Science.gov

Sample records for manufacturing vision development

  1. 3D Machine Vision and Additive Manufacturing: Concurrent Product and Process Development

    NASA Astrophysics Data System (ADS)

    Ilyas, Ismet P.

    2013-06-01

    The manufacturing environment rapidly changes in turbulence fashion. Digital manufacturing (DM) plays a significant role and one of the key strategies in setting up vision and strategic planning toward the knowledge based manufacturing. An approach of combining 3D machine vision (3D-MV) and an Additive Manufacturing (AM) may finally be finding its niche in manufacturing. This paper briefly overviews the integration of the 3D machine vision and AM in concurrent product and process development, the challenges and opportunities, the implementation of the 3D-MV and AM at POLMAN Bandung in accelerating product design and process development, and discusses a direct deployment of this approach on a real case from our industrial partners that have placed this as one of the very important and strategic approach in research as well as product/prototype development. The strategic aspects and needs of this combination approach in research, design and development are main concerns of the presentation.

  2. Development of Moire machine vision

    NASA Astrophysics Data System (ADS)

    Harding, Kevin G.

    1987-10-01

    Three dimensional perception is essential to the development of versatile robotics systems in order to handle complex manufacturing tasks in future factories and in providing high accuracy measurements needed in flexible manufacturing and quality control. A program is described which will develop the potential of Moire techniques to provide this capability in vision systems and automated measurements, and demonstrate artificial intelligence (AI) techniques to take advantage of the strengths of Moire sensing. Moire techniques provide a means of optically manipulating the complex visual data in a three dimensional scene into a form which can be easily and quickly analyzed by computers. This type of optical data manipulation provides high productivity through integrated automation, producing a high quality product while reducing computer and mechanical manipulation requirements and thereby the cost and time of production. This nondestructive evaluation is developed to be able to make full field range measurement and three dimensional scene analysis.

  3. Development of Moire machine vision

    NASA Technical Reports Server (NTRS)

    Harding, Kevin G.

    1987-01-01

    Three dimensional perception is essential to the development of versatile robotics systems in order to handle complex manufacturing tasks in future factories and in providing high accuracy measurements needed in flexible manufacturing and quality control. A program is described which will develop the potential of Moire techniques to provide this capability in vision systems and automated measurements, and demonstrate artificial intelligence (AI) techniques to take advantage of the strengths of Moire sensing. Moire techniques provide a means of optically manipulating the complex visual data in a three dimensional scene into a form which can be easily and quickly analyzed by computers. This type of optical data manipulation provides high productivity through integrated automation, producing a high quality product while reducing computer and mechanical manipulation requirements and thereby the cost and time of production. This nondestructive evaluation is developed to be able to make full field range measurement and three dimensional scene analysis.

  4. Chapter 3: Develop a Vision

    PubMed Central

    Jones, Loretta; Meade, Barbara; Norris, Keith; Lucas-Wright, Aziza; Jones, Felica; Moini, Moraya; Jones, Andrea; Koegel, Paul

    2016-01-01

    The Vision stage is the development of the agreed-upon framework for the study, including identifying the issue, the community, the stakeholders, and major aspects of the approach. Achieving the Vision requires planning through a Framing Committee, agreeing on a vision by sharing perspectives and identifying commonalities or “win-wins” that hold the partnership together for community benefit, and evaluating the emergence of the Vision and the partnership. Here, we review tools and strategies. PMID:20088078

  5. Computer vision challenges and technologies for agile manufacturing

    NASA Astrophysics Data System (ADS)

    Molley, Perry A.

    1996-02-01

    applicable to commercial production processes and applications. Computer vision will play a critical role in the new agile production environment for automation of processes such as inspection, assembly, welding, material dispensing and other process control tasks. Although there are many academic and commercial solutions that have been developed, none have had widespread adoption considering the huge potential number of applications that could benefit from this technology. The reason for this slow adoption is that the advantages of computer vision for automation can be a double-edged sword. The benefits can be lost if the vision system requires an inordinate amount of time for reprogramming by a skilled operator to account for different parts, changes in lighting conditions, background clutter, changes in optics, etc. Commercially available solutions typically require an operator to manually program the vision system with features used for the recognition. In a recent survey, we asked a number of commercial manufacturers and machine vision companies the question, 'What prevents machine vision systems from being more useful in factories?' The number one (and unanimous) response was that vision systems require too much skill to set up and program to be cost effective.

  6. Developments in Agile Manufacturing

    SciTech Connect

    Clinesmith, M.G.

    1993-09-01

    As part of a project design initiative, Sandia National Laboratories and AlliedSignal Inc. Kansas City Division have joined efforts to develop a concurrent engineering capability for the manufacturing of complex precision components. The primary effort of this project, called Agile Manufacturing, is directed toward: (1) Understand the error associated with manufacturing and inspection. (2) Develop methods for correcting error. (3) Integrate diverse software technologies into a compatible process. The Agile Manufacturing System (AMS) is a system that integrates product design, manufacturing, and inspection into a closed loop, concurrent engineering process. The goal of developing the Agile Manufacturing System is to: (1) Optimize accuracy in manufacturing and inspection. (A) Use of softgage software for product evaluation. This will ensure ANSI Y14.5 compliance. (B) Establish and monitor bias between CMM and machine center. (C) Map probe deflection error and apply correction to inspection results. This applies to both on machine probing and CMM inspections. (D) Inspection process. (2) Compress the cycle time from product concept to production level manufacturing and verification. (3) Create a self-correcting process that feeds inspection results back into the machining process. (4) Link subordinate processes (cutting/probing path, softgage model, etc.) to the solid model definition.

  7. Night vision device technology development

    SciTech Connect

    Funsten, H.; Nordholt, J.; Suszcynsky, D.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop microchannel plate (MCP) technologies for enhancement of night vision device (NVD) capabilities. First, segmented microchannel plates with independent gain control to minimize loss of low level light images in the presence of a bright light source (e.g., battlefield lasers, flares, and headlights) need to be developed. This enables, for example, enhanced vision capabilities during night operations in, for example, a city environment and continuous capability of aviators to see the horizon, nearground obstructions, and ground targets. Furthermore, curved microchannel plate technology to increase the field of view of NVDs while minimizing optical aberrations needs to be developed and applied. This development would significantly enhance peripheral vision capabilities of aviators and result in easier adaptation of the human eye to NVDs.

  8. Night vision device technology development

    SciTech Connect

    Funsten, H.; Nordholt, J.; Suszcynsky, D.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop microchannel plate (MCP) technologies for enhancement of night vision device (NVD) capabilities. First, the authors addressed the need for segmented microchannel plates with independent gain control to minimize loss of low level light images in the presence of a bright light source (e.g., battlefield lasers, flares, and headlights). This would enable, for example, enhanced vision capabilities during night operations in a city environment and continuous capability of aviators to see the horizon, near-ground obstructions, and ground targets. Second, the authors addressed the need for curved microchannel plate technology to increase the field of view of NVDs while minimizing optical aberrations. This development would significantly enhance peripheral vision capabilities of aviators and result in easier adaptation of the human eye to NVDs. The authors have developed two technologies to overcome these problems, and they have initiated a collaborative effort with an industrial partner to develop a proof-of-principle prototype.

  9. The World Water Vision: From Developing a Vision to Action

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, S.; Cosgrove, W.; Rijsberman, F.; Strzepek, K.; Strzepek, K.

    2001-05-01

    The World Water Vision exercise was initiated by the World Water Commission under the auspices of the World Water Council. The goal of the World Water Vision project was to develop a widely shared vision on the actions required to achieve a common set of water-related goals and the necessary commitment to carry out these actions. The Vision should be participatory in nature, including input from both developed and developing regions, with a special focus on the needs of the poor, women, youth, children and the environment. Three overall objectives were to: (i)raise awareness of water issues among both the general population and decision-makers so as to foster the necessary political will and leadership to tackle the problems seriously and systematically; (ii) develop a vision of water management for 2025 that is shared by water sector specialists as well as international, national and regional decision-makers in government, the private sector and civil society; and (iii) provide input to a Framework for Action to be elaborated by the Global Water Partnership, with steps to go from vision to action, including recommendations to funding agencies for investment priorities. This exercise was characterized by the principles of: (i) a participatory approach with extensive consultation; (ii) Innovative thinking; (iii) central analysis to assure integration and co-ordination; and (iv) emphasis on communication with groups outside the water sector. The primary activities included, developing global water scenarios that fed into regional consultations and sectoral consultations as water for food, water for people - water supply and sanitation, and water and environment. These consultations formulated the regional and sectoral visions that were synthesized to form the World Water Vision. The findings from this exercise were reported and debated at the Second World Water Forum and the Ministerial Conference held in The Hague, The Netherlands during April 2000. This paper

  10. The Development of Low Vision Therapist Certification.

    ERIC Educational Resources Information Center

    Watson, Gale R.; Quillman, R. Dee; Flax, Marshall; Gerritsen, Bryan

    1999-01-01

    Discusses the development and implementation of the low-vision-therapist certification through the Association for Education and Rehabilitation of the Blind and Visually Impaired. Credentials for professionals in low vision are described, along with required written examination, and the role of the low-vision therapist. (CR)

  11. REGIONAL MANUFACTURING TECHNICAL DEVELOPMENT

    SciTech Connect

    EASON, H.A.

    1997-02-21

    This project covers four CRADAS (Cooperative Research and Development Agreements) which were initiated in 1991 and 1993. The two CRADAS with the state of Tennessee and the state of Florida were to provide technical assistance to small manufacturers in those states and the CRADA with the Tennessee Technology Foundation was to engage in joint economic development activities within the state. These three CRADAS do not fit the traditional definition of CRADAS and would be administered by other agreement mechanisms, today. But in these early days of technology transfer efforts, the CRADA mechanism was already developed and usable. The CRADA with Coors Ceramics is a good example of a CRADA and was used to develop nondestructive testing technology for ceramic component inspection. The report describes the background of this project, its economic impact, and its benefits to the U. S. Department of Energy.

  12. Applied machine vision

    SciTech Connect

    Not Available

    1984-01-01

    This book presents the papers given at a conference on robot vision. Topics considered at the conference included the link between fixed and flexible automation, general applications of machine vision, the development of a specification for a machine vision system, machine vision technology, machine vision non-contact gaging, and vision in electronics manufacturing.

  13. Workforce Development for Manufacturing

    ERIC Educational Resources Information Center

    Bernard, Rosalie

    2007-01-01

    In a recent skills gap report, the National Association of Manufacturers (NAM) noted some disturbing trends in the gap between the demand for highly skilled manufacturing workers and the potential supply. The NAM report notes that smaller manufacturers rank finding qualified workers ahead of energy costs, taxes and government regulations on the…

  14. Drug development and manufacturing

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  15. Developing organisational vision in general practice.

    PubMed Central

    al-Shehri, A; Stanley, I; Thomas, P

    1993-01-01

    Vision is a fashionable but ill defined term in management circles. Nevertheless, it embodies a significant concept related to guiding an organisation from present realities, through opportunities and hazards, to a viable future. Until recently a typical general practice could assume a stable external environment, but now it is caught up in the uncertainties stemming from the NHS reforms. For such a practice to undertake effective strategic planning it will have to develop a vision connecting the present with aspirations for the future. While vision is usually considered to be an individual talent, it is possible to develop a collective organisational vision within a general practice, and the small size of general practices makes this relatively easy. The vision needs to be broad; it needs to be continuous; and its capacity to predict the future needs to be monitored. PMID:8343704

  16. Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Zhang, Guangjun

    2013-11-01

    Additive manufacturing based on gas metal arc welding is an advanced technique for depositing fully dense components with low cost. Despite this fact, techniques to achieve accurate control and automation of the process have not yet been perfectly developed. The online measurement of the deposited bead geometry is a key problem for reliable control. In this work a passive vision-sensing system, comprising two cameras and composite filtering techniques, was proposed for real-time detection of the bead height and width through deposition of thin walls. The nozzle to the top surface distance was monitored for eliminating accumulated height errors during the multi-layer deposition process. Various image processing algorithms were applied and discussed for extracting feature parameters. A calibration procedure was presented for the monitoring system. Validation experiments confirmed the effectiveness of the online measurement system for bead geometry in layered additive manufacturing.

  17. The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.

    1994-01-01

    Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.

  18. Development of a micromachined epiretinal vision prosthesis

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas

    2009-12-01

    Microsystems engineering offers the tools to develop highly sophisticated miniaturized implants to interface with the nervous system. One challenging application field is the development of neural prostheses to restore vision in persons that have become blind by photoreceptor degeneration due to retinitis pigmentosa. The fundamental work that has been done in one approach is presented here. An epiretinal vision prosthesis has been developed that allows hybrid integration of electronics on one part of a thin and flexible substrate. Polyimide as a substrate material is proven to be non-cytotoxic. Non-hermetic encapsulation with parylene C was stable for at least 3 months in vivo. Chronic animal experiments proved spatially selective cortical activation after epiretinal stimulation with a 25-channel implant. Research results have been transferred successfully to companies that currently work on the medical device approval of these retinal vision prostheses in Europe and in the USA.

  19. Active vision system for planning and programming of industrial robots in one-of-a-kind manufacturing

    NASA Astrophysics Data System (ADS)

    Berger, Ulrich; Schmidt, Achim

    1995-10-01

    The aspects of automation technology in industrial one-of-a-kind manufacturing are discussed. An approach to improve the quality and cost relation is developed and an overview of an 3D- vision supported automation system is given. This system is based on an active vision sensor for 3D-geometry feedback. Its measurement principle, the coded light approach, is explained. The experimental environment for the technical validation of the automation approach is demonstrated, where robot based processes (assembly, arc welding and flame cutting) are graphically simulated and off-line programmed. A typical process sequence for automated one- of-a-kind manufacturing is described. The results of this research development are applied to a project on the automated disassembling of car parts for recycling using industrial robots.

  20. Development Of A Vision Guided Robot System

    NASA Astrophysics Data System (ADS)

    Torfeh-Isfahani, Mohammad; Yeung, Kim F.

    1987-10-01

    This paper presents the development of an intelligent vision guided system through the integration of a vision system into a robot. Systems like the one described in this paper are able to work alone. They can be used in many automated assembly operations. Such systems can do repetitive tasks more efficiently and accurately than human operators because of the immunity of machines to human factors such as boredom, fatigue, and stress. In order to better understand the capabilities of such systems, this paper will highlight what can be accomplished by such systems by detailing the development of such a system. This system is already built and functional.

  1. Development of a machine vision system for automotive part inspection

    NASA Astrophysics Data System (ADS)

    Andres, Nelson S.; Marimuthu, Ram P.; Eom, Yong-Kyun; Jang, Bong-Choon

    2005-12-01

    As an alternative for human inspection, presented in this study was the development of a machine vision inspection system (MVIS) purposely for car seat frames. The proposed MVIS was designed to meet the demands, features and specifications of car seat frame manufacturing companies in striving for increased throughput of better quality. This computer-based MVIS was designed to perform quality measures by detecting holes, nuts and welding spots on every car seat frame in real time and ensuring these portions are intact, precise and in proper place. In this study, the NI Vision Builder software for Automatic Inspection was used as a solution in configuring the aimed quality measurements. The proposed software has measurement techniques such as edge detecting and pattern-matching which are capable of identifying the boundaries or edges of an object and analyzing the pixel values along the profile to detect significant intensity changes. Either of these techniques is capable of gauging sizes, detecting missing portion and checking alignment of parts. The techniques for visual inspection were optimized through qualitative analysis and simulation of human tolerance on inspecting car seat frames. Furthermore, this study exemplified the incorporation of the optimized vision inspection environment to the pre-inspection and post-inspection subsystems. The optimized participation of human on this proposed MVIS for car seat frames has ideally eased to feeding and sorting.

  2. Vision-related problems among the workers engaged in jewellery manufacturing

    PubMed Central

    Salve, Urmi Ravindra

    2015-01-01

    Background: American Optometric Association defines Computer Vision Syndrome (CVS) as “complex of eye and vision problems related to near work which are experienced during or related to computer use.” This happens when visual demand of the tasks exceeds the visual ability of the users. Even though problems were initially attributed to computer-related activities subsequently similar problems are also reported while carrying any near point task. Jewellery manufacturing activities involves precision designs, setting the tiny metals and stones which requires high visual attention and mental concentration and are often near point task. It is therefore expected that the workers engaged in jewellery manufacturing may also experience symptoms like CVS. Aim: Keeping the above in mind, this study was taken up (1) To identify the prevalence of symptoms like CVS among the workers of the jewellery manufacturing and compare the same with the workers working at computer workstation and (2) To ascertain whether such symptoms have any permanent vision-related problems. Setting and Design: Case control study. Materials and Methods: The study was carried out in Zaveri Bazaar region and at an IT-enabled organization in Mumbai. The study involved the identification of symptoms of CVS using a questionnaire of Eye Strain Journal, opthalmological check-ups and measurement of Spontaneous Eye Blink rate. The data obtained from the jewellery manufacturing was compared with the data of the subjects engaged in computer work and with the data available in the literature. Statistical Analysis: A comparative inferential statistics was used. Results and Conclusion: Results showed that visual demands of the task carried out in jewellery manufacturing were much higher than that of carried out in computer-related work. PMID:26023269

  3. Manufacturing developments in insulation application

    NASA Technical Reports Server (NTRS)

    Yates, I. C., Jr.

    1971-01-01

    Manufacturing development studies have been conducted to provide information on the fabrication and handling characteristics of a number of candidate multilayer insulation systems. The application of these complex, lightweight insulation systems to large-scale, flight-type cryogenic tankage and other structures has of necessity required the development of new methods, processes, and tooling concepts. Results of some of the studies that have contributed to the advancement of cryogenic technology are presented. The insulation systems that are of primary importance for future application are those using the sliced foam spacers, the net type spacers, the glass fiber paper spacers, and the Superfloc system which consists of tufts of dacron fibers flocked on the surface of the radiation shields.

  4. FLORA™: Phase I development of a functional vision assessment for prosthetic vision users

    PubMed Central

    Geruschat, Duane R; Flax, Marshall; Tanna, Nilima; Bianchi, Michelle; Fisher, Andy; Goldschmidt, Mira; Fisher, Lynne; Dagnelie, Gislin; Deremeik, Jim; Smith, Audrey; Anaflous, Fatima; Dorn, Jessy

    2014-01-01

    Background Research groups and funding agencies need a functional assessment suitable for an ultra-low vision population in order to evaluate the impact of new vision restoration treatments. The purpose of this study was to develop a pilot assessment to capture the functional vision ability and well-being of subjects whose vision has been partially restored with the Argus II Retinal Prosthesis System. Methods The Functional Low-Vision Observer Rated Assessment (FLORA) pilot assessment involved a self-report section, a list of functional vision tasks for observation of performance, and a case narrative summary. Results were analyzed to determine whether the interview questions and functional vision tasks were appropriate for this ultra-low vision population and whether the ratings suffered from floor or ceiling effects. Thirty subjects with severe to profound retinitis pigmentosa (bare light perception or worse in both eyes) were enrolled in a clinical trial and implanted with the Argus II System. From this population, twenty-six subjects were assessed with the FLORA. Seven different evaluators administered the assessment. Results All 14 interview questions were asked. All 35 functional vision tasks were selected for evaluation at least once, with an average of 20 subjects being evaluated for each test item. All four rating options -- impossible (33%), difficult (23%), moderate (24%) and easy (19%) -- were used by the evaluators. Evaluators also judged the amount of vision they observed the subjects using to complete the various tasks, with vision only occurring 75% on average with the System ON, and 29% with the System OFF. Conclusion The first version of the FLORA was found to contain useful elements for evaluation and to avoid floor and ceiling effects. The next phase of development will be to refine the assessment and to establish reliability and validity to increase its value as a functional vision and well-being assessment tool. PMID:25675964

  5. Developments in precision asphere manufacturing

    NASA Astrophysics Data System (ADS)

    Tierson, Jay; Fess, Ed; Matthews, Greg

    2015-10-01

    The increased use of aspheres in today's optical systems has led to specialized manufacturing equipment and processes that are needed to meet component specifications. Due to their sub-aperture nature, each stage of these processes can leave behind a signature that could adversely affect the asphere's overall performance. Utilizing a variety of grinding and polishing techniques can help minimize residual artifacts that are left in an asphere. OptiPro has performed extensive process development work to understand how to grind and polish aspheres at production speeds with minimized process signatures. For example, the amount of stock removed from a substrate using a sub aperture polishing process can increase the amount of mid-spacial frequencies that can be detected. Through precise grind control, sub aperture, and mid-aperture polishing process research, OptiPro developed a detailed knowledge of asphere process control. One of the outcomes of this work has led OptiPro to develop an asphere polishing head for their 160A polishing platform which allows more process flexibility and control.

  6. Manufacturing development of DC-10 advanced rudder

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1979-01-01

    The design, manufacture, and ground test activities during development of production methods for an advanced composite rudder for the DC-10 transport aircraft are described. The advanced composite aft rudder is satisfactory for airline service and a cost saving in a full production manufacturing mode is anticipated.

  7. Effective Organizational Vision: Implications for Human Resource Development

    ERIC Educational Resources Information Center

    Foster, Rex D.; Akdere, Mesut

    2007-01-01

    Purpose: The purpose of this paper is to examine the existing literature related to organizational vision and discusses its potential implications for human resource development (HRD). Furthermore, the paper aims to provide a forum for debate on the utility and effectiveness of organizational vision and how it is related to HRD and strategic…

  8. In-Space Manufacturing Baseline Property Development

    NASA Technical Reports Server (NTRS)

    Stockman, Tom; Schneider, Judith; Prater, Tracie; Bean, Quincy; Werkheiser, Nicki

    2016-01-01

    The In-Space Manufacturing (ISM) project at NASA Marshall Space Flight Center currently operates a 3D FDM (fused deposition modeling) printer onboard the International Space Station. In order to enable utilization of this capability by designer, the project needs to establish characteristic material properties for materials produced using the process. This is difficult for additive manufacturing since standards and specifications do not yet exist for these technologies. Due to availability of crew time, there are limitations to the sample size which in turn limits the application of the traditional design allowables approaches to develop a materials property database for designers. In this study, various approaches to development of material databases were evaluated for use by designers of space systems who wish to leverage in-space manufacturing capabilities. This study focuses on alternative statistical techniques for baseline property development to support in-space manufacturing.

  9. Vision-based coaching: optimizing resources for leader development

    PubMed Central

    Passarelli, Angela M.

    2015-01-01

    Leaders develop in the direction of their dreams, not in the direction of their deficits. Yet many coaching interactions intended to promote a leader’s development fail to leverage the benefits of the individual’s personal vision. Drawing on intentional change theory, this article postulates that coaching interactions that emphasize a leader’s personal vision (future aspirations and core identity) evoke a psychophysiological state characterized by positive emotions, cognitive openness, and optimal neurobiological functioning for complex goal pursuit. Vision-based coaching, via this psychophysiological state, generates a host of relational and motivational resources critical to the developmental process. These resources include: formation of a positive coaching relationship, expansion of the leader’s identity, increased vitality, activation of learning goals, and a promotion–orientation. Organizational outcomes as well as limitations to vision-based coaching are discussed. PMID:25926803

  10. Vision-based coaching: optimizing resources for leader development.

    PubMed

    Passarelli, Angela M

    2015-01-01

    Leaders develop in the direction of their dreams, not in the direction of their deficits. Yet many coaching interactions intended to promote a leader's development fail to leverage the benefits of the individual's personal vision. Drawing on intentional change theory, this article postulates that coaching interactions that emphasize a leader's personal vision (future aspirations and core identity) evoke a psychophysiological state characterized by positive emotions, cognitive openness, and optimal neurobiological functioning for complex goal pursuit. Vision-based coaching, via this psychophysiological state, generates a host of relational and motivational resources critical to the developmental process. These resources include: formation of a positive coaching relationship, expansion of the leader's identity, increased vitality, activation of learning goals, and a promotion-orientation. Organizational outcomes as well as limitations to vision-based coaching are discussed. PMID:25926803

  11. Improving Vision

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Many people are familiar with the popular science fiction series Star Trek: The Next Generation, a show featuring a blind character named Geordi La Forge, whose visor-like glasses enable him to see. What many people do not know is that a product very similar to Geordi's glasses is available to assist people with vision conditions, and a NASA engineer's expertise contributed to its development. The JORDY(trademark) (Joint Optical Reflective Display) device, designed and manufactured by a privately-held medical device company known as Enhanced Vision, enables people with low vision to read, write, and watch television. Low vision, which includes macular degeneration, diabetic retinopathy, and glaucoma, describes eyesight that is 20/70 or worse, and cannot be fully corrected with conventional glasses.

  12. Competitive Manufacturing: New Strategies for Regional Development.

    ERIC Educational Resources Information Center

    Rosenfeld, Stuart A.

    In the past, economic development in the rural United States, particularly in the rural South, relied principally on the attractiveness of a low-wage work force to mass-production manufacturing industries. Now however, the viability of the traditional mass-production economy's organizational structure and operating procedures has been eroded by…

  13. Developing a Shared Leadership Vision in a College Setting

    ERIC Educational Resources Information Center

    Fierke, Kerry K.

