    of the United States" depicting broad categories of evergreen and deciduous forests, and arable and dry prairiesa Net Change in Forest Density, 1873-2001: Using Historical Maps to Monitor Long-term Forest Trends Research Map NRS-4United States Department of Agriculture Forest Service #12;b Abstract European settlement

  4. A framework for use of wireless sensor networks in forest fire detection and monitoring

    E-print Network

    Ulusoy, Özgür

    , the smallest fire size that can be detected by such a system is around 0.1 hectare, which also prevents fireA framework for use of wireless sensor networks in forest fire detection and monitoring Yunus Emre sensor networks Forest fire detection Environmental monitoring a b s t r a c t Forest fires are one

  5. Microbial diversity in Brazilian mangrove sediments – a mini review

    PubMed Central

    Ghizelini, Angela Michelato; Mendonça-Hagler, Leda Cristina Santana; Macrae, Andrew

    2012-01-01

    The importance and protection of mangrove ecosystems has been recognized in Brazilian Federal law since 1965. Being protected in law, however, has not always guaranteed their protection in practice. Mangroves are found in coastal and estuarine locations, which are prime real estate for the growth of cities, ports and other economic activities important for Brazilian development. In this mini-review we introduce what mangroves are and why they are so important. We give a brief overview of the microbial diversity found in mangrove sediments and then focus on diversity studies from Brazilian mangroves. We highlight the breadth and depth of knowledge about mangrove microbial communities gained from studying Brazilian mangroves. We report on the exciting findings of molecular microbial ecology methods that have been very successfully applied to study bacterial communities. We note that there have been fewer studies that focus on fungal communities and that fungal diversity studies deserve more attention. The review ends with a look at how a combination of new molecular biology methods and isolation studies are being developed to monitor and conserve mangrove ecosystems and their associated microbial communities. These recent studies are having a global impact and we hope they will help to protect and re-establish mangrove ecosystems. PMID:24031949

  6. Nutrient enrichment increases mortality of mangroves.

    PubMed

    Lovelock, Catherine E; Ball, Marilyn C; Martin, Katherine C; C Feller, Ilka

    2009-01-01

    Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients. PMID:19440554

  7. Monitoring littoral sediment accretion and erosion at Forest Park Beach, Lake Forest, Illinois

    SciTech Connect

    Trask, C.B.; Chrzastowski, M.J. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01

    Forest Park Beach, a coastal-development project on the shore of Lake Michigan at Lake Forest, Illinois, consists of a series of segmented, rubble-mound breakwaters that form four beach cells and a small-boat launch basin. The project was designed to have minimal impact on local littoral-transport processes. The 9-hectare footprint extends no more than 107 m lakeward of the preconstruction shoreline; the arcuate plan for the project was designed to facilitate littoral sediment bypass. In order to evaluate the project's impact on littoral processes, the City of Lake Forest is required to conduct a monitoring program to identify any adverse effects such as updrift accretion and downdrift erosion. Annual and semi-annual monitoring has been underway since project completion in 1987. In 1991, the Illinois State Geological Survey (ISGS) began independent data collection and review of the annual monitoring data. As of the 1992 ISGS monitoring, the project is allowing for the development of natural bypass by the littoral-sediment stream. A bar occurs in 0.9 to 1.2 m of water on the north side of the project and continues as an accretionary wedge along the lakeward side of the breakwaters for approximately two-thirds of the project length. One adverse impact is that the beach cells are acting as traps for fine sand, with the greatest entrapment in the three northern (updrift) cells. Comparison of 1987 and 1992 profiles from the beach cells indicates nearshore accretion of as much as two meters. To date no detrimental effects to shoreline properties have been documented downdrift of the project.

  8. A socio-ecological assessment aiming at improved forest resource management and sustainable ecotourism development in the mangroves of Tanbi Wetland National Park, The Gambia, West Africa.

    PubMed

    Satyanarayana, Behara; Bhanderi, Preetika; Debry, Mélanie; Maniatis, Danae; Foré, Franka; Badgie, Dawda; Jammeh, Kawsu; Vanwing, Tom; Farcy, Christine; Koedam, Nico; Dahdouh-Guebas, Farid

    2012-07-01

    Although mangroves dominated by Avicennia germinans and Rhizophora mangle are extending over 6000 ha in the Tanbi Wetland National Park (TWNP) (The Gambia), their importance for local populations (both peri-urban and urban) is not well documented. For the first time, this study evaluates the different mangrove resources in and around Banjul (i.e., timber, non-timber, edible, and ethnomedicinal products) and their utilization patterns, including the possibility of ecotourism development. The questionnaire-based results have indicated that more than 80% of peri-urban population rely on mangroves for timber and non-timber products and consider them as very important for their livelihoods. However, at the same time, urban households demonstrate limited knowledge on mangrove species and their ecological/economic benefits. Among others, fishing (including the oyster-Crassostrea cf. gasar collection) and tourism are the major income-generating activities found in the TWNP. The age-old practices of agriculture in some parts of the TWNP are due to scarcity of land available for agriculture, increased family size, and alternative sources of income. The recent focus on ecotourism (i.e., boardwalk construction inside the mangroves near Banjul city) received a positive response from the local stakeholders (i.e., users, government, and non-government organizations), with their appropriate roles in sharing the revenue, rights, and responsibilities of this project. Though the guidelines for conservation and management of the TWNP seem to be compatible, the harmony between local people and sustainable resource utilization should be ascertained. PMID:22351596

  9. Carbon Sequestration Potential of Mangroves in Southeast Asia

    Microsoft Academic Search

    Mohd Nazip Suratman

    Mangrove forests are considered to be a unique and complex major component of coastal zones in the tropical and sub-tropical\\u000a regions. They represent transitional ecosystems where the ocean, land, and freshwater meet. Their main vegetation components\\u000a are generally evergreen trees or shrubs that grow along coastlines, brackish estuaries or delta habitats. Mangrove habitats\\u000a are easily recognized as they are located

  10. Cumulative impacts of hurricanes on Florida mangrove ecosystems: Sediment deposition, storm surges and vegetation

    USGS Publications Warehouse

    Smith, T. J., III; Anderson, G.H.; Balentine, K.; Tiling, G.; Ward, G.A.; Whelan, K.R.T.

    2009-01-01

    Hurricanes have shaped the structure of mangrove forests in the Everglades via wind damage, storm surges and sediment deposition. Immediate effects include changes to stem size-frequency distributions and to species relative abundance and density. Long-term impacts to mangroves are poorly understood at present. We examine impacts of Hurricane Wilma on mangroves and compare the results to findings from three previous storms (Labor Day, Donna, Andrew). Surges during Wilma destroyed ??? 1,250 ha of mangroves and set back recovery that started following Andrew. Data from permanent plots affected by Andrew and Wilma showed no differences among species or between hurricanes for stem mortality or basal area lost. Hurricane damage was related to hydro-geomorphic type of forest. Basin mangroves suffered significantly more damage than riverine or island mangroves. The hurricane by forest type interaction was highly significant. Andrew did slightly more damage to island mangroves. Wilma did significantly more damage to basin forests. This is most likely a result of the larger and more spatially extensive storm surge produced by Wilma. Forest damage was not related to amount of sediment deposited. Analyses of reports from Donna and the Labor Day storm indicate that some sites have recovered following catastrophic disturbance. Other sites have been permanently converted into a different ecosystem, namely intertidal mudflats. Our results indicate that mangroves are not in a steady state as has been recently claimed. ?? 2009 The Society of Wetland Scientists.

  11. Biodegradation of Enteromorpha prolifera by mangrove degrading microcommunity with physical–chemical pretreatment

    Microsoft Academic Search

    Chao Zhao; Lingwei Ruan

    The bacteria involved in the biodegradation of Enteromorpha prolifera (EP) are largely unknown, especially in offshore mangrove environments. In order to obtain the bacterial EP-degrading communities,\\u000a sediments from a typical mangrove forest were sampled on the roots of mangrove in Dongzhai Port (Haikou, China). The sediments were enriched with crude EP powders as the sole carbon source. The bacterial composition

  12. Mangrove Habitat Formation and Response to Holocene Sea-level Changes on Kosrae Island, Micronesia

    Microsoft Academic Search

    Kiyoshi Fujimoto; Toyohiko Miyagi; Takao Kikuchi; Toshio Kawana

    1996-01-01

    Mangrove habitats on Kosrae are divided into three types, i.e., an estuary or delta type, a backmarsh or lagoon type and a coral reef or tidal-flat type. Most of the mangrove forests of Kosrae have been developed during the last 2000 years by accumulating mangrove peat with the gradual sea-level rise of 1 to 2 mm\\/yr except the landward part

  13. Food web structure in exotic and native mangroves: A Hawaii-Puerto Rico comparison

    USGS Publications Warehouse

    Demopoulos, A.W.J.; Fry, B.; Smith, C.R.

    2007-01-01

    Plant invasions can fundamentally alter detrital inputs and the structure of detritus-based food webs. We examined the detrital pathways in mangrove food webs in native (Puerto Rican) and introduced (Hawaiian) Rhizophora mangle forests using a dual isotope approach and a mixing model. Based on trophic-level fractionation of 0-1??? for ?? 13C and 2-3??? for ?? 15N, among the invertebrates, only nematodes, oligochaetes, and nereid polychaetes from native mangroves exhibited stable isotopes consistent with a mangrove-derived diet. Certain fauna, in particular tubificid oligochaetes, had ?? 13C values consistent with the consumption of mangrove leaves, but they were depleted in 15N, suggesting their primary nitrogen source was low in 15N, and was possibly N 2-fixing bacteria. In introduced mangroves, all feeding groups appeared to rely heavily on non-mangrove sources, especially phytoplankton inputs. Mixing model results and discriminant analysis showed clear separation of introduced and native mangrove sites based on differential food source utilization within feeding groups, with stronger and more diverse use of benthic foods observed in native forests. Observed differences between native and invasive mangrove food webs may be due to Hawaiian detritivores being poorly adapted to utilizing the tannin-rich, nitrogen-poor mangrove detritus. In addition, differential utilization of mangrove detritus between native and introduced mangroves may be a consequence of forest age. We postulate that increasing mangrove forest age may promote diversification of bacterial food webs important in N and S cycling. Our results also suggest a potentially important role for sulfur bacteria in supporting the most abundant infaunal consumers, nematodes, in the most mature systems. ?? 2007 Springer-Verlag.

  14. Food web structure in exotic and native mangroves: a Hawaii-Puerto Rico comparison.

    PubMed

    Demopoulos, Amanda W J; Fry, Brian; Smith, Craig R

    2007-09-01

    Plant invasions can fundamentally alter detrital inputs and the structure of detritus-based food webs. We examined the detrital pathways in mangrove food webs in native (Puerto Rican) and introduced (Hawaiian) Rhizophora mangle forests using a dual isotope approach and a mixing model. Based on trophic-level fractionation of 0-1 per thousand for delta(13)C and 2-3 per thousand for delta(15)N, among the invertebrates, only nematodes, oligochaetes, and nereid polychaetes from native mangroves exhibited stable isotopes consistent with a mangrove-derived diet. Certain fauna, in particular tubificid oligochaetes, had delta(13)C values consistent with the consumption of mangrove leaves, but they were depleted in (15)N, suggesting their primary nitrogen source was low in (15)N, and was possibly N(2)-fixing bacteria. In introduced mangroves, all feeding groups appeared to rely heavily on non-mangrove sources, especially phytoplankton inputs. Mixing model results and discriminant analysis showed clear separation of introduced and native mangrove sites based on differential food source utilization within feeding groups, with stronger and more diverse use of benthic foods observed in native forests. Observed differences between native and invasive mangrove food webs may be due to Hawaiian detritivores being poorly adapted to utilizing the tannin-rich, nitrogen-poor mangrove detritus. In addition, differential utilization of mangrove detritus between native and introduced mangroves may be a consequence of forest age. We postulate that increasing mangrove forest age may promote diversification of bacterial food webs important in N and S cycling. Our results also suggest a potentially important role for sulfur bacteria in supporting the most abundant infaunal consumers, nematodes, in the most mature systems. PMID:17587064

  15. Improving monitoring of tropical forests using year 2009 SEVIRI data

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Zhou, L.; Romanov, P.; Yu, Y.; Ek, M. B.

    2012-12-01

    Mapping and monitoring tropical evergreen forests is a challenging task. Unlike the maximum once per day acquisition of a polar-orbiting satellite, the Geostationary Operational Environmental Satellite Series (GOES) will provide multiple daily views and thus significantly increase the chance to produce a high quality and high frequency data product with reduced cloud contamination. Observations from the Spinning Enhanced Visible and Infra-red Imager (SEVIRI), onboard the European Meteosat Second Generation (MSG) satellite, are used in this study to monitor tropical region vegetation dynamics. The SEVIRI data we used contain observations of land surface at 30-minute time intervals. We used top of atmosphere (TOA) reflectance values from the spectral bands of red (0.635um), NIR (0.81um) and SWIR (1,64 um) and other satellite geometry information to calculate NDVI, angular corrected NDVI and land surface water index, i.e., LSWI = (RNIR-RSWIR)/(RNIR+RSWIR), at 30-minute time intervals for the year 2009. We generated daily, weekly and monthly NDVI and LSWI based on maximum NDVIs. We examined the pattern of cloud occurrence and precipitation and the phenology of green vegetation in Amazon and center Africa regions by dividing each region into the south and north part of the equator. It is found that tropical regions may have 4 times or less clear-sky observations per day while other regions can have more than 10 times of good observations per day. Amazon regions have less chance to get clear-sky observations than center African regions. During the Amazon rain/wet season, some areas cannot get even one good observation per day. It is also found that NDVI seasonality (vegetation growth) is controlled by local precipitation. However, forest NDVI in Amazon has an opposite seasonal cycle against rainfall, which is consistent with MODIS NDVI data. High NDVI corresponds to high LSWI. Tropical forests generally have LSWI value larger than 0. However, the seasonal curve of LSWI is very flat (flatter than the NDVI curve) in Amazon forests, indicating that LSWI is insensitive to drought in this region. In contrast, LSWI is sensitive to wet/dry conditions in Africa, especially in savannas systems, suggesting that LSWI can be served as a drought index in most regions except in tropical forests.

  16. BIRD COMMUNITIES AND HABITAT AS ECOLOGICAL INDICATORS OF FOREST CONDITION IN REGIONAL MONITORING

    EPA Science Inventory

    Ecological indicators for long-term monitoring programs are needed to detect and assess changing environmental conditions, We developed and tested community-level environmental indicators for monitoring forest bird populations and associated habitat. We surveyed 197 sampling plo...

  17. LOCATION DETERMINATION OF AUTOMATIC FOREST FIRE MONITORING STATIONS BASED ON AHP AND GIS DATA

    Microsoft Academic Search

    Darko Stipanicev; Ljiljana Bodrozic; Tomislav Vuko

    Forest fires represent a constant threat to ecological systems, infrastructure and human lives. Great affords are therefore made to achieve early forest fire detection, which is traditionally based on human surveillance. A rather more advanced approach to human forest fire surveillance is installation of remotely controlled video cameras on monitoring spots. The next, even more advanced step is automatic surveillance

  18. Tracking Human Disturbance in Mangroves: Estimating Harvest Rates on a Micronesian Island

    Microsoft Academic Search

    Robert D. Hauff; Katherine C. Ewel; Jason Jack

    2006-01-01

    Disturbance is an integral component in mangrove forest dynamics, influencing forest structure, composition, and function.\\u000a The impacts of human disturbance, however, threaten mangrove forests throughout the world. Small-scale wood harvesting on\\u000a the small Pacific island of Kosrae, Federated States of Micronesia, provided an instructive scenario for exploring the dynamics\\u000a of human disturbance. Natural disturbances on the island are rare, but

  19. Long-term monitoring of Dzanga Bai forest elephants: forest clearing use patterns.

    PubMed

    Turkalo, Andrea K; Wrege, Peter H; Wittemyer, George

    2013-01-01

    Individual identification of the relatively cryptic forest elephant (Loxodonta cyclotis) at forest clearings currently provides the highest quality monitoring data on this ecologically important but increasingly threatened species. Here we present baseline data from the first 20 years of an individually based study of this species, conducted at the Dzanga Clearing, Central African Republic. A total of 3,128 elephants were identified over the 20-year study (1,244 adults; 675 females, 569 males). It took approximately four years for the majority of elephants visiting the clearing to be identified, but new elephants entered the clearing every year of the study. The study population was relatively stable, varying from 1,668 to 1,864 individuals (including juveniles and infants), with increasingly fewer males than females over time. The age-class distribution for females remained qualitatively unchanged between 1995 and 2010, while the proportion of adult males decreased from 20% to 10%, likely reflecting increased mortality. Visitation patterns by individuals were highly variable, with some elephants visiting monthly while others were ephemeral users with visits separated by multiple years. The number of individuals in the clearing at any time varied between 40 and 100 individuals, and there was little evidence of a seasonal pattern in this variation. The number of elephants entering the clearing together (defined here as a social group) averaged 1.49 (range 1-12) for males and 2.67 (range 1-14) for females. This collation of 20 years of intensive forest elephant monitoring provides the first detailed, long term look at the ecology of bai visitation for this species, offering insight to the ecological significance and motivation for bai use, social behavior, and threats to forest elephants. We discuss likely drivers (rainfall, compression, illegal killing, etc.) influencing bai visitation rates. This study provides the baseline for future demographic and behavioral studies of this population. PMID:24386460

  20. Use of Multi-Year MODIS Phenological Data Products to Detect and Monitor Forest Disturbances at Regional and National Scales

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William W.; Gasser, Jerry; Smoot, James; Ross, Kenton

    2010-01-01

    This presentation discusses an effort to use select MODIS phenological products for forest disturbance monitoring at the regional and CONUS scales. Forests occur on 1/3 of the U.S. land base and include regionally prevalent forest disturbances that can threaten forest sustainability. Regional and CONUS forest disturbance monitoring is needed for a national forest threat early warning system being developed by the USDA Forest Service with help from NASA, ORNL, and USGS. MODIS NDVI phenology products are being used to develop forest disturbance monitoring capabilities of this EWS.

  1. The Research on Solar Power System of Wireless Sensor Network Node for Forest Monitoring

    Microsoft Academic Search

    Zhen-jia Sun; Wen-bin Li; Hua-fei Xiao; Liang Xu

    2010-01-01

    The nodes of Wireless Sensor Network used in forest monitoring can not replace battery frequently, so they can not use disposable chemical battery with limited energy as traditional sensor network nodes. This article studied on the WSN node power system for forest monitoring, designed a node solar power system on the basis of analysis of the sensor node hardware and

  2. Monitoring Global Forest Cover Using Data Mining VARUN MITHAL, ASHISH GARG, SHYAM BORIAH, MICHAEL STEINBACH,

    E-print Network

    Minnesota, University of

    36 Monitoring Global Forest Cover Using Data Mining VARUN MITHAL, ASHISH GARG, SHYAM BORIAH., Kumar, V., Potter, C., Klooster, S., and Castilla-Rubio, J. C. 2011. Monitoring global forest cover over recent decades as a result of logging, conversion to crop, plantation, and pasture land

  3. Australia EPA: Mangroves

    NSDL National Science Digital Library

    This site includes a wealth of detailed information on Australian-specific and non-specific mangroves. Information includes coping with salt, zones, flora and associated fauna, history, facts & stats. Links to several Australian locales that feature mangroves. Can also access other Queensland habitats and additional branches of the EPA.

  4. NASA LCLUC Program: An Integrated Forest Monitoring System for Central Africa

    NASA Technical Reports Server (NTRS)

    Laporte, Nadine; LeMoigne, Jacqueline; Elkan, Paul; Desmet, Olivier; Paget, Dominique; Pumptre, Andrew; Gouala, Patrice; Honzack, Miro; Maisels, Fiona

    2004-01-01

    Central Africa has the second largest unfragmented block of tropical rain forest in the world; it is also one of the largest carbon and biodiversity reservoirs. With nearly one-third of the forest currently allocated for logging, the region is poised to undergo extensive land-use change. Through the mapping of the forests, our Integrated Forest Monitoring System for Central Africa (INFORMS) project aims to monitor habitat alteration, support biodiversity conservation, and promote better land-use planning and forest management. Designed as an interdisciplinary project, its goal is to integrate data acquired from satellites with field observations from forest inventories, wildlife surveys, and socio-economic studies to map and monitor forest resources. This project also emphasizes on collaboration and coordination with international, regional, national, and local partners-including non-profit, governmental, and commercial sectors. This project has been focused on developing remote sensing products for the needs of forest conservation and management, insuring that research findings are incorporated in forest management plans at the national level. The societal impact of INFORMS can be also appreciated through the development of a regional remote sensing network in central Africa. With a regional office in Kinshasa, (www.OSFAC.org), the contribution to the development of forest management plans for 1.5 million hectares of forests in northern Republic of Congo (www.tt-timber.com), and the monitoring of park encroachments in the Albertine region (Uganda and DRC) (www.albertinerift.org).

  5. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    PubMed Central

    Balk, Melike; Laverman, Anniet M.; Keuskamp, Joost A.; Laanbroek, Hendrikus J.

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils. PMID:25784903

  6. Between Land and Sea: Livelihoods and Environmental Changes in Mangrove Ecosystems of Senegal

    Microsoft Academic Search

    Giulia Conchedda; Eric F. Lambin; Philippe Mayaux

    2011-01-01

    Unlike the global trend, the area of mangrove forest increased in the estuaries of Low Casamance and Sine-Saloum, Senegal, between 1986 and 2006. We collected multisource data (social and spatial) and applied a mix of qualitative and quantitative analytical methods to investigate the human–mangrove interactions during this period and to understand the causes of the observed increase. Our research demonstrates

  7. Nontimber Forest Product Inventorying and Monitoring in the United States: Rationale and Recommendations for a Participatory Approach

    Microsoft Academic Search

    Kathryn A. Lynch; Eric T. Jones; Rebecca J. McLain

    This document explores the potential of collaborative approaches for nontimber forest product inventory and monitoring in the United States. It begins by reviewing results of a federal and state survey that documented inventory and monitoring efforts for nontimber forest products in the United States. The surveys show that the majority of NTFP-related inventory and monitoring on National Forests and state

  8. Biocomplexity in mangrove ecosystems.

    PubMed

    Feller, I C; Lovelock, C E; Berger, U; McKee, K L; Joye, S B; Ball, M C

    2010-01-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical coasts. Despite repeated demonstration of their economic and societal value, more than 50% of the world's mangroves have been destroyed, 35% in the past two decades to aquaculture and coastal development, altered hydrology, sea-level rise, and nutrient overenrichment. Variations in the structure and function of mangrove ecosystems have generally been described solely on the basis of a hierarchical classification of the physical characteristics of the intertidal environment, including climate, geomorphology, topography, and hydrology. Here, we use the concept of emergent properties at multiple levels within a hierarchical framework to review how the interplay between specialized adaptations and extreme trait plasticity that characterizes mangroves and intertidal environments gives rise to the biocomplexity that distinguishes mangrove ecosystems. The traits that allow mangroves to tolerate variable salinity, flooding, and nutrient availability influence ecosystem processes and ultimately the services they provide. We conclude that an integrated research strategy using emergent properties in empirical and theoretical studies provides a holistic approach for understanding and managing mangrove ecosystems. PMID:21141670

  9. Southern limit of the Western South Atlantic mangroves: Assessment of the potential effects of global warming from a biogeographical perspective

    NASA Astrophysics Data System (ADS)

    Soares, Mário Luiz Gomes; Estrada, Gustavo Calderucio Duque; Fernandez, Viviane; Tognella, Mônica Maria Pereira

    2012-04-01

    The objective of the present study was to determine the exact location of the latitudinal limit of western South Atlantic mangroves, and to describe how these forests develop at this limit; as well as to analyze the potential responses of these communities to global warming. The study was carried out along the coast of Santa Catarina, Brazil. Specific studies on mangrove structure were carried out in the Santo Antônio Lagoon (28°28'34?S; 48°51'40?W). The coastline of Santa Catarina was surveyed for the occurrence of mangrove species. In the mangrove located at the southernmost distributional limit, the forest structure was characterized. Mean height and diameter, trunks density and basal area were calculated. Climatic and oceanographic factors controlling the occurrence and development of the mangrove forests at their latitudinal limit were analyzed, as well as the possible changes of this limit based on global warming scenarios. The results confirmed that the Santo Antônio Lagoon is the southern limit of the western South Atlantic mangroves. At this limit, the mangrove forests show a low degree of development, defined by low mean diameter and height, and high trunks density and trunks/tree ratio. The observed structural pattern and the local alternation of these forests with salt marsh species are typical of mangrove forests at their latitudinal limits. The absence of mangroves south of Laguna and forest structure at the latitudinal limit are controlled by rigorous climate and oceanographic characteristics. In response to the planetary warming process, we expect that mangroves will expand southward, as a consequence of an increase in air and ocean surface temperatures, a reduction in the incidence of frosts, an increased influence of the Brazil Current and a decreased influence of the Falkland Current, and the availability of sheltered estuarine systems for the establishment of new mangroves.

  10. Sediment CO2 efflux from cleared and intact temperate mangrove and tidal flat habitat

    NASA Astrophysics Data System (ADS)

    Bulmer, Richard; Lundquist, Carolyn; Schwendenmann, Luitgard

    2015-04-01

    Temperate mangroves in Southern Australia and New Zealand have been increasing in extent over the past 50 years, whereas tropical mangroves have declined by 30-50% over a similar time frame to support development of aquaculture, land development and timber production. Tropical mangroves are understood to be an important carbon sink and carbon emissions following clearance are estimated to be significant; comparable or greater than clearance of many terrestrial forest systems. As temperate mangrove clearance is proposed and has already occurred at some locations, it is important to determine potential carbon emissions from temperate mangroves, as well as exploring the factors which may influence emission rates. Here, we investigated the impact of temperate mangrove clearance on CO2 efflux from the sediment to the atmosphere along with a range of other biotic and abiotic factors. Higher CO2 efflux rates were observed within cleared (1.34

  11. Monitoring Forest Change and Ice Storm Disturbance to Forest Structure Using Echidna° Ground-Based Lidar

    NASA Astrophysics Data System (ADS)

    Yao, T.; Strahler, A. H.; Schaaf, C.; Yang, X.; zhao, F.; Woodcock, C. E.; Jupp, D. L.; Culvenor, D.; Lovell, J.; Newnham, G.; Li, X.; Wang, J.

    2011-12-01

    The ground-based, upward-scanning, near-infrared (1064 nm), full-waveform lidar, the Echidna° Validation Instrument (EVI), built by CSIRO Australia, is used to monitor forest change over a 2- or 3-year time period through changes in retrievals of mean stem diameter, stem density, basal area, above-ground standing biomass, leaf area index, foliage profile, and canopy height. The changes were validated by comparison with direct field measurements, or in the case of canopy height, with data from the Laser Vegetation Imaging Sensor (LVIS). Site-level EVI-retrieved values of mean DBH, stem count density, basal area and above-ground biomass matched the field measurements well, with R2 values of 0.84, 0.97, 0.96 and 0.98 respectively. Furthermore, the changes in EVI retrievals had the same trend as the change in field measurements over these 2-3 year periods. Based on five scans within each 1-ha plot, we focused on detecting forest change over a 2- or 3-year period at three New England forest stands: a second-growth conifer stand thinned as a shelterwood, an aging hemlock plantation, and a young second-growth hardwood stand. The first stand provided the opportunity to look for change in a stand containing many co-dominant and intermediate trees recently released by removal of selected over-story trees, while the other two stands suffered significant damage in an ice storm during the change period. At the shelterwood conifer site at Howland Experimental Forest, mean DBH, aboveground biomass, and leaf area index (LAI) all increased between 2007 and 2009. An ice storm struck the Harvard Forest in December, 2008, providing the opportunity to detect damage between 2007 and 2009 or 2010 with EVI scans at two sites : hemlock and hardwood. Retrieved leaf area index (LAI) was 13 percent lower in the hemlock site in 2009 and 10 percent lower in the hardwood site in 2010 as compared to 2007. The decrease of LAI quantifies a loss of biomass from the canopy, and broken tops were both recorded by the field teams and visible in the Echidna scans in the 2010 data. Stem density decreased and mean DBH increased at both sites, as smaller and weaker trees were felled by the ice. Canopy heights derived from the EVI-retrieved foliage profile closely matched those derived from the airborne Laser Vegetation Imaging Sensor (LVIS).

  12. Chemical ecology of red mangroves, Rhizophora mangle, in the Hawaiian Islands

    USGS Publications Warehouse

    Fry, Brian; Cormier, Nicole

    2011-01-01

    The coastal red mangrove, Rhizophora mangle L., was introduced to the Hawaiian Islands from Florida 100 yr ago and has spread to cover many shallow intertidal shorelines that once were unvegetated mudflats. We used a field survey approach to test whether mangroves at the land-ocean interface could indicate watershed inputs, especially whether measurements of leaf chemistry could identify coasts with high nutrient inputs and high mangrove productivities. During 2001-2002, we sampled mangroves on dry leeward coasts of southern Moloka'i and O'ahu for 14 leaf variables including stable carbon and nitrogen isotopes (delta13C, delta15N), macronutrients (C, N, P), trace elements (B, Mn, Fe, Cu, Zn), and cations (Na, Mg, K, Ca). A new modeling approach using leaf Na, N, P, and delta13C indicated two times higher productivity for mangroves in urban versus rural settings, with rural mangroves more limited by low N and P nutrients and high-nutrient urban mangroves more limited by freshwater inputs and salt stress. Leaf chemistry also helped identify other aspects of mangrove dynamics: especially leaf delta15N values helped identify groundwater N inputs, and a combination of strongly correlated variables (C, N, P, B, Cu, Mg, K, Ca) tracked the mangrove growth response to nutrient loading. Overall, the chemical marker approach is an efficient way to survey watershed forcing of mangrove forest dynamics.

  13. FRAMEWORK FOR ASSESSING EFFECTS OF GLOBAL CLIMATE CHANGE ON MANGROVE ECOSYSTEMS

    EPA Science Inventory

    Mangrove ecosystems perhaps represent the most diverse combination of floral, faunal and physical elements among coastal habitats. angrove forests are globally widespread in the tropics and subtropics and provide a dynamic interface between the sea and the land. angrove ecosystem...

  14. Framework for video-based monitoring of forest insect defoliation and discoloration

    NASA Astrophysics Data System (ADS)

    Zhao, Feifei; Wang, Yafei; Qiao, Yanyou

    2015-01-01

    Pest damage is a general problem that disturbs the growth of forests, influencing carbon sequestration and causing economic losses. In the past decades, many studies have been conducted to monitor and detect forest insect damage using satellite remote sensing technology. Satellite remote sensing has a satellite or aerial vision allowing the monitoring of extensive forest areas, but it usually requires constant time periods and is prone to cloud interference. To enable more efficient and effective monitoring of forest pest damage, a video-based monitoring framework is presented. This framework comprises three key parts: (1) video positioning of forest insect damage based on digital elevation model (DEM) and the parameters obtained from the pan-tilt-zoom camera, (2) integration of two-dimensional/three-dimensional geographic information system and video surveillance to provide more intuitionistic monitoring and assistance for positioning, (3) on-site verification conducted by ground surveys and guided through global positioning system (GPS) integrated in the embedded devices. The experiment was carried out over two forest areas to validate the proposed method. Results showed that the framework bears a sound positioning accuracy and high detection ratio, which could be effectively used in detecting and monitoring forest insect defoliation and discoloration.

  15. Monitoring environmental state of Alaskan forests with AIRSAR

    NASA Technical Reports Server (NTRS)

    Mcdonald, Kyle C.; Way, Jobea; Rignot, Eric; Williams, Cindy; Viereck, Les; Adams, Phylis

    1992-01-01

    During March 1988 and May 1991, the JPL airborne synthetic aperture radar, AIRSAR, collected sets of multi-temporal imagery of the Bonanza Creek Experimental Forest near Fairbanks, Alaska. These data sets consist of series of multi-polarized images collected at P-, L-, and C-bands each over a period of a few days. The AIRSAR campaigns were complemented with extensive ground measurements that included observations of both static canopy characteristics such as forest architecture as well as properties that vary on short term time scales such as canopy dielectric conditions. Observations exist for several stands of deciduous and coniferous species including white spruce (Picea glauca), black spruce (Picea mariana), and balsam poplar (Populus balsamifera). Although the duration of each campaign was fairly short, significant changes in environmental conditions caused notable variations in the physiological state of the canopies. During the 1988 campaign, environmental conditions ranged from unseasonably warm to more normal subfreezing temperatures. This permitted AIRSAR observations of frozen and thawed canopy states. During May 1991, ice jams that occurred along the river caused many stands to flood while the subsequent clearing of the river then allowed the waters to recede, leaving a snow covered ground surface. This allowed observations of several stands during both flooded and nonflooded conditions. Furthermore, the local weather varied from clear sunny days to heavy overcast days with some occurrence of rain. Measurements of leaf water potential indicated that this caused significant variations in canopy water status, allowing SAR observations of water stressed and unstressed trees. Mean backscatter from several stands is examined for the various canopy physiological states. The changes in canopy backscatter that occur as a function of environmental and physiological state are analyzed. Preliminary results of a backscatter signature modeling analysis are presented. The implications of using SAR to monitor canopy phenological state are addressed.

  16. Simulated sea level change alters anatomy, physiology, growth, and reproduction of red mangrove ( Rhizophora mangle L.)

    Microsoft Academic Search

    Aaron M. Ellison; Elizabeth J. Farnsworth

    1997-01-01

    Tropical coastal forestsmangroves – will be one of the first ecosystems to be affected by altered sea levels accompanying\\u000a global climate change. Responses of mangrove forests to changing sea levels depend on reactions of individual plants, yet\\u000a such responses have not been addressed experimentally. We report data from a long-term greenhouse study that assessed physiological\\u000a and individual growth

  17. Development of widespread mangrove swamps in mid-Holocene times in northern Australia

    Microsoft Academic Search

    Colin D. Woodroffe; B. G. Thom; John Chappell

    1985-01-01

    Mangrove forests in northern Australia typically occur as fringes along tidal estuaries and relatively sheltered coasts. Radiocarbon dating evidence from the South Alligator River, presented here, suggests that extensive mangrove swamps developed between 6,500 and 7,000 yr ago and flourished for about 1,000 yr. Pollen analysis of a stratigraphic core at a mid-plains site links the growth of these forests

  18. Chemical and biogeophysical impact of four-dimensional (4D) seismic exploration in sub-Saharan Africa, and restoration of dysfunctionalized mangrove forests in the prospect areas.

    PubMed

    Osuji, Leo C; Ayolagha, G; Obute, G C; Ohabuike, H C

    2007-09-01

    Four-dimensional (4D) seismic exploration, an improved geophysical technique for hydrocarbon-data acquisition, was applied for the first time in the Nembe Creek prospect area of Nigeria. The affected soils were slightly alkaline in situ when wet (pH 7.2), but extremely acidic when dry (pH 3.0). The organic carbon content (4.6-26.8%) and other physicochemical properties of soils and water (N, P, and heavy-metal contents, etc.) were higher than the baseline values obtained in 2001 before seismic profiling. Most values also exceeded the baseline compliance standards of the Department of Petroleum Resources (DPR), the World Health Organization (WHO), and the Federal Environmental Protection Agency (FEPA). Rehabilitation of the affected areas was achieved by stabilizing the mangrove floor by liming and appropriate application of nutrients, followed by replanting the cut seismic lines over a distance of 1,372 km with different mangrove species, including juvenile Rhizophora racemosa, R. mangle, and Avicennia species, which were transferred from nursery points. Quicker post-operational intervention is recommended for future 4D surveys, because the time lag between the end of seismic activity and post-impact investigation is critical in determining the relationship between activity and impact: the longer the intervening period, the more mooted the interaction. PMID:17886833

  19. Interagency Collaborators Develop and Implement ForWarn, a National, Near Real Time Forest Monitoring Tool

    NASA Technical Reports Server (NTRS)

    Underwood, Lauren

    2013-01-01

    ForWarn is a satellite-based forest monitoring tool that is being used to detect and monitor disturbances to forest conditions and forest health. It has been developed through the synergistic efforts, capabilities and contributions of four federal agencies, including the US Forest Service Eastern Forest and Western Wildland Environmental Threat Assessment Centers, NASA Stennis Space Center (SSC), Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) and US Geological Survey Earth (USGS) Earth Research Observation System (EROS), as well as university partners, including the University of North Carolina Asheville's National Environmental Modeling and Analysis Center (NEMAC). This multi-organizational partnership is key in producing a unique, path finding near real-time forest monitoring system that is now used by many federal, state and local government end-users. Such a system could not have been produced so effectively by any of these groups on their own. The forests of the United States provide many societal values and benefits, ranging from ecological, economic, cultural, to recreational. Therefore, providing a reliable and dependable forest and other wildland monitoring system is important to ensure the continued health, productivity, sustainability and prudent use of our Nation's forests and forest resources. ForWarn does this by producing current health indicator maps of our nation's forests based on satellite data from NASA's MODIS (Moderate Resolution Imaging Spectroradiometer) sensors. Such a capability can provide noteworthy value, cost savings and significant impact at state and local government levels because at those levels of government, once disturbances are evident and cause negative impacts, a response must be carried out. The observations that a monitoring system like ForWarn provide, can also contribute to a much broader-scale understanding of vegetation disturbances.

  20. THE ECONOMICAL MICROBOLOMETER-BASED ENVIRONMENTAL RADIOMETER SATELLITE (EMBERSAT) DESIGNED FOR FOREST FIRE DETECTION AND MONITORING

    Microsoft Academic Search

    Redgie S. Lancaster; David R. Skillman; Wayne C. Welch; James D. Spinhirne; Katherine F. Manizade; Brian P. Beecken

    Thermal infrared imagery from several satellite instruments, such as the NOAA AVHRR and the NASA MODIS, is presently used to detect and map forest fires. But while these radiometers can identify fires they are designed and optimized for cloud detection, providing relatively low spatial resolution and quickly saturating even for small fires. Efforts to de tect and monitor forest fires

  1. Microhabitats in lowland beech forests as monitoring tool for nature conservation

    Microsoft Academic Search

    Susanne Winter; Georg Christian Möller

    2008-01-01

    We investigated the occurrence of 20 precisely defined structural microhabitats on trees in mature (>120 years old) lowland beech forests in Germany that represented 12 managed, 5 recently unmanaged and 2 reference (>100 years unmanaged) stands. To promote naturalness assessments in forest inventories and for biodiversity monitoring, we analysed (1) which microhabitats on individual trees are characteristic for reference stands,

  2. Adaptive Weighted Fusion Algorithm for Monitoring System of Forest Fire Based on Wireless Sensor Networks

    Microsoft Academic Search

    Guang Lu; Wei Xue

    2010-01-01

    Forest fires have drawn increasing attention in recent years due to their tremendous effects on environment, humans and wild life, ecosystem function, weather, and climate. Accurate monitoring of forest fires field is important since it contributes in fire effects assessing and controlling. This study attempts to apply adaptive weighted fusion algorithm in a wireless sensor networks (WSNs) system for the

  3. Regional Breeding Bird Monitoring in Western Great Lakes National Forests1

    Microsoft Academic Search

    JoAnn Hanowski; Jim Lind; Nick Danz; Gerald Niemi; Tim Jones

    We established breeding bird monitoring programs in three National Forests in northern Minnesota (Superior and Chippewa in 1991) and northern Wisconsin (Che- quamegon in 1992). A total of 134, 169, and 132 stands (1,272 survey points) have been surveyed annually in these forests through 2002. We examined trends in rel- ative abundance for 53 species in the Chequamegon, 51 species

  4. Monitoring, Classification, and Characterization of Interior Alaska Forests Using AIRSAR and ERS-1 SAR

    NASA Technical Reports Server (NTRS)

    Williams, C. L.; McDonald, K.; Rignot, E.; Viereck, L. A.; Way, J. B.; Zimmerman, R.

    1995-01-01

    This paper reviews research since 1988 into the capabilities of synthetic aperture radar (SAR) for monitoring, classification, and characterization of the Bonanza Creek Experimental Forest on the floodplain of the Tanana River and adjacent uplands.

  5. Sixteen Years of Habitat-based Bird Monitoring in the Nicolet National Forest1

    Microsoft Academic Search

    Robert W. Howe; Lance J. Roberts

    The 16-year-old Nicolet National Forest Bird Survey is the longest-running volunteer monitoring program on any U.S. national forest. Every year, teams of volunteer observers led by at least one expert with proven field experience sample more than 250 permanent points during the second weekend in June. Altogether 512 points are monitored, approximately half during a given year. Observers use a

  6. Participatory forest monitoring: an assessment of the accuracy of simple cost–effective methods

    Microsoft Academic Search

    Mikkel Hooge Holck

    2008-01-01

    International forest policies have recently increased the focus on involvement of local communities in forest monitoring and\\u000a management as a strategy to improve biodiversity conservation efforts and local livelihood in developing countries. However,\\u000a little is known about feasible methods, costs and accuracy of participatory monitoring schemes in developing countries. This\\u000a paper examines the costs, accuracy and local reproducibility of three

  7. Mangroves - what are they worth

    SciTech Connect

    Christensen, B.

    1983-01-01

    This paper is based on a study for FAO and on the management and utilization of mangroves in Asia and the Pacific. Land use options are examined in relation to the different roles which mangroves play (provision of firewood, charcoal, timber and pulp; wildlife; fisheries and aquaculture; and agriculture). Special attention is paid to mangrove management in Malaysia. (Refs 26)

  8. Measuring Mangrove Type, Structure And Carbon Storage With UAVSAR And ALOS/PALSAR Data

    NASA Astrophysics Data System (ADS)

    Fatoyinbo, T. E.; Cornforth, W.; Pinto, N.; Simard, M.; Pettorelli, N.

    2011-12-01

    Mangrove forests provide a great number of ecosystem services ranging from shoreline protection (e.g. against erosion, tsunamis and storms), nutrient cycling, fisheries production, building materials and habitat. Mangrove forests have been shown to store very large amounts of Carbon, both above and belowground, with storage capacities even greater than tropical rainforests. But as a result of their location and economic value, they are among the most rapidly changing landscapes in the World. Mangrove extent is limited 1) in total extent to tidally influenced coastal areas and 2) to tropical and subtropical regions. This can lead to difficulties mapping mangrove type (such as degraded vs non degraded, scrub vs tall, dense vs sparse) because of cloud cover and limited access to high-resolution optical data. To accurately quantify the effect of land use and climate change on tropical wetland ecosystems, we must develop effective mapping methodologies that take into account not only extent, but also the structure and health of the ecosystem. This must be done by including Synthetic Aperture Radar (SAR) data. In this research, we used L-band Synthetic Aperture Radar data from the ALOS/PALSAR and UAVSAR instruments over selected sites in the Americas (Sierpe, Costa Rica and Everglades, Florida)and Asia (Sundarbans). In particular, we used the SAR data in combination with other remotely sensed data and field data to 1) map mangrove extent 2) determine mangrove type, health and adjascent land use, and 3) estimate aboveground biomass and carbon storage for entire mangrove systems. We used different classification methodologies such as polarimetric decomposition, unsupervised classification and image segmentation to map mangrove type. Because of the high resolution of the radar data, and its ability to interact with forest volume, we are able to identify mangrove zones and differentiate between mangroves and other forests/land uses. We also integrated InSAR data (SRTM), spaceborne Lidar (GLAS) and field data, in combination with the SAR data to derive aboveground biomass and carbon storage in mangroves. We successfully produced maps of mangrove extent, type, health and carbon storage by using L-band SAR data. Our results show that both UAVSAR and ALOS/PALSAR data alone are effective datasets for mapping mangrove extent, type and other land use. By combining multiple datasets, we were able to determine mangrove biomass without an upper estimation limit and with low error.

  9. Sediment CO2 efflux from cleared and intact temperate mangroves and tidal flats

    NASA Astrophysics Data System (ADS)

    Bulmer, R. H.; Schwendenmann, L.; Lundquist, C. J.

    2015-02-01

    Temperate mangroves in Southern Australia and New Zealand have been increasing in area over the past 50 years, whereas tropical mangroves have declined by 30-50% over a similar time frame. Tropical mangroves are understood to be an important carbon sink and carbon dioxide (CO2) emissions following clearance are estimated to be comparable or greater than CO2 emissions following the clearance of many terrestrial forest systems. Recreational and amenity values or perceived loss of other estuarine habitats due to expanding temperate mangrove forests have resulted in clearing of temperate mangroves. In this study, we investigated the impact of temperate mangrove clearance on CO2 efflux from the sediment to the atmosphere along with a range of other biotic and abiotic factors. Significantly higher CO2 efflux rates were measured in cleared (1.34 ± 0.46 ?mol m2 s-1) and intact mangrove sites (2.31 ± 0.72 ?mol m2 s-1) than in tidal flats (-0.23 ± 0.27 ?mol m2 s-1). Site and sediment characteristics such as sediment carbon and nitrogen concentration, chlorophyll ? concentration, grain size, mangrove height, macrofaunal abundance, sediment temperature and moisture were strongly correlated with sediment CO2 efflux. Our results suggest that carbon stored within temperate mangrove sediment is released over a period of years to decades after mangrove clearance. CO2 efflux from intact and cleared temperate mangroves was found to be comparable to rates observed in the tropics. Disturbance of the surface biofilm resulted in elevated CO2 efflux across all habitats, suggesting the important role of surface biofilm communities in mediating CO2 efflux.

