Science.gov

Sample records for marine coastal communities

  1. Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization.

    PubMed

    Bižić-Ionescu, Mina; Zeder, Michael; Ionescu, Danny; Orlić, Sandi; Fuchs, Bernhard M; Grossart, Hans-Peter; Amann, Rudolf

    2015-10-01

    Marine and limnic particles are hotspots of organic matter mineralization significantly affecting biogeochemical element cycling. Fluorescence in-situ hybridization and pyrosequencing of 16S rRNA genes were combined to investigate bacterial diversity and community composition on limnic and coastal marine particles > 5 and > 10 μm respectively. Limnic particles were more abundant (average: 1 × 10(7) l(-1)), smaller in size (average areas: 471 versus 2050 μm(2)) and more densely colonized (average densities: 7.3 versus 3.6 cells 100 μm(-2)) than marine ones. Limnic particle-associated (PA) bacteria harboured Alphaproteobacteria and Betaproteobacteria, and unlike previously suggested sizeable populations of Gammaproteobacteria, Actinobacteria and Bacteroidetes. Marine particles were colonized by Planctomycetes and Betaproteobacteria additionally to Alphaproteobacteria, Bacteroidetes and Gammaproteobacteria. Large differences in individual particle colonization could be detected. High-throughput sequencing revealed a significant overlap of PA and free-living (FL) bacteria highlighting an underestimated connectivity between both fractions. PA bacteria were in 14/21 cases more diverse than FL bacteria, reflecting a high heterogeneity in the particle microenvironment. We propose that a ratio of Chao 1 indices of PA/FL < 1 indicates the presence of rather homogeneously colonized particles. The identification of different bacterial families enriched on either limnic or marine particles demonstrates that, despite the seemingly similar ecological niches, PA communities of both environments differ substantially. PMID:24674021

  2. Short-term degradation of terrestrial DOM in the coastal ocean: Implications for nutrient subsidies and marine microbial community structure

    NASA Astrophysics Data System (ADS)

    Oliver, A. A.; Tank, S. E.; Kellogg, C.

    2015-12-01

    The export of riverine dissolved organic matter (DOM) to the coastal ocean provides an important link between terrestrial and aquatic ecosystems. The coastal temperate rainforests of British Columbia contain extensive freshwater networks that export significant amounts of water and DOM to the ocean, representing significant cross-system hydrologic and biogeochemical linkages. To better understand the importance of these linkages and implications for ecosystem structure and function, we used an experimental approach to investigate the role of microbial and photodegradation transformations of DOM exported from small coastal catchments to the marine environment. At two time periods (August 2014, March 2015), stream water from the outlets of two coastal watersheds was filtered (<0.2 μm), and treated with microbial inoculums from across a salinity gradient (i.e., freshwater, estuarine, and marine). Treatments were incubated in the ocean under light and dark conditions for 8 days. At 0, 3 and 8 days, samples were analyzed for DOC, TDN, DIN, and DON. Changes in DOM composition were determined with optical characterization techniques such as absorbance (SUVA, S, Sr) and fluorescence (EEM). Microbial community response was measured using cell counts and DNA/RNA amplicon sequencing to determine changes in bacterial abundance and community composition. General patterns indicated that microbial communities from the high salinity treatment (i.e. most marine) were the most effective at utilizing freshwater DOM, especially under light conditions. In some treatments, DOM appeared as a potential source of inorganic nitrogen with corresponding shifts in microbial community composition. Incubations using inoculum from low and mid salinity levels demonstrated smaller changes, indicating that DOM exported from these streams may not be extensively utilized until exposed to higher salinity environments further from stream outlets. These results suggest a role for terrestrial sourced

  3. Effect of physical sediments reworking on hydrocarbon degradation and bacterial community structure in marine coastal sediments.

    PubMed

    Duran, Robert; Bonin, Patricia; Jezequel, Ronan; Dubosc, Karine; Gassie, Claire; Terrisse, Fanny; Abella, Justine; Cagnon, Christine; Militon, Cecile; Michotey, Valérie; Gilbert, Franck; Cuny, Philippe; Cravo-Laureau, Cristiana

    2015-10-01

    The present study aimed to examine whether the physical reworking of sediments by harrowing would be suitable for favouring the hydrocarbon degradation in coastal marine sediments. Mudflat sediments were maintained in mesocosms under conditions as closer as possible to those prevailing in natural environments with tidal cycles. Sediments were contaminated with Ural blend crude oil, and in half of them, harrowing treatment was applied in order to mimic physical reworking of surface sediments. Hydrocarbon distribution within the sediment and its removal was followed during 286 days. The harrowing treatment allowed hydrocarbon compounds to penetrate the first 6 cm of the sediments, and biodegradation indexes (such as n-C18/phytane) indicated that biodegradation started 90 days before that observed in untreated control mesocosms. However, the harrowing treatment had a severe impact on benthic organisms reducing drastically the macrofaunal abundance and diversity. In the harrowing-treated mesocosms, the bacterial abundance, determined by 16S rRNA gene Q-PCR, was slightly increased; and terminal restriction fragment length polymorphism (T-RFLP) analyses of 16S rRNA genes showed distinct and specific bacterial community structure. Co-occurrence network and canonical correspondence analyses (CCA) based on T-RFLP data indicated the main correlations between bacterial operational taxonomic units (OTUs) as well as the associations between OTUs and hydrocarbon compound contents further supported by clustered correlation (ClusCor) analysis. The analyses highlighted the OTUs constituting the network structural bases involved in hydrocarbon degradation. Negative correlations indicated the possible shifts in bacterial communities that occurred during the ecological succession. PMID:25847440

  4. Metagenome sequencing of a coastal marine microbial community from Monterey Bay, California

    DOE PAGESBeta

    Mueller, R. S.; Bryson, S.; Keift, B.; Li, Zhou; Pett-Ridge, J.; Chavex, F.; Robert Hettich; Pan, Chongle; Mayali, X.

    2015-04-30

    Heterotrophic microbes are critical components of aquatic food webs. Linkages between populations and the substrates they utilize are not well defined. We present the metagenome of microbial communities from the coastal Pacific Ocean exposed to various nutrient additions in order to better understand substrate utilization and partitioning in this environment.

  5. Metagenome sequencing of a coastal marine microbial community from monterey bay, california.

    PubMed

    Mueller, Ryan S; Bryson, Sam; Kieft, Brandon; Li, Zhou; Pett-Ridge, Jennifer; Chavez, Francisco; Hettich, Robert L; Pan, Chongle; Mayali, Xavier

    2015-01-01

    Heterotrophic microbes are critical components of aquatic food webs. Linkages between populations and the substrates they utilize are not well defined. We present the metagenome of microbial communities from the coastal Pacific Ocean exposed to various nutrient additions in order to better understand substrate utilization and partitioning in this environment. PMID:25931598

  6. Metagenome Sequencing of a Coastal Marine Microbial Community from Monterey Bay, California

    PubMed Central

    Bryson, Sam; Kieft, Brandon; Li, Zhou; Pett-Ridge, Jennifer; Chavez, Francisco; Hettich, Robert L.; Pan, Chongle; Mayali, Xavier

    2015-01-01

    Heterotrophic microbes are critical components of aquatic food webs. Linkages between populations and the substrates they utilize are not well defined. We present the metagenome of microbial communities from the coastal Pacific Ocean exposed to various nutrient additions in order to better understand substrate utilization and partitioning in this environment. PMID:25931598

  7. How does EPA help to improve fisheries, marine life, and coastal communities?

    EPA Science Inventory

    The U.S. Environmental Protection Agency has several roles in protecting and restoring coastal habitats and communities – through policy, regulation, assistance, and research. The agency’s mandates and actions promote clean air and clean water, control uses and disposal of toxic ...

  8. Bioturbating shrimp alter the structure and diversity of bacterial communities in coastal marine sediments.

    PubMed

    Laverock, Bonnie; Smith, Cindy J; Tait, Karen; Osborn, A Mark; Widdicombe, Steve; Gilbert, Jack A

    2010-12-01

    Bioturbation is a key process in coastal sediments, influencing microbially driven cycling of nutrients as well as the physical characteristics of the sediment. However, little is known about the distribution, diversity and function of the microbial communities that inhabit the burrows of infaunal macroorganisms. In this study, terminal-restriction fragment length polymorphism analysis was used to investigate variation in the structure of bacterial communities in sediment bioturbated by the burrowing shrimp Upogebia deltaura or Callianassa subterranea. Analyses of 229 sediment samples revealed significant differences between bacterial communities inhabiting shrimp burrows and those inhabiting ambient surface and subsurface sediments. Bacterial communities in burrows from both shrimp species were more similar to those in surface-ambient than subsurface-ambient sediment (R=0.258, P<0.001). The presence of shrimp was also associated with changes in bacterial community structure in surrounding surface sediment, when compared with sediments uninhabited by shrimp. Bacterial community structure varied with burrow depth, and also between individual burrows, suggesting that the shrimp's burrow construction, irrigation and maintenance behaviour affect the distribution of bacteria within shrimp burrows. Subsequent sequence analysis of bacterial 16S rRNA genes from surface sediments revealed differences in the relative abundance of bacterial taxa between shrimp-inhabited and uninhabited sediments; shrimp-inhabited sediment contained a higher proportion of proteobacterial sequences, including in particular a twofold increase in Gammaproteobacteria. Chao1 and ACE diversity estimates showed that taxon richness within surface bacterial communities in shrimp-inhabited sediment was at least threefold higher than that in uninhabited sediment. This study shows that bioturbation can result in significant structural and compositional changes in sediment bacterial communities, increasing

  9. Marine bacterioplankton diversity and community composition in an antarctic coastal environment.

    PubMed

    Lo Giudice, Angelina; Caruso, Consolazione; Mangano, Santina; Bruni, Vivia; De Domenico, Maria; Michaud, Luigi

    2012-01-01

    The bacterial community inhabiting the water column at Terra Nova Bay (Ross Sea, Antarctica) was examined by the fluorescent in situ hybridization (FISH) technique and the genotypic and phenotypic characterization of 606 bacterial isolates. Overall, the FISH analysis revealed a bacterioplankton composition that was typical of Antarctic marine environments with the Cytophaga/Flavobacter (CF) group of Bacteroidetes that was equally dominant with the Actinobacteria and Gammaproteobacteria. As sampling was performed during the decay of sea-ice, it is plausible to assume the origin of Bacteroidetes from the sea-ice compartment where they probably thrive in high concentration of DOM which is efficiently remineralized to inorganic nutrients. This finding was supported by the isolation of Gelidibacter, Polaribacter, and Psychroflexus members (generally well represented in Antarctic sea-ice) which showed the ability to hydrolyze macromolecules, probably through the production of extracellular enzymes. A consistently pronounced abundance of the Gammaproteobacteria (67.8%) was also detected within the cultivable fraction. Altogether, the genera Psychromonas and Pseudoalteromonas accounted for 65.4% of total isolates and were ubiquitous, thus suggesting that they may play a key role within the analyzed bacterioplankton community. In particular, Pseudoalteromonas isolates possessed nitrate reductase and were able to hydrolyze substrates for protease, esterase, and β-galactosidase, thus indicating their involvement in the carbon and nitrogen cycling. Finally, the obtained results highlight the ability of the Actinobacteria to survive and proliferate in the Terra Nova Bay seawater as they generally showed a wide range of salt tolerance and appeared to be particularly competitive with strictly marine bacteria by better utilizing supplied carbon sources. PMID:21748267

  10. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida.

    PubMed

    Campbell, Alexandra M; Fleisher, Jay; Sinigalliano, Christopher; White, James R; Lopez, Jose V

    2015-06-01

    Coastal waters adjacent to populated southeast Florida possess different habitats (reefs, oceanic inlets, sewage outfalls) that may affect the composition of their inherent microbiomes. To determine variation according to site, season, and depth, over the course of 1 year, we characterized the bacterioplankton communities within 38 nearshore seawater samples derived from the Florida Area Coastal Environment (FACE) water quality survey. Six distinct coastal locales were profiled - the Port Everglades and Hillsboro Inlets, Hollywood and Broward wastewater outfalls, and associated reef sites using culture-independent, high-throughput pyrosequencing of the 16S rRNA V4 region. More than 227,000 sequences helped describe longitudinal taxonomic profiles of marine bacteria and archaea. There were 4447 unique operational taxonomic units (OTUs) identified with a mean OTU count of 5986 OTUs across all sites. Bacterial taxa varied significantly by season and by site using weighted and unweighted Unifrac, but depth was only supported by weighted Unifrac, suggesting a change due to presence/absence of certain OTUs. Abundant microbial taxa across all samples included Synechococcus, Pelagibacteraceae, Bacteroidetes, and various Proteobacteria. Unifrac analysis confirmed significant differences at inlet sites relative to reef and outfalls. Inlet-based bacterioplankton significantly differed in greater abundances of Rhodobacteraceae and Cryomorphaceae, and depletion of SAR406 sequences. This study also found higher counts of Firmicutes, Chloroflexi, and wastewater associated SBR1093 bacteria at the outfall and reef sites compared to inlet sites. This study profiles local bacterioplankton populations in a much broader context, beyond culturing and quantitative PCR, and expands upon the work completed by the National Oceanic and Atmospheric Administration FACE program. PMID:25740409

  11. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida

    PubMed Central

    Campbell, Alexandra M; Fleisher, Jay; Sinigalliano, Christopher; White, James R; Lopez, Jose V

    2015-01-01

    Coastal waters adjacent to populated southeast Florida possess different habitats (reefs, oceanic inlets, sewage outfalls) that may affect the composition of their inherent microbiomes. To determine variation according to site, season, and depth, over the course of 1 year, we characterized the bacterioplankton communities within 38 nearshore seawater samples derived from the Florida Area Coastal Environment (FACE) water quality survey. Six distinct coastal locales were profiled – the Port Everglades and Hillsboro Inlets, Hollywood and Broward wastewater outfalls, and associated reef sites using culture-independent, high-throughput pyrosequencing of the 16S rRNA V4 region. More than 227,000 sequences helped describe longitudinal taxonomic profiles of marine bacteria and archaea. There were 4447 unique operational taxonomic units (OTUs) identified with a mean OTU count of 5986 OTUs across all sites. Bacterial taxa varied significantly by season and by site using weighted and unweighted Unifrac, but depth was only supported by weighted Unifrac, suggesting a change due to presence/absence of certain OTUs. Abundant microbial taxa across all samples included Synechococcus, Pelagibacteraceae, Bacteroidetes, and various Proteobacteria. Unifrac analysis confirmed significant differences at inlet sites relative to reef and outfalls. Inlet-based bacterioplankton significantly differed in greater abundances of Rhodobacteraceae and Cryomorphaceae, and depletion of SAR406 sequences. This study also found higher counts of Firmicutes, Chloroflexi, and wastewater associated SBR1093 bacteria at the outfall and reef sites compared to inlet sites. This study profiles local bacterioplankton populations in a much broader context, beyond culturing and quantitative PCR, and expands upon the work completed by the National Oceanic and Atmospheric Administration FACE program. PMID:25740409

  12. Foraging depths of sea otters and implications to coastal marine communities

    USGS Publications Warehouse

    Bodkin, J.L.; Esslinger, G.G.; Monson, D.H.

    2004-01-01

    We visually observed 1,251 dives, of 14 sea otters instrumented with TDRs in southeast Alaska, and used attribute values from observed dives to classify 180,848 recorded dives as foraging (0.64), or traveling (0.36). Foraging dives were significantly deeper, with longer durations, bottom times, and postdive surface intervals, and greater descent and ascent rates, compared to traveling dives. Most foraging occurred in depths between 2 and 30 m (0.84), although 0.16 of all foraging was between 30 and 100 m. Nine animals, including all five males, demonstrated bimodal patterns in foraging depths, with peaks between 5 and 15 m and 30 and 60 m, whereas five of nine females foraged at an average depth of 10 m. Mean shallow foraging depth was 8 m, and mean deep foraging depth was 44 m. Maximum foraging depths averaged 61 m (54 and 82 for females and males, respectively) and ranged from 35 to 100 m. Female sea otters dove to depths 20 m on 0.85 of their foraging dives while male sea otters dove to depths 45 m on 0.50 of their foraging dives. Less than 0.02 of all foraging dives were >55 m, suggesting that effects of sea otter foraging on nearshore marine communities should diminish at greater depths. However, recolonization of vacant habitat by high densities of adult male sea otters may result in initial reductions of some prey species at depths >55 m.

  13. Ecological effects of a major oil spill on Panamanian coastal marine communities

    SciTech Connect

    Jackson, J.B.C.; Cubit, J.D.; Keller, B.D.; Batista, V.; Burns, K.; Caffey, H.M.; Caldwell, R.L.; Garrity, S.D.; Getter, C.D.; Gonzalez, C.; Guzman, H.M.; Kaufmann, K.W.; Knap, A.H.; Levings, S.C.; Marshall, M.J.; Steger, R.; Thompson, R.C.; Weil, E. )

    1989-01-06

    In 1986 more than 8 million liters of crude oil spilled into a complex region of mangroves, seagrasses, and coral reefs just east of the Caribbean entrance to the Panama Canal. This was the largest recorded spill into coastal habitats in the tropical Americas. Many populations of plants and animals in both oiled and unoiled sites had been studied previously, thereby providing an unprecedented measure of ecological variation before the spill. Documentation of the spread of oil and its biological effects begun immediately. Intertidal mangroves, seagrasses, algae, and associated invertebrates were covered by oil and died soon after. More surprisingly, there was also extensive mortality of shallow subtidal reef corals and infauna of seagrass beds. After 1.5 years only some organisms in areas exposed to the open sea have recovered.

  14. Bacterioplankton: a sink for carbon in a coastal marine plankton community

    SciTech Connect

    Ducklow, H.W.; Purdie, D.A.; Williams, P.J.LeB.; Davis, J.M.

    1986-05-16

    Recent determinations of high production rates (up to 30% of primary production in surface waters) implicate free-living marine bacterioplankton as a link in a microbial loop that supplements phytoplankton as food for herbivores. An enclosed water column of 300 cubic meters was used to test the microbial loop hypothesis by following the fate of carbon-14-labeled bacterioplankton for over 50 days. Only 2% of the label initially fixed from carbon-14-labeled glucose by bacteria was present in larger organisms after 13 days, at which time about 20% of the total label added remained in the particulate fraction. Most of the label appeared to pass directly from particles smaller than 1 micrometer (heterotrophic bacterioplankton and some bacteriovores) to respired labeled carbon dioxide or to regenerated dissolved organic carbon-14. Secondary (and, by implication, primary) production by organisms smaller than 1 micrometer may not be an important food source in marine food chains. Bacterioplankton can be a sink for carbon in planktonic food webs and may serve principally as agents of nutrient regeneration rather than as food.

  15. USGS Western Coastal and Marine Geology Team

    USGS Publications Warehouse

    Johnson, Sam; Gibbons, Helen

    2007-01-01

    The Western Coastal and Marine Geology Team of the U.S. Geological Survey (USGS) studies the coasts of the western United States, including Alaska and Hawai‘i. Team scientists conduct research, monitor processes, and develop information about coastal and marine geologic hazards, environmental conditions, habitats, and energy and mineral resources. This information helps managers at all levels of government and in the private sector make informed decisions about the use and protection of national coastal and marine resources.

  16. Assessing anthropogenic pressures on coastal marine ecosystems using stable CNS isotopes: State of the art, knowledge gaps, and community-scale perspectives

    NASA Astrophysics Data System (ADS)

    Mancinelli, Giorgio; Vizzini, Salvatrice

    2015-04-01

    In recent decades, the analysis of carbon, nitrogen and sulfur stable isotopes (SIA) has emerged as a powerful, viable methodology for examining food web structure and dynamics, as well as addressing a number of applied issues. Here, we provide a state-of-the-art review of the use of SIA for assessing anthropogenic pressures on natural ecosystems, in order to establish current knowledge gaps and identify promising applications for evaluating the ecological status of marine coastal waters. Specifically, the potential of SIA to provide food web-scale indicators for estimating cumulative anthropogenic pressures is addressed. The review indicates that the methodology has been used for virtually the whole spectrum of human pressures known to influence marine ecosystems. However, only the effects of chemical pollution, release of dissolved and particulate nutrients, and invasive species have been extensively investigated. For the first two pressures, substantial efforts have been made to implement isotopic quantitative approaches and metrics for inter-system comparisons; however, with the exception of nutrient release, the majority of aquatic studies have been carried out in freshwater systems, and only limited information is available on marine environments. In particular, the effects of invasive species on coastal habitats have received scant attention. Trophic position of indicator species emerges as the isotopic metric most ubiquitously adopted for measuring the impact of anthropogenic pressures. Conversely, the application of other recently implemented metrics, proven to be highly effective in integrating information on the spatial-temporal dynamics of aquatic food webs, is to date still limited. The potential of stable isotope analysis to provide a unifying methodological-theoretical framework for effective, inter-ecosystem comparisons of both single and multiple anthropogenic pressures is emphasised. Additionally, a plea for the implementation and intercalibration

  17. Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the western Pacific.

    PubMed

    Tarasov, V G

    2006-01-01

    This review is based on integrated studies of the composition, structure and function of shallow-water ecosystems in the western Pacific that are influenced by underwater gas-hydrothermal activity. Most of the data were collected from 1985 to 1997 by the Institute of Marine Biology of the Far East Branch of the Russian Academy of Science during expeditions to zones of modern volcanism. Gas-hydrothermal activity of volcanoes has a great influence on the physicochemical characteristics of the water column and plankton, and of bottom sediment and benthic communities. The abundance of nutrients (SiO(3)(2-), PO(4)(3-), NO(3)(-)), gases (CO(2), CH(4), H(2), H(2)S) and other reduced compounds (C(n)H(n), S(0), S(2)O(3)(2-), NH(4)(+)) in zones of shallow-water hydrothermal vents provides conditions for the use of two energy sources for primary production: sunlight (photosynthesis) and the oxidation of reduced compounds (bacterial chemosynthesis). In areas of shallow-water volcanic activity, chemosynthesis occurs not only in the immediate vicinity of venting fluid release but also in the surface layer of the water column, where it occurs together with intense photosynthesis. This surface photosynthesis is found below the layer of chemosynthesis, which is related to the distribution of hydrothermal fluids at the water surface. The contribution of each of these processes to total primary production depends on the physical and chemical conditions created by the vents and on the range and adaptation potential of the organisms. On the seabed in zones of shallow-water venting, microorganisms form mats that consist of bacteria of various physiological groups, microalgae, the products of their metabolism and sedimentary particles. Oxygenic photosynthesis of benthic diatoms, bacterial photosynthesis (anoxygenic photosynthesis) and autotrophic chemosynthesis in algobacterial and bacterial mats generate organic matter additional to that produced in the water column. The high rates of

  18. The role of epibenthic predators in structuring the marine invertebrate community of a British coastal salt marsh

    NASA Astrophysics Data System (ADS)

    Frid, C. L. J.; James, R.

    The marine fauna of salt marshes are subjected to predation by birds, tidally feeding flatfish, crabs, prawns and small gobiid fish. The role of these epibenthic predators in structuring the community was investigated using cages to exclude predators. A range of designs of cages and partial cages was employed to control for artefacts due to caging, and sufficient cages were employed so that each cage was only sampled once to prevent the compounding of disturbance due to predation and sampling. Two mesh sizes were employed, a fine mesh excluding epibenthic predators and a coarse mesh allowing access by small crabs, prawns and gobiid fish but excluding birds and larger fish. The exclusion was maintained for 2 years. The presence of any experimental structure had a significant effect on the sedimentary regime within the cage. Epibentic predator exclusion let to an increase in infaunal predator density, but had no significant effect on the infaunal deposit feeders. There was some evidence that predators limit the surface deposit feeding gastropood Hydrobia ulvae during the winter. The gastropod Littorina littorea responded positively to the presence of any caging structure; this may be the result of changes in the availability of food, as the sides of a cage support a diatom flora which this species can exploit. The lack of a response from the infaunal deposit feeders is attributed to their horizontal mobility within the sediment. The possible interactions between epibenthic and infaunal predators are discussed.

  19. Resolving coastal conflicts using marine spatial planning.

    PubMed

    Tuda, Arthur O; Stevens, Tim F; Rodwell, Lynda D

    2014-01-15

    We applied marine spatial planning (MSP) to manage conflicts in a multi-use coastal area of Kenya. MSP involves several steps which were supported by using geographical information systems (GISs), multi-criteria decision analysis (MCDA) and optimization. GIS was used in identifying overlapping coastal uses and mapping conflict hotspots. MCDA was used to incorporate the preferences of user groups and managers into a formal decision analysis procedure. Optimization was applied in generating optimal allocation alternatives to competing uses. Through this analysis three important objectives that build a foundation for future planning of Kenya's coastal waters were achieved: 1) engaging competing stakeholders; 2) illustrating how MSP can be adapted to aid decision-making in multi-use coastal regions; and 3) developing a draft coastal use allocation plan. The successful application of MSP to resolve conflicts in coastal regions depends on the level of stakeholder involvement, data availability and the existing knowledge base. PMID:24361729

  20. FOOD WEB AND COMMUNITY COMPOSITION CHANGES IN RESPONSE TO NUTRIENT LOADING IN FRESHWATER AND MARINE COASTAL SYSTEMS (ESTUARIES AND COASTAL WETLANDS)

    EPA Science Inventory

    Our research will investigate the mechanisms by which increased loading of nutrients to coastal waters alters the structure and dynamics of food webs, resulting in declines in populations of ecologically and commercially important organisms. Research across NHEERL Divisions will...

  1. Coastal Intelligence - A national infrastructure to support decision-making for coastal communities, economies and ecosystems

    NASA Astrophysics Data System (ADS)

    Weston, Neil D.

    2015-04-01

    The National Ocean Service (NOS), a Line Office within NOAA, is primarily responsible for fostering healthy and sustainable marine resources, habitats and ecosystems, strengthening the resiliency of communities, as well as being the nation's leader in observing, modeling and managing coastal, ocean and Great Lakes areas. NOS and numerous partners also play a critical role along the coasts and in marine ecosystems by providing science-based products and services to support a wide variety of applications. Coastal Intelligence however, goes one step further to support ecosystems, economies and communities by providing the infrastructure to integrate numerous observing systems and interpreting the scientific data into information that people can use. This poster will focus primarily on the science, observing systems and data modeling that support Coastal Intelligence and how accurate information can ensure timely and actionable decision-making for coastal communities and ecosystems.

  2. Diversity, community structure, and bioremediation potential of mercury-resistant marine bacteria of estuarine and coastal environments of Odisha, India.

