Science.gov

Sample records for manured agricultural soils

  1. Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia.

    PubMed

    Ho, Yu Bin; Zakaria, Mohamad Pauzi; Latif, Puziah Abdul; Saari, Nazamid

    2014-08-01

    Repeated applications of animal manure as fertilizer are normal agricultural practices that may release veterinary antibiotics and hormones into the environment from treated animals. Broiler manure samples and their respective manure-amended agricultural soil samples were collected in selected locations in the states of Selangor, Negeri Sembilan and Melaka in Malaysia to identify and quantify veterinary antibiotic and hormone residues in the environment. The samples were analyzed using ultrasonic extraction followed by solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The broiler manure samples were found to be contaminated with at least six target analytes, namely, doxycycline, enrofloxacin, flumequine, norfloxacin, trimethoprim and tylosin. These analytes were detected in broiler manure samples with maximum concentrations reaching up to 78,516 μg kg(-1) dry weight (DW) (doxycycline). For manure-amended agricultural soil samples, doxycycline and enrofloxacin residues were detected in every soil sample. The maximum concentration of antibiotic detected in soil was 1331 μg kg(-1) DW (flumequine). The occurrence of antibiotics and hormones in animal manure at high concentration poses a risk of contaminating agricultural soil via fertilization with animal manure. Some physico-chemical parameters such as pH, total organic carbon (TOC) and metal content played a considerable role in the fate of the target veterinary antibiotics and progesterone in the environment. It was suggested that these parameters can affect the adsorption of pharmaceuticals to solid environmental matrices. PMID:24836135

  2. Sorption and transport of five sulfonamide antibiotics in agricultural soil and soil-manure systems.

    PubMed

    Wang, Na; Guo, Xinyan; Xu, Jing; Hao, Lijun; Kong, Deyang; Gao, Shixiang

    2015-01-01

    Animal manure application is a main spreading route of veterinary antibiotics in soil and groundwater. The sorption and leaching behavior of five commonly used sulfonamides in five typical soil and soil/manure mixtures from China were investigated in this study. Results showed that the empirical Freundlich equation fits well the sorption behavior of selected sulfonamides (r(2) was between 0.803 and 0.999, 1/n was between 0.68 and 1.44), and pH and soil organic carbon (OC) were the key impact factors to sorption and leaching. Addition of manure was found to increase the Kd values of sulfonamides in five different soils, following the rules that the more polar substances, the more increased extent of sorption after manure amendment (5.87 times for sulfadiazine with Log Kow = -0.09, and 2.49 times for sulfamethoxazole with Log Kow = 0.89). When the simulated rainfall amount reached 300 mL (180 mm), sulfonamides have high migration potential to the groundwater, especially in the soil with low OC and high pH. However, manure amendment increased the sorption capacity of sulfonamides in the top layer, thus it might play a role in decreasing the mobility of sulfonamides in soils. The systematic study would be more significant to assess the ecological risks and suggest considering the influence of manure amendment for the environmental fate of antibiotics. PMID:25421625

  3. Characterizing and modeling of extensive atrazine elution tailing for stable manure-amended agricultural soil.

    PubMed

    Akyol, Nihat Hakan

    2015-01-01

    Non-ideal sorption and extensive elution tailing behavior of atrazine was evaluated for an agricultural soil with and without stable manure amendment (10% by weight). A series of laboratory experiments showed that the sorption of atrazine was described by rate-limited, nonlinear reversible processes (Freundlich isotherm) for both non-amended and amended soil. Non-ideal transport of atrazine exhibited extensive low concentration elution tailing due to the most likely organic carbon fraction in the soil. This tailing behavior was more pronounced and extensive for soil with 10% stable-manure amendment. Two-site transport modeling analyses including non-linear sorption and rate-limited sorption-desorption provided a reasonably good match to the atrazine breakthrough curves but were unable to match the long-term concentration tailing, even for non-amended soil. A mathematical model incorporating nonlinear, rate-limited sorption/desorption described by a continuous-distribution function was used to successfully simulate atrazine transport early-time breakthrough and long-term concentration tailing for both non-amended and amended soil conditions. PMID:25303664

  4. Selected veterinary pharmaceuticals in agricultural water and soil from land application of animal manure.

    PubMed

    Song, Wenlu; Ding, Yunjie; Chiou, Cary T; Li, Hui

    2010-01-01

    Veterinary pharmaceuticals are commonly administered to animals for disease control, and added into feeds at subtherapeutic levels to improve feeding efficiency. As a result of these practices, a certain fraction of the pharmaceuticals are excreted into animal manures. Land application of these manures contaminates soils with the veterinary pharmaceuticals, which can subsequently lead to contamination of surface and groundwaters. Information on the occurrence and fate of pharmaceuticals in soil and water is needed to assess the potential for exposure of at-risk populations and the impacts on agricultural ecosystems. In this study, we investigated the occurrence and fate of four commonly used veterinary pharmaceuticals (amprolium, carbadox, monensin, and tylosin) in a farm in Michigan. Amprolium and monensin were frequently detected in nearby surface water, with concentrations ranging from several to hundreds of nanograms per liter, whereas tylosin or carbadox was rarely found. These pharmaceuticals were more frequently detected in surface runoff during nongrowing season (October to April) than during growing season (May to September). Pharmaceuticals resulting from postharvest manure application appeared to be more persistent than those from spring application. High concentrations of pharmaceuticals in soils were generally observed at the sites where the respective concentrations in surface water were also high. For monensin, the ratios of soil-sorbed to aqueous concentrations obtained from field samples were within the order of the distribution coefficients obtained from laboratory studies. These results suggest that soil is a reservoir for veterinary pharmaceuticals that can be disseminated to nearby surface water via desorption from soil, surface runoff, and soil erosion. PMID:20830908

  5. Toxicity of synthetic chelators and metal availability in poultry manure amended Cd, Pb and As contaminated agricultural soil.

    PubMed

    Usman, Adel R A; Almaroai, Yaser A; Ahmad, Mahtab; Vithanage, Meththika; Ok, Yong Sik

    2013-11-15

    Chelating agents added to contaminated soils may increase solubility and phytoextraction efficiency of soil metals. However, they can create negative effects on soil biological quality. A 90-day incubation experiment was conducted to evaluate mixed effects of chelating agents and poultry manure on changes in available Cd, Pb and As, CO2-C efflux, microbial biomass C, dissolved organic C (DOC), and N mineralization in metal-polluted agricultural soil. Application of poultry manure resulted in a considerable increase in soil pH, DOC, CO2-C efflux, net N mineralization, net N nitrification, and microbial biomass C compared to those in unmanured soil. Availability of arsenic increased twice in manure amended soil due to changes in pH and DOC. However, adding poultry manure did not affect the concentrations of available Pb and Cd compared to those in control soil. Chelating agents increased CO2-C efflux, DOC, and metal availability but decreased microbial biomass C and net N mineralization. Maximum decrease in microbial biomass C, net N mineralization, and net N nitrification, was observed in EDTA applied soil possibly due to high metal availability to soil microorganisms. Overall results revealed that the application of synthetic chelators in combination with poultry manure enhances available As and demonstrates better environment for soil biota. PMID:23791533

  6. Soil Incubation Study to Assess the Impacts of Manure Application and Climate Change on Greenhouse Gas Emissions from Agricultural Soil

    NASA Astrophysics Data System (ADS)

    Schiavone, K.; Barbieri, L.; Adair, C.

    2015-12-01

    Agricultural fields in Vermont's Lake Champlain Basin have problems with the loss of nutrients due to runoff which creates eutrophic conditions in the lakes, ponds and rivers. In efforts to retain nitrogen and other nutrients in the soil farmers have started to inject manure rather than spraying it. Our understanding of the effects this might have on the volatilization of nitrogen into nitrous oxide is limited. Already, agriculture produces 69% of the total nitrous oxide emissions in the US. Understanding that climate change will affect the future of agriculture in Vermont, we set up a soil core incubation test to monitor the emissions of CO₂ and N₂O using a Photoacoustic Gas Sensor (PAS). Four 10 cm soil cores were taken from nine different fertilizer management plots in a No Till corn field; Three Injected plots, three Broadcast plots, and three Plow plots. Frozen soil cores were extracted in early April, and remained frozen before beginning the incubation experiment to most closely emulate three potential spring environmental conditions. The headspace was monitored over one week to get emission rates. This study shows that environmental and fertilizer treatments together do not have a direct correlation to the amount of CO₂ and N₂O emissions from agricultural soil. However, production of CO₂ was 26% more in warmer environmental conditions than in variable(freeze/thaw) environmental conditions. The injected fertilizer produced the most emissions, both CO₂ and N₂O. The total N₂O emissions from Injected soil cores were 2.2x more than from traditional broadcast manure cores. We believe this is likely due to the addition of rich organic matter under anaerobic soil conditions. Although, injected fertilizer is a better application method for reducing nutrient runoff, the global warming potential of N₂O is 298 times that of CO₂. With climate change imminent, assessing the harmful effects and benefits of injected fertilizer is a crucial next step in

  7. Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure

    USGS Publications Warehouse

    Kinney, C.A.; Furlong, E.T.; Kolpin, D.W.; Burkhardt, M.R.; Zaugg, S.D.; Werner, S.L.; Bossio, J.P.; Benotti, M.J.

    2008-01-01

    Analysis of earthworms offers potential for assessing the transfer of organic anthropogenic waste indicators (AWIs) derived from land-applied biosolid or manure to biota. Earthworms and soil samples were collected from three Midwest agricultural fields to measure the presence and potential for transfer of 77 AWIs from land-applied biosolids and livestock manure to earthworms. The sites consisted of a soybean field with no amendments of human or livestock waste (Site 1), a soybean field amended with biosolids from a municipal wastewater treatment plant (Site 2), and a cornfield amended with swine manure (Site 3). The biosolid applied to Site 2 contained a diverse composition of 28 AWIs, reflecting the presence of human-use compounds. The swine manure contained 12 AWIs, and was dominated by biogenic sterols. Soil and earthworm samples were collected in the spring (about 30 days after soil amendment) and fall (140-155 days after soil amendment) at all field sites. Soils from Site 1 contained 21 AWIs and soil from Sites 2 and 3 contained 19 AWIs. The AWI profiles at Sites 2 and 3 generally reflected the relative composition of AWIs present in waste material applied. There were 20 AWIs detected in earthworms from Site 1 (three compounds exceeding concentrations of 1000 ??g/kg), 25 AWIs in earthworms from Site 2 (seven compounds exceeding concentrations of 1000 ??g/kg), and 21 AWIs in earthworms from Site 3 (five compounds exceeding concentrations of 1000 ??g/kg). A number of compounds thatwere present in the earthworm tissue were at concentrations less than reporting levels in the corresponding soil samples. The AWIs detected in earthworm tissue from the three field sites included pharmaceuticals, synthetic fragrances, detergent metabolites, polycyclic aromatic hydrocarbons (PAHs), biogenic sterols, disinfectants, and pesticides, reflecting a wide range of physicochemical properties. For those contaminants detected in earthworm tissue and soil, bioaccumulation factors

  8. Practical survey on antibiotic-resistant bacterial communities in livestock manure and manure-amended soil.

    PubMed

    Yang, Qingxiang; Wang, Ruifei; Ren, Siwei; Szoboszlay, Marton; Moe, Luke A

    2016-01-01

    Through livestock manure fertilization, antibiotics, antibiotic-resistant bacteria and genes are transferred to agricultural soils, resulting in a high prevalence of antibiotic-resistant bacteria in the soil. It is not clear, however, whether a correlation exists between resistant bacterial populations in manure and manure-amended soil. In this work, we demonstrate that the prevalence of cephalexin-, amoxicillin-, kanamycin- and gentamicin-resistant bacteria as well as bacteria simultaneously resistant to all four antibiotics was much higher in manure-amended soils than in manure-free soil. 454-pyrosequencing indicated that the ARB and multiple antibiotic-resistant bacteria (MARB) in swine or chicken manure and manure-amended soil were mainly distributed among Sphingobacterium, Myroides, Enterococcus, Comamonas and unclassified Flavobacteriaceae. The genus Sphingobacterium was highly prevalent among ARB from swine manure and manure-amended soil, and was also the most dominant genus among MARB from chicken manure and manure-amended soil. Other dominant genera among ARB or MARB populations in manure samples, including Myroides, Enterococcus and Comamonas, could not be detected or were detected at very low relative abundance in manure-amended soil. The present study suggests the possibility of transfer of ARBs from livestock manures to soils and persistence of ARB in these environments. PMID:26513264

  9. Inorganic fertilizer and poultry-litter manure amendments alter the soil microbial communities in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of agricultural land management practices on soil prokaryotic diversity are not well described. We investigated three land usage systems (row cropped, ungrazed pasture, and cattle-grazed pasture) and two fertilizer systems (inorganic fertilizer or IF and poultry-litter or PL) and compare...

  10. Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment.

    PubMed

    Solliec, Morgan; Roy-Lachapelle, Audrey; Gasser, Marc-Olivier; Coté, Caroline; Généreux, Mylène; Sauvé, Sébastien

    2016-02-01

    The fate of antimicrobial active compound residues in the environment, and especially antibiotics used in swine husbandry are of particular interest for their potential toxicity and contribution to antibiotic resistance. The presence of relatively high concentrations of bioactive compounds has been reported in agricultural areas but few information is available on their degradation products. Veterinary antibiotics reach terrestrial environments through many routes, including application of swine manure to soils. The objectives of this project were first, to develop an analytical method able to quantify and identify veterinary antibiotics and their degradation products in manure, soil and water samples; and second, to study the distribution of these target compounds in soils and drainage waters. A brief evaluation of their potential toxicity in the environment was also made. In order to achieve these objectives, liquid chromatography coupled to high-resolution mass spectrometry was used for its ability to quantify contaminants with sensitivity and selectivity, and its capacity to identify degradation products. Samples of manure, soil and water came from a long-term experimental site where swine manure containing veterinary antibiotics has been applied for many years. In this study, tetracycline antibiotics were found at several hundred μg L(-1) in the swine manure slurry used for fertilization, several hundred of ng L(-1) in drainage waters and several ng g(-1) in soils, while degradation products were sometimes found at concentrations higher than the parent compounds. PMID:26605832

  11. Clinoptilolite zeolite influence on nitrogen in a manure-amended sandy agricultural soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of best management practices can help improve inorganic nitrogen (N) availability to plants and reduce nitrate-nitrogen (NO3-N) leaching in soils. This study was conducted to determine the influence of the zeolite mineral clinoptilolite (CL) additions on NO3-N and ammonium-nitrogen (NH4-...

  12. Maturity and hygiene quality of composts and hygiene indicators in agricultural soil fertilised with municipal waste or manure compost.

    PubMed

    Tontti, Tiina; Heinonen-Tanski, Helvi; Karinen, Päivi; Reinikainen, Olli; Halinen, Arja

    2011-02-01

    Composts produced from municipal source separated biowaste (Biowaste), a mixture of biowaste and anaerobically digested sewage sludge (Biosludge) and cattle manure (Manure) were examined for their maturity and hygiene quality. The composts were applied to a potato crop in 2004 and to a barley nurse crop of forage ley in 2005 in a field experiment. Numbers of faecal coliforms, enterococci, clostridia and Salmonella in field soil were determined 2 weeks and 16 weeks after compost applications. Municipal compost batches chosen based on successful processing showed variable maturity during field application, and the need to evaluate compost maturity with multiple variables was confirmed. The numbers of faecal coliform were similar in all compost types, averaging 4.7 and 2.3 log( 10) CFU g(-1) in the first and second years, respectively. The highest number of enterococci was 5.2 log(10) CFU g(-1), found in Manure compost in the first year, while the highest clostridia numbers were found in Biosludge compost, averaging 4.0 log(10) CFU g(-1) over both years. Except for one case, less than 2.4 log(10) CFU g(-1) of faecal coliforms or clostridia were found in compost-fertilised soil, while the numbers of enterococci were mostly higher than in unfertilised soil (<4.2 or <3.2 log(10) CFU g(-1), respectively). No hygiene indicator bacteria were present in compost-fertilised potato at harvest. Overall, compost fertilisations caused rather small changes in the counts of hygiene indicators in the field environment. PMID:20392787

  13. Applied manure research—looking forward to the benign roles of animal manure in agriculture and the environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By definition, animal manure is discarded animal excreta and bedding materials usually applied to soils as a fertilizer for agricultural production. However, the impact of manure generation and disposal is far more than the role of organic fertilizers, even though the fertilizer function of animal m...

  14. Dairy manure applications and soil health implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy manure applications can potentially improve soil health by adding organic matter (OM) to the soil. However, intensive dairy manure applications can cause salt accumulations on arid, irrigated soils, impairing soil health, which can reduce crop growth and yield. Soil organic matter, a major c...

  15. SOIL PROPERTIES OF SITES USED FOR COMPOSTING ANIMAL MANURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term animal manure composting creates zones of high soil nutrient and salinity. Once the composting operation is terminated, there is a need to reclaim the sites for agricultural crops. The objective of this study is to evaluate soil properties and performance of corn (Zea mays), sorghum (Sor...

  16. Soil Physical Characterization of Soil under Long-Term Tillage and Manure Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil physical properties play an intergral role in maintaining soil quality for sustainable agricultural practices. Agronomic practices such as tillage systems and organic amendments have been shown to influence soil physical properties. A study was conducted to evaluate effects of long-term manure ...

  17. Determination of antibiotic residues in manure, soil, and surface waters

    USGS Publications Warehouse

    Christian, T.; Schneider, R.J.; Farber, H.A.; Skutlarek, D.; Meyer, M.T.; Goldbach, H.E.

    2003-01-01

    In the last years more and more often detections of antimicrobially active compounds ("antibiotics") in surface waters have been reported. As a possible input pathway in most cases municipal sewage has been discussed. But as an input from the realm of agriculture is conceivable as well, in this study it should be investigated if an input can occur via the pathway application of liquid manure on fields with the subsequent mechanisms surface run-off/interflow, leaching, and drift. For this purpose a series of surface waters, soils, and liquid manures from North Rhine-Westphalia (Northwestern Germany) were sampled and analyzed for up to 29 compounds by HPLC-MS/MS. In each of the surface waters antibiotics could be detected. The highest concentrations were found in samples from spring (300 ng/L of erythromycin). Some of the substances detected (e.g., tylosin), as well as characteristics in the landscape suggest an input from agriculture in some particular cases. In the investigation of different liquid manure samples by a fast immunoassay method sulfadimidine could be detected in the range of 1...2 mg/kg. Soil that had been fertilized with this liquid manure showed a content of sulfadimidine extractable by accelerated solvent extraction (ASE) of 15 ??g/kg dry weight even 7 months after the application. This indicates the high stability of some antibiotics in manure and soil.

  18. Detection of Manure-Derived Organic Compounds in Rivers Draining Agricultural Areas of Intensive Manure Spreading

    NASA Astrophysics Data System (ADS)

    Jardé, E.; Gruau, G.

    2006-12-01

    This study presents the potentiality of organic markers to trace the impact of animal manure in soils and rivers draining agricultural watersheds. As described by Gruau et al. (in this session), the analysis of long term records of dissolved organic matter (DOM) in five watersheds in Brittany (western of France) shows divergent trends which can not be explained solely by global changes. One alternative explanation could be that long- term records of DOM in rivers are controlled by human activities, and notably by agricultural practices. In Brittany, the agricultural intensification led to an over-application of animal manures to soils. This practice can strongly increase the amount of soil-water extractable organic matter, thereby leading to an increase of organic matter fluxes in agricultural landscapes and then to a contamination of river waters. Such an hypothesis deserves consideration in view of the massive manure fluxes that are disposed on agricultural land in many parts of the world. In this goal, our study aimed at determining potential sources of organic matter and molecular markers or specific distributions in rivers draining agricultural watersheds. In this study we focused on the analysis of pig slurries because of the importance of pig production in Brittany. The analysis of pig slurry evidenced the presence of coprostanol (5β) as a specific marker, originating from the bio- hydrogenation of cholesterol by anaerobic bacteria. The difference with other animal or human wastes has been evidenced by two ratios: 5β/C27 and C29/C27. After the validation of the ability of coprostanol to be a molecular marker of pig slurry, our analysis has been focused on the OM of watersheds in Brittany showing divergent evolutions. The results show a systematic relation between the C29/C27 and 5β/C27 ratios and the type of animal breeding in each watershed. This study allows us to evidence the impact of animal breeding activities in the analysed rivers. Such a study

  19. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates

    NASA Astrophysics Data System (ADS)

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-10-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm 2000-250 μm 250-53 μm and <53 μm). The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000-250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture.

  20. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates

    PubMed Central

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-01-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm; 2000–250 μm; 250–53 μm; and <53 μm). The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000–250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture. PMID:26423355

  1. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates.

    PubMed

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-01-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm; 2000-250 μm; 250-53 μm; and <53 μm). The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000-250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture. PMID:26423355

  2. [Effects of Green Manure Intercropping and Straw Mulching on Winter Rape Rhizosphere Soil Organic Carbon and Soil Respiration].

    PubMed

    Zhou, Quan; Wang, Long-chang; Xiong, Ying; Zhang, Sai; Du, Juan; Zhao, Lin-lu

    2016-03-15

    Under the background of global warming, the farmland soil respiration has become the main way of agricultural carbon emissions. And green manure has great potential to curb greenhouse gas emissions and achieve energy conservation and emissions reduction. However, in purple soil region of Southwest, China, soil respiration under green manure remains unclear, especially in the winter and intercropping. Through the green manure ( Chinese milk vetch) intercropping with rape, therefore, we compared the effects of rape rhizosphere under straw mulching. The soil organic carbon and soil respiration were examined. The results showed, compared with straw mulching, root separation was the major influencing factors of soil organic carbon on rape rhizosphere. Soil organic carbon was significantly decreased by root interaction. In addition, straw mulching promoted while green manure intercropping inhibited the soil respiration. Soil respiration presented the general characteristics of fall-rise-fall due to the strong influence of rape growth period. Therefore, it showed a cubic curve relationship with soil temperature. PMID:27337908

  3. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization

    PubMed Central

    Udikovic-Kolic, Nikolina; Wichmann, Fabienne; Broderick, Nichole A.; Handelsman, Jo

    2014-01-01

    The increasing prevalence of antibiotic-resistant bacteria is a global threat to public health. Agricultural use of antibiotics is believed to contribute to the spread of antibiotic resistance, but the mechanisms by which many agricultural practices influence resistance remain obscure. Although manure from dairy farms is a common soil amendment in crop production, its impact on the soil microbiome and resistome is not known. To gain insight into this impact, we cultured bacteria from soil before and at 10 time points after application of manure from cows that had not received antibiotic treatment. Soil treated with manure contained a higher abundance of β-lactam–resistant bacteria than soil treated with inorganic fertilizer. Functional metagenomics identified β-lactam–resistance genes in treated and untreated soil, and indicated that the higher frequency of resistant bacteria in manure-amended soil was attributable to enrichment of resident soil bacteria that harbor β-lactamases. Quantitative PCR indicated that manure treatment enriched the blaCEP-04 gene, which is highly similar (96%) to a gene found previously in a Pseudomonas sp. Analysis of 16S rRNA genes indicated that the abundance of Pseudomonas spp. increased in manure-amended soil. Populations of other soil bacteria that commonly harbor β-lactamases, including Janthinobacterium sp. and Psychrobacter pulmonis, also increased in response to manure treatment. These results indicate that manure amendment induced a bloom of certain antibiotic-resistant bacteria in soil that was independent of antibiotic exposure of the cows from which the manure was derived. Our data illustrate the unintended consequences that can result from agricultural practices, and demonstrate the need for empirical analysis of the agroecosystem. PMID:25288759

  4. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization.

    PubMed

    Udikovic-Kolic, Nikolina; Wichmann, Fabienne; Broderick, Nichole A; Handelsman, Jo

    2014-10-21

    The increasing prevalence of antibiotic-resistant bacteria is a global threat to public health. Agricultural use of antibiotics is believed to contribute to the spread of antibiotic resistance, but the mechanisms by which many agricultural practices influence resistance remain obscure. Although manure from dairy farms is a common soil amendment in crop production, its impact on the soil microbiome and resistome is not known. To gain insight into this impact, we cultured bacteria from soil before and at 10 time points after application of manure from cows that had not received antibiotic treatment. Soil treated with manure contained a higher abundance of β-lactam-resistant bacteria than soil treated with inorganic fertilizer. Functional metagenomics identified β-lactam-resistance genes in treated and untreated soil, and indicated that the higher frequency of resistant bacteria in manure-amended soil was attributable to enrichment of resident soil bacteria that harbor β-lactamases. Quantitative PCR indicated that manure treatment enriched the blaCEP-04 gene, which is highly similar (96%) to a gene found previously in a Pseudomonas sp. Analysis of 16S rRNA genes indicated that the abundance of Pseudomonas spp. increased in manure-amended soil. Populations of other soil bacteria that commonly harbor β-lactamases, including Janthinobacterium sp. and Psychrobacter pulmonis, also increased in response to manure treatment. These results indicate that manure amendment induced a bloom of certain antibiotic-resistant bacteria in soil that was independent of antibiotic exposure of the cows from which the manure was derived. Our data illustrate the unintended consequences that can result from agricultural practices, and demonstrate the need for empirical analysis of the agroecosystem. PMID:25288759

  5. Fate and transport of tylosin-resistant bacteria and macrolide resistance genes in artificially drained agricultural fields receiving swine manure.

    PubMed

    Luby, Elizabeth M; Moorman, Thomas B; Soupir, Michelle L

    2016-04-15

    Application of manure from swine treated with antibiotics introduces antibiotics and antibiotic resistance genes to soil with the potential for further movement in drainage water, which may contribute to the increase in antibiotic resistance in non-agricultural settings. We compared losses of antibiotic-resistant Enterococcus and macrolide-resistance (erm and msrA) genes in water draining from plots with or without swine manure application under chisel plow and no till conditions. Concentrations of ermB, ermC and ermF were all >10(9)copies g(-1) in manure from tylosin-treated swine, and application of this manure resulted in short-term increases in the abundance of these genes in soil. Abundances of ermB, ermC and ermF in manured soil returned to levels identified in non-manured control plots by the spring following manure application. Tillage practices yielded no significant differences (p>0.10) in enterococci or erm gene concentrations in drainage water and were therefore combined for further analysis. While enterococci and tylosin-resistant enterococci concentrations in drainage water showed no effects of manure application, ermB and ermF concentrations in drainage water from manured plots were significantly higher (p<0.01) than concentrations coming from non-manured plots. ErmB and ermF were detected in 78% and 44%, respectively, of water samples draining from plots receiving manure. Although ermC had the highest concentrations of the three genes in drainage water, there was no effect of manure application on ermC abundance. MsrA was not detected in manure, soil or water. This study is the first to report significant increases in abundance of resistance genes in waters draining from agricultural land due to manure application. PMID:26874610

  6. Pathogen transport in surface runoff from manured agricultural fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research objective: Manure application to cultivated land is a sustainable approach for enhancing soil fertility and tilth. However, enteric pathogens are often common in manure and can be transported from the application site via runoff and potentially transmitted to livestock and humans. Our objec...

  7. Determining Bioactive Phosphorus Fractions in Animal Manure, Soil, and Extracts of Soils and Manures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymatic dephosphorylation of compounds such as inositol phosphates and other orthophosphate monoesters, phosphorylated lipids, and phosphodiesters have been used in their characterization in many biological media including organic residuals and soils. In an enzymatic assay, a manure sample, a soi...

  8. Degradation and dissipation of the veterinary ionophore lasalocid in manure and soil.

    PubMed

    Žižek, Suzana; Dobeic, Martin; Pintarič, Štefan; Zidar, Primož; Kobal, Silvestra; Vidrih, Matej

    2015-11-01

    Lasalocid is a veterinary ionophore antibiotic used for prevention and treatment of coccidiosis in poultry. It is excreted from the treated animals mostly in its active form and enters the environment with the use of contaminated manure on agricultural land. To properly assess the risk that lasalocid poses to the environment, it is necessary to know its environmental concentrations as well as the rates of its degradation in manure and dissipation in soil. These values are still largely unknown. A research was undertaken to ascertain the rate of lasalocid degradation in manure under different storage conditions (aging in a pile or composting) and on agricultural soil after using lasalocid-contaminated manure. The results have shown that there is considerable difference in lasalocid degradation between aging manure with no treatment (t1/2=61.8±1.7 d) and composting (t1/2=17.5±0.8 d). Half-lives in soil are much shorter (on average 3.1±0.4 d). On the basis of the measured concentrations of lasalocid in soil after manure application, we can conclude that it can potentially be harmful to soil organisms (PEC/PNEC ratio of 1.18), but only in a worst-case scenario of using the maximum permissible amount of manure and immediately after application. To make certain that no harmful effects occur, composting is recommended. PMID:25556006

  9. Immobilization of tetracyclines in manure and manure-amended soils using aluminum-based drinking water treatment residuals.

    PubMed

    Punamiya, Pravin; Sarkar, Dibyendu; Rakshit, Sudipta; Elzinga, Evert J; Datta, Rupali

    2016-02-01

    Veterinary antibiotics (VAs) are emerging contaminants of concern in the environment, mainly due to the potential for development of antibiotic-resistant bacteria and effect on microbiota that could interfere with crucial ecosystem functions such as nutrient cycling and decomposition. High levels of VAs such as tetracyclines (TCs) have been reported in agricultural soils amended with manure, which also has the potential to cause surface and groundwater contamination. Several recent studies have focused on developing methods to immobilize VAs such as composting with straw, hardwood chips, commercial biochar, aeration, mixing, heat treatment, etc. The major shortcomings of these methods include high cost and limited effectiveness. In the current study, we assessed the effectiveness of aluminum-based drinking water treatment residuals (Al-WTR) as a "green" sorbent to immobilize TCs in manure and manure-applied soils with varying physicochemical properties by laboratory incubation study. Results show that Al-WTR is very effective in immobilizing tetracycline (TTC) and oxytetracycline (OTC). The presence of phosphate resulted in significant (p < 0.01) decrease in TTC/OTC sorption by Al-WTR, but the presence of sulfate did not. attenuated total reflection (ATR)-FTIR spectroscopy indicate that TTC and OTC likely forming surface complexes via inner-sphere-type bonds in soils, manure, and manure-applied soils amended with Al-WTR. PMID:26490907

  10. Coupling Cover Crops and Manure Injection: Soil Inorganic N Changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of a rye/oat cover crop with liquid swine manure application may enhance retention of manure nitrogen (N) in corn-soybean cropping systems. The objective of this study was to evaluate changes in soil inorganic N following injection of liquid swine manure to plots seeded with a rye/oat co...

  11. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi.