  10. Dissolved iron supply limits early growth of estuarine mangroves.

    PubMed

    Alongi, Daniel M

    2010-11-01

    Three mesocosm experiments were performed in an outdoor facility to quantify the responses of five mangrove species grown from seedling to sapling stage to increasing rates of dissolved iron supply. Stem extension and biomass of mangroves were measured in the first two experiments, and in the third experiment, rates of microbial iron reduction were measured in relation to stem extension of two mangrove species. In all experiments, mangrove growth was enhanced by increasing iron supply, although some species showed iron toxicity at the higher supply rates. In the first two experiments, stem extension rates of Rhizophora apiculata, Bruguiera gymnorrhiza, and Xylocarpus moluccensis best fit Gaussian curves with maximal growth at supply rates of 50-60 mmol Fe x m(-2) x d(-1), whereas growth of Avicennia marina and Ceriops tagal increased to the highest rate (100 mmol Fe x m(-2) x d(-1)) of iron supply. Changes in leaf chlorophyll concentrations and iron content of roots mirrored the growth responses. In the third experiment, rates of microbial iron reduction were greater with R. apiculata and A. marina than in controls without plants; for both species, there was a positive relationship between stem extension and iron reduction. The rates of iron reduction and rates of iron supplied to the plants were well within the range of interstitial iron concentrations and rates of iron reduction found in the natural mangrove soils from which the seedlings were obtained. The responses of these species show that mangroves growing from seedling to sapling stage have a strong nutritional requirement for iron, and that there is a close relationship between plant roots and the activities of iron-reducing bacteria. These results suggest that mangrove growth may be limited in some natural forests by the rate at which iron is solubilized by iron-reducing bacteria. Such biogeochemical conditions have significant implications for successful recruitment, establishment, and early growth of mangroves. PMID:21141184

  11. Forest-ungulate interactions: monitoring, modeling and management

    Microsoft Academic Search

    Harald Bugmann; Peter J. Weisberg

    2003-01-01

    An international conference on “Forest Dynamics and Ungulate Herbivory” was held from 3–6 October 2001 in Davos, Switzerland. Two Special Issues of peer-reviewed scientific journals arose from this event. Here, we provide an overview of the papers contained in this Special Issue of Journal for Nature Conservation, which focus on the management of forests and forest-dwelling ungulates, including the methodologies

  12. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation

    USGS Publications Warehouse

    McKee, K.L.; Cahoon, D.R.; Feller, Ilka C.

    2007-01-01

    Aim The long-term stability of coastal ecosystems such as mangroves and salt marshes depends upon the maintenance of soil elevations within the intertidal habitat as sea level changes. We examined the rates and processes of peat formation by mangroves of the Caribbean Region to better understand biological controls on habitat stability. Location Mangrove-dominated islands on the Caribbean coasts of Belize, Honduras and Panama were selected as study sites. Methods Biological processes controlling mangrove peat formation were manipulated (in Belize) by the addition of nutrients (nitrogen or phosphorus) to Rhizophora mangle (red mangrove), and the effects on the dynamics of soil elevation were determined over a 3-year period using rod surface elevation tables (RSET) and marker horizons. Peat composition and geological accretion rates were determined at all sites using radiocarbon-dated cores. Results The addition of nutrients to mangroves caused significant changes in rates of mangrove root accumulation, which influenced both the rate and direction of change in elevation. Areas with low root input lost elevation and those with high rates gained elevation. These findings were consistent with peat analyses at multiple Caribbean sites showing that deposits (up to 10 m in depth) were composed primarily of mangrove root matter. Comparison of radiocarbon-dated cores at the study sites with a sea-level curve for the western Atlantic indicated a tight coupling between peat building in Caribbean mangroves and sea-level rise over the Holocene. Main conclusions Mangroves common to the Caribbean region have adjusted to changing sea level mainly through subsurface accumulation of refractory mangrove roots. Without root and other organic inputs, submergence of these tidal forests is inevitable due to peat decomposition, physical compaction and eustatic sea-level rise. These findings have relevance for predicting the effects of sea-level rise and biophysical processes on tropical mangrove ecosystems.

  13. Red Mangrove (Rhizophora mangle) Reproduction and Seedling Colonization after Hurricane Charley: Comparisons of Charlotte Harbor and Tampa Bay

    Microsoft Academic Search

    C. EDWARD PROFFITT; ERIC C. MILBRANDT; STEVEN E. TRAVIS

    2006-01-01

    Reproductive aspects of life history are known to be important in recovery following disturbance in many plant species although this has not been well studied in mangroves. Hurricane Charley devastated large areas of mangroves in Charlotte Harbor, Florida, in August 2004. We surveyed 6 forests in Charlotte Harbor (2002, 2003, and 2005) and 16 in Tampa Bay, Florida (2001, 2002,

  14. GHG monitoring over Paris megacity and Orléans forest

    NASA Astrophysics Data System (ADS)

    Te, Y. V.; Jeseck, P.; Zanon, T.; Boursier, C.; Janssen, C.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lac, C.; Dieudonné, E.; Lopez, M.; Schmidt, M.; Xueref-remy, I. C.

    2012-12-01

    In a growing world with more than 7 billion inhabitants and big emerging countries such as China, Brazil and India, emissions of anthropogenic pollutants and greenhouse gases (GHGs) are increasing continuously. Their monitoring and control in megacities have become a major challenge for scientists and public health authorities in environmental research area. The ground-based Fourier transform spectrometer (QualAir FTS[a], model IFS 125HR) of the QualAir platform located in downtown Paris at University Pierre et Marie Curie (UPMC), is a scientific research instrument dedicated to the survey of greenhouse gases (GHGs) and urban air quality. Equipped with a sun-tracker, the remote sensing QualAir FTS relies on solar infrared absorption for monitoring trace gas concentrations and their variability in the Ile-de-France region[b]. Concentrations of atmospheric GHGs, especially CO2, CH4 and N2O, are retrieved by the radiative transfer model PROFFIT[c]. Because Paris is the third largest European megacity, the QualAir FTS can provide new and complementary measurements as compared to existing ground-based FTS network stations (NDACC and TCCON) located in unpolluted environments, such as the TCCON-Orléans station[d] situated in the forest of Orléans (100 km south of Paris). In the effort to integrate QualAir FTS into the TCCON network, simultaneous FTS measurements of GHGs at Paris and Orléans have been performed. We will emphasize on comparisons of CO2 from these two sites. Our comparison will be completed by high-resolved direct CO2 modeling outputs from the Meso-NH model, and ground in situ measurements at different sites (Orléans/Trainou, Paris/Jussieu, Paris/Eiffel Tower). Parts of the data were acquired in the framework of the French CO2-MEGAPARIS project[e, f], whose main goal is to quantify CO2 emissions from the Paris area. The present data intercomparison will help to reduce uncertainties in carbon cycle models and to better characterize regional GHG fluxes, especially with respect to anthropogenic emission sources (urban versus rural) and trends. References: [a] Té et al., J. Atmos. Oceanic Technol., 29, 911-921, 2012 [b] Té et al., Rev. Sci. Instrum., 81, 103102, 2010 [c] Hase et al., JQSRT, 87, 25-52, 2004 [d] https://tccon-wiki.caltech.edu/Sites/Orleans [e] http://co2-megaparis.lsce.ipsl.fr/ [f] Xueref-Remy et al., Abstract n°A13F-0277, AGU Fall Meeting 2010, San Francisco, USA

  15. MONITORING IN SUPPORT OF THE PACIFIC NORTHWEST FOREST PLAN: A REPORT ON REQUIREMENTS AND KEY QUESTIONS

    EPA Science Inventory

    This document summarizes the monitoring requirements identified in the Record of Decision (ROD) for the Pacific Northwest Forest Plan and presents the key questions the future monitoring program should strive to answer. he key questions, developed from the standards and guideline...

  16. Kelp forest monitoring. Channel Islands National Park (1990 annual report). Final technical report

    Microsoft Academic Search

    D. Richards; W. Avery; D. Kushner

    1993-01-01

    The 1990 results of the Channel Islands National Park Kelp Forest Monitoring Project are described in this report. Sixty-eight species of algae, fish , and invertebrates were monitored annually at 16 permanent sites around the five islands within the park. Survey techniques utilized SCUBA and surface-supplied-air, and included quadrats, band transects, random point contacts, size frequencies, fish and video transects,

  17. Monitoring forest land from high altitude and from space

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The significant findings are reported for remote sensing of forest lands conducted during the period October 1, 1965 to December 31, 1972. Forest inventory research included the use of aircraft and space imagery for forest and nonforest land classification, and land use classification by automated procedures, multispectral scanning, and computerized mapping. Forest stress studies involved previsual detection of ponderosa pine under stress from insects and disease, bark bettle infestations in the Black Hills, and root disease impacts on forest stands. Standardization and calibration studies were made to develop a field test of an ERTS-matched four-channel spectrometer. Calibration of focal plane shutters and mathematical modeling of film characteristic curves were also studied. Documents published as a result of all forestry studies funded by NASA for the Earth Resources Survey Program from 1965 through 1972 are listed.

  18. Monitoring forest land from high altitude and from space

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Forest inventory, forest stress, and standardization and calibration studies are presented. These include microscale photointerpretation of forest and nonforest land classes, multiseasonal film densities for automated forest and nonforest land classification, trend and spread of bark beetle infestations from 1968 through 1971, aerial photography for determining optimum levels of stand density to reduce such infestations, use of airborne spectrometers and multispectral scanners for previsual detection of Ponderosa pine trees under stress from insects and diseases, establishment of an earth resources technology satellite test site in the Black Hills and the identification of natural resolution targets, detection of root disease impact on forest stands by sequential orbital and suborbital multispectral photography, and calibration of color aerial photography.

  19. Biomass and Carbon Sequestration in Community Mangrove Plantations and a Natural Regeneration Stand in the Ayeyarwady Delta, Myanmar

    NASA Astrophysics Data System (ADS)

    Thant, Y. M.; Kanzaki, M.; nil

    2011-12-01

    Mangroves in the Ayeyarwady Delta is one of the most threatened ecosystems, and is rapidly disappearing as in many tropical countries. The deforestation and degradation of mangrove forest in the Ayeryarwady Delta results in the shortage of wood resources and declining of environmental services that have been provided by the mangrove ecosystem. Cyclone Nargis struck the Ayeyarwady Delta on 2 May 2008 with an intensity unprecedented in the history of Myanmar. The overexploitation of mangroves because of local demands for fuel wood and charcoal and the conversion of mangrove forest land into agricultural land or shrimp farms over the past decades have increased the loss of human life and the damage to settlements caused by the Cyclone.The biomass study was conducted in September of 2006 in Bogale Township in the Ayeyarwady Delta and continued monitoring in September of each year from 2007 to 2010. Above and below ground biomass was studied in six years old mangrove plantations of Avicenia marina (Am), Avicenia officinalis (Ao) and Sonneratia apetala (Sa) and a naturally regenerated stand under regeneration improving felling operation (NR: consists of Ceriops decandra, Bruguiera sexangula, and Aegicerus corniculatum) protected for seven years since 2000. These stands were established by small-scale Community Forestry scheme on abandoned paddy fields where natural mangroves once existed. Common allometric equations were developed for biomass estimation by performing regressions between dry weights of trees as dependent variables and biometric parameters such as stem diameter, height and wood density as independent variables. The above and below ground biomass in NR stand (70 Mg ha-1 and 104 Mg ha-1) was the greatest (P < 0.001), and followed by Sa plantation (69 Mg ha-1 and 32 Mg ha-1), Am plantation (25 Mg ha-1 and 27 Mg ha-1) and Ao plantation (21 Mg ha-1 and 26 Mg ha-1). The total carbon stock in biomass was 73 Mg C ha-1 in NR stand, 43 Mg C ha-1 in Sa plantation, 21 Mg C ha-1 in Am plantation and 18 Mg C ha-1 in Ao plantation respectively. The averaged total soil carbon stock up to 1 m soil depth in plantation site was estimated to be 167 ± 58 Mg C ha-1 which was nearly two times higher than that of current paddy fields 85 ± 17 Mg C ha-1. These facts suggest the feasibility of the mangrove plantation and induced natural regeneration as a carbon sequestration tool. The establishment of mangrove plantations appeared to be one measure for reducing the risk of cyclone damage after the Cyclone Nargis. This may reduce future human loss by cyclones and also improve the life of local people by increasing timber resources and environmental services.

  20. An integrated approach to coastal rehabilitation: Mangrove restoration in Sungai Haji Dorani, Malaysia

    NASA Astrophysics Data System (ADS)

    Hashim, Roslan; Kamali, Babak; Tamin, Noraini Mohd; Zakaria, Rozainah

    2010-01-01

    To achieve an efficient method of coastal rehabilitation, a coastal structure was applied in combination with the mangrove restoration scheme in Sungai Haji Dorani where coastal forest over-cutting associated with erosion has resulted in severe coastline retreat. Such an attempt provides the opportunity to mitigate erosion as well as improve ecological and socio-economic aspects of coastal areas, both of which are of great importance to local communities and authorities. Beach morphological changes were monitored for an eight-month period of time. The results indicate that the attempt has been successful in retaining sediment on the beach and consequently raising the elevation of the site. While the monitoring schedule is required to continue for several years to evaluate long-term performance of the rehabilitation effort, approximately 30% of the transplanted mangrove saplings' survival after eight months shows that the project was moderately successful. Since the general conditions of the selected site represent the majority of the eroded shorelines on the west coast of Peninsular Malaysia, the method applied in this study can be replicated as an appropriate cost-effective alternative for the same cases.

  1. The effect of a protected area on the tradeoffs between short-run and long-run benefits from mangrove ecosystems

    PubMed Central

    McNally, Catherine G.; Uchida, Emi; Gold, Arthur J.

    2011-01-01

    Protected areas are used to sustain biodiversity and ecosystem services. However, protected areas can create tradeoffs spatially and temporally among ecosystem services, which can affect the welfare of dependent local communities. This study examines the effect of a protected area on the tradeoff between two extractive ecosystem services from mangrove forests: cutting mangroves (fuelwood) and harvesting the shrimp and fish that thrive if mangroves are not cut. We demonstrate the effect in the context of Saadani National Park (SANAPA) in Tanzania, where enforcement of prohibition of mangrove harvesting was strengthened to preserve biodiversity. Remote sensing data of mangrove cover over time are integrated with georeferenced household survey data in an econometric framework to identify the causal effect of mangrove protection on income components directly linked to mangrove ecosystem services. Our findings suggest that many households experienced an immediate loss in the consumption of mangrove firewood, with the loss most prevalent in richer households. However, all wealth classes appear to benefit from long-term sustainability gains in shrimping and fishing that result from mangrove protection. On average, we find that a 10% increase in the mangrove cover within SANAPA boundaries in a 5-km2 radius of the subvillage increases shrimping income by approximately twofold. The creation of SANAPA shifted the future trajectory of the area from one in which mangroves were experiencing uncontrolled cutting to one in which mangrove conservation is providing gains in income for the local villages as a result of the preservation of nursery habitat and biodiversity. PMID:21873182

  2. Carbon Sequestration Potential in Mangrove Wetlands of Southern of India

    NASA Astrophysics Data System (ADS)

    Chokkalingam, L.; Ponnambalam, K.; Ponnaiah, J. M.; Roy, P.; Sankar, S.

    2012-12-01

    Mangrove forest and the soil on which it grows are major sinks of atmospheric carbon. We present the results of a study on the carbon sequestration in the ground biomass of Avicennia marina including the organic carbon deposition, degradation and preservation in wetland sediments of Muthupet mangrove forest (southeast coast of India) in order to evaluate the influence of forests in the global carbon cycle. The inventory for estimating the ground biomass of Avicennia marina was carried out using random sampling technique (10 m × 10 m plot) with allometric regression equation. The carbon content in different vegetal parts (leaves, stem and root) of mangrove species and associated marshy vegetations was estimated using the combustion method. We observe that the organic carbon was higher (ca. 54.8%) recorded in the stems of Aegiceras corniculatum and Salicornia brachiata and lower (ca. 30.3%) in the Sesuvium portulacastrum leaves. The ground biomass and carbon sequestration of Avicennia marina are 58.56±12.65 t/ ha and 27.52±5.95 mg C/ha, respectively. The depth integrated organic carbon model profiles indicate an average accumulation rate of 149.75gC/m2.yr and an average remineralization rate of 32.89gC/m2.yr. We estimate an oxidation of ca. 21.85% of organic carbon and preservation of ca. 78.15% of organic carbon in the wetland sediments. Keywords: Above ground biomass, organic carbon, sequestration, mangrove, wetland sediments, Muthupet.

  3. The distribution and diversity of benthic macroinvertebrate fauna in Pondicherry mangroves, India

    PubMed Central

    2013-01-01

    Background Species distribution, abundance and diversity of mangrove benthic macroinvertebrate fauna and the relationships to environmental conditions are important parts of understanding the structure and function of mangrove ecosystems. In this study seasonal variation in the distribution of macrobenthos and related environmental parameters were explored at four mangrove stations along the Pondicherry coast of India, from September 2008 to July 2010. Multivariate statistical analyses, including cluster analysis, principal component analysis and non-multidimensional scales plot were employed to help define trophic status, water quality and benthic characteristic at the four monitoring stations. Results Among the 528 samples collected over 168 ha of mangrove forest 76 species of benthic macroinvertebrate fauna were identified. Macrofauna were mainly composed of deposit feeders, dominated numerically by molluscs and crustaceans. Statistical analyses yielded the following descriptors of benthic macroinvertebrate fauna species distribution: densities between 140–1113 ind. m-2, dominance 0.17-0.50, diversity 1.80-2.83 bits ind-1, richness 0.47-0.74 and evenness 0.45-0.72, equitability 0.38-0.77, berger parker 0.31-0.77 and fisher alpha 2.46-5.70. Increases of species diversity and abundance were recorded during the post monsoon season at station 1 and the lowest diversity was recorded at station 2 during the monsoon season. The pollution indicator organisms Cassidula nucleus, Melampus ceylonicus, Sphaerassiminea minuta were found only at the two most polluted regions, i.e. stations 3 and 4. Benthic macroinvertebrate fauna abundances were inversely related to salinity at the four stations, Based on Bray-Curtis similarity through hierarchical clustering implemented in PAST, it was possible to define three distinct benthic assemblages at the stations. Conclusions From a different multivariate statistical analysis of the different environmental parameters regarding species diversity and abundance of benthic macroinvertebrate fauna, it was found that benthic communities are highly affected by all the environmental parameters governing the distribution and diversity variation of the macrofaunal community in Pondicherry mangroves. Salinity, dissolved oxygen levels, organic matter content, sulphide concentration were the most significant parameters. PMID:23937801

  4. Kelp forest monitoring. Channel Islands National Park (1990 annual report). Final technical report

    SciTech Connect

    Richards, D.; Avery, W.; Kushner, D.

    1993-06-01

    The 1990 results of the Channel Islands National Park Kelp Forest Monitoring Project are described in this report. Sixty-eight species of algae, fish , and invertebrates were monitored annually at 16 permanent sites around the five islands within the park. Survey techniques utilized SCUBA and surface-supplied-air, and included quadrats, band transects, random point contacts, size frequencies, fish and video transects, photogrammetric plots, size frequency measurements, and species list surveys. In 1990, eight sites had healthy kelp forests, while three others had remnants or signs of a developing forest, though dominated by purple sea urchins. Four sites were dominated by purple sea urchins and one was dominated by red sea urchins. Four sites had high to moderate densities of white sea urchins, but two of those had dense kelp forests over most of the transect.

  5. Organic carbon burial rates in mangrove sediments: strengthening the global budget

    USGS Publications Warehouse

    Breithaupt, J.; Smoak, Joseph M.; Smith, Thomas J., III; Sanders, Christian J.; Hoare, Armando

    2012-01-01

    Mangrove wetlands exist in the transition zone between terrestrial and marine environments and as such were historically overlooked in discussions of terrestrial and marine carbon cycling. In recent decades, mangroves have increasingly been credited with producing and burying large quantities of organic carbon (OC). The amount of available data regarding OC burial in mangrove soils has more than doubled since the last primary literature review (2003). This includes data from some of the largest, most developed mangrove forests in the world, providing an opportunity to strengthen the global estimate. First-time representation is now included for mangroves in Brazil, Colombia, Malaysia, Indonesia, China, Japan, Vietnam, and Thailand, along with additional data from Mexico and the United States. Our objective is to recalculate the centennial-scale burial rate of OC at both the local and global scales. Quantification of this rate enables better understanding of the current carbon sink capacity of mangroves as well as helps to quantify and/or validate the other aspects of the mangrove carbon budget such as import, export, and remineralization. Statistical analysis of the data supports use of the geometric mean as the most reliable central tendency measurement. Our estimate is that mangrove systems bury 163 (+40; -31) g OC m-2 yr-1 (95% C.I.). Globally, the 95% confidence interval for the annual burial rate is 26.1 (+6.3; -5.1) Tg OC. This equates to a burial fraction that is 42% larger than that of the most recent mangrove carbon budget (2008), and represents 10–15% of estimated annual mangrove production. This global rate supports previous conclusions that, on a centennial time scale, 8–15% of all OC burial in marine settings occurs in mangrove systems.

  6. Diversity, disturbance, and sustainable use of Neotropical forests: insects as indicators for conservation monitoring

    Microsoft Academic Search

    Keith S. Brown Jr

    1997-01-01

    Sustainable use of tropical forest systems requires continuous monitoring of biological diversity and ecosystem functions. This can be efficiently done with ‘early warning‘ (short-cycle) indicator groups of non-economical insects, whose population levels and resources are readily measured. Twenty-one groups of insects are evaluated as focal indicator taxa for rapid assessment of changes in Neotropical forest systems. Composite environmental indices for

  7. Monitoring Needs to Transform Amazonian Forest Maintenance Into a Global Warming-Mitigation Option

    Microsoft Academic Search

    Philip M. Fearnside

    1997-01-01

    Two approaches are frequently mentioned in proposals to use tropical forest maintenance as a carbon offset. One is to set\\u000a up specific reserves, funding the establishment, demarcation, and guarding of these units. Monitoring, in this case, consists\\u000a of the relatively straightforward process of confirming that the forest stands in question continue to exist. In Amazonia,\\u000a where large expanses of tropical

  8. Determining the rate of change in a mixed deciduous forest monitored for 50 years

    Microsoft Academic Search

    Annett Wolf

    2011-01-01

    Introduction\\u000a    Trees in two compartments of the mixed deciduous forest Draved Forest have been monitored regularly for 50 years.\\u000a \\u000a \\u000a \\u000a \\u000a Materials and methods\\u000a    This data set was used to study the rate of change in forest structure and composition applying the Kolmogorov–Smirnov statistics,\\u000a chi-square test for the goodness of fit, and principal component analysis. We also correlated the specific test

  9. A Project to Map and Monitor Baldcypress Forests in Coastal Louisiana, Using Landsat, MODIS, and ASTER Satellite Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Sader, Steven; Smoot, James

    2012-01-01

    Cypress swamp forests of Louisiana offer many important ecological and economic benefits: wildlife habitat, forest products, storm buffers, water quality, and recreation. Such forests are also threatened by multiple factors: subsidence, salt water intrusion, sea level rise, persistent flooding, hydrologic modification, hurricanes, insect and nutria damage, timber harvesting, and land use conversion. Unfortunately, there are many information gaps regarding the type, location, extent, and condition of these forests. Better more up to date swamp forest mapping products are needed to aid coastal forest conservation and restoration work (e.g., through the Coastal Forest Conservation Initiative or CFCI). In response, a collaborative project was initiated to develop, test and demonstrate cypress swamp forest mapping products, using NASA supported Landsat, ASTER, and MODIS satellite data. Research Objectives are: Develop, test, and demonstrate use of Landsat and ASTER data for computing new cypress forest classification products and Landsat, ASTER, and MODIS satellite data for detecting and monitoring swamp forest change

  10. Molecular Insights into Plant-Microbial Processes and Carbon Storage in Mangrove Ecosystems

    NASA Astrophysics Data System (ADS)

    Romero, I. C.; Ziegler, S. E.; Fogel, M.; Jacobson, M.; Fuhrman, J. A.; Capone, D. G.

    2009-12-01

    Mangrove forests, in tropical and subtropical coastal zones, are among the most productive ecosystems, representing a significant global carbon sink. We report new molecular insights into the functional relationship among microorganisms, mangrove trees and sediment geochemistry. The interactions among these elements were studied in peat-based mangrove sediments (Twin Cays, Belize) subjected to a long-term fertilization experiment with N and P, providing an analog for eutrophication. The composition and ?13C of bacterial PLFA showed that bacteria and mangrove trees had similar nutrient limitation patterns (N in the fringe mangrove zone, P in the interior zone), and that fertilization with N or P can affect bacterial metabolic processes and bacterial carbon uptake (from diverse mangrove sources including leaf litter, live and dead roots). PCR amplified nifH genes showed a high diversity (26% nifH novel clones) and a remarkable spatial and temporal variability in N-fixing microbial populations in the rhizosphere, varying primarily with the abundance of dead roots, PO4-3 and H2S concentrations in natural and fertilized environments. Our results indicate that eutrophication of mangrove ecosystems has the potential to alter microbial organic matter remineralization and carbon release with important implications for the coastal carbon budget. In addition, we will present preliminary data from a new study exploring the modern calibration of carbon and hydrogen isotopes of plant leaf waxes as a proxy recorder of past environmental change in mangrove ecosystems.

  11. Mangrove peat analysis and reconstruction of vegetation history at the Pelican Cays, Belize

    USGS Publications Warehouse

    McKee, K.L.; Faulkner, P.L.

    2000-01-01

    The substrate beneath mangrove forests in the Pelican Cays complex is predominately peat composed mainly of mangrove roots. Leaves and wood account for less than 20% of the peat mass. At Cat Cay, the depth of the peat ranges from 0.2 m along the shoreline to 1.65 m in the island center, indicating that the island has expanded horizontally as well as vertically through below-ground, biogenic processes. Mangrove roots thus play a critical role in the soil formation, vertical accretion, and stability of these mangrove cays. The species composition of fossil roots changes markedly with depth: Rhizophora mangle (red mangrove) was the initial colonizer on a coral base, followed by Avicennia germinans (black mangrove), which increased in abundance and expanded radially from the center of the island. The center of the Avicennia stand ultimately died, leaving an unvegetated, shallow pond. The peat thus retains a record of mangrove development, succession, and deterioration in response to sea-level change and concomitant hydroedaphic conditions controlling dispersal, establishment, growth, and mortality of mangroves on oceanic islands in Belize.

  12. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events

    PubMed Central

    Cavanaugh, Kyle C.; Kellner, James R.; Forde, Alexander J.; Gruner, Daniel S.; Parker, John D.; Rodriguez, Wilfrid; Feller, Ilka C.

    2014-01-01

    Regional warming associated with climate change is linked with altered range and abundance of species and ecosystems worldwide. However, the ecological impacts of changes in the frequency of extreme events have not been as well documented, especially for coastal and marine environments. We used 28 y of satellite imagery to demonstrate that the area of mangrove forests has doubled at the northern end of their historic range on the east coast of Florida. This expansion is associated with a reduction in the frequency of “extreme” cold events (days colder than ?4 °C), but uncorrelated with changes in mean annual temperature, mean annual precipitation, and land use. Our analyses provide evidence for a threshold response, with declining frequency of severe cold winter events allowing for poleward expansion of mangroves. Future warming may result in increases in mangrove cover beyond current latitudinal limits of mangrove forests, thereby altering the structure and function of these important coastal ecosystems. PMID:24379379

  13. A conceptual model of ecological interactions in the mangrove estuaries of the Florida Everglades

    Microsoft Academic Search

    Steven M. Davis; Daniel L. Childers; Jerome J. Lorenz; Harold R. Wanless; Todd E. Hopkins

    2005-01-01

    A brackish water ecotone of coastal bays and lakes, mangrove forests, salt marshes, tidal creeks, and upland hammocks separates\\u000a Florida Bay, Biscayne Bay, and the Gulf of Mexico from the freshwater Everglades. The Everglades mangrove estuaries are characterized\\u000a by salinity gradients that vary spatially with topography and vary seasonally and inter-annually with rainfall, tide, and\\u000a freshwater flow from the Everglades.

  14. Wetland changes and mangrove restoration planning in Shenzhen Bay, Southern China

    Microsoft Academic Search

    Hai Ren; Xiaoming Wu; Tianzhu Ning; Gu Huang; Jun Wang; Shuguang Jian; Hongfang Lu

    2011-01-01

    Mangrove forests and associated gei wai (excavated ponds used for shrimp and fish farming) provide important ecosystem services in Shenzhen Bay. Much of the mangrove\\u000a and gei wai wetlands, however, have been lost because of intensified human activities in the past 30 years. Using five-phase remote-sensing\\u000a images, we describe the recent history of the spatial–temporal dynamics for the wetlands in the

  15. CLIMATE DATA AND ANALYSIS FOR THE NEW ENGLAND FOREST HEALTH MONITORING PROJECT (NEFHM/EMAP FORESTS)

    EPA Science Inventory

    This paper describes the development of climatological information products to support ecological data collection and analysis. Characteristics of climatological persistence and recurrence that are critical to New England forest health and productivity are identified. he appropri...

  16. Monitoring population and land use change in tropical forest protected areas

    NASA Astrophysics Data System (ADS)

    Zvoleff, A. I.; Rosa, M.; Ahumada, J. A.

    2014-12-01

    Monitoring human-environment interactions in tropical forest protected areas requires linking interdisciplinary datasets collected across a range of spatial and temporal scales. Recent assessments have shown that forest degradation and loss outside of protected areas is strongly associated with declines in biodiversity within protected areas. Biodiversity monitoring efforts must therefore develop approaches that consider change in the broader landscape, using biophysical and socioeconomic datasets that not only cover the extent of a protected area, but also the region surrounding it. The Tropical Ecology Assessment and Monitoring (TEAM) Network has developed an approach for linking remotely sensed imagery from Landsat and MODIS sensors with in-situ ecological data and socioeconomic datasets to better understand the effects of landscape change on biodiversity. The TEAM Network is a global system for monitoring biodiversity, land use/cover change (LUCC), and climate in sixteen tropical forest sites evenly distributed across global biophysical gradients (rainfall and seasonality) and gradients of expected climate change and land use change. TEAM adopts the Zone of Interaction (ZOI) concept to delineate the spatial extent around protected areas for linking broader-scale trends in LUCC to plot-based monitoring data. This talk reports on a cross-site comparison examining LUCC and biodiversity change across the TEAM network. The analysis indicates a gradient of forest loss in the tropics dependent on landscape-level human factors, such as population and road density. The highest losses of forest cover are associated with changing patterns of land use and agricultural development, particularly plantation forestry in Southeast Asia. While the spatial and temporal resolution of remote sensing-derived datasets continues to increase, a key challenge for monitoring efforts is linking this data to spatially explicit socioeconomic datasets for use in statistical modeling. We will discuss best practices for handling major global datasets (i.e. GRUMP, gROADS, WorldPop, Landscan) in the context of ongoing LUCC and biodiversity monitoring programs.

  17. Monitoring forest change at ecotones in the Colorado Rockies

    Microsoft Academic Search

    T. J. Stohlgren; R. R. Bachand

    1994-01-01

    We are assessing the potential effect of global climate change on the Front Range of the Colorado Rockies, including Rocky Mountain National Park. Our objective is quantify the abiotic and biotic controls on forest distribution and productivity as a basis for assessing potential vegetation change for a range of projected climate scenarios. A series of long-term vegetation transects are being

  18. CLASSIFICATION, PROTECTION, AND MONITORING OF NONTIDAL FLOODPLAIN FOREST COMMUNITIES

    EPA Science Inventory

    New Jersey,s floodplain forests (FFs) contain 57 rare plant species, 25 of which are State Endangered. The acreage of FF has been substantially reduced over the past 200 years, and upland buffers have also been diminished. Threats to FF communities include stream degradation, ...

  19. Leaf-consumption levels in subtropical mangroves of Paranaguá Bay (SE Brazil)

    Microsoft Academic Search

    Luiz Francisco Ditzel Faraco; Paulo da Cunha Lana

    2004-01-01

    The objective of this study was to measure leaf consumption levels, mainly by insect herbivores and the tree-dwelling crab Aratus pisonii (H. Milne Edwards, 1837), in mangrove forests of a large subtropical estuarine system in the South Atlantic Ocean, to determine if patterns of herbivory varied with forest structure, tree species and marked seasonal differences in rainfall and temperature. We

  20. Monitoring the Philippine Forest Cover Change Using Ndvi Products of Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Torres, R. C.; Mouginis-Mark, P.; Wright, R.; Garbeil, H.; Craig, B.

    2004-12-01

    The Philippines has one of the world's fastest disappearing forest cover, which is being lost to natural processes and landscape-modifying human activities. Currently, forested landscape covers 24% (i.e., 7.2 million hectares) of the Philippines' total land area, of which only 800,000 hectares are considered as old-growth forests. Occasionally, volcanic activities and earthquakes cause large-scale impacts on the forest cover, but the systematic reduction of the country's forest has been sustained through unregulated logging operations and other human-induced landscape modification. Reforestation and watershed protection have become important public policy programs as forest denudation is linked to recent devastating landslides, debris flows and flashfloods. However, many watershed areas that are at risk to deforestation are hardly accessible to ground-based monitoring. A spaced-based monitoring system facilitates an efficient and timely response to changes in the quality and extent of the Philippine forest cover. This monitoring system relies in the generation of Normalized Difference Vegetation Index (NDVI) products from the red and infrared bands of remote sensing data, which correlates with the amount of chlorophyll in the vegetation. Given the existing forest classification maps, non-forested regions are masked in the data analysis, so that only forest-related changes in the vegetation are shown in the NDVI image difference products. A combination of two MODIS-bearing satellites, i.e., Terra and Aqua, acquire high temporal and moderate spatial resolution data, enabling the countrywide detection of vegetation changes within a certain observation period. MODIS data are calibrated for setting the pixel quality thresholds, which minimize the artifact of clouds and haze in the analysis. Areas showing dramatic changes are further investigated using higher resolution data, such as ASTER and Landsat 7 ETM. Sequential NDVI products of remote sensing data provide improved spatial information for the assessment of a natural disaster, warning of potential hazardous situations, detection of illegal forest-clearing activities and management of the reforestation effort.

  1. Conditional cooperation and costly monitoring explain success in forest commons management.

    PubMed

    Rustagi, Devesh; Engel, Stefanie; Kosfeld, Michael

    2010-11-12

    Recent evidence suggests that prosocial behaviors like conditional cooperation and costly norm enforcement can stabilize large-scale cooperation for commons management. However, field evidence on the extent to which variation in these behaviors among actual commons users accounts for natural commons outcomes is altogether missing. Here, we combine experimental measures of conditional cooperation and survey measures on costly monitoring among 49 forest user groups in Ethiopia with measures of natural forest commons outcomes to show that (i) groups vary in conditional cooperator share, (ii) groups with larger conditional cooperator share are more successful in forest commons management, and (iii) costly monitoring is a key instrument with which conditional cooperators enforce cooperation. Our findings are consistent with models of gene-culture coevolution on human cooperation and provide external validity to laboratory experiments on social dilemmas. PMID:21071668

  2. Hyperspectral data application for peat forest monitoring in Central Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Ohki, Takashi; Yoshida, Keigo; Sekine, Hozuma; Takayama, Taichi; Takeda, Tomomi; Hirose, Kazuyo; Evri, Muhammad; Osaki, Mitsuru

    2012-11-01

    Peatland is a large CO2 reservoir which accumulates 2000Gt of CO2, which is equal to 30% of global soil carbon. However, it has been becoming a large CO2 emission source because of peat decomposition and fire due to drainage water. This is caused by social activities such as canalizing. Especially, in Indonesia, peat swamp forests cover considerable portions of Kalimantan and 37.5% of CO2 emission source is peatland (DNPI, 2010). To take measures, it is necessary to conduct appropriate assessment of CO2 emission in broad peat swamp forest. Because hyperspectral data possess higher spectral resolutions, it is expected to evaluate the detailed forest conditions. We develop a method to assess carbon emission from peat swamp forest by using hyperspectral data in Central Kalimantan, Indonesia. Specifically, we estimate 1) forestry biomass and 2) underground water level expected as an indicator of CO2 emission from peat. In this research, we use the image taken by HyMAP which is one of the airborne hyperspectral sensors. Since the research area differs in forest types and conditions due to the past forest fire and disturbance, forest types are classified with the sparse linear discriminant analysis. Then, we conduct a biomass estimation using Normalized Difference Spectral Index (NDSI). We also analyze the relationship between underground water level and Normalized Difference Water Index (NDWI), and find the possibility of underground water level estimation with hyperspectral data. We plan to establish a highly developed method to apply hyperspectral sensor to peatland monitoring system.

  3. Food sources of macro-invertebrates in an important mangrove ecosystem of Vietnam determined by dual stable isotope signatures

    NASA Astrophysics Data System (ADS)

    Tue, Nguyen Tai; Hamaoka, Hideki; Sogabe, Atsushi; Quy, Tran Dang; Nhuan, Mai Trong; Omori, Koji

    2012-08-01

    Dual stable isotope signatures (?13C and ?15N) were applied to determine the contribution of mangrove materials and other organic carbon sources to the invertebrate community in an ecologically important mangrove ecosystem of Vietnam. We have analyzed 181 specimens of 30 invertebrate species and found ?13C and ?15N ranging from - 14.5 to - 26.8‰ and from 1.3 to 12.1‰, respectively. From taxa measured for stable isotopes, polychaete, gastropods, bivalves, and grapsid crabs living in mangrove forest showed relative low ?13C values, while fiddler crabs inhabiting in the land-water ecotone showed the highest ?13C values. The ?13C showed that just a few mangrove inhabitants directly relied on the mangrove materials. The wide ranges of ?13C and ?15N signatures indicated that the invertebrates utilized heterogeneous diets, comprising benthic microalgae, marine phytoplankton, particulate organic matter, sediment organic matter, mangrove detritus, and meiofauna and rotten animal tissues as the supplemental nutrient food sources. Moreover, the significant correlation between ?13C values and body sizes of invertebrates showed that snails Littoraria melanostoma and Terebralia sulcata, bivalve Glauconome virens, and portunid crab Scylla serrata exhibited ontogenetic shifts in diets. The present study showed that adjacent habitats such as tidal flat and mangrove creeks seem to contribute an important microalgal food resource for invertebrates and highlighted the need for conservations of mangrove forests and the adjacent habitats.

  4. Monitoring Boreal Forest Owls in Ontario Using Tape Playback Surveys with Volunteers

    Microsoft Academic Search

    Charles M. Francis; Michael S. W. Bradstreet

    Long Point Bird Observatory ran pilot surveys in 1995 and 1996 to monitor boreal forest owls in Ontario using roadside surveys with tape playback of calls. A minimum of 791 owls on 84 routes in 1995, and 392 owls on 88 routes in 1996; nine different species were detected. Playback improved the response rate for Barred (Strix varia), Boreal (Aegolius

  5. Mangrove removal in the belize cays: effects on mangrove-associated fish assemblages in the intertidal and subtidal

    USGS Publications Warehouse

    Taylor, D.S.; Reyier, E.A.; Davis, W.P.; McIvor, C.C.

    2007-01-01

    We investigated the effects of mangrove cutting on fish assemblages in Twin Cays, Belize, in two habitat types. We conducted visual censuses at two sites in adjoining undisturbed/disturbed (30%–70% of shoreline fringe removed) sub-tidal fringing Rhizophora mangle Linnaeus, 1753. Observers recorded significantly more species and individuals in undisturbed sites, especially among smaller, schooling species (e.g., atherinids, clupeids), where densities were up to 200 times greater in undisturbed habitat. Multivariate analyses showed distinct species assemblages between habitats at both sites. In addition, extensive trapping with wire minnow traps within the intertidal zone in both undisturbed and disturbed fringing and transition (landward) mangrove forests was conducted. Catch rates were low: 638 individuals from 24 species over 563 trap-nights. Trap data, however, indicated that mangrove disturbance had minimal effect on species composition in either forest type (fringe/transition). Different results from the two methods (and habitat types) may be explained by two factors: (1) a larger and more detectable species pool in the subtidal habitat, with visual "access" to all species, and (2) the selective nature of trapping. Our data indicate that even partial clearing of shoreline and more landward mangroves can have a significant impact on local fish assemblages.

  6. Drivers of cyanobacterial diversity and community composition in mangrove soils in south-east Brazil.

    PubMed

    Rigonato, Janaina; Kent, Angela D; Alvarenga, Danillo O; Andreote, Fernando D; Beirigo, Raphael M; Vidal-Torrado, Pablo; Fiore, Marli F

    2013-04-01

    Cyanobacteria act as primary producers of carbon and nitrogen in nutrient-poor ecosystems such as mangroves. This important group of microorganisms plays a critical role in sustaining the productivity of mangrove ecosystems, but the structure and function of cyanobacteria assemblages can be perturbed by anthropogenic influences. The aim of this work was to assess the community structure and ecological drivers that influence the cyanobacterial community harboured in two Brazilian mangrove soils, and examine the long-term effects of oil contamination on these keystone species. Community fingerprinting results showed that, although cyanobacterial communities are distinct between the two mangroves, the structure and diversity of the assemblages exhibit similar responses to environmental gradients. In each ecosystem, cyanobacteria occupying near-shore areas were similar in composition, indicating importance of marine influences for structuring the community. Analysis of 16S rRNA sequences revealed the presence of diverse cyanobacterial communities in mangrove sediments, with clear differences among mangrove habitats along a transect from shore to forest. While near-shore sites in both mangroves were mainly occupied by Prochlorococcus and Synechococcus genera, sequences retrieved from other mangrove niches were mainly affiliated with uncultured cyanobacterial 16S rRNA. The most intriguing finding was the large number of potentially novel cyanobacteria 16S rRNA sequences obtained from a previously oil-contaminated site. The abundance of cyanobacterial 16S rRNA sequences observed in sites with a history of oil contamination was significantly lower than in the unimpacted areas. This study emphasized the role of environmental drivers in determining the structure of cyanobacterial communities in mangrove soils, and suggests that anthropogenic impacts may also act as ecological filters that select cyanobacterial taxa. These results are an important contribution to our understanding of the composition and relative abundance of previously poorly described cyanobacterial assemblages in mangrove ecosystems. PMID:22816485

  7. Potential for Expanding the Near Real Time ForWarn Regional Forest Monitoring System to Include Alaska

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Gasser, Gerald; Hargrove, William; Smoot, James; Kuper, Philip D.

    2014-01-01

    The on-line near real time (NRT) ForWarn system is currently deployed to monitor regional forest disturbances within the conterminous United States (CONUS), using daily MODIS Aqua and Terra NDVI data to derive monitoring products. The Healthy Forest Restoration Act of 2003 mandated such a system. Work on ForWarn began in 2006 with development and validation of retrospective MODIS NDVI-based forest monitoring products. Subsequently, NRT forest disturbance monitoring products were demonstrated, leading to the actual system deployment in 2010. ForWarn provides new CONUS forest disturbance monitoring products every 8 days, using USGS eMODIS data for current NDVI. ForWarn currently does not cover Alaska, which includes extensive forest lands at risk to multiple biotic and abiotic threats. This poster discusses a case study using Alaska eMODIS Terra data to derive ForWarn like forest change products during the 2010 growing season. The eMODIS system provides current MODIS Terra NDVI products for Alaska. Resulting forest change products were assessed with ground, aerial, and Landsat reference data. When cloud and snow free, these preliminary products appeared to capture regional forest disturbances from insect defoliation and fires; however, more work is needed to mitigate cloud and snow contamination, including integration of eMODIS Aqua data.

  8. Painting the world REDD: addressing scientific barriers to monitoring emissions from tropical forests

    NASA Astrophysics Data System (ADS)

    Asner, Gregory P.

    2011-06-01

    In December 2010, parties to the United Nations Framework Convention on Climate Change (UNFCCC) agreed to encourage reductions in greenhouse gas emissions from forest losses with the financial support of developed countries. This important international agreement followed about seven years of effort among governments, non-governmental organizations (NGO) and the scientific community, and is called REDD+, the program for Reducing Emissions from Deforestation and Forest Degradation. REDD+ could achieve its potential to slow emissions from deforestation and forest degradation either as a new market option to offset emissions from developed nations, or as a mitigation option for developing countries themselves. Aside from representing an important step towards reducing greenhouse gas emissions, a growing list of potential co-benefits to REDD+ include improved forestry practices, forest restoration, sustainable development, and biodiversity protection. Indeed the agreement is heralded as a win-win for climate change mitigation and tropical forest conservation, and it could end up contributing to a global economy based on carbon and ecosystem services. That's good news, and some governments are now working to become 'REDD ready' in preparation for the forthcoming international program. This is important because, according to the agreements made by governments in the UNFCCC, developing countries which voluntarily decide to take part in REDD+ must establish their own national forest monitoring system to report changes in emissions from forests (UNFCCC 2009). But as of today, no developing country has implemented a system for monitoring, reporting and verifying (MRV) emission reductions for REDD+. Of course, it is all still very new, but many REDD-type projects have been underway for years now (Parker et al 2008), and many MRV practitioners involved in those projects are the same people being asked to help with government-led, national MRV programs. Yet going from the project scale to program readiness is a big step for all involved, and many are finding that it is not easy. Current barriers to national monitoring of forest carbon stocks and emissions range from technical to scientific, and from institutional to operational. In fact, a recent analysis suggested that about 3% of tropical countries currently have the capacity to monitor and report on changes in forest cover and carbon stocks (Herold 2009). But until now, the scientific and policy-development communities have had little quantitative information on exactly which aspects of national-scale monitoring are most uncertain, and how that uncertainty will affect REDD+ performance reporting. A new and remarkable study by Pelletier, Ramankutty and Potvin (2011) uses an integrated, spatially-explicit modeling technique to explore and quantify sources of uncertainty in carbon emissions mapping throughout the Republic of Panama. Their findings are sobering: deforestation rates would need to be reduced by a full 50% in Panama in order to be detectable above the statistical uncertainty caused by several current major monitoring problems. The number one uncertainty, accounting for a sum total of about 77% of the error, rests in the spatial variation of aboveground carbon stocks in primary forests, secondary forests and on fallow land. The poor quality of and insufficient time interval between land-cover maps account for the remainder of the overall uncertainty. These findings are a show-stopper for REDD+ under prevailing science and technology conditions. The Pelletier et al study highlights the pressing need to improve the accuracy of forest carbon and land cover mapping assessments in order for REDD+ to become viable, but how can the uncertainties be overcome? First, with REDD+ nations required to report their emissions, and with verification organizations wanting to check on the reported numbers, there is a clear need for shared measurement and monitoring approaches. One of the major stumbling blocks actually starts with the scientific community, which needs not only to develop h

  9. Monitoring of ozone in selected forest ecosystems in Southern Carpathian and Romanian Intensive Monitoring Network (level II).

