Science.gov

Sample records for manzana cydia pomonella

  1. Rapid Assessment of the Sex of Codling Moth, Cydia pomonella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two different methods were tested to identify the sex of the early developmental stages of the codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) with a WZ/ZZ (female/male) sex chromosome system. Firstly, it was shown that the sex of all larval stages can be easily determined by the ...

  2. The Toxicology and Biochemical Characterization of Cantharidin on Cydia pomonella.

    PubMed

    Wu, Zheng-Wei; Yang, Xue-Qing; Zhang, Ya-Lin

    2015-02-01

    Cantharidin, a natural toxin produced by beetles in the families Meloidae and Oedemeridae, reported to be toxic to some pests, is being developed as a biopesticide in China. This study evaluates the toxicity and biochemical characterization of cantharidin on the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), an economically important fruit pest, under both laboratory and field conditions. Laboratory dose response bioassays showed that the LC50 value of cantharidin against neonate larvae was 0.057 mg ml(-1). Exposure of the larvae to 0.024 and 0.057 mg ml(-1) of cantharidin resulted in significant reduction in larval body weight. Neonate larvae exposed to LC10 of cantharidin showed increased glutathione S-transferase activity and significantly reduced the carboxylesterase and cytochrome P450-dependent mixed-function oxidase activities. Results also showed 16 and 25% ovicidal activity at concentrations of 0.057 and 0.14 mg ml(-1) of cantharidin, respectively. Field trials demonstrated cantharidin has a significant effect on both the first and second generations of C. pomonella larvae, but it exhibits a lower control efficiency than the chemical reference emamectin benzoate. Cantharidin may be considered a valuable tool for the control of codling moth. PMID:26470125

  3. Functional characterization of chitinase from Cydia pomonella granulovirus.

    PubMed

    Daimon, T; Katsuma, S; Kang, W K; Shimada, T

    2007-01-01

    Baculovirus chitinases (V-CHIAs) play a crucial role in the terminal liquefaction of virus-infected larvae after death. Although v-chiAs from nucleopolyhedroviruses (NPVs) have been well characterized, little is known about v-chiAs from granuloviruses (GVs). We characterized the v-chiA of Cydia pomonella GV (CpGV) by constructing a recombinant Bombyx mori NPV (BmNPV) in which BmNPV v-chiA was replaced by CpGV v-chiA (103CpGV virus). CpGV v-chiA encoded an approximately 70-kDa chitinase with an exo-type substrate preference. CpGV V-CHIA lacked a C-terminal KDEL endoplasmic reticulum retention motif and was suggested to be a secretory protein. Terminal host liquefaction of B. mori larvae and proper folding of BmNPV-encoded cysteine protease (BmNPV V-CATH) were observed following infection with 103CpGV, indicating that CpGV v-chiA is able to compensate for the absence of its BmNPV counterpart. Our data suggest that the molecular interaction between V-CHIA and V-CATH may be conserved across a broad range of lepidopteran GVs and NPVs. PMID:17557135

  4. Genetic Transformation of the Codling Moth, Cydia pomonella L., with piggyBac EGFP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation of the codling moth, Cydia pomonella, was accomplished through embryo microinjection with a plasmid-based piggyBac vector containing the enhanced green fluorescent protein (EGFP) gene. Sequencing of the flanking regions around the inserted construct results in identification o...

  5. The chemosensory receptors of codling moth Cydia pomonella – expression in larvae and adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Codling moth, Cydia pomonella, is a worldwide key pest of apple and pear. Behavior-modifying semiochemicals are successfully used and are being further developed for environmentally safe control of codling moth. The chemical senses, olfaction and gustation, play critically important role...

  6. Body size phenotypes are heritable and mediate fecundity but not fitness in the lepidopteran frugivore, Cydia pomonella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inheritance and functional roles of quantitative traits are central concerns of evolutionary ecology. We report two sets of experiments that investigated the heritability and reproductive consequences of body size phenotypes in a globally distributed lepidopteran frugivore, Cydia pomonella (L.)....

  7. Mastrus ridibundus parasitoids eavesdrop on cocoon-spinning codling moth, Cydia pomonella, larvae

    NASA Astrophysics Data System (ADS)

    Jumean, Zaid; Unruh, Tom; Gries, Regine; Gries, Gerhard

    2005-01-01

    Cocoon-spinning larvae of the codling moth, Cydia pomonella L. (Lepidoptera: Olethreutidae) employ a pheromone that attracts or arrests conspecifics seeking pupation sites. Such intraspecific communication signals are important cues for illicit receivers such as parasitoids to exploit. We tested the hypothesis that the prepupal C. pomonella parasitoid Mastrus ridibundus Gravenhorst (Hymenoptera: Ichneumonidae) exploits the larval aggregation pheromone to locate host prepupae. In laboratory olfactometer experiments, female M. ridibundus were attracted to 3-day-old cocoons containing C. pomonella larvae or prepupae. Older cocoons containing C. pomonella pupae, or larvae and prepupae excised from cocoons, were not attractive. In gas chromatographic-electroantennographic detection (GC-EAD) analyses of bioactive Porapak Q extract of cocoon-derived airborne semiochemicals, ten compounds elicited responses from female M. ridibundus antennae. Comparative GC-mass spectrometry of authentic standards and cocoon-volatiles determined that these compounds were 3-carene, myrcene, heptanal, octanal, nonanal, decanal, (E)-2-octenal, (E)-2-nonenal, sulcatone, and geranylacetone. A synthetic 11-component blend consisting of these ten EAD-active compounds plus EAD-inactive (+)-limonene (the most abundant cocoon-derived volatile) was as effective as Porapak Q cocoon extract in attracting both female M. ridibundus and C. pomonella larvae seeking pupation sites. Only three components could be deleted from the 11-component blend without diminishing its attractiveness to M. ridibundus, which underlines the complexity of information received and processed during foraging for hosts. Mastrus ridibundus obviously “eavesdrop” on the pheromonal communication signals of C. pomonella larvae that reliably indicate host presence.

  8. Putative nicotinic acetylchloline receptor subunits express differentially through life cycle of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nicotinic acetylcholine receptors (nAChRs) are the targets of neonicotinoids and spinosads, two insecticides used in orchards to effectively control codling moth, Cydia pomonella (L.)(Lepidoptera: Tortricidae). The nAChRs mediate the fast actions of the neurotransmitter acetylcholine in synaptic tr...

  9. Evaluation of Lignins and Particle Films as Solar Protectants for the Granulovirus of the Codling Moth, Cydia pomonella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The identification of effective adjuvants for field application of the codling moth, Cydia pomonella L., granulovirus (CpGV) is of interest to improve the commercial viability and utility of this biological pesticide. We evaluated several materials as potential adjuvants to protect CpGV from ultra-v...

  10. Effect of radiation on fecundity and fertility of codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) from South Africa.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Codling moth, Cydia pomonella (L.), is the key pest of pome fruit in South Africa, and control of codling moth in apple and pear orchards relies on the application of insecticides and in some cases pheromone mediated mating disruption. Development of resistance to insecticides and placement of restr...

  11. Apple and sugar feeding in adult codling moths, Cydia pomonella: effects on longevity, fecundity, and egg fertility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Attraction of adult codling moths, Cydia pomonella (L.)(Lepidoptera: Tortricidae), to sweet baits has been well documented; however, beneficial effects of sugar feeding on moth fitness have not been demonstrated convincingly. Longevity, fecundity, and egg fertility were examined for female/male pair...

  12. Effect of rearing strategy and gamma radiation on fecundity and fertility of codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The codling moth, Cydia pomonella (L.), is a serious pest of pome fruit worldwide. In an effort to reduce the use of pesticides to control this pest, the Sterile Insect Technique (SIT) is being used or considered as an integrated pest control tactic. Rearing codling moths through diapause has been...

  13. Structural insights into Cydia pomonella pheromone binding protein 2 mediated prediction of potentially active semiochemicals

    PubMed Central

    Tian, Zhen; Liu, Jiyuan; Zhang, Yalin

    2016-01-01

    Given the advantages of behavioral disruption application in pest control and the damage of Cydia pomonella, due progresses have not been made in searching active semiochemicals for codling moth. In this research, 31 candidate semiochemicals were ranked for their binding potential to Cydia pomonella pheromone binding protein 2 (CpomPBP2) by simulated docking, and this sorted result was confirmed by competitive binding assay. This high predicting accuracy of virtual screening led to the construction of a rapid and viable method for semiochemicals searching. By reference to binding mode analyses, hydrogen bond and hydrophobic interaction were suggested to be two key factors in determining ligand affinity, so is the length of molecule chain. So it is concluded that semiochemicals of appropriate chain length with hydroxyl group or carbonyl group at one head tended to be favored by CpomPBP2. Residues involved in binding with each ligand were pointed out as well, which were verified by computational alanine scanning mutagenesis. Progress made in the present study helps establish an efficient method for predicting potentially active compounds and prepares for the application of high-throughput virtual screening in searching semiochemicals by taking insights into binding mode analyses. PMID:26928635

  14. Putative Chemosensory Receptors of the Codling Moth, Cydia pomonella, Identified by Antennal Transcriptome Analysis

    PubMed Central

    Bengtsson, Jonas M.; Trona, Federica; Montagné, Nicolas; Anfora, Gianfranco; Ignell, Rickard; Witzgall, Peter; Jacquin-Joly, Emmanuelle

    2012-01-01

    The codling moth, Cydia pomonella, is an important fruit pest worldwide. As nocturnal animals, adults depend to a large extent on olfactory cues for detection of food and mates, and, for females, oviposition sites. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim was to identify chemosensory receptors in the codling moth as a means to uncover new targets for behavioral interference. Using next-generation sequencing techniques, we identified a total of 43 candidate ORs, one gustatory receptor and 15 IRs in the antennal transcriptome. Through Blast and sequence similarity analyses we annotated the insect obligatory co-receptor ORco, five genes clustering in a conserved clade containing sex pheromone receptors, one homolog of the Bombyx mori female-enriched receptor BmorOR30 (but no homologs of the other B. mori female-enriched receptors) and one gene clustering in the sugar receptor family. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a, and one homolog of an IR involved in phenylethyl amine detection in Drosophila. Our results open for functional characterization of the chemosensory receptors of C. pomonella, with potential for new or refined applications of semiochemicals for control of this pest insect. PMID:22363688

  15. CpSAT-1, a transcribed satellite sequence from the codling moth, Cydia pomonella.

    PubMed

    Věchtová, Pavlína; Dalíková, Martina; Sýkorová, Miroslava; Žurovcová, Martina; Füssy, Zoltán; Zrzavá, Magda

    2016-08-01

    Satellite DNA (satDNA) is a non-coding component of eukaryotic genomes, located mainly in heterochromatic regions. Relevance of satDNA began to emerge with accumulating evidence of its potential yet hardly comprehensible role that it can play in the genome of many organisms. We isolated the first satDNA of the codling moth (Cydia pomonella, Tortricidae, Lepidoptera), a species with holokinetic chromosomes and a single large heterochromatic element, the W chromosome in females. The satDNA, called CpSAT-1, is located on all chromosomes of the complement, although in different amounts. Surprisingly, the satellite is almost missing in the heterochromatic W chromosome. Additionally, we isolated mRNA from all developmental stages (1st-5th instar larva, pupa, adult), both sexes (adult male and female) and several tissues (Malpighian tubules, gut, heart, testes, and ovaries) of the codling moth and showed the CpSAT-1 sequence was transcribed in all tested samples. Using CpSAT-1 specific primers we amplified, cloned and sequenced 40 monomers from cDNA and gDNA, respectively. The sequence analysis revealed a high mutation rate and the presence of potentially functional motifs, mainly in non-conserved regions of the monomers. Both the chromosomal distribution and the sequence analysis suggest that CPSAT-1 has no function in the C. pomonella genome. PMID:27236660

  16. Baculovirus resistance in codling moth (Cydia pomonella L.) caused by early block of virus replication.

    PubMed

    Asser-Kaiser, Sabine; Radtke, Pit; El-Salamouny, Said; Winstanley, Doreen; Jehle, Johannes A

    2011-02-20

    An up to 10,000-fold resistance against the biocontrol agent Cydia pomonella granulovirus (CpGV) was observed in field populations of codling moth, C. pomonella, in Europe. Following different experimental approaches, a modified peritrophic membrane, a modified midgut receptor, or a change of the innate immune response could be excluded as possible resistance mechanisms. When CpGV replication was traced by quantitative PCR in different tissues of susceptible and resistant insects after oral and intra-hemocoelic infection, no virus replication could be detected in any of the tissues of resistant insects, suggesting a systemic block prior to viral DNA replication. This conclusion was corroborated by fluorescence microscopy using a modified CpGV (bacCpGV(hsp-eGFP)) carrying enhanced green fluorescent gene (eGFP), which showed that infection in resistant insects did not spread. In conclusion, the different lines of evidence indicate that CpGV can enter but not replicate in the cells of resistant codling moth larvae. PMID:21190707

  17. Identification of biotransformation enzymes in the antennae of codling moth Cydia pomonella.

    PubMed

    Huang, Xinglong; Liu, Lu; Su, Xiaoji; Feng, Jinian

    2016-04-10

    Biotransformation enzymes are found in insect antennae and play a critical role in degrading xenobiotics and odorants. In Cydia pomonella, we identified 26 biotransformation enzymes. Among these enzymes, twelve carboxylesterases (CXEs), two aldehyde oxidases (AOXs) and six alcohol dehydrogenases (ADs) were predominantly expressed in antennae. Each of the CpomCXEs presents a conserved catalytic triad "Ser-His-Glu", which is the structural characteristic of known insect CXEs. CpomAOXs present two redox centers, a FAD-binding domain and a molybdenum cofactor/substrate-binding domain. The antennal CpomADs are from two protein families, short-chain dehydrogenases/reducetases (SDRs) and medium-chain dehydrogenases/reducetases (MDRs). Putative catalytic active domain and cofactor binding domain were found in these CpomADs. Potential functions of these enzymes were determined by phylogenetic analysis. The results showed that these enzymes share close relationship with odorant degrading enzymes (ODEs) and resistance-associated enzymes of other insect species. Because of commonly observed roles of insect antennal biotransformation enzymes, we suggest antennal biotransformation enzymes presented here are candidate that involved in degradation of odorants and xenobiotics within antennae of C. pomonella. PMID:26778204

  18. Optimizing Aerosol Dispensers for Mating Disruption of Codling Moth, Cydia pomonella L.

    PubMed

    McGhee, Peter S; Miller, James R; Thomson, Donald R; Gut, Larry J

    2016-07-01

    Experiments were conducted in commercial apple orchards to determine if improved efficiencies in pheromone delivery may be realized by using aerosol pheromone dispensers for codling moth (CM), Cydia pomonella L., mating disruption. Specifically, we tested how reducing: pheromone concentration, period of dispenser operation, and frequency of pheromone emission from aerosol dispensers affected orientational disruption of male CM to pheromone-baited monitoring traps. Isomate® CM MIST formulated with 50 % less codlemone (3.5 mg/ emission) provided orientation disruption equal to the standard commercial formulation (7 mg / emission). Decreased periods of dispenser operation (3 and 6 h) and frequency of pheromone emission (30 and 60 min) provided a level of orientational disruption similar to the current standard protocol of releasing pheromone over a 12 h period on a 15 min cycle, respectively. These three modifications provide a means of substantially reducing the amount of pheromone necessary for CM disruption. The savings accompanying pheromone conservation could lead to increased adoption of CM mating disruption and, moreover, provide an opportunity for achieving higher levels of disruption by increasing dispenser densities. PMID:27369280

  19. A female-specific attractant for the codling moth, Cydia pomonella, from apple fruit volatiles

    NASA Astrophysics Data System (ADS)

    Hern, Alan; Dorn, Silvia

    Host plant-derived esters were investigated as potential female-specific attractants for the codling moth (CM), Cydia pomonella (L.), a key pest of apples worldwide. The behavioural effects of single and combined volatile compounds and of a natural odour blend were examined using olfactometry and wind-tunnel bioassays. The apple-derived volatile butyl hexanoate attracted mated females while it was behaviourally ineffective for males over a dosage range of more than three orders of magnitude in olfactometer assays. Female CM preferred this kairomone to the headspace volatiles from ripe apples. Both no-choice and choice trials in the wind-tunnel suggested that female moths might be effectively trapped by means of this compound. In contrast, headspace volatiles collected from ripe apple fruits as well as a blend containing the six dominant esters from ripe apples were behaviourally ineffective. A female-specific repellency was found for the component hexyl acetate in the olfactometer, but this ester had no significant effect in the wind-tunnel. Butyl hexanoate with its sex-specific attraction should be further evaluated for monitoring and controlling CM females in orchards.

  20. Impact of Cultivation and Subsequent Burial on Cydia pomonella (Lepidoptera: Tortricidae) and Conotrachelus nenuphar (Coleoptera: Curculionidae)

    PubMed Central

    Baughman, William B.; Nelson, Peter N.; Grieshop, Matthew J.

    2015-01-01

    We assessed the efficacy of cultivation as a potential management strategy for codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), and plum curculio, Conotrachelus nenuphar Herbst (Coleoptera: Curculionidae) in apple orchards. Cocooned codling moth pupae and thinning apples infested with plum curculio larvae were cultivated over in the field. Emergence, percent burial, damage to buried fruit, and depth of burial was recorded. In the laboratory, both insects were buried at variable depths in sand and potting soil and emergence was measured. A greater proportion of plum curculio larvae buried in infested fruit under laboratory conditions survived to adulthood compared with unburied infested fruit, down to 15 cm. No codling moth adults emerged from under 1 cm or more of sand. Buried codling moth larvae experienced drastically reduced survival to adulthood compared with unburied larvae. These results indicate that strip cultivation may negatively impact codling moth diapausing larvae and pupae on the ground, but not likely to negatively impact plum curculio in infested dropped apples. PMID:26470248

  1. The chemosensory receptors of codling moth Cydia pomonella-expression in larvae and adults.

    PubMed

    Walker, William B; Gonzalez, Francisco; Garczynski, Stephen F; Witzgall, Peter

    2016-01-01

    Olfaction and gustation play critical roles in the life history of insects, mediating vital behaviors such as food, mate and host seeking. Chemosensory receptor proteins, including odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) function to interface the insect with its chemical environment. Codling moth, Cydia pomonella, is a worldwide pest of apple, pear and walnut, and behavior-modifying semiochemicals are used for environmentally safe control. We produced an Illumina-based transcriptome from antennae of males and females as well as neonate head tissue, affording a qualitative and quantitative analysis of the codling moth chemosensory receptor repertoire. We identified 58 ORs, 20 GRs and 21 IRs, and provide a revised nomenclature that is consistent with homologous sequences in related species. Importantly, we have identified several OR transcripts displaying sex-biased expression in adults, as well as larval-enriched transcripts. Our analyses have expanded annotations of the chemosensory receptor gene families, and provide first-time transcript abundance estimates for codling moth. The results presented here provide a strong foundation for future work on codling moth behavioral physiology and ecology at the molecular level, and may lead to the development of more precise biorational control strategies. PMID:27006164

  2. Impact of Cultivation and Subsequent Burial on Cydia pomonella (Lepidoptera: Tortricidae) and Conotrachelus nenuphar (Coleoptera: Curculionidae).

    PubMed

    Baughman, William B; Nelson, Peter N; Grieshop, Matthew J

    2015-06-01

    We assessed the efficacy of cultivation as a potential management strategy for codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), and plum curculio, Conotrachelus nenuphar Herbst (Coleoptera: Curculionidae) in apple orchards. Cocooned codling moth pupae and thinning apples infested with plum curculio larvae were cultivated over in the field. Emergence, percent burial, damage to buried fruit, and depth of burial was recorded. In the laboratory, both insects were buried at variable depths in sand and potting soil and emergence was measured. A greater proportion of plum curculio larvae buried in infested fruit under laboratory conditions survived to adulthood compared with unburied infested fruit, down to 15 cm. No codling moth adults emerged from under 1 cm or more of sand. Buried codling moth larvae experienced drastically reduced survival to adulthood compared with unburied larvae. These results indicate that strip cultivation may negatively impact codling moth diapausing larvae and pupae on the ground, but not likely to negatively impact plum curculio in infested dropped apples. PMID:26470248

  3. Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella

    PubMed Central

    Duménil, Claire; Judd, Gary J. R.; Bosch, Dolors; Baldessari, Mario; Gemeno, César; Groot, Astrid T.

    2014-01-01

    The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption. PMID:26462935

  4. Mating rates between sterile and wild codling moths (Cydia pomonella) in springtime: a simulation study.

    PubMed

    Tyson, R; Newton, K D; Thistlewood, H; Judd, G

    2008-09-21

    The sterile insect technique (SIT) can be a powerful method for pest control without the negative environmental effects of conventional pesticides. The goal is to induce pest population collapse by arranging conditions where wild females mate only with sterile males and thus do not produce offspring. In applying the SIT, it can be important to understand both how subtle alterations of sterile and wild insect behaviour alter the effectiveness of the SIT in different applications, and how this is reflected in the data gathered through associated monitoring devices, often pheromone traps. Our work in this paper is motivated by the use of SIT against orchard pests, particularly the codling moth (Cydia pomonella). We investigate how individual behaviours affect the mating rate between wild females and sterile males, and the corresponding sterile to wild trap catch ratio, through a preliminary individual-based model. Our analysis suggests that the sterile males may not be effective at interfering with mating between wild moths during springtime releases, while at the same time monitoring information gathered from trap catches may give no indication of reduced effectiveness of the SIT. PMID:18597787

  5. How the oligophage codling moth Cydia pomonella survives on walnut despite its secondary metabolite juglone.

    PubMed

    Piskorski, Rafal; Dorn, Silvia

    2011-06-01

    Besides apple, its primary host, the codling moth Cydia pomonella uses walnut as a secondary host. Abundance of toxic naphthoquinones, among which juglone prevails, does not restrain this economically important pest insect from infesting walnut, but processes underlying the suitability of this host were yet unknown. Larvae feeding on an artificial diet supplemented with juglone at naturally occurring concentrations survived to adulthood at a similarly high proportion as those in the juglone-devoid control. However, their development time was prolonged, their weight gain was reduced, and adult sex ratio was distorted. Results from the natural system with walnut and apple fruits were in line with data gained on artificial diet. Remarkably, a twofold increase of the maximal juglone content reported from the walnut husk was lethal to the larvae. Chemical analyses showed that larvae feeding on the artificial diet supplemented with juglone concentrations present in walnut contained 1,4,5-trihydroxynaphthalene and excreted it in their frass, whereas the hemolymph contained neither detectable amounts of juglone nor the product of its reduction. Hence, effective metabolism of juglone in the intestinal system of the larvae underlies their survival on host plants containing this defensive compound. PMID:21356213

  6. Identification and characterization of the Cydia pomonella granulovirus cathepsin and chitinase genes.

    PubMed

    Kang, W; Tristem, M; Maeda, S; Crook, N E; O'Reilly, D R

    1998-09-01

    A 3.2 kb BamHI-EcoRI fragment of the Cydia pomonella granulovirus (CpGV) genome was subcloned and characterized. Sequence analysis revealed two complete and one partial open reading frames (ORFs). ORF7L is predicted to encode a 66.7 kDa protein (594 amino acid residues) that is 57% identical (amino acid sequence) to the chiA gene (ORF126) of Autographa californica nucleopolyhedrovirus (AcMNPV), encoding a chitinase. ORF8R is 333 amino acids in length and shows high similarity (between 64% and 67%) with baculovirus cathepsins. The partial ORF, ORF5L, is related to AcMNPV ORF145 of unknown function. Phylogenetic trees were constructed for both chitinase and cathepsin sequences from baculoviruses and other species. In both cases, the baculovirus sequences were monophyletic but with a deep division between the GVs and NPVs, suggesting both genes were present in an ancestral virus prior to the separation of the two genera. However, these studies did not provide definitive evidence for the origin of either protein in baculoviruses. To investigate CpGV cathepsin function, a rescue experiment was performed using a Bombyx mori NPV (BmNPV) mutant (BmCysPD) which lacks a functional cathepsin (cath) gene. Larvae infected with BmCysPD-Cp.cat, a BmCysPD derivative carrying CpGV cath, showed similar symptoms to wild-type BmNPV infected insects, confirming that CpGV cath encodes a functional cathepsin. Primer extension analysis of mRNA from BmCysPD-Cp.cat infected cells showed that CpGV cath transcription was initiated from a consensus late transcription motif (ATAAG) within the CpGV sequences, indicating that a CpGV late promoter motif was recognized in this NPV system. PMID:9747739

  7. Mapping of single-copy genes by TSA-FISH in the codling moth, Cydia pomonella

    PubMed Central

    2014-01-01

    Background We work on the development of transgenic sexing strains in the codling moth, Cydia pomonella (Tortricidae), which would enable to produce male-only progeny for the population control of this pest using sterile insect technique (SIT). To facilitate this research, we have developed a number of cytogenetic and molecular tools, including a physical map of the codling moth Z chromosome using BAC-FISH (fluorescence in situ hybridization with bacterial artificial chromosome probes). However, chromosomal localization of unique, single-copy sequences such as a transgene cassette by conventional FISH remains challenging. In this study, we adapted a FISH protocol with tyramide signal amplification (TSA-FISH) for detection of single-copy genes in Lepidoptera. We tested the protocol with probes prepared from partial sequences of Z-linked genes in the codling moth. Results Using a modified TSA-FISH protocol we successfully mapped a partial sequence of the Acetylcholinesterase 1 (Ace-1) gene to the Z chromosome and confirmed thus its Z-linkage. A subsequent combination of BAC-FISH with BAC probes containing anticipated neighbouring Z-linked genes and TSA-FISH with the Ace-1 probe allowed the integration of Ace-1 in the physical map of the codling moth Z chromosome. We also developed a two-colour TSA-FISH protocol which enabled us simultaneous localization of two Z-linked genes, Ace-1 and Notch, to the expected regions of the Z chromosome. Conclusions We showed that TSA-FISH represents a reliable technique for physical mapping of genes on chromosomes of moths and butterflies. Our results suggest that this technique can be combined with BAC-FISH and in the future used for physical localization of transgene cassettes on chromosomes of transgenic lines in the codling moth or other lepidopteran species. Furthermore, the developed protocol for two-colour TSA-FISH might become a powerful tool for synteny mapping in non-model organisms. PMID:25471491

  8. Determining thermotolerance of fifth-instar Cydia pomonella (L.) (Lepidoptera: Tortricidae) and Amyelois transitella (Walker) (Lepidoptera: Pyralidae) by three different methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermotolerance of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), and navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), were studied using two water immersion methods and one dry heat method. The two water immersion methods were: 1) directly immersing in hot w...

  9. Improvement of the sterile insect technique for codling moth Cydia pomonella (Linnaeus)(Lepidoptera: Tortricidae) to facilitate expansion of field application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) is a key pest of most pome fruit (apple, pear and quince) and walnut orchards in the temperate regions of the world. Efforts to control the codling moth have in the past mostly relied on the use of broad spectrum insecticide spra...

  10. Evaluation of the Pear Ester Kairomone as a Formulation Additive for the Granulovirus of Codling Moth, Cydia pomonella (L.) in Pome Fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orchard studies were conducted in 2005 and 2006 in apple and pear to evaluate the larval kairomone (E,Z)-2,4-decadienoate (pear ester) as a formulation additive to improve the efficacy of the granulovirus (CpGV) of the codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae). The addition of a 5%...

  11. Targeting Cydia pomonella (L.)(Lepidoptera: Tortricidae) Adults with Low Volume Applications of Insecticides Alone and in Combination with Sex Pheromone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies examined the effectiveness of adding insecticides to low volume sprays of a microencapsulated (MEC) sex pheromone to manage codling moth, Cydia pomonella (L). The activities of fifteen insecticides against the adult stage were first evaluated with a plastic cup assay. In general, moth longev...

  12. Cross-Resistance Between Azinphos-methyl and Acetamiprid in Populations of Codling Moth, Cydia pomonella (L.)(Lepidoptera: Tortricidae), from Washington State

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult and neonate larval assays were conducted to assess the response of field-collected codling moth, Cydia pomonella (L.), populations from apple. Male codling moth populations exhibited a range of responses to a discriminating concentration of azinphos-methyl in a survey of 20 populations. Popula...

  13. Characterization of Multiple Heat-Shock Protein Transcripts from Cydia pomonella: Their Response to Extreme Temperature and Insecticide Exposure.

    PubMed

    Yang, Xue-Qing; Zhang, Ya-Lin; Wang, Xiao-Qi; Dong, Hui; Gao, Ping; Jia, Ling-Yi

    2016-06-01

    The economically important fruit pest Cydia pomonella (L.) exhibits a strong adaptability and stress tolerance to environmental stresses. Heat-shock proteins (HSPs) play key roles in insects in coping with environmental stresses. However, little is known about the spatiotemporal expression patterns of HSPs and their response to stresses in C. pomonella. In this study, a thermal treatment-recovery test was performed, and the expression profiles of a novel isolated HSP, named CpHSP40, and six CpHSPs were determined. Third-instar larvae were able to recover from cold shock (0 °C) and heat shock (40 °C). Escherichia coli BL21 (DE3) cells harboring recombinant pET-28a (+)-CpHSP40 plasmid showed significant temperature tolerance. CpHSPs were developmentally and tissue-specifically expressed. The responses of CpHSPs to 0 and 40 °C (with or without recovery) and insecticide exposure were varied. All of these indicated that the expression of HSPs plays a role in the development and in environmental adaptation in C. pomonella. PMID:27159229

  14. Insecticide resistance may enhance the response to a host-plant volatile kairomone for the codling moth, Cydia pomonella (L.)