    PubMed

    Yang, Qingxiang; Zhang, Hao; Guo, Yuhui; Tian, Tiantian

    2016-01-01

    Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB) in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1) non-treated; (2) chicken manure-treated and (3) organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB) and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB) in soil and multiple antibiotic-resistant endophytic bacteria (MAREB) in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health. PMID:27376311

  12. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi

    PubMed Central

    Yang, Qingxiang; Zhang, Hao; Guo, Yuhui; Tian, Tiantian

    2016-01-01

    Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB) in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1) non-treated; (2) chicken manure-treated and (3) organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB) and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB) in soil and multiple antibiotic-resistant endophytic bacteria (MAREB) in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health. PMID:27376311

  13. Effects of manure-application practices on curli production by Escherichia coli transported through soil

    NASA Astrophysics Data System (ADS)

    Truhlar, A. M.; Salvucci, A. E.; Siler, J. D.; Richards, B. K.; Geohring, L.; Walter, M. T.; Hay, A. G.

    2014-12-01

    The release of Escherichia coli into the environment from untreated manure can pose a threat to human health. Environmental survival of E. coli has been linked to extracellular fibers called curli. We investigated the effect of manure management (surface application followed by incorporation versus immediate incorporation) on the relative abundance of curli-producing E. coli in subsurface drainage effluent. Samples were collected from three dairy farms. The proportion of curli-producing E. coli in the manure storage facilities was uniform across the farms. However, the abundance of curli-producing E. coli was much greater (P < 0.05) in the tile drains of farms performing surface application of manure than in the tile drain of the farm that incorporated manure. This field result was corroborated by controlled soil column experiments; the abundance of curli-producing E. coli in soil column effluents was greater (P < 0.05) when manure was surface-applied than when it was incorporated. Our findings suggest selection pressures resulting from the different manure application methods affected curli production by E. coli isolates transported through soil. Given the importance of curli production in pathogenesis, this work highlights the effect that manure management strategies may have on pathogenesis-associated phenotypes of bacteria in agricultural subsurface runoff.

  14. Freeze-thaw effects on phosphorus loss in runoff from manured and catch-cropped soils.

    PubMed

    Bechmann, Marianne E; Kleinman, Peter J A; Sharpley, Andrew N; Saporito, Lou S

    2005-01-01

    Concern over nonpoint source P losses from agricultural lands to surface waters in frigid climates has focused attention on the role of freezing and thawing on P loss from catch crops (cover crops). This study evaluated the effect of freezing and thawing on the fate of P in bare soils, soils mixed with dairy manure, and soils with an established catch crop of annual ryegrass (Lolium multiflorum L.). Experiments were conducted to evaluate changes in P runoff from packed soil boxes (100 by 20 by 5 cm) and P leaching from intact soil columns (30 cm deep). Before freezing and thawing, total P (TP) in runoff from catch-cropped soils was lower than from manured and bare soils due to lower erosion. Repeated freezing and thawing significantly increased water-extractable P (WEP) from catch crop biomass and resulted in significantly elevated concentrations of dissolved P in runoff (9.7 mg L(-1)) compared with manured (0.18 mg L(-1)) and bare soils (0.14 mg L(-1)). Catch crop WEP was strongly correlated with the number of freeze-thaw cycles. Freezing and thawing did not change the WEP of soils mixed with manures, nor were differences observed in subsurface losses of P between catch-cropped and bare soils before or after manure application. This study illustrates the trade-offs of establishing catch crops in frigid climates, which can enhance P uptake by biomass and reduce erosion potential but increase dissolved P runoff. PMID:16275731

  15. Method of soil sampling following subsurface banding of solid manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil sampling guidelines do not exist for fields fertilized with solid manures applied in bands. The objective of this work was to describe the distribution of mineral nutrients and total C and propose a method of taking soil samples that reflects the fertility level of a field following manure app...

  16. Application of manure to no-till soils: Phosphorus losses by sub-surface and surface pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concern over the acceleration of eutrophication by agricultural runoff has focused attention on manure management in no-till. We evaluated losses of phosphorus (P) in sub-surface and surface flow as a function of dairy manure application to no-till soils on a dairy farm in north-central Pennsylvania...

  17. Soil and cover crop responses to liquid swine manure application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large-scale pork production is a major agricultural enterprise in the Midwest. Large numbers of confined hogs produce about 50 million tons per year of swine manure in Iowa alone. The most commonly used manure management practice in the Midwest involves fall application to land where corn will be gr...

  18. Surface runoff losses of phosphorus from Virginia soils amended with turkey manure using phytase and high available phosphorus corn diets.

    PubMed

    Penn, C J; Mullins, G L; Zelazny, L W; Warren, J G; McGrath, J M

    2004-01-01

    Many states have passed legislation that regulates agricultural P applications based on soil P levels and crop P uptake in an attempt to protect surface waters from nonpoint P inputs. Phytase enzyme and high available phosphorus (HAP) corn supplements to poultry feed are considered potential remedies to this problem because they can reduce total P concentrations in manure. However, less is known about their water solubility of P and potential nonpoint-source P losses when land-applied. This study was conducted to determine the effects of phytase enzyme and HAP corn supplemented diets on runoff P concentrations from pasture soils receiving surface applications of turkey manure. Manure from five poultry diets consisting of various combinations of phytase enzyme, HAP corn, and normal phytic acid (NPA) corn were surface-applied at 60 kg P ha(-1) to runoff boxes containing tall fescue (Festuca arundinacea Schreb.) and placed under a rainfall simulator for runoff collection. The alternative diets caused a decrease in manure total P and water soluble phosphorus (WSP) compared with the standard diet. Runoff dissolved reactive phosphorus (DRP) concentrations were significantly higher from HAP manure-amended soils while DRP losses from other manure treatments were not significantly different from each other. The DRP concentrations in runoff were not directly related to manure WSP. Instead, because the mass of manure applied varied for each treatment causing different amounts of manure particles lost in runoff, the runoff DRP concentrations were influenced by a combination of runoff sediment concentrations and manure WSP. PMID:15254126

  19. Soil Nitrogen Response to Coupling Cover Crops with Manure Injection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coupling winter small grain cover crops (CC) with manure (M) application may increase retention of manure nitrogen (N) in corn-soybean cropping systems. The objective of this research was to quantify soil N changes after application of liquid swine M (Sus scrofa L.) at target N rates of 112, 224, an...

  20. Co-pyrolysis of swine manure with agricultural plastic waste: Laboratory-scale study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does no...

  1. PHOSPHORUS AVAILABILITY TO BARLEY FROM MANURES AND FERTILIZERS ON A CALCAREOUS SOIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) is a limiting soil nutrient for many crops; however, P losses in runoff from agricultural lands are implicated in the degradation of water quality in many regions. We conducted a growth chamber study to determine the relative P solubility and plant P availability of manure and fertil...

  2. Analysis of manure-derived oxytetracycline in amended soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a member of tetracycline antibiotic family, oxytetracycline is widely administered to animals. With the application of manure from medicated animals as fertilizer into agricultural land, oxytetracycline may enter the environment. For studying oxytetracycline contamination and its fate in agricult...

  3. Use of manure to remediate eroded hill top soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils damaged by the dustbowl years can still be found across the Western Central Great Plains. Most of these soils have lost top soil rich in organic matter. Our objective was to determine best management practices for remediating these soils using beef manure as an organic amendment. In a field ...

  4. Environmental assay on the effect of poultry manure application on soil organisms in agroecosystems.

    PubMed

    Delgado, M; Rodríguez, C; Martín, J V; Miralles de Imperial, R; Alonso, F

    2012-02-01

    This paper reports the effects produced on the organisms of the soil (plants, invertebrates and microorganisms), after the application of two types of poultry manure (sawdust and straw bed) on an agricultural land. The test was made using a terrestrial microcosm, Multi-Species Soil System (MS3) developed in INIA. There was no difference in the germination for any of the three species of plants considered in the study. The biomass was increased in the wheat (Triticum aestivum) coming from ground treated with both kinds of poultry manure. Oilseed rape (Brasica rapa) was not affected and regarding vetch (Vicia sativa) only straw poultry manure showed significant difference. For length only Vicia sativa was affected showing a reduction when straw was exposed to poultry manure. When the effect on invertebrates was studied, we observed a reduction in the number of worms during the test, especially from the ground control (13.7%), higher than in the ground with sawdust poultry manure (6.7%), whereas in the ground with straw poultry manure, there was no reduction. The biomass was affected and at the end of the test it was observed that while the reduction of worms in the ground control was about 48%, the number of those that were in the ground with sawdust poultry manure or straw poultry manure decreased by 41% and 22% respectively. Finally, the effects on microorganisms showed that the enzymatic activities: dehydrogenase (DH) and phosphatase and basal respiration rate increased at the beginning of the test, and the differences were statistically significant compared with the values of the control group. During the test, all these parameters decreased (except DH activities) but they were always higher than in the ground control. This is why it is possible to deduce that the contribution of poultry manure caused an improvement in the conditions of fertilization and also for the soil. PMID:22154182

  5. Phosphorus Speciation in Manure and Manure-Amended Soils Using XANES Spectroscopy

    SciTech Connect

    Sato,S.; Solomon, D.; Hyland, C.; Ketterings, Q.; Lehmann, J.

    2005-01-01

    Previous studies suggested an increase in the proportion of calcium phosphates (CaP) of the total phosphorus (P) pool in soils with a long-term poultry manure application history versus those with no or limited application histories. To understand and predict long-term P accumulation and release dynamics in these highly amended soils, it is important to understand what specific P species are being formed. We assessed forms of CaP formed in poultry manure and originally acidic soil in response to different lengths of mostly poultry manure applications using P K-edge X-ray absorption near-edge structure (XANES) spectroscopy. Phosphorus K-edge XANES spectra of poultry manure showed no evidences of crystalline P minerals but dominance of soluble CaP species and free and weakly bound phosphates (aqueous phosphate and phosphate adsorbed on soil minerals). Phosphate in an unamended neighboring forest soil (pH 4.3) was mainly associated with iron (Fe) compounds such as strengite and Fe-oxides. Soils with a short-term manure history contained both Fe-associated phosphates and soluble CaP species such as dibasic calcium phosphate (DCP) and amorphous calcium phosphate (ACP). Long-term manure application resulted in a dominance of CaP forms confirming our earlier results obtained with sequential extractions, and a transformation from soluble to more stable CaP species such as {beta}-tricalcium calcium phosphate (TCP). Even after long-term manure application (>25 yr and total P in soil up to 13 307 mg kg{sup -1}), however, none of the manure-amended soils showed the presence of crystalline CaP. With a reduction or elimination of poultry manure application to naturally acidic soils, the pH of the soil is likely to decrease, thereby increasing the solubility of Ca-bonded inorganic P minerals. Maintaining a high pH is therefore an important strategy to minimize P leaching in these soils.

  6. Ecotoxicological evaluation of swine manure disposal on tropical soils in Brazil.

    PubMed

    Segat, Julia Corá; Alves, Paulo Roger Lopes; Baretta, Dilmar; Cardoso, Elke Jurandy Bran Nogueira

    2015-12-01

    Swine production in Brazil results in a great volume of manure that normally is disposed of as agricultural fertilizer. However, this form of soil disposal, generally on small farms, causes the accumulation of large amounts of manure and this results in contaminated soil and water tables. To evaluate the effects of increasing concentrations of swine manure on earthworms, several ecotoxicological tests were performed using Eisenia andrei as test organism in different tropical soils, classified respectively as Ultisol, Oxisol, and Entisol, as well as Tropical Artificial Soil (TAS). The survival, reproduction and behavior of the earthworms were evaluated in experiments using a completely randomized design, with five replications. In the Ultisol, Oxisol and TAS the swine manure showed no lethality, but in the Entisol it caused earthworm mortality (LOEC=45 m(3)ha(-1)). In the Entisol, the waste reduced the reproductive rate and caused avoidance behavior in E. andrei (LOEC=30 m(3)ha(-1)) even in lower concentrations. The Entisol is extremely sandy, with low cation exchange capacity (CEC), and this may be the reason for the higher toxicity on soil fauna, with the soil not being able to hold large amounts of pollutants (e.g. toxic metals), but leaving them in bioavailable forms. These results should be a warning of the necessity to consider soil parameters (e.g. texture and CEC) when evaluating soil contamination by means of ecotoxicological assays, as there still are no standards for natural soils in tropical regions. E. andrei earthworms act as indicators for a soil to support disposal of swine manure without generating harm to agriculture and ecosystems. PMID:26218553

  7. Effects of poultry manure, compost, and biochar amendments on soil nitrogen dynamics in maize production systems

    NASA Astrophysics Data System (ADS)

    Ryals, R.; Tang, J.; Hastings, M. G.; Dell, C. J.; Sims, T.

    2013-12-01

    Intensification of animal agriculture has profound impacts on the global and local biogeochemistry of nitrogen (N), resulting in consequences to environmental and human health. In the Chesapeake Bay watershed, intensive agriculture is the primary contributor to N pollution, with animal manure comprising more than half of N from agriculture. Management interventions may play an important role in mitigating reactive N pollution in the Bay watershed. The objective of our research was to test management strategies that maximize benefits of poultry manure as an agricultural resource while minimizing it as a source of reactive nitrogen to the atmosphere and ground and surface waters. We conducted field experiments in two agricultural regions of the Chesapeake Bay watershed (Georgetown, Delaware and State College, Pennsylvania) to explore the effects of poultry manure amendments on gaseous N losses and soil N transformations. Treatments were applied at rates needed to meet the plant N demand at each site and included unfertilized controls, fertilizer N (urea), and raw, composted, or and biocharred poultry manure. The fate of the N from all sources was followed throughout the growing season. Global greenhouse gases emitted from soil (nitrous oxide [N2O] and carbon dioxide [CO2]) and regional air pollutants (nitrogen oxides [NOx] and ammonia [NH3]) were measured. Gas measurements were coupled with data on treatment effects on temperature, moisture, and concentrations of nitrate (NO3¬-) and ammonium (NH4+) in surface soils (0-10 cm). Soil NO3- and NH4+ were also measured approximately monthly in the soil profile (0-10, 10-30, 30-50, 50-70, and 70-100 cm) as an index of leaching potential. Plant N uptake and grain production were also quantified to quantify crop N use efficiency and compare measured N losses for each N source. Our results suggest that the form of poultry manure amendments can affect the magnitude of reactive N losses to the environment.

  8. Effects of organic dairy manure amendment on soil phosphatase activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic dairy production is increasing in the U.S. due to concerns over environmental, human, and animal health. It is well known that the application of livestock manure to soil can influence enzyme activities involved in nutrient cycling and soil fertility, such as soil phosphatases; however, orga...

  9. Geographic variations of soil phosphorus induced by long-term land and manure nutrient management practices

    NASA Astrophysics Data System (ADS)

    Dao, Thanh

    2014-05-01

    Most natural and agricultural ecosystems are deficient in phosphorus (P), and supplemental P must be provided to attain optimal levels of agronomic production. Animal manure is often used to supply needed plant nutrients to enhance production of feed and fiber crops for human and livestock consumption. Soils have been treated with large amounts of P-enriched manure, and have shown elevated P levels in watersheds where there is a high density of intensive confined animal agriculture. Long-term additions can have lasting effects on the geographic distribution of soil microbes associated with the turnover of major soil nutrients, in particular non-mobile one such as P. We determined the distribution of soil P forms in a 10-ha no-till field that received annual additions of dairy manure at 0, 15, and 30 kg P ha-1 at the field scale for 16 consecutive years. Spectroscopic analyses of the near-surface zone were performed by X-ray fluorescence in soil cores taken to a depth of 0.2 m. Geostatistical methods were used to determine the spatial structure of the soil compositional data. Soil X-ray fluorescence spectral attributes were obtained based on a set of five parallel transects established across five experimental blocks, i.e., a 5 × 5 rectangular grid pattern. Three subsets of each soil attribute were identified for the three rates of manure addition. Long-term manure addition, albeit liquid manure, resulted in significant variability in soil P distribution in the near surface zone. The heterogeneity persisted over years of continuous no-tillage management. Therefore, a high density of geo-referenced soil measurements must be made to estimate the status of a required plant nutrient, especially a non-mobile nutrient in soil. A large number of timely measurements would require a rapid geo-referenced soil sensing spectroscopic method such as X-ray fluorescence to manage in near real-time the observed spatial variability of manure-treated fields.

  10. Combustible gas and biochar production from co-pyrolysis of agricultural plastic wastes and animal manures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers report that manure-derived biochar has considerable potential both for improving soil quality and reducing water pollution. One of obstacles in obtaining manure biochar is its high energy requirement for pyrolyzing wet and low-energy-density animal manures. The combustible gas produced f...

  11. Soil-Plant Nutrient Interactions on Manure-Enriched Calcareous Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient accumulations on heavily manured soils can trigger soil and plant nutrient interactions. The goal of the study was to determine the current impact of dairy manure applications on nutrient concentrations in soil and tissue for irrigated corn silage crops grown in Southern Idaho. At harvest,...

  12. Rapid transport and transformation of phosphorus species during the leaching of poultry manure amended soil

    NASA Astrophysics Data System (ADS)

    Giles, Courtney; Cade-Menun, Barbara; Liu, Corey; Hill, Jane

    2015-04-01

    The loss of phosphorus (P) from soils due to leaching is a major concern in heavily fertilized agricultural regions. The mobility and transformation of P species will depend on the source of manure fertilizer, leaching regime, and the extent of soil P saturation within the soil profile. We investigate spatial and temporal changes in the distribution of P species within a poultry manure-amended soil at two depths (0-5, 10-15 cm) as well as leachate P fractions during 10 weeks of leaching. Leachate P was primarily composed of dissolved fractions (soluble reactive P; dissolved unreactive P) and reached a maximum in the fourth week of leaching. In soils, the degree of P saturation (80%) and water extractable P (9 mg kg-1) were also greatest in week 4. 31P NMR spectra of the 0-5 cm depth indicate that surface soils were most similar to the poultry manure in week 4. During peak leaching, the proportion of orthophosphate (OrthoP) at the soil surface (0-5 cm; 80%) was greater than that from the lowest depth (10-15 cm; 72%), which contained relatively larger proportions of monoester-(17%) and diester-P classes (10%). Poultry manure likely contributed to the mobile pool of P species, including OrthoP, myo-inositol hexakisphosphate (myo-IHP), and nucleic acids. The appearance of neo- and D-chiro-IHP, as well as phospholipid signals during the leaching period indicate possible short-term (<10 week) contributions of organic P to the generation and leaching of OrthoP, under P-saturated conditions. Further work is needed to determine how fertilization and leaching will affect the mobility and transformation of P species across a wider range of soil types. Keywords: Phytate, organic phosphorus, degree of phosphorus saturation, soil, leachate, poultry manure

  13. Distribution of phosphorus in manure slurry and its infiltration after application to soils.

    PubMed

    Vadas, Peter A

    2006-01-01

    Computer models help identify agricultural areas where P transport potential is high, but commonly used models do not simulate surface application of manures and P transport from manures to runoff. As part of an effort to model such P transport, we conducted manure slurry separation and soil infiltration experiments to determine how much slurry P infiltrates into soil after application but before rain, thus becoming less available to runoff. We applied dairy and swine slurry to soil columns and after both 24 and 96 h analyzed solids remaining on the soil surface for dry matter, total phosphorus (TP), and water-extractable inorganic (WEIP) and organic (WEOP) phosphorus. We analyzed underlying soils for Mehlich-3 and water-extractable P. We also conducted slurry separation experiments by sieving, centrifuging, and suction-filtering to determine which method could easily estimate slurry P infiltration into soils. About 20% of slurry solids and 40 to 65% of slurry TP and WEIP infiltrated into soil after application, rendering this P less available to transport in runoff. Slurry separation by suction-filtering through a screen with 0.75-mm-diameter openings was the best method to estimate this slurry P infiltration. Measured quantities of manure WEOP changed too much during experiments to estimate WEOP infiltration into soil or what separation method can approximate infiltration. Applying slurries to soils always increased soil P in the top 0 to 1 cm of soil, frequently in the 1- to 2-cm depth of soil, but rarely below 2 cm. Future research should use soils with coarser texture or large macropores, and slurry with low dry matter content (1-2%). PMID:16455855

  14. Quantifying Bioactive P Pools in Fertilized and Manure-Amended Soils by Purified Phytic-Acid High Affinity Aspergillus phosphohydrolases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In areas of intensive animal agriculture, repeated land application of manure resulted in elevated soil concentrations of inorganic and organic phosphorus (P) myo-Inositol hexaphosphate, lower phosphomonoesters are the most abundant organic P compounds. Such P-enriched soils are potential pollution...

  15. Temporal changes of antibiotic-resistance genes and bacterial communities in two contrasting soils treated with cattle manure.

    PubMed

    Hu, Hang-Wei; Han, Xue-Mei; Shi, Xiu-Zhen; Wang, Jun-Tao; Han, Li-Li; Chen, Deli; He, Ji-Zheng

    2016-02-01

    The emerging environmental spread of antibiotic-resistance genes (ARGs) and their subsequent acquisition by clinically relevant microorganisms is a major threat to public health. Animal manure has been recognized as an important reservoir of ARGs; however, the dissemination of manure-derived ARGs and the impacts of manure application on the soil resistome remain obscure. Here, we conducted a microcosm study to assess the temporal succession of total bacteria and a broad spectrum of ARGs in two contrasting soils following manure application from cattle that had not been treated with antibiotics. High-capacity quantitative PCR detected 52 unique ARGs across all the samples, with β-lactamase as the most dominant ARG type. Several genes of soil indigenous bacteria conferring resistance to β-lactam, which could not be detected in manure, were found to be highly enriched in manure-treated soils, and the level of enrichment was maintained over the entire course of 140 days. The enriched β-lactam resistance genes had significantly positive relationships with the relative abundance of the integrase intI1 gene, suggesting an increasing mobility potential in manure-treated soils. The changes in ARG patterns were accompanied by a significant effect of cattle manure on the total bacterial community compositions. Our study indicates that even in the absence of selective pressure imposed by agricultural use of antibiotics, manure application could still strongly impact the abundance, diversity and mobility potential of a broad spectrum of soil ARGs. Our findings are important for reliable prediction of ARG behaviors in soil environment and development of appropriate strategies to minimize their dissemination. PMID:26712351

  16. Effects of poultry manure amendment on soil phosphorus fractions, phosphatase activity, and phosphorus uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry manure (PM) contains a large amount of P, and adding this manure to soil can impact the availability of native soil P to plants. To investigate the effects of PM on soil P availability, we grew ryegrass (Lolium perenne) in greenhouse pots amended with poultry manure. Biomass was harvested at...

  17. Co-pyrolysis of swine manure with agricultural plastic waste: laboratory-scale study.

    PubMed

    Ro, Kyoung S; Hunt, Patrick G; Jackson, Michael A; Compton, David L; Yates, Scott R; Cantrell, Keri; Chang, SeChin

    2014-08-01

    Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does not provide enough energy to sustain the pyrolysis process. Supplementing this process may be achieved with spent agricultural plastic films; these feedstocks have large amounts of available energy. Plastic films are often used in soil fumigation. They are usually disposed in landfills, which is wasteful, expensive, and environmentally unsustainable. The objective of this work was to investigate both the energetics of co-pyrolyzing swine solids with spent plastic mulch films (SPM) and the characteristics of its gas, liquid, and solid byproducts. The heating value of the product gas from co-pyrolysis was found to be much higher than that of natural gas; furthermore, the gas had no detectable toxic fumigants. Energetically, sustaining pyrolysis of the swine solids through the energy of the product gas could be achieved by co-pyrolyzing dewatered swine solids (25%m/m) with just 10% SPM. If more than 10% SPM is used, the co-pyrolysis would generate surplus energy which could be used for power generation. Biochars produced from co-pyrolyzing SPM and swine solid were similar to swine solid alone based on the surface area and the (1)H NMR spectra. The results of this study demonstrated the potential of using pyrolysis technology to manage two prominent agricultural waste streams (SPM and swine solids) while producing value-added biochar and a power source that could be used for local farm operations. PMID:24810203

  18. Short-term effects of amoxicillin on bacterial communities in manured soil.

    PubMed

    Binh, Chu Thi Thanh; Heuer, Holger; Gomes, Newton C Marcial; Kotzerke, Anja; Fulle, Melanie; Wilke, Bernd-Michael; Schloter, Michael; Smalla, Kornelia

    2007-12-01

    Antibiotic-resistant bacteria, nutrients and antibiotics that enter the soil by means of manure may enhance the proportion of bacteria displaying antibiotic resistance among soil bacteria and may affect bacterial community structure and function. To investigate the effect of manure and amoxicillin added to manure on soil bacterial communities, microcosm experiments were performed with two soil types and the following treatments: (1) nontreated, (2) manure-treated, (3) treated with manure supplemented with 10 mg amoxicillin kg(-1) soil and (4) treated with manure supplemented with 100 mg amoxicillin kg(-1) soil, with four replicates per treatment. Manure significantly increased the total CFU count and the amoxicillin-resistant CFU count of both soil types. However, only the soil with a history of manure treatment showed a significant increase in the relative number of amoxicillin-resistant bacteria as a result of amoxicillin amendment. The majority of plasmids exogenously isolated from soil originated from soil treated with amoxicillin-supplemented manure. All 16 characterized plasmids carried the bla-TEM gene, and 10 of them belonged to the IncN group. The bla-TEM gene was detected in DNA directly extracted from soil by dot-blot hybridization of PCR amplicons and showed an increased abundance in soil samples treated with manure. Molecular fingerprint analysis of 16S rRNA gene fragments amplified from soil DNA revealed significant effects of manure and amoxicillin on the bacterial community of both soils. PMID:17991020

  19. Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures.

    PubMed

    Zhang, Haibo; Zhou, Yang; Huang, Yujuan; Wu, Longhua; Liu, Xinghua; Luo, Yongming

    2016-06-01

    The protected vegetable farming is a style of high frequent rotation farming which requires a huge amount of fertilizers to maintain soil fertility. A total of 125 surface soils covering from east to west of China were sampled for the analysis of 17 antibiotics in order to identify antibiotics contamination caused by long-term manures application. The results indicate that the agricultural land has accumulated a statistically significantly higher antibiotics concentration than conventional open croplands. The maximum oxytetracycline concentration was 8400 μg kg(-1), the highest level that has ever been reported for oxytetracycline in soils. The residual concentration is decided by both plant duration and manure type. Short-term (<5 years) planting shows the highest residues of tetracyclines and fluoroquinolones in the soils. The organic farming characteristic of applying commercial compost as a single fertilizer in planting shows the lowest antibiotics residue in the soils on the whole. Principal component analysis suggests that the various combinations of antibiotic compounds in the soil may be used to trace the manure source. The antibiotics in soil may threaten water quality through contamination by diffusion. Ciprofloxacin and sulfachinoxalin are calculated to be a higher migration risk to surface waters, hence their environmental fate requires further study. PMID:26971176

  20. Dry Co-Digestion of Poultry Manure with Agriculture Wastes.

    PubMed

    Abouelenien, Fatma; Namba, Yuzaburo; Nishio, Naomichi; Nakashimada, Yutaka

    2016-03-01

    This study tested the effect on thermophilic and mesophilic digestion of poultry manure (PM) or treated poultry manure (TPM) by the addition of agriculture wastes (AWS) as a co-substrate under dry conditions. PM was co-digested with a mixture of AWS consisting of coconut waste, cassava waste, and coffee grounds. Results were increased methane content in biogas, with decreased ammonia accumulation and volatile acids. The highest performance occurred under mesophilic conditions, with a 63 and 41.3 % increase in methane production from addition of AWS to TPM (562 vs. 344 mL g VS(-1) from control) and PM (406 vs. 287 mL g VS(-1) from control), respectively. Thermophilic conditions showed lower performance than mesophilic conditions. Addition of AWS increased methane production by 150 and 69.6 % from PM (323.4 vs. 129 mL g VS(-1) from control) and TPM (297.6 vs. 175.5 mL g VS(-1) from control), respectively. In all experiments, 100 % acetate produced was degraded to methane. Maximum ammonia accumulation was lowered to 43.7 % by mixing of AWS (range 5.35-8.55 vs. 7.81-12.28 g N kg(-1) bed). The pH was held at 7.3-8.8, a range suitable for methanogenesis. PMID:26560702

  1. Effect of Animal Manure on Phosphorus Sorption to Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In most phosphorus (P) sorption studies P is added as an inorganic salt to a pre-defined background solution such as CaCl2 or KCl; however, in many regions the application of P to agricultural fields is in the form of animal manure. The purpose of this study, therefore, was to compare the sorption b...

  2. Effect of coal fly ash-amended organic compost as a manure for agricultural crops

    SciTech Connect

    Ghuman, G.S.; Menon, M.P.; James, J.; Chandra, K.; Sajwan, K. )

    1991-04-01

    Coal-fired electric power plants generate large quantities of fly ash as a byproduct. In continuation of previous studies on the utilization of fly ash as an amendment to organic compost for use as a manure for agricultural crops, the authors have now determined the effects of this manure on the yield and uptake of selected elements by several plants including collard green, corn, mustard green, bell pepper, egg plant, and climbing beans. An amended compost containing 30-40% fly ash with a compost:soil ratio of 1:3 was found to be most effective to enhance the yield and nutrient uptake of most of the plants. At 20% fly ash level, no increase in yield of any of the above crops was observed. The uptake of K, Mg, Mn, and P was increased in most plants. Boron which is known to be detrimental to the growth of plants above certain level was also found to be increased in plants nourished with the manure.

  3. Manure Injection Affects the Fate of Pirlimycin in Surface Runoff and Soil.

    PubMed

    Kulesza, Stephanie B; Maguire, Rory O; Xia, Kang; Cushman, Julia; Knowlton, Katharine; Ray, Partha

    2016-03-01

    Antibiotics used in animal agriculture are of increasing environmental concern due to the potential for increased antibiotic resistance after land application of manure. Manure application technology may affect the environmental behavior of these antibiotics. Therefore, rainfall simulations were conducted on plots receiving three manure treatments (surface application, subsurface injection, and no manure control) to determine the fate and transport of pirlimycin, an antibiotic commonly used in dairy production. Rainfall simulations were conducted immediately and 7 d after application of dairy manure spiked with 128 ng g (wet weight) pirlimycin. Soil samples were collected from all plots at two depths (0-5 and 5-20 cm). For injection plots, soil was collected from injection slits and between slits. Pirlimycin concentrations were higher in soil within the injection slits compared with surface application plots at 0 and 7 d. Pirlimycin concentrations in the 0- to 5-cm depth decreased by 30, 55, and 87% in the injection slit, between injection slits, and surface application plots 7 d after application. Pirlimycin concentrations were 106 ng g in sediment and 4.67 ng mL in water from the surface application plots, which were 21 and 32 times that of the injection plots, respectively. After 7 d, pirlimycin levels in runoff sediment and water decreased 80 to 98%. Surface application resulted in six and three times higher pirlimycin concentrations in water and sediment than injection. These results indicate that pirlimycin is most susceptible to loss immediately after manure application. Thus, injection could be considered a best management practice to prevent loss of antibiotics in surface runoff. PMID:27065398

  4. EFFECT OF MANURE ON ESCHERICHIA COLI ATTACHMENT TO SOIL FRACTIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli are commonly used as indicators of fecal contamination in the environment. Attachment of bacteria to soil and sediment is an important retardation factor of bacterial transport with runoff water. Despite the fact that E. coli are derived exclusively from feces/manure, the effect of ...