    PubMed

    Silaghi, Diana; Badea, Ovidiu

    2012-05-01

    In the Romanian forest ecosystems, the first measurements of ambient ozone (O(3)) concentrations started in 1997 in 6 of 26 locations established in a trans-Carpathian Network. Furthermore, three additional ozone and other phytotoxic pollutant (NO(x), SO(2) and NH(3)) monitoring networks were installed in 2000 in Retezat (11 locations) and during 2006-2009 in Bucegi-Piatra Craiului (22 locations) LTER Sites. Since 2007, in four Intensive Forest Monitoring plots (level II), measurements of ozone concentrations were developed. Measurements were made using the Ogawa® passive sampler system during the growing season (April to October). In the Bucegi LTER Site, the seasonal means of 42.5-47.2 ppb in 2006 and 2008 were higher than those determined in the Carpathian Network in the 1997-1999 period (39.0-42.0 ppb), while the 2009 mean of 40.0 ppb was in the range of these values. The O(3) levels were slightly higher than those measured in Retezat LTER Site. In the Intensive Forest Monitoring Network (level II), no significant differences in ozone concentrations between individual core plots were noticed. The seasonal means for each plot range between 36.8 and 49.8 ppb in 2008. An influence of ozone concentrations on crown condition and tree volume growth was not determined. PMID:22531931

  10. Comprehensive Monitoring of CO2 Sequestration in Subalpine Forest Ecosystems

    E-print Network

    Han, Richard Y.

    , carbon sequestration, ecosystem, multi-tier, multi-modal, multi-scale, self organized, sensor array to comprehensively monitor ecosystem carbon sequestration. The network consists of CO2, Weather (pressure

  11. Effects of nutrient enrichment on mangrove leaf litter decomposition.

    PubMed

    Keuskamp, Joost A; Hefting, Mariet M; Dingemans, Bas J J; Verhoeven, Jos T A; Feller, Ilka C

    2015-03-01

    Nutrient enrichment of mangroves, a common phenomenon along densely populated coastlines, may negatively affect mangrove ecosystems by modifying internal carbon and nutrient cycling. The decomposition of litter exerts a strong influence on these processes and is potentially modified by eutrophication. This study describes effects of N and P enrichment on litter decomposition rate and mineralisation/immobilisation patterns. By making use of reciprocal litter transplantation experiments among fertiliser treatments, it was tested if nutrient addition primarily acts on the primary producers (i.e. changes in litter quantity and quality) or on the microbial decomposers (i.e. changes in nutrient limitation for decomposition). Measurements were done in two mangrove forests where primary production was either limited by N or by P, which had been subject to at least 5 years of experimental N and P fertilisation. Results of this study indicated that decomposers were always N-limited regardless of the limitation of the primary producers. This leads to a differential nutrient limitation between decomposers and primary producers in sites where mangrove production was P-limited. In these sites, fertilisation with P caused litter quality to change, resulting in a higher decomposition rate. This study shows that direct effects of fertilisation on decomposition through an effect on decomposer nutrient availability might be non-significant, while the indirect effects through modifying litter quality might be quite substantial in mangroves. Our results show no indication that eutrophication increases decomposition without stimulating primary production. Therefore we do not expect a decline in carbon sequestration as a result of eutrophication of mangrove ecosystems. PMID:25497680

  12. Analysis of beach morphodynamics on the Bragantinian mangrove peninsula (Pará, North Brazil) as prerequisite for coastal zone management recommendations

    Microsoft Academic Search

    Gesche Krause; Cidiane Soares

    2004-01-01

    A beach profile monitoring programme was initiated in 1997 as a contribution to the development of recommendations for an integrated coastal zone management scheme of the mangrove peninsula of Bragança, State of Pará (North Brazil). It was the first scientific investigation on the coastal morphodynamics in a mangrove environment, which was opened for human use only since the mid-1970s. The

  13. How Can a Little Shrimp Do so Much Damage?: Ecosystem Service Losses Associated with Land Cover Change in Mangroves

    NASA Astrophysics Data System (ADS)

    Kauffman, J. B.; Bhomia, R. K.

    2014-12-01

    Mangroves provide a number of ecosystem services including habitats for many species of fish and shellfish, storm protection, influences on water quality, wood, aesthetics, and a source of nutrients and energy for adjacent marine ecosystems. C stocks of mangroves are among the highest of any forest type on Earth. We have measured the ecosystem carbon stocks in mangroves across the world and found them to range from 250 to >2000 Mg C/ha which is a CO2 equivalence of 917 to 7340 Mg/ha. Because the numerous values of mangroves are well known, it is ironic that rates of deforestation largely relating to land use/land cover change are among the highest of any forest type on earth exceeding that of tropical rain forests. Dominant causes of deforestation include conversion to aquaculture (shrimp), agricultural conversion, and coastal development. The carbon emissions arising from conversion of mangroves to other uses is exceptionally high. This is because vulnerability of the soil carbon stocks to losses with conversion. Emissions from conversion of mangrove to shrimp ponds range from about 800 to over 3000 Mg CO2e/ha. This places the carbon footprint of shrimp arising from such ponds as among the highest of any food product available. Of great interest is the potential value of mangroves in carbon marketing strategies and other financial incentives that are derived from the conservation of standing forests. This is because of the combination of high carbon stocks in intact mangroves, the high greenhouse gas emissions arising from their conversion, and the conservation of other valuable ecosystem services provided by intact mangroves.

  14. Monitoring short-term changes in biophysical variables of forests with Landsat ETM

    NASA Astrophysics Data System (ADS)

    Mora, Franz; Silvan-Cardenas, Jose L.

    2004-02-01

    The monitoring of short-term changes in structural characteristics of forests is important to understand mechanisms of vegetation loss that can be associated with deforestation, and illegal logging. These changes, however, should be differentiated from variations in vegetation activity due to interannual variability. Change detection based on thematic information is limited for this purpose because it depends highly on classification accuracies, and it does not allow a quantitative evaluation of biomass loss. The definition of bio-indicators associated with structural characteristics (such as, leaf area index, vegetation fraction) is at present, the only way to monitor such changes. We developed an evaluation system consisting of 4 bio-physical variables, estimated from visible red and near-infrared observations of the Enhanced Thematic Mapper, to monitor changes in forest biomass. The system is based in the application of algorithms to estimate leaf area index, the fractional vegetation cover, leaf vegetation index, and a sparse vegetation cover index, from radiometrically and atmospherically calibrated data. The algorithms were applied to individual scene images acquired during the dry season (April-May) to maximize the forest vegetation signal, and in order to identify areas of change due to changes in forest biomass rather than changes in understory vegetation conditions. The change detection analysis consisted in comparing pixel-by-pixel scenes of such variables, and the results indicated that changes in structural characteristics of forest can be monitored with Landsat-7, being leaf area index, and fractional vegetation cover the most significant in identifying changes along roadsides and population centers that indicate biomass extraction.

  15. Rapid losses of surface elevation following tree girdling and cutting in tropical mangroves.

    PubMed

    Lang'at, Joseph Kipkorir Sigi; Kairo, James G; Mencuccini, Maurizio; Bouillon, Steven; Skov, Martin W; Waldron, Susan; Huxham, Mark

    2014-01-01

    The importance of mangrove forests in carbon sequestration and coastal protection has been widely acknowledged. Large-scale damage of these forests, caused by hurricanes or clear felling, can enhance vulnerability to erosion, subsidence and rapid carbon losses. However, it is unclear how small-scale logging might impact on mangrove functions and services. We experimentally investigated the impact of small-scale tree removal on surface elevation and carbon dynamics in a mangrove forest at Gazi bay, Kenya. The trees in five plots of a Rhizophora mucronata (Lam.) forest were first girdled and then cut. Another set of five plots at the same site served as controls. Treatment induced significant, rapid subsidence (-32.1±8.4 mm yr-1 compared with surface elevation changes of +4.2±1.4 mm yr-1 in controls). Subsidence in treated plots was likely due to collapse and decomposition of dying roots and sediment compaction as evidenced from increased sediment bulk density. Sediment effluxes of CO? and CH? increased significantly, especially their heterotrophic component, suggesting enhanced organic matter decomposition. Estimates of total excess fluxes from treated compared with control plots were 25.3±7.4 tCO? ha-1 yr-1 (using surface carbon efflux) and 35.6±76.9 tCO? ha-1 yr-1 (using surface elevation losses and sediment properties). Whilst such losses might not be permanent (provided cut areas recover), observed rapid subsidence and enhanced decomposition of soil sediment organic matter caused by small-scale harvesting offers important lessons for mangrove management. In particular mangrove managers need to carefully consider the trade-offs between extracting mangrove wood and losing other mangrove services, particularly shoreline stabilization, coastal protection and carbon storage. PMID:25244646

  16. Sea level and turbidity controls on mangrove soil surface elevation change

    USGS Publications Warehouse

    2014-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  17. RIMBAMON©: A forest monitoring system using wireless sensor networks

    Microsoft Academic Search

    Azlan Awang; Muhamad Haidar Suhaimi

    2007-01-01

    Wireless sensor networks (WSNs) have emerged as one of the most promising research areas in recent years and are widely recognized as powerful means for in situ observations of events and environments over long period of time. The wide spectrum of applications WSNs can offer such as environment and habitat monitoring, healthcare applications, home or industrial automation and control, product

  18. Operational multi-sensor design for forest carbon monitoring to support REDD+ in Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Braswell, B. H.; Hagen, S. C.; Harris, N.; Saatchi, S. S.

    2013-12-01

    Parties to the United Nations Framework Convention on Climate Change (UNFCCC) have been requested to establish robust and transparent national forest monitoring systems (NFMS) that use a combination of remote sensing and ground-based forest carbon inventory approaches to estimate anthropogenic forest-related greenhouse gas emissions and removals, reducing uncertainties as far as possible. A country's NFMS should also be used for data collection to inform the assessment of national or subnational forest reference emission levels and/or forest reference levels (RELs/RLs). In this way, the NFMS forms the link between historical assessments and current/future assessments, enabling consistency in the data and information to support the implementation of REDD+ activities in countries. The creation of a reliable, transparent, and comprehensive NFMS is currently limited by a dearth of relevant data that are accurate, low-cost, and spatially resolved at subnational scales. We are developing, evaluating, and validating several critical components of an NFMS in Kalimantan, Indonesia, focusing on the use of LiDAR and radar imagery for improved carbon stock and forest degradation information. Our goal is to evaluate sensor and platform tradeoffs systematically against in situ investments, as well as provide detailed tracking and characterization of uncertainty in a cost-benefit framework. Kalimantan is an ideal area to evaluate the use of remote sensing methods because measuring forest carbon stocks and their human caused changes with a high degree of certainty in areas of dense tropical forests has proven to be difficult. While the proposed NFMS components are being developed at the subnational scale for Kalimantan, we are targeting these methods for applicability across broader geographies and for implementation at various scales. Our intention is for this research to advance the state of the art of Measuring, Reporting, and Verification (MRV) system methodologies in ways that are both technical and operational. First, because a primary focus of carbon monitoring systems, especially in developing countries, is on cost-effectiveness, our analysis of optimal inputs of information from various satellite, airborne, and in situ measurements will provide practical information that countries can use to consider the tradeoffs. Second, because quantifying and understanding uncertainty is critical both in an Earth science research context and with regard to payment for ecosystem services, our development of reusable methods for tracking and evaluating uncertainty within a carbon monitoring system will provide a framework for stakeholders and researchers to understand and minimize errors across MRV components.

  19. Ground floor vegetation assessment within the intensive (Level II) monitoring of forest ecosystems in Germany: chances and challenges

    Microsoft Academic Search

    Walter Seidling

    2005-01-01

    As a part of the ‘Intensive Forest Monitoring Programme’ of ICP Forests, ground floor vegetation has been surveyed along with\\u000a parameters of other relevant components of the forest ecosystems and their environment at 80 permanent plots all over Germany.\\u000a Its floristic composition and their changes can therefore be linked to a wide variety of potentially influencing factors,\\u000a scrutinising recent hypotheses

  20. Effect of temperature on leaf litter consumption by grapsid crabs in a subtropical mangrove (Okinawa, Japan)

    NASA Astrophysics Data System (ADS)

    Mfilinge, Prosper L.; Tsuchiya, Makoto

    2008-02-01

    Litter consumption by grapsid crabs enhances detritus turnover and nutrient cycling in mangrove ecosystems. However, unlike tropical mangroves, subtropical mangroves are subjected to pronounced seasonal changes in weather; particularly, low winter temperatures may slow down important ecological processes such as litter decay. This study aimed at evaluating the effect of temperature (low winter and high summer temperatures) on leaf litter consumption by two grapsid crabs ( Parasesarma pictum and Helice leachi) in a subtropical mangrove forest of Okinawa Island, south Japan. We also tested whether leaf litter consumption between the low winter and summer temperatures could be affected by leaf species type and quality. A leaf-tethering technique was used to conduct field feeding experiments in the high and low intertidal sites of the mangroves using leaves of Bruguiera gymnorrhiza and Kandelia obovata. Leaves of different stages of decay: fresh (green), yellow, brown, two and four weeks were used. Results showed significant differences in leaf consumption between seasons, leaf species and shore heights. More leaves were consumed during summer than winter. In both seasons and shore heights, crabs consumed significantly more leaves of K. obovata than B. gymnorrhiza. Consumption was higher in the high than low intertidal mangrove. Although crabs preferred aged leaves in summer, during the winter season they consumed significantly more green leaves of K. obovata than yellow and brown leaves of B. gymnorrhiza. The slow litter processing during winter was consistent with lower carbon contents and lower C/N ratios in the surface sediments, signifying low input of organic matter. Results of this study suggest that temperature affects mangrove litter processing in Oura Bay mangroves, and consequently the amounts of organic matter and nutrients conserved inside subtropical mangrove sediments.

  1. Evaluation of a regional monitoring program's statistical power to detect temporal trends in forest health indicators.

    PubMed

    Perles, Stephanie J; Wagner, Tyler; Irwin, Brian J; Manning, Douglas R; Callahan, Kristina K; Marshall, Matthew R

    2014-09-01

    Forests are socioeconomically and ecologically important ecosystems that are exposed to a variety of natural and anthropogenic stressors. As such, monitoring forest condition and detecting temporal changes therein remain critical to sound public and private forestland management. The National Parks Service's Vital Signs monitoring program collects information on many forest health indicators, including species richness, cover by exotics, browse pressure, and forest regeneration. We applied a mixed-model approach to partition variability in data for 30 forest health indicators collected from several national parks in the eastern United States. We then used the estimated variance components in a simulation model to evaluate trend detection capabilities for each indicator. We investigated the extent to which the following factors affected ability to detect trends: (a) sample design: using simple panel versus connected panel design, (b) effect size: increasing trend magnitude, (c) sample size: varying the number of plots sampled each year, and (d) stratified sampling: post-stratifying plots into vegetation domains. Statistical power varied among indicators; however, indicators that measured the proportion of a total yielded higher power when compared to indicators that measured absolute or average values. In addition, the total variability for an indicator appeared to influence power to detect temporal trends more than how total variance was partitioned among spatial and temporal sources. Based on these analyses and the monitoring objectives of the Vital Signs program, the current sampling design is likely overly intensive for detecting a 5 % trend·year(-1) for all indicators and is appropriate for detecting a 1 % trend·year(-1) in most indicators. PMID:25028183

  2. Evaluation of a regional monitoring program's statistical power to detect temporal trends in forest health indicators

    USGS Publications Warehouse

    Perles, Stephanie J.; Wagner, Tyler; Irwin, Brian J.; Manning, Douglas R.; Callahan, Kristina K.; Marshall, Matthew R.

    2014-01-01

    Forests are socioeconomically and ecologically important ecosystems that are exposed to a variety of natural and anthropogenic stressors. As such, monitoring forest condition and detecting temporal changes therein remain critical to sound public and private forestland management. The National Parks Service’s Vital Signs monitoring program collects information on many forest health indicators, including species richness, cover by exotics, browse pressure, and forest regeneration. We applied a mixed-model approach to partition variability in data for 30 forest health indicators collected from several national parks in the eastern United States. We then used the estimated variance components in a simulation model to evaluate trend detection capabilities for each indicator. We investigated the extent to which the following factors affected ability to detect trends: (a) sample design: using simple panel versus connected panel design, (b) effect size: increasing trend magnitude, (c) sample size: varying the number of plots sampled each year, and (d) stratified sampling: post-stratifying plots into vegetation domains. Statistical power varied among indicators; however, indicators that measured the proportion of a total yielded higher power when compared to indicators that measured absolute or average values. In addition, the total variability for an indicator appeared to influence power to detect temporal trends more than how total variance was partitioned among spatial and temporal sources. Based on these analyses and the monitoring objectives of theVital Signs program, the current sampling design is likely overly intensive for detecting a 5 % trend·year?1 for all indicators and is appropriate for detecting a 1 % trend·year?1 in most indicators.

  3. Impacts of sampling design and estimation methods on nutrient leaching of intensively monitored forest plots in the Netherlands

    Microsoft Academic Search

    W. de Vries; H. J. J. Wieggers; D. J. Brus

    2010-01-01

    Element fluxes through forest ecosystems are generally based on measurements of concentrations in soil solution at regular time intervals at plot locations sampled in a regular grid. Here we present spatially averaged annual element leaching fluxes in three Dutch forest monitoring plots using a new sampling strategy in which both sampling locations and sampling times are selected by probability sampling.

  4. Tropical forest cover change in the 1990s and options for future monitoring

    PubMed Central

    Mayaux, Philippe; Holmgren, Peter; Achard, Frédéric; Eva, Hugh; Stibig, Hans-Jürgen; Branthomme, Anne

    2005-01-01

    Despite the importance of the world's humid tropical forests, our knowledge concerning their rates of change remains limited. Two recent programmes (FAO 2000 Forest Resources Assessment and TREES II), exploiting the global imaging capabilities of Earth observing satellites, have recently been completed to provide information on the dynamics of tropical forest cover. The results from these independent studies show a high degree of conformity and provide a good understanding of trends at the pan-tropical level. In 1990 there were some 1150 million?ha of tropical rain forest with the area of the humid tropics deforested annually estimated at 5.8 million?ha (approximately twice the size of Belgium). A further 2.3 million?ha of humid forest is apparently degraded annually through fragmentation, logging and/or fires. In the sub-humid and dry tropics, annual deforestation of tropical moist deciduous and tropical dry forests comes to 2.2 and 0.7 million?ha, respectively. Southeast Asia is the region where forests are under the highest pressure with an annual change rate of ?0.8 to ?0.9%. The annual area deforested in Latin America is large, but the relative rate (?0.4 to ?0.5%) is lower, owing to the vast area covered by the remaining Amazonian forests. The humid forests of Africa are being converted at a similar rate to those of Latin America (?0.4 to ?0.5% per year). During this period, secondary forests have also been established, through re-growth on abandoned land and forest plantations, but with different ecological, biophysical and economic characteristics compared with primary forests. These trends are significant in all regions, but the extent of new forest cover has proven difficult to establish. These results, as well as the lack of more detailed knowledge, clearly demonstrate the need to improve sound scientific evidence to support policy. The two projects provide useful guidance for future monitoring efforts in the context of multilateral environmental agreements and of international aid, trade and development partnerships. Methodologically, the use of high-resolution remote sensing in representative samples has been shown to be cost-effective. Close collaboration between tropical institutions and inter-governmental organizations proved to be a fruitful arrangement in the different projects. To properly assist decision-making, monitoring and assessments should primarily be addressed at the national level, which also corresponds to the ratification level of the multilateral environmental agreements. The Forest Resources Assessment 2000 deforestation statistics from countries are consistent with the satellite-based estimates in Asia and America, but are significantly different in Africa, highlighting the particular need for long-term capacity-building activities in this continent. PMID:15814351

  5. Tropical forest cover change in the 1990s and options for future monitoring.

    PubMed

    Mayaux, Philippe; Holmgren, Peter; Achard, Frédéric; Eva, Hugh; Stibig, Hans-Jürgen; Branthomme, Anne

    2005-02-28

    Despite the importance of the world's humid tropical forests, our knowledge concerning their rates of change remains limited. Two recent programmes (FAO 2000 Forest Resources Assessment and TREES II), exploiting the global imaging capabilities of Earth observing satellites, have recently been completed to provide information on the dynamics of tropical forest cover. The results from these independent studies show a high degree of conformity and provide a good understanding of trends at the pan-tropical level. In 1990 there were some 1150 million ha of tropical rain forest with the area of the humid tropics deforested annually estimated at 5.8 million ha (approximately twice the size of Belgium). A further 2.3 million ha of humid forest is apparently degraded annually through fragmentation, logging and/or fires. In the sub-humid and dry tropics, annual deforestation of tropical moist deciduous and tropical dry forests comes to 2.2 and 0.7 million ha, respectively. Southeast Asia is the region where forests are under the highest pressure with an annual change rate of -0.8 to -0.9%. The annual area deforested in Latin America is large, but the relative rate (-0.4 to -0.5%) is lower, owing to the vast area covered by the remaining Amazonian forests. The humid forests of Africa are being converted at a similar rate to those of Latin America (-0.4 to -0.5% per year). During this period, secondary forests have also been established, through re-growth on abandoned land and forest plantations, but with different ecological, biophysical and economic characteristics compared with primary forests. These trends are significant in all regions, but the extent of new forest cover has proven difficult to establish. These results, as well as the lack of more detailed knowledge, clearly demonstrate the need to improve sound scientific evidence to support policy. The two projects provide useful guidance for future monitoring efforts in the context of multilateral environmental agreements and of international aid, trade and development partnerships. Methodologically, the use of high-resolution remote sensing in representative samples has been shown to be cost-effective. Close collaboration between tropical institutions and inter-governmental organizations proved to be a fruitful arrangement in the different projects. To properly assist decision-making, monitoring and assessments should primarily be addressed at the national level, which also corresponds to the ratification level of the multilateral environmental agreements. The Forest Resources Assessment 2000 deforestation statistics from countries are consistent with the satellite-based estimates in Asia and America, but are significantly different in Africa, highlighting the particular need for long-term capacity-building activities in this continent. PMID:15814351

  6. Critical loads and their exceedances at intensive forest monitoring sites in Europe.

    PubMed

    Lorenz, Martin; Nagel, Hans-Dieter; Granke, Oliver; Kraft, Philipp

    2008-10-01

    Intensive forest monitoring by means of harmonised methods has been conducted in Europe for more than a decade. Risks of atmospheric nitrogen and sulphur deposition are assessed by means of calculations of critical loads and their exceedances. In the present study throughfall and bulk deposition of nitrate (N-NO(3)), ammonium (N-NH(4)) and sulphate (S-SO(4)) show marked spatial patterns and temporal trends. In the period of observation (1999-2004), sulphate deposition on intensive monitoring plots decreased by about one quarter. This is in line with the reduction of S deposition by 70% since 1981 in Europe as a result of successful air pollution control politics under the Convention on Long-range Transboundary Air Pollution (CLRTAP). However, sulphate and especially nitrate and ammonium deposition were found to still exceed critical loads at many forest sites, indicating a continued need for further implementation of air pollution abatement strategies. PMID:18395313

  7. A case for using Plethodontid salamanders for monitoring biodiversity and ecosystem integrity of North American forests

    USGS Publications Warehouse

    Welsh, H.H., Jr.; Droege, S.

    2001-01-01

    Terrestrial salamanders of the family P!ethodontidae have unique attributes that make them excellent indicators of biodiversity and ecosystem integrity in forested habitats. Their longevity, small territory size, site fidelity, sensitivity to natural and anthropogenic perturbations, tendency to occur in high densities, and low sampling costs mean that counts of plethodontid salamanders provide numerous advantages over counts of other North American forest organisms for indicating environmental change. Furthermore, they are tightly linked physiologically to microclimatic and successional processes that influence the distribution and abundance of numerous other hydrophilic but difficult-to-study forest-dwelling plants and animals. Ecosystem processes such as moisture cycling, food-web dynamics, and succession, with their related structural and microclimatic variability, all affect forest biodiversity and have been shown to affect salamander populations as well. We determined the variability associated with sampling for plethodontid salamanders by estimating the coefficient of variation (CV) from available time-series data. The median coefficient of variation indicated that variation in counts of individuals among studies was much lower in plethodonticis (27%) than in lepidoptera (93%), passerine birds (57%), small mammals (69%), or other amphibians (37-46%), which means plethodontid salamanders provide an important statistical advantage over other species for monitoring long-term forest health.

  8. Comparison of line transects and point counts for monitoring spring migration in forested wetlands

    USGS Publications Warehouse

    Wilson, R.R.; Twedt, D.J.; Elliott, A.B.

    2000-01-01

    We compared the efficacy of 400-m line transects and sets of three point counts at detecting avian richness and abundance in bottomland hardwood forests and intensively managed cottonwood (Populus deltoides) plantations within the Mississippi Alluvial Valley. We detected more species and more individuals on line transects than on three point counts during 218 paired surveys conducted between 24 March and 3 June, 1996 and 1997. Line transects also yielded more birds per unit of time, even though point counts yielded higher estimates of relative bird density. In structurally more-complex bottomland hardwood forests, we detected more species and individuals on line transects, but in more-open cottonwood plantations, transects surpassed point counts only at detecting species within 50 m of the observer. Species richness and total abundance of Nearctic-Neotropical migrants and temperate migrants were greater on line transects within bottomland hardwood forests. Within cottonwood plantations, however, only species richness of Nearctic-Neotropical migrants and total abundance of temperate migrants were greater on line transects. Because we compared survey techniques using the same observer, within the same forest stand on a given day, we assumed that the technique yielding greater estimates of avian species richness and total abundance per unit of effort is superior. Thus, for monitoring migration within hardwood forests of the Mississippi Alluvial Valley, we recommend using line transects instead of point counts.

  9. Primates Decline Rapidly in Unprotected Forests: Evidence from a Monitoring Program with Data Constraints

    PubMed Central

    Rovero, Francesco; Mtui, Arafat; Kitegile, Amani; Jacob, Philipo; Araldi, Alessandro; Tenan, Simone

    2015-01-01

    Growing threats to primates in tropical forests make robust and long-term population abundance assessments increasingly important for conservation. Concomitantly, monitoring becomes particularly relevant in countries with primate habitat. Yet monitoring schemes in these countries often suffer from logistic constraints and/or poor rigor in data collection, and a lack of consideration of sources of bias in analysis. To address the need for feasible monitoring schemes and flexible analytical tools for robust trend estimates, we analyzed data collected by local technicians on abundance of three species of arboreal monkey in the Udzungwa Mountains of Tanzania (two Colobus species and one Cercopithecus), an area of international importance for primate endemism and conservation. We counted primate social groups along eight line transects in two forest blocks in the area, one protected and one unprotected, over a span of 11 years. We applied a recently proposed open metapopulation model to estimate abundance trends while controlling for confounding effects of observer, site, and season. Primate populations were stable in the protected forest, while the colobines, including the endemic Udzungwa red colobus, declined severely in the unprotected forest. Targeted hunting pressure at this second site is the most plausible explanation for the trend observed. The unexplained variability in detection probability among transects was greater than the variability due to observers, indicating consistency in data collection among observers. There were no significant differences in both primate abundance and detectability between wet and dry seasons, supporting the choice of sampling during the dry season only based on minimizing practical constraints. Results show that simple monitoring routines implemented by trained local technicians can effectively detect changes in primate populations in tropical countries. The hierarchical Bayesian model formulation adopted provides a flexible tool to determine temporal trends with full account for any imbalance in the data set and for imperfect detection. PMID:25714404

  10. Assessment and monitoring of long-term forest cover changes in Odisha, India using remote sensing and GIS.

    PubMed

    Reddy, C Sudhakar; Jha, C S; Dadhwal, V K

    2013-05-01

    Deforestation and fragmentation are important concerns in managing and conserving tropical forests and have global significance. In the Indian context, in the last one century, the forests have undergone significant changes due to several policies undertaken by government as well as increased population pressure. The present study has brought out spatiotemporal changes in forest cover and variation in forest type in the state of Odisha (Orissa), India, during the last 75 years period. The mapping for the period of 1924-1935, 1975, 1985, 1995 and 2010 indicates that the forest cover accounts for 81,785.6 km(2) (52.5 %), 56,661.1 km(2) (36.4 %), 51,642.3 km(2) (33.2 %), 49,773 km(2) (32 %) and 48,669.4 km(2) (31.3 %) of the study area, respectively. The study found the net forest cover decline as 40.5 % of the total forest and mean annual rate of deforestation as 0.69 % year(-1) during 1935 to 2010. There is a decline in annual rate of deforestation during 1995 to 2010 which was estimated as 0.15 %. Forest type-wise quantitative loss of forest cover reveals large scale deforestation of dry deciduous forests. The landscape analysis shows that the number of forest patches (per 1,000) are 2.463 in 1935, 10.390 in 1975, 11.899 in 1985, 12.193 in 1995 and 15.102 in 2010, which indicates high anthropogenic pressure on the forests. The mean patch size (km(2)) of forest decreased from 33.2 in 1935 to 5.5 in 1975 and reached to 3.2 by 2010. The study demonstrated that monitoring of long term forest changes, quantitative loss of forest types and landscape metrics provides critical inputs for management of forest resources. PMID:22996824

  11. Review of EPA's Environmental Monitoring and Assessment Program. Forests and estuaries. Final report

    SciTech Connect

    Not Available

    1994-01-01

    The Environmental Monitoring and Assessment Program (EMAP) of the U.S. Environmental Protection Agency (EPA) is an ambitious, nationwide effort to monitor the status and changes in the condition of the nation's ecological resources to provide information for regulators, managers, and policy makers. To assist it in meeting this challenge, EPA requested that the National Research Council (NRC) provide an ongoing review of its developing program. In response to that request, the NRC constituted the Committee to Review EPA's Environmental Monitoring and Assessment Program in 1991. This is the committee's second report to EPA, and it focuses mainly on a review of EMAP's forest health monitoring component and the estuaries component. (Copyright (c) 1994 by the National Academy of Sciences.)

  12. Automated in-situ laser scanner for monitoring forest Leaf Area Index.

    PubMed

    Culvenor, Darius S; Newnham, Glenn J; Mellor, Andrew; Sims, Neil C; Haywood, Andrew

    2014-01-01

    An automated laser rangefinding instrument was developed to characterize overstorey and understorey vegetation dynamics over time. Design criteria were based on information needs within the statewide forest monitoring program in Victoria, Australia. The ground-based monitoring instrument captures the key vegetation structural information needed to overcome ambiguity in the estimation of forest Leaf Area Index (LAI) from satellite sensors. The scanning lidar instrument was developed primarily from low cost, commercially accessible components. While the 635 nm wavelength lidar is not ideally suited to vegetation studies, there was an acceptable trade-off between cost and performance. Tests demonstrated reliable range estimates to live foliage up to a distance of 60 m during night-time operation. Given the instrument's scan angle of 57.5 degrees zenith, the instrument is an effective tool for monitoring LAI in forest canopies up to a height of 30 m. An 18 month field trial of three co-located instruments showed consistent seasonal trends and mean LAI of between 1.32 to 1.56 and a temporal LAI variation of 8 to 17% relative to the mean. PMID:25196006

  13. LUNA: low-flying UAV-based forest monitoring system

    NASA Astrophysics Data System (ADS)

    Keizer, Jan Jacob; Pereira, Luísa; Pinto, Glória; Alves, Artur; Barros, Antonio; Boogert, Frans-Joost; Cambra, Sílvia; de Jesus, Cláudia; Frankenbach, Silja; Mesquita, Raquel; Serôdio, João; Martins, José; Almendra, Ricardo

    2015-04-01

    The LUNA project is aiming to develop an information system for precision forestry and, in particular, the monitoring of eucalypt plantations that is first and foremost based on multi-spectral imagery acquired using low-flying uav's. The presentation will focus on the first phase of image acquisition, processing and analysis for a series of pot experiments addressing main threats for early-stage eucalypt plantations in Portugal, i.e. acute , chronic and cyclic hydric stress, nutrient stress, fungal infections and insect plague attacks. The imaging results will be compared with spectroscopic measurements as well as with eco-physiological and plant morphological measurements. Furthermore, the presentation will show initial results of the project's second phase, comprising field tests in existing eucalypt plantations in north-central Portugal.

  14. Mangroves in peril: unprecedented degradation rates of peri-urban mangroves in Kenya

    NASA Astrophysics Data System (ADS)

    Bosire, J. O.; Kaino, J. J.; Olagoke, A. O.; Mwihaki, L. M.; Ogendi, G. M.; Kairo, J. G.; Berger, U.; Macharia, D.

    2014-05-01

    Marine ecosystems are experiencing unprecedented degradation rates higher than any other ecosystem on the planet, which in some instances are up to 4 times those of rainforests. Mangrove ecosystems have especially been impacted by compounded anthropogenic pressures leading to significant cover reductions of between 35 and 50% (equivalent to 1-2% loss pa) for the last half century. The main objective of this study was to test the hypothesis that peri-urban mangroves suffering from compounded and intense pressures may be experiencing higher degradation rates than the global mean (and/or national mean for Kenya) using Mombasa mangroves (comprising Tudor and Mwache creeks) as a case study. Stratified sampling was used to sample along 22 and 10 belt transects in Mwache and Tudor respectively, set to capture stand heterogeneity in terms of species composition and structure in addition to perceived human pressure gradients using proximity to human habitations as a proxy. We acquired SPOT (HRV/ HRVIR/ HRS) images of April 1994, May 2000 and January 2009 and a vector mangrove map of 1992 at a scale of 1:50 000 for cover change and species composition analysis. Results from image classification of the 2009 image had 80.23% overall accuracy and Cohen's kappa of 0.77, thus proving satisfactory for use in this context. Structural data indicate that complexity index (CI) which captures stand structural development was higher in Mwache at 1.80 compared to Tudor at 1.71. From cover change data, Tudor lost 86.9% of the forest between 1992 and 2009, compared to Mwache at 45.4%, representing very high hitherto undocumented degradation rates of 5.1 and 2.7% pa, respectively. These unprecedentedly high degradation rates, which far exceed not only the national mean (for Kenya of 0.7% pa) but the global mean as well, strongly suggest that these mangroves are highly threatened due to compounded pressures. Strengthening of governance regimes through enforcement and compliance to halt illegal wood extraction, improvement of land-use practices upstream to reduce soil erosion, restoration in areas where natural regeneration has been impaired, provision of alternative energy sources/building materials and a complete moratorium on wood extraction especially in Tudor Creek to allow recovery are some of the suggested management interventions.

  15. Mangroves in peril: unprecedented degradation rates of peri-urban mangroves in Kenya

    NASA Astrophysics Data System (ADS)

    Bosire, J. O.; Kaino, J. J.; Olagoke, A. O.; Mwihaki, L. M.; Ogendi, G. M.; Kairo, J. G.; Berger, U.; Macharia, D.

    2013-10-01

    Marine ecosystems are experiencing unprecedentedly high degradation rates than any other ecosystem on the planet, which in some instances are up to four times that of rainforests. Mangrove ecosystems have especially been impacted by compounded anthropogenic pressures leading to significant cover reductions of between 35 and 50% (equivalent to 1-2% loss pa) for the last half century. The main objective of this study was to test the hypothesis that peri-urban mangroves suffering from compounded and intense pressures may be experiencing higher degradation rates than the global mean (and/or national mean for Kenya) using Mombasa mangroves (comprising of Tudor and Mwache creeks) as a case study. Stratified sampling was used to sample along 22 and 10 belt transects in Mwache and Tudor respectively, set to capture stand heterogeneity in terms of species composition and structure in addition to perceived human pressure gradients using proximity to human habitations as a proxy. We acquired SPOT (HRV/ HRVIR/ HRS) imageries of April 1994, May 2000 and January 2009 and a vector mangrove map of 1992 at a scale of 1 : 50 000 for cover change and species composition analysis. Results from image classification of the 2009 image had 80.23% overall accuracy and Cohen's Kappa of 0.77, thus proving satisfactory for use in this context. Structural data indicate that complexity index (CI) which captures stand structural development was higher in Mwache at 1.80 compared to Tudor at 1.71. From cover change data, Tudor had lost 86.9% of the forest between 1992 and 2009, compared to Mwache at 45.4% representing very high hitherto undocumented degradation rates of 5.1 and 2.7% pa, respectively. These unprecedentedly high degradation rates, which far exceed not only the national mean (for Kenya of 0.7% pa) but the global mean as well, strongly suggest that these mangroves are highly threatened due to compounded pressures. Strengthening of governance regimes through enforcement and compliance to halt illegal wood extraction, improvement of land-use practices upstream to reduce soil erosion, restoration in areas where natural regeneration has been impaired, provision of alternative energy sources/building materials and a complete moratorium on wood extraction especially in Tudor creek to allow recovery are some of the suggested management interventions.

  16. Diversity and identification of methanogenic archaea and sulphate-reducing bacteria in sediments from a pristine tropical mangrove

    Microsoft Academic Search

    Rodrigo Gouvêa Taketani; Caio Augusto Yoshiura; Armando Cavalcante Franco Dias; Fernando Dini Andreote; Siu Mui Tsai

    2010-01-01

    Mangrove sediments are anaerobic ecosystems rich in organic matter. This environment is optimal for anaerobic microorganisms,\\u000a such as sulphate-reducing bacteria and methanogenic archaea, which are responsible for nutrient cycling. In this study, the\\u000a diversity of these two functional guilds was evaluated in a pristine mangrove forest using denaturing gradient gel electrophoresis\\u000a (DGGE) and clone library sequencing in a 50 cm vertical

  17. Red mangrove ( Rhizophora mangle ) reproduction and seedling colonization after hurricane charley: Comparisons of Charlotte Harbor and Tampa Bay

    Microsoft Academic Search

    C. Edward Proffitt; Eric C. Milbrandt; Steven E. Travis

    2006-01-01

    Reproductive aspects of life history are known to be important in recovery following disturbance in many plant species although\\u000a this has not been well studied in mangroves. Hurricane Charley devastated large areas of mangroves in Charlotte Harbor, Florida,\\u000a in August 2004. We surveyed 6 forests in Charlotte Harbor (2002, 2003, and 2005) and 16 in Tampa Bay, Florida (2001, 2002,

  18. Use of Current 2010 Forest Disturbance Monitoring Products for the Conterminous United States in Aiding a National Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William; Gasser, J.; Smoot, J.; Kuper, P.

    2010-01-01

    This presentation discusses contributions of near real time (NRT) MODIS forest disturbance detection products for the conterminous United States to an emerging national forest threat early warning system (EWS). The latter is being developed by the USDA Forest Service s Eastern and Western Environmental Threat Centers with help from NASA Stennis Space Center and the Oak Ridge National Laboratory. Building off work done in 2009, this national and regional forest disturbance detection and viewing capability of the EWS employs NRT MODIS NDVI data from the USGS eMODIS group and historical NDVI data from standard MOD13 products. Disturbance detection products are being computed for 24 day composites that are refreshed every 8 days. Products for 2010 include 42 dates of the 24 day composites. For each compositing date, we computed % change in forest maximum NDVI products for 2010 with respect to each of three historical baselines of 2009, 2007-2009, and 2003-2009,. The three baselines enable one to view potential current, recent, and longer term forest disturbances. A rainbow color table was applied to each forest change product so that potential disturbances (NDVI drops) were identified in hot color tones and growth (NDVI gains) in cold color tones. Example products were provided to end-users responsible for forest health monitoring at the Federal and State levels. Large patches of potential forest disturbances were validated based on comparisons with available reference data, including Landsat and field survey data. Products were posted on two internet mapping systems for US Forest Service internal and collaborator use. MODIS forest disturbance detection products were computed and posted for use in as little as 1 day after the last input date of the compositing period. Such products were useful for aiding aerial disturbance detection surveys and for assessing disturbance persistence on both inter- and intra-annual scales. Multiple 2010 forest disturbance events were detected across the nation, including damage from ice storms, tornadoes, caterpillars, bark beetles, and wildfires. This effort enabled improved NRT forest disturbance monitoring capabilities for this nation-wide forest threat EWS.

  19. Fish assemblages in Tanzanian mangrove creek systems influenced by solar salt farm constructions

    NASA Astrophysics Data System (ADS)

    Mwandya, Augustine W.; Gullström, Martin; Öhman, Marcus C.; Andersson, Mathias H.; Mgaya, Yunus D.

    2009-04-01

    Deforestation of mangrove forests is common occurrence worldwide. We examined fish assemblage composition in three mangrove creek systems in Tanzania (East Africa), including two creeks where the upper parts were partly clear-cut of mangrove forest due to the construction of solar salt farms, and one creek with undisturbed mangrove forest. Fish were caught monthly for one year using a seine net (each haul covering 170 m 2) within three locations in each creek, i.e. at the upper, intermediate and lower reaches. Density, biomass and species number of fish were lower in the upper deforested sites compared to the mangrove-fringed sites at the intermediate and lower parts in the two creeks affected by deforestation, whereas there were no differences among the three sites in the undisturbed mangrove creek system. In addition, multivariate analyses showed that the structure of fish assemblages varied between forested and clear-cut sites within the two disturbed creeks, but not within the undisturbed creek. Across the season, we found no significant differences except for a tendency of a minor increase in fish densities during the rainy season. At least 75% of the fishes were juveniles and of commercial interest for coastal fisheries and/or aquaculture. Mugil cephalus, Gerres oyena and Chanos chanos were the most abundant species in the forested sites. The dominant species in the clear-cut areas were M. cephalus and Elops machnata, which were both found in relatively low abundances compared to the undisturbed areas. The conversion of mangrove forests into solar salt farms not only altered fish assemblage composition, but also water and sediment conditions. In comparison with undisturbed areas, the clear-cut sites showed higher salinity, water temperature as well as organic matter and chlorophyll a in the sediments. Our results suggest that mangrove habitat loss and changes in environmental conditions caused by salt farm developments will decrease fish densities, biomass and species numbers as well as alter the overall fish assemblage composition in the salt farm area but not downstream in the creek.

  20. How to catch the patch? A dendrometer study of the radial increment through successive cambia in the mangrove Avicennia

    PubMed Central

    Robert, Elisabeth M. R.; Jambia, Abudhabi H.; Schmitz, Nele; De Ryck, Dennis J. R.; De Mey, Johan; Kairo, James G.; Dahdouh-Guebas, Farid; Beeckman, Hans; Koedam, Nico

    2014-01-01

    Background and Aims Successive vascular cambia are involved in the secondary growth of at least 200 woody species from >30 plant families. In the mangrove Avicennia these successive cambia are organized in patches, creating stems with non-concentric xylem tissue surrounded by internal phloem tissue. Little is known about radial growth and tree stem dynamics in trees with this type of anatomy. This study aims to (1) clarify the process of secondary growth of Avicennia trees by studying its patchiness; and (2) study the radial increment of Avicennia stems, both temporary and permanent, in relation to local climatic and environmental conditions. A test is made of the hypothesis that patchy radial growth and stem dynamics enable Avicennia trees to better survive conditions of extreme physiological drought. Methods Stem variations were monitored by automatic point dendrometers at four different positions around and along the stem of two Avicennia marina trees in the mangrove forest of Gazi Bay (Kenya) during 1 year. Key Results Patchiness was found in the radial growth and shrinkage and swelling patterns of Avicennia stems. It was, however, potentially rather than systematically present, i.e. stems reacted either concentrically or patchily to environment triggers, and it was fresh water availability and not tidal inundation that affected radial increment. Conclusions It is concluded that the ability to develop successive cambia in a patchy way enables Avicennia trees to adapt to changes in the prevailing environmental conditions, enhancing its survival in the highly dynamic mangrove environment. Limited water could be used in a more directive way, investing all the attainable resources in only some locations of the tree stem so that at least at these locations there is enough water to, for example, overcome vessel embolisms or create new cells. As these locations change with time, the overall functioning of the tree can be maintained. PMID:24510216

  1. An in-depth study of forest products industries in the Pacific Northwest

    E-print Network

    Forest Institute Fellow, Zimbabwe #12;Southern Africa forest resources · Forests and woodland types in Southern Africa include; tropical rainforests, afromontane forests, mangrove forests, Zambezi teak forests to Australia and Mexico are grown commercially in tree farms across Southern Africa. · In 2000 total fuelwood

  2. Height and Biomass of Mangroves in Africa from ICEsat/GLAS and SRTM

    NASA Technical Reports Server (NTRS)

    Fatoyinbo, Temilola E.; Simard, Marc

    2012-01-01

    The accurate quantification of forest 3-D structure is of great importance for studies of the global carbon cycle and biodiversity. These studies are especially relevant in Africa, where deforestation rates are high and the lack of background data is great. Mangrove forests are ecologically significant and it is important to measure mangrove canopy heights and biomass. The objectives of this study are to estimate: 1. The total area, 2. Canopy height distributions and 3. Aboveground biomass of mangrove forests in Africa. To derive mangrove 3-D structure and biomass maps, we used a combination of mangrove maps derived from Landsat ETM+, LiDAR canopy height estimates from ICEsat/GLAS (Ice, Cloud, and land Elevation Satellite/Geoscience Laser Altimeter System) and elevation data from SRTM (Shuttle Radar Topography Mission) for the African continent. More specifically, we extracted mangrove forest areas on the SRTM DEM using Landsat based landcover maps. The LiDAR (Light Detection and Ranging) measurements from the large footprint GLAS sensor were used to derive local estimates of canopy height and calibrate the Interferometric Synthetic Aperture Radar (InSAR) data from SRTM. We then applied allometric equations relating canopy height to biomass in order to estimate above ground biomass (AGB) from the canopy height product. The total mangrove area of Africa was estimated to be 25 960 square kilometers with 83% accuracy. The largest mangrove areas and greatest total biomass was 29 found in Nigeria covering 8 573 km2 with 132 x10(exp 6) Mg AGB. Canopy height across Africa was estimated with an overall root mean square error of 3.55 m. This error also includes the impact of using sensors with different resolutions and geolocation error which make comparison between measurements sensitive to canopy heterogeneities. This study provides the first systematic estimates of mangrove area, height and biomass in Africa. Our results showed that the combination of ICEsat/GLAS and SRTM data is well suited for vegetation 3-D mapping on a continental scale.