    NASA Astrophysics Data System (ADS)

    Sauphanor, Benoît; Franck, Pierre; Lasnier, Thérèse; Toubon, Jean-François; Beslay, Dominique; Boivin, Thomas; Bouvier, Jean-Charles; Renou, Michel

    2007-06-01

    The behavioral and electroantennographic responses of Cydia pomonella (L.) to the ripe pear volatile ethyl (2 E,4 Z)-2,4-decadienoate (Et- E, Z-DD), were compared in insecticide-susceptible and -resistant populations originating from southern France. A dose-response relationship to this kairomonal attractant was established for antennal activity and did not reveal differences between susceptible and resistant strains. Conversely, males of the laboratory strains expressing metabolic [cytochrome P450-dependent mixed-function oxidases (mfo)] or physiological (kdr-type mutation of the sodium-channel gene) resistance mechanisms exhibited a significantly higher response to Et- E, Z-DD than those of the susceptible strain in a wind tunnel experiment. No response of the females to this kairomone could be obtained in our wind-tunnel conditions. In apple orchards, mfo-resistant male moths were captured at significantly higher rates in kairomone-baited traps than in traps baited with the sex pheromone of C. pomonella. Such a differential phenomenon was not verified for the kdr-resistant insects, which exhibited a similar response to both the sex pheromone and the kairomonal attractant in apple orchards. Considering the widespread distribution of metabolic resistance in European populations of C. pomonella and the enhanced behavioral response to Et- E, Z-DD in resistant moths, the development of control measures based on this kairomonal compound would be of great interest for the management of insecticide resistance in this species.

  15. Body size phenotypes are heritable and mediate fecundity but not fitness in the lepidopteran frugivore Cydia pomonella

    NASA Astrophysics Data System (ADS)

    Davis, Thomas Seth; Landolt, Peter J.

    2012-06-01

    The inheritance and functional roles of quantitative traits are central concerns of evolutionary ecology. We report two sets of experiments that investigated the heritability and reproductive consequences of body size phenotypes in a globally distributed lepidopteran frugivore, Cydia pomonella (L.). In our first set of experiments, we tested the hypotheses that (1) body size is heritable and (2) parental body size mediates egg production and offspring survival. Midparent-offspring regression analyses revealed that body mass is highly heritable for females and moderately heritable for males. The contribution of fathers to estimates of additive genetic variance was slightly greater than for mothers. Egg production increased with mean parental size, but offspring survival rates were equivalent. Based on this result, we tested two additional hypotheses in a second set of experiments: (3) male size moderates female egg production and egg fertility and (4) egg production, egg fertility, and offspring survival rate are influenced by female mating opportunities. Females paired with large males produced more eggs and a higher proportion of fertile eggs than females paired with small males. Females with multiple mating opportunities produced more fertile eggs than females paired with a single male. However, egg production and offspring survival rates were unaffected by the number of mating opportunities. Our experiments demonstrate that body mass is heritable in C. pomonella and that size phenotypes may mediate fecundity but not fitness. We conclude that male size can influence egg production and fertility, but female mate choice also plays a role in determining egg fertility.

  16. High stability and no fitness costs of the resistance of codling moth to Cydia pomonella granulovirus (CpGV-M).

    PubMed

    Undorf-Spahn, Karin; Fritsch, Eva; Huber, Jürg; Kienzle, Jutta; Zebitz, Claus P W; Jehle, Johannes A

    2012-10-01

    Resistance against the biocontrol agent Cydia pomonella granulovirus (CpGV-M) was previously observed in field populations of codling moth (CM, C. pomonella) in South-West Germany. Incidental observations in a laboratory reared field colony (CpR) indicated that this resistance is rather stable, even in genetically heterogeneous CM colonies consisting of both susceptible and resistant individuals. To test this hypothesis, the resistance level of CpR that was 1000times less susceptible to CpGV-M was followed for more than 60 generations of rearing. Even without virus selection pressure, the high level of resistance, expressed as median lethal concentration, remained stable for more than 30 generations and declined only by a factor of 10 after 60 generations. When cohorts of the F32 and F56 generations of the same colony were selected to CpGV-M for five and two generations, respectively, the resistance level increased to factor of >1,000,000 compared to a susceptible control colony. Laboratory reared colonies of CpR, did not exhibit any measurable fitness costs under laboratory conditions in terms of fecundity and fertility. Resistance testing of seven selected codling moth field populations collected between 2003 and 2008 in commercial orchards in Germany that were repeatedly sprayed with CpGV products gave evidence of different levels of resistance and a more than 20-fold increase of the resistance in 1-3 years when selection by CpGV-M was continued. A maximum 1,000,000-fold level of resistance to CpGV-M that could be induced in the laboratory under virus pressure had been also observed in one field population. The high stability of resistance observed in the genetically heterogenous colony CpR indicates that resistance to CpGV-M is not very costly. PMID:22824003

  17. Occurrence and Prevalence of Insect Pathogens in Populations of the Codling Moth, Cydia pomonella L.: A Long-Term Diagnostic Survey

    PubMed Central

    Zimmermann, Gisbert; Huger, Alois M.; Kleespies, Regina G.

    2013-01-01

    About 20,550 larvae, pupae and adults of the codling moth, Cydia pomonella L., were diagnosed for pathogens during long-term investigations (1955–2012) at the Institute for Biological Control in Darmstadt, Germany. The prevailing entomopathogens diagnosed in these studies were insect pathogenic fungi, especially Beauveria bassiana and Isaria farinosa, the microsporidium, Nosema carpocapsae, the Cydia pomonella granulovirus (CpGV), as well as mostly undetermined bacteria. While the CpGV was observed exclusively in larvae and pupae from laboratory colonies or from field experiments with this virus, entomopathogenic fungi were most frequently diagnosed in last instars in autumn and in diapausing larvae and pupae in spring. B. bassiana was identified as the major fungal pathogen, causing larval prevalences of 0.9% to 100% (mean, about 32%). During prognostic long-term studies in larvae and adults of C. pomonella, N. carpocapsae was diagnosed in codling moth populations from various locations in Germany. The mean prevalence generally ranged between 20% and 50%. Experiments revealed that the fecundity and fertility of microsporidia-infected female adults were significantly reduced compared to healthy ones. The results underpin the importance of naturally occurring microbial antagonists and represent a base for further ecological studies on developing new or additional biological and integrated control strategies. PMID:26462428

  18. Seasonal changes in the composition of storage and membrane lipids in overwintering larvae of the codling moth, Cydia pomonella.

    PubMed

    Rozsypal, Jan; Koštál, Vladimír; Berková, Petra; Zahradníčková, Helena; Simek, Petr

    2014-10-01

    The codling moth (Cydia pomonella) is a major insect pest of apples worldwide. It overwinters as a diapausing fifth instar larva. The overwintering is often a critical part of the insect life-cycle in temperate zone. This study brings detailed analysis of seasonal changes in lipid composition and fluidity in overwintering larvae sampled in the field. Fatty acid composition of triacylglycerol (TG) depots in the fat body and relative proportions of phospholipid (PL) molecular species in biological membranes were analyzed. In addition, temperature of melting (Tm) in TG depots was assessed by using differential scanning calorimetry and the conformational order (fluidity) of PL membranes was analyzed by measuring the anisotropy of fluorescence polarization of diphenylhexatriene probe in membrane vesicles. We observed a significant increase of relative proportion of linoleic acid (C18:2n6) at the expense of palmitic acid (C16:0) in TG depots during the larval transition to diapause accompanied with decreasing melting temperature of total lipids, which might increase the accessibility of depot fats for enzymatic breakdown during overwintering. The fluidity of membranes was maintained very high irrespective of developmental mode or seasonally changing acclimation status of larvae. The seasonal changes in PL composition were relatively small. We discuss these results in light of alternative survival strategies of codling moth larvae (supercooling vs. freezing), variability and low predictability of environmental conditions, and other cold tolerance mechanisms such as extending the supercooling capacity and massive accumulation of cryoprotective metabolites. PMID:25436961

  19. Expression of a Sensory Neuron Membrane Protein SNMP2 in Olfactory Sensilla of Codling Moth Cydia pomonella (Lepidoptera: Tortricidae).

    PubMed

    Huang, Xinglong; Liu, Lu; Fang, Yiqing; Feng, Jinian

    2016-08-01

    In insects, sensory neuron membrane proteins (SNMPs) are critical peripheral olfactory proteins and highly promote the sensitivity of pheromone detection. In this study, we cloned an SNMP transcript (CpomSNMP2, GenBank KU302714) from the antennae of the codling moth Cydia pomonella (L.) Its open reading frame is 1,575 bp and it encodes a protein with 524 amino acids. CpomSNMP2 contains two putative transmembrane domains and has a large extracellular loop. Phylogenetic analysis showed that CpomSNMP2 is clustered into the group of previously characterized lepidopteron SNMP2s. Expression levels of CpomSNMP2 were significantly higher in antennae of both males and females than in tissues from the thoraxes, abdomens, legs, and wings. CpomSNMP2 was distributed in sensilla trichodea of both males and females, but only in sensilla chaetica of males. This study provides evidence for olfactory roles of CpomSNMP2 in this moth. PMID:27329623

  20. A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.)

    NASA Astrophysics Data System (ADS)

    Light, Douglas M.; Knight, Alan L.; Henrick, Clive A.; Rajapaska, Dayananda; Lingren, Bill; Dickens, Joseph C.; Reynolds, Katherine M.; Buttery, Ronald G.; Merrill, Gloria; Roitman, James; Campbell, Bruce C.

    2001-08-01

    Ethyl (2 E, 4 Z)-2,4-decadienoate, a pear-derived volatile, is a species-specific, durable, and highly potent attractant to the codling moth (CM), Cydia pomonella (L.), a serious pest of walnuts, apples, and pears worldwide. This kairomone attracts both CM males and virgin and mated females. It is highly attractive to CM in both walnut and apple orchard contexts, but has shown limited effectiveness in a pear orchard context. Rubber septa lures loaded with ethyl (2 E, 4 Z)-2,4-decadienoate remained attractive for several months under field conditions. At the same low microgram load rates on septa, the combined gender capture of CM in kairomone-baited traps was similar to the capture rate of males in traps baited with codlemone, the major sex pheromone component. The particular attribute of attracting CM females renders this kairomone a novel tool for monitoring population flight and mating-ovipositional status, and potentially a major new weapon for directly controlling CM populations.

  1. Characterization of glutathione S-transferases from Sus scrofa, Cydia pomonella and Triticum aestivum: their responses to cantharidin.

    PubMed

    Yang, Xue-Qing; Zhang, Ya-Lin

    2015-02-01

    Glutathione S-transferases (GSTs) play a key role in detoxification of xenobiotics in organisms. However, their other functions, especially response to the natural toxin cantharidin produced by beetles in the Meloidae and Oedemeridae families, are less known. We obtained GST cDNAs from three sources: Cydia pomonella (CpGSTd1), Sus scrofa (SsGSTα1), and Triticum aestivum (TaGSTf3). The predicted molecular mass is 24.19, 25.28 and 24.49 kDa, respectively. These proteins contain typical N-terminal and C-terminal domains. Recombinant GSTs were heterologously expressed in Escherichia coli as soluble fusion proteins. Their optimal activities are exhibited at pH 7.0-7.5 at 30 °C. Activity of CpGSTd1 is strongly inhibited by cantharidin and cantharidic acid, but is only slightly suppressed by the demethylated analog of cantharidin and cantharidic acid. Enzymatic assays revealed that cantharidin has no effect on SsGSTα1 activity, while it significantly stimulates TaGSTf3 activity, with an EC50 value of 0.3852 mM. Activities of these proteins are potently inhibited by the known GST competitive inhibitor: S-hexylglutathione (GTX). Our results suggest that these GSTs from different sources share similar structural and biochemical characteristics. Our results also suggest that CpGSTd1 might act as a binding protein with cantharidin and its analogs. PMID:25640718

  2. Gene flow among Cydia pomonella (Lepidoptera: Tortricidae) geographic and host populations in South Africa.

    PubMed

    Timm, A E; Geertsema, H; Warnich, L

    2006-04-01

    Information on gene flow among geographic and host populations of C. pomonella (L.) (Lepidoptera: Tortricidae) in South Africa is lacking, despite the importance of these measures for the success of control practices such as chemical control and sterile insect release, which are affected by the amount of gene flow among populations. Therefore, populations collected from nine geographically distant regions in South Africa from apples, pears, and stone fruit were compared using amplified fragment length polymorphism with five selective primer pairs. Results showed that although populations from different hosts were not genetically differentiated, significant evidence for population substructure was apparent between geographic populations. Over local scales, it was possible to distinguish between populations collected from orchards situated <1 km apart. These results suggest that although extensive gene flow occurs among populations from different hosts, gene flow among local geographic C. pomonella populations may be limited and is explained in terms of limited moth flight, the relative isolation of pome fruit production areas, and the absence of wild hosts. PMID:16686131

  3. Impact of climate change on voltinism and prospective diapause induction of a global pest insect--Cydia pomonella (L.).

    PubMed

    Stoeckli, Sibylle; Hirschi, Martin; Spirig, Christoph; Calanca, Pierluigi; Rotach, Mathias W; Samietz, Jörg

    2012-01-01

    Global warming will lead to earlier beginnings and prolongation of growing seasons in temperate regions and will have pronounced effects on phenology and life-history adaptation in many species. These changes were not easy to simulate for actual phenologies because of the rudimentary temporal (season) and spatial (regional) resolution of climate model projections. We investigate the effect of climate change on the regional incidence of a pest insect with nearly worldwide distribution and very high potential for adaptation to season length and temperature--the Codling Moth, Cydia pomonella. Seasonal and regional climate change signals were downscaled to the hourly temporal scale of a pest phenology model and the spatial scale of pest habitats using a stochastic weather generator operating at daily scale in combination with a re-sampling approach for simulation of hourly weather data. Under future conditions of increased temperatures (2045-2074), the present risk of below 20% for a pronounced second generation (peak larval emergence) in Switzerland will increase to 70-100%. The risk of an additional third generation will increase from presently 0-2% to 100%. We identified a significant two-week shift to earlier dates in phenological stages, such as overwintering adult flight. The relative extent (magnitude) of first generation pupae and all later stages will significantly increase. The presence of first generation pupae and later stages will be prolonged. A significant decrease in the length of overlap of first and second generation larval emergence was identified. Such shifts in phenology may induce changes in life-history traits regulating the life cycle. An accordingly life-history adaptation in photoperiodic diapause induction to shorter day-length is expected and would thereby even more increase the risk of an additional generation. With respect to Codling Moth management, the shifts in phenology and voltinism projected here will require adaptations of plant

  4. Impact of Climate Change on Voltinism and Prospective Diapause Induction of a Global Pest Insect – Cydia pomonella (L.)

    PubMed Central

    Stoeckli, Sibylle; Hirschi, Martin; Spirig, Christoph; Calanca, Pierluigi; Rotach, Mathias W.; Samietz, Jörg

    2012-01-01

    Global warming will lead to earlier beginnings and prolongation of growing seasons in temperate regions and will have pronounced effects on phenology and life-history adaptation in many species. These changes were not easy to simulate for actual phenologies because of the rudimentary temporal (season) and spatial (regional) resolution of climate model projections. We investigate the effect of climate change on the regional incidence of a pest insect with nearly worldwide distribution and very high potential for adaptation to season length and temperature – the Codling Moth, Cydia pomonella. Seasonal and regional climate change signals were downscaled to the hourly temporal scale of a pest phenology model and the spatial scale of pest habitats using a stochastic weather generator operating at daily scale in combination with a re-sampling approach for simulation of hourly weather data. Under future conditions of increased temperatures (2045–2074), the present risk of below 20% for a pronounced second generation (peak larval emergence) in Switzerland will increase to 70–100%. The risk of an additional third generation will increase from presently 0–2% to 100%. We identified a significant two-week shift to earlier dates in phenological stages, such as overwintering adult flight. The relative extent (magnitude) of first generation pupae and all later stages will significantly increase. The presence of first generation pupae and later stages will be prolonged. A significant decrease in the length of overlap of first and second generation larval emergence was identified. Such shifts in phenology may induce changes in life-history traits regulating the life cycle. An accordingly life-history adaptation in photoperiodic diapause induction to shorter day-length is expected and would thereby even more increase the risk of an additional generation. With respect to Codling Moth management, the shifts in phenology and voltinism projected here will require adaptations of

  5. Entomopathogenic nematodes for the control of the codling moth (Cydia pomonella L.) in field and laboratory trials.

    PubMed

    Odendaal, D; Addison, M F; Malan, A P

    2016-09-01

    Three commercially available entomopathogenic nematode (EPN) strains (Steinernema feltiae and Heterorhabditis bacteriophora Hb1 and Hb2) and two local species (S. jeffreyense and S. yirgalemense) were evaluated for the control of the codling moth (Cydia pomonella). In field spray trials, the use of S. jeffreyense resulted in the most effective control (67%), followed by H. bacteriophora (Hb1) (42%) and S. yirgalemense (41%). Laboratory bioassays using spray application in simulated field conditions indicate S. feltiae to be the most virulent (67%), followed by S. yirgalemense (58%). A laboratory comparison of the infection and penetration rate of the different strains showed that, at 14°C, all EPN strains resulted in slower codling moth mortality than they did at 25°C. After 48 h, 98% mortality was recorded for all species involved. However, the washed codling moth larvae, cool-treated (at 14°C) with S. feltiae or S. yirgalemense, resulted in 100% mortality 24 h later at room temperature, whereas codling moth larvae treated with the two H. bacteriophora strains resulted in 68% and 54% control, respectively. At 14°C, S. feltiae had the highest average penetration rate of 20 IJs/larva, followed by S. yirgalemense, with 14 IJs/larva. At 25°C, S. yirgalemense had the highest penetration rate, with 39 IJs/larva, followed by S. feltiae, with 9 IJs/larva. This study highlights the biocontrol potential of S. jeffreyense, as well as confirming that S. feltiae is a cold-active nematode, whereas the other three EPN isolates tested prefer warmer temperatures. PMID:26484481

  6. Assessing the Global Risk of Establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt Niche Models.

    PubMed

    Kumar, Sunil; Neven, Lisa G; Zhu, Hongyu; Zhang, Runzhi

    2015-08-01

    Accurate assessment of insect pest establishment risk is needed by national plant protection organizations to negotiate international trade of horticultural commodities that can potentially carry the pests and result in inadvertent introductions in the importing countries. We used mechanistic and correlative niche models to quantify and map the global patterns of the potential for establishment of codling moth (Cydia pomonella L.), a major pest of apples, peaches, pears, and other pome and stone fruits, and a quarantine pest in countries where it currently does not occur. The mechanistic model CLIMEX was calibrated using species-specific physiological tolerance thresholds, whereas the correlative model MaxEnt used species occurrences and climatic spatial data. Projected potential distribution from both models conformed well to the current known distribution of codling moth. None of the models predicted suitable environmental conditions in countries located between 20°N and 20°S potentially because of shorter photoperiod, and lack of chilling requirement (<60 d at ≤10°C) in these areas for codling moth to break diapause. Models predicted suitable conditions in South Korea and Japan where codling moth currently does not occur but where its preferred host species (i.e., apple) is present. Average annual temperature and latitude were the main environmental variables associated with codling moth distribution at global level. The predictive models developed in this study present the global risk of establishment of codling moth, and can be used for monitoring potential introductions of codling moth in different countries and by policy makers and trade negotiators in making science-based decisions. PMID:26470312

  7. Captures of MFO-resistant Cydia pomonella adults as affected by lure, crop management system and flight.

    PubMed

    Bosch, D; Rodríguez, M A; Avilla, J

    2016-02-01

    The main resistance mechanism of codling moth (Cydia pomonella) in the tree fruit area of Lleida (NE Spain) is multifunction oxidases (MFO). We studied the frequency of MFO-resistant adults captured by different lures, with and without pear ester, and flights in orchards under different crop management systems. The factor year affected codling moth MFO-resistance level, particularly in the untreated orchards, highlighting the great influence of codling moth migration on the spread of resistance in field populations. Chemical treatments and adult flight were also very important but mating disruption technique showed no influence. The second adult flight showed the highest frequency, followed by the first flight and the third flight. In untreated orchards, there were no significant differences in the frequency of MFO-resistant individuals attracted by Combo and BioLure. Red septa lures baited with pear ester (DA) captured sufficient insects only in the first generation of 2010, obtaining a significantly lower proportion of MFO-resistant adults than Combo and BioLure. In the chemically treated orchards, in 2009 BioLure caught a significantly lower proportion of MFO-resistant adults than Combo during the first and third flight, and also than DA during the first flight. No significant differences were found between the lures or flights in 2010. These results cannot support the idea of a higher attractiveness of the pear ester for MFO-resistant adults in the field but do suggest a high influence of the response to the attractant depending on the management of the orchard, particularly with regard to the use of chemical insecticides. PMID:26497943

  8. Development of a Susceptibility Index of Apple Cultivars for Codling Moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae) Oviposition

    PubMed Central

    Joshi, Neelendra K.; Rajotte, Edwin G.; Myers, Clayton T.; Krawczyk, Greg; Hull, Larry A.

    2015-01-01

    Codling moth (CM), Cydia pomonella (L.) (Lepidoptera: Tortricidae) is a major fruit feeding pest of apples. Understanding susceptibility differences of various apple cultivars to CM oviposition is an important step in developing resistant varieties as well as monitoring and management strategies for this pest in apple orchards planted with mixed-cultivars. In this context, oviposition preferences of CM for the fruits of different apple cultivars were studied in laboratory bioassays using a series of no-choice and multiple-choice tests in 2006, 2007, and 2008. In 2006 and 2007, 10 apple cultivars, viz., Arlet, Fuji, Gala, Golden Delicious, Honeycrisp, Pristine, Delicious, Stayman, Sunrise, and York Imperial were evaluated, while in the 2008 tests, Golden Delicious, Honeycrisp, and York Imperial were evaluated. During the 2006 tests, preferred apple cultivars for CM oviposition were Golden Delicious and Fuji, while the least preferred were Arlet, Pristine, Sunrise, and Honeycrisp. Similarly, during the 2007 tests, Golden Delicious, Fuji and Stayman remained the preferred cultivars, while Arlet, Honeycrisp, Pristine, and Sunrise remained the least preferred cultivars. In the 2008 tests, Golden Delicious and Honeycrisp were the most and least preferred cultivars, respectively. Based on the oviposition preferences from these bioassays, a susceptibility index for each cultivar was developed. This index may be used as a standard measure in cultivar evaluations in breeding programs, and may assist fruit growers and crop consultants to select the most appropriate cultivar(s) for monitoring and detecting the initial signs of fruit injury from CM in an apple orchard planted with mixed-cultivars. PMID:26617629

  9. Gene expression analysis and enzyme assay reveal a potential role of the carboxylesterase gene CpCE-1 from Cydia pomonella in detoxification of insecticides.

    PubMed

    Yang, Xue-Qing

    2016-05-01

    Carboxylesterases (CarEs) are responsible for metabolism of xenobiotics including insecticides in insects. Understanding the expression patterns of a such detoxifying gene and effect of insecticides on its enzyme activity are important to clarify the function of this gene relevant to insecticides-detoxifying process, but little information is available in the codling moth Cydia pomonella (L.). In this study, we investigated the expression profiles of CarE gene CpCE-1 at different developmental stages and in different tissues of C. pomonella, as well as the larvae exposed to chlorpyrifos-ethyl and lambda-cyhalothrin by using absolute real-time quantitative PCR (absolute RT-qPCR). Results indicated that CpCE-1 expression was significantly altered during C. pomonella development stages, and this expression differed between sexes, with a higher transcript in females than males. Meanwhile, CpCE-1 is overexpressed in cuticle, midgut and head than silk gland, fat body and Malpighian tubules. Exposure of third instar larvae to a non-lethal dosage of chlorpyrifos-ethyl and lambda-cyhalothrin resulted in induction of CpCE-1 transcript. The total carboxylesterase enzyme activity was inhibited by chlorpyrifos-ethyl in vivo; in contrast, the activity of Escherichia coli produced recombinant CpCE-1 was significantly inhibited by both lambda-cyhalothrin and chlorpyrifos-ethyl in vitro. These results suggested that CpCE-1 in C. pomonella is potentially involved in the development and in detoxification of chlorpyrifos-ethyl and lambda-cyhalothrin. PMID:27017882

  10. Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: I. Ancient clade splitting revealed by mitochondrial haplotype markers.

    PubMed

    Meraner, A; Brandstätter, A; Thaler, R; Aray, B; Unterlechner, M; Niederstätter, H; Parson, W; Zelger, R; Dalla Via, J; Dallinger, R

    2008-09-01

    The codling moth (Cydia pomonella L., Tortricidae, Lepidoptera) is an important pest of pome fruit with global distribution. It has adapted successfully to different habitats by forming various ecotypes and populations, often termed strains, which differ among each other in several morphological, developmental, and physiological features. Many strains of Cydia pomonella have developed resistance against a broad range of chemically different pesticides. Obviously, pesticide-resistant strains must have a genetic basis inherent to the gene pool of codling moth populations, and this deserves our particular attention. The primary intention of the present study was to contribute novel information regarding the evolutionary phylogeny and phylogeography of codling moth populations in Central Europe. In addition, we aimed at testing the hypothesis that differential biological traits and response patterns towards pesticides in codling moth populations may be reflected at a mitochondrial DNA level. In particular, we wanted to test if pesticide resistance in codling moths is associated repeatedly and independently with more than one mitochondrial haplotype. To this end, we analyzed mitochondrial DNA and constructed phylogenetic trees based on three mitochondrial genes: cytochrome oxidase I (COI), the A+T-rich region of the control region (CR), and the nicotinamide adenine dinucleotide dehydrogenase subunit 5 (ND5). The results indicate that Central European populations of Cydia pomonella are clearly divided in two ancient clades. As shown by means of a molecular clock approach, the splitting of the two clades can be dated to a time period between the lower and middle Pleistocene, about 1.29-0.20 million years ago. It is assumed that the cyclic changes of warm and cold periods during Pleistocene may have lead to the geographic separation of codling moth populations due to glaciation, giving rise to the formation of the two separate refugial clades, as already shown for many

  11. Possible functional co-operation of palindromes hr3 and hr4 in the genome of Cydia pomonella granulovirus affects viral replication capacity.

    PubMed

    Elmenofy, Wael H; Jehle, Johannes A

    2015-09-01

    After previous studies had shown that natural transposon insertion between the two homologous regions hr3 and hr4 of the genome of the Mexican (M) strain of Cydia pomonella granulovirus (CpGV-M) resulted in a loss of viral competitiveness, the function of these homologous regions was investigated. A CpGV-based bacmid (CpBAC) was constructed and mutants with deleted hr3 and hr4 palindromes (CpBAChr3/hr4KO) and a construct (CpBAChr3-kan-hr4) with physically separated hr3 and hr4 repeats were generated to investigate their involvement in in vivo replication. Based on median lethal concentration (LC50) and median survival time (ST50) of the mutant viruses vCpBAChr3/hr4KO and vCpBAChr3-kan-hr4 it was found that the infectivity of both mutants for codling moth Cydia pomonella L. (Lep.: Tortricidae) larvae was not influenced compared with the parental virus vCpBAC. Co-infection experiments with vCpBAChr3-kan-hr4 and vCpBAC using different virus ratios revealed that vCpBAChr3-kan-hr4 was efficiently out-competed by vCpBAC during in vivo replication. These findings suggested that the separation of hr3 and hr4 resulted in a replication disadvantage of the mutant similar to the observation made in previous co-infection experiments using the transposon-carrying mutant CpGV-MCp5 and WT CpGV-M. It was concluded that the palindromes hr3 and hr4 may play a non-essential but co-functional role in the replication of CpGV-M. PMID:26002301

  12. Sex pheromone monitoring as a versatile tool for determining presence and abundance of Cydia pomonella (Lep.: Tortricidae) in German apple orchards.