    PubMed

    Dash, Hirak R; Das, Surajit

    2016-04-01

    Both point and non-point sources increase the pollution status of mercury and increase the population of mercury-resistant marine bacteria (MRMB). They can be targeted as the indicator organism to access marine mercury pollution, besides utilization in bioremediation. Thus, sediment and water samples were collected for 2 years (2010-2012) along Odisha coast of Bay of Bengal, India. Mercury content of the study sites varied from 0.47 to 0.99 ppb irrespective of the seasons of sampling. A strong positive correlation was observed between mercury content and MRMB population (P < 0.05) suggesting the utilization of these bacteria to assess the level of mercury pollution in the marine environment. Seventy-eight percent of the MRMB isolates were under the phylum Firmicutes, and 36 and 31% of them could resist mercury by mer operon-mediated volatilization and mercury biosorption, respectively. In addition, most of the isolates could resist a number of antibiotics and toxic metals. All the MRMB isolates possess the potential of growth and survival at cardinal pH (4-8), temperature (25-37 °C), and salinity (5-35 psu). Enterobacteria repetitive intergenic consensus (ERIC) and repetitive element palindromic PCR (REP-PCR) produced fingerprints corroborating the results of 16S rRNA gene sequencing. Fourier transform infrared (FTIR) spectral analysis also revealed strain-level speciation and phylogenetic relationships. PMID:26686519

  3. The cost and feasibility of marine coastal restoration.

    PubMed

    Bayraktarov, Elisa; Saunders, Megan I; Abdullah, Sabah; Mills, Morena; Beher, Jutta; Possingham, Hugh P; Mumby, Peter J; Lovelock, Catherine E

    2016-06-01

    Land-use change in the coastal zone has led to worldwide degradation of marine coastal ecosystems and a loss of the goods and services they provide. Restoration is the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed and is critical for habitats where natural recovery is hindered. Uncertainties about restoration cost and feasibility can impede decisions on whether, what, how, where, and how much to restore. Here, we perform a synthesis of 235 studies with 954 observations from restoration or rehabilitation projects of coral reefs, seagrass, mangroves, salt-marshes, and oyster reefs worldwide, and evaluate cost, survival of restored organisms, project duration, area, and techniques applied. Findings showed that while the median and average reported costs for restoration of one hectare of marine coastal habitat were around US$80000 (2010) and US$1600000 (2010), respectively, the real total costs (median) are likely to be two to four times higher. Coral reefs and seagrass were among the most expensive ecosystems to restore. Mangrove restoration projects were typically the largest and the least expensive per hectare. Most marine coastal restoration projects were conducted in Australia, Europe, and USA, while total restoration costs were significantly (up to 30 times) cheaper in countries with developing economies. Community- or volunteer-based marine restoration projects usually have lower costs. Median survival of restored marine and coastal organisms, often assessed only within the first one to two years after restoration, was highest for saltmarshes (64.8%) and coral reefs (64.5%) and lowest for seagrass (38.0%). However, success rates reported in the scientific literature could be biased towards publishing successes rather than failures. The majority of restoration projects were short-lived and seldom reported monitoring costs. Restoration success depended primarily on the ecosystem, site selection, and techniques

  4. Coastal Benthic Communities

    EPA Science Inventory

    This indicator describes the species diversity of benthic communities in U.S. estuarine waters during the period 1997–2000. Benthic organisms — animals that inhabit the bottom substrate of a water body — play an important role in maintaining sediment and water qual...

  5. The concept of biotope in marine ecology and coastal management.

    PubMed

    Olenin, Sergej; Ducrotoy, Jean-Paul

    2006-01-01

    The term "biotope" was introduced by a German scientist, Dahl in 1908 as an addition to the concept of "biocenosis" earlier formulated by Möbius (1877). Initially it determined the physical-chemical conditions of existence of a biocenosis ("the biotope of a biocenosis"). Further, both biotope and biocenosis were respectively considered as abiotic and biotic parts of an ecosystem. This notion ("ecosystem = biotope + biocenosis") became accepted in German, French, Russian and other European "continental" ecological literature. The new interpretation of the term ("biotope = habitat + community") appeared in the United Kingdom in the early 1990s while classifying "marine habitats" of the coastal zone. Since then, this meaning was also used in international European environmental documents. This paper examines the evolution of the biotope notion. It is concluded that the contemporary concept is robust and may be used not only for the classification and mapping but also for functional marine ecology and coastal zone management. PMID:16600815

  6. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves

    USGS Publications Warehouse

    Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.

    2003-01-01

    Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.

  7. Comparison between Atlantic and Pacific Tropical Marine Coastal Ecosystems: Community Structure, Ecological Processes, and Productivity. Results and Scientific Papers of a Unesco/COMAR Workshop (Suva, Fiji, March 24-29, 1986). Unesco Reports in Marine Science 46.

    ERIC Educational Resources Information Center

    Birkeland, Charles, Ed.

    This report presents the Unesco workshop conclusions concerning important differences among tropical seas in terms of ecological processes in coastal marine ecosystems, and the corresponding implications for resource management guidelines. The conclusions result from the presentation and discussion of eight review papers which are included in this…

  8. Hyperspectral Imaging Sensors and the Marine Coastal Zone

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.

    2000-01-01

    Hyperspectral imaging sensors greatly expand the potential of remote sensing to assess, map, and monitor marine coastal zones. Each pixel in a hyperspectral image contains an entire spectrum of information. As a result, hyperspectral image data can be processed in two very different ways: by image classification techniques, to produce mapped outputs of features in the image on a regional scale; and by use of spectral analysis of the spectral data embedded within each pixel of the image. The latter is particularly useful in marine coastal zones because of the spectral complexity of suspended as well as benthic features found in these environments. Spectral-based analysis of hyperspectral (AVIRIS) imagery was carried out to investigate a marine coastal zone of South Florida, USA. Florida Bay is a phytoplankton-rich estuary characterized by taxonomically distinct phytoplankton assemblages and extensive seagrass beds. End-member spectra were extracted from AVIRIS image data corresponding to ground-truth sample stations and well-known field sites. Spectral libraries were constructed from the AVIRIS end-member spectra and used to classify images using the Spectral Angle Mapper (SAM) algorithm, a spectral-based approach that compares the spectrum, in each pixel of an image with each spectrum in a spectral library. Using this approach different phytoplankton assemblages containing diatoms, cyanobacteria, and green microalgae, as well as benthic community (seagrasses), were mapped.

  9. Coastal and Marine Bird Data Base

    USGS Publications Warehouse

    Anderson, S.H.; Geissler, P.H.; Dawson, D.K.

    1980-01-01

    Summary: This report discusses the development of a coastal and marine bird data base at the Migratory Bird and Habitat Research Laboratory. The system is compared with other data bases, and suggestions for future development, such as possible adaptations for other taxonomic groups, are included. The data base is based on the Statistical Analysis System but includes extensions programmed in PL/I. The Appendix shows how the system evolved. Output examples are given for heron data and pelagic bird data which indicate the types of analyses that can be conducted and output figures. The Appendixes include a retrieval language user's guide and description of the retrieval process and listing of translator program.

  10. Mapping marine debris across coastal communities in Belize: developing a baseline for understanding the distribution of litter on beaches using geographic information systems.

    PubMed

    Bennett-Martin, Paulita; Visaggi, Christy C; Hawthorne, Timothy L

    2015-10-01

    Monitoring of marine debris (also known as marine litter) is an essential step in the process to eradicate ecological dangers in marine ecosystems caused by humans. This study examines marine debris in the Caribbean country of Belize using geographic information systems (GIS) to develop (1) a detailed data library for use on handheld Global Positioning System (GPS) units and tablets with mobile mapping applications for deployment in the field and (2) a freely available, online mapping portal to share data with Belizeans to encourage future citizen science efforts. Four diverse communities were targeted ranging from larger more populated towns, to smaller villages across central and southern Belize: San Pedro, Caye Caulker, Punta Gorda, and Monkey River. Fieldwork was conducted over 1 month, during which data points were collected in 50-m surveys followed by debris cleanup and removal. Features in our database included material, quantity, item, brand, and condition. Over 6000 pieces of debris were recorded in GIS for further analysis, and 299 gal of debris were removed from the shores of Belize. The most abundant form of debris observed was plastic (commonly bottles) across all locations; plastic comprised 77.6 % of all debris items observed. Through GIS, a detailed snapshot understanding of debris patterns across multiple settings in Belize was documented. Ongoing collaborations with local organizations in Belize have demonstrated significant interest and utility for such GIS approaches in analyzing and managing marine debris. The data, methodology, visual representations, and online mapping platform resulting from this research are a first step in directly supporting local Belizean community advocacy and policy, while contributing to larger institutional strategies for addressing marine debris issues in the Caribbean. PMID:27614957

  11. Estrogens from sewage in coastal marine environments.

    PubMed

    Atkinson, Shannon; Atkinson, Marlin J; Tarrant, Ann M

    2003-04-01

    Estrogens are ancient molecules that act as hormones in vertebrates and are biologically active in diverse animal phyla. Sewage contains natural and synthetic estrogens that are detectable in streams, rivers, and lakes. There are no studies reporting the distribution of steroidal estrogens in marine environments. We measured estrogens in sewage, injection-well water, and coastal tropical and offshore tropical water in the Pacific Ocean, western Atlantic Ocean, and Caribbean Sea. Concentrations of unconjugated estrone ranged from undetectable (< 40 pg/L) in the open ocean to nearly 2,000 pg/L in Key West, Florida, and Rehoboth Bay, Delaware (USA); estrone concentrations were highest near sources of sewage. Enzymatic hydrolysis of steroid conjugates in seawater samples indicated that polar conjugates comprise one-half to two-thirds of "total estrone" (unconjugated plus conjugated) in Hawaiian coastal samples. Adsorption to basalt gravel and carbonate sand was less than 20% per week and indicates that estrogens can easily leach into the marine environment from septic fields and high-estrogen groundwater. Of 20 sites (n = 129 samples), the mean values from 12 sites were above the threshold concentration for uptake into coral, indicating that there is a net uptake of anthropogenic steroidal estrogen into these environments, with unknown impacts. PMID:12676611

  12. Estrogens from sewage in coastal marine environments.

    PubMed Central

    Atkinson, Shannon; Atkinson, Marlin J; Tarrant, Ann M

    2003-01-01

    Estrogens are ancient molecules that act as hormones in vertebrates and are biologically active in diverse animal phyla. Sewage contains natural and synthetic estrogens that are detectable in streams, rivers, and lakes. There are no studies reporting the distribution of steroidal estrogens in marine environments. We measured estrogens in sewage, injection-well water, and coastal tropical and offshore tropical water in the Pacific Ocean, western Atlantic Ocean, and Caribbean Sea. Concentrations of unconjugated estrone ranged from undetectable (< 40 pg/L) in the open ocean to nearly 2,000 pg/L in Key West, Florida, and Rehoboth Bay, Delaware (USA); estrone concentrations were highest near sources of sewage. Enzymatic hydrolysis of steroid conjugates in seawater samples indicated that polar conjugates comprise one-half to two-thirds of "total estrone" (unconjugated plus conjugated) in Hawaiian coastal samples. Adsorption to basalt gravel and carbonate sand was less than 20% per week and indicates that estrogens can easily leach into the marine environment from septic fields and high-estrogen groundwater. Of 20 sites (n = 129 samples), the mean values from 12 sites were above the threshold concentration for uptake into coral, indicating that there is a net uptake of anthropogenic steroidal estrogen into these environments, with unknown impacts. PMID:12676611

  13. Marine and Coastal Resources. Global Issues Education Packet.

    ERIC Educational Resources Information Center

    Holm, Amy E.

    At least 70% of the Earth is covered with water. This packet provides background information on eight areas of concern regarding marine and coastal resources. Considered are: (1) "Coastal Resources"; (2) "Mangroves"; (3) "Coral Reefs"; (4) "Ocean Resources"; (5) "Aquaculture"; (6) "Pollution"; (7) "Marine Debris"; and (8) "The Global Commons."…

  14. 77 FR 53224 - Coastal and Marine Ecological Classification Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... Geological Survey Coastal and Marine Ecological Classification Standard AGENCY: Department of the Interior, U.S. Geological Survey. ACTION: Notice of endorsement of coastal and marine ecological classification... Ecological Classification Standard (CMECS) as the first-ever comprehensive federal data standard...

  15. A Multi Size-Level Assessment of Benthic Marine Communities in a Coastal Environment: Are They Different Sides of the Same Coin?

    PubMed Central

    Vannini, Claudia; Volpi, Marta; Lardicci, Claudio

    2015-01-01

    Organism body size has been demonstrated to be a discriminating element in shaping the response of living beings to environmental factors, thus playing a fundamental role in community structuring. Despite the importance of studies elucidating relations among communities of different size levels in ecosystems, the attempts that have been made in this sense are still very scarce and a reliable approach for these research still has to be defined. We characterized the benthic communities of bacteria, microbial eukaryotes, meiofauna and macrofauna in a coastal environment, encompassing a 10000-fold gradient in body size, testing and discussing a mixed approach of molecular fingerprinting for microbes and morphological observations for meio- and macrofauna. We found no correlation among structures of the different size-level communities: this suggests that community composition at one size-level could have no (or very low) influence on the community composition at other size-levels. Moreover, each community responds in a different way to the environmental parameters and with a degree of sensitivity which seems to increase with organism size. Therefore, our data indicate that the characterization of all the different size levels is clearly a necessity in order to study the dynamics really acting in a system. PMID:26075405

  16. Marine resources. [coastal processes, ice, oceanography, and living marine resources

    NASA Technical Reports Server (NTRS)

    Tilton, E. L., III

    1974-01-01

    Techniques have been developed for defining coastal circulation patterns using sediment as a natural tracer, allowing the formulation of new circulation concepts in some geographical areas and, in general, a better capability for defining the seasonal characteristics of coastal circulation. An analytical technique for measurement of absolute water depth based upon the ratios of two MSS channels has been developed. Suspended sediment has found wide use as a tracer, but a few investigators have reported limited success in measuring the type and amount of sediment quantitatively from ERTS-1 digital data. Significant progress has been made in developing techniques for using ERTS-1 data to locate, identify, and monitor sea and lake ice. Ice features greater than 70 meters in width can be detected, and both arctic and antarctic icebergs have been identified. In the application area of living marine resources, the use of ERTS-1 image-density patterns as a potential indicator of fish school location has been demonstrated for one coastal commercial resource, menhaden. ERTS-1 data have been used to locate ocean current boundaries using ERTS-1 image-density enhancement, and some techniques are under development for measurement of suspended particle concentration and chlorophyll concentration. The interrelationship of water color and surface characteristics (sea state) are also being studied to improve spectral and spatial interpretive techniques.

  17. Coastal Bacterioplankton Community Dynamics in Response to a Natural Disturbance

    PubMed Central

    Rappé, Michael S.

    2013-01-01

    In order to characterize how disturbances to microbial communities are propagated over temporal and spatial scales in aquatic environments, the dynamics of bacterial assemblages throughout a subtropical coastal embayment were investigated via SSU rRNA gene analyses over an 8-month period, which encompassed a large storm event. During non-perturbed conditions, sampling sites clustered into three groups based on their microbial community composition: an offshore oceanic group, a freshwater group, and a distinct and persistent coastal group. Significant differences in measured environmental parameters or in the bacterial community due to the storm event were found only within the coastal cluster of sampling sites, and only at 5 of 12 locations; three of these sites showed a significant response in both environmental and bacterial community characteristics. These responses were most pronounced at sites close to the shoreline. During the storm event, otherwise common bacterioplankton community members such as marine Synechococcus sp. and members of the SAR11 clade of Alphaproteobacteria decreased in relative abundance in the affected coastal zone, whereas several lineages of Gammaproteobacteria, Betaproteobacteria, and members of the Roseobacter clade of Alphaproteobacteria increased. The complex spatial patterns in both environmental conditions and microbial community structure related to freshwater runoff and wind convection during the perturbation event leads us to conclude that spatial heterogeneity was an important factor influencing both the dynamics and the resistance of the bacterioplankton communities to disturbances throughout this complex subtropical coastal system. This heterogeneity may play a role in facilitating a rapid rebound of regions harboring distinctly coastal bacterioplankton communities to their pre-disturbed taxonomic composition. PMID:23409156

  18. Bacterial diversity in oil-polluted marine coastal sediments.

    PubMed

    Acosta-González, Alejandro; Marqués, Silvia

    2016-04-01

    Marine environments harbour a persistent microbial seed which can be shaped by changes of the environmental conditions such as contamination by petroleum components. Oil spills, together with small but continuous discharges of oil from transportation and recreational activities, are important sources of hydrocarbon pollution within the marine realm. Consequently, prokaryotic communities have become well pre-adapted toward oil pollution, and many microorganisms that are exposed to its presence develop an active degradative response. The natural attenuation of oil pollutants, as has been demonstrated in many sites, is modulated according to the intrinsic environmental properties such as the availability of terminal electron acceptors and elemental nutrients, together with the degree of pollution and the type of hydrocarbon fractions present. Whilst dynamics in the bacterial communities in the aerobic zones of coastal sediments are well characterized and the key players in hydrocarbon biodegradation have been identified, the subtidal ecology of the anaerobic community is still not well understood. However, current data suggest common patterns of response in these ecosystems. PMID:26773654

  19. Reducing Vulnerability of Coastal Communities to Coastal Hazards through Building Community Resilience

    NASA Astrophysics Data System (ADS)

    Bhj, Premathilake

    2010-05-01

    Reducing Vulnerability of Coastal Communities to Coastal Hazards through Building Community Resilience B H J Premathilake Coast Conservation Department Sri Lanka Email: bhjprem@yahoo.com This paper contains two parts; Part one describes the comprehensive approach adopted by our project to build social, economical, institutional and environmental resilience of the tsunami affected communities in Sri Lanka to cope with future natural disasters. Community development, Coastal resource management and Disaster management are the three pillars of this model and these were built simultaneously to bring the community into a higher level of resilience to coastal hazards. Second part describes the application of Coastal Community Resilience (CCR) Assessment framework to evaluate the progress achieved by the project in building overall resilience of the communities during its period. It further describes how to estimate the contribution of this specific project for the improved resilience status of the selected communities in a multi stakeholder environment.

  20. PREFACE: MARINE AND COASTAL APPLICATIONS IN LANDSCAPE ECOLOGY

    EPA Science Inventory

    Landscape ecology traditionally has been limited to the study of terrestrial systems; however, the questions and methods defining the science are equally relevant for marine and coastal systems. The reciprocal relationship between spatial pattern and ecological processes and the...

  1. Coastal and Marine Geology Program video and photograph portal

    USGS Publications Warehouse

    Golden, Nadine E.; Ackerman, Seth D.

    2015-01-01

    Search all Coastal and Marine Geology Program imagery by selecting "Explore Data Layers." Or select Pacific, Atlantic, or Gulf Coast to enter the portal by region. Or start with the tutorial then dive in!

  2. Intermittent particle dynamics in marine coastal waters

    NASA Astrophysics Data System (ADS)

    Renosh, P. R.; Schmitt, F. G.; Loisel, H.

    2015-10-01

    Marine coastal processes are highly variable over different space scales and timescales. In this paper we analyse the intermittency properties of particle size distribution (PSD) recorded every second using a LISST instrument (Laser In-Situ Scattering and Transmissometry). The particle concentrations have been recorded over 32 size classes from 2.5 to 500 μm, at 1 Hz resolution. Such information is used to estimate at each time step the hyperbolic slope of the particle size distribution, and to consider its dynamics. Shannon entropy, as an indicator of the randomness, is estimated at each time step and its dynamics is analysed. Furthermore, particles are separated into four classes according to their size, and the intermittent properties of these classes are considered. The empirical mode decomposition (EMD) is used, associated with arbitrary-order Hilbert spectral analysis (AHSA), in order to retrieve scaling multifractal moment functions, for scales from 10 s to 8 min. The intermittent properties of two other indicators of particle concentration are also considered in the same range of scales: the total volume concentration Cvol-total and the particulate beam attenuation coefficient cp(670). Both show quite similar intermittent dynamics and are characterised by the same exponents. Globally we find here negative Hurst exponents (meaning the small scales show larger fluctuation than large scales) for each time series considered, and nonlinear moment functions.

  3. Metabarcoding approach for nonindigenous species surveillance in marine coastal waters.

    PubMed

    Zaiko, Anastasija; Samuiloviene, Aurelija; Ardura, Alba; Garcia-Vazquez, Eva

    2015-11-15

    In this study, high-throughput sequencing (HTS) metabarcoding was applied for the surveillance of plankton communities within the southeastern (SE) Baltic Sea coastal zone. These results were compared with those from routine monitoring survey and morphological analyses. Four of five nonindigenous species found in the samples were identified exclusively by metabarcoding. All of them are considered as invasive in the Baltic Sea with reported impact on the ecosystem and biodiversity. This study indicates that, despite some current limitations, HTS metabarcoding can provide information on the presence of exotic species and advantageously complement conventional approaches, only requiring the same monitoring effort as before. Even in the currently immature status of HTS, this combination of HTS metabarcoding and observational records is recommended in the early detection of marine pests and delivery of the environmental status metrics of nonindigenous species. PMID:26422121

  4. Feeding type affects microplastic ingestion in a coastal invertebrate community.

    PubMed

    Setälä, Outi; Norkko, Joanna; Lehtiniemi, Maiju

    2016-01-15

    Marine litter is one of the problems marine ecosystems face at present, coastal habitats and food webs being the most vulnerable as they are closest to the sources of litter. A range of animals (bivalves, free swimming crustaceans and benthic, deposit-feeding animals), of a coastal community of the northern Baltic Sea were exposed to relatively low concentrations of 10 μm microbeads. The experiment was carried out as a small scale mesocosm study to mimic natural habitat. The beads were ingested by all animals in all experimental concentrations (5, 50 and 250 beads mL(-1)). Bivalves (Mytilus trossulus, Macoma balthica) contained significantly higher amounts of beads compared with the other groups. Free-swimming crustaceans ingested more beads compared with the benthic animals that were feeding only on the sediment surface. Ingestion of the beads was concluded to be the result of particle concentration, feeding mode and the encounter rate in a patchy environment. PMID:26700887

  5. Spatial distribution of marine airborne bacterial communities.

    PubMed

    Seifried, Jasmin S; Wichels, Antje; Gerdts, Gunnar

    2015-06-01

    The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial OTUs made up more than 75% of all bacterial sequences. The most abundant OTU was Sphingomonas sp. which comprised 17% of all bacterial sequences. The most abundant bacterial genera were attributed to distinctly different areas of origin, suggesting highly heterogeneous sources for bioaerosols of marine and coastal environments. Furthermore, the bacterial community was clearly affected by two environmental parameters - temperature as a function of wind direction and the sampling location itself. However, a comparison of the wind directions during the sampling and calculated backward trajectories underlined the need for more detailed information on environmental parameters for bioaerosol investigations. The current findings support the assumption of a bacterial core community in the atmosphere. They may be emitted from strong aerosolizing sources, probably being mixed and dispersed over long distances. PMID:25800495

  6. Spatial distribution of marine airborne bacterial communities

    PubMed Central

    Seifried, Jasmin S; Wichels, Antje; Gerdts, Gunnar

    2015-01-01

    The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial OTUs made up more than 75% of all bacterial sequences. The most abundant OTU was Sphingomonas sp. which comprised 17% of all bacterial sequences. The most abundant bacterial genera were attributed to distinctly different areas of origin, suggesting highly heterogeneous sources for bioaerosols of marine and coastal environments. Furthermore, the bacterial community was clearly affected by two environmental parameters – temperature as a function of wind direction and the sampling location itself. However, a comparison of the wind directions during the sampling and calculated backward trajectories underlined the need for more detailed information on environmental parameters for bioaerosol investigations. The current findings support the assumption of a bacterial core community in the atmosphere. They may be emitted from strong aerosolizing sources, probably being mixed and dispersed over long distances. PMID:25800495

  7. Climate warming and estuarine and marine coastal ecosystems

    SciTech Connect

    Kennedy, V.S.

    1994-12-31

    Estuaries are physically controlled, resilient coastal ecosystems harboring environmentally tolerant species in diluted seawater. Marine coastal systems are less stressed physically and contain some environmentally less tolerant species. Both systems are biologically productive and economically significant. Because of their complex structure and function, it is difficult to predict accurately the effects of climate change, but some broad generalizations can be made. If climate warming occurs, it will raise sea-level, heat shallow waters, and modify precipitation, wind, and water circulation patterns. Rapid sea-level rise could cause the loss of salt marshes, mangrove swamps, and coral reefs, thus diminishing the ecological roles of these highly productive systems. Warmer waters could eliminate heat-sensitive species from part of their geographical range while allowing heat-tolerant species to expand their range, depending on their ability to disperse. Most thermally influenced losses of species will probably only be local, but changed distributions may lead to changed community function. It is more difficult to predict the effects of modified precipitation, wind, and water circulation patterns, but changes could affect organisms dependent on such patterns for food production (e.g., in upwelling regions) or for retention in estuaries. Aquacultural and fishery-related enterprises would be affected negatively in some regions and positively in others. 73 refs.

  8. Seagrasses and the Coastal Marine Environment

    ERIC Educational Resources Information Center

    Phillips, Ronald C.

    1978-01-01

    Coastal ecosystems are the most highly productive in the world. This article discusses seagrasses, major coastal producers, and provides information on their ecology, productivity, position in food chains, and role in sediment stabilization. Recent attempts to restore seagrasses in areas of massive kills are described. (MA)

  9. Understanding and managing human threats to the coastal marine environment.

    PubMed

    Crain, Caitlin M; Halpern, Benjamin S; Beck, Mike W; Kappel, Carrie V

    2009-04-01

    Coastal marine habitats at the interface of land and sea are subject to threats from human activities in both realms. Researchers have attempted to quantify how these various threats impact different coastal ecosystems, and more recently have focused on understanding the cumulative impact from multiple threats. Here, the top threats to coastal marine ecosystems and recent efforts to understand their relative importance, ecosystem-level impacts, cumulative effects, and how they can best be managed and mitigated, are briefly reviewed. Results of threat analysis and rankings will differ depending on the conservation target (e.g., vulnerable species, pristine ecosystems, mitigatable threats), scale of interest (local, regional, or global), whether externalities are considered, and the types of management tools available (e.g., marine-protected areas versus ecosystem-based management). Considering the cumulative effect of multiple threats has only just begun and depends on spatial analysis to predict overlapping threats and a better understanding of multiple-stressor effects and interactions. Emerging conservation practices that hold substantial promise for protecting coastal marine systems include multisector approaches, such as ecosystem-based management (EBM), that account for ecosystem service valuation; comprehensive spatial management, such as ocean zoning; and regulatory mechanisms that encourage or require cross-sector goal setting and evaluation. In all cases, these efforts require a combination of public and private initiatives for success. The state of our ecological understanding, public awareness, and policy initiatives make the time ripe for advancing coastal marine management and improving our stewardship of coastal and marine ecosystems. PMID:19432644

  10. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing.

    PubMed

    Massana, Ramon; Gobet, Angélique; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Chambouvet, Aurélie; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Dolan, John R; Dunthorn, Micah; Edvardsen, Bente; Forn, Irene; Forster, Dominik; Guillou, Laure; Jaillon, Olivier; Kooistra, Wiebe H C F; Logares, Ramiro; Mahé, Frédéric; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Probert, Ian; Romac, Sarah; Richards, Thomas; Santini, Sébastien; Shalchian-Tabrizi, Kamran; Siano, Raffaele; Simon, Nathalie; Stoeck, Thorsten; Vaulot, Daniel; Zingone, Adriana; de Vargas, Colomban

    2015-10-01

    Although protists are critical components of marine ecosystems, they are still poorly characterized. Here we analysed the taxonomic diversity of planktonic and benthic protist communities collected in six distant European coastal sites. Environmental deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from three size fractions (pico-, nano- and micro/mesoplankton), as well as from dissolved DNA and surface sediments were used as templates for tag pyrosequencing of the V4 region of the 18S ribosomal DNA. Beta-diversity analyses split the protist community structure into three main clusters: picoplankton-nanoplankton-dissolved DNA, micro/mesoplankton and sediments. Within each cluster, protist communities from the same site and time clustered together, while communities from the same site but different seasons were unrelated. Both DNA and RNA-based surveys provided similar relative abundances for most class-level taxonomic groups. Yet, particular groups were overrepresented in one of the two templates, such as marine alveolates (MALV)-I and MALV-II that were much more abundant in DNA surveys. Overall, the groups displaying the highest relative contribution were Dinophyceae, Diatomea, Ciliophora and Acantharia. Also, well represented were Mamiellophyceae, Cryptomonadales, marine alveolates and marine stramenopiles in the picoplankton, and Monadofilosa and basal Fungi in sediments. Our extensive and systematic sequencing of geographically separated sites provides the most comprehensive molecular description of coastal marine protist diversity to date. PMID:26119494

  11. Marine geology and oceanography of Arabian Sea and coastal Pakistan

    SciTech Connect

    Haq, B.U.; Milliman, J.D.