  3. Assessing ecosystem carbon stocks of Indonesia's threatened wetland forests

    NASA Astrophysics Data System (ADS)

    Warren, M.; Kauffman, B.; Murdiyarso, D.; Kurnianto, S.

    2011-12-01

    Over millennia, atmospheric carbon dioxide has been sequestered and stored in Indonesia's tropical wetland forests. Waterlogged conditions impede decomposition, allowing the formation of deep organic soils. These globally significant C pools are highly vulnerable to deforestation, degradation and climate change which can potentially switch their function as C sinks to long term sources of greenhouse gas (GHG) emissions. Also at risk are critical ecosystem services which sustain millions of people and the conservation of unique biological communities. The multiple benefits derived from wetland forest conservation makes them attractive for international C offset programs such as the proposed Reduced Emissions from Deforestation and Degradation (REDD+) mechanism. Yet, ecosystem C pools and fluxes in wetland forests remain poorly quantified. Significant knowledge gaps exist regarding how land use changes impact C dynamics in tropical wetlands, and very few studies have simultaneously assessed above- and belowground ecosystem C pools in Indonesia's freshwater peat swamps and mangroves. In addition, most of what is known about Indonesia's tropical wetland forests is derived from few geographic locations where long-standing research has focused, despite their broad spatial distribution. Here we present results from an extensive survey of ecosystem C stocks across several Indonesian wetland forests. Ecosystem C stocks were measured in freshwater peat swamp forests in West Papua, Central Kalimantan, West Kalimantan, and Sumatra. Carbon storage was also measured for mangrove forests in W. Papua, W. Kalimantan, and Sumatra. One overarching goal of this research is to support the development of REDD+ for tropical wetlands by informing technical issues related to carbon measuring, monitoring, and verification (MRV) and providing baseline data about the variation of ecosystem C storage across and within several Indonesian wetland forests.

  4. A Global Trend towards the Loss of Evolutionarily Unique Species in Mangrove Ecosystems

    PubMed Central

    Mankga, Ledile T.; Davies, T. Jonathan

    2013-01-01

    The mangrove biome stands out as a distinct forest type at the interface between terrestrial, estuarine, and near-shore marine ecosystems. However, mangrove species are increasingly threatened and experiencing range contraction across the globe that requires urgent conservation action. Here, we assess the spatial distribution of mangrove species richness and evolutionary diversity, and evaluate potential predictors of global declines and risk of extinction. We found that human pressure, measured as the number of different uses associated with mangroves, correlated strongly, but negatively, with extinction probability, whereas species ages were the best predictor of global decline, explaining 15% of variation in extinction risk. Although the majority of mangrove species are categorised by the IUCN as Least Concern, our finding that the more threatened species also tend to be those that are more evolutionarily unique is of concern because their extinction would result in a greater loss of phylogenetic diversity. Finally, we identified biogeographic regions that are relatively species-poor but rich in evolutionary history, and suggest these regions deserve greater conservation priority. Our study provides phylogenetic information that is important for developing a unified management plan for mangrove ecosystems worldwide. PMID:23805263

  5. Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystems 1

    NASA Astrophysics Data System (ADS)

    Versteegh, Gerard J. M.; Schefuß, Enno; Dupont, Lydie; Marret, Fabienne; Sinninghe Damsté, Jaap S.; Jansen, J. H. Fred

    2004-02-01

    Angola Basin and Cape Basin (southeast Atlantic) surface sediments and sediment cores show that maxima in the abundance of taraxerol (relative to other land-derived lipids) covary with maxima in the relative abundance of pollen from the mangrove tree genus Rhizophora and that in the surface sediments offshore maxima in the relative abundance of taraxerol occur at latitudes with abundant coastal mangrove forests. Together with the observation that Rhizophora mangle and Rhizophora racemosa leaves are extraordinarily rich in taraxerol, this strongly indicates that taraxerol can be used as a lipid biomarker for mangrove input to the SE Atlantic. The proxy-environment relations for taraxerol and Rhizophora pollen down-core show that increased taraxerol and Rhizophora pollen abundances occur during transgressions and periods with a humid climate. These environmental changes modify the coastal erosion and sedimentation patterns, enhancing the extent of the mangrove ecosystem and/or the transport of mangrove organic matter offshore. Analyses of mid-Pleistocene sediments show that interruption of the pattern of taraxerol maxima during precession minima occurs almost only during periods of low obliquity. This demonstrates the complex environmental response of the interaction between precession-related humidity cycles and obliquity-related sea-level changes on mangrove input.

  6. Long-Term Assessment of an Innovative Mangrove Rehabilitation Project: Case Study on Carey Island, Malaysia

    PubMed Central

    Motamedi, Shervin; Hashim, Roslan; Zakaria, Rozainah; Song, Ki-Il; Sofawi, Bakrin

    2014-01-01

    Wave energy and storm surges threaten coastal ecology and nearshore infrastructures. Although coastal structures are conventionally constructed to dampen the wave energy, they introduce tremendous damage to the ecology of the coast. To minimize environmental impact, ecofriendly coastal protection schemes should be introduced. In this paper, we discuss an example of an innovative mangrove rehabilitation attempt to restore the endangered mangroves on Carey Island, Malaysia. A submerged detached breakwater system was constructed to dampen the energy of wave and trap the sediments behind the structure. Further, a large number of mangrove seedlings were planted using different techniques. Further, we assess the possibility of success for a future mangrove rehabilitation project at the site in the context of sedimentology, bathymetry, and hydrogeochemistry. The assessment showed an increase in the amount of silt and clay, and the seabed was noticeably elevated. The nutrient concentration, the pH value, and the salinity index demonstrate that the site is conducive in establishing mangrove seedlings. As a result, we conclude that the site is now ready for attempts to rehabilitate the lost mangrove forest. PMID:25097894

  7. Long-term assessment of an innovative mangrove rehabilitation project: case study on Carey Island, Malaysia.

    PubMed

    Motamedi, Shervin; Hashim, Roslan; Zakaria, Rozainah; Song, Ki-Il; Sofawi, Bakrin

    2014-01-01

    Wave energy and storm surges threaten coastal ecology and nearshore infrastructures. Although coastal structures are conventionally constructed to dampen the wave energy, they introduce tremendous damage to the ecology of the coast. To minimize environmental impact, ecofriendly coastal protection schemes should be introduced. In this paper, we discuss an example of an innovative mangrove rehabilitation attempt to restore the endangered mangroves on Carey Island, Malaysia. A submerged detached breakwater system was constructed to dampen the energy of wave and trap the sediments behind the structure. Further, a large number of mangrove seedlings were planted using different techniques. Further, we assess the possibility of success for a future mangrove rehabilitation project at the site in the context of sedimentology, bathymetry, and hydrogeochemistry. The assessment showed an increase in the amount of silt and clay, and the seabed was noticeably elevated. The nutrient concentration, the pH value, and the salinity index demonstrate that the site is conducive in establishing mangrove seedlings. As a result, we conclude that the site is now ready for attempts to rehabilitate the lost mangrove forest. PMID:25097894

  8. Near real-time monitoring systems for adaptive management and improved forest governance

    NASA Astrophysics Data System (ADS)

    Musinsky, J.; Tabor, K.; Cano, A.

    2012-12-01

    The destruction and degradation of the world's forests from deforestation, illegal logging and fire has wide-ranging environmental and economic impacts, including biodiversity loss, the degradation of ecosystem services and the emission of greenhouse gases. In an effort to strengthen local capacity to respond to these threats, Conservation International has developed a suite of near real-time satellite monitoring systems generating daily alerts, maps and reports of forest fire, fire risk, deforestation and degradation that are used by national and sub-national government agencies, NGO's, scientists, communities, and the media to respond to and report on threats to forest resources. Currently, the systems support more than 1000 subscribers from 45 countries, focusing on Madagascar, Indonesia, Bolivia and Peru. This presentation will explore the types of innovative applications users have found for these data, challenges they've encountered in data acquisition and accuracy, and feedback they've given on the usefulness of these systems for REDD+ implementation, protected areas management and improved forest governance.;

  9. Studies on Holocene mangrove ecosystem dynamics of the Bragança Peninsula in north-eastern Pará, Brazil

    Microsoft Academic Search

    H. Behling; M. C. L. Cohen; R. J. Lara

    2001-01-01

    Three sediment cores from the Bragança Peninsula located in the coastal region in the north-eastern portion of Pará State have been studied by pollen analysis to reconstruct Holocene environmental changes and dynamics of the mangrove ecosystem. The cores were taken from an Avicennia forest (Bosque de Avicennia (BDA)), a salt marsh area (Campo Salgado (CS)) and a Rhizophora dominated area

  10. The Use of a Mangrove Plantation as a Constructed Wetland for Municipal Wastewater Treatment

    Microsoft Academic Search

    Kanokporn Boonsong; Somkiat Piyatiratitivorakul; Pipat Patanapolpaiboon

    2002-01-01

    The study evaluated the possibility of using mangrove plantation to treat municipal wastewater. Two types of pilot scale (100 x 150 m2) free water surface constructed wetlands were set up at the Royal Laem Phak Bia Environmental Research and Development Project in central Thailand. One system is a natural Avicennia marina dominated forest system. The other system is a new

  11. Metamorphosis of mangrove crab megalopae, Ucides cordatus (Ocypodidae): Effects of interspecific versus intraspecific settlement cues

    Microsoft Academic Search

    Darlan J. B. Simith; Karen Diele

    2008-01-01

    It has recently been shown that metamorphosis of Ucides cordatus megalopae is triggered by substrata from the mangrove forest habitat, and, in particular, adult conspecific odours. Here we demonstrate that the gender of the odour-emitting crabs is insignificant for the metamorphic response in this species. We further investigate whether other estuarine crabs (Goniopsis cruentata, Uca spp., and Callinectes danae) also

  12. Monitoring Regional Forest Disturbances across the US with near Real Time MODIS NDVI Products Resident to the ForWarn Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William W.; Gasser, Gerald

    2013-01-01

    Forest threats across the US have become increasingly evident in recent years. Sometimes these have resulted in regionally evident disturbance progressions (e.g., from drought, bark beetle outbreaks, and wildfires) that can occur across multiyear durations and have resulted in extensive forest overstory mortality. In addition to stand replacement disturbances, other forests are subject to ephemeral, sometimes yearly defoliation from various insects and varying types and intensities of ephemeral damage from storms. Sometimes, after prolonged severe disturbance, signs of recovery in terms of Normalized Difference Vegetation Index (NDVI) can occur. The growing prominence and threat of forest disturbances in part have led to the formation and implementation of the 2003 Healthy Forest Restoration Act which mandated that national forest threat early warning system be developed and deployed. In response, the US Forest Service collaborated with NASA, DOE Oakridge National Laboratory, and the USGS Eros Data Center to build and roll-out the near real time ForWarn early warning system for monitoring regionally evident forest disturbances. Given the diversity of disturbance types, severities, and durations, ForWarn employs multiple historical baselines that are used with current NDVI to derive a suite of six forest change products that are refreshed every 8 days. ForWarn employs daily quarter kilometer MODIS NDVI data from the Aqua and Terra satellites, including MOD13 data for deriving historical baseline NDVIs and eMODIS 7 NDVI for compiling current NDVI. In doing so, the Time Series Product Tool and the Phenological Parameters Estimation Tool are used to temporally de-noise, fuse, and aggregate current and historical MODIS NDVIs into 24 day composites refreshed every 8 days with 46 dates of products per year. The 24 day compositing interval enables disturbances to be detected, while minimizing the frequency of residual atmospheric contamination. Forest change products are computed versus the previous 1, previous 3, and all previous years in the MODIS record for a given 24 day interval. Other "weekly" forest change products include one computed using an adaptive length compositing method for quicker detection of disturbances, two others that adjust for seasonal fluctuations in normal vegetation phenology (e.g., early versus late springs). This overall approach enables forest disturbance dynamics from a variety of regionally evident biotic and abiotic forest disturbances to be viewed and assessed through the calendar year. The change products are also being utilized for forest change trend analysis and for developing regional forest overstory mortality products. ForWarn's forest change products are used to alert forest health specialists about new forest disturbances. Such alerts are also typically based on available Landsat, aerial, and ground data as well as communications with forest health specialists and previous experience. ForWarn products have been used to detect and track many types of regional disturbances to multiple forest types, including defoliation from caterpillars and severe storms, as well as mortality from both biotic and abiotic agents (e.g., bark beetles, drought, fire, anthropogenic clearing). ForWarn offers products that could be combined with other geospatial data on forest biomass to assess forest disturbance carbon impacts within the conterminous US.

  13. Kelp forest monitoring. Channel Islands National Park (1991 annual report). Final technical report

    SciTech Connect

    Richards, D.; Kushner, D.; Avery, W.

    1993-06-01

    This document describes the 1991 progress of the Channel Islands National Park Kelp Forest Monitoring Project. Population dynamics of 68 indicator species of algae, fish, and invertebrates were measured at 16 permanent transect sites in 1991 by divers using SCUBA and surface-supply-air. Survey dives were conducted at seven other locations for comparisons and general information. In 1991, nine sites had healthy kelp forests. Five others had some kelp growing on or near the transect, but were dominated somewhat by sea urchins. White sea urchins were present in moderate to high numbers at four sites with declines at two sites and an increase at one. Juvenile fish recruitment was down in 1991; however, young-of-year rockfish were numerous at San Miguel Island and juvenile sheepland and garibaldi were common at Santa Barbra and Anacapa Islands. Abalone recruitment modules proved effective at concentrating juveniles of several species. This year was a poor recruitment year for abalone.

  14. An Effort to Map and Monitor Baldcypress Forest Areas in Coastal Louisiana, Using Landsat, MODIS, and ASTER Satellite Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Sader, Steve; Smoot, James

    2012-01-01

    This presentation discusses a collaborative project to develop, test, and demonstrate baldcypress forest mapping and monitoring products for aiding forest conservation and restoration in coastal Louisiana. Low lying coastal forests in the region are being negatively impacted by multiple factors, including subsidence, salt water intrusion, sea level rise, persistent flooding, hydrologic modification, annual insect-induced forest defoliation, timber harvesting, and conversion to urban land uses. Coastal baldcypress forests provide invaluable ecological services in terms of wildlife habitat, forest products, storm buffers, and water quality benefits. Before this project, current maps of baldcypress forest concentrations and change did not exist or were out of date. In response, this project was initiated to produce: 1) current maps showing the extent and location of baldcypress dominated forests; and 2) wetland forest change maps showing temporary and persistent disturbance and loss since the early 1970s. Project products are being developed collaboratively with multiple state and federal agencies. Products are being validated using available reference data from aerial, satellite, and field survey data. Results include Landsat TM- based classifications of baldcypress in terms of cover type and percent canopy cover. Landsat MSS data was employed to compute a circa 1972 classification of swamp and bottomland hardwood forest types. Landsat data for 1972-2010 was used to compute wetland forest change products. MODIS-based change products were applied to view and assess insect-induced swamp forest defoliation. MODIS, Landsat, and ASTER satellite data products were used to help assess hurricane and flood impacts to coastal wetland forests in the region.

  15. Comparing different approaches for an effective monitoring of forest fires based on MSG/SEVIRI images

    NASA Astrophysics Data System (ADS)

    Laneve, Giovanni

    2010-05-01

    The remote sensing sensors on board of geostationary satellite, as consequence of the high frequency of the observations, allow, in principle, the monitoring of these phenomena characterized by a fast dynamics. The only condition for is that the events to be monitored should be enough strong to be recognizable notwithstanding the low spatial resolution of the present geostationary systems (MSG/SEVIRI, GOES Imager, MTSAT). Apart from meteorological phenomena other events, like those associated with forest fires and/or volcanic eruption, are characterized by a very fast dynamics. These events are also associated with a very strong signal that make them observable by geostationary satellite in a quasi-continuous way. However, in order to make possible the detection of small fires by using the low resolution multi-spectral imagery provided by geostationary sensor like SEVIRI (3x3 km2 at the equator) new algorithms, capable to exploit it high observation frequency, has been developed. This paper is devoted to show the results obtained by comparing some of these algorithms trying to highlight their advantages and limits. The algorithms herein considered are these developed by CRPSM (SFIDE®), UNIBAS/CNR (RST-FIRES) and ESA-ESRIN (MDIFRM). In general, the new approaches proposed by each one of them are capable to promptly detect small fires making possible an operational utilization of the satellite based fire detection system in the fire fighting phases. In fact, these algorithms are quite different from these introduced in the past and specifically devoted to fire detection using low resolution multi-spectral imagery on LEO (Low Earth Orbit) satellite. Thanks to these differences they are capable of detecting sub-hectare (0.2 ha) forest fires providing an useful instrument for monitoring quasi-continuously forest fires, estimating the FRP (Fire Radiative Power), evaluating the burned biomass, retrieving the emission in the atmosphere.

  16. Bird biodiversity assessments in temperate forest: the value of point count versus acoustic monitoring protocols.

    PubMed

    Klingbeil, Brian T; Willig, Michael R

    2015-01-01

    Effective monitoring programs for biodiversity are needed to assess trends in biodiversity and evaluate the consequences of management. This is particularly true for birds and faunas that occupy interior forest and other areas of low human population density, as these are frequently under-sampled compared to other habitats. For birds, Autonomous Recording Units (ARUs) have been proposed as a supplement or alternative to point counts made by human observers to enhance monitoring efforts. We employed two strategies (i.e., simultaneous-collection and same-season) to compare point count and ARU methods for quantifying species richness and composition of birds in temperate interior forests. The simultaneous-collection strategy compares surveys by ARUs and point counts, with methods matched in time, location, and survey duration such that the person and machine simultaneously collect data. The same-season strategy compares surveys from ARUs and point counts conducted at the same locations throughout the breeding season, but methods differ in the number, duration, and frequency of surveys. This second strategy more closely follows the ways in which monitoring programs are likely to be implemented. Site-specific estimates of richness (but not species composition) differed between methods; however, the nature of the relationship was dependent on the assessment strategy. Estimates of richness from point counts were greater than estimates from ARUs in the simultaneous-collection strategy. Woodpeckers in particular, were less frequently identified from ARUs than point counts with this strategy. Conversely, estimates of richness were lower from point counts than ARUs in the same-season strategy. Moreover, in the same-season strategy, ARUs detected the occurrence of passerines at a higher frequency than did point counts. Differences between ARU and point count methods were only detected in site-level comparisons. Importantly, both methods provide similar estimates of species richness and composition for the region. Consequently, if single visits to sites or short-term monitoring are the goal, point counts will likely perform better than ARUs, especially if species are rare or vocalize infrequently. However, if seasonal or annual monitoring of sites is the goal, ARUs offer a viable alternative to standard point-count methods, especially in the context of large-scale or long-term monitoring of temperate forest birds. PMID:26038728

  17. Bird biodiversity assessments in temperate forest: the value of point count versus acoustic monitoring protocols

    PubMed Central

    Willig, Michael R.

    2015-01-01

    Effective monitoring programs for biodiversity are needed to assess trends in biodiversity and evaluate the consequences of management. This is particularly true for birds and faunas that occupy interior forest and other areas of low human population density, as these are frequently under-sampled compared to other habitats. For birds, Autonomous Recording Units (ARUs) have been proposed as a supplement or alternative to point counts made by human observers to enhance monitoring efforts. We employed two strategies (i.e., simultaneous-collection and same-season) to compare point count and ARU methods for quantifying species richness and composition of birds in temperate interior forests. The simultaneous-collection strategy compares surveys by ARUs and point counts, with methods matched in time, location, and survey duration such that the person and machine simultaneously collect data. The same-season strategy compares surveys from ARUs and point counts conducted at the same locations throughout the breeding season, but methods differ in the number, duration, and frequency of surveys. This second strategy more closely follows the ways in which monitoring programs are likely to be implemented. Site-specific estimates of richness (but not species composition) differed between methods; however, the nature of the relationship was dependent on the assessment strategy. Estimates of richness from point counts were greater than estimates from ARUs in the simultaneous-collection strategy. Woodpeckers in particular, were less frequently identified from ARUs than point counts with this strategy. Conversely, estimates of richness were lower from point counts than ARUs in the same-season strategy. Moreover, in the same-season strategy, ARUs detected the occurrence of passerines at a higher frequency than did point counts. Differences between ARU and point count methods were only detected in site-level comparisons. Importantly, both methods provide similar estimates of species richness and composition for the region. Consequently, if single visits to sites or short-term monitoring are the goal, point counts will likely perform better than ARUs, especially if species are rare or vocalize infrequently. However, if seasonal or annual monitoring of sites is the goal, ARUs offer a viable alternative to standard point-count methods, especially in the context of large-scale or long-term monitoring of temperate forest birds.

  18. Monitoring of the effects of fire in North American boreal forests using ERS SAR imagery

    NASA Technical Reports Server (NTRS)

    Kasischke, E. S.; French, N. H. F.; Bourgeau-Chavez, L. L.

    1997-01-01

    ERS synthetic aperture radar (SAR) imagery represents a tool for monitoring the effects of fires in boreal regions. Fire-scar signatures from ERS SAR collected over Canada and Alaska are presented. The temporal variability exhibited throughout the growing season is underlined. The investigation showed that these signatures have a seasonal trend related to the patterns of soil moisture originating from snow melts in the spring and precipitation during the growing season. These signatures appear in all the regions of the North American boreal forest and remain visible for up to 13 years after a fire.

  19. a Case Study of a Forest Carbon STOCK Monitoring System for REDD+ in Lao P.D.R.

    NASA Astrophysics Data System (ADS)

    Nasu, M.; Sano, T.; Oono, K.; Wada, Y.; Nakada, R.; Yamase, T.; Tomimura, S.; Furuya, T.; Matteo, G.; Kamusoko, C.; Gomi, Y.; Isobe, T.; Iwata, A.; Moriike, H.; Hironaga, S.; Hosokawa, T.; Someya, T.; Wachi, A.; Homsysavath, K.

    2012-07-01

    Various technical studies for building forest monitoring system for MRV system of REDD+ has been implemented utilizing satellite remote sensing technology and ground survey upon configuring two pilot study areas, at whole Louangphabang (LPB) province (approximately 20,000 km2) and in Bolikhmxai(BLK) province (approximately 4,400 km2) in Lao PDR. Multi-temporal land use/cover data were prepared for making analyses of deforestation and forest degradation caused by various driving factors, and to establish reference scenario for REDD+. In addition to ordinary method of forest carbon stock estimation based on the forest plot surveys, land use/cover maps and IPCC's emission factors (GOFC-GOLD, 2010), improved methods were studied introducing a concept of biomass classing derived from multispectral data and tree height measurement utilizing ALOS/PRIS stereo images, in order to reduce difficulty of field surveys at high altitude and steep mountain forest, especially in natural forest areas. First, multi-temporal land use/cover maps were prepared for two pilot study areas for analyzing deforestation and forest degradation of the subjected area. Then, the biomass level of "Current Forest" area of the land use/cover maps were classified into three classes as high, medium, and low applying spectral analyses of LANDSAT/TM and SPOT images, and based on visual interpretation results of pan-sharpened ALOS/AVNIR2 images in addition to limited number of field surveys as references. Matching accuracies were around 60% at this stage of study (This number improved to 85% at the later stage). Based on the field survey data, the forest carbon stock vs. tree height model was established, and furthermore it was related to the forest biomass classes. ALOS/PRISM images were used to measure heights at about 1,500 forest stands selected at 2 - 4 km grid intervals. Accuracy analyses showed that the standard deviation of the tree height measurement errors was approximately 4 - 5 m, but the mean value of the measured data were within 1- 2 m comparing to the field survey data. Finally, wall-to-wall, above-ground forest carbon stock estimation maps which would be useful for forest management and REDD+ were prepared. As a conclusion, it can be said that 3D measurement, in addition to multi-spectral information, of the forest provides useful information for monitoring forest carbon stock for REDD+ although further refinement of technologies is to be needed. And, the results and experiences obtained from the studies will provide useful data for establishing actual MRVsystem.

  20. Global Characterization and Monitoring of Forest Cover Using Landsat Data: Opportunities and Challenges

    NASA Technical Reports Server (NTRS)

    Townshend, John R.; Masek, Jeffrey G.; Huang, ChengQuan; Vermote, Eric F.; Gao, Feng; Channan, Saurabh; Sexton, Joseph O.; Feng, Min; Narasimhan, Ramghuram; Kim, Dohyung; Song, Kuan; Song, Danxia; Song, Xiao-Peng; Noojipady, Praveen; Tan, Bin; Hansen, Matthew C.; Li, Mengxue; Wolfe, Robert E.

    2012-01-01

    The compilation of global Landsat data-sets and the ever-lowering costs of computing now make it feasible to monitor the Earth's land cover at Landsat resolutions of 30 m. In this article, we describe the methods to create global products of forest cover and cover change at Landsat resolutions. Nevertheless, there are many challenges in ensuring the creation of high-quality products. And we propose various ways in which the challenges can be overcome. Among the challenges are the need for atmospheric correction, incorrect calibration coefficients in some of the data-sets, the different phenologies between compilations, the need for terrain correction, the lack of consistent reference data for training and accuracy assessment, and the need for highly automated characterization and change detection. We propose and evaluate the creation and use of surface reflectance products, improved selection of scenes to reduce phenological differences, terrain illumination correction, automated training selection, and the use of information extraction procedures robust to errors in training data along with several other issues. At several stages we use Moderate Resolution Spectroradiometer data and products to assist our analysis. A global working prototype product of forest cover and forest cover change is included.

  1. Changes in mangrove vegetation area and character in a war and land use change affected region of Vietnam (Mui Ca Mau) over six decades

    NASA Astrophysics Data System (ADS)

    Van, T. T.; Wilson, N.; Thanh-Tung, H.; Quisthoudt, K.; Quang-Minh, V.; Xuan-Tuan, L.; Dahdouh-Guebas, F.; Koedam, N.

    2015-02-01

    Aerial photographs and satellite images have been used to determine land cover changes during the period 1953 to 2011 in the Mui Ca Mau, Vietnam, especially in relation to changes in the mangrove area. The mangrove area declined drastically from approximately 71,345 ha in 1953 to 33,083 ha in 1992, then rose to 46,712 ha in 2011. Loss due to herbicide attacks during the Vietnam War, overexploitation, and conversion into agriculture and aquaculture encouraged by land management policies are being partially counteracted by natural regeneration and replanting, especially a gradual increase in plantations as part of integrated mangrove-shrimp farming systems. The nature of the mangrove vegetation has markedly been transformed over this period. The results are valuable for management planning to understand and improve the contribution of mangrove forests to the provision of ecosystem services and resources, local livelihood and global interest.

  2. Monitoring Post-Fire Vegetation Rehabilitation Projects: A Common Approach for Non-Forested Ecosystems

    USGS Publications Warehouse

    Wirth, Troy A.; Pyke, David A.

    2007-01-01

    Emergency Stabilization and Rehabilitation (ES&R) and Burned Area Emergency Response (BAER) treatments are short-term, high-intensity treatments designed to mitigate the adverse effects of wildfire on public lands. The federal government expends significant resources implementing ES&R and BAER treatments after wildfires; however, recent reviews have found that existing data from monitoring and research are insufficient to evaluate the effects of these activities. The purpose of this report is to: (1) document what monitoring methods are generally used by personnel in the field; (2) describe approaches and methods for post-fire vegetation and soil monitoring documented in agency manuals; (3) determine the common elements of monitoring programs recommended in these manuals; and (4) describe a common monitoring approach to determine the effectiveness of future ES&R and BAER treatments in non-forested regions. Both qualitative and quantitative methods to measure effectiveness of ES&R treatments are used by federal land management agencies. Quantitative methods are used in the field depending on factors such as funding, personnel, and time constraints. There are seven vegetation monitoring manuals produced by the federal government that address monitoring methods for (primarily) vegetation and soil attributes. These methods vary in their objectivity and repeatability. The most repeatable methods are point-intercept, quadrat-based density measurements, gap intercepts, and direct measurement of soil erosion. Additionally, these manuals recommend approaches for designing monitoring programs for the state of ecosystems or the effect of management actions. The elements of a defensible monitoring program applicable to ES&R and BAER projects that most of these manuals have in common are objectives, stratification, control areas, random sampling, data quality, and statistical analysis. The effectiveness of treatments can be determined more accurately if data are gathered using an approach that incorporates these six monitoring program design elements and objectives, as well as repeatable procedures to measure cover, density, gap intercept, and soil erosion within each ecoregion and plant community. Additionally, using a common monitoring program design with comparable methods, consistently documenting results, and creating and maintaining a central database for query and reporting, will ultimately allow a determination of the effectiveness of post-fire rehabilitation activities region-wide.

  3. The Impact of Hydrodynamics in Erosion - Deposition Process in Can Gio Mangrove Biosphere Reserve, South Viet Nam

    NASA Astrophysics Data System (ADS)

    Vo-Luong, H. P.

    2014-12-01

    Can Gio Mangrove Biosphere Reserve is always considered as a friendly green belt to protect and bring up the habitants. However, recently some mangrove areas in the Dong Tranh estuary are being eroded seriously. Based on the field measurements in SW and NE monsoons as well as data of topography changes in 10 years, it is proved that hydrodynamics of waves, tidal currents and riverine currents are the main reasons for erosion-deposition processes at the studied site. The erosion-deposition process changes due to monsoon. The analysed results show that high waves and tidal oscillation cause the increase of the erosion rate in NE monsoon. However, high sediment deposition occurs in SW monsoon due to weak waves and more alluvium from upstream. Many young mangrove trees grow up and develop in the SW monsoon. From the research, it is strongly emphasized the role of mangrove forests in soil retention and energy dissipation.

  4. What regulates crab predation on mangrove propagules?

    NASA Astrophysics Data System (ADS)

    Van Nedervelde, Fleur; Cannicci, Stefano; Koedam, Nico; Bosire, Jared; Dahdouh-Guebas, Farid

    2015-02-01

    Crabs play a major role in some ecosystems. To increase our knowledge about the factors that influence crab predation on propagules in mangrove forests, we performed experiments in Gazi Bay, Kenya in July 2009. We tested whether: (1) crab density influences propagule predation rate; (2) crab size influences food competition and predation rate; (3) crabs depredate at different rates according to propagule and canopy cover species; (4) vegetation density is correlated with crab density; (5) food preferences of herbivorous crabs are determined by size, shape and nutritional value. We found that (1) propagule predation rate was positively correlated to crab density. (2) Crab competitive abilities were unrelated to their size. (3) Avicennia marina propagules were consumed more quickly than Ceriops tagal except under C. tagal canopies. (4) Crab density was negatively correlated with the density of A. marina trees and pneumatophores. (5) Crabs prefer small items with a lower C:N ratio. Vegetation density influences crab density, and crab density affects propagule availability and hence vegetation recruitment rate. Consequently, the mutual relationships between vegetation and crab populations could be important for forest restoration success and management.

  5. The Economical Microbolometer-Based Environmental Radiometer Satellite (EMBERSat) Designed for Forest Fire Detection and Monitoring

    NASA Technical Reports Server (NTRS)

    Lancaster, Redgie S.; Skillman, David R.; Welch, Wayne C.; Spinhirne, James D.; Manizade, Katherine F.; Beecken, Brian P.

    2004-01-01

    Thermal infrared imagery from several satellite instruments, such as the NOAA AVHRR and the NASA MODIS, is presently used to detect and map forest fires. But while these radiometers can identify fires they are designed and optimized for cloud detection, providing relatively low spatial resolution and quickly saturating even for small fires. Efforts to detect and monitor forest fires from space would benefit from the development of single-sensor satellites designed specifically for this purpose. With the advent of uncooled thermal detectors, and thus the absence of aggressive cooling, the possibility of developing small satellites for the purpose of fire detection and monitoring becomes practical and cost-effective. Thus is the case with the Economical Microbolometer Based Environmental Radiometer Satellite (EMBERSat) program. The objective of this program is to develop a single, prototype satellite that will provide multiband thermal imagery with a spatial resolution of 250m and a dynamic range of 300-1000K. The thermal imaging payload has flight heritage in the Infrared Spectral Imaging Radiometer that flew aboard mission STS-85 and the spacecraft is a variant of the SimpleSat bus launched from the shuttle Columbia as part of STS-105. The EMBERSat program is a technology demonstration initiative with the eventual goal of providing high-resolution thermal imagery to both the scientific community and the public.

  6. The Economical Microbolometer-Based Environmental Radiometer Satellite (EMBERSAT) Designed for Forest Fire Detection and Monitoring

    NASA Technical Reports Server (NTRS)

    Lancaster, Redgie S.; Skillman, David R.; Welch, Wayne; Spinhirne, James D.; Manizade, Kathrine F.; Beecken, Brian P.

    2003-01-01

    Thermal infrared imagery from several satellite instruments, such as the NOAA AVHRR and the NASA MODIS, is presently used to detect and map forest fires. But while these radiometers can identify fires they are designed and optimized for cloud detection, providing relatively low spatial resolution and quickly saturating even for small fires. Efforts to detect and monitor forest fires from space would benefit from the development of single-sensor satellites designed specifically for this purpose. With the advent of uncooled thermal detectors, and thus the absence of aggressive cooling, the possibility of developing small satellites for the purpose of fire detection and monitoring becomes practical and cost-effective. Thus is the case with the Economical Microbolometer Based Environmental Radiometer Satellite (EMBERSat) program. The objective of this program is to develop a single, prototype satellite that will provide multiband thermal imagery with a spatial resolution of 250m and a dynamic range of 300-1000K. The thermal imaging payload has flight heritage in the Infrared Spectral Imaging Radiometer that flew aboard mission STS-85 and the spacecraft is a variant of the SimpleSat bus launched from the shuttle Columbia as part of STS-109. The EMBERSat program is a technology demonstration initiative with the eventual goal of providing high-resolution thermal imagery to both the scientific community and the public.

  7. Designing, implementing and monitoring social impact mitigation strategies: Lessons from Forest Industry Structural Adjustment Packages

    SciTech Connect

    Loxton, Edwina A., E-mail: Edwina.Loxton@anu.edu.au [Fenner School of Environment and Society, The Australian National University, Canberra, 0200 (Australia); Schirmer, Jacki, E-mail: Jacki.Schirmer@canberra.edu.au [Fenner School of Environment and Society, The Australian National University, Canberra, 0200 (Australia) [Fenner School of Environment and Society, The Australian National University, Canberra, 0200 (Australia); Cooperative Research Centre for Forestry, Hobart, 7001 (Australia); Kanowski, Peter, E-mail: P.Kanowski@cgiar.org [Fenner School of Environment and Society, The Australian National University, Canberra, 0200 (Australia) [Fenner School of Environment and Society, The Australian National University, Canberra, 0200 (Australia); Cooperative Research Centre for Forestry, Hobart, 7001 (Australia)

    2013-09-15

    Social impact mitigation strategies are implemented by the proponents of policies and projects with the intent of reducing the negative, and increasing the positive social impacts of their activities, and facilitating the achievement of policy/project goals. Evaluation of mitigation strategies is critical to improving their future success and cost-effectiveness. This paper evaluates two Forest Industry Structural Adjustment Packages (FISAP) implemented in Australia in the 1990s to 2000s as part of broader policy changes that reduced access to timber from publicly owned native forests. It assesses the effectiveness of the structure, design, implementation and monitoring of the FISAPs, and highlights the interactions between these four elements and their influence on social impacts. The two FISAPs were found to be effective in terms of reducing negative impacts, encouraging positive impacts and contributing towards policy goals, although they did not mitigate negative impacts in all cases, and sometimes interacted with external factors and additional policy changes to contribute to significant short and long term negative impacts. -- Highlights: ? Mitigation strategies aim to reduce negative and enhance positive social impacts ? Mitigation strategy design, implementation, and monitoring are critical to success ? Effective mitigation enhanced the capacity of recipients to respond to change ? Mitigation strategies influenced multiple interacting positive and negative impacts ? Success required good communication, transparency, support, resources and timing.

  8. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.

    PubMed

    Osland, Michael J; Day, Richard H; Larriviere, Jack C; From, Andrew S

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone. PMID:24971938

  9. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  10. Use of a 15N tracer to determine linkages between a mangrove and an upland freshwater swamp

    NASA Astrophysics Data System (ADS)

    MacKenzie, R. A.; Cormier, N.

    2005-05-01

    Mangrove forests and adjacent upland freshwater swamps are important components of subsistence-based economies of Pacific islands. Mangroves provide valuable firewood (Rhizophora apiculata) and mangrove crabs (Scylla serrata); intact freshwater swamps are often used for agroforestry (e.g., taro cultivation). While these two systems are connected hydrologically via groundwater and surface flows, little information is available on how they may be biogeochemically or ecologically linked. For example, mangrove leaf litter was once thought to be an important food source for resident and transient nekton and invertebrates, but this value may have been overestimated. Instead, nutrients or allochthonous material (e.g., phytoplankton, detritus) delivered via groundwater or surface water from upland freshwater swamps may play a larger role in mangrove food webs. Understanding the linkages between these two ecologically and culturally important ecosystems will help us to understand the potential impacts of hydrological alterations that occur when roads or bridges are constructed through them. We conducted a 15N tracer study in the Yela watershed on the island of Kosrae, Federated States of Micronesia. K15NO3 was continually added at trace levels for 4 weeks to the Yela River in an upland freshwater swamp adjacent to a mangrove forest. Nitrate and ammonium pools, major primary producers, macroinvertebrates, and fish were sampled from stations 5 m upstream (freshwater swamp) and 138, 188, 213, and 313 m downstream (mangrove) from the tracer addition. Samples were collected once a week prior to, during, and after the 15N addition for a total of 6 weeks. Preliminary results revealed no significant enrichment (< 1 ‰) in the 15N isotope composition of either resident shrimp (Macrobrachium sp.) or mudskipper fish (Periophthalmus sp.). However, the 15N signature of ammonium pools was enriched 10-60 ‰ by the end of the third week. These results suggest that the tracer was present in the mangrove but was either unavailable to higher organisms or was incorporated into organic matter not utilized by shrimp or mudskippers.

  11. A Holocene pollen record of vegetation and coastal environmental changes in the coastal swamp forest at Batulicin, South Kalimantan, Indonesia

    Microsoft Academic Search

    Eko Yulianto; A. T. Rahardjo; Dardji Noeradi; D. A. Siregar; K. Hirakawa

    2005-01-01

    Pollen analysis of a coastal peat swamp core representing 9100 BP from Batulicin, South Kalimantan, Indonesia, shows that mangrove forest, with Rhizophora as its main element has been established since the early Holocene. Vegetation development in general, and particularly mangrove forest, was influenced by Holocene environmental changes. The highest value of Rhizophora at ca. 8200 BP indicates an early Holocene

  12. Analysing ethnobotanical and fishery-related importance of mangroves of the East-Godavari Delta (Andhra Pradesh, India) for conservation and management purposes

    PubMed Central

    Dahdouh-Guebas, F; Collin, S; Lo Seen, D; Rönnbäck, P; Depommier, D; Ravishankar, T; Koedam, N

    2006-01-01

    Mangrove forests, though essentially common and wide-spread, are highly threatened. Local societies along with their knowledge about the mangrove also are endangered, while they are still underrepresented as scientific research topics. With the present study we document local utilization patterns, and perception of ecosystem change. We illustrate how information generated by ethnobiological research can be used to strengthen the management of the ecosystem. This study was conducted in the Godavari mangrove forest located in the East-Godavari District of the state Andhra Pradesh in India, where mangroves have been degrading due to over-exploitation, extensive development of aquaculture, and pollution from rural and urbanized areas (Kakinada). One hundred interviews were carried out among the fisherfolk population present in two mangrove zones in the study area, a wildlife sanctuary with strong conservation status and an adjacent zone. Results from the interviews indicated that Avicennia marina (Forsk.) Vierh., a dominant species in the Godavari mangroves, is used most frequently as firewood and for construction. Multiple products of the mangrove included the bark of Ceriops decandra (Griff.) Ding Hou to dye the fishing nets and improve their durability, the bark of Aegiceras corniculatum (L.) Blanco to poison and catch fish, and the leaves of Avicennia spp. and Excoecaria agallocha L. as fodder for cattle. No medicinal uses of true mangrove species were reported, but there were a few traditional uses for mangrove associates. Utilization patterns varied in the two zones that we investigated, most likely due to differences in their ecology and legal status. The findings are discussed in relation with the demographic and socio-economic traits of the fisherfolk communities of the Godavari mangroves and indicate a clear dependency of their livelihood on the mangrove forest. Reported changes in the Godavari mangrove cover also differed in the two zones, with significantly less perceptions of a decrease in the protected area, as compared to the adjacent non-protected area. A posteriori comparisons between sequential satellite imagery (retrospective till 1977) and respondents that were at least 15 years back then, revealed a mangrove decrease which was however perceived to different extents depending on the area with which the fishermen were familiar. While local needs had not been incorporated in the existing policy, we created a framework on how data on ethnobotanical traditions, fishery-related activities and local people's perceptions of change can be incorporated into management strategies. PMID:16681845

  13. Spatio-temporal variations in the composition of organic matter in surface sediments of a mangrove receiving shrimp farm effluents (New Caledonia).

    PubMed

    Aschenbroich, Adélaïde; Marchand, Cyril; Molnar, Nathalie; Deborde, Jonathan; Hubas, Cédric; Rybarczyk, Hervé; Meziane, Tarik

    2015-04-15

    In order to investigate spatio-temporal variations in the composition and origin of the benthic organic matter (OM) at the sediment surface in mangrove receiving shrimp farm effluents, fatty acid (FA) biomarkers, natural stable isotopes (?(13)C and ?(15)N), C:N ratios and chlorophyll-a (chl-a) concentrations were determined during the active and the non-active period of the farm. Fatty acid compositions in surface sediments within the mangrove forest indicated that organic matter inputs varied along the year as a result of farm activity. Effluents were the source of fresh particulate organic matter for the mangrove, as evidenced by the unsaturated fatty acid (UFA) distribution. The anthropogenic MUFA 18:1?9 was not only accumulated at the sediment surface in some parts of the mangrove, but was also exported to the seafront. Direct release of bacteria and enhanced in situ production of fungi, as revealed by specific FAs, stimulated mangrove litter decomposition under effluent runoff condition. Also, microalgae released from ponds contributed to maintain high benthic chl-a concentrations in mangrove sediments in winter and to a shift in microphytobenthic community assemblage. Primary production was high whether the farm released effluent or not which questioned the temporary effect of shrimp farm effluent on benthic microalgae dynamic. This study outlined that mangrove benthic organic matter was qualitatively and quantitatively affected by shrimp farm effluent release and that responses to environmental condition changes likely depended on mangrove stand characteristics. PMID:25634734

  14. [Mangrove dynamics in the Cispata lagoon system (Colombian Caribbean) during last 900 years].