    PubMed

    Hummel, H E; Czyrt, T; Schmid, S; Leithold, G; Vilcinskas, A

    2012-01-01

    Cydia pomonella (Lep.: Tortricidae), the codling moth, is an apple, pear, quince and walnut pest with considerable impact on horticultural production systems in many parts of the world. In commercial apple production, it is responsible for a yearly damage level of 40 billion dollars. In response to the need of tight codling moth control there are several options for intervention by pest managers in commercially operated orchards. Spray and count methods have been used for decades with success, but at considerable external costs for the integrity of ecological cycles. Also, problems with pesticide residues and with resistant strains are an issue of concern. For environmental reasons, toxicological means are discounted here. Instead, flight curves based on sex pheromone trapping and monitoring are preferred means towards determining the optimal timing of interventions by biotechnical and biological control methods. Finally, ecological reasons are discussed for vastly different population levels of C. pomonella developing in closely neighboring field sections which operated under different environmental management. PMID:23885432

  13. Biological Characteristics of Experimental Genotype Mixtures of Cydia Pomonella Granulovirus (CpGV): Ability to Control Susceptible and Resistant Pest Populations

    PubMed Central

    Graillot, Benoit; Bayle, Sandrine; Blachere-Lopez, Christine; Besse, Samantha; Siegwart, Myriam; Lopez-Ferber, Miguel

    2016-01-01

    The detection of resistance in codling moth (Cydia pomonella) populations against the Mexican isolate of its granulovirus (CpGV-M), raised questions on the sustainability of the use of this biological insecticide. In resistant host cells, CpGV-M is not able to complete its replication cycle because replication is blocked at an early step. Virus isolates able to overcome this resistance have been characterized—among them, the CpGV-R5 isolate. In mixed infections on resistant insects, both CpGV-M and CpGV-R5 viruses replicate, while CpGV-M alone does not induce mortality. Genetically heterogeneous virus populations, containing 50% of each CpGV-M and CpGV-R5 appear to control resistant host populations as well as CpGV-R5 alone at the same final concentration, even if the concentration of CpGV-R5 is only half in the former. The use of mixed genotype virus preparations instead of genotypically homogeneous populations may constitute a better approach than traditional methods for the development of baculovirus-based biological insecticides. PMID:27213431

  14. Biological Characteristics of Experimental Genotype Mixtures of Cydia Pomonella Granulovirus (CpGV): Ability to Control Susceptible and Resistant Pest Populations.

    PubMed

    Graillot, Benoit; Bayle, Sandrine; Blachere-Lopez, Christine; Besse, Samantha; Siegwart, Myriam; Lopez-Ferber, Miguel

    2016-01-01

    The detection of resistance in codling moth (Cydia pomonella) populations against the Mexican isolate of its granulovirus (CpGV-M), raised questions on the sustainability of the use of this biological insecticide. In resistant host cells, CpGV-M is not able to complete its replication cycle because replication is blocked at an early step. Virus isolates able to overcome this resistance have been characterized-among them, the CpGV-R5 isolate. In mixed infections on resistant insects, both CpGV-M and CpGV-R5 viruses replicate, while CpGV-M alone does not induce mortality. Genetically heterogeneous virus populations, containing 50% of each CpGV-M and CpGV-R5 appear to control resistant host populations as well as CpGV-R5 alone at the same final concentration, even if the concentration of CpGV-R5 is only half in the former. The use of mixed genotype virus preparations instead of genotypically homogeneous populations may constitute a better approach than traditional methods for the development of baculovirus-based biological insecticides. PMID:27213431

  15. Costs and benefits of thermal acclimation for codling moth, Cydia pomonella (Lepidoptera: Tortricidae): implications for pest control and the sterile insect release programme

    PubMed Central

    Chidawanyika, Frank; Terblanche, John S

    2011-01-01

    Sterile insect release (SIR) is used to suppress insect pest populations in agro-ecosystems, but its success hinges on the performance of the released insects and prevailing environmental conditions. For example, low temperatures dramatically reduce SIR efficacy in cooler conditions. Here, we report on the costs and benefits of thermal acclimation for laboratory and field responses of codling moth, Cydia pomonella. Using a component of field fitness, we demonstrate that low temperature acclimated laboratory-reared moths are recaptured significantly more (∼2–4×) under cooler conditions in the wild relative to warm-acclimated or control moths. However, improvements in low temperature performance in cold-acclimated moths came at a cost to performance under warmer conditions. At high ambient temperatures, warm-acclimation improved field performance relative to control or cold-acclimated moths. Laboratory assessments of thermal activity and their limits matched the field results, indicating that these laboratory assays may be transferable to field performance. This study demonstrates clear costs and benefits of thermal acclimation on laboratory and field performance and the potential utility of thermal pretreatments for offsetting negative efficacy in SIR programmes under adverse thermal conditions. Consequently, the present work shows that evolutionary principles of phenotypic plasticity can be used to improve field performance and thus possibly enhance pest control programmes seeking increased efficacy. PMID:25568003

  16. Expression of the Cydia pomonella granulovirus matrix metalloprotease enhances Autographa californica multiple nucleopolyhedrovirus virulence and can partially substitute for viral cathepsin

    PubMed Central

    Ishimwe, Egide; Hodgson, Jeffrey J.; Passarelli, A. Lorena

    2015-01-01

    The Cydia pomonella granulovirus open reading frame 46 (CpGV-ORF46) contains predicted domains found in matrix metalloproteases (MMPs), a family of zinc-dependent endopeptidases that degrade extracellular matrix proteins. We showed that CpGV-MMP was active in vitro. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressing CpGV-ORF46 replicated similarly to a control virus lacking CpGV-ORF46 in cultured cells. The effects of AcMNPV expressing CpGV-MMP on virus infection in cultured cells and Trichoplusia ni larvae in the presence or absence of other viral degradative enzymes, cathepsin and chitinase, were evaluated. In the absence of cathepsin and chitinase or cathepsin alone, larval time of death was significantly delayed. This delay was compensated by the expression of CpGV-MMP. CpGV-MMP was also able to promote larvae melanization in the absence of cathepsin and chitinase. In addition, CpGV-MMP partially substituted for cathepsin in larvae liquefaction when chitinase, which is usually retained in the endoplasmic reticulum, was engineered to be secreted. PMID:25795312

  17. Reprint of: Seasonal changes in the composition of storage and membrane lipids in overwintering larvae of the codling moth, Cydia pomonella.

    PubMed

    Rozsypal, Jan; Koštál, Vladimír; Berková, Petra; Zahradníčková, Helena; Šimek, Petr

    2015-12-01

    The codling moth (Cydia pomonella) is a major insect pest of apples worldwide. It overwinters as a diapausing fifth instar larva. The overwintering is often a critical part of the insect life-cycle in temperate zone. This study brings detailed analysis of seasonal changes in lipid composition and fluidity in overwintering larvae sampled in the field. Fatty acid composition of triacylglycerol (TG) depots in the fat body and relative proportions of phospholipid (PL) molecular species in biological membranes were analyzed. In addition, temperature of melting (Tm) in TG depots was assessed by using differential scanning calorimetry and the conformational order (fluidity) of PL membranes was analyzed by measuring the anisotropy of fluorescence polarization of diphenylhexatriene probe in membrane vesicles. We observed a significant increase of relative proportion of linoleic acid (C18:2n6) at the expense of palmitic acid (C16:0) in TG depots during the larval transition to diapause accompanied with decreasing melting temperature of total lipids, which might increase the accessibility of depot fats for enzymatic breakdown during overwintering. The fluidity of membranes was maintained very high irrespective of developmental mode or seasonally changing acclimation status of larvae. The seasonal changes in PL composition were relatively small. We discuss these results in light of alternative survival strategies of codling moth larvae (supercooling vs. freezing), variability and low predictability of environmental conditions, and other cold tolerance mechanisms such as extending the supercooling capacity and massive accumulation of cryoprotective metabolites. PMID:26615723

  18. Molecular Cloning and Expression of CYP9A61: A Chlorpyrifos-Ethyl and Lambda-Cyhalothrin-Inducible Cytochrome P450 cDNA from Cydia pomonella

    PubMed Central

    Yang, Xueqing; Li, Xianchun; Zhang, Yalin

    2013-01-01

    Cytochrome P450 monooxygenases (CYPs or P450s) play paramount roles in detoxification of insecticides in a number of insect pests. However, little is known about the roles of P450s and their responses to insecticide exposure in the codling moth Cydia pomonella (L.), an economically important fruit pest. Here we report the characterization and expression analysis of the first P450 gene, designated as CYP9A61, from this pest. The full-length cDNA sequence of CYP9A61 is 2071 bp long and its open reading frame (ORF) encodes 538 amino acids. Sequence analysis shows that CYP9A61 shares 51%–60% identity with other known CYP9s and contains the highly conserved substrate recognition site SRS1, SRS4 and SRS5. Quantitative real-time PCR showed that CYP9A61 were 67-fold higher in the fifth instar larvae than in the first instar, and more abundant in the silk gland and fat body than other tissues. Exposure of the 3rd instar larvae to 12.5 mg L−1 of chlorpyrifos-ethyl for 60 h and 0.19 mg L−1 of lambda-cyhalothrin for 36 h resulted in 2.20-and 3.47-fold induction of CYP9A61, respectively. Exposure of the 3rd instar larvae to these two insecticides also significantly enhanced the total P450 activity. The results suggested that CYP9A61 is an insecticide-detoxifying P450. PMID:24351812

  19. Evaluation of spray-dried lignin-based formulations and adjuvants as solar protectants for the granulovirus of the codling moth, Cydia pomonella (L).

    PubMed

    Arthurs, S P; Lacey, L A; Behle, R W

    2006-10-01

    Commercial formulations of the codling moth, Cydia pomonella L., granulovirus (CpGV) are limited by their short residual activity under orchard conditions in the Pacific Northwest. We evaluated spray-dried lignin-encapsulated formulations of CpGV for improved solar stability based on laboratory bioassays with a solar simulator and in field tests in an infested apple orchard. In laboratory tests, aqueous lignin formulations containing a high dosage of 3 x 10(10) occlusion bodies (OB)/L, with and without the additives titanium dioxide (TiO(2)) and sugar, provided significant solar protection of virus, i.e., mortality of codling moth exposed to lignin formulations that had been irradiated with 9.36 x 10(6) joules/m(2) was 92-94%, compared with 66-67% from a glycerin-stabilized product (Cyd-X) or suspension of pure unformulated virus at the same rates. By comparison, a lower dosage of the lignin formulation (3 x 10(8)OB/L) did not provide significant solar protection. Equivalent dosage-dependent patterns in solar protection were observed in further tests with the lignin formulation, when an intermediate (3 x 10(9)OB/L) as well as the low dosage provided no solar protection. Equivalent rates of a blank lignin formulation (containing no virus) did not affect larval mortality, suggesting a protective effect of the lignin on the virus at the high rate. The use of several spray adjuvants, 'NuFilm-17' and 'Organic Biolink' (sticker-spreaders at 0.06% v/v), 'Raynox' (sunburn protectant at 5% v/v), and 'Trilogy'(neem oil at 1% v/v) did not provide solar protection of a commercial CpGV preparation in laboratory tests. In season long orchard tests (Golden Delicious), the lignin formulation of CpGV applied at 6.57 x 10(12)OB/ha did not significantly improve control of codling moth or protection of fruit compared with Cyd-X at equivalent rates. Our studies show that lignin-based CpGV formulations provided solar protection at relatively high virus dosages. The testing of lignin

  20. Resistance in Cydia pomonella to the Codling Moth Granulovirus in Europe: Could It Happen Here?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most specific control agents of codling moth (CM) is the granulovirus (CpGV) discovered in Mexico in 1963. Although first evaluated in North America, its commercial development and widespread use began in Europe. Use of CpGV has increased considerably in North America since 2000, especial...

  1. Flightability as a quality control parameter for the codling moth, Cydia pomonella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quality assurance tests and standards are requisite for maximizing fitness of insect species that are mass-reared for release in area-wide autocidal control programs. Because of the extensive use of the SIT to control/eradicate fruit flies and the development of international trade in sterile fruit ...

  2. Distribution Characteristics of Eggs and Neonate Larvae of Codling Moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae).

    PubMed

    Wearing, Christopher H

    2016-01-01

    Literature is reviewed on the spatial distribution of the eggs and neonate larvae of codling moth on apple trees in relation to research conducted in Nelson, New Zealand. At Nelson, oviposition increased with height and was greater in the north and east of the trees and in those with greater fruit load in some seasons, which matches published reports. All publications and the research recorded high percentages of eggs laid singly within 10-15 cm of the fruit, with most eggs on leaves even within fruit clusters; oviposition on fruit clusters of different sizes was nonrandom because more eggs were laid on those with more fruit, but the aggregation of both per cluster and within clusters was even greater than that caused by the fruit number alone. Oviposition at random with respect to the fruit occurred only at very low population density. The choice of oviposition site between fruit and the adaxial leaf surface and abaxial leaf surface (AbLS) was variable and cultivar related. Cultivars on which eggs predominated on the AbLS were less frequent and characterized by low trichome density. In the literature, neonate larvae from eggs on the AbLS suffered greater mortality, as did those in Nelson that hatched more distant from the fruit. This review discusses the interaction between these distribution characteristics and species-specific host-plant volatiles, egg adhesion to plant surfaces, oviposition deterrents, predation, and their relevance to pest management. PMID:27429560

  3. Phenotypic screen for RNAi effects in the codling moth Cydia pomonella.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNAi-based technologies have the potential to augment, or replace existing pest management strategies. However, some insect taxa are less susceptible to the induction of the post-transcriptional gene silencing effect than others, such as the Lepidoptera. Here we describe experiments to investigate t...

  4. Distribution Characteristics of Eggs and Neonate Larvae of Codling Moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae)

    PubMed Central

    Wearing, Christopher H.

    2016-01-01

    Literature is reviewed on the spatial distribution of the eggs and neonate larvae of codling moth on apple trees in relation to research conducted in Nelson, New Zealand. At Nelson, oviposition increased with height and was greater in the north and east of the trees and in those with greater fruit load in some seasons, which matches published reports. All publications and the research recorded high percentages of eggs laid singly within 10–15 cm of the fruit, with most eggs on leaves even within fruit clusters; oviposition on fruit clusters of different sizes was nonrandom because more eggs were laid on those with more fruit, but the aggregation of both per cluster and within clusters was even greater than that caused by the fruit number alone. Oviposition at random with respect to the fruit occurred only at very low population density. The choice of oviposition site between fruit and the adaxial leaf surface and abaxial leaf surface (AbLS) was variable and cultivar related. Cultivars on which eggs predominated on the AbLS were less frequent and characterized by low trichome density. In the literature, neonate larvae from eggs on the AbLS suffered greater mortality, as did those in Nelson that hatched more distant from the fruit. This review discusses the interaction between these distribution characteristics and species-specific host–plant volatiles, egg adhesion to plant surfaces, oviposition deterrents, predation, and their relevance to pest management. PMID:27429560

  5. A flight cylinder bioassay as a simple, effective quality control test for Cydia pomonella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessment of quality of the sterile male insects that are being mass-reared for release in area-wide integrated pest management programmes that include a sterile insect technique component is crucial for the success of these programmes. Routine monitoring of sterile male quality needs to be carried...

  6. The chemosensory receptors of codling moth Cydia pomonella–expression in larvae and adults

    PubMed Central

    Walker, William B.; Gonzalez, Francisco; Garczynski, Stephen F.; Witzgall, Peter

    2016-01-01

    Olfaction and gustation play critical roles in the life history of insects, mediating vital behaviors such as food, mate and host seeking. Chemosensory receptor proteins, including odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) function to interface the insect with its chemical environment. Codling moth, Cydia pomonella, is a worldwide pest of apple, pear and walnut, and behavior-modifying semiochemicals are used for environmentally safe control. We produced an Illumina-based transcriptome from antennae of males and females as well as neonate head tissue, affording a qualitative and quantitative analysis of the codling moth chemosensory receptor repertoire. We identified 58 ORs, 20 GRs and 21 IRs, and provide a revised nomenclature that is consistent with homologous sequences in related species. Importantly, we have identified several OR transcripts displaying sex-biased expression in adults, as well as larval-enriched transcripts. Our analyses have expanded annotations of the chemosensory receptor gene families, and provide first-time transcript abundance estimates for codling moth. The results presented here provide a strong foundation for future work on codling moth behavioral physiology and ecology at the molecular level, and may lead to the development of more precise biorational control strategies. PMID:27006164

  7. 40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia...

  8. 40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia...

  9. 40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia...

  10. 40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia...

  11. 40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia...

  12. Experimental use of the micro-encapsulated pear ester kairomone for control of codling moth, Cydia pomonella (L.), in walnuts.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus invasion of tree nuts is primarily through insect damage by moth larvae, such as the codling moth (CM) attacking walnuts. Our goal is to diminish insect-caused nut damage through the use of novel, species-specific host-plant kairomones. We have identified the pear ester (PE) (ethyl (2E, ...

  13. Climate change impact on development rates of the codling moth ( Cydia pomonella L.) in the Wielkopolska region, Poland

    NASA Astrophysics Data System (ADS)

    Juszczak, Radosław; Kuchar, Leszek; Leśny, Jacek; Olejnik, Janusz

    2013-01-01

    The main goal of this paper is to estimate how the observed and predicted climate changes may affect the development rates and emergence of the codling moth in the southern part of the Wielkopolska region in Poland. In order to simulate the future climate conditions one of the most frequently used A1B SRES scenarios and two different IPCC climate models (HadCM3 and GISS modelE) are considered. A daily weather generator (WGENK) was used to generate temperature values for present and future climate conditions (time horizons 2020-2040 and 2040-2060). Based on the generated data set, the degree-days values were then calculated and the emergence dates of the codling moth at key stages were estimated basing on the defined thresholds. Our analyses showed that the average air surface temperature in the Wielkopolska region may increase from 2.8°C (according to GISS modelE) even up to 3.3°C (HadCM3) in the period of 2040-2060. With the warming climate conditions the cumulated degree-days values may increase at a rate of about 142 DD per decade when the low temperature threshold ( T low ) of 0°C is considered and 91 DD per decade when T low = 10°C. The key developmental stages of the codling moth may occur much earlier in the future climate conditions than currently, at a rate of about 3.8-6.8 days per decade, depending on the considered GCM model and the pest developmental stage. The fastest changes may be observed in the emergence dates of 95% of larvae of the second codling moth generation. This could increase the emergence probability of the pest third generation that has not currently occurred in Poland.

  14. Quality control tests of lab-reared Cydia pomonella and Cactoblastis cactorum field performance: Comparison of laboratory and field bioassays.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research, operational, and commercial programs which rely on mass-reared insects of high quality and performance, need accurate methods for monitoring quality degradation during each step of production, handling and release. With continued interest in the use of the sterile insect technique (SIT) a...

  15. Characterization of three transcripts encoding small heat shock proteins expressed in the codling moth, Cydia pomonella (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Codling moth is a major pest of apples and pears worldwide. Increasing knowledge of how this insect responds to environmental stress will improve field and postharvest control measures used against it. The small heat shock proteins (sHsps) play a major role in cellular responses to environmental st...

  16. Comparison of laboratory and field bioassays of lab-reared Cydia pomonella (Lepidoptera: Tortricidae) quality and field performance.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maximum production and fitness of insect species that are mass-reared for biological control programs such as the sterile insect technique (SIT) have benefitted from the employment of quality control and quality management. With a growing interest in the use of SIT as a tactic for the suppression/e...

  17. The optimal sex pheromone release rate for trapping the codling moth Cydia pomonella (Lepidoptera: Tortricidae) in the field

    PubMed Central

    Liu, Wei; Xu, Jing; Zhang, Runzhi

    2016-01-01

    For successful pest management, codlemone (E, E-8,10-dodecadien-1-ol) is widely used to monitor codling moth. The pheromone release rate is essential for the lure’s attractiveness. The optimal sex pheromone release rate (V0) for trapping codling moth was evaluated during 2013–2014. The overwinter generation V0 was 6.7–33.4 μg wk−1, and moth catches (MCs) were 0.82 ± 0.11 adults/trap/week; MCs for lower (V1) and higher (V2) release rates were 52.4% and 46.3%, respectively, of that for V0. The first generation V0 was 18.4–29.6 μg wk−1, with MCs of 1.45 ± 0.29 adults/week/trap. V1 and V2 MCs were 34.5% and 31.7%, respectively, of those for V0. Combining across generations, the final V0 was 18.4–29.6 μg wk−1, with MCs of 1.07 ± 0.06 adults/week/trap. V1 and V2 MCs were 51.4% and 41.1%, respectively, of that for V0. Overwinter generation emergence was relatively concentrated, requiring a wider V0. Maintaining the release rate at 18.4–29.6 μg wk−1 could optimize the lure’s efficacy; this resulted in the capture of nearly 1.9 and 2.4 times more moths than V1 and V2, respectively. The results also indicate that a dispenser pheromone release rate of 200–300 times that of the female moth can perfectly outcompetes females in the field. PMID:26879373

  18. Body size and shape analyses of F1 hybrid Rhagoletis pomonella and Rhagoletis zephyria (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experimentally generated F1 hybrids of apple maggot fly, Rhagoletis pomonella (Walsh), and Rhagoletis zephyria Snow (Diptera: Tephritidae) were classified using morphometric methods. Five of nine mean body size measurements of hybrids from crossing female R. pomonella × male R. zephyria were interm...

  19. Hydrolysis of glycosidically bound volatiles from apple leaves (Cv. Anna) by Aspergillus niger beta-glucosidase affects the behavior of codling moth (Cydia pomonella L.).

    PubMed

    Wei, Shu; Reuveny, Haim; Bravdo, Ben-Ami; Shoseyov, Oded

    2004-10-01

    Glycosidically bound volatiles released from apple leaf extracts (cv. Anna) were analyzed by solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) and their behavioral effects on codling moth (CM) adults were evaluated in cage bioassays. The levels of 1-octanol, linalool, geraniol, benzyl alcohol, methyl salicylate, (2R,5R)-theaspirane, and (2S,5R)-theaspirane were significantly increased in the leaf extracts containing the Aspergillus niger beta-glucosidase (BGL1) compared to the extracts containing the glucoimidazole. The attractiveness of individual compounds to CM adults was found in the following decreasing order: methyl salicylate and mixture of two theaspirane isomers, followed by linalool and benzyl alcohol. Geraniol was found to be repellent to CM adults. The addition of geraniol (39.4 ng mL(-1)) to any of the individual volatiles or to a mixture of these attractants eliminated their attractiveness. Our data suggest the possible application of geraniol as a repellent and methyl salicylate or theaspiranes as attractants for the integrated control of CM in apple orchards. PMID:15453689

  20. Analysis of Body Measurements and Wing Shape to Discriminate Rhagoletis pomonella and Rhagoletis zephyria (Diptera: Tephritidae) in Washington state.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apple maggot fly, Rhagoletis pomonella (Walsh), is a quarantine pest of apple in Washington state, and is morphologically almost indistinguishable from the snowberry maggot fly, R. zephyria Snow, which does not attack apples. Current methods used to distinguish R. pomonella from R. zephyria, such a...

  1. Analysis of Surstylus and Aculeus Shape and Size Using Geometric Morphometrics to Discriminate Rhagoletis pomonella and Rhagoletis zephyria (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhagoletis pomonella (Walsh) and Rhagoletis zephyria Snow both occur in the Pacific Northwest of the U. S. and are frequently confused with one another due to their morphological similarity. The apple maggot, R. pomonella, is a threat to commercial apples in the Pacific Northwest, whereas R. zephyr...

  2. Attraction of pea moth Cydia nigricana to pea flower volatiles.

    PubMed

    Thöming, Gunda; Knudsen, Geir K

    2014-04-01

    The pea moth Cydia nigricana causes major crop losses in pea (Pisum sativum) production. We investigated attraction of C. nigricana females to synthetic pea flower volatiles in a wind tunnel and in the field. We performed electroantennogram analysis on 27 previously identified pea plant volatiles, which confirmed antennal responses to nine of the compounds identified in pea flowers. A dose-dependent response was found to eight of the compounds. Various blends of the nine pea flower volatiles eliciting antennal responses were subsequently studied in a wind tunnel. A four-compound blend comprising hexan-1-ol, (E)-2-hexen-1-ol, (Z)-β-ocimene and (E)-β-ocimene was equally attractive to mated C. nigricana females as the full pea flower mimic blend. We conducted wind-tunnel tests on different blends of these four pea flower compounds mixed with a headspace sample of non-flowering pea plants. By considering the effects of such green leaf background odour, we were able to identify (Z)- and (E)-β-ocimene as fundamental for host location by the pea moths, and hexan-1-ol and (E)-2-hexen-1-ol as being of secondary importance in that context. In the field, the two isomers of β-ocimene resulted in trap catches similar to those obtained with the full pea flower mimic and the four-compound blend, which clearly demonstrated the prime significance of the β-ocimenes as attractants of C. nigricana. The high level of the trap catches of female C. nigricana noted in this first field experiment gives a first indication of the potential use of such artificial kairomones in pea moth control. PMID:24508043

  3. Differential captures of Rhagoletis pomonella (Diptera: Tephritidae) on four fluorescent yellow rectangle traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four commercial sticky fluorescent yellow rectangle traps differing in yellow color, fluorescence, and other features were compared for capturing apple maggot fly, Rhagoletis pomonella (Walsh), and R. zephyria Snow, two sibling species. Traps were the Alpha Scents Yellow Card (Alpha Scents), Pheroc...

  4. Hybridization and the spread of the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae), in the northwestern United States.

    PubMed

    Arcella, Tracy; Hood, Glen R; Powell, Thomas H Q; Sim, Sheina B; Yee, Wee L; Schwarz, Dietmar; Egan, Scott P; Goughnour, Robert B; Smith, James J; Feder, Jeffrey L

    2015-09-01

    Hybridization may be an important process interjecting variation into insect populations enabling host plant shifts and the origin of new economic pests. Here, we examine whether hybridization between the native snowberry-infesting fruit fly Rhagoletis zephyria (Snow) and the introduced quarantine pest R. pomonella (Walsh) is occurring and may aid the spread of the latter into more arid commercial apple-growing regions of central Washington state, USA. Results for 19 microsatellites implied hybridization occurring at a rate of 1.44% per generation between the species. However, there was no evidence for increased hybridization in central Washington. Allele frequencies for seven microsatellites in R. pomonella were more 'R. zephyria-like' in central Washington, suggesting that genes conferring resistance to desiccation may be adaptively introgressing from R. zephyria. However, in only one case was the putatively introgressing allele from R. zephyria not found in R. pomonella in the eastern USA. Thus, many of the alleles changing in frequency may have been prestanding in the introduced R. pomonella population. The dynamics of hybridization are therefore complex and nuanced for R. pomonella, with various causes and factors, including introgression for a portion, but not all of the genome, potentially contributing to the pest insect's spread. PMID:26366200

  5. Hybridization and the spread of the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae), in the northwestern United States

    PubMed Central

    Arcella, Tracy; Hood, Glen R; Powell, Thomas H Q; Sim, Sheina B; Yee, Wee L; Schwarz, Dietmar; Egan, Scott P; Goughnour, Robert B; Smith, James J; Feder, Jeffrey L

    2015-01-01

    Hybridization may be an important process interjecting variation into insect populations enabling host plant shifts and the origin of new economic pests. Here, we examine whether hybridization between the native snowberry-infesting fruit fly Rhagoletis zephyria (Snow) and the introduced quarantine pest R. pomonella (Walsh) is occurring and may aid the spread of the latter into more arid commercial apple-growing regions of central Washington state, USA. Results for 19 microsatellites implied hybridization occurring at a rate of 1.44% per generation between the species. However, there was no evidence for increased hybridization in central Washington. Allele frequencies for seven microsatellites in R. pomonella were more ‘R. zephyria-like’ in central Washington, suggesting that genes conferring resistance to desiccation may be adaptively introgressing from R. zephyria. However, in only one case was the putatively introgressing allele from R. zephyria not found in R. pomonella in the eastern USA. Thus, many of the alleles changing in frequency may have been prestanding in the introduced R. pomonella population. The dynamics of hybridization are therefore complex and nuanced for R. pomonella, with various causes and factors, including introgression for a portion, but not all of the genome, potentially contributing to the pest insect's spread. PMID:26366200

  6. Behavior of Over-wintering Filbertworm (Cydia latiferreana) (Lepidoptera: Tortricidae) Larvae and Their Control with Steinernema carpocapsae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Filbertworm, Cydia latiferreana (Walsingham) (Lepidoptera: Tortricidae) is a key insect pest associated with hazelnuts in North America. The effect of nematode rate, water volume, and orchard floor cover on nematode efficacy was determined in field trials in fall and spring (October 2007 and May 200...