    1985-01-01

    This volume is a collection of papers presented at the first US-Pakistan workshop in marine science held in Karachi, Pakistan, in November 1982. Of the twenty-four contributions in this book, fourteen cover topics specific to the Arabian Sea-coastal Pakistan region. These include six papers on the geology, tectonics, and petroleum potential of Pakistan, four papers on sedimentary processes in the Indus River delta-fan complex, and four papers on the biological oceanography of the Arabian Sea and coastal Pakistan. The additional ten papers are overviews of shelf sedimentation processes, paleoceanography, the marine nutrient cycle, and physical and chemical oceanography.

  12. COASTAL COMMUNITY COLIFORM AND NUTRIENT CONTROL STUDY

    EPA Science Inventory

    Recent water sampling conducted by the Suwannee River Water Management District has shown that coliform counts in waters adjacent to several coastal communities exceed the water quality standards for surface waters with respect to fecal and total coliform counts. Also, sampling c...

  13. Coastal Capers: A Marine Education Primer.

    ERIC Educational Resources Information Center

    Spence, Lundie; Cox, Vivian Barbee

    As a part of the University of North Carolina Sea Grant Marine Education Manual series, this document is intended to provide elementary grade teachers with activities (or capers) that introduce students to the marine environment. It may also be used with remedial or special education students, and by youth group leaders in such organizations as…

  14. The coastal marine Tardigrada of the Americas.

    PubMed

    Miller, William R; Perry, Emma S

    2016-01-01

    The Western Hemisphere or the New World, also known as the Americas (North, Central and South America, associated islands and included seas) have historically been divided into two Realms, the Nearctic and Neotropical based on terrestrial biogeography. The coasts of these two terrestrial realms are bordered by six marine realms, 14 marine provinces and 67 marine ecoregions. From current literature, a comprehensive list of the marine tardigrade fauna from the Americas is presented. Data on marine tardigrades were obtained from 385 published Records of the Occurrence (RoO) of a species, their location, tidal zone, and the substrates from which they were reported. Authors' identifications were accepted at face value unless subsequently amended. Thirty genera and 82 species or subspecies are reported from the Americas; 49 species are documented from margins of the terrestrial Nearctic realm (North America) and 48 from terrestrial Neotropical realm (South America) with only 17 species occurring in both. We define cosmopolitan distribution for marine tardigrades as occurring in or on the margins of five of the seven oceans, only two species of marine tardigrade meets this standard. From the Americas 39 species have been described as new to science, 32 species appear restricted to the hemisphere. Taxa were assigned to marine ecoregions based on adjacent geopolitical units (country, states, provinces, etc.) described in published records. Although tardigrades have been reported from all six marine realms, they are only known from 21 of the 67 ecoregions. Most marine tardigrade sampling in the Americas has focused on near shore substrate (sand, mud, barnacles); for some species no substrates have been reported. The west coasts of both continents have little or no data about tardigrade presence. PMID:27395594

  15. Ecological impacts of ocean acidification in coastal marine environments (Invited)

    NASA Astrophysics Data System (ADS)

    Harley, C.; Crim, R.; Gooding, R.; Nienhuis, S.; Tang, E.

    2010-12-01

    Rising atmospheric carbon dioxide concentrations are driving rapid and potentially unprecedented reductions in pH and carbonate ion availability in coastal marine environments. This process, known as ocean acidification (OA), has far-reaching implications for the performance and survival of marine organisms, particularly those with calcified shells and skeletons. Here, we highlight the ways in which OA impacts plants and animals in a coastal benthic food web, with an emphasis on what we know and what we don’t know about the ways in which the responses of individual organisms will scale up to long-term changes in community structure. Our system of interest is the rocky shore benthic community that is broadly represented from Alaska through California. Ecologically important species include producers (micro- and macro-algae), grazers (urchins and gastropods), filter feeders (mussels), and predators (sea stars). Although the direct effects of OA on coastal phytoplankton and kelps remain poorly understood, it appears as though elevated CO2 will increase the doubling rate of benthic diatoms. Small changes in food supply, however, may pale in comparison to the direct effects of OA on heavily calcified grazers and filter feeders. Sea urchin and mussel growth are both reduced by increased CO2 in the lab, and decadal-scale reductions in pH are associated with reduced turban snail growth in the field. Although adult abalone growth appears to be unaffected by CO2, larval development is impaired and larval survival is significantly reduced in acidified conditions. In contrast to the negative effects of OA on heavily calcified herbivores and filter feeders, lightly calcified sea stars actually grow faster when CO2 is experimentally increased. The acidification-induced changes described here are likely to result in substantial shifts in the benthic ecosystem. Increasing predation pressure may further reduce the abundance of grazers and filter feeders that are already suffering

  16. THE MAJOR COASTAL COMMUNITIES OF NORTH CAROLINA.

    ERIC Educational Resources Information Center

    Marine Science Project, Beaufort, NC.

    IDENTIFIED IN THIS MARINE SCIENCE HANDBOOK ARE 5 MAJOR TYPES OF NATURAL HABITATS--(1) OPEN BEACH AND ANY OTHER SEAWARD-FACING, UNPROTECTED STRAND, (2) GROINS, JETTIES, PILINGS, AND ROCK BULKHEADS, (3) SAND AND/OR MUD FLAT, (4) SALT MARSH, AND (5) UPLAND COMMUNITIES. EACH HABITAT IS DESCRIBED IN TERMS OF TYPICAL PLANTS AND ANIMALS, ADAPTATIONS, AND…

  17. Marine litter in Mediterranean sandy littorals: Spatial distribution patterns along central Italy coastal dunes.

    PubMed

    Poeta, Gianluca; Battisti, Corrado; Acosta, Alicia T R

    2014-12-15

    Sandy shores are generally considered important sinks for marine litter and the presence of this litter may represent a serious threat to biotic communities and dune integrity mostly due to cleaning activities carried out through mechanical equipment. In spring (April-May) 2012 we sampled 153 2×2m random plots to assess the spatial distribution patterns of litter on Central Italy sandy shores. We analysed the relationship between the presence of litter and coastal dune habitats along the sea-inland gradient. Our results showed that the most frequent litter items were plastic and polystyrene. Differences of marine litter spatial distribution were found between upper beach and fore dune habitats and fixed dune habitats: embryo dune and mobile dune habitats show the highest frequency of litter, but, surprisingly, marine litter did not impact fixed dune habitats, these possibly acting as a natural barrier protecting the inner part of the coast from marine litter dispersion. PMID:25455823

  18. The Marine Realms Information Bank, a coastal and marine digital library at USGS

    USGS Publications Warehouse

    Marincioni, Fausto; Lightsom, Frances L.; Riall, Rebecca L.; Linck, Guthrie A.; Aldrich, Thomas C.

    2003-01-01

    The Marine Realms Information Bank (MRIB) is a distributed geolibrary of the USGS Coastal and Marine Geology Program that (1) prioritizes search and display of information by place (location on the Earth's surface), and (2) links information existing in distributed and independent sources. The MRIB aims to provide easy access to knowledge pertaining to the ocean and the associated atmospheric and terrestrial environments to scientists, decision-makers, and the interested members of the public.

  19. Marine kelp: energy resource in the coastal zone

    SciTech Connect

    Ritschard, R.L.; Haven, K.F.

    1980-11-01

    An ocean farm system is described. The analysis of the ocean farm system includes a description of the types of impacts that might occur if large scale operations become available, such as the production of environmental residuals, conflicts with the fishing and shipping industries, and other legal/institutional impacts. A discussion is given of the relationship of the marine biomass concept and coastal zone management plans.

  20. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish

    PubMed Central

    Nichols, Tye A.; Anderson, Todd W.; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur. PMID:26402068

  1. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish.

    PubMed

    Nichols, Tye A; Anderson, Todd W; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur. PMID:26402068

  2. The role of coastal fog in increased viability of marine microbial aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M.; O'Mullan, G. D.; Weathers, K. C.; Juhl, A. R.; Uriarte, M.

    2011-12-01

    Microbes in the atmosphere (microbial aerosols) play an important role in climate and provide an ecological and biogeochemical connection between oceanic, atmospheric, and terrestrial environments. Despite the ubiquity of these bacteria (concentration estimates range from 1 x 10^4 to 6 x 10^5 cells m-3), much is still being learned about their source, viability, and interactions with climatic controls. They can be attached to ambient aerosol particles or exist singly in the air. They affect climate by serving as ice, cloud, and fog nucleators, and have the metabolic potential to alter atmospheric chemistry. Fog presence in particular has been shown to greatly increase the deposition of viable microbial aerosols in both urban and coastal environments, but the mechanisms behind this are not fully understood. To address this gap, we examined the diversity of culturable microbial aerosols from a relatively pristine coastal environment in Maine (USA) and determined the effect of fog presence on viability and community composition of microbial aerosols. 16S rRNA sequencing of culturable ocean surface bacteria and depositing microbial aerosols (under clear and foggy conditions) resulted in the detection of 31 bacterial genera, with 5 dominant genera (Vibrio, Bacillus, Pseudoalteromonas, Psychrobacter, Salinibacterium) making up 66% of all sequences. Seventy-five percent of the viable microbial aerosols falling out under foggy conditions were most similar to GenBank-published sequences detected in marine environments. The fog and ocean surface sequence libraries were significantly more similar in microbial community composition than clear (non-foggy) and ocean surface libraries. These findings support a dual role for fog in enhancing the fallout of viable marine microbial aerosols via increased gravitational settling rates and decreased aerosolization stress on the organisms. The dominant presence of marine bacteria in coastal microbial aerosols provides a strong case for

  3. An assessment of seabird influence on Arctic coastal benthic communities

    NASA Astrophysics Data System (ADS)

    Zmudczyńska-Skarbek, Katarzyna; Balazy, Piotr; Kuklinski, Piotr

    2015-04-01

    It is well recognized that seabirds, particularly those nesting in coastal colonies, can provide significant nutrient enrichment to Arctic terrestrial ecosystems. However, little is known about the fate of bird-derived nutrients that return to the marine environment and potentially concentrate below the colonies. To attempt to assess the influence of this potential nutrient enrichment of the coastal benthic community, samples of macroalgae, sea urchins (mainly algivores), and hermit crabs (scavengers) were collected at two Arctic localities (Spitsbergen), (1) below a mixed colony of guillemots and kittiwakes, and (2) in an adjacent geomorphologically similar location not influenced by the seabird colony. A much higher nitrogen stable isotope ratio (δ15N) and total nitrogen content were found in terrestrial plants sampled below the colony than away from it. In benthic macroalgae, however, there were no δ15N differences. This might result from the timing of an intensive growth period in macroalgae in late winter/early spring, when there is little or no runoff from the land, and/or ornithogenic nutrients being directly incorporated by phytoplankton. Sea urchins showed higher δ15N and total N in the control site comparing to the colony-influenced area, suggesting differential food sources in their diet and a role of scavenging/carnivory on higher trophic levels there. Opportunistically feeding hermit crabs showed δ15N and total N enrichment below the seabird colony, suggesting dependence on detritus derived from food chains originating from pelagic producers. Our results indicate that seabirds in the Arctic may fertilize coastal benthic communities through pelagic-benthic coupling, while having no direct impact on bottom primary production.

  4. Report ranks U.S. coastal state protection of marine areas

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-06-01

    Most U.S. coastal states are not doing enough to safeguard nearby marine areas, according to a 29 May report by two environmental groups, the Marine Conservation Institute (MCI) and Mission Blue. The groups ranked U.S. coastal states and territories based on the percentage of state marine waters classified as no-take marine protected areas (MPAs) where fishing, mining, and oil and gas development are not allowed.

  5. Developing Partnerships with the Community for Coastal ESD

    ERIC Educational Resources Information Center

    Kawabe, Midori; Kohno, Hiroshi; Ikeda, Reiko; Ishimaru, Takashi; Baba, Osamu; Horimoto, Naho; Kanda, Jota; Matsuyam, Masaji; Moteki, Masato; Oshima, Yayoi; Sasaki, Tsuyoshi; Yap, Minlee

    2013-01-01

    Purpose: The purpose of this paper is to draw lessons for developing community-university partnerships from experiences in promoting coastal education for sustainable development (ESD). Design/methodology/approach: Qualitative data collected from two coastal community outreach projects were analyzed. Findings: The outreach projects improved the…

  6. Aurelia aurita Ephyrae Reshape a Coastal Microbial Community

    PubMed Central

    Zoccarato, Luca; Celussi, Mauro; Pallavicini, Alberto; Fonda Umani, Serena

    2016-01-01

    Over the last two decades, increasing attention has been paid to the impact of jellyfish blooms on marine communities. Aurelia aurita is one of the most studied of the Scyphozoans, and several studies have been carried out to describe its role as a top-down controller within the classical food web. However, little data are available to define the effects of these jellyfish on microbial communities. The aims of this study were to describe the predation impact of A. aurita ephyrae on a natural microplanktonic assemblage, and to determine any reshaping effects on the prokaryote community composition and functioning. Surface coastal water was used to set up a 24-h grazing experiment in microcosms. Samples were collected to determine the variations in prey biomass, heterotrophic carbon production (HCP), extracellular leucine aminopeptidase activity, and grazing pressure. A next-generation sequencing technique was used to investigate biodiversity shifts within the prokaryote and protist communities through the small subunit rRNA tag approach. This study shows that A. aurita ephyrae were responsible for large decreases in the abundances of the more motile microplankton groups, such as tintinnids, Dinophyceae, and aloricate ciliates. Bacillariophyceae and Mediophyceae showed smaller reductions. No evidence of selective predation emerged in the analysis of the community diversity down to the family level. The heterotrophic prokaryote biomass increased significantly (by up to 45%), in parallel with increases in HCP and leucine aminopeptidase activity (40%). Significant modifications were detected in prokaryotic community composition. Some classes of Gammaproteobacteria and Flavobacteriia showed higher relative abundances when exposed to A. aurita ephyrae, while there was a net decrease for Alphaproteobacteria. Overall, this study provides new insight into the effects of A. aurita on microbial communities, underlining their selective predation toward the more motile groups of

  7. Aurelia aurita Ephyrae Reshape a Coastal Microbial Community.

    PubMed

    Zoccarato, Luca; Celussi, Mauro; Pallavicini, Alberto; Fonda Umani, Serena

    2016-01-01

    Over the last two decades, increasing attention has been paid to the impact of jellyfish blooms on marine communities. Aurelia aurita is one of the most studied of the Scyphozoans, and several studies have been carried out to describe its role as a top-down controller within the classical food web. However, little data are available to define the effects of these jellyfish on microbial communities. The aims of this study were to describe the predation impact of A. aurita ephyrae on a natural microplanktonic assemblage, and to determine any reshaping effects on the prokaryote community composition and functioning. Surface coastal water was used to set up a 24-h grazing experiment in microcosms. Samples were collected to determine the variations in prey biomass, heterotrophic carbon production (HCP), extracellular leucine aminopeptidase activity, and grazing pressure. A next-generation sequencing technique was used to investigate biodiversity shifts within the prokaryote and protist communities through the small subunit rRNA tag approach. This study shows that A. aurita ephyrae were responsible for large decreases in the abundances of the more motile microplankton groups, such as tintinnids, Dinophyceae, and aloricate ciliates. Bacillariophyceae and Mediophyceae showed smaller reductions. No evidence of selective predation emerged in the analysis of the community diversity down to the family level. The heterotrophic prokaryote biomass increased significantly (by up to 45%), in parallel with increases in HCP and leucine aminopeptidase activity (40%). Significant modifications were detected in prokaryotic community composition. Some classes of Gammaproteobacteria and Flavobacteriia showed higher relative abundances when exposed to A. aurita ephyrae, while there was a net decrease for Alphaproteobacteria. Overall, this study provides new insight into the effects of A. aurita on microbial communities, underlining their selective predation toward the more motile groups of

  8. Denitrification and the denitrifier community in coastal microbial mats.

    PubMed

    Fan, Haoxin; Bolhuis, Henk; Stal, Lucas J

    2015-03-01

    Denitrification was measured in three structurally different coastal microbial mats by using the stable isotope technique. The composition of the denitrifying community was determined by analyzing the nitrite reductase (nirS and nirK) genes using clone libraries and the GeoChip. The highest potential rate of denitrification (7.0 ± 1.0 mmol N m(-2) d(-1)) was observed during summer at station 1 (supra-littoral). The rates of denitrification were much lower in the stations 2 (marine) and 3 (intermediate) (respectively 0.1 ± 0.05 and 0.7 ± 0.2 mmol N m(-2) d(-1)) and showed less seasonality when compared to station 1. The denitrifying community at station 1 was also more diverse than that at station 2 and 3, which were more similar to each other than either of these stations to station 1. In all three stations, the diversity of both nirS and nirK denitrifiers was higher in summer when compared to winter. The location along the tidal gradient seems to determine the composition, diversity and activity of the denitrifier community, which may be driven by salinity, nitrate/nitrite and organic carbon. Both nirS and nirK denitrifiers are equally present and therefore they are likely to play a role in the denitrification of the microbial mats studied. PMID:25764561

  9. Invasions and Extinctions Reshape Coastal Marine Food Webs

    PubMed Central

    Byrnes, Jarrett E.; Reynolds, Pamela L.; Stachowicz, John J.

    2007-01-01

    The biodiversity of ecosystems worldwide is changing because of species loss due to human-caused extinctions and species gain through intentional and accidental introductions. Here we show that the combined effect of these two processes is altering the trophic structure of food webs in coastal marine systems. This is because most extinctions (∼70%) occur at high trophic levels (top predators and other carnivores), while most invasions are by species from lower trophic levels (70% macroplanktivores, deposit feeders, and detritivores). These opposing changes thus alter the shape of marine food webs from a trophic pyramid capped by a diverse array of predators and consumers to a shorter, squatter configuration dominated by filter feeders and scavengers. The consequences of the simultaneous loss of diversity at top trophic levels and gain at lower trophic levels is largely unknown. However, current research suggests that a better understanding of how such simultaneous changes in diversity can impact ecosystem function will be required to manage coastal ecosystems and forecast future changes. PMID:17356703

  10. Invasions and extinctions reshape coastal marine food webs.

    PubMed

    Byrnes, Jarrett E; Reynolds, Pamela L; Stachowicz, John J

    2007-01-01

    The biodiversity of ecosystems worldwide is changing because of species loss due to human-caused extinctions and species gain through intentional and accidental introductions. Here we show that the combined effect of these two processes is altering the trophic structure of food webs in coastal marine systems. This is because most extinctions ( approximately 70%) occur at high trophic levels (top predators and other carnivores), while most invasions are by species from lower trophic levels (70% macroplanktivores, deposit feeders, and detritivores). These opposing changes thus alter the shape of marine food webs from a trophic pyramid capped by a diverse array of predators and consumers to a shorter, squatter configuration dominated by filter feeders and scavengers. The consequences of the simultaneous loss of diversity at top trophic levels and gain at lower trophic levels is largely unknown. However, current research suggests that a better understanding of how such simultaneous changes in diversity can impact ecosystem function will be required to manage coastal ecosystems and forecast future changes. PMID:17356703

  11. Assessing Flood Impacts in Rural Coastal Communities Using LIDAR

    NASA Astrophysics Data System (ADS)

    Johnson, E. S.

    2016-06-01

    Coastal communities are vulnerable to floods from storm events which are further exacerbated by storm surges. Additionally, coastal towns provide specific challenges during flood events as many coastal communities are peninsular and vulnerable to inundation of road access points. Publicly available lidar data has been used to model areas of inundation and resulting flood impacts on road networks. However, these models may overestimate areas that are inaccessible as they rely on publicly available Digital Terrain Models. Through incorporation of Digital Surface Models to estimate bridge height, a more accurate model of flood impacts on rural coastal residents can be estimated.

  12. Mercury methylation dynamics in estuarine and coastal marine environments — A critical review

    NASA Astrophysics Data System (ADS)

    Merritt, Karen A.; Amirbahman, Aria

    2009-09-01

    Considerable recent research has focused on methylmercury (MeHg) cycling within estuarine and coastal marine environments. Because MeHg represents a potent neurotoxin that may magnify in marine foodwebs, it is important to understand the mechanisms and environmental variables that drive or constrain methylation dynamics in these environments. This critical review article explores the mechanisms hypothesized to influence aqueous phase and sediment solid phase MeHg concentrations and depth-specific inorganic Hg (II) (Hg i) methylation rates (MMR) within estuarine and coastal marine environments, and discusses issues of terminology or methodology that complicate mechanism-oriented interpretation of field and laboratory data. Mechanisms discussed in this review article include: 1) the metabolic activity of sulfate reducing bacteria (SRB), the microbial group thought to dominate mercury methylation in these environments; 2) the role that Hg i concentration and/or speciation play in defining depth-specific Hg i methylation rates; and 3) the depth-dependent balance between MeHg production and consumption within the sedimentary environment. As discussed in this critical review article, the hypothesis of SRB community control on the Hg i methylation rate in estuarine and coastal marine environments is broadly supported by the literature. Although Hg i speciation, as a function of porewater inorganic sulfide and/or dissolved organic matter concentration and/or pH, may also play a role in observed variations in MMR, the nature and function of the controlling ligand(s) has not yet been adequately defined. Furthermore, although it is generally recognized that the processes responsible for MeHg production and consumption overlap spatially and/or kinetically in the sedimentary environment, and likely dictate the extent to which MeHg accumulates in the aqueous and/or sediment solid phase, this conceptual interpretation requires refinement, and would benefit greatly from the

  13. Remote sensing in the coastal and marine environment. Proceedings of the US North Atlantic Regional Workshop

    NASA Technical Reports Server (NTRS)

    Zaitzeff, J. B. (Editor); Cornillon, P. (Editor); Aubrey, D. A. (Editor)

    1980-01-01

    Presentations were grouped in the following categories: (1) a technical orientation of Earth resources remote sensing including data sources and processing; (2) a review of the present status of remote sensing technology applicable to the coastal and marine environment; (3) a description of data and information needs of selected coastal and marine activities; and (4) an outline of plans for marine monitoring systems for the east coast and a concept for an east coast remote sensing facility. Also discussed were user needs and remote sensing potentials in the areas of coastal processes and management, commercial and recreational fisheries, and marine physical processes.

  14. Chytrids dominate arctic marine fungal communities.

    PubMed

    Hassett, B T; Gradinger, R

    2016-06-01

    Climate change is altering Arctic ecosystem structure by changing weather patterns and reducing sea ice coverage. These changes are increasing light penetration into the Arctic Ocean that are forecasted to increase primary production; however, increased light can also induce photoinhibition and cause physiological stress in algae and phytoplankton that can favour disease development. Fungi are voracious parasites in many ecosystems that can modulate the flow of carbon through food webs, yet are poorly characterized in the marine environment. We provide the first data from any marine ecosystem in which fungi in the Chytridiomycota dominate fungal communities and are linked in their occurrence to light intensities and algal stress. Increased light penetration stresses ice algae and elevates disease incidence under reduced snow cover. Our results show that chytrids dominate Arctic marine fungal communities and have the potential to rapidly change primary production patterns with increased light penetration. PMID:26754171

  15. Natural Shorelines Promote the Stability of Fish Communities in an Urbanized Coastal System

    PubMed Central

    Scyphers, Steven B.; Gouhier, Tarik C.; Grabowski, Jonathan H.; Beck, Michael W.; Mareska, John; Powers, Sean P.

    2015-01-01

    Habitat loss and fragmentation are leading causes of species extinctions in terrestrial, aquatic and marine systems. Along coastlines, natural habitats support high biodiversity and valuable ecosystem services but are often replaced with engineered structures for coastal protection or erosion control. We coupled high-resolution shoreline condition data with an eleven-year time series of fish community structure to examine how coastal protection structures impact community stability. Our analyses revealed that the most stable fish communities were nearest natural shorelines. Structurally complex engineered shorelines appeared to promote greater stability than simpler alternatives as communities nearest vertical walls, which are among the most prevalent structures, were most dissimilar from natural shorelines and had the lowest stability. We conclude that conserving and restoring natural habitats is essential for promoting ecological stability. However, in scenarios when natural habitats are not viable, engineered landscapes designed to mimic the complexity of natural habitats may provide similar ecological functions. PMID:26039407

  16. Natural shorelines promote the stability of fish communities in an urbanized coastal system.

    PubMed

    Scyphers, Steven B; Gouhier, Tarik C; Grabowski, Jonathan H; Beck, Michael W; Mareska, John; Powers, Sean P

    2015-01-01

    Habitat loss and fragmentation are leading causes of species extinctions in terrestrial, aquatic and marine systems. Along coastlines, natural habitats support high biodiversity and valuable ecosystem services but are often replaced with engineered structures for coastal protection or erosion control. We coupled high-resolution shoreline condition data with an eleven-year time series of fish community structure to examine how coastal protection structures impact community stability. Our analyses revealed that the most stable fish communities were nearest natural shorelines. Structurally complex engineered shorelines appeared to promote greater stability than simpler alternatives as communities nearest vertical walls, which are among the most prevalent structures, were most dissimilar from natural shorelines and had the lowest stability. We conclude that conserving and restoring natural habitats is essential for promoting ecological stability. However, in scenarios when natural habitats are not viable, engineered landscapes designed to mimic the complexity of natural habitats may provide similar ecological functions. PMID:26039407

  17. Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics’era

    PubMed Central

    Cravo-Laureau, Cristiana; Duran, Robert

    2014-01-01

    Coastal marine sediments, where important biological processes take place, supply essential ecosystem services. By their location, such ecosystems are particularly exposed to human activities as evidenced by the recent Deepwater Horizon disaster. This catastrophe revealed the importance to better understand the microbial processes involved on hydrocarbon degradation in marine sediments raising strong interests of the scientific community. During the last decade, several studies have shown the key role played by microorganisms in determining the fate of hydrocarbons in oil-polluted sediments but only few have taken into consideration the whole sediment’s complexity. Marine coastal sediment ecosystems are characterized by remarkable heterogeneity, owning high biodiversity and are subjected to fluctuations in environmental conditions, especially to important oxygen oscillations due to tides. Thus, for understanding the fate of hydrocarbons in such environments, it is crucial to study microbial activities, taking into account sediment characteristics, physical-chemical factors (electron acceptors, temperature), nutrients, co-metabolites availability as well as sediment’s reworking due to bioturbation activities. Key information could be collected from in situ studies, which provide an overview of microbial processes, but it is difficult to integrate all parameters involved. Microcosm experiments allow to dissect in-depth some mechanisms involved in hydrocarbon degradation but exclude environmental complexity. To overcome these lacks, strategies have been developed, by creating experiments as close as possible to environmental conditions, for studying natural microbial communities subjected to oil pollution. We present here a review of these approaches, their results and limitation, as well as the promising future of applying “omics” approaches to characterize in-depth microbial communities and metabolic networks involved in hydrocarbon degradation. In addition

  18. Navigating transformations in governance of Chilean marine coastal resources

    PubMed Central

    Gelcich, Stefan; Hughes, Terry P.; Olsson, Per; Folke, Carl; Defeo, Omar; Fernández, Miriam; Foale, Simon; Gunderson, Lance H.; Rodríguez-Sickert, Carlos; Scheffer, Marten; Steneck, Robert S.; Castilla, Juan C.