    PubMed

    Castaño, Ana; Urrego, Ligia; Bernal, Gladys

    2010-12-01

    The lagoon complex of Cispatá (old Sinú river delta) located at the Northwestern coast of the Colombian Caribbean, encloses one of the biggest mangrove areas in this region. This area has changed during the last 330 years because of several environmental and climatic causes, mainly changes in the position of the delta (Sinú River), which is the main freshwater source in this area, and sea level rise. We hypothesized that the climatic and geomorphologic dynamics has caused changes in the extension and composition of mangrove vegetation, especially during last 150 years. The dynamics of mangroves during the last 900 years was reconstructed based on the changes in the stratigraphy, pollen record, calcite concentrations (CaCO3) and C/N ratio, along two sediment cores from La Flotante and Navio lagoons, located in Cispatá complex. The age model was built based on lineal interpolation of 210Pb ages and changes in granulometry. Establishment and expansion of mangrove forests during the last 900 years were related to fluviomarine dynamics in the area and the lagoon formation. During the period encompassed between 1064 and 1762 A.D., the Mestizos spit was formed when marine conditions predominated in the surroundings of La Flotante Lagoon. At the site of Navío, a river dominated lagoon, terrigenous conditions dominated since 1830. Although the colonization of herbaceous pioneer vegetation started between 1142 and 1331 A.D., mangrove colonization only took place since 1717 A.D. Mangrove colonization was a result of the delta progradation. In 1849 A.D. the Sinú river delta migrated to the Cispatá bay. The eustatic sea level rise, the increase in river discharges and sedimentation rates produced the establishment of mangrove forests dominated by Rhizophora since 1849. Since 1900 a marine intrusion was recorded in both lagoons. In 1938, the migration of the delta toward its actual location in Tinajones gave place to the formation of the present lagoon system and to the expansion of mangrove forests, which reflects the balance between the high alluvial sediment input and the current sea level rise as has been recorded in similar ecosystems. PMID:21250481

  15. Changes in mangrove species assemblages and future prediction of the Bangladesh Sundarbans using Markov chain model and cellular automata.

    PubMed

    Mukhopadhyay, Anirban; Mondal, Parimal; Barik, Jyotiskona; Chowdhury, S M; Ghosh, Tuhin; Hazra, Sugata

    2015-06-10

    The composition and assemblage of mangroves in the Bangladesh Sundarbans are changing systematically in response to several environmental factors. In order to understand the impact of the changing environmental conditions on the mangrove forest, species composition maps for the years 1985, 1995 and 2005 were studied. In the present study, 1985 and 1995 species zonation maps were considered as base data and the cellular automata-Markov chain model was run to predict the species zonation for the year 2005. The model output was validated against the actual dataset for 2005 and calibrated. Finally, using the model, mangrove species zonation maps for the years 2025, 2055 and 2105 have been prepared. The model was run with the assumption that the continuation of the current tempo and mode of drivers of environmental factors (temperature, rainfall, salinity change) of the last two decades will remain the same in the next few decades. Present findings show that the area distribution of the following species assemblages like Goran (Ceriops), Sundari (Heritiera), Passur (Xylocarpus), and Baen (Avicennia) would decrease in the descending order, whereas the area distribution of Gewa (Excoecaria), Keora (Sonneratia) and Kankra (Bruguiera) dominated assemblages would increase. The spatial distribution of projected mangrove species assemblages shows that more salt tolerant species will dominate in the future; which may be used as a proxy to predict the increase of salinity and its spatial variation in Sundarbans. Considering the present rate of loss of forest land, 17% of the total mangrove cover is predicted to be lost by the year 2105 with a significant loss of fresh water loving mangroves and related ecosystem services. This paper describes a unique approach to assess future changes in species composition and future forest zonation in mangroves under the 'business as usual' scenario of climate change. PMID:25719448

  16. Methane flux from mangrove sediments along the southwestern coast of Puerto Rico

    SciTech Connect

    Sotomayor, D.; Corredor, J.E.; Morell, J.M. (Univ. of Puerto Rico, Mayagueez (Puerto Rico))

    1994-03-01

    Although the sediments of coastal marine mangrove forests have been considered a minor source of atmospheric methane, these estimate have been based on sparse data from similar areas. We have gathered evidence that shows that external nutrient and freshwater loading in mangrove sediments may have a significant effect on methane flux. Experiments were performed to examine methane fluxes from anaerobic sediments in a mangrove forest subjected to secondary sewage effluents on the southwestern coast of Puerto Rico. Emission rates were measured in situ using a static chamber technique, and subsequent laboratory analysis of samples was by gas chromatography using a flame ionization detector. Results indicate that methane flux rates were lowest at the landward fringe nearest to the effluent discharge, higher in the seaward fringe occupied by red mangroves, and highest in the transition zone between black and red mangrove communities, with average values of 4 mg CH[sub 4] m[sup [minus]2] d[sup [minus]1], 42 mg CH[sub 4] m[sup [minus]2] d[sup [minus]1], and 82 mg CH[sub 4] m[sup [minus]2] d[sup [minus]1], respectively. Overall mean values show these sediments may emit as much as 40 times more methane than unimpacted pristine areas. Pneumatophores of Aviciennia germinans have been found to serve as conduits to the atmosphere for this gas. Fluctuating water level overlying the mangrove sediment is an important environmental factor controlling seasonal and interannual CH[sub 4] flux variations. Environmental controls such as freshwater inputs and increased nutrient loading influence in situ methane emissions from these environments. 34 refs., 3 figs., 3 tabs.

  17. Mangroves: The Roots of the Sea

    NSDL National Science Digital Library

    This BioBulletin Web site takes an in-depth look at mangrove ecosystems. The site includes text, videos, photographs, and interactives. The collection of essays explores the importance of these remarkably diverse ecosystems, examines why mangroves have disappeared with alarming speed, the reasons why it is difficult to preserve them and the diverse species that rely on mangroves. The work of an innovative grassroots organization in southern Thailand in profiled.

  18. Bacterial communities reflect the spatial variation in pollutant levels in Brazilian mangrove sediment.

    PubMed

    Peixoto, R; Chaer, G M; Carmo, F L; Araújo, F V; Paes, J E; Volpon, A; Santiago, G A; Rosado, A S

    2011-02-01

    The majority of oil from oceanic oil spills converges on coastal ecosystems such as mangrove forests. A major challenge to mangrove bioremediation is defining the mangrove's pollution levels and measuring its recuperation from pollution. Bioindicators can provide a welcome tool for defining such recovery. To determine if the microbial profiles reflected variation in the pollutants, samples from different locations within a single mangrove with a history of exposure to oil were chemically characterised, and the microbial populations were evaluated by a comprehensive range of conventional and molecular methods. Multivariate ordination of denaturing gradient gel electrophoresis (DGGE) microbial community fingerprints revealed a pronounced separation between the sediment and rhizosphere samples for all analysed bacterial communities (Bacteria, Betaproteobacteria, Alphaproteobacteria, Actinobacteria and Pseudomonas). A Mantel test revealed significant relationships between the sediment chemical fertility and oil-derived pollutants, most of the bacterial community fingerprints from sediment samples, and the counts by different cultivation strategies. The level of total petroleum hydrocarbons was significantly associated with the Bacteria and Betaproteobacteria fingerprints, whereas anthracene and the total level of polycyclic aromatic hydrocarbons were associated with the Actinobacteria. These results show that microbial communities from the studied mangrove reflect the spatial variation of the chemicals in the sediment, demonstrating the specific influences of oil-derived pollutants. PMID:20803251

  19. Mangrove production and carbon sinks: A revision of global budget estimates

    USGS Publications Warehouse

    Bouillon, S.; Borges, A.V.; Castaneda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.-Y.; Marchand, C.; Middelburg, J.J.; Rivera-Monroy, V. H.; Smith, T. J., III; Twilley, R.R.

    2008-01-01

    Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ???-218 ?? 72 Tg C a-1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ??? 112 ?? 85 Tg C a-1, equivalent in magnitude to ??? 30-40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far. Copyright 2008 by the American Geophysical Union.

  20. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch

    USGS Publications Warehouse

    Cahoon, D.R.; Hensel, P.; Rybczyk, J.; McKee, K.L.; Proffitt, C.E.; Perez, B.C.

    2003-01-01

    We measured sediment elevation and accretion dynamics in mangrove forests on the islands of Guanaja and Roatan, Honduras, impacted by Hurricane Mitch in 1998 to determine if collapse of underlying peat was occurring as a result of mass tree mortality. Little is known about the balance between production and decomposition of soil organic matter in the maintenance of sediment elevation of mangrove forests with biogenic soils. Sediment elevation change measured with the rod surface elevation table from 18 months to 33 months after the storm differed significantly among low, medium and high wind impact sites. Mangrove forests suffering minimal to partial mortality gained elevation at a rate (5 mm yeara??1) greater than vertical accretion (2 mm yeara??1) measured from artificial soil marker horizons, suggesting that root production contributed to sediment elevation. Basin forests that suffered mass tree mortality experienced peat collapse of about 11 mm yeara??1 as a result of decomposition of dead root material and sediment compaction. Low soil shear strength and lack of root growth accompanied elevation decreases. Model simulations using the Relative Elevation Model indicate that peat collapse in the high impact basin mangrove forest would be 37 mm yeara??1 for the 2 years immediately after the storm, as root material decomposed. In the absence of renewed root growth, the model predicts that peat collapse will continue for at least 8 more years at a rate (7 mm yeara??1) similar to that measured (11 mm yeara??1). Mass tree mortality caused rapid elevation loss. Few trees survived and recovery of the high impact forest will thus depend primarily on seedling recruitment. Because seedling establishment is controlled in large part by sediment elevation in relation to tide height, continued peat collapse could further impair recovery rates.

  1. Operations of cleanrooms during a forest fire including protocols and monitoring results

    NASA Astrophysics Data System (ADS)

    Matheson, Bruce A.; Egges, Joanne; Pirkey, Michael S.; Lobmeyer, Lynette D.

    2012-10-01

    Contamination-sensitive space flight hardware is typically built in cleanroom facilities in order to protect the hardware from particle contamination. Forest wildfires near the facilities greatly increase the number of particles and amount of vapors in the ambient outside air. Reasonable questions arise as to whether typical cleanroom facilities can adequately protect the hardware from these adverse environmental conditions. On Monday September 6, 2010 (Labor Day Holiday), a large wildfire ignited near the Boulder, Colorado Campus of Ball Aerospace. The fire was approximately 6 miles from the Boulder City limits. Smoke levels from the fire stayed very high in Boulder for the majority of the week after the fire began. Cleanroom operations were halted temporarily on contamination sensitive hardware, until particulate and non-volatile residue (NVR) sampling could be performed. Immediate monitoring showed little, if any effect on the cleanroom facilities, so programs were allowed to resume work while monitoring continued for several days and beyond in some cases. Little, if any, effect was ever noticed in the monitoring performed.

  2. USDA Forest Service Proceedings RMRS-P-63. 2011. 47 Monitoring Limber Pine Health in the Rocky

    E-print Network

    USDA Forest Service Proceedings RMRS-P-63. 2011. 47 Monitoring Limber Pine Health in the Rocky, CO ExtendedAbstract Abstract--Ecological impacts are occurring as white pine blister rust spreads and intensifies through ecologically and culturally important limber pine ecosystems of the Rocky Mountains

  3. A niche-based framework to assess current monitoring of European forest birds and guide indicator species' selection.

    PubMed

    Wade, Amy S I; Barov, Boris; Burfield, Ian J; Gregory, Richard D; Norris, Ken; Vorisek, Petr; Wu, Taoyang; Butler, Simon J

    2014-01-01

    Concern that European forest biodiversity is depleted and declining has provoked widespread efforts to improve management practices. To gauge the success of these actions, appropriate monitoring of forest ecosystems is paramount. Multi-species indicators are frequently used to assess the state of biodiversity and its response to implemented management, but generally applicable and objective methodologies for species' selection are lacking. Here we use a niche-based approach, underpinned by coarse quantification of species' resource use, to objectively select species for inclusion in a pan-European forest bird indicator. We identify both the minimum number of species required to deliver full resource coverage and the most sensitive species' combination, and explore the trade-off between two key characteristics, sensitivity and redundancy, associated with indicators comprising different numbers of species. We compare our indicator to an existing forest bird indicator selected on the basis of expert opinion and show it is more representative of the wider community. We also present alternative indicators for regional and forest type specific monitoring and show that species' choice can have a significant impact on the indicator and consequent projections about the state of the biodiversity it represents. Furthermore, by comparing indicator sets drawn from currently monitored species and the full forest bird community, we identify gaps in the coverage of the current monitoring scheme. We believe that adopting this niche-based framework for species' selection supports the objective development of multi-species indicators and that it has good potential to be extended to a range of habitats and taxa. PMID:24819734

  4. Satellite data analysis for identification of groundwater salinization effects on coastal forest for monitoring purposes

    NASA Astrophysics Data System (ADS)

    Barbarella, M.; De Giglio, M.; Panciroli, L.; Greggio, N.

    2015-05-01

    In the phreatic aquifer below the San Vitale pinewood (Ravenna, Italy), natural and anthropogenic land subsidence, the low topography and the artificial drainage system have led to widespread saltwater intrusion. Since changes in the groundwater concentration induce variations in the vegetation properties, recognizable by different spectral bands, a comparison between satellite images, ASTER and Worldview-2, was made using the NDVI. The aim was to identify the portions of pinewood affected by salinization through a procedure that could reduce the expensive and time consuming ground monitoring campaigns. Moreover, the Worldview-2 high resolutions were used to investigate the Thermophilic Deciduous Forest (TDF) spectral behaviour without the influence of the allochthonous Pinus pinea species that is scattered throughout the pinewood. The NDVI, calculated with traditional bands, identified the same stressed areas using both satellite data. Instead, the new Red-Edge band of the Worldview-2 image allowed a greater correlation between NDVI and groundwater salinity.

  5. Tropical forest monitoring, combining satellite and social data, to inform management and livelihood implications: Case studies from Indonesian West Timor

    NASA Astrophysics Data System (ADS)

    Fisher, Rohan

    2012-06-01

    Deforestation in the world's tropics is an urgent international issue. One response has been the development of satellite based monitoring initiatives largely focused on the carbon rich forests of western Indonesia. In contrast this study focuses on one eastern Indonesian district, Kabupaten Kupang, which has some of the largest and least studied tracts of remaining forest in West Timor. A combination of remote sensing, GIS and social science methods were used to describe the state of forests in Kabupaten Kupang, how and why they are changing. Using satellite imagery, case studies and on-ground interviews, this study explores the proposition that transdisciplinary local social, cultural and biophysical knowledge is important for effectively using remotely sensed data as a tool to inform local management policies. When compared to some other parts of Indonesia, the rate and extent of deforestation in West Timor was found to be relatively small and a satellite based assessment alone could conclude that it is not a critical issue. However this study showed that when on-ground social data are coupled with (such) satellite-based data a more complex picture emerges, related to key livelihood issues. The causes of forest cover change were found to be multivariate and location specific, requiring management approaches tailored to local social issues. This study suggests that integrative research can maximise the utility of satellite data for understanding causation and thus informing management strategies. In addition, the satellite based assessment found that at the time of the study less than 4% of forested land was within national parks and nature reserves and less than a third of the protected catchment forest zone was forested. These data suggest considerable scope for upland re-forestation activities or the redrawing of protected forest boundaries.

  6. Methanogenic bacteria in mangrove sediments

    Microsoft Academic Search

    R. Mohanraju; R. Natarajan

    1992-01-01

    The occurrence of methanogenic bacteria in the Kodiakkarai (10° 18' N; 79° 52' E) mangrove sediments, whereAvicennia spp are predominant, was studied. Trimethylamine under N2:CO2 (80:20% v\\/v) was used as the substrate. Most Probable Number (MPN) of methanogenic bacteria was determined for a period of one year from July 1987 to June 1988 with monthly sampling. The methanogenic bacterial populations

  7. Towards the harmonization between National Forest Inventory and Forest Condition Monitoring. Consistency of plot allocation and effect of tree selection methods on sample statistics in Italy.

    PubMed

    Gasparini, Patrizia; Di Cosmo, Lucio; Cenni, Enrico; Pompei, Enrico; Ferretti, Marco

    2013-07-01

    In the frame of a process aiming at harmonizing National Forest Inventory (NFI) and ICP Forests Level I Forest Condition Monitoring (FCM) in Italy, we investigated (a) the long-term consistency between FCM sample points (a subsample of the first NFI, 1985, NFI_1) and recent forest area estimates (after the second NFI, 2005, NFI_2) and (b) the effect of tree selection method (tree-based or plot-based) on sample composition and defoliation statistics. The two investigations were carried out on 261 and 252 FCM sites, respectively. Results show that some individual forest categories (larch and stone pine, Norway spruce, other coniferous, beech, temperate oaks and cork oak forests) are over-represented and others (hornbeam and hophornbeam, other deciduous broadleaved and holm oak forests) are under-represented in the FCM sample. This is probably due to a change in forest cover, which has increased by 1,559,200 ha from 1985 to 2005. In case of shift from a tree-based to a plot-based selection method, 3,130 (46.7%) of the original 6,703 sample trees will be abandoned, and 1,473 new trees will be selected. The balance between exclusion of former sample trees and inclusion of new ones will be particularly unfavourable for conifers (with only 16.4% of excluded trees replaced by new ones) and less for deciduous broadleaves (with 63.5% of excluded trees replaced). The total number of tree species surveyed will not be impacted, while the number of trees per species will, and the resulting (plot-based) sample composition will have a much larger frequency of deciduous broadleaved trees. The newly selected trees have-in general-smaller diameter at breast height (DBH) and defoliation scores. Given the larger rate of turnover, the deciduous broadleaved part of the sample will be more impacted. Our results suggest that both a revision of FCM network to account for forest area change and a plot-based approach to permit statistical inference and avoid bias in the tree sample composition in terms of DBH (and likely age and structure) are desirable in Italy. As the adoption of a plot-based approach will keep a large share of the trees formerly selected, direct tree-by-tree comparison will remain possible, thus limiting the impact on the time series comparability. In addition, the plot-based design will favour the integration with NFI_2. PMID:23224704

  8. Multi?taxon and forest structure sampling for identification of indicators and monitoring of old?growth forest

    Microsoft Academic Search

    C. Blasi; M. Marchetti; U. Chiavetta; M. Aleffi; P. Audisio; M. M. Azzella; G. Brunialti; G. Capotorti; E. Del Vico; E. Lattanzi; A. M. Persiani; S. Ravera; A. Tilia; S. Burrascano

    2010-01-01

    The most commonly used old?growth forest indicators are structural attributes; nevertheless, they do not necessarily represent the biodiversity value of old?growth forests. The aim of this study is to analyse the relationships between species richness data of different taxa and structural indicators of old?growth and to identify taxonomic\\/functional groups, species and structural attributes that may be used as indicators of

  9. Design to monitor trend in abundance and presence of American beaver (Castor canadensis) at the national forest scale.

    PubMed

    Beck, Jeffrey L; Dauwalter, Daniel C; Gerow, Kenneth G; Hayward, Gregory D

    2010-05-01

    Wildlife conservationists design monitoring programs to assess population dynamics, project future population states, and evaluate the impacts of management actions on populations. Because agency mandates and conservation laws call for monitoring data to elicit management responses, it is imperative to design programs that match the administrative scale for which management decisions are made. We describe a program to monitor population trends in American beaver (Castor canadensis) on the US Department of Agriculture, Black Hills National Forest (BHNF) in southwestern South Dakota and northeastern Wyoming, USA. Beaver have been designated as a management indicator species on the BHNF because of their association with riparian and aquatic habitats and its status as a keystone species. We designed our program to monitor the density of beaver food caches (abundance) within sampling units with beaver and the proportion of sampling units with beavers present at the scale of a national forest. We designated watersheds as sampling units in a stratified random sampling design that we developed based on habitat modeling results. Habitat modeling indicated that the most suitable beaver habitat was near perennial water, near aspen (Populus tremuloides) and willow (Salix spp.), and in low gradient streams at lower elevations. Results from the initial monitoring period in October 2007 allowed us to assess costs and logistical considerations, validate our habitat model, and conduct power analyses to assess whether our sampling design could detect the level of declines in beaver stated in the monitoring objectives. Beaver food caches were located in 20 of 52 sampled watersheds. Monitoring 20 to 25 watersheds with beaver should provide sufficient power to detect 15-40% declines in the beaver food cache index as well as a twofold decline in the odds of beaver being present in watersheds. Indices of abundance, such as the beaver food cache index, provide a practical measure of population status to conduct long-term monitoring across broad landscapes such as national forests. PMID:19396556

  10. FAO UN-REDD- INPE Joint Programme on Forest Monitoring Systems based on RS and GIS techniques

    NASA Astrophysics Data System (ADS)

    Jonckheere, I. G.; FAO UN-REDD MRV Team

    2010-12-01

    Capacity Development and Training for National Forest Monitoring Systems for Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (REDD+) REDD+, which stands for ’Reducing Emissions from Deforestation and Forest Degradation in Developing Countries’ - is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. The UN-REDD Programme, a collaborative partnership between FAO, UNDP and UNEP launched in September 2008, supports countries to develop capacity to REDD+ and to implement a future REDD+ mechanism in a post-2012 climate regime. The programme works at both the national and global scale, through support mechanisms for country-driven REDD strategies and international consensus-building on REDD+ processes. The UN-REDD Programme gathers technical teams from around the world to develop common approaches, analyses and guidelines on issues such as measurement, reporting and verification (MRV) of carbon emissions and flows, remote sensing, and greenhouse gas inventories. Within the partnership, FAO supports countries on technical issues related to forestry and the development of cost effective and credible MRV processes for emission reductions. While at the international level, it fosters improved guidance on MRV approaches, including consensus on principles and guidelines for MRV and training programmes. It provides guidance on how best to design and implement REDD+, to ensure that forests continue to provide multiple benefits for livelihoods and biodiversity to societies while storing carbon at the same time. Other areas of work include national forest assessments and monitoring of in-country policy and institutional change. FAO and INPE (Brazilian Space Agency) have joint forces through a MoU signed last year in Copenhagen. A major joint programme has been agreed upon to set up national forest satellite monitoring systems in the developing countries and to train them in order to get them ready for REDD+. The outcomes about the role of satellite remote sensing technologies as a tool for monitoring, assessment, reporting and verification of carbon credits and co-benefits under the REDD+ mechanism are here presented.

  11. Mobile monitoring along a street canyon and stationary forest air monitoring of formaldehyde by means of a micro-gas analysis system.

    PubMed

    Toda, Kei; Tokunaga, Wataru; Gushiken, Yosuke; Hirota, Kazutoshi; Nose, Teppei; Suda, Daisaku; Nagai, Jun; Ohira, Shin-Ichi

    2012-05-01

    A micro-gas analysis system (?GAS) was developed for mobile monitoring and continuous measurements of atmospheric HCHO. HCHO gas was trapped into an absorbing/reaction solution continuously using a microchannel scrubber in which the microchannels were patterned in a honeycomb structure to form a wide absorbing area with a thin absorbing solution layer. Fluorescence was monitored after reaction of the collected HCHO with 2,4-pentanedione (PD) in the presence of acetic acid/ammonium acetate. The system was portable, battery-driven, highly sensitive (limit of detection = 0.01 ppbv) and had good time resolution (response time 50 s). The results revealed that the PD chemistry was subject to interference from O(3). The mechanism of this interference was investigated and the problem was addressed by incorporating a wet denuder. Mobile monitoring was performed along traffic roads, and elevated HCHO levels in a street canyon were evident upon mapping of the obtained data. The system was also applied to stationary monitoring in a forest in which HCHO formed naturally via reaction of biogenic compounds with oxidants. Concentrations of a few ppbv-HCHO and several-tens of ppbv of O(3) were then simultaneously monitored with the ?GAS in forest air monitoring campaigns. The obtained 1 h average data were compared with those obtained by 1 h impinger collection and offsite GC-MS analysis after derivatization with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBOA). From the obtained data in the forest, daily variations of chemical HCHO production and loss are discussed. PMID:22508343

  12. Integrating forest inventory and analysis data into a LIDAR-based carbon monitoring system

    PubMed Central

    2014-01-01

    Background Forest Inventory and Analysis (FIA) data may be a valuable component of a LIDAR-based carbon monitoring system, but integration of the two observation systems is not without challenges. To explore integration methods, two wall-to-wall LIDAR-derived biomass maps were compared to FIA data at both the plot and county levels in Anne Arundel and Howard Counties in Maryland. Allometric model-related errors were also considered. Results In areas of medium to dense biomass, the FIA data were valuable for evaluating map accuracy by comparing plot biomass to pixel values. However, at plots that were defined as “nonforest”, FIA plots had limited value because tree data was not collected even though trees may be present. When the FIA data were combined with a previous inventory that included sampling of nonforest plots, 21 to 27% of the total biomass of all trees was accounted for in nonforest conditions, resulting in a more accurate benchmark for comparing to total biomass derived from the LIDAR maps. Allometric model error was relatively small, but there was as much as 31% difference in mean biomass based on local diameter-based equations compared to regional volume-based equations, suggesting that the choice of allometric model is important. Conclusions To be successfully integrated with LIDAR, FIA sampling would need to be enhanced to include measurements of all trees in a landscape, not just those on land defined as “forest”. Improved GPS accuracy of plot locations, intensifying data collection in small areas with few FIA plots, and other enhancements are also recommended. PMID:24826196

  13. Early diagenesis of carbohydrates and lignin in mangrove sediments subject to variable redox conditions (French Guiana)

    NASA Astrophysics Data System (ADS)

    Marchand, C.; Disnar, J. R.; Lallier-Vergès, E.; Lottier, N.

    2005-01-01

    A comparative study of lignin and neutral carbohydrate compositions, combined with C, N and ? 13C analyses, was carried out on sedimentary cores, and on various vascular plant species collected in mangrove swamps of French Guiana. The main purpose of this study was to assess the diagenesis of carbohydrates and lignin in brackish to hypersaline fine-grained mangrove sediments characterized by great changes in redox conditions. Distribution of carbohydrates in sediments reflects both the lability of these compounds and their efficient recycling. They are subject to selective degradation, cellulosic glucose and xylose appearing to be the two most labile neutral sugars. In contrast a relative increase in arabinose, rhamnose, fucose and hemicellulosic glucose between plants and sediments, suggests that they may be more refractory and/or that they also derive from microbial synthesis. The total carbon from lignin-derived phenols is higher in sediments than in mangrove plants as a consequence of their rather refractory character. Nevertheless, evidence of lignin decomposition was found to be independent of local environmental conditions. The various redox processes that occur in mangrove sediments depend on plant species, stages in forest development and season. Different redox conditions induce different mechanisms for the decomposition of lignin and thus induce changes in phenol distributions. At depth, in most mangroves, an increase in (Ad/Al) v ratios and in deoxy sugars (fucose and rhamnose) content was significantly correlated with increased proportions of oxidized allochthonous organic debris deriving from the Amazonian detrital discharge, thus suggesting a specific source effect rather than a diagenesis induced change. Therefore, this study illustrates that both lignin and cellulose, derived from vascular plant debris, can be degraded in waterlogged mangrove sediments, and that their distribution depends on environmental conditions.

  14. Forest vegetation monitoring and foliar chemistry of red spruce and red maple at Acadia National Park in Maine.

    PubMed

    Wiersma, G Bruce; Elvir, Jose Alexander; Eckhoff, Janet D

    2007-03-01

    The USDA Forest Service Forest Health Monitoring (FHM) program indicators, including forest mensuration, crown condition classification, and damage and mortality indicators were used in the Cadillac Brook and Hadlock Brook watershed forests at Acadia National Park (ANP) along coastal Maine. Cadillac Brook watershed burned in a wildfire in 1947. Hadlock Brook watershed, undisturbed for several centuries, serves as the reference site. These two small watersheds have been gauged and monitored at ANP since 1998 as part of the Park Research and Intensive Monitoring of Ecosystems Network (PRIMENet). Forest vegetation at Hadlock Brook was dominated by late successional species such as Acer saccharum, Fagus grandifolia, Betula alleghaniensis, Acer rubrum and Picea rubens. Forest vegetation at Cadillac Brook, on the other hand, was younger and more diverse and included those species found in Hadlock as well as early successional species such as Betula papyrifera and Populus grandidentata. Differences in forest species composition and stand structure were attributed to the severe wildfire that affected the Cadillac Brook watershed. Overall, the forests at these ANP watersheds were healthy with a low percentage (

  15. Potential of VIIRS Data for Regional Monitoring of Gypsy Moth Defoliation: Implications for Forest Threat Early Warning System

    NASA Astrophysics Data System (ADS)

    Spruce, J. P.; Ryan, R. E.; Smoot, J. C.; Prados, D. L.; McKellip, R. D.; Sader, S. A.; Gasser, G.; May, G.; Hargrove, W.

    2007-12-01

    A NASA RPC (Rapid Prototyping Capability) experiment was conducted to assess the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) data for monitoring non-native gypsy moth (Lymantria dispar) defoliation of forests. This experiment compares defoliation detection products computed from simulated VIIRS and from MODIS (Moderate Resolution Imaging Spectroradiometer) time series products as potential inputs to a forest threat EWS (Early Warning System) being developed for the USFS (USDA Forest Service). Gypsy moth causes extensive defoliation of broadleaved forests in the United States and is specifically identified in the Healthy Forest Restoration Act (HFRA) of 2003. The HFRA mandates development of a national forest threat EWS. This system is being built by the USFS, and NASA is aiding integration of needed satellite data products into this system, including MODIS products. This RPC experiment enabled the MODIS follow-on, VIIRS, to be evaluated as a data source for EWS forest monitoring products. The experiment included 1) assessment of MODIS-simulated VIIRS NDVI products, and 2) evaluation of gypsy moth defoliation mapping products from MODIS-simulated VIIRS and from MODIS NDVI time series data. This experiment employed MODIS data collected over the approx. 15 million acre mid-Appalachian Highlands during the annual peak defoliation time frame (June 10 through July 27) during 2000-2006. NASA Stennis Application Research Toolbox software was used to produce MODIS-simulated VIIRS data and NASA Stennis Time Series Product Tool software was employed to process MODIS and MODIS-simulated VIIRS time series data scaled to planetary reflectance. MODIS-simulated VIIRS data was assessed through comparison to Hyperion-simulated VIIRS data using data collected during gypsy moth defoliation. Hyperion- simulated MODIS data showed a high correlation with actual MODIS data. MODIS-simulated VIIRS data for the same date showed moderately high correlation with Hyperion-simulated VIIRS data, even though the datasets were collected about a half an hour apart during changing weather conditions. MODIS products (MOD02, MOD09, and MOD13) and MOD02-simulated VIIRS time series data were used to generate defoliation mapping products based on image classification and image differencing change detection techniques. Accuracy of final defoliation mapping products was assessed by image interpretation of over 170 randomly sampled locations found on Landsat and ASTER data in conjunction with defoliation map data from the USFS. The MOD02-simulated VIIRS 400-m NDVI classification produced a similar overall accuracy to the MOD02 250-m NDVI classification. MOD02 and MOD02-simulated VIIRS data both showed promise as data sources for regional monitoring of forest disturbance due to insect defoliation.

  16. An ecosystem report on the Panama Canal: Monitoring the status of the forest communities and the watershed

    USGS Publications Warehouse

    Ibanez, R.; Condit, R.; Angehr, G.; Aguilar, S.; Garcia, T.; Martinez, R.; Sanjur, A.; Stallard, R.; Wright, S.J.; Rand, A.S.; Heckadon, S.

    2002-01-01

    In 1996, the Smithsonian Tropical Research Institute and the Republic of Panama's Environmental Authority, with support from the United States Agency for International Development, undertook a comprehensive program to monitor the ecosystem of the Panama Canal watershed. The goals were to establish baseline indicators for the integrity of forest communities and rivers. Based on satellite image classification and ground surveys, the 2790 km2 watershed had 1570 km2 of forest in 1997, 1080 km2 of which was in national parks and nature monuments. Most of the 490 km2 of forest not currently in protected areas lies along the west bank of the Canal, and its management status after the year 2000 turnover of the Canal from the U.S. to Panama remains uncertain. In forest plots designed to monitor forest diversity and change, a total of 963 woody plant species were identified and mapped. We estimate there are a total of 850-1000 woody species in forests of the Canal corridor. Forests of the wetter upper reaches of the watershed are distinct in species composition from the Canal corridor, and have considerably higher diversity and many unknown species. These remote areas are extensively forested, poorly explored, and harbor an estimated 1400-2200 woody species. Vertebrate monitoring programs were also initiated, focusing on species threatened by hunting and forest fragmentation. Large mammals are heavily hunted in most forests of Canal corridor, and there was clear evidence that mammal density is greatly reduced in hunted areas and that this affects seed predation and dispersal. The human population of the watershed was 113 000 in 1990, and grew by nearly 4% per year from 1980 to 1990. Much of this growth was in a small region of the watershed on the outskirts of Panama City, but even rural areas, including villages near and within national parks, grew by 2% per year. There is no sewage treatment in the watershed, and many towns have no trash collection, thus streams near large towns are heavily polluted. Analyses of sediment loads in rivers throughout the watershed did not indicate that erosion has been increasing as a result of deforestation, rather, erosion seems to be driven largely by total rainfall and heavy rainfall events that cause landslides. Still, models suggest that large-scale deforestation would increase landslide frequency, and failure to detect increases in erosion could be due to the gradual deforestation rate and the short time period over which data are available. A study of runoff showed deforestation increased the amount of water from rainfall that passed directly into streams. As a result, dry season flow was reduced in a deforested catchment relative to a forested one. Currently, the Panama Canal watershed has extensive forest areas and streams relatively unaffected by humans. But impacts of hunting and pollution near towns are clear, and the burgeoning population will exacerbate these impacts in the next few decades. Changes in policies regarding forest protection and pollution control are necessary.

  17. Tropical forest cover change in the 1990s and options for future monitoring

    Microsoft Academic Search

    Philippe Mayaux; Peter Holmgren; Frédéric Achard; Hugh Eva; Hans-Jürgen Stibig; Anne Branthomme

    2005-01-01

    Despite the importance of the world's humid tropical forests, our knowledge concerning their rates of change remains limited. Two recent programmes (FAO 2000 Forest Resources Assessment and TREES II), exploiting the global imaging capabilities of Earth observing satellites, have recently been completed to provide information on the dynamics of tropical forest cover. The results from these independent studies show a

  18. Food web structure in exotic and native mangroves: a Hawaii–Puerto Rico comparison

    Microsoft Academic Search

    Amanda W. J. Demopoulos; Brian Fry; Craig R. Smith

    2007-01-01

    Plant invasions can fundamentally alter detrital inputs and the structure of detritus-based food webs. We examined the detrital\\u000a pathways in mangrove food webs in native (Puerto Rican) and introduced (Hawaiian) Rhizophora mangle forests using a dual isotope approach and a mixing model. Based on trophic-level fractionation of 0–1‰ for ?\\u000a 13C and 2–3‰ for ?\\u000a 15N, among the invertebrates, only

  19. Monitoring firefighter exposure to air toxins at prescribed burns of forest and range biomass. Forest Service research paper

    SciTech Connect

    Reinhardt, T.E.

    1991-10-01

    A variety of potent air toxins are in the smoke produced by burning forest and range biomass. Preliminary data on firefighter exposures to carbon monoxide and formaldehyde at four prescribed burns of Western United States natural fuels are presented. Formaldehyde may be correlated to carbon monoxide emissions. The firefighters' exposures to these compounds relative to workplace standards are discussed.

  20. Potential for Monitoring Snow Cover in Boreal Forests by Combining MODIS Snow Cover and AMSR-E SWE Maps

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Foster, James L.

    2009-01-01

    Monitoring of snow cover extent and snow water equivalent (SWE) in boreal forests is important for determining the amount of potential runoff and beginning date of snowmelt. The great expanse of the boreal forest necessitates the use of satellite measurements to monitor snow cover. Snow cover in the boreal forest can be mapped with either the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave instrument. The extent of snow cover is estimated from the MODIS data and SWE is estimated from the AMSR-E. Environmental limitations affect both sensors in different ways to limit their ability to detect snow in some situations. Forest density, snow wetness, and snow depth are factors that limit the effectiveness of both sensors for snow detection. Cloud cover is a significant hindrance to monitoring snow cover extent Using MODIS but is not a hindrance to the use of the AMSR-E. These limitations could be mitigated by combining MODIS and AMSR-E data to allow for improved interpretation of snow cover extent and SWE on a daily basis and provide temporal continuity of snow mapping across the boreal forest regions in Canada. The purpose of this study is to investigate if temporal monitoring of snow cover using a combination of MODIS and AMSR-E data could yield a better interpretation of changing snow cover conditions. The MODIS snow mapping algorithm is based on snow detection using the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to enhance snow detection in dense vegetation. (Other spectral threshold tests are also used to map snow using MODIS.) Snow cover under a forest canopy may have an effect on the NDVI thus we use the NDVI in snow detection. A MODIS snow fraction product is also generated but not used in this study. In this study the NDSI and NDVI components of the snow mapping algorithm were calculated and analyzed to determine how they changed through the seasons. A blended snow product, the Air Force Weather Agency and NASA (ANSA) snow algorithm and product has recently been developed. The ANSA algorithm blends the MODIS snow cover and AMSR-E SWE products into a single snow product that has been shown to improve the performance of snow cover mapping. In this study components of the ANSA snow algorithm are used along with additional MODIS data to monitor daily changes in snow cover over the period of 1 February to 30 June 2008.

  1. Monitoring the short-term effects of prescribed fire on an endemic mollusk in the dry forests of the eastern Cascades, Washington, USA

    Microsoft Academic Search

    William L. Gaines; Andrea L. Lyons; Kathleen Weaver; Ann Sprague

    2011-01-01

    The restoration of natural fire regimes has emerged as a primary management objective within fire-prone forests in the interior western US. However, this objective becomes contentious when perceived to be in conflict with the conservation of rare or endemic species. We monitored the effects of two forest restoration treatments, spring- vs fall-prescribed burning, on the density of the endemic Tiny

  2. BEZKRÊGOWCE JAKO OBIEKT MONITORINGU BIOLOGICZNEGO W PUSZCZY BIA£OWIESKIEJ INVERTEBRATES AS A BIOLOGICAL MONITORING OBJECT IN BIA£OWIEA PRIMEVAL FOREST

    Microsoft Academic Search

    Jerzy M. GUTOWSKI

    An Invertebrate monitoring project has been conducted in Bia³owie¿a Primeval Forest since 1988. The main goal of the project is to determine the long term population dynamics and community compositions of particular invertebrate groups of lowland temperate forests. A secondary goal is to test for correlations with selected environmental factors. Invertebrates are collected using Moerickes traps (yellow pan traps), Barbers

  3. Temporal patterns in coral reef, seagrass and mangrove communities from Chengue bay CARICOMP site (Colombia): 1993-2008.

    PubMed

    Rodríguez-Ramírez, Alberto; Garzón-Ferreira, Jaime; Batista-Morales, Angélica; Gil, Diego L; Gómez-López, Diana Isabel; Gómez-Campo, Kelly; López-Londoño, Tomás; Navas-Camacho, Raúl; Reyes-Nivia, María Catalina; Vega-Sequeda, Johanna

    2010-10-01

    Few monitoring programs have simultaneously assessed the dynamics of linked marine ecosystems (coral reefs, seagrass beds and mangroves) to document their temporal and spatial variability. Based on CARICOMP protocol we evaluated permanent stations in coral reefs, seagrass beds and mangroves from 1993 to 2008 in Chengue Bay at the Tayrona Natural Park, Colombian Caribbean. Overall, the studied ecosystems showed a remarkable stability pattern over the monitoring period. While there were annual variations in coral reefs (coral cover) and mangroves (litterfall) caused by hurricane Lenny in 1999, particular trends in seagrass (leaf area index and leaf productivity) appear to reflect the natural variability in this ecosystem. We suggest that monitoring sites at the three marine ecosystems had in general a healthy development in the last 16 years. Our results are critical to locally improve the management strategies (Tayrona Natural Park) and to understand the long-term dynamics of closely associated marine ecosystems in the Caribbean. PMID:21299095

  4. Monitoring Phenological Key Stages and Cycle Duration of Temperate Deciduous Forest Ecosystems with NOAA\\/AVHRR Data

    Microsoft Academic Search

    Jérôme Goubier; Gaston Courrier

    1999-01-01

    In this study we attempted to monitor two main key stages in the phenological cycle of deciduous forests—budburst and senescence—using the normalized difference vegetation index (NDVI) derived from NOAA\\/AVHRR. These stages induce rapid (time scale of a month), large (>0.3) and nearly linear NDVI variations. The method we developed consists of a fit of NDVI predicted by line segment to

  5. Measuring, monitoring, and verification of carbon benefits for forest-based projects.

    PubMed

    Brown, Sandra

    2002-08-15

    Worldwide, there are many pilot forestry projects that are under some stage of implementation, and much experience has been gained from them with respect to measuring, monitoring, and accounting for their carbon benefits. Forestry projects have been shown to be easier to quantify and monitor than national inventories, partly because not all pools need measuring: a selective accounting system can be used that must include all pools expected to decrease and a choice of pools expected to increase as a result of the project. Only pools that are based on field measurements should be incorporated into the calculation of carbon benefits. Such a system allows for trade-offs between expected carbon benefits, costs, and desired precision, while maintaining the integrity of the net carbon benefits. Techniques and methods for accurately and precisely measuring individual carbon pools in forestry projects exist, are based on peer reviewed principles of forest inventory, soil sampling, and ecological surveys, and have been well tested in many part of the world. Experience with several forestry projects in tropical countries has shown that with the use of these techniques carbon stocks can readily be estimated to be within less than +/-10% of the mean. To date, there is little experience with measuring the changes in carbon stocks over time but, using the correct design and sufficient numbers of permanent plots, it is expected that precision levels will be maintained at less than +/-10% of the mean. Internal verification can be accomplished through use of quality assurance/quality control plans. External or third-party verification is still in its infancy, and would greatly benefit from international agreements in relation to protocols used for all aspects of project design and implementation. PMID:12460491

  6. River-Borne Sediment Exports, Sedimentation Rates, and Influence on Benthos and Leaflitter Breakdown in Southern Caribbean Mangroves (uraba, Colombia)

    NASA Astrophysics Data System (ADS)

    Blanco, J. F.; Taborda, A.; Arroyave, A.

    2011-12-01

    Deposition of river-borne sediments is a major issue in coastal ecosystems worldwide, but no study has been conducted in Neotropical mangroves. Mangroves in the Urabá Gulf (Southern Caribbean coast of Colombia) receive one of the highest sediment loads (<0.10-0.77 x 106 ton yr-1) of the Caribbean region from rivers crossing an extensive banana crop district. Annual sedimentation rates were computed based in monthly samplings (2009-2010) in mangrove fringes across the Turbo River Delta using bottom-fixed 1L-cylinders (n=15). A significant spatial variation (0.04-0.9 ton m-2 yr-1) was observed among sampling stations within the delta, but the highest trapping occurred on river's main channel (2.54 ton m-2 yr-1). Temporal variation was smaller than spatial variation. Monitoring (twenty 1-m2 quadrats x 3 sites x 12 months) of a dominant mangrove-floor gastropod (Neritina virginea) observed a positive increase of density (4-125 ind. m-2: One-way ANOVA: p<0.001) along a sedimentation gradient (monthly means for low and high sedimentation sites: 3-69 kg m-2 yr-1). The role of N. virginea on leaflitter breakdown relative to sedimentation level was experimentally tested in a black mangrove (Avicennia germinans) stand by using 180 wire-mesh cages (15 x 15 x 25 cm) placed on the forest floor as experimental units, to prevent snail and crab access. After clearing existing snails and litter from the muddy bottom, each cage was placed and 1 senescent leaf of A. germinans and 7 snails were introduced (previously weighed) (snail abundance was similar to background densities). Three levels of area-weighed sedimentation rates (1, 3 and 18 g per cage) were daily added to test the impacts of the field-observed sedimentation gradient. The experiment was carried out during one month. Fresh leaf mass was different among treatments during the first week, increasing in proportion to the sedimentation rate probably due to leaf soaking. However, there was no difference in fresh leaf weight loss (average: 67%) among sediment levels after one month. Fresh weight loss (range: 81.6-4.4%) was observed in the snails during the early stage of the experiment. Significant differences were observed but not related to sediment levels. After one month, the snails gained weight (<1, 5, and 12%) in proportion to increased sediment levels (1, 3 and 18 g per day and cage). These results suggested that sedimentation levels observed in the study area are not detrimental for N. virginea populations and for their feeding activities. They also suggested that this species may cope with increased sedimentation by shifting feeding from leaflitter to sediments. However, the dominance by N. virginea (in number and biomass) in the study area may indicate that siltation is harmful for sensitive gastropods and for the entire benthic community, also including bivalves, decapods and polychaetes.

  7. Ni cycling in mangrove sediments from New Caledonia

    NASA Astrophysics Data System (ADS)

    Noel, V. S.; Morin, G.; Juillot, F.; Marchand, C.; Brest, J.; Bargar, J.; Munoz, M.; Ardo, S.; Brown, G. E.

    2014-12-01

    In New Caledonia, mangroves receive large inputs of lateritic materials eroded from massive ultramafic deposits enriched in Fe, Ni, Mn, Cr, and Co. Because of the major physicochemical gradients, especially redox gradients, that characterize these ecosystems, mineralogical transformations may influence the crystal-chemistry and bioavailability of Ni and its mobility towards a lagoon of over 20,000 km2. Bulk and spatially resolved chemical analyses by SEM-EDXS were coupled with Ni K-edge X-ray absorption fine structure (XAFS) spectroscopy analysis to characterize the vertical and lateral changes in Ni speciation across the intertidal zone of a mangrove forest in the Vavouto Bay (New Caledonia) where Ni concentrations range from 1000 to 5300 mg•kg-1. XAFS results indicate that phyllosilicates and goethite inherited from the eroded lateritic materials are the dominant Ni-bearing phases in the surface horizons of the mangrove sediments. They are fully preserved at depth in the dry and oxic salt flat area, located on the inland side of the coast. In contrast, beneath the vegetated Rhizophoras and Avicennias stands Ni-bearing goethites rapidly diminish with increasing depth in the anoxic horizons of the sediments, and pyrite and organic complexes become the dominant Ni-containing species. Moreover, Ni incorporation in pyrite is more developed in the sediments beneath the intermediate Avicennia stand than beneath the Rhizophora stand that is closest to the shore. Such lateral changes in Ni speciation may be related to reoxidation of Ni-bearing pyrites in the Rhizophora stand, which is subject to periodic alternation of reducing and oxidizing events due to tidal fluctuations. These major changes in Ni speciation could significantly influence Ni mobility across the interidal zone. Indeed, as estimated with respect to Ti concentration, which is taken as a geochemical invariant, Ni is found to be immobile in the salt flat, to accumulate beneath the Avicennia stand, and to be partially leached beneath the Rhizophora stand.