    2014-01-01

    The University of Minnesota College of Pharmacy is nationally recognized for its leadership curriculum. Despite the College's success in developing student leaders, an overall guiding leadership philosophy within the College has not been specifically articulated. To begin the process of developing a shared leadership vision, a democratic,…

  14. Development of Advanced Ceramic Manufacturing Technology

    SciTech Connect

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  15. Trends and developments in industrial machine vision: 2013

    NASA Astrophysics Data System (ADS)

    Niel, Kurt; Heinzl, Christoph

    2014-03-01

    When following current advancements and implementations in the field of machine vision there seems to be no borders for future developments: Calculating power constantly increases, and new ideas are spreading and previously challenging approaches are introduced in to mass market. Within the past decades these advances have had dramatic impacts on our lives. Consumer electronics, e.g. computers or telephones, which once occupied large volumes, now fit in the palm of a hand. To note just a few examples e.g. face recognition was adopted by the consumer market, 3D capturing became cheap, due to the huge community SW-coding got easier using sophisticated development platforms. However, still there is a remaining gap between consumer and industrial applications. While the first ones have to be entertaining, the second have to be reliable. Recent studies (e.g. VDMA [1], Germany) show a moderately increasing market for machine vision in industry. Asking industry regarding their needs the main challenges for industrial machine vision are simple usage and reliability for the process, quick support, full automation, self/easy adjustment at changing process parameters, "forget it in the line". Furthermore a big challenge is to support quality control: Nowadays the operator has to accurately define the tested features for checking the probes. There is an upcoming development also to let automated machine vision applications find out essential parameters in a more abstract level (top down). In this work we focus on three current and future topics for industrial machine vision: Metrology supporting automation, quality control (inline/atline/offline) as well as visualization and analysis of datasets with steadily growing sizes. Finally the general trend of the pixel orientated towards object orientated evaluation is addressed. We do not directly address the field of robotics taking advances from machine vision. This is actually a fast changing area which is worth an own

  16. Deaf and Hearing Children: A Comparison of Peripheral Vision Development

    ERIC Educational Resources Information Center

    Codina, Charlotte; Buckley, David; Port, Michael; Pascalis, Olivier

    2011-01-01

    This study investigated peripheral vision (at least 30[degrees] eccentric to fixation) development in profoundly deaf children without cochlear implantation, and compared this to age-matched hearing controls as well as to deaf and hearing adult data. Deaf and hearing children between the ages of 5 and 15 years were assessed using a new,…

  17. Manufacturing development of low activation vanadium alloys

    SciTech Connect

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported.

  18. Liberal Education, Human Development, and Social Vision.

    ERIC Educational Resources Information Center

    Gregory, Marshall W.

    1982-01-01

    Examines the effects of the post-Sputnik knowledge explosion. Critizes universities for teaching facts and information without values and applications and faults apathetic students who narrowly focus on job openings, pay scales, and retirement plans. Urges colleges to develop intellectual autonomy and the powers of imagination, sensitivity, and…

  19. A New Vision for Professional Development

    ERIC Educational Resources Information Center

    Eley, Peter M.; Charles, Kelly J.; Leeks, Latonya L.

    2013-01-01

    High-quality professional development for public school teachers is directly tied to student achievement, teacher quality and retention, and national education priorities (Kroeger et al. 2000). To stay current with the knowledge, skills, and expertise that students need to succeed in the twenty-first century, educators must increasingly retool…

  20. Development of an aviator's helmet-mounted night-vision goggle system

    NASA Astrophysics Data System (ADS)

    Wilson, Gerry H.; McFarlane, Robert J.

    1990-10-01

    Helmet Mounted Systems (HMS) must be lightweight, balanced and compatible with life support and head protection assemblies. This paper discusses the design of one particular HMS, the GEC Ferranti NITE-OP/NIGHTBIRD aviator's Night Vision Goggle (NVG) developed under contracts to the Ministry of Defence for all three services in the United Kingdom (UK) for Rotary Wing and fast jet aircraft. The existing equipment constraints, safety, human factor and optical performance requirements are discussed before the design solution is presented after consideration of these material and manufacturing options.

  1. Translating Vision into Design: A Method for Conceptual Design Development

    NASA Technical Reports Server (NTRS)

    Carpenter, Joyce E.

    2003-01-01

    One of the most challenging tasks for engineers is the definition of design solutions that will satisfy high-level strategic visions and objectives. Even more challenging is the need to demonstrate how a particular design solution supports the high-level vision. This paper describes a process and set of system engineering tools that have been used at the Johnson Space Center to analyze and decompose high-level objectives for future human missions into design requirements that can be used to develop alternative concepts for vehicles, habitats, and other systems. Analysis and design studies of alternative concepts and approaches are used to develop recommendations for strategic investments in research and technology that support the NASA Integrated Space Plan. In addition to a description of system engineering tools, this paper includes a discussion of collaborative design practices for human exploration mission architecture studies used at the Johnson Space Center.

  2. Computer vision as a tool to study plant development.

    PubMed

    Spalding, Edgar P

    2009-01-01

    Morphological phenotypes due to mutations frequently provide key information about the biological function of the affected genes. This has long been true of the plant Arabidopsis thaliana, though phenotypes are known for only a minority of this model organism's approximately 25,000 genes. One common explanation for lack of phenotype in a given mutant is that a genetic redundancy masks the effect of the missing gene. Another possibility is that a phenotype escaped detection or manifests itself only in a certain unexamined condition. Addressing this potentially nettlesome alternative requires the development of more sophisticated tools for studying morphological development. Computer vision is a technical field that holds much promise in this regard. This chapter explains in general terms how computer algorithms can extract quantitative information from images of plant structures undergoing development. Automation is a central feature of a successful computer vision application as it enables more conditions and more dependencies to be characterized. This in turn expands the concept of phenotype into a point set in multidimensional condition space. New ways of measuring and thinking about phenotypes, and therefore the functions of genes, are expected to result from expanding the role of computer vision in plant biology. PMID:19588113

  3. Development of a machine vision system for automated structural assembly

    NASA Technical Reports Server (NTRS)

    Sydow, P. Daniel; Cooper, Eric G.

    1992-01-01

    Research is being conducted at the LaRC to develop a telerobotic assembly system designed to construct large space truss structures. This research program was initiated within the past several years, and a ground-based test-bed was developed to evaluate and expand the state of the art. Test-bed operations currently use predetermined ('taught') points for truss structural assembly. Total dependence on the use of taught points for joint receptacle capture and strut installation is neither robust nor reliable enough for space operations. Therefore, a machine vision sensor guidance system is being developed to locate and guide the robot to a passive target mounted on the truss joint receptacle. The vision system hardware includes a miniature video camera, passive targets mounted on the joint receptacles, target illumination hardware, and an image processing system. Discrimination of the target from background clutter is accomplished through standard digital processing techniques. Once the target is identified, a pose estimation algorithm is invoked to determine the location, in three-dimensional space, of the target relative to the robots end-effector. Preliminary test results of the vision system in the Automated Structural Assembly Laboratory with a range of lighting and background conditions indicate that it is fully capable of successfully identifying joint receptacle targets throughout the required operational range. Controlled optical bench test results indicate that the system can also provide the pose estimation accuracy to define the target position.

  4. Visions of educational development in the post-socialist era

    NASA Astrophysics Data System (ADS)

    Kotásek, Jiří

    1993-11-01

    The paper attempts to characterize and explain the social, political and economic climate underlying educational dilemmas and visions in Czechoslovakia and other Central European countries after the collapse of communist regimes. The new democracies are becoming huge laboratories of social and educational reform — issues of great importance to comparative education. The most urgent dilemma is whether to restore the pre-war educational system, or to follow the mainstream of educational development. Educational policy is also seeking to find a specific solution to a second dilemma: statism versus liberalism in organization, funding, structure and curriculum. The hindering factor is underestimation of the significance of educational policy in the global reform process. Finally, the author quotes Havel's vision of a new politics of education based on consciousness and self-recognition of mankind.

  5. Manufacturing development of pultruded composite panels

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1989-01-01

    The weight savings potential, of graphite-epoxy composites for secondary and medium primary aircraft structures, was demonstrated. One of the greatest challenges facing the aircraft industry is to reduce the acquisition costs for composite structures to a level below that of metal structures. The pultrusion process, wherein reinforcing fibers, after being passed through a resin bath are drawn through a die to form and cure the desired cross-section, is an automated low cost manufacturing process for composite structures. The Lockheed Aeronautical Systems Company (LASC) Composites Development Center designed, characterizated materials for, fabricated and tested a stiffened cover concept compatible with the continuous pultrusion process. The procedures used and the results obtained are presented.

  6. Develop and Manufacture an airlock sliding tray

    SciTech Connect

    Lawton, Cindy M.

    2014-02-26

    Objective: The goal of this project is to continue to develop an airlock sliding tray and then partner with an industrial manufacturing company for production. The sliding tray will be easily installed into and removed from most glovebox airlocks in a few minutes. Technical Approach: A prototype of a sliding tray has been developed and tested in the LANL cold lab and 35 trays are presently being built for the plutonium facility (PF-4). The current, recently approved design works for a 14-inch diameter round airlock and has a tray length of approximately 20 inches. The grant will take the already tested and approved round technology and design for the square airlock. These two designs will be suitable for the majority of the existing airlocks in the multitude of DOE facilities. Partnering with an external manufacturer will allow for production of the airlock trays at a much lower cost and increase the availability of the product for all DOE sites. Project duration is estimated to be 12-13 months. Benefits: The purpose of the airlock sliding trays is fourfold: 1) Mitigate risk of rotator cuff injuries, 2) Improve ALARA, 3) Reduce risk of glovebox glove breaches and glove punctures, and 4) Improve worker comfort. I have had the opportunity to visit many other DOE facilities including Savannah, Y-12, ORNL, Sandia, and Livermore for assistance with ergonomic problems and/or injuries. All of these sites would benefit from the airlock sliding tray and I can assume all other DOE facilities with gloveboxes built prior to 1985 could also use the sliding trays.

  7. Development of a vision system for an intelligent ground vehicle

    NASA Astrophysics Data System (ADS)

    Nagel, Robert L.; Perry, Kenneth; Stone, Robert B.; McAdams, Daniel A.

    2009-01-01

    The development of a vision system for an autonomous ground vehicle designed and constructed for the Intelligent Ground Vehicle Competition (IGVC) is discussed. The requirements for the vision system of the autonomous vehicle are explored via functional analysis considering the flows (materials, energies and signals) into the vehicle and the changes required of each flow within the vehicle system. Functional analysis leads to a vision system based on a laser range finder (LIDAR) and a camera. Input from the vision system is processed via a ray-casting algorithm whereby the camera data and the LIDAR data are analyzed as a single array of points representing obstacle locations, which for the IGVC, consist of white lines on the horizontal plane and construction markers on the vertical plane. Functional analysis also leads to a multithreaded application where the ray-casting algorithm is a single thread of the vehicle's software, which consists of multiple threads controlling motion, providing feedback, and processing the data from the camera and LIDAR. LIDAR data is collected as distances and angles from the front of the vehicle to obstacles. Camera data is processed using an adaptive threshold algorithm to identify color changes within the collected image; the image is also corrected for camera angle distortion, adjusted to the global coordinate system, and processed using least-squares method to identify white boundary lines. Our IGVC robot, MAX, is utilized as the continuous example for all methods discussed in the paper. All testing and results provided are based on our IGVC robot, MAX, as well.

  8. Development of pattern vision following early and extended blindness

    PubMed Central

    Kalia, Amy; Lesmes, Luis Andres; Dorr, Michael; Gandhi, Tapan; Chatterjee, Garga; Ganesh, Suma; Bex, Peter J.; Sinha, Pawan

    2014-01-01

    Visual plasticity peaks during early critical periods of normal visual development. Studies in animals and humans provide converging evidence that gains in visual function are minimal and deficits are most severe when visual deprivation persists beyond the critical period. Here we demonstrate visual development in a unique sample of patients who experienced extended early-onset blindness (beginning before 1 y of age and lasting 8–17 y) before removal of bilateral cataracts. These patients show surprising improvements in contrast sensitivity, an assay of basic spatial vision. We find that contrast sensitivity development is independent of the age of sight onset and that individual rates of improvement can exceed those exhibited by normally developing infants. These results reveal that the visual system can retain considerable plasticity, even after early blindness that extends beyond critical periods. PMID:24449865

  9. Research and development on embedded omnidirectional vision tracker for vision navigation

    NASA Astrophysics Data System (ADS)

    Zhu, Junchao; Feng, Weijia; Cao, Zuoliang; Zhang, Baofeng

    2009-11-01

    Omni-directional vision appears the definite significance since its advantage of acquiring all vision information simultaneously. In this paper, an integrated omni-directional vision tracker based on the configuration with CMOS, FPGA and DSP has been implemented. Fisheye lens is one of the most efficient ways to establish omni-directional vision systems, however, it appear with an unavoidable inherent distortion. An imaging system model which consists of fisheye-lens and the embedded tracker has been proposed. A novel beacon owning the feature of particular topology shape can be identified by the appropriative recognition processes. Particle filter has been programmed as an intersectional arithmetic structure which processes the same step of several particle filters simultaneously. We called it as Multiple Intersection Particle Filter. MIPF makes multi-targets tracking efficiently and successfully on embedded platform. A rectification technique based on equidistant projection theorem is used for correction some distorted image point. The localization method just employs the picture position of two objects to estimate the space position and orientation for AGV. After target recognition, vision tracking, rectification, and object positioning functions actualized on the embedded omni-directional vision tracker, autonomous navigation has been demonstrated on experimental AGV.

  10. NASA Game Changing Development Program Manufacturing Innovation Project

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  11. Using Gnu C to develop PC-based vision systems

    NASA Astrophysics Data System (ADS)

    Miller, John W. V.; Shridhar, Malayappan; Shabestari, Behrouz N.

    1995-10-01

    The Gnu project has provided a substantial quantity of free high-quality software tools for UNIX-based machines including the Gnu C compiler which is used on a wide variety of hardware systems including IBM PC-compatible machines using 80386 or newer (32-bit) processors. While this compiler was developed for UNIX applications, it has been successfully ported to DOS and offers substantial benefits over traditional DOS-based 16-bit compilers for machine vision applications. One of the most significant advantages with Gnu C is the removal of the 640 K limit since addressing is performed with 32-bit pointers. Hence, all physical memory can be used directly to store and retrieve images, lookup tables, databases, etc. Execution speed is generally faster also since 32-bit code usually executes faster and there are no far pointers. Protected-mode operation provides other benefits since errant pointers often cause segmentation errors and the source of such errors can be readily identified using special tools provided with the compiler. Examples of vision applications using Gnu C include automatic hand-written address block recognition, counting of shattered-glass particles, and dimensional analysis.

  12. Quality indexing by machine vision during fermentation in black tea manufacturing

    NASA Astrophysics Data System (ADS)

    Borah, S.; Bhuyan, M.

    2003-04-01

    Although the organoleptic method of tea testing has been traditionally used for quality monitoring, an alternative way by machine vision may be advantageous. Although, the three main quality descriptors estimate the overall quality of made-tea, viz., strength, briskness and brightness of tea liquor, the exact colour detection in fermenting process leads to a good quality-monitoring tool. The use of digital image processing technique for this purpose is reported to play an effective role towards the production of good quality tea though it is not the only quality determining parameter. In this paper, it has been tried to compare the contribution of the chemical constituents towards the final product with the visual appearance in the processing stage by imaging. The use of machine intelligence supports the process somewhat invariantly in comparison to the human decision and colorimetric approach. The captured images are processed for colour matching with a standard image database using HSI colour model. The application of colour dissimilarity and perceptron learning for the standard images and the test images is ensured. Moreover, the performance of the system is being tried to correlate with the decision made by the organoleptic panel assigned for the tea testing and chemical test results on the final product. However, it should be noted that the optimized result could be achieved only when the other quality parameters such as withering, flavour (aroma) detection, drying status etc. are properly maintained.

  13. Development of a vision integration framework for laparoscopic surgical robot.

    PubMed

    Shin, Jung W; Park, Jun W; Lee, Chul H; Hong, Soyoung; Jo, Yungho; Choi, Jaesoon

    2006-01-01

    In order to realize intelligent laparoscopic surgical robot, a vision integrated system constitutes one of the fundamental components. The authors have constructed a vision framework in the current version of NCC (National Cancer Center) laparoscopic surgical robot controlled on a real-time OS (RTLinux-Pro, FSMLabs Inc., U.S.A.). Adding vision framework, we have been applying and testing image processing algorithms- edge detection of object for positioning surgical tool, Watersheds for recognizing object. This paper documents the implementation of the framework and preliminary results of the image segmentation using Watersheds algorithm. Finally the real-time processing capability of our vision system is discussed. PMID:17946817

  14. Manufacturing research strategic plan

    SciTech Connect

    1995-11-01

    This plan provides an overall strategic roadmap for the DOE-defense programs advanced manufacturing research program which supports the national science based stockpile stewardship program. This plan represents a vision required to develop the knowledge base needed to ensure an enduring national capability to rapidly and effectively manufacture nuclear weapons.

  15. Giving Machines the Vision

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Amherst Systems manufactures foveal machine vision technology and systems commercially available to end-users and system integrators. This technology was initially developed under NASA contracts NAS9-19335 (Johnson Space Center) and NAS1-20841 (Langley Research Center). This technology is currently being delivered to university research facilities and military sites. More information may be found in www.amherst.com.

  16. Developing Visions of High-Quality Mathematics Instruction

    ERIC Educational Resources Information Center

    Munter, Charles

    2014-01-01

    This article introduces an interview-based instrument that was created for the purposes of characterizing the visions of high-quality mathematics instruction of teachers, principals, mathematics coaches, and district leaders and tracking changes in those visions over time. The instrument models trajectories of perceptions of high-quality…

  17. Developing the Manufacturing Process for Hylene MP Curing Agent

    SciTech Connect

    Eastwood, Eric

    2009-02-16

    This report details efforts to scale-up and re-establish the manufacturing process for the curing agent known as Hylene MP. First, small scale reactions were completed with varying conditions to determine key drivers for yielding high quality product. Once the optimum conditions were determined on the small scale, the scaled-up process conditions were determined. New equipment was incorporated into the manufacturing process to create a closed production system and improve chemical exposure controls and improve worker safety. A safe, efficient manufacturing process was developed to manufacture high quality Hylene MP in large quantities.

  18. Development of a night vision device driving training aid

    NASA Astrophysics Data System (ADS)

    Ruffner, John W.; Woodward, Kim G.; Piccione, Dino

    1999-07-01

    The use of night vision devices (NVDs) has the potential for enhancing driving operations at night by allowing increased mobility and safer operations. However, with this increased capability has come the requirement to manage risks and provide suitable training. Results from field experiments and accident analyses suggest that problems experienced by drivers with NVDs can be attributed to a limited understanding of the NVD capabilities and limitations and to perceptual problems. There is little formal training available to help drivers obtain the required knowledge and skills and little opportunity to obtain and practice perceptual skills prior to driving in the operational environment. NVD users need early and continued exposure to the night environment across a broad range of visual conditions to develop and maintain the necessary perceptual skills. This paper discusses the interim results of a project to develop a Night Driving Training Aid (NDTA) for driving with image intensification (I2) devices. The paper summarizes work to validate requirements, develop instructional materials and software, and deliver the instruction in a multimedia, interactive PC environment. In addition, we discuss issues and lessons learned for training NVD driving knowledge and skills in a PC environment and extending the NDTA to thermal NVDs.

  19. Quality inspection guided laser processing of irregular shape objects by stereo vision measurement: application in badminton shuttle manufacturing

    NASA Astrophysics Data System (ADS)

    Qi, Li; Wang, Shun; Zhang, Yixin; Sun, Yingying; Zhang, Xuping

    2015-11-01

    The quality inspection process is usually carried out after first processing of the raw materials such as cutting and milling. This is because the parts of the materials to be used are unidentified until they have been trimmed. If the quality of the material is assessed before the laser process, then the energy and efforts wasted on defected materials can be saved. We proposed a new production scheme that can achieve quantitative quality inspection prior to primitive laser cutting by means of three-dimensional (3-D) vision measurement. First, the 3-D model of the object is reconstructed by the stereo cameras, from which the spatial cutting path is derived. Second, collaborating with another rear camera, the 3-D cutting path is reprojected to both the frontal and rear views of the object and thus generates the regions-of-interest (ROIs) for surface defect analysis. An accurate visual guided laser process and reprojection-based ROI segmentation are enabled by a global-optimization-based trinocular calibration method. The prototype system was built and tested with the processing of raw duck feathers for high-quality badminton shuttle manufacture. Incorporating with a two-dimensional wavelet-decomposition-based defect analysis algorithm, both the geometrical and appearance features of the raw feathers are quantified before they are cut into small patches, which result in fully automatic feather cutting and sorting.

  20. Vision/viewing development status, Savannah River Plant

    SciTech Connect

    Heckendorn, F.M.; Veenema, P.

    1988-01-01

    The Savannah River Laboratory (SRL) continues to provide support to the Savannah River Plant (SRP) in many areas of Robotics and Vision/Viewing. An overview of the work recently completed or now in progress in the Vision/Viewing areas is provided below. The nature of the work at SRP has indicated the need for both vision systems related to classic robotics and viewing systems of a specialized nature. The latter concerns the maximizing of information gathering and control efforts in radiation environments not suitable for continued human presence. The following sections will address these applications separately. 17 figs.

  1. Single-photon imaging camera development for night vision

    NASA Astrophysics Data System (ADS)

    Vasile, Stefan; Cheng, Jing; Lipson, Jerold; Liu, Jifeng; Michel, Jurgen

    2010-04-01

    Single-photon imaging in infrared will add a new valuable tool to night imaging cameras. Despite years of development, high-sensitivity SWIR cameras are still expensive and not ready for large-volume production. Germanium (Ge) is a promising semiconductor to convert SWIR radiation and it has seen extensive development in conjunction with highspeed optical communications. We are demonstrating a new low-light level infrared array technology based on the single-photon sensitive Geiger avalanche PhotoDiode (Si-GPD) array technology developed at aPeak and low-dislocation Germanium processing developed at MIT. The core of the imaging camera is a Ge:Si photon-counting GPD pixel with CMOS readout. The primary technology objective is to demonstrate through prototyping and semiconductor process development the technical feasibility of single-photon detection cameras sensitive in the SWIR and set the performance specifications. We report on prototype Ge:Si structures compatible with the GPD operation and technology. We demonstrate >80% quantum efficiency at 1310nm and 45%-60% quantum efficiency at 1550nm. Dark current measurements indicate that single-photon sensitivity (2.6x10-18W/pixel) is achievable by cooling the detector at cryogenic temperatures down to 53K. A digital developed to provide adjustable dynamic range and frame rate is reported. Because the GPD detectors have intrinsic excellent gating and ranging capability, the pixel architecture is developed to enable the dual mode operation - passive illumination two-dimensional imaging (night vision) and active illumination three-dimensional imaging.

  2. Recent advances in the development and transfer of machine vision technologies for space

    NASA Technical Reports Server (NTRS)

    Defigueiredo, Rui J. P.; Pendleton, Thomas

    1991-01-01

    Recent work concerned with real-time machine vision is briefly reviewed. This work includes methodologies and techniques for optimal illumination, shape-from-shading of general (non-Lambertian) 3D surfaces, laser vision devices and technology, high level vision, sensor fusion, real-time computing, artificial neural network design and use, and motion estimation. Two new methods that are currently being developed for object recognition in clutter and for 3D attitude tracking based on line correspondence are discussed.

  3. Development of a machine vision fire detection system

    NASA Astrophysics Data System (ADS)

    Goedeke, A. D.; Healey, G.; Drda, B.

    1994-03-01

    This project resulted in the development, test, and delivery of a patented Machine Vision Fire Detector System (MVFDS) that provides for the first time a unique and reliable method of detecting fire events and determining their size, growth, distance, location, and overall threat in real-time. The system also provides simultaneous video coverage of the area being monitored by the MVFDS for fires. This 'man-in-the-loop' capability provides an option for manual override of automatic suppressant dump, or manual release of suppressant agent. The MVFDS is designed to be immune to false alarms based upon its decision process which involves identification, comparison, and deduction (emulates a human's process of deduction/decision) of unique properties of fire. These unique properties have been included into a fire model from which algorithms have been developed. The MVFDS uses a commercially available color CCD camera, frame grabber, microprocessor, video chip, and electronics. In aircraft hangar and facility applications, the detector is designed to identify a 2-foot x 2-foot fire at a distance of 100 feet in less than 0.5 seconds with no false alarms and, in other applications, detect fires in less than 30 milliseconds.

  4. Architecture for computer vision application development within the HORUS system

    NASA Astrophysics Data System (ADS)

    Eckstein, Wolfgang; Steger, Carsten T.

    1997-04-01

    An integrated program development environment for computer vision tasks is presented. The first component of the system is concerned with the visualization of 2D image data. This is done in an object-oriented manner. Programming of the visualization process is achieved by arranging the representations of iconic data in an interactively customizable hierarchy that establishes an intuitive flow of messages between data representations seen as objects. The visualization objects called displays, are designed for different levels of abstraction, starting from direct iconic representation down to numerical features, depending on the information needed. Two types of messages are passed between these displays, which yield a clear and intuitive semantics. The second component of the system is an interactive tool for rapid program development. It helps the user in selecting appropriate operators in many ways. For example, the system provides context sensitive selection of possible alternative operators as well as suitable successors and required predecessors. For the task of choosing appropriate parameters several alternatives exist. For example, the system provides default values as well as lists of useful values for al parameters of each operator. To achieve this, a knowledge base containing facts about the operators and their parameters is used. Second, through the tight coupling of the two system components, parameters can be determined quickly by data exploration within the visualization components.

  5. DEVELOPMENT OF INFORMATION ON PESTICIDES MANUFACTURING FOR SOURCE ASSESSMENT

    EPA Science Inventory

    The report addresses the selection of relevant factors to gain perspective of the pollution potential from pesticides manufacturing and formulating operations and leads to the evolvement and defense of decision criteria for assessing the need for development of emissions control ...