  7. Hawthorn-infesting populations of Rhagoletis pomonella in Mexico and speciation mode plurality.

    PubMed

    Xie, Xianfa; Rull, Juan; Michel, Andrew P; Velez, Sebastian; Forbes, Andrew A; Lobo, Neil F; Aluja, Martin; Feder, Jeffrey L

    2007-05-01

    Categorizing speciation into dichotomous allopatric versus nonallopatric modes may not always adequately describe the geographic context of divergence for taxa. If some of the genetic changes generating inherent barriers to gene flow between populations evolved in geographic isolation, whereas others arose in sympatry, then the mode of divergence would be mixed. The apple maggot fly, Rhagoletis pomonella, has contributed to this emerging concept of a mixed speciation mode "plurality." Genetic studies have implied that a source of diapause life-history variation associated with inversions and contributing to sympatric host race formation and speciation for R. pomonella in the United States may have introgressed from the Eje Volcanico Trans Mexicano (EVTM; a.k.a. the Altiplano) in the past. A critical unresolved issue concerning the introgression hypothesis is how past gene flow occurred given the current 1200-km disjunction in the ranges of hawthorn-infesting flies in the EVTM region of Mexico and the southern extreme of the U.S. population in Texas. Here, we report the discovery of a hawthorn-infesting population of R. pomonella in the Sierra Madre Oriental Mountains (SMO) of Mexico. Sequence data from 15 nuclear loci and mitochondrial DNA imply that the SMO flies are related to, but still different from, U.S. and EVTM flies. The host affiliations, diapause characteristics, and phylogeography of the SMO population are consistent with it having served as a conduit for gene flow between Mexico and the United States. We also present evidence suggesting greater permeability of collinear versus rearranged regions of the genome to introgression, in accord with recent models of chromosomal speciation. We discuss the implications of the results in the context of speciation mode plurality. We do not argue for abandoning the terms sympatry or allopatry, but caution that categorizing divergence into either/or geographic modes may not describe the genetic origins of all

  8. Susceptibility of fruit from diverse apple and crabapple germplasm to attack from apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apple maggot, Rhagoletis pomonella (Walsh) is a pest of major concern to apple, Malus x domestica (Borkh.) production in eastern North America. Host-plant resistance to apple maggot among apple germplasm has been previously evaluated among a small number of exotic Malus accessions and domestic hyb...

  9. Detection of an apple-infesting popoulation of Rhagoletis pomonella (Walsh) 1867 (Diptera: Tephritidae) in the state of Colorado, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella (Walsh) 1867 (Tephritidae), is an economically important pest of apples (Malus domesica Borkh.) (Rosaceae) throughout much of the United States. The fly is endemic to the eastern U.S., where its primary host plants are several species of native hawthorns (C...

  10. Attraction, Feeding, and Control of Rhagoletis pomonella (Diptera: Tephritidae) Using GF-120 with Added Ammonia in Washington

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted in 2005 and 2006 in western Washington State to determine effects of adding ammonium carbonate (AC) and ammonium acetate (AA) to GF-120 Fruit Fly Bait (Dow AgroSciences, Indianapolis, IN) on attraction, feeding, and control of the apple maggot fly, Rhagoletis pomonella (Wa...

  11. Abundances of apple maggot, Rhagoletis pomonella, across different areas in central Washington, with special reference to black-fruited hawthorns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella (Walsh), has infested native black-fruited hawthorn (mostly Crataegus douglasii Lindl.) in central Washington since at least 2003, but little is known about the fly’s ecology in hawthorns there. The main objective here was to determine adult and larval abu...

  12. Behavioral evidence for fruit odor discrimination and sympatric host races of Rhagoletis pomonella flies in the western United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent shift of Rhagoletis pomonella (Diptera: Tephritidae) from its native host downy hawthorn, Crataegus mollis, to introduced domesticated apple, Malus domestica, in the eastern U.S. is a model for sympatric host race formation. However, the fly is also present in the western U.S. where it ma...

  13. Ammonium carbonate is more attractive than apple and hawthorn fruit volatile lures to Rhagoletis pomonella (Diptera: Tephritidae) in Washington State.

    PubMed

    Yee, Wee L; Nash, Meralee J; Goughnour, Robert B; Cha, Dong H; Linn, Charles E; Feder, Jeffrey L

    2014-08-01

    The apple maggot fly, Rhagoletis pomonella (Walsh), is an introduced, quarantine pest of apple (Malus domestica Borkhausen) in the Pacific Northwest of the United States. In the eastern United States where the fly is native, fruit volatiles have been reported to be more attractive than ammonia compounds to R. pomonella. However, the opposite may be true in the western United States. Here, we determined whether newly identified western apple and western hawthorn fruit volatiles are more attractive than ammonium carbonate (AC) to R. pomonella in apple, black hawthorn, and ornamental hawthorn trees in western Washington State. In all three host trees, sticky red sphere or yellow panel traps baited with AC generally caught more flies than traps baited with lures containing the four newly developed fruit blends (modified eastern apple, western apple, western ornamental hawthorn, and western black hawthorn) or two older blends (eastern apple and eastern downy hawthorn). Fruit volatiles also displayed more variation among trapping studies conducted at different sites, in different host trees, and across years than AC. The results imply that traps baited with AC represent the best approach to monitoring R. pomonella in Washington State. PMID:24915519

  14. Are apple and hawthorn fruit volatiles more attractive than ammonium carbonate to Rhagoletis pomonella (Diptera: Tephritidae) in Washington state?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella (Walsh), is an introduced, quarantine pest of apple (Malus domestica Borkhausen) in the Pacific Northwest of the U.S. In the eastern U.S. where the fly is native, fruit volatiles have been reported to be more attractive than ammonia compounds to R. pomonel...

  15. The geographic distribution of Rhagoletis pomonella (Diptera:Tephritidae) in the western United States: Introduced species or native population?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella Walsh (Diptera: Tephritidae), is a major pest of commercially grown domesticated apple (Malus domestica) in North America. The shift of the fly from its native host hawthorn (Crataegus mollis) to apple in the eastern U.S. is often cited as an example of inc...

  16. On the scent of standing variation for speciation: behavioral evidence for native sympatric host races of Rhagoletis pomonella (Diptera: Tephritidae) in the southern United States.

    PubMed

    Powell, Thomas H Q; Cha, Dong H; Linn, Charles E; Feder, Jeffrey L

    2012-09-01

    Standing variation can be critical for speciation. Here, we investigate the origins of fruit odor discrimination for Rhagoletis pomonella underlying the fly's sympatric shift in the northeastern United States from downy hawthorn (Crataegus mollis) to apple (Malus domestica). Because R. pomonella mate on host fruit, preferences for natal fruit volatiles generate prezygotic isolation. Apples emit volatiles that appear to be missing from gas chromatography/electroantennographic detection profiles for flies infesting downy hawthorns, raising the question of how R. pomonella evolved a preference for apple. In the southern United States, R. pomonella attacks several native hawthorns. Behaviorally active volatile blends for R. pomonella infesting southern hawthorns contain the missing apple volatiles, potentially explaining why downy hawthorn flies could have evolved to be sensitive to a blend of apple volatiles. Flight tunnel assays imply that southern hawthorn populations were not the antecedent of a preassembled apple race, as southern flies were not attracted to the apple volatile blend. Instead, behavioral evidence was found for southern host races on native hawthorns, complementing the story of the historical sympatric shift to introduced apple in the North and illustrating how R. pomonella may evolve novel combinations of agonist and antagonist responses to volatiles to use new fruit resources. PMID:22946800

  17. Identification and field evaluation of pear fruit volatiles attractive to the oriental fruit moth, Cydia molesta.

    PubMed

    Lu, Peng-Fei; Huang, Ling-Qiao; Wang, Chen-Zhu

    2012-08-01

    Plant volatiles play a key role in host plant location of phytophagous insects. Cydia molesta is an important pest of pear fruit late in the growing season. We identified and quantified volatiles from immature and mature fruits of six pear varieties by using gas chromatography-mass spectrometry (GC-MS). Attractiveness of synthetic blends to adults based on gas chromatography-electroantennogram detection (GC-EAD) activity was investigated in both field and laboratory. Consistent electroantennographic activity was obtained for 12 compounds from headspace collections of the mature fruits of the six pear varieties. Qualitative and quantitative differences were found among six odor profiles. Among the six mixtures, the mixture of 1-hexanol, nonanal, ethyl butanoate, butyl acetate, ethyl hexanoate, hexyl acetate, hexyl butanoate, and farnesene (different isomers) with a 1:1:100:70:7:5:1:4 ratio from the variety Jimi and the mixture of nonanal, ethyl butanoate, 3-methylbutyl acetate, ethyl hexanoate, hexyl acetate, and farnesene with a 1:100:1:32:1:2 ratio from the variety Huangjin were highly attractive to both sexes in the field. However, male captures were much higher than those of females. Further wind tunnel tests proved that both sexes exhibited upwind flight to the lures, but only males landed on the source. Our finding indicates that mixtures mimicking Jimi and Huangjin volatiles attract both females and males of C. molesta, and these host volatiles may be involved in mate finding behavior. PMID:22730107

  18. MORTALITY OF RHAGOLETIS POMONELLA (DIPTERA: TEPHRITIDAE) EXPOSED TO FIELD-AGED SPINETORAM, GF-120, AND AZINPHOS-METHYL IN WASHINGTON STATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The new semi-synthetic spinosyn insecticide DE-175 (Dow AgroSciences, Indianapolis, Indiana) was tested for the first time against the apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). Effects of field-aging DE-175 (formulated as a 100 g/L suspension concentrate) and other inse...

  19. Ecological adaptation and reproductive isolation in sympatry: genetic and phenotypic evidence for native host races of Rhagoletis pomonella.

    PubMed

    Powell, Thomas H Q; Forbes, Andrew A; Hood, Glen R; Feder, Jeffrey L

    2014-02-01

    Ecological speciation with gene flow may be an important mode of diversification for phytophagous insects. The recent shift of Rhagoletis pomonella from its native host downy hawthorn (Crataegus mollis) to introduced apple (Malus domestica) in the northeastern United States is a classic example of sympatric host race formation. Here, we test whether R. pomonella has similarly formed host races on four native Crataegus species in the southern United States: western mayhaw (C. opaca), blueberry hawthorn (C. brachyacantha), southern red hawthorn (C. mollis var. texana) and green hawthorn (C. viridis). These four southern hosts differ from each other in their fruiting phenology and in the volatile compounds emitted from the surface of their fruits. These two traits form the basis of ecological reproductive isolation between downy hawthorn and apple flies in the north. We report evidence from microsatellite population surveys and eclosion studies supporting the existence of genetically differentiated and partially reproductively isolated host races of southern hawthorn flies. The results provide an example of host shifting and ecological divergence involving native plants and imply that speciation with gene flow may be commonly initiated in Rhagoletis when ecological opportunity presents itself. PMID:24351094

  20. Potential for hypobaric storage as a phytosanitary treatment: Mortality of Rhagoletis pomonella (Diptera: Tephritidae) in apples and effects on fruit quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of low-oxygen atmospheres using low pressure, referred to as hypobaric conditions, to kill egg and 3rd instar Rhagoletis pomonella (Walsh) in apples was investigated. Infested apples were exposed to 3.33 and 6.67 kPa in glass jars at 25 and 30°C for 3-120 h. Probit analyses and lethal-d...

  1. Host plant and latitude-related diapause variation in Rhagoletis pomonella: a test for multifaceted life history adaptation on different stages of diapause development.

    PubMed

    Dambroski, H R; Feder, J L

    2007-11-01

    Variation in the overwintering pupal diapause of Rhagoletis pomonella appears to adapt sympatric populations of the fly to seasonal differences in the fruiting times of their host plants, generating ecological reproductive isolation. Here, we investigate what aspects of diapause development are differentially affected (1) by comparing the propensities of apple vs. hawthorn-infesting host races of R. pomonella to forgo an initially deep diapause and directly develop into adults, and (2) by determining the chronological order that R. pomonella races and sibling species break diapause and eclose when reared under standardized environmental conditions. The results imply that factors affecting initial diapause depth (and/or differential mortality during the prewintering period) and those determining the timing of diapause termination or rates of post-diapause development are both under differential selection and are to some degree genetically uncoupled in flies. The modular nature of diapause life history adaptation in Rhagoletis suggests that phenology may involve multiple genetic changes and represent a stronger ecological barrier separating phytophagous specialists than is generally appreciated. PMID:17956381

  2. Differential parasitism of seed-feeding Cydia (Lepidoptera: Tortricidae) by native and alien wasp species relative to elevation in subalpine Sophora (Fabaceae) forests on Mauna Kea, Hawaii

    USGS Publications Warehouse

    Oboyski, P.T.; Slotterback, J.W.; Banko, P.C.

    2004-01-01

    Alien parasitic wasps, including accidental introductions and purposefully released biological control agents, have been implicated in the decline of native Hawaiian Lepidoptera. Understanding the potential impacts of alien wasps requires knowledge of ecological parameters that influence parasitism rates for species in their new environment. Sophora seed-feeding Cydia spp. (Lepidoptera: Tortricidae) were surveyed for larval parasitoids to determine how native and alien wasps are partitioned over an elevation gradient (2200-2800 m) on Hawaii Island, Hawaii. Parasitism rate of native Euderus metallicus (Eulophidae) increased with increased elevation, while parasitism rate by immigrant Calliephialtes grapholithae (Ichneumonidae) decreased. Parasitism by Pristomerus hawaiiensis (Ichneumonidae), origins uncertain, also decreased with increased elevation. Two other species, Diadegma blackburni (Ichneumonidae), origins uncertain, and Brasema cushmani (Eupelmidae), a purposefully introduced biological control agent for pepper weevil, did not vary significantly with elevation. Results are contrasted with a previous study of this system with implications for the conservation of an endangered bird species that feed on Cydia larvae. Interpretation of results is hindered by lack of knowledge of autecology of moths and wasps, origins, phylogeny, systematics, competitive ability, and physiological limitations of each wasp species. These factors should be incorporated into risk analysis for biological control introductions and invasive species programs. ?? 2004 Kluwer Academic Publishers.

  3. Potential for hypobaric storage as a phytosanitary treatment: mortality of Rhagoletis pomonella (Diptera: Tephritidae) in apples and effects on fruit quality.

    PubMed

    Hulasare, Rajshekhar; Payton, Mark E; Hallman, Guy J; Phillips, Thomas W

    2013-06-01

    The efficacy of low-oxygen atmospheres using low pressure, referred to as hypobaric conditions, to kill egg and third-instar Rhagoletis pomonella (Walsh) in apples was investigated. Infested apples were exposed to 3.33 and 6.67 kPa in glass jars at 25 and 30 degrees C for times ranging from 3 to 120 h. Probit analyses and lethal dose ratio tests were performed to determine differences in lethal time values. Eggs were more tolerant of low pressure compared with third-instar R. pomonella. Mortality of eggs and larvae increased with increase in time of exposure to low pressure and temperature. Lower pressures increased percent mortality of eggs, but these values were not significantly different at the pressures tested in this investigation. The LT99 for R. pomonella eggs at 3.33 kPa was 105.98 and 51.46 h, respectively, at 25 and 30 degrees C, which was a significant effect of the higher temperature on egg mortality. Investigation into consumer acceptance of low-pressure-treated apples was done with 'Red Delicious' and 'Golden Delicious'. Apples exposed to 3.33 kPa at 25 and 30 degrees C for 3 and 5 d were stored at 1 degrees C for 2 wk and presented to a sensory panel for evaluation. The panelists rated treated apples with untreated controls for external and internal appearance and taste. Golden Delicious apples were unaffected for all three sensory factors across both temperatures and exposure times. Although taste was unaffected for Red Delicious, the internal and external appearances deteriorated. Use of low pressure for disinfestation and preservation of apples is a potential nonchemical alternative to chemical fumigants such as methyl bromide and phosphine. PMID:23865181

  4. Rapid and repeatable shifts in life-history timing of Rhagoletis pomonella (Diptera: Tephritidae) following colonization of novel host plants in the Pacific Northwestern United States.

    PubMed

    Mattsson, Monte; Hood, Glen R; Feder, Jeffrey L; Ruedas, Luis A

    2015-12-01

    Host shifts of phytophagous insect specialists to novel plants can result in divergent ecological adaptation, generating reproductive isolation and potentially new species. Rhagoletis pomonella fruit flies in eastern North America underwent a host shift ~160 ya from native downy hawthorn (Crataegus mollis) to introduced, domesticated apple (Malus domestica). Divergent selection on diapause phenology related to the earlier fruiting time of apples versus downy hawthorns resulted in partial allochronic reproductive isolation between the fly races. Here, we test for how rapid and repeatable shifts in life-history timing are driving ecological divergence of R. pomonella in the Pacific Northwestern USA. The fly was introduced into the region via larval-infested apples 40-65 ya and now attacks native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (Crataegus monogyna), in addition to early- and late-maturing apple varieties in the region. To investigate the life-history timing hypothesis, we used a field-based experiment to characterize the host-associated eclosion and flight activity patterns of adults, and the feeding times of larvae at a field site in Vancouver, Washington. We also assessed the degree to which differences in host-fruiting time generate allochronic isolation among apple-, black hawthorn-, and ornamental hawthorn-associated fly populations. We conclude that host-associated fly populations are temporally offset 24.4% to 92.6% in their seasonal distributions. Our results imply that R. pomonella possesses the capacity for rapid and repeatable shifts in diapause life history to match host-fruiting phenology, which can generate ecologically based reproductive isolation, and potentially biodiversity in the process. PMID:26811757

  5. FRUIT SUSCEPTIBILITY OF MALUS GERMPLASM TO ATTACK FROM FRUIT FEEDING PESTS: SEARCHING FOR POTENTIAL HOST-PLANT RESISTANCE MECHANISMS IN APPLE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Codling moth (CM), Cydia pomonella L., oriental fruit moth (OFM), Grapholita molesta (Busck), plum curculio (PC), Conotrachelus nenuphar (Herbst), and apple maggot, Rhagoletis pomonella (Walsh) continue to pose significant threats to sustainable apple production in the United States. Research is on...

  6. Identification of host fruit volatiles from domestic apple (Malus domestica), native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (C. monogyna) attractive to R. pomonella flies from the western U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella, infests apple (Malus domestica) and hawthorn species (most notably the downy hawthorn, Crataegus mollis) in the eastern USA. Evidence suggests that the fly was introduced into the western USA sometime in the last 60 years. In addition to apple, R. pomonel...

  7. Toxicity and residual effectiveness of insecticides on insecticide-treated spheres for controlling females of Rhagoletis pomonella (Diptera: Tephritidae).

    PubMed

    Hu, X P; Prokopy, R J; Clark, J M

    2000-04-01

    This study evaluated the toxicity of five technical-grade insecticides of four different classes to apple maggot females, Rhagoletis pomonella (Walsh), following a 10-min exposure period in insecticide-coated glass jars, with or without a feeding stimulant (sucrose) present. According to LC90 values for toxicity by ingestion and tarsal contact, imidacloprid was 1.5 times more toxic than dimethoate or abamectin, diazinon was less toxic, and phloxine B (a phototoxic dye) least toxic. Based on LC90 values for tarsal contact alone, dimethoate was 2.3, 4.0, and 18.4 times more toxic than imidacloprid, abamectin, and diazinon, respectively. Contact alone with phloxine B caused no mortality. When exposure was assessed using spheres coated with a latex paint mixture containing sucrose and formulated dimethoate (Digon 400 EC) or imidacloprid (Provado 1.6 F) at concentrations ranging from 5 to 70 g (AI)/cm2, both insecticides showed reduced effectiveness compared with toxicities from glass jar tests, with Digon two times more toxic than Provado. After exposure to artificial rainfall and retreatment with sucrose, Digon- and Provado-treated spheres exhibited greatest residual effectiveness, with diazinon-treated spheres less effective. Spheres treated with formulated abamectin (Agri-Mek 0.15 EC) at 1.0% (AI) performed only slightly better than phloxine B-treated spheres, which completely lost effectiveness after exposure to rainfall. Spheres treated with formulated imidacloprid (Merit 75 WP) at 1.5% (AI) showed equal or better residual efficacy in killing apple maggot flies (> 80% mortality, shorter lethal duration of feeding) over a 12-wk exposure period to outdoor weather than spheres treated with Digon at 1.0% (AI) after both types were retreated with sucrose. Our results indicate that imidacloprid is a promising safe substitute for dimethoate as a fly killing agent on lure-kill spheres. Imidacloprid formulated as Merit 75 WP had greater residual efficacy than imidacloprid

  8. Distance of response to host tree models by female apple maggot flies,Rhagoletis pomonella (Walsh) (Diptera: Tephritidae): Interaction of visual and olfactory stimuli.

    PubMed

    Green, T A; Prokopy, R J; Hosmer, D W

    1994-09-01

    Mature female apple maggot flies,Rhagoletis pomonella (Walsh), were released individually onto a single potted, fruitless hawthorne tree in the center of an open field. The tree was surrounded by four 1-m(2) plywood host tree models painted green or white, with or without synthetic host fruit odor (butyl hexanoate), and placed at one of several distances from the release tree. Each fly was permitted to forage freely on the release tree for up to 1 hr, or until it left the tree. Flies left the tree significantly sooner when green models with host fruit were present at 0.5, 1.5, or 2.5 m distance from the release tree than when these models were placed at a greater distance (4.5 m) from the release tree or when no models were present. Flies responded detectably to 1-m(2) models without odor up to a maximum distance of 1.5 m. These results suggest that female apple maggot flies did not detect green 1-m(2) models with odor 4.5 m away or models without odor 2.5 m or more away. Flies responded to white models with and without odor to a much lesser extent, both in terms of response distance and flight to and alightment upon models. Increasing model size to 2 m(2) increased the distance to 2.5 m at which flies responded to green models without odor. Decreasing model size to 0.5 m(2) reduced fly responsiveness to green or white models. The presence of host fruit odor alone, without the visual stimulus of a green model, did not influence residence time on the release tree. PMID:24242813

  9. Microencapsulated Pear Ester Enhances Insecticide Efficacy in Walnuts for Codling Moth (Lepidoptera: Tortricidae) and Navel Orangeworm (Lepidoptera, Pyralidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of combining insecticides with a microencapsulated formulation of ethyl (2E, 4Z)-2,4-decadienoate (pear ester, PE-MEC) was evaluated in walnuts, Juglans regia L., for codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), and navel orangeworm, Amyelois transitella Walker (Lepido...

  10. Effects of short photoperiod on codling moth diapause and survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential presence of codling moth, Cydia pomonella L., in apples shipped to countries within the 30th latitudes has raised concerns that this pest could establish and spread in these countries. Previous research demonstrated that codling moth in apples handled under simulated commercial cold st...

  11. Evaluation of traps and lures for codling moth (Lepidoptera: Tortricidae) in apple orchards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted to evaluate the use of several trap – lure combinations to improve monitoring of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), in apple, Malus domestica Bordk. Treatments included the use of clear, orange and white traps baited with one or more of the followin...

  12. Neural ensemble coding merges sex and habitat chemosensory signals in an insect herbivore (RSPB-2012-2496)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used a neuroethological approach to study how blends of the main sex pheromone compound, codlemone, and three host plant volatiles, butyl hexanoate, ß-farnesene and pear ester, affect odor processing and ensuing behavior in the codling moth Cydia pomonella. In wind tunnel bioassays, a higher prop...

  13. Worldwide Variability of Insecticide Resistance Mechanisms in the Codling Moth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Known resistance mechanisms including the action of detoxifying enzymes and insensitive variants of target proteins were examined in individual male and female moths from 29 populations of codling moth, Cydia pomonella L collected in 11 countries in Africa, Europe, North America and the Australian c...

  14. Monitoring oriental fruit moth and codling moth (Lepidoptera: Tortricidae) with combinations of pheromones and kairomoness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted in North and South America during 2012-2013 to evaluate the use of lure combinations of sex pheromones (PH), host plant volatiles (HPV), and food baits in traps to capture the oriental fruit moth, Grapholita molesta (Busck) and codling moth, Cydia pomonella (L.) in pome an...

  15. Monitoring codling moth (Lepidoptera: Tortricidae) in sex phermone-treated orchards with (E)-4,8-dimethyl-1,3,7-nonatriene or pear ester in combination with codlemone and acetic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traps baited with ethyl (E,Z)-2,4-decadienoate (pear ester) or (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) in two- or three-way combinations with the sex pheromone (E,E)-8,10-dodecadien-1-ol (codlemone) and acetic acid (AA) were evaluated for codling moth, Cydia pomonella (L.). All studies were conduct...

  16. Monitoring codling moth (Lepidoptera: Tortricidae) in orchards treated with pear ester and sex pheromone combo dispensers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lures for monitoring codling moth, Cydia pomonella (L.), were tested in apple and walnut blocks treated with Cidetrak CM-DA Combo dispensers loaded with pear ester, ethyl (E, Z)-2,4-decadienoate (PE), and sex pheromone (E,E)-8,10-dodecadien-1-ol (codlemone). Total and female moth catches with combin...

  17. Evidence for the non-pest status of codling moth on commercial fresh sweet cherries intended for export

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To gain acceptance of a systems approach as an alternative to methyl bromide fumigation for U.S. fresh sweet cherries, Prunus avium (L.) L., exported to Japan, additional evidence was needed to show that sweet cherries are poor or non-hosts for codling moth, Cydia pomonella (L.) (Lepidoptera: Tortri...

  18. Before harvest survival of codling moth (Lepidoptera: Tortricidae) in artificially infested sweet cherries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior to the 2009 season, sweet cherries, Prunus avium (L.) L., from North America were required to be fumigated with methyl bromide before being exported to Japan to eliminate possible infestation by codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). However, based on recent biological...

  19. Creating Point Sources for Codling Moth (Lepidoptera: Tortricidae) with Low-Volume Sprays of a Microencapsulated Sex Pheromone Formulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted to examine the depositioin of microcapsules and the attractiveness of treated apple leaves for codling moth, Cydia pomonella (L.), following low volume concentrated sprays of a microencapsulated (MEC) sex pheromone formulation (CheckMate CM-F). Nearly 30% of leaves collected f...

  20. Infrared Detection of Internal Feeders of Deciduous Tree Fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is a worldwide pest of apple and pear. Due to the severity of codling moth in agroecosystems, it is a quarantine pest in countries where it is not considered an established species. Detection of codling moth infestations in exports int...

  1. Field Attraction of Codling Moths (Lepidoptera: Tortricidae) to Apple and Pear Fruit, and Quantitation of Kairomones from Attractive Fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male and female codling moths, Cydia pomonella (L.) responded in orchards to fruit placed within traps. Numbers of codling moths in traps baited with immature uninfested apples, immature apples infested with larval codling moth, ripe apples, and ripe pears were significantly greater than in un-bait...

  2. Control and monitoring of codling moth (Lepidoptera: Tortricidae) in walnut orchards treated with novel high-load, low-density “meso” dispensers of sex pheromone and pear ester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel low-density per ha “meso” dispensers loaded with both pear ester, ethyl (E,Z)-2,4-decadienoate, kairomone and codlemone, (E,E)-8,10-dodecadien-1-ol, the sex pheromone of codling moth, Cydia pomonella (L)., were evaluated versus meso dispensers loaded with pheromone-alone for their mating disru...

  3. Combined approaches using sex pheromone and pear ester for behavioral disruption of codling moth (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies utilized the attractive properties of pear ester, ethyl (E,Z)-2,4-decadienoate, and codlemone, (E,E)-8,10-dodecadien-1-ol, the sex pheromone of codling moth, Cydia pomonella (L)., for behavioural disruption. Standard dispensers loaded with codlemone alone or in combination with pear ester (c...

  4. Comparing mating disruption of codling moth with standard and meso dispensers loaded with pear ester and codlemone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted with hand-applied combo dispensers loaded with the sex pheromone (E,E)-8,10-dodecadien-1-ol (codlemone), and the pear volatile, (E,Z)-2,4-decadienoate (pear ester) for control of codling moth, Cydia pomonella (L.) in apple, Malus domestica Bordkhausen during 2012. Two types of...

  5. Potential for High Hydrostatic Pressure Processing to Control Quarantine Insects in Fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tests were conducted to determine the potential for high hydrostatic pressure (HPP) to control codling moth, Cydia pomonella (L.) and Western cherry fruit fly, Rhagoletis indifferens Curran. Apples with larvae or eggs of codling moth were treated 24 h and 72 h, respectively, after infestation at a s...

  6. Increased Catch of Female Codling Moth (Lepidoptera: Tortricidae) in Kairomone-baited Clear Delta Traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relative performance of a clear delta trap baited with individual or combination sex pheromone and kairomone lures for codling moth, Cydia pomonella (L.), was evaluated against three vertical pane and colored delta traps in one or more field trials in apple, Malus domestica (Borkhausen). The cle...

  7. Landscape Analysis of Adult Codling Moth (Lepidoptera: Tortricidae) Distribution and Dispersal within Typical Agroecosystems Dominated by Apple Production in Central Chile

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We analyzed the spatial distribution and dispersal of codling moth, Cydia pomonella (L.), adults within two heterogeneous agro-ecosystems typical of central Chile; commercial apple, Malus domestica Borkhausen, orchards surrounded by various unmanaged host plants. Both a geostatistical analysis of ca...

  8. Improved Monitoring of Female Codling Moth (Lepidoptera: Tortricidae) with Pear Ester Plus Acetic Acid in Sex Pheromone-treated Orchards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Catch of codling moth, Cydia pomonella (L.), in clear delta traps baited with ethyl (E,Z)-2,4-decadienoate (pear ester, PE) and acetic acid (AA) in separate lures (PE+AA) was compared with catch in orange delta traps baited with a single lure containing PE and the sex pheromone, (E,E)-8,10-dodecadie...

  9. Apple volatiles synergize the response of codling moth to pear ester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work was undertaken to identify host volatiles from apples and investigate whether these can be used to enhance the efficacy of pear ester, ethyl (2E,4Z)-2,4-decadienoate, for monitoring female and male codling moth, Cydia pomonella L. Volatiles from immature apple trees were collected in the f...