    2010-01-01

    Marine ecosystems are in decline. New transformational changes in governance are urgently required to cope with overfishing, pollution, global changes, and other drivers of degradation. Here we explore social, political, and ecological aspects of a transformation in governance of Chile's coastal marine resources, from 1980 to today. Critical elements in the initial preparatory phase of the transformation were (i) recognition of the depletion of resource stocks, (ii) scientific knowledge on the ecology and resilience of targeted species and their role in ecosystem dynamics, and (iii) demonstration-scale experimental trials, building on smaller-scale scientific experiments, which identified new management pathways. The trials improved cooperation among scientists and fishers, integrating knowledge and establishing trust. Political turbulence and resource stock collapse provided a window of opportunity that triggered the transformation, supported by new enabling legislation. Essential elements to navigate this transformation were the ability to network knowledge from the local level to influence the decision-making processes at the national level, and a preexisting social network of fishers that provided political leverage through a national confederation of artisanal fishing collectives. The resultant governance scheme includes a revolutionary national system of marine tenure that allocates user rights and responsibilities to fisher collectives. Although fine tuning is necessary to build resilience of this new regime, this transformation has improved the sustainability of the interconnected social–ecological system. Our analysis of how this transformation unfolded provides insights into how the Chilean system could be further developed and identifies generalized pathways for improved governance of marine resources around the world. PMID:20837530

  19. Marine invertebrates: communities at risk.

    PubMed

    Mather, Jennifer

    2013-01-01

    Our definition of the word 'animal' centers on vertebrates, yet 99% of the animals on the planet are invertebrates, about which we know little. In addition, although the Census of Marine Life (COML.org) has recently conducted an extensive audit of marine ecosystems, we still do not understand much about the animals of the seas. Surveys of the best-known ecosystems, in which invertebrate populations often play a key role, show that the invertebrate populations are affected by human impact. Coral animals are the foundation of coral reef systems, which are estimated to contain 30% of the species in the ocean. Physical impact and chemical changes on the water severely damage these reefs, and may lead to the removal of these important habitats. Tiny pteropod molluscs live in huge numbers in the polar seas, and their fragile shells are particularly vulnerable to ocean acidification. Their removal would mean that fishes on which we depend would have a hugely diminished food supply. In the North Sea, warming is leading to replacement of colder water copepods by warmer water species which contain less fat. This is having an effect on the birds which eat them, who enrich the otherwise poor land on which they nest. Conversely, the warming of the water and the loss of top predators such as whales and sharks has led to an explosion of the jumbo squid of the Pacific coast of North America. This is positive in the development of a squid fishery, yet negative because the squid eat fish that have been the mainstay of the fishery along that coast. These examples show how invertebrates are key in the oceans, and what might happen when global changes impact them. PMID:24832811

  20. Marine Invertebrates: Communities at Risk

    PubMed Central

    Mather, Jennifer

    2013-01-01

    Our definition of the word ‘animal’ centers on vertebrates, yet 99% of the animals on the planet are invertebrates, about which we know little. In addition, although the Census of Marine Life (COML.org) has recently conducted an extensive audit of marine ecosystems, we still do not understand much about the animals of the seas. Surveys of the best-known ecosystems, in which invertebrate populations often play a key role, show that the invertebrate populations are affected by human impact. Coral animals are the foundation of coral reef systems, which are estimated to contain 30% of the species in the ocean. Physical impact and chemical changes on the water severely damage these reefs, and may lead to the removal of these important habitats. Tiny pteropod molluscs live in huge numbers in the polar seas, and their fragile shells are particularly vulnerable to ocean acidification. Their removal would mean that fishes on which we depend would have a hugely diminished food supply. In the North Sea, warming is leading to replacement of colder water copepods by warmer water species which contain less fat. This is having an effect on the birds which eat them, who enrich the otherwise poor land on which they nest. Conversely, the warming of the water and the loss of top predators such as whales and sharks has led to an explosion of the jumbo squid of the Pacific coast of North America. This is positive in the development of a squid fishery, yet negative because the squid eat fish that have been the mainstay of the fishery along that coast. These examples show how invertebrates are key in the oceans, and what might happen when global changes impact them. PMID:24832811

  1. Increasing Risk Awareness: The Coastal Community Resilience Index

    ERIC Educational Resources Information Center

    Thompson, Jody A.; Sempier, Tracie; Swann, LaDon

    2012-01-01

    As the number of people moving to the Gulf Coast increases, so does the risk of exposure to floods, hurricanes, and other storm-related events. In an effort to assist communities in preparing for future storm events, the Coastal Community Resilience Index was created. The end result is for communities to take actions to address the weaknesses they…

  2. Intrinsic bioremediation potential of a chronically polluted marine coastal area.

    PubMed

    Catania, Valentina; Santisi, Santina; Signa, Geraldina; Vizzini, Salvatrice; Mazzola, Antonio; Cappello, Simone; Yakimov, Michail M; Quatrini, Paola

    2015-10-15

    A microbiological survey of the Priolo Bay (eastern coast of Sicily, Ionian Sea), a chronically polluted marine coastal area, was carried out in order to discern its intrinsic bioremediation potential. Microbiological analysis, 16S rDNA-based DGGE fingerprinting and PLFAs analysis were performed on seawater and sediment samples from six stations on two transects. Higher diversity and variability among stations was detected by DGGE in sediment than in water samples although seawater revealed higher diversity of culturable hydrocarbon-degrading bacteria. The most polluted sediment hosted higher total bacterial diversity and higher abundance and diversity of culturable HC degraders. Alkane- and PAH-degrading bacteria were isolated from all stations and assigned to Alcanivorax, Marinobacter, Thalassospira, Alteromonas and Oleibacter (first isolation from the Mediterranean area). High total microbial diversity associated to a large selection of HC degraders is believed to contribute to natural attenuation of the area, provided that new contaminant contributions are avoided. PMID:26248825

  3. Baseline hydrocarbon levels in New Zealand coastal and marine avifauna.

    PubMed

    McConnell, H M; Gartrell, B D; Chilvers, B L; Finlayson, S T; Bridgen, P C E; Morgan, K J

    2015-05-15

    The external effects of oil on wildlife can be obvious and acute. Internal effects are more difficult to detect and can occur without any external signs. To quantify internal effects from oil ingestion by wildlife during an oil spill, baseline levels of ubiquitous hydrocarbon fractions, like polycyclic aromatic hydrocarbons (PAHs), need to be established. With these baseline values the extent of impact from exposure during a spill can be determined. This research represents the first investigation of baseline levels for 22 PAHs in New Zealand coastal and marine avian wildlife. Eighty-five liver samples were tested from 18 species. PAHs were identified in 98% of livers sampled with concentrations ranging from 0 to 1341.6 ng/g lipid wt or on wet wt basis, 0 to 29.5 ng/g. Overall, concentrations were low relative to other globally reported avian values. PAH concentration variability was linked with species foraging habitat and migratory patterns. PMID:25707316

  4. A coastal and marine digital library at USGS

    USGS Publications Warehouse

    Lightsom, Fran

    2003-01-01

    The Marine Realms Information Bank (MRIB) is a distributed geolibrary [NRC, 1999] from the U.S. Geological Survey (USGS) and the Woods Hole Oceanographic Institution (WHOI), whose purpose is to classify, integrate, and facilitate access to Earth systems science information about ocean, lake, and coastal environments. Core MRIB services are: (1) the search and display of information holdings by place and subject, and (2) linking of information assets that exist in remote physical locations. The design of the MRIB features a classification system to integrate information from remotely maintained sources. This centralized catalogue organizes information using 12 criteria: locations, geologic time, physiographic features, biota, disciplines, research methods, hot topics, project names, agency names, authors, content type, and file type. For many of these fields, MRIB has developed classification hierarchies.

  5. Marine reserves help coastal ecosystems cope with extreme weather.

    PubMed

    Olds, Andrew D; Pitt, Kylie A; Maxwell, Paul S; Babcock, Russell C; Rissik, David; Connolly, Rod M

    2014-10-01

    Natural ecosystems have experienced widespread degradation due to human activities. Consequently, enhancing resilience has become a primary objective for conservation. Nature reserves are a favored management tool, but we need clearer empirical tests of whether they can impart resilience. Catastrophic flooding in early 2011 impacted coastal ecosystems across eastern Australia. We demonstrate that marine reserves enhanced the capacity of coral reefs to withstand flood impacts. Reserve reefs resisted the impact of perturbation, whilst fished reefs did not. Changes on fished reefs were correlated with the magnitude of flood impact, whereas variation on reserve reefs was related to ecological variables. Herbivory and coral recruitment are critical ecological processes that underpin reef resilience, and were greater in reserves and further enhanced on reserve reefs near mangroves. The capacity of reserves to mitigate external disturbances and promote ecological resilience will be critical to resisting an increased frequency of climate-related disturbance. PMID:24849111

  6. Sources, impacts and trends of pharmaceuticals in the marine and coastal environment

    PubMed Central

    Gaw, Sally; Thomas, Kevin V.; Hutchinson, Thomas H.

    2014-01-01

    There has been a significant investment in research to define exposures and potential hazards of pharmaceuticals in freshwater and terrestrial ecosystems. A substantial number of integrated environmental risk assessments have been developed in Europe, North America and many other regions for these situations. In contrast, comparatively few empirical studies have been conducted for human and veterinary pharmaceuticals that are likely to enter coastal and marine ecosystems. This is a critical knowledge gap given the significant increase in coastal human populations around the globe and the growth of coastal megacities, together with the increasing importance of coastal aquaculture around the world. There is increasing evidence that pharmaceuticals are present and are impacting on marine and coastal environments. This paper reviews the sources, impacts and concentrations of pharmaceuticals in marine and coastal environments to identify knowledge gaps and suggests focused case studies as a priority for future research. PMID:25405962

  7. Sources, impacts and trends of pharmaceuticals in the marine and coastal environment.

    PubMed

    Gaw, Sally; Thomas, Kevin V; Hutchinson, Thomas H

    2014-11-19

    There has been a significant investment in research to define exposures and potential hazards of pharmaceuticals in freshwater and terrestrial ecosystems. A substantial number of integrated environmental risk assessments have been developed in Europe, North America and many other regions for these situations. In contrast, comparatively few empirical studies have been conducted for human and veterinary pharmaceuticals that are likely to enter coastal and marine ecosystems. This is a critical knowledge gap given the significant increase in coastal human populations around the globe and the growth of coastal megacities, together with the increasing importance of coastal aquaculture around the world. There is increasing evidence that pharmaceuticals are present and are impacting on marine and coastal environments. This paper reviews the sources, impacts and concentrations of pharmaceuticals in marine and coastal environments to identify knowledge gaps and suggests focused case studies as a priority for future research. PMID:25405962

  8. Integrating digital information for coastal and marine sciences

    USGS Publications Warehouse

    Marincioni, Fausto; Lightsom, Frances L.; Riall, Rebecca L.; Linck, Guthrie A.; Aldrich, Thomas C.; Caruso, Michael J.

    2004-01-01

    A pilot distributed geolibrary, the Marine Realms Information Bank (MRIB), was developed by the U.S. Geological Survey Coastal and Marine Geology Program and the Woods Hole Oceanographic Institution, to classify, integrate, and facilitate access to scientific information about oceans, coasts, and lakes. The MRIB is composed of a categorization scheme, a metadata database, and a specialized software backend, capable of drawing together information from remote sources without modifying their original format or content. Twelve facets are used to classify information: location, geologic time, feature type, biota, discipline, research method, hot topics, project, agency, author, content type, and file type. The MRIB approach allows easy and flexible organization of large or growing document collections for which centralized repositories would be impractical. Geographic searching based on the gazetteer and map interface is the centerpiece of the MRIB distributed geolibrary. The MRIB is one of a very few digital libraries that employ georeferencing -- a fundamentally different way to structure information from the traditional author/title/subject/keyword approach employed by most digital libraries. Lessons learned in developing the MRIB will be useful as other digital libraries confront the challenges of georeferencing.

  9. Engaging Communities Where They Are: New Hampshire's Coastal Adaptation Workgroup

    NASA Astrophysics Data System (ADS)

    Wake, C. P.; Godlewski, S.; Howard, K.; Labranche, J.; Miller, S.; Peterson, J.; Ashcraft, C.

    2015-12-01

    Rising seas are expected to have significant impacts on infrastructure and natural and cultural resources on New Hampshire's 18 mile open-ocean coastline and 235 miles of tidal shoreline. However, most coastal municipalities in NH lack financial and human resources to even assess vulnerability, let alone plan for climate change. This gap has been filled since 2010 by the NH Coastal Adaptation Workgroup (CAW), composed of 21 regional, state, and federal agencies, businesses, municipalities, academics, and NGOs that bring together stakeholders to discuss climate change challenges and collaboratively develop and implement effective coastal adaptation strategies. Our grassroot efforts serve to nurture existing and build new relationships, disseminate coastal watershed climate assessments, and tap into state, federal, and foundation funds for specific coastal adaptation projects. CAW has achieved collective impact in by connecting federal and state resources to communities by raising money and facilitating projects, translating climate science, educating community members, providing direct technical assistance and general capacity, and sharing success stories and lessons learned. Indicators of success include: 12 coastal communities improved their technical, financial, and human resources for climate adaptation; 80% of the 300 participants in the eleven CAW 'Water, Weather, Climate, and Community Workshops' have increased knowledge, motivation, and capacity to address climate adaptation; $3 million in grants to help communities with climate adaptation; winner of the 2015 EPA Region 1 Environmental Merit Award; and ongoing support for community-led adaptation efforts. In addition, the NH Climate Summit attracts over 100 participants each year, over 90% whom attest to the applicability of what they learn there. CAW also plays a central role in the Coastal Risks and Hazards Commission (established by the state legislature in 2013) to help communities and businesses prepare

  10. A novel marine nitrite-oxidizing Nitrospira species from Dutch coastal North Sea water

    PubMed Central

    Haaijer, Suzanne C. M.; Ji, Ke; van Niftrik, Laura; Hoischen, Alexander; Speth, Daan; Jetten, Mike S. M.; Damsté, Jaap S. Sinninghe; Op den Camp, Huub J. M.

    2013-01-01

    Marine microorganisms are important for the global nitrogen cycle, but marine nitrifiers, especially aerobic nitrite oxidizers, remain largely unexplored. To increase the number of cultured representatives of marine nitrite-oxidizing bacteria (NOB), a bioreactor cultivation approach was adopted to first enrich nitrifiers and ultimately nitrite oxidizers from Dutch coastal North Sea water. With solely ammonia as the substrate an active nitrifying community consisting of novel marine Nitrosomonas aerobic ammonia oxidizers (ammonia-oxidizing bacteria) and Nitrospina and Nitrospira NOB was obtained which converted a maximum of 2 mmol of ammonia per liter per day. Switching the feed of the culture to nitrite as a sole substrate resulted in a Nitrospira NOB dominated community (approximately 80% of the total microbial community based on fluorescence in situ hybridization and metagenomic data) converting a maximum of 3 mmol of nitrite per liter per day. Phylogenetic analyses based on the 16S rRNA gene indicated that the Nitrospira enriched from the North Sea is a novel Nitrospira species with Nitrospira marina as the next taxonomically described relative (94% 16S rRNA sequence identity). Transmission electron microscopy analysis revealed a cell plan typical for Nitrospira species. The cytoplasm contained electron light particles that might represent glycogen storage. A large periplasmic space was present which was filled with electron dense particles. Nitrospira-targeted polymerase chain reaction analyses demonstrated the presence of the enriched Nitrospira species in a time series of North Sea genomic DNA samples. The availability of this new Nitrospira species enrichment culture facilitates further in-depth studies such as determination of physiological constraints, and comparison to other NOB species. PMID:23515432

  11. Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater.

    PubMed Central

    González, J M; Moran, M A

    1997-01-01

    A cluster of marine bacteria within the alpha-3 subclass of the class Proteobacteria accounted for up to 28% of the 16S ribosomal DNA (rDNA) sequences in seawater samples from the coast of the southeastern United States. Two independent oligonucleotide probes targeting 16S rDNA of this "marine alpha" cluster indicate that the group dominates bacterioplankton communities in estuarine and nearshore regions of the southeastern U.S. coast. Marine alpha bacteria decline predictably in abundance with decreasing salinity along estuarine transsects and are not detectable in low-salinity (5%) or freshwater samples. Sequences of 16S rDNA obtained from seawater by PCR with one group-specific oligonucleotide as a primer confirm that the oligonucleotide targets only members of this phylogenetic cluster. Likewise, sequences of 16S rDNA obtained from seawater by PCR with several different pairs of nonspecific primers show an unusually high abundance of marine alpha sequences (52 to 84%) among the clones, which possibly indicates a PCR bias toward the group. Members of the marine alpha group were readily cultured from coastal seawater, accounting for 40% of the colonies isolated on low-nutrient marine agar, based on hybridizations with the group-specific 16S rDNA probe and on sequence analysis. This is the first description of a numerically dominant cluster of coastal bacteria, identified by molecular techniques, that can be readily cultured and studied in the laboratory. PMID:9361410

  12. Night-time lighting alters the composition of marine epifaunal communities.

    PubMed

    Davies, Thomas W; Coleman, Matthew; Griffith, Katherine M; Jenkins, Stuart R

    2015-04-01

    Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-time lighting changing the composition of temperate epifaunal marine invertebrate communities. Illuminating settlement surfaces with white light-emitting diode lighting at night, to levels experienced by these communities locally, both inhibited and encouraged the colonization of 39% of the taxa analysed, including three sessile and two mobile species. Our results indicate that ecological light pollution from coastal development, shipping and offshore infrastructure could be changing the composition of marine epifaunal communities. PMID:25926694

  13. Night-time lighting alters the composition of marine epifaunal communities

    PubMed Central

    Davies, Thomas W.; Coleman, Matthew; Griffith, Katherine M.; Jenkins, Stuart R.

    2015-01-01

    Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-time lighting changing the composition of temperate epifaunal marine invertebrate communities. Illuminating settlement surfaces with white light-emitting diode lighting at night, to levels experienced by these communities locally, both inhibited and encouraged the colonization of 39% of the taxa analysed, including three sessile and two mobile species. Our results indicate that ecological light pollution from coastal development, shipping and offshore infrastructure could be changing the composition of marine epifaunal communities. PMID:25926694

  14. Mapping of Florida's Coastal and Marine Resources: Setting Priorities Workshop

    USGS Publications Warehouse

    Robbins, Lisa; Wolfe, Steven; Raabe, Ellen

    2008-01-01

    The importance of mapping habitats and bioregions as a means to improve resource management has become increasingly clear. Large areas of the waters surrounding Florida are unmapped or incompletely mapped, possibly hindering proper management and good decisionmaking. Mapping of these ecosystems is among the top priorities identified by the Florida Oceans and Coastal Council in their Annual Science Research Plan. However, lack of prioritization among the coastal and marine areas and lack of coordination of agency efforts impede efficient, cost-effective mapping. A workshop on Mapping of Florida's Coastal and Marine Resources was sponsored by the U.S. Geological Survey (USGS), Florida Department of Environmental Protection (FDEP), and Southeastern Regional Partnership for Planning and Sustainability (SERPPAS). The workshop was held at the USGS Florida Integrated Science Center (FISC) in St. Petersburg, FL, on February 7-8, 2007. The workshop was designed to provide State, Federal, university, and non-governmental organizations (NGOs) the opportunity to discuss their existing data coverage and create a prioritization of areas for new mapping data in Florida. Specific goals of the workshop were multifold, including to: * provide information to agencies on state-of-the-art technology for collecting data; * inform participants of the ongoing mapping programs in waters off Florida; * present the mapping needs and priorities of the State and Federal agencies and entities operating in Florida; * work with State of Florida agencies to establish an overall priority for areas needing mapping; * initiate discussion of a unified classification of habitat and bioregions; * discuss and examine the need to standardize terminology and data collection/storage so that data, in particular habitat data, can be shared; 9 identify opportunities for partnering and leveraging mapping efforts among agencies and entities; * identify impediments and organizational gaps that hinder collection

  15. Contributions of Participatory Modeling to Development and Support of Coastal and Marine Management Plans

    EPA Science Inventory

    The role of participatory modeling- at various scales- to assist in developing shared visions, understanding the decision landscape, identifying and selecting management options, and monitoring outcomes will be explored in the context of coastal and marine planning, ecosystem ser...

  16. USGS Coastal and Marine Geology Survey Data in Google Earth

    NASA Astrophysics Data System (ADS)

    Reiss, C.; Steele, C.; Ma, A.; Chin, J.

    2006-12-01

    The U.S. Geological Survey (USGS) Coastal and Marine Geology (CMG) program has a rich data catalog of geologic field activities and metadata called InfoBank, which has been a standard tool for researchers within and outside of the agency. Along with traditional web maps, the data are now accessible in Google Earth, which greatly expands the possible user audience. The Google Earth interface provides geographic orientation and panning/zooming capabilities to locate data relative to topography, bathymetry, and coastal areas. Viewing navigation with Google Earth's background imagery allows queries such as, why areas were not surveyed (answer presence of islands, shorelines, cliffs, etc.). Detailed box core subsample photos from selected sampling activities, published geotechnical data, and sample descriptions are now viewable on Google Earth, (for example, M-1-95-MB, P-2-95-MB, and P-1-97- MB box core samples). One example of the use of Google Earth is CMG's surveys of San Francisco's Ocean Beach since 2004. The surveys are conducted with an all-terrain vehicle (ATV) and shallow-water personal watercraft (PWC) equipped with Global Positioning System (GPS), and elevation and echo sounder data collectors. 3D topographic models with centimeter accuracy have been produced from these surveys to monitor beach and nearshore processes, including sand transport, sedimentation patterns, and seasonal trends. Using Google Earth, multiple track line data (examples: OB-1-05-CA and OB-2-05-CA) can be overlaid on beach imagery. The images also help explain the shape of track lines as objects are encountered.

  17. Fine-Scale Temporal Variation in Marine Extracellular Enzymes of Coastal Southern California

    PubMed Central

    Allison, Steven D.; Chao, Yi; Farrara, John D.; Hatosy, Stephen; Martiny, Adam C.

    2012-01-01

    Extracellular enzymes are functional components of marine microbial communities that contribute to nutrient remineralization by catalyzing the degradation of organic substrates. Particularly in coastal environments, the magnitude of variation in enzyme activities across timescales is not well characterized. Therefore, we established the MICRO time series at Newport Pier, California, to assess enzyme activities and other ocean parameters at high temporal resolution in a coastal environment. We hypothesized that enzyme activities would vary most on daily to weekly timescales, but would also show repeatable seasonal patterns. In addition, we expected that activities would correlate with nutrient and chlorophyll concentrations, and that most enzyme activity would be bound to particles. We found that 34–48% of the variation in enzyme activity occurred at timescales <30 days. About 28–56% of the variance in seawater nutrient concentrations, chlorophyll concentrations, and ocean currents also occurred on this timescale. Only the enzyme β-glucosidase showed evidence of a repeatable seasonal pattern, with elevated activities in the spring months that correlated with spring phytoplankton blooms in the Southern California Bight. Most enzyme activities were weakly but positively correlated with nutrient concentrations (r = 0.24–0.31) and upwelling (r = 0.29–0.35). For the enzymes β-glucosidase and leucine aminopeptidase, most activity was bound to particles. However, 81.2% of alkaline phosphatase and 42.8% of N-acetyl-glucosaminidase activity was freely dissolved. These results suggest that enzyme-producing bacterial communities and nutrient dynamics in coastal environments vary substantially on short timescales (<30 days). Furthermore, the enzymes that degrade carbohydrates and proteins likely depend on microbial communities attached to particles, whereas phosphorus release may occur throughout the water column. PMID:22912628

  18. Community Education in Eastern Chinese Coastal Cities: Issues and Development

    ERIC Educational Resources Information Center

    Lu, Suju

    2009-01-01

    This paper first reviews the development of community education in Shanghai, one of China's eastern coastal cities. Then the development of community education in the Xuhui District of Shanghai, especially its management system and operational mechanisms, school operating systems and networks, curriculum systems, and team building are presented.…

  19. Habitat partitioning of marine benthic denitrifier communities in response to oxygen availability.

    PubMed

    Wittorf, Lea; Bonilla-Rosso, Germán; Jones, Christopher M; Bäckman, Ola; Hulth, Stefan; Hallin, Sara

    2016-08-01

    Denitrification is of global significance for the marine nitrogen budget and the main process for nitrogen loss in coastal sediments. This facultative anaerobic respiratory pathway is modular in nature and the final step, the reduction of nitrous oxide (N2 O), is performed by microorganisms with a complete denitrification pathway as well as those only capable of N2 O reduction. Fluctuating oxygen availability is a significant driver of denitrification in sediments, but the effects on the overall N2 O-reducing community that ultimately controls the emission of N2 O from marine sediments is not well known. To investigate the effects of different oxygen regimes on N2 O reducing communities, coastal marine surface sediment was incubated in microcosms under oxic, anoxic or oscillating oxygen conditions in the overlying water for 137 days. Quantification of the genetic potential for denitrification, anammox and respiratory ammonification indicated that denitrification supported nitrogen removal in these sediments. Furthermore, denitrifiers with a complete pathway were identified as the dominant community involved in N2 O reduction, rather than organisms that are only N2 O reducers. Specific lineages within each group were associated with different oxygen regimes suggesting that oxygen availability in the overlying water is associated with habitat partitioning of N2 O reducers in coastal marine surface sediments. PMID:26929183

  20. Pigment preservation and remineralization in oxic coastal marine sediments

    SciTech Connect

    Furlong, E.T.; Carpenter, R.

    1988-01-01

    Complex mixtures of sedimentary chlorophyll degradation products were measured using high performance liquid chromatography (HPLC) in /sup 210/Pb dated box- and piston-core sediments. Sediments were collected from Dabob Bay, Washington, a coastal marine fjord conducive to studies yielding an understanding of the remineralization and diagenesis of organic carbon. Greater than 99% of the pheopigment flux out of the water column does not accumulate in the top 2 cm of sediment. Surface sediment pigment profiles indicate that pheophoribides are the dominant pheopigments observed, with concentrations decreasing rapidly with depth. Concentrations of chlorophyll c derivatives also decrease rapidly, but ratios of a/c pheopigments remain within ranges reported for natural and cultured phytoplankton. Sharp pheopigment concentrations decreases within the bioturbated surface sediments were modeled using a one dimensional mixing model. Sedimentary humic acid, fulvic acid, and residual humin associated pheopigments in sediments which had been previously acetone extracted to remove the lipophilic pheopigment fraction were typed by chromic acid oxidation and release of pyrrole derived maleimides. This humic associated pyrrole derived nitrogen, while a small fraction of total sedimentary or humic nitrogen, accounted for 16-75% of the total sedimentary pheopigment accumulation, and may be significant in understanding the diagenetic fate and transformation of pheopigments to petroporphyrins.

  1. Sources of atmospheric methane from coastal marine wetlands

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Sebacher, D. I.; Bartlett, K. B.; Bartlett, D. S.

    1982-01-01

    Biological methanogenesis in wetlands is believed to be one of the major sources of global tropospheric methane. The present paper reports measurements of methane distribution in the soils, sediments, water and vegetation of coastal marine wetlands. Measurements, carried out in the salt marshes Bay Tree Creek in Virginia and Panacea in northwest Florida, reveal methane concentrations in soils and sediments to vary with depth below the surface and with soil temperature. The fluxes of methane from marsh soils to the atmosphere at the soil-air interface are estimated to range from -0.00067 g CH4/sq m per day (methane sink) to 0.024 g CH4/sq m per day, with an average value of 0.0066 g CH4/sq m per day. Data also demonstrate the important role of tidal waters percolating through marsh soils in removing methane from the soils and releasing it to the atmosphere. The information obtained, together with previous studies, provides a framework for the design of a program based on in situ and remote sensing measurements to study the global methane cycle.