  6. Malaysian Polytechnic Development: A Cornerstone of Manufacturing Growth.

    ERIC Educational Resources Information Center

    Buskirk, Donald; Emshousen, Fred

    1996-01-01

    The Malaysian government has committed itself to become a manufacturing leader by 2020. To that end, they have developed educational strategies and prepared a cadre of instructors educated in a process that stresses integration of theory and application. (JOW)

  7. Development of a Launch Vehicle Manufacturing Process. Chapter 4

    NASA Technical Reports Server (NTRS)

    Vickers, John; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    One of the goals of this chapter is to provide sufficient information so that you can develop a manufacturing process for a potential launch vehicle. With the variety of manufacturing options available, you might ask how this can possibly be done in the span of a single chapter. Actually, it will be quite simple because a basic manufacturing process is nothing more than a set of logical steps that are iterated until they produce a desired product. Although these statements seem simple and logical, don't let this simplicity fool you. Manufacturing problems with launch vehicles and their subassemblies have been the primary cause of project failures because the vehicle concept delivered to the manufacturing floor could not be built as designed.

  8. The Potential Impact of Undiagnosed Vision Impairment on Reading Development in the Early Years of School

    ERIC Educational Resources Information Center

    Thurston, Allen

    2014-01-01

    This article presents a critical review of the literature surrounding the potential impact of undiagnosed and untreated vision impairment on reading development in the early years of primary school. Despite pre-school screening programmes, it is still possible for children to enter school with undiagnosed, uncorrected vision impairments. This can…

  9. An integrated approach to product development and manufacturing

    SciTech Connect

    Readey, M.J.

    1995-12-31

    A new approach to product development is described that integrates various unit operations into a unified ``knowledge-base``. This knowledge-base is easily accessible to all members of the design team due to the advent of high performance and networking capabilities of today`s desktop computers. This permits rapid optimization of the product`s material, shape, and manufacturing processes that satisfy the customer`s performance requirements while maximizing economic return for the manufacturer.

  10. Manufacturing development for the SAFE 100 kW core

    NASA Astrophysics Data System (ADS)

    Carter, Robert; Roman, Jose; Salvail, Pat

    2002-01-01

    In stark contrast to what is sometimes considered the norm in traditional manufacturing processes, engineers at the Marshall Space Flight Center (MSFC) arc in the practice of altering the standard in an effort to realize other potential methods in core manufacturing. While remaining within the bounds of the materials database, we are researching into core manufacturing techniques that may have been overlooked in the past due to funding and/or time constraints. To augment proven core fabrication capabilities we are pursuing plating processes as another possible method for core build-up and assembly. Although brazing and a proprietary HIP cycle are used for module assembly (proven track record for stability and endurance), it is prudent to pursue secondary or backup methods of module and core assembly. For this reason heat tube manufacture and module assembly by means of plating is being investigated. Potentially, the plating processes will give engineers the ability to manufacture replacement modules for any module that might fail to perform nominally, and to assemble/disassemble a complete core in much less time than would be required for the conventional Braze-HIP process. Another area of improvement in core manufacturing capabilities is the installation of a sodium and lithium liquid metal heat pipe fill machine. This, along with the ability to Electron Beam Weld heat pipe seals and wet-in the pipes in the necessary vacuum atmosphere, will eliminate the need to ship potentially hazardous components outside for processing. In addition to developing core manufacturing techniques, the SAFE manufacturing team has been evaluating the thermal heat transfer characteristics, and manufacturability of several heat exchanger design concepts. .

  11. Development of Foster Wheeler's Vision 21 Partial Gasification Module

    SciTech Connect

    Robertson, A.

    2001-11-06

    The US Department of Energy (DOE) has awarded Foster Wheeler Development Corporation a contract to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx} 2500 to 2800F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate

  12. Manufacturing development of visor for binocular helmet mounted display

    NASA Astrophysics Data System (ADS)

    Krevor, David; Edwards, Timothy; Larkin, Eric; Skubon, John; Speirs, Robert; Sowden, Tom

    2007-09-01

    The HMD (Helmet Mounted Display) visor is a sophisticated article. It is both the optical combiner for the display and personal protective equipment for the pilot. The visor must have dimensional and optical tolerances commensurate with precision optics; and mechanical properties sufficient for a ballistic shield. Optimized processes and tooling are necessary in order to manufacture a functional visor. This paper describes the manufacturing development of the visor for the Joint Strike Fighter (JSF) HMD. The analytical and experimental basis for the tool and manufacturing process development are described; as well as the metrological and testing methods to verify the visor design and function. The requirements for the F-35 JSF visor are a generation beyond those for the HMD visor which currently flies on the F-15, F-16 and F/A-18. The need for greater precision is manifest in the requirements for the tooling and molding process for the visor. The visor is injection-molded optical polycarbonate, selected for its combination of optical, mechanical and environmental properties. Proper design and manufacture of the tool - the mold - is essential. Design of the manufacturing tooling is an iterative process between visor design, mold design, mechanical modeling and polymer-flow modeling. Iterative design and manufacture enable the mold designer to define a polymer shrinkage factor more precise than derived from modeling or recommended by the resin supplier.

  13. Development of image processing LSI "SuperVchip" for real-time vision systems

    NASA Astrophysics Data System (ADS)

    Muramatsu, Shoji; Kobayashi, Yoshiki; Otsuka, Yasuo; Shojima, Hiroshi; Tsutsumi, Takayuki; Imai, Toshihiko; Yamada, Shigeyoshi

    2002-03-01

    A new image processing LSI SuperVchip with high-performance computing power has been developed. The SuperVchip has powerful capability for vision systems as follows: 1. General image processing by 3x3, 5x5, 7x7 kernel for high speed filtering function. 2. 16-parallel gray search engine units for robust template matching. 3. 49 block matching Pes to calculate the summation of the absolution difference in parallel for stereo vision function. 4. A color extraction unit for color object recognition. The SuperVchip also has peripheral function of vision systems, such as video interface, PCI extended interface, RISC engine interface and image memory controller on a chip. Therefore, small and high performance vision systems are realized via SuperVchip. In this paper, the above specific circuits are presented, and an architecture of a vision device equipped with SuperVchip and its performance are also described.

  14. The development and manufacture of coal briquettes

    SciTech Connect

    Li Xinshen; Wei Tingfu; Hao Aimin; Ning Weiyun; Liu Fuhua

    1997-12-31

    Three different kinds of coal briquettes, i.e., gasification briquette, boiler briquette and easy ignition roast briquette, have been developed and produced with the authors` patent binder. The gasification briquette is made from fines of anthracite or coke, hot stability agent and patent binder. It has been used as a substitute of anthracite lump in gasifiers to produce fuel gas and syngas. The three year`s performance of this briquettes in the TG-3MI gasifier has given good economic benefits. The boiler briquette is made from bituminous coal fines, sulphur-fixing agent, combustion-supporting agent, waterproofing agent and patent binder. It can keep its original shape in water for one month. The combustion results of the boiler briquette in a 4t/h coal-fired boiler have shown that heat efficiency increased by 20%, the total suspended particles decreased by 80%, and emission of both SO{sub 2} and Hap were reduced as compared with the raw coal. The easy ignition roast briquette is made from fines of charcoal, anthracite or coke, oxidant and binder. It is convenient and safe to use in that it can be lit with a match or a piece of paper easily and burn continuously for 90 minutes without smoke and odor. It can be used as a fuel for roasting food for a picnic.

  15. Managers' Perceptions of Management Development Needs in Manufacturing SMEs

    ERIC Educational Resources Information Center

    Jayawarna, Dilani; Macpherson, Allan; Wilson, Alison

    2006-01-01

    Purpose: In this paper empirical research is presented that investigates managers' perceptions of a variety of component management skills and techniques. The aim is to identify which management development needs manufacturing SME managers perceive as most important for their continued development, and to consider contextual factors that might…

  16. Combined Research and Curriculum Development of Nontraditional Manufacturing

    ERIC Educational Resources Information Center

    Yao, Y. Lawrence; Cheng, Gary J.; Rajurkar, K. P.; Kovacevic, Radovan; Feiner, Steve; Zhang, Wenwu

    2005-01-01

    Nontraditional manufacturing (NTM) is becoming increasingly important in modern engineering. Therefore, it is important to develop up-to-date pedagogic materials for the area. This paper reports collaborative efforts among three universities in such a development sponsored by National Science Foundation of USA. The features of the development…

  17. Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Nagpal, Vinod K.

    2007-01-01

    An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development.

  18. Development of a distributed vision system for industrial conditions

    NASA Astrophysics Data System (ADS)

    Weiss, Michael; Schiller, Arnulf; O'Leary, Paul; Fauster, Ewald; Schalk, Peter

    2003-04-01

    This paper presents a prototype system to monitor a hot glowing wire during the rolling process in quality relevant aspects. Therefore a measurement system based on image vision and a communication framework integrating distributed measurement nodes is introduced. As a technologically approach, machine vision is used to evaluate the wire quality parameters. Therefore an image processing algorithm, based on dual Grassmannian coordinates fitting parallel lines by singular value decomposition, is formulated. Furthermore a communication framework which implements anonymous tuplespace communication, a private network based on TCP/IP and a consequent Java implementation of all used components is presented. Additionally, industrial requirements such as realtime communication to IEC-61131 conform digital IO"s (Modbus TCP/IP protocol), the implementation of a watchdog pattern and the integration of multiple operating systems (LINUX, QNX and WINDOWS) are lined out. The deployment of such a framework to the real world problem statement of the wire rolling mill is presented.

  19. GSFC Information Systems Technology Developments Supporting the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Hughes, Peter; Dennehy, Cornelius; Mosier, Gary; Smith, Dan; Rykowski, Lisa

    2004-01-01

    The Vision for Space Exploration will guide NASA's future human and robotic space activities. The broad range of human and robotic missions now being planned will require the development of new system-level capabilities enabled by emerging new technologies. Goddard Space Flight Center is actively supporting the Vision for Space Exploration in a number of program management, engineering and technology areas. This paper provides a brief background on the Vision for Space Exploration and a general overview of potential key Goddard contributions. In particular, this paper focuses on describing relevant GSFC information systems capabilities in architecture development; interoperable command, control and communications; and other applied information systems technology/research activities that are applicable to support the Vision for Space Exploration goals. Current GSFC development efforts and task activities are presented together with future plans.

  20. Buildings of the Future Scoping Study: A Framework for Vision Development

    SciTech Connect

    Wang, Na; Goins, John D.

    2015-02-01

    The Buildings of the Future Scoping Study, funded by the U.S. Department of Energy (DOE) Building Technologies Office, seeks to develop a vision for what U.S. mainstream commercial and residential buildings could become in 100 years. This effort is not intended to predict the future or develop a specific building design solution. Rather, it will explore future building attributes and offer possible pathways of future development. Whether we achieve a more sustainable built environment depends not just on technologies themselves, but on how effectively we envision the future and integrate these technologies in a balanced way that generates economic, social, and environmental value. A clear, compelling vision of future buildings will attract the right strategies, inspire innovation, and motivate action. This project will create a cross-disciplinary forum of thought leaders to share their views. The collective views will be integrated into a future building vision and published in September 2015. This report presents a research framework for the vision development effort based on a literature survey and gap analysis. This document has four objectives. First, it defines the project scope. Next, it identifies gaps in the existing visions and goals for buildings and discusses the possible reasons why some visions did not work out as hoped. Third, it proposes a framework to address those gaps in the vision development. Finally, it presents a plan for a series of panel discussions and interviews to explore a vision that mitigates problems with past building paradigms while addressing key areas that will affect buildings going forward.

  1. Technology transfer and international development: Materials and manufacturing technology

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Policy oriented studies on technological development in several relatively advanced developing countries were conducted. Priority sectors defined in terms of technological sophistication, capital intensity, value added, and export potential were studied in Brazil, Venezuela, Israel, and Korea. The development of technological policy alternatives for the sponsoring country is assessed. Much emphasis is placed on understanding the dynamics of the sectors through structured interviews with a large sample of firms in the leading manufacturing and materials processing sectors.

  2. Recent developments in the economic modeling of photovoltaic module manufacturing

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1979-01-01

    Recent developments in the solar array manufacturing industry costing standards (SAMICS) are described. Consideration is given to the added capability to handle arbitrary operating schedules and the revised procedure for calculation of one-time costs. The results of an extensive validation study are summarized.

  3. Northwest Energy Efficient Manufactured Housing Program Specification Development

    SciTech Connect

    Hewes, Tom; Peeks, Brady

    2013-02-01

    The DOE research team Building America Partnership for Improved Residential Construction (BA-PIRC), Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Home Program (NEEM) program administrator, collaborated to research a new specification that would reduce the energy requirements of a NEEM home.This research identified and developed combinations of cost-effective high performance building assemblies and mechanical systems that can readily can be deployed in the manufacturing setting that reduce energy used for space conditioning, water heating and lighting by 50% over the present NEEM specifications.

  4. Process development status report for advanced manufacturing projects

    SciTech Connect

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  5. Development of multifunctional carbon fiber reinforced composites (CFRCs) - Manufacturing process

    NASA Astrophysics Data System (ADS)

    Guadagno, Liberata; Raimondo, Marialuigia; Vietri, Umberto; Barra, Giuseppina; Vertuccio, Luigi; Volponi, Ruggero; Cosentino, Giovanni; De Nicola, Felice; Grilli, Andrea; Spena, Paola

    2014-05-01

    This work describes a successful attempt toward the development of CFRCs based on nanofilled epoxy resins. The epoxy matrix was prepared by mixing a tetrafunctional epoxy precursor with a reactive diluent which allows to reduce the viscosity of the initial epoxy precursor and facilitate the nanofiller dispersion step. As nanofiller, multiwall carbon nanotubes (MWCNTs) were embedded in the epoxy matrix with the aim of improving the electrical properties of the resin used to manufacture CFRCs. Panels were manufactured by Resin Film Infusion (RFI) using a non-usual technique to infuse a nano-filled resin into a carbon fiber dry preform.

  6. Work environment and production development in Swedish manufacturing industry.

    PubMed

    Johansson, Bo

    2010-01-01

    Swedish manufacturing industry has previous held a leading position regarding the development of attractive industrial work environments, but increasing market competition has changed the possibilities to maintain the position. The purpose of this literature study is therefore to describe and analyze how Swedish manufacturing industry manages work environment and production development in the new millennium. The description and analysis is based on recently reported Swedish research and development. The gathered picture of how production systems generally are developed in Sweden strongly contrasts against the idealized theoretical and legal view of how production systems should be developed. Even if some of the researchers' and authorities' ambitions and demands may seem unrealistically high today, there still is a very large potential for improving the processes and tools for designing production systems and work environment. PMID:20828493

  7. Development of embedded real-time and high-speed vision platform

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhenxing; Dong, Yimin; Yang, Hua

    2015-12-01

    Currently, high-speed vision platforms are widely used in many applications, such as robotics and automation industry. However, a personal computer (PC) whose over-large size is not suitable and applicable in compact systems is an indispensable component for human-computer interaction in traditional high-speed vision platforms. Therefore, this paper develops an embedded real-time and high-speed vision platform, ER-HVP Vision which is able to work completely out of PC. In this new platform, an embedded CPU-based board is designed as substitution for PC and a DSP and FPGA board is developed for implementing image parallel algorithms in FPGA and image sequential algorithms in DSP. Hence, the capability of ER-HVP Vision with size of 320mm x 250mm x 87mm can be presented in more compact condition. Experimental results are also given to indicate that the real-time detection and counting of the moving target at a frame rate of 200 fps at 512 x 512 pixels under the operation of this newly developed vision platform are feasible.

  8. Accomplishing the Visions for Professional Development of Teachers Advocated in the National Science Education Standards

    NASA Astrophysics Data System (ADS)

    Yager, Robert E.

    2005-05-01

    The National Science Education Standards include suggested visions for changing staff development programs for preparing new teachers and working with inservice teachers. Analyzing the visions for the most successful programs precedes the identification of programs that best match the NSES visions. The National Science Teachers Association is publishing a new monograph that identifies 16 model programs that approach the visions while also providing actual evidence of the successes experienced. This manuscript is an attempt to provide a setting and a rationale for the national search and for informing science teacher educators in the features of the best programs nominated after a 4-year search. Instead of only describing science teacher education programs for new and inservice teachers, actual evidence establishing their validity is offered. Perhaps the examples will be more useful if the framework and procedures used in their selections are shared with Association for Science Teacher Education members.

  9. Vision development in the monocular individual: implications for the mechanisms of normal binocular vision development and the treatment of infantile esotropia.

    PubMed Central

    Day, S

    1995-01-01

    PURPOSE: The purpose of this research is to study the vision development in monocular individuals so as to better understand normal binocular vision development and to refine the treatment of infants with infantile esotropia. METHODS: Thirty-six subjects with one clinically normal eye and one eye with no vision (no light perception or history of enucleation) are studied. In addition to measurement of standard parameters of development such as visual acuity, measurement of motion processing is made by both optokinetic and electrophysiologic techniques. A comparison is made of vision development among three populations: the monocular population, the normal population, and patients with a history of infantile esotropia. Such comparison is made to study the relative effects of interruption of binocularity and binocular competition. The monocular population represents individuals who have interruption of binocularity, whereas the infantile esotropia population has both interruption of binocularity and binocular competition. RESULTS: The OKN data suggest that the monucular population is more similar to the normal population than the esotropia population. The electrophysiologic data shows a statistically significant difference in the three populations. Motion processing is more fully developed in the monocular population than in the infantile esotropia population when compared to the normal population. CONCLUSIONS: 1. The development of motion processing appears to be particularly vulnerable to abnormal experience during the first year of life. 2. Monocular subjects have a less abnormal motion processing system when compared to patients with infantile esotropia even when monocularity is congenital. 3. The results indirectly support the premise that prealignment alternate occlusion is of benefit to the patient with infantile esotropia prior to realignment. 4. Development of the motion processing system does not necessarily parallel the development of other binocular

  10. Development of High Temperature Capacitor Technology and Manufacturing Capability

    SciTech Connect

    None, None

    2011-05-15

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: - Deeper oil exploration in higher temperature and pressure environments - Enabling power electronic and control equipment to operate in higher temperature environments - Enabling reduced cooling requirements of electronics - Increasing reliability and life of capacitors operating below rated temperature - Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: - FPE Film is difficult to handle and wind, resulting in poor yields - Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) - Encapsulation technologies must be improved to enable higher perature operation - Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/μm. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  11. Recent developments in manufacturing oligosaccharides with prebiotic functions.

    PubMed

    Kovács, Zoltán; Benjamins, Eric; Grau, Konrad; Ur Rehman, Amad; Ebrahimi, Mehrdad; Czermak, Peter

    2014-01-01

    The market for prebiotics is steadily growing. To satisfy this increasing worldwide demand, the introduction of effective bioprocessing methods and implementation strategies is required. In this chapter, we review recent developments in the manufacture of galactooligosaccharides (GOS) and fructooligosaccharides (FOS). These well-established oligosaccharides (OS) provide several health benefits and have excellent technological properties that make their use as food ingredients especially attractive. The biosyntheses of lactose-based GOS and sucrose-based FOS show similarities in terms of reaction mechanisms and product formation. Both GOS and FOS can be synthesized using whole cells or (partially) purified enzymes in immobilized or free forms. The biocatalysis results in a final product that consists of OS, unreacted disaccharides, and monosaccharides. This incomplete conversion poses a challenge to manufacturers because an enrichment of OS in this mixture adds value to the product. For removing digestible carbohydrates from OS, a variety of bioengineering techniques have been investigated, including downstream separation technologies, additional bioconversion steps applying enzymes, and selective fermentation strategies. This chapter summarizes the state-of-the-art manufacturing strategies and recent advances in bioprocessing technologies that can lead to new possibilities for manufacturing and purifying sucrose-based FOS and lactose-based GOS. PMID:23942834

  12. Manufacturing Development of the NCSX Modular Coil Windings

    SciTech Connect

    Chrzanowsk, J. H.; Fogarty, P. J.; Heitzenroeder, P. J.; Meighan, T.; Nelson, B.; Raftopoulos, S.; Williamson, D.

    2005-09-27

    The modular coils on the National Compact Stellarator Experiment (NCSX) present a number of significant engineering challenges due to their complex shapes, requirements for high dimensional accuracy and the high current density required in the modular coils due to space constraints. In order to address these challenges, an R&D program was established to develop the conductor, insulation scheme, manufacturing techniques, and procedures. A prototype winding named Twisted Racetrack Coil (TRC) was of particular importance in dealing with these challenges. The TRC included a complex shaped winding form, conductor, insulation scheme, leads and termination, cooling system and coil clamps typical of the modular coil design. Even though the TRC is smaller in size than a modular coil, its similar complex geometry provided invaluable information in developing the final design, metrology techniques and development of manufacturing procedures. In addition a discussion of the development of the copper rope conductor including "Keystoning" concerns; the epoxy impregnation system (VPI) plus the tooling and equipment required to manufacture the modular coils will be presented.

  13. Vision-based obstacle recognition system for automated lawn mower robot development

    NASA Astrophysics Data System (ADS)

    Mohd Zin, Zalhan; Ibrahim, Ratnawati

    2011-06-01

    Digital image processing techniques (DIP) have been widely used in various types of application recently. Classification and recognition of a specific object using vision system require some challenging tasks in the field of image processing and artificial intelligence. The ability and efficiency of vision system to capture and process the images is very important for any intelligent system such as autonomous robot. This paper gives attention to the development of a vision system that could contribute to the development of an automated vision based lawn mower robot. The works involve on the implementation of DIP techniques to detect and recognize three different types of obstacles that usually exist on a football field. The focus was given on the study on different types and sizes of obstacles, the development of vision based obstacle recognition system and the evaluation of the system's performance. Image processing techniques such as image filtering, segmentation, enhancement and edge detection have been applied in the system. The results have shown that the developed system is able to detect and recognize various types of obstacles on a football field with recognition rate of more 80%.

  14. Technical Challenges in the Development of a NASA Synthetic Vision System Concept

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Parrish, Russell V.; Kramer, Lynda J.; Harrah, Steve; Arthur, J. J., III

    2002-01-01

    Within NASA's Aviation Safety Program, the Synthetic Vision Systems Project is developing display system concepts to improve pilot terrain/situation awareness by providing a perspective synthetic view of the outside world through an on-board database driven by precise aircraft positioning information updating via Global Positioning System-based data. This work is aimed at eliminating visibility-induced errors and low visibility conditions as a causal factor to civil aircraft accidents, as well as replicating the operational benefits of clear day flight operations regardless of the actual outside visibility condition. Synthetic vision research and development activities at NASA Langley Research Center are focused around a series of ground simulation and flight test experiments designed to evaluate, investigate, and assess the technology which can lead to operational and certified synthetic vision systems. The technical challenges that have been encountered and that are anticipated in this research and development activity are summarized.

  15. Development and manufacture of visor for helmet-mounted display

    NASA Astrophysics Data System (ADS)

    Krevor, David H.; McNelly, Gregg; Skubon, John; Speirs, Robert

    2004-01-01

    The manufacturing design and process development for the Visor for the JHMCS (Joint Helmet Mounted Cueing System) are discussed. The JHMCS system is a Helmet Mounted Display (HMD) system currently flying on the F-15, F-16 and F/A-18 aircraft. The Visor manufacturing processes are essential to both system performance and economy. The Visor functions both as the system optical combiner and personal protective equipment for the pilot. The Visor material is optical polycarbonate. For a military HMD system, the mechanical and environmental properties of the Visor are as necessary as the optical properties. The visor must meet stringent dimensional requirements to assure adequate system optical performance. Injection molding can provide dimensional fidelity to the requirements, if done properly. Concurrent design of the visor and the tool (i.e., the injection mold) is essential. The concurrent design necessarily considers manufacturing operations and the use environment of the Visor. Computer modeling of the molding process is a necessary input to the mold design. With proper attention to product design and tool development, it is possible to improve upon published standard dimensional tolerances for molded polycarbonate articles.

  16. "Development as an Aim of Education": A Reconsideration of Dewey's Vision

    ERIC Educational Resources Information Center

    Schecter, Barbara

    2011-01-01

    Recently, the view that a concept of development should serve as a guiding principle for education has been seriously challenged by developmental psychologists as well as educators. Dewey's vision of development and progressive education is at the heart of these controversies. This article discusses the place of Dewey's thinking on these subjects,…

  17. Developing Gradient Metal Alloys through Radial Deposition Additive Manufacturing

    PubMed Central

    Hofmann, Douglas C.; Roberts, Scott; Otis, Richard; Kolodziejska, Joanna; Dillon, R. Peter; Suh, Jong-ook; Shapiro, Andrew A.; Liu, Zi-Kui; Borgonia, John-Paul

    2014-01-01

    Interest in additive manufacturing (AM) has dramatically expanded in the last several years, owing to the paradigm shift that the process provides over conventional manufacturing. Although the vast majority of recent work in AM has focused on three-dimensional printing in polymers, AM techniques for fabricating metal alloys have been available for more than a decade. Here, laser deposition (LD) is used to fabricate multifunctional metal alloys that have a strategically graded composition to alter their mechanical and physical properties. Using the technique in combination with rotational deposition enables fabrication of compositional gradients radially from the center of a sample. A roadmap for developing gradient alloys is presented that uses multi-component phase diagrams as maps for composition selection so as to avoid unwanted phases. Practical applications for the new technology are demonstrated in low-coefficient of thermal expansion radially graded metal inserts for carbon-fiber spacecraft panels. PMID:24942329

  18. Developing gradient metal alloys through radial deposition additive manufacturing.

    PubMed

    Hofmann, Douglas C; Roberts, Scott; Otis, Richard; Kolodziejska, Joanna; Dillon, R Peter; Suh, Jong-ook; Shapiro, Andrew A; Liu, Zi-Kui; Borgonia, John-Paul

    2014-01-01

    Interest in additive manufacturing (AM) has dramatically expanded in the last several years, owing to the paradigm shift that the process provides over conventional manufacturing. Although the vast majority of recent work in AM has focused on three-dimensional printing in polymers, AM techniques for fabricating metal alloys have been available for more than a decade. Here, laser deposition (LD) is used to fabricate multifunctional metal alloys that have a strategically graded composition to alter their mechanical and physical properties. Using the technique in combination with rotational deposition enables fabrication of compositional gradients radially from the center of a sample. A roadmap for developing gradient alloys is presented that uses multi-component phase diagrams as maps for composition selection so as to avoid unwanted phases. Practical applications for the new technology are demonstrated in low-coefficient of thermal expansion radially graded metal inserts for carbon-fiber spacecraft panels. PMID:24942329

  19. A Practical Solution Using A New Approach To Robot Vision

    NASA Astrophysics Data System (ADS)

    Hudson, David L.