  10. Behavior of codling moth (Lepidoptera: Tortricidae)neonate larvae on surfaces treated with microencapsulated pear ester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Codling moth (CM), Cydia pomonella, larvae cause severe damage apples, pears and walnuts worldwide by internal feeding and the introduction of molds and spoilage micro-organisms. CM neonate larvae are attracted to and arrested by a pear-derived kairomone, ethyl (2E,4Z)-2,4-decadienoate, the “pear es...

  11. Evaluating dispensers loaded with codlemone and pear ester for disruption of codling moth (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyvinyl chloride polymer (pvc) dispensers loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) plus the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone) of codling moth, Cydia pomonella (L.), were compared with similar dispensers and a commercial dispenser (Isomate®-C Plus) loaded with codle...

  12. Evaluation of novel semiochemical dispensers simultaneously releasing pear ester and sex pheromone for mating disruption of codling moth (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performance of polyvinyl chloride polymer (pvc) dispensers loaded with two rates of ethyl (E,Z)-2,4-decadienoate (pear ester) plus the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone) of codling moth, Cydia pomonella (L.), was compared with similar dispensers and two commercial dispensers l...

  13. Bin sanitizer - An effective way to reduce codling moth and fungal decay sporesation to prevent reintroduction of codling moth.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important source of reinfestation of codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), is the return of fruit bins containing diapausing larvae. Blue mold caused by Penicillum spp. is a major postharvest disease of apples and pears. An applied test conducted at a commercial packing h...

  14. Identifying (E)-4,8-dimethyl-1,3,7-nonatriene plus acetic acid as a new lure for male and female codling moth (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory and field studies were conducted to measure the responses of adult codling moth, Cydia pomonella (L.), to several plant volatiles presented alone and in combination with acetic acid. Plant volatiles included ethyl (E,Z)-2,4-decadienoate (pear ester), (E)-ß-farnesene, (Z)-3-hexenyl acetate...

  15. Combining mutualistic yeast and pathogenic virus - a novel method for control for codling moth control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies evaluated the lethal effectiveness of combining yeasts isolated from larvae of codling moth, Cydia pomonella (L.) with the codling moth granulosis virus (CpGV). Apples were treated with CpGV and three yeast species, including Metschnikowia pulcherrima Pitt and Miller, Cryptococcus tephrensis...

  16. Effect of flooding lead-arsenate contaminated orchard soil on growth, arsenic and lead accumulation in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lead-arsenate has been used as a pesticide in controlling codling moth (Cydia pomonella) in apple and plum orchards from 1900-1960. As a result, many old orchards contain high levels of arsenic. Flooding soils contaminated by lead-arsenate could increase plant arsenic and lead and become a human h...

  17. Effect of Sex Pheromone and Kairomone Lures on Catches of Codling Moth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies in apple orchards treated with sex pheromone evaluated the performance of a clear vertical interception trap coated with oil and baited with either sex pheromone, pear ester, or both attractants (combo) for adult codling moth, Cydia pomonella (L.). Baited interception traps caught significan...

  18. Post-Application of Anti-Desiccant Agents Improves Efficacy of Entomopathogenic Nematodes in Formulated Host Cadavers or Aqueous Suspension Against Diapausing Codling Moth Larvae (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Codling moth (CM), Cydia pomonella L. is the most serious pest of apple and other pome fruit worldwide. In temperate climate, diapausing cocooned larvae make up 100% of the population. Control of this stage would reduce or eliminate damage by first generation CM in late spring and early summer. Ento...

  19. Total and Extractable Lead and Arsenic Concentrations in U.S. Long-Term Orchard Soils and Potential Accumulation by Vegetable Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lead arsenate was used as an insecticide in the United States (U.S.) from 1900 to 1960s to control codling moth (Cydia pomonella) in apple orchards. As a result these soils are contaminated with lead (Pb) and arsenic (As). Concerns have been raised about conversion of land use of such Pb and As ri...

  20. Efficacy of the Biofumigant Fungus Muscodor albus (Ascomycota: Xylariales) for Control of Codling Moth (Lepidoptera: Tortricidae) in Simulated Storage Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Codling moth CM, Cydia pomonella, (L.), a serious pest of pome fruit, is a threat to exportation of apples because of the possibility of shipping infested fruit. Broad spectrum fumigants have been used as the principle method for the protection of exported fruit from insect infestations. Some of th...

  1. “This is not an apple”–yeast mutualism in codling moth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. The larva of codling moth Cydia pomonella (Tortricidae, Lepidoptera) is known as the worm in the apple, mining the fruit for food. We show that codling moth larvae are closely associated with yeasts of the genus Metschnikowia. Yeast is an essential part of the larval diet and further promotes lar...

  2. MASS REARING CODLING MOTHS: IMPROVEMENTS AND MODIFICATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modifications of the diet, oviposition cages, rearing containers, diapause induction and adult handling are described for a rearing colony of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), maintained at the USDA-ARS facility in Wapato, Washington (USA), for over 40 years for use in f...

  3. Field Evaluations of Concentrated Spray Applications of Microencapsulated Sex Pheromone for Codling Moth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of a microencapsulated (MEC) sex pheromone formulation (Checkmate® CM-F) for codling moth, Cydia pomonella (L.), in low volume, concentrated sprays was evaluated in a series of small plot and grower trials in apple and pear. Preliminary tests found that MEC sprays applied at 172-207 ...

  4. Cold storage to control codling moth larvae in fresh apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), found in exported apples, Malus sylvestris (L.) var. domestica (Borkh.) Mansf., can disrupt international markets. Cold storage at 1.1°C was examined for possible control on three physiological larval states in ‘Fuji’ apples: diapausing ...

  5. Characterization of microencapsulated pear ester, (2E,4Z)-ethyl-2,4-decadienoate: a kairomonal spray-adjuvant against neonate codling moth larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The codling moth (CM), Cydia pomonella, is the key pest of apples, pears and walnuts worldwide, causing internal feeding damage by larvae and introduction of molds and spoilage micro-organisms. Hatched CM larvae are highly responsive to a pear-derived kairomone, ethyl (2E,4Z)-2,4-decadienoate, the ...

  6. MICROBIAL CONTROL OF LEPIDOPTERAN PESTS OF APPLE ORCHARDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Codling moth, Cydia pomonella, is a worldwide pest of apple and pear. Traditional control methods have been based predominantly on broad spectrum insecticides. Concerns over the safety, environmental impact, and sustainability of synthetic pesticides have stimulated development and use of softer c...

  7. Improving the performance of the Granulosis virus of Codling moth (Lepidoptera: Tortricideae) by adding the yeast Saccharomyces cerevisiae with sugar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies evaluated the effectiveness of adding Saccharomyces cerevisiae with brown cane sugar (sugar) to the codling moth granulosis virus, CpGV, to improve larval control of Cydia pomonella (L.), on apple. Neither the use of the yeast or sugar alone caused larval mortality greater than the water con...

  8. Effect of product moisture on efficacy of vacuum treatments for tree nuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    California tree nuts (walnuts, almonds and pistachios) must be free of insect infestation in order to meet consumer demands and export requirements. Processors have long relied on fumigants such as methyl bromide to disinfest their product of field pests such as codling moth (Cydia pomonella) and na...

  9. Accumulation of lead and arsenic by lettuce grown on lead-arsenate contaminated orchard soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lead-arsenate was one of the preferred insecticides used as foliar spray to control codling moth (Cydia pomonella) in apple (Malus sylvestris Mill) orchards from the 1900's to the 1960’s. Lead and arsenic are generally immobile and remain in the surface soil. Some of these contaminated lands are now...

  10. Arsenic Recovery by Stinging Nettle From Lead-Arsenate Contaminated Orchard Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil contamination with arsenic (As) is common in orchards with a history of lead-arsenate pesticide application. This problem is prevalent in the U.S. Northeast where lead-arsenate foliar sprays were used to control codling moth (Cydia pomonella) in apple orchards. Arsenic is not easily biodegrad...

  11. Comparison of ex-situ volatile emissions from intact and mechanically damaged walnuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The codling moth (Cydia pomonella) and navel orangeworm (Amyelois transitella) are insect pests that inflict serious economic damage to California walnuts. Feeding by these larvae causes physical damage, resulting in lower kernel quality, and can lead to fungal contamination by the aflatoxigenic fun...

  12. Effects of temperature and modified atmospheres on diapausing 5th instar codling moth metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diapausing 5th instars of codling moth, Cydia pomonella, are serious quarantine pests of in-shell walnuts. Previous research indicates that heat treatments in combination with high concentrations of carbon dioxide and low concentrations of oxygen may be effective for controlling this pest in walnuts...

  13. Bin sterilization to prevent reintroduction of codling moth.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important source of reinfestation of codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), is the return of fruit bins containing diapausing larvae. Laboratory tests, conducted to determine efficacious temperatures of hot water baths to prevent adult emergence, found baths at 80°C for > ...

  14. Development of a systems approach for US cherries exported to Japan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to develop a systems approach for codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), that will allow export of Pacific Northwest (Washington and Oregon) and California cherries to Japan, cherries were shown to be poor hosts for codling moth. Codling moth pheromone traps were pla...

  15. Correction: Graillot, B.; et al. Progressive Adaptation of a CpGV Isolate to Codling Moth Populations Resistant to CpGV-M. Viruses 2014, 6, 5135–5144

    PubMed Central

    Graillot, Benoît; Berling, Marie; Blachere-López, Christine; Siegwart, Myriam; Besse, Samantha; López-Ferber, Miguel

    2015-01-01

    In our article “Progressive Adaptation of a CpGV Isolate to Codling Moth Populations Resistant to CpGV-M.” (Viruses 2014, 6, 5135–5144; doi:10.3390/v6125135) [1] we obtained resistance values of the codling moth, Cydia pomonella, RGV laboratory colony [2], when challenged with Cydia pomonella Granulovirus, Mexican Isolate (CpGV-M), that were lower than those previously published [2]. Careful analysis of both the RGV colony and the CpGV-M virus stock used led to the realization that a low level contamination of this virus stock with CpGV-R5 occurred. We have made new tests with a verified stock, and the results are now in agreement with those previously published.

  16. The cellular substrate: a very important requirement for baculovirus in vitro replication.

    PubMed

    Miltenburger, H G; Naser, W L; Harvey, J P; Huber, J; Huger, A M

    1984-01-01

    We established more than 200 primary cell lines of Cydia pomonella (coding moth). 81 of them were selected and screened for replication of two baculoviruses (from two different subgroups): the Choristoneura murinana NPV and the Cydia pomonella GV. Although all these cell lines had been derived from the same insect species, they varied largely in their response to challenge with the NPV. Most of them showed CPE or produced different amounts of polyhedra. Interestingly, we also found a few cell lines that were permissive for GV replication. To our knowledge this is the first time that GV replication in cell lines has been obtained. Our results show that cell line properties are most important for baculovirus in vitro replication. PMID:6516539

  17. Effects of gamma irradiation as a quarantine treatment on development of codling moth larvae

    SciTech Connect

    Burditt, A.K. Jr.; Moffitt, H.R.; Hungate, F.P.

    1985-03-01

    Codling moth, Cydia pomonella (L.), larvae were exposed to gamma radiation at doses upto 160 Gy. Following irradiation the larvae were permited further development, pupation and adult emergence. The number of adults emerging, mature larvae and pupae present were determined. Data from these studies will be used to predict doses of gamma irradiation required as a quarantine treatment to prevent emergence of codling moth adults from fruit infested by larvae. 5 refs., 1 tab.

  18. Real-time PCR assay for detection of a new simulant for poxvirus biothreat agents.

    PubMed

    Garnier, Laurence; Gaudin, Jean-Christophe; Bensadoun, Paul; Rebillat, Isabelle; Morel, Yannick

    2009-03-01

    Research and financial efforts spent on biodefense technologies highlight the current concern for biothreat event preparedness. Nonhazardous but relevant "simulant" microorganisms are typically used to simplify technological developments, testing, and staff training. The bacteriophage MS2, a small RNA virus, is classically used as the reference simulant for biothreat viruses within the biodefense community. However, variola virus, considered a major threat, displays very different features (size, envelope, and double-stranded DNA genome). The size parameter is critical for aerosol sampling, detection, and protection/filtration technologies. Therefore, a panel of relevant simulants should be used to cover the diversity of biothreat agents. Thus, we investigated a new virus model, the Cydia pomonella granulovirus (baculovirus), which is currently used as a biopesticide. It displays a size similar to that of poxviruses, is enveloped, and contains double-stranded DNA. To provide a molecular tool to detect and quantify this model virus, we developed an assay based on real-time PCR, with a limit of detection ranging from roughly 10 to a few tens of target copies per microl according to the sample matrix. The specificity of the assay against a large panel of potential cross-reactive microorganisms was checked, and the suitability of the assay for environmental samples, especially aerosol studies, was determined. In conclusion, we suggest that our PCR assay allows Cydia pomonella granulovirus to be used as a simulant for poxviruses. This assay may also be useful for environmental or crop treatment studies. PMID:19168659

  19. Evaluation of azinphos-methyl resistance and activity of detoxifying enzymes in codling moth (Lepidoptera: Tortricidae) from central Chile.

    PubMed

    Fuentes-Contreras, Eduardo; Reyes, Maritza; Barros, Wilson; Sauphanor, Benoît

    2007-04-01

    Regular applications of insecticides have been the main management practice against codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae) in Chile. Organophosphates are the most widely used insecticides, and azinphos-methyl is an important element in spray programs. In particular, we evaluated diagnostic doses of azinphos-methyl on neonate and postdiapausing larvae from seven apple (Malus spp.) orchards. We also evaluated the activity of detoxifying enzymes, such as glutathione S-transferases (GSTs), cytochrome P450 polysubstrate monooxygenases (PSMOs), and esterases, which are likely to be involved in resistance to insecticides. Such responses were compared with an insecticide-susceptible strain that has been maintained in the laboratory for several years. Neonate larval mortality of field populations to azinphos-methyl was not significantly different from of the susceptible strain. In contrast, postdiapause larval mortality was significantly lower in the six analyzed populations than in the susceptible strain. The C. pomonella populations with reduced postdiapause mortality to azinphos-methyl also showed statistically higher GST activity. Finally, no significant differences were found in total esterase or PSMO activity between C. pomonella populations. Therefore, the observed reduction in postdiapause larval mortality to azinphos-methyl seems to be associated with an increase in GST activity. PMID:17461082

  20. Dominicanas entre La Gran Manzana y Quisqueya: Family, Schooling, and Language Learning in a Transnational Context

    ERIC Educational Resources Information Center

    Rodriguez, Tracy

    2009-01-01

    Drawing from a one-year qualitative research study, this article explores the transnational lives and experiences of three young women and their little sisters in New York with close ties to the Dominican Republic. Using ethnographic research methods--life history interviews, focus groups, participant observation, and document analysis, I examine…

  1. Pharmacological analysis of feeding in a caterpillar: different transduction pathways for umami and saccharin?

    NASA Astrophysics Data System (ADS)

    Pszczolkowski, Maciej A.; Durden, Kevin; Marquis, Juleah; Ramaswamy, Sonny B.; Brown, John J.

    2009-05-01

    Neonate larvae of codling moth, Cydia pomonella (L.), modify their behavior in the presence of saccharin, monosodium glutamate (MSG), or L(+)-2-amino-4-phosphonobutyric acid (L-AP4) by commencing their feeding earlier. Previously published pharmacological analysis demonstrated that phagostimulatory effects of MSG and L-AP4 (which elicit umami taste sensation in humans) are reversed by adenylate cyclase activator and phosphodiesterase inhibitor. In this study, by measuring the time needed to start ingestion of foliage treated with mixtures of phagostimulants and signal transduction modulators, we show that phagostimulatory effects of l-aspartate (the third hallmark umami substance) are also abolished by both adenylate cyclase activator and phosphodiesterase inhibitor, but not by phospholipase C inhibitor. However, stimulatory effects of hemicalcium saccharin were affected only by phospholipase C inhibitor. The results suggest that codling moth neonates use different transduction pathways for perception of hemicalcium saccharin and umami.

  2. Population genetic structure of codling moth (Lepidoptera: Tortricidae) from apple orchards in central Chile.

    PubMed

    Fuentes-Contreras, Eduardo; Espinoza, Juan L; Lavandero, Blas; Ramírez, Claudio C

    2008-02-01

    Codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is the main pest of pome fruits worldwide. Despite its economic importance, little is known about the genetic structure and patterns of dispersal at the local and regional scale, which are important aspects for establishing a control strategy for this pest. An analysis of genetic variability using microsatellites was performed for 11 codling moth populations in the two major apple (Malus domestica Borkh) cropping regions in central Chile. Despite the geographical distances between some populations (approximately 185 km), there was low genetic differentiation among populations (F(ST) = 0.002176), with only slight isolation by distance. Only approximately 0.2% of the genetic variability was found among the populations. Geographically structured genetic variation was independent of apple orchard management (production or abandoned). These results suggest a high genetic exchange of codling moth between orchards, possibly mediated by human activities related to fruit production. PMID:18330135

  3. Consistent codling moth population decline by two years of mating disruption in apple: a Flemish case study.

    PubMed

    Bangels, E; Beliën, T

    2012-01-01

    Codling moth (Cydia pomonella) is one of the most important pests in apple and pear. In 2010 mating disruption became a key pest management tactic in Flemish pip fruit orchards, largely due to a government subsidy and demonstrating projects aiming to widen the area treated by pheromones as large as possible. As a consequence, the mating disruption strategy was applied at approximately 7.500 ha, or half of the pip fruit area, in 2010 and 2011. The sudden large-scale implementation of this technique changed the codling moth management landscape. Here we present a case study of a commercially managed orchard that suffered from high codling moth pressures for many years, as did the surrounding area. The RAK3 mating disruption system was introduced at this location in 2010, and was continued in 2011. Systematic detailed codling moth flight data for this location are available for many years. In addition, comprehensive data on damage levels of chemically untreated windows spread all over the test orchard in a randomized block design were obtained in successive years, enabling us to thoroughly evaluate the effect of the changed codling moth management strategy. Data from 2011 included damage levels in chemically treated windows when the entire orchard was applied once at the flight peak of Cydia pomonella. In 2009, before introduction of mating disruption, a mean of 8.25 +/- 5.54% of the fruits were infested at harvest when assessed in completely untreated windows. After two years of mating disruption, supported with a full chemical support in 2010, except for the untreated assessment windows, and only one application on the flight peak of 2011, damage was reduced to less than 0.03% at harvest. This is a valuable case study to demonstrate the benefits of the mating disruption approach. PMID:23885433

  4. Paraffin wax emulsion for increased rainfastness of insecticidal bait to control Rhagoletis pomonella (Diptera: Tephritidae).

    PubMed

    Teixeira, Luís A F; Wise, John C; Gut, Larry J; Isaacs, Rufus

    2009-06-01

    In regions with a humid summer climate, the use of water-soluble bait to control apple maggot is often limited by rainfall. We studied increasing the rainfastness of GF-120 fruit fly bait by adding paraffin wax emulsion. First, we verified that adding 10% wax to a mixture containing 16.7% GF-120 did not reduce the mortality of female apple maggot compared with GF-120 without wax. In addition, we determined that fly mortality caused by GF-120 plus wax subjected to simulated rain was similar to that caused by GF-120 without wax not subjected to rain. Other assays showed that higher fly mortality resulted from increasing the proportion of wax from 10 to 15%, and lower mortality resulted from decreasing GF-120 from 16.7 to 10 or 5%. The availability of spinosad on or near droplets of a mixture consisting of 5, 10, or 15% GF-120 and 15% wax was determined before and after the droplets were subjected to three 15-min periods of simulated rain. We found an initial steep decline in dislodgeable spinosad and smaller decreases after subsequent periods of rain. In a small-plot field trial, fruit infestation by apple maggot in plots treated with a mixture consisting of 16.7% GF-120 and 19.2% wax was less than in plots treated with 16.7% GF-120 without wax but not less than in control plots. Overall, we found that adding paraffin wax emulsion to GF-120 increased rainfastness in laboratory bioassays, and specifically that it retained the active ingredient spinosad. However, our field data suggest that optimal rainfastness requires the development of mixtures with > 19.2% wax, which may preclude application using standard spray equipment. PMID:19610426

  5. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?

    PubMed Central

    Bardin, Marc; Ajouz, Sakhr; Comby, Morgane; Lopez-Ferber, Miguel; Graillot, Benoît; Siegwart, Myriam; Nicot, Philippe C.

    2015-01-01

    The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i) the selection pressure exerted by it on populations of plant pathogens and (ii) on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringiensis and apparition of resistance of the codling moth Cydia pomonella to the C. pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss, i.e., modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents. PMID:26284088

  6. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests.

    PubMed

    Baranek, Jakub; Kaznowski, Adam; Konecka, Edyta; Naimov, Samir

    2015-09-01

    Vegetative insecticidal proteins (Vips) secreted by some isolates of Bacillus thuringiensis show activity against insects and are regarded as insecticides against pests. A number of B. thuringiensis strains harbouring vip3A genes were isolated from different sources and identified by using a PCR based approach. The isolates with the highest insecticidal activity were indicated in screening tests, and their vip genes were cloned and sequenced. The analysis revealed two polymorphic Vip protein forms, which were classified as Vip3Aa58 and Vip3Aa59. After expression of the vip genes, the proteins were isolated and characterized. The activity of both toxins was estimated against economically important lepidopteran pests of woodlands (Dendrolimus pini), orchards (Cydia pomonella) and field crops (Spodoptera exigua). Vip3Aa58 and Vip3Aa59 were highly toxic and their potency surpassed those of many Cry proteins used in commercial bioinsecticides. Vip3Aa59 revealed similar larvicidal activity as Vip3Aa58 against S. exigua and C. pomonella. Despite 98% similarity of amino acid sequences of both proteins, Vip3Aa59 was significantly more active against D. pini. Additionally the effect of proteolytic activation of Vip58Aa and Vip3Aa59 on toxicity of D. pini and S. exigua was studied. Both Vip3Aa proteins did not show any activity against Tenebrio molitor (Coleoptera) larvae. The results suggest that the Vip3Aa58 and Vip3Aa59 toxins might be useful for controlling populations of insect pests of crops and forests. PMID:26146224

  7. Acute and population level toxicity of imidacloprid and fenpyroximate on an important egg parasitoid, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae).

    PubMed

    Saber, Moosa

    2011-08-01

    One focus of integrated pest management (IPM) is the use of biological and chemical control in an optimal way. The availability of selective pesticides is important as is information about both lethal and sublethal effects of pesticides on biocontrol agents. Acute and sublethal effects of imidacloprid and fenpyroximate exposure were studied on adult stage of egg parasitoid Trichogramma cacoeciae Marchal and the emergence rate and life table parameters were determined. The adult wasps were exposed to field recommended concentration (FRC) of the pesticides on glass plates. Field rates of imidacloprid and fenpyroximate caused 100 and 32% adult mortality, respectively. Based on concentration-response experiments, the LC(50) values of imidacloprid and fenpyroximate were 6.25 and 1,949 ppm, respectively. The effect of imidacloprid and fenpyroximate on larvae, prepupae and pupae of the parasitoid was tested by exposing parasitized eggs of Sitotroga cerealella Olivier or Cydia pomonella L. to the FRC. Imidacloprid and fenpyroximate reduced adult emergence by 10.7 and 29%, respectively, when S. cerealella eggs were used as the host and 10.9 and 24.9%, respectively, when C. pomonella eggs were used as the host. Population parameters of emerged adults from treated pre-imaginal stages by FRC of the pesticides were also studied. The parameters were longevity and progeny production of emergent adults and also intrinsic rate of increase (r ( m )), generation time (T) and doubling time (DT). Longevity and progeny production of the emergent adults was not affected by pesticide exposure in comparison to the control. In addition, none of population parameters such as r ( m ), T and DT were affected by pesticide exposure. The intrinsic rate of increase for the control, fenpyroximate and imidacloprid exposed populations were 0.388, 0.374, and 0.372 female offspring per female per day, respectively. Overall, results of this study suggest a relative compatibility between fenpyroximate

  8. Integrated assessment of climate change impact on surface runoff contamination by pesticides.

    PubMed

    Gagnon, Patrick; Sheedy, Claudia; Rousseau, Alain N; Bourgeois, Gaétan; Chouinard, Gérald

    2016-07-01

    Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This article presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Québec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), 3 insect pests (codling moth [Cydia pomonella], plum curculio [Conotrachelus nenuphar], and apple maggot [Rhagoletis pomonella]), 2 diseases (apple scab [Venturia inaequalis], and fire blight [Erwinia amylovora]). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence, for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period. Integr Environ Assess Managem 2016;12:559-571. © Her Majesty the Queen in Right of Canada 2015; Published 2015 SETAC. PMID:26331624

  9. Susceptibility of the Filbertworm (Cydia latiferreana, Lepidoptera: Tortricidae) And Filbert Weevil (Curculio occidentalis, Coleoptera: Curculionidae) to Entomopathogenic Nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hazelnut (Corylus avellana L.) is an important nut crop produced around the world including the United States. Oregon’s Willamette Valley accounts for about 99% of hazelnuts grown in the United States. The objective of this study was to determine the susceptibility of the two primary direct insect...

  10. Regulatory Innovation, Mating Disruption and 4-Play(TM) in New Zealand.

    PubMed

    Suckling, David Maxwell; El-Sayed, Ashraf M; Walker, James T S

    2016-07-01

    Straight-chained lepidopteran pheromones are now regulated under a group standard in New Zealand, which is generic for moth pheromone products of similar low risk, under the Hazardous Substances and New Organisms Act (1996). This means that compliant new pheromone products can be developed and commercialized with low regulatory requirements. This encourages innovation and supports fruit industries interested in meeting export phytosanitary standards, while targeting low or nil residues of pesticides. Changes to pheromone blends for reasons such as technical improvements or variations in pest species composition in different crops can be made with minimal regulatory involvement. We illustrate how this system now operates with a four species mating disruption product commercialized in 2012. The odors involved in "4-Play™" consist of a range of components used by codling moth (Cydia pomonella), lightbrown apple moth (Epiphyas postvittana), green-headed leafroller (Planotortrix octo), and brown-headed leafroller (Ctenopseustis obliquana). The development of 4-Play™ illustrates how mating disruption of insects can support industry goals. PMID:27394720

  11. Identification of irradiated apples for phytosanitary purposes

    NASA Astrophysics Data System (ADS)

    Horak, Celina I.; Di Giorgio, Marina; Kairiyama, Eulogia

    2009-07-01

    The irradiation treatment of fresh fruits and vegetables for phytosanitary purposes is a satisfactory alternative method to others like fumigation and cold and hot treatments. Its use is increasing in several countries, and at present its approval is under revision by the National Regulatory Authorities. To verify the control process, apart from irradiation and dosimetry certificates, National Authorities require complementary evidence to show the efficacy of this treatment, especially when the documentation is not clear. The irradiation of fresh fruits produces single and double fragmentation in the DNA molecule, which can be measured using the microgel electrophoresis of individual cell (comet assay). The purpose of this work was to evaluate if it is possible to identify the irradiated apples for phytosanitary purposes from the others that were not treated. The possibility to estimate the absorbed dose was also evaluated. The methodology was carried out on the cell suspension obtained from irradiated seed cells with incremental doses (100, 200 and 300 Gy). The irradiation treatment for phytosanitary purposes to avoid emergency of codling moth ( Cydia pomonella) is 200 Gy. The fragmentation produced in the irradiated samples was proportional with the incremental doses applied. These results show that with this methodology it can be determined if the apple was irradiated or not. This comet assay is a simple, economical and interesting method that can be used, in case of necessity, by the National Authorities.

  12. Changes in volatile emissions from apple trees and associated response of adult female codling moths over the fruit-growing season.

    PubMed

    Vallat, Armelle; Dorn, Silvia

    2005-05-18

    Odors in the headspace of apple trees were characterized by in situ volatile collections in the orchard. Sixty-two compounds were quantitatively identified with thermal desorption-gas chromatography-mass spectrometry over the complete fruit-growing season. Overall quantities in the headspace of fruit-bearing twig were highest at petal fall and at the beginning of June and August. Interestingly, the latter two periods coincide with the flight maxima of the codling moth, Cydia pomonella, one of the principal pest insects of apple fruit worldwide. Dual-choice bioassays with mated adult female moths in a Y-tube olfactometer showed that the blend of plant-derived volatiles repelled this key pest of apple at petal fall and attracted it from July to mid-August. Single-component analysis indicated that benzaldehyde and butyl acetate might contribute to the observed repellent effect, but the constituents accounting for the attractant effect mid-season remain to be further elucidated. The attractant effect clearly originates from the apple fruit and not from the twig with leaves, as bioassays demonstrated conclusively. PMID:15884843

  13. Cost-benefit trade-offs of bird activity in apple orchards

    PubMed Central

    Saunders, Manu E.; Luck, Gary W.