  2. St. Petersburg Coastal and Marine Science Center's Core Archive Portal

    USGS Publications Warehouse

    Reich, Chris; Streubert, Matt; Dwyer, Brendan; Godbout, Meg; Muslic, Adis; Umberger, Dan

    2012-01-01

    This Web site contains information on rock cores archived at the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC). Archived cores consist of 3- to 4-inch-diameter coral cores, 1- to 2-inch-diameter rock cores, and a few unlabeled loose coral and rock samples. This document - and specifically the archive Web site portal - is intended to be a 'living' document that will be updated continually as additional cores are collected and archived. This document may also contain future references and links to a catalog of sediment cores. Sediment cores will include vibracores, pushcores, and other loose sediment samples collected for research purposes. This document will: (1) serve as a database for locating core material currently archived at the USGS SPCMSC facility; (2) provide a protocol for entry of new core material into the archive system; and, (3) set the procedures necessary for checking out core material for scientific purposes. Core material may be loaned to other governmental agencies, academia, or non-governmental organizations at the discretion of the USGS SPCMSC curator.

  3. Pigment preservation and remineralization in oxic coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Furlong, Edward T.; Carpenter, Roy

    1988-01-01

    Complex mixtures of sedimentary chlorophyll degradation products were measured using high performance liquid chromatography (HPLC) in 210Pb dated box- and piston-core sediments. Sediments were collected from Dabob Bay, Washington, a coastal marine fjord conducive to studies yielding an understanding of the remineralization and diagenesis of organic carbon. Greater than 99% of the pheopigment flux out of the water column does not accumulate in the top 2 cm of sediment. Surface sediment pigment profiles indicate that pheophorbides are the dominant pheopigments observed, with concentrations decreasing rapidly with depth. Concentrations of chlorophyll c derivatives also decrease rapidly, but ratios of a/c pheopigments remain within ranges reported for natural and cultured phytoplankton. Sharp pheopigment concentration decreases within the bioturbated surface sediments (as defined by 210Pb activities) were modeled using a one dimensional mixing model. The in situ pheopigment decomposition rate, corrected for bioturbation and sediment accumulation, corresponds to an approximate half-life of 40 days. Sedimentary humic acid, fulvic acid, and residual humin associated pheopigments in sediments which had been previously acetone extracted to remove the lipophilic pheopigment fraction were typed by chromic acid oxidation and release of pyrrole derived maleimides. This humic associated pyrrole derived nitrogen, while a small fraction of total sedimentary or humic nitrogen, accounted for 16-75% of the total sedimentary pheopigment accumulation, and may be significant in understanding the diagenetic fate and transformation of pheopigments to petroporphyrins.

  4. Which coastal and marine environmental contaminants are truly emerging?

    PubMed

    Maruya, Keith A; Dodder, Nathan G; Tang, Chi-Li; Lao, Wenjian; Tsukada, David

    2015-02-01

    To better understand the past and present impact of contaminants of emerging concern (CECs) in coastal and marine ecosystems, archived samples were analyzed for a broad suite of analytes, including pharmaceuticals and personal care products (PPCPs), flame retardants (including PBDEs), perfluorinated compounds (PFCs), and current-use pesticides. Surface sediment, mussels (Mytilus spp.) and sediment core samples collected from the California (USA) coast were obtained from environmental specimen banks. Selected CECs were detected in recent surface sediments, with nonylphenol (4-NP), its mono- and di-ethoxylates (NP1EO and NP2EO), triclocarban, and pyrethroid insecticides in the greatest abundance. Alkylphenols, triclocarban, and triclosan were present in sediment core segments from the 1970s, as well as in Mytilus tissue collected during the 1990s. Increasing concentrations of some CECs (e.g., miconazole, triclosan) were observed in the surface layers (ca. 2007) of a sediment core, in contrast to peak concentrations of 4-NP and triclocarban corresponding to input during the 1970s, and an apparent peak input for PBDEs during the 1990s. These results suggest that chemicals sometimes referred to as "emerging" (e.g., alkylphenols, triclocarban) have been present in the aquatic environment for several decades and are decreasing in concentration, whereas others (e.g., miconazole, triclosan) are increasing. PMID:24743956

  5. Microbial processes and organic priority substances in marine coastal sediments (Adriatic Sea, Italy)

    NASA Astrophysics Data System (ADS)

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Dellisanti, Walter; Lungarini, Silvia; Miserocchi, Stefano; Patrolecco, Luisa; Langone, Leonardo

    2015-04-01

    PERSEUS EU FP7 Project aims to identify the interacting patterns of natural and human-derived pressures to assess their impact on marine ecosystems and, using the objectives and principles of the Marine Strategy Framework Directive (MSFD) as a vehicle, to design an effective and innovative research governance framework based on sound scientific knowledge. In the frame of this Project (subtask 1.3.3 ADREX: Adriatic and Ionian Seas Experiment), monitoring surveys were conducted in the Adriatic Sea (Italy) in order to study the variation of structural and functional characteristics of native bacterial communities and the occurrence of selected classes of organic priority substances in sediments. The study area represents a good natural laboratory sensitive to climate variability and human pressure, owing to the semi-enclosed nature of the Adriatic Sea and to the increasing trend of human activities in the coastal regions. During the cruise ADRI-13 (November 2013) and ADRI-14 (October 2014) we sampled several coastal sites from the mouth of the Po River to the Otranto strait. Surface sediments were collected in all areas, while sediment cores were sampled in selected sites. Microbes associated with marine sediments play an important role in the C-flux being responsible for the transformation of organic detritus (autochthonous and allochthonous) into biomass. The sediment bacterial abundance was determined by epifluorescence microscopy and the rate of bacterial carbon production by measuring the 3H-leucine uptake rates. The community respiration rate was estimated by the measurement of the electron transport system (ETS) activity. The sediment contamination level was determined by measuring the concentration of contaminants included in the list of organic priority substances: PAHs, bisphenol A (BPA), alkylphenols (APs). The extraction/clean-up of PAHs, BPA and APs was performed by ultrasonic bath with the appropriate solvents, followed by analytical determination with

  6. An integrated approach to manage coastal ecosystems and prevent marine pollution effects

    NASA Astrophysics Data System (ADS)

    Marcelli, Marco; Bonamano, Simone; Carli, Filippo Maria; Giovacchini, Monica; Madonia, Alice; Mancini, Emanuele; Molino, Chiara; Piermattei, Viviana; Manfredi Frattarelli, Francesco

    2016-04-01

    This work focuses an integrated approach based on Sea-Use-Map (SUM), backed by a permanent monitoring system (C-CEMS-Civitavecchia Coastal Environmental Monitoring System). This tool supports the management of the marine coastal area, contributing substantially to ecosystem benefits evaluation and to minimize pollution impacts. Within the Blue Growth strategy, the protection of marine ecosystems is considered a priority for the sustainable growth of marine and maritime sectors. To face this issue, the European MSP and MSFD directives (2014/89/EU; 2008/56/EC) strongly promote the adoption of an ecosystem-based approach, paying particular attention to the support of monitoring networks that use L-TER (long-term ecological research) observations and integrate multi-disciplinary data sets. Although not largely used in Europe yet, the Environmental Sensitivity Index (ESI), developed in 1979 by NOAA (and promoted by IMO in 2010), can be considered an excellent example of ecosystem-based approach to reduce the environmental consequences of an oil spill event in a coastal area. SUM is an ecosystem oriented cartographic tool specifically designed to support the sustainable management of the coastal areas, such as the selection of the best sites for the introduction of new uses or the identification of the coastal areas subjected to potential impacts. It also enables a rapid evaluation of the benefits produced by marine areas as well as of their anthropogenic disturbance. SUM integrates C-CEMS dataset, geomorphological and ecological features and knowledge on the coastal and maritime space uses. The SUM appliance allowed to obtain relevant operational results in the Civitavecchia coastal area (Latium, Italy), characterized by high variability of marine and coastal environments, historical heritage and affected by the presence of a big harbour, relevant industrial infrastructures, and touristic features. In particular, the valuation of marine ecosystem services based on

  7. Perceptions of risk among households in two Australian coastal communities

    SciTech Connect

    Elrick-Barr, Carmen E.; Smith, Timothy F.; Thomsen, Dana C.; Preston, Benjamin L.

    2015-04-20

    There is limited knowledge of risk perceptions in coastal communities despite their vulnerability to a range of risks including the impacts of climate change. A survey of 400 households in two Australian coastal communities, combined with semi-structured interviews, provides insight into household perceptions of the relative importance of climatic and non-climatic risks and the subsequent risk priorities that may inform household adaptive action. In contrast to previous research, the results demonstrated that geographic location and household characteristics might not affect perceptions of vulnerability to environmental hazards. However, past experience was a significant influence, raising the priority of environmental concerns. Overall, the results highlight the priority concerns of coastal households (from finance, to health and environment) and suggest to increase the profile of climate issues in coastal communities climate change strategies need to better demonstrate links between climate vulnerability and other household concerns. Moreover, promoting generic capacities in isolation from understanding the context in which households construe climate risks is unlikely to yield the changes required to decrease the vulnerability of coastal communities.

  8. Perceptions of risk among households in two Australian coastal communities

    DOE PAGESBeta

    Elrick-Barr, Carmen E.; Smith, Timothy F.; Thomsen, Dana C.; Preston, Benjamin L.

    2015-04-20

    There is limited knowledge of risk perceptions in coastal communities despite their vulnerability to a range of risks including the impacts of climate change. A survey of 400 households in two Australian coastal communities, combined with semi-structured interviews, provides insight into household perceptions of the relative importance of climatic and non-climatic risks and the subsequent risk priorities that may inform household adaptive action. In contrast to previous research, the results demonstrated that geographic location and household characteristics might not affect perceptions of vulnerability to environmental hazards. However, past experience was a significant influence, raising the priority of environmental concerns. Overall,more » the results highlight the priority concerns of coastal households (from finance, to health and environment) and suggest to increase the profile of climate issues in coastal communities climate change strategies need to better demonstrate links between climate vulnerability and other household concerns. Moreover, promoting generic capacities in isolation from understanding the context in which households construe climate risks is unlikely to yield the changes required to decrease the vulnerability of coastal communities.« less

  9. Best Practices in Marine and Coastal Science Education: Lessons Learned from a National Estuarine Research Reserve.

    ERIC Educational Resources Information Center

    McDonnell, Janice D.

    The Jacques Cousteau National Estuarine Research Reserve (JC NERR) program has successfully capitalized on human fascination with the ocean by using the marine environment to develop interest and capability in science. The Institute of Marine & Coastal Sciences, as the managing agency of the JC NERR, makes its faculty, staff resources, and…

  10. Vulnerability of Coastal Communities from Storm Surge and Flood Disasters

    PubMed Central

    Bathi, Jejal Reddy; Das, Himangshu S.

    2016-01-01

    Disasters in the form of coastal storms and hurricanes can be very destructive. Preparing for anticipated effects of such disasters can help reduce the public health and economic burden. Identifying vulnerable population groups can help prioritize resources for the most needed communities. This paper presents a quantitative framework for vulnerability measurement that incorporates both socioeconomic and flood inundation vulnerability. The approach is demonstrated for three coastal communities in Mississippi with census tracts being the study unit. The vulnerability results are illustrated as thematic maps for easy usage by planners and emergency responders to assist in prioritizing their actions to vulnerable populations during storm surge and flood disasters. PMID:26907313

  11. Vulnerability of Coastal Communities from Storm Surge and Flood Disasters.

    PubMed

    Bathi, Jejal Reddy; Das, Himangshu S

    2016-02-01

    Disasters in the form of coastal storms and hurricanes can be very destructive. Preparing for anticipated effects of such disasters can help reduce the public health and economic burden. Identifying vulnerable population groups can help prioritize resources for the most needed communities. This paper presents a quantitative framework for vulnerability measurement that incorporates both socioeconomic and flood inundation vulnerability. The approach is demonstrated for three coastal communities in Mississippi with census tracts being the study unit. The vulnerability results are illustrated as thematic maps for easy usage by planners and emergency responders to assist in prioritizing their actions to vulnerable populations during storm surge and flood disasters. PMID:26907313

  12. Coupling of fog and marine microbial content in the near-shore coastal environment

    NASA Astrophysics Data System (ADS)

    Dueker, M. E.; O'Mullan, G. D.; Weathers, K. C.; Juhl, A. R.; Uriarte, M.

    2011-09-01

    Microbes in the atmosphere (microbial aerosols) play an important role in climate and provide an ecological and biogeochemical connection between oceanic, atmospheric, and terrestrial environments. However, the sources and environmental factors controlling the concentration, diversity, transport, and viability of microbial aerosols are poorly understood. This study examined culturable microbial aerosols from a coastal environment in Maine (USA) and determined the effect of onshore wind speed and fog presence on deposition rate, source, and community composition. During fog events with low onshore winds (< 2 m s-1) the near-shore deposition of microbial aerosols (microbial fallout) decreased with increasing wind speeds, whereas microbial fallout rates under clear conditions and comparable low wind speeds showed no wind speed dependence. Mean aerosol particle size also increased with onshore wind speed when fog was present, indicating increased shoreward transport of larger aerosol particles. 16S rRNA sequencing of culturable ocean surface bacteria and microbial aerosols deposited onshore resulted in the detection of 31 bacterial genera, with 5 dominant genera (Vibrio, Bacillus, Pseudoalteromonas, Psychrobacter, Salinibacterium) making up 66% of all sequences. The microbial aerosol sequence library, as with libraries found in other coastal/marine aerosol studies, was dominated at the phylum level by Proteobacteria, with additional representation from Firmicutes, Actinobacteria and Bacteroidetes. Seventy-five percent of the viable microbial aerosols falling out under foggy conditions were most similar to GenBank-published sequences detected in marine environments. Using a 97% similarity cut-off, ocean surface and fog sequence libraries shared eight operational taxonomic units (OTU's) in total, three of which were the most dominant OTU's in the library, representing large fractions of the ocean (28%) and fog (21%) libraries. The fog and ocean surface libraries were

  13. Coupling of fog and marine microbial content in the near-shore coastal environment

    NASA Astrophysics Data System (ADS)

    Dueker, M. E.; O'Mullan, G. D.; Weathers, K. C.; Juhl, A. R.; Uriarte, M.

    2012-02-01

    Microbes in the atmosphere (microbial aerosols) play an important role in climate and provide an ecological and biogeochemical connection between oceanic, atmospheric, and terrestrial environments. However, the sources and environmental factors controlling the concentration, diversity, transport, and viability of microbial aerosols are poorly understood. This study examined culturable microbial aerosols from a coastal environment in Maine (USA) and determined the effect of onshore wind speed and fog presence on deposition rate, source, and community composition. During fog events with low onshore winds (<2 m s-1) the near-shore deposition of microbial aerosols (microbial fallout) decreased with increasing wind speeds, whereas microbial fallout rates under clear conditions and comparable low wind speeds showed no wind speed dependence. Mean aerosol particle size also increased with onshore wind speed when fog was present, indicating increased shoreward transport of larger aerosol particles. 16S rRNA sequencing of culturable ocean surface bacteria and microbial aerosols deposited onshore resulted in the detection of 31 bacterial genera, with 5 dominant genera (Vibrio, Bacillus, Pseudoalteromonas, Psychrobacter, Salinibacterium) making up 66 % of all sequences. The sequence library from microbial aerosol isolates, as with libraries found in other coastal/marine aerosol studies, was dominated at the phylum level by Proteobacteria, with additional representation from Firmicutes, Actinobacteria and Bacteroidetes. Seventy-five percent of the culturable microbial aerosols falling out under foggy conditions were most similar to GenBank-published sequences detected in marine environments. Using a 97 % similarity cut-off, sequence libraries from ocean surface and fog isolates shared eight operational taxonomic units (OTU's) in total, three of which were the most dominant OTU's in the library, representing large fractions of the ocean (28 %) and fog (21 %) libraries. The fog

  14. Anthropogenic marine debris in the coastal environment: a multi-year comparison between coastal waters and local shores.

    PubMed

    Thiel, M; Hinojosa, I A; Miranda, L; Pantoja, J F; Rivadeneira, M M; Vásquez, N

    2013-06-15

    Anthropogenic marine debris (AMD) is frequently studied on sandy beaches and occasionally in coastal waters, but links between these two environments have rarely been studied. High densities of AMD were found in coastal waters and on local shores of a large bay system in northern-central Chile. No seasonal pattern in AMD densities was found, but there was a trend of increasing densities over the entire study period. While plastics and Styrofoam were the most common types of AMD both on shores and in coastal waters, AMD composition differed slightly between the two environments. The results suggest that AMD from coastal waters are deposited on local shores, which over time accumulate all types of AMD. The types and the very low percentages of AMD with epibionts point to mostly local sources. Based on these results, it can be concluded that a reduction of AMD will require local solutions. PMID:23507233

  15. Interactions of aquaculture, marine coastal ecosystems, and near-shore waters: A bibliography. Bibliographies and literature of agriculture (Final)

    SciTech Connect

    Hanfman, D.T.; Coleman, D.E.; Tibbitt, S.J.

    1991-01-01

    The bibliography contains selected literature citations on the interactions of aquaculture and marine coastal ecosystems. The focus is on aquaculture effluents and their impact on marine coastal ecosystems and waterways as well as the impact of pollutants on aquaculture development. Factors affecting these issues include domestic and industrial wastes, thermal discharges, acid rain, heavy metals, oil spills, and microbial contamination of marine waters and aquatic species. Coastal zone management, environmenal impact of aquaculture, and water quality issues are also included in the bibliography.

  16. Dynamics of size-fractionated bacterial communities during the coastal dispersal of treated municipal effluents.

    PubMed

    Liu, SiGuang; Luo, YuanRong; Huang, LingFeng

    2016-07-01

    Everyday huge amount of treated municipal wastewater is discharged into the coastal seawater. However, microbial biomarkers for the municipal effluent instead of the fecal species from raw sewage have not been proposed. Meanwhile, bacterial taxa for degrading large amounts of input organics have not been fully understood. In this study, raw effluent and serial water samples were collected from the coastal dispersal of two sewage treatment plants in Xiamen, China. Free-living (FL) and particle-associated (PA) bacterial communities were analyzed via high-throughput sequencing of 16S rRNA gene and quantitative PCR to measure bacterial abundance. The PA bacterial communities in our samples exhibited higher cell abundance, alpha diversity, and population dynamics than the FL bacterial communities, which supports greater environmental significance of the PA bacterial communities. Two non-fecal but typical genera in activated sludge, Zoogloea and Dechloromonas, exhibited decreased but readily detectable abundance along the effluent dispersal distance. Furthermore, the dominating microbial species near the outfalls were related to well-known marine indigenous taxa, such as SAR11 clade, OM60 clade, low-GC Actinobacteria, and unclassified Flavobacteriales, as well as the less understood taxa like Pseudohongiella and Microbacteriaceae. It is interesting that these taxa exhibited two types of correlation patterns with COD concentration. Our study suggested Zoogloea as a potential indicator of municipal effluents and also proposed potential utilizers of residual effluent COD in marine environments. PMID:26944731

  17. High tolerance of microzooplankton to ocean acidification in an Arctic coastal plankton community

    NASA Astrophysics Data System (ADS)

    Aberle, N.; Schulz, K. G.; Stuhr, A.; Malzahn, A. M.; Ludwig, A.; Riebesell, U.

    2013-03-01

    Impacts of ocean acidification (OA) on marine biota have been observed in a wide range of marine systems. We used a mesocosm approach to study the response of a high Arctic coastal microzooplankton community during the post-bloom period in Kongsfjorden (Svalbard) to direct and indirect effects of high pCO2/low pH. We found almost no direct effects of OA on microzooplankton composition and diversity. Both the relative shares of ciliates and heterotrophic dinoflagellates as well as the taxonomic composition of microzooplankton remained unaffected by changes in pCO2/pH. Although the different pCO2 treatments affected food availability and phytoplankton composition, no indirect effects (e.g. on the total carrying capacity and phenology of microzooplankton) could be observed. Our data point to a high tolerance of this Arctic microzooplankton community to changes in pCO2/pH. Future studies on the impact of OA on plankton communities should include microzooplankton in order to test whether the observed low sensitivity to OA is typical for coastal communities where changes in seawater pH occur frequently.

  18. High tolerance of protozooplankton to ocean acidification in an Arctic coastal plankton community

    NASA Astrophysics Data System (ADS)

    Aberle, N.; Schulz, K. G.; Stuhr, A.; Ludwig, A.; Riebesell, U.

    2012-09-01

    Impacts of ocean acidification (OA) on marine biota have been observed in a wide range of marine systems. We used a mesocosm approach to study the response of a high Arctic coastal protozooplankton (PZP in the following) community during the post-bloom period in the Kongsfjorden (Svalbard) to direct and indirect effects of high pCO2/low pH. We found almost no direct effects of OA on PZP composition and diversity. Both, the relative shares of ciliates and heterotrophic dinoflagellates as well as the taxonomic composition of protozoans remained unaffected by changes in pCO2/pH. The different pCO2 treatments did not have any effect on food availability and phytoplankton composition and thus no indirect effects e.g. on the total carrying capacity and phenology of PZP could be observed. Our data points at a high tolerance of this Arctic PZP community to changes in pCO2/pH. Future studies on the impact of OA on plankton communities should include PZP in order to test whether the observed low sensitivity of protozoans to OA is typical for coastal communities where changes in seawater pH occur frequently.

  19. Photochemical Control of Organic Carbon Availability to Coastal Microbial Communities

    NASA Astrophysics Data System (ADS)

    Miller, W. L.; Reader, H. E.; Powers, L. C.

    2010-12-01

    Chromophoric dissolved organic matter (CDOM) is the fraction of dissolved organic matter that absorbs solar radiation. In terrestrially influenced locations high concentrations of CDOM help to shield the biological community from harmful UV radiation. Although CDOM is largely biologically refractory in nature, photochemistry has the potential to transform biologically refractory carbon into more biolabile forms. Studies suggest that in marine systems, the effect of UVR on carbon availability and subsequent bacterial production varies widely, ranging from a +200% increase to a -75% decrease (Mopper and Kieber, 2002). Evidence suggests that the largely negative or “no-effect” samples are from oligotrophic waters and that terrestrially influenced samples experience a more positive effect on the biolability of carbon after irradiation. To quantify the effects of photochemistry on the biolability of DOC in a terrestrially influenced system, a quarterly sampling effort was undertaken at three estuarine locations off the coast of Georgia, USA for a total of 14 apparent quantum yield (AQY) determinations. Large expanses of salt marsh on the coast of Georgia, create a large non-point source of DOC to the coastal ocean. Sapelo Sound, the northernmost sampling site, is dominated by offshore waters and receives little to no freshwater input throughout the year. Altamaha Sound, the southernmost sampling site, is strongly influenced by the Altamaha River, which drains the largest watershed in the state of Georgia. Doboy Sound, situated between these two sites, is largely marine dominated but is influenced by fresh water during periods of high river flow. Each sample was 0.2um filter-sterilized before irradiation in a Suntest Solar Simulator; using optical filters to create 7 distinct radiance spectra in 15 samples for determination of AQY spectra for release of biolabile DOC. Irradiated samples were consequently inoculated with the natural microbial community concentrated

  20. A Robot for Coastal Marine Studies Under Hostile Conditions

    NASA Astrophysics Data System (ADS)

    Consi, T. R.

    2012-12-01

    Robots have long been used for scientific exploration of extremely remote environments such as planetary surfaces and the deep ocean. In addition to these physically remote places, there are many environments that are transiently remote in the sense that they are inaccessible to humans for a period of time. Coastal marine environments fall into this category. While quite accessible (and enjoyable) during good weather, the coast can become as remote as the moon when it is impacted by severe storms or hurricanes. For near shore and shallow water marine science unmanned underwater ground vehicles (UUGVs) are the robots of choice for reliable access under a variety of conditions. Ground vehicles are inherently amphibious being able to operate in complex coastal environments that can range from the completely dry beach, through the transiently wet swash zone, into the surf zone and beyond. During storms, UUGVs provide stable sensor platforms resistant to waves and currents by virtue of being locked to the substrate. In such situations free-swimming robots would be swept away. Mobility during storms enables a UUGV to orient itself to optimally resist forces that would dislodge fixed, moored platforms. Mobility can also enable a UUGV to either avoid burial, or unbury itself after a storm. Finally, the ability to submerge provides a great advantage over buoys and surface vehicles which would be smashed by heavy wave action. We have developed a prototype UUGV to enable new science in the surf zone and other shallow water environments. Named LMAR for Lake Michigan Amphibious Robot, it is designed to be deployed from the dry beach, enter the water to perform a near-shore survey, and return to the deployment point for recovery. The body of the robot is a heavy flattened box (base dimensions: 1.07 m X 1.10 m X .393 m, dry weight: ~127 kg, displacement: ~ 45 kg) with a low center of gravity for stability and robust construction to withstand waves and currents. It is topped by a

  1. Suspended marine particulate proteins in coastal and oligotrophic waters

    NASA Astrophysics Data System (ADS)

    Bridoux, Maxime C.; Neibauer, Jaqui; Ingalls, Anitra E.; Nunn, Brook L.; Keil, Richard G.

    2015-03-01

    Metaproteomic analyses were performed on suspended sediments collected in one coastal environment (Washington margin, Pacific Ocean, n = 5) and two oligotrophic environments (Atlantic Ocean near BATS, n = 5, and Pacific Ocean near HOTS, n = 5). Using a database of 2.3 million marine proteins developed using the NCBI database, 443 unique peptides were detected from which 363 unique proteins were identified. Samples from the euphotic zone contained on average 2-3x more identifiable proteins than deeper waters (150-1500 m) and these proteins were predominately from photosynthetic organisms. Diatom peptides dominate the spectra of the Washington margin while peptides from cyanobacteria, such as Synechococcus sp. dominated the spectra of both oligotrophic sites. Despite differences in the exact proteins identified at each location, there is good agreement for protein function and cellular location. Proteins in surface waters code for a variety of cellular functions including photosynthesis (24% of detected proteins), energy production (10%), membrane production (9%) and genetic coding and reading (9%), and are split 60-40 between membrane proteins and intracellular cytoplasmic proteins. Sargasso Sea surface waters contain a suite of peptides consistent with proteins involved in circadian rhythms that promote both C and N fixation at night. At depth in the Sargasso Sea, both muscle-derived myosin protein and the muscle-hydrolyzing proteases deseasin MCP-01 and metalloprotease Mcp02 from γ-proteobacteria were observed. Deeper waters contain peptides predominately sourced from γ-proteobacteria (37% of detected proteins) and α-proteobacteria (26%), although peptides from membrane and photosynthetic proteins attributable to phytoplankton were still observed (13%). Relative to surface values, detection frequencies for bacterial membrane proteins and extracellular enzymes rose from 9 to 16 and 2 to 4% respectively below the thermocline and the overall balance between

  2. Engaging a community towards marine cyberinfrastructure: Lessons Learned from The Marine Metadata Interoperability initiative

    NASA Astrophysics Data System (ADS)

    Galbraith, N. R.; Graybeal, J.; Bermudez, L. E.; Wright, D.

    2005-12-01

    The Marine Metadata Interoperability (MMI) initiative promotes the exchange, integration and use of marine data through enhanced data publishing, discovery, documentation and accessibility. The project, operating since late 2004, presents several cultural organizational challenges because of the diversity of participants: scientists, technical experts, and data managers from around the world, all working in organizations with different corporate cultures, funding structures, and systems of decision-making. MMI provides educational resources at several levels. For instance, short introductions to metadata concepts are available, as well as guides and "cookbooks" for the quick and efficient preparation of marine metadata. For those who are building major marine data systems, including ocean-observing capabilities, there are training materials, marine metadata content examples, and resources for mapping elements between different metadata standards. The MMI also provides examples of good metadata practices in existing data systems, including the EU's Marine XML project, and functioning ocean/coastal clearinghouses and atlases developed by MMI team members. Communication tools that help build community: 1) Website, used to introduce the initiative to new visitors, and to provide in-depth guidance and resources to members and visitors. The site is built using Plone, an open source web content management system. Plone allows the site to serve as a wiki, to which every user can contribute material. This keeps the membership engaged and spreads the responsibility for the tasks of updating and expanding the site. 2) Email-lists, to engage the broad ocean sciences community. The discussion forums "news," "ask," and "site-help" are available for receiving regular updates on MMI activities, seeking advice or support on projects and standards, or for assistance with using the MMI site. Internal email lists are provided for the Technical Team, the Steering Committee and

  3. European Community`s program in marine resources development

    SciTech Connect

    Lenoble, J.P.; Jarmache, E.