    1984-01-01

    Up to now, robot vision systems have been designed to serve both application development and operational needs in inspection, assembly and material handling. This universal approach to robot vision is too costly for many practical applications. A new industrial vision system separates the function of application program development from on-line operation. A Vision Development System (VDS) is equipped with facilities designed to simplify and accelerate the application program development process. A complimentary but lower cost Target Application System (TASK) runs the application program developed with the VDS. This concept is presented in the context of an actual robot vision application that improves inspection and assembly for a manufacturer of electronic terminal keyboards. Applications developed with a VDS experience lower development cost when compared with conventional vision systems. Since the TASK processor is not burdened with development tools, it can be installed at a lower cost than comparable "universal" vision systems that are intended to be used for both development and on-line operation. The VDS/TASK approach opens more industrial applications to robot vision that previously were not practical because of the high cost of vision systems. Although robot vision is a new technology, it has been applied successfully to a variety of industrial needs in inspection, manufacturing, and material handling. New developments in robot vision technology are creating practical, cost effective solutions for a variety of industrial needs. A year or two ago, researchers and robot manufacturers interested in implementing a robot vision application could take one of two approaches. The first approach was to purchase all the necessary vision components from various sources. That meant buying an image processor from one company, a camera from another and lens and light sources from yet others. The user then had to assemble the pieces, and in most instances he had to write

  20. Materials Development and Evaluation of Selective Laser Sintering Manufacturing Applications

    SciTech Connect

    Smith, Peter F.; Mitchell, Russell R.

    1997-01-15

    This report summarizes the FY96 accomplishments for CRADA No. LA95C10254, "Materials Development and Evaluation of Laser Sintering Manufacturing Applications". To research the potential for processing additional materials using DTM Corporations Selective Laser Sintering rapid prototyping technology and evaluate the capability for rapid manufacturing applications, the following materials were processed experimentally using the Sinterstation 2000 platform; Linear Low Density Polyethylene thermoplastic; Polypropylene thermoplastic; Polysulfone thermoplastic; Polymethylpentene (TPX) thermoplastic; Carbon microsphere filled nylon 11; "APO-BMI" Apocure bismaleimide thermoset polyimide glass m.icrosphere filled and carbon microsphere filled formulations; and 900-24 physical properties mock for plastic bonded TATB high explosive These materials have been successfully processed to a "proof of concept" level or better (with the exception of No. 7). While none of these materials have been introduced as a standard product as of this date, the potential to do so is viable. Present status of materials processing efforts is presented in Section A 2.0. Some recent efforts in manufacturing applications is discussed in Section A 4.0.

  1. Conformal window manufacturing process development and demonstration for polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Smith, Nathan E.; Gould, Alan R.; Hordin, Tom; Medicus, Kate; Walters, Mark; Brophy, Matthew; DeGroote Nelson, Jessica

    2013-09-01

    Conformal windows pose new and unique challenges to manufacturing due to the shape, measurement of, and requested hard polycrystalline materials. Their non-rotationally symmetric shape and high departure surfaces do not lend themselves to traditional optical fabrication processes. The hard crystalline materials are another challenge due to increased processing time and possibility of grain decoration. We have developed and demonstrated a process for manufacturing various conformal windows out of fused silica, glass, zinc-sulfide multispectral, and spinel. The current process involves CNC generation/grinding, VIBE polishing, and sub-aperture figure correction. The CNC generation step incorporates an ultrasonic assisted grinding machine; the machine settings and tool are being continuously optimized for minimal sub-surface damage and surface form error. In VIBE, polishing to less than 5 nm rms surface roughness while maintaining overall form error is accomplished with a full aperture conformal polishing tool and with rapid removal rates. The final sub-aperture polishing step corrects the overall form error. Currently we utilize our CMM for surface form measurement and have shown that we can produce spinel conformal windows with form error within +/-10 micrometers of the nominal shape, without grain decoration. This conformal window manufacturing process is continuously optimized for cost reduction and precision of the final optic.

  2. Agricultural fibres for pulp and paper manufacture in developed countries

    SciTech Connect

    Wong, A.

    1995-11-01

    Agricultural fibres are routinely used for the manufacture of paper products in developing countries. The agriculture (non-wood) pulp industry accounts more than 50% of the national pulp production in China and in India. In contrast, paper manufacturers of the developed countries have relied largely on wood pulp fibres since the 1950`s. During the past 3 decades, the global wood pulp production capacities has expanded substantially. There is a renewed interest to use agriculture-based fibres in place of wood, for the production of pulp and paper in developing countries. The alternative is driven, in part, by the growing shortage of commercial wood supply as caused by the over-cutting of the standing forest and the accelerated re-allocation of forest land for ecological and recreational uses. Although the shortage of wood supply can be alleviated partially by the adoption of higher-yield wood pulping technologies and by the increased use of waste paper. But ultimately, these remedial steps will be inadequate to meet the growing demand for paper products. There are several important factors which affect the use of agricultural fibres for pulp and paper manufacture in developed countries. For some on-purpose fibre crops, continued farm subsidy and repeal of certain sections of the Narcotics Act would be required. Agri-pulp production from agricultural cropping residues appears to be the most practical economic means to supplement the fibre needs of the paper industry. In the social context, agri-pulp implementation in North America would also provide lower taxes that would be accrued from the elimination of substantial annual subsidies to grain farmers from the government.

  3. Development and modeling of a stereo vision focusing system for a field programmable gate array robot

    NASA Astrophysics Data System (ADS)

    Tickle, Andrew J.; Buckle, James; Grindley, Josef E.; Smith, Jeremy S.

    2010-10-01

    Stereo vision is a situation where an imaging system has two or more cameras in order to make it more robust by mimicking the human vision system. By using two inputs, knowledge of their own relative geometry can be exploited to derive depth information from the two views they receive. 3D co-ordinates of an object in an observed scene can be computed from the intersection of the two sets of rays. Presented here is the development of a stereo vision system to focus on an object at the centre of a baseline between two cameras at varying distances. This has been developed primarily for use on a Field Programmable Gate Array (FPGA) but an adaptation of this developed methodology is also presented for use with a PUMA 560 Robotic Manipulator with a single camera attachment. The two main vision systems considered here are a fixed baseline with an object moving at varying distances from this baseline, and a system with a fixed distance and a varying baseline. These two differing situations provide enough data so that the co-efficient variables that determine the system operation can be calibrated automatically with only the baseline value needing to be entered, the system performs all the required calculations for the user for use with a baseline of any distance. The limits of system with regards to the focusing accuracy obtained are also presented along with how the PUMA 560 controls its joints for the stereo vision and how it moves from one position to another to attend stereo vision compared to the two camera system for the FPGA. The benefits of such a system for range finding in mobile robotics are discussed and how this approach is more advantageous when compared against laser range finders or echolocation using ultrasonics.

  4. Application of machine vision technology to the development of aids for the visually impaired

    NASA Astrophysics Data System (ADS)

    Molloy, Derek; McGowan, T.; Clarke, K.; McCorkell, C.; Whelan, Paul F.

    1994-10-01

    This paper presents an experimental system for the combination of three areas of visual cues to aid recognition. The research is aimed at investigating the possibility of using this combination of information for scene description for the visually impaired. The areas identified as providing suitable visual cues are motion, shape and color. The combination of these provide a significant amount of information for recognition and description purposes by machine vision equipment and also allow the possibility of giving the user a more complete description of their environment. Research and development in the application of machine vision technologies to rehabilitative technologies has generally concentrated on utilizing a single visual cue. A novel method for the combination of techniques and technologies successful in machine vision is being explored. Work to date has concentrated on the integration of shape recognition, motion tracking, color extraction, speech synthesis, symbolic programming and auditory imaging of colors.

  5. Technological process supervising using vision systems cooperating with the LabVIEW vision builder

    NASA Astrophysics Data System (ADS)

    Hryniewicz, P.; Banaś, W.; Gwiazda, A.; Foit, K.; Sękala, A.; Kost, G.

    2015-11-01

    One of the most important tasks in the production process is to supervise its proper functioning. Lack of required supervision over the production process can lead to incorrect manufacturing of the final element, through the production line downtime and hence to financial losses. The worst result is the damage of the equipment involved in the manufacturing process. Engineers supervise the production flow correctness use the great range of sensors supporting the supervising of a manufacturing element. Vision systems are one of sensors families. In recent years, thanks to the accelerated development of electronics as well as the easier access to electronic products and attractive prices, they become the cheap and universal type of sensors. These sensors detect practically all objects, regardless of their shape or even the state of matter. The only problem is considered with transparent or mirror objects, detected from the wrong angle. Integrating the vision system with the LabVIEW Vision and the LabVIEW Vision Builder it is possible to determine not only at what position is the given element but also to set its reorientation relative to any point in an analyzed space. The paper presents an example of automated inspection. The paper presents an example of automated inspection of the manufacturing process in a production workcell using the vision supervising system. The aim of the work is to elaborate the vision system that could integrate different applications and devices used in different production systems to control the manufacturing process.

  6. Developing the Vision: An L4L Job Description for the 21st Century

    ERIC Educational Resources Information Center

    Ballard, Susan

    2009-01-01

    The release of AASL's "Standards for the 21st-Century Learner" and "Empowering Learners: Guidelines for School Library Media Programs" has provided school library media specialists with the opportunity to "develop new visions for learning" (AASL 2009), and to rethink what their roles are, and what skills and characteristics are required of them to…

  7. Developing a Vision of Teacher Education: How My Classroom Teacher Understandings Evolved in the University Environment

    ERIC Educational Resources Information Center

    Ritter, Jason K.

    2009-01-01

    Drawing on my experiences as a former classroom teacher making the transition to teacher education, this study examines how my vision of teacher education developed over the course of my first three years as a graduate teaching assistant in a social studies education program in the United States. A qualitative self-study methodology was used to…

  8. Interaction between Language and Vision: It's Momentary, Abstract, and It Develops

    ERIC Educational Resources Information Center

    Dessalegn, Banchiamlack; Landau, Barbara

    2013-01-01

    In this paper, we present a case study that explores the nature and development of the mechanisms by which language interacts with and influences our ability to represent and retain information from one of our most important non-linguistic systems--vision. In previous work (Dessalegn & Landau, 2008), we showed that 4 year-olds remembered…

  9. Lifelong Learning and the Pursuit of a Vision for Sustainable Development in Botswana

    ERIC Educational Resources Information Center

    Maruatona, Tonic

    2011-01-01

    This paper analyses Botswana's commitment to lifelong learning policy and discusses how it can help the state achieve its vision for sustainable development. First, it argues that while Botswana is renowned for its economic success, it still fails to address positively such traditional challenges as poverty, unemployment and income inequality,…

  10. Supporting New Visions for Social Justice Teaching: The Potential for Professional Development Networks

    ERIC Educational Resources Information Center

    Thomas, Anne Burns

    2007-01-01

    Although teaching for social justice is a widely recognized goal of many teacher education programs, there are few supports for new teachers who wish to continue this kind of practice. In this article, I discuss the ways that a group of four new teachers found flexible support for developing a vision of teaching for social justice through…

  11. Professional Development Schools Revisited: Reform, Authentic Partnerships, and New Visions

    ERIC Educational Resources Information Center

    Leonard, Jacqueline; Lovelace-Taylor, Kay; Sanford-DeShields, Jayminn; Spearman, Patrick

    2004-01-01

    The Professional Development School (PDS) concept was developed by the Holmes Group (now known as the Holmes Partnership) in response to a national call for educational reform. More recent reform agendas question the effectiveness of the PDS model. This article examines the changes that are occurring in the Temple University PDS in Philadelphia,…

  12. Vision Drives Correlated Activity without Patterned Spontaneous Activity in Developing Xenopus Retina

    PubMed Central

    Demas, James A.; Payne, Hannah; Cline, Hollis T.

    2011-01-01

    Developing amphibians need vision to avoid predators and locate food before visual system circuits fully mature. Xenopus tadpoles can respond to visual stimuli as soon as retinal ganglion cells (RGCs) innervate the brain, however, in mammals, chicks and turtles, RGCs reach their central targets many days, or even weeks, before their retinas are capable of vision. In the absence of vision, activity-dependent refinement in these amniote species is mediated by waves of spontaneous activity that periodically spread across the retina, correlating the firing of action potentials in neighboring RGCs. Theory suggests that retinorecipient neurons in the brain use patterned RGC activity to sharpen the retinotopy first established by genetic cues. We find that in both wild type and albino Xenopus tadpoles, RGCs are spontaneously active at all stages of tadpole development studied, but their population activity never coalesces into waves. Even at the earliest stages recorded, visual stimulation dominates over spontaneous activity and can generate patterns of RGC activity similar to the locally correlated spontaneous activity observed in amniotes. In addition, we show that blocking AMPA and NMDA type glutamate receptors significantly decreases spontaneous activity in young Xenopus retina, but that blocking GABAA receptor blockers does not. Our findings indicate that vision drives correlated activity required for topographic map formation. They further suggest that developing retinal circuits in the two major subdivisions of tetrapods, amphibians and amniotes, evolved different strategies to supply appropriately patterned RGC activity to drive visual circuit refinement. PMID:21312343

  13. Airbreathing Hypersonic Technology Vision Vehicles and Development Dreams

    NASA Technical Reports Server (NTRS)

    McClinton, C. R.; Hunt, J. L.; Ricketts, R. H.; Reukauf, P.; Peddie, C. L.

    1999-01-01

    Significant advancements in hypersonic airbreathing vehicle technology have been made in the country's research centers and industry over the past 40 years. Some of that technology is being validated with the X-43 flight tests. This paper presents an overview of hypersonic airbreathing technology status within the US, and a hypersonic technology development plan. This plan builds on the nation's large investment in hypersonics. This affordable, incremental plan focuses technology development on hypersonic systems, which could be operating by the 2020's.

  14. Development of manufacturing technologies for hard optical ceramic materials

    NASA Astrophysics Data System (ADS)

    Fess, Edward; DeFisher, Scott; Cahill, Mike; Wolfs, Frank

    2014-05-01

    Hard ceramic optical materials such as sapphire, ALON, Spinel, or PCA can present a significant challenge in manufacturing precision optical components due to their tough mechanical properties. These are also the same mechanical properties that make them desirable materials when used in harsh environments. Premature tool wear or tool loading during the grinding process is a common result of these tough mechanical properties. Another challenge is the requirement to create geometries that conform to the platforms they reside in, but still achieve optical window tolerances for wavefront. These shapes can be complex and require new technologies to control sub aperture finishing techniques in a deterministic fashion. In this paper we will present three technologies developed at OptiPro Systems to address the challenges associated with these materials and complex geometries. The technologies presented will show how Ultrasonic grinding can reduce grinding load by up to 50%, UltraForm Finishing (UFF) and UltraSmooth Finishing (USF) technologies can accurately figure and finish these shapes, and how all of them can be controlled deterministically, with utilizing metrology feedback, by a new Computer Aided Manufacturing (CAM) software package developed by OptiPro called ProSurf.

  15. FAME: Freeform Active Mirrors Experiment: manufacturing process development

    NASA Astrophysics Data System (ADS)

    Challita, Zalpha; Hugot, Emmanuel; Venema, Lars; Schnetler, Hermine; Ferrari, Marc; Cuby, Jean-Gabriel

    2014-07-01

    Extreme freeform mirrors couple a non-axisymmetrical shape and an extreme asphericity, i.e. more than one millimeter of deviation from the best fit sphere. In astronomical instrumentation, such a large asphericity allows compact instruments, using less optical components. However, the lack of freeform mirrors manufacturing facilities is a real issue. We present the concept and development of an innovative manufacturing process based on plasticity forming which allow imprinting permanent deformations on mirrors, following a pre-defined mold. The aim of this activity, pursued in the frame of the OPTICON-FAME (Freeform Active Mirrors Experiment) project, is to demonstrate the suitability of this method for VIS/NIR/MIR applications. The process developed can operate on thin and flat polished initial substrates. Three study cases have been highlighted by FEA (Finite Element Analysis) and the real tests associated were performed on thin substrates in AISI420b stainless steel with 100 mm optical diameter. A comparison between FEA and tests is performed to study the evolution of the mechanical behaviour and the optical quality. The opto-mechanical results will allow a fine tuning of FEA parameters to optimize the residual form errors obtained through this process to converge toward an innovative and recurrent process.

  16. 1994 Site Development Plan: A plan with vision

    SciTech Connect

    Not Available

    1994-07-01

    The 1994 Lawrence Livermore National Laboratory Site Development Plan has been developed during a period of great change and uncertainty. Our goal is to make possible the best use of the Laboratory`s resources to meet shifting national priorities in the post-Cold War world. Site Planning is an important component of the overall Laboratory strategic planning process. This plan focuses on opportunities for the Laboratory as well as on key site development issues including facility construction, redevelopment and reuse, site accessibility, and security. A major challenge is to achieve sufficient stability in the site planning and execution so that the processes of construction can occur efficiently while at the same time providing sufficient flexibility in site facilities so that a range of changing national needs can be accommodated. We are closely coupled to the DOE strategic planning process to meet this challenge.

  17. Development of Non-contact Respiratory Monitoring System for Newborn Using a FG Vision Sensor

    NASA Astrophysics Data System (ADS)

    Kurami, Yoshiyuki; Itoh, Yushi; Natori, Michiya; Ohzeki, Kazuo; Aoki, Yoshimitsu

    In recent years, development of neonatal care is strongly hoped, with increase of the low-birth-weight baby birth rate. Especially respiration of low-birth-weight baby is incertitude because central nerve and respiratory function is immature. Therefore, a low-birth-weight baby often causes a disease of respiration. In a NICU (Neonatal Intensive Care Unit), neonatal respiration is monitored using cardio-respiratory monitor and pulse oximeter at all times. These contact-type sensors can measure respiratory rate and SpO2 (Saturation of Peripheral Oxygen). However, because a contact-type sensor might damage the newborn's skin, it is a real burden to monitor neonatal respiration. Therefore, we developed the respiratory monitoring system for newborn using a FG (Fiber Grating) vision sensor. FG vision sensor is an active stereo vision sensor, it is possible for non-contact 3D measurement. A respiratory waveform is calculated by detecting the vertical motion of the thoracic and abdominal region with respiration. We attempted clinical experiment in the NICU, and confirmed the accuracy of the obtained respiratory waveform was high. Non-contact respiratory monitoring of newborn using a FG vision sensor enabled the minimally invasive procedure.

  18. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect

    Hamilton, Bruce Duncan

    2013-02-22

    The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: » Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. » Chapter 2: Potential Supply Chain Requirements and Opportunities. Provides an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nation’s land-based wind market. » Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . » Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development

  19. Developing a Vision of Pre-College Engineering Education

    ERIC Educational Resources Information Center

    Marshall, Jill A.; Berland, Leema K.

    2012-01-01

    We report the results of a study focused on identifying and articulating an ''epistemic foundation'' underlying a pre-collegiate focus on engineering. We do so in the context of UTeach"Engineering" (UTE), a program supported in part by funding by the National Science Foundation and designed to develop a model approach to address the…

  20. Development of an In Flight Vision Self-Assessment Questionnaire for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Byrne, Vicky E.; Gibson, Charles R.; Pierpoline, Katherine M.

    2010-01-01

    OVERVIEW A NASA Flight Medicine optometrist teamed with a human factors specialist to develop an electronic questionnaire for crewmembers to record their visual acuity test scores and perceived vision assessment. It will be implemented on the International Space Station (ISS) and administered as part of a suite of tools for early detection of potential vision changes. The goal of this effort was to rapidly develop a set of questions to help in early detection of visual (e.g. blurred vision) and/or non-visual (e.g. headaches) symptoms by allowing the ISS crewmembers to think about their own current vision during their spaceflight missions. PROCESS An iterative process began with a Space Shuttle one-page paper questionnaire generated by the optometrist that was updated by applying human factors design principles. It was used as a baseline to establish an electronic questionnaire for ISS missions. Additional questions needed for the ISS missions were included and the information was organized to take advantage of the computer-based file format available. Human factors heuristics were applied to the prototype and then they were reviewed by the optometrist and procedures specialists with rapid-turn around updates that lead to the final questionnaire. CONCLUSIONS With about only a month lead time, a usable tool to collect crewmember assessments was developed through this cross-discipline collaboration. With only a little expenditure of energy, the potential payoff is great. ISS crewmembers will complete the questionnaire at 30 days into the mission, 100 days into the mission and 30 days prior to return to Earth. The systematic layout may also facilitate physicians later data extraction for quick interpretation of the data. The data collected along with other measures (e.g. retinal and ultrasound imaging) at regular intervals could potentially lead to early detection and treatment of related vision problems than using the other measures alone.

  1. DEVELOPMENT AND MANUFACTURE OF COST EFFECTIVE COMPOSITE DRILL PIPE

    SciTech Connect

    James C. Leslie; Jeffrey R. Jean; Hans Neubert; Lee Truong

    2001-10-30

    This technical report presents the engineering research and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report discusses and illustrates all progress in the first two years of this NETL/DOE supported program. The following have been accomplished and are reported in detail herein: (1) Specifications for both 5 5/16 inch and 3 3/8 inch composite drill pipe have been finalized. (2) All basic laboratory testing has been completed and has provide sufficient data for the selection of materials for the composite tubing, adhesives, and abrasion coatings. (3) Successful demonstration of composite/metal joint interfacial connection. (4) Upgrade of facilities to provide a functional pilot plant manufacturing facility. (5) Arrangements to have the 3 3/8 inch CDP used in a drilling operation early in C.Y. 2002. (6) Arrangements to have the 5 5/16 inch CDP marketed and produced by a major drill pipe manufacturer.

  2. Development and Manufacture of Cost Effective Composite Drill Pipe

    SciTech Connect

    James C. Leslie; Jeffrey R. Jean; Hans Neubert; Lee Truong; James T. Heard

    2002-09-29

    This technical report presents the engineering research and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report reiterates the presentation made to DOE/NETL in Morgantown, WV on August 1st, 2002 with the addition of accomplishments made from that time forward until the issue date. The following have been accomplished and are reported in detail herein: {sm_bullet} Specifications for both 5-1/2'' and 1-5/8'' composite drill pipe have been finalized. {sm_bullet} Full scale testing of Short Radius (SR) CDP has been conducted. {sm_bullet} Successful demonstration of metal to composite interface (MCI) connection. {sm_bullet} Preparations for full scale manufacturing of ER/DW CDP have begun. {sm_bullet} Manufacturing facility rearranged to accommodate CDP process flow through plant. {sm_bullet} Arrangements to have the 3 3/8'' CDP used in 4 separate drilling applications in Oman, Oklahoma, and Texas.

  3. Semi-autonomous wheelchair developed using a unique camera system configuration biologically inspired by equine vision.

    PubMed

    Nguyen, Jordan S; Tran, Yvonne; Su, Steven W; Nguyen, Hung T

    2011-01-01

    This paper is concerned with the design and development of a semi-autonomous wheelchair system using cameras in a system configuration modeled on the vision system of a horse. This new camera configuration utilizes stereoscopic vision for 3-Dimensional (3D) depth perception and mapping ahead of the wheelchair, combined with a spherical camera system for 360-degrees of monocular vision. This unique combination allows for static components of an unknown environment to be mapped and any surrounding dynamic obstacles to be detected, during real-time autonomous navigation, minimizing blind-spots and preventing accidental collisions with people or obstacles. This novel vision system combined with shared control strategies provides intelligent assistive guidance during wheelchair navigation and can accompany any hands-free wheelchair control technology. Leading up to experimental trials with patients at the Royal Rehabilitation Centre (RRC) in Ryde, results have displayed the effectiveness of this system to assist the user in navigating safely within the RRC whilst avoiding potential collisions. PMID:22255649

  4. Development of a chemical vision spectrometer to detect chemical agents.

    SciTech Connect

    Demirgian, J.