    2016-01-01

    Birds active in apple orchards in south–eastern Australia can contribute positively (e.g., control crop pests) or negatively (e.g., crop damage) to crop yields. Our study is the first to identify net outcomes of these activities, using six apple orchards, varying in management intensity, in south–eastern Australia as a study system. We also conducted a predation experiment using real and artificial codling moth (Cydia pomonella) larvae (a major pest in apple crops). We found that: (1) excluding birds from branches of apple trees resulted in an average of 12.8% more apples damaged by insects; (2) bird damage to apples was low (1.9% of apples); and (3) when trading off the potential benefits (biological control) with costs (bird damage to apples), birds provided an overall net benefit to orchard growers. We found that predation of real codling moth larvae was higher than for plasticine larvae, suggesting that plasticine prey models are not useful for inferring actual predation levels. Our study shows how complex ecological interactions between birds and invertebrates affect crop yield in apples, and provides practical strategies for improving the sustainability of orchard systems. PMID:27413639

  14. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    PubMed

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies. PMID:26314018

  15. Measuring local genetic variability in populations of codling moth (Lepidoptera: Tortricidae) across an unmanaged and commercial orchard interface.

    PubMed

    Fuentes-Contreras, Eduardo; Basoalto, Esteban; Franck, Pierre; Lavandero, Blas; Knight, Alan L; Ramírez, Claudio C

    2014-04-01

    The genetic structure of adult codling moth, Cydia pomonella (L.), populations was characterized both inside a managed apple, Malus domestica Borkdhausen, orchard and in surrounding unmanaged hosts and nonhost trees in central Chile during 2006-2007. Adult males were collected using an array of sex pheromone-baited traps. Five microsatellite genetic markers were used to study the population genetic structure across both spatial (1-100 ha) and temporal (generations within a season) gradients. Analysis of molecular variance (AMOVA) found a significant, but weak, association in both the spatial and temporal genetic structures. Discriminant analysis also found significant differentiation between the first and second generation for traps located either inside or outside the managed orchard. The Bayesian assignment test detected three genetic clusters during each of the two generations, which corresponded to different areas within the unmanaged and managed apple orchard interface. The lack of a strong spatial structure at a local scale was hypothesized to be because of active adult movement between the managed and unmanaged hosts and the asymmetry in the insecticide selection pressure inside and outside the managed habitats. These data highlight the importance of developing area-wide management programs that incorporate management tactics effective at the landscape level for successful codling moth control. PMID:24763103

  16. Landscape analysis of adult codling moth (Lepidoptera: Tortricidae) distribution and dispersal within typical agroecosystems dominated by apple production in central Chile.

    PubMed

    Basoalto, E; Miranda, M; Knight, A L; Fuentes-Contreras, E

    2010-10-01

    We analyzed the spatial distribution and dispersal of codling moth, Cydia pomonella (L.), adults within two heterogeneous agroecosystems typical of central Chile: commercial apple, Malus domestica Borkhausen, orchards surrounded by various unmanaged host plants. Both a geostatistical analysis of catches of adult males with a grid of sex pheromone-baited traps and an immunological self-marking technique combined with traps baited with a male and female attractant were used. The spatial analyses identified the key sources of moths within these diverse landscapes. Codling moth catches in traps were spatially associated within distances of ≈ 150-300 m. Similarly, the mean distance from the immunological self-marking plots within the commercial apple orchard to the traps that captured marked adults was 282 m. In contrast, the mean distance in the capture of marked moths from unmanaged self-marking plots to a commercial orchard was 828 m. These data suggest that the success of any future area-wide management programs for codling moth in Chilean pome fruit must include a component for managing or removing noncommercial hosts that surround orchards. This analysis also suggests that the selection pressure for resistance imposed by insecticide sprays within managed orchards is likely dampened by the influx of susceptible moths from unmanaged sites common in central Chile. PMID:22546434

  17. Organophosphate Resistance and its Main Mechanism in Populations of Codling Moth (Lepidoptera: Tortricidae) from Central Chile.

    PubMed

    Reyes, Maritza; Barros-Parada, Wilson; Ramírez, Claudio C; Fuentes-Contreras, Eduardo

    2015-02-01

    The codling moth, Cydia pomonella (L.), is the key pest of apple production worldwide. Insecticide resistance has been reported in all producing countries, based on five different mechanisms. Codling moth in Chile has resistance to azinphos-methyl and tebufenozide in post-diapausing larvae. However, there are no studies about the susceptibility of these populations to insecticides from other chemical groups. Therefore, the efficacy of azinphos-methyl, chlorpyrifos-ethyl, esfenvalerate, methoxyfenozide, tebufenozide, and thiacloprid on neonate and post-diapausing larvae from six field populations was investigated, and identified resistance mechanisms in this species were evaluated. Neonate larvae were susceptible to all insecticides studied, but post-diapausing larvae from four populations were resistant to chlorpyrifos, one of them was also resistant to azinphos-methyl, and another one was resistant to tebufenozide. The acetylcholinesterase insensitivity mutation was not detected, and the sodium channel knockdown resistance mutation was present in a low frequency in one population. Detoxifying enzymatic activity of glutathione S-transferases, esterases, and cytochrome P-450 monooxygenases in adults differed among populations, but chlorpyrifos resistance was associated only with a decreased esterase activity as shown by a significant negative correlation between chlorpyrifos mortality and esterase activity. PMID:26470131

  18. Population genetic structure of economically important Tortricidae (Lepidoptera) in South Africa: a comparative analysis.

    PubMed

    Timm, A E; Geertsema, H; Warnich, L

    2010-08-01

    Comparative studies of the population genetic structures of agricultural pests can elucidate the factors by which their population levels are affected, which is useful for designing pest management programs. This approach was used to provide insight into the six Tortricidae of major economic importance in South Africa. The population genetic structure of the carnation worm E. acerbella and the false codling moth T. leucotreta, analyzed using amplified fragment length polymorphism (AFLP) analysis, is presented here for the first time. These results were compared with those obtained previously for the codling moth Cydia pomonella, the oriental fruit moth Grapholita molesta, the litchi moth Cryptophlebia peltastica and the macadamia nut borer T. batrachopa. Locally adapted populations were detected over local geographic areas for all species. No significant differences were found among population genetic structures as result of population history (whether native or introduced) although host range (whether oligophagous or polyphagous) had a small but significant effect. It is concluded that factors such as dispersal ability and agricultural practices have the most important effects on genetically structuring populations of the economically important Tortricidae in South Africa. PMID:19941674

  19. Effects of seasonal mineral oil applications on the pest and natural enemy complexes of apple.

    PubMed

    Fernandez, Dario E; Beers, E H; Brunner, J F; Doerr, M D; Dunley, J E

    2005-10-01

    This 3-yr study examined the use of two different apple, Malus domestica Borkhausen, pest management programs based on horticultural mineral oil. Whereas oil provided some additional control of codling moth, Cydia pomonella (L.), when targeting eggs of both generations (Oil/Direct Pest program, typically six applications per season), the additional benefit was difficult to detect when densities were high. With moderate densities, oil reduced the number of fruit infestations, but not stings (unsuccessful entries). There also were some measurable benefits to leafroller, Pandemis pyrusana Kearfott control. Oil was most useful, however, in suppression of secondary pests. White apple leafhopper, Typhlocyba pomaria McAtee, was the primary target of oil applications in the Oil/Indirect Pest program (typically three applications per season). However, leafhopper suppression in the Oil/Direct Pest program was generally greater because of the higher number of applications. Phytophagous tetranychid and eriophyid mites also were suppressed by more oil applications. Predatory mite populations were lower in both oil programs than in the check, but it is difficult to determine whether direct toxicity or reduction of prey was responsible for lower predator populations. There also was some evidence that oil suppressed woolly apple aphid, Eriosoma lanigerum Hausman. The six-spray oil program largely prevented a woolly apple aphid outbreak that occurred in July and August 1998 in the check, although the three-spray program seemed to provide some suppression despite the nonspecific spray timing. PMID:16334333

  20. Water fluxes and encapsulation efficiency in double emulsions: impact of emulsification and osmotic pressure unbalance.

    PubMed

    Nollet, Maxime; Mercé, Manuel; Laurichesse, Eric; Pezon, Annaïck; Soubabère, Olivier; Besse, Samantha; Schmitt, Véronique

    2016-03-30

    We study the influence of the emulsification process on encapsulation efficiency of drugs in double water-in-oil-in-water emulsions. Two drugs were used, first vitamin B12 which can be considered as a model drug and secondly a suspension of Cydia pomonella Granulovirus (CpGV), a virus used in organic agriculture to protect fruits against the Carpocapse insect. Encapsulation is measured by classical UV-Vis spectroscopy method. Additionally we show that rheology is a useful tool to determine water exchanges during emulsification. In a two-step emulsification process, using rotor-stator mixers, encapsulation reaches high levels, close to 100% whatever the flowing regime. This encapsulation decreases only if two conditions are fulfilled simultaneously: (i) during the second emulsification step the flow is turbulent and (ii) it leads to excessive fragmentation inducing formation of too small drops. We also investigate the effect of a deliberate loss of osmotic pressure balance on the encapsulation and characterize the induced water fluxes. We show that encapsulation of vitamin B12 is not affected by the osmotic pressure unbalance, while water exchanges, if they exist, are very fast and aim at restoring equilibrium. As a consequence, the emulsification efficiency is not very sensitive to osmotic stresses provided that the interfaces resist mechanically. PMID:26936127

  1. Characterization of microencapsulated pear ester, (2E,4Z)-ethyl-2,4-decadienoate, a kairomonal spray adjuvant against neonate codling moth larvae.

    PubMed

    Light, Douglas M; Beck, John J

    2010-07-14

    Codling moth (CM), Cydia pomonella (Lepidoptera: Tortricidae), is the key pest of apples, pears, and walnuts worldwide. The pear-derived kairomone, ethyl (2E,4Z)-2,4-decadienoate, the pear ester (PE), evokes attraction and arrestment of CM larvae. Microencapsulated PE formulation (PE-MEC) enhances the control efficacy of insecticides when used as a spray adjuvant. Characterization of the microencapsulated kairomone, including microcapsule size, concentrations, emission rates, and larval response, was performed. Microcapsule diameter ranged from 2 to 14 mum, with 68% of capsules being 2-3 mum, and the concentration of microcapsules averaged 25.9 x 10(4) capsules per mL of field spray solution. Headspace collections showed emission of PE was related to PE-MEC concentration and was best described as first-order power decay. Neonate larvae responded to PE-MEC applications aged through 14 days. These results demonstrated that application of PE-MEC concurrent with insecticides may increase neonate foliar wandering, thereby disrupting host location and enhancing mortality by prolonging its exposure to insecticide. PMID:20527813

  2. The Lymantria dispar nucleopolyhedrovirus contains the capsid-associated p24 protein gene.

    PubMed

    Slavicek, James M; Hayes-Plazolles, Nancy

    2003-01-01

    During the course of investigations on a wild-type strain of Lymantria dispar multinucleocapsid nucleopolyhedrovirus (LdMNPV), a region of the viral genome was analyzed and found to contain 697 bp that is lacking in the sequenced strain (5-6) of LdMNPV (Kuzio et al., Virology 253, 17-34, 1999). The sequenced strain of LdMNPV contains a mutation in the 25 K few polyhedra (FP) gene, and exhibits the phenotype of a FP mutant. The additional sequence was located at approximately 81.4 map units within the viral genome, and was found in 10 different wild-type LdMNPV genotypic variants analyzed. Since the additional sequence wasfound in all wild-type virus strains analyzed, this sequence should be included in the representative LdMNPV genome. Sequence analysis of the genomic region containing the additional sequences revealed the presence of a homologue of the Autographa californica MNPV capsid-associated p24 gene (ORF 129). This gene, absent in LdMNPV isolate 5-6, is also present in the Orgyia pseudotsugata MNPV, Bombyx mori NPV, Spodoptera exigua MNPV, S. litura MNPV, Mamestra configurata MNPV, Helicoverpa armigera SNPV, H. zea SNPV, Buzura suppressaria SNPV, Xestia c-nigrum granulovirus, Plutella xylostella GV, and Cydia pomonella GV. PMID:12680688

  3. An immunochemical method for quantitation of Epinotia aporema granulovirus (EpapGV).

    PubMed

    Parola, Alejandro Daniel; Sciocco-Cap, Alicia; Glikmann, Graciela; Romanowski, Víctor

    2003-09-01

    Epinotia aporema granulovirus (EpapGV) is a baculovirus that affects E. aporema larvae and has proven to be a good candidate for the biocontrol of this important pest in South America. As part of the quality control of the production of a bioinsecticide based on EpapGV, a sensitive method was developed for the detection and quantitation of the virus. To this end, we used the major occlusion body (OB) protein (granulin) to generate polyclonal antibodies in rabbits. Purified IgG fractions from hyperimmune sera were labeled with biotin and used as detecting antibodies in a double antibody sandwich enzyme linked immunosorbent assays (ELISA). No cross-reactivity was detected with any of the nucleopolyhedroviruses (NPV) tested in this study, while a minor degree of reactivity was observed with the closely related Cydia pomonella granulovirus (CpGV). The performance of the ELISA was satisfactory in terms of sensitivity, detecting as little as 0.53 ng/ml of EpapGV granulin in suspensions of purified virus OB. This represented 2.0x10(4) OB/ml. Granulin was also detected in complex and highly diluted bioinsecticidal formulate mixtures. In time course experiments, the virus was detected as early as 24 h post infection (p.i.). The results of the studies demonstrate that this method is a convenient, rapid and inexpensive alternative for routine detection and quantitation of EpapGV. PMID:12951208

  4. A baculovirus anti-apoptosis gene homolog of the Trichoplusia ni granulovirus.

    PubMed

    Bideshi, D K; Anwar, A T; Federici, B A

    1999-01-01

    An inhibitor of apoptosis (iap) gene homolog (Tn-iap) of the Trichoplusia ni granulovirus (TnGV) was cloned, sequenced and mapped on the genome of TnGV. Tn-iap encoded a protein (Tn-IAP) of 301 amino acids with a predicted molecular mass of 35 kDa. The Tn-IAP contained the two sequence motifs, BIRs and RING finger, characteristic of IAP proteins, and shared identities of 21-27% and similarities of 28-53% with IAP proteins of Cydia pomonella GV (Cp-IAP), Orgyia pseudotsugata multinucleocapsid nucleopolyhedrovirus (MNPV) (Op-IAP1, 3), Autographa californica MNPV (Ac-IAP1), Bombyx mori NPV (Bm-IAP1), Lymantria dispar MNPV (Ld-IAP3) and Buzura suppressaria single nucleocapsid NPV (Bs-IAP1). However, Tn-IAP shared no significant homology with baculovirus IAP2 proteins. Using an antisense Tn-iap probe, two major transcripts of approximately 800 nt and 1600 nt were detected by Northern blot analysis of RNA extracted from the fat body of T. ni larvae infected with the TnGV. Unlike Cp-IAP and Op-IAP3, however, Tn-IAP did not rescue virion occlusion in SF21 cells infected with a p35-deficient AcMNPV mutant. Tn-IAP's synthesis in vivo but failure to rescue p35-deficient AcMNPV in SF21 cells suggests it is a functional IAP that is only effective in certain cell types. PMID:10541013

  5. Betabaculovirus F proteins showed different efficiencies when rescuing the infectivity of gp64-null Autographa californica nucleopolyhedrovirus.

    PubMed

    Yin, Feifei; Wang, Manli; Tan, Ying; Deng, Fei; Vlak, Just M; Hu, Zhihong; Wang, Hualin

    2013-02-01

    The Agrotis segetum granulovirus (AgseGV) F protein was previously identified as the first betabaculovirus F protein with functional homology to Autographa californica nucleopolyhedrovirus (AcMNPV) GP64. In the current study, F proteins from Xestia c-nigrum granulovirus (XecnGV), Cydia pomonella granulovirus (CpGV), Phthorimaea operculella granulovirus (PhopGV), Choristoneura occidentalis granulovirus (ChocGV) and Plutella xylostella GV (PlxyGV) were studied for their ability to rescue the infectivity of gp64-null AcMNPV. Our results showed that most studied betabaculovirus F proteins could replace the function of AcMNPV GP64, however, their efficiencies to rescue the infectivity of gp64-null AcMNPV were substantially different. PlxyF, although fusogenic, was the only protein that failed to substitute the function of AcMNPV GP64. Further studies using Sf9(0p1D) cell line showed that PlxyF appeared to be properly incorporated into AcMNPV virions and underwent correct post-translational cleavage and N-linked glycosylation. However, the gp64-null AcMNPV containing PlxyF could not be propagated in either Sf9 or P. xylostella cells. PMID:23245471

  6. Cost-benefit trade-offs of bird activity in apple orchards.

    PubMed

    Peisley, Rebecca K; Saunders, Manu E; Luck, Gary W

    2016-01-01

    Birds active in apple orchards in south-eastern Australia can contribute positively (e.g., control crop pests) or negatively (e.g., crop damage) to crop yields. Our study is the first to identify net outcomes of these activities, using six apple orchards, varying in management intensity, in south-eastern Australia as a study system. We also conducted a predation experiment using real and artificial codling moth (Cydia pomonella) larvae (a major pest in apple crops). We found that: (1) excluding birds from branches of apple trees resulted in an average of 12.8% more apples damaged by insects; (2) bird damage to apples was low (1.9% of apples); and (3) when trading off the potential benefits (biological control) with costs (bird damage to apples), birds provided an overall net benefit to orchard growers. We found that predation of real codling moth larvae was higher than for plasticine larvae, suggesting that plasticine prey models are not useful for inferring actual predation levels. Our study shows how complex ecological interactions between birds and invertebrates affect crop yield in apples, and provides practical strategies for improving the sustainability of orchard systems. PMID:27413639

  7. Gamma irradiation as a phytosanitary treatment for fresh pome fruits produced in Patagonia

    NASA Astrophysics Data System (ADS)

    Pérez, J.; Lires, C.; Horak, C.; Pawlak, E.; Docters, A.; Kairiyama, E.

    2009-07-01

    Argentina produces 1.8 million tons/year of apples ( Malus domestica L.) and pears ( Pyrus communis L.) in the Patagonia region. Cydia pomonella, codling moth, and Grapholita molesta, Oriental fruit moth, ( Lepidoptera: Tortricidae) are quarantine pests in pome fruits. Irradiation is a promising phytosanitary treatment because a dose of 200 Gy completely prevents pest adult emergence. A pilot irradiation process of commercially packaged 'Red Delicious' apples and 'Packham's Triumph' pears was performed in an irradiation facility with a Cobalt 60 source. Quality analyses were carried out at 0, 2, 4, 6 and 8 months of storage (1 °C, RH 99%) to evaluate fruit tolerance at 200, 400 and 800 Gy. Irradiation at 200 and 400 Gy had no undesirable effects on fruit quality (pulp firmness, external colour, soluble solids content (SSC), titratable acidity (TA) and sensory evaluations). Irradiation of 'Red Delicious' apples and 'Packham's Triumph' pears can be applied as a commercial quarantine treatment with a minimum absorbed dose of 200 Gy (to control codling moth and Oriental fruit moth) and <800 Gy (according to quality results).

  8. Toxicity of Six Insecticides on Codling Moth (Lepidoptera: Tortricidae) and Effect on Expression of Detoxification Genes.

    PubMed

    Yang, Xue-Qing; Wu, Zheng-Wei; Zhang, Ya-Lin; Barros-Parada, Wilson

    2016-02-01

    The codling moth, Cydia pomonella (L.), is a key worldwide fruit pest that has evolved high levels of resistance to almost all classes of conventional insecticides. Neonicotinoids, a new reduced-risk biorational insecticide class, have remained an effective control approach. In this study, the toxicity and sublethal effect of conventional and reduced-risk biorational insecticides on transcripts abundance of three detoxification genes in codling moth were determined. Bioassays on a codling moth laboratory strain suggested that acetamiprid had the highest oral toxicity against the third-instar larvae compared with the other five pesticides. Results also indicated that acetamiprid exhibits long-term efficacy against codling moth even at 120 h post feeding. Real-time quantitative polymerase chain reaction showed that the detoxification genes CYP9A61, CpGST1, and CpCE-1 were differentially induced or suppressed by deltamethrin, cypermethrin, methomyl, carbaryl, and imidacloprid, depending on the type of insecticides; in contrast, no significant difference in CYP9A61, CpGST1, and CpCE-1 expressions were observed after acetamiprid exposure, when compared with the control. These results suggest that the reduced-risk biorational insecticide acetamiprid is an effective insecticide with no induction of detoxification genes and can be integrated into the management of codling moth. PMID:26487743

  9. Neural coding merges sex and habitat chemosensory signals in an insect herbivore

    PubMed Central

    Trona, Federica; Anfora, Gianfranco; Balkenius, Anna; Bengtsson, Marie; Tasin, Marco; Knight, Alan; Janz, Niklas; Witzgall, Peter; Ignell, Rickard

    2013-01-01

    Understanding the processing of odour mixtures is a focus in olfaction research. Through a neuroethological approach, we demonstrate that different odour types, sex and habitat cues are coded together in an insect herbivore. Stronger flight attraction of codling moth males, Cydia pomonella, to blends of female sex pheromone and plant odour, compared with single compounds, was corroborated by functional imaging of the olfactory centres in the insect brain, the antennal lobes (ALs). The macroglomerular complex (MGC) in the AL, which is dedicated to pheromone perception, showed an enhanced response to blends of pheromone and plant signals, whereas the response in glomeruli surrounding the MGC was suppressed. Intracellular recordings from AL projection neurons that transmit odour information to higher brain centres, confirmed this synergistic interaction in the MGC. These findings underscore that, in nature, sex pheromone and plant odours are perceived as an ensemble. That mating and habitat cues are coded as blends in the MGC of the AL highlights the dual role of plant signals in habitat selection and in premating sexual communication. It suggests that the MGC is a common target for sexual and natural selection in moths, facilitating ecological speciation. PMID:23595270

  10. Potential of mass trapping for long-term pest management and eradication of invasive species.

    PubMed

    El-Sayed, A M; Suckling, D M; Wearing, C H; Byers, J A

    2006-10-01

    Semiochemical-based pest management programs comprise three major approaches that are being used to provide environmentally friendly control methods of insect pests: mass trapping, "lure and kill," and mating disruption. In this article, we review the potential of mass trapping in long-term pest management as well as in the eradication of invasive species. We discuss similarities and differences between mass trapping and other two main approaches of semiochemical-based pest management programs. We highlight several study cases where mass trapping has been used either in long-term pest management [e.g., codling moth, Cydia pomonella (L.); pink bollworm, Pectinophora gossypiella (Saunders); bark beetles, palm weevils, corn rootworms (Diabrotica spp.); and fruit flies] or in eradication of invasive species [e.g., gypsy moth, Lymantria dispar (L.); and boll weevil, Anthonomus grandis grandis Boheman). We list the critical issues that affect the efficacy of mass trapping and compare these with previously published models developed to investigate mass trapping efficacy in pest control. We conclude that mass trapping has good potential to suppress or eradicate low-density, isolated pest populations; however, its full potential in pest management has not been adequately realized and therefore encourages further research and development of this technology. PMID:17066782

  11. Ability of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) to detoxify juglone, the main secondary metabolite of the non-host plant walnut.

    PubMed

    Piskorski, Rafal; Ineichen, Simon; Dorn, Silvia

    2011-10-01

    Many plant species produce toxic secondary metabolites that limit attacks by herbivorous insects, and may thereby constrain insect expansion to new hosts. Walnut is a host for the codling moth Cydia pomonella, which efficiently detoxifies the main walnut defensive compound juglone (5-hydroxy-1,4-naphthoquinone). The oriental fruit moth Grapholita molesta, which also belongs to the tribe Grapholitini, does not feed on walnut. We tested the performance of G. molesta, a highly invasive species, on artificial diets containing juglone at levels mimicking those found in walnut over the growing season. Juglone-fed G. molesta survived relatively well to adulthood, but larval and adult body weights were reduced, and larval developmental time was prolonged in a dose-dependent fashion. Chemical analysis of frass from larvae that had been fed a juglone-containing diet suggests that G. molesta reduces juglone to non-toxic 1,4,5-trihydroxynaphthalene in its gut. This unexpected tolerance of G. molesta to high levels of juglone may facilitate expansion of the host range beyond the current rosacean fruit trees used by this invasive pest. PMID:21901444

  12. Codling moth management and chemical ecology.

    PubMed

    Witzgall, Peter; Stelinski, Lukasz; Gut, Larry; Thomson, Don

    2008-01-01

    Lepidopteran insects use sex pheromones to communicate for mating. Olfactory communication and mate-finding can be prevented by permeating the atmosphere with synthetic pheromone. Pheromone-mediated mating disruption has become a commercially viable pest management technique and is used to control the codling moth, Cydia pomonella, a key insect pest of apple, on 160,000 ha worldwide. The codling moth sex pheromone, codlemone, is species specific and nontoxic. Orchard treatments with up to 100 grams of synthetic codlemone per hectare effectively control codling moth populations over the entire growing season. Practical implementation of the mating disruption technique has been realized at an opportune time, as codling moth has become resistant to many insecticides. We review codling moth chemical ecology and factors underlying the behavioral mechanisms and practical implementation of mating disruption. Area-wide programs are the result of collaborative efforts between academic research institutions, extension, chemical industries, and grower organizations, and they demonstrate the environmental and economic relevance of pheromone research. PMID:17877451

  13. Reduced mating success of female tortricid moths following intense pheromone auto-exposure varies with sophistication of mating system.

    PubMed

    Kuhns, Emily H; Pelz-Stelinski, Kirsten; Stelinski, Lukasz L

    2012-02-01

    Mating disruption is a valuable tool for the management of pest lepidopteran species in many agricultural crops. Many studies have addressed the effect of female pheromone on the ability of males to find calling females but, so far, fewer have addressed the effect of pheromone on the mating behavior of females. We hypothesized that mating of female moth species may be adversely affected following sex pheromone auto-exposure, due to abnormal behavioral activity and/or antennal sensitivity. Our results indicate that, for Grapholita molesta and Pandemis pyrusana females, copulation, but not calling, was reduced following pre-exposure to sex pheromone. In contrast, for Cydia pomonella and Choristoneura rosaceana, sex pheromone pre-exposure did not affect either calling or copulation propensity. Adaptation of female moth antennae to their own sex pheromone, following sex pheromone auto-exposure, as measured by electroantennograms, occurred in a species for which identical exposure reduced mating success (G. molesta) and in a species for which such exposure did not affect mating success (C. rosaceana). These results suggest that pre-exposure of female moths of certain species to sex pheromone may further contribute to the success of pheromone-based mating disruption. Therefore, we conclude that, in some species, mating disruption may include a secondary mechanism that affects the mating behavior of female moths, in addition to that of males. PMID:22350561

  14. Mating frequencies and production of hybrids by Rhagoletis pomonella and R. zephyria (Diptera: Tephritidae) in the laboratory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apple maggot fly is a quarantine pest of apples in the Pacific Northwest of the United States. The presence of the snowberry maggot fly, which does not attack apples, makes quarantine decisions and control efforts more difficult, as the two species look nearly identical and can hybridize. Personnel...

  15. A field test for host discrimination and avoidance behavior for Rhagoletis pomonella flies in the western United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prezygotic isolation due to habitat choice is important to many models of speciation-with-gene-flow. Habitat choice is usually thought to occur through positive preferences of organisms for particular environments. However, avoidance of non-natal environments may also play a role in choice and have ...

  16. Hybridization and the spread of the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae), in the Northwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybridization could be an important process interjecting variation into insect populations enabling host plant shifts and the origin of new economic pests. Here, we examine whether hybridization between the native snowberry-infesting fruit fly Rhagoletis zephyria (Snow) and the introduced quarantine...

  17. Hybridization and the Spread of the Apple Maggot Fly, Rhagoletis pomonella (Diptera: Tephritidae), in the Northwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybridization could be an important process interjecting variation into insect populations enabling host plant shifts and the origin of new economic pests. Here, we examine whether hybridization between the native snowberry-infesting fruit fly Rhagoletis zephyria (Snow) and the introduced quarantine...

  18. Decriptions of new Tortricidae (Lepidoptera) reared from native fruit in Kenya

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two new genera (Concinocordis and Crotalaria) and 13 new species (Eugnosta kenyana, Eugnosta kereitana, Crotalaria crotalariae, Concinocordis wilsonarum, Anthozela psychotriae, Cosmetra podocarpivora, Cosmetra taitana, Gypsonoma scolopiae, Thaumatotibia salaciae, Cydia connara, Cydia sennae, Stenent...

  19. Improvement in the UV resistance of baculoviruses by displaying nano-zinc oxide-binding peptides on the surfaces of their occlusion bodies.