  5. Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China.

    PubMed

    Hou, Jie; Wan, Weining; Mao, Daqing; Wang, Chong; Mu, Quanhua; Qin, Songyan; Luo, Yi

    2015-03-01

    A feasible and rapid analysis for the simultaneous determination of sulfonamides (SAs), tetracyclines (TCs), fluoroquinolones (FQs), macrolides (MACs) and nitrofurans (NFs) in livestock manure and soils was established by solid-phase extraction (SPE)-ultra-performance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS). A total of 32 manure and 17 amended soil samples from the Liaoning and Tianjin areas in Northern China were collected for analysis. The largest detected frequencies and concentrations in manure samples were those of TCs (3326.6 ± 12,302.6 μg/kg), followed by FQs (411.3 ± 1453.4 μg/kg), SAs (170.6 ± 1060.2 μg/kg), NFs (85.1 ± 158.1 μg/kg), and MACs (1.4 ± 4.8 μg/kg). In general, veterinary antibiotics (VAs) were detected with higher concentrations in swine and chicken manure than in cattle manure, reflecting the heavy usage of VAs in swine and chicken husbandry in the studied area. Furthermore, higher residues of antibiotics were found in piglet and fattening swine manure than in sow manure. In addition, TCs were the most frequently (100%) detected antibiotics in amended soil with higher concentrations (up to 10,967.1 μg/kg) than any other VAs. The attenuation of SAs was more obvious than TCs in amended soil after fertilization, which can most likely be attributed to the stronger sorption of TCs than SAs to soil organic matter through cation exchange. This study illustrated the prevalence of TCs detected in both animal manure and fertilized agricultural soils in Northern China, which may increase the risk to human health through the food chain. Thus, TCs should be given more attention in the management of veterinary usage in livestock husbandry. PMID:25318415

  6. Subsurface Manure Application for Conservation Tillage and Pasture Soils and Their Impact on the Nitrogen Balance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporating manures into soil with conventional tillage is an effective means to reduce ammonia volatilization and conserve manure nitrogen. However, it is not possible in pasture and is not readily compatible with high-residue soil conservation practices for rowcrops. A variety of manure injecto...

  7. Clays Can Decrease Gaseous Nutrient Losses from Soil-Applied Livestock Manures.

    PubMed

    Pratt, Chris; Redding, Matthew; Hill, Jaye; Brown, Grant; Westermann, Maren

    2016-03-01

    Clays could underpin a viable agricultural greenhouse gas (GHG) abatement technology given their affinity for nitrogen and carbon compounds. We provide the first investigation into the efficacy of clays to decrease agricultural nitrogen GHG emissions (i.e., NO and NH). Via laboratory experiments using an automated closed-vessel analysis system, we tested the capacity of two clays (vermiculite and bentonite) to decrease NO and NH emissions and organic carbon losses from livestock manures (beef, pig, poultry, and egg layer) incorporated into an agricultural soil. Clay addition levels varied, with a maximum of 1:1 to manure (dry weight). Cumulative gas emissions were modeled using the biological logistic function, with 15 of 16 treatments successfully fitted ( < 0.05) by this model. When assessing all of the manures together, NH emissions were lower (×2) at the highest clay addition level compared with no clay addition, but this difference was not significant ( = 0.17). Nitrous oxide emissions were significantly lower (×3; < 0.05) at the highest clay addition level compared with no clay addition. When assessing manures individually, we observed generally decreasing trends in NH and NO emissions with increasing clay addition, albeit with widely varying statistical significance between manure types. Most of the treatments also showed strong evidence of increased C retention with increasing clay additions, with up to 10 times more carbon retained in treatments containing clay compared with treatments containing no clay. This preliminary assessment of the efficacy of clays to mitigate agricultural GHG emissions indicates strong promise. PMID:27065411

  8. Manure effects on soil N in eroded and non-eroded, sprinkler-irrigated soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manure effects on nitrate-N transport through irrigated, low-organic matter calcareous soil are not well known. This field study quantified the effects of a one-time fall application of stockpiled dairy manure and urea on in-season and over-winter nitrate-N transport through non-eroded and eroded (...

  9. Effect of tillage and rainfall on transport of manure-applied Cryptosporidium parvum oocysts through soil.

    PubMed

    Ramirez, Norma E; Wang, Ping; Lejeune, Jeff; Shipitalo, Martin J; Ward, Lucy A; Sreevatsan, Srinand; Dick, Warren A

    2009-01-01

    Most waterborne outbreaks of cryptosporidiosis have been attributed to agricultural sources due to the high prevalence of Cryptosporidium oocysts in animal wastes and manure spreading on farmlands. No-till, an effective conservation practice, often results in soil having higher water infiltration and percolation rates than conventional tillage. We treated six undisturbed no-till and six tilled soil blocks (30 by 30 by 30 cm) with 1 L liquid dairy manure containing 10(5) C. parvum oocysts per milliliter to test the effect of tillage and rainfall on oocyst transport. The blocks were subjected to rainfall treatments consisting of 5 mm or 30 mm in 30 min. Leachate was collected from the base of the blocks in 35-mL increments using a 64-cell grid lysimeter. Even before any rain was applied, approximately 300 mL of water from the liquid manure (30% of that applied) was transported through the no-till soil, but none through the tilled blocks. After rain was applied, a greater number and percentage of first leachate samples from the no-till soil blocks compared to the tilled blocks tested positive for Cryptosporidium oocysts. In contrast to leachate, greater numbers of oocysts were recovered from the tilled soil, itself, than from the no-till soil. Although tillage was the most important factor affecting oocyst transport, rainfall timing and intensity were also important. To minimize transport of Cryptosporidium in no-till fields, manure should be applied at least 48 h before heavy rainfall is anticipated or methods of disrupting the direct linkage of surface soil to drains, via macropores, need to be used. PMID:19875795

  10. Decay Of Bacterial Pathogens, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure-Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...

  11. Manure Refinement Affects Apple Rhizosphere Bacterial Community Structure: A Study in Sandy Soil

    PubMed Central

    Zhang, Qiang; Sun, Jian; Liu, Songzhong; Wei, Qinping

    2013-01-01

    We used DNA-based pyrosequencing to characterize the bacterial community structure of the sandy soil of an apple orchard with different manure ratios. Five manure percentages (5%, 10%, 15%, 20% and 25%) were examined. More than 10,000 valid reads were obtained for each replicate. The communities were composed of five dominant groups (Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria and Bacteroidetes), of which Proteobacteria content gradually decreased from 41.38% to 37.29% as manure ratio increased from 0% to 25%, respectively. Redundancy analysis showed that 37 classes were highly correlated with manure ratio, 18 of which were positively correlated. Clustering revealed that the rhizosphere samples were grouped into three components: low manure (control, 5%) treatment, medium manure (10%, 15%) treatment and high manure (20%, 25%) treatment. Venn analysis of species types of these three groups revealed that the bacteria community difference was primarily reflected by quantity ratio rather than species variety. Although greater manure content led to higher soil organic matter content, the medium manure improved soil showed the highest urease activity and saccharase activity, while 5% to 20% manure ratio improvement also resulted in higher bacteria diversity than control and 25% manure ratio treatment. Our experimental results suggest that the use of a proper manure ratio results in significantly higher soil enzyme activity and different bacteria community patterns, whereas the use of excessive manure amounts has negative effect on soil quality. PMID:24155909

  12. Effects of organic dairy manure of soil phosphatase activity, available soil phosphorus and growth of sorghum-sudangrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic dairy (OD) production is increasing in the Northeastern U.S. due to consumer demand. Some physico-chemical properties of OD manure differ from conventional dairy (CD) manure, which could influence nutrient cycling and soil fertility differently when OD manure is applied to soil. Effects of O...

  13. Methods for treatment of animal manures to reduce nutrient pollution prior to soil application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For centuries, animal manures have been a traditional source of nutrients in agriculture. However, disposal of animal manure has become an environmental problem in recent times as a result of increased concentration of animal production within small geographic areas. Manure nitrogen (N) and phosphor...

  14. Fly ash-amended compost as a manure for agricultural crops

    SciTech Connect

    Menon, M.P.; Sajwan, K.S.; Ghuman, G.S.; James, J.; Chandra, K. )

    1993-11-01

    Homemade organic compost prepared from lawn grass clippings was amended with fine fly ash collected from a coal-fired power plant (SRS 484.D. Savannah River Site, Aiken, SC) to investigate its usefulness as a manure in enhancing nutrient uptake and increasing dry matter yield in selected agricultural crops. Three treatments were compared: five crops (mustard, collard, string beans, bell pepper, and eggplant) were each grown on three kinds of soil: soil alone, soil amended with composted grass clippings, and soil amended with the mixed compost of grass clippings and 20% fly ash. The fly ash-amended compost was found to be effective in enhancing the dry matter yield of collard greens and mustard greens by 378% and 348%, respectively, but string beans, bell pepper, and eggplant did not show any significant increase in dry matter yield. Analysis of the above-ground biomass of these last three plants showed they assimilated high levels of boron, which is phytotoxic; and this may be the reason for their poor growth. Soils treated with fly ash-amended compost often gave higher concentrations than the control for K, Ca, Mg, S, Zn, and B in the Brassica crops. 18 refs., 2 figs., 5 tabs.

  15. Soil Erosion and Agricultural Sustainability

    NASA Astrophysics Data System (ADS)

    Montgomery, D. R.

    2009-04-01

    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system

  16. Fate of metal resistance genes in arable soil after manure application in a microcosm study.

    PubMed

    Xiong, Wenguang; Zeng, Zhenling; Zhang, Yiming; Ding, Xueyao; Sun, Yongxue

    2015-03-01

    Manure application contributes to the spread and persistence of metal resistance genes (MRGs) in the environment. We investigated the fate of copper (Cu) and zinc (Zn) resistance genes (pcoA, pcoD and zntA) in arable soil after Cu/Zn-containing manure application. Manure with or without addition of metals (Cu/Zn) was added in a soil microcosm over 2 months. Soil samples were collected for analysis on day 0, 30 and 60. The abundances of all MRGs (pcoA, pcoD and zntA) in manure group were significantly higher than those in untreated soil and manure+metals groups. All MRGs dissipated 1.2-1.3 times faster in manure group (from -90 ± 8% to -93 ± 7%) than those in manure+metals group (from -68 ± 8% to -78 ± 5%). The results indicated that manure from healthy pigs contributed to the occurrence of metals (Cu/Zn) and MRGs (pcoA, pcoD and zntA) in arable soil. The significant effects of manure application on the accumulation of pcoA, pcoD and zntA lasted for 1-2 months. Cu/Zn can slow down the dissipation of pcoA, pcoD and zntA after manure application. This is the first report to investigate the fate of MRGs in soil after manure application. PMID:25483373

  17. Soil microbial community dynamics as influenced by composted dairy manure, soil properties and landscape position

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding factors that affect plant growth, whether it is manure addition, season, or soil-type and landscape variability may also impact soil microbial activity, biomass and community structure. Thus an in situ study was conducted to evaluate microbiological properties of three different soil t...

  18. Effect of Manure on Fecal Coliform Attachment to Soil and Soil Particles of Different Sizes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been recognized that bacteria transport in runoff can be different for free cells, cells attached to soil particles, and cells attached to manure particles. Objectives of this work were to compare attachment of fecal coliforms (FC) to different soils and soil fractions, and to assess effect o...

  19. Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: effects of phosphorus nature and soil property.

    PubMed

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Xu, Xiaoyun; Harris, Willie

    2014-07-01

    Land application of animal manure often risks excessive phosphorus (P) release into the surrounding water. The aim of this study was to convert the dairy manure into biochar, followed by their application into soil, and then to investigate P release from the manure and its derived biochar as well as from the manure- and biochar-amended soil. The results showed that P release was reduced when the manure was converted into biochar due to formation of less-soluble whitlockite [(Ca, Mg)(PO)]. The cumulative P released from biochar over 240 h was 0.26 g kg, a 76% reduction of that from the manure (1.07 g kg). The kinetic release of P from the manure was determined by the fast desorption process and was better fitted to Elovich equation, whereas P release from biochar was initially controlled by the diffusion process and then by slow but steady dissolution of (Ca,Mg)(PO), following the parabolic diffusion and linear models, respectively. When the manure or biochar was incorporated into the soil, P release in the CaCl and simulated acid rain water extraction from biochar-amended soil was consistently lower than that from the manure-amended soil during 210-d incubation. The lower P release in the biochar-amended soil was determined by stable P form (Ca, Mg)(PO) in the biochar itself, but less from the soil property effect. Results indicated that initial high P release from manure can be mitigated by converting the manure into biochar. PMID:25603098

  20. Soil moisture: Some fundamentals. [agriculture - soil mechanics

    NASA Technical Reports Server (NTRS)

    Milstead, B. W.

    1975-01-01

    A brief tutorial on soil moisture, as it applies to agriculture, is presented. Information was taken from books and papers considered freshman college level material, and is an attempt to briefly present the basic concept of soil moisture and a minimal understanding of how water interacts with soil.

  1. Pollution characteristics of 23 veterinary antibiotics in livestock manure and manure-amended soils in Jiangsu province, China.

    PubMed

    Guo, Xin Y; Hao, Li J; Qiu, Pan Z; Chen, Rong; Xu, Jing; Kong, Xiang J; Shan, Zheng J; Wang, Na

    2016-01-01

    The aim of this study was to investigate the pollution characteristics of typical veterinary antibiotics in manure and soil of livestock farms in Jiangsu province. This investigation employed solid-phase extraction (SPE) coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A total of 53 manure and 50 amended soil samples from 16 livestock farms in Jiangsu province were collected for analysis. In the manure samples, the highest detected frequencies and concentrations were those of tetracyclines (TCs, 54.1 ± 5775.6 μgkg(-1)), followed by fluoroquinolones (FQs, 8.4 ± 435.6 μgkg(-1)), sulphonamides (SAs, 3.2 ± 5.2 μgkg(-1)) and macrolides (MACs, 0.4 ± 110.5 μgkg(-1)). Statistical analysis was used to illuminate the pollution characteristics of 23 veterinary antibiotics for various animal types and different regions in Jiangsu province. The results showed that the pollution level in cow manure was relatively lower compared with pig and chicken manure due to the relative restriction of medication. Furthermore, contamination was serious in amended soil from chicken farms. The pollution level in manure among different regions was higher to the south and north compared with the centre of the region. The same outcome was found for soil. Antibiotic residues in organic fertilizer were also investigated in this study. We found that although the detected concentration was lower in organic fertilizer than in fresh manure, detection frequencies (10-90%) were high, especially for roxithromycin (90%) in MACs (30-90%). This finding suggests attention should be paid to the pollution levels in organic fertilizer. This study is the first extensive investigation of the occurrence and distribution of many kinds of typical veterinary antibiotics in manure and soil from livestock farms of Jiangsu province. This investigation systematically assesses veterinary antibiotics usage and related emissions in southeast China. PMID:26963628

  2. Calculation of Effective Gas Flux from Soil following Band Application of Manure or Fertilizer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gases are emitted following application of manure and nitrogen-containing fertilizers to soil. Manure and fertilizers are often applied in subsurface bands in the soil, or in bands on the soil surface. This article presents a method that has been developed for calculating the effective ...

  3. Long-term effects of manure application on soil properties and nutrient transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manure can be effectively used for crop production and soil improvement because it contains nutrients and organic matter. Soil physical properties such as infiltration, aggregation, and bulk density can be improved by long-term manure application. Changes in soil properties can have a substantial im...

  4. Residual Effects of Long-Term Tillage and Manure Application on Soil Macronutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term tillage and manure application are thought to alter the soil nutrient status. Thus, a study was conducted to evaluate soil chemical properties after long-term tillage (>25 years) and manure application (> 10 years). Soil samples were collected at three depths (0-5, 5-10, and 10-20 cm) from...

  5. Antibiotic uptake by vegetable crops from manure-applied soils.

    PubMed

    Kang, Dong Hee; Gupta, Satish; Rosen, Carl; Fritz, Vincent; Singh, Ashok; Chander, Yogesh; Murray, Helene; Rohwer, Charlie

    2013-10-23

    This study quantified the uptake of five antibiotics (chlortetracycline, monensin, sulfamethazine, tylosin, and virginiamycin) by 11 vegetable crops in two different soils that were fertilized with raw versus composted turkey and hog manures or inorganic fertilizer. Almost all vegetables showed some uptake of antibiotics from manure treatments. However, statistical testing showed that except for a few isolated treatments the concentrations of all antibiotics in vegetable tissues were generally less than the limits of quantification. Further testing of the significant treatments showed that antibiotic concentrations in vegetables from many of these treatments were not significantly different than the corresponding concentrations from the fertilizer treatment (matrix effect). All five antibiotic concentrations in the studied vegetables were <10 μg kg(-1). On the basis of the standards for maximum residue levels in animal tissues and suggested maximum daily intake based on body weight, this concentration would not pose any health risk unless one is allergic to that particular antibiotic. PMID:24106840

  6. Fate and transport of tylosin-resistant bacteria and macrolide resistance genes in artificially drained agricultural fields receiving swine manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of manure from swine treated with antibiotics introduces antibiotics and antibiotic resistance genes to soil with the potential for further movement in drainage water. Manure concentrations for ermB, ermC and ermF were all >109 copy g-1. Manure contained 1.76 x 105 CFUg-1 enterococci w...

  7. Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment.

    PubMed

    Foucault, Y; Lévêque, T; Xiong, T; Schreck, E; Austruy, A; Shahid, M; Dumat, C

    2013-10-01

    Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics. PMID:23968553

  8. Tracing copper derived from pig manure in calcareous soils and soil leachates by 65Cu labeling.

    PubMed

    Ostermann, Anne; He, Yao; Siemens, Jan; Welp, Gerhard; Heuser, Alexander; Wombacher, Frank; Münker, Carsten; Xue, Qiaoyun; Lin, Xianyong; Amelung, Wulf

    2015-04-01

    Copper is used as a growth promoter in animal husbandry, resulting in high Cu concentrations in animal manure. We tested whether Cu would be mobilized in soils receiving excessive loads of manure, both from recently added and from aged fractions. To discriminate between these Cu sources, manure was labeled with (65)Cu. After soil application of 0, 15, and 30 Mg manure ha(-1), leachate was collected in free-draining lysimeters (40 cm depth) under undisturbed soil over a 53 day period. Determining the total amounts of Cu and the fractions of (65)Cu in leachate and the soil profile enabled us to trace the translocation of Cu derived from labeled manure. More than 84% of the applied Cu was retained in the top 2 cm of soil. Less than 0.01% of the applied Cu was detected overall in the leachate. Of this amount, however, 38% (± 8.9 SE) was leached within 8 days after application. The total Cu concentration in leachates (32-164 μg L(-1)) frequently exceeded the Chinese groundwater quality standard of 50 μg L(-1). The added (65)Cu, however, accounted for less than 3.6% of the total Cu leaching load, suggesting that Cu from older sources and/or geological background controls contamination, regardless of current land management. PMID:25742507

  9. Transport and persistence of tylosin-resistant enterococci, genes, and tylosin in soil and drainage water from fields receiving Swine manure.

    PubMed

    Garder, Jason L; Moorman, Thomas B; Soupir, Michelle L

    2014-07-01

    Land application of manure from tylosin-treated swine introduces tylosin, tylosin-resistant enterococci, and erythromycin resistant rRNA methylase () genes, which confer resistance to tylosin. This study documents the persistence and transport of tylosin-resistant enterococci, genes, and tylosin in tile-drained chisel plow and no-till agricultural fields treated with liquid swine manure in alternating years. Between 70 and 100% of the enterococci in manure were resistant to tylosin and B concentrations exceeded 10 copies g manure, while the mean F concentrations exceeded 10 copies g manure (T was not detected). The mean concentration of tylosin was 73 ng g manure. Soil collected from the manure injection band closely following application contained >10 copies g soil of both B and F in 2010 and >10 copies g soil after the 2011 application compared to 3 × 10 to 3 × 10 copies g soil in the no-manure control plots. Gene abundances declined over the subsequent 2-yr period to levels similar to those in the no-manure controls. Concentrations of enterococci in tile water were low, while tylosin-resistant enterococci were rarely detected. In approximately 75% of tile water samples, B was detected, and F was detected in 30% of tile water samples, but levels of these genes were not elevated due to manure application, and no difference was found between tillage practices. These results show that tylosin usage increased the short-term occurrence of tylosin-resistant enterococci, genes, and tylosin in soils but had minimal effect on tile drainage water quality in years of average to below average precipitation. PMID:25603096

  10. Diet, tillage and soil moisture effects on odorous emissions following land application of beef manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef manure from animals fed diets containing different amounts of wet distillers grain with solubles (WDGS) was applied to soil as a fertilizer to plot located across the slope. The applied manure and soil were either tilled or not tilled. The odor emissions were measured for 24 hours. Then a sing...

  11. Phosphorus leaching through intact soil cores as influenced by type and duration of manure application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaching of phosphorus (P) in manure-amended soils has received increased attention as a significant source of non-point source P pollution. Intact soil cores were collected from fields on a farm in Southern New York to test the effects of long-term dairy or poultry manure application on P leaching....

  12. Aged Manures as Sources of Pathogens in Agricultural Runoff

    EPA Science Inventory

    Overland runoff from fields with applied manure may carry a variety of chemical and microbial contaminants that compromise water quality and increase the human health risk of exposure to pathogenic microorganisms. A series of rainfall simulation experiments were designed and impl...

  13. Influence of bovine manure on dissipation of hexazinone in soil.

    PubMed

    Wang, Huili; Li, Yanyan; Lu, Yujie; Huang, Changjiang; Zhang, Minghua; Wang, Xuedong

    2009-01-01

    The effects of bovine manure (BM) on the degradation of hexazinone and formation of three of its major metabolites were investigated in sandy loam soil. The degradation half-life of hexazinone was 29.6 days in unamended soil, while it decreased to 21.8 days in BM-amended soil. The major metabolites formed in unamended soil were [3-cyclohexyl-6-(methylamino)-1-methyl-1,3,5-triazine-2,4(1, 3H)-dione] (metabolite A) and [3-cyclohexyl-1-methyl-1,3,5-triazine-2,4,6(1, 3, 5H)-trione] (metabolite C), while metabolite B [3-(4-hydroxycyclohexyl)-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1, 3H)-dione] was not detected over the entire experimental period. However, in BM-amended soil, metabolite B was detected at 20 and 40 days after incubation, suggesting that BM contributed to formation of this metabolite. N-demethylation, removal of the dimethylamino group with formation of a carbonyl group at the 6-position of the triazine ring appeared to be the principal mechanisms involved in hexazinone metabolism in unamended soil. However, hydroxylation at the 4-positon of the cyclohexyl group as well as the above two modes were the principal pathways in BM-amended soil. PMID:18346786

  14. Temporal changes of selected chemical properties in three manure - amended soils of Hawaii.

    PubMed

    Ortiz Escobar, M E; Hue, N V

    2008-12-01

    Soil amendment with organic materials (crop residues animal manure, and green manure) reportedly has positive effects on soil properties, from acidity to plant-nutrient availability. To examine that hypothesis, an incubation study was conducted to assess the changes in some chemical properties of three different tropical soils (Andisol, Ultisol, and Oxisol) amended with chicken manure and green manure (Leucaena leucocephala) at the rate of 10tha(-1). The results showed that organic amendments raised soil pH and EC, regardless of the type of manure used. Manuring lowered the concentrations of Mehlich-3 extractable Ca, P, Mn and Si in all soils and decreased the concentration of Mg in the Ultisol and Oxisol. However, manure amendment led to increases in the concentrations of Mg and K in the Andisol. Organic amendments caused a decrease in KCl extractable Al. Initial soluble C levels were highest in the Oxisol (60micromolg(-1)) and lowest in the Andisol (20micromolg(-1)). The concentration of soluble C decreased exponentially with duration of incubation. Three low molecular weight organic molecules (acetic acid, catechol and oxalic acid) out of the eight tested were found in all manure-amended soils. This study quantified the release of some Al chelating organic acids, the reduction of exchangeable Al, and the changes in major plant-nutrients when organic materials were added to nutrient poor, tropical acid soils. PMID:18550367

  15. LINKING MANURE PROPERTIES TO SOIL PHOSPHORUS SOLUBILITY: IMPORTANCE OF THE CARBON TO PHOSPHORUS RATIO

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land application of manure can increase P transfer in runoff, although the risk depends in part on the characteristics of the manure. We assessed this for calcareous soils using swine manures with a range of total P (6.8'4.9 g P per kg), water-soluble P (4.3'8.0 g P per kg), and C:P ratios (31'67)....

  16. Occurrence and movement of antibiotic resistant bacxteria, in tile-drained agricultural fields receiving swine manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of tylosin at subtherapeutic levels by the swine industry provides selective pressure for the development of antibiotic resistance in gastrointestinal bacteria. The land application of swine manure to drained agricultural fields might accelerate the transport of pathogen indicators such as e...

  17. Quantification of mRNA in Salmonella sp. seeded soil and chicken manure using magnetic capture hybridization RT-PCR.

    PubMed

    Jacobsen, Carsten Suhr; Holben, William E

    2007-05-01

    Direct quantification of mRNA from Salmonella sp. seeded for 1 h to soil and chicken manure was accomplished using magnetic capture hybridization as a purification technique. This detection strategy targeted the invA gene present in Salmonella sp. After cell lysis, phenol/chloroform purification and isopropanol precipitation, the RNA extract was combined with the hybridization probe conjugated to paramagnetic beads. After hybridization, the captured nucleic acids were released by denaturation and purified of contaminating DNA using DNase. The resulting RNA was of high purity and there was no need for dilution of the samples prior to RT-PCR. The developed procedure was reproducibly used to quantify Salmonella sp. in high organic agricultural soil. The detection limit for mRNA using ordinary quantitative PCR (employing SYBRgreen-based detection) was 5 x 10(4)Salmonella sp. cells per gram of soil. Chicken manure amended into soil (1:4 w/w) did not reduce the ability to quantify Salmonella sp. mRNA in soil. Pasteurization (65 degrees C, 30 min) of chicken manure containing Salmonella sp. dramatically reduced the detection of invA mRNA (requiring 42 qPCR cycles for detection versus 26 cycles in unpasteurized manure), presumably due to degradation of the invA mRNA in Salmonella sp. cells killed by pasteurization. By contrast, DNA-based qPCR still detected Salmonella sp. in the pasteurized manure. Thus, in this case using samples seeded with fresh Salmonella sp. the mRNA-based detection appears to be superior to minimizing false-positive detection which was prevalent with DNA-based qPCR. PMID:17383760

  18. Response of Plant Parasitic and Free Living Soil Nematodes to Composted Animal Manure Soil Amendments

    PubMed Central

    Renčo, M.; Kováčik, P.

    2012-01-01

    In an outside pot experiment, dry pig manure processed on pine sawdust litter and fermented for seven days by house fly larvae (fermented manure), and pine sawdust applied alone, and in combination with a spring application of inorganic nitrogen fertilizer were used to determine their effects on plant parasitic and free-living soil nematodes on sugar beets (cv. Antek). Non amended soil was used as a control. All treatments with fermented pig manure and sawdust with nitrogen fertilizer decreased number of plant parasitic nematodes and also root-fungal feeding nematodes compared to the untreated control. Sawdust applied alone had no effect on plant parasitic and root-fungal feeding nematode suppression. Free-living nematodes which were mainly bacteriovores and fungivores were significantly more abundant in soil amended with fermented pig manure, while the sawdust had no effect on these nematodes. The effect of all tested treatments on omnivores-predators was rather random, and in general, the number of these nematodes decreased after soil amendment applications compared to the untreated control. PMID:23482503

  19. Manure Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding of manure management methods and practices from the perspective of pathogen prevalence, survival, and susceptibility to various treatment effects has led to development of several beneficial management practices and technologies for reducing manure pathogens in agricultural landscapes....

  20. Subsurface application of manures slurries for conservation tillage and pasture soils and their impact on the nitrogen balance.

    PubMed

    Dell, Curtis J; Meisinger, John J; Beegle, Douglas B

    2011-01-01

    Injection of cattle and swine slurries can provide soil incorporation in no-till and perennial forage production. Injection is expected to substantially reduce N loss due to ammonia (NH3) volatilization, but a portion of that N conservation may be offset by greater denitrification and leaching losses. This paper reviews our current knowledge of the impacts of subsurface application of cattle and swine slurries on the N balance and outlines areas where a greater understanding is needed. Several publications have shown that liquid manure injection using disk openers, chisels, or tines can be expected to Sreduce NH, emissions by at least 40%, and often by 90% or more, relative to broadcast application. However, the limited number of studies that have also measured denitrification losses have shown that increased denitrification with subsurface application can offset as much as half of the N conserved by reducing NH3 emissions. Because the greenhouse gas nitrous oxide (N2O) is one product of denitrification, the possible increases in N2O emission with injection require further consideration. Subsurface manure application generally does not appear to increase leaching potential when manure is applied at recommended rates. Plant utilization of conserved N was shown in only a portion of the published studies, indicating that further work is needed to better synchronize manure N availability and crop uptake. At this time in the United States, the economic and environmental benefits from reducing losses of N as NH3 are expected to outweigh potential liability from increases in denitrification with subsurface manure application. To fully evaluate the trade-offs among manure application methods, a detailed environmental and agricultural economic assessment is needed to estimate the true costs of potential increases in NO2O emissions with manure injection. PMID:21520742

  1. Soil enzyme activities as affected by manure types, rates and tillage practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant amounts of manure are produced in the USA; however, information on the changes in ecosystem services related to soil biogeochemical cycling for agroecosystems supported with organic amendments such as manure is limited. A multi-location field study was initiated in Colorado (CO), Kansas ...

  2. Manure and Soil Test Phosphorus Effects on Runoff P from Simulated Rain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manure application to cropland can contribute to runoff losses of nutrients and eutrophication of surface waters. We conducted a rainfall simulation study to assess the effects of dairy heifer diet P, soil test P, and manure incorporation on runoff P losses from two successive rains. We collected be...

  3. Dairy Manure Type, Application Rate and Frequency Impact Plants and Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many regions of the US, the rate and frequency of manure application to cropland are regulated based on the nitrogen (N) requirements of the subsequent crop. While information is available on impacts of dairy diets on manure N composition, its mineralization in soil and crop N uptake after single...

  4. Dairy manure nitrogen availability in eroded and noneroded soil for sugarbeet followed by small grains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient recycling of abundant manure resources from regional dairy industries in the semiarid West requires a better understanding of N availability in manure-amended soils. We measured net N mineralization using buried bags, and crop biomass, N uptake, and yields for sprinkler-irrigated, whole (n...

  5. MANURE NITROGEN TRANSFORMATIONS IN AIR, SOIL AND CROPS ON DAIRY FARMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Only 25 to 35 % of the crude protein (CP) consumed by dairy cows is converted into milk. Such poor use of dietary CP may be due to inefficiencies associated with forage nitrogen (N) capture and metabolism. Manure N excreted in feces and urine, and the transformation of manure N in air, soil and crop...