    1999-02-23

    This paper describes initial work in developing a no-moving-parts hyperspectral-imaging camera that provides both a thermal image and specific identification of chemical agents, even in the presence of nontoxic plumes. The camera uses enhanced stand-off chemical agent detector (ESCAD) technology based on a conventional thermal-imaging camera interfaced with an acousto-optical tunable filter (AOTF). The AOTF is programmed to allow selected spectral frequencies to reach the two dimensional array detector. These frequencies are combined to produce a spectrum that is used for identification. If a chemical agent is detected, pixels containing the agent-absorbing bands are given a colored hue to indicate the presence of the agent. In test runs, two thermal-imaging cameras were used with a specially designed vaporizer capable of controlled low-level (low ppm-m) dynamic chemical releases. The objective was to obtain baseline information about detection levels. Dynamic releases allowed for realistic detection scenarios such as low sky, grass, and wall structures, in addition to reproducible laboratory releases. Chemical releases consisted of dimethylmethylphosphonate (DMMP) and methanol. Initial results show that the combination of AOTF and thermal imaging will produce a chemical image of a plume that can be detected in the presence of interfering substances.

  5. Developing a Professional Vision of Classroom Practices of a Mathematics Teacher: Views from a Researcher and a Teacher

    ERIC Educational Resources Information Center

    Ho, Kai Fai; Tan, Preston

    2013-01-01

    The term "professional vision" points to the many nuanced ways professionals see. This paper traces the development of a professional vision of a researcher and a teacher looking at classroom practices. The researcher's interest was to capture and study notable aspects of the teacher's practice. Through a coding scheme,…

  6. The Development and Field Testing of Materials on Diabetes for Persons with Low Vision or Low Literacy.

    ERIC Educational Resources Information Center

    Reardon, A. W.; And Others

    1993-01-01

    Instructional materials on hypoglycemia, foot care, and exercise were developed and field tested with 98 diabetes patients who had low vision and/or low literacy. A pretest and posttest revealed an 81% reduction in wrong answers overall and a 72% reduction in wrong answers by a subset with low vision. (Author/DB)

  7. 76 FR 38187 - International Conference on Harmonisation; Draft Guidance on Q11 Development and Manufacture of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... Q11 Development and Manufacture of Drug Substances; Availability AGENCY: Food and Drug Administration... a draft guidance entitled ``Q11 Development and Manufacture of Drug Substances.'' The draft guidance... Manufacture of Drug Substances'' should be made available for public comment. The draft guidance is...

  8. 77 FR 39265 - Request for Manufacturer Involvement in National Institute of Justice (NIJ) Standard Development...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... of Justice Programs Request for Manufacturer Involvement in National Institute of Justice (NIJ...: Notice of Request for Manufacturer Involvement in NIJ Standard Development Efforts. SUMMARY: The National... registration information. 2. Participation in webinars. To provide a greater opportunity for involvement...

  9. A history of development in rotordynamics: A manufacturer's perspective

    NASA Technical Reports Server (NTRS)

    Shemeld, David E.

    1987-01-01

    The subject of rotordynamics and instability problems in high performance turbomachinery has been a topic of considerable industry discussion and debate over the last 15 or so years. This paper reviews an original equipment manufacturer's history of development of concepts and equipment as applicable to multistage centrifugal compressors. The variety of industry user compression requirements and resultant problematical situations tends to confound many of the theories and analytical techniques set forth. The experiences and examples described herein support the conclusion that the successful addressing of potential rotordynamics problems is best served by a fundamental knowledge of the specific equipment. This in addition to having the appropriate analytical tools. Also, that the final proof is in the doing.

  10. Progress toward the development of manufacturable integrated optical data buses

    NASA Astrophysics Data System (ADS)

    Pugliano, Nick; Chiarroto, Nancy; Fisher, John; Heiks, Noel; Ho, Tuan; Khanarian, Garo; Moynihan, Matthew; Pawlowski, Nathan; Shelnut, Jim; Sherrer, David; Sicard, Bruno; Zheng, Hai-Bin

    2004-06-01

    The drive to faster data transmission speeds, more integration, smaller form factors and higher signal integrity all favor the eventual adoption of optical transmission schemes in data buses. This contribution will discuss emerging technologies from Shipley Company, LLC to address the needs of optoelectronic signal transmission. In particular, the discussion will focus on materials and processes that are in development to function within existing printed circuit board (PCB) & microelectronic manufacturing schemes. One topic that is described in detail involves photo-patternable, polymer interconnect technologies. Another topic describes progress in Shipley"s ability to integrate these interconnects into prototypical PCB processes. Progress in connecting the planar waveguides to connectorization schemes will be also be described. Other topics include lithographic and patterning metrics, optical characteristics of interconnects, morphological features of patterned waveguides, integration and coupling considerations, thermal and mechanical properties of the system and general assembly processes..

  11. Development of a Wireless Computer Vision Instrument to Detect Biotic Stress in Wheat

    PubMed Central

    Casanova, Joaquin J.; O'Shaughnessy, Susan A.; Evett, Steven R.; Rush, Charles M.

    2014-01-01

    Knowledge of crop abiotic and biotic stress is important for optimal irrigation management. While spectral reflectance and infrared thermometry provide a means to quantify crop stress remotely, these measurements can be cumbersome. Computer vision offers an inexpensive way to remotely detect crop stress independent of vegetation cover. This paper presents a technique using computer vision to detect disease stress in wheat. Digital images of differentially stressed wheat were segmented into soil and vegetation pixels using expectation maximization (EM). In the first season, the algorithm to segment vegetation from soil and distinguish between healthy and stressed wheat was developed and tested using digital images taken in the field and later processed on a desktop computer. In the second season, a wireless camera with near real-time computer vision capabilities was tested in conjunction with the conventional camera and desktop computer. For wheat irrigated at different levels and inoculated with wheat streak mosaic virus (WSMV), vegetation hue determined by the EM algorithm showed significant effects from irrigation level and infection. Unstressed wheat had a higher hue (118.32) than stressed wheat (111.34). In the second season, the hue and cover measured by the wireless computer vision sensor showed significant effects from infection (p = 0.0014), as did the conventional camera (p < 0.0001). Vegetation hue obtained through a wireless computer vision system in this study is a viable option for determining biotic crop stress in irrigation scheduling. Such a low-cost system could be suitable for use in the field in automated irrigation scheduling applications. PMID:25251410

  12. Development of a wireless computer vision instrument to detect biotic stress in wheat.

    PubMed

    Casanova, Joaquin J; O'Shaughnessy, Susan A; Evett, Steven R; Rush, Charles M

    2014-01-01

    Knowledge of crop abiotic and biotic stress is important for optimal irrigation management. While spectral reflectance and infrared thermometry provide a means to quantify crop stress remotely, these measurements can be cumbersome. Computer vision offers an inexpensive way to remotely detect crop stress independent of vegetation cover. This paper presents a technique using computer vision to detect disease stress in wheat. Digital images of differentially stressed wheat were segmented into soil and vegetation pixels using expectation maximization (EM). In the first season, the algorithm to segment vegetation from soil and distinguish between healthy and stressed wheat was developed and tested using digital images taken in the field and later processed on a desktop computer. In the second season, a wireless camera with near real-time computer vision capabilities was tested in conjunction with the conventional camera and desktop computer. For wheat irrigated at different levels and inoculated with wheat streak mosaic virus (WSMV), vegetation hue determined by the EM algorithm showed significant effects from irrigation level and infection. Unstressed wheat had a higher hue (118.32) than stressed wheat (111.34). In the second season, the hue and cover measured by the wireless computer vision sensor showed significant effects from infection (p = 0.0014), as did the conventional camera (p < 0.0001). Vegetation hue obtained through a wireless computer vision system in this study is a viable option for determining biotic crop stress in irrigation scheduling. Such a low-cost system could be suitable for use in the field in automated irrigation scheduling applications. PMID:25251410

  13. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    SciTech Connect

    Hewes, T.; Peeks, B.

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  14. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    SciTech Connect

    Hewes, Tom; Peeks, Brady

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50% over typical manufactured homes produced in the northwest.

  15. A conserved switch in sensory processing prepares developing neocortex for vision

    PubMed Central

    Colonnese, Matthew T.; Kaminska, Anna; Minlebaev, Marat; Milh, Mathieu; Bloem, Bernard; Lescure, Sandra; Moriette, Guy; Chiron, Catherine; Ben-Ari, Yehezkel; Khazipov, Rustem

    2010-01-01

    Developing cortex generates endogenous activity that modulates the formation of functional units, but how this activity is altered to support mature function is poorly understood. Using recordings from the visual cortex of preterm human infants and neonatal rats, we report a novel “bursting” period of visual responsiveness during which the weak retinal output is amplified by endogenous network oscillations, enabling a primitive form of vision. This period ends shortly before delivery in humans and eye-opening in rodents with an abrupt switch to the mature visual response. The switch is causally linked to the emergence of an activated state of continuous cortical activity dependent on the ascending neuromodulatory systems involved in arousal. This switch is sensory-system specific but experience-independent, and also involves maturation of retinal processing. Thus the early development of visual processing is governed by a conserved, intrinsic program that switches thalamocortical response properties in anticipation of patterned vision. PMID:20696384

  16. Development of a model of machine hand eye coordination and program specifications for a topological machine vision system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A unified approach to computer vision and manipulation is developed which is called choreographic vision. In the model, objects to be viewed by a projected robot in the Viking missions to Mars are seen as objects to be manipulated within choreographic contexts controlled by a multimoded remote, supervisory control system on Earth. A new theory of context relations is introduced as a basis for choreographic programming languages. A topological vision model is developed for recognizing objects by shape and contour. This model is integrated with a projected vision system consisting of a multiaperture image dissector TV camera and a ranging laser system. System program specifications integrate eye-hand coordination and topological vision functions and an aerospace multiprocessor implementation is described.

  17. Developing novel 3D antennas using advanced additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  18. Commercial Electric Vehicle (EV) Development and Manufacturing Program

    SciTech Connect

    Leeve, Dion

    2014-06-30

    Navistar with the Department of Energy’s assistance undertook this effort to achieve the project objectives as listed in the next section. A wholly owned subsidiary of Navistar, Workhorse Sales Corporation was the original grant awardee and upon their discontinuation as a standalone business entity, Navistar assumed the role of principal investigator. The intent of the effort, as part of the American Recovery and Reinvestment Act (ARRA) was to produce zero emission vehicles that could meet the needs of the marketplace while reducing carbon emissions to zero. This effort was predicated upon the assumption that concurrent development activities in the lithium ion battery industry investigations would significantly increase their production volumes thus leading to substantial reductions in their manufacturing costs. As a result of this development effort much was learned about the overall system compatibility between the electric motor, battery pack, and charging capabilities. The original system was significantly revised and improved during the execution of this development effort. The overall approach that was chosen was to utilize a British zero emissions, class 2 truck that had been developed for their market, homologate it and modify it to meet the product requirements as specified in the grant details. All of these specific goals were achieved. During the course of marketing and selling the product valuable information was obtained as relates to customer expectations, price points, and product performance expectations, specifically those customer expectations about range requirements in urban delivery situations. While the grant requirements specified a range of 100 miles on a single charge, actual customer usage logs indicate a range of 40 miles or less is typical for their applications. The price point, primarily due to battery pack costs, was significantly higher than the mass market could bear. From Navistar’s and the overall industry’s perspective

  19. Demand Activated Manufacturing Architecture (DAMA) supply chain collaboration development methodology

    SciTech Connect

    PETERSEN,MARJORIE B.; CHAPMAN,LEON D.

    2000-03-15

    The Demand Activated Manufacturing Architecture (DAMA) project during the last five years of work with the U.S. Integrated Textile Complex (retail, apparel, textile, and fiber sectors) has developed an inter-enterprise supply chain collaboration development methodology. The goal of this methodology is to enable a supply chain to work more efficiently and competitively. The outcomes of this methodology include: (1) A definitive description and evaluation of the role of business cultures and supporting business organizational structures in either inhibiting or fostering change to a more competitive supply chain; (2) ``As-Is'' and proposed ``To-Be'' supply chain business process models focusing on information flows and decision-making; and (3) Software tools that enable and support a transition to a more competitive supply chain, which results form a business driven rather than technologically driven approach to software design. This methodology development will continue in FY00 as DAMA engages companies in the soft goods industry in supply chain research and implementation of supply chain collaboration.

  20. Skill Intensity and Skills Development in Bangladesh Manufacturing Enterprises

    ERIC Educational Resources Information Center

    Comyn, Paul

    2013-01-01

    This paper reports on recent research into enterprise skill profiles and workplace training practices in the Bangladesh manufacturing industry. The article presents survey and interview data for 37 enterprises across eight manufacturing sectors collected during a study for the International Labour Organisation. The research analysed enterprise and…

  1. Developing Codes of Conduct for Manufacturers of College Apparel.

    ERIC Educational Resources Information Center

    Nicklin, Julie L.

    1998-01-01

    Colleges and universities are establishing policies to ensure that clothing carrying their names are not being manufactured with "sweatshop" labor. The colleges' policies attempt to set acceptable standards for manufacturers producing the lucrative licensed lines. However, institutions are finding that it is difficult to enforce those ideals in…

  2. Development of a machine vision guidance system for automated assembly of space structures

    NASA Technical Reports Server (NTRS)

    Cooper, Eric G.; Sydow, P. Daniel

    1992-01-01

    The topics are presented in viewgraph form and include: automated structural assembly robot vision; machine vision requirements; vision targets and hardware; reflective efficiency; target identification; pose estimation algorithms; triangle constraints; truss node with joint receptacle targets; end-effector mounted camera and light assembly; vision system results from optical bench tests; and future work.

  3. Development of a body motion interactive system with a weight voting mechanism and computer vision technology

    NASA Astrophysics Data System (ADS)

    Lin, Chern-Sheng; Chen, Chia-Tse; Shei, Hung-Jung; Lay, Yun-Long; Chiu, Chuang-Chien

    2012-09-01

    This study develops a body motion interactive system with computer vision technology. This application combines interactive games, art performing, and exercise training system. Multiple image processing and computer vision technologies are used in this study. The system can calculate the characteristics of an object color, and then perform color segmentation. When there is a wrong action judgment, the system will avoid the error with a weight voting mechanism, which can set the condition score and weight value for the action judgment, and choose the best action judgment from the weight voting mechanism. Finally, this study estimated the reliability of the system in order to make improvements. The results showed that, this method has good effect on accuracy and stability during operations of the human-machine interface of the sports training system.

  4. Component Manufacturing Development for the National Compact Stellarator Experiment (NCSX)

    SciTech Connect

    P.J. Heitzenroeder; T.G. Brown; J.H. Chrzanowski; M.J. Cole; P.L. Goranson; G.H. Neilson; B.E. Nelson; W.T. Reiersen; L.L Sutton; D.E. Williamson; M.E. Viola

    2004-10-28

    NCSX [National Compact Stellarator Experiment] is the first of a new class of stellarators called compact stellarators which hold the promise of retaining the steady state feature of the stellarator but at a much lower aspect ratio and using a quasi-axisymmetric magnetic field to obtain tokamak-like performance. Although much of NCSX is conventional in design and construction, the vacuum vessel and modular coils provide significant engineering challenges due to their complex shapes, need for high dimensional accuracy, and the high current density required in the modular coils due space constraints. Consequently, a three-phase development program has been undertaken. In the first phase, laboratory/industrial studies were performed during the development of the conceptual design to permit advances in manufacturing technology to be incorporated into NCSX's plans. In the second phase, full-scale prototype modular coil winding forms, compacted cable conductors, and 20 degree sectors of the vacuum vessel were fabricated in industry. In parallel, the NCSX project team undertook R&D studies that focused on the windings. The third (production) phase began in September 2004. First plasma is scheduled for January 2008.

  5. Development of VIPER: a simulator for assessing vision performance of warfighters

    NASA Astrophysics Data System (ADS)

    Familoni, Jide; Thompson, Roger; Moyer, Steve; Mueller, Gregory; Williams, Tim; Nguyen, Hung-Quang; Espinola, Richard L.; Sia, Rose K.; Ryan, Denise S.; Rivers, Bruce A.

    2016-05-01

    Background: When evaluating vision, it is important to assess not just the ability to read letters on a vision chart, but also how well one sees in real life scenarios. As part of the Warfighter Refractive Eye Surgery Program (WRESP), visual outcomes are assessed before and after refractive surgery. A Warfighter's ability to read signs and detect and identify objects is crucial, not only when deployed in a military setting, but also in their civilian lives. Objective: VIPER, a VIsion PERformance simulator was envisioned as actual video-based simulated driving to test warfighters' functional vision under realistic conditions. Designed to use interactive video image controlled environments at daytime, dusk, night, and with thermal imaging vision, it simulates the experience of viewing and identifying road signs and other objects while driving. We hypothesize that VIPER will facilitate efficient and quantifiable assessment of changes in vision and measurement of functional military performance. Study Design: Video images were recorded on an isolated 1.1 mile stretch of road with separate target sets of six simulated road signs and six objects of military interest, separately. The video footage were integrated with customdesigned C++ based software that presented the simulated drive to an observer on a computer monitor at 10, 20 or 30 miles/hour. VIPER permits the observer to indicate when a target is seen and when it is identified. Distances at which the observer recognizes and identifies targets are automatically logged. Errors in recognition and identification are also recorded. This first report describes VIPER's development and a preliminary study to establish a baseline for its performance. In the study, nine soldiers viewed simulations at 10 miles/hour and 30 miles/hour, run in randomized order for each participant seated at 36 inches from the monitor. Relevance: Ultimately, patients are interested in how their vision will affect their ability to perform daily

  6. How development and manufacturing will need to be structured--heads of development/manufacturing. May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Nepveux, Kevin; Sherlock, Jon-Paul; Futran, Mauricio; Thien, Michael; Krumme, Markus

    2015-03-01

    Continuous manufacturing (CM) is a process technology that has been used in the chemical industry for large-scale mass production of chemicals in single-purpose plants with benefit for many years. Recent interest has been raised to expand CM into the low-volume, high-value pharmaceutical business with its unique requirements regarding readiness for human use and the required quality, supply chain, and liability constraints in this business context. Using a fairly abstract set of definitions, this paper derives technical consequences of CM in different scenarios along the development-launch-supply axis in different business models and how they compare to batch processes. Impact of CM on functions in development is discussed and several operational models suitable for originators and other business models are discussed and specific aspects of CM are deduced from CM's technical characteristics. Organizational structures of current operations typically can support CM implementations with just minor refinements if the CM technology is limited to single steps or small sequences (bin-to-bin approach) and if the appropriate technical skill set is available. In such cases, a small, dedicated group focused on CM is recommended. The manufacturing strategy, as centralized versus decentralized in light of CM processes, is discussed and the potential impact of significantly shortened supply lead times on the organization that runs these processes. The ultimate CM implementation may be seen by some as a totally integrated monolithic plant, one that unifies chemistry and pharmaceutical operations into one plant. The organization supporting this approach will have to reflect this change in scope and responsibility. The other extreme, admittedly futuristic at this point, would be a highly decentralized approach with multiple smaller hubs; this would require a new and different organizational structure. This processing approach would open up new opportunities for products that

  7. Analysis of the development and the prospects about vehicular infrared night vision system

    NASA Astrophysics Data System (ADS)

    Li, Jing; Fan, Hua-ping; Xie, Zu-yun; Zhou, Xiao-hong; Yu, Hong-qiang; Huang, Hui

    2013-08-01

    Through the classification of vehicular infrared night vision system and comparing the mainstream vehicle infrared night vision products, we summarized the functions of vehicular infrared night vision system which conclude night vision, defogging , strong-light resistance and biological recognition. At the same time , the vehicular infrared night vision system's markets of senior car and fire protection industry were analyzed。Finally, the conclusion was given that vehicle infrared night vision system would be used as a safety essential active safety equipment to promote the night vision photoelectric industry and automobile industry.

  8. Composite Design and Manufacturing Development for Human Spacecrafts

    NASA Technical Reports Server (NTRS)

    Litteken, Douglas; Lowry, David

    2013-01-01

    The Structural Engineering Division at the NASA Johnson Space Center (JSC) has begun work on lightweight, multi-functional pressurized composite structures. The first candidate vehicle for technology development is the Multi-Mission Space Exploration Vehicle (MMSEV) cabin, known as the Gen 2B cabin, which has been built at JSC by the Robotics Division. Of the habitable MMSEV vehicle prototypes designed to date, this is the first one specifically analyzed and tested to hold internal pressure and the only one made out of composite materials. This design uses a laminate base with zoned reinforcement and external stringers, intended to demonstrate certain capabilities, and to prepare for the next cabin design, which will be a composite sandwich panel construction with multi-functional capabilities. As part of this advanced development process, a number of new technologies were used to assist in the design and manufacturing process. One of the methods, new to JSC, was to build the Gen 2B cabin with Out of Autoclave technology to permit the creation of larger parts with fewer joints. An 8-ply pre-preg layup was constructed to form the cabin body. Prior to lay-up, a design optimization software called FiberSIM was used to create each ply pattern. This software is integrated with Pro/Engineer to allow for customized draping of each fabric ply over the complex tool surface. Slits and darts are made in the software model to create an optimal design that maintains proper fiber placement and orientation. The flat pattern of each ply is then exported and sent to an automated cutting table where the patterns are cut out of graphite material. Additionally, to assist in lay-up, a laser projection system (LPT) is used to project outlines of each ply directly onto the tool face for accurate fiber placement and ply build-up. Finally, as part of the OoA process, a large oven was procured to post-cure each part. After manufacturing complete, the cabin underwent modal and pressure

  9. Optoelectronic stereoscopic device for diagnostics, treatment, and developing of binocular vision

    NASA Astrophysics Data System (ADS)

    Pautova, Larisa; Elkhov, Victor A.; Ovechkis, Yuri N.

    2003-08-01

    Operation of the device is based on alternative generation of pictures for left and right eyes on the monitor screen. Controller gives pulses on LCG so that shutter for left or right eye opens synchronously with pictures. The device provides frequency of switching more than 100 Hz, and that is why the flickering is absent. Thus, a separate demonstration of images to the left eye or to the right one in turn is obtained for patients being unaware and creates the conditions of binocular perception clsoe to natural ones without any additional separation of vision fields. LC-cell transfer characteristic coodination with time parameters of monitor screen has enabled to improve stereo image quality. Complicated problem of computer stereo images with LC-glasses is so called 'ghosts' - noise images that come to blocked eye. We reduced its influence by adapting stereo images to phosphor and LC-cells characteristics. The device is intended for diagnostics and treatment of stabismus, amblyopia and other binocular and stereoscopic vision impairments, for cultivating, training and developing of stereoscopic vision, for measurements of horizontal and vertical phoria, phusion reserves, the stereovision acuity and some else, for fixing central scotoma borders, as well as suppression scotoma in strabismus too.

  10. Cleaning Process Development for Metallic Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  11. Development and Evaluation of 2-D and 3-D Exocentric Synthetic Vision Navigation Display Concepts for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, Jason L.

    2005-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications that will help to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. The paper describes experimental evaluation of a multi-mode 3-D exocentric synthetic vision navigation display concept for commercial aircraft. Experimental results evinced the situation awareness benefits of 2-D and 3-D exocentric synthetic vision displays over traditional 2-D co-planar navigation and vertical situation displays. Conclusions and future research directions are discussed.

  12. Intelligent processing equipment developments within the Navy's Manufacturing Technology Centers of Excellence

    NASA Astrophysics Data System (ADS)

    Nanzetta, Philip

    1992-04-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  13. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    NASA Technical Reports Server (NTRS)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  14. Developing the Manufacturing Process for VCE: Binder for Filled Elastomers

    SciTech Connect

    E.A. Eastwood

    2009-11-01

    This topical report presents work completed to re-establish the manufacturing process for poly(ethylene-co-vinyl acetate-co-vinyl alcohol) terpolymer called VCE. The new VCE formulations meet the material requirements and have lower melt viscosity, which results in improved production for the next assembly. In addition, the reaction conditions were optimized in order to achieve a satisfactory conversion rate to enable production in a single work shift. Several equipment and process changes were made to yield a manufacturing process with improved product quality, yield, efficiency, and worker safety.

  15. A test battery of child development for examining functional vision (ABCDEFV).

    PubMed

    Atkinson, J; Anker, S; Rae, S; Hughes, C; Braddick, O

    2002-12-01

    A battery of 22 tests is described, intended to give an integrated assessment of children's functional visual capacities between birth and four years of age. As well as sensory visual measures such as acuity, visual fields and stereopsis, the battery is intended to tap a range of perceptual, motor, spatial and cognitive aspects of visual function. Tests have been drawn from practice in ophthalmology and orthoptics, vision research, paediatric neurology, and developmental psychology to give an overall view of children's visual competences for guidance in diagnosis, further investigation, management and rehabilitation of children with developmental disorders. 'Core vision tests' require no motoric capacities beyond saccadic eye movements or linguistic skills and so assess basic visual capacities in children of any age. 'Additional tests' have age-specific requirements and are designed to pinpoint specific deficits in the perceptual, visuo-motor and spatio-cognitive domains. Normative data are reported on nine age groups between 0-6 weeks and 31-36 months, each including 32-43 typically developing children. Pass/fail criteria for each test are defined. These data allow the selection of a subset of tests for each age group which are passed by at least 85% of normally developing children, and so are appropriate for defining normal development. The normalized battery has been applied to a range of at-risk and clinical groups. Aspects of children's visual performance are discussed in relation to neurobiological models of visual development. PMID:12660850

  16. Two-Phase Flow Technology Developed and Demonstrated for the Vision for Exploration

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; McQuillen, John B.; Lekan, Jack F.