  8. Mangrove Bacterial Diversity and the Impact of Oil Contamination Revealed by Pyrosequencing: Bacterial Proxies for Oil Pollution

    PubMed Central

    dos Santos, Henrique Fragoso; Cury, Juliano Carvalho; do Carmo, Flávia Lima; dos Santos, Adriana Lopes; Tiedje, James; van Elsas, Jan Dirk; Rosado, Alexandre Soares; Peixoto, Raquel Silva

    2011-01-01

    Background Mangroves are transitional coastal ecosystems in tropical and sub-tropical regions and represent biologically important and productive ecosystems. Despite their great ecological and economic importance, mangroves are often situated in areas of high anthropogenic influence, being exposed to pollutants, such as those released by oil spills. Methodology/Principal Findings A microcosm experiment was conducted, which simulated an oil spill in previously pristine mangrove sediment. The effect of the oil spill on the extant microbial community was studied using direct pyrosequencing. Extensive bacterial diversity was observed in the pristine mangrove sediment, even after oil contamination. The number of different OTUs only detected in contaminated samples was significantly higher than the number of OTUs only detected in non-contaminated samples. The phylum Proteobacteria, in particular the classes Gammaproteobacteria and Deltaproteobacteria, were prevalent before and after the simulated oil spill. On the other hand, the order Chromatiales and the genus Haliea decreased upon exposure to 2 and 5% oil, these are proposed as sensitive indicators of oil contamination. Three other genera, Marinobacterium, Marinobacter and Cycloclasticus increased their prevalence when confronted with oil. These groups are possible targets for the biomonitoring of the impact of oil in mangrove settings. Conclusions/Significance We suggest the use of sequences of the selected genera as proxies for oil pollution, using qPCR assessments. The quantification of these genera in distinct mangrove systems in relation to the local oil levels would permit the evaluation of the level of perturbance of mangroves, being useful in field monitoring. Considering the importance of mangroves to many other environments and the susceptibility of such areas to oil spills this manuscript will be of broad interest. PMID:21399677

  9. Development and Application of an Annual Vegetation-Monitoring Tool in Gishwati Forest Reserve using MODIS NDVI product and Landsat-5 and 7

    NASA Astrophysics Data System (ADS)

    Makar, N. I.; Butler, K.; Fox, T.; Geddes, Q. A.; Janse van Vuuren, L.; Li, A.; Sharma, A.

    2012-12-01

    As the most densely populated country in Africa, Rwanda relies heavily on a limited supply of natural resources to sustain its agrarian economy. Population pressures, economic policy, and the aftermath of the genocide have placed particular stress on the Gishwati Forest in Rwanda's Western Province. Deforestation for agricultural purposes and fuel consumption has disrupted the local climate, soil structure, and topography, leading to increased erosion, landslides and flooding. Once 280 km2, by 1995 the Gishwati Forest was only 6 km2. The Rwandan government and international NGOs have started initiatives to reverse deforestation, which would benefit from monitoring and evaluation using remote sensing technology. This study filled the gaps in the tumultuous history of Gishwati Forest since 1982 using NASA's Earth Observing System, specifically Landsat 5 and AVHRR. In collaboration with partner organizations, we developed a robust, yet simple to use, forest monitoring tool employing MODIS NDVI product and Landsat that provide annual estimates of the forest's health.

  10. EXAFS analysis of iron cycling in mangrove sediments downstream a lateritized ultramafic watershed (Vavouto Bay, New Caledonia)

    NASA Astrophysics Data System (ADS)

    Noël, Vincent; Marchand, Cyril; Juillot, Farid; Ona-Nguema, Georges; Viollier, Eric; Marakovic, Gregory; Olivi, Luca; Delbes, Ludovic; Gelebart, Frédéric; Morin, Guillaume

    2014-07-01

    Mangrove forests are the dominant intertidal ecosystem of tropical coastlines. In New Caledonia, mangroves act as a buffer zone between massive Fe lateritic deposits and a lagoon partly registered by UNESCO as a World Heritage site. The New Caledonian mangroves are characterized by a botanical gradient composed of three main vegetal stands (i.e., Rhizophora spp., Avicennia marina and salt flat), which relies on the duration of tidal immersion that imposes gradients of pore-water salinity, oxygenation, and organic content in the sediment. In the present study, we have determined the distribution and speciation of Fe in mangrove sediments along this botanical gradient by using X-ray absorption spectroscopy (XAS) at the Fe K-edge. Both XANES and EXAFS results show that iron speciation strongly follows the redox boundaries marking the intertidal and depth zonations. Fe-bearing minerals eroded from lateritic outcrops, mainly goethite (?-FeOOH) and phyllosilicates (serpentine and talc), are the major Fe hosts in the upward horizons. These mineral species progressively disappear with increasing depth where pyrite (FeS2) forms, in the hydromorphic Rhizophora and Avicennia zones. Sulfate reduction is not observed in the drier salt flat zone. In addition to these reduction processes, intense re-oxidation of aqueous Fe(II) and pyrite leads to the formation of poorly ordered ferrihydrite, lepidocrocite (?-FeOOH) and likely goethite in the upper sediments beneath Avicennia and Rhizophora stands. The relative proportion of the newly formed poorly ordered ferrihydrite and lepidocrocite is found to be higher in the Rhizophora mangrove stand, which is the closest to the shore. Tidal fluctuations may thus be a major cause for continuous Fe reduction-oxidation cycles in the vegetated mangrove stands, which could significantly affect the iron mass balance in mangrove systems.

  11. Satellite monitoring of forest fires and associated smoke plumes occurring in Korea

    Microsoft Academic Search

    Y. S. Chung; H. S. Kim

    2008-01-01

    Operational research was carried out on satellite detection of forest fires and associated smoke plumes occurring in the Korean\\u000a Peninsula. Forest fire data and satellite images obtained from 2004 to 2007 were examined. It was observed that at least three\\u000a forest-fire episodes were caused by atmospheric lightning, while all other cases were recorded as anthropogenic causes, according\\u000a to data gathered

  12. Effects of experimental sedimentation on the phenological dynamics and leaf traits of replanted mangroves at Gazi bay, Kenya.

    PubMed

    Okello, Judith A; Robert, Elisabeth M R; Beeckman, Hans; Kairo, James G; Dahdouh-Guebas, Farid; Koedam, Nico

    2014-08-01

    Sedimentation results in the creation of new mudflats for mangroves to colonize among other benefits. However, large sediment input in mangrove areas may be detrimental to these forests. The dynamics of phenological events of three mangrove tree species (Avicennia marina, Ceriops tagal, and Rhizophora mucronata) were evaluated under experimental sediment burial simulating sedimentation levels of 15, 30, and 45 cm.While there was generally no shift in timing of phenological events with sedimentation, the three mangrove tree species each responded differently to the treatments.Partially buried A. marina trees produced more leaves than the controls during the wet season and less during the dry season. Ceriops tagal on the other hand had higher leaf loss and low replacement rates in the partially buried trees during the first 6 months of the experiment but adapted with time, resulting in either equal or higher leaf emergence rates than the controls.Rhizophora mucronata maintained leaf emergence and loss patterns as the unaffected controls but had a higher fecundity and productivity in the 15-cm sedimentation level.The results suggest that under incidences of large sedimentation events (which could be witnessed as a result of climate change impacts coupled with anthropogenic disturbances), mangrove trees may capitalize on "advantages" associated with terrestrial sediment brought into the biotope, thus maintaining the pattern of phenological events. PMID:25473472

  13. Recent Efforts to Improve the Near Real Time Forest Disturbance Monitoring Capabilities of the ForWarn System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William; Gasser, Gerald

    2013-01-01

    This presentation discusses the development of anew method for computing NDVI temporal composites from near real time eMODIS data This research is being conducted to improve forest change products used in the ForWarn system for monitoring regional forest disturbances in the United States. ForWarn provides nation-wide NDVI-based forest disturbance detection products that are refreshed every 8 days. Current eMODIS and historical MOD13 24 day NDVI data are used to compute the disturbance detection products. The eMODIS 24 day NDVI data re-aggregated from 7 day NDVI products. The 24 day eMODIS NDVIs are generally cloud free, but do not necessarily use the freshest quality data. To shorten the disturbance detection time, a method has been developed that performs adaptive length/maximum value compositing of eMODIS NDVI, along with cloud and shadow "noise" mitigation. Tests indicate that this method can reduce detection rates by 8-16 days for known recent disturbance events, depending on the cloud frequencies and disturbance type. The noise mitigation in these tests, though imperfect, helped to improve quality of the resulting NDVI and forest change products.

  14. Mangroves impacted by human-induced disturbances: A case study of the Orinoco Delta mangrove ecosystem

    Microsoft Academic Search

    Federico Pannier; Facultad de Ciencias

    1979-01-01

    Mangroves represent a typical ecosystem found along many tropical coasts and estuaries. They are of exceptional biological importance. As a nutrient filter and synthesizer of organic matter, mangroves create a living buffer between land and sea. Highly dependent upon the inorganic nutrients contributed by rivers, they play a primary role in supporting the productivity of the associated marine environment.

  15. Stability of Sample-Based Scanning-LiDAR-Derived Vegetation Metrics for Forest Monitoring

    Microsoft Academic Search

    Christopher W. Bater; Michael A. Wulder; Nicholas C. Coops; Ross F. Nelson; Thomas Hilker; Erik Nasset

    2011-01-01

    The objective of this paper is to gain insights into the reproducibility of light detection and ranging (LiDAR)-derived vegetation metrics for multiple acquisitions carried out on the same day, where we can assume that forest and terrain conditions at a given location have not changed. Four overlapping lines were flown over a forested area in Vancouver Island, British Columbia, Canada.

  16. Monitoring and estimating tropical forest carbon stocks: making REDD a reality

    Microsoft Academic Search

    Holly K Gibbs; Sandra Brown; John O Niles; Jonathan A Foley

    2007-01-01

    Reducing carbon emissions from deforestation and degradation in developing countries is of central importance in efforts to combat climate change. Key scientific challenges must be addressed to prevent any policy roadblocks. Foremost among the challenges is quantifying nations’ carbon emissions from deforestation and forest degradation, which requires information on forest clearing and carbon storage. Here we review a range of

  17. Studies of a mangrove basin, Tuff Crater, New Zealand: I. Mangrove biomass and production of detritus

    NASA Astrophysics Data System (ADS)

    Woodroffe, Colin D.

    1985-03-01

    The mangrove, Avicennia marina var. resinifera in a tidally-flooded explosion crater, Tuff Crater, near the southern latitudinal limit of mangroves in New Zealand adopts two distinct growth forms, taller tree-like mangroves up to 4 m tall along the banks of the tidal creek, and low stunted shrub mangroves less than 1 m tall on the mudflats. Twelve trees were felled and on the basis of a biomass/height relationship for the taller trees and a biomass/canopy width relationship for the lower, above-ground biomass (excluding pneumatophores) was estimated. Average above-ground biomass for the taller mangrove was estimated to be 104·1 t ha -1 and for the lower 6·8 t ha -1. While the value for the taller mangroves is similar to figures reported for more complex tropical mangroves, the fact that 94% of the basin is covered by low generally sparse mangroves means that total biomass for the basin is estimated to be 153 t, an average of only 7·6 t ha -1. Litter-fall beneath the taller mangroves is estimated as 7·6±2·5 t ha -1 a -1 and beneath the lower mangroves 3·3±0·5 t ha -1 a -1. The value for the taller mangroves is similar to that reported from mangroves in many other parts of the world, but because of the extensive low sparse mangroves the total for the basin is estimated as 53·7 t a -1, an average rate of 2·7 t ha -1 a -1, a very low rate of litter-fall when compared with elsewhere. Decomposition of mangrove leaves occurs relatively rapidly with leaves losing half their dry weight in 10 weeks and then continuing to degrade but at a slower rate. Substrate sediment samples contain high organic matter content, and although some organic matter appears to be exported via the tidal creek, a proportion of the detrital production is evidently recycled in situ.

  18. Polyester production by halophilic and halotolerant bacterial strains obtained from mangrove soil samples located in Northern Vietnam.

    PubMed

    Van-Thuoc, Doan; Huu-Phong, Tran; Thi-Binh, Nguyen; Thi-Tho, Nguyen; Minh-Lam, Duong; Quillaguamán, Jorge

    2012-12-01

    This research article reports halophilic and halotolerant bacteria isolated from mangrove forests located in Northern Vietnam. Several of these bacteria were able to synthesize polyhydroxyalkanoates (PHAs). PHAs are polyesters stored by microorganisms under the presence of considerable amounts of a carbon source and deficiency of other essential nutrient such as nitrogen or phosphorous. Mangrove forests in Northern Vietnam are saline coastal habitats that have not been microbiologically studied. Mangrove ecosystems are, in general, rich in organic matter, but deficient in nutrients such as nitrogen and phosphorus. We have found about 100 microorganisms that have adapted to mangrove forests by accumulating PHAs. The production of polyesters might therefore be an integral part of the carbon cycle in mangrove forests. Three of the strains (ND153, ND97, and QN194) isolated from the Vietnamese forests were identified as Bacillus species, while other five strains (QN187, ND199, ND218, ND240, and QN271) were phylogenetically close related to the ?-proteobacterium Yangia pacifica. These strains were found to accumulate PHAs in noticeable amounts. Polymer inclusions and chemical structure were studied by transmission electron microscopy and proton nuclear magnetic resonance (NMR) spectroscopy analyses, respectively. Strains ND153, ND97, QN194, QN187, ND240, and QN271 synthesized poly(3-hydroxybutyrate) (PHB) from glucose, whereas strains ND199 and ND218 synthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from this carbohydrate. With the exception of strain QN194, the strains accumulated PHBV when a combination of glucose and propionate was included in the culture medium. The polymer yields and cell growth reached by one Bacillus isolate, strain ND153, and one Gram-negative bacterium, strain QN271, were high and worth to be researched further. For experiments performed in shake flasks, strain ND153 reached a maximum PHBV yield of 71 wt% and a cell dry weight (CDW) of 3.6 g/L while strain QN271 attained a maximum PHB yield of 48 wt% and a CDW of 5.1 g/L. Both strain ND153 and strain QN271 may only represent a case in point that exemplifies of the potential that mangrove forests possess for the discovery of novel halophilic and halotolerant microorganisms able to synthesize different types of biopolyesters. PMID:23233461

  19. Polyester production by halophilic and halotolerant bacterial strains obtained from mangrove soil samples located in Northern Vietnam

    PubMed Central

    Van-Thuoc, Doan; Huu-Phong, Tran; Thi-Binh, Nguyen; Thi-Tho, Nguyen; Minh-Lam, Duong; Quillaguamán, Jorge

    2012-01-01

    This research article reports halophilic and halotolerant bacteria isolated from mangrove forests located in Northern Vietnam. Several of these bacteria were able to synthesize polyhydroxyalkanoates (PHAs). PHAs are polyesters stored by microorganisms under the presence of considerable amounts of a carbon source and deficiency of other essential nutrient such as nitrogen or phosphorous. Mangrove forests in Northern Vietnam are saline coastal habitats that have not been microbiologically studied. Mangrove ecosystems are, in general, rich in organic matter, but deficient in nutrients such as nitrogen and phosphorus. We have found about 100 microorganisms that have adapted to mangrove forests by accumulating PHAs. The production of polyesters might therefore be an integral part of the carbon cycle in mangrove forests. Three of the strains (ND153, ND97, and QN194) isolated from the Vietnamese forests were identified as Bacillus species, while other five strains (QN187, ND199, ND218, ND240, and QN271) were phylogenetically close related to the ?-proteobacterium Yangia pacifica. These strains were found to accumulate PHAs in noticeable amounts. Polymer inclusions and chemical structure were studied by transmission electron microscopy and proton nuclear magnetic resonance (NMR) spectroscopy analyses, respectively. Strains ND153, ND97, QN194, QN187, ND240, and QN271 synthesized poly(3-hydroxybutyrate) (PHB) from glucose, whereas strains ND199 and ND218 synthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from this carbohydrate. With the exception of strain QN194, the strains accumulated PHBV when a combination of glucose and propionate was included in the culture medium. The polymer yields and cell growth reached by one Bacillus isolate, strain ND153, and one Gram-negative bacterium, strain QN271, were high and worth to be researched further. For experiments performed in shake flasks, strain ND153 reached a maximum PHBV yield of 71 wt% and a cell dry weight (CDW) of 3.6 g/L while strain QN271 attained a maximum PHB yield of 48 wt% and a CDW of 5.1 g/L. Both strain ND153 and strain QN271 may only represent a case in point that exemplifies of the potential that mangrove forests possess for the discovery of novel halophilic and halotolerant microorganisms able to synthesize different types of biopolyesters. PMID:23233461

  20. The start-up phase of the national satellite forest monitoring systems for DRC and PNG: a joint venture between FAO and INPE

    NASA Astrophysics Data System (ADS)

    Jonckheere, I. G.; FAO UN-REDD Team Forestry Department

    2011-12-01

    Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. "REDD+" goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. In the framework of getting countries ready for REDD+, the UN-REDD Programme, a partnership between UNEP, FAO and UNDP, assists developing countries to prepare and implement national REDD+ strategies. Designed collaboratively by a broad range of stakeholders, national UN-REDD Programmes are informed by the technical expertise of FAO, UNDP and UNEP. For the monitoring, reporting and verification, FAO supports the countries to develop satellite forest monitoring systems that allow for credible measurement, reporting and verification (MRV)of REDD+ activities. These are among the most critical elements for the successful implementation of any REDD+ mechanism, also following the COP 16 decisions in Cancun last year. The UN-REDD Programme through a joint effort of FAO and Brazil's National Space Agency, INPE, is supporting countries to develop cost-effective, robust and compatible national monitoring and MRV systems, providing tools, methodologies, training and knowledge sharing that help countries to strengthen their technical and institutional capacity for effective MRV systems. To develop strong nationally-owned forest monitoring systems, technical and institutional capacity building is key. The UN-REDD Programme, through FAO, has taken on intensive training together with INPE, and has provided technical help and assistance for in-country training and implementation for national satellite forest monitoring. The goal of the start-up phase for DRC and Papua New Guinea (PNG) in this capacity building effort is the training of technical forest people and IT persons from these two interested REDD+ countries, and to set-up the national satellite forest monitoring systems. The Brazilian forest monitoring system, TerraAmazon, which is used as a basis for this initiative, allows countries to adapt it to country needs and the training on the TerraAmazon system is a tool to enhance existing capacity on carbon monitoring systems. The start-up phase of the National Forest Monitoring System for DRC and PNG will allow these countries to follow all actions related to the implementation of its national REDD+ policies and measures. The monitoring system will work as a platform to obtain information on their REDD+ results and actions, related directly or indirectly to national REDD+ strategies and may also include actions unrelated to carbon assessment, such as forest law enforcement. With the technical assistance of FAO, INPE and other stakeholders, the countries will set up an autonomous operational forest monitoring system. An initial version and the methodologies of these syste,s will be launched in Durban, South Africa during COP 17 and is presented here.

  1. Forest Vegetation Monitoring Protocol for National Parks in the North Coast and Cascades Network

    USGS Publications Warehouse

    Woodward, Andrea; Hutten, Karen M.; Boetsch, John R.; Acker, Steven A.; Rochefort, Regina M.; Bivin, Mignonne M.; Kurth, Laurie L.

    2009-01-01

    Plant communities are the foundation for terrestrial trophic webs and animal habitat, and their structure and species composition are an integrated result of biological and physical drivers (Gates, 1993). Additionally, they have a major role in geologic, geomorphologic and soil development processes (Jenny, 1941; Stevens and Walker, 1970). Throughout most of the Pacific Northwest, environmental conditions support coniferous forests as the dominant vegetation type. In the face of anthropogenic climate change, forests have a global role as potential sinks for atmospheric carbon (Goodale and others, 2002). Consequently, knowledge of the status of forests in the three large parks of the NCCN [that is, Mount Rainier (MORA), North Cascades (NOCA), and Olympic (OLYM) National Parks] is fundamental to understanding the condition of Pacific Northwest ecosystems. Diverse climate and soil properties across the Pacific Northwest result in a variety of forest types (Franklin and Dyrness, 1973; Franklin and others, 1988; Henderson and others, 1989, 1992). The mountainous terrain of Mount Rainier, North Cascades, and Olympic National Parks create steep elevational and precipitation gradients within and among the parks: collectively, these parks span from sea level to more than 4,200 m; and include areas with precipitation from 90 to more than 500 cm. The resulting forests range from coastal rainforests with dense understories and massive trees draped with epiphytes; to areas with drought-adapted Ponderosa pines; to high-elevation subalpine fir forests interspersed with meadows just below treeline (table 1). These forests, in turn, are the foundation for other biotic communities constituting Pacific Northwest ecosystems.

  2. Evolutionary genetics of mangroves: continental drift to recent climate change

    Microsoft Academic Search

    Richard S. Dodd; Zara Afzal Rafii

    2002-01-01

    Recent advances in our knowledge of the genetic architecture of mangrove species are reviewed and the consequences of this genetic architecture for species response to environmental change are inferred. The origins of mangrove taxa have been discussed many times, particularly in the context of centers of origin and continental drift. While global patterns of mangrove species diversity have been interpreted

  3. SITHON: A Wireless Network of in Situ Optical Cameras Applied to the Early Detection-Notification-Monitoring of Forest Fires.

    PubMed

    Tsiourlis, Georgios; Andreadakis, Stamatis; Konstantinidis, Pavlos

    2009-01-01

    The SITHON system, a fully wireless optical imaging system, integrating a network of in-situ optical cameras linking to a multi-layer GIS database operated by Control Operating Centres, has been developed in response to the need for early detection, notification and monitoring of forest fires. This article presents in detail the architecture and the components of SITHON, and demonstrates the first encouraging results of an experimental test with small controlled fires over Sithonia Peninsula in Northern Greece. The system has already been scheduled to be installed in some fire prone areas of Greece. PMID:22408536

  4. Monitoring for Adaptive Management in Coniferous Forests of the Northern Rockies1

    E-print Network

    Hutto, Richard

    several such projects, including the effects of partial- cut logging in coniferous forests, and the effects of grazing on willow-riparian bird communities. We dis- cuss here another such project that we

  5. Triterpenols in mangrove sediments as a proxy for organic matter derived from the red mangrove ( Rhizophora mangle)

    Microsoft Academic Search

    Boris P. Koch; Pedro W. M. Souza Filho; Hermann Behling; Marcelo C. L. Cohen; Gerhard Kattner; Jürgen Rullkötter; Barbara Scholz-Böttcher; Rubén J. Lara

    2011-01-01

    Mangroves are the dominant type of vegetation along many tropical coasts. Organic matter (OM) derived from mangrove leaf litter and root material is stored in sediments and is a major contributor to the amount and chemical composition of sedimentary OM. A set of organic biomarkers in sediments was applied as a palaeo-indicator for the Holocene dynamics of a mangrove Estuary

  6. Reproductive Aspects of a Tropical Population of the Fiddler Crab Uca annulipes (H. Milne Edwards, 1837) (Brachyura: Ocypodidae) at Costa Do Sol Mangrove, Maputo Bay, southern Mozambique

    Microsoft Academic Search

    Carlos Litulo

    2004-01-01

    Uca annulipes(H. Milne Edwards) is the dominant fiddler crab inhabiting mangrove forests in East Africa. However, several aspects concerning its reproduction are poorly known. Such information is necessary for a better understanding of several biological aspects occurring in this species. The aim of this study was to assess the reproductive biology of Uca annulipes as well as some factors determining

  7. Object-Based Image Analysis of WORLDVIEW-2 Satellite Data for the Classification of Mangrove Areas in the City of SÃO LUÍS, MARANHÃO State, Brazil

    NASA Astrophysics Data System (ADS)

    Kux, H. J. H.; Souza, U. D. V.

    2012-07-01

    Taking into account the importance of mangrove environments for the biodiversity of coastal areas, the objective of this paper is to classify the different types of irregular human occupation on the areas of mangrove vegetation in São Luis, capital of Maranhão State, Brazil, considering the OBIA (Object-based Image Analysis) approach with WorldView-2 satellite data and using InterIMAGE, a free image analysis software. A methodology for the study of the area covered by mangroves at the northern portion of the city was proposed to identify the main targets of this area, such as: marsh areas (known locally as Apicum), mangrove forests, tidal channels, blockhouses (irregular constructions), embankments, paved streets and different condominiums. Initially a databank including information on the main types of occupation and environments was established for the area under study. An image fusion (multispectral bands with panchromatic band) was done, to improve the information content of WorldView-2 data. Following an ortho-rectification was made with the dataset used, in order to compare with cartographical data from the municipality, using Ground Control Points (GCPs) collected during field survey. Using the data mining software GEODMA, a series of attributes which characterize the targets of interest was established. Afterwards the classes were structured, a knowledge model was created and the classification performed. The OBIA approach eased mapping of such sensitive areas, showing the irregular occupations and embankments of mangrove forests, reducing its area and damaging the marine biodiversity.

  8. Three-year monitoring study of radiocesium transfer and ambient dose rate in forest environments affected by the Fukushima Dai-ichi Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Kato, Hiroaki; Onda, Yuichi; Loffredo, Nicolas; Kawamori, Ayumi; Hisadome, Keigo

    2015-04-01

    We investigated the transfer of canopy-intercepted radiocesium to the forest floor during 3 years (July 2011~) following the Fukushima Dai-ichi Nuclear Power Plant accident. The cesium-137 (Cs-137) contents of throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantation of Japanese cedar) and a deciduous broad-leaved forest stand (Japanese oak with red pine). We also measured an ambient dose rate at different height in the forest by using a survey meter (TCS-172B, Hitachi-Aloka Medical, LTD.) and a portable Ge gamma-ray detector (Detective-DX-100T, Ortec, Ametek, Inc.). Furthermore, effects of forest decontamination on the reduction of ambient dose rate were assessed quantitatively. Total Cs-137 deposition flux from the canopy to forest floor for the mature cedar, young cedar, and the mixed broad-leaved stands were 157 kBq/m^2, 167 kBq/m^2, and 54 kBq/m^2, respectively. These values correspond to 36%, 39% and 12% of total atmospheric input after the accident. The ambient dose rate showed an exponential decrease with time for all the forest sites, however the decreasing trend differed depending on the forest type. These data suggested that an ambient dose rate in forest environment can be variable in spatially and temporally reflecting the transfer of radiocesium from canopy to forest floor. We presented the analysis results of the relationship between radiocesium deposition flux and ambient dose rate at the forest floor. In addition to that, we reported the effects of forest decontamination (e.g., tree felling, removal of organic materials, woodchip pavement) on the reduction of ambient dose rate in the forest environment.

  9. Techniques of ozone monitoring in a mountain forest region: passive and continuous sampling, vertical and canopy profiles.

    PubMed

    Gerosa, G; Mazzali, C; Ballarin-Denti, A

    2001-10-31

    Ozone is the most harmful air pollutant for plant ecosystems in the Mediterranean and Alpine areas due to its biological and economic damage to crops and forests. In order to evaluate the relation between ozone exposure and vegetation injury under on-field conditions, suitable ozone monitoring techniques were investigated. In the framework of a 5-year research project aimed at ozone risk assessment on forests, both continuous analysers and passive samplers were employed during the summer seasons (1994-1998) in different sites of a wide mountain region (80 x 40 km2) on the southern slope of the European Alps. Continuous analysers allowed the recording of ozone hourly concentration means necessary both to calculate specific exposure indexes (such as AOT, SUM, W126) and to record daily time-courses. Passive samplers, even though supplied only weekly mean concentration values, made it possible to estimate the altitude concentration gradient useful to correct the altitude dependence of ozone concentrations to be inserted into exposure indexes. In-canopy ozone profiles were also determined by placing passive samplers at different heights inside the forest canopy. Vertical ozone soundings by means of tethered balloons (kytoons) allowed the measurement of the vertical concentration gradient above the forest canopy. They also revealed ozone reservoirs aloft and were useful to explain the ozone advection dynamic in mountain slopes where ground measurement proved to be inadequate. An intercomparison between passive (PASSAM, CH) and continuous measurements highlighted the necessity to accurately standardize all the exposure operations, particularly the pre- and postexposure conservation at cold temperature to avoid dye (DPE) activity. Advantages and disadvantages from each mentioned technique are discussed. PMID:12805859

  10. Microplastics in Singapore's coastal mangrove ecosystems.

    PubMed

    Nor, Nur Hazimah Mohamed; Obbard, Jeffrey Philip

    2014-02-15

    The prevalence of microplastics was studied in seven intertidal mangroves habitats of Singapore. Microplastics were extracted from mangrove sediments via a floatation method, and then counted and categorized according to particle shape and size. Representative microplastics from Berlayar Creek, Sungei Buloh, Pasir Ris and Lim Chu Kang were isolated for polymer identification using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. Microplastics were identified in all seven habitats, with the highest concentration found in sediments at Lim Chu Kang in the northwest of Singapore. The majority of microplastics were fibrous and smaller than 20 ?m. A total of four polymer types were identified, including polyethylene, polypropylene, nylon and polyvinyl chloride. The relationship between abundance of microplastics and sediment grain size was also investigated, but no relationship was apparent. The presence of microplastics is likely due to the degradation of marine plastic debris accumulating in the mangroves. PMID:24365455

  11. Monitoring 2009 Forest Disturbance Across the Conterminous United States, Based on Near-Real Time and Historical MODIS 250 Meter NDVI Products

    NASA Technical Reports Server (NTRS)

    Spruce, J.; Hargrove, W. W.; Gasser, G.; Smoot, J. C.; Kuper, P.

    2009-01-01

    This case study shows the promise of computing current season forest disturbance detection products at regional to CONUS scales. Use of the eMODIS expedited product enabled a NRT CONUS forest disturbance detection product, a requirement for an eventual, operational forest threat EWS. The 2009 classification product from this study can be used to quantify the areal extent of forest disturbance across CONUS, although a quantitative accuracy assessment still needs to be completed. However, the results would not include disturbances that occurred after July 27, such as the Station Fire. While not shown here, the project also produced maximum NDVI products for the June 10-July 27 period of each year of the 2000-2009 time frame. These products could be applied to compute forest change products on an annual basis. GIS could then be used to assess disturbance persistence. Such follow-on work could lead to attribution of year in which a disturbance occurred. These products (e.g., Figures 6 and 7) may also be useful for assessing forest change associated with climate change, such as carbon losses from bark beetle-induced forest mortality in the Western United States. Other MODIS phenological products are being assessed for aiding forest monitoring needs of the EWS, including cumulative NDVI products (Figure 10).

  12. Monitoring Forest and Rangeland Change in the United States Using Landsat Time Series Data

    NASA Astrophysics Data System (ADS)

    Vogelmann, J.; Tolk, B.; Xian, G. Z.; Homer, C.

    2011-12-01

    The LANDFIRE project produces spatial data layers for fire management applications. As part of the project, 2000 vintage Landsat Thematic Mapper and Enhanced Thematic Mapper plus data sets were used to generate detailed vegetation type data sets for the entire United States. We are currently using several approaches to update this information, including incorporation of (1) Landsat-derived historic fire burn information, (2) forest harvest information from Landsat time series data using the Vegetation Change Tracker, and (3) data sets that capture subtle and gradual intra-state disturbances, such as those related to insects and disease as well as succession. The primary focus of this presentation will be on of the detection and characterization of gradual change occurring in forest and rangeland ecosystems, and how to incorporate this information in the LANDFIRE updating process. Landsat data acquired over the previous 25+ years are being used to assess status and trends of forest and rangeland condition. Current study areas are located in the southwestern US, western Nebraska, western Wyoming, western South Dakota, northeastern US and the central Appalachian Mountains. Trends of changing vegetation index values derived from Landsat time series data stacks are the foundation for the gradual change information being developed. Thus far we have found evidence of gradual systematic change in all areas that we have examined. Many of the conifer forests in the southwestern US are showing declining conditions related to insects and drought, and very few of the examined areas are showing evidence of increased canopy cover or greenness. While sagebrush communities are showing decreases in greenness related to fire, mining, and drought, few of these communities are showing evidence of increased greenness or "improving" conditions. However, there is evidence that some forest communities are expanding and that canopy cover density is increasing at some locations. In Nebraska, increases in canopy cover appear to be mostly related to expansion of eastern red cedar. In the White Mountains of New Hampshire, observed increases in forest canopy appear to be related to understory balsam fir expansion, most likely related to release of forest suppression resulting from the thinning of the upper forest canopy. Continued analyses of time series data using multi-spatial scenes and covering multiple years are required in order to develop accurate impressions and representations of the changing ecosystem patterns and trends that are occurring. The approach demonstrates that Landsat time series data can be used operationally for assessing gradual ecosystem change across large areas. This information complements the information derived from other time-series change detection used for LANDFIRE.

  13. Making Mangroves: Ecologies of Mangrove Restoration in El Salvador, 2011-2013 

    E-print Network

    Wilmot, Fiona Coralie

    2014-05-05

    Mangrove restoration for climate mitigation based in adaptation is a national environmental policy in the Republic of El Salvador. Rural, resource-reliant communities are considered especially vulnerable to extreme weather ...

  14. Using hyperspectral imagery to assist federal forest monitoring and restoration projects in the Southern Rocky Mountains, Colorado

    NASA Astrophysics Data System (ADS)

    Wamser, Kyle

    Hyperspectral imagery and the corresponding ability to conduct analysis below the pixel level have tremendous potential to aid in landcover monitoring. During large ecosystem restoration projects, being able to monitor specific aspects of the recovery over large and often inaccessible areas under constrained finances are major challenges. The Civil Air Patrol's Airborne Real-time Cueing Hyperspectral Enhanced Reconnaissance (ARCHER) can provide hyperspectral data in most parts of the United States at relatively low cost. Although designed specifically for use in locating downed aircraft, the imagery holds the potential to identify specific aspects of landcover at far greater fidelity than traditional multispectral means. The goals of this research were to improve the use of ARCHER hyperspectral imagery to classify sub-canopy and open-area vegetation in coniferous forests located in the Southern Rockies and to determine how much fidelity might be lost from a baseline of 1 meter spatial resolution resampled to 2 and 5 meter pixel size to simulate higher altitude collection. Based on analysis comparing linear spectral unmixing with a traditional supervised classification, the linear spectral unmixing proved to be statistically superior. More importantly, however, linear spectral unmixing provided additional sub-pixel information that was unavailable using other techniques. The second goal of determining fidelity loss based on spatial resolution was more difficult to determine due to how the data are represented. Furthermore, the 2 and 5 meter imagery were obtained by resampling the 1 meter imagery and therefore may not be representative of the quality of actual 2 or 5 meter imagery. Ultimately, the information derived from this research may be useful in better utilizing hyperspectral imagery to conduct forest monitoring and assessment.

  15. Monitoring Forest Carbon Sequestration with Remote Sensing and Carbon Cycle Modeling

    Microsoft Academic Search

    David P. Turner; Michael Guzy; Michael A. Lefsky; William D. Ritts; Steve Van Tuyl; Beverly E. Law

    2004-01-01

    Sources and sinks of carbon associated with forests depend strongly on the management regime and spatial patterns in potential productivity. Satellite remote sensing can provide spatially explicit information on land cover, stand-age class, and harvesting. Carbon-cycle process models coupled to regional climate databases can provide information on potential rates of production and related rates of decomposition. The integration of remote

  16. An evaluation of alternate remote sensing products for forest inventory, monitoring, and

    E-print Network

    Lefsky, Michael

    ), a lidar sensor that di- rectly measures the height and canopy structure of forest vegetation. To evaluate), a sensor with high spectral resolution; and (v) Scanning Lidar Imager Of Canopies By Echo Recovery (SLICER, maximum height, and the density of stems with DBH greater than 100 cm. SLICER performed better than any

  17. Use of Current 2010 Forest Disturbance Monitoring Products for the Conterminous United States in Aiding a National Forest Threat Early Warning System

    Microsoft Academic Search

    J. Spruce; W. W. Hargrove; J. Gasser; J. Smoot; P. Kuper

    2010-01-01

    This presentation discusses contributions of near real time (NRT) MODIS forest disturbance detection products for the conterminous United States to an emerging national forest threat early warning system (EWS). The latter is being developed by the USDA Forest Service's Eastern and Western Environmental Threat Centers with help from NASA Stennis Space Center and the Oak Ridge National Laboratory. Building off

  18. Remote Sensing Approach for Documenting the Conversion of Mangroves to Aquaculture

    NASA Astrophysics Data System (ADS)

    Peneva, E.

    2007-12-01

    The loss of mangrove forests to aquaculture, particularly shrimp farming, in coastal Thailand presents serious environmental and societal problems. Shrimp farming is one of the fastest growing aquaculture sectors in many parts of the world, as well as one of the most controversial. In spite of considerable work put into understanding the impacts of shrimp aquaculture, few studies provide detailed assessment of the issue through time. This research compares three change detection techniques (Object-based; Change Vector Analysis (CVA); and Integrated GIS and Remote Sensing) in order to assess the mangrove conversion caused by aquaculture development in Krabi Province, Thailand between 1989, 2001 and 2007 using Landsat TM data. All three methods provide valuable information though each has its own merits. Preliminary results show 40% loss of mangroves between 1989 and 2007, 25% of which is to aquaculture development, 10% to urban, and 5% to agricultural land. This study will help establish a methodology that will aid coastal communities in Southeast Asia in determining sustainable land use management approaches.

  19. Mangroves in the Gulf of California increase fishery yields.

    PubMed

    Aburto-Oropeza, Octavio; Ezcurra, Exequiel; Danemann, Gustavo; Valdez, Víctor; Murray, Jason; Sala, Enric

    2008-07-29

    Mangroves are disappearing rapidly worldwide despite their well documented biodiversity and the ecosystem services they provide. Failure to link ecological processes and their societal benefits has favored highly destructive aquaculture and tourism developments that threaten mangroves and result in costly "externalities." Specifically, the potentially irreparable damage to fisheries because of mangrove loss has been belittled and is greatly underestimated. Here, we show that, in the Gulf of California, fisheries landings are positively related to the local abundance of mangroves and, in particular, to the productive area in the mangrove-water fringe that is used as nursery and/or feeding grounds by many commercial species. Mangrove-related fish and crab species account for 32% of the small-scale fisheries landings in the region. The annual economic median value of these fisheries is US $37,500 per hectare of mangrove fringe, falling within the higher end of values previously calculated worldwide for all mangrove services together. The ten-year discounted value of one hectare of fringe is >300 times the official cost set by the Mexican government. The destruction of mangroves has a strong economic impact on local fishing communities and on food production in the region. Our valuation of the services provided by mangroves may prove useful in making appropriate decisions for a more efficient and sustainable use of wetlands. PMID:18645185

  20. Mangroves in the Gulf of California increase fishery yields

    PubMed Central

    Aburto-Oropeza, Octavio; Ezcurra, Exequiel; Danemann, Gustavo; Valdez, Víctor; Murray, Jason; Sala, Enric

    2008-01-01

    Mangroves are disappearing rapidly worldwide despite their well documented biodiversity and the ecosystem services they provide. Failure to link ecological processes and their societal benefits has favored highly destructive aquaculture and tourism developments that threaten mangroves and result in costly “externalities.” Specifically, the potentially irreparable damage to fisheries because of mangrove loss has been belittled and is greatly underestimated. Here, we show that, in the Gulf of California, fisheries landings are positively related to the local abundance of mangroves and, in particular, to the productive area in the mangrove–water fringe that is used as nursery and/or feeding grounds by many commercial species. Mangrove-related fish and crab species account for 32% of the small-scale fisheries landings in the region. The annual economic median value of these fisheries is US $37,500 per hectare of mangrove fringe, falling within the higher end of values previously calculated worldwide for all mangrove services together. The ten-year discounted value of one hectare of fringe is >300 times the official cost set by the Mexican government. The destruction of mangroves has a strong economic impact on local fishing communities and on food production in the region. Our valuation of the services provided by mangroves may prove useful in making appropriate decisions for a more efficient and sustainable use of wetlands. PMID:18645185

  1. CO2 Efflux from Cleared Mangrove Peat

    PubMed Central

    Lovelock, Catherine E.; Ruess, Roger W.; Feller, Ilka C.

    2011-01-01

    Background CO2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. Methodology/Principal Findings We measured CO2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO2 efflux. CO2 efflux from soils declines from time of clearing from ?10 600 tonnes km?2 year?1 in the first year to 3000 tonnes km2 year?1 after 20 years since clearing. Disturbing peat leads to short term increases in CO2 efflux (27 umol m?2 s?1), but this had returned to baseline levels within 2 days. Conclusions/Significance Deforesting mangroves that grow on peat soils results in CO2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks. PMID:21738628

  2. Investigating Extreme Lifestyles through Mangrove Transcriptomics

    ERIC Educational Resources Information Center

    Dassanayake, Maheshi

    2009-01-01

    Mangroves represent phylogenetically diverse taxa in tropical coastal terrestrial habitats. They are extremophiles, evolutionarily adapted to tolerate flooding, anoxia, high temperatures, wind, and high and extremely variable salt conditions in typically resource-poor environments. The genetic basis for these adaptations is, however, virtually…

  3. Field Guide to the Mangroves of Queensland

    NSDL National Science Digital Library

    This resource from the Australian Institute of Marine Science is an online field guide to the mangroves of Queensland, Australia. The online guide features several dozen species accounts offering distinguishing characteristics, color photographs, and contextual information (e.g., habitat type, flowering and fruiting phenology).

  4. Extensive tree health monitoring networks are useful in revealing the impacts of widespread biotic damage in boreal forests.

    PubMed

    Nevalainen, Seppo; Lindgren, Martti; Pouttu, Antti; Heinonen, Jaakko; Hongisto, Marke; Neuvonen, Seppo

    2010-09-01

    We surveyed the regional distribution of conifer defoliation in Finland with an extensive monitoring network during 1995-2006 (EU Forest Focus Level I). The average defoliation in the whole Finland was 10.3% in pine and 19.9% in spruce. The sharp changes were often related to abiotic and biotic factors. The mean age of the stand explained more than one half of the between-plot variance in defoliation. In a variance component analysis, the main effect of years was negligible, while most of the random variation was due to plot main effect and plot x year interaction. About one fifth of the defoliation could be attributed to abiotic or biotic damage, and there were strong local correlations, e.g., between the changes in defoliation and degree of pine sawfly (Diprionidae) damage. There were clear temporal and spatial patterns in the incidence of the most important causes [Scots pine: Scleroderris canker (Gremmeniella abietina), pine shoot beetles (Tomicus sp.), and pine sawflies (Diprion pini, Neodiprion sertifer); Norway spruce: rust fungi (primarily Chrysomyxa ledi)]. Our results suggest that extensive monitoring networks can reveal useful information about the widespread outbreaks of pest organisms (insects and fungi) already in their increase phases, giving some time for management decisions. In a changing climate, large-scale, regular monitoring of tree health, including abiotic and biotic causes, is more important than ever before. PMID:19629733

  5. Monitoring the status and trends of tropical forest terrestrial vertebrate communities from camera trap data: a tool for conservation.

    PubMed

    Ahumada, Jorge A; Hurtado, Johanna; Lizcano, Diego

    2013-01-01

    Reducing the loss of biodiversity is key to ensure the future well being of the planet. Indicators to measure the state of biodiversity should come from primary data that are collected using consistent field methods across several sites, longitudinal, and derived using sound statistical methods that correct for observation/detection bias. In this paper we analyze camera trap data collected between 2008 and 2012 at a site in Costa Rica (Volcan Barva transect) as part of an ongoing tropical forest global monitoring network (Tropical Ecology Assessment and Monitoring Network). We estimated occupancy dynamics for 13 species of mammals, using a hierarchical modeling approach. We calculated detection-corrected species richness and the Wildlife Picture Index, a promising new indicator derived from camera trap data that measures changes in biodiversity from the occupancy estimates of individual species. Our results show that 3 out of 13 species showed significant declines in occupancy over 5 years (lowland paca, Central American agouti, nine-banded armadillo). We hypothesize that hunting, competition and/or increased predation for paca and agouti might explain these patterns. Species richness and the Wildlife Picture Index are relatively stable at the site, but small herbivores that are hunted showed a decline in diversity of about 25%. We demonstrate the usefulness of longitudinal camera trap deployments coupled with modern statistical methods and advocate for the use of this approach in monitoring and developing global and national indicators for biodiversity change. PMID:24023898

  6. Monitoring the Status and Trends of Tropical Forest Terrestrial Vertebrate Communities from Camera Trap Data: A Tool for Conservation

    PubMed Central

    Ahumada, Jorge A.; Hurtado, Johanna; Lizcano, Diego

    2013-01-01

    Reducing the loss of biodiversity is key to ensure the future well being of the planet. Indicators to measure the state of biodiversity should come from primary data that are collected using consistent field methods across several sites, longitudinal, and derived using sound statistical methods that correct for observation/detection bias. In this paper we analyze camera trap data collected between 2008 and 2012 at a site in Costa Rica (Volcan Barva transect) as part of an ongoing tropical forest global monitoring network (Tropical Ecology Assessment and Monitoring Network). We estimated occupancy dynamics for 13 species of mammals, using a hierarchical modeling approach. We calculated detection-corrected species richness and the Wildlife Picture Index, a promising new indicator derived from camera trap data that measures changes in biodiversity from the occupancy estimates of individual species. Our results show that 3 out of 13 species showed significant declines in occupancy over 5 years (lowland paca, Central American agouti, nine-banded armadillo). We hypothesize that hunting, competition and/or increased predation for paca and agouti might explain these patterns. Species richness and the Wildlife Picture Index are relatively stable at the site, but small herbivores that are hunted showed a decline in diversity of about 25%. We demonstrate the usefulness of longitudinal camera trap deployments coupled with modern statistical methods and advocate for the use of this approach in monitoring and developing global and national indicators for biodiversity change. PMID:24023898

  7. Organic matter in a subtropical mangrove-estuary subjected to wastewater discharge: Origin and utilisation by two macrozoobenthic species

    NASA Astrophysics Data System (ADS)

    Meziane, Tarik; Tsuchiya, Makoto

    2002-02-01

    Total lipid amounts, fatty acid signature analysis, and C:N measurements were used to investigate the sources of organic matter in an Okinawan estuary (Okukubi, Japan) during the 1999 rainy season. This estuary has a mangrove forest and receives agricultural wastewater. Highest concentrations of total lipids and lowest C:N values were simultaneously found near the pipe where the agricultural water is discharged. Fatty acid profiles in the sediments varied among the stations, indicating differences in the contributing organic sources. Small amounts of lipids and low relative contributions of long-chain fatty acids, markers of vascular plants, were found at stations within and adjacent to the mangrove. These results indicate that the export of organic matter from the mangrove litter to the intertidal flat was limited and spatially restricted. The wastewater seems to induce high amounts of bacteria, macroalgae and benthic diatoms, as indicated by their respective fatty acid markers. The fatty acid profiles of the tissues of two dominant intertidal invertebrates, the crab Uca vocans and the gastropod Terebralia sulcata, indicated that their diet was largely comprised of bacteria. Green macroalgae were important food sources for the gastropods; diatoms and mangrove biomass contributed to the nutrition of the crabs, although their contributions were smaller.