  6. Phosphorus in Soil and Runoff Following Swine Manure Injection with a Low-Disturbance Applicator

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Injection of liquid swine manure disturbs surface soil, making it susceptible to erosion. Runoff from treated lands can transport nutrients and pathogens to surface waters. Our objective in this field study was to determine the effect of two swine manure application methods on phosphorus (P) fate an...

  7. Dairy heifer manure management, dietary phosphorus, and soil test P effects on runoff phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manure application to cropland can contribute to runoff losses of P and eutrophication of surface waters. We conducted a series of three rainfall simulation experiments to assess the effects of dairy heifer dietary P, manure application method, application rate, and soil test P on runoff P losses fr...

  8. Effect of green manure on E. coli O157:H7 survival in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Green manure is the remnants of crops (stems, outer leaves, tops of leaves, etc.) that remain in the field after harvest, and are plowed back into the field to increase fertility. The role of green manure in the survival of E. coli O157:H7 in soil has not been examined. We evaluated three types of g...

  9. Fungal Bioconversion of Bio-Solids and Chicken Manure to Increase Soil Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utilization of agro-chemical products such as pesticides and fertilizers has allowed the increase in food production. Poultry manure and manure from different animals have been used as alternative to improve soil quality, and therefore, helped increase crop production. Nevertheless, removal of t...

  10. Leachate water quality from soils amended with swine manure based biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the face of the rising level of manure production from concentrated animal feeding operations (CAFOs), management options are being sought that can provide nutrient recycling for plant growth and improved soil conditions with minimal environmental impacts. Alternatives to direct manure applicatio...

  11. Leachate water quality of soils amended with different swine manure-based amendments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the face of the rising level of manure production from concentrated animal feeding operations (CAFOs), management options are being sought that can provide nutrient recycling for plant growth and improved soil conditions with minimal environmental impacts. Alternatives to direct manure applicatio...

  12. Persistence of Escherichia coli in manure-amended soil in Pennsylvania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potential for pathogen transfer from soils amended with untreated animal manure to crops and the frequent occurrence of foodborne illness outbreaks involving Escherichia coli O157:H7 prompted the FDA proposal requiring a 9-month waiting period before harvesting produce from manure-amended fields. A...

  13. Dynamics of Soil Bacterial Communities in Response to Repeated Application of Manure Containing Sulfadiazine

    PubMed Central

    Ding, Guo-Chun; Radl, Viviane; Schloter-Hai, Brigitte; Jechalke, Sven; Heuer, Holger; Smalla, Kornelia; Schloter, Michael

    2014-01-01

    Large amounts of manure have been applied to arable soils as fertilizer worldwide. Manure is often contaminated with veterinary antibiotics which enter the soil together with antibiotic resistant bacteria. However, little information is available regarding the main responders of bacterial communities in soil affected by repeated inputs of antibiotics via manure. In this study, a microcosm experiment was performed with two concentrations of the antibiotic sulfadiazine (SDZ) which were applied together with manure at three different time points over a period of 133 days. Samples were taken 3 and 60 days after each manure application. The effects of SDZ on soil bacterial communities were explored by barcoded pyrosequencing of 16S rRNA gene fragments amplified from total community DNA. Samples with high concentration of SDZ were analyzed on day 193 only. Repeated inputs of SDZ, especially at a high concentration, caused pronounced changes in bacterial community compositions. By comparison with the initial soil, we could observe an increase of the disturbance and a decrease of the stability of soil bacterial communities as a result of SDZ manure application compared to the manure treatment without SDZ. The number of taxa significantly affected by the presence of SDZ increased with the times of manure application and was highest during the treatment with high SDZ-concentration. Numerous taxa, known to harbor also human pathogens, such as Devosia, Shinella, Stenotrophomonas, Clostridium, Peptostreptococcus, Leifsonia, Gemmatimonas, were enriched in the soil when SDZ was present while the abundance of bacteria which typically contribute to high soil quality belonging to the genera Pseudomonas and Lysobacter, Hydrogenophaga, and Adhaeribacter decreased in response to the repeated application of manure and SDZ. PMID:24671113

  14. Survival and persistence of non-pathogenic Escherichia coli and attenuated Escherichia coli O157:H7 in soils amended with animal manure in a greenhouse environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological soil amendments (BSA's), including dairy cattle, poultry litter, and horse manure, play an important role in agriculture but may contain pathogens that can contaminate raw or ready-to-eat fruit and vegetable crops that are consumed raw. Proposed FDA standards include a 90- or 120-day inte...

  15. Soil mixing to decrease surface stratification of phosphorus in manured soils.

    PubMed

    Sharpley, Andrew N

    2003-01-01

    Continual applications of fertilizer and manure to permanent grassland or no-till soils can lead to an accumulation of P at the surface, which in turn increases the potential for P loss in overland flow. To investigate the feasibility of redistributing surface stratified P within the soil profile by plowing, Mehlich-3 P rich surface soils (128-961 mg kg(-) in 0-5 cm) were incubated with lower-P subsoil (16-119 mg kg(-1) in 5-20 cm) for 18 manured soils from Oklahoma and Pennsylvania that had received long-term manure applications (60-150 kg P ha(-1) yr(-1) as dairy, poultry, or swine manure for up to 20 yr). After incubating a mixture of 5 g surface soil (0- to 5-cm depth) and 15 g subsoil (5- to 20-cm depth) for 28 d, Mehlich-3 P decreased 66 to 90% as a function of the weighted mean Mehlich-3 P of surface and subsoil (i.e.. 1:3 ratio) (r2 = 0.87). At Klingerstown, Northumberland County, south central Pennsylvania, a P-stratified Berks soil (Typic Dystrochrept) (495 mg kg(-1) Mehlich-3 P in 0- to 5-cm depth) was chisel plowed to about 25 cm and orchardgrass (Dactylis glomerata L.) planted. Once grass was established and erosion minimized (about 20 wk after plowing and planting), total P concentration in overland flow during a 30-min rainfall (6.5 cm h(-1)) was 1.79 mg L(-1) compared with 3.4 mg L(-1) before plowing, with dissolved P reduced from 2.9 to 0.3 mg L(-1). Plowing P-stratified soils has the potential to decrease P loss in overland flow, as long as plowing-induced erosion is minimized. PMID:12931893

  16. Soil Enzyme Activities as Affected by Manure Types, Application Rates and Management Practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of manure can restore soil ecosystem services related to nutrient cycling and soil organic matter (SOM) dynamics through biochemical transformations mediated by soil enzymes. Enzyme activities are very crucial in soil metabolic functioning as they drive the decomposition of organic r...

  17. Mineralization of N in Soils Amended with Dairy Manure as Affected by Wetting/Drying Cycles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in manure management and its effects on nitrogen (N) mineralization has increased in recent years. The focus of this research was to investigate the N mineralization rates of different soil types in Coastal Plain soils and compare them to a soil from Illinois. Soils with and without dairy ...

  18. [Form tendency and bio-availability dynamics of Cu and Zn in different farm soils after application of organic fertilizer of livestock and poultry manures].

    PubMed

    Shang, He-ping; Li, Yang; Zhang, Tao; Su, De-chun

    2015-01-01

    Soil incubation experiments were conducted with different sources of manures containing heavy metals to evaluate the bioavailability of heavy metals (Cu and Zn) and their form transformation in different soils. This study may assist in developing strategies to ascertain the loads of heavy metals which entered into soils together with manures, and promote policies to evaluate the ecological risk in agriculture soils. The results showed that, during the six months of soil incubation, the pH value of acidic soil increased and the pH value of calcareous soil reduced. After adding chicken manures, the contents of available Cu in both calcareous and acid soils were significant lower than those in the equivalent inorganic salt treatments, but there was no significant difference between the treatments in the contents of available Zn in both calcareous and acid soils. Furthermore, there were also no significant differences between pig matures and the equivalent inorganic salt treatments in the contents of available Cu and Zn in both calcareous and acid soils. The results of form tendency showed that the main forms of Cu and Zn in both calcareous and acid soils, which entered into soils together with manures, were exchangeable, carbonate, Fe-Mn oxides, and organic. And the proportions of different heavy metals species in calcareous and acid soils were different with different manures sources. After six months of incubation, the contents of exchangeable and Fe-Mn oxides Cu, Zn were lower than those in the equivalent inorganic salt treatments, the contents of organics Cu and Zn were higher than those in the equivalent inorganic salt treatments, and other Cu and Zn forms in soils showed no difference with inorganic salt treatments. PMID:25898681

  19. Application of swine manure on agricultural fields contributes to extended-spectrum β-lactamase-producing Escherichia coli spread in Tai'an, China

    PubMed Central

    Gao, Lili; Hu, Jiaqing; Zhang, Xiaodan; Wei, Liangmeng; Li, Song; Miao, Zengmin; Chai, Tongjie

    2015-01-01

    The prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) is increasing rapidly in both hospital environments and animal farms. A lot of animal manure has been directly applied into arable fields in developing countries. But the impact of ESBL-positive bacteria from animal manure on the agricultural fields is sparse, especially in the rural regions of Tai'an, China. Here, we collected 29, 3, and 10 ESBL-producing E. coli from pig manure, compost, and soil samples, respectively. To track ESBL-harboring E. coli from agricultural soil, these isolates of different sources were analyzed with regard to antibiotic resistance profiles, ESBL genes, plasmid replicons, and enterobacterial repetitive intergenic consensus (ERIC)-polymerase chain reaction (PCR) typing. The results showed that all the isolates exhibited multi-drug resistant (MDR). CTX-M gene was the predominant ESBL gene in the isolates from pig farm samples (30/32, 93.8%) and soil samples (7/10, 70.0%), but no SHV gene was detected. Twenty-five isolates contained the IncF-type replicon of plasmid, including 18 strains (18/32, 56.3%) from the pig farm and 7 (7/10, 70.0%) from the soil samples. ERIC-PCR demonstrated that 3 isolates from soil had above 90% genetic similarity with strains from pig farm samples. In conclusion, application of animal manure carrying drug-resistant bacteria on agricultural fields is a likely contributor to antibiotic resistance gene spread. PMID:25926828

  20. Manure and nitrogen application enhances soil phosphorus mobility in calcareous soil in greenhouses.

    PubMed

    Yan, Zhengjuan; Chen, Shuo; Li, Junliang; Alva, Ashok; Chen, Qing

    2016-10-01

    Over many years, high phosphorus (P) loading for intensive vegetable cropping in greenhouses of North China has contributed to excessive P accumulation, resulting in environmental risk. In this study, the influences of manure and nitrogen (N) application on the transformation and transport of soil P were investigated after nine years in a greenhouse tomato double cropping system (winter-spring and autumn-winter seasons). High loading of manure significantly increased the soil inorganic P (Pi), inositol hexakisphosphate (IHP), mobile P and P saturation ratio (PSR, >0.7 in 0-30 cm depth soil; PSR was estimated from P/(Fe + Al) in an oxalate extract of the soil). The high rate of N fertilizer application to the studied calcareous soil with heavy loading of manure increased the following: (i) mobile organic P (Po) and Pi fractions, as evidenced by the decrease in the ratio of monoesters to diesters and the proportion of stable Pi (i.e., HCl-Pi) in total P (Pt) in 0-30 cm depth soil; (ii) relative distribution of Po in the subsoil layer; and (iii) P leaching to soil depths below 90 cm and the proportion of Po in Pt in the leachate. More acidic soil due to excessive N application increased P mobility and leaching. The increase in Ox-Al (oxalate-extractable Al) and the proportion of microbe-associated Po related to N application at soil depths of 0-30 cm suggested decrease in the net Po mineralization, which may contribute to downward transport of Po in the soil profile. PMID:27300290

  1. Green manure addition to soil increases grain zinc concentration in bread wheat.

    PubMed

    Aghili, Forough; Gamper, Hannes A; Eikenberg, Jost; Khoshgoftarmanesh, Amir H; Afyuni, Majid; Schulin, Rainer; Jansa, Jan; Frossard, Emmanuel

    2014-01-01

    Zinc (Zn) deficiency is a major problem for many people living on wheat-based diets. Here, we explored whether addition of green manure of red clover and sunflower to a calcareous soil or inoculating a non-indigenous arbuscular mycorrhizal fungal (AMF) strain may increase grain Zn concentration in bread wheat. For this purpose we performed a multifactorial pot experiment, in which the effects of two green manures (red clover, sunflower), ZnSO4 application, soil γ-irradiation (elimination of naturally occurring AMF), and AMF inoculation were tested. Both green manures were labeled with 65Zn radiotracer to record the Zn recoveries in the aboveground plant biomass. Application of ZnSO4 fertilizer increased grain Zn concentration from 20 to 39 mg Zn kg-1 and sole addition of green manure of sunflower to soil raised grain Zn concentration to 31 mg Zn kg-1. Adding the two together to soil increased grain Zn concentration even further to 54 mg Zn kg-1. Mixing green manure of sunflower to soil mobilized additional 48 µg Zn (kg soil)-1 for transfer to the aboveground plant biomass, compared to the total of 132 µg Zn (kg soil)-1 taken up from plain soil when neither green manure nor ZnSO4 were applied. Green manure amendments to soil also raised the DTPA-extractable Zn in soil. Inoculating a non-indigenous AMF did not increase plant Zn uptake. The study thus showed that organic matter amendments to soil can contribute to a better utilization of naturally stocked soil micronutrients, and thereby reduce any need for major external inputs. PMID:24999738

  2. Green Manure Addition to Soil Increases Grain Zinc Concentration in Bread Wheat

    PubMed Central

    Aghili, Forough; Gamper, Hannes A.; Eikenberg, Jost; Khoshgoftarmanesh, Amir H.; Afyuni, Majid; Schulin, Rainer; Jansa, Jan; Frossard, Emmanuel

    2014-01-01

    Zinc (Zn) deficiency is a major problem for many people living on wheat-based diets. Here, we explored whether addition of green manure of red clover and sunflower to a calcareous soil or inoculating a non-indigenous arbuscular mycorrhizal fungal (AMF) strain may increase grain Zn concentration in bread wheat. For this purpose we performed a multifactorial pot experiment, in which the effects of two green manures (red clover, sunflower), ZnSO4 application, soil γ-irradiation (elimination of naturally occurring AMF), and AMF inoculation were tested. Both green manures were labeled with 65Zn radiotracer to record the Zn recoveries in the aboveground plant biomass. Application of ZnSO4 fertilizer increased grain Zn concentration from 20 to 39 mg Zn kg−1 and sole addition of green manure of sunflower to soil raised grain Zn concentration to 31 mg Zn kg−1. Adding the two together to soil increased grain Zn concentration even further to 54 mg Zn kg−1. Mixing green manure of sunflower to soil mobilized additional 48 µg Zn (kg soil)−1 for transfer to the aboveground plant biomass, compared to the total of 132 µg Zn (kg soil)−1 taken up from plain soil when neither green manure nor ZnSO4 were applied. Green manure amendments to soil also raised the DTPA-extractable Zn in soil. Inoculating a non-indigenous AMF did not increase plant Zn uptake. The study thus showed that organic matter amendments to soil can contribute to a better utilization of naturally stocked soil micronutrients, and thereby reduce any need for major external inputs. PMID:24999738

  3. Safely Coupling Livestock and Crop Production Systems: How Rapidly Do Antibiotic Resistance Genes Dissipate in Soil following a Commercial Application of Swine or Dairy Manure?

    PubMed Central

    Marti, Romain; Tien, Yuan-Ching; Murray, Roger; Scott, Andrew; Sabourin, Lyne

    2014-01-01

    Animal manures recycled onto crop production land carry antibiotic-resistant bacteria. The present study evaluated the fate in soil of selected genes associated with antibiotic resistance or genetic mobility in field plots cropped to vegetables and managed according to normal farming practice. Referenced to unmanured soil, fertilization with swine or dairy manure increased the relative abundance of the gene targets sul1, erm(B), str(B), int1, and IncW repA. Following manure application in the spring of 2012, gene copy number decayed exponentially, reaching background levels by the fall of 2012. In contrast, gene copy number following manure application in the fall of 2012 or spring of 2013 increased significantly in the weeks following application and then declined. In both cases, the relative abundance of gene copy numbers had not returned to background levels by the fall of 2013. Overall, these results suggest that under conditions characteristic of agriculture in a humid continental climate, a 1-year period following a commercial application of raw manure is sufficient to ensure that an additional soil burden of antibiotic resistance genes approaches background. The relative abundance of several gene targets exceeded background during the growing season following a spring application or an application done the previous fall. Results from the present study reinforce the advisability of treating manure prior to use in crop production systems. PMID:24632259

  4. Safely coupling livestock and crop production systems: how rapidly do antibiotic resistance genes dissipate in soil following a commercial application of swine or dairy manure?

    PubMed

    Marti, Romain; Tien, Yuan-Ching; Murray, Roger; Scott, Andrew; Sabourin, Lyne; Topp, Edward

    2014-05-01

    Animal manures recycled onto crop production land carry antibiotic-resistant bacteria. The present study evaluated the fate in soil of selected genes associated with antibiotic resistance or genetic mobility in field plots cropped to vegetables and managed according to normal farming practice. Referenced to unmanured soil, fertilization with swine or dairy manure increased the relative abundance of the gene targets sul1, erm(B), str(B), int1, and IncW repA. Following manure application in the spring of 2012, gene copy number decayed exponentially, reaching background levels by the fall of 2012. In contrast, gene copy number following manure application in the fall of 2012 or spring of 2013 increased significantly in the weeks following application and then declined. In both cases, the relative abundance of gene copy numbers had not returned to background levels by the fall of 2013. Overall, these results suggest that under conditions characteristic of agriculture in a humid continental climate, a 1-year period following a commercial application of raw manure is sufficient to ensure that an additional soil burden of antibiotic resistance genes approaches background. The relative abundance of several gene targets exceeded background during the growing season following a spring application or an application done the previous fall. Results from the present study reinforce the advisability of treating manure prior to use in crop production systems. PMID:24632259

  5. Leachate water quality of soils amended with different swine manure-based amendments

    EPA Science Inventory

    In the face of the rising level of manure production from concentrated animal feeding operations (CAFOs), management options are being sought that can provide nutrient recycling for plant growth and improved soil conditions with minimal environmental impacts. Alternatives to dire...

  6. Effects of pH and manure on transport of sulfonamide antibiotics in soil.

    PubMed

    Strauss, Claudia; Harter, Thomas; Radke, Michael

    2011-01-01

    Sulfonamide antibiotics are a commonly used group of compounds in animal husbandry. They are excreted with manure, which is collected in a storage lagoon in certain types of confined animal feeding operations. Flood irrigation of forage fields with this liquid manure creates the potential risk of groundwater contamination in areas with shallow groundwater levels. We tested the hypothesis that-in addition to the soil characteristics-manure as cosolute and manure pH are two major parameters influencing sulfonamide transport in soils. Solute displacement experiments in repacked, saturated soil columns were performed with soil (loamy sand) and manure from a dairy farm in California. Breakthrough of nonreactive tracer and sulfadimethoxine, sulfamethazine, and sulfamethoxazole at different solution pH (5, 6.5, 8.5) with and without manure was modeled using Hydrus-1D to infer transport and reaction parameters. Tracer and sulfonamide breakthrough curves were well explained by a model concept based on physical nonequilibrium transport, equilibrium sorption, and first-order dissipation kinetics. Sorption of the antibiotics was low ( K₄ ≤ 0.7 L kg) and only weakly influenced by pH and manure. However, sulfonamide attenuation was significantly affected by both pH and manure. The mass recovery of sulfonamides decreased with decreasing pH, e.g., for sulfamethoxazole from 77 (pH 8.5) to 56% (pH 5). The sulfonamides were highly mobile under the studied conditions, but manure application increased their attenuation substantially. The observed attenuation was most likely caused by a combination of microbial transformation and irreversible sorption to the soil matrix. PMID:21869527

  7. Phosphorus Solubility in Response to Acidification of Dairy Manure Amended Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) additions from animal manure beyond plant needs results in accumulated soil calcium phosphate (Ca-P). Although stable near neutral pH levels, there is concern about the solubility of accumulated soil Ca-P when soil pH conditions become acidic, potentially releasing water soluble P (WS...

  8. Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks

    EPA Science Inventory

    Purpose: Biochars are a soil amendment produced from lignocellulosic and manure feedstocks. Not all biochars are viable soil amendments because of differences in their physical and chemical properties. Biochar could deliver more effective service as a soil amendment if its chemis...

  9. Manure and mineral fertilizer effects on seasonal dynamics of bioactive soil phosphorus fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seasonal fluctuations in bioavailable soil phosphorus can influence soil test results and associated assessment of off-site transport risk. Our objective was to evaluate changes in soil P speciation and availability with time following applications of grain fed cattle (Bos taurus) manure or monoamm...

  10. Greenhouse gas emissions and soil indicators four years after manure and compost applications.

    PubMed

    Ginting, Daniel; Kessavalou, Anabayan; Eghball, Bahman; Doran, John W

    2003-01-01

    Understanding how carbon, nitrogen, and key soil attributes affect gas emissions from soil is crucial for alleviating their undesirable residual effects that can linger for years after termination of manure and compost applications. This study was conducted to evaluate the emission of soil CO2, N2O, and CH4 and soil C and N indicators four years after manure and compost application had stopped. Experimental plots were treated with annual synthetic N fertilizer (FRT), annual and biennial manure (MN1 and MN2, respectively), and compost (CP1 and CP2, respectively) from 1992 to 1995 based on removal of 151 kg N ha(-1) yr(-1) by continuous corn (Zea mays L.). The control (CTL) plots received no input. After 1995, only the FRT plots received N fertilizer in the spring of 1999. In 1999, the emissions of CO2 were similar between control and other treatments. The average annual carbon input in the CTL and FRT plots were similar to soil CO2-C emission (4.4 and 5.1 Mg C ha(-1) yr(-1), respectively). Manure and compost resulted in positive C and N balances in the soil four years after application. Fluxes of CH4-C and N2O-N were nearly zero, which indicated that the residual effects of manure and compost four years after application had no negative influence on soil C and N storage and global warming. Residual effects of compost and manure resulted in 20 to 40% higher soil microbial biomass C, 42 to 74% higher potentially mineralizable N, and 0.5 unit higher pH compared with the FRT treatment. Residual effects of manure and compost on CO2, N20, and CH4 emissions were minimal and their benefits on soil C and N indicators were more favorable than that of N fertilizer. PMID:12549538

  11. Impact of manure-related DOM on sulfonamide transport in arable soils.

    PubMed

    Zhou, Dan; Thiele-Bruhn, Sören; Arenz-Leufen, Martina Gesine; Jacques, Diederik; Lichtner, Peter; Engelhardt, Irina

    2016-09-01

    Field application of livestock manure introduces colloids and veterinary antibiotics, e.g. sulfonamides (SAs), into farmland. The presence of manure colloids may potentially intensify the SAs-pollution to soils and groundwater by colloid-facilitated transport. Transport of three SAs, sulfadiazine (SDZ), sulfamethoxypyridazine (SMPD), and sulfamoxole (SMOX), was investigated in saturated soil columns with and without manure colloids from sows and farrows, weaners, and fattening pigs. Experimental results showed that colloid-facilitated transport of SMOX was significant in the presence of manure colloids from fattening pigs with low C/N ratio, high SUVA280nm and protein C, while manure colloids from sows and farrows and weaners had little effect on SMOX transport. In contrast, only retardation was observed for SDZ and SMPD when manure colloids were present. Breakthrough curves (BTCs) of colloids and SAs were replicated well by a newly developed numerical model that considers colloid-filtration theory, competitive kinetic sorption, and co-transport processes. Model results demonstrate that mobile colloids act as carriers for SMOX, while immobile colloids block SMOX from sorbing onto the soil. The low affinity of SMOX to sorb on immobile colloids prevents aggregation and also promotes SMOX's colloid-facilitated transport. Conversely, the high affinity of SDZ and SMPD to sorb on all types of immobile colloids retarded their transport. Thus, manure properties play a fundamental role in increasing the leaching risk of hydrophobic sulfonamides. PMID:27450276

  12. Impact of manure-related DOM on sulfonamide transport in arable soils

    NASA Astrophysics Data System (ADS)

    Zhou, Dan; Thiele-Bruhn, Sören; Arenz-Leufen, Martina Gesine; Jacques, Diederik; Lichtner, Peter; Engelhardt, Irina

    2016-09-01

    Field application of livestock manure introduces colloids and veterinary antibiotics, e.g. sulfonamides (SAs), into farmland. The presence of manure colloids may potentially intensify the SAs-pollution to soils and groundwater by colloid-facilitated transport. Transport of three SAs, sulfadiazine (SDZ), sulfamethoxypyridazine (SMPD), and sulfamoxole (SMOX), was investigated in saturated soil columns with and without manure colloids from sows and farrows, weaners, and fattening pigs. Experimental results showed that colloid-facilitated transport of SMOX was significant in the presence of manure colloids from fattening pigs with low C/N ratio, high SUVA280 nm and protein C, while manure colloids from sows and farrows and weaners had little effect on SMOX transport. In contrast, only retardation was observed for SDZ and SMPD when manure colloids were present. Breakthrough curves (BTCs) of colloids and SAs were replicated well by a newly developed numerical model that considers colloid-filtration theory, competitive kinetic sorption, and co-transport processes. Model results demonstrate that mobile colloids act as carriers for SMOX, while immobile colloids block SMOX from sorbing onto the soil. The low affinity of SMOX to sorb on immobile colloids prevents aggregation and also promotes SMOX's colloid-facilitated transport. Conversely, the high affinity of SDZ and SMPD to sorb on all types of immobile colloids retarded their transport. Thus, manure properties play a fundamental role in increasing the leaching risk of hydrophobic sulfonamides.

  13. Cattle Manure Enhances Methanogens Diversity and Methane Emissions Compared to Swine Manure under Rice Paddy

    PubMed Central

    Kim, Sang Yoon; Pramanik, Prabhat; Bodelier, Paul L. E.; Kim, Pil Joo

    2014-01-01

    Livestock manures are broadly used in agriculture to improve soil quality. However, manure application can increase the availability of organic carbon, thereby facilitating methane (CH4) production. Cattle and swine manures are expected to have different CH4 emission characteristics in rice paddy soil due to the inherent differences in composition as a result of contrasting diets and digestive physiology between the two livestock types. To compare the effect of ruminant and non-ruminant animal manure applications on CH4 emissions and methanogenic archaeal diversity during rice cultivation (June to September, 2009), fresh cattle and swine manures were applied into experimental pots at 0, 20 and 40 Mg fresh weight (FW) ha−1 in a greenhouse. Applications of manures significantly enhanced total CH4 emissions as compared to chemical fertilization, with cattle manure leading to higher emissions than swine manure. Total organic C contents in cattle (466 g kg−1) and swine (460 g kg−1) manures were of comparable results. Soil organic C (SOC) contents were also similar between the two manure treatments, but dissolved organic C (DOC) was significantly higher in cattle than swine manure. The mcrA gene copy numbers were significantly higher in cattle than swine manure. Diverse groups of methanogens which belong to Methanomicrobiaceae were detected only in cattle-manured but not in swine-manured soil. Methanogens were transferred from cattle manure to rice paddy soils through fresh excrement. In conclusion, cattle manure application can significantly increase CH4 emissions in rice paddy soil during cultivation, and its pretreatment to suppress methanogenic activity without decreasing rice productivity should be considered. PMID:25494364

  14. Cattle Manure Enhances Methanogens Diversity and Methane Emissions Compared to Swine Manure under Rice Paddy.

    PubMed

    Kim, Sang Yoon; Pramanik, Prabhat; Bodelier, Paul L E; Kim, Pil Joo

    2014-01-01

    Livestock manures are broadly used in agriculture to improve soil quality. However, manure application can increase the availability of organic carbon, thereby facilitating methane (CH4) production. Cattle and swine manures are expected to have different CH4 emission characteristics in rice paddy soil due to the inherent differences in composition as a result of contrasting diets and digestive physiology between the two livestock types. To compare the effect of ruminant and non-ruminant animal manure applications on CH4 emissions and methanogenic archaeal diversity during rice cultivation (June to September, 2009), fresh cattle and swine manures were applied into experimental pots at 0, 20 and 40 Mg fresh weight (FW) ha-1 in a greenhouse. Applications of manures significantly enhanced total CH4 emissions as compared to chemical fertilization, with cattle manure leading to higher emissions than swine manure. Total organic C contents in cattle (466 g kg-1) and swine (460 g kg-1) manures were of comparable results. Soil organic C (SOC) contents were also similar between the two manure treatments, but dissolved organic C (DOC) was significantly higher in cattle than swine manure. The mcrA gene copy numbers were significantly higher in cattle than swine manure. Diverse groups of methanogens which belong to Methanomicrobiaceae were detected only in cattle-manured but not in swine-manured soil. Methanogens were transferred from cattle manure to rice paddy soils through fresh excrement. In conclusion, cattle manure application can significantly increase CH4 emissions in rice paddy soil during cultivation, and its pretreatment to suppress methanogenic activity without decreasing rice productivity should be considered. PMID:25494364

  15. Hardwood biochar and manure co-application to a calcareous soil.

    PubMed

    Ippolito, J A; Stromberger, M E; Lentz, R D; Dungan, R S

    2016-01-01

    Biochar may affect the mineralization rate of labile organic C sources such as manures via microbial community shifts, and subsequently affect nutrient release. In order to ascertain the positive or negative priming effect of biochar on manure, dairy manure (2% by wt.) and a hardwood-based, fast pyrolysis biochar were applied (0%, 1%, 2%, and 10% by wt.) to a calcareous soil. Destructive sampling occurred at 1, 2, 3, 4, 6 and 12 months to monitor for changes in soil chemistry, water content, microbial respiration, bacterial populations, and microbial community structure. Overall results showed that increasing biochar application rate improved the soil water content, which may be beneficial in limited irrigation or rainfall areas. Biochar application increased soil organic C content and plant-available Fe and Mn, while a synergistic biochar-manure effect increased plant-available Zn. Compared to the other rates, the 10% biochar application lowered concentrations of NO3-N; effects appeared masked at lower biochar rates due to manure application. Over time, soil NO3-N increased likely due to manure N mineralization, yet soil NO3-N in the 10% biochar rate remained lower as compared to other treatments. In the presence of manure, only the 10% biochar application caused subtle microbial community structure shifts by increasing the relative amounts of two fatty acids associated with Gram-negative bacteria and decreasing Gram-positive bacterial fatty acids, each by ∼1%. Our previous findings with biochar alone suggested an overall negative priming effect with increasing biochar application rates, yet when co-applied with manure the negative priming effect was eliminated. PMID:26009473

  16. Leachate water quality of soils amended with different swine manure-based amendments.

    PubMed

    Ro, K S; Novak, J M; Johnson, M G; Szogi, A A; Libra, J A; Spokas, K A; Bae, S

    2016-01-01

    In the face of the rising level of manure production from concentrated animal feeding operations (CAFOs), management options are being sought that can provide nutrient recycling for plant growth and improved soil conditions with minimal environmental impacts. Alternatives to direct manure application are composting and thermochemical conversion which can destroy pathogens and improve handling and storage. The effect of four forms of swine manure-based soil amendments (raw, compost, hydrochar, and pyrochar) on soil fertility and leachate water quality characteristics of a sandy soil were investigated in soil incubation experiments. All four amendments significantly increased soil carbon, cation exchange capacity and available nutrient contents of the soil. However, hydrochar amended soil leached lower amounts of N, P, and K compared to the other amendments including the control. On the other hand, pyrochar amended soil leached higher concentrations of P and K. Subsequent tests on the hydrochar for K and N adsorption isotherms and surface analysis via XPS suggested that these nutrients were not sorbed directly to the hydrochar surface. Although it is still not clear how these nutrients were retained in the soil amended with hydrochar, it suggests a great potential for hydrochar as an alternative manure management option as the hydrochar can be soil applied while minimizing potential environmental issues from the leaching of high nutrient concentrations to water bodies. PMID:26025669

  17. Phosphorus distribution in a soil fertilized with recovered manure phosphates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) can be recovered in a concentrated form from livestock manure and poultry litter. A greenhouse study was conducted to evaluate the short-term leaching potential and plant availability of P from recovered P materials from liquid pig manure (SRP) and broiler litter (LRP) in a characteri...