    2005-01-01

    NASA s vision for exploration will once again expand the bounds of human presence in the universe with planned missions to the Moon and Mars. To attain the numerous goals of this vision, NASA will need to develop technologies in several areas, including advanced power-generation and thermal-control systems for spacecraft and life support. The development of these systems will have to be demonstrated prior to implementation to ensure safe and reliable operation in reduced-gravity environments. The Two-Phase Flow Facility (T(PHI) FFy) Project will provide the path to these enabling technologies for critical multiphase fluid products. The safety and reliability of future systems will be enhanced by addressing focused microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability, all of which are essential to exploration technology. The project--a multiyear effort initiated in 2004--will include concept development, normal-gravity testing (laboratories), reduced gravity aircraft flight campaigns (NASA s KC-135 and C-9 aircraft), space-flight experimentation (International Space Station), and model development. This project will be implemented by a team from the NASA Glenn Research Center, QSS Group, Inc., ZIN Technologies, Inc., and the Extramural Strategic Research Team composed of experts from academia.

  17. Development of the Triple Theta assembly station with machine vision feedback

    SciTech Connect

    Schmidt, Derek William

    2008-01-01

    Increased requirements for tighter tolerances on assembled target components in complex three-dimensional geometries with only days to assemble complete campaigns require the implementation of a computer-controlled high-precision assembly station. Over the last year, an 11-axis computer-controlled assembly station has been designed and built with custom software to handle the multiple coordinate systems and automatically calculate all relational positions. Preliminary development efforts have also been done to explore the benefit of a machine vision feedback module with a dual-camera viewing system to automate certain basic features like crosshair calibration, component leveling, and component centering.

  18. InnoVision's focus areas for motion imagery research and development

    NASA Astrophysics Data System (ADS)

    Rice, Kenneth E.

    2013-05-01

    This paper describes the role that the National Geospatial Intelligence Agency (NGA) has in motion imagery research and development (RD). Motion imagery RD is ubiquitous. Commercial technology is strongly leveraged by the Department of Defense (DoD) and each component in DoD has unique needs that they invest RD dollars against. DoD Directive 5106.60 gives NGA full responsibility for geospatial intelligence (GEOINT), including a wide range of RD functions. InnoVision, NGA's RD component has specific areas of focus for motion imagery RD that are designed to complement and enhance service and industry efforts.

  19. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect

    Hamilton, Bruce

    2013-02-22

    This report seeks to provide an organized, analytical approach to identifying and bounding uncertainties around offshore wind manufacturing and supply chain capabilities; projecting potential component-level supply chain needs under three demand scenarios; and identifying key supply chain challenges and opportunities facing the future U.S. market and current suppliers of the nation’s landbased wind market.

  20. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    SciTech Connect

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  1. 77 FR 69634 - International Conference on Harmonisation; Guidance on Q11 Development and Manufacture of Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    .... In the Federal Register of June 29, 2011 (76 FR 38187), FDA published a notice announcing the... Development and Manufacture of Drug Substances; Availability AGENCY: Food and Drug Administration, HHS. ACTION... entitled ``Q11 Development and Manufacture of Drug Substances.'' The guidance was prepared under...

  2. Development and Manufacture of Cost-Effective Composite Drill Pipe

    SciTech Connect

    James C. Leslie

    2008-12-31

    Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force

  3. The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting.

    PubMed

    Stamp, R; Fox, P; O'Neill, W; Jones, E; Sutcliffe, C

    2009-09-01

    Porous structures are used in orthopaedics to promote biological fixation between metal implant and host bone. In order to achieve rapid and high volumes of bone ingrowth the structures must be manufactured from a biocompatible material and possess high interconnected porosities, pore sizes between 100 and 700 microm and mechanical strengths that withstand the anticipated biomechanical loads. The challenge is to develop a manufacturing process that can cost effectively produce structures that meet these requirements. The research presented in this paper describes the development of a 'beam overlap' technique for manufacturing porous structures in commercially pure titanium using the Selective Laser Melting (SLM) rapid manufacturing technique. A candidate bone ingrowth structure (71% porosity, 440 microm mean pore diameter and 70 MPa compression strength) was produced and used to manufacture a final shape orthopaedic component. These results suggest that SLM beam overlap is a promising technique for manufacturing final shape functional bone ingrowth materials. PMID:19536640

  4. The Development of Model for Measuring Railway Wheels Manufacturing Readiness Level

    NASA Astrophysics Data System (ADS)

    Inrawan Wiratmadja, Iwan; Mufid, Anas

    2016-02-01

    In an effort to grow the railway wheel industry in Indonesia and reduce the dependence on imports, Metal Industries Development Center (MIDC) makes the implementation of the railway wheel manufacturing technology in Indonesia. MIDC is an institution based on research and development having a task to research the production of railway wheels prototype and acts as a supervisor to the industry in Indonesia, for implementing the railway wheel manufacturing technology. The process of implementing manufacturing technology requires a lot of resources. Therefore it is necessary to measure the manufacturing readiness process. Measurement of railway wheels manufacturing readiness was in this study done using the manufacturing readiness level (MRL) model from the United States Department of Defense. MRL consists of 10 manufacturing readiness levels described by 90 criteria and 184 sub-criteria. To get a manufacturing readiness measurement instrument that is good and accurate, the development process involved experts through expert judgment method and validated with a content validity ratio (CVR). Measurement instrument developed in this study consist of 448 indicators. The measurement results show that MIDC's railway wheels manufacturing readiness is at the level 4. This shows that there is a gap between the current level of manufacturing readiness owned by MIDC and manufacturing readiness levels required to achieve the program objectives, which is level 5. To achieve the program objectives at level 5, a number of actions were required to be done by MIDC. Indicators that must be improved to be able to achieve level 5 are indicators related to the cost and financing, process capability and control, quality management, workers, and manufacturing management criteria.

  5. Robot Vision Library

    NASA Technical Reports Server (NTRS)

    Howard, Andrew B.; Ansar, Adnan I.; Litwin, Todd E.; Goldberg, Steven B.

    2009-01-01

    The JPL Robot Vision Library (JPLV) provides real-time robot vision algorithms for developers who are not vision specialists. The package includes algorithms for stereo ranging, visual odometry and unsurveyed camera calibration, and has unique support for very wideangle lenses

  6. Developing Crew Health Care and Habitability Systems for the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Laurini, Kathy; Sawin, Charles F.

    2006-01-01

    This paper will discuss the specific mission architectures associated with the NASA Exploration Vision and review the challenges and drivers associated with developing crew health care and habitability systems to manage human system risks. Crew health care systems must be provided to manage crew health within acceptable limits, as well as respond to medical contingencies that may occur during exploration missions. Habitability systems must enable crew performance for the tasks necessary to support the missions. During the summer of 2005, NASA defined its exploration architecture including blueprints for missions to the moon and to Mars. These mission architectures require research and technology development to focus on the operational risks associated with each mission, as well as the risks to long term astronaut health. This paper will review the highest priority risks associated with the various missions and discuss NASA s strategies and plans for performing the research and technology development necessary to manage the risks to acceptable levels.

  7. NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2007-01-01

    NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.

  8. Stereo-vision-based perception capabilities developed during the Robotics Collaborative Technology Alliances program

    NASA Astrophysics Data System (ADS)

    Rankin, Arturo; Bajracharya, Max; Huertas, Andres; Howard, Andrew; Moghaddam, Baback; Brennan, Shane; Ansar, Adnan; Tang, Benyang; Turmon, Michael; Matthies, Larry

    2010-04-01

    The Robotics Collaborative Technology Alliances (RCTA) program, which ran from 2001 to 2009, was funded by the U.S. Army Research Laboratory and managed by General Dynamics Robotic Systems. The alliance brought together a team of government, industrial, and academic institutions to address research and development required to enable the deployment of future military unmanned ground vehicle systems ranging in size from man-portables to ground combat vehicles. Under RCTA, three technology areas critical to the development of future autonomous unmanned systems were addressed: advanced perception, intelligent control architectures and tactical behaviors, and human-robot interaction. The Jet Propulsion Laboratory (JPL) participated as a member for the entire program, working four tasks in the advanced perception technology area: stereo improvements, terrain classification, pedestrian detection in dynamic environments, and long range terrain classification. Under the stereo task, significant improvements were made to the quality of stereo range data used as a front end to the other three tasks. Under the terrain classification task, a multi-cue water detector was developed that fuses cues from color, texture, and stereo range data, and three standalone water detectors were developed based on sky reflections, object reflections (such as trees), and color variation. In addition, a multi-sensor mud detector was developed that fuses cues from color stereo and polarization sensors. Under the long range terrain classification task, a classifier was implemented that uses unsupervised and self-supervised learning of traversability to extend the classification of terrain over which the vehicle drives to the far-field. Under the pedestrian detection task, stereo vision was used to identify regions-of-interest in an image, classify those regions based on shape, and track detected pedestrians in three-dimensional world coordinates. To improve the detectability of partially occluded

  9. Development of computerized color vision testing as a replacement for Martin Lantern

    PubMed Central

    Kapoor, Gaurav; Vats, D.P.; Parihar, J.K.S.

    2012-01-01

    Background Development and standardization of computerized color vision testing as a replacement for Martin Lantern test. Non-randomized comparative trial. Methods All candidates of SSB, Allahabad, reporting for SMB underwent color vision testing at the eye dept by computerized eye test and currently available tests. Results All candidates were subjected to Ishihara chart testing and those found to be CP III were subjected to the confirmatory test on Martin Lantern and the Software. Candidates requiring CP I standards for eligibility were tested on the same on Martin Lantern and on the new software method. On comparison between the Standard Martin Lantern and the Software, the results were consistent and comparable with 82 patients testing CP I on the Martin Lantern and 81 on the software. Of the CP III patients, 253 tested positive on the Standard lantern test as compared to 251 on the software and of the CP IV group, 147 tested positive on the Standard lantern and 149 by the software method. Conclusion It was found that the software replicated the existing Martin Lantern accurately and consistently. The Martin Lantern Software can be used as a replacement for existing old Lanterns which are not in production since the early 20th century. PMID:24532927

  10. Vision for the development of an international nuclear fuel recycling program

    SciTech Connect

    Kok, Kenneth D.

    2007-07-01

    The purpose of the development of an international nuclear fuel recycle program is to: - Demonstrate advanced recycling by working to prove the technologies needed to close the fuel cycle, minimize waste, and obtain more energy benefit for each unit of fuel. - Build a global vision by enlisting partners to limit the spread of sensitive nuclear technologies in a way that enables nuclear power to meet global challenges. The program will begin with the establishment of a smaller scale secure fuel cycle facility that would serve as a model for international nuclear fuel reprocessing centers that would eventually be built in several countries world wide. The operating process plants will provide the secure and safe guarded environment for the recycle of spent fuel from nuclear power stations around the world. The demonstration site will provide for developing and testing processes that would lead to the more complete use of the energy available in nuclear fuels and the minimization of long lived nuclear waste. (author)

  11. Design, development, fabrication, and safety-of-flight testing of a panoramic night vision goggle

    NASA Astrophysics Data System (ADS)

    Jackson, Timothy W.; Craig, Jeffrey L.

    1999-07-01

    A novel approach to significantly increasing the field of view (FOV) of night vision goggles (NVGs) has been developed. This approach uses four image intensifier tubes instead of the usual two to produce a 100 degree wide FOV. A conceptual demonstrator device was fabricated in November 1995 and limited flight evaluations were performed. Further development of this approach continues with eleven advanced technology demonstrators delivered in March 1999 that feature five different design configurations. Some of the units will be earmarked for ejection seat equipped aircraft due to their low profile design allowing the goggle to be retained safely during and after ejection. Other deliverables will be more traditional in design approach and lends itself to transport and helicopter aircraft as well as ground personnel. Extensive safety-of-flight testing has been accomplished as a precursor to the F-15C operational utility evaluation flight testing at Nellis AFB that began in March 1999.

  12. Development and testing of an active platen for IC manufacturing

    SciTech Connect

    Redmond, J.; Barney, P.; Smith, T.; Darnold, J.

    1998-11-01

    The conflicting demands for finer features and increased production rates in integrated circuit manufacturing have emphasized the need for improved wafer positioning technology. In this paper we present operational test results from a magnetically levitated platen with structurally integrated piezoelectric acctuators. The strain based actuators provide active damping of the platen`s flexible body modes, enabling increased bandwidth on the mag-lev positioning system. Test results reveal a dramatic reduction in steady state positioning error and settling time through implementation of active vibration control.

  13. The development and manufacture of wood composite wind turbine rotors

    NASA Technical Reports Server (NTRS)

    Zuteck, M. D.

    1982-01-01

    The physical properties, operational experience, and construction methods of the wood/epoxy composite MOD 0A wind turbine blades are considered. Blades of this type have accumulated over 10,000 hours of successful operation at the Kahuku, Hawaii and Block Island, Rhode Island test sites. That body of experience is summarized and related to the structural concepts and design drivers which motivated the original design and choice of interior layout. Actual manufacturing experience and associated low first unit costs for these blades, as well as projections for high production rates, are presented. Application of these construction techniques to a wide range of other blade sizes is also considered.

  14. International Conference on Harmonisation; Guidance on Q11 Development and Manufacture of Drug Substances; availability. Notice.

    PubMed

    2012-11-20

    The Food and Drug Administration (FDA) is announcing the availability of a guidance entitled "Q11 Development and Manufacture of Drug Substances.'' The guidance was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The guidance describes approaches to developing and understanding the manufacturing process of a drug substance and provides guidance on what information should be provided in certain sections of the Common Technical Document (CTD). The guidance is intended to harmonize the scientific and technical principles relating to the description and justification of the development and manufacturing process of drug substances (both chemical entities and biotechnological/biological entities) to enable a consistent approach for providing and evaluating this information across the three regions. The discussion of principles in the guidance is intended to apply only to the manufacture of drug substance, not the manufacture of finished drug products. PMID:23227566

  15. A framework for development of an intelligent system for design and manufacturing of stamping dies

    NASA Astrophysics Data System (ADS)

    Hussein, H. M. A.; Kumar, S.

    2014-07-01

    An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software.

  16. Developing a data life cycle for carbon and greenhouse gas measurements: challenges, experiences and visions

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.

    2015-12-01

    Environmental research infrastructures and big data integration networks require common data policies, standardized workflows and sophisticated e-infrastructure to optimise the data life cycle. This presentation summarizes the experiences in developing the data life cycle for the Integrated Carbon Observation System (ICOS), a European Research Infrastructure. It will also outline challenges that still exist and visions for future development. As many other environmental research infrastructures ICOS RI built on a large number of distributed observational or experimental sites. Data from these sites are transferred to Thematic Centres and quality checked, processed and integrated there. Dissemination will be managed by the ICOS Carbon Portal. This complex data life cycle has been defined in detail by developing protocols and assigning responsibilities. Since data will be shared under an open access policy there is a strong need for common data citation tracking systems that allow data providers to identify downstream usage of their data so as to prove their importance and show the impact to stakeholders and the public. More challenges arise from interoperating with other infrastructures or providing data for global integration projects as done e.g. in the framework of GEOSS or in global integration approaches such as fluxnet or SOCAt. Here, common metadata systems are the key solutions for data detection and harvesting. The metadata characterises data, services, users and ICT resources (including sensors and detectors). Risks may arise when data of high and low quality are mixed during this process or unexperienced data scientists without detailed knowledge on the data aquisition derive scientific theories through statistical analyses. The vision of fully open data availability is expressed in a recent GEO flagship initiative that will address important issues needed to build a connected and interoperable global network for carbon cycle and greenhouse gas

  17. Computer vision and driver distraction: developing a behaviour-flagging protocol for naturalistic driving data.

    PubMed

    Kuo, Jonny; Koppel, Sjaan; Charlton, Judith L; Rudin-Brown, Christina M

    2014-11-01

    Naturalistic driving studies (NDS) allow researchers to discreetly observe everyday, real-world driving to better understand the risk factors that contribute to hazardous situations. In particular, NDS designs provide high ecological validity in the study of driver distraction. With increasing dataset sizes, current best practice of manually reviewing videos to classify the occurrence of driving behaviours, including those that are indicative of distraction, is becoming increasingly impractical. Current statistical solutions underutilise available data and create further epistemic problems. Similarly, technical solutions such as eye-tracking often require dedicated hardware that is not readily accessible or feasible to use. A computer vision solution based on open-source software was developed and tested to improve the accuracy and speed of processing NDS video data for the purpose of quantifying the occurrence of driver distraction. Using classifier cascades, manually-reviewed video data from a previously published NDS was reanalysed and used as a benchmark of current best practice for performance comparison. Two software coding systems were developed - one based on hierarchical clustering (HC), and one based on gender differences (MF). Compared to manual video coding, HC achieved 86 percent concordance, 55 percent reduction in processing time, and classified an additional 69 percent of target behaviour not previously identified through manual review. MF achieved 67 percent concordance, a 75 percent reduction in processing time, and classified an additional 35 percent of target behaviour not identified through manual review. The findings highlight the improvements in processing speed and correctly classifying target behaviours achievable through the use of custom developed computer vision solutions. Suggestions for improved system performance and wider implementation are discussed. PMID:25063935

  18. Vision problems

    MedlinePlus

    ... which nothing can be seen) Vision loss and blindness are the most severe vision problems. Causes Vision ... that look faded. The most common cause of blindness in people over age 60. Eye infection, inflammation, ...

  19. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    NASA Technical Reports Server (NTRS)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  20. Status of recent developments in collision avoidance using motion detectors based on insect vision

    NASA Astrophysics Data System (ADS)

    Abbott, Derek; Moini, Alireza; Yakovleff, Andre; Nguyen, X. Thong; Beare, R.; Kim, W.; Bouzerdoum, Abdesselam; Bogner, Robert E.; Eshraghian, Kamran

    1997-02-01

    Insects tend to detect motion rather than images and this together with inherent parallelism in their visual architecture, leads to an efficient and compact means of collision avoidance. A VLSI implementation of a smart microsensor that mimics the early visual processing stage in insects has been developed. The system employs the `smart sensor' paradigm in that the detectors and processing circuitry are integrated on one chip. The IC is ideal for motion detectors, particularly collision avoidance tasks, as it essentially detects the speed, bearing and time-to-impact of a moving object. The Horridge model for insect vision has been directly mapped into VLSI and therefore the IC truly exploits the beauty of nature in that the insect eye is so compact with parallel processing, enabling compact motion detection without the computational overhead of intensive imaging, full image extraction and interpretation. This world-first has exciting applications in areas such as anti- collision for automobiles and autonomous robots.

  1. Development of a machine vision system for a real-time precision sprayer

    NASA Astrophysics Data System (ADS)

    Bossu, Jérémie; Gée, Christelle; Truchetet, Frédéric

    2007-01-01

    In the context of precision agriculture, we have developed a machine vision system for a real time precision sprayer. From a monochrome CCD camera located in front of the tractor, the discrimination between crop and weeds is obtained with an image processing based on spatial information using a Gabor filter. This method allows to detect the periodic signals from the non periodic one and it enables to enhance the crop rows whereas weeds have patchy distribution. Thus, weed patches were clearly identified by a blob-coloring method. Finally, we use a pinhole model to transform the weed patch coordinates image in world coordinates in order to activate the right electro-pneumatic valve of the sprayer at the right moment.

  2. Development of a Machine-Vision System for Recording of Force Calibration Data

    NASA Astrophysics Data System (ADS)

    Heamawatanachai, Sumet; Chaemthet, Kittipong; Changpan, Tawat

    This paper presents the development of a new system for recording of force calibration data using machine vision technology. Real time camera and computer system were used to capture images of the reading from the instruments during calibration. Then, the measurement images were transformed and translated to numerical data using optical character recognition (OCR) technique. These numerical data along with raw images were automatically saved to memories as the calibration database files. With this new system, the human error of recording would be eliminated. The verification experiments were done by using this system for recording the measurement results from an amplifier (DMP 40) with load cell (HBM-Z30-10kN). The NIMT's 100-kN deadweight force standard machine (DWM-100kN) was used to generate test forces. The experiments setup were done in 3 categories; 1) dynamics condition (record during load changing), 2) statics condition (record during fix load), and 3) full calibration experiments in accordance with ISO 376:2011. The captured images from dynamics condition experiment gave >94% without overlapping of number. The results from statics condition experiment were >98% images without overlapping. All measurement images without overlapping were translated to number by the developed program with 100% accuracy. The full calibration experiments also gave 100% accurate results. Moreover, in case of incorrect translation of any result, it is also possible to trace back to the raw calibration image to check and correct it. Therefore, this machine-vision-based system and program should be appropriate for recording of force calibration data.

  3. Microwave vision for robots

    NASA Technical Reports Server (NTRS)

    Lewandowski, Leon; Struckman, Keith

    1994-01-01

    Microwave Vision (MV), a concept originally developed in 1985, could play a significant role in the solution to robotic vision problems. Originally our Microwave Vision concept was based on a pattern matching approach employing computer based stored replica correlation processing. Artificial Neural Network (ANN) processor technology offers an attractive alternative to the correlation processing approach, namely the ability to learn and to adapt to changing environments. This paper describes the Microwave Vision concept, some initial ANN-MV experiments, and the design of an ANN-MV system that has led to a second patent disclosure in the robotic vision field.

  4. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  5. Assessing Early Language Development in Children with Vision Disability and Motor Disability

    ERIC Educational Resources Information Center

    Hennessey, Stephen

    2011-01-01

    This article describes a method for identifying test items as disability neutral for children with vision and motor disabilities. Graduate students rated 130 items of the Preschool Language Scale and obtained inter-rater correlation coefficients of 0.58 for ratings of items as disability neutral for children with vision disability, and 0.77 for…

  6. Developing a Transformative School Vision: Lessons from Peer-Nominated Principals

    ERIC Educational Resources Information Center

    Kose, Brad W.

    2011-01-01

    Scholars argue or imply that schools should build transformative school visions that promote equity, diversity, and social justice. However, little empirical research has investigated the principal's role in this endeavor or analyzed the practical dimensions of transformative vision statements. This study re-examined relevant data from two…

  7. Development of a vision-based pH reading system

    NASA Astrophysics Data System (ADS)

    Hur, Min Goo; Kong, Young Bae; Lee, Eun Je; Park, Jeong Hoon; Yang, Seung Dae; Moon, Ha Jung; Lee, Dong Hoon

    2015-10-01

    pH paper is generally used for pH interpretation in the QC (quality control) process of radiopharmaceuticals. pH paper is easy to handle and useful for small samples such as radio-isotopes and radioisotope (RI)-labeled compounds for positron emission tomography (PET). However, pHpaper-based detecting methods may have some errors due limitations of eye sight and inaccurate readings. In this paper, we report a new device for pH reading and related software. The proposed pH reading system is developed with a vision algorithm based on the RGB library. The pH reading system is divided into two parts. First is the reading device that consists of a light source, a CCD camera and a data acquisition (DAQ) board. To improve the accuracy of the sensitivity, we utilize the three primary colors of the LED (light emission diode) in the reading device. The use of three colors is better than the use of a single color for a white LED because of wavelength. The other is a graph user interface (GUI) program for a vision interface and report generation. The GUI program inserts the color codes of the pH paper into the database; then, the CCD camera captures the pH paper and compares its color with the RGB database image in the reading mode. The software captures and reports information on the samples, such as pH results, capture images, and library images, and saves them as excel files.

  8. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Madhava Syamlal, Ph.D.

    2001-10-20

    DOE Vision 21 project requirements for the support of Global CAPE-OPEN Reaction Kinetics interfaces in Aspen Plus 12 was written (Task 2.4). The software design document was written and posted on the project web site. Intergraph started work on a proof of concept demo of the physical domain software (Task 2.6). The COM-side (Aspen Plus) and CORBA-side (Fluent) pieces of the Vision 21 controller code were written and independently verified. The two pieces of the code were then combined. Debugging of the combined code is underway (Task 2.7). Papers on fuel cell processes were read in preparation for developing an example based on a fuel cell process (Task 2.8). The INDVU code has been used to replace the boiler component in the Aspen Plus flowsheet of the RP&L power plant. The INDVU code receives information from Aspen Plus and iterates on the split backpass LTSH bypass and excess air quantities until the stipulated superheat outlet temperature is satisfied. The combined INDVU-Aspen Plus model has been run for several load conditions (Task 2.14). Work on identifying a second demonstration case involving an advanced power cycle has been started (Task 3.2). Plans for the second Advisory Board meeting in November were made (Task 5.0). Intergraph subcontract was signed and work on a physical domain software demo was started. A second teleconference with Norsk Hydro was conducted to discuss Global CAPE-OPEN standards and issues related to COM-CORBA Bridge (Task 7.0).

  9. Computer vision in microstructural analysis

    NASA Technical Reports Server (NTRS)

    Srinivasan, Malur N.; Massarweh, W.; Hough, C. L.

    1992-01-01

    The following is a laboratory experiment designed to be performed by advanced-high school and beginning-college students. It is hoped that this experiment will create an interest in and further understanding of materials science. The objective of this experiment is to demonstrate that the microstructure of engineered materials is affected by the processing conditions in manufacture, and that it is possible to characterize the microstructure using image analysis with a computer. The principle of computer vision will first be introduced followed by the description of the system developed at Texas A&M University. This in turn will be followed by the description of the experiment to obtain differences in microstructure and the characterization of the microstructure using computer vision.

  10. Economic Development Impacts in Colorado from Four Vestas Manufacturing Facilities, Wind Powering America Fact Sheet Series

    SciTech Connect

    Not Available

    2009-04-01

    This case study summarizes the economic development benefits to Colorado from four Vestas manufacturing facilities: one in Windsor, two in Brighton, and one in Pueblo (which is planned to be the world's largest tower-manufacturing facility). In the midst of an economic slowdown during which numerous U.S. manufacturers have closed their doors, wind energy component manufacturing is one U.S. industry that has experienced unprecedented growth during the past few years. As demand for wind power in the United States has increased and transportation costs have increased around the world, states have seen a significant increase in the number of manufacturers that produce wind turbine components in the United States. Vestas' Colorado operations will bring approximately $700 million in capital investment and nearly 2,500 jobs to the state.