  8. Monitoring boreal forest leaf area index across a Siberian burn chronosequence: a MODIS validation study

    Microsoft Academic Search

    X. Chen; L. Vierling; D. Deering; A. Conley

    2005-01-01

    Landscapes containing differing amounts of ecological disturbance provide an excellent opportunity to validate and better understand the emerging Moderate Resolution Imaging Spectrometer (MODIS) vegetation products. Four sites, including 1?year post?fire coniferous, 13?year post?fire deciduous, 24?year post?fire deciduous, and >100 year old post?fire coniferous forests, were selected to serve as a post?fire chronosequence in the central Siberian region of Krasnoyarsk (57.3°N,

  9. Evaluation of a Participatory Resource Monitoring System for Nontimber Forest Products: the Case of Amla (Phyllanthus spp.) Fruit Harvest by Soligas in South India

    Microsoft Academic Search

    R. Siddappa Setty; Kamal Bawa; Tamara Ticktin; C. Made Gowda

    2008-01-01

    Enhancing incomes from the sustainable harvest of nontimber forest products can help to maintain local livelihoods and provide local communities with economic incentives to conserve biodiversity. A key feature of a successful enterprise approach to the conservation of these products is a sound monitoring and evaluation program that involves all concerned stakeholders and leads to adaptive management. However, few studies

  10. Phylogeny of culturable cyanobacteria from Brazilian mangroves.

    PubMed

    Silva, Caroline Souza Pamplona; Genuário, Diego Bonaldo; Vaz, Marcelo Gomes Marçal Vieira; Fiore, Marli Fátima

    2014-03-01

    The cyanobacterial community from Brazilian mangrove ecosystems was examined using a culture-dependent method. Fifty cyanobacterial strains were isolated from soil, water and periphytic samples collected from Cardoso Island and Bertioga mangroves using specific cyanobacterial culture media. Unicellular, homocytous and heterocytous morphotypes were recovered, representing five orders, seven families and eight genera (Synechococcus, Cyanobium, Cyanobacterium, Chlorogloea, Leptolyngbya, Phormidium, Nostoc and Microchaete). All of these novel mangrove strains had their 16S rRNA gene sequenced and BLAST analysis revealed sequence identities ranging from 92.5 to 99.7% when they were compared with other strains available in GenBank. The results showed a high variability of the 16S rRNA gene sequences among the genotypes that was not associated with the morphologies observed. Phylogenetic analyses showed several branches formed exclusively by some of these novel 16S rRNA gene sequences. BLAST and phylogeny analyses allowed for the identification of Nodosilinea and Oxynema strains, genera already known to exhibit poor morphological diacritic traits. In addition, several Nostoc and Leptolyngbya morphotypes of the mangrove strains may represent new generic entities, as they were distantly affiliated with true genera clades. The presence of non-ribosomal peptide synthetase, polyketide synthase, microcystin and saxitoxin genes were detected in 20.5%, 100%, 37.5% and 33.3%, respectively, of the 44 tested isolates. A total of 134 organic extracts obtained from 44 strains were tested against microorganisms, and 26% of the extracts showed some antimicrobial activity. This is the first polyphasic study of cultured cyanobacteria from Brazilian mangrove ecosystems using morphological, genetic and biological approaches. PMID:24461713

  11. Comparative genetic structure of two mangrove species in Caribbean and Pacific estuaries of Panama

    PubMed Central

    2012-01-01

    Background Mangroves are ecologically important and highly threatened forest communities. Observational and genetic evidence has confirmed the long distance dispersal capacity of water-dispersed mangrove seeds, but less is known about the relative importance of pollen vs. seed gene flow in connecting populations. We analyzed 980 Avicennia germinans for 11 microsatellite loci and 940 Rhizophora mangle for six microsatellite loci and subsampled two non-coding cpDNA regions in order to understand population structure, and gene flow within and among four major estuaries on the Caribbean and Pacific coasts of Panama. Results Both species showed similar rates of outcrossing (t= 0.7 in A. germinans and 0.8 in R. mangle) and strong patterns of spatial genetic structure within estuaries, although A. germinans had greater genetic structure in nuclear and cpDNA markers (7 demes > 4 demes and Sp= 0.02 > 0.002), and much greater cpDNA diversity (Hd= 0.8 > 0.2) than R. mangle. The Central American Isthmus serves as an exceptionally strong barrier to gene flow, with high levels nuclear (FST= 0.3-0.5) and plastid (FST= 0.5-0.8) genetic differentiation observed within each species between coasts and no shared cpDNA haplotypes between species on each coast. Finally, evidence of low ratios of pollen to seed dispersal (r = ?0.6 in A. germinans and 7.7 in R. mangle), coupled with the strong observed structure in nuclear and plastid DNA among most estuaries, suggests low levels of gene flow in these mangrove species. Conclusions We conclude that gene dispersal in mangroves is usually limited within estuaries and that coastal geomorphology and rare long distance dispersal events could also influence levels of structure. PMID:23078287

  12. Effects of season, rainfall, and hydrogeomorphic setting on mangrove tree growth in Micronesia

    USGS Publications Warehouse

    Krauss, K.W.; Keeland, B.D.; Allen, J.A.; Ewel, K.C.; Johnson, Daniel J.

    2007-01-01

    Seasonal patterns of tree growth are often related to rainfall, temperature, and relative moisture regimes. We asked whether diameter growth of mangrove trees in Micronesia, where seasonal changes are minimal, is continuous throughout a year or conforms to an annual cycle. We installed dendrometer bands on Sonneratia alba and Bruguiera gymnorrhiza trees growing naturally within mangrove swamps on the islands of Kosrae, Federated States of Micronesia (FSM), Pohnpei, FSM, and Butaritari, Republic of Kiribati, in the eastern Caroline Islands of the western Pacific Ocean. Trees were remeasured monthly or quarterly for as long as 6 yr. Annual mean individual tree basal area increments ranged from 7.0 to 79.6 cm2/yr for all S. alba trees and from 4.8 to 27.4 cm2/yr for all B. gymnorrhiza trees from Micronesian high islands. Diameter increment for S. alba on Butaritari Atoll was lower at 7.8 cm 2/yr for the one year measured. Growth rates differed significantly by hydrogeomorphic zone. Riverine and interior zones maintained up to seven times the annual diameter growth rate of fringe forests, though not on Pohnpei, where basal area increments for both S. alba and B. gymnorrhiza were approximately 1.5 times greater in the fringe zone than in the interior zone. Time-series modeling indicated that there were no consistent and statistically significant annual diameter growth patterns. Although rainfall has some seasonality in some years on Kosrae and Pohnpei and overall growth of mangroves was sometimes related positively to quarterly rainfall depths, seasonal diameter growth patterns were not distinctive. A reduced chance of moisture-related stress in high-rainfall, wetland environments may serve to buffer growth of Micronesian mangroves from climatic extremes. ?? 2007 The Author(s) Journal compilation ?? 2007 by The Association for Tropical Biology and Conservation.

  13. Improved instrumentation for monitoring the diurnal and seasonal cycles in the dielectric properties of forest canopies

    NASA Technical Reports Server (NTRS)

    Guerra, Abel G.; Mcdonald, Kyle C.; Way, Jobea

    1992-01-01

    The design and implementation of a dielectric measurement system that facilitates the automated and continuous in situ monitoring of the dielectric properties of several canopy constituents is presented. This system utilizes the same coaxial line reflection coefficient measurement technique as the portable dielectric probe (PDP) while incorporating several features that facilitate the automated monitoring of canopy dielectric properties. The new system is capable of continuously monitoring the dielectric properties of the canopy constituents in a near-simultaneous fashion. The implementation of a data logger as a user interface has increased the number of measurements that the instrument is able to store in memory while significantly improving system reliability.

  14. Total petroleum hydrocarbons in sediments from the coastline and mangroves of the northern Persian Gulf.

    PubMed

    Mohebbi-Nozar, Seyedeh Laili; Zakaria, Mohamad Pauzi; Ismail, Wan Ruslan; Mortazawi, Mohammad Seddiq; Salimizadeh, Maryam; Momeni, Mohammad; Akbarzadeh, Gholamali

    2015-06-15

    To provide baseline information for the marine ecosystem of Hormozgan province, the distribution of petroleum hydrocarbons was evaluated in 52 stations involved in the mangrove and coastline ecosystem. Coastline sampling sites included areas facing harbor, river, domestic and industrial discharge. Sediment samples were analyzed based on ultraviolet fluorescence spectroscopy. Petroleum hydrocarbons showed narrow variations ranging from non-detectable (ND) to 1.71 and from 0.2 to 0.63?g/g dry weight for coastline and mangrove sediments, respectively. The detected concentrations for total petroleum hydrocarbons were lower than guideline values for ecological risk. Furthermore, the minimum environmental risk was confirmed by background levels for the Persian Gulf, the Sea of Oman, and detected values for reference areas. The results were regarded as background data in the studied area, and, considering the rapid expansion of activities related to the petroleum industry in Hormozgan province, the continuous monitoring of pollutants is recommended. PMID:25843439

  15. Difference in the crab fauna of mangrove areas at a southwest Florida and a northeast Australia location: Implications for leaf litter processing

    USGS Publications Warehouse

    McIvor, C.C.; Smith, T. J., III

    1995-01-01

    Existing paradigms suggest that mangrove leaf litter is processed primarily via the detrital pathway in forests in the Caribbean biogeographic realm whereas herbivorous crabs are relatively more important litter processors in the Indo-West Pacific. To test this hypothesis, we used pitfall traps to collect intertidal crabs to characterize the crab fauna in a mangrove estuary in southwest Florida. We also tethered mangrove leaves to determine if herbivorous crabs are major leaf consumers there. We compared the results with previously published data collected in an analogous manner from forests in northeastern Australia. The crab fauna in Rookery Bay, Florida, is dominated by carnivorous xanthid and deposit-feeding ocypodid crabs whereas that of the Murray River in northeastern Australia is dominated by herbivorous grapsid crabs. No leaves tethered at five sites in the forests in Southwest Florida were taken by crabs. This contrasts greatly with reported values of leaf removal by crabs in Australian forests of 28-79% of the leaves reaching the forest floor. These differences in the faunal assemblages and in the fate of marked or tethered leaves provide preliminary support for the hypothesis that leaf litter is in fact processed in fundamentally different ways in the two biogeographic realms.

  16. ROLE OF CLIMATE IN FOREST MONITORING AND ASSESSMENT: A NEW ENGLAND EXAMPLE

    EPA Science Inventory

    The development of climatological information products to support ecological data collection and analysis is described. he scope of research is narrowed to issues of direct interest to the joint U.S. Environmental Protection Agency Environmental Monitoring and Assessment Program ...

  17. The Monitoring of Host Computer for Forest Fire Detection System Based on Wireless Sensor Network

    Microsoft Academic Search

    Wenbin Li; Junguo Zhang; Junmei Zhang; Zhifeng Xia; Guozhu Wang

    2009-01-01

    Wireless Sensor network(WSN), which was made by the convergence of sensor, micro-electro-mechanism system and networks technologies, was a novel technology about acquiring and processing information. Wireless sensor network (WSN) had a great application value and wide application prospect in the fields of military, agriculture, environmental monitoring, medical health, industry, intelligent transportation, building monitoring, space exploration and so on. This paper

  18. Mangrove shoreline responses to Holocene environmental change, Makassar Strait, Indonesia

    Microsoft Academic Search

    Eko Yulianto; W. S Sukapti; A. T Rahardjo; Dardji Noeradi; D. A Siregar; P Suparan; K Hirakawa

    2004-01-01

    Pollen and radiocarbon analyses have been used to study environmental and mangrove dynamics at two near-coastal sites at Batulicin, South Kalimantan and Pare-Pare, South Sulawesi, Indonesia. These two sites are separated by the Makassar Strait. The results indicate that mangroves developed at Batulicin in the mid-Holocene following sea-level stabilization. Although mangroves might have degraded to some extent due to a

  19. Salvage logging effect on soil properties in a fire-affected Mediterranean forest: a two years monitoring research

    NASA Astrophysics Data System (ADS)

    Mataix-Solera, Jorge; Moltó, Jorge; Arcenegui, Vicky; García-Orenes, Fuensanta; Chrenkovà, Katerina; Torres, Pilar; Jara-Navarro, Ana B.; Díaz, Gisela; Izquierdo, Ezequiel

    2015-04-01

    In the Mediterranean countries, forest fires are common and must be considered as an ecological factor, but changes in land use, especially in the last five decades have provoked a modification in their natural regime. Moreover, post-fire management can have an additional impact on the ecosystem; in some cases, even more severe than the fire. Salvage logging is a traditional management in most fire-affected areas. In some cases, the way of doing it, using heavy machinery, and the vulnerability of soils to erosion and degradation make this management potentially very agresive to soil, and therefore to the ecosystem. Very little research has been done to study how this treatment could affect soil health. In this research we show 2 years of monitoring of some soil properties in an area affected by a forest fire, where some months later this treatment was applied. The study area is located in 'Sierra de Mariola Natural Park' in Alcoi, Alicante (E Spain). A big forest fire (>500 has) occurred in July 2012. The forest is composed mainly of Pinus halepensis trees with an understory of typical Mediterranean shrubs species such as Quercus coccifera, Rosmarinus officinalis, Thymus vulgaris, Brachypodium retusum, etc. Soil is classified as a Typic Xerorthent (Soil Survey Staff, 2014) developed over marls. In February 2013, salvage logging (SL) treatment consisting in a complete extraction of the burned wood using heavy machinery was applied in a part of the affected forest. Plots for monitoring this effect were installed in this area and in a similar nearby area where no treatment was done, and then used as control (C) for comparison. Soil samplings were done immediately after treatment and every 6 months. Some soil properties were analysed, including soil organic matter (SOM) content, basal soil respiration (BSR), microbial biomass carbon (MBC), bulk density (BD), soil water repellency (SWR), aggregate stability (AS), field capacity, nitrogen, etc. After two years of research, results showed significant soil degradation as a consequence of the salvage logging treatment. Most of the soil parameters studied showed differences between control and salvage logging treatments, SOM content in first 2.5 cm of topsoil being less than half in SL plots in comparison with C plots. BSR, MBC and AS were also statistically significant lower in SL plots. BD increased as a consequence of SL treatment. In conclusion, we can affirm that with this type of soil, which is very vulnerable to soil degradation, this treatment has a very negative effect on the ecosystem; this was also reflected in the abundance and diversity of plant species. Acknowledgements: to the 'Ministerio de Economía and Competitividad' of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R), Spanish Soil Science Society, FUEGORED, Alcoi council, ACIF Alcoi, and Sierra de Mariola Natural Park for their support.

  20. A Statistical Methodology for Detecting and Monitoring Change in Forest Ecosystems Using Remotely Sensed Imagery

    NASA Astrophysics Data System (ADS)

    Mills, R. T.; Kumar, J.; Hoffman, F. M.; Hargrove, W. W.; Spruce, J.

    2011-12-01

    Variations in vegetation phenology, the annual temporal pattern of leaf growth and senescence, can be a strong indicator of ecological change or disturbance. However, phenology is also strongly influenced by seasonal, interannual, and long-term trends in climate, making identification of changes in forest ecosystems a challenge. Forest ecosystems are vulnerable to extreme weather events, insect and disease attacks, wildfire, harvesting, and other land use change. Normalized difference vegetation index (NDVI), a remotely sensed measure of greenness, provides a proxy for phenology. NDVI for the conterminous United States (CONUS) derived from the Moderate Resolution Spectroradiometer (MODIS) at 250 m resolution was used in this study to develop phenological signatures of ecological regimes called phenoregions. By applying a quantitative data mining technique to the NDVI measurements for every eight days over the entire MODIS record, annual maps of phenoregions were developed. This geospatiotemporal cluster analysis technique employs high performance computing resources, enabling analysis of such very large data sets. This technique produces a prescribed number of prototypical phenological states to which every location belongs in any year. Analysis of the shifts among phenological states yields information about responses to interannual climate variability and, more importantly, changes in ecosystem health due to disturbances. Moreover, a large change in the phenological states occupied by a single location over time indicates a significant disturbance or ecological shift. This methodology has been applied for identification of various forest disturbance events, including wildfire, tree mortality due to Mountain Pine Beetle, and other insect infestation and diseases, as well as extreme events like storms and hurricanes in the U.S. Presented will be results from analysis of phenological state dynamics, along with disturbance and validation data.

  1. Monitoring of environmental contamination by Echinococcus multilocularis in an urban fringe forest park in Hokkaido, Japan

    Microsoft Academic Search

    Jose Trinipil G. Lagapa; Yuzaburo Oku; Masami Kaneko; Sumiya Ganzorig; Takashi Ono; Nariaki Nonaka; Fumio Kobayashi; Masao Kamiya

    2009-01-01

    Objectives  The aim of this study was to determine the prevalence of Echinococcus multilocularis environmental contamination in an urban fringe—the Nopporo forest park of Sapporo city, Hokkaido, Japan. A secondary aim\\u000a was to determine possible transmission risks areas by associating percentage occurrence of E. multilocularis-positive faeces with the different land-use classes.\\u000a \\u000a \\u000a \\u000a Methods  Wild fox faeces collected from the environment were examined by

  2. A database for the monitoring of thermal anomalies over the Amazon forest and adjacent intertropical oceans.

    PubMed

    Jiménez-Muñoz, Juan C; Mattar, Cristian; Sobrino, José A; Malhi, Yadvinder

    2015-01-01

    Advances in information technologies and accessibility to climate and satellite data in recent years have favored the development of web-based tools with user-friendly interfaces in order to facilitate the dissemination of geo/biophysical products. These products are useful for the analysis of the impact of global warming over different biomes. In particular, the study of the Amazon forest responses to drought have recently received attention by the scientific community due to the occurrence of two extreme droughts and sustained warming over the last decade. Thermal Amazoni@ is a web-based platform for the visualization and download of surface thermal anomalies products over the Amazon forest and adjacent intertropical oceans using Google Earth as a baseline graphical interface (http://ipl.uv.es/thamazon/web). This platform is currently operational at the servers of the University of Valencia (Spain), and it includes both satellite (MODIS) and climatic (ERA-Interim) datasets. Thermal Amazoni@ is composed of the viewer system and the web and ftp sites with ancillary information and access to product download. PMID:26029379

  3. Trends in deforestation and forest degradation after a decade of monitoring in the Monarch Butterfly Biosphere Reserve in Mexico.

    PubMed

    Vidal, Omar; López-García, José; Rendón-Salinas, Eduardo

    2014-02-01

    We used aerial photographs, satellite images, and field surveys to monitor forest cover in the core zones of the Monarch Butterfly Biosphere Reserve in Mexico from 2001 to 2012. We used our data to assess the effectiveness of conservation actions that involved local, state, and federal authorities and community members (e.g., local landowners and private and civil organizations) in one of the world's most iconic protected areas. From 2001 through 2012, 1254 ha were deforested (i.e., cleared areas had <10% canopy cover), 925 ha were degraded (i.e., areas for which canopy forest decreased), and 122 ha were affected by climatic conditions. Of the total 2179 ha of affected area, 2057 ha were affected by illegal logging: 1503 ha by large-scale logging and 554 ha by small-scale logging. Mexican authorities effectively enforced efforts to protect the monarch reserve, particularly from 2007 to 2012. Those efforts, together with the decade-long financial support from Mexican and international philanthropists and businesses to create local alternative-income generation and employment, resulted in the decrease of large-scale illegal logging from 731 ha affected in 2005-2007 to none affected in 2012, although small-scale logging is of growing concern. However, dire regional social and economic problems remain, and they must be addressed to ensure the reserve's long-term conservation. The monarch butterfly (Danaus plexippus) overwintering colonies in Mexico-which engage in one of the longest known insect migrations-are threatened by deforestation, and a multistakeholder, regional, sustainable-development strategy is needed to protect the reserve. PMID:24001209

  4. Trends in Deforestation and Forest Degradation after a Decade of Monitoring in the Monarch Butterfly Biosphere Reserve in Mexico

    PubMed Central

    VIDAL, OMAR; LÓPEZ-GARCÍA, JOSÉ; RENDÓN-SALINAS, EDUARDO

    2014-01-01

    We used aerial photographs, satellite images, and field surveys to monitor forest cover in the core zones of the Monarch Butterfly Biosphere Reserve in Mexico from 2001 to 2012. We used our data to assess the effectiveness of conservation actions that involved local, state, and federal authorities and community members (e.g., local landowners and private and civil organizations) in one of the world’s most iconic protected areas. From 2001 through 2012, 1254 ha were deforested (i.e., cleared areas had <10% canopy cover), 925 ha were degraded (i.e., areas for which canopy forest decreased), and 122 ha were affected by climatic conditions. Of the total 2179 ha of affected area, 2057 ha were affected by illegal logging: 1503 ha by large-scale logging and 554 ha by small-scale logging. Mexican authorities effectively enforced efforts to protect the monarch reserve, particularly from 2007 to 2012. Those efforts, together with the decade-long financial support from Mexican and international philanthropists and businesses to create local alternative-income generation and employment, resulted in the decrease of large-scale illegal logging from 731 ha affected in 2005–2007 to none affected in 2012, although small-scale logging is of growing concern. However, dire regional social and economic problems remain, and they must be addressed to ensure the reserve’s long-term conservation. The monarch butterfly (Danaus plexippus) overwintering colonies in Mexico—which engage in one of the longest known insect migrations—are threatened by deforestation, and a multistakeholder, regional, sustainable-development strategy is needed to protect the reserve. PMID:24001209

  5. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems

    USGS Publications Warehouse

    McKee, K.L.

    2011-01-01

    Habitat stability of coastal ecosystems, such as marshes and mangroves, depends on maintenance of soil elevations relative to sea level. Many such systems are characterized by limited mineral sedimentation and/or rapid subsidence and are consequently dependent upon accumulation of organic matter to maintain elevations. However, little field information exists regarding the contribution of specific biological processes to vertical accretion and elevation change. This study used biogenic mangrove systems in carbonate settings in Belize (BZ) and southwest Florida (FL) to examine biophysical controls on elevation change. Rates of elevation change, vertical accretion, benthic mat formation, and belowground root accumulation were measured in fringe, basin, scrub, and dwarf forest types plus a restored forest. Elevation change rates (mm yr-1) measured with Surface Elevation Tables varied widely: BZ-Dwarf (-3.7), BZ-Scrub (-1.1), FL-Fringe (0.6), FL-Basin (2.1), BZ-Fringe (4.1), and FL-Restored (9.9). Root mass accumulation varied across sites (82-739 g m-2 yr-1) and was positively correlated with elevation change. Root volumetric contribution to vertical change (mm yr-1) was lowest in BZ-Dwarf (1.2) and FL-Fringe (2.4), intermediate in FL-Basin (4.1) and BZ-Scrub (4.3), and highest in BZ-Fringe (8.8) and FL-Restored (11.8) sites. Surface growth of turf-forming algae, microbial mats, or accumulation of leaf litter and detritus also made significant contributions to vertical accretion. Turf algal mats in fringe and scrub forests accreted faster (2.7 mm yr-1) than leaf litter mats in basin forests (1.9 mm yr-1), but similarly to microbial mats in dwarf forests (2.1 mm yr-1). Surface accretion of mineral material accounted for only 0.2-3.3% of total vertical change. Those sites with high root contributions and/or rapid growth of living mats exhibited an elevation surplus (+2 to +8 mm yr-1), whereas those with low root inputs and low (or non-living) mat accumulation showed an elevation deficit (-1 to -5.7 mm yr-1). This study indicates that biotic processes of root production and benthic mat formation are important controls on accretion and elevation change in mangrove ecosystems common to the Caribbean Region. Quantification of specific biological controls on elevation provides better insight into how sustainability of such systems might be influenced by global (e.g., climate, atmospheric CO2) and local (e.g., nutrients, disturbance) factors affecting organic matter accumulation, in addition to relative sea-level rise. ?? 2010.

  6. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems

    NASA Astrophysics Data System (ADS)

    McKee, Karen L.

    2011-03-01

    Habitat stability of coastal ecosystems, such as marshes and mangroves, depends on maintenance of soil elevations relative to sea level. Many such systems are characterized by limited mineral sedimentation and/or rapid subsidence and are consequently dependent upon accumulation of organic matter to maintain elevations. However, little field information exists regarding the contribution of specific biological processes to vertical accretion and elevation change. This study used biogenic mangrove systems in carbonate settings in Belize (BZ) and southwest Florida (FL) to examine biophysical controls on elevation change. Rates of elevation change, vertical accretion, benthic mat formation, and belowground root accumulation were measured in fringe, basin, scrub, and dwarf forest types plus a restored forest. Elevation change rates (mm yr -1) measured with Surface Elevation Tables varied widely: BZ-Dwarf (-3.7), BZ-Scrub (-1.1), FL-Fringe (0.6), FL-Basin (2.1), BZ-Fringe (4.1), and FL-Restored (9.9). Root mass accumulation varied across sites (82-739 g m -2 yr -1) and was positively correlated with elevation change. Root volumetric contribution to vertical change (mm yr -1) was lowest in BZ-Dwarf (1.2) and FL-Fringe (2.4), intermediate in FL-Basin (4.1) and BZ-Scrub (4.3), and highest in BZ-Fringe (8.8) and FL-Restored (11.8) sites. Surface growth of turf-forming algae, microbial mats, or accumulation of leaf litter and detritus also made significant contributions to vertical accretion. Turf algal mats in fringe and scrub forests accreted faster (2.7 mm yr -1) than leaf litter mats in basin forests (1.9 mm yr -1), but similarly to microbial mats in dwarf forests (2.1 mm yr -1). Surface accretion of mineral material accounted for only 0.2-3.3% of total vertical change. Those sites with high root contributions and/or rapid growth of living mats exhibited an elevation surplus (+2 to +8 mm yr -1), whereas those with low root inputs and low (or non-living) mat accumulation showed an elevation deficit (-1 to -5.7 mm yr -1). This study indicates that biotic processes of root production and benthic mat formation are important controls on accretion and elevation change in mangrove ecosystems common to the Caribbean Region. Quantification of specific biological controls on elevation provides better insight into how sustainability of such systems might be influenced by global (e.g., climate, atmospheric CO 2) and local (e.g., nutrients, disturbance) factors affecting organic matter accumulation, in addition to relative sea-level rise.

  7. Use of isotopic and hydrometric monitoring methods to partition hydrologic contributions to forested wetlands in the Upper Peninsula of Michigan

    NASA Astrophysics Data System (ADS)

    Van Grinsven, M. J.; Pypker, T. G.; Kolka, R. K.

    2012-12-01

    As a result of their landscape position and physical soil properties, northern forested wetlands are capable of retaining springtime snowmelt, rain and near surface groundwater inputs into the growing season. Hydrological conditions such as source water chemistry, duration of inundation, and magnitude of water table fluctuations are affected by the relative contribution of snow, rain, and groundwater sources, and in turn these hydrological conditions strongly influence the structure and function of northern forested wetlands. Black ash (Fraxinus nigra) is a facultative wet tree species, and is known to occur in 23 U.S. states and 7 Canadian provinces in northeastern North America. Black ash trees have ecological, economic, and cultural significance, and are currently threatened by the rapid expansion of the exotic emerald ash borer (Burprestidae: Agrilus planipennis). Since its initial detection in 2002 near Detroit, MI, the emerald ash borer has killed millions of ash trees in 15 U.S. states and 2 Canadian provinces. There is very little known about black ash wetland hydrology and ecology, and as a result of the looming infestation, there is a critical need to gain a better understanding of the hydrology in undisturbed ecosystems. The main objective of this study is to partition source water contributions in black ash wetlands in the western Upper Peninsula of Michigan. We hypothesize that snowmelt and near surface groundwater supply the majority of water to these wetlands annually, and summer rain is readily removed from the system through the evapotranspiration pathway. Hydrometric monitoring methods were used in conjunction with isotopic analysis using a linear mixing model to characterize source water contributions in nine black ash wetlands. The results suggest a connection with near surface groundwater during spring and early summer, and a short residence time for rain water following summer storm events. The outcome of this research aims to inform land managers in northeastern North America about the natural hydrologic condition of black ash wetlands, and provide baseline data that underscores potential water and forest resource impacts of current and future emerald ash borer infestations.

  8. Managing mangroves with benthic biodiversity in mind: Moving beyond roving banditry

    Microsoft Academic Search

    Aaron M. Ellison

    2008-01-01

    This review addresses mangrove management activities in the broader context of the diversity of the mangrove benthos. Goals for mangrove ecosystem management include silviculture, aquaculture, or ‘ecosystem services’ such as coastal protection. Silvicultural management of mangroves generally neglects the benthos, although benthic invertebrates may affect tree establishment and growth, and community composition of benthic invertebrates may be a reliable indicator

  9. Monitoring, indicators and community based forest management in the tropics: pretexts or red herrings?

    Microsoft Academic Search

    Claude A. Garcia; Guillaume Lescuyer

    2008-01-01

    Over the last 20 years, transfer of the management of natural resources to local populations has been a major trend in the\\u000a tropics. Many of these initiatives today incorporate the development of monitoring systems based on Criteria and Indicators\\u000a (C&I), used to gauge environmental, socio-economic, and institutional consequences over a long period of time. The design\\u000a of C&I at a local

  10. Middle Holocene mangroves in Hawke's Bay, New Zealand

    Microsoft Academic Search

    D. C. Mildenhall

    2001-01-01

    Pollen of the endemic mangrove Avicennia marina var. resinifera have been found in middle Holocene sediments in Te Paeroa Lagoon, Wairoa, northern Hawke's Bay, on the east coast of New Zealand. The locality is approximately 140 km south of the southernmost modern occurrence of mangrove on the east coast of New Zealand in Opotiki Harbour, in the Bay of Plenty,

  11. ATOLL RESEARCH BULLETIN DIVERSITY OF SPONGE FAUNA IN MANGROVE PONDS,

    E-print Network

    Ronquist, Fredrik

    ATOLL RESEARCH BULLETIN NO. 476 DIVERSITY OF SPONGE FAUNA IN MANGROVE PONDS, PELICAN CAYS, BELIZE ... ..:, , ,.. . ., . . ::::;.......... ...... . \\ Fisherman's Cay ...:. Q$ ,. ...... E ; :.. '.\\Cat Cay ., ....- Figure 1. Map of Belize (a) with enlarged;DIVERSITY OF SPONGE FAUNA IN MANGROVE PONDS, PELICAN CAYS, BELIZE KLAUS RUTZLER,' MARIA CRISTINA DIAZ; ROB W

  12. Genetic population structure of mangrove jack, Lutjanus argentimaculatus (Forsskål)

    Microsoft Academic Search

    Jennifer R. OvendenA; Raewyn StreetA

    Translocations of mangrove jack, Lutjanus argentimaculatus (Forsskål 1775), to increase angling oppor- tunities in artificial impoundments are foreshadowed in Queensland. To evaluate genetic population structure before translocations occur, mangrove jack were collected from three sites on the Queensland coast and from one site on the north-western coast of Western Australia. Allelic variation at four dinucleotide microsatellite loci was high: gene

  13. Long-term ¹³?Cs activity monitoring of mushrooms in forest ecosystems of the Czech Republic.

    PubMed

    Škrkal, J; Rulík, P; Fantínová, K; Burianová, J; Helebrant, J

    2013-12-01

    This paper reports on results of activity mass concentration analyses performed in various forest mushrooms in the Czech Republic within 1986 and 2011. The estimated effective half-life of (137)Cs and its environmental half-life (i.e. the effective half-life minus the effect of physical decay) were found to be 5.6 ± 0.6 and 6.9 ± 0.7 y, respectively. Non-homogeneity in (137)Cs surface contamination over the country's territory and fungus species-based (137)Cs accumulation capacity then account for a span of up to 4 orders of magnitude in activity mass concentrations measured each year after the Chernobyl accident. The highest geometric activity mass concentration (Bq kg(-1) of dry weight) means of (137)Cs (obtained from samples between years 2004 and 2011) were measured in Suillaceae (1050 Bq kg(-1)) and Boletus badius (930 Bq kg(-1)), the lowest in Agaricus (1 Bq kg(-1)). The geometric mean of all mushrooms amounted to 230 Bq kg(-1), being 440 Bq kg(-1) in Boletales, 150 Bq kg(-1) in Russulales and 21 Bq kg(-1) in Agaricales. Geometric standard deviation levels were generally high. The highest Cs accumulation capacity was observed in Boletales (namely in Suillaceae), while the lowest in Agaricales, being over 3 orders of magnitude lower than in Suillaceae. PMID:23838098

  14. In Situ Evolution over an 8 Years' Period of Polycyclic Aromatic Hydrocarbons in Mangrove Soil. Qualitative and Quantitative Analysis by High Resolution GC\\/MS

    Microsoft Academic Search

    D. Munoz; P. Doumenq; M. C. Elhy; M. Guiliano; F. Jacquot; P. Scherrer; G. Mille

    1996-01-01

    A plot of mangrove soil in Guadeloupe (FRANCE) was polluted with BAL crude oil in order to investigate the PAH weathering. After an eight years' period, high resolution GC-MS analysis demonstrates that two and three ring aromatic compounds are significantly altered in a medium reducing biotope and can be used as weathering indicators for monitoring the degradation degree of petroleum.

  15. Long-Term Monitoring of Soil Microbiological Activities in Two Forest Sites in South Tyrol in the Italian Alps

    PubMed Central

    Margesin, Rosa; Minerbi, Stefano; Schinner, Franz

    2014-01-01

    We monitored microbiological properties in two forest sites over a period of 17 years (1993–2010) within the International Cooperative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems (ICP IM). The two study sites were located in South Tyrol in the Italian Alps at altitudes of 1,737 m a.s.l. (subalpine site IT01) and 570 m a.s.l. (submontane site IT02). Soil samples were collected in the late spring and autumn of 1993, 2000, and 2010, and were characterized by measuring respiration, key enzyme activities involved in the C, N, P, and S cycles and litter degradation, and the abundance of viable bacterial and fungal populations. Over the study period, an increase in mean annual air temperatures at both sites (+0.6°C and +0.8°C at IT01 and IT02, respectively) was calculated from trendlines. Significantly lower mean annual air temperatures, higher temperature fluctuations, and higher annual precipitation rates were observed at site IT01 than at site IT02. Subalpine site IT01 was characterized by significantly lower microbial activity (respiration, enzymes) and abundance than those at submontane site IT02. The year of sampling had a significant effect on all the parameters investigated, except for nitrification. Fungal abundance decreased consistently over the study period, while no consistent trend was noted among the other parameters investigated. Season only affected a few of the measured microbiological parameters: respiration and bacterial numbers were significantly higher in the spring than in the autumn, while the opposite was noted for xylanase and phosphatase activities. Soil fungi contributed essentially to xylanase and protease activities, while soil bacteria were mainly involved in degradation processes that required the activity of sulfatase. PMID:25008018

  16. Lidar Estimation of Aboveground Biomass in a Tropical Coastal Forest of Gabon

    NASA Astrophysics Data System (ADS)

    Meyer, V.; Saatchi, S. S.; Poulsen, J.; Clark, C.; Lewis, S.; White, L.

    2012-12-01

    Estimation of tropical forest carbon stocks is a critical yet challenging problem from both ground surveys and remote sensing measurements. However, with its increasing importance in global climate mitigation and carbon cycle assessment, there is a need to develop new techniques to measure forest carbon stocks at landscape scales. Progresses have been made in terms of above ground biomass (AGB) monitoring techniques using ground measurements, with the development of tree allometry techniques. Besides, studies have shown that new remote sensing technologies such as Lidar can give accurate information on tree height and forest structure at a landscape level and can be very useful to estimate AGB. This study examines the ability of small footprint Lidar to estimate above ground biomass in Mondah forest, Gabon. Mondah forest is a coastal tropical forest that is partially flooded and includes areas of mangrove. Its mean annual temperature is 18.8C and mean annual precipitation is 2631mm/yr. Its proximity to the capital of Gabon, Libreville, makes it particularly subject to environmental pressure. The analysis is based on small footprint Lidar waveform information and relative height (RH) metrics that correspond to the percentiles of energy of the signal (25%, 50%, 75% and 100%). AGB estimation is calibrated with ground measurements. Ground-estimated AGB is calculated using allometric equations based on tree diameter, wood density and tree height. Lidar-derived AGB is calculated using a linear regression model between the four Lidar RH metrics and ground-estimated AGB and using available models developed in other tropical regions that use one height metric, average wood density, and tree stocking number. We present uncertainty of different approaches and discuss the universality of lidar biomass estimation models in tropical forests.

  17. Monitoring forest areas from continental to territorial levels using a sample of medium spatial resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Eva, Hugh; Carboni, Silvia; Achard, Frédéric; Stach, Nicolas; Durieux, Laurent; Faure, Jean-François; Mollicone, Danilo

    A global systematic sampling scheme has been developed by the UN FAO and the EC TREES project to estimate rates of deforestation at global or continental levels at intervals of 5 to 10 years. This global scheme can be intensified to produce results at the national level. In this paper, using surrogate observations, we compare the deforestation estimates derived from these two levels of sampling intensities (one, the global, for the Brazilian Amazon the other, national, for French Guiana) to estimates derived from the official inventories. We also report the precisions that are achieved due to sampling errors and, in the case of French Guiana, compare such precision with the official inventory precision. We extract nine sample data sets from the official wall-to-wall deforestation map derived from satellite interpretations produced for the Brazilian Amazon for the year 2002 to 2003. This global sampling scheme estimate gives 2.81 million ha of deforestation (mean from nine simulated replicates) with a standard error of 0.10 million ha. This compares with the full population estimate from the wall-to-wall interpretations of 2.73 million ha deforested, which is within one standard error of our sampling test estimate. The relative difference between the mean estimate from sampling approach and the full population estimate is 3.1%, and the standard error represents 4.0% of the full population estimate. This global sampling is then intensified to a territorial level with a case study over French Guiana to estimate deforestation between the years 1990 and 2006. For the historical reference period, 1990, Landsat-5 Thematic Mapper data were used. A coverage of SPOT-HRV imagery at 20 m × 20 m resolution acquired at the Cayenne receiving station in French Guiana was used for year 2006. Our estimates from the intensified global sampling scheme over French Guiana are compared with those produced by the national authority to report on deforestation rates under the Kyoto protocol rules for its overseas department. The latter estimates come from a sample of nearly 17,000 plots analyzed from same spatial imagery acquired between year 1990 and year 2006. This sampling scheme is derived from the traditional forest inventory methods carried out by IFN (Inventaire Forestier National). Our intensified global sampling scheme leads to an estimate of 96,650 ha deforested between 1990 and 2006, which is within the 95% confidence interval of the IFN sampling scheme, which gives an estimate of 91,722 ha, representing a relative difference from the IFN of 5.4%. These results demonstrate that the intensification of the global sampling scheme can provide forest area change estimates close to those achieved by official forest inventories (<6%), with precisions of between 4% and 7%, although we only estimate errors from sampling, not from the use of surrogate data. Such methods could be used by developing countries to demonstrate that they are fulfilling requirements for reducing emissions from deforestation in the framework of an REDD (Reducing Emissions from Deforestation in Developing Countries) mechanism under discussion within the United Nations Framework Convention on Climate Change (UNFCCC). Monitoring systems at national levels in tropical countries can also benefit from pan-tropical and regional observations, to ensure consistency between different national monitoring systems.

  18. Relationship between Floristic and Phenologic Similarity in Temperate Forests: Implications for the Synoptic Assessment and Monitoring of Biodiversity

    NASA Astrophysics Data System (ADS)

    Vina, A.; Xu, W.; Tuanmu, M.; Li, Y.; Ouyang, Z.; Liu, J.

    2008-12-01

    As human activities continue to increase pressure on biodiversity, it is imperative to understand its status and responses to human disturbances. Although biodiversity varies greatly across space, most studies were conducted at limited spatial extents. While these studies have provided useful information at local scales, they are not suitable when a regional view is required, particularly when one is interested in evaluating large- scale effects of human activities and establishing sustainable management practices at regional levels. The synoptic view provided by imaging sensors constitutes a useful way of analyzing biodiversity at large scales. In this study we assessed the structure and tree species composition of temperate forests in the Qinling mountain region of Shaanxi province (China) at plot scales and analyzed their phenologic characteristics across the entire region using multi-temporal remotely sensed data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS). Results show that areas floristically similar (i.e., composed of the same tree species associations) also exhibit comparable phenologic characteristics, implying a direct relationship between floristic and phenologic similarity. Therefore, the phenologic characteristics, as evaluated through remote sensing techniques, can be scaled-up to map and monitor the spatial distribution of particular tree species associations across broad geographic regions.

  19. Forest Research: Climate Change

    E-print Network

    Forest Research: Climate Change projects Forest Research is part of the Forestry Commission of climate change-related research is wide-ranging, covering impact assessment and monitoring, adaptation around a quarter of its research budget with Forest Research on climate change and related programmes

  20. Monitoring tropical and montane forest dynamics and structure using remote sensing

    NASA Astrophysics Data System (ADS)

    Greenberg, Jonathan Asher

    Uncertainties in our understanding of the basic inputs and dynamics at work in the global carbon cycle severely restrict our ability to address why climate change is happening and how best to mitigate it. I focused on advances in regional and global climate change model inputs, addressing two major uncertainties: (1) what are the anthropogenic factors influencing deforestation and (2) what is the carbon load of an ecosystem? Analysis of anthropogenic factors leading to land use changes are presented in an evaluation of deforestation at the UNESCO Biosphere Reserve, Parque National Yasuni, located in the rainforest of eastern Ecuador, using multitemporal Landsat satellite imagery. Using survival analysis, I assessed current and future trends in deforestation rates and investigated the impact of spatial, cultural, and economic factors on deforestation. I found the annual rate of deforestation is currently only 0.11%, but is increasing with time, so that by 2063, 50% of the forest within 2 km of a major oil access road will be lost due to unhindered colonization and anthropogenic conversion. To improve accuracy in estimating landscape level carbon sequestration, I developed a new approach to generating regional aboveground biomass estimates for tree species of the Lake Tahoe Basin, California using hyperspatial (<1m2) remote sensing imagery. I demonstrate how, with accurate classification maps and allometric equations relating DBH or crown area to biomass, that crown parameters can be used to estimate regional biomass. I show that biomass estimated with fine-scale optical sensors does not saturate at high biomass levels as does coarse-scale optical and RADAR sensors. Finally, I address a technical problem to improve quantitative comparison of remote sensing datasets. I present a modification of the empirical line method for normalizing the radiance or reflectance scales of two images. Radiometric normalization of multitemporal remote sensing datasets is a critical step in accurate analyses of land cover change. The method for correcting radiance differences among datasets is almost entirely automated and easily implemented on any number of data analysis packages, which substantially reduces the time it takes to preprocess imagery for use in change detection research.

  1. Biomarkers in mangrove root crab Goniopsis cruentata for evaluating quality of tropical estuaries.

    PubMed

    Davanso, Marcela Bergo; Moreira, Lucas Buruaem; Pimentel, Marcionília Fernandes; Costa-Lotufo, Letícia Veras; de Souza Abessa, Denis Moledo

    2013-10-01

    The present study reports the use of biomarkers analyzes in mangrove root crab Goniopsis cruentata tissues to assess the environmental quality of two tropical estuarine areas. Animals from Ceará River estuary presented inhibition of ChE and GST enzymatic activities and higher rates of DNA damage with respect to those sampled in a pristine environment. G. cruentata appears to represent a proper species to monitor the quality of tropical estuaries. Since Ceará River is a legally protected area, this survey highlight the needs to implement actions to control pollution loads and improve the protection of natural ecosystems and resources. PMID:23535016

  2. Forest productivity and drought in tropical Africa: observations from the Global Ozone Monitoring Experiment-2

    NASA Astrophysics Data System (ADS)

    Robinson, E. S.; Lee, J. E.; Yang, X.