    PubMed

    Li, Jin; Zhou, Yin; Lei, Chengfeng; Fang, Wei; Sun, Xiulian

    2015-08-01

    The sensitivity of baculoviruses to UV radiation severely limits their large-scale application as biological insecticides. The polyhedron envelope of a baculovirus, which is composed of carbohydrate and polyhedron envelope protein (PEP), is a significant structure for the stability and persistence of occlusion bodies (OBs) under environmental conditions. The results of this study revealed that the rough pitted surface phenotype of a pep-null Autographa californica multiple nucleopolyhedrovirus (AcMNPV) could not be rescued by any of its homologues, such as Helicoverpa armigera nucleopolyhedrovirus pep or Cydia pomonella granulovirus putative peps. In contrast, the N-terminal and middle flexible region (NM region, 1-167 aa) of AcMNPV PEP were able to form an intact OB envelope. Furthermore, this region was capable of carrying eGFP to the surfaces of the OBs. To improve the UV resistance of AcMNPV OBs, two peptides capable of specifically binding to nano-ZnO were separately fused to the NM region of PEP. Under laboratory conditions, infectivity of the recombinant viruses binding to nano-ZnO particles was about ninefold higher than that without the nano-ZnO particles after UV-B irradiation. Pot experiments revealed that the half-life of the recombinant baculovirus binding nano-ZnO particles was 3.3 ± 0.15 days, which was significantly longer than that of the control virus (0.49 ± 0.06 days). These results therefore represent a new approach for the protection the baculoviral insecticides against UV irradiation in the field. PMID:25895092

  20. Oviposition Site Selection of the Codling Moth (Lepidoptera: Tortricidae) and its Consequences for Egg and Neonate Performance.

    PubMed

    Wei, Jing; Xu, Jing; Zhang, Runzhi

    2015-08-01

    The codling moth Cydia pomonella (L.) is a worldwide pest of pome fruit. A better understanding of oviposition site selection by this insect would help management of this pest in orchards. Oviposition site selection of codling moth was assessed by manipulative experiments and field survey. In addition, the temperatures of different sites were recorded. Neonate infestation and egg hatching were tested to evaluate the consequences of oviposition site selection. The percentage of eggs laid on the shady side of apple clusters was significantly higher than on the sunny side. How.ever, this was not influenced by leaf surface turning. Percentage of eggs on upper and lower leaf surfaces was significantly influenced by leaf surface turning. Percentage of eggs on the lower leaf surface was significantly higher than turned lower leaf surface (∼41.1% higher) and significantly higher (∼35.5%) on the turned upper leaf surface on than upper leaf surfaces. There was no significant difference in neonate infestation between leaves and fruit, as well as between the upper and lower leaf surfaces. Number of eggs hatching on the shady side of clusters was significantly higher than on the sunny side (56.3% higher). In both the manipulative experiment and field survey, codling moths did not choose the sites with the highest mean temperature, but chose sites suitable for egg development and hatching. This indicates that in the field codling moth, oviposition site selection is not strictly thermophilous, but they look for the lower leaf surface on the shady side, which benefits the offspring. PMID:26470335

  1. Effect of Over-Tree Evaporative Cooling in Orchards on Microclimate and Accuracy of Insect Model Predictions.

    PubMed

    Chambers, Ute; Jones, Vincent P

    2015-12-01

    Orchard design and management practices can alter microclimate and, thus, potentially affect insect development. If sufficiently large, these deviations in microclimate can compromise the accuracy of phenology model predictions used in integrated pest management (IPM) programs. Sunburn causes considerable damage in the Pacific Northwest, United States, apple-producing region. Common prevention strategies include the use of fruit surface protectants, evaporative cooling (EC), or both. This study focused on the effect of EC on ambient temperatures and model predictions for four insects (codling moth, Cydia pomonella L.; Lacanobia fruitworm, Lacanobia subjuncta Grote and Robinson; oblique-banded leafroller, Choristoneura rosaceana Harris; and Pandemis leafroller, Pandemis pyrusana Kearfott). Over-tree EC was applied in July and August when daily maximum temperatures were predicted to be ≥30°C between 1200-1700 hours (15/15 min on/off interval) in 2011 and between 1200-1800 hours (15/10 min on/off interval, or continuous on) in 2012. Control plots were sprayed once with kaolin clay in early July. During interval and continuous cooling, over-tree cooling reduced average afternoon temperatures compared with the kaolin treatment by 2.1-3.2°C. Compared with kaolin-treated controls, codling moth and Lacanobia fruitworm egg hatch in EC plots was predicted to occur up to 2 d and 1 d late, respectively. The presence of fourth-instar oblique-banded leafroller and Pandemis leafroller was predicted to occur up to 2 d and 1 d earlier in EC plots, respectively. These differences in model predictions were negligible, suggesting that no adjustments in pest management timing are needed when using EC in high-density apple orchards. PMID:26331306

  2. Behavior of codling moth (Lepidoptera: Tortricidae) neonate larvae on surfaces treated with microencapsulated pear ester.

    PubMed

    Light, Douglas M; Beck, John J

    2012-06-01

    Codling moth, Cydia pomonella (L.), larvae cause severe internal feeding damage to apples, pears, and walnuts worldwide. Research has demonstrated that codling moth neonate first instar larvae are attracted to a pear-derived kairomone, ethyl (2E,4Z)-2,4-decadienoate, the pear ester (PE). Reported here are the behavioral activities of neonate codling moth larvae to microencapsulated pear ester (MEC-PE) applied in aqueous solutions to both filter paper and apple leaf surfaces that were evaluated over a period of up to 20 d of aging. In dual-choice tests the MEC-PE treatment elicited attraction to and longer time spent on treated zones of filter papers relative to water-treated control zones for up to 14 d of aging. A higher concentration of MEC-PE caused no preferential response to the treated zone for the first 5 d of aging followed by significant responses through day 20 of aging, suggesting sensory adaptation as an initial concentration factor. Estimated emission levels of PE from treated filter papers were experimentally calculated for the observed behavioral thresholds evident over the aging period. When applied to apple leaves, MEC-PE changed neonate walking behavior by eliciting more frequent and longer time periods of arrestment and affected their ability to find the leaf base and stem or petiole. Effects of MEC-PE on extended walking time and arrestment by codling moth larvae would increase temporal and spatial exposure of neonates while on leaves; thereby potentially disrupting fruit or nut finding and enhancing mortality by increasing the exposure to insecticides, predation, and abiotic factors. PMID:22732619

  3. Characterization of a highly conserved baculovirus structural protein that is specific for occlusion-derived virions.

    PubMed

    Theilmann, D A; Chantler, J K; Stweart, S; Flipsen, H T; Vlak, J M; Crook, N E

    1996-04-01

    A highly conserved baculovirus late gene called odvp-6e was shown to be a structural protein that is specific for occlusion-derived virus (ODV) envelopes. The complete sequence of this gene is presented for both Orgyia pseudotsugata nuclear polyhedrosis virus (OpMNPV) and Cydia pomonella granulosis virus (CpGV). The predicted sizes of the OpMNPV and CpGV ODVP-6E are 40, 241, and 38,655 respectively. The OpMNPV odvp-6e gene was transcriptionally mapped and was shown to initiate from a consensus late gene motif, TTAAG, and is expressed from 18-120 hr postinfection. Polyclonal antiserum was generated against a bacterial fusion protein and used to analyze the cellular steady-state levels of ODVP-6E and to determine if this protein was a component of either budded virus (BV) or ODV. Western blots showed that ODVP-6E is a component of the ODV but not BV. This was confirmed by immunoelectron microscopy of ODV from Autographa californica NPV (AcMNPV) which localized ODVP-6E to the ODV envelope. The sequences of the odvp-6e gene from the baculoviruses Choristoneura fumiferana NPV (CfMNPV), AcMNPV, and Helicoverpa zea NPV (HzSNPV) were obtained from GenBank. Comparisons of the predicted amino acid sequences of OpMNPV, CpGV, AcMNPV, CfMNPV, and HzSNPV show that there are two possible membrane-spanning domains and a cysteine-rich domain that are conserved in all of the proteins. PMID:8615018

  4. Sequence analysis of the Choristoneura occidentalis granulovirus genome.

    PubMed

    Escasa, Shannon R; Lauzon, Hilary A M; Mathur, Amanda C; Krell, Peter J; Arif, Basil M

    2006-07-01

    The genome of the Choristoneura occidentalis granulovirus (ChocGV) isolated from the western spruce budworm, Choristoneura occidentalis, was sequenced completely. It was 104,710 bp long, with a 67.3% A+T content and contained 116 potential open reading frames (ORFs) covering 88.4% of the genome. Of these, 29 ORFs were conserved in all fully sequenced baculovirus genomes, 30 were GV-specific, 53 were present in some nucleopolyhedroviruses (NPVs) and/or GVs, three were common to ChocGV and Choristoneura fumiferana GV (ChfuGV) and one was so far unique. To date, ChocGV is the only GV identified that contains a homologue of the apoptosis inhibitor protein P35/P49, present in some group I NPVs. It is also the first GV without a Xestia c-nigrum GV ORF 26 homologue. Five homologous regions (hrs)/repeat regions, lacking typical NPV hr palindromes were identified. ChocGV hrs were similar to each other but not to other GV hrs. A 1.8 kb repeat region with a high A+T content (81%) and multiple repeats of 21-210 bp was found between choc36 and 37. This area resembled the non-homologous region origin of DNA replication (non-hr ori) identified in Cryptophlebia leucotreta GV (CrleGV) and Cydia pomonella GV (CpGV). Based on the mean amino acid identities of homologous proteins, ChocGV was closest to fully sequenced genomes CpGV (52.3%) and CrleGV (52.1%). The closest amino acid identity was to individual ORFs from the partially sequenced ChfuGV genome (97.2% in 38 ORFs). Phylogenetic analysis placed ChocGV in a clade with CrleGV and CpGV. PMID:16760394

  5. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs.

    PubMed Central

    Birnbaum, M J; Clem, R J; Miller, L K

    1994-01-01

    Two different baculovirus genes are known to be able to block apoptosis triggered upon infection of Spodoptera frugiperda cells with p35 mutants of the insect baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV):p35 (P35-encoding gene) of AcMNPV (R. J. Clem, M. Fechheimer, and L. K. Miller, Science 254:1388-1390, 1991) and iap (inhibitor of apoptosis gene) of Cydia pomonella granulosis virus (CpGV) (N. E. Crook, R. J. Clem, and L. K. Miller, J. Virol. 67:2168-2174, 1993). Using a genetic complementation assay to identify additional genes which inhibit apoptosis during infection with a p35 mutant, we have isolated a gene from Orgyia pseudotsugata NPV (OpMNPV) that was able to functionally substitute for AcMNPV p35. The nucleotide sequence of this gene, Op-iap, predicted a 30-kDa polypeptide product with approximately 58% amino acid sequence identity to the product of CpGV iap, Cp-IAP. Like Cp-IAP, the predicted product of Op-iap has a carboxy-terminal C3HC4 zinc finger-like motif. In addition, a pair of additional cysteine/histidine motifs were found in the N-terminal regions of both polypeptide sequences. Recombinant p35 mutant viruses carrying either Op-iap or Cp-iap appeared to have a normal phenotype in S. frugiperda cells. Thus, Cp-IAP and Op-IAP appear to be functionally analogous to P35 but are likely to block apoptosis by a different mechanism which may involve direct interaction with DNA. Images PMID:8139034

  6. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs.

    PubMed

    Birnbaum, M J; Clem, R J; Miller, L K

    1994-04-01

    Two different baculovirus genes are known to be able to block apoptosis triggered upon infection of Spodoptera frugiperda cells with p35 mutants of the insect baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV):p35 (P35-encoding gene) of AcMNPV (R. J. Clem, M. Fechheimer, and L. K. Miller, Science 254:1388-1390, 1991) and iap (inhibitor of apoptosis gene) of Cydia pomonella granulosis virus (CpGV) (N. E. Crook, R. J. Clem, and L. K. Miller, J. Virol. 67:2168-2174, 1993). Using a genetic complementation assay to identify additional genes which inhibit apoptosis during infection with a p35 mutant, we have isolated a gene from Orgyia pseudotsugata NPV (OpMNPV) that was able to functionally substitute for AcMNPV p35. The nucleotide sequence of this gene, Op-iap, predicted a 30-kDa polypeptide product with approximately 58% amino acid sequence identity to the product of CpGV iap, Cp-IAP. Like Cp-IAP, the predicted product of Op-iap has a carboxy-terminal C3HC4 zinc finger-like motif. In addition, a pair of additional cysteine/histidine motifs were found in the N-terminal regions of both polypeptide sequences. Recombinant p35 mutant viruses carrying either Op-iap or Cp-iap appeared to have a normal phenotype in S. frugiperda cells. Thus, Cp-IAP and Op-IAP appear to be functionally analogous to P35 but are likely to block apoptosis by a different mechanism which may involve direct interaction with DNA. PMID:8139034

  7. Life stage toxicity and residual activity of insecticides to codling moth and oriental fruit moth (Lepidoptera: Tortricidae).

    PubMed

    Magalhaes, Leonardo C; Walgenbach, James F

    2011-12-01

    The codling moth, Cydia pomonella (L.), and oriental fruit moth, Grapholita molesta (Busck), are two key pests of apple (Malus domestica Borkh.) in North Carolina. Growers extensively relied on organophosphate insecticides, primarily azinphosmethyl, for > 40 yr to manage these pests. Because of organophosphate resistance development and regulatory actions, growers are transitioning to management programs that use new, reduced-risk, and OP-replacement insecticides. This study evaluated the toxicity of a diversity of replacement insecticides to eggs, larvae, and adults, as well as an assessment of their residual activity, to codling moth and oriental fruit moth. Laboratory-susceptible strains of both species were used for all bioassays. Fresh field-harvested apples were used as a media for assessing the ovicidal activity of insecticides. For larval studies, insecticides were topically applied to the surface of lima bean-based diet, onto which neonates were placed. Toxicity was based on two measures of mortality; 5-d mortality and development to adult stage. Ovicidal bioassays showed that oriental fruit moth eggs were generally more tolerant than codling moth eggs to insecticides, with novaluron, acetamiprid, and azinphoshmethyl having the highest levels of toxicity to eggs of both species. In contrast, codling moth larvae generally were more tolerant than oriental fruit moth to most insecticides. Methoxyfenozide and pyriproxyfen were the only insecticides with lower LC50 values against codling moth than oriental fruit moth neonates. Moreover, a number of insecticides, particularly the IGRs methoxyfenozide and novaluron, the anthranilic diamide chlorantriliprole, and the spinosyn spinetoram, provided equal or longer residual activity against codling moth compared with azinphosmethyl in field studies. Results are discussed in relation to their use in devising field use patterns of insecticides and for insecticide resistance monitoring programs. PMID:22299357

  8. Semiochemical Strategies for Tortricid Moth Control in Apple Orchards and Vineyards in Italy.

    PubMed

    Ioriatti, Claudio; Lucchi, Andrea

    2016-07-01

    - This review summarizes work done in Italy in taking semiochemical-based management of orchard and vineyard pests from the research and development stage to successful commercial deployment. Mating disruption (MD) of codling moth Cydia pomonella (CM) was originally introduced into the Trentino-South Tyrol areas to address the development of CM resistance to insecticides, particularly insect growth regulators (IGRs), and to mitigate the conflict at the rural/urban interface related to the extensive use of insecticides. Although the mountainous terrain of the area was not optimal for the efficacy of MD, commitment and determination led to the rapid adoption of MD technology throughout the region. Grower cooperatives and their field consultants were strongly influential in convincing growers to accept MD technology. Public research institutions conducted extensive research and education, and provided credible assessments of various MD technologies. By 2016, the deployment of MD in effective area-wide strategies in apple (22,100 ha) and grapes (10,450 ha), has resulted in better control of tortricid moth pests and a substantial decrease in insecticide use. Collaboration between the research community and the pheromone industry has resulted in the development of increasingly effective single-species dispensers, as well as multi-species dispensers for the control of both target and secondary pests. Over the last 20 years, hand-applied reservoir dispensers have shown excellent efficacy in both apple and grapes. Recently, aerosol dispensing systems have been shown to be effective in apple orchards. Further research is needed on the efficacy of aerosols in vineyards before the technology can be widely adopted. The successful implementation of MD in apple and grape production in Trentino-South Tyrol is expediting adoption of the technology in other Italian fruit production regions. PMID:27417503

  9. Improving the Performance of the Granulosis Virus of Codling Moth (Lepidoptera: Tortricidae) by Adding the Yeast Saccharomyces cerevisiae with Sugar.

    PubMed

    Knight, Alan L; Basoalto, Esteban; Witzgall, Peter

    2015-04-01

    Studies were conducted with the codling moth granulosis virus (CpGV) to evaluate whether adding the yeast Saccharomyces cerevisiae Meyen ex E. C. Hansen with brown cane sugar could improve larval control of Cydia pomonella (L.). Larval mortalities in dipped-apple bioassays with S. cerevisiae or sugar alone were not significantly different from the water control. The addition of S. cerevisiae but not sugar with CpGV significantly increased larval mortality compared with CpGV alone. The combination of S. cerevisiae and sugar with CpGV significantly increased larval mortality compared with CpGV plus either additive alone. The addition of S. cerevisiae improved the efficacy of CpGV similarly to the use of the yeast Metschnikowia pulcherrima (isolated from field-collected larvae). The proportion of uninjured fruit in field trials was significantly increased with the addition of S. cerevisiae and sugar to CpGV compared with CpGV alone only in year 1, and from the controls in both years. In comparison, larval mortality was significantly increased in both years with the addition of S. cerevisiae and sugar with CpGV compared with CpGV alone or from the controls. The numbers of overwintering larvae on trees was significantly reduced from the control following a seasonal program of CpGV plus S. cerevisiae and sugar. The addition of a microencapsulated formulation of pear ester did not improve the performance of CpGV or CpGV plus S. cerevisiae and sugar. These data suggest that yeasts can enhance the effectiveness of the biological control agent CpGV, in managing and maintaining codling moth at low densities. PMID:26313179

  10. Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation.

    PubMed

    Engsontia, Patamarerk; Sangket, Unitsa; Chotigeat, Wilaiwan; Satasook, Chutamas

    2014-08-01

    Lepidoptera (comprised of butterflies and moths) is one of the largest groups of insects, including more than 160,000 described species. Chemoreception plays important roles in the adaptation of these species to a wide range of niches, e.g., plant hosts, egg-laying sites, and mates. This study investigated the molecular evolution of the lepidopteran odorant (Or) and gustatory receptor (Gr) genes using recently identified genes from Bombyx mori, Danaus plexippus, Heliconius melpomene, Plutella xylostella, Heliothis virescens, Manduca sexta, Cydia pomonella, and Spodoptera littoralis. A limited number of cases of large lineage-specific gene expansion are observed (except in the P. xylostella lineage), possibly due to selection against tandem gene duplication. There has been strong purifying selection during the evolution of both lepidopteran odorant and gustatory genes, as shown by the low ω values estimated through CodeML analysis, ranging from 0.0093 to 0.3926. However, purifying selection has been relaxed on some amino acid sites in these receptors, leading to sequence divergence, which is a precursor of positive selection on these sequences. Signatures of positive selection were detected only in a few loci from the lineage-specific analysis. Estimation of gene gains and losses suggests that the common ancestor of the Lepidoptera had fewer Or genes compared to extant species and an even more reduced number of Gr genes, particularly within the bitter receptor clade. Multiple gene gains and a few gene losses occurred during the evolution of Lepidoptera. Gene family expansion may be associated with the adaptation of lepidopteran species to plant hosts, especially after angiosperm radiation. Phylogenetic analysis of the moth sex pheromone receptor genes suggested that chromosomal translocations have occurred several times. New sex pheromone receptors have arisen through tandem gene duplication. Positive selection was detected at some amino acid sites predicted to be

  11. Influence of within-orchard trap placement on catch of codling moth (Lepidoptera: Tortricidae) in sex pheromone-treated orchards.

    PubMed

    Knight, A L

    2007-04-01

    The influence of trap placement on catches of codling moth, Cydia pomonella L., was examined in a series of studies conducted in orchards treated with Isomate-C Plus sex pheromone dispensers. Mark-recapture tests with sterilized moths released along the interface of pairs of treated and untreated apple and pear plots found that significantly more male but not female moths were recaptured on interception traps placed in the treated plots. In a second test, significantly higher numbers of wild male and female moths were caught on interception traps placed in treated versus untreated plots within a heavily infested orchard. The highest numbers of male moths were caught on traps placed along the interior edge of the treated plots. Trap position had no influence on the captures of female moths. In a third test, north-south transects of sex pheromone-baited traps were placed through adjacent treated and untreated plots that received a uniform release of sterilized moths. Traps on the upwind edge of the treated plots caught similar numbers of moths as traps upwind from the treated plots. Moth catch was significantly reduced at all other locations inside versus outside of the treated plots, including traps placed on the downwind edge of the treated plot. In a fourth test, five apple orchards were monitored with groups of sex pheromone-baited traps placed either on the border or at three distances inside the orchards. The highest moth counts were in traps placed at the border, and the lowest moth counts were in traps placed 30 and 50 m from the border. In a fifth test, the proportion of traps failing to catch any moths despite the occurrence of local fruit injury was significantly higher in traps placed 50 versus 25 m from the border. The implications provided by these data for designing an effective monitoring program for codling moth in sex pheromone-treated orchards are discussed. PMID:17445378

  12. Optimizing use of codling moth granulovirus: effects of application rate and spraying frequency on control of codling moth larvae in Pacific Northwest apple orchards.

    PubMed

    Arthurs, S P; Lacey, L A; Fritts, R

    2005-10-01

    New formulations of the codling moth, Cydia pomonella (L.), granulovirus (CpGV) [family Baculoviridae, genus Granulovirus] are commercially available in North America. In field tests on apple (Malus sp. 'Delicious'), we compared different application strategies for CpGV (Cyd-X, Certis USA, Clovis, CA) used in full-season programs against high pest populations. In replicated single tree plots, three rates (0.073, 0.219, and 0.438 liter ha(-1)) and application intervals (7, 10, and 14 d) killed 81-99% of larvae in fruit and reduced the number of mature larvae recovered in tree bands by 54-98%. Although the proportion of deep entries declined by 77-98%, the amount of fruit injury was not reduced compared with controls. There was a statistical trend between increasing dosage and spray frequency intervals and virus effectiveness, but no interaction between these factors. In a commercial orchard, we assessed a standard (0.219 liter ha(-1)) and two reduced rates of the virus (0.146 and 0.073 liter ha(-1)) applied in a weekly spray program in replicated 0.2-ha blocks. In the first generation, fruit injury was reduced in virus-treated compared with three untreated blocks although the decrease was only significant at the standard rate. Mortality rates of larvae (in fruit) were > or =90%, dose dependent, and comparable with rates observed from individual trees sprayed with equivalent treatments in the previous study. Rates of larval mortality declined at all dosages (81-85%) in the first part of the second generation. Most damage and proportionally less mortality occurred in the upper canopy. High pest pressures and untreated blocks contributed to significant damage and the study was terminated early. These data suggest virus programs can be tailored according to the localized pest pressure, but it may not prevent economic damage in high-pressure situations. PMID:16334311

  13. Genetic inferences about the population dynamics of codling moth females at a local scale.

    PubMed

    Franck, P; Ricci, B; Klein, E K; Olivares, J; Simon, S; Cornuet, J-M; Lavigne, C

    2011-07-01

    Estimation of demographic parameters is important for understanding the functioning of natural populations and the underlying ecological and evolutionary processes that may impact their dynamics. Here, we used sibship assignment methods to shed light on the local dynamics of codling moth females in eight orchards in a 90-ha domain near Valence, France. Based on full-sib inference among 1,063 genotyped moths, we estimated (1) the effective number of females that had offspring, (2) their fertility and (3) the distribution of their oviposition sites within and among orchards. The average number of females in all the orchards increased between the first (~130) and the second (~235) annual generations. The average fertilities of the females were similar at each generation according to the host plant considered (apple, pear, or walnut), but differed between commercial (~10) and non-treated (~25) apple orchards. Females mainly clustered their eggs on contiguous trees along orchard borders, but they also occasionally dispersed their eggs among different orchards independently of the cultivated host plants or the inter-orchard distances (up to 698 m) during the second annual generation. The mean distance between two oviposition sites was 30 m. Sibship estimates of both the effective number of females and the inter-orchard migration rates (~5%) were in agreement with the observed genetic differentiation among the eight orchards (0.006 < F ( st ) < 0.013). These results confirm and extend previous field and laboratory observations in Cydia pomonella, and they demonstrate that sibship assignments based on genetic data are an interesting alternative to mark-release-recapture methods for inferring insect population dynamics. PMID:21786027

  14. 76 FR 69252 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... following exempt wholesale generator filings: Docket Numbers: EG12-7-000. Applicants: Manzana Wind LLC. Description: Self-Certification of Exempt Wholesale Generator Status of Manzana Wind LLC. Filed Date: 10/31.... Docket Numbers: EG12-8-000. Applicants: NaturEner Rim Rock Wind Energy, LLC. Description: Notice of...

  15. Direct sampling of resting codling moth (Lepidoptera: Tortricidae) adults in apple tree canopies and surrounding habitats.

    PubMed

    Epstein, David L; Miller, James R; Grieshop, Matthew J; Stelinski, Lukasz L; Gut, Larry J

    2011-06-01

    Field investigations were conducted to determine the resting locations of codling moth (Cydia pomonella [L.]) (Lepidoptera: Tortricidae) males and females in mating disrupted and nondisrupted apple (Malus domestica Borkh.) orchard plots. A custom-made sampling device, consisting of a leaf blower converted into a powerful vacuum, yielded 20-24% success in recovering marked moths, released in the tree canopy in orchards. Four collections each were made between 0900 and 1800 hours and 1800 and 2200 hours in 2005. Ninety-four moths were collected during the 1800-2200 hours samples. In mating disruption plots, 42% of females and 22% of males were found in the top third of the tree canopy (3.0-4.5m), 46% females and 43% males in the middle third (1.5-3.0m), and 12% female and 35% male in the lower third (0-1.5m). In nondisrupted plots 36.4% of females and 40% of males were in the top third of the canopy, 36.4% females and 52% males in the middle third, and 27.2% females and 8% males in the lower third of the tree canopy. Daylight vacuum sampling recovered only one female and two male moths from the top, four males from the middle and one male from the lower third of the tree canopy. Release-recapture studies of marked adult codling moths were conducted in 2006-2007 in screened tents to determine within orchard habitats for adult moths during 0900-1800 hours. Of moths recaptured, 14.6% of females and 13.5% of males were from the ground (herbicide strip and drive-row grass) and 32.9% of females and 24.6% of males were captured in the tree canopy 16-h post release, 17.4% of females and 3.4% of males from the ground and 26.5% of females and 38.2% of males in the tree 40-h post release, and 15.1% of females and 18.6% of males from the ground and 15.7 of females and 25.5% of males in the tree 64-h post release. Application of pyrethrum + PBO by using an orchard blast sprayer in 2007 resulted in the recapture of 28% and 37% of laboratory reared male and female moths

  16. Apple volatiles synergize the response of codling moth to pear ester.

    PubMed

    El-Sayed, Ashraf M; Cole, Lyn; Revell, John; Manning, Lee-Anne; Twidle, Andrew; Knight, Alan L; Bus, Vincent G M; Suckling, David M

    2013-05-01

    Codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), is a major cosmopolitan pest of apple and other pome fruits. Ethyl (E,Z)-2,4-decadienoate (pear ester) has been identified as a host-derived kairomone for female and male codling moths. However, pear ester has not performed similarly in different fruit production areas in terms of the relative magnitude of moth catch, especially the proportion of females caught. Our work was undertaken to identify host volatiles from apples, and to investigate whether these volatiles can be used to enhance the efficacy of host kairomone pear ester for monitoring female and male codling moths. Volatiles from immature apple trees were collected in the field using dynamic headspace sampling during the active period of codling moth flight. Using gas chromatography-electroantennogram detector (GC/EAD) analysis, six compounds elicited responses from antennae of females. These compounds were identified by GC/mass spectrometry (MS) and comparisons to authentic standards as nonanal, (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate, decanal, (Z,E)-α-farnesene, and (E,E)-α-farnesene. When the EAD-active compounds were tested individually in the field, no codling moths were caught except for a single male with decanal. However, addition of (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate, decanal, or (E,E)-α-farnesene to pear ester in a binary mixture enhanced the efficacy of pear ester for attracting female codling moths compared to pear ester alone. Addition of the 6-component blend to the pear ester resulted in a significant increase in the number of males attracted, and enhanced the females captured compared to pear ester alone; the number of males and females caught was similar to that with the pear ester plus acetic acid combination lure. Our results demonstrate that it is possible to synergize the response of codling moth to host kairomone by using other host volatiles. The new apple-pear ester host kairomone blend

  17. Estimation of the change in the harmfulness of selected pests in expected climate - European area

    NASA Astrophysics Data System (ADS)

    Svobodova, E.; Trnka, M.; Zalud, Z.; Semeradova, D.; Dubrovsky, M.; Sefrova, H.