  11. Nanoimprint system development and status for high volume semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Takeishi, Hiroaki; Sreenivasan, S. V.

    2015-03-01

    Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash Imprint Lithography (J-FIL) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is cross-linked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. Criteria specific to any lithographic process for the semiconductor industry include overlay, throughput and defectivity. The purpose of this paper is to describe the technology advancements made and introduce the new imprint systems that will be applied for the fabrication of advanced devices such as NAND Flash memory and DRAM. Overlay of better than 5nm (mean + 3sigma) has been demonstrated, and throughputs of 10 wafers per imprint station are now routinely achieved. Defectivity has been reduced by more than two orders of magnitude and particle adders within the tool have come down by approximately four orders of magnitude. A pilot line tool, the FPA-1100 NZ2, was used to generate most of the results in this work and conceptual plans are in place to address the requirements necessary for high volume manufacturing with an attractive cost of ownership relative to other HVM solutions for the semiconductor industry.

  12. Development and Manufacture of Cost Effective Composite Drill Pipe

    SciTech Connect

    James C. Leslie; James C. Leslie, II; Lee Truong; James T. Heard

    2006-09-29

    This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2005 through September 30, 2006 and contains the following discussions: Qualification Testing; Prototype Development and Testing of ''Smart Design'' Configuration; Field Test Demonstration; Development of Ultra-Short Radius Composite Drill Pipe (USR-CDP); and Development of Smart USR-CDP.

  13. Industrial Combustion Vision: A Vision by and for the Industrial Combustion Community

    SciTech Connect

    none,

    1998-05-01

    The Industrial Combustion Vision is the result of a collaborative effort by manufacturers and users of burners, boilers, furnaces, and other process heating equipment. The vision sets bold targets for tomorrow's combustion systems.

  14. The Effect of Prenatal and Childhood Development on Hearing, Vision and Cognition in Adulthood

    PubMed Central

    Dawes, Piers; Cruickshanks, Karen J.; Moore, David R.; Fortnum, Heather; Edmondson-Jones, Mark; McCormack, Abby; Munro, Kevin J.

    2015-01-01

    It is unclear what the contribution of prenatal versus childhood development is for adult cognitive and sensory function and age-related decline in function. We examined hearing, vision and cognitive function in adulthood according to self-reported birth weight (an index of prenatal development) and adult height (an index of early childhood development). Subsets (N = 37,505 to 433,390) of the UK Biobank resource were analysed according to visual and hearing acuity, reaction time and fluid IQ. Sensory and cognitive performance was reassessed after ~4 years (N = 2,438 to 17,659). In statistical modelling including age, sex, socioeconomic status, educational level, smoking, maternal smoking and comorbid disease, adult height was positively associated with sensory and cognitive function (partial correlations; pr 0.05 to 0.12, p < 0.001). Within the normal range of birth weight (10th to 90th percentile), there was a positive association between birth weight and sensory and cognitive function (pr 0.06 to 0.14, p < 0.001). Neither adult height nor birth weight was associated with change in sensory or cognitive function. These results suggest that adverse prenatal and childhood experiences are a risk for poorer sensory and cognitive function and earlier development of sensory and cognitive impairment in adulthood. This finding could have significant implications for preventing sensory and cognitive impairment in older age. PMID:26302374

  15. Supervisor-Student Teacher Interactions: The Role of Conversational Frames in Developing a Vision of Ambitious Teaching

    ERIC Educational Resources Information Center

    Long, Jennifer J.; van Es, Elizabeth A.; Black, Rebecca W.

    2013-01-01

    In the context of current mathematics and science education reform, teachers are challenged to develop a vision of ambitious instruction (NRC, 2001; Windschitl, Thompson, & Braaten, 2011). This exploratory study examined the discourse of student teacher supervision, focusing on how the conversational frames of supervisors and student teachers…

  16. Leader vision and the development of adaptive and proactive performance: a longitudinal study.

    PubMed

    Griffin, Mark A; Parker, Sharon K; Mason, Claire M

    2010-01-01

    In this study, the authors investigated how leader vision influences the change-oriented behaviors of adaptivity and proactivity in the workplace. The authors proposed that leader vision would lead to an increase in adaptivity for employees who were high in openness to work role change. In contrast, they proposed leader vision would be associated with an increase in proactivity when employees were high in role breadth self-efficacy. These propositions were supported in a longitudinal survey of 102 employees who provided self-report data about their leader and their work behaviors. The findings provide insight into the interaction between leaders and followers in responding to a change imperative. PMID:20085414

  17. An analytic framework for developing inherently-manufacturable pop-up laminate devices

    NASA Astrophysics Data System (ADS)

    Aukes, Daniel M.; Goldberg, Benjamin; Cutkosky, Mark R.; Wood, Robert J.

    2014-09-01

    Spurred by advances in manufacturing technologies developed around layered manufacturing technologies such as PC-MEMS, SCM, and printable robotics, we propose a new analytic framework for capturing the geometry of folded composite laminate devices and the mechanical processes used to manufacture them. These processes can be represented by combining a small set of geometric operations which are general enough to encompass many different manufacturing paradigms. Furthermore, such a formulation permits one to construct a variety of geometric tools which can be used to analyze common manufacturability concepts, such as tool access, part removability, and device support. In order to increase the speed of development, reduce the occurrence of manufacturing problems inherent with current design methods, and reduce the level of expertise required to develop new devices, the framework has been implemented in a new design tool called popupCAD, which is suited for the design and development of complex folded laminate devices. We conclude with a demonstration of utility of the tools by creating a folded leg mechanism.

  18. Vision Algorithms Catch Defects in Screen Displays

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Andrew Watson, a senior scientist at Ames Research Center, developed a tool called the Spatial Standard Observer (SSO), which models human vision for use in robotic applications. Redmond, Washington-based Radiant Zemax LLC licensed the technology from NASA and combined it with its imaging colorimeter system, creating a powerful tool that high-volume manufacturers of flat-panel displays use to catch defects in screens.

  19. Materials, Structures and Manufacturing: An Integrated Approach to Develop Expandable Structures

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Zander, Martin E.; Sleight, Daid W.; Connell, John; Holloway, Nancy; Palmieri, Frank

    2012-01-01

    Membrane dominated space structures are lightweight and package efficiently for launch; however, they must be expanded (deployed) in-orbit to achieve the desired geometry. These expandable structural systems include solar sails, solar power arrays, antennas, and numerous other large aperture devices that are used to collect, reflect and/or transmit electromagnetic radiation. In this work, an integrated approach to development of thin-film damage tolerant membranes is explored using advanced manufacturing. Bio-inspired hierarchical structures were printed on films using additive manufacturing to achieve improved tear resistance and to facilitate membrane deployment. High precision, robust expandable structures can be realized using materials that are both space durable and processable using additive manufacturing. Test results show this initial work produced higher tear resistance than neat film of equivalent mass. Future research and development opportunities for expandable structural systems designed using an integrated approach to structural design, manufacturing, and materials selection are discussed.

  20. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Maxwell Osawe; Madhava Syamlal; Krishna Thotapalli; and Stephen Zitney

    2003-10-30

    This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40954. The goal of the project is to develop and demonstrate a software framework to enable virtual simulation of Vision 21 plants. During the last quarter the software development was completed and the testing of the integrated software was completed. A user manual was written to complete software documentation. An installation CD-ROM including the following items was written: software installer, controller source code, proprietary CORBA wrapper templates for building local and remote servers, publicly available source code of the ACE/TAO CORBA library that needs to be built before compiling the controller source code, pre-built binaries of the publicly available XERCES XML library, and a PDF version of the software user's manual. The software was delivered to DOE. During the last quarter software demonstration tasks were completed. A few additional load points of Demo Case 1 were solved. Integrated simulations of Demo Case 2 with the proprietary HRSGSIM code and FLUENT CFD model were completed. The final task report describing Demo Case1 and Demo Case 2 simulation results was written and delivered to DOE.

  1. Manufacturing in Mechanical Engineering Education in Developing Countries.

    ERIC Educational Resources Information Center

    Peters, J.

    1989-01-01

    Discusses four problems which concern engineering education in developing countries: (1) less value of handiwork; (2) lack of industrial culture; (3) low salary of faculty; and (4) cultural distortions. Describes three successful cases in Indonesia and Thailand. (YP)

  2. Current situation of the development and manufacture of vary large scale integrated devices in China

    NASA Astrophysics Data System (ADS)

    Yubiao, He

    1988-06-01

    The manufacture of Large Scale Integration (LSI) and Very Large Scale Integration (VLSI) devices in foreign countries is a highly competitive high-tech industry. It requires high-precision manufacturing technology, and very expensive manufacturing equipment. Therefore, it is impossible to conduct research and form industrial production capability by merely relying on obsolete manufacturing equipment and semi-manual production techniques. According to the experience of our foreign counterparts and based on our current situation, it is highly desirable for domestic LSI and VLSI research institutes and manufacturers to establish unified development-manufacturing units, concentrate resources, amass available funds to upgrade equipment and technology, improve management, conduct theoretical research, and develop new technology and new devices under a unified planning and assigned responsibility. It is only in this way that we can reduce the gap between domestic and foreign VLSI device industries, and promote our micro-electronic industry. This should be the trend for the development of the microelectronic industry in China.

  3. A Review of Agile and Lean Manufacturing as Issues in Selected International and National Research and Development Programs and Roadmaps

    ERIC Educational Resources Information Center

    Castro, Helio; Putnik, Goran D.; Shah, Vaibhav

    2012-01-01

    Purpose: The aim of this paper is to analyze international and national research and development (R&D) programs and roadmaps for the manufacturing sector, presenting how agile and lean manufacturing models are addressed in these programs. Design/methodology/approach: In this review, several manufacturing research and development programs and…

  4. DEVELOPMENT AND MANUFACTURE OF COST EFFECTIVE COMPOSITE DRILL PIPE

    SciTech Connect

    James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Peter Manekas

    2005-03-18

    This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2003 through September 30, 2004 and contains the following discussions: (1) Direct Electrical Connection for Rotary Shoulder Tool Joints; (2) Conductors for inclusion in the pipe wall (ER/DW-CDP); (3) Qualify fibers from Zoltek; (4) Qualify resin from Bakelite; (5) First commercial order for SR-CDP from Integrated Directional Resources (SR-CDP); and (6) Preparation of papers for publication and conference presentations.

  5. Development of pulsed processes for the manufacture of solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.

    1978-01-01

    The results of a 1-year program to develop the processes required for low-energy ion implantation for the automated production of silicon solar cells are described. The program included: (1) demonstrating state-of-the-art ion implantation equipment and designing an automated ion implanter, (2) making efforts to improve the performance of ion-implanted solar cells to 16.5 percent AM1, (3) developing a model of the pulse annealing process used in solar cell production, and (4) preparing an economic analysis of the process costs of ion implantation.

  6. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    SciTech Connect

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  7. Development of Pulsed Processes for the Manufacture of Solar Cells

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The development status of the process based upon ion implantation for the introduction of junctions and back surface fields is described. A process sequence is presented employing ion implantation and pulse processing. Efforts to improve throughout and descrease process element costs for furnace annealing are described. Design studies for a modular 3,000 wafer per hour pulse processor are discussed.

  8. Development and Manufacture of Cost Effective Composite Drill Pipe

    SciTech Connect

    James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Steve Loya

    2006-02-20

    This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2004 through September 30, 2005 and contains the following discussions: (1) Qualification Testing; (2) Prototype Development and Testing of ''Smart Design'' Configuration; (3) Field Test Demonstration; and (4) Commercial order for SR-CDP from Torch International. The objective of this contract is to develop and demonstrate ''cost effective'' Composite Drill Pipe. It is projected that this drill pipe will weigh less than half of its steel counter part. The resultant weight reduction will provide enabling technology that will increase the lateral distance that can be reached from an offshore drilling platform and the depth of water in which drilling and production operations can be carried out. Further, composite drill pipe has the capability to carry real time signal and power transmission within the pipe walls. CDP can also accommodate much shorter drilling radius than is possible with metal drill pipe. As secondary benefits, the lighter weight drill pipe can increase the storage capability of floating off shore drilling platforms and provide substantial operational cost savings.

  9. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Maxwell Osawe; Madhave Symlal; Krishna Thotapalli; and Stephen Zitney

    2003-04-30

    This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40954. The goal of the project is to develop and demonstrate a software framework to enable virtual simulation of Vision 21 plants. During the last quarter much progress was made in software development. The CO wrapper template was developed for the integration of Alstom Power proprietary code INDVU. The session management tasks were completed. The multithreading capability was made functional so that user of the integrated simulation may directly interact with the CFD software. The V21-Controller and the Fluent CO wrapper were upgraded to CO v.1.0. The testing and debugging of the upgraded software is ongoing. Testing of the integrated software was continued. A list of suggested GUI enhancements was made. Remote simulation capability was successfully tested using two networked Windows machines. Work on preparing the release version progressed: CFD database was enhanced, a convergence detection capability was implemented, a Configuration Wizard for low-order models was developed, and the Configuration Wizard for Fluent was enhanced. During the last quarter good progress was made in software demonstration. Various simplified versions of Demo Case 1 were used to debug Configuration Wizard and V21-Controller. The heat exchanger model in FLUENT was calibrated and the energy balance was verified. The INDVU code was integrated into the V21-Controller, and the integrated model is being debugged. A sensitivity loop was inserted into Demo Case 2 to check whether the simulation converges over the desired load range. Work on converting HRSGSIM code to run in batch mode was started. Work on calibrating Demo Case 2 was started.

  10. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Madhava Syamlal, Ph.D.

    2002-12-31

    A software design review meeting was conducted (Task 2.0). A CFD Viewer was developed, to allow the process analyst to view CFD results from the process simulator (Task 2.14). Work on developing a CO wrapper for the INDVU code was continued (Task 2.15). The model-edit GUI was modified to allow the user to specify a solution strategy. Enhancements were made to the solution strategy implementation (Task 2.16). Testing of the integrated software was continued and several bug fixes and enhancements were made: ability to expose CFD parameters to the process analyst and support for velocity and pressure inlet boundary conditions (Task 2.21). Work on preparing the release version progressed: Version 0.3 of V21 Controller was released, a global configuration dialog was implemented, and a code review process was initiated (Task 2.24). The calibration of the tube bank CFD model for the RP&L case was completed. While integrating the tube bank CFD model into the flow sheet model, several development requirements were identified and communicated to the developers. The requirements of porting V21 Controller and Configuration Wizard to FLUENT 6.1, turning off the transfer of temperature dependent properties, exposing CFD parameters in Aspen Plus and supporting velocity boundary conditions have been implemented (Task 4.1). An initial grid for the HRSG component has been prepared (Task 4.2). A web-based advisory board meeting was conducted on December 18, 2003 (Task 5.0). Project personnel attended and gave presentations at the Aspen World Conference, October 28-30, 2002; AIChE Annual Meeting, November 8, 2002; and the Vision 21 Simulation meeting at Iowa State University, November 19-20, 2002 (Task 7.0).

  11. Medications Development to Treat Alcohol Dependence: A Vision for the Next Decade

    PubMed Central

    Litten, Raye Z.; Egli, Mark; Heilig, Markus; Cui, Changhai; Fertig, Joanne B.; Ryan, Megan L.; Falk, Daniel E.; Moss, Howard; Huebner, Robert; Noronha, Antonio

    2012-01-01

    More than 76 million people worldwide are estimated to have diagnosable Alcohol Use Disorders (AUDs) (alcohol abuse or dependence), making these disorders a major global health problem. Pharmacotherapy offers promising means for treating AUDs, and significant progress has been made in the past 20 years. The U.S. Food and Drug Administration approved three of the four medications for alcoholism in the last two decades. Unfortunately, these medications do not work for everyone, prompting the need for a personalized approach to optimize clinical benefit or more efficacious medications that can treat a wider range of patients, or both. To promote global health, the potential reorganization of the National Institutes of Health (NIH) must continue to support the National Institute on Alcohol Abuse and Alcoholism’s (NIAAA’s) vision of ensuring the development and delivery of new and more efficacious medications to treat AUDs in the coming decade. To achieve this objective, the NIAAA Medications Development Team has identified three fundamental long-range goals: 1) to make the drug development process more efficient; 2) to identify more efficacious medications, personalize treatment approaches, or both, and 3) to facilitate the implementation and adaptation of medications in real-world treatment settings. These goals will be carried out through seven key objectives. This paper describes those objectives in terms of rationale and strategy. Successful implementation of these objectives will result in the development of more efficacious and safe medications, provide a greater selection of therapy options, and ultimately lessen the impact of this devastating disorder. PMID:22458728

  12. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    SciTech Connect

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  13. Development and evaluation of a vision based poultry debone line monitoring system

    NASA Astrophysics Data System (ADS)

    Usher, Colin T.; Daley, W. D. R.

    2013-05-01

    Efficient deboning is key to optimizing production yield (maximizing the amount of meat removed from a chicken frame while reducing the presence of bones). Many processors evaluate the efficiency of their deboning lines through manual yield measurements, which involves using a special knife to scrape the chicken frame for any remaining meat after it has been deboned. Researchers with the Georgia Tech Research Institute (GTRI) have developed an automated vision system for estimating this yield loss by correlating image characteristics with the amount of meat left on a skeleton. The yield loss estimation is accomplished by the system's image processing algorithms, which correlates image intensity with meat thickness and calculates the total volume of meat remaining. The team has established a correlation between transmitted light intensity and meat thickness with an R2 of 0.94. Employing a special illuminated cone and targeted software algorithms, the system can make measurements in under a second and has up to a 90-percent correlation with yield measurements performed manually. This same system is also able to determine the probability of bone chips remaining in the output product. The system is able to determine the presence/absence of clavicle bones with an accuracy of approximately 95 percent and fan bones with an accuracy of approximately 80%. This paper describes in detail the approach and design of the system, results from field testing, and highlights the potential benefits that such a system can provide to the poultry processing industry.

  14. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Madhava Syamlal, Ph.D.

    2001-01-23

    To complete project planning, various project groups conducted several meetings and teleconferences. As a result a draft project management plan was written and circulated. The plan will be finalized in a project kick off meeting to be held on January 16, 2001 in Lebanon, NH, which will be attended by all project participants (Task 1.0). Various project personnel have been trained in the use of Fluent and Aspen Plus, which completes all the training tasks except for Aspen Plus and IDL training for Alstom Power (Task 2.1). A preliminary version of User Requirements Document (preURD) was written. This document will be sent to key users of Aspen Plus and FLUENT and their responses will be collected in January (Task 2.3). A prototype of Fluent integration with Aspen Plus was constructed for understanding the required software design. The development of a general architecture for the integrated software suite has been started (Task 2.6). Invitation letters for participation in an Advisory Board were sent out to several Vision 21 contractors. Their responses will be used to form an Advisory Board in January (Task 5.0). Fluent has awarded subcontracts to Alstom Power, CERC, and Aspen Tech and negotiations with Intergraph are underway. Aspen Plus and FLUENT were installed on a computer at CERC. The design of a project web site was completed, and the site setup was started (Task 7.0).

  15. Description and industrial applications of a standard machine vision system not requiring task-specific development

    NASA Astrophysics Data System (ADS)

    Bruehl, Wolfgang

    1994-11-01

    Modern machine vision systems won't require task specific hard- or software development in most cases. This means for the user short project realization times and minimized cost. Changes or new controls can easily be performed by a trained operator. Hard and software design of such a system is described in this paper, followed by two different applications, which were realized exclusively by menu-guided configuration of the built in set of control methods. The first is an in-line inspection of oven linings. To protect the following machine tool from being damaged, presence of holes and slits have to be controlled. Via serial communication, a host computer gets detailed information about the faulty item and the position of the defect on the lining. The second application describes an in-line inspection of brake pads. To ensure the lining is mounted to the correct side of the carrier, some characters on the carrier side have to be detected. According to the result the system triggers a turn over mechanism.

  16. DEVELOPMENT AND MANUFACTURE OF COST EFFECTIVE COMPOSITE DRILL PIPE

    SciTech Connect

    James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard

    2003-03-30

    This technical report presents the engineering research and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents accomplishments made from October 1, 2002 through September 30, 2003. The following have been accomplished and are reported in detail herein: Metal-to-Composite Interface (MCI) redesign and testing; Successful demonstration of MCI connection for both SR and ER/DW CDP; Specifications for a 127mm (5 inch) ID by 152.4 mm (6 inch) OD composite drill pipe have been finalized for Extended Reach/Deep Water applications (ER/DW); Field testing of Short Radius CDP (SR); Sealing composite laminate to contain high pressure; Amendments; Amendment for ''Smart'' feature added to ER/DW development along with time and funding to complete battery of qualification tests with option for field demonstration; and Preparation of papers for publication and conference presentations.

  17. DEVELOPMENT AND MANUFACTURE OF COST EFFECTIVE COMPOSITE DRILL PIPE

    SciTech Connect

    Dr. James C. Leslie; Mr. Jeffrey R. Jean; Hans Neubert; Lee Truong

    2000-10-30

    This annual, technical report will discuss the engineering research and data accomplishments that have transpired in support of the development of Cost Effective Composite Drill Pipe (CDP). The report discusses and illustrates the first iteration design of the tube and the tool joint interface. The report discusses standards and specifications to which the CDP design will be tailored and tested, and discusses conclusions of the first iteration design for future design enhancements.

  18. FPGA Vision Data Architecture

    NASA Technical Reports Server (NTRS)

    Morfopoulos, Arin C.; Pham, Thang D.

    2013-01-01

    JPL has produced a series of FPGA (field programmable gate array) vision algorithms that were written with custom interfaces to get data in and out of each vision module. Each module has unique requirements on the data interface, and further vision modules are continually being developed, each with their own custom interfaces. Each memory module had also been designed for direct access to memory or to another memory module.

  19. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Maxwell Osawe; Madhava Syamlal; Krishna Thotapalli; Stephen Zitney

    2003-07-30

    This is the eleventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40954. The goal of the project is to develop and demonstrate a software framework to enable virtual simulation of Vision 21 plants. During the last quarter much progress was made in software development. The CO wrapper for the integration of Alstom Power proprietary code INDVU was upgraded to CO V1.0.0 and was successfully integrated with an Aspen Plus flowsheet. The V21-Controller and the Fluent CO wrapper were upgraded to CO V.1.0.0, and the testing and debugging of the upgraded V21-Controller was completed. Two Aspen Plus analysis tools (sensitivity analysis and optimization) were successfully tested in an integrated simulation. Extensive testing of the integrated software was continued. A list of suggested enhancements was given to the software development team. Work on software documentation was started. Work on preparing the release version progressed: Several enhancements were made in the V21-Controller and the Fluent Configuration Wizard GUIs. Work to add persistence functionality to the V21-Controller was started. During the last quarter good progress was made in software demonstration. Demo Case 1 simulations were completed. This case, a conventional steam cycle with a CFD model representing the boiler module, was successfully demonstrated at 9 distinct load points from 33 MW to 19 MW. Much progress was made with Demo Case 2. Work on adding a CO wrapper to the HRSGSIM code was completed, and integrated simulations with the HRSGSIM code were conducted. The CFD heat exchanger model for Demo Case 2 was calibrated with HRSGSIM results. An Advisory Board meeting was held in Manchester, NH on May 6 during the Fluent Users Group Meeting. The preparation of the project final report was started.

  20. Vision for Action” in Young Children Aligning Multi-Featured Objects: Development and Comparison with Nonhuman Primates

    PubMed Central

    2015-01-01

    Effective vision for action and effective management of concurrent spatial relations underlie skillful manipulation of objects, including hand tools, in humans. Children’s performance in object insertion tasks (fitting tasks) provides one index of the striking changes in the development of vision for action in early life. Fitting tasks also tap children’s ability to work with more than one feature of an object concurrently. We examine young children’s performance on fitting tasks in two and three dimensions and compare their performance with the previously reported performance of adult individuals of two species of nonhuman primates on similar tasks. Two, three, and four year-old children routinely aligned a bar-shaped stick and a cross-shaped stick but had difficulty aligning a tomahawk-shaped stick to a matching cut-out. Two year-olds were especially challenged by the tomahawk. Three and four year-olds occasionally held the stick several inches above the surface, comparing the stick to the surface visually, while trying to align it. The findings suggest asynchronous development in the ability to use vision to achieve alignment and to work with two and three spatial features concurrently. Using vision to align objects precisely to other objects and managing more than one spatial relation between an object and a surface are already more elaborated in two year-old humans than in other primates. The human advantage in using hand tools derives in part from this fundamental difference in the relation between vision and action between humans and other primates. PMID:26440979

  1. Northwest Energy Efficient Manufactured Housing Program Specification Development

    SciTech Connect

    Hewes, T.; Peeks, B.

    2013-02-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  2. Utilizing run-to-run control to improve process capability and reduce waste in lithography: case studies in semiconductor and display manufacturing, and a vision for the future

    NASA Astrophysics Data System (ADS)

    Moyne, James

    2010-03-01

    Run-to-run (R2R) control is now a required component of microlithography processing. R2R control is a form of discrete process control in which the product recipe with respect to a particular process is modified between runs; a "run" can be a lot, wafer or even a die ("shot"). Deployment experience reveals that a cost and technology-effective R2R control solution must be part of a complete Advanced Process Control and equipment automation solution that includes Fault Detection. This complete solution must leverage event-driven technology to support flexibility and reconfigurability, be re-usable via model libraries, be deployed in a phased approach, utilize robust control algorithms, be easily integratable with other components in the manufacturing process, and be extensible to incorporate new technologies as they are developed. In microlithography applications, R2R control solutions are shown to improve process centering and reduce variability resulting in process capability improvements of up to 100%. In the near future, virtual metrology, which harnesses the power of microlithography fault detection along with a prediction engine, will better enable wafer-to-wafer and shot-to-shot feedback control by predicting metrology values for each wafer or die without incurring extra metrology cost or unnecessary waste.