  18. Fate of Escherichia coli O157: H7 in agricultural soils amended with different organic fertilizers.

    PubMed

    Yao, Zhiyuan; Yang, Li; Wang, Haizhen; Wu, Jianjun; Xu, Jianming

    2015-10-15

    Five organic fertilizers (vermicompost, pig manure, chicken manure, peat and oil residue) were applied to agricultural soils to study their effects on the survival of Escherichia coli O157:H7 (E. coli O157:H7). Results showed that E. coli O157:H7 survival changed greatly after organic fertilizers application, with shorter td values (survival time needed to reach the detection limit of 100 CFU g(-1)) (12.57±6.57 days) in soils amended with chicken manure and the longest (25.65±7.12 days) in soils amended with pig manure. Soil pH, EC and free Fe/Al (hydro) oxides were significant explanatory factors for E. coli O157:H7 survival in the original soils. Soil constituents (minerals and organic matter) and changes in their surface charges with pH increased the effect of soil pH on E. coli O157:H7 survival. However, electrical conductivity played a more important role in regulating E. coli O157:H7 survival in fertilizer-amended soils. This study highlighted the importance of choosing appropriate organic fertilizers in the preharvest environment to reduce food-borne bacterial contamination. PMID:25910457

  19. The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil.

    PubMed

    Walker, David J; Bernal, M Pilar

    2008-01-01

    The effects of a compost (produced from by-products of the olive oil industry) and a poultry manure on mineral ion solubility and exchangeability in a highly saline agricultural soil (electrical conductivity for a 1:5 soil:water extract=1.85 dS m(-1)) from Murcia (SE Spain) were studied. The organic amendments did not change significantly the soil electrical conductivity or the soluble Na(+), Ca(2+) or Mg(2+). Only soluble K(+) increased, due to the K(+) supplied by the amendments. The cation exchange capacity increased in treated soils, the exchange complex being mainly saturated with Ca(2+), Mg(2+) and K(+). However, Na(+) was not retained in the exchange sites, and the sodium absorption ratio remained low. The compost and manure increased markedly the shoot growth of the salt-tolerant Beta maritima L. (sea beet) and Beta vulgaris L. (sugar beet). For B. maritima, this seemed to be related to decreases in the shoot concentrations of Na(+) and Cl(-) and increases in K(+) and H(2)PO(4)(-). In the case of B. vulgaris, increases in shoot H(2)PO(4)(-) and B and, for manure-treated soil, a decrease in shoot Na(+) may have been involved. Cultivation of tomato (Lycopersicon esculentum Mill. cv. Moneymaker) in the soil used previously for B. vulgaris indicated that the effects of the manure on tissue cation concentrations were longer-lasting than those of the compost. PMID:17275292

  20. Humus status of soddy-podzolic soil upon application of different green manures

    NASA Astrophysics Data System (ADS)

    Tripol'Skaya, L. N.; Romanovskaya, D. K.; Shlepetiene, A.

    2008-08-01

    Results of studying the effect of different plant species on the humus status of loamy sandy soddy-podzolic soil were generalized. It was found that the application of different green manure species ( Lupinus luteus L., Trifolium pratense L., and Raphanus sativus L.) and straw from cereal crops ( Secale cereale, Hordeum L.) under percolative conditions helped to sustain a stable humus budget in grain agrophytocenoses. A significant change in the fractional composition of HAs and FAs occurred under the effect of green manure. The fractions of free HAs and those bound to clay minerals accumulated with the application of Trifolium pratense and Raphanus sativus biomass and cereal straw. Lower amounts of aggressive and free FAs were formed in the soil with the application of straw and fallow plants. The decomposition of green manure and the formation of humic substances also depended on the hydrothermal conditions during application of manure.

  1. Rainfall Driven Sorting of Soils and Manure in Beef Feedlot Pens, Implications for Steroid Hormone Transport

    NASA Astrophysics Data System (ADS)

    Bryson, R.; Harter, T.

    2009-12-01

    Previous research has documented elevated estrogenic and androgenic activity in surface waters receiving cattle feedlot effluent, while current research shows that significant concentrations of hydrophobic steroid hormones are transported in the solid phase of feedlot pen surface runoff. Accumulated manure in beef feedlot pens includes organic matter ranging from colloidal particles to partially digested feed, forming a complex soil-manure conglomerate at the pen surface. We hypothesized that the transport of solid phase particles in rainfall runoff on beef feedlots would be influenced but not limited by shield layer development. Soils and manure at a beef feedlot were evaluated before and after rainfall-runoff events to determine changes in soil composition and structure. Runoff samples were also collected during an hour of runoff and analyzed for suspended solids. Results indicate that rainfall actively sorts the soil and manure components through raindrop impact, depression storage and runoff. However, transport of solid phase constituents was found to be elevated throughout the hydrograph. This suggests that the surface shield layer conceptualization applied to other soils should be modified before application to the soil-manure conglomerate found in beef feedlot pens.

  2. Carbon and nitrogen stocks and nitrogen mineralization in organically managed soils amended with composted manures.

    PubMed

    Romanyà, Joan; Arco, Noèlia; Solà-Morales, Ignasi; Armengot, Laura; Sans, Francesc Xavier

    2012-01-01

    The use of composted manures and of legumes in crop rotations may control the quality and quantity of soil organic matter and may affect nutrient retention and recycling. We studied soil organic C and N stocks and N mineralization in organically and conventionally managed dryland arable soils. We selected 13 extensive organic fields managed organically for 10 yr or more as well as adjacent fields managed conventionally. Organic farmers applied composted manures ranging from 0 to 1380 kg C ha yr and incorporated legumes in crop rotations. In contrast, conventional farmers applied fresh manures combined with slurries and/or mineral fertilizers ranging from 200 to 1900 kg C ha yr and practiced a cereal monoculture. Despite the fact that the application of organic C was similar in both farming systems, organically managed soils showed higher C and similar N content and lower bulk density than conventionally managed soils. Moreover, organic C stocks responded to the inputs of organic C in manures and to the presence of legumes only in organically managed soils. In contrast, stocks of organic N increased with the inputs of N or C in both farming systems. In organically managed soils, organic N stocks were less mineralizable than in conventional soils. However, N mineralization in organic soils was sensitive to the N fixation rates of legumes and to application rate and C/N ratio of the organic fertilizers. PMID:22751078

  3. Phosphorus Leaching in Soils Amended with Animal Manures Generated from Modified Diets.

    PubMed

    Toor, Gurpal S; Sims, J Thomas

    2016-07-01

    New dietary modifications for dairy (reducing P content in feed) and poultry (addition of feed additives such as phytase) aim to reduce P excretion in manures. Our objective was to investigate if dietary changes were effective at reducing P leaching loss on land application of manures. We used 54 undisturbed lysimeters (30 cm diameter, 50 cm deep) collected from three typical mid-Atlantic soils. Lysimeters received 85 kg total P ha from fertilizer (superphosphate), dairy manures generated from low- or high-P diets, or broiler litters generated from normal diet or reduced P- and phytase-amended diets. Lysimeters were irrigated with 50 mm of water each week for 9 wk. The major forms of P in the leachate were dissolved (dissolved unreactive > dissolved reactive P [DRP]) rather than particulate (total particulate P). The higher P solubility (100%) in superphosphate resulted in greater leaching of DRP, whereas the lower P solubility (<30%) in dairy manures or broiler litters resulted in lower DRP leaching from soils. Preferential flow in two soils caused greater DRP leaching; this effect was more pronounced in the superphosphate-amended than in the manure/litter-amended lysimeters. The dairy and poultry dietary modification was effective at reducing the amount of P in manures and litters. However, the application of treatments at similar P rate (85 kg ha) resulted in the addition of a higher amount of manure (54-66%) in lysimeters that received low-P dairy manure-amended and phytase-amended broiler litter, which then controlled P leaching from soils. PMID:27380088

  4. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol.

    PubMed

    Elzobair, Khalid A; Stromberger, Mary E; Ippolito, James A; Lentz, Rodrick D

    2016-01-01

    Biochar can increase microbial activity, alter microbial community structure, and increase soil fertility in arid and semi-arid soils, but at relatively high rates that may be impractical for large-scale field studies. This contrasts with organic amendments such as manure, which can be abundant and inexpensive if locally available, and thus can be applied to fields at greater rates than biochar. In a field study comparing biochar and manure, a fast pyrolysis hardwood biochar (22.4 Mg ha(-1)), dairy manure (42 Mg ha(-1) dry wt), a combination of biochar and manure at the aforementioned rates, or no amendment (control) was applied to an Aridisol (n=3) in fall 2008. Plots were annually cropped to corn (Zea maize L.). Surface soils (0-30 cm) were sampled directly under corn plants in late June 2009 and early August 2012, and assayed for microbial community fatty acid methyl ester (FAME) profiles and six extracellular enzyme activities involved in soil C, N, and P cycling. Arbuscular mycorrhizal (AM) fungal colonization was assayed in corn roots in 2012. Biochar had no effect on microbial biomass, community structure, extracellular enzyme activities, or AM fungi root colonization of corn. In the short-term, manure amendment increased microbial biomass, altered microbial community structure, and significantly reduced the relative concentration of the AM fungal biomass in soil. Manure also reduced the percent root colonization of corn by AM fungi in the longer-term. Thus, biochar and manure had contrasting short-term effects on soil microbial communities, perhaps because of the relatively low application rate of biochar. PMID:26138708

  5. Searsville Sediment Experiment: What is the ideal agricultural soil?

    NASA Astrophysics Data System (ADS)

    Leal, J.; Lo, D.; Patel, N.; Gu, S.

    2014-12-01

    The purpose of this experiment is to decide whether or not the sediment located within Searsville Dam at the Jasper Ridge Biological Preserve is well suited for agricultural soil. By utilizing various combinations of sediment, farm soil, compost, and horse manure to grow basil plants, we underwent an exploratory study in order to better understand what type of materials and nutrients plants can best thrive within. Our general experiment protocol includes watering the crops with irrigation every day while young, and then limiting that water exposure to only Mondays, Wednesdays, and Fridays as they become more established. The basil is growing in pots filled with the different amounts of material, and are arranged randomly to prevent certain plants from getting more sunlight than others. The whole experiment plot is covered with a thin white fabric and secured with bricks and wood to keep out pests in the garden. In order to observe trends in the basil development, plant height and leaf number is recorded once every week. During the third week of the study we performed soil texture tests, and within the fourth week we calculated pH data. We discovered that the sediment our project focuses upon is 10-18% clay and 50% sand which categorizes it as loam, and the Stanford farm soil that serves as our control group contains 20-26% clay and 30% sand so it is a silt loam material. The pH tests also showed an average of 7.45 for sediment, 7.3 for farm soil, 7.85 for compost, and 7.65 for horse manure. By looking at all of the data recorded over the five-week time period, we have so far noticed that the 50% sediment and 50% horse manure combination consistently has the best height increase as well as leaf size and content. The 50% sediment and 50% compost mixture has also performed well in those terms, and is therefore a possibility for the best agricultural soil. However, future lab work conducted by Stanford students to examine the nutrient content of the basil tissue, along

  6. Fate and Transport of Agricultural Nutrients in Macro-porous Soils

    NASA Astrophysics Data System (ADS)

    Royem, A. A.; Walter, M. T.

    2010-12-01

    The major objective of this study is to address water quality problems associated with application of liquid manure to subsurface-drained agricultural lands. There are over 600 large and medium sized confined animal feeding operations (CAFOs) in New York, most of which utilize land application to manage this waste stream. Due to the regions shallow soil and humid weather, most fields have been equipped with tile drainage. The concern is that handling the manure is a liquefied state may enhance the likelihood of contamination of the tile drainage discharge and its potential impacts on downstream water quality. Laboratory studies were used to investigate how manure liquidity (percent solids) affects the transport of manure constituents through varying macropore sizes in the soil. Soil columns of 3 different macropore sizes (0, 1, 3 millimeter) were constructed, subjected to simulated rainfall over several weeks, and effluent was collected from both the soil matrix and macropores separately. Effluent samples were analyzed for soluble reactive phosphorus (SRP). As expected, the preliminary results show enhanced SRP transport through macropores with decreasing percent solids (i.e., more liquidy manure). The implications at field and watershed scales are still being investigated.

  7. Changes in soil test phosphorus and phosphorus in runoff from calcareous soils receiving manure, compost, and fertilizer application with and without alum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensification of the dairy industry in southern Idaho had led to the over-application of manures and a buildup of soil phosphorus (P) which is a potential threat to water quality in the region. As the use of alum has been shown to reduce both soluble manure P and runoff P from alum treated manure...

  8. Relationships Between Immobilized Phosphorus Uptake in Two Grain Legumes and Soil Bioactive P Pools in Fertilized and Manure-Amended Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The practice of mixing additives with animal manure to reduce source P solubility have raised concerns of reduced availability in treated manure to growing crops. An outdoor pot experiment was conducted to characterize the mineralization of cattle manure P and uptake of soil P as modified by iron a...

  9. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar has been shown to increase microbial activity, alter microbial community structure, and increase soil fertility in arid and semi-arid soils, but at relatively high rates that may be impractical for large-scale field studies. This contrasts with organic amendments such as manure, which can be...

  10. Ecotoxicological effects of pig manure on Folsomia candida in subtropical Brazilian soils.

    PubMed

    Maccari, Ana Paula; Baretta, Dilmar; Paiano, Diovani; Leston, Sara; Freitas, Andreia; Ramos, Fernando; Sousa, Jose Paulo; Klauberg-Filho, Osmar

    2016-08-15

    The effects of pig manure, from diets incorporating veterinary pharmaceuticals, on survival and reproduction of Folsomia candida were evaluated. Manures derived from the following diets: corn and soymeal (CS); 85% CS diet+15% wheat meal (TR); CS diet+100ppm doxycycline+50ppm colistin+2500ppm Zn oxide (CSa); TR diet+100ppm doxycycline+50ppm colistin+2500ppm Zn oxide (TRa). Manures were tested in two subtropical soils representative of southern (Oxisol and Entisol). Despite the antibiotics no significant differences were found between the four manures within each soil. However, strong differences were found on the toxicity between soils. In Oxisol, LC50 values were around 100m(3)ha(-1), and EC50 values around 80m(3)ha(-1). In Entisol these were much lower, with LC50 values oscillating around 20m(3)ha(-1) and EC50 values between 10-15m(3)ha(-1). The observed toxicity on both soils was attributed to excess of nitrogen, Cu and Zn in the highest doses. The strong difference between soils could be explained by soil properties, namely CEC, organic matter, and clay contents that were lower in Entisol, indicating a poor ability to retain contaminants increasing their availability in soil. Results suggest that the application of these residues should be regulated not only using a volume-based criterion, but should incorporate data on soil properties, complemented by an ecotoxicological assessment. PMID:27111424

  11. Fecal Coliform Interaction with Soil Aggregates: Effect of Water Content and Bovine Manure Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To test the hypothesis that fecal coliform (FC) interaction with soil aggregates is affected by aggregate size, water content and bovine manure application. Methods and Results: Tyler loam soil aggregates were separated into fractions of 3.35-4.75 mm, 4.75-7.93 mm and 7.93-9.5 mm. Air-dry an...

  12. Nutrient losses from fall- and winter-applied manure: effects of timing and soil temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil temperature is a major environmental factor that affects meltwater and precipitation infiltration and nutrient cycling. The objective of this study was to determine nutrient losses in runoff and leachate from fall- and winter-applied dairy manure as affected by soil temperature at the time of a...

  13. Nutrient losses from Fall and Winter-applied manure: Effects of timing and soil temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil temperature is a major environmental factor that affects both the infiltration of meltwater and precipitation, and nutrient cycling. The objectives of this study were to determine nutrient losses in runoff and leachate from fall and winter-applied dairy manure based on the soil temperature at t...

  14. Chicken manure biochar as liming agent and nutrient source for acid Appalachian soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acid and highly weathered soils often require lime and fertilizer application to overcome nutrient deficiencies and metal toxicity in order to increase soil productivity. Slow-pyrolysis chicken manure biochars, produced at 350 deg C and 700 deg C with and without subsequent steam-activation, were e...

  15. Phosphorus mobility in soil columns treated with dairy manures and commercial fertilizer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concentration of animal production in some areas of the United States has led to concern about the environmental fate of manure derived phosphorus (P) in soils. A column study was conducted to quantify P leaching in a calcareous soil treated with mono-ammonium phosphate (MAP), two solid dairy m...

  16. Relationship between phosphorus forms and phosphatase activity in soils amended with poultry manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Up to 80% of the phosphorus (P) in poultry manure (PM) can be present in organic forms that require mineralization via phosphatase enzymes prior to plant utilization. To determine the correlation between soil P distribution and phosphatase activity we sequentially extracted two Maine soils amended...

  17. Growth of Cymbopogon citratus and Vetiveria zizanioides on Cu mine tailings amended with chicken manure and manure-soil mixtures: a pot scale study.

    PubMed

    Das, Manab; Maiti, Subodh Kumar

    2009-01-01

    The Rakha Cu mines are located at East Singhbhum, Jharkhand, India and their activities ceased in 2001. The tailings (residue) were permanently stored in tailings ponds that require vegetation to reduce their impact on the environment. A pot scale study was conducted to evaluate the suitability of Cymbopogon citratus (DC.) Ex Nees and Vetiveria zizanioides (L) Nash for the reclamation of Cu tailings and to evaluate the effects of chicken manure and soil-manure mixtures on the revegetation of such tailings. Application of manure and soil-manure mixtures resulted in significant increase in pH, EC, OC, CEC and nutritional status of Cu tailings. The environmentally available and DTPA extractable Cu and Ni concentration reduced in amended tailings, while Mn and Zn content increased significantly. Plants grown on amended tailings accumulated lesser Cu and Ni but higher Mn and Zn. Plant biomass increased proportionally to manure and soil-manure mixtures application rates. Lemon grass produced more biomass than vetiver grass in either of the amended tailings. From the pot experiment, it can be suggested that application of chicken manure @ 5% (w/w) and in combination with lemon grass, could be a viable option for reclamation (phytostabilization) of toxic tailings. PMID:19810596

  18. Effects of poultry manure on soil biochemical properties in phthalic acid esters contaminated soil.

    PubMed

    Gao, Jun; Qin, Xiaojian; Ren, Xuqin; Zhou, Haifeng

    2015-12-01

    This study aimed to evaluate the effects of poultry manure (PM) on soil biological properties in DBP- and DEHP-contaminated soils. An indoor incubation experiment was conducted. Soil microbial biomass C (Cmic), soil enzymatic activities, and microbial phospholipid fatty acid (PLFA) concentrations were measured during incubation period. The results indicated that except alkaline phosphatase activity, DBP and DEHP had negative effects on Cmic, dehydrogenase, urease, protease activities, and contents of total PLFA. However, 5 % PM treatment alleviated the negative effects of PAEs on the above biochemical parameters. In DBP-contaminated soil, 5 % PM amendment even resulted in dehydroenase activity and Cmic content increasing by 17.8 and 11.8 % on the day 15 of incubation, respectively. During the incubation periods, the total PLFA contents decreased maximumly by 17.2 and 11.6 % in DBP- and DEHP-contaminated soils without PM amendments, respectively. Compared with those in uncontaminated soil, the total PLFA contents increased slightly and the value of bacPLFA/fugalPLFA increased significantly in PAE-contaminated soils with 5 % PM amendment. Nevertheless, in both contaminated soils, the effects of 5 % PM amendment on the biochemical parameters were not observed with 10 % PM amendment. In 10 % PM-amended soils, DBP and DEHP had little effect on Cmic, soil enzymatic activities, and microbial community composition. At the end of incubation, the effects of PAEs on these parameters disappeared, irrespective of PM amendment. The application of PM ameliorated the negative effect of PAEs on soil biological environment. However, further work is needed to study the effect of PM on soil microbial gene expression in order to explain the change mechanisms of soil biological properties. PMID:26298343

  19. Salmonella enterica Serovar Typhimurium and Escherichia coli Contamination of Root and Leaf Vegetables Grown in Soils with Incorporated Bovine Manure

    PubMed Central

    Natvig, Erin E.; Ingham, Steven C.; Ingham, Barbara H.; Cooperband, Leslie R.; Roper, Teryl R.

    2002-01-01

    Bovine manure, with or without added Salmonella enterica serovar Typhimurium (three strains), was incorporated into silty clay loam (SCL) and loamy sand (LS) soil beds (53- by 114-cm surface area, 17.5 cm deep) and maintained in two controlled-environment chambers. The S. enterica serovar Typhimurium inoculum was 4 to 5 log CFU/g in manure-fertilized soil. The conditions in the two environmental chambers, each containing inoculated and uninoculated beds of manure-fertilized soil, simulated daily average Madison, Wis., weather conditions (hourly temperatures, rainfall, daylight, and humidity) for a 1 March or a 1 June manure application and subsequent vegetable growing seasons ending 9 August or 28 September, respectively. Core soil samples were taken biweekly from both inoculated and uninoculated soil beds in each chamber. Radishes, arugula, and carrots were planted in soil beds, thinned, and harvested. Soils, thinned vegetables, and harvested vegetables were analyzed for S. enterica serovar Typhimurium and Escherichia coli (indigenous in manure). After the 1 March manure application, S. enterica serovar Typhimurium was detected at low levels in both soils on 31 May, but not on vegetables planted 1 May and harvested 12 July from either soil. After the 1 June manure application, S. enterica serovar Typhimurium was detected in SCL soil on 7 September and on radishes and arugula planted in SCL soil on 15 August and harvested on 27 September. In LS soil, S. enterica serovar Typhimurium died at a similar rate (P ≥ 0.05) after the 1 June manure application and was less often detected on arugula and radishes harvested from this soil compared to the SCL soil. Pathogen levels on vegetables were decreased by washing. Manure application in cool (daily average maximum temperature of <10°C) spring conditions is recommended to ensure that harvested vegetables are not contaminated with S. enterica serovar Typhimurium. Manure application under warmer (daily average maximum

  20. Persistence and Leaching Potential of Microorganisms and Mineral N in Animal Manure Applied to Intact Soil Columns

    PubMed Central

    Forslund, Anita; Bui, Xuan Thanh; Juhler, René K.; Petersen, Søren O.; Lægdsmand, Mette

    2013-01-01

    Pathogens may reach agricultural soils through application of animal manure and thereby pose a risk of contaminating crops as well as surface and groundwater. Treatment and handling of manure for improved nutrient and odor management may also influence the amount and fate of manure-borne pathogens in the soil. A study was conducted to investigate the leaching potentials of a phage (Salmonella enterica serovar Typhimurium bacteriophage 28B) and two bacteria, Escherichia coli and Enterococcus species, in a liquid fraction of raw pig slurry obtained by solid-liquid separation of this slurry and in this liquid fraction after ozonation, when applied to intact soil columns by subsurface injection. We also compared leaching potentials of surface-applied and subsurface-injected raw slurry. The columns were exposed to irrigation events (3.5-h period at 10 mm h−1) after 1, 2, 3, and 4 weeks of incubation with collection of leachate. By the end of incubation, the distribution and survival of microorganisms in the soil of each treatment and in nonirrigated columns with injected raw slurry or liquid fraction were determined. E. coli in the leachates was quantified by both plate counts and quantitative PCR (qPCR) to assess the proportions of culturable and nonculturable (viable and nonviable) cells. Solid-liquid separation of slurry increased the redistribution in soil of contaminants in the liquid fraction compared to raw slurry, and the percent recovery of E. coli and Enterococcus species was higher for the liquid fraction than for raw slurry after the four leaching events. The liquid fraction also resulted in more leaching of all contaminants except Enterococcus species than did raw slurry. Ozonation reduced E. coli leaching only. Injection enhanced the leaching potential of the microorganisms investigated compared to surface application, probably because of a better survival with subsurface injection and a shorter leaching path. PMID:23124240

  1. Soil Organic Matter in Agricultural Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In agricultural systems, soil organic matter (SOM) has been recognized as an important source of nutrients and maintains favorable soil structure. Organic matter is considered a major binding agent that stabilizes soil aggregates. Soil aggregates especially, water stable aggregates, are important i...

  2. Persistence of Mycobacterium avium subsp. paratuberculosis in soil, crops, and ensiled feed following manure spreading on infected dairy farms

    PubMed Central

    Fecteau, Marie-Eve; Hovingh, Ernest; Whitlock, Robert H.; Sweeney, Raymond W.

    2013-01-01

    The goal of this study was to determine the persistence of Mycobacterium avium subsp. paratuberculosis (MAP) in soil, crops, and ensiled feeds following manure spreading. This bacterium was often found in soil samples, but less frequently in harvested feeds and silage. Spreading of manure on fields used for crop harvest is preferred to spreading on grazing pastures. PMID:24179246

  3. Distillers By-Product Cattle Diets Enhance Reduced Sulfur Gas Fluxes from Feedlot Soils and Manures.

    PubMed

    Miller, Daniel N; Spiehs, Mindy J; Varel, Vincent H; Woodbury, Bryan L; Wells, James E; Berry, Elaine D

    2016-07-01

    Total reduced sulfur (TRS) emissions from animal feeding operations are a concern with increased feeding of high-sulfur distillers by-products. Three feeding trials were conducted to evaluate feeding wet distillers grain plus solubles (WDGS) on TRS fluxes. Fresh manure was collected three times during Feeding Trial 1 from cattle fed 0, 20, 40, and 60% WDGS. Fluxes of TRS from 40 and 60% WDGS manures were 3- to 13-fold greater than the 0 and 20% WDGS manures during the first two periods. In the final period, TRS flux from 60% WDGS was 5- to 22-fold greater than other WDGS manures. During Feeding Trial 2, 0 and 40% WDGS diets on four dates were compared in feedlot-scale pens. On two dates, fluxes from mixed manure and soil near the feed bunk were 3.5-fold greater from 40% WDGS pens. After removing animals, soil TRS flux decreased 82% over 19 d but remained 50% greater in 40% WDGS pens, principally from the wetter pen edges (1.9-fold greater than the drier central mound). During two cycles of cattle production in Feeding Trial 3, TRS soil fluxes were 0.3- to 4-fold greater over six dates for pens feeding WDGS compared with dry-rolled corn diet and principally from wetter pen edges. Soil TRS flux correlated with %WDGS, total N, total P, manure pack temperature, and surface temperature. Consistent results among these three trials indicate that TRS fluxes increase by two- to fivefold when cattle were fed greater levels of WDGS, but specific manure management practices may help control TRS fluxes. PMID:27380063

  4. Carbon dynamics in different soil types amended with pig slurry, pig manure and its biochar

    NASA Astrophysics Data System (ADS)

    Yanardag, Ibrahim H.; Zornoza, Raúl; Faz, Ángel; Büyükkiliç-Yanardaǧ, Asuman; Mermut, Ahmet R.

    2014-05-01

    Determining the structure and components of soil and soil organic matter is very important in terms of sustainable agriculture and forestry and greenhouse gases emissions. Organic management can increase labile C and N in the short-term, and total soil C and N in the long-term, but less is known about how management practices may affect soil organic C (SOC)quality and stability. Methods to improve the management of livestock slurries to reduce the environmental impact and carbon losses are gaining importance. There is a need to find the best wastes treatment which enhances soil fertility but also carbon sequestration, to mitigate the effects of global warming. The objective of this study was to assess the short-term changes in SOC pools, using raw pig slurry, the solid phase of pig slurry, and its biochar as amendment in different soil types (Regosol, Luvisol and Kastanozem). The three different amendments were applied at 5 g C kg-1 soil. An unamended soil for each type was used as control. Soils were incubated in triplicate for 60 days at 25ºC and at 55% of their water holding capacity. Samples were sampled to monitor the evolution of soil organic and inorganic carbon, recalcitrant carbon, soluble carbon, carbon mineralization, SOC thermal distribution (thermogravimetric analysis - differential scanning calorimetry - quadrupole mass spectrometry), and characterization of functional groups (Fourier transform infrared spectroscopy (FTIR)). Results showed that soils amended with raw pig slurry and the solid phase of the slurry showed higher values of soluble carbon, and higher carbon mineralization rates compared to biochar application, which showed values similar to controls. SOC increased at the end of incubation with biochar and the solid phase of the slurry applications in Kastanozem and Regosol. Thermogravimetric results showed an increased weight loss of the Regosol compared to Luvisol and Kastanozem, owing to the higher content of soil carbonates. Luvisol and

  5. Ammonia Volatilization Loss from Surface Applied Livestock Manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia (NH3) emission from livestock manures used in agriculture reduces N uptake by crops and negatively impacts air quality. This laboratory study was conducted to evaluate NH3 emission from different livestock manures applied to two soils: Candler fins sand (CFS; light-textured soil, pH 6.8 and...

  6. Dairy manure field applications – How much is too much?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Applying dairy manure to agricultural fields can help increase crop yields, improve soil water-holding capacity, and enhance soil fertility. However, when manures are applied to fields at high rates over a period of several years, nutrients can accumulate, causing eutrophication in drainage waterwa...