    1995-12-01

    The European Community launched already several research program in the different fields of social and industrial activities. The Fourth Framework Programme is divided into 4 main activities comporting a total of 18 programs. These programs are dealing with general topics as information and communication, industrial technologies, environment, life sciences and technologies, energy, transport and socioeconomic research. One line is devoted to marine sciences and technology, but offshore activities could also be included in the other topics as offshore oil and gas in energy, ship building and harbor in transport, aquaculture and fisheries in life sciences and technology, etc. In order to maintain a coherent approach toward offshore activities, the European maritime industries met intensively front 1991 to 1994 and recommended a series of proposal for Research and Development of marine resources. The methodology and content of these proposals is exposed.

  4. Phytoplankton community composition in nearshore coastal waters of Louisiana

    EPA Science Inventory

    Phytoplankton community compositions within near-shore coastal and estuarine waters of Louisiana were characterized by relative abundance, biovolume, and taxonomic identification to genus and species when possible. The range of total nitrogen was 0.5 to 1.3 mg L-1 and total phos...

  5. Marine wildlife entanglement: Assessing knowledge, attitudes, and relevant behaviour in the Australian community.

    PubMed

    Pearson, Elissa; Mellish, Sarah; Sanders, Ben; Litchfield, Carla

    2014-12-15

    Marine debris remains a global challenge, with significant impacts on wildlife. Despite this, there is a paucity of research examining public understanding about marine wildlife entanglement [MWE], particularly within an Australian context. The present study surveyed two hundred and thirteen participants across three coastal sites to assess familiarity with MWE and the effectiveness of a new community education initiative 'Seal the Loop' [STL]. Results revealed attitudes toward marine wildlife were very positive (M 40.5, SD 4.12); however 32% of participants were unable to correctly explain what MWE is and risks to wildlife were under-estimated. STL may be one method to enhance public understanding and engagement-if community familiarity with the program can be increased. For those aware of STL (<13% of the sample at the time of the study), findings revealed this was having a positive impact (e.g. learning something new, changed waste disposal behaviours). PMID:25455820

  6. Coastal oceanography sets the pace of rocky intertidal community dynamics

    PubMed Central

    Menge, B. A.; Lubchenco, J.; Bracken, M. E. S.; Chan, F.; Foley, M. M.; Freidenburg, T. L.; Gaines, S. D.; Hudson, G.; Krenz, C.; Leslie, H.; Menge, D. N. L.; Russell, R.; Webster, M. S.

    2003-01-01

    The structure of ecological communities reflects a tension among forces that alter populations. Marine ecologists previously emphasized control by locally operating forces (predation, competition, and disturbance), but newer studies suggest that inputs from large-scale oceanographically modulated subsidies (nutrients, particulates, and propagules) can strongly influence community structure and dynamics. On New Zealand rocky shores, the magnitude of such subsidies differs profoundly between contrasting oceanographic regimes. Community structure, and particularly the pace of community dynamics, differ dramatically between intermittent upwelling regimes compared with relatively persistent down-welling regimes. We suggest that subsidy rates are a key determinant of the intensity of species interactions, and thus of structure in marine systems, and perhaps also nonmarine communities. PMID:14512513

  7. Teacher's Activity Guide to Coastal Awareness. Marine Bulletin No. 23.

    ERIC Educational Resources Information Center

    Callaghan, Sara S.

    This teacher's guide was prepared for use with "Down Where the Water Is: A Coastal Awareness Activity Book," as part of the Rhode Island Coastal Resources Management Council's public education program. Contained are instructions on the use of the Activity Book, page-by-page, with glossaries, activity ideas, resources, places to visit, and notes…

  8. Regulatory Assistance, Stakeholder Outreach, and Coastal and Marine Spatial Planning Activities in Support of Marine and Hydrokinetic Energy Deployment

    SciTech Connect

    Geerlofs, Simon H.; Copping, Andrea E.; Van Cleve, Frances B.; Blake, Kara M.; Hanna, Luke A.

    2011-09-30

    This fiscal year 2011 progress report summarizes activities carried out under DOE Water Power Task 2.1.7, Permitting and Planning. Activities under Task 2.1.7 address the concerns of a wide range of stakeholders with an interest in the development of the marine and hydrokinetic (MHK) energy industry, including regulatory and resource management agencies, tribes, nongovernmental organizations, and industry. Objectives for Task 2.1.7 are the following: • to work with stakeholders to streamline the MHK regulatory permitting process • to work with stakeholders to gather information on needs and priorities for environmental assessment of MHK development • to communicate research findings and directions to the MHK industry and stakeholders • to engage in spatial planning processes in order to further the development of the MHK industry. These objectives are met through three subtasks, each of which is described in this report: • 2.1.7.1—Regulatory Assistance • 2.1.7.2—Stakeholder Outreach • 2.1.7.3—Coastal and Marine Spatial Planning. As MHK industry partners work with the regulatory community and stakeholders to plan, site, permit, and license MHK technologies, they have an interest in a predictable, efficient, and transparent process. Stakeholders and regulators have an interest in processes that result in sustainable use of ocean space with minimal effects to existing ocean users. Both stakeholders and regulators have an interest in avoiding legal challenges by meeting the intent of federal, state, and local laws that govern siting and operation of MHK technologies. The intention of work under Task 2.1.7 is to understand and work to address these varied interests, reduce conflict, identify efficiencies, and ultimately reduce the regulatory costs, time, and potential environmental impacts associated with developing, siting, permitting, and deploying MHK systems.

  9. Complete oxidation of linear alkylbenzene sulfonate by bacterial communities selected from coastal seawater.

    PubMed Central

    Sigoillot, J C; Nguyen, M H

    1992-01-01

    Anionic surfactants, especially alkylbenzene sulfonates, are discharged into marine areas in great quantities. Because of their poor biodegradability, linear alkylbenzene sulfonates accumulate in seawater and sediments. Bacterial communities that can degrade surfactants were selected from coastal seawater contaminated by urban sewage. All the isolated strains consisted of gram-negative, strictly aerobic rods or helical bacteria. Some of these, though isolated from coastal seawater, did not need sodium for growth and appeared to be related to the genera Alcaligenes and Pseudomonas. Complete surfactant biodegradation was achieved by three important steps: terminal oxidation of the alkyl chain, desulfonation, and aromatic-ring cleavage. Only a few strains were able to carry out the first two steps. The aromatic ring was then cleaved by other strains that possess very specific enzymatic activities. Finally, a number of strains grew on short acids that were end-of-metabolism products of the others. PMID:1599249

  10. Diagenesis of conifer needles in a coastal marine environment

    NASA Astrophysics Data System (ADS)

    Hedges, John I.; Weliky, K.

    1989-10-01

    Physically intact fir, hemlock and cedar needles were isolated from different horizons of a sediment core from a coastal marine bay (Dabob Bay, Washington State, U.S.A.) and from nearby trees and forest litter. Green fir, hemlock and cedar needles were all characterized by glucose-rich aldose mixtures (~30% of tissue carbon), the production of vanillyl and cinnamyl CuO-derived phenols (~8% of tissue carbon) and the presence of both pinitol and myo-inositol (1-2% of tissue carbon). Needles from forest litter were enriched in lignin phenols and non-glucose aldoses and depleted in glucose and cyclitols. The sediment core contained an average of 10 mg/1 of physically intact fir, hemlock and cedar needles, which occurred in similar relative abundances and accounted for less than 1% of the total nonwoody gymnosperm tissue. Compared to the green and litter counterparts, all sedimentary needles were greatly depleted in cyclitols, glucose and p-coumaric acid and enriched in vanillyl phenol precursors. The degree of elevation of vanillyl phenol yield from the degraded needles was used to estimate minimal carbon losses from the samples, which ranged from near 40% for needle litter to almost 70% for the deepest (~100 years old) sedimentary fir/hemlock samples. Although downcore increases in carbon loss and refractory organic components indicated in situ diagenesis, the bulk of overall degradation occurred either on land or during the first 10-20 years after deposition. Atomic C/N ratios of degraded needles were lower than for green counterparts, but nitrogen was lost overall. These relative changes indicate the following stability series: vanillyl phenols > N > ferulic acid, p-hydroxy phenols, most aldoses and bulk tissue > glucose and p-coumaric acid > cyclitols (near 100% loss). Vanillic acid to vanillin ratios, (Ad/Al)v, of the green fir and hemlock needles were unusually high (0.36-0.38) and decreased downcore. Diagenesis also decreased the cinnamyl/vanillyl phenol ratio

  11. Use of fish parasite species richness indices in analyzing anthropogenically impacted coastal marine ecosystems

    NASA Astrophysics Data System (ADS)

    Dzikowski, R.; Paperna, I.; Diamant, A.

    2003-10-01

    species richness for a given habitat, in the characterization of communities of differentially impacted coastal marine ecosystems.

  12. A Guidebook to Help Coastal Sumatran Communities Prepare for Tsunamis

    NASA Astrophysics Data System (ADS)

    Samant, L.; Tobin, L. T.; Tucker, B. E.

    2007-12-01

    One way to save lives in future tsunamis in coastal Sumatran communities - where more than one million people live and where tsunamis can strike less than one half hour after the triggering earthquake - is to help these communities prepare themselves. To this end, GeoHazards International (GHI) has developed, with a team of advisors from the fields of earth science, civil engineering, emergency response management and social science, a tsunami preparedness guidebook that summarizes state-of-the-art research and worldwide experience in community tsunami preparedness. This guidebook (available at no cost on www.geohaz.org) introduces essential information about tsunamis, tsunami risk mapping, evacuation planning, community education, tsunami warning systems, and the reduction of damage that tsunamis can cause. It describes how to plan and conduct effective tsunami safety programs. Particular emphasis is placed on methods to evacuate quickly and safely all areas that could be flooded. Each section of the guidebook points to sources that provide supplementary, detailed information that may be important to particular communities. The guidebook is aimed at any person - a concerned citizen, government official, business leader, or member of a community organization - who is willing to become an advocate for local tsunami safety. Scientific expertise is not needed. GHI now seeks assistance in distributing this guidebook and in working with grassroots and international organizations to help Sumatran coastal communities use it to prepare for the next tsunami.

  13. Advanced geological modeling of coastal-marine cassiterite placers based on data on deposits in Russia'S Eastern Arctic Region

    NASA Astrophysics Data System (ADS)

    Lalomov, A. V.; Tabolich, S. E.; Chefranov, R. M.

    2016-03-01

    A mathematical model of coastal-marine tin placers formed in the alongshore drift flow is developed using the mass balance method. The physical meaning of the coefficients included in the model is considered. Coastal-marine placers are quantitatively estimated. The simulation adequacy is confirmed by the data on coastal-marine tin-bearing placer deposits at the Pevek ore cluster (Chaun Bay, East Siberian Sea). We suggest that the obtained equations be used for surveying and exploration. Identified patterns are used to estimate the tin placer potential in one of the coastal areas in the Eastern Arctic Basin.

  14. Coastal Resilience: Using interactive decision support to address the needs of natural and human communities in Long Island Sound, USA

    NASA Astrophysics Data System (ADS)

    Gilmer, B.; Whelchel, A.; Newkirk, S.; Beck, M.; Shepard, C.; Ferdana, Z.

    2010-12-01

    Coastal Resilience (www.coastalresilience.org) is an ecosystem-based, coastal and marine spatial planning framework and web mapping application that illustrates ecological, socioeconomic, and coastal hazards information in Long Island Sound (New York and Connecticut), USA. Much of Long Island Sound’s private property is only inches above sea level, placing millions of dollars in public and private funds at risk to rising sea levels and other coastal hazards. These impacts also threaten wetlands and other coastal ecosystems that provide habitat, natural buffers to storms, and other ecosystem services. Despite a growing awareness of global climate change, local decision makers still lack the tools to examine different management objectives as sea levels rise and coastal hazards increase. The Coastal Resilience project provides tools and information to better inform decision-making with a primary goal of identifying vulnerable human and natural communities, while illustrating the important role that ecosystems will play in the face of sea level rise and increased storm intensity. This study focuses on The Nature Conservancy’s use of innovative spatial analysis techniques and community engagement to identify and plan for the protection of vulnerable coastal communities and ecosystems, natural resource migration, and economic risk. This work is intended to help identify ecosystem based adaptation solutions in the face of global climate change. The Nature Conservancy, working with multiple partners such as the NASA Goddard Institute for Space Studies and NOAA’s Coastal Services Center, deliver this information via the internet to help local decision makers keep the environment and public safety in mind.

  15. Studies of the DOM aqueous extracts from coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Sakellariadou, F.

    2012-04-01

    Dissolved organic matter (DOM) represents a major exchangeable organic pool playing an outstanding role in the ocean carbon cycle. It has a complex chemical structure made up of a wide range of organic molecules. The composition of DOM depends on the sources proximity and the exposure to any sort of degradation mechanism. The coloured (or chromophoric) dissolved organic matter (CDOM), representing the optically active fraction of DOM, consists of aromatic rings able to absorb light in the visible and UV regions (Kirk, 1994) and fluorophoric molecules that emit light. The main fluorophoric moieties of CDOM are humic material with a blue fluorescence and protein material with an ultraviolet (UV) fluorescence (Mopper and Schultz, 1993). Dissolved organic matter interacts with pollutants either by enhancing their bioavailability or by influencing their transportation to the soluble phase. In addition, DOM affects the remineralisation of carbon and its preservation in marine sediments. Referring to its origin, it can be terrestrial, freshwater or marine one. Fluorescence spectroscopy is a technique widely applied for the identification and characterization of organic matter, being fast, simple, non-destructive and sensitive. In addition, the fluorescence analysis for the physico-chemical characterization of organic matter requires a small amount of aqueous sample at a low concentration, in comparison with the large sample volumes needed for conventional techniques. At the present study coastal sediment samples were collected from Messiniakos gulf in the south western Peloponnese in South Greece. Messiniakos gulf has a seabed dominated by very abrupt inclinations reaching depths of more than 1000m. All samples, according to their grain size, are classified as fine clayey silt. Dissolved organic matter was extracted under gentle extraction conditions (4 mM CaCl2 solution). The various classes of organic components present at the DOM aqueous extracts were characterised by

  16. Variability in bacterial community structure during upwelling in the coastal ocean

    USGS Publications Warehouse

    Kerkhof, L.J.; Voytek, M.A.; Sherrell, Robert M.; Millie, D.; Schofield, O.

    1999-01-01

    Over the last 30 years, investigations at the community level of marine bacteria and phytoplankton populations suggest they are tightly coupled. However, traditional oceanographic approaches cannot assess whether associations between specific bacteria and phytoplankton exist. Recently, molecular based approaches have been implemented to characterize specific members of different marine bacterial communities. Yet, few molecular-based studies have examined coastal upwelling situations. This is important since upwelling systems provide a unique opportunity for analyzing the association between specific bacteria and specific phytoplankton in the ocean. It is widely believed that upwelling can lead to changes in phytoplankton populations (blooms). Thus, if specific associations exist, we would expect to observe changes in the bacterial population triggered by the bloom. In this paper, we present preliminary data from coastal waters off New Jersey that confirm a shift in bacterial communities during a 1995 upwelling event recorded at a long-term earth observatory (LEO-15) in the Mid-Atlantic Bight. Using PCR amplification and cloning, specific bacterial 16S ribosomal RNA sequences were found which were present in upwelling samples during a phytoplankton bloom, but were not detected in non-bloom samples (surface seawater, offshore sites or sediment samples) collected at the same time or in the same area. These findings are consistent with the notion of specific associations between bacteria and phytoplankton in the ocean. However, further examination of episodic events, such as coastal upwelling, are needed to confirm the existence of specific associations. Additionally, experiments need to be performed to elucidate the mechanisms leading to the specific linkages between a group of bacteria and a group of phytoplankton.

  17. Assessing the Effect of Marine Reserves on Household Food Security in Kenyan Coral Reef Fishing Communities

    PubMed Central

    Darling, Emily S.

    2014-01-01

    Measuring the success or failure of natural resource management is a key challenge to evaluate the impact of conservation for ecological, economic and social outcomes. Marine reserves are a popular tool for managing coastal ecosystems and resources yet surprisingly few studies have quantified the social-economic impacts of marine reserves on food security despite the critical importance of this outcome for fisheries management in developing countries. Here, I conducted semi-structured household surveys with 113 women heads-of-households to investigate the influence of two old, well-enforced, no-take marine reserves on food security in four coastal fishing communities in Kenya, East Africa. Multi-model information-theoretic inference and matching methods found that marine reserves did not influence household food security, as measured by protein consumption, diet diversity and food coping strategies. Instead, food security was strongly influenced by fishing livelihoods and household wealth: fishing families and wealthier households were more food secure than non-fishing and poorer households. These findings highlight the importance of complex social and economic landscapes of livelihoods, urbanization, power and gender dynamics that can drive the outcomes of marine conservation and management. PMID:25422888

  18. Assessing the effect of marine reserves on household food security in Kenyan coral reef fishing communities.

    PubMed

    Darling, Emily S

    2014-01-01

    Measuring the success or failure of natural resource management is a key challenge to evaluate the impact of conservation for ecological, economic and social outcomes. Marine reserves are a popular tool for managing coastal ecosystems and resources yet surprisingly few studies have quantified the social-economic impacts of marine reserves on food security despite the critical importance of this outcome for fisheries management in developing countries. Here, I conducted semi-structured household surveys with 113 women heads-of-households to investigate the influence of two old, well-enforced, no-take marine reserves on food security in four coastal fishing communities in Kenya, East Africa. Multi-model information-theoretic inference and matching methods found that marine reserves did not influence household food security, as measured by protein consumption, diet diversity and food coping strategies. Instead, food security was strongly influenced by fishing livelihoods and household wealth: fishing families and wealthier households were more food secure than non-fishing and poorer households. These findings highlight the importance of complex social and economic landscapes of livelihoods, urbanization, power and gender dynamics that can drive the outcomes of marine conservation and management. PMID:25422888

  19. Decoding size distribution patterns in marine and transitional water phytoplankton: from community to species level.

    PubMed

    Roselli, Leonilde; Basset, Alberto

    2015-01-01

    Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons) and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape). We tested the hypothesis focusing on resource availability (nutrients and light) and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism's behavior which exploring patch resources in transitional and marine phytoplankton communities. PMID:25974052

  20. Decoding Size Distribution Patterns in Marine and Transitional Water Phytoplankton: From Community to Species Level

    PubMed Central

    Roselli, Leonilde; Basset, Alberto

    2015-01-01

    Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons) and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape). We tested the hypothesis focusing on resource availability (nutrients and light) and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism’s behavior which exploring patch resources in transitional and marine phytoplankton communities. PMID:25974052

  1. Passive Sampling and High Resolution Mass Spectrometry for Chemical Profiling of French Coastal Areas with a Focus on Marine Biotoxins.

    PubMed

    Zendong, Zita; Bertrand, Samuel; Herrenknecht, Christine; Abadie, Eric; Jauzein, Cécile; Lemée, Rodolphe; Gouriou, Jérémie; Amzil, Zouher; Hess, Philipp

    2016-08-16

    Passive samplers (solid phase adsorption toxin tracking: SPATT) are able to accumulate biotoxins produced by microalgae directly from seawater, thus providing useful information for monitoring of the marine environment. SPATTs containing 0.3, 3, and 10 g of resin were deployed at four different coastal areas in France and analyzed using liquid chromatography coupled to high resolution mass spectrometry. Quantitative targeted screening provided insights into toxin profiles and showed that toxin concentrations and profiles in SPATTs were dependent on the amount of resin used. Between the three amounts of resin tested, SPATTs containing 3 g of resin appeared to be the best compromise, which is consistent with the use of 3 g of resin in SPATTs by previous studies. MassHunter and Mass Profiler Professional softwares were used for data reprocessing and statistical analyses. A differential profiling approach was developed to investigate and compare the overall chemical diversity of dissolved substances in different coastal water bodies. Principal component analysis (PCA) allowed for spatial differentiation between areas. Similarly, SPATTs retrieved from the same location at early, medium, and late deployment periods were also differentiated by PCA, reflecting seasonal variations in chemical profiles and in the microalgal community. This study used an untargeted metabolomic approach for spatial and temporal differentiation of marine environmental chemical profiles using SPATTs, and we propose this approach as a step forward in the discovery of chemical markers of short- or long-term changes in the microbial community structure. PMID:27463836

  2. Marine microbial community dynamics and their ecological interpretation.

    PubMed

    Fuhrman, Jed A; Cram, Jacob A; Needham, David M

    2015-03-01

    Recent advances in studying the dynamics of marine microbial communities have shown that the composition of these communities follows predictable patterns and involves complex network interactions, which shed light on the underlying processes regulating these globally important organisms. Such 'holistic' (or organism- and system-based) studies of these communities complement popular reductionist, often culture-based, approaches for understanding organism function one gene or protein at a time. In this Review, we summarize our current understanding of marine microbial community dynamics at various scales, from hours to decades. We also explain how the data illustrate community resilience and seasonality, and reveal interactions among microorganisms. PMID:25659323

  3. Cabled observatories: Connecting coastal communities to local ocean data

    NASA Astrophysics Data System (ADS)

    Pelz, M.; Hoeberechts, M.; Brown, J. C. K.; McLean, M. A.; Ewing, N.; Moran, K.

    2015-12-01

    Coastal communities are facing a wide range of rapid changes due to anthropogenic and natural environmental influences. Communities are under pressure to adapt to effects of climate change, including altered shorelines, changes in availability of seafood, and in northern regions, changes to the extent, formation and break-up of land-fast and sea-ice. Access to up-to-date scientific data and basic climate literacy are essential tools to enable community members to make informed decisions about their own coast. Ocean Networks Canada (ONC) operates the world-leading NEPTUNE and VENUS cabled ocean observatories off the west coast of British Columbia (BC). ONC also operates smaller, coastal community observatories which provide data for both scientific and educational initiatives.The first Arctic community observatory, deployed in 2012, is located in Cambridge Bay, Nunavut. Real-time data flowing from the platform are collected by a range of instruments, including a conductivity-temperature-depth sensor (CTD), hydrophone, video camera, and an ice profiler. There is also a meteorological station and time lapse camera on the dock. Five additional community observatories are being installed over the next year along the coast of BC. Indigenous communities, including the Inuit population in Cambridge Bay and First Nations on BC's north and central coast, are key partners and collaborators of this initiative.Benefits to communities from cabled observatory ocean monitoring can only be achieved if the data collected are relevant to community members and contribute to research priorities identified within the community. The data must be easily accessible and complement existing environmental monitoring initiatives. Community members must possess knowledge and tools to analyze and interpret the data for their purposes. For these reasons, community involvement is critical to the project, including the design of user interfaces for data access, development of educational programs

  4. Buried marine-cut terraces and submerged marine-built terraces: The Carchuna-Calahonda coastal area (southeast Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Martinez-Martos, Manuel; Galindo-Zaldivar, Jesus; Lobo, Francisco José; Pedrera, Antonio; Ruano, Patricia; Lopez-Chicano, Manuel; Ortega-Sánchez, Miguel

    2016-07-01

    The Carchuna-Calahonda coastal area is located between the onshore Betic Cordillera and the Alboran Sea. Its onshore sector is formed by detrital sediments that cover a metamorphic basement mostly composed of marbles, contiguous to an offshore shelf setting. New onshore gravity data allow us to characterize the location of flat marine-cut terraces carved into the metamorphic bedrock, which are covered by detrital sediments. In addition, multibeam bathymetry data, 3.5 kHz and sparker reflection seismic profiles, reveal offshore flat features linked to marine terraces that are related with the onshore buried marine-cut terraces. Gravity data are newly used to detect marine-cut terraces covered by sediments, enhancing the integration of onshore and offshore data. The marine terraces are distinguished based on the relative sea-level trend (regressive versus transgressive) and on the dominant sedimentary regime (erosional versus depositional). These data help constrain the ages of the marine terraces younger than 150 ka, using available Late Quaternary sea-level curves. Although previous geodetic research suggests a rapid sinking of the Carchuna-Calahonda coast, the heights of the marine-cut terraces and depositional terraces are mainly driven by sea-level changes, not tectonics.

  5. The Marine Realms Information Bank family of digital libraries: access to free online information for coastal and marine science

    USGS Publications Warehouse

    Lightsom, Frances L.; Allwardt, Alan O.

    2007-01-01

    Searching the World Wide Web for reliable information about specific topics or locations can be frustrating: too many hits, too little relevance. A well-designed digital library, offering a carefully selected collection of online resources, is an attractive alternative to web search engines. The U.S. Geological Survey (USGS) provides three digital libraries for coastal and marine science to serve the needs of a diverse audience--scientists, public servants, educators, and the public.

  6. North Carolina Marine Education Manual, Unit Four: Coastal Beginnings.

    ERIC Educational Resources Information Center

    Mauldin, Lundie, Ed.; And Others

    Presented are simulations, puzzles, class discussions, crafts and other activities designed to introduce the past cultures of North Carolina's coastal peoples to elementary and secondary students. The manual is one of several produced by North Carolina teachers and university faculty under the "Man and the Seacoast" project with Sea Grant funding.…

  7. North Carolina Marine Education Manual, Unit Three: Coastal Ecology.

    ERIC Educational Resources Information Center

    Mauldin, Lundie; Frankenberg, Dirk

    Two dozen activities on the ecology of coastal areas, with special emphasis on North Carolina's coastline, comprise this manual for junior high school science teachers. Provided are a table correlating these lessons with state curriculum guidelines, and a summary of the unit's goals and behavioral objectives. Among the topics included are coastal…

  8. Commentary: Radioactive Wastes and Damage to Marine Communities

    ERIC Educational Resources Information Center

    Wallace, Bruce

    1974-01-01

    Discusses the effects of radioactive wastes on marine communities, with particular reference to the fitness of populations and the need for field and laboratory studies to provide evidence of ecological change. (JR)

  9. Temporal variations in abundance and composition of intact polar lipids in North Sea coastal marine water

    NASA Astrophysics Data System (ADS)

    Brandsma, J.; Hopmans, E. C.; Philippart, C. J. M.; Veldhuis, M. J. W.; Schouten, S.; Sinninghe Damsté, J. S.

    2011-09-01

    Temporal variations in the abundance and composition of intact polar lipids (IPLs) in North Sea coastal marine water were assessed over a one-year seasonal cycle, and compared with environmental parameters and the microbial community composition. Sulfoquinovosyldiacylglycerol (SQDG) was the most abundant IPL class, followed by phosphatidylcholine (PC), phosphatidylglycerol (PG) and diacylglyceryl-(N,N,N)-trimethylhomoserine (DGTS) in roughly equal concentrations, and smaller amounts of phosphatidylethanolamine (PE). Although the total concentrations of these IPL classes varied substantially throughout the year, the composition of the IPL pool remained remarkably constant. Statistical analysis yielded negative correlations between IPL concentrations and dissolved inorganic nutrient concentrations, but possible phosphorous limitation during the spring bloom did not result in changes in the overall planktonic IPL composition. Significant correlations between SQDG, PC, PG and DGTS concentrations and chlorophyll-a concentrations and algal abundances indicated that eukaryotic primary producers were the predominant source of IPLs at this site. However, whilst IPL concentrations in the water were closely tied to total algal abundances, the rapid succession of different algal groups blooming throughout the year did not result in major shifts in IPL composition. This shows that the most commonly occurring IPLs have limited chemotaxonomic potential, and highlights the need to use targeted assays of more specific biomarker IPLs.