    2010-09-01

    Climate change is likely to be a dominant factor affecting the lifecycle and overall occurrence of pest's species whose development is directly linked with climate conditions. This study is focused on the estimation of the potential occurrence and generation growth of selected pests causing the significant damages on the yield of crops over western part of Europe in changing climate. Modelled species involved the main pest of potato Colorado potato beetle (Leptinotarsa decemlineata, Say 1824), the pest of maize European corn borer (Ostrinia nubilalis, Hubner 1796), the pest which causes the damages in orchards and decreases the yield of apples, Codling moth (Cydia pomonella, Linnaeus 1758) and Cereal leaf beetle (Oulema melanopus, Linnaeus 1758) seriously affecting wheat production. The development of these pests' is driven mainly by temperature of the environment, which is in turn function of air temperature. The climate change is likely to lead to an earlier once and prolongation of the growing season and in the same time accelerate pests' developmental rate and will increase number of generations. Estimates of potential distribution of selected pest species for the present as well as expected climate conditions are based on the dynamical model CLIMEX. This approach exploits the expression of the overall climate suitability for the species longterm survival in terms of ecoclimatic index. The CLIMEX model was at first validated with observed data of pests' occurrences using CRU 10´ climate data set a source of climate data. All pest models listed were then used to study the effects of climate change on pests by estimating changes in population dynamics and/or infestation pressure during the first half of the 21st century. Outputs of the models were applied within the European scale in the 10´ resolution using digital terrain model. Simulations of the impacts of expected climate on the pests distribution were conducted under three global circulation models (Had

  18. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    NASA Astrophysics Data System (ADS)

    Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.

    2011-08-01

    As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously not affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology depending on actual weather conditions and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1

  19. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    NASA Astrophysics Data System (ADS)

    Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.

    2012-02-01

    As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1

  20. Antennal transcriptome analysis and comparison of olfactory genes in two sympatric defoliators, Dendrolimus houi and Dendrolimus kikuchii (Lepidoptera: Lasiocampidae).

    PubMed

    Zhang, Sufang; Zhang, Zhen; Wang, Hongbin; Kong, Xiangbo

    2014-09-01

    The Yunnan pine and Simao pine caterpillar moths, Dendrolimus houi Lajonquière and Dendrolimus kikuchii Matsumura (Lepidoptera: Lasiocampidae), are two closely related and sympatric pests of coniferous forests in southwestern China, and olfactory communication systems of these two insects have received considerable attention because of their economic importance. However, there is little information on the molecular aspect of odor detection about these insects. Furthermore, although lepidopteran species have been widely used in studies of insect olfaction, few work made comparison between sister moths on the olfactory recognition mechanisms. In this study, next-generation sequencing of the antennal transcriptome of these two moths were performed to identify the major olfactory genes. After comparing the antennal transcriptome of these two moths, we found that they exhibit highly similar transcripts-associated GO terms. Chemosensory gene families were further analyzed in both species. We identified 23 putative odorant binding proteins (OBP), 17 chemosensory proteins (CSP), two sensory neuron membrane proteins (SNMP), 33 odorant receptors (OR), and 10 ionotropic receptors (IR) in D. houi; and 27 putative OBPs, 17 CSPs, two SNMPs, 33 ORs, and nine IRs in D. kikuchii. All these transcripts were full-length or almost full-length. The predicted protein sequences were compared with orthologs in other species of Lepidoptera and model insects, including Bombyx mori, Manduca sexta, Heliothis virescens, Danaus plexippus, Sesamia inferens, Cydia pomonella, and Drosophila melanogaster. The sequence homologies of the orthologous genes in D. houi and D. kikuchii are very high. Furthermore, the olfactory genes were classed according to their expression level, and the highly expressed genes are our target for further function investigation. Interestingly, many highly expressed genes are ortholog gene of D. houi and D. kikuchii. We also found that the Classic OBPs were

  1. Key to the larvae of Castanea-feeding Olethreutinae frequently intercepted at U.S. ports-of-entry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At least six species of olethreutine moths are common pests of chestnut (Castanea spp.) outside of the U.S. Three are native to, or naturalized in the Mediterranean Region of Europe: Pammene fasciana (L.), Cydia splendana (Hübner), and Cydia fagiglandana (Zeller). Three are native to the Far East...

  2. Molecular species identification of cryptic apple and snowberry maggots (Diptera: Tephritidae) in Western and Central Washington

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Washington state, identification of the quarantine apple pest Rhagoletis pomonella (Walsh) is complicated by the presence of the cryptic species R. zephyria Snow (Diptera: Tephritidae). Distinguishing the two flies is important because there is a zero tolerance policy for R. pomonella in apple p...

  3. Implications of Rhagoletis zephyria, 1894 (Diptera: Tephritidae), captures for apple maggot surveys and fly ecology in Washington state, U.S.A

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot, Rhagoletis pomonella (Walsh), 1867 (Diptera: Tephritidae), is an introduced quarantine pest of apple (Malus domestica Borkhausen) (Rosaceae) in Washington state, U.S.A. A morphologically similar native fly, Rhagoletis zephyria Snow, 1894, infests snowberries (Symphoricarpos spp.) ...

  4. 7 CFR 319.56-39 - Fragrant pears from China.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Upon detection of Oriental fruit fly (Bactrocera dorsalis), APHIS may reject the lot or consignment and.... (ii) Upon detection of peach fruit borer (Carposina sasaki), yellow peach moth (Conogethes punctiferalis), apple fruit moth (Cydia inopinata), Hawthorn spider mite (Tetranychus viennensis), red...

  5. 7 CFR 319.56-63 - Fresh apricots from continental Spain.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the NPPO of Spain that states that the fruit has been treated for C. capitata in accordance with 7 CFR...; Ceratitis capitata Wiedemann, the Mediterranean fruit fly; Cydia funebrana (Treitschke), the plum fruit moth... production have fruit fly and moth trapping programs and follow control guidelines, when necessary, to...

  6. 7 CFR 319.56-39 - Fragrant pears from China.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Upon detection of Oriental fruit fly (Bactrocera dorsalis), APHIS may reject the lot or consignment and.... (ii) Upon detection of peach fruit borer (Carposina sasaki), yellow peach moth (Conogethes punctiferalis), apple fruit moth (Cydia inopinata), Hawthorn spider mite (Tetranychus viennensis), red...

  7. 7 CFR 319.56-39 - Fragrant pears from China.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Upon detection of Oriental fruit fly (Bactrocera dorsalis), APHIS may reject the lot or consignment and.... (ii) Upon detection of peach fruit borer (Carposina sasaki), yellow peach moth (Conogethes punctiferalis), apple fruit moth (Cydia inopinata), Hawthorn spider mite (Tetranychus viennensis), red...

  8. 7 CFR 319.56-39 - Fragrant pears from China.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Upon detection of Oriental fruit fly (Bactrocera dorsalis), APHIS may reject the lot or consignment and.... (ii) Upon detection of peach fruit borer (Carposina sasaki), yellow peach moth (Conogethes punctiferalis), apple fruit moth (Cydia inopinata), Hawthorn spider mite (Tetranychus viennensis), red...

  9. 7 CFR 319.56-39 - Fragrant pears from China.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Upon detection of Oriental fruit fly (Bactrocera dorsalis), APHIS may reject the lot or consignment and.... (ii) Upon detection of peach fruit borer (Carposina sasaki), yellow peach moth (Conogethes punctiferalis), apple fruit moth (Cydia inopinata), Hawthorn spider mite (Tetranychus viennensis), red...

  10. Seed chemistry of Sophora chrysophylla (mamane) in relation to diet of specialist avian seed predator Loxioides bailleui (palila) in Hawaii

    USGS Publications Warehouse

    Banko, P.C.; Cipollini, M.L.; Breton, G.W.; Paulk, E.; Wink, M.; Izhaki, I.

    2002-01-01

    This study describes the chemical ecology of a tritrophic interaction among species endemic to the island of Hawaii, USA: a tree (Sophora chrysophylla: mamane), an endangered bird (Loxioides bailleui; palila), and moth larvae (Cydia spp.). Palila and Cydia both specialize on the seed embryos of mamane but avoid eating the seed coats. Palila actively seek out and feed mamane embryos and Cydia larvae to their nestlings. Because mamane embryos contain potentially toxic levels of alkaloids, including broadly toxic quinolizidine alkaloids, and because insects often sequester alkaloids from their food plants, we focus on the questions of why palila forage upon mamane embryos and why they supplement their diet with Cydia larvae. Our data show that mamane embryos contain high amounts of potentially toxic alkaloids, but are well balanced nutritionally and contain lipids, carbohydrates, proteins, amino acids, and minerals at levels that are likely to be sufficient for maintenance and breeding. Mamane seed coats contain lower levels of alkaloids and nutrients, somewhat higher levels of phenolics, and much higher levels of nondigestible fiber. Taken together, these results suggest that palila have evolved tolerance to high levels of alkaloids and that they forage upon embryos primarily because of their availability in the habitat and high nutritional reward. Our data also suggest that Cydia are used by palila because they are readily accessible, nontoxic, and nutritious; the larvae apparently do not sequester alkaloids while feeding upon mamane seeds. Our results are interpreted with respect to the likelihood of current and historical coadaptive responses in this ecologically isolated and simplified island setting.

  11. Host Plant Use by and New Host Records of Apple Maggot, Western Cherry Fruit Fly, and Other Rhagoletis Species (Diptera: Tephritidae). I. Central Washington State

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host plant use by apple maggot fly, Rhagoletis pomonella (Walsh), western cherry fruit fly, Rhagoletis indifferens Curran, and other Rhagoletis species (Diptera: Tephritidae) in five cities or towns and several habitats of difference commercial importance within south central Washington state was de...

  12. Effect of surround WP on behavior and mortality of the apple maggot (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), is a key pest in apple production areas located in the northeastern and midwestern United States and the eastern provinces of Canada. The development of Surround WP has offered a new approach for controlling apple maggot fly...

  13. Alternative fumigants to methyl bromide for killing pupae and preventing emergence of apple maggot fly (Diptera:Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of methyl bromide, ECO2FUME (phosphine gas + CO2), Vapam (sodium methyldithiocarbamate), chloropicrin, Telone II (1, 3 dichloropropene), and chloropicrin + Telone II on killing the pupae and preventing adult emergence of apple maggot fly, Rhagoletis pomonella (Walsh) was determined. In an e...

  14. Efficacies of commercial sticky yellow rectangles against eight Rhagoletis fly species (Dipt., Tephritidae) in Washington state, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traps are used against Rhagoletis flies (Dipt., Tephritidae) for detection in fly management and ecological studies. Here, the main objective was to identify the most efficacious of five commercial sticky yellow rectangles baited with ammonium carbonate against R. indifferens Curran, R. pomonella (...

  15. HOST PLANT USE BY APPLE MAGGOT, WESTERN CHERRY FRUIT FLY, AND OTHER RHAGOLETIS SPECIES (DIPTERA: TEPHRITIDAE): IN CENTRAL WASHINGTON STATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host plant use by apple maggot fly, Rhagoletis pomonella (Walsh), western cherry fruit fly, Rhagoletis indifferens Curran, and other Rhagoletis species (Diptera: Tephritidae) in western Washington state and northwestern Oregon were determined by rearing larvae in fruit to adults in 2004 to 2006. Rh...

  16. Latitudinal variation in parasitoid guild composition and parasitism rates of North America Hawthorn infesting Rhagoletis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhagoletis pomonella populations in Mexico and the U.S. have diverged by exploiting hosts with different fruiting phenology in environments that differ markedly in temperature and humidity. As a first step to document cascading host associated divergence of the parasitoid guild exploiting Rhagoletis...

  17. Latitudinal variation in parasitoid guild composition and parasitism rates of North American hawthorn infesting Rhagoletis.

    PubMed

    Rull, Juan; Wharton, Robert; Feder, Jeffrey L; Guillén, Larissa; Sivinski, John; Forbes, Andrew; Aluja, Martín

    2009-06-01

    Rhagoletis pomonella (Diptera: Tephritidae) populations in North America have diverged by exploiting host plants with varying fruiting phenologies in environments that differ markedly in temperature and humidity. As a result, four genetically and ecologically distinct R. pomonella populations that display partial reproductive isolation have evolved. Host shifting by Rhagoletis and similar evolutionary histories could have had cascading effects across trophic levels, influencing the diversity and distribution of associated parasitoid guilds. To establish the basis for a future understanding of the possible effect of divergence in R. pomonella populations on the parasitoids attacking these flies, we surveyed parasitoids from five different species of hawthorns distributed over 15 states in México and 2 states in the midwestern United States. Emerging parasitoids were identified, parasitism rates were calculated, and regional fly and parasitoid emergence schedules were determined. Parasitism rate, emergence schedules, Shannon-Weiner diversity indexes, and species accumulation curves were compared across three main geographical regions. Parasitism levels varied greatly among regions from an overall high of 27.2% in the United States to 5.5% in the Sierra Madre Oriental (SMO) mountains of Mexico, to as low as 0.19% in the Eje Volcánico Trans Mexicano (EVTM). Shannon-Weiner diversity indexes showed that parasitoid species diversity was similar across the distribution range of R. pomonella in Mexico and the United States because of the fact that total parasitism was dominated by only two species, one of them recovered across the whole North American range of hawthorn infesting Rhagoletis. Nevertheless, eight parasitoids were found attacking R. pomonella in Mexico compared with only four collected in the United States. Only two diapausing parasitoid species were shared between the U.S. and Mexican R. pomonella populations: Utetes canaliculatus and Diachasmimorpha mellea

  18. Behavioral evidence for host fidelity among populations of the parasitic wasp, Diachasma alloeum (Muesebeck)

    NASA Astrophysics Data System (ADS)

    Stelinski, L. L.; Liburd, O. E.

    2005-02-01

    The concept of “host fidelity,” where host-specific mating occurs in close proximity to the oviposition site and location of larval development, is thought to impart a pre-mating isolation mechanism for sympatric speciation (sensu members of the genus Rhagoletis). The apple maggot fly, Rhagoletis pomonella, and the blueberry maggot fly, R. mendax, are morphologically similar sibling species thought to have speciated in sympatry by divergence of host plant association. Both of these fly species are attacked by the specialist braconid parasitoid, Diachasma alloeum. The current study demonstrates that both male and female D. alloeum exhibit a behavioral preference for the odor of the fruit of their larval Rhagoletis host species. Specifically, those D. alloeum emerging from puparia of R. pomonella are preferentially attracted to hawthorn fruit and those emerging from puparia of R. mendax are preferentially attracted to blueberry fruit. However, male D. alloeum reared from either R. pomonella or R. mendax were equally attracted to females originating from both Rhagoletis species. We suggest that the data herein present evidence for “host fidelity,” where populations of D. alloeum exhibit a greater tendency to mate and reproduce among the host plants of their preferred Rhagoletis hosts. Furthermore, host fidelity may have resulted in the evolution of distinct host races of D. alloeum tracking the speciation of their larval Rhagoletis prey.

  19. Sequential divergence and the multiplicative origin of community diversity

    PubMed Central

    Hood, Glen R.; Forbes, Andrew A.; Powell, Thomas H. Q.; Egan, Scott P.; Hamerlinck, Gabriela; Smith, James J.; Feder, Jeffrey L.

    2015-01-01

    Phenotypic and genetic variation in one species can influence the composition of interacting organisms within communities and across ecosystems. As a result, the divergence of one species may not be an isolated process, as the origin of one taxon could create new niche opportunities for other species to exploit, leading to the genesis of many new taxa in a process termed “sequential divergence.” Here, we test for such a multiplicative effect of sequential divergence in a community of host-specific parasitoid wasps, Diachasma alloeum, Utetes canaliculatus, and Diachasmimorpha mellea (Hymenoptera: Braconidae), that attack Rhagoletis pomonella fruit flies (Diptera: Tephritidae). Flies in the R. pomonella species complex radiated by sympatrically shifting and ecologically adapting to new host plants, the most recent example being the apple-infesting host race of R. pomonella formed via a host plant shift from hawthorn-infesting flies within the last 160 y. Using population genetics, field-based behavioral observations, host fruit odor discrimination assays, and analyses of life history timing, we show that the same host-related ecological selection pressures that differentially adapt and reproductively isolate Rhagoletis to their respective host plants (host-associated differences in the timing of adult eclosion, host fruit odor preference and avoidance behaviors, and mating site fidelity) cascade through the ecosystem and induce host-associated genetic divergence for each of the three members of the parasitoid community. Thus, divergent selection at lower trophic levels can potentially multiplicatively and rapidly amplify biodiversity at higher levels on an ecological time scale, which may sequentially contribute to the rich diversity of life. PMID:26499247

  20. Sequential divergence and the multiplicative origin of community diversity.

    PubMed

    Hood, Glen R; Forbes, Andrew A; Powell, Thomas H Q; Egan, Scott P; Hamerlinck, Gabriela; Smith, James J; Feder, Jeffrey L

    2015-11-01

    Phenotypic and genetic variation in one species can influence the composition of interacting organisms within communities and across ecosystems. As a result, the divergence of one species may not be an isolated process, as the origin of one taxon could create new niche opportunities for other species to exploit, leading to the genesis of many new taxa in a process termed "sequential divergence." Here, we test for such a multiplicative effect of sequential divergence in a community of host-specific parasitoid wasps, Diachasma alloeum, Utetes canaliculatus, and Diachasmimorpha mellea (Hymenoptera: Braconidae), that attack Rhagoletis pomonella fruit flies (Diptera: Tephritidae). Flies in the R. pomonella species complex radiated by sympatrically shifting and ecologically adapting to new host plants, the most recent example being the apple-infesting host race of R. pomonella formed via a host plant shift from hawthorn-infesting flies within the last 160 y. Using population genetics, field-based behavioral observations, host fruit odor discrimination assays, and analyses of life history timing, we show that the same host-related ecological selection pressures that differentially adapt and reproductively isolate Rhagoletis to their respective host plants (host-associated differences in the timing of adult eclosion, host fruit odor preference and avoidance behaviors, and mating site fidelity) cascade through the ecosystem and induce host-associated genetic divergence for each of the three members of the parasitoid community. Thus, divergent selection at lower trophic levels can potentially multiplicatively and rapidly amplify biodiversity at higher levels on an ecological time scale, which may sequentially contribute to the rich diversity of life. PMID:26499247

  1. Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow.

    PubMed

    Egan, Scott P; Ragland, Gregory J; Assour, Lauren; Powell, Thomas H Q; Hood, Glen R; Emrich, Scott; Nosil, Patrik; Feder, Jeffrey L

    2015-08-01

    Theory predicts that speciation-with-gene-flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome-wide impacts of host-associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation-with-gene-flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co-occurring apple and hawthorn flies in nature. This striking genome-wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco-evolutionary dynamics and genome divergence. PMID:26077935

  2. Postzygotic isolating factor in sympatric speciation in Rhagoletis flies: reduced response of hybrids to parental host-fruit odors.

    PubMed

    Linn, Charles E; Dambroski, Hattie R; Feder, Jeffrey L; Berlocher, Stewart H; Nojima, Satoshi; Roelofs, Wendell L

    2004-12-21

    Rhagoletis pomonella is a model for sympatric speciation (divergence without geographic isolation) by means of host-plant shifts. Many Rhagoletis species are known to use fruit odor as a key olfactory cue to distinguish among their respective host plants. Because Rhagoletis rendezvous on or near the unabscised fruit of their hosts to mate, behavioral preferences for fruit odor translate directly into premating reproductive isolation among flies. Here, we report that reciprocal F(1) hybrids between the apple and hawthorn host races of R. pomonella, as well as between the host races and an undescribed sibling species infesting Cornus florida (flowering dogwood) do not respond to host fruit volatiles in wind-tunnel assays at doses that elicit maximal directed flight in parental flies. The reduced ability of hybrids to orient to fruit volatiles could result from a conflict between neural pathways for preference and avoidance behaviors, and it suggests that hybrids might suffer a fitness disadvantage for finding fruit in nature. Therefore, host-specific mating may play a dual role as an important postzygotic as well as a premating reproductive barrier to isolate sympatric Rhagoletis flies. PMID:15591346

  3. Receptor expression and sympatric speciation: unique olfactory receptor neuron responses in F1 hybrid Rhagoletis populations.

    PubMed

    Olsson, Shannon B; Linn, Charles E; Michel, Andrew; Dambroski, Hattie R; Berlocher, Stewart H; Feder, Jeffrey L; Roelofs, Wendell L

    2006-10-01

    The Rhagoletis pomonella species complex is one of the foremost examples supporting the occurrence of sympatric speciation. A recent study found that reciprocal F(1) hybrid offspring from different host plant-infesting populations in the complex displayed significantly reduced olfactory host preference in flight-tunnel assays. Behavioral and electrophysiological studies indicate that olfactory cues from host fruit are important chemosensory signals for flies to locate fruit for mating and oviposition. The reduced olfactory abilities of hybrids could therefore constitute a significant post-mating barrier to gene flow among fly populations. The present study investigated the source of changes in the hybrid olfactory system by examining peripheral chemoreception in F(1) hybrid flies, using behaviorally relevant volatiles from the parent host fruit. Single-sensillum electrophysiological analyses revealed significant changes in olfactory receptor neuron (ORN) response specificities in hybrid flies when compared to parent ORN responses. We report that flies from F(1) crosses of apple-, hawthorn- and flowering dogwood-origin populations of R. pomonella exhibited distinct ORN response profiles absent from any parent population. These peripheral alterations in ORN response profiles could result from misexpression of multiple receptors in hybrid neurons as a function of genomic incompatibilities in receptor-gene pathways in parent populations. We conclude that these changes in peripheral chemoreception could impact olfactory host preference and contribute directly to reproductive isolation in the Rhagoletis complex, or could be genetically coupled to other host-associated traits. PMID:16985190

  4. Olfactory cues from different plant species in host selection by female pea moths.

    PubMed

    Thöming, Gunda; Norli, Hans Ragnar

    2015-03-01

    In herbivorous insects specialized on few plant species, attraction to host odor may be mediated by volatiles common to all host species, by specific compounds, or combinations of both. The pea moth Cydia nigricana is an important pest of the pea. Volatile signatures of four host plant species were studied to identify compounds involved in pea moth host selection and to improve previously reported attractive volatile blends. P. sativum and alternative Fabaceae host species were compared regarding female attraction, oviposition, and larval performance. Pea moth females were strongly attracted to the sweet pea Lathyrus odoratus, but larval performance on that species was moderate. Chemical analyses of sweet pea odor and electrophysiological responses of moth antennae led to identification of seven sweet-pea-specific compounds and ten compounds common to all tested host species. Blends of these specific and common cues were highly attractive to mated pea moth females in wind tunnel and field experiments. PMID:25675276

  5. Differences in performance and transcriptome-wide gene expression associated with Rhagoletis (Diptera: Tephritidae) larvae feeding in alternate host fruit environments.

    PubMed

    Ragland, Gregory J; Almskaar, Kristin; Vertacnik, Kim L; Gough, Harlan M; Feder, Jeffrey L; Hahn, Daniel A; Schwarz, Dietmar

    2015-06-01

    Host race formation, the establishment of new populations using novel resources, is a major hypothesized mechanism of ecological speciation, especially in plant-feeding insects. The initial stages of host race formation will often involve phenotypic plasticity on the novel resource, with subsequent genetically based adaptations enhancing host-associated fitness differences. Several studies have explored the physiology of the plastic responses of insects to novel host environments. However, the mechanisms underlying evolved differences among host races and species remain poorly understood. Here, we demonstrate a reciprocal larval performance difference between two closely related species of Rhagoletis flies, R. pomonella and R. zephyria, specialized for feeding in apple and snowberry fruit, respectively. Microarray analysis of fly larvae feeding in apples versus snowberries revealed patterns of transcriptome-wide differential gene expression consistent with both plastic and evolved responses to the different fruit resources, most notably for detoxification-related genes such as cytochrome p450s. Transcripts exhibiting evolved expression differences between species tended to also demonstrate plastic responses to fruit environment. The observed pattern suggests that Rhagoletis larvae exhibit extensive plasticity in gene expression in response to novel fruit that may potentiate shifts to new hosts. Subsequent selection, particularly selection to suppress initially costly plastic responses, could account for the evolved expression differences observed between R. pomonella and R. zephyria, creating specialized races and new fly species. Thus, genetically based ecological adaptations generating new biodiversity may often evolve from initial plastic responses in gene expression to the challenges posed by novel environments. PMID:25851077

  6. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2009-06-01

    Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

  7. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2009-03-31

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. {sm_bullet} CAS 01-23-02, Atmospheric Test Site - High Alt{sm_bullet} CAS 02-23-02, Contaminated Areas (2){sm_bullet} CAS 02-23-03, Contaminated Berm{sm_bullet} CAS 02-23-10, Gourd-Amber Contamination Area{sm_bullet} CAS 02-23-11, Sappho Contamination Area{sm_bullet} CAS 02-23-12, Scuttle Contamination Area{sm_bullet} CAS 03-23-24, Seaweed B Contamination Area{sm_bullet} CAS 03-23-27, Adze Contamination Area{sm_bullet} CAS 03-23-28, Manzanas Contamination Area{sm_bullet} CAS 03-23-29, Truchas-Chamisal Contamination Area{sm_bullet} CAS 04-23-02, Atmospheric Test Site T4-a{sm_bullet} CAS 05-23-06, Atmospheric Test Site{sm_bullet} CAS 09-23-06, Mound of Contaminated Soil{sm_bullet} CAS 10-23-04, Atmospheric Test Site M-10{sm_bullet} CAS 18-23-02, U-18d Crater (Sulky) Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107.

  8. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2008-09-30

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (FFACO, 1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (1) CAS 01-23-02, Atmospheric Test Site - High Alt; (2) CAS 02-23-02, Contaminated Areas (2); (3) CAS 02-23-03, Contaminated Berm; (4) CAS 02-23-10, Gourd-Amber Contamination Area; (5) CAS 02-23-11, Sappho Contamination Area; (6) CAS 02-23-12, Scuttle Contamination Area; (7) CAS 03-23-24, Seaweed B Contamination Area; (8) CAS 03-23-27, Adze Contamination Area; (9) CAS 03-23-28, Manzanas Contamination Area; (10) CAS 03-23-29, Truchas-Chamisal Contamination Area; (11) CAS 04-23-02, Atmospheric Test Site T4-a; (12) CAS 05-23-06, Atmospheric Test Site; (13) CAS 09-23-06, Mound of Contaminated Soil; (14) CAS 10-23-04, Atmospheric Test Site M-10; and (15) CAS 18-23-02, U-18d Crater (Sulky). Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107. CAU 107 closure activities will consist of verifying that the current postings required under Title 10 Code of Federal Regulations (CFR) Part 835 are in place and implementing use restrictions (URs) at two sites, CAS 03-23-29 and CAS 18-23-02. The current radiological postings combined with the URs are adequate administrative controls to limit site access and worker dose.

  9. Structured populations of the oriental fruit moth in an agricultural ecosystem.

    PubMed

    Torriani, Marco V G; Mazzi, Dominique; Hein, Silke; Dorn, Silvia

    2010-07-01

    Intercontinental trade has led to multiple introductions of invasive pest species at a global scale. Molecular analyses of the structure of populations support the understanding of ecological strategies and evolutionary patterns that promote successful biological invasions. The oriental fruit moth, Grapholita (= Cydia) molesta, is a cosmopolitan and economically destructive pest of stone and pome fruits, expanding its distribution range concomitantly with global climate warming. We used ten newly developed polymorphic microsatellite markers to examine the genetic structure of G. molesta populations in an agricultural ecosystem in the Emilia-Romagna region of northern Italy. Larvae collected in eight sampling sites were assigned to a mosaic of five populations with significant intra-regional structure. Inferred measures of gene flow within populations implicated both active dispersal, and passive dispersal associated with accidental anthropogenic displacements. Small effective population sizes, coupled with high inbreeding levels, highlighted the effect of orchard management practices on the observed patterns of genetic variation within the sampling sites. Isolation by distance did not appear to play a major role at the spatial scale considered. Our results provide new insights into the population genetics and dynamics of an invasive pest species at a regional scale. PMID:20561191

  10. The genetic basis for fruit odor discrimination in Rhagoletis flies and its significance for sympatric host shifts.

    PubMed

    Dambroski, Hattie R; Linn, Charles; Berlocher, Stewart H; Forbes, Andrew A; Roelofs, Wendell; Feder, Jeffrey L

    2005-09-01

    Rhagoletis pomonella (Diptera: Tephritidae) use volatile compounds emitted from the surface of ripening fruit as important chemosensory cues for recognizing and distinguishing among alternative host plants. Host choice is of evolutionary significance in Rhagoletis because these flies mate on or near the fruit of their respective host plants. Differences in host choice based on fruit odor discrimination therefore result in differential mate choice and prezygotic reproductive isolation, facilitating sympatric speciation in the absence of geographic isolation. We test for a genetic basis for host fruit odor discrimination through an analysis of F2 and backcross hybrids constructed between apple-, hawthorn-, and flowering dogwood-infesting Rhagoletis flies. We recovered a significant proportion (30-65%) of parental apple, hawthorn, and dogwood fly response phenotypes in F2 hybrids, despite the general failure of F1 hybrids to reach odor source spheres. Segregation patterns in F2 and backcross hybrids suggest that only a modest number of allelic differences at a few loci may underlie host fruit odor discrimination. In addition, a strong bias was observed for F2 and backcross flies to orient to the natal fruit blend of their maternal grandmother, implying the existence of cytonuclear gene interactions. We explore the implications of our findings for the evolutionary dynamics of sympatric host race formation and speciation. PMID:16261733