  7. Effect of farmyard manure rate on water erosion of a Mediterranean soil: determination of the critical point of inefficacy

    NASA Astrophysics Data System (ADS)

    Annabi, Mohamed; Bahri, Haithem; Cheick M'Hamed, Hatem; Hermessi, Taoufik

    2016-04-01

    Intensive cultivation of soils, using multiple soil tillage, led to the decrease of their organic matter content and structural stability in several cultivated area of the Mediterranean countries. In these degraded soils, the addition of organic products, traditionally the animal manure, should improve soil health among them the resistance of soil to water erosion. The aim of this study was to evaluate after 1 year of the addition to a cambisoil different doses of farmyard manure on soil organic matter content, on microbial activity and on aggregate stability (proxy to soil resistance to water erosion). The statistical process (bilinear model) was used to found a point at which the addition of the organic product no longer influences the soil resistance to erosion. The farmyard manure issued from a cow breeding was composted passively during 4 months and used to amend a small plots of a cultivated cambisol (silty-clay texture, 0.9% TOC) located in the northeast of Tunisia (Morneg region). The manure was intimately incorporate to the soil. The manure organic matter content was 31%, and its isohumic coefficient was 49%. Twelve dose of manure were tested: from 0 to 220 t C.ha-1. The experiment was started on September 2011. In November 2012, soil sampling was done and soil organic carbon content (Walkley-Black method) and soil aggregate stability (wet method of Le Bissonnais) were assessed. A laboratory incubations of soil+manure mixtures, with the same proportions as tested in the field conditions, was carried at 28°C and at 75% of the mixture field capacity water retention. Carbon mineralization was monitored during three months incubation. Results show that the addition of farmyard manure stimulated the microbial activity proportionally to the added dose. This activation is due to the presence of easily biodegradable carbon in the manure, which increases with increasing manure dose. On the other hand, the addition of manure increased the aggregate stability with

  8. Manure placement depth impacts on crop yields and N retained in soil.

    PubMed

    Reiman, M; Clay, D E; Carlson, C G; Clay, S A; Reicks, G; Clay, D W; Humburg, D E

    2009-01-01

    The objective of this study was to determine the impact of manure placement depth on crop yield and N retention in soil. Experimental treatments were deep manure injection (45 cm), shallow manure injection (15 cm), and conventional fertilizer-based management with at least three replications per site. Water infiltration, and changes in soil N and P amounts were measured for up to 30 months and crop yield monitored for three seasons following initial treatment. Deep and shallow manure injections differed in soil inorganic N distributions. For example, in the manure slot the spring following application, NO(3)-N in the surface 60 cm was higher (p < .01) when injected 15 cm (21.4 micro g/g) into the soil than 45 cm (11.7 micro g/g), whereas NH(4)-N had opposite results with shallow injection having less (p = 0.045) NH(4)-N (102 micro g/g) than deep (133 micro g/g) injection. In the fall one year after the manure was applied, NO(3)-N and NH(4)-N were lower (p = 0.001) in the shallow injection than the deep injection. The net impact of manure placement on total N was that deep injection had 31, 59, and 44 more kg N ha(- 1) than the shallow injection treatment 12, 18, and 30 months after application, respectively. Deep manure injection did not impact soybean (Glycine max L.) yield, however corn (Zea mays L.) yield increased if N was limiting. The higher corn yield in the deep injected treatment was attributed to increased N use efficiency. Higher inorganic N amounts in the deep injection treatment were attributed to reduced N losses through ammonia volatilization, leaching, or denitrification. Results suggest that deep manure placement in glacial till soil may be considered a technique to increase energy, N use efficiency, and maintain surface and ground water quality. However, this technique may not work in glacial outwash soils due to the inability to inject into a rocky subsurface. PMID:19089718

  9. The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils.

    PubMed

    Sandberg, Kyle D; LaPara, Timothy M

    2016-02-01

    The goal of this study was to determine the fate of antibiotic resistance genes (ARGs) and class 1 integrons following the application of swine and dairy manure to soil. Soil microcosms were amended with either manure from swine fed subtherapeutic levels of antibiotics or manure from dairy cows that were given antibiotics only rarely and strictly for veterinary purposes. Microcosms were monitored for 6 months using quantitative PCR targeting 16S rRNA genes (a measure of bacterial biomass), intI1, erm(B), tet(A), tet(W) and tet(X). Swine manure had 10- to 100-fold higher levels of ARGs than the dairy manure, all of which decayed over time after being applied to soil. A modified Collins-Selleck model described the decay of ARGs in the soil microcosms well, particularly the characteristic in which the decay rate declined over time. By the completion of the soil microcosm experiments, ARGs in the dairy manure-amended soils returned to background levels, whereas the ARGs in swine manure remained elevated compared to control microcosms. Our research suggests that the use of subtherapeutic use of antibiotics in animal feed could lead to the accumulation of ARGs in soils to which manure is applied. PMID:26738555

  10. Adsorption and degradation of five selected antibiotics in agricultural soil.

    PubMed

    Pan, Min; Chu, L M

    2016-03-01

    Large quantities of antibiotics are being added to agricultural fields worldwide through the application of wastewater, manures and biosolids, resulting in antibiotic contamination and elevated environmental risks in terrestrial environments. Most studies on the environmental fate of antibiotics focus on aquatic environments or wastewater treatment plants. Little is known about the behavior of antibiotics at environmentally relevant concentrations in agricultural soil. In this study we evaluated the adsorption and degradation of five different antibiotics (tetracycline, sulfamethazine, norfloxacin, erythromycin, and chloramphenicol) in sterilized and non-sterilized agricultural soils under aerobic and anaerobic conditions. Adsorption was highest for tetracycline (Kd, 1093 L/kg), while that for sulfamethazine was negligible (Kd, 1.365 L/kg). All five antibiotics were susceptible to microbial degradation under aerobic conditions, with half-lives ranging from 2.9 to 43.3 d in non-sterilized soil and 40.8 to 86.6 d in sterilized soil. Degradation occurred at a higher rate under aerobic conditions but was relatively persistent under anaerobic conditions. For all the antibiotics, a higher initial concentration was found to slow down degradation and prolong persistence in soil. The degradation behavior of the antibiotics varied in relation to their physicochemical properties as well as the microbial activities and aeration of the recipient soil. The poor adsorption and relative persistence of sulfamethazine under both aerobic and anaerobic conditions suggest that it may pose a higher risk to groundwater quality. An equation was proposed to predict the fate of antibiotics in soil under different field conditions, and assess their risks to the environment. PMID:26745292

  11. Arsenic uptake by two vegetables grown in two soils amended with As-bearing animal manures.

    PubMed

    Yao, Li-Xian; Li, Guo-Liang; Dang, Zhi; He, Zhao-Huan; Zhou, Chang-Min; Yang, Bao-Mei

    2009-05-30

    Organoarsenicals are widely used as growth promoters in animal feed, resulting in unabsorbed arsenic (As) left in animal manures. A pot experiment was conducted to investigate the growth and As uptake of amaranth (Amaranthus tricolor Linn, a crop with an axial root system) and water spinach (Ipomoea aquatica Forsk, a crop with a fibrous root system) grown in a paddy soil (PS) and a lateritic red soil (LRS) amended with 2% and 4% (w/w) As-bearing chicken manure and pig manure, respectively. Soils without any fertilizers were the controls. The biomass, As contents and total As uptake of the shoots, As transfer factors (TFs) from roots to shoots and the root/shoot (R/S) ratios of water spinach were significantly higher than those of amaranth (p<0.0015). The biomass, total As uptake and R/S ratios showed significant difference for soil types (p<0.0031). Manure amendments increased the biomass of both vegetables, reduced the As contents in amaranth but increased those in water spinach. The As contents were negatively correlated with the biomass in amaranth, but positive correlation was observed for water spinach. The total As uptake by amaranth was decreased in PS and insignificantly affected in LRS by manure application, but that by water spinach was significantly increased in both soils. We suggest that the higher As uptake by water spinach might be related to its root structure and R/S ratio. Heavy application of As-bearing animal manures should be avoided in water spinach. PMID:18929443

  12. Nitrogen mineralization in soils amended with manure as affected by environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen is the most deficient nutrient in most agricultural production systems; therefore, the economic sustainability of most crops is dependent on adequate supply. Consideration for N availability must be taken into account when incorporating manure into a cropping system’s management practice. S...

  13. Trans-disciplinary soil science research: Impacts of dairy nutrition on manure chemistry and the environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The on-going trend of consolidation and intensification of animal agriculture requires a greater dependence on purchased feed. Larger livestock farms and more imported feed can result in the excretion of manure nutrients that may surpass the recycling capacity of local land, air, and water resource...

  14. Laboratory Study of Oxytetracycline Degradation Kinetics in Animal Manure and Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a major member of tetracyclines, oxytetracycline (OTC) is widely administered to animals in confined feeding operations. To diminish the contamination of OTC in the environment resulting from the application of OTC-contained manure as fertilizers to agriculture lands, OTC degradation kinetics in ...

  15. Evaluating antibiotic resistance genes in soils with applied manures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibiotics are commonly used in livestock production to promote growth and combat disease. Recent studies have shown the potential for spread of antibiotic resistance genes (ARG) to the environment following application of livestock manures. In this study, concentrations of bacteria with ARG in soi...

  16. Greenhouse gas fluxes from agricultural soils of Kenya and Tanzania

    NASA Astrophysics Data System (ADS)

    Rosenstock, Todd S.; Mpanda, Mathew; Pelster, David E.; Butterbach-Bahl, Klaus; Rufino, Mariana C.; Thiong'o, Margaret; Mutuo, Paul; Abwanda, Sheila; Rioux, Janie; Kimaro, Anthony A.; Neufeldt, Henry

    2016-06-01

    Knowledge of greenhouse gas (GHG) fluxes in soils is a prerequisite to constrain national, continental, and global GHG budgets. However, data characterizing fluxes from agricultural soils of Africa are markedly limited. We measured carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) fluxes at 10 farmer-managed sites of six crop types for 1 year in Kenya and Tanzania using static chambers and gas chromatography. Cumulative emissions ranged between 3.5-15.9 Mg CO2-C ha-1 yr-1, 0.4-3.9 kg N2O-N ha-1 yr-1, and -1.2-10.1 kg CH4-C ha-1 yr-1, depending on crop type, environmental conditions, and management. Manure inputs increased CO2 (p = 0.03), but not N2O or CH4, emissions. Soil cultivation had no discernable effect on emissions of any of the three gases. Fluxes of CO2 and N2O were 54-208% greater (p < 0.05) during the wet versus the dry seasons for some, but not all, crop types. The heterogeneity and seasonality of fluxes suggest that the available data describing soil fluxes in Africa, based on measurements of limited duration of only a few crop types and agroecological zones, are inadequate to use as a basis for estimating the impact of agricultural soils on GHG budgets. A targeted effort to understand the magnitude and mechanisms underlying African agricultural soil fluxes is necessary to accurately estimate the influence of this source on the global climate system and for determining mitigation strategies.

  17. Land application of tylosin and chlortetracycline swine manure: Impacts to soil nutrients and soil microbial community structure.

    PubMed

    Stone, James J; Dreis, Erin K; Lupo, Christopher D; Clay, Sharon A

    2011-01-01

    The land application of aged chortetracycle (CTC) and tylosin-containing swine manure was investigated to determine associated impacts to soil microbial respiration, nutrient (phosphorus, ammonium, nitrate) cycling, and soil microbial community structure under laboratory conditions. Two silty clay loam soils common to southeastern South Dakota were used. Aerobic soil respiration results using batch reactors containing a soil-manure mixture showed that interactions between soil, native soil microbial populations, and antimicrobials influenced CO(2) generation. The aged tylosin treatment resulted in the greatest degree of CO(2) inhibition, while the aged CTC treatment was similar to the no-antimicrobial treatment. For soil columns in which manure was applied at a one-time agronomic loading rate, there was no significant difference in soil-P behavior between either aged CTC or tylosin and the no-antimicrobial treatment. For soil-nitrogen (ammonium and nitrate), the aged CTC treatment resulted in rapid ammonium accumulation at the deeper 40cm soil column depth, while nitrate production was minimal. The aged CTC treatment microbial community structure was different than the no-antimicrobial treatment, where amines/amide and carbohydrate chemical guilds utilization profile were low. The aged tylosin treatment also resulted in ammonium accumulation at 40 cm column depth, however nitrate accumulation also occurred concurrently at 10 cm. The microbial community structure for the aged tylosin was also significantly different than the no-antimicrobial treatment, with a higher degree of amines/amides and carbohydrate chemical guild utilization compared to the no-antimicrobial treatment. Study results suggest that land application of CTC and tylosin-containing manure appears to fundamentally change microbial-mediated nitrogen behavior within soil A horizons. PMID:21877979

  18. ATTACHMENT OF ESCHERICHIA COLI TO SOIL AGGREGATES AS AFFECTED BY AGGREGATE WATER CONTENT AND PRESENCE OF MANURE COLLOIDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many soils contain relatively large structural units that do not slack when soil is being wetted. Soil aggregates, obtained from dry soil samples by sieving, present a model media to study the interactions of intact soils with dissolved or suspended contaminants. Land-applied manures may contain var...

  19. Microbial and chemical markers: runoff transfer in animal manure-amended soils.

    PubMed

    Jaffrezic, Anne; Jardé, Emilie; Pourcher, Anne-Marie; Gourmelon, Michèle; Caprais, Marie-Paule; Heddadj, Djilali; Cottinet, Patrice; Bilal, Muhamad; Derrien, Morgane; Marti, Romain; Mieszkin, Sophie

    2011-01-01

    Fecal contamination of water resources is evaluated by the enumeration of the fecal coliforms and Enterococci. However, the enumeration of these indicators does not allow us to differentiate between the sources of fecal contamination. Therefore, it is important to use alternative indicators of fecal contamination to identify livestock contamination in surface waters. The concentration of fecal indicators (, enteroccoci, and F-specific bacteriophages), microbiological markers (Rum-2-bac, Pig-2-bac, and ), and chemical fingerprints (sterols and stanols and other chemical compounds analyzed by 3D-fluorescence excitation-matrix spectroscopy) were determined in runoff waters generated by an artificial rainfall simulator. Three replicate plot experiments were conducted with swine slurry and cattle manure at agronomic nitrogen application rates. Low amounts of bacterial indicators (1.9-4.7%) are released in runoff water from swine-slurry-amended soils, whereas greater amounts (1.1-28.3%) of these indicators are released in runoff water from cattle-manure-amended soils. Microbial and chemical markers from animal manure were transferred to runoff water, allowing discrimination between swine and cattle fecal contamination in the environment via runoff after manure spreading. Host-specific bacterial and chemical markers were quantified for the first time in runoff waters samples after the experimental spreading of swine slurry or cattle manure. PMID:21546682

  20. Use of poultry manure for amendment of oil-polluted soils in relation to growth of maize (Zea mays L. )

    SciTech Connect

    Amadi, A. ) Ue Bari, Y. )

    1992-01-01

    The use of poultry manure for amelioration of oil-polluted soil was investigated by growing maize (Zea mays L.) under two experimental conditions: increasing the poultry manure rate from 0-20 kg ha{sup {minus}1} at 0.03 L/kg oil treatment level; and increasing the rate of oil treatment from 0-0.2 between the rate of poultry manure added and the enhancement of maize growth. But only a 16-kg ha{sup {minus}1} poultry manure rate and above exerted some beneficial effects on the maize growth relative to the unpolluted, unamended soil. Conversely, increasing oil concentration, regardless of the poultry manure level added, depressed maize growth, but only at oil levels of 0.03 L/kg. A positive correlation was recorded between maize height and leaf area growing in oil-treated soil amended with different poultry manure rates and growing in oil-treated amended with 20 kg ha{sup {minus}1} poultry manure. Amending oil-contaminated soils with poultry manure, should possibly improve soil fertility and maize production.

  1. Soil temperature regulates phosphorus loss from lysimeters following fall and winter-applied manure application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Applying manure in the fall and winter increases the potential that some portion of the nutrients will be lost prior to crop uptake in the spring. In order to minimize the risk of nutrient loss, recommendations are often based on soil temperature, since biological activity has been shown to decrease...

  2. Soil temperature regulates nitrogen loss from lysimeters following fall and winter manure application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many producers practice fall and winter manure spreading for economic and practical reasons. In order to minimize the risk of nitrogen loss between application and crop uptake in the spring, university extension publications and industry professionals often make recommendations based on soil tempera...

  3. Soil Property and Landscape Position Effects on Seasonal Nitrogen Mineralization of Composted Dairy Manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop better management practices that optimize the amount of N derived from manure, more information is needed regarding the mineralization and dynamics of N under normal field conditions. Thus, an in situ field study, using three different soil types located in close proximity, was conducted ...

  4. Using cover crops and animal manure to maintain or improve soil properties after corn stover removal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of no-till cover crops and application of animal manure following corn (Zea mays L.) stover removal may be potential management strategies to ameliorate any negative effects that stover removal may have on soil properties and processes. We evaluated the effects of winter rye (Secale ce...

  5. Influence of sustainable management on aggregate stability and soil organic matter on agricultural soil of southern Spain

    NASA Astrophysics Data System (ADS)

    Morugan-Coronado, Alicia; Arcenegui, Victoria; Mataix-Solera, Jorge; Gomez-Lucas, Ignacio; Garcia-Orenes, Fuensanta

    2016-04-01

    Intensive agriculture has increased crop yields but also posed severe environmental problems. Unsustainable land management such as excessive tillage can lead to a loss of soil fertility and a drastic reduction in the aggregate stability and soil organic matter content. However sustainable agriculture can keep good crop yields with minimal impact on ecological factors conserving the soil quality and its ecosystem services. Sustainable agriculture management promotes the maintenance of soil organic matter levels providing plant nutrients through the microbial decomposition of organic materials. Also this management has a positive effect on soil structure with the improvement of stability of aggregates. The resistance of soil aggregates to the slaking and dispersive effects of water (aggregate stability) is important for maintaining the structure in arable soils. Our purpose was to investigate and compare the effects of sustainable agricultural practices versus intensive agriculture on aggregate stability and soil organic matter. Three agricultural areas are being monitored in the southern of Spain, two of them with citrus orchards (AL) and (FE) and one with grapevine(PA). In all of them two agricultural treatments are being developed, organic with no-tillage management(O) and inorganic fertilization with herbicide application and intensive tillage (I). The sustainable agricultural management (manure, no tillage and vegetation cover) contributed to the improve of soil conditions, increasing organic matter and aggregate stability. Meanwhile, herbicide treatment and intensive tillage with inorganic fertilization managements resulted in the decreasing of aggregate stability and low levels of soil organic carbon. Soil organic matter content is generally low in all unsustainable treatments plots and tends to decline in aggregate stability and soil physical condition. In both treatments the crop yield are comparable.

  6. Ice nucleation properties of agricultural soil dusts

    NASA Astrophysics Data System (ADS)

    Steinke, Isabelle; Funk, Roger; Busse, Jacqueline; Iturri, Antonela; Kirchen, Silke; Leue, Martin; Möhler, Ottmar; Schwartz, Thomas; Sierau, Berko; Toprak, Emre; Ulrich, Andreas; Hoose, Corinna; Leisner, Thomas

    2015-04-01

    Soil dust particles emitted from agricultural areas contain large amounts of organic material such as fungi, bacteria and plant debris. Being carrier for potentially highly ice-active biological particles, agricultural soil dusts are candidates for being very ice-active as well. In this work, we present ice nucleation experiments conducted in the AIDA cloud chamber. We investigated the ice nucleation efficiency of four types of soil dust from different regions of the world. Results are presented for the immersion freezing and the deposition nucleation mode: all soil dusts show higher ice nucleation efficiencies than desert dusts, especially at temperatures above 254 K. For one soil dust sample, the effect of heat treatments was investigated. Heat treatments did not affect the ice nucleation efficiency which presumably excludes primary biological particles as the only source of the increased ice nucleation efficiency. Therefore, organo-mineral complexes or organic compounds may contribute substantially to the high ice nucleation activity of agricultural soil dusts.

  7. Survival and Persistence of Nonpathogenic Escherichia coli and Attenuated Escherichia coli O157:H7 in Soils Amended with Animal Manure in a Greenhouse Environment.

    PubMed

    Sharma, Manan; Millner, Patricia D; Hashem, Fawzy; Camp, Mary; Whyte, Celia; Graham, Lorna; Cotton, Corrie P

    2016-06-01

    Animal manure provides benefits to agriculture but may contain pathogens that contaminate ready-to-eat produce. U.S. Food and Drug Administration standards include 90- or 120-day intervals between application of manure and harvest of crop to minimize risks of pathogen contamination of fresh produce. Data on factors affecting survival of Escherichia coli in soils under greenhouse conditions are needed. Three separate studies were conducted to evaluate survival of nonpathogenic E. coli (gEc) and attenuated E. coli O157:H7 (attO157) inoculated at either low (4 log CFU/ml) or high (6 log CFU/ml) populations over 56 days. Studies involved two pot sizes (small, 398 cm(3); large, 89 liters), three soil types (sandy loam, SL; clay loam, CL; silt loam, SIL), and four amendments (poultry litter, PL; dairy manure liquids, DML; horse manure, HM; unamended). Amendments were applied to the surface of the soil in either small or large containers. Study 1, conducted in regularly irrigated small containers, showed that populations of gEc and attO157 (2.84 to 2.88 log CFU/g) in PL-amended soils were significantly (P < 0.05) greater than those in DML-amended (0.29 to 0.32 log CFU/g [dry weight] [gdw]) or unamended (0.25 to 0.28 log CFU/gdw) soils; soil type did not affect E. coli survival. Results from study 2, in large pots with CL and SIL, showed that PL-amended soils supported significantly higher attO157 and gEc populations compared with HM-amended or unamended soils. Study 3 compared results from small and large containers that received high inoculum simultaneously. Overall, in both small and large containers, PLamended soils supported higher gEc and attO157 populations compared with HM-amended and unamended soils. Populations of attO157 were significantly greater in small containers (1.83 log CFU/gdw) than in large containers (0.65 log CFU/gdw) at week 8, perhaps because small containers received more regular irrigation than large pots. Regular irrigation of small pots may have

  8. Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China.

    PubMed

    Wei, Ruicheng; Ge, Feng; Zhang, Lili; Hou, Xiang; Cao, Yinan; Gong, Lan; Chen, Ming; Wang, Ran; Bao, Endong

    2016-02-01

    The occurrence of 13 veterinary drugs were studied in soil fertilized with animal manures in Eastern China. The 69 soil samples were obtained from twenty-three vegetable fields in 2009 and analysed for selected veterinary drugs by HPLC-MS/MS at soil depths of 0-20, 20-40 and 40-60 cm, and two additional samples were re-analysed from an earlier study from November 2011. Results showed that animal wastes, especially those from poultry farms, were one of pollution sources of veterinary drugs in soil. The detection frequency of veterinary drugs in soil was 83%, 91% and 87% in the three soil depths, respectively. The detection rates for the five classes of drugs in soils followed the rank order cyromazine > tetracyclines > sulfonamides > fluoroquinolones > florfenicol. Veterinary drugs were detected in soil layers at 20-40 and 40-60 cm depth to a greater extent than at 0-20 cm depth. The results of the same point in years 2009 and 2011 indicated that veterinary drugs accumulate easily and persist in the deeper soil. In addition, residue levels of veterinary drugs in soil were related to the animal species the manure was derived from. Overall, the predominance of tetracyclines in sampled soils underscored the need to regulate their veterinary use in order to improve the management and treatment of associated releases. PMID:26610297

  9. Long term effects of annual additions of animal manure on soil chemical, physical, and biological properties in the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the effects of long-term annual beef manure amendments and wheat and rye cover crops on selected chemical, physical and biological properties of a typical Midwest U.S. soil under corn silage production. The treatments included: manure application/cover cr...

  10. Subsurface application of manure slurries for conservation tillage and pasture soils and their impact on the nitrogen balance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manure injection provides for soil incorporation of manures in no-till and perennial forage production. Injection is expected to substantially reduce nitrogen loss due to ammonia volatilization, but a portion of that N conservation may be offset by greater denitrification and leaching losses. This ...

  11. Fate of Escherichia coli 0157:H7 and Salmonella from Contaminated Manure Slurry Applied to Soil Surrounding Tall Fescue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective of this study was to investigate the potential transfer of E. coli O157:H7 and Salmonella from soil fertilized with contaminated manure slurry into the tissue of tall fescue plants. Tall fescue plants (n = 50) were fertilized with a manure slurry inoculated with E. coli O157:H7 and Salmon...

  12. Do drying and rewetting cycles modulate effects of sulfadiazine spiked manure in soil?

    PubMed

    Jechalke, Sven; Radl, Viviane; Schloter, Michael; Heuer, Holger; Smalla, Kornelia

    2016-05-01

    Naturally occurring drying-rewetting events in soil have been shown to affect the dissipation of veterinary antibiotics entering soil by manure fertilization. However, knowledge of effects on the soil microbial community structure and resistome is scarce. Here, consequences of drying-rewetting cycles on effects of sulfadiazine (SDZ) in soil planted with Dactylis glomerata L. were investigated in microcosms. Manure containing SDZ or not was applied to the pregrown grass and incubated for 56 days in a climate chamber. Water was either added daily or reduced during two drying events of 7 days, each followed by a recovery phase. Total community DNA was analyzed to reveal the effects on the bacterial community structure and on the abundance of sul1, sul2, intI1 ,intI2, qacE+qacEΔ1, traN and korB genes relative to 16S rRNA genes. 16S rRNA gene-based DGGE fingerprints indicated that drying-rewetting cycles modulated the effects of SDZ on the bacterial community structure in the soil. Furthermore, the SDZ treatment increased the relative abundance of sulfonamide resistance and integrase genes compared to the control. However, this increase was not different between moisture regimes, indicating that drying-rewetting had only a negligible effect on the selection of the resistome by SDZ in the manured soil. PMID:27053757

  13. Estimation of decay rates for fecal indicator bacteria and bacterial pathogens in agricultural field-applied manure

    EPA Science Inventory

    Field-applied manure is an important source of pathogenic exposure in surface water bodies for humans and ecological receptors. We analyzed the persistence and decay of fecal indicator bacteria and bacterial pathogens from three sources (cattle, poultry, swine) for agricultural f...

  14. Geographic information system based manure application plan.

    PubMed

    Basnet, Badri B; Apan, Armando A; Raine, Steven R

    2002-02-01

    A geographic information system (GIS) based manure application plan has been developed for the site-specific application of animal waste to agricultural fields in the Westbrook sub-catchment of the Murray-Darling Basin, south-east Queensland, Australia. Sites suitable for animal waste application were identified using a GIS based weighted linear combination (WLC) model. The degree of land suitability for animal waste application was determined using a range of social, economic, environmental, and agricultural factors. As eutrophication and toxic blue-green algae blooms are a known problem in the catchment, the manure application rates were limited to the rate of crop phosphorus removal. Maximum manure application rate was calculated spatially by taking the crop nutrient (P2O5) requirement and the manure nutrient (P2O5) content into account. The environmental suitability of the fields receiving animal waste was considered in prescribing the final application rate of solid and liquid manures generated by local animal production facilities. The degree of site suitability of the agricultural fields was also used to suggest manure management practices to minimise the socio-environmental risks and increase the nutrient use efficiency of the applied manure. The amount of ammonium nitrogen (NH4-N) that would be added to the soil by satisfying the P2O5 requirement using manure sources was also calculated and an applied NH4-N map was created. This map could be used to assist farmers identify additional nitrogen requirements after manure application. PMID:11995243

  15. Long-term manure amendment increases organic C storage and stabilization in Loess soil

    NASA Astrophysics Data System (ADS)

    Liang, B.; Zhao, W.; Yang, X.; Zhou, J.

    2011-12-01

    Soil is the largest terrestrial pool for organic carbon in the biosphere. Therefore, sequestration of C in soils is often seen as a 'win-win' proposition. The long-term combined application of manure with chemical fertilizers had increased the accumulation of organic carbon in soil (SOC); and the results from the application of chemical fertilizers on the stock of SOC in soil were inconsistent. Furthermore, less studies have been conducted to evaluate the effect of different fertilization, especially the application of N fertilizer, on the stabilization of SOC in the different fertilized soils. In this study, we hypothesized that the long-term different fertilization not only affect organic C storage, but also its stabilization in soil. Therefore, we conducted an incubation experiment with the soils from a long-term fertilization trials. Soil samples were collected from the three fertilized plots, ((1) no fertilizer, NF soil, (2) inorganic NPK fertilizers, NPK soil; and (3) Manure + NPK fertilizers, MNPK soil) of a long-term fertilization experiment initiated in 1990 in Shaanxi, China. The soils were incubated at 28o C for 30 days with the different treatments, i.e., (1) control with no addition (CK), (2) added 200 mg N kg-1 soil (+ NH4-N), (3) added 1000 mg C kg-1 soil (+ glucose), and (4) added 200 mg N kg-1 soil + 1000 mg C kg-1 soil (+glucose + NH4-N). The evolved CO2 was determined by titration of the excess NaOH with 0.1 M HCl. Decomposition of SOC in the different soils was evaluate with the accumulation of released CO2-C based on dry soil (in mg C kg-1 soil), and the decomposition rate of SOC during the incubation (in % of total organic C in soil). Long-term different fertilization treatments (NPK, and MNPK soil) significantly increased the organic C storage in 0-100 cm soil profile. SOC storage in MNPK soil (83.0 t ha-1) was significantly higher than NPK soil (80.8 t ha-1), and both were significantly higher than the no fertilizer soil. The decomposition

  16. Redistribution of soil and soil organic carbon on agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patterns of soil organic carbon (SOC) vary widely across the landscape leading to large uncertainties in the SOC budgets for agricultural systems especially for landscapes where water, tillage, and wind erosion redistributes soil and SOC across the landscape. It is often assumed that soil erosion r...

  17. Does manure management affect the latent greenhouse gas emitting potential of livestock manures?

    PubMed

    Pratt, Chris; Redding, Matthew; Hill, Jaye; Jensen, Paul D

    2015-12-01

    With livestock manures being increasingly sought as alternatives to costly synthetic fertilisers, it is imperative that we understand and manage their associated greenhouse gas (GHG) emissions. Here we provide the first dedicated assessment into how the GHG emitting potential of various manures responds to the different stages of the manure management continuum (e.g., from feed pen surface vs stockpiled). The research is important from the perspective of manure application to agricultural soils. Manures studied included: manure from beef feedpen surfaces and stockpiles; poultry broiler litter (8-week batch); fresh and composted egg layer litter; and fresh and composted piggery litter. Gases assessed were methane (CH4) and nitrous oxide (N2O), the two principal agricultural GHGs. We employed proven protocols to determine the manures' ultimate CH4 producing potential. We also devised a novel incubation experiment to elucidate their N2O emitting potential; a measure for which no established methods exist. We found lower CH4 potentials in manures from later stages in their management sequence compared with earlier stages, but only by a factor of 0.65×. Moreover, for the beef manures this decrease was not significant (P<0.05). Nitrous oxide emission potential was significantly positively (P<0.05) correlated with C/N ratios yet showed no obvious relationship with manure management stage. Indeed, N2O emissions from the composted egg manure were considerably (13×) and significantly (P<0.05) higher than that of the fresh egg manure. Our study demonstrates that manures from all stages of the manure management continuum potentially entail significant GHG risk when applied to arable landscapes. Efforts to harness manure resources need to account for this. PMID:26320816

  18. Transport of manure-borne testosterone in soils affected by artificial rainfall events.

    PubMed

    Qi, Yong; Zhang, Tian C

    2016-04-15

    Information is very limited on fate and transport of steroidal hormones in soils. In this study, the rainfall simulation tests were conducted with a soil slab reactor to investigate the transport of manure-borne testosterone in a silty-clay loam soil under six controllable operation conditions (i.e., three rainfall intensities and two tillage practices). The properties [e.g., rainwater volume, particle size distribution (PSD)] of the slurry samples collected in runoff and leachate at different time intervals were measured; their correlation with the distribution of testosterone among runoff, leachate and soil matrix was analyzed. The results indicated that more than 88% of the testosterone was held by the applied manure and/or soil matrix even under the rainfall intensity of 100-year return frequency. The runoff facilitated testosterone transport through both dissolved and particle-associated phases, with the corresponding mass ratio being ∼7 to 3. Soil particles collected through runoff were mainly silt-sized aggregates (STA) and clays, indicating the necessity of using partially-dispersed soil particles as testing materials to conduct batch tests (e.g., sorption/desorption). No testosterone was detected at the soil depth >20 cm or in the leachate samples, indicating that transport of testosterone through the soil is very slow when there is no preferential flow. Tillage practice could impede the transport of testosterone in runoff. For the first time, results and the methodologies of this study allow one to quantify the hormone distribution among runoff, leachate and soil matrix at the same time and to obtain a comprehensive picture of the F/T of manure-borne testosterone in soil-water environments. PMID:26922564

  19. Cadmium availability and uptake by radish (Raphanus sativus) grown in soils applied with wheat straw or composted pig manure.