    2014-12-01

    The impact of seasonal water stress on Africa's tropical regions has yet to be characterized despite drought's potential to cause famine and a reduction of biodiversity across the continent. Through the analysis of a new data set of sun-induced chlorophyll fluorescence (SIF) from the Global Ozone Monitoring Experiment-2, we demonstrate that fluorescence varies with water availability, particularly over regions with distinctive wet and dry seasons. Water availability was determined via both precipitation (from the Global Precipitation Climatology Project) and daytime canopy water content measurements (from the SeaWinds Scatterometer onboard the QuickSCAT satellite). Variance in SIF values was largely explained by both canopy water content and precipitation, which paralleled one-another. When viewed in the context of the previously defined relationship between fluorescence and gross primary production (GPP) - SIF scales linearly with GPP - our results suggest that photosynthetic activity in tropical Africa is limited by water availability. The characterization of this trend is critical in defining the response of tropical ecosystems to water stress and corroborating similar relationships in other tropical regions (e.g. Amazonia). Ultimately, the viability of Africa's tropical regions amidst a changing climate is rooted in its ecosystem-wide response to water stress; the future of the African tropics is limited by how well plants cope with water stress.

  3. Paleoecology of mangroves along the Sibun River, Belize

    NASA Astrophysics Data System (ADS)

    Monacci, Natalie M.; Meier-Grünhagen, Ursula; Finney, Bruce P.; Behling, Hermann; Wooller, Matthew J.

    2011-09-01

    This study examines a sediment core (SR-63) from a mangrove ecosystem along the Sibun River in Belize, which is subject to both changes in sea-level and in the characteristics of the river's drainage basin. Radiocarbon dates from the core show a decreased sedimentation rate from ~ 6 ka to 1 cal ka BP and a marked change in lithology from primarily mangrove peat to fluvial-derived material at ~ 2.5 cal ka BP. Changes in the sedimentation rates observed in mangrove ecosystems offshore have previously been attributed to changes in relative sea-level and the rate of sea-level rise. Pollen analyses show a decreased abundance of Rhizophora (red mangrove) pollen and an increased abundance of Avicennia (black mangrove) pollen and non-mangrove pollen coeval with the decreased sedimentation rates. Elemental ratios ([N:C] a) and stable isotope analyses (? 15N and ? 13C) show that changes in the composition of the organic material are also coeval with the change in lithology. The decrease in sedimentation rate at the site of core SR-63 and at offshore sites supports the idea that regional changes in hydrology occurred during the Holocene in Belize, influencing both mainland and offshore mangrove ecosystems.

  4. Monitoring responses of forest to climate variations by MODIS NDVI: a case study of Hun River upstream, northeastern China

    Microsoft Academic Search

    J. Yao; X. Y. He; X. Y. Li; W. Chen; D. L. Tao

    This study analyzed the temporal variation of Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference\\u000a Vegetation Index (NDVI) of Hun River upstream forest in northeastern China and its correlation with climate parameters (temperature\\u000a and precipitation) during the period of 2000–2009. We examined the interannual variation of forest, seasonal variation of\\u000a forest and lag effects of climate variables (temperature and precipitation) on

  5. Evaluation of Forest Recovery over Time and Space Using Permanent Plots Monitored over 30 Years in a Jamaican Montane Rain Forest

    PubMed Central

    Chai, Shauna-Lee; Healey, John R.; Tanner, Edmund V. J.

    2012-01-01

    Conservation of tropical forest biodiversity increasingly depends on its recovery following severe human disturbance. Our ability to measure recovery using current similarity indices suffers from two limitations: different sized individuals are treated as equal, and the indices are proportionate (a community with twice the individuals of every species as compared with the reference community would be assessed as identical). We define an alternative recovery index for trees – the Tanner index, as the mean of the quantitative Bray-Curtis similarity indices of species composition for stem density and for basal area. We used the new index to compare the original (pre-gap) and post-gap composition of five experimental gap plots (each 90–100 m2) and four control plots over 24–35 years in the Blue Mountains of Jamaica. After 24–35 years, these small gaps surrounded by undisturbed forest had recovered 68% of the sum of per species stem density and 29% of the sum of per species basal area, a recovery index of 47%. Four endemic species were especially reduced in density and basal area. With the incorporation of basal area and stem density, our index reduces over-estimations of forest recovery obtained using existing similarity indices (by 24%–41%), and thus yields more accurate estimates of forest conservation status. Finally, our study indicates that the two kinds of comparisons: 1) over time between pre-gap and post-gap composition and 2) over space between gap plots and spatial controls (space-for-time substitution) yield broadly similar results, which supports the value of using space-for-time substitutions in studying forest recovery, at least in this tropical montane forest. PMID:23155417

  6. Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010

    NASA Astrophysics Data System (ADS)

    Arunarwati Margono, Belinda; Turubanova, Svetlana; Zhuravleva, Ilona; Potapov, Peter; Tyukavina, Alexandra; Baccini, Alessandro; Goetz, Scott; Hansen, Matthew C.

    2012-09-01

    As reported by FAO (2005 State of the World’s Forests (Rome: UNFAO), 2010 Forest Resource Assessment (FRA) 2010/095 (Rome: UNFAO)), Indonesia experiences the second highest rate of deforestation among tropical countries. Hence, timely and accurate forest data are required to combat deforestation and forest degradation in support of climate change mitigation and biodiversity conservation policy initiatives. Within Indonesia, Sumatra Island stands out due to the intensive forest clearing that has resulted in the conversion of 70% of the island’s forested area through 2010. We present here a hybrid approach for quantifying the extent and change of primary forest in Sumatra in terms of primary intact and primary degraded classes using a per-pixel supervised classification mapping followed by a Geographic Information System (GIS)-based fragmentation analysis. Loss of Sumatra’s primary intact and primary degraded forests was estimated to provide suitable information for the objectives of the United Nations Framework on Climate Change (UNFCCC) Reducing Emission from Deforestation and Forest Degradation (REDD and REDD+) program. Results quantified 7.54 Mha of primary forest loss in Sumatra during the last two decades (1990-2010). An additional 2.31 Mha of primary forest was degraded. Of the 7.54 Mha cleared, 7.25 Mha was in a degraded state when cleared, and 0.28 Mha was in a primary state. The rate of primary forest cover change for both forest cover loss and forest degradation slowed over the study period, from 7.34 Mha from 1990 to 2000, to 2.51 Mha from 2000 to 2010. The Geoscience Laser Altimeter System (GLAS) data set was employed to evaluate results. GLAS-derived tree canopy height indicated a significant structural difference between primary intact and primary degraded forests (mean height 28 m ± 8.7 m and 19 m ± 8.2 m, respectively). The results demonstrate a method for quantifying primary forest cover stand-replacement disturbance and degradation that can be replicated across the tropics in support of REDD+ initiatives.

  7. Mangrove Retreat with Rising Sea-level, Bermuda

    NASA Astrophysics Data System (ADS)

    Ellison, Joanna C.

    1993-07-01

    Low island mangroves keep up with slow sea-level rise by peat accumulation. Holocene stratigraphic records show that they maintain the same pace as sea-level rise at rates up to 9 cm/100 years. Tide gauge records from Bermuda since 1932 show sea-level rise at a rate of 28 cm/100 years. The largest mangrove area (6·26 acres) at Hungry Bay has for the last 2000 years been building peat at a rate of 8·5 to 10·6 cm/100 years. Retreat of the seaward edge has caused loss of 2·24 acres of mangroves, commencing in the last few hundred years, with a second dieback between 1900 and 1947, and a third dieback in the last decade. The substrate elevation of the seaward margin of mangroves is below mean sea-level, the normal lower limit for mangroves. Present dieback shows problems of erosion indicating that the Bruun Rule of beach erosion with sea-level rise is also appropriate for mangrove swamps. Stratigraphy shows that before 4000 BP sea-level rose at a rate of 25 cm/100 years, from 4000 to 1000 years BP the rate of sea-level rise declined to 6 cm/100 years during which time mangroves established, and in the last 1000 years there was an increase to 14·3 cm/100 years, during which time the mangroves died back. This study indicates that low island mangroves will experience problems with the rates of sea-level rise predicted for the next 50 years.

  8. Benthic meiofaunal composition and community structure in the Sethukuda mangrove area and adjacent open sea, East coast of India

    NASA Astrophysics Data System (ADS)

    Thilagavathi, Balasubramanaian; Das, Bandana; Saravanakumar, Ayyappan; Raja, Kuzhanthaivel

    2011-06-01

    The ecological aspects of meiofaunal communities in the Muthupettai mangrove forest, East coast of India, has not been investigated in the last two decades. Surface water temperature ranged from 23.5 °C to 31.8 °C. Salinity varied from 24 to 34 ppt, while water pH fluctuated from 7.4 to 8.3. Dissolved oxygen concentration ranged from 3.86 to 5.33 mg/l. Meiofauna analysis in this study identified a total of 106 species from the mangrove and adjacent open sea area of Sethukuda. Among these, 56 species of foraminiferans, 20 species of nematodes, 7 species of harpacticoid copepods, 4 species of ostrocodes, and 2 species of rotifers were identified. Furthermore, a single species was identified from the following groups: ciliophora, cnidaria, gnathostomulida, insecta, propulida, bryozoa and polychaete larvae. Meiofaunal density varied between 12029 to 23493 individuals 10 cm/m2. The diversity index ranged from 3.515 to 3.680, species richness index varied from 6.384 to 8.497, and evenness index varied from 0.839 to 0876 in the mangrove area and adjacent open sea.

  9. Soil type affects migration pattern of airborne Pb and Cd under a spruce-beech forest of the UN-ECE integrated monitoring site Zöbelboden, Austria.

    PubMed

    Kobler, Johannes; Fitz, Walter J; Dirnböck, Thomas; Mirtl, Michael

    2010-03-01

    Anthropogenic trace element emissions have declined. However, top soils all over the world remain enriched in trace elements. We investigated Pb and Cd migration in forest soils of a remote monitoring site in the Austrian limestone Alps between 1992 and 2004. Large spatial variability masked temporal changes in the mineral soil of Lithic Leptosols (Skeltic), whereas a significant reduction of Pb concentrations in their forest floors occurred. Reductions of concentrations in the less heterogeneous Cambisols (Chromic) were significant. In contrast, virtually no migration of Pb and Cd were found in Stagnosols due to their impeded drainage. Very low element concentrations (<1 microg l(-1)) in field-collected soil solutions using tension lysimeters (0.2 microm nylon filters) imply that migration largely occurred by preferential flow as particulate-bound species during intensive rainfall events. Our results indicate that the extent of Pb and Cd migration in soils is largely influenced by soil type. PMID:19879680

  10. Normalisation and heavy metal contamination in mangrove sediments

    Microsoft Academic Search

    N. F. Y Tam; M. W. Y Yao

    1998-01-01

    The concentrations of Zn, Ni, Cr, Cu, Mn, Fe and Al in surface sediments collected from three mangrove sites in Hong Kong were determined following aqua regia digestion. The heavy metal concentrations were normalised to reference elements to facilitate comparison between mangrove sites. Iron was found to be a good normaliser for Mn (r=0.892), Zn (r=0.443) and Ni (r=0.318) in

  11. Paleoecology of mangroves along the Sibun River, Belize

    Microsoft Academic Search

    Natalie M. Monacci; Ursula Meier-Grünhagen; Bruce P. Finney; Hermann Behling; Matthew J. Wooller

    2011-01-01

    This study examines a sediment core (SR-63) from a mangrove ecosystem along the Sibun River in Belize, which is subject to both changes in sea-level and in the characteristics of the river's drainage basin. Radiocarbon dates from the core show a decreased sedimentation rate from ~6ka to 1calka BP and a marked change in lithology from primarily mangrove peat to

  12. Transport of nutrients and organic matter in a mangrove swamp

    NASA Astrophysics Data System (ADS)

    Akamatsu, Y.; Ikeda, S.; Toda, Y.

    2009-04-01

    Field observations of the tidal transport of nutrients and organic matter in a mangrove swamp on Ishigaki Island, Okinawa, Japan revealed that groundwater flow from the swamp plays a significant role in increasing concentration of dissolved inorganic phosphorous and organic matter in a major channel. In contrast, dissolved inorganic nitrogen is transported from the mangrove swamps via surface water flow in the small channels of the swamp.

  13. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise

    USGS Publications Warehouse

    Webb, Edward L.; Friess, Daniel A.; Krauss, Ken W.; Cahoon, Donald R.; Guntenspergen, Glenn R.; Phelps, Jacob

    2013-01-01

    Sea-level rise threatens coastal salt-marshes and mangrove forests around the world, and a key determinant of coastal wetland vulnerability is whether its surface elevation can keep pace with rising sea level. Globally, a large data gap exists because wetland surface and shallow subsurface processes remain unaccounted for by traditional vulnerability assessments using tide gauges. Moreover, those processes vary substantially across wetlands, so modelling platforms require relevant local data. The low-cost, simple, high-precision rod surface-elevation table–marker horizon (RSET-MH) method fills this critical data gap, can be paired with spatial data sets and modelling and is financially and technically accessible to every country with coastal wetlands. Yet, RSET deployment has been limited to a few regions and purposes. A coordinated expansion of monitoring efforts, including development of regional networks that could support data sharing and collaboration, is crucial to adequately inform coastal climate change adaptation policy at several scales.

  14. The Microbiome of Brazilian Mangrove Sediments as Revealed by Metagenomics

    PubMed Central

    Andreote, Fernando Dini; Jiménez, Diego Javier; Chaves, Diego; Dias, Armando Cavalcante Franco; Luvizotto, Danice Mazzer; Dini-Andreote, Francisco; Fasanella, Cristiane Cipola; Lopez, Maryeimy Varon; Baena, Sandra; Taketani, Rodrigo Gouvêa; de Melo, Itamar Soares

    2012-01-01

    Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04) in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H2S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments. PMID:22737213

  15. Detection of multiple potentially pathogenic bacteria in Matang mangrove estuaries, Malaysia.

    PubMed

    Ghaderpour, Aziz; Mohd Nasori, Khairul Nazrin; Chew, Li Lee; Chong, Ving Ching; Thong, Kwai Lin; Chai, Lay Ching

    2014-06-15

    The deltaic estuarine system of the Matang Mangrove Forest Reserve of Malaysia is a site where several human settlements and brackish water aquaculture have been established. Here, we evaluated the level of fecal indicator bacteria (FIB) and the presence of potentially pathogenic bacteria in the surface water and sediments. Higher levels of FIB were detected at downstream sampling sites from the fishing village, indicating it as a possible source of anthropogenic pollution to the estuary. Enterococci levels in the estuarine sediments were higher than in the surface water, while total coliforms and E. coli in the estuarine sediments were not detected in all samples. Also, various types of potentially pathogenic bacteria, including Klebsiella pneumoniae, Serratia marcescens and Enterobacter cloacae were isolated. The results indicate that the Matang estuarine system is contaminated with various types of potential human bacterial pathogens which might pose a health risk to the public. PMID:24820641

  16. The Use of a Geographic Information System and Remote Sensing Technology for Monitoring Land Use and Soil Carbon Change in the Subtropical Dry Forest Life Zone of Puerto Rico

    NASA Technical Reports Server (NTRS)

    Velez-Rodriguez, Linda L. (Principal Investigator)

    1996-01-01

    Aerial photography, one of the first form of remote sensing technology, has long been an invaluable means to monitor activities and conditions at the Earth's surface. Geographic Information Systems or GIS is the use of computers in showing and manipulating spatial data. This report will present the use of geographic information systems and remote sensing technology for monitoring land use and soil carbon change in the subtropical dry forest life zone of Puerto Rico. This research included the south of Puerto Rico that belongs to the subtropical dry forest life zone. The Guanica Commonwealth Forest Biosphere Reserve and the Jobos Bay National Estuarine Research Reserve are studied in detail, because of their location in the subtropical dry forest life zone. Aerial photography, digital multispectral imagery, soil samples, soil survey maps, field inspections, and differential global positioning system (DGPS) observations were used.

  17. Shrimp pond effluent dominates foliar nitrogen in disturbed mangroves as mapped using hyperspectral imagery.

    PubMed

    Fauzi, Anas; Skidmore, Andrew K; van Gils, Hein; Schlerf, Martin; Heitkönig, Ignas M A

    2013-11-15

    Conversion of mangroves to shrimp ponds creates fragmentation and eutrophication. Detection of the spatial variation of foliar nitrogen is essential for understanding the effect of eutrophication on mangroves. We aim (i) to estimate nitrogen variability across mangrove landscapes of the Mahakam delta using airborne hyperspectral remote sensing (HyMap) and (ii) to investigate links between the variation of foliar nitrogen mapped and local environmental variables. In this study, multivariate prediction models achieved a higher level of accuracy than narrow-band vegetation indices, making multivariate modeling the best choice for mapping. The variation of foliar nitrogen concentration in mangroves was significantly influenced by the local environment: (1) position of mangroves (seaward/landward), (2) distance to the shrimp ponds, and (3) predominant mangrove species. The findings suggest that anthropogenic disturbances, in this case shrimp ponds, influence nitrogen variation in mangroves. Mangroves closer to the shrimp ponds had higher foliar nitrogen concentrations. PMID:24103095

  18. An Analysis of New World Mangrove Avifaunas Diversity, Endemism, and Conservation

    E-print Network

    Escalona-Segura, Griselda

    1999-08-27

    of mangroves actually exist. Similarly, the influence of adjacent vegetation types on avifaunal composition in mangroves remains unassessed. In this study, I address these questions, providing fundamental information regarding the avifaunas of New World...

  19. Mangrove ecosystem changes during the Holocene at Spanish Lookout Cay, Belize

    Microsoft Academic Search

    Natalie M. Monacci; Ursula Meier-Grünhagen; Bruce P. Finney; Hermann Behling; Matthew J. Wooller

    2009-01-01

    Mangroves are halophytic plants living at the land–sea interface and are therefore natural trackers of sea-level. Multiple proxies of a continuous (8 m) mangrove peat core (BT-79) from Spanish Lookout Cay, Belize illustrate mangrove ecosystem changes during the Holocene. Radiocarbon measurements show this site was colonized by mangroves ~8000 cal. yrs BP, with a significant decrease in the peat accumulation rate from

  20. Vulnerability to Climate Change of Mangroves: Assessment from Cameroon, Central Africa

    PubMed Central

    Ellison, Joanna C.; Zouh, Isabella

    2012-01-01

    Intertidal mangrove ecosystems are sensitive to climate change impacts, particularly to associated relative sea level rise. Human stressors and low tidal range add to vulnerability, both characteristics of the Doula Estuary, Cameroon. To investigate vulnerability, spatial techniques were combined with ground surveys to map distributions of mangrove zones, and compare with historical spatial records to quantify change over the last few decades. Low technology techniques were used to establish the tidal range and relative elevation of the mapped mangrove area. Stratigraphic coring and palaeobiological reconstruction were used to show the longer term biological history of mangroves and net sedimentation rate, and oral history surveys of local communities were used to provide evidence of recent change and identify possible causes. Results showed that the seaward edge of mangroves had over two thirds of the shoreline experienced dieback at up to 3 m per year over the last three decades, and an offshore mangrove island had suffered 89% loss. Results also showed low net sedimentation rates under seaward edge mangroves, and restricted intertidal elevation habitats of all mangroves, and Avicennia and Laguncularia in particular. To reduce vulnerability, adaptation planning can be improved by reducing the non-climate stressors on the mangrove area, particularly those resulting from human impacts. Other priorities for adaptation planning in mangrove areas that are located in such low tidal range regions are to plan inland migration areas and strategic protected areas for mangroves, and to undertake management activities that enhance accretion within the mangroves. PMID:24832511

  1. A simulation model of organic matter and nutrient accumulation in mangrove wetland soils

    Microsoft Academic Search

    Ronghua Chen; Robert R. Twilley

    1999-01-01

    The distribution and accumulation of organic matter, nitrogen (N) and phosphorus (P) in mangrove soils at four sites along the Shark River estuary of south Florida were investigated with empirical measures and a process-based model. The mangrove nutrient model (NUMAN) was developed from the SEMIDEC marsh organic matter model and parameterized with data from mangrove wetlands. The soil characteristics in

  2. Mangrove pollen of Indonesia and its suitability as a sea-level indicator

    Microsoft Academic Search

    Simon E. Engelhart; Benjamin P. Horton; David H. Roberts; Charlotte L. Bryant; D. Reide Corbett

    2007-01-01

    We investigated the mangroves of Southeast Sulawesi, Indonesia, to assess their potential as proxies for reconstructing sea level during the Holocene. Initial investigations confirmed that the mangrove species demonstrate zonations parallel to the shoreline and are dominated by the family Rhizophoraceae with Avicennia, Heritiera and Sonneratia also important constituents of the mangroves.We investigated the vertical distributions of pollen assemblages at

  3. Late Holocene development of a mangrove ecosystem in southeastern Brazil (Itanhaém, state of São Paulo)

    Microsoft Academic Search

    Paula Garcia Carvalho do Amaral; Marie-Pierre Ledru; Fresia Ricardi Branco; Paulo César Fonseca Giannini

    2006-01-01

    Most palynological studies of mangroves have been carried out in the Indo-Pacific region, but few have investigated these ecosystems along the southern Atlantic coast. This paper provides information on the palynology of a mangrove at Itanhaém, state of São Paulo, on the southeastern Brazilian coast. This mangrove occurs on microtidal flats adjacent to a fluvial-tidal channel mouth (Itanhaém River), part

  4. Plant growth-promoting bacteria: a potential tool for arid mangrove reforestation

    Microsoft Academic Search

    Yoav Bashan; Gina Holguin

    2002-01-01

    Although a few countries protect mangroves (USA, some states in Mexico), the systematic destruction of these ecosystems is increasing. Deforestation of mangrove communities is thought to be one of the major reasons for the decline in coastal fisheries of many tropical and subtropical countries. Although mangroves in the tropics can regenerate themselves or be restored using low-technology propagule planting, arid

  5. Methylmercury and sulfate-reducing bacteria in mangrove sediments from Jiulong River Estuary, China

    Microsoft Academic Search

    Hao Wu; Zhenhua Ding; Yang Liu; Jinling Liu; Haiyu Yan; Jiayong Pan; Liuqiang Li; Huina Lin; Guanghui Lin; Haoliang Lu

    2011-01-01

    Estuaries are important sites for mercury (Hg) methylation, with sulfate-reducing bacteria (SRB) thought to be the main Hg methylators. Distributions of total mercury (THg) and methylmercury (MeHg) in mangrove sediment and sediment core from Jiulong River Estuary Provincial Mangrove Reserve, China were determined and the possible mechanisms of Hg methylation and their controlling factors in mangrove sediments were investigated. Microbiological

  6. Valuing ecosystem functions: an empirical study on the storm protection function of Bhitarkanika mangrove ecosystem, India

    Microsoft Academic Search

    RUCHI BADOLA; S. A. HUSSAIN

    2005-01-01

    SUMMARY The ecosystem services provided by mangroves are often ignored in the ongoing process of mangrove conversion. Services provided by the Bhitarkanika mangrove ecosystem in India and estimated cyclone damage avoided in three selected villages, taking the cyclone of 1999 as a reference point, were valued by assessing the socio-economic status of the villages, the cyclone damage to houses, livestock,

  7. Isotopic studies in Pacific Panama mangrove estuaries reveal lack of effect of watershed deforestation on food webs.

    PubMed

    Viana, Inés G; Valiela, Ivan; Martinetto, Paulina; Monteiro Pierce, Rita; Fox, Sophia E

    2015-02-01

    Stable isotopic N, C, and S in food webs of 8 mangrove estuaries on the Pacific coast of Panama were measured to 1) determine whether the degree of deforestation of tropical forests on the contributing watersheds was detectable within the estuarine food web, and 2) define external sources of the food webs within the mangrove estuaries. Even though terrestrial rain forest cover on the contributing watersheds differed between 23 and 92%, the effect of deforestation was not detectable on stable isotopic values in food webs present at the mouth of the receiving estuaries. We used stable isotopic measures to identify producers or organic sources that supported the estuarine food web. N isotopic values of consumers spanned a broad range, from about 2.7 to 12.3‰. Mean ?(15)N of primary producers and organic matter varied from 3.3 for macroalgae to 4.7‰ for suspended particulate matter and large particulate matter. The ?(13)C consumer data varied between -26 and -9‰, but isotopic values of the major apparent producers or organic matter sampled could not account for this range variability. The structure of the food web was clarified when we added literature isotopic values of microphytobenthos and coralline algae, suggesting that these, or other producers with similar isotopic signature, may be part of the food webs. PMID:25481652

  8. Monitoring

    MedlinePLUS Videos and Cool Tools

    ... Tracker App Tip Sheets and Handouts AADE7 Self-Care Behaviors Healthy Eating Being Active Monitoring Taking Medication ... Legislative Action Center Federal Legislation State Legislation Affordable Care Act Information Advocacy Tools and Resources Affordable Care ...

  9. Analysis of beach morphodynamics on the Bragantinian mangrove peninsula (Pará, North Brazil) as prerequisite for coastal zone management recommendations

    NASA Astrophysics Data System (ADS)

    Krause, Gesche; Soares, Cidiane

    2004-05-01

    A beach profile monitoring programme was initiated in 1997 as a contribution to the development of recommendations for an integrated coastal zone management scheme of the mangrove peninsula of Bragança, State of Pará (North Brazil). It was the first scientific investigation on the coastal morphodynamics in a mangrove environment, which was opened for human use only since the mid-1970s. The observations were carried out on five sections for 4 years, on a fortnightly basis whenever possible. Temporal evolution of the beach morphology was assessed using time series of beach height, changes in profile shape, sediment transport calculations, and photographs. This unique data set for new settlement areas in this mangrove-dominated coastal zone illuminates the role of the interaction between human activities and natural coastal dynamics. Four coastal cells were identified as coastal management units, each with specific dynamic behaviour and utilisation by humans. The cells are rather small with dimensions in the order of 1-3 km. Only one of the units (cell 1) had a stable coastline during the 4 years of observation, while all others are eroding. Clearing of vegetation is the principal reason for the enhancement of the natural chronic erosion at these sites. In the wake of increasing tourism, housing was erected on the first dune ridge (cell 2) with much damage to the natural vegetation. In this unit, erosion is predominantly targeted on the dunes. In cell 3, the most important reason for the increased erosion is clearing of the adjacent fringing mangroves. This is also true for cell 4, but additionally the construction of large fishing traps, which artificially entrap sand and create sandbanks and thereby increase velocities in the tidal channel tend to enhance erosion at the shoreline. Only for cell 1 can protection measures for the still available vegetation be recommended while a planned retreat of many tourism facilities and fishermen's housings should be included in management recommendations.

  10. Eddy covariance based methane flux in Sundarbans mangroves, India

    NASA Astrophysics Data System (ADS)

    Jha, Chandra Shekhar; Rodda, Suraj Reddy; Thumaty, Kiran Chand; Raha, A. K.; Dadhwal, V. K.

    2014-06-01

    We report the initial results of the methane flux measured using eddy covariance method during summer months from the world's largest mangrove ecosystem, Sundarbans of India. Mangrove ecosystems are known sources for methane (CH4) having very high global warming potential. In order to quantify the methane flux in mangroves, an eddy covariance flux tower was recently erected in the largest unpolluted and undisturbed mangrove ecosystem in Sundarbans (India). The tower is equipped with eddy covariance flux tower instruments to continuously measure methane fluxes besides the mass and energy fluxes. This paper presents the preliminary results of methane flux variations during summer months (i.e., April and May 2012) in Sundarbans mangrove ecosystem. The mean concentrations of CH4 emission over the study period was 1682 ± 956 ppb. The measured CH4 fluxes computed from eddy covariance technique showed that the study area acts as a net source for CH4 with daily mean flux of 150.22 ± 248.87 mg m-2 day-1. The methane emission as well as its flux showed very high variability diurnally. Though the environmental conditions controlling methane emission is not yet fully understood, an attempt has been made in the present study to analyse the relationships of methane efflux with tidal activity. This present study is part of Indian Space Research Organisation-Geosphere Biosphere Program (ISRO-GBP) initiative under `National Carbon Project'.

  11. Estimation of leaf water status to monitor the risk of forest fires by using remotely sensed data

    Microsoft Academic Search

    M Maki; M Ishiahra; M Tamura

    2004-01-01

    Estimating the water status of vegetation is one of the most important elements in assessing forest fire danger. In this paper, laboratory measurement confirmed a relationship between leaf water status and the normalized difference water index (NDWI), derived from near-infrared and shortwave-infrared spectral data. Two results were confirmed: (a) NDWI is related to equivalent water thickness, and, (b) in addition

  12. A 13-WEEK COMPARISON OF PASSIVE AND CONTINUOUS OZONE MONITORS AT FORESTED SITES IN NORTH-CENTRAL PENNSYLVANIA

    EPA Science Inventory

    Ogawa passive 03 samplers were used in a 13-233k study (June 1-September 1, 1999) involving 11 forested and mountaintop sites in north-central Pennsylvania. Four of the sites were collocated with TECO model 49 O3 analyzers. A significant correlation (p...

  13. A THIRTEEN-WEEK COMPARISON OF PASSIVE AND CONTINUOUS OZONE MONITORS AT FORESTED SITES IN NORTH-CENTRAL PENNSYLVANIA

    EPA Science Inventory

    Ogawa passive 03 samplers were used in a 13-233k study (June 1-September 1, 1999) involving 11 forested and mountaintop sites in north-central Pennsylvania. Four of the sites were collocated with TECO model 49 O3 analyzers. A significant correlation (p...

  14. FOREST SURVEY METHODS USED IN THE USDA FOREST SERVICE

    EPA Science Inventory

    There has been an increasing need for forest resource inventory data to contribute to various objectives of different agencies and organizations. Monitoring forest health is one area of interest for which existing forest survey data may be useful. There are many different samplin...

  15. Presentation 2.7: Energy and the Forest Products Industry in Malaysia Zulkifli Bin Ahmad

    E-print Network

    of Forest Industries Forestry Department of Peninsular Malaysia E-mail: zulmad@gmail.com Abstract Energy and climate. Hence, sustainable use of energy is being given increasing attention in Malaysia. Malaysia Mangroves in Malaysia exhibit a sustainable energy production and has been an enormous success which may

  16. Tree crown detection in high resolution optical and lidar images of tropical forest

    Microsoft Academic Search

    Jia Zhou; Christophe Proisy; Xavier Descombes; Ihssen Hedhli; Nicolas Barbier; Josiane Zerubia; J. P. Gastellu-Etchegorry; Pierre Couteron

    2010-01-01

    Tropical forests are complex ecosystems where the potential of remote sensing has not yet been fully realized. The increasing availability of satellite metric imagery along with canopy altimetry from airborne LiDAR open new prospects to detect individual trees. For this objective, we optimized, calibrated and applied a model based on marked point processes to detect trees in high biomass mangroves

  17. Mapping Forest Change Walk

    NSDL National Science Digital Library

    The representation depicts a virtual walk through a Virginia forest to examine the impact of a non-native, invasive insect, the hemlock woolly adelgid, on a population of eastern hemlocks. Field research is conducted using the same scientific methodologies and tools that Smithsonian scientists use to monitor forest biodiversity, including scatter graph comparisons and field observations.

  18. Mangroves protected villages and reduced death toll during Indian super cyclone.

    PubMed

    Das, Saudamini; Vincent, Jeffrey R

    2009-05-01

    Protection against coastal disasters has been identified as an important service of mangrove ecosystems. Empirical studies on this service have been criticized, however, for using small samples and inadequately controlling for confounding factors. We used data on several hundred villages to test the impact of mangroves on human deaths during a 1999 super cyclone that struck Orissa, India. We found that villages with wider mangroves between them and the coast experienced significantly fewer deaths than ones with narrower or no mangroves. This finding was robust to the inclusion of a wide range of other variables to our statistical model, including controls for the historical extent of mangroves. Although mangroves evidently saved fewer lives than an early warning issued by the government, the retention of remaining mangroves in Orissa is economically justified even without considering the many benefits they provide to human society besides storm-protection services. PMID:19380735

  19. Mangroves protected villages and reduced death toll during Indian super cyclone

    PubMed Central

    Das, Saudamini; Vincent, Jeffrey R.

    2009-01-01

    Protection against coastal disasters has been identified as an important service of mangrove ecosystems. Empirical studies on this service have been criticized, however, for using small samples and inadequately controlling for confounding factors. We used data on several hundred villages to test the impact of mangroves on human deaths during a 1999 super cyclone that struck Orissa, India. We found that villages with wider mangroves between them and the coast experienced significantly fewer deaths than ones with narrower or no mangroves. This finding was robust to the inclusion of a wide range of other variables to our statistical model, including controls for the historical extent of mangroves. Although mangroves evidently saved fewer lives than an early warning issued by the government, the retention of remaining mangroves in Orissa is economically justified even without considering the many benefits they provide to human society besides storm-protection services. PMID:19380735

  20. Forest health status in North America.

    PubMed

    Tkacz, Borys; Moody, Ben; Villa Castillo, Jaime

    2007-01-01

    The forests of North America provide a variety of benefits including water, recreation, wildlife habitat, timber, and other forest products. However, they continue to face many biotic and abiotic stressors including fires, native and invasive pests, fragmentation, and air pollution. Forest health specialists have been monitoring the health of forests for many years. This paper highlights some of the most damaging forest stressors affecting North American forests in recent years and provides some projections of future risks. PMID:17450278

  1. Antibacterial Activity of Mangrove Leaf Extracts against Human Pathogens.

    PubMed

    Sahoo, G; Mulla, N S S; Ansari, Z A; Mohandass, C

    2012-07-01

    The antibacterial activity of leaf extract of mangroves, namely, Rhizophora mucronata, Sonneratia alba and Exoecaria agallocha from Chorao island, Goa was investigated against human bacterial pathogens Staphylococcus aureus, Streptococcus sp., Salmonella typhi, Proteus vulgaris and Proteus mirabilis. As compared to aqueous, ethanol extract showed broad-spectrum activity. The multidrug-resistant (MDR) bacteria Salmonella typhi was inhibited by the ethanol extract of S. alba leaf whereas the other two resistant bacteria Staphylococcus aureus and Streptococcus sp. were inhibited by the ethanol extract of leaves of all the species. The aqueous extract of S. alba and E. agallocha showed their activity against P. vulgaris and P. mirabilis, respectively. Phytochemical analysis revealed the presence of saponins, glycosides, tannins, flavonoids, phenol and volatile oils in the leaves of mangroves. Further studies using different solvents for extraction are necessary to confirm that mangroves are a better source for the development of novel antibiotics. PMID:23626390

  2. Antibacterial Activity of Mangrove Leaf Extracts against Human Pathogens

    PubMed Central

    Sahoo, G.; Mulla, N. S. S.; Ansari, Z. A.; Mohandass, C.

    2012-01-01

    The antibacterial activity of leaf extract of mangroves, namely, Rhizophora mucronata, Sonneratia alba and Exoecaria agallocha from Chorao island, Goa was investigated against human bacterial pathogens Staphylococcus aureus, Streptococcus sp., Salmonella typhi, Proteus vulgaris and Proteus mirabilis. As compared to aqueous, ethanol extract showed broad-spectrum activity. The multidrug-resistant (MDR) bacteria Salmonella typhi was inhibited by the ethanol extract of S. alba leaf whereas the other two resistant bacteria Staphylococcus aureus and Streptococcus sp. were inhibited by the ethanol extract of leaves of all the species. The aqueous extract of S. alba and E. agallocha showed their activity against P. vulgaris and P. mirabilis, respectively. Phytochemical analysis revealed the presence of saponins, glycosides, tannins, flavonoids, phenol and volatile oils in the leaves of mangroves. Further studies using different solvents for extraction are necessary to confirm that mangroves are a better source for the development of novel antibiotics. PMID:23626390

  3. SAR interferometric signatures of forest

    Microsoft Academic Search

    Urs Wegmuller; Charles L. Werner

    1995-01-01

    The potential of SAR interferometry for forest mapping and monitoring is discussed. It is shown that forest can clearly be discriminated from other land categories. Furthermore it is possible to distinguish a number of forest types. The presented approach is based on the SAR interferometric correlation and the backscatter intensities using ERS-1 SAR repeat-pass data. Baseline, time interval, and seasonal

  4. Monitoring

    DOEpatents

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  5. Holocene palaeoenvironmental history of the Amazonian mangrove belt

    NASA Astrophysics Data System (ADS)

    Cohen, Marcelo Cancela Lisboa; Pessenda, Luiz Carlos Ruiz; Behling, Hermann; de Fátima Rossetti, Dilce; França, Marlon Carlos; Guimarães, José Tasso Felix; Friaes, Yuri; Smith, Clarisse Beltrão

    2012-11-01

    Wetland dynamic in the northern Brazilian Amazon region during the Holocene was reviewed using palynological, carbon and nitrogen isotopes records, and C/N ratio previously published. The integration of 72 radiocarbon dates recorded in 34 sediment cores sampled along the marine and fluvial littoral, and mainly influenced by the Amazon River, reveals that marine influence and mangrove vegetation were wider than today on the mouth of Amazon River between >8990-8690 and 2300-2230 cal yr BP, forming a continuous mangrove belt along the northern Brazilian Amazon littoral. The establishment of this mangrove strip is a direct consequence of the marine incursion caused by post-glacial sea-level rise possibly associated with tectonic subsidence during the Early and Middle Holocene. In the Late Holocene, in areas influenced by the Amazon River discharge, the mangroves were replaced by freshwater vegetation, and the coast morphology evolved from an estuarine dominated into a rectilinear coast due to coastal progradation. Nevertheless, the marine-influenced littoral, which is currently dominated by mangroves and salt-marsh vegetation, has persistently had brackish water vegetation over tidal mud flats throughout the entire Holocene. Likely, the fragmentation of this continuous mangrove line during the Late Holocene was caused by the increase of river freshwater discharge associated to the change from dry into wet climates in the Late Holocene. This caused a significant decrease of tidal water salinity in areas near the mouth of Amazon River. These changes in the Amazon discharge are probably associated with dry and wet periods in the northern Amazon region during the Holocene.

  6. Radar detection of flooding beneath the forest canopy - A review

    NASA Technical Reports Server (NTRS)

    Hess, Laura L.; Melack, John M.; Simonett, David S.

    1990-01-01

    Synthetic aperture radar remote sensing is a promising tool for detection of flooding on forested floodplains. The brigtht appearance of flooded forests on radar images results from double-bounce reflections between smooth water surfaces and tree trunks or branches. Enhanced backscattering at L-band has been shown to occur in a wide variety of forest types, including cypress-tupelo swamps, temperate bottomland hardwoods, spruce bogs, mangroves and tropical floodplain forests. Lack of enhancement is a function of both stand density and branching structure. According to models and measurements, the magnitude of the enhancement is about 3 to 10 dB. Steep incidence angles (20-30 deg) are optimal for detection of flooding, since some forest types exhibit bright returns only at steeper angles. P-band should prove useful for floodwater mapping in dense stands, and multifrequency polarimetric analysis should allow flooded forests to be distinguished from marshes.

  7. Holocene mangrove swamps of West Africa sedimentology and soils

    NASA Astrophysics Data System (ADS)

    Marius, C.; Lucas, J.

    The mangrove swamps of West African Coast belong to the Atlantic type which is characterized by a small number of species. They colonize tidal environments which are dissected by numerous meandering tidal channels and are presently subject to a low rate of sediment accumulation. The mangrove vegetation exhibits a characteristic zonation pattern that basically reflects the adaptation of the various species to saline conditions. The typical zonation sequence is: Rhizophora racemosa (or Rh. mangle), Rh. mangle + Avicennia africana, Avicennia, flooded tanne, barren tanne, herbaceous tanne. The tannes are generated by aridic climatic conditions, heavy soil and water salt content, and are, in a way a peculiar feature of mangrove swamps in West Africa. The sediment colonized by the mangroves is relatively homogenous. Mineralogically, they are dominated by quartz and clay to which are associated halite, pyrite and jarosite. The clay suite is mainly composed of smectite and kaolinite. Smectite is predominant in the inlet areas and is replaced inland by kaolinite. Chemically, the sediments contain very low amounts of Ca, bases and trace elements. The mangrove swamp floodwaters have a chemical composition similar to that of seawater. It is dominated by sodium and chloride. Morphologically, the ripening of the soils appears with a chestnut mash colour horizon and buttery consistency in relation with the decomposition of fibrous roots of Rhizophora and also with pale yellow jarosite mottles in the top horizons of the tanne profiles due to the oxidation of pyrine. The two main properties of the mangrove soils of West Africa are acidity and salinity; the first is related to the high content of sulphur and the second to the sea influence. The acidity has to be connected mainly to the Rhizophora vegetation whose the root system is a real trap for catching the pyrites resulting from the reduction of the sulphates of sea water by the sulphate reducing bacteria, in a reduced environment rich in organic matter and iron. The salinity is mainly related to the sea water which is flooding the mangrove or which flows through the water table up to the tanne. It is mainly sodic chloride. From the geochemical point of view, the disequilibrium between mangrove and tanne is appearing by a high increase in the tanne area of silica in one hand due to the dissolution, partly of the quartz, but mainly of diatomaceous frustules, and increase of magnesium, on the other hand, due to the clay mineral weathering.

  8. Monitoring gradual ecosystem change using Landsat time series analyses: case studies in selected forest and rangeland ecosystems

    USGS Publications Warehouse

    Vogelmann, James E.; Xian, George; Homer, Collin G.; Tolk, Brian

    2012-01-01

    The focus of the study was to assess gradual changes occurring throughout a range of natural ecosystems using decadal Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM +) time series data. Time series data stacks were generated for four study areas: (1) a four scene area dominated by forest and rangeland ecosystems in the southwestern United States, (2) a sagebrush-dominated rangeland in Wyoming, (3) woodland adjacent to prairie in northwestern Nebraska, and (4) a forested area in the White Mountains of New Hampshire. Through analyses of time series data, we found evidence of gradual systematic change in many of the natural vegetation communities in all four areas. Many of the conifer forests in the southwestern US are showing declines related to insects and drought, but very few are showing evidence of improving conditions or increased greenness. Sagebrush communities are showing decreases in greenness related to fire, mining, and probably drought, but very few of these communities are showing evidence of increased greenness or improving conditions. In Nebraska, forest communities are showing local expansion and increased canopy densification in the prairie–woodland interface, and in the White Mountains high elevation understory conifers are showing range increases towards lower elevations. The trends detected are not obvious through casual inspection of the Landsat images. Analyses of time series data using many scenes and covering multiple years are required in order to develop better impressions and representations of the changing ecosystem patterns and trends that are occurring. The approach described in this paper demonstrates that Landsat time series data can be used operationally for assessing gradual ecosystem change across large areas. Local knowledge and available ancillary data are required in order to fully understand the nature of these trends.

  9. Red mangrove life history variables along latitudinal and anthropogenic stress gradients.

    PubMed

    Proffitt, C Edward; Travis, Steven

    2014-06-01

    Mangroves migrate northward in Florida and colonize marshes historically dominated by salt marsh species. In theory, this migration should be facilitated by greater numbers of propagules stemming from increased reproductive activity and greater genetic variability caused by outcrossing. We aimed to determine if stand reproduction and % outcrossing were affected by cold stress (stress increases with latitude), anthropogenic stress (human population density as a proxy), and years since a major hurricane. Further, we wished to determine if mutation rate varied with the stressors and if that affected stand reproduction. Both coasts of Florida from the southern Florida Keys to Tampa Bay on the Gulf of Mexico coast, and Merritt Island on the Atlantic coast. We conducted field surveys of frequency of reproducing trees (104,211 trees surveyed in 102 forested stands), incidence of trees showing albinism in propagules, and% outcrossing estimated from the ratio of albino:normal propagules. Structural equation modeling (SEM) was used to test a conceptual model that served as a multivariate hypothesis. Reproductive frequencies varied by site and increased with latitude although more strongly on the Gulf coast. Our SEM results indicate that outcrossing increases in this predominately selfing species under conditions of cold and anthropogenic stress, and that this increases reproductive output in the population. Further, we find that increased mutation rates suppress stand reproductive output but there is no significant relationship between outcrossing and mutation rate. Tree size responded to stressors but did not affect stand reproduction. Reproduction increased with years since major hurricane. Potential for colonization of northern Florida salt marshes by mangroves is enhanced by increased reproductive rates that provides more propagules and outcrossing that should enhance genetic variation thereby promoting adaptation to novel environmental conditions. Natural (cold) stress reduced mutation rate and increased stand reproductive output but anthropogenic stress did the opposite. PMID:25360272

  10. USDA Forest Service Proceedings RMRS-P-63. 2011. 51 National Park Service Inventory and Monitoring (I&M)

    E-print Network

    ). Whitebark pine (Pinus albicaulis) is moni- tored in five national parks: Lassen Volcanic and Crater Lake in Sequoia and Kings Canyon, and limber pine (P. flexilis) is monitored in Craters of the Moon in the UCBN

  11. Considerations for using occupancy surveys to monitor forest primates: a case study with Sclater’s monkey ( Cercopithecus sclateri )

    Microsoft Academic Search

    Lynne R. BakerTodd; Todd W. Arnold; Oluseun S. Olubode; David L. Garshelis

    Count-based indices and distance sampling are widely used to