  10. Megacities and large urban agglomerations in the coastal zone: interactions between atmosphere, land, and marine ecosystems.

    PubMed

    von Glasow, Roland; Jickells, Tim D; Baklanov, Alexander; Carmichael, Gregory R; Church, Tom M; Gallardo, Laura; Hughes, Claire; Kanakidou, Maria; Liss, Peter S; Mee, Laurence; Raine, Robin; Ramachandran, Purvaja; Ramesh, R; Sundseth, Kyrre; Tsunogai, Urumu; Uematsu, Mitsuo; Zhu, Tong

    2013-02-01

    Megacities are not only important drivers for socio-economic development but also sources of environmental challenges. Many megacities and large urban agglomerations are located in the coastal zone where land, atmosphere, and ocean meet, posing multiple environmental challenges which we consider here. The atmospheric flow around megacities is complicated by urban heat island effects and topographic flows and sea breezes and influences air pollution and human health. The outflow of polluted air over the ocean perturbs biogeochemical processes. Contaminant inputs can damage downstream coastal zone ecosystem function and resources including fisheries, induce harmful algal blooms and feedback to the atmosphere via marine emissions. The scale of influence of megacities in the coastal zone is hundreds to thousands of kilometers in the atmosphere and tens to hundreds of kilometers in the ocean. We list research needs to further our understanding of coastal megacities with the ultimate aim to improve their environmental management. PMID:23076973

  11. The impacts of tourism on coral reef conservation awareness and support in coastal communities in Belize

    NASA Astrophysics Data System (ADS)

    Diedrich, A.

    2007-12-01

    Marine recreational tourism is one of a number of threats to the Belize Barrier Reef but, conversely, represents both a motivation and source of resources for its conservation. The growth of tourism in Belize has resulted in the fact that many coastal communities are in varying stages of a socio-economic shift from dependence on fishing to dependence on tourism. In a nation becoming increasingly dependent on the health of its coral reef ecosystems for economic prosperity, a shift from extractive uses to their preservation is both necessary and logical. Through examining local perception data in five coastal communities in Belize, each attracting different levels of coral reef related tourism, this analysis is intended to explore the relationship between tourism development and local coral reef conservation awareness and support. The results of the analysis show a positive correlation between tourism development and coral reef conservation awareness and support in the study communities. The results also show a positive correlation between tourism development and local perceptions of quality of life, a trend that is most likely the source of the observed relationship between tourism and conservation. The study concludes that, because the observed relationship may be dependent on continued benefits from tourism as opposed to a perceived crisis in coral reef health, Belize must pay close attention to tourism impacts in the future. Failure to do this could result in a destructive feedback loop that would contribute to the degradation of the reef and, ultimately, Belize’s diminished competitiveness in the ecotourism market.

  12. Biogeochemical Insights into B-Vitamins in the Coastal Marine Sediments of San Pedro Basin, CA

    NASA Astrophysics Data System (ADS)

    Monteverde, D.; Berelson, W.; Baronas, J. J.; Sanudo-Wilhelmy, S. A.

    2015-12-01

    Coastal marine sediments support a high abundance of mircoorganisms which play key roles in the cycling of nutrients, trace metals, and carbon, yet little is known about many of the cofactors essential for their growth, such as the B-vitamins. The suite of B-vitamins (B1, B2, B6, B7, B12) are essential across all domains of life for both primary and secondary metabolism. Therefore, studying sediment concentrations of B-vitamins can provide a biochemical link between microbial processes and sediment geochemistry. Here we present B-vitamin pore water concentrations from suboxic sediment cores collected in September 2014 from San Pedro Basin, a silled, low oxygen, ~900 m deep coastal basin in the California Borderlands. We compare the B-vitamin concentrations (measured via LCMS) to a set of geochemical profiles including dissolved Fe (65-160 μM), dissolved Mn (30-300 nM), TCO2, solid phase organic carbon, and δ13C. Our results show high concentrations (0.8-3nM) of biotin (B7), commonly used for CO2 fixation as a cofactor in carboxylase enzymes. Thiamin (B1) concentrations were elevated (20-700nM), consistent with previous pore water measurements showing sediments could be a source of B1 to the ocean. Cobalamin (B12), a cofactor required for methyl transfers in methanogens, was also detected in pore waters (~4-40pM). The flavins (riboflavin [B2] and flavin mononucleotide[FMN]), molecules utilized in external electron transfer, showed a distinct increase with depth (10-90nM). Interestingly, the flavin profiles showed an inverse trend to dissolved Fe (Fe decreases with depth) providing a potential link to culture experiments which have shown extracellular flavin release to be a common trait in some metal reducers. As some of the first B-vitamin measurements made in marine sediments, these results illustrate the complex interaction between the microbial community and surrounding geochemical environment and provide exciting avenues for future research.

  13. Proceedings of the fourth international conference on remote sensing for marine and coastal environments. Technology and applications: Volume I

    SciTech Connect

    1997-06-01

    The conference proceedings contain papers which focus on the application of remote sensing technology and geographic information systems to solve problems in marine and coastal environments. Sixty-nine papers were selected for the database from Volume 1 of the proceedings. The topics included in the proceedings are: natural resource management, coastal hazards, oceanographic applications, mapping and charting, data access, coastal ocean color, radar satellites/coastal radars, underwater remote sensing, and new sensors and systems. Subtopics of papers in Volume 1 include: oil spills and marine pollution; Florida ecosystems; air-sea interaction and sea ice; living resources; optics and models; hyperspectral sensors and applications; and charting and mapping.

  14. Carbon budgets and potential blue carbon stores in Scotland's coastal and marine environment

    NASA Astrophysics Data System (ADS)

    Howe, John; austin, william

    2016-04-01

    The role of marine ecosystems in storing blue carbon has increasingly become a topic of interest to both scientists and politicians. This is the first multidisciplinary study to assess Scotland's marine blue carbon stores, using GIS to collate habitat information based on existing data. Relevant scientific information on primary habitats for carbon uptake and storage has been reviewed, and quantitative rates of production and storage were obtained. Habitats reviewed include kelp, phytoplankton, saltmarshes, biogenic reefs (including maerl), marine sediments (coastal and shelf), and postglacial geological sediments. Each habitat has been individually assessed for any specific threats to its carbon sequestration ability. Here we present an ecosystem-scale inventory of the key rates and ultimate sequestration capacity of each habitat. Coastal and offshore sediments are the main repositories for carbon in Scotland's marine environment. Habitat-forming species on the coast (seagrasses, saltmarsh, bivalve beds, coralline algae), are highly productive but their contribution to the overall carbon budget is very small because of the limited extent of each habitat. This study highlights the importance of marine carbon stores in global carbon cycles, and the implications of climate change on the ability of marine ecosystems to sequester carbon.

  15. Accumulation of radionuclides in selected marine biota from Manjung coastal area

    NASA Astrophysics Data System (ADS)

    Abdullah, Anisa; Hamzah, Zaini; Saat, Ahmad; Wood, Ab. Khalik; Alias, Masitah

    2015-04-01

    Distribution of radionuclides from anthropogenic activities has been intensively studied due to the accumulation of radionuclides in marine ecosystem. Manjung area is affected by rapid population growth and socio-economic development such as heavy industrial activities including coal fired power plant, iron foundries, port development and factories, agricultural runoff, waste and toxic discharge from factories.It has radiological risk and toxic effect when effluent from the industries in the area containing radioactive materials either being transported to the atmosphere and deposited back over the land or by run off to the river and flow into coastal area and being absorbed by marine biota. Radionuclides presence in the marine ecosystem can be adversely affect human health when it enters the food chain. This study is focusing on the radionuclides [thorium (Th), uranium (U), radium-226 (226Ra), radium-228 (228Ra) and potassium-40 (40K)] content in marine biota and sea water from Manjung coastal area. Five species of marine biota including Johnius dussumieri (Ikan Gelama), Pseudorhombus malayanus (Ikan Sebelah), Arius maculatus (Ikan Duri), Portunus pelagicus (Ketam Renjong) and Charybdis natator (Ketam Salib) were collected during rainy and dry seasons. Measurements were carried out using Inductively Coupled Plasma Mass Spectrometer (ICPMS). The results show that the concentration of radionuclides varies depends on ecological environment of respective marine biota species. The concentrations and activity concentrations are used for the assessment of potential internal hazard index (Hin), transfer factor (TF), ingestion dose rate (D) and health risk index (HRI) to monitor radiological risk for human consumption.

  16. Organization of marine phenology data in support of planning and conservation in ocean and coastal ecosystems

    USGS Publications Warehouse

    Thomas, Kathryn A.; Fornwall, Mark D.; Weltzin, Jake F.; Griffis, R.B.

    2014-01-01

    Among the many effects of climate change is its influence on the phenology of biota. In marine and coastal ecosystems, phenological shifts have been documented for multiple life forms; however, biological data related to marine species' phenology remain difficult to access and is under-used. We conducted an assessment of potential sources of biological data for marine species and their availability for use in phenological analyses and assessments. Our evaluations showed that data potentially related to understanding marine species' phenology are available through online resources of governmental, academic, and non-governmental organizations, but appropriate datasets are often difficult to discover and access, presenting opportunities for scientific infrastructure improvement. The developing Federal Marine Data Architecture when fully implemented will improve data flow and standardization for marine data within major federal repositories and provide an archival repository for collaborating academic and public data contributors. Another opportunity, largely untapped, is the engagement of citizen scientists in standardized collection of marine phenology data and contribution of these data to established data flows. Use of metadata with marine phenology related keywords could improve discovery and access to appropriate datasets. When data originators choose to self-publish, publication of research datasets with a digital object identifier, linked to metadata, will also improve subsequent discovery and access. Phenological changes in the marine environment will affect human economics, food systems, and recreation. No one source of data will be sufficient to understand these changes. The collective attention of marine data collectors is needed—whether with an agency, an educational institution, or a citizen scientist group—toward adopting the data management processes and standards needed to ensure availability of sufficient and useable marine data to understand

  17. Microplastics in coastal and marine environments of the western tropical and sub-tropical Atlantic Ocean.

    PubMed

    Costa, Monica F; Barletta, Mário

    2015-11-01

    Microplastic pollution is a global issue. It is present even in remote and pristine coastal and marine environments, likely causing impacts of unknown scale. Microplastics are primary- and secondary-sourced plastics with diameters of 5 mm or less that are either free in the water column or mixed in sandy and muddy sediments. Since the early 1970s, they have been reported to pollute marine environments; recently, concern has increased as soaring amounts of microplastics in the oceans were detected and because the development of unprecedented processes involving this pollutant at sea is being unveiled. Coastal and marine environments of the western tropical and sub-tropical Atlantic Ocean (WTAO) are contaminated with microplastics at different quantities and from a variety of types. The main environmental compartments (water, sediments and biota) are contaminated, but the consequences are still poorly understood. Rivers and all scales of fishery activities are identified as the most likely sources of this pollutant to coastal waters; however, based on the types of microplastics observed, other maritime operations are also possible sources. Ingestion by marine biota occurs in the vertebrate groups (fish, birds, and turtles) in these environments. In addition, the presence of microplastics in plankton samples from different habitats of estuaries and oceanic islands is confirmed. The connectivity among environmental compartments regarding microplastic pollution is a new research frontier in the region. PMID:26457869

  18. Pole-to-pole biogeography of surface and deep marine bacterial communities

    PubMed Central

    Ghiglione, Jean-François; Galand, Pierre E.; Pommier, Thomas; Pedrós-Alió, Carlos; Maas, Elizabeth W.; Bakker, Kevin; Bertilson, Stefan; Kirchman, David L.; Lovejoy, Connie; Yager, Patricia L.; Murray, Alison E.

    2012-01-01

    The Antarctic and Arctic regions offer a unique opportunity to test factors shaping biogeography of marine microbial communities because these regions are geographically far apart, yet share similar selection pressures. Here, we report a comprehensive comparison of bacterioplankton diversity between polar oceans, using standardized methods for pyrosequencing the V6 region of the small subunit ribosomal (SSU) rRNA gene. Bacterial communities from lower latitude oceans were included, providing a global perspective. A clear difference between Southern and Arctic Ocean surface communities was evident, with 78% of operational taxonomic units (OTUs) unique to the Southern Ocean and 70% unique to the Arctic Ocean. Although polar ocean bacterial communities were more similar to each other than to lower latitude pelagic communities, analyses of depths, seasons, and coastal vs. open waters, the Southern and Arctic Ocean bacterioplankton communities consistently clustered separately from each other. Coastal surface Southern and Arctic Ocean communities were more dissimilar from their respective open ocean communities. In contrast, deep ocean communities differed less between poles and lower latitude deep waters and displayed different diversity patterns compared with the surface. In addition, estimated diversity (Chao1) for surface and deep communities did not correlate significantly with latitude or temperature. Our results suggest differences in environmental conditions at the poles and different selection mechanisms controlling surface and deep ocean community structure and diversity. Surface bacterioplankton may be subjected to more short-term, variable conditions, whereas deep communities appear to be structured by longer water-mass residence time and connectivity through ocean circulation. PMID:23045668

  19. Marine protected areas increase resilience among coral reef communities.

    PubMed

    Mellin, Camille; Aaron MacNeil, M; Cheal, Alistair J; Emslie, Michael J; Julian Caley, M

    2016-06-01

    With marine biodiversity declining globally at accelerating rates, maximising the effectiveness of conservation has become a key goal for local, national and international regulators. Marine protected areas (MPAs) have been widely advocated for conserving and managing marine biodiversity yet, despite extensive research, their benefits for conserving non-target species and wider ecosystem functions remain unclear. Here, we demonstrate that MPAs can increase the resilience of coral reef communities to natural disturbances, including coral bleaching, coral diseases, Acanthaster planci outbreaks and storms. Using a 20-year time series from Australia's Great Barrier Reef, we show that within MPAs, (1) reef community composition was 21-38% more stable; (2) the magnitude of disturbance impacts was 30% lower and (3) subsequent recovery was 20% faster that in adjacent unprotected habitats. Our results demonstrate that MPAs can increase the resilience of marine communities to natural disturbance possibly through herbivory, trophic cascades and portfolio effects. PMID:27038889

  20. Residue profiles of brodifacoum in coastal marine species following an island rodent eradication.

    PubMed

    Masuda, Bryce M; Fisher, Penny; Beaven, Brent

    2015-03-01

    The second-generation anticoagulant rodenticide brodifacoum is an effective tool for the eradication of invasive rodents from islands and fenced sanctuaries, for biodiversity restoration. However, broadcast application of brodifacoum bait on islands may expose non-target wildlife in coastal marine environments to brodifacoum, with subsequent secondary exposure risk for humans if such marine wildlife is harvested for consumption. We report a case study of monitoring selected marine species following aerial application of brodifacoum bait in August 2011 to eradicate Norway rats (Rattus norvegicus) from Ulva Island, New Zealand. Residual concentrations of brodifacoum were detected in 3 of 10 species of coastal fish or shellfish sampled 43-176d after bait application commenced. Residual brodifacoum concentrations were found in liver, but not muscle tissue, of 2 of 24 samples of blue cod (0.026 and 0.092 µg/g; Parapercis colias) captured live then euthanized for tissue sampling. Residual brodifacoum concentrations were also found in whole-body samples of 4 of 24 mussels (range=0.001-0.022 µg/g, n=4; Mytilus edulis) and 4 of 24 limpets (range=0.001-0.016 µg/g, n=4; Cellana ornata). Measured residue concentrations in all three species were assessed as unlikely to have eventually caused mortality of the sampled individuals. We also conducted a literature review and determined that in eleven previous accounts of residue examination of coastal marine species following aerial applications of brodifacoum bait, including our results from Ulva Island, the overall rate of residue detection was 5.6% for marine invertebrates (11 of 196 samples tested) and 3.1% for fish (2 of 65 samples tested). Furthermore, our results from Ulva Island are the first known detection of brodifacoum residue in fish liver following an aerial application of brodifacoum bait. Although our findings confirm the potential for coastal marine wildlife to be exposed to brodifacoum following island rodent

  1. Coastal Habitats as Surrogates for Taxonomic, Functional and Trophic Structures of Benthic Faunal Communities

    PubMed Central

    Törnroos, Anna; Nordström, Marie C.; Bonsdorff, Erik

    2013-01-01

    Due to human impact, there is extensive degradation and loss of marine habitats, which calls for measures that incorporate taxonomic as well as functional and trophic aspects of biodiversity. Since such data is less easily quantifiable in nature, the use of habitats as surrogates or proxies for biodiversity is on the rise in marine conservation and management. However, there is a critical gap in knowledge of whether pre-defined habitat units adequately represent the functional and trophic structure of communities. We also lack comparisons of different measures of community structure in terms of both between- (β) and within-habitat (α) variability when accounting for species densities. Thus, we evaluated a priori defined coastal habitats as surrogates for traditional taxonomic, functional and trophic zoobenthic community structure. We focused on four habitats (bare sand, canopy-forming algae, seagrass above- and belowground), all easily delineated in nature and defined through classification systems. We analyzed uni- and multivariate data on species and trait diversity as well as stable isotope ratios of benthic macrofauna. A good fit between habitat types and taxonomic and functional structure was found, although habitats were more similar functionally. This was attributed to within-habitat heterogeneity so when habitat divisions matched the taxonomic structure, only bare sand was functionally distinct. The pre-defined habitats did not meet the variability of trophic structure, which also proved to differentiate on a smaller spatial scale. The quantification of trophic structure using species density only identified an epi- and an infaunal unit. To summarize the results we present a conceptual model illustrating the match between pre-defined habitat types and the taxonomic, functional and trophic community structure. Our results show the importance of including functional and trophic aspects more comprehensively in marine management and spatial planning. PMID

  2. Monitoring ship noise to assess the impact of coastal developments on marine mammals.

    PubMed

    Merchant, Nathan D; Pirotta, Enrico; Barton, Tim R; Thompson, Paul M

    2014-01-15

    The potential impacts of underwater noise on marine mammals are widely recognised, but uncertainty over variability in baseline noise levels often constrains efforts to manage these impacts. This paper characterises natural and anthropogenic contributors to underwater noise at two sites in the Moray Firth Special Area of Conservation, an important marine mammal habitat that may be exposed to increased shipping activity from proposed offshore energy developments. We aimed to establish a pre-development baseline, and to develop ship noise monitoring methods using Automatic Identification System (AIS) and time-lapse video to record trends in noise levels and shipping activity. Our results detail the noise levels currently experienced by a locally protected bottlenose dolphin population, explore the relationship between broadband sound exposure levels and the indicators proposed in response to the EU Marine Strategy Framework Directive, and provide a ship noise assessment toolkit which can be applied in other coastal marine environments. PMID:24279956

  3. The whale pump: marine mammals enhance primary productivity in a coastal basin.

    PubMed

    Roman, Joe; McCarthy, James J

    2010-01-01

    It is well known that microbes, zooplankton, and fish are important sources of recycled nitrogen in coastal waters, yet marine mammals have largely been ignored or dismissed in this cycle. Using field measurements and population data, we find that marine mammals can enhance primary productivity in their feeding areas by concentrating nitrogen near the surface through the release of flocculent fecal plumes. Whales and seals may be responsible for replenishing 2.3×10(4) metric tons of N per year in the Gulf of Maine's euphotic zone, more than the input of all rivers combined. This upward "whale pump" played a much larger role before commercial harvest, when marine mammal recycling of nitrogen was likely more than three times atmospheric N input. Even with reduced populations, marine mammals provide an important ecosystem service by sustaining productivity in regions where they occur in high densities. PMID:20949007

  4. The Whale Pump: Marine Mammals Enhance Primary Productivity in a Coastal Basin

    PubMed Central

    Roman, Joe; McCarthy, James J.

    2010-01-01

    It is well known that microbes, zooplankton, and fish are important sources of recycled nitrogen in coastal waters, yet marine mammals have largely been ignored or dismissed in this cycle. Using field measurements and population data, we find that marine mammals can enhance primary productivity in their feeding areas by concentrating nitrogen near the surface through the release of flocculent fecal plumes. Whales and seals may be responsible for replenishing 2.3×104 metric tons of N per year in the Gulf of Maine's euphotic zone, more than the input of all rivers combined. This upward “whale pump” played a much larger role before commercial harvest, when marine mammal recycling of nitrogen was likely more than three times atmospheric N input. Even with reduced populations, marine mammals provide an important ecosystem service by sustaining productivity in regions where they occur in high densities. PMID:20949007

  5. Bioconcentration of TNT and RDX in coastal marine biota.

    PubMed

    Ballentine, Mark; Tobias, Craig; Vlahos, Penny; Smith, Richard; Cooper, Christopher

    2015-05-01

    The bioconcentration factor (BCF) was measured for 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in seven different marine species of varying trophic levels. Time series and concentration gradient treatments were used for water column and tissue concentrations of TNT, RDX, and their environmentally important derivatives 2-amino-4,6-dintrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT). BCF values ranged from 0.0031 to 484.5 mL g(-1) for TNT and 0.023 to 54.83 mL g(-1) for RDX. The use of log K ow value as an indicator was evaluated by adding marine data from this study to previously published data. For the munitions in this study, log K ow value was a good indicator in the marine environment. The initial uptake and elimination rates of TNT and RDX for Fucus vesiculosus were 1.79 and 0.24 h(-1) for TNT and 0.50 and 0.0035 h(-1) for RDX respectively. Biotransformation was observed in all biota for both TNT and RDX. Biotransformation of TNT favored 4-ADNT over 2-ADNT at ratios of 2:1 for F. vesiculosus and 3:1 for Mytilus edulis. Although RDX derivatives were measureable, the ratios of RDX derivatives were variable with no detectable trend. Previous approaches for measuring BCF in freshwater systems compare favorably with these experiments with marine biota, yet significant gaps on the ultimate fate of munitions within the biota exist that may be overcome with the use stable isotope-labeled munitions substrates. PMID:25451633

  6. Evolution of a Mediterranean coastal zone: human impacts on the marine environment of Cape Creus.

    PubMed

    Lloret, Josep; Riera, Victòria

    2008-12-01

    This study presents an integrated analysis of the evolution of the marine environment and the human uses in Cape Creus, a Mediterranean coastal area where intense commercial fisheries and recreational uses have coexisted over the last fifty years. The investigation synthesizes the documented impacts of human activities on the marine environment of Cap de Creus and integrates them with new data. In particular, the evolution of vulnerable, exploited species is used to evaluate the fishing impacts. The effects of area protection through the establishment of a marine reserve in the late 1990s and the potential climate change impacts are also considered. The evolution of the human uses is marked by the increasing socioeconomic importance of recreational activities (which affect species and habitats) in detriment to artisanal and red coral fisheries (which principally affect at a species level). Overall, populations of sedentary, vulnerable exploited species, hard sessile benthic invertebrates, and ecologically fragile habitats, such as seagrass meadows, the coralligenous and infralittoral algal assemblages have been the most negatively impacted by anthropogenic activities. Albeit human uses currently constitute the largest negative impact on the marine environment of Cap de Creus, climate change is emerging as a key factor that could have considerable implications for the marine environment and tourism activities. The establishment of the marine reserve appears to have had little socioeconomic impact, but there is some evidence that it had some positive biological effects on sedentary, littoral fishes. Results demonstrate that the declaration of a marine reserve alone does not guarantee the sustainability of marine resources and habitats but should be accompanied with an integrated coastal management plan. PMID:18800202

  7. Evolution of a Mediterranean Coastal Zone: Human Impacts on the Marine Environment of Cape Creus

    NASA Astrophysics Data System (ADS)

    Lloret, Josep; Riera, Victòria

    2008-12-01

    This study presents an integrated analysis of the evolution of the marine environment and the human uses in Cape Creus, a Mediterranean coastal area where intense commercial fisheries and recreational uses have coexisted over the last fifty years. The investigation synthesizes the documented impacts of human activities on the marine environment of Cap de Creus and integrates them with new data. In particular, the evolution of vulnerable, exploited species is used to evaluate the fishing impacts. The effects of area protection through the establishment of a marine reserve in the late 1990s and the potential climate change impacts are also considered. The evolution of the human uses is marked by the increasing socioeconomic importance of recreational activities (which affect species and habitats) in detriment to artisanal and red coral fisheries (which principally affect at a species level). Overall, populations of sedentary, vulnerable exploited species, hard sessile benthic invertebrates, and ecologically fragile habitats, such as seagrass meadows, the coralligenous and infralittoral algal assemblages have been the most negatively impacted by anthropogenic activities. Albeit human uses currently constitute the largest negative impact on the marine environment of Cap de Creus, climate change is emerging as a key factor that could have considerable implications for the marine environment and tourism activities. The establishment of the marine reserve appears to have had little socioeconomic impact, but there is some evidence that it had some positive biological effects on sedentary, littoral fishes. Results demonstrate that the declaration of a marine reserve alone does not guarantee the sustainability of marine resources and habitats but should be accompanied with an integrated coastal management plan.

  8. Measuring Coastal Boating Noise to Assess Potential Impacts on Marine Life

    SciTech Connect

    Matzner, Shari; Jones, Mark E.

    2011-07-01

    Article requested for submission in Sea Technology Magazine describing the Underwater Noise From Small Boats. An Overlooked Component of the Acoustic Environment in Coastal Areas. Underwater noise and its effects on marine life deserve attention as human activity in the marine environment increases. Noise can affect fish and marine mammals in ways that are physiological, as in auditory threshold shifts, and behavioral, as in changes in foraging habits. One anthropogenic source of underwater noise that has received little attention to date is recreational boating. Coastal areas and archipelago regions, which play a crucial role in the marine ecosystem, are often subject to high levels of boat traffic. In order to better understand the noise produced by a small powerboat, a test was conducted in Sequim Bay, Washington, using an instrumented research vessel and multiple acoustic sensors. The broadband noise and narrowband peak levels were observed from two different locations while the boat was operated under various conditions. The results, combined with background noise levels, sound propagation and local boat traffic patterns, can provide a picture of the total boating noise to which marine life may be subjected.

  9. Bubble Stripping as a Tool To Reduce High Dissolved CO2 in Coastal Marine Ecosystems.

    PubMed

    Koweek, David A; Mucciarone, David A; Dunbar, Robert B

    2016-04-01

    High dissolved CO2 concentrations in coastal ecosystems are a common occurrence due to a combination of large ecosystem metabolism, shallow water, and long residence times. Many important coastal species may have adapted to this natural variability over time, but eutrophication and ocean acidification may be perturbing the water chemistry beyond the bounds of tolerance for these organisms. We are currently limited in our ability to deal with the geochemical changes unfolding in our coastal ocean. This study helps to address this deficit of solutions by introducing bubble stripping as a novel geochemical engineering approach to reducing high CO2 in coastal marine ecosystems. We use a process-based model to find that air/sea gas exchange rates within a bubbled system are 1-2 orders of magnitude higher than within a nonbubbled system. By coupling bubbling-enhanced ventilation to a coastal ecosystem metabolism model, we demonstrate that strategically timed bubble plumes can mitigate exposure to high CO2 under present-day conditions and that exposure mitigation is enhanced in the more acidic conditions predicted by the end of the century. We argue that shallow water CO2 bubble stripping should be considered among the growing list of engineering approaches intended to increase coastal resilience in a changing ocean. PMID:26988138

  10. U.S. Geological Survey coastal and marine geology research; recent highlights and achievements

    USGS Publications Warehouse

    Williams, S. Jeffress; Barnes, Peter W.; Prager, Ellen J.