    PubMed

    Shan, Hong; Su, Shiming; Liu, Rongle; Li, Shutian

    2016-08-01

    Soil cadmium (Cd) availability and uptake by cherry-red radish (Raphanus sativus) grown in Cd-contaminated soils after addition with wheat straw or composted pig manure were studied. The results indicated that wheat straw application promoted radish growth until the second harvest, while pig manure application improved radish biomass in Acid Ferralsols regardless of harvesting seasons. Application with pig manure might be more effective in lowering the Cd uptake by radish than wheat straw. Especially when pig manure of 11.9 g TOC kg(-1) amended into Acid Ferralsols, Cd contents in leaves and roots of radish decreased by 89.2 and 95.7 % at the second harvest, respectively. The changes in Cd fractions distribution in soils after application were contributed to the decline of Cd availability. Furthermore, significantly negative linear correlation (P < 0.05) between the ratio of humic acid (HA) and fulvic acid (FA) in soils and exchangeable Cd was also observed. However, the significantly negative relationship (P < 0.01) between soil pH and exchangeable Cd was merely found in pig manure-treated Acid Ferralsols. The increases in HA/FA ratio or pH values in soils after adding organic materials were also responsible for the decrease of Cd availability in soils and uptake by radish. Thus, it is recommended to stabilize soil Cd and reducing plant uptake by application with composted manure without or slightly contaminated with metals. PMID:27098882

  20. Dechlorination of polychlorinated biphenyl-contaminated soil via anaerobic composting with pig manure.

    PubMed

    Zhang, Chi; Du, Yao; Tao, Xiao-Qing; Zhang, Kun; Shen, Dong-Sheng; Long, Yu-Yang

    2013-10-15

    Anaerobic dechlorination is an effective degradation pathway of higher chlorinated polychlorinated biphenyls (PCBs). The efficiency of anaerobic composting remediation of PCB-contaminated soil using pig manure was determined. The results show that the dechlorination of PCB-contaminated soil via anaerobic composting with pig manure is feasible. PCB concentration is the most critical factor. Elevated PCB concentrations can inhibit dechlorination but does not disrupt the anaerobic fermentation process. At 1 mg kg(-1) PCBs, the degradation rate of five or more chlorinated biphenyls is 43.8%. The highest dechlorination performance in this experiment was obtained when the soil-to-organic waste ratio, carbon-to-nitrogen ratio, moisture content, and PCB concentration were 2:3, 20, 60%, and 1 mg kg(-1), respectively. PMID:23910395

  1. Future trends in soil cadmium concentration under current cadmium fluxes to European agricultural soils.

    PubMed

    Six, L; Smolders, E

    2014-07-01

    The gradual increase of soil cadmium concentrations in European soils during the 20th century has prompted environmental legislation to limit soil cadmium (Cd) accumulation. Mass balances (input-output) reflecting the period 1980-1995 predicted larger Cd inputs via phosphate (P) fertilizers and atmospheric deposition than outputs via crop uptake and leaching. This study updates the Cd mass balance for the agricultural top soils of EU-27+Norway (EU-27+1). Over the past 15 years, the use of P fertilizers in the EU-27+1 has decreased by 40%. The current mean atmospheric deposition of Cd in EU is 0.35 g Cd ha(-1) yr(-1), this is strikingly smaller than values used in the previous EU mass balances (~3 g Cd ha(-1) yr(-1)). Leaching of Cd was estimated with most recent data of soil solution Cd concentrations in 151 soils, which cover the range of European soil properties. No significant time trends were found in the data of net applications of Cd via manure, compost, sludge and lime, all being small sources of Cd at a large scale. Modelling of the future long-term changes in soil Cd concentrations in agricultural top soils under cereal or potato culture predicts soil Cd concentrations to decrease by 15% over the next 100 years in an average scenario, with decreasing trends in some scenarios being more prevalent than increasing trends in other scenarios. These Cd balances have reverted from the general positive balances estimated 10 or more years ago. Uncertainty analysis suggests that leaching is the most uncertain relative to other fluxes. PMID:24727598

  2. Denitrification in frozen agricultural soil. A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) in agricultural fertilizers is denitrified by soil bacteria when oxygen is limited, which effectively removes plant-available N from the soil to the atmosphere. Reported denitrification rates range from 0 to 239 kg N ha-1 yr-1 and may reduce the amount of N available for crop growth by...

  3. Cadmium distribution in rice plants grown in three different soils after application of pig manure with added cadmium.

    PubMed

    Han, Cunliang; Wu, Longhua; Tan, Weina; Zhong, Daoxu; Huang, Yujuan; Luo, Yongming; Christie, Peter

    2012-08-01

    A glasshouse pot experiment was conducted to investigate Cd concentrations in the aboveground parts of two consecutive crops of rice and Cd availability in three different soils (loam, silt loam, and sandy loam) after application of pig manure with added Cd. Soil pH tended to increase with increasing application rate of pig manure from 1 to 3% (w/w, oven dry basis). Soil diethylene triamine pentaacetic acid (DTPA) extractable Cd showed a clear positive correlation with soil total Cd content and increased with increasing Cd amendment of the manure but showed no difference between the two manure application rates. Cd concentrations in the grain, husk, and straw were significantly and positively correlated with soil DTPA-extractable Cd (p < 0.001). Within each level of manure Cd, the higher rate (3%) of manure produced lower Cd concentrations in the grain, husk, and straw on all three soils than did the lower rate (1%) after the first crop, but this no longer occurred after the growth of the second crop. Grain Cd concentrations exceeded the Chinese National Food Quality Standard (0.2 mg kg(-1)) most often on the loam, with intermediate frequency on the silt loam, and least often on the sandy loam, the soil with the highest pH and lowest organic carbon content and cation exchange capacity. PMID:22189706

  4. The green manure value of seven clover species grown as annual crops on low and high fertility temperate soils.

    SciTech Connect

    Ross, Shirley M.; King, Jane R.; Izaurralde, Roberto C.; O'Donovan, John T.

    2009-05-01

    Annual and perennial clover species may differ in green manure value. Seven clover (Trifolium) species were grown as annual crops on low fertility (Breton) and high fertility 15 (Edmonton) soils in Alberta

  5. Effects of pyrolysis char from various feed stocks on survivability of Salmonella enterica and E. coli 0157:H7 in agriculture soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control of foodborne pathogenic bacteria in agricultural soils is a major concern for vegetable growers. Pathogenic bacteria can enter soil through a variety of vectors including; manure used for fertilizer, contaminated water, animals and farmers. A technology has surfaced in recent years through...

  6. Transport, fate, and infectivity of Cryptosporidium parvum oocysts released from manure and leached through macroporous soil

    NASA Astrophysics Data System (ADS)

    Boyer, Douglas G.; Kuczynska, Ewa; Fayer, Ron

    2009-09-01

    A major mode of transmission of Cryptosporidium parvum, a widespread waterborne pathogen, is via contaminated drinking and recreational waters. Oocyst transport to surface water can occur by deposition of manure directly in the water or by wash off in surface runoff. Oocyst transport to groundwater is less straightforward and requires that the oocysts move through soil and bedrock to reach the water table. The purpose of this study was to determine the relative concentration and infectivity of C. parvum oocysts released from manure and leached through columns of undisturbed, macroporous karst soil. Modeling the fate of oocysts in this system over time can provide baseline data for evaluating real world events. Substantially more oocysts leached from undisturbed soil columns than disturbed soil columns. Oocyst survival studies using BALB/c neonatal suckling mice showed that about 85% of oocysts were infective at the beginning of leaching experiments. The oocyst infectivity decreased to about 20% after 12 weeks of leaching from soil columns maintained at 10°C. Cool (10°C) temperatures appear to increase survivability and maintain infectivity of many oocysts for 3 months or longer. Cool temperatures also appear to increase rates of release of oocysts from manure and leaching through soil. This study demonstrated that leaching is an important mechanism of oocyst transport in karst soils where infiltration capacities are high and long, continuous macropores exist. Karst groundwater systems might be especially vulnerable to contamination by leached oocysts, because of the prevalence of shallow soils and rapid groundwater movement. Oocysts leaching from soils into the epikarst could accumulate and remain viable for months until hydrological conditions are right for flushing the oocysts into the conduit flow system.

  7. Mechanical aeration to reduce P export from manured grasslands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The poultry industry is an important component of agricultural production in the Southern Piedmont of Georgia. Associated manures are typically surface-applied to pastures as a fertilizer for forages. However, this surface application of manures allows phosphorus (P) to accumulate at the soil surf...

  8. The fate of fertilizer nitrogen in a high nitrate accumulated agricultural soil.

    PubMed

    Quan, Zhi; Huang, Bin; Lu, Caiyan; Shi, Yi; Chen, Xin; Zhang, Haiyang; Fang, Yunting

    2016-01-01

    Well-acclimatized nitrifiers in high-nitrate agricultural soils can quickly nitrify NH4(+) into NO3(-) subject to leaching and denitrifying loss. A 120-day incubation experiment was conducted using a greenhouse soil to explore the fates of applied fertilizer N entering into seven soil N pools and to examine if green manure (as ryegrass) co-application can increase immobilization of the applied N into relatively stable N pools and thereby reduce NO3(-) accumulation and loss. We found that 87-92% of the applied (15)N-labelled NH4(+) was rapidly recovered as NO3(-) since day 3 and only 2-4% as microbial biomass and soil organic matter (SOM), while ryegrass co-application significantly decreased its recovery as NO3(-) but enhanced its recovery as SOM (17%) at the end of incubation. The trade-off relationship between (15)N recoveries in microbial biomass and SOM indicated that ryegrass co-application stabilized newly immobilized N via initial microbial uptake and later breakdown. Nevertheless, ryegrass application didn't decrease soil total NO3(-) accumulation due to its own decay. Our results suggest that green manure co-application can increase immobilization of applied N into stable organic N via microbial turnover, but the quantity and quality of green manure should be well considered to reduce N release from itself. PMID:26868028

  9. The fate of fertilizer nitrogen in a high nitrate accumulated agricultural soil

    PubMed Central

    Quan, Zhi; Huang, Bin; Lu, Caiyan; Shi, Yi; Chen, Xin; Zhang, Haiyang; Fang, Yunting

    2016-01-01

    Well-acclimatized nitrifiers in high-nitrate agricultural soils can quickly nitrify NH4+ into NO3− subject to leaching and denitrifying loss. A 120-day incubation experiment was conducted using a greenhouse soil to explore the fates of applied fertilizer N entering into seven soil N pools and to examine if green manure (as ryegrass) co-application can increase immobilization of the applied N into relatively stable N pools and thereby reduce NO3− accumulation and loss. We found that 87–92% of the applied 15N-labelled NH4+ was rapidly recovered as NO3− since day 3 and only 2–4% as microbial biomass and soil organic matter (SOM), while ryegrass co-application significantly decreased its recovery as NO3− but enhanced its recovery as SOM (17%) at the end of incubation. The trade-off relationship between 15N recoveries in microbial biomass and SOM indicated that ryegrass co-application stabilized newly immobilized N via initial microbial uptake and later breakdown. Nevertheless, ryegrass application didn’t decrease soil total NO3− accumulation due to its own decay. Our results suggest that green manure co-application can increase immobilization of applied N into stable organic N via microbial turnover, but the quantity and quality of green manure should be well considered to reduce N release from itself. PMID:26868028

  10. The fate of fertilizer nitrogen in a high nitrate accumulated agricultural soil

    NASA Astrophysics Data System (ADS)

    Quan, Zhi; Huang, Bin; Lu, Caiyan; Shi, Yi; Chen, Xin; Zhang, Haiyang; Fang, Yunting

    2016-02-01

    Well-acclimatized nitrifiers in high-nitrate agricultural soils can quickly nitrify NH4+ into NO3- subject to leaching and denitrifying loss. A 120-day incubation experiment was conducted using a greenhouse soil to explore the fates of applied fertilizer N entering into seven soil N pools and to examine if green manure (as ryegrass) co-application can increase immobilization of the applied N into relatively stable N pools and thereby reduce NO3- accumulation and loss. We found that 87-92% of the applied 15N-labelled NH4+ was rapidly recovered as NO3- since day 3 and only 2-4% as microbial biomass and soil organic matter (SOM), while ryegrass co-application significantly decreased its recovery as NO3- but enhanced its recovery as SOM (17%) at the end of incubation. The trade-off relationship between 15N recoveries in microbial biomass and SOM indicated that ryegrass co-application stabilized newly immobilized N via initial microbial uptake and later breakdown. Nevertheless, ryegrass application didn’t decrease soil total NO3- accumulation due to its own decay. Our results suggest that green manure co-application can increase immobilization of applied N into stable organic N via microbial turnover, but the quantity and quality of green manure should be well considered to reduce N release from itself.

  11. Dissipation kinetics and mobility of chlortetracycline, tylosin, and monensin in an agricultural soil in Northumberland County, Ontario, Canada.

    PubMed

    Carlson, Jules C; Mabury, Scott A

    2006-01-01

    A robust high-throughput method was refined to extract three growth-promoting antibiotics, tylosin (TYL), chlortetracycline (CTC), and monensin (MON), from soil. Analysis was performed by electrospray liquid chromatography tandem mass spectrometry. Soil dissipation rate studies were performed in a farm field soil for antibiotics applied with and without manure. Tylosin, CTC, and MON followed first-order dissipation kinetics with half-lives of 4.5, 24, and 3.3 d, respectively, with the addition of manure and 6.1, 21, and 3.8 d, respectively, without manure. Manure application significantly increased TYL dissipation rate, perhaps because of the introduced microbial flora, but had no significant effect on CTC or MON. Monensin dissipation half-life was found to be much shorter in the field study than in a controlled laboratory study, perhaps because of differences in microbial communities. The antimicrobials were not highly mobile. Chlortetracycline was the only antibiotic detected at 25 to 35 cm depth and only up to 2% of the initial concentration in a sandy loam soil. These antibiotics are therefore expected to degrade primarily in agricultural soils before moving to greater depths or to groundwater in significant concentrations in most agricultural systems. PMID:16494218

  12. Organic matter composition of soil macropore surfaces under different agricultural management practices

    NASA Astrophysics Data System (ADS)

    Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.

    2016-04-01

    Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.

  13. Crop residue stabilization and application to agricultural and degraded soils: A review.

    PubMed

    Medina, Jorge; Monreal, Carlos; Barea, José Miguel; Arriagada, César; Borie, Fernando; Cornejo, Pablo

    2015-08-01

    Agricultural activities produce vast amounts of organic residues including straw, unmarketable or culled fruit and vegetables, post-harvest or post-processing wastes, clippings and residuals from forestry or pruning operations, and animal manure. Improper disposal of these materials may produce undesirable environmental (e.g. odors or insect refuges) and health impacts. On the other hand, agricultural residues are of interest to various industries and sectors of the economy due to their energy content (i.e., for combustion), their potential use as feedstock to produce biofuels and/or fine chemicals, or as a soil amendments for polluted or degraded soils when composted. Our objective is review new biotechnologies that could be used to manage these residues for land application and remediation of contaminated and eroded soils. Bibliographic information is complemented through a comprehensive review of the physico-chemical fundamental mechanisms involved in the transformation and stabilization of organic matter by biotic and abiotic soil components. PMID:25936555

  14. Chicken manure biochar as liming and nutrient source for acid Appalachian soil.

    PubMed

    Hass, Amir; Gonzalez, Javier M; Lima, Isabel M; Godwin, Harry W; Halvorson, Jonathan J; Boyer, Douglas G

    2012-01-01

    Acid weathered soils often require lime and fertilizer application to overcome nutrient deficiencies and metal toxicity to increase soil productivity. Slow-pyrolysis chicken manure biochars, produced at 350 and 700°C with and without subsequent steam activation, were evaluated in an incubation study as soil amendments for a representative acid and highly weathered soil from Appalachia. Biochars were mixed at 5, 10, 20, and 40 g kg into a Gilpin soil (fine-loamy, mixed, active, mesic Typic Hapludult) and incubated in a climate-controlled chamber for 8 wk, along with a nonamended control and soil amended with agronomic dolomitic lime (AgLime). At the end of the incubation, soil pH, nutrient availability (by Mehlich-3 and ammonium bicarbonate diethylene triamine pentaacetic acid [AB-DTPA] extractions), and soil leachate composition were evaluated. Biochar effect on soil pH was process- and rate-dependent. Biochar increased soil pH from 4.8 to 6.6 at the high application rate (40 g kg), but was less effective than AgLime. Biochar produced at 350°C without activation had the least effect on soil pH. Biochar increased soil Mehlich-3 extractable micro- and macronutrients. On the basis of unit element applied, increase in pyrolysis temperature and biochar activation decreased availability of K, P, and S compared to nonactivated biochar produced at 350°C. Activated biochars reduced AB-DTPA extractable Al and Cd more than AgLime. Biochar did not increase NO in leachate, but increased dissolved organic carbon, total N and P, PO, SO, and K at high application rate (40 g kg). Risks of elevated levels of dissolved P may limit chicken manure biochar application rate. Applied at low rates, these biochars provide added nutritional value with low adverse impact on leachate composition. PMID:22751051

  15. Effect of passivator on Cu form transformation in pig manure aerobic composting and application in soil.

    PubMed

    Lu, Xiao-Ming; Lu, Peng-Zhen; Chen, Jian-Jun; Zhang, Hui; Fu, Jie

    2015-10-01

    A sequential extraction approach was used to evaluate the effects of various combinations of passivators (sepiolite, phosphate rock, and coal fly ash) on the concentration and speciation of Cu in swine manure aerobic compost along with soil to which the compost had been applied. The results indicate that the various passivators altered the bound forms of Cu in pig manure and soil; the concentrations of exchangeable and Fe-Mn-bound Cu decreased, whereas the residual Cu concentration increased, indicating that Cu transformed to low-availability forms after the passivator treatments. The concentrations of the carbonate-bound and organic-bound Cu varied widely. Among all treatments, the treatment of the control + straw + sepiolite + coal fly ash (2.5 %) + phosphate rock (5.0 %) resulted in the most efficient passivation of Cu; the percentage of residual Cu reached 3.91-21.14 %, obviously surpassing the percentage for the control without passivation. The treatment of the control + straw + sepiolite + phosphate rock (2.5 %) resulted in the lowest residual Cu fraction (0.85 %) among passivator treatments. These results show that the addition of suitable combinations of passivators to the composting process reduced the availability of Cu and the risk of Cu pollution during the application of composted pig manure to soil. Passivation also decreased the Cu content of Apium graveolens. PMID:25982987

  16. Soybean Yield and Heterodera glycines Responses to Liquid Swine Manure in Nematode Suppressive Soil and Conducive Soil

    PubMed Central

    Bao, Yong; Chen, Senyu; Vetsch, Jeffery; Randall, Gyles

    2013-01-01

    The soybean cyst nematode (SCN), Heterodera glycines, is a major factor limiting soybean yield. Experiments were conducted in 2009 and 2010 to determine the effects of liquid swine manure and chemical fertilizer PK on soybean and corn yields, and on SCN population in an SCN-suppressive field (S-Site) and an SCN-conducive field (C-Site) in Minnesota. The experiment was a split-plot design with crop sequences as main plots and fertilizer treatments as subplots. The 2-yr crop sequences were Sus-Sus, Res-Sus, and Corn-Sus, where Sus was SCN-susceptible soybean, and Res was SCN-resistant soybean. The fertilizer treatments were manure, PK, and a nonfertilizer as control. Manure did not reduce SCN egg population density but resulted in 31% lower SCN second-stage juvenile (J2) population density at the S-Site at 45 d after planting (DAP) in 2009. Manure also reduced spiral nematode (Helicotylenchus spp.) population density by 52% compared with PK and nonfertilizer treatments at S-Site at 45 DAP in 2009. The crop sequence of Corn-Sus and Res-Sus reduced the SCN egg and J2 but increased spiral nematode population density at both sites. An increase of 1.4 Mg/ha and 0.5 Mg/ha in yield of susceptible soybean was observed in manure and PK treatments, respectively, at the C-Site in 2009. Corn yield was 2.8 Mg/ha and 5.0 Mg/ha greater when treated with manure than nonfertilizer at the S-Site and C-Site, respectively. This study suggests that soil fertility management may be a useful strategy to alleviate the SCN damage to soybean. PMID:23589656

  17. How can soil organic carbon stocks in agriculture be maintained or increased?

    NASA Astrophysics Data System (ADS)

    Don, Axel; Leifeld, Jens

    2015-04-01

    CO2 emissions from soils are 10 times higher than anthropogenic CO2 emissions from fossil burning with around 60 Pg C a-1. At the same time around 60 Pg of carbon is added to the soils as litter from roots and leaves. Thus, the balance between both fluxes is supposed to be zero for the global earth system in steady state without human perturbations. However, the global carbon flux has been altered by humans since thousands of years by extracting biomass carbon as food, feed and fiber with global estimate of 40% of net primary productivity (NPP). This fraction is low in forests but agricultural systems, in particular croplands, are systems with a high net exported carbon fraction. Soils are mainly input driven systems. Agricultural soils depend on input to compensate directly for i) respiration losses, ii) extraction of carbon (and nitrogen) and depletion (e.g. via manure) or indirectly via enhances NPP (e.g. via fertilization management). In a literature review we examined the role of biomass extraction and carbon input via roots, crop residues and amendments (manure, slurry etc.) to agricultural soil's carbon stocks. Recalcitrance of biomass carbon was found to be of minor importance for long-term carbon storage. Thus, also the impact of crop type on soil carbon dynamics seems mainly driven by the amount of crop residuals of different crop types. However, we found distinct differences in the efficiency of C input to refill depleted soil C stocks between above ground C input or below ground root litter C input, with root-C being more efficient due to slower turnover rates. We discuss the role of different measures to decrease soil carbon turnover (e.g. decreased tillage intensity) as compared to measures that increase C input (e.g. cover crops) in the light of global developments in agricultural management with ongoing specialization and segregation between catch crop production and dairy farms.

  18. Emission factors for ammonia and nitrous oxide emissions following immediate manure incorporation on two contrasting soil types

    NASA Astrophysics Data System (ADS)

    Webb, J.; Thorman, R. E.; Fernanda-Aller, M.; Jackson, D. R.

    2014-01-01

    We carried out four replicated field experiments to measure the impacts of immediate incorporation of solid manures on emissions of ammonia (NH3) and nitrous oxide (N2O). Four manures: cattle farmyard manure (FYM); pig FYM; layer manure and broiler manure were applied to the soil surface or immediately incorporated by mouldboard plough, disc or tine. Two of the experiments were carried out on a clay soil and two on a sandy soil to find out whether soil type interacted with incorporation technique to influence emissions of NH3 or N2O. Ammonia emissions were measured for 1 or 2 weeks while N2O emissions were measured for 60 days in one experiment and for a complete year in the other three experiments. Immediate incorporation by plough reduced NH3 emissions by c. 90% and by c. 60% by disc and tine (P < 0.001). There was no effect of soil type on NH3 abatement efficiency by plough or tine but the disc was less effective on the coarse sandy soil. Cross-site analysis indicated no effect of incorporation by disc or tine on emissions of N2O-N after 60 days but incorporation by plough increased direct emissions of N2O-N compared with surface application of manure (P < 0.001). Direct emissions of N2O-N, at c. 0.67% of total N applied, were substantially greater at the coarse-textured site than at the heavy clay site (0.04% of total N applied; P < 0.001). The impact of incorporation on total annual direct emissions of N2O-N differed in the three experiments where emissions were measured for a full year. There was no effect of incorporation on N2O-N emissions in the first experiment on the clay soil, and in the second experiment at this site incorporation by plough or disc, but not tine, reduced direct emissions of N2O (P = 0.006). However on the sandy soil direct emissions of N2O-N were increased when manures were incorporated by plough (P = 0.002) but not when incorporated by disc or tine. These results confirm that immediate incorporation of solid manures by plough is the

  19. Emission factors for organic fertilizer-induced N2O emissions from Japanese agricultural soils

    NASA Astrophysics Data System (ADS)

    Sano, T.; Nishina, K.; Sudo, S.

    2013-12-01

    1. Introduction Agricultural fields are significant sources of nitrous oxide (N2O), which is one of the important greenhouse gases with a contribution of 7.9% to the anthropogenic global warming (IPCC, 2007). Direct fertilizer-induced N2O emission from agricultural soil is estimated using the emission factor (EF). National greenhouse gas inventory of Japan defines direct EF for N2O associated with the application of chemical and organic fertilizers as the same value (0.62%) in Japanese agricultural fields. However, it is necessary to estimate EF for organic fertilizers separately, because there are some differences in factors controlling N2O emissions (e.g. nutrient content) between chemical and organic fertilizers. The purpose of this study is to estimate N2O emissions and EF for applied organic fertilizers in Japanese agricultural fields. 2. Materials and Methods We conducted the experiments at 10 prefectural agricultural experimental stations in Japan (Yamagata, Fukushima, Niigata, Ibaraki, Aichi, Shiga, Tokushima, Nagasaki, Kumamoto, and Kagoshima) to consider the variations of cultivation and environmental conditions among regions. Field measurements had been conducted for 2-2.5 years during August 2010-April 2013. Each site set experimental plots with the applications of composted manure (cattle, swine, and poultry), chemical fertilizer, and non-nitrogen fertilizer as a control. The annual amount of applied nitrogen ranged from 16 g-N m-2 y-1 to 60 g-N m-2 y-1 depending on cropping system and cultivated crops (e.g. cabbage, potato) at each site. N2O fluxes were measured using a closed-chamber method. N2O concentrations of gas samples were measured with gas chromatography. The EF value of each fertilizer was calculated as the N2O emission from fertilizer plots minus the background N2O emission (emission from a control plot), and was expressed as a percentage of the applied nitrogen. The soil NH4+ and NO3-, soil temperature, precipitation, and WFPS (water

  20. Ammonia Losses from Surface-Applied Poultry Liter and Swine Manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of animal manures such as poultry litter and swine manures as soil amendments could be beneficial in improving soil fertility and supplying various nutrients to agricultural crops. Land application of these amendments could also result in N losses through NH3 volatilization. Understanding the m...

  1. Structural and functional response of the soil bacterial community to application of manure from difloxacin-treated pigs.

    PubMed

    Jechalke, Sven; Focks, Andreas; Rosendahl, Ingrid; Groeneweg, Joost; Siemens, Jan; Heuer, Holger; Smalla, Kornelia

    2014-01-01

    Difloxacin (DIF) belongs to the class of fluoroquinolone antibiotics that have been intensively used for the treatment of bacterial infections in veterinary and human medicine. The aim of this field study was to compare the effect of manure from DIF-treated pigs and untreated pigs on the bacterial community structure and resistance gene abundance in bulk soil and rhizosphere of maize. A significant effect of DIF manure on the bacterial community composition in bulk soil was revealed by denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA gene fragments amplified from total community DNA. In few samples, quinolone resistance genes qnrB and qnrS1/qnrS2 were detected by PCR and subsequent hybridization, while qnrA was not detected. Quantitative PCR revealed an increased abundance of the integrase gene intI1 of class I integrons and sulfonamide resistance genes sul1 and sul2 in DIF manure-treated bulk soil and rhizosphere, relative to 16S rRNA genes, while traN genes specific for LowGC-type plasmids were increased only in bulk soil. Principal component analysis of DGGE profiles suggested a manure effect in soil until day 28, but samples of days 71 and 140 were found close to untreated soil, indicating resilience of soil community compositions from disturbances by manure. PMID:23962048

  2. The magnetic susceptibility of European agricultural soils

    NASA Astrophysics Data System (ADS)

    Fabian, K.; Reimann, C.

    2012-04-01

    The GEMAS (Geochemical mapping of agricultural soils) project, a cooperation project between EuroGeoSurveys and Eurometaux, aims at providing soil quality data for Europe. Samples of arable soil were taken during 2008 at an average density of 1 site/2500 km2 covering the member states of the European Union (except Malta and Romania) and several neighbouring countries (e.g., Norway, Serbia, Ukraine). While the primary aim of the GEMAS project is to produce REACH (Registration, Evaluation and Authorisation of CHemicals - EC, 2006) consistent soil geochemistry data at the continental scale, the data set is also optimally apt to provide the first continental scale overview of magnetic properties in European soils. Soil samples from the upper 20 cm were taken as composites from 5 sites spread over a ca. 100 m2 area in a large agricultural field (Ap-sample). The samples were air dried and sieved to pass a 2 mm nylon screen. Weight normalized magnetic susceptibility of these dried samples was measured using a Sapphire Instruments SI2B susceptibility meter with dynamic background removal. The here presented maps of magnetic susceptibility in relation to geochemical composition and geological structures for the first time allow to outline the large scale influence of tectonics and climate on magnetic mineral concentration in European soils. The data set also provides the background variability for regional studies aiming to relate magnetic susceptibility of soils to local contamination sources.

  3. Runoff losses of excreted chlortetracycline, sulfamethazine, and tylosin from surface-applied and soil-incorporated beef cattle feedlot manure.