  3. Development of a Manufacturing Process for High-Precision Cu EOS Targets

    SciTech Connect

    Bono, M J; Castro, C; Hibbard, R L

    2006-01-12

    This document describes the development of a manufacturing process and the production of Cu EOS targets. The development of a manufacturing process for these targets required a great deal of research, because the specifications for the targets required a level of precision an order of magnitude beyond Target Fabrication's capabilities at the time. Strict limitations on the dimensions of the components and the interfaces between them required research efforts to develop bonding and deposition processes consistent with a manufacturing plan with a dimensional precision on the order of 0.1 {micro}m. Several months into this effort, the specifications for the targets were relaxed slightly as a result of discussions between the Target Fabrication Group and the physicists. The level of precision required for these targets remained an order of magnitude beyond previous capabilities, but the changes made it possible to manufacture targets to the specifications. The development efforts and manufacturing processes described in this document successfully produced a complete Cu EOS target that satisfied all of the fabrication and metrology specifications.

  4. Low Vision

    MedlinePlus

    ... Cases of Low Vision (in thousands) by Age, Gender, and Race/Ethnicity Table for 2010 U.S. Prevalent ... Cases of Low Vision (in thousands) by Age, Gender, and Race/Ethnicity Table for 2000 U.S. Prevalent ...

  5. Development of pulsed processes for the manufacture of solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.

    1979-01-01

    Low-energy ion implantation processes for the automated production of silicon solar cells were investigated. Phosphorus ions at an energy of 10 keV and dose of 2 x 10 to the 15th power/sq cm were implanted in silicon solar cells to produce junctions, while boron ions at 25 keV and 5 x 10 to the 15th power were implanted in the cells to produce effective back surface fields. An ion implantation facility with a beam current up to 4 mA and a production throughput of 300 wafers per hour was designed and installed. A design was prepared for a 100 mA, automated implanter with a production capacity of 100 MW sub e/sq cm per year. Two process sequences were developed which employ ion implantation and furnace or pulse annealing. A computer program was used to determine costs for junction formation by ion implantation and various furnace annealing cycles to demonstrate cost effectiveness of these methods.

  6. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Madhava Syamlal; Maxwell Osawe; Stephen Zitney; Lewis Collins; David Sloan; Woodrow Fiveland; Frank Joop; Philip Simon; K. Joseph Cleetus

    2005-04-01

    To accelerate the development of advanced power plants, DOE's Vision 21 program identified the need for an integrated suite of software tools that could be used to simulate and visualize new plant concepts. Existing process simulation software did not meet this objective of virtual-plant simulation. Sophisticated models of many individual equipment items are available; however, a seamless coupling capability that would integrate the advanced equipment (component) models to the process (system) simulation software remained to be developed. The inability to use models in an integrated manner causes knowledge loss (e.g., knowledge captured in detailed equipment models is usually not available in process simulation) and modeling inconsistencies (e.g., physical properties and reaction kinetics data in different models are not the same). A team consisting of Fluent Inc., ALSTOM Power Inc., Aspen Technology Inc., Intergraph Corporation, and West Virginia University, in collaboration with the National Energy Technology Laboratory (NETL), addressed this challenge in a project performed over the period from October 2000 through December 2004. In this project the integration of the cycle analysis software was based on widely used commercial software: Aspen Plus{reg_sign} for process simulation and FLUENT{reg_sign} for computational fluid dynamics (CFD) modeling of equipment items. The integration software was designed to also include custom (in-house, proprietary, legacy) equipment models that often encapsulate the experience from the many years of designing and operating the equipment. The team adopted CAPE-OPEN (CO) interfaces, the de facto international standard for communication among process models, for exchanging information between software. The software developed in this project is the first demonstration of the use of CO interfaces to link CFD and custom equipment models with process simulators. New interface requirements identified during this project were

  7. Jute: A Different Story about the Development of Manufacturing Industry and Trade between Britain and India.

    ERIC Educational Resources Information Center

    Geyer, Patricia

    1997-01-01

    Examines the process used to develop a lesson plan from an academic research article. Includes a lesson plan developed from an article in the Spring 1997 issue of "The Journal of World History" tracing the history of jute (a substitute for flax) manufacturing in colonial India. (MJP)

  8. Interaction between language and vision: It’s momentary, abstract, and it develops

    PubMed Central

    Dessalegn, Banchiamlack; Landau, Barbara

    2013-01-01

    In this paper, we present a case study that explores the nature and development of the mechanisms by which language interacts with and influences our ability to represent and retain information from one of our most important non-linguistic systems-- vision. In previous work (Dessalegn & Landau, 2008), we showed that 4 year-olds remembered conjunctions of visual features better when the visual target was accompanied by a sentence containing an asymmetric spatial predicate (e.g., the yellow is to the left of the black) but not when the visual target was accompanied by a sentence containing a novel noun (e.g., look at the dax) or a symmetric spatial predicate (e.g., the yellow is touching the black). In this paper, we extend these findings. In three experiments, 3, 4 and 6 year-olds were shown square blocks split in half by color vertically, horizontally or diagonally (e.g., yellow-left, black-right) and were asked to perform a delayed-matching task. We found that sentences containing spatial asymmetric predicates (e.g., the yellow is to the left of the black) and non-spatial asymmetric predicates (e.g., the yellow is prettier than the black) helped 4 year-olds, although not to the same extent. By contrast, 3 year-olds did not benefit from different linguistic instructions at all while 6 year-olds performed at ceiling in the task with or without the relevant sentences. Our findings suggest by age 4, the effects of language on non-linguistic tasks depend on highly abstract representations of the linguistic instructions and are momentary, seen only in the context of the task. We further speculate that language becomes more automatically engaged in nonlinguistic tasks over development. PMID:23545385

  9. Space Wear Vision -Development of a Wardrobe for Life in Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    Orndorff, Evelyne

    2015-01-01

    A new vision is needed for the development of a wardrobe for NASA's journey to Mars in the 2030s. All human space missions require significant logistical mass and volume that add an unprecedented burden on long-duration missions beyond low-Earth orbit. The logistical burden is at least twice as great for prolonged exploration and settlements on planetary surfaces compared to missions in low-Earth orbit. The space wear vision is to design apparel that uniquely meets criteria and constraints for sustaining human presence in space. For long duration missions without landing on planetary surface, humans can use only what they carry in their spacecraft, while for settlements, additional resources may be available. The immediate space wear goal is to develop those elements needed for prolonged manned exploration beyond low Earth orbit. Three major objectives have been identified for achieving this goal: satisfying crew preferences, logistics reduction and repurposing, and systems integration. Garments must be comfortable, durable, safe to wear, and aesthetically pleasing. In addition, with limited cleaning resources, garments must be developed to reduce the logistical burden by reducing clothing mass and extending clothing wear. Furthermore, garments must have minimal impact on the life support systems of spacecraft. The approach to achieving the immediate space wear goal is to conduct multiple studies on Earth and on the International Space Station (ISS), thus laying out the path for finding materials and designing garments that meet the three objectives of prolonged manned exploration. Several studies have been undertaken recently for the first time, namely, to ascertain garment length of wear and to assess the acceptance of such extended wear. Most garments in these studies have been exercise T-shirts and shorts, and routine-wear T-shirts. Eleven studies have been completed: five studies of exercise T-shirts, three of exercise shorts, two of routine wear T-shirts, and

  10. (Development of industrial processes for manufacturing of silicon sampling hadron calorimeters)

    SciTech Connect

    Plasil, F.; Walter, J.

    1991-01-04

    The travelers attended meetings in Dubna and in Zelenograd. Discussions in Dubna centered on (1) obtaining information on USSR capabilities in silicon detector manufacture and testing and on (2) strategy regarding the development of an industrial process and the manufacture of a large quantity of silicon detectors for the SSC L* collaboration. The ELMA plant in Zelenograd was inspected, and discussions were held on production process development and on a possible detector supply time line. In addition, J. Walter participated in technical and cost estimate forecast discussions with representatives of Wacker-Chemitronic Factory (Germany) about silicon crystals for possible use in the SSC.

  11. From e-manufacturing to Internet Product Process Development (IPPD) through remote - labs

    NASA Astrophysics Data System (ADS)

    Córdoba Nieto, Ernesto; Andres Cifuentes Parra, Paulo; Camilo Parra Díaz, Juan

    2014-07-01

    This paper presents the research developed at Universidad Nacional de Colombia about the e-Manufacturing platform that is being developed and implemented at LabFabEx (acronym in Spanish as "Laboratorio Fabrica Experimental"). This platform besides has an approach to virtual-remote labs that have been tested by several students and engineers of different industrial fields. At this paper it is shown the physical and communication experimental platform, the general scope and characteristics of this e-Manufacturing platform and the virtual lab approach. This research project is funded by COLCIENCIAS (Administrative Department of science, technology and innovation in Colombia) and the enterprise IMOCOM S.A.

  12. Manufacturing Industrial Development for the Alternative Energy Systems-Final Report

    SciTech Connect

    Dr. Chuck Ryan, National Center for Manufacturing Sciences; Dr. Dawn White, Accio Energy; Mr. Duncan Pratt, General Electric Global Research

    2013-01-30

    NCMS identified and developed critical manufacturing technology assessments vital to the affordable manufacturing of alternative-energy systems. NCMS leveraged technologies from other industrial sectors and worked with our extensive member organizations to provide DOE with two projects with far-reaching impact on the generation of wind energy. In the response for a call for project ideas, 26 project teams submitted ideas. Following a detailed selection criteria, two projects were chosen for development: Advanced Manufacturing for Modular Electro-kinetic (E-K) Wind Energy Conversion Technology - The goal of this project was to demonstrate that a modular wind energy technology based on electrohydrodynamic wind energy principles and employing automotive heritage high volume manufacturing techniques and modular platform design concepts can result in significant cost reductions for wind energy systems at a range of sizes from 100KW to multi-MW. During this program, the Accio/Boeing team made major progress on validating the EHD wind energy technology as commercially viable in the wind energy sector, and moved along the manufacturing readiness axis with a series of design changes that increased net system output. Hybrid Laser Arc Welding for Manufacture of Wind Towers - The goal of this research program was to reduce the cost of manufacturing wind towers through the introduction of hybrid laser arc welding (HLAW) into the supply chain for manufacturing wind towers. HLAW has the potential to enhance productivity while reducing energy consumption to offset the foreign low-cost labor advantage and thereby enhance U.S. competitiveness. HLAW technology combines laser welding and arc welding to produce an energy efficient, high productivity, welding process for heavy manufacturing. This process leverages the ability of a laser to produce deep weld penetration and the ability of gas metal arc welding (GMAW) to deposit filler material, thereby producing stable, high quality

  13. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.

    PubMed

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot's end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H(∞) tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to

  14. Materials, Processes and Manufacturing in Ares 1 Upper Stage: Integration with Systems Design and Development

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.

    2008-01-01

    Ares I Crew Launch Vehicle Upper Stage is designed and developed based on sound systems engineering principles. Systems Engineering starts with Concept of Operations and Mission requirements, which in turn determine the launch system architecture and its performance requirements. The Ares I-Upper Stage is designed and developed to meet these requirements. Designers depend on the support from materials, processes and manufacturing during the design, development and verification of subsystems and components. The requirements relative to reliability, safety, operability and availability are also dependent on materials availability, characterization, process maturation and vendor support. This paper discusses the roles and responsibilities of materials and manufacturing engineering during the various phases of Ares IUS development, including design and analysis, hardware development, test and verification. Emphasis is placed how materials, processes and manufacturing support is integrated over the Upper Stage Project, both horizontally and vertically. In addition, the paper describes the approach used to ensure compliance with materials, processes, and manufacturing requirements during the project cycle, with focus on hardware systems design and development.

  15. Development of a case-mix funding system for adults with combined vision and hearing loss

    PubMed Central

    2013-01-01

    Background Adults with vision and hearing loss, or dual sensory loss (DSL), present with a wide range of needs and abilities. This creates many challenges when attempting to set the most appropriate and equitable funding levels. Case-mix (CM) funding models represent one method for understanding client characteristics that correlate with resource intensity. Methods A CM model was developed based on a derivation sample (n = 182) and tested with a replication sample (n = 135) of adults aged 18+ with known DSL who were living in the community. All items within the CM model came from a standardized, multidimensional assessment, the interRAI Community Health Assessment and the Deafblind Supplement. The main outcome was a summary of formal and informal service costs which included intervenor and interpreter support, in-home nursing, personal support and rehabilitation services. Informal costs were estimated based on a wage rate of half that for a professional service provider ($10/hour). Decision-tree analysis was used to create groups with homogeneous resource utilization. Results The resulting CM model had 9 terminal nodes. The CM index (CMI) showed a 35-fold range for total costs. In both the derivation and replication sample, 4 groups (out of a total of 18 or 22.2%) had a coefficient of variation value that exceeded the overall level of variation. Explained variance in the derivation sample was 67.7% for total costs versus 28.2% in the replication sample. A strong correlation was observed between the CMI values in the two samples (r = 0.82; p = 0.006). Conclusions The derived CM funding model for adults with DSL differentiates resource intensity across 9 main groups and in both datasets there is evidence that these CM groups appropriately identify clients based on need for formal and informal support. PMID:23587314

  16. Manufacturing physics: using large(r) data sets and physical insight to develop great products

    NASA Astrophysics Data System (ADS)

    Rosenblum, Steven

    2011-03-01

    Early stage research does a fantastic job providing knowledge and proof-of-feasibility for new product concepts. However, the handful of data points required to validate a concept is typically insufficient to provide insight on the whole range of effects relevant to manufacturing the product. Moving to manufacturing brings larger data sets and variability; opportunistic analysis of these larger sets can yield better product design rules. In the early 2000s Corning developed an optical transmission fiber optimized to suppress stimulated Brillouin scattering (SBS). Analyzing the larger data set provided by the manufacturing environment using the same theoretical framework developed by the original researchers refined our understanding of how to improve SBS in optical fibers beyond what was known from our early efforts. This greater understanding allowed us to design better performing products.

  17. 20/20 Vision: The Development of a National Information Infrastructure.

    ERIC Educational Resources Information Center

    National Telecommunications and Information Administration (DOC), Washington, DC.

    After the publication of the Clinton Administration's "The National Information Infrastructure: Agenda for Action," a group of telecommunication specialists were asked to evaluate the proposals in order to broaden the policy discussion concerning the National Information Infrastructure (NII). This collection contains their visions of the nation's…

  18. The General College Vision: Integrating Intellectual Growth, Multicultural Perspectives, and Student Development

    ERIC Educational Resources Information Center

    Higbee, Jeanne L., Ed.; Lundell, Dana B., Ed.; Arendale, David R., Ed.

    2005-01-01

    This book explores the vision and contributions of the former General College, a program existing 74 years in the University of Minnesota, highlighting its history, mission, programs, research, and student services. This includes an evolving and dynamic program for teaching, learning, and research for student success in higher education. Following…

  19. Agile automated vision

    NASA Astrophysics Data System (ADS)

    Fandrich, Juergen; Schmitt, Lorenz A.

    1994-11-01

    The microelectronic industry is a protagonist in driving automated vision to new paradigms. Today semiconductor manufacturers use vision systems quite frequently in their fabs in the front-end process. In fact, the process depends on reliable image processing systems. In the back-end process, where ICs are assembled and packaged, today vision systems are only partly used. But in the next years automated vision will become compulsory for the back-end process as well. Vision will be fully integrated into every IC package production machine to increase yields and reduce costs. Modem high-speed material processing requires dedicated and efficient concepts in image processing. But the integration of various equipment in a production plant leads to unifying handling of data flow and interfaces. Only agile vision systems can act with these contradictions: fast, reliable, adaptable, scalable and comprehensive. A powerful hardware platform is a unneglectable requirement for the use of advanced and reliable, but unfortunately computing intensive image processing algorithms. The massively parallel SIMD hardware product LANTERN/VME supplies a powerful platform for existing and new functionality. LANTERN/VME is used with a new optical sensor for IC package lead inspection. This is done in 3D, including horizontal and coplanarity inspection. The appropriate software is designed for lead inspection, alignment and control tasks in IC package production and handling equipment, like Trim&Form, Tape&Reel and Pick&Place machines.

  20. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Galen Richards, Ph.D.; David Sloan, Ph.D.; Woodrow Fiveland, Ph.D.

    2002-08-31

    The goal of this DOE Vision-21 project work scope is to develop an integrated suite of software tools that can be used to simulate and visualize advanced plant concepts. Existing process simulation software does not meet the DOE's objective of ''virtual simulation'' which is needed to evaluate complex cycles. The overall intent of the DOE is to improve predictive tools for cycle analysis, and to improve the component models that are used in turn to simulate the cycle. Advanced component models are available; however, a generic coupling capability that will link the advanced component models to the cycle simulation software remains to be developed. In the current project, the coupling of the cycle analysis and cycle component simulation software will be based on an existing suite of programs. The challenge is to develop a general-purpose software and communications link between the cycle analysis software Aspen Plus{reg_sign} (marketed by Aspen Technology, Inc.), and specialized component modeling packages, as exemplified by industrial proprietary codes (utilized by ALSTOM Power Inc.) and the FLUENT{trademark} CFD code (provided by Fluent Inc). ALSTOM Power has a task responsibility to select and run a combined cycle test case (designated as Demonstration Case 2) to demonstrate the feasibility of the linkage concept. This report summarizes and documents the unit selected to represent Case 2, a 250 MW, natural gas-fired, combined cycle power plant. An analogous document for Demonstration Case 1 was previously submitted on April 30, 2001. Sufficient information is available from the plant to adequately benchmark the model. Hence, the proposed unit is deemed to be well suited as a demonstration case. However, as the combined cycle plant selected for this study contains recent technology, sensitivity to the commercial implications of this study prevents the release of the plant name and limits the quantity of operating/design information that can be presented. These

  1. Manufacturing technologies

    NASA Astrophysics Data System (ADS)

    The Manufacturing Technologies Center is at the core of Sandia National Laboratories' advanced manufacturing effort which spans the entire product realization process. The center's capabilities in product and process development are summarized in the following disciplines: (1) mechanical - rapid prototyping, manufacturing engineering, machining and computer-aided manufacturing, measurement and calibration, and mechanical and electronic manufacturing liaison; (2) electronics - advanced packaging for microelectronics, printed circuits, and electronic fabrication; and (3) materials - ceramics, glass, thin films, vacuum technology, brazing, polymers, adhesives, composite materials, and process analysis.

  2. Lighting and optics expert system for machine vision

    NASA Astrophysics Data System (ADS)

    Novini, Amir R.

    1991-03-01

    Machine Vision and the field of Artificial Intelligence are both new technologies which hive evolved mainly within the past decade with the growth of computers and microchips. And although research continues both have emerged from tF experimental state to industrial reality. Today''s machine vision systEns are solving thousands of manufacturing problems in various industries and the impact of Artificial Intelligence and more specifically the ue of " Expert Systems" in industry is also being realized. This pape will examine how the two technologies can cross paths and how an E7ert System can become an important part of an overall machine vision solution. An actual example of a development of an Expert System that helps solve machine vision lighting and optics problems will be discussed. The lighting and optics xpert System was developed to assist the end user to configure the " Front End" of a vision system to help solve the overall machine vision problem more effectively since lack of attention to lighting and optics has caused many failures of this technology. Other areas of machine vision technology where Expert Systems could apply will also be ciscussed.

  3. Lighting And Optics Expert System For Machine Vision

    NASA Astrophysics Data System (ADS)

    Novini, Amir

    1989-03-01

    Machine Vision and the field of Artificial Intelligence are both new technologies which have evolved mainly within the past decade with the growth of computers and microchips. And, although research continues, both have emerged from the experimental state to industrial reality. Today's machine vision systems are solving thousands of manufacturing problems in various industries, and the impact of Artificial Intelligence, and more specifically, the use of "Expert Systems" in industry is also being realized. This paper will examine how the two technologies can cross paths, and how an Expert System can become an important part of an overall machine vision solution. An actual example of a development of an Expert System that helps solve machine vision lighting and optics problems will be discussed. The lighting and optics Expert System was developed to assist the end user to configure the "Front End" of a vision system to help solve the overall machine vision problem more effectively, since lack of attention to lighting and optics has caused many failures of this technology. Other areas of machine vision technology where Expert Systems could apply will also be discussed.

  4. Lighting And Optics Expert System For Machine Vision

    NASA Astrophysics Data System (ADS)

    Novini, Amir

    1988-12-01

    Machine Vision and the field of Artificial Intelligence are both new technologies which have evolved mainly within the past decade with the growth of computers and microchips. And, although research continues, both have emerged from the experimental state to industrial reality. Today's machine vision systems are solving thousands of manufacturing problems in various industries, and the impact of Artificial Intelligence, and more specifically, the use of "Expert Systems" in industry is also being realized. This paper will examine how the two technologies can cross paths, and how an Expert System can become an important part of an overall machine vision solution. An actual example of a development of an Expert System that helps solve machine vision lighting and optics problems will be discussed. The lighting and optics Expert System was developed to assist the end user to configure the "Front End" of a vision system to help solve the overall machine vision problem more effectively, since lack of attention to lighting and optics has caused many failures of this technology. Other areas of machine vision technology where Expert Systems could apply will also be discussed.

  5. Development of CAD/CAM software used in laser direct manufacture

    NASA Astrophysics Data System (ADS)

    Wang, Yun-shan; Yang, Xi-chen; Wang, Jian-jun; Jin, Xiao-shu

    2005-01-01

    This paper presents a special CAD/CAM software for rapid manufacturing thin wall metal parts by laser cladding, which is based on the developing of AutoCAD. It mainly consists of solid modeling, layering and section data processing, NC code generation module, processing path simulating and data transferring module.

  6. Semiconductor Manufacturing Comes to Virginia: Developing Partnerships for Workforce Education and Training.

    ERIC Educational Resources Information Center

    Cantor, Jeffrey A.

    1998-01-01

    In Virginia, a community college consortium for semiconductor education and training programs works with a semiconductor manufacturers' partnership to review programs based on a national core curriculum model. The results are being used to improve curriculum development, faculty training, facility improvement, and student recruitment. (SK)

  7. Prepreg and Melt Infiltration Technology Developed for Affordable, Robust Manufacturing of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Petko, Jeannie F.

    2004-01-01

    Affordable fiber-reinforced ceramic matrix composites with multifunctional properties are critically needed for high-temperature aerospace and space transportation applications. These materials have various applications in advanced high-efficiency and high-performance engines, airframe and propulsion components for next-generation launch vehicles, and components for land-based systems. A number of these applications require materials with specific functional characteristics: for example, thick component, hybrid layups for environmental durability and stress management, and self-healing and smart composite matrices. At present, with limited success and very high cost, traditional composite fabrication technologies have been utilized to manufacture some large, complex-shape components of these materials. However, many challenges still remain in developing affordable, robust, and flexible manufacturing technologies for large, complex-shape components with multifunctional properties. The prepreg and melt infiltration (PREMI) technology provides an affordable and robust manufacturing route for low-cost, large-scale production of multifunctional ceramic composite components.

  8. Development of Remote Laboratory for Understanding the Processes from Design to Manufacture

    NASA Astrophysics Data System (ADS)

    Hayashi, Kazumasa; Fukuda, Shuichi

    Faculties at the Department of Production, Information and Systems Engineering at Tokyo Metropolitan Institute of Technology faces a problem how they can motivate their students who lack in substantial hands on experience of design and manufacture and let them understand the processes from design to manufacture. To overcome this difficulty, a Remote Laboratory system was developed using a Stirling engine by noting its simple structure and principle, with the aim of providing a student hands on experience. A student designs a connecting rod, and it is machined by a milling machine in the lab at a distance. The on-site lab attendant installs the connecting rod on the engine and conducts a trial run, which is viewed by the student via internet video at the remote location. Experiments demonstrated that the Remote Lab system will facilitate a student to understand the processes from design to manufacture.

  9. Light Vision Color

    NASA Astrophysics Data System (ADS)

    Valberg, Arne

    2005-04-01

    Light Vision Color takes a well-balanced, interdisciplinary approach to our most important sensory system. The book successfully combines basics in vision sciences with recent developments from different areas such as neuroscience, biophysics, sensory psychology and philosophy. Originally published in 1998 this edition has been extensively revised and updated to include new chapters on clinical problems and eye diseases, low vision rehabilitation and the basic molecular biology and genetics of colour vision. Takes a broad interdisciplinary approach combining basics in vision sciences with the most recent developments in the area Includes an extensive list of technical terms and explanations to encourage student understanding Successfully brings together the most important areas of the subject in to one volume

  10. KCTCS Kentucky Manufacturing Skill Standards Assessment Center/Assessment Provider Application.

    ERIC Educational Resources Information Center

    Kentucky Community and Technical Coll. System, Lexington.

    This document describes the Kentucky Manufacturing Skill Standards (KMSS) development process. The Manufacturing Standards project is divided into three phases: standards, assessment, and curriculum. The vision of this project is to identify a standards-driven assessment process and determine the level of competency and understanding. This data…