    PubMed

    Amarakoon, Inoka D; Zvomuya, Francis; Cessna, Allan J; Degenhardt, Dani; Larney, Francis J; McAllister, Tim A

    2014-03-01

    Veterinary antimicrobials in land-applied manure can move to surface waters via rain or snowmelt runoff, thus increasing their dispersion in agro-environments. This study quantified losses of excreted chlortetracycline, sulfamethazine, and tylosin in simulated rain runoff from surface-applied and soil-incorporated beef cattle ( L.) feedlot manure (60 Mg ha, wet wt.). Antimicrobial concentrations in runoff generally reflected the corresponding concentrations in the manure. Soil incorporation of manure reduced the concentrations of chlortetracycline (from 75 to 12 μg L for a 1:1 mixture of chlortetracycline and sulfamethazine and from 43 to 17 μg L for chlortetracycline alone) and sulfamethazine (from 3.9 to 2.6 μg L) in runoff compared with surface application. However, there was no significant effect of manure application method on tylosin concentration (range, 0.02-0.06 μg L) in runoff. Mass losses, as a percent of the amount applied, for chlortetracycline and sulfamethazine appeared to be independent of their respective soil sorption coefficients. Mass losses of chlortetracycline were significantly reduced with soil incorporation of manure (from 6.5 to 1.7% when applied with sulfamethazine and from 6.5 to 3.5% when applied alone). Mass losses of sulfamethazine (4.8%) and tylosin (0.24%) in runoff were not affected by manure incorporation. Although our results confirm that cattle-excreted veterinary antimicrobials can be removed via surface runoff after field application, the magnitudes of chlortetracycline and sulfamethazine losses were reduced by soil incorporation of manure immediately after application. PMID:25602656

  4. Enhancement of methane production from co-digestion of chicken manure with agricultural wastes.

    PubMed

    Abouelenien, Fatma; Namba, Yuzaburo; Kosseva, Maria R; Nishio, Naomichi; Nakashimada, Yutaka

    2014-05-01

    The potential for methane production from semi-solid chicken manure (CM) and mixture of agricultural wastes (AWS) in a co-digestion process has been experimentally evaluated at thermophilic and mesophilic temperatures. To the best of author(')s knowledge, it is the first time that CM is co-digested with mixture of AWS consisting of coconut waste, cassava waste, and coffee grounds. Two types of anaerobic digestion processes (AD process) were used, process 1 (P1) using fresh CM (FCM) and process 2 (P2) using treated CM (TCM), ammonia stripped CM, were conducted. Methane production in P1 was increased by 93% and 50% compared to control (no AWS added) with maximum methane production of 502 and 506 mL g(-1)VS obtained at 55°C and 35°C, respectively. Additionally, 42% increase in methane production was observed with maximum volume of 695 mL g(-1)VS comparing P2 test with P2 control under 55°C. Ammonia accumulation was reduced by 39% and 32% in P1 and P2 tests. PMID:24632629

  5. Molecular properties of a fermented manure preparation used as field spray in biodynamic agriculture.

    PubMed

    Spaccini, R; Mazzei, P; Squartini, A; Giannattasio, M; Piccolo, A

    2012-11-01

    Manure products fermented underground in cow horns and commonly used as field spray (preparation 500) in the biodynamic farming system, were characterized for molecular composition by solid-state nuclear magnetic resonance [(13) C cross-polarization magic-angle-spinning NMR ((13) C-CPMAS-NMR)] spectroscopy and offline tetramethylammonium hydroxide thermochemolysis gas chromatography-mass spectrometry. Both thermochemolysis and NMR spectroscopy revealed a complex molecular structure, with lignin aromatic derivatives, polysaccharides, and alkyl compounds as the predominant components. CPMAS-NMR spectra of biodynamic preparations showed a carbon distribution with an overall low hydrophobic character and significant contribution of lignocellulosic derivatives. The results of thermochemolysis confirmed the characteristic highlighted by NMR spectroscopy, revealing a molecular composition based on alkyl components of plant and microbial origin and the stable incorporation of lignin derivatives. The presence of biolabile components and of undecomposed lignin compounds in the preparation 500 should be accounted to its particularly slow maturation process, as compared to common composting procedures. Our results provide, for the first time, a scientific characterization of an essential product in biodynamic agriculture, and show that biodynamic products appear to be enriched of biolabile components and, therefore, potentially conducive to plant growth stimulation. PMID:22707205

  6. Chemical evaluation of odor reduction by soil injection of animal manure.

    PubMed

    Feilberg Tavs Nyord, Anders; Hansen, Martin Nørregaard; Lindholst, Sabine

    2011-01-01

    Field application of animal manure is a major cause of odor nuisance in the local environment. Therefore, there is a need for methods for measuring the effect of technologies for reducing odor after manure application. In this work, chemical methods were used to identify key odorants from field application of pig manure based on experiments with surface application by trailing hoses and soil injection. Results from three consecutive years of field trials with full-scale equipment are reported. Methods applied were: membrane inlet mass spectrometry (MIMS), proton-transfer-reaction mass spectrometry (PTR-MS), gold-film hydrogen sulfide (H₂S) detection, all performed on site, and thermal desorption gas chromatography with mass spectrometry (TD-GC/MS) based on laboratory analyses of field samples. Samples were collected from a static flux chamber often used for obtaining samples for dynamic olfactometry. While all methods were capable of detecting relevant odorants, PTR-MS gave the most comprehensive results. Based on odor threshold values, 4-methylphenol, H₂S, and methanethiol are suggested as key odorants. Significant odorant reductions by soil injection were consistently observed in all trials. The flux chamber technique was demonstrated to be associated with critical errors due to compound instabilities in the chamber. This was most apparent for H₂S, on a time scale of a few minutes, and on a longer time scale for methanethiol. PMID:21869529

  7. Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems

    PubMed Central

    Noyes, Noelle R.; Yang, Xiang; Linke, Lyndsey M.; Magnuson, Roberta J.; Cook, Shaun R.; Zaheer, Rahat; Yang, Hua; Woerner, Dale R.; Geornaras, Ifigenia; McArt, Jessica A.; Gow, Sheryl P.; Ruiz, Jaime; Jones, Kenneth L.; Boucher, Christina A.; McAllister, Tim A.; Belk, Keith E.; Morley, Paul S.

    2016-01-01

    It has been proposed that livestock production effluents such as wastewater, airborne dust and manure increase the density of antimicrobial resistant bacteria and genes in the environment. The public health risk posed by this proposed outcome has been difficult to quantify using traditional microbiological approaches. We utilized shotgun metagenomics to provide a first description of the resistome of North American dairy and beef production effluents, and identify factors that significantly impact this resistome. We identified 34 mechanisms of antimicrobial drug resistance within 34 soil, manure and wastewater samples from feedlot, ranch and dairy operations. The majority of resistance-associated sequences found in all samples belonged to tetracycline resistance mechanisms. We found that the ranch samples contained significantly fewer resistance mechanisms than dairy and feedlot samples, and that the resistome of dairy operations differed significantly from that of feedlots. The resistome in soil, manure and wastewater differed, suggesting that management of these effluents should be tailored appropriately. By providing a baseline of the cattle production waste resistome, this study represents a solid foundation for future efforts to characterize and quantify the public health risk posed by livestock effluents. PMID:27095377

  8. Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems.

    PubMed

    Noyes, Noelle R; Yang, Xiang; Linke, Lyndsey M; Magnuson, Roberta J; Cook, Shaun R; Zaheer, Rahat; Yang, Hua; Woerner, Dale R; Geornaras, Ifigenia; McArt, Jessica A; Gow, Sheryl P; Ruiz, Jaime; Jones, Kenneth L; Boucher, Christina A; McAllister, Tim A; Belk, Keith E; Morley, Paul S

    2016-01-01

    It has been proposed that livestock production effluents such as wastewater, airborne dust and manure increase the density of antimicrobial resistant bacteria and genes in the environment. The public health risk posed by this proposed outcome has been difficult to quantify using traditional microbiological approaches. We utilized shotgun metagenomics to provide a first description of the resistome of North American dairy and beef production effluents, and identify factors that significantly impact this resistome. We identified 34 mechanisms of antimicrobial drug resistance within 34 soil, manure and wastewater samples from feedlot, ranch and dairy operations. The majority of resistance-associated sequences found in all samples belonged to tetracycline resistance mechanisms. We found that the ranch samples contained significantly fewer resistance mechanisms than dairy and feedlot samples, and that the resistome of dairy operations differed significantly from that of feedlots. The resistome in soil, manure and wastewater differed, suggesting that management of these effluents should be tailored appropriately. By providing a baseline of the cattle production waste resistome, this study represents a solid foundation for future efforts to characterize and quantify the public health risk posed by livestock effluents. PMID:27095377

  9. Improving the sustainability of animal agriculture by treating manure with alum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two of the biggest environmental problems associated with animal manure management are ammonia emissions and phosphorus (P) runoff. Research conducted during the past two decades has shown that a simple topical application of aluminum sulfate (alum) to manure can greatly reduce the magnitude of bot...

  10. Forms of mercury in Everglades agricultural soils

    SciTech Connect

    Patrick, W.H.; Parkpian, P.; Gambrell, R.P.

    1995-12-31

    Seventeen surface soils from the Florida Everglades Agricultural Area were subjected to selective extraction for water soluble, amorphous iron oxide bound, organic, and residual mercury. Organic bound mercury was the major fraction and represented 51% of the total mercury for the 17 soils studied. Iron oxide bound mercury and water soluble mercury accounted for only 5 percent each of the total mercury. Eight weeks incubation of the soils under aerobic and anaerobic conditions showed little effect of aeration status on the transformations among the various chemical forms.

  11. Occurrence of Stenotrophomonas maltophilia in agricultural soils and antibiotic resistance properties.

    PubMed

    Deredjian, Amélie; Alliot, Nolwenn; Blanchard, Laurine; Brothier, Elisabeth; Anane, Makram; Cambier, Philippe; Jolivet, Claudy; Khelil, Mohamed Naceur; Nazaret, Sylvie; Saby, Nicolas; Thioulouse, Jean; Favre-Bonté, Sabine

    2016-05-01

    The occurrence of Stenotrophomonas maltophilia was monitored in organic amendments and agricultural soils from various sites in France and Tunisia. S. maltophilia was detected in horse and bovine manures, and its abundance ranged from 0.294 (±0.509) × 10(3) to 880 (±33.4) × 10(3) CFU (g drywt)(-1) of sample. S. maltophilia was recovered from most tested soil samples (104/124). Its abundance varied from 0.33 (±0.52) to 414 (±50) × 10(3) CFU (g drywt)(-1) of soil and was not related to soil characteristics. Antibiotic resistance properties of a set of environmental strains were compared to a clinical set, and revealed a high diversity of antibiotic resistance profiles, given both the numbers of resistance and the phenotypes. Manure strains showed resistance phenotypes, with most of the strains resisting between 7 and 9 antibiotics. While French soil strains were sensitive to most antibiotics tested, some Tunisian strains displayed resistance phenotypes close to those of clinical French strains. Screening for metal resistance among 66 soil strains showed a positive relationship between antibiotic and metal resistance. However, the prevalence of antibiotic resistance phenotypes in the studied sites was not related to the metal content in soil samples. PMID:26774914

  12. Transport of agricultural contaminants through karst soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Karst landscapes are common in many agricultural regions in the US. Well-developed karst landscapes are characterized by shallow soils, sinkholes, sinking streams, underground conduits, and springs. In these landscapes surface runoff is minimal and most recharge enters the subsurface relatively quic...

  13. Soil Macronutrient Sensing for Precision Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurements of soil macronutrients (i.e., nitrogen, phosphorus, and potassium) are needed for efficient agricultural production, including site-specific crop management (SSCM), where fertilizer nutrient application rates are adjusted spatially based on local requirements. Rapid, non-destru...

  14. Soil biology and carbon in dryland agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this paper is to explore potential management strategies in dryland agriculture that can promote soil health and crop productivity. Traditional crop production in the semiarid Great Plains consists of conventional tillage management of winter wheat (Triticum aestivum L.) - summer fallow....

  15. Integron Prevalence and Diversity in Manured Soil

    PubMed Central

    Byrne-Bailey, K. G.; Gaze, W. H.; Zhang, L.; Kay, P.; Boxall, A.; Hawkey, P. M.; Wellington, E. M. H.

    2011-01-01

    The levels of integron abundance and diversity in soil amended with pig slurry were studied. Real-time PCR illustrated a significant increase in class 1 integron prevalence after slurry application, with increased prevalence still evident at 10 months after application. Culture-dependent data revealed 10 genera, including putative human pathogens, carrying class 1 and 2 integrons. PMID:21097590

  16. The biogeochemical footprint of agricultural soil erosion

    NASA Astrophysics Data System (ADS)

    Govers, Gerard; Van Oost, Kristof; Wang, Zhengang

    2015-04-01

    Global biogeochemical cycles are a key component of the functioning of the Earth System: these cycles are all, to a varying extent, disturbed by human activities which not only has dramatic consequences for the global climate but also for the acidity of the world's oceans. It is only relatively recently that the role of lateral fluxes related to surface water movement and soil erosion and deposition (and the way those fluxes are modified by human action) is explicitly considered by the scientific community. In this paper we present an overview of our present-day understanding of the role of agricultural soil erosion in the global cycles of carbon, nitrogen, phosphorous and silica. We discuss the major processes through which erosion affects these global cycles and pay particular attention to the knowledge gaps that prevent us from accurately assessing the impact of soil erosion on global biogeochemical cycling at different temporal scales. Furthering our understanding (and better constraining our estimates) will require progress both in terms of model development and process understanding. Research needs can be most clearly identified with respect to soil organic carbon: (i) at present, large-scale soil erosion (and deposition) models are poorly constrained so that the amount of carbon mobilised by erosion (and its fate) cannot be accurately estimated and (ii) the fate of soil organic carbon buried by deposition or delivered to river network is poorly understood. Uncertainties for N, P and Si are larger than those for C as we have less information on the amount of these elements stored in agricultural soils and/or do not fully understand how these elements cycle through the soil/plant system. Agricultural soil erosion does not affect soil functioning through its effect on biogeochemical cycling. Erosion directly affects soil hydrological functioning and is likely to affect weathering processes and soil production. Addressing all these issues requires the

  17. Application of rye green manure in wheat rotation system alters soil water content and chemical characteristics under dryland condition in Maragheh.

    PubMed

    Mosavi, S B; Jafarzadeh, A A; Nishabouri, M R; Ostan, Sh; Feiziasl, V

    2009-01-15

    This study was carried out with or without rye green manure along with 4 nitrogen fertilization treatments (0, 26, 103 and 337 (kg N ha(-1)) in 3 rotation system (green manure-wheat). Results showed that, although treatment effects on dryland wheat grain yield was not significant, but maximum grain yield (2484 kg ha(-1)) was obtained from application of rye green manure along with 26 kg N ha(-1); which is 22% more than check (without rye green manure) treatment. Green manure application with or without nitrogen increased EC (dS m(-1)), but decreased OC, P (av.), Cu (av.), Mn (av.), Zn (av.) and sand in the soil. In contrast to green manure, application of nitrogen along with green manure increased saturation and clay. In the stage of stem appearance, soil moisture content decreased 8% in green-manure application but with nitrogen application the moisture increased 6% compared with check in 0-20 cm depth. It can be concluded that, green manure application is useful along with nitrogen fertilizer application in long term. This treatment could increase soil moisture content, which leads to higher wheat grain yield in dryland areas. In addition, green manure application could change some soil characteristics such as soil TNV%, which decreases availability of some essential nutrients for dryland wheat. PMID:19579941

  18. The Effects of Cattle Manure and Garlic Rotation on Soil under Continuous Cropping of Watermelon (Citrullus lanatus L.)

    PubMed Central

    Liu, Changming; Wang, Yongqi; Ma, Jianxiang; Zhang, Yong; Li, Hao; Zhang, Xian

    2016-01-01

    Continuous cropping of watermelon (Citrullus lanatus L.) can lead to reduced yield and quality. We aimed to determine the effects of cattle manure addition and rotation with green garlic to improve yield and reduce disease incidence in watermelon and to examine the effects on the biological and chemical characteristics of the soil. Field experiments were performed during 2012–2014 on land previously under two years of continuous watermelon cropping in northwest China. We examined three treatment combinations: watermelon and garlic rotation, cattle manure application before watermelon planting, and combined cattle manure addition and crop rotation. Watermelon monoculture was retained as a control. Watermelon yield was significantly higher and disease incidence was lower in the treatments than the control. The populations of soil bacteria and actinomycetes and the bacteria/fungi ratio increased significantly and soil enzyme activities were generally enhanced under treatments. Available nutrients and soil organic matter contents were much higher under experimental treatments than the control. Results suggest both cattle manure application and garlic rotation can ameliorate the negative effects of continuous cropping. The combined treatment of cattle manure addition and green garlic rotation was optimal to increase yield, reduce disease incidence and enhance soil quality. PMID:27258145

  19. The Effects of Cattle Manure and Garlic Rotation on Soil under Continuous Cropping of Watermelon (Citrullus lanatus L.).

    PubMed

    Yang, Ruiping; Mo, Yanling; Liu, Changming; Wang, Yongqi; Ma, Jianxiang; Zhang, Yong; Li, Hao; Zhang, Xian

    2016-01-01

    Continuous cropping of watermelon (Citrullus lanatus L.) can lead to reduced yield and quality. We aimed to determine the effects of cattle manure addition and rotation with green garlic to improve yield and reduce disease incidence in watermelon and to examine the effects on the biological and chemical characteristics of the soil. Field experiments were performed during 2012-2014 on land previously under two years of continuous watermelon cropping in northwest China. We examined three treatment combinations: watermelon and garlic rotation, cattle manure application before watermelon planting, and combined cattle manure addition and crop rotation. Watermelon monoculture was retained as a control. Watermelon yield was significantly higher and disease incidence was lower in the treatments than the control. The populations of soil bacteria and actinomycetes and the bacteria/fungi ratio increased significantly and soil enzyme activities were generally enhanced under treatments. Available nutrients and soil organic matter contents were much higher under experimental treatments than the control. Results suggest both cattle manure application and garlic rotation can ameliorate the negative effects of continuous cropping. The combined treatment of cattle manure addition and green garlic rotation was optimal to increase yield, reduce disease incidence and enhance soil quality. PMID:27258145

  20. Advanced Solid-State 13C NMR Analysis of Organic Matter in a Nebraska Corn Soil Amended with Cattle Manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Annual application of cattle manure in a farmer's field in eastern Nebraska for four years caused improved soil nitrogen (N) and phosphorus (P) supply and increased corn yield in less productive portions of the field. As a first step toward identifying the soil processes that led to these changes, t...

  1. Depth-dependent inactivation of Escherichia coli and Enterococcus faecalis in soil after manure application and simulated rainfall

    Technology Transfer Automated Retrieval System (TEKTRAN)

    E.coli and Enterococcus serve as important water quality indicator organisms. Rainfall action on manured fields and pastures releases these organisms into soil with infiltrating water. They can then be released back to runoff during subsequent rainfall or irrigation events as soil solution interacts...

  2. Remediation of degraded arable steppe soils in Moldova using vetch as green manure

    NASA Astrophysics Data System (ADS)

    Wiesmeier, M.; Lungu, M.; Hübner, R.; Cerbari, V.

    2015-01-01

    In the Republic of Moldova, non-sustainable arable farming led to severe degradation and erosion of fertile steppe soils (Chernozems). As a result, the Chernozems lost about 40% of their initial amounts of soil organic carbon (SOC). Aim of this study was to remediate degraded arable soils and promote carbon sequestration by implementation of cover cropping and green manuring in Moldova. Thereby, the suitability of the legume hairy vetch (Vicia sativa) as cover crop under the dry, continental climate of Moldova was examined. At two experimental sites, the effect of cover cropping on chemical and physical soil properties as well as on yields of subsequent main crops was determined. The results showed a significant increase of SOC after incorporation of hairy vetch due to a high above- and belowground biomass production that was related with a high input of carbon and nitrogen. A calculation of SOC stocks based on equivalent soil masses revealed a sequestration of around 3 t C ha-1 yr-1 as a result of hairy vetch cover cropping. The buildup of SOC was associated with an improvement of the soil structure as indicated by a distinct decrease of bulk density and a relative increase of macroaggregates at the expense of microaggregates and clods. As a result, yields of subsequent main crops increased by around 20%. Our results indicated that hairy vetch is a promising cover crop to remediate degraded steppe soils, control soil erosion and sequestrate substantial amounts of atmospheric C in arable soils of Moldova.

  3. Effects of cattle feeding regimen and soil management type on the fate of Escherichia coli O157:H7 and salmonella enterica serovar typhimurium in manure, manure-amended soil, and lettuce.

    PubMed

    Franz, Eelco; van Diepeningen, Anne D; de Vos, Oscar J; van Bruggen, Ariena H C

    2005-10-01

    Survival of the green fluorescent protein-transformed human pathogens Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was studied in a laboratory-simulated lettuce production chain. Dairy cows were fed three different roughage types: high-digestible grass silage plus maize silage (6:4), low-digestible grass silage, and straw. Each was adjusted with supplemental concentrates to high and low crude protein levels. The pathogens were added to manure, which was subsequently mixed (after 56 and 28 days for E. coli O157:H7 and Salmonella serovar Typhimurium, respectively) with two pairs of organically and conventionally managed loamy and sandy soil. After another 14 days, iceberg lettuce seedlings were planted and then checked for pathogens after 21 days of growth. Survival data were fitted to a logistic decline function (exponential for E. coli O157:H7 in soil). Roughage type significantly influenced the rate of decline of E. coli O157:H7 in manure, with the fastest decline in manure from the pure straw diet and the slowest in manure from the diet of grass silage plus maize silage. Roughage type showed no effect on the rate of decline of Salmonella serovar Typhimurium, although decline was significantly faster in the manure derived from straw than in the manure from the diet of grass silage plus maize silage. The pH and fiber content of the manure were significant explanatory factors and were positively correlated with the rate of decline. With E. coli O157:H7 there was a trend of faster decline in organic than in conventional soils. No pathogens were detected in the edible lettuce parts. The results indicate that cattle diet and soil management are important factors with respect to the survival of human pathogens in the environment. PMID:16204535

  4. Impacts of supplementing chemical fertilizers with organic fertilizers manufactured using pig manure as a substrate on the spread of tetracycline resistance genes in soil.

    PubMed

    Kang, Yijun; Hao, Yangyang; Shen, Min; Zhao, Qingxin; Li, Qing; Hu, Jian

    2016-08-01

    Using pig manure (PM) compost as a partial substitute for the conventional chemical fertilizers (CFs) is considered an effective approach in sustainable agricultural systems. This study aimed to analyze the impacts of supplementing CF with organic fertilizers (OFs) manufactured using pig manure as a substrate on the spread of tetracycline resistance genes (TRGs) as well as the community structures and diversities of tetracycline-resistant bacteria (TRB) in bulk and cucumber rhizosphere soils. In this study, three organic fertilizers manufactured using the PM as a substrate, namely fresh PM, common OF, and bio-organic fertilizer (BF), were supplemented with a CF. Composted manures combined with a CF did not significantly increase TRB compared with the CF alone, but PM treatment resulted in the long-term survival of TRB in soil. The use of CF+PM also increased the risk of spreading TRGs in soil. As beneficial microorganisms in BF may function as reservoirs for the spread of antibiotic resistance genes, care should be taken when adding them to the OF matrix. The PM treatment significantly altered the community structures and increased the species diversity of TRB, especially in the rhizosphere soil. BF treatment caused insignificant changes in the community structure of TRB compared with CF treatment, yet it reduced the species diversities of TRB in soil. Thus, the partial use of fresh PM as a substitute for CF could increase the risk of spread of TRGs. Apart from plant growth promotion, BF was a promising fertilizer owing to its potential ability to control TRGs. PMID:27152658

  5. Model of fecal coliform overland transport from agricultural lands fertilized with animal manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Risk assessment of surface water contamination after manure applications requires developing microbial transport models. Application of such models often leads to incorrect conclusions due to lack of calibration with experimental data and ignorance of spatial variability in bacterial concentrations....

  6. Effect of dairy manure rate and the stabilization time of amended soils on atrazine degradation.

    PubMed

    Aguilera, Paula; Briceño, Gabriela; Candia, Maribel; Mora, Maria de la Luz; Demanet, Rolando; Palma, Graciela

    2009-10-01

    The application rate of liquid cow manure (LCM) in the field and the stabilization time of amended soils before application of pre-plant herbicides are factors that determine their efficiency. This study includes evaluation of residual atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) in soil and amended soils with equivalent rate of 100,000; 200,000; and 300,000 L ha(-1) of LCM and the effect of pre-incubation time of amended soils on atrazine degradation. The study was carried out under controlled conditions using an Andisol with previous historical application of atrazine. The respiratory activity and fluorescein diacetate (FDA) studies indicated that the time necessary for stabilization of amended soils is over 20-30 d. During the measurement of respiratory and FDA activity, no significant differences were observed when atrazine was applied. The half-life of atrazine ranged from 5 to 8d and the relative distribution of degradation products seem to be affected by the application of LCM. The pre-incubation time of amended soil and LCM dose would not affect atrazine degradation rate, when the soil has a history of herbicide application. However, repeated applications of LCM in a long period of time could change the soil pH and increase the content of dissolved organic carbon (DOC) which could further contribute to a faster degradation of atrazine. Both effects would reduce the effectiveness of atrazine in weed control. PMID:19744695

  7. Marble waste and pig manure amendments decrease metal availability, increase soil quality and facilitate vegetation development in bare mine soils

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Faz, Ángel; Martínez-Martínez, Silvia; Acosta, José A.; Gómez, M. Dolores; Ángeles Muñoz, M.

    2013-04-01

    In order to bring out a functional and sustainable land use in a highly contaminated mine tailing, firstly environmental risks have to be reduced or eliminated by suitable reclamation activities. Tailing ponds pose environmental hazards, such as acidity and toxic metals reaching to waters through wind and water erosions and leaching. As a consequence, soils have no vegetation and low soil organic matter and nutrients. Various physicochemical and biochemical properties, together with exchangeable metals were measured before, 6 months and 12 months after the application of marble waste and pigs manure as reclamation strategy in a tailing pond from SE Spain to reduce hazards for environment and human health. Three months after the last addition of amendments, eight different native shrub species where planted for phytostabilization. Results showed the pH increased up to neutrality. Aggregates stability, organic carbon, total nitrogen, cation exchange capacity, bioavailable phosphorus and potassium, microbial biomass and microbial activity increased with the application of the amendments, while exchangeable metals drastically decreased (~90%). After one year of plantation, only 20% planted species died, with a high growth of survivals reaching flowering and fructification. This study confirms the high effectiveness of initial applications of marble wastes together with pig manure and plantation of shrub species to initialize the recovery of the ecosystem in bare mine soils under Mediterranean semiarid conditions. Key Words: pig manure, marble waste, heavy metals, mine soil. Acknowledgements This work has been funded by the European Union LIFE+ project MIPOLARE (LIFE09 ENV/ES/000439). J.A. Acosta acknowledges a "Saavedra Fajardo" contract from Comunidad Autónoma de Murcia (Spain)

  8. Root Induced Heterogeneity In Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Gomes, C.; Gabai, R.; Weisbrod, N.; Furman, A.

    2012-12-01

    In this study we investigate the role of plant induced heterogeneity on water dynamics in agricultural soils. We conducted three experiments in two sites (one still ongoing) in which a trench was excavated in the root zone of an orchard and the subsurface, to a depth of over 1 m, was instrumented in high resolution with water content, water potential and temperature sensors. High temporal resolution monitoring of soil state was carried for over a year, period that included natural (Mediterranean) climate boundary forcing. In addition, sprinkler, flood, and spray irrigation boundary conditions were forced for short time periods to explore the infiltration process under these conditions. One site was an Avocado orchard planted in red sandy soil while the other, still on-going, is in a grape vineyards irrigated by tap and treated wastewater, planted over alluvial clayey soil. In the vineyard, we are comparing soil irrigated with fresh water to soil irrigated with treated waste water for more than 10 years. Our preliminary results indicate several interesting phenomena. First, the role of plant roots is clearly seen as the major roots act as a conduit for water (and solute), providing a fast bypass of the upper soil. Further, we identified different regions of the subsurface that apparently were of the same texture, but in practice presented very different hydraulic properties. Second, the role of these roots depends on the boundary conditions. That is, the root bypass acts differently when soil is flooded than when flow is strictly unsaturated. As expected, simulation of the experimental results show good fit only if the domain heterogeneity of soil properties was incorporated. Results for the clayey soils were not available at time of abstract submission.

  9. Appearance of β-lactam Resistance Genes in Agricultural Soils and Clinical Isolates over the 20th Century

    PubMed Central

    Graham, David W.; Knapp, Charles W.; Christensen, Bent T.; McCluskey, Seánín; Dolfing, Jan

    2016-01-01

    Debate exists about whether agricultural versus medical antibiotic use drives increasing antibiotic resistance (AR) across nature. Both sectors have been inconsistent at antibiotic stewardship, but it is unclear which sector has most influenced acquired AR on broad scales. Using qPCR and soils archived since 1923 at Askov Experimental Station in Denmark, we quantified four broad-spectrum β-lactam AR genes (ARG; blaTEM, blaSHV, blaOXA and blaCTX-M) and class-1 integron genes (int1) in soils from manured (M) versus inorganic fertilised (IF) fields. “Total” β-lactam ARG levels were significantly higher in M versus IF in soils post-1940 (paired-t test; p < 0.001). However, dominant individual ARGs varied over time; blaTEM and blaSHV between 1963 and 1974, blaOXA slightly later, and blaCTX-M since 1988. These dates roughly parallel first reporting of these genes in clinical isolates, suggesting ARGs in animal manure and humans are historically interconnected. Archive data further show when non-therapeutic antibiotic use was banned in Denmark, blaCTX-M levels declined in M soils, suggesting accumulated soil ARGs can be reduced by prudent antibiotic stewardship. Conversely, int1 levels have continued to increase in M soils since 1990, implying direct manure application to soils should be scrutinized as part of future stewardship programs. PMID:26878889

  10. Appearance of β-lactam Resistance Genes in Agricultural Soils and Clinical Isolates over the 20(th) Century.

    PubMed

    Graham, David W; Knapp, Charles W; Christensen, Bent T; McCluskey, Seánín; Dolfing, Jan

    2016-01-01

    Debate exists about whether agricultural versus medical antibiotic use drives increasing antibiotic resistance (AR) across nature. Both sectors have been inconsistent at antibiotic stewardship, but it is unclear which sector has most influenced acquired AR on broad scales. Using qPCR and soils archived since 1923 at Askov Experimental Station in Denmark, we quantified four broad-spectrum β-lactam AR genes (ARG; blaTEM, blaSHV, blaOXA and blaCTX-M) and class-1 integron genes (int1) in soils from manured (M) versus inorganic fertilised (IF) fields. "Total" β-lactam ARG levels were significantly higher in M versus IF in soils post-1940 (paired-t test; p < 0.001). However, dominant individual ARGs varied over time; blaTEM and blaSHV between 1963 and 1974, blaOXA slightly later, and blaCTX-M since 1988. These dates roughly parallel first reporting of these genes in clinical isolates, suggesting ARGs in animal manure and humans are historically interconnected. Archive data further show when non-therapeutic antibiotic use was banned in Denmark, blaCTX-M levels declined in M soils, suggesting accumulated soil ARGs can be reduced by prudent antibiotic stewardship. Conversely, int1 levels have continued to increase in M soils since 1990, implying direct manure application to soils should be scrutinized as part of future stewardship programs. PMID:26878889