    2000-01-01

    The USGS Coastal and Marine Geology Program has large-scale national and regional research projects that focus on environmental quality, geologic hazards, natural resources, and information transfer. This Circular highlights recent scientific findings of the program, which play a vital role in the USGS endeavor to understand human interactions with the natural environment and to determine how the fundamental geologic processes controlling the Earth work. The scientific knowledge acquired through USGS research and monitoring is critically needed by planners, government agencies, and the public. Effective communication of the results of this research will enable the USGS Coastal and Marine Geology Program to play an integral part in assisting the Nation in responding the pressing Earth science challenges of the 21st century.

  11. Effects of trampling limitation on coastal dune plant communities.

    PubMed

    Santoro, Riccardo; Jucker, Tommaso; Prisco, Irene; Carboni, Marta; Battisti, Corrado; Acosta, Alicia T R

    2012-03-01

    Sandy coastlines are sensitive ecosystems where human activities can have considerable negative impacts. In particular, trampling by beach visitors is a disturbance that affects dune vegetation both at the species and community level. In this study we assess the effects of the limitation of human trampling on dune vegetation in a coastal protected area of Central Italy. We compare plant species diversity in two recently fenced sectors with that of an unfenced area (and therefore subject to human trampling) using rarefaction curves and a diversity/dominance approach during a two year study period. Our results indicate that limiting human trampling seems to be a key factor in driving changes in the plant diversity of dune systems. In 2007 the regression lines of species abundance as a function of rank showed steep slopes and high Y-intercept values in all sectors, indicating a comparable level of stress and dominance across the entire study site. On the contrary, in 2009 the regression lines of the two fenced sectors clearly diverge from that of the open sector, showing less steep slopes. This change in the slopes of the tendency lines, evidenced by the diversity/dominance diagrams and related to an increase in species diversity, suggests the recovery of plant communities in the two fences between 2007 and 2009. In general, plant communities subject to trampling tended to be poorer in species and less structured, since only dominant and tolerant plant species persisted. Furthermore, limiting trampling appears to have produced positive changes in the dune vegetation assemblage after a period of only two years. These results are encouraging for the management of coastal dune systems. They highlight how a simple and cost-effective management strategy, based on passive recovery conservation measures (i.e., fence building), can be a quick (1–2 years) and effective method for improving and safeguarding the diversity of dune plant communities. PMID:22302225

  12. Effects of Trampling Limitation on Coastal Dune Plant Communities

    NASA Astrophysics Data System (ADS)

    Santoro, Riccardo; Jucker, Tommaso; Prisco, Irene; Carboni, Marta; Battisti, Corrado; Acosta, Alicia T. R.

    2012-03-01

    Sandy coastlines are sensitive ecosystems where human activities can have considerable negative impacts. In particular, trampling by beach visitors is a disturbance that affects dune vegetation both at the species and community level. In this study we assess the effects of the limitation of human trampling on dune vegetation in a coastal protected area of Central Italy. We compare plant species diversity in two recently fenced sectors with that of an unfenced area (and therefore subject to human trampling) using rarefaction curves and a diversity/dominance approach during a two year study period. Our results indicate that limiting human trampling seems to be a key factor in driving changes in the plant diversity of dune systems. In 2007 the regression lines of species abundance as a function of rank showed steep slopes and high Y-intercept values in all sectors, indicating a comparable level of stress and dominance across the entire study site. On the contrary, in 2009 the regression lines of the two fenced sectors clearly diverge from that of the open sector, showing less steep slopes. This change in the slopes of the tendency lines, evidenced by the diversity/dominance diagrams and related to an increase in species diversity, suggests the recovery of plant communities in the two fences between 2007 and 2009. In general, plant communities subject to trampling tended to be poorer in species and less structured, since only dominant and tolerant plant species persisted. Furthermore, limiting trampling appears to have produced positive changes in the dune vegetation assemblage after a period of only two years. These results are encouraging for the management of coastal dune systems. They highlight how a simple and cost-effective management strategy, based on passive recovery conservation measures (i.e., fence building), can be a quick (1-2 years) and effective method for improving and safeguarding the diversity of dune plant communities.

  13. Coastal Marsh Sediments from Bodega Harbor: Archives of Environmental Changes at the Terrestrial-Marine Interface

    NASA Astrophysics Data System (ADS)

    Rademacher, L. K.; Rong, Y.; Hill, T. M.; Hiromoto, C.; Fisher, A.

    2010-12-01

    Coastal marsh sediments provide an important archive of environmental changes at the terrestrial-marine interface. Over the last century, humans have significantly altered the coastal environment near Bodega Bay, California, through changes in hydrology, sediment sources, and the dominant ecosystem. Previous investigations of recent coastal marsh sediments (< 50 years) suggest that physical barriers, such as roads, which limit the connection between Bodega Bay and the marshes, alters biogeochemical cycling (including carbon storage) in the coastal environment. The present study extends the record of changes in biogeochemical cycling in the coastal marshes back more than 100 years (approximately 90 cm) through the use of grain size analysis, C and N isotopes, and age dating. Sediments were analyzed for grain size distribution, the amount of carbon and nitrogen, and the stable isotopes of carbon and nitrogen in 1 cm intervals throughout the core. In addition, a subset of eight samples was analyzed for sediment age using a combination of Pb-210 and Cs-137 techniques. Sediments from >40 cm and <55 cm depth have a higher percentage of fine-grained sediment (>2%). In addition, these sediments also contain higher levels of total organic carbon and nitrogen, higher C:N ratios, we well as heavier carbon and nitrogen isotopic signatures. The sediments likely correspond to a pre-1900 depositional environment based on Pb-210 dates, when development in the region was increasing. These results suggest a stronger influence of the marine environment during that time. Interestingly, smaller transitions in sediment properties toward what appears to reflect a more marine environment also occur near the top of the core (<10 cm depth) and near the bottom of the core (>75 cm depth). Although these transitions are less pronounced, the significant shift in sediment properties suggests a less stable environment with greater communication between the terrestrial and marine environments

  14. Dinoflagellate species and organic facies evidence of marine transgression and regression in the atlantic coastal plain

    USGS Publications Warehouse

    Habib, D.; Miller, J.A.

    1989-01-01

    Palynological evidence is used to date and interpret depositional environments of sediments of Campanian, Maestrichtian and early Danian ages cored in three wells from South Carolina and Georgia. The evidence is usefil for distinguishing environments which lithofacies evidence indicates a range from nonmarine to coastal to inner neritic shallow shelf. Numerous dinoflagellate species and an organic facies defined abundant amoprphous debris (amorphous debris facies) distinguish shallow shelf sediments deposited during marine transgression. The nearshore amorphous debris facies of late Campanian age consists of heterogenous assemblages dominated by Palaeohystrichophora infusorioides Deflandre or Hystrichosphaerina varians (May). The farther offshore amorphous debris facies of late early Maestrichtian to late Maestrichtian age consists of heterogenous assemblages dominated by Glaphyrocysta retiintexta (Cookson) and/or Areoligera medusettiformis (Wetzel). The larger number of dinoflagellate species in the offshore facies represents the maximum transgression detected in the investigated interval. A multiple occurrence datum defined by the combination of first appearance, klast appearances and sole occurrence of dinoflagellate species at the base of each interval distinguished by the amorphous debris facies provides the first evidence of marine transgression. Relatively small organic residues consisting of intertinite and few or no palynomorphs define the inertinite facies in nonmarine deltaic and in coastal (lagoonal, tidal flat, interdistributary bary) sediments. Dinocyt{star, open}s are absent in the nonmarine sediments and are represented by few species and few specimens in the coastal inertinite faceis. A third organic facies (vascular tissue facies) is defined by the abundance of land plant tissue. Sporomorph species, including those of the Normapolles pollen group and of pteridophyte spores, comprise a large proportion of the total palynomorph flora in the

  15. Baseline monitoring of organic sunscreen compounds along South Carolina's coastal marine environment.

    PubMed

    Bratkovics, Stephanie; Wirth, Edward; Sapozhnikova, Yelena; Pennington, Paul; Sanger, Denise

    2015-12-15

    Organic ultraviolet filters (UV-F) are increasingly being used in personal care products to protect skin and other products from the damaging effects of UV radiation. In this study, marine water was collected monthly for approximately one year from six coastal South Carolina, USA sites and analyzed for the occurrence of seven organic chemicals used as UV filters (avobenzone, dioxybenzone, octocrylene, octinoxate, oxybenzone, padimate-o and sulisobenzone). The results were used to examine the relationship between beach use and the distribution of UV-F compounds along coastal South Carolina, USA. Five of the seven target analytes were detected in seawater along coastal South Carolina during this study. Dioxybenzone and sulisobenzone were not detected. The highest concentrations measured were >3700 ng octocrylene/L and ~2200 ng oxybenzone/L and beach use was greatest at this site; a local beach front park. Patterns in concentrations were assessed based on season and a measure of beach use. PMID:26541983

  16. Microbial Community Composition in the Marine Sediments of Jeju Island: Next-Generation Sequencing Surveys.

    PubMed

    Choi, Heebok; Koh, Hyeon-Woo; Kim, Hongik; Chae, Jong-Chan; Park, Soo-Je

    2016-05-28

    Marine sediments are a microbial biosphere with an unknown physiology, and the sediments harbor numerous distinct phylogenetic lineages of Bacteria and Archaea that are at present uncultured. In this study, the structure of the archaeal and bacterial communities was investigated in the surface and subsurface sediments of Jeju Island using a next-generation sequencing method. The microbial communities in the surface sediments were distinct from those in the subsurface sediments; the relative abundance of sequences for Thaumarchaeota, Actinobacteria, Bacteroides, Alphaproteobacteria, and Gammaproteobacteria were higher in the surface than subsurface sediments, whereas the sequences for Euryarchaeota, Acidobacteria, Firmicutes, and Deltaproteobacteria were relatively more abundant in the subsurface than surface sediments. This study presents detailed characterization of the spatial distribution of benthic microbial communities of Jeju Island and provides fundamental information on the potential interactions mediated by microorganisms with the different biogeochemical cycles in coastal sediments. PMID:26869600

  17. Progress in marine science supported by European joint coastal observation systems: The JERICO-RI research infrastructure

    NASA Astrophysics Data System (ADS)

    Puillat, I.; Farcy, P.; Durand, D.; Karlson, B.; Petihakis, G.; Seppälä, J.; Sparnocchia, S.

    2016-10-01

    Coastal systems are of the most productive ones although they are the most impacted by direct pressures from human activities. These ecosystems exhibit a high level of complexity with many different and interconnected processes operating at various spatial and temporal scales and providing a range of ecosystem services. Coastal observations are tremendous importance in order to understand those complex marine processes. Moreover, they support the use and further development of coastal ocean numerical models, including physical models and coupled physical-biogeochemical models. Coastal data have also many applications in the domain of coastal engineering such as for instance in the design of a coastal structure, or in the prevention of extreme events (e.g. flooding). As a consequence, the number of marine observing systems has quickly increased around European coastal seas, under the pressure of both monitoring requirements and marine research. Present demands for such observing systems include reliable, high-quality and comprehensive observations of key environmental parameters, automated platforms and sensors systems for continuous observations, as well as autonomy over long time periods. In-situ data collected can be combined with remote sensing and/or models to detect, understand and/or forecast the most crucial coastal processes over extensive areas within the various marine environments.

  18. 77 FR 43270 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Coastal Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ...In accordance with the Marine Mammal Protection Act (MMPA) and implementing regulations, notification is hereby given that a 5-year Letter of Authorization (LOA) has been issued to the Monterey Bay National Marine Sanctuary (MBNMS) to incidentally take, by Level B harassment only, California sea lions (Zalophus californianus) and harbor seals (Phoca vitulina) incidental to professional......

  19. Understanding and mitigating tsunami risk for coastal structures and communities

    NASA Astrophysics Data System (ADS)

    Park, Sangki

    Tsunamis have attracted the world's attention over the last decade due to their destructive power and the vast areas they can affect. The 2004 Indian Ocean Tsunami, killed more than 200,000 people, and the 2011 Great Tohoku Japan Earthquake and Tsunami, resulted in 15,000 deaths and an estimated US $300B in damage, are recent examples. An improved understanding of tsunamis and their interactive effects on the built environment will significantly reduce loss of life in tsunamis. In addition, it is important to consider both the effect of the earthquake ground motion and the tsunami it creates for certain coastal regions. A numerical model to predict structural behavior of buildings subjected to successive earthquakes and the tsunamis was developed. Collapse fragilities for structures were obtained by subjecting a structure to a suite of earthquake ground motions. After each motion the numerically damaged structural model was subjected to tsunami wave loading as defined by FEMA P646. This approach was then extended to the community level; a methodology to determine the probability of fatalities for a community as a function of the number of vertical evacuation shelters was computed. Such an approach also considered the location and number of vertical evacuation sites as an optimization problem. Both the single structure cases and the community analyses were presented in terms of fragilities as a function of the earthquake intensity level and evacuation time available. It is envisioned that the approach may be extended to any type of structure as they are typically modeled nonlinearly with strength and stiffness degradation. A logical fragility-based, or performance-based, procedure for vertical evacuation for coastal buildings and for whole communities was developed. A mechanism to obtain a reduction in the collapse risk of structure and more critically maximize the survival rate for a community was a major outcome of this dissertation. The proposed tsunami vertical

  20. Skewed distribution of hypothyroidism in the coastal communities of Newfoundland, Canada.

    PubMed

    Sarkar, Atanu; Knight, John C; Babichuk, Nicole A; Mulay, Shree

    2015-10-01

    Several studies published in the recent past have shown that rising levels of thyroid disrupting chemicals (TDCs) in the environment affect thyroid function in humans. These TDCs are the anthropogenic organic compounds that enter the human body mostly by ingestion and may trigger autoimmune thyroiditis, the most common cause of hypothyroidism. The studies also show the presence of high levels of TDCs in marine animals; therefore, consumption of contaminated seafood might trigger hypothyroidism. So far, there is no readily available population-based data, showing the regional distribution of hypothyroidism cases. We collected administrative data from the Newfoundland and Labrador Centre for Health Information on hospitalizations with hypothyroidism (from 1998 to 2012) in 41 coastal communities of Newfoundland and found that mean hypothyroidism rates of west and south coasts were significantly higher than in the east coast (1.8 and 1.9 times respectively). A one-way analysis of variance was used to test for regional differences in rates. A significant between-group difference in the rate of hypothyroidism was found (F2,38 = 8.309; p = 0.001). The St. Lawrence River, its estuary and the Gulf of St. Lawrence are heavily polluted with TDCs from industries, their effluents, and urbanization in the Great Lakes Watershed and along the river. Environment Canada has already identified this river along with the Great Lakes Watershed as one of the top TDCs polluted water sources in the country. The west and south coasts are in contact with the Gulf of St. Lawrence. Local marine products are a regular diet of the coastal communities of Newfoundland. Based on these available evidence, we hypothesize the role of TDCs in the rise of hypothyroidism on the western and southern coasts. However, further study will be needed to establish any association between abnormally high rates of hypothyroidism and exposure to TDCs. PMID:26142926

  1. Ubiquitous Dissolved Inorganic Carbon Assimilation by Marine Bacteria in the Pacific Northwest Coastal Ocean as Determined by Stable Isotope Probing

    PubMed Central

    DeLorenzo, Suzanne; Bräuer, Suzanna L.; Edgmont, Chelsea A.; Herfort, Lydie; Tebo, Bradley M.; Zuber, Peter

    2012-01-01

    In order to identify bacteria that assimilate dissolved inorganic carbon (DIC) in the northeast Pacific Ocean, stable isotope probing (SIP) experiments were conducted on water collected from 3 different sites off the Oregon and Washington coasts in May 2010, and one site off the Oregon Coast in September 2008 and March 2009. Samples were incubated in the dark with 2 mM 13C-NaHCO3, doubling the average concentration of DIC typically found in the ocean. Our results revealed a surprising diversity of marine bacteria actively assimilating DIC in the dark within the Pacific Northwest coastal waters, indicating that DIC fixation is relevant for the metabolism of different marine bacterial lineages, including putatively heterotrophic taxa. Furthermore, dark DIC-assimilating assemblages were widespread among diverse bacterial classes. Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes dominated the active DIC-assimilating communities across the samples. Actinobacteria, Betaproteobacteria, Deltaproteobacteria, Planctomycetes, and Verrucomicrobia were also implicated in DIC assimilation. Alteromonadales and Oceanospirillales contributed significantly to the DIC-assimilating Gammaproteobacteria within May 2010 clone libraries. 16S rRNA gene sequences related to the sulfur-oxidizing symbionts Arctic96BD-19 were observed in all active DIC assimilating clone libraries. Among the Alphaproteobacteria, clones related to the ubiquitous SAR11 clade were found actively assimilating DIC in all samples. Although not a dominant contributor to our active clone libraries, Betaproteobacteria, when identified, were predominantly comprised of Burkholderia. DIC-assimilating bacteria among Deltaproteobacteria included members of the SAR324 cluster. Our research suggests that DIC assimilation is ubiquitous among many bacterial groups in the coastal waters of the Pacific Northwest marine environment and may represent a significant metabolic process. PMID:23056406

  2. An ecological approach supporting the management of sea-uses and natural capital in marine coastal areas

    NASA Astrophysics Data System (ADS)

    Marcelli, Marco; Carli, Filippo M.; Bonamano, Simone; Frattarelli, Francesco; Mancini, Emanuele; Paladini de Mendoza, Francesco; Peviani, Maximo; Piermattei, Viviana

    2015-04-01

    The purpose of our work is to create a multi-layer map of marine areas and adjacent territories (SeaUseMap), which takes into account both the different sea uses and the value of marine ecosystems, calculated on the basis of services and benefits produced by the different biocenosis. Marine coastal areas are characterized by the simultaneous presence of ecological conditions favorable to life and, at the same time, they are home to many human activities of particular economic relevance. Ecological processes occurring in coastal areas are particularly important and when we consider their contribution to the value of the "natural capital" (Costanza et Al. 1997, 2008, 2014), we can observe that this is often higher than the contribution from terrestrial ecosystems. Our work is done in northern Lazio (Civitavecchia), a highly populated area where many uses of the sea are superimposed: tourism, fisheries, industry, shipping and ports, historical and cultural heritage. Our goal is to create a tool to support decision-making, where ecosystem values and uses of the sea can be simultaneously represented. The ecosystem values are calculated based on an analysis of benthic biocoenoses: the basic ecological units that, in the Mediterranean Sea, have been identified, defined, analyzed and used since the 60s (Perez & Picard 1964) to date as a working tool (Boudouresque & Fresi 1976). Land surface, instead, was analyzed from available maps, produced within the Corine Land Cover project. Some application examples to support the decision-making are shown, with particular reference to the localization of suitable areas for wave energy production and the esteem of ecological damages generated in case of maritime accidents (e.g., Costa Concordia). According to Costanza 2008, we have developed our own operational method, which is suitable for this specific case of benefit assessment from benthic communities. In this framework, we base our strategy on the ability of the benthic

  3. Sampling sufficiency for analyzing taxonomic relatedness of periphytic ciliate communities using an artificial substratum in coastal waters

    NASA Astrophysics Data System (ADS)

    Xu, Henglong; Zhang, Wei; Jiang, Yong; Zhu, Mingzhuang; Al-Rasheid, Khaled A. S.

    2012-08-01

    Taxonomic relatedness measures of ciliated protozoan communities have successively been used as useful indicators for assessing water quality in marine ecosystems with a number of desirable properties. Sampling sufficiency for analyzing taxonomic relatedness indices of periphytic ciliate communities was studied in coastal waters of the Yellow Sea, northern China, from May to June, 2010. Samples were collected at two depths of 1 m and 3 m using an artificial substratum (glass slides), and were analyzed based on different sampling strategies (slide replicates). For achieving a dissimilarity of < 10%, more slide replicates were required with shortening community ages: 3-10 slide replicates were sufficient for the young (1-7 days) communities while 2-4 slide replicates were for the mature (10-28 days). The standard errors of four taxonomic relatedness indices due to the sample sizes were increased only in the young communities with shortening colonization times. For achieving a standard error of < 10%, 1 slide replicate was generally sufficient for the mature communities, whereas 4-10 were required for the young. These findings suggested that low slide replicates were required for measuring taxonomic relatedness indices compared to analyzing the community patterns, and that these indices were more sensitive to the sample sizes of a young community than a mature one of periphytic ciliates in marine ecosystems.

  4. Effects of Land Use Change on Tropical Coastal Systems are Exacerbated by the Decline of Marine Mega-Herbivores

    NASA Astrophysics Data System (ADS)

    Lamers, L. P.; Christianen, M. J.; Govers, L. L.; Kiswara, W.; Bouma, T.; Roelofs, J. G.; Van Katwijk, M. M.

    2011-12-01

    Land use changes in tropical regions such as deforestation, mining activities, and shrimp farming, not only affect freshwater and terrestrial ecosystems, but also have a strong impact on coastal marine ecosystems. The increased influx of sediments and nutrients affects these ecosystems in multiple ways. Seagrass meadows that line coastal marine ecosystems provide important ecosystem services, e.g. sediment trapping, coastal protection and fisheries. Based on studies in East Kalimantan (Indonesia) we have shown that seagrass meadow parameters may provide more reliable indicators of land use change than the sampling of either marine sediments or water quality chemical parameters. Observations of changes in ecosystem functioning are particularly valuable for those areas where flux values are lacking and rapid surveys are needed. Time series of estuarine seagrass transects can show not only the intensity, but also the radius of action of land use change on coastal marine systems. Marine mega-herbivores pose a strong top-down control in seagrass ecosystems. We will provide a conceptual model, based on experimental evidence, to show that the global decline of marine mega-herbivore populations (as a result of large-scale poaching) may decrease the resilience of seagrass systems to increased anthropogenic forcing including land use changes. These outcomes not only urge the need for better regulation of land use change, but also for the establishment of marine protected areas (MPA's) in tropical coastal regions.

  5. Documenting the density of subtidal marine debris across multiple marine and coastal habitats.

    PubMed

    Smith, Stephen D A; Edgar, Robert J

    2014-01-01

    Marine debris is recognised globally as a key threatening process to marine life, but efforts to address the issue are hampered by the lack of data for many marine habitats. By developing standardised protocols and providing training in their application, we worked with >300 volunteer divers from 11 underwater research groups to document the scale of the subtidal marine debris problem at 120 sites across >1000 km of the coast of NSW, Australia. Sampling consisted of replicated 25×5 m transects in which all debris was identified, counted, and, where appropriate, removed. Sites ranged from estuarine settings adjacent to major population centres, to offshore islands within marine parks. Estuaries and embayments were consistently found to be the most contaminated habitats. Fishing-related items (and especially monofilament and braided fishing line) were most prevalent at the majority of sites, although food and drink items were important contributors at sites adjacent to population centres. The results identified damaging interactions between marine debris and marine biota at some key locations, highlighting the need for management intervention to ensure habitat sustainability. This study reinforces the important contribution that volunteers can make to assessing conservation issues requiring broad-scale data collection. In this case, citizen scientists delivered data that will inform, and help to prioritise, management approaches at both statewide and local scales. These initial data also provide an important baseline for longer-term, volunteer-based monitoring programs. PMID:24743690

  6. Documenting the Density of Subtidal Marine Debris across Multiple Marine and Coastal Habitats

    PubMed Central

    Smith, Stephen D. A.; Edgar, Robert J.

    2014-01-01

    Marine debris is recognised globally as a key threatening process to marine life, but efforts to address the issue are hampered by the lack of data for many marine habitats. By developing standardised protocols and providing training in their application, we worked with >300 volunteer divers from 11 underwater research groups to document the scale of the subtidal marine debris problem at 120 sites across >1000 km of the coast of NSW, Australia. Sampling consisted of replicated 25×5 m transects in which all debris was identified, counted, and, where appropriate, removed. Sites ranged from estuarine settings adjacent to major population centres, to offshore islands within marine parks. Estuaries and embayments were consistently found to be the most contaminated habitats. Fishing-related items (and especially monofilament and braided fishing line) were most prevalent at the majority of sites, although food and drink items were important contributors at sites adjacent to population centres. The results identified damaging interactions between marine debris and marine biota at some key locations, highlighting the need for management intervention to ensure habitat sustainability. This study reinforces the important contribution that volunteers can make to assessing conservation issues requiring broad-scale data collection. In this case, citizen scientists delivered data that will inform, and help to prioritise, management approaches at both statewide and local scales. These initial data also provide an important baseline for longer-term, volunteer-based monitoring programs. PMID:24743690

  7. Ecological succession reveals potential signatures of marine-terrestrial transition in salt marsh fungal communities.

    PubMed

    Dini-Andreote, Francisco; Pylro, Victor Satler; Baldrian, Petr; van Elsas, Jan Dirk; Salles, Joana Falcão

    2016-08-01

    Marine-to-terrestrial transition represents one of the most fundamental shifts in microbial life. Understanding the distribution and drivers of soil microbial communities across coastal ecosystems is critical given the roles of microbes in soil biogeochemistry and their multifaceted influence on landscape succession. Here, we studied the fungal community dynamics in a well-established salt marsh chronosequence that spans over a century of ecosystem development. We focussed on providing high-resolution assessments of community composition, diversity and ecophysiological shifts that yielded patterns of ecological succession through soil formation. Notably, despite containing 10- to 100-fold lower fungal internal transcribed spacer abundances, early-successional sites revealed fungal richnesses comparable to those of more mature soils. These newly formed sites also exhibited significant temporal variations in β-diversity that may be attributed to the highly dynamic nature of the system imposed by the tidal regime. The fungal community compositions and ecophysiological assignments changed substantially along the successional gradient, revealing a clear signature of ecological replacement and gradually transforming the environment from a marine into a terrestrial system. Moreover, distance-based linear modelling revealed soil physical structure and organic matter to be the best predictors of the shifts in fungal β-diversity along the chronosequence. Taken together, our study lays the basis for a better understanding of the spatiotemporally determined fungal community dynamics in salt marshes and highlights their ecophysiological traits and adaptation in an evolving ecosystem. PMID:26824176

  8. Heavy metals in molluscan, crustacean, and other commercially important Chilean marine coastal water species

    SciTech Connect

    Ober, A.G.; Gonzalez, M.; Santa Maria, I.

    1987-03-01

    The work reported here is part of a general program to monitor the marine chemical pollution along the Chilean coast. The present investigation was designated to provide information on the nature and levels of the heavy metals present in the marine species commonly consumed by the population, and to learn whether these levels may constitute a hazard to consumers. The authors report here the typical contents of 10 heavy metals in 12 commercially significant marine species from the Chilean coastal waters (Valparaiso, Concepcion and Puerto Montt). The analyzed species included 7 molluscs, 3 curstacea, and 2 other shellfish species of wide consumption. The metals chosen for analysis were copper, zinc, cadmium, lead, mercury, nickel, antimony, selenium, iron and chromium.

  9. Optimal management of a Hawaiian Coastal aquifer with nearshore marine ecological interactions

    NASA Astrophysics Data System (ADS)

    Duarte, Thomas Kaeo; Pongkijvorasin, Sittidaj; Roumasset, James; Amato, Daniel; Burnett, Kimberly

    2010-11-01

    We optimize groundwater management in the presence of marine consequences of submarine groundwater discharge (SGD). Concern for marine biota increases the optimal steady-state head level of the aquifer. The model is discussed in general terms for any coastal groundwater resource where SGD has a positive impact on valuable nearshore resources. Our application focuses on the Kona Coast of Hawai`i, where SGD is being actively studied and where both nearshore ecology and groundwater resources are serious sociopolitical issues. To incorporate the consequences of water extraction on nearshore resources, we impose a safe minimum standard for the quantity of SGD. Efficient pumping rates fluctuate according to various growth requirements on the keystone marine algae and different assumptions regarding recharge rates. Desalination is required under average recharge conditions and a strict minimum standard and under low recharge conditions regardless of minimum standards of growth.

  10. The RITMARE coastal radar network and applications to monitor marine transport infrastructures

    NASA Astrophysics Data System (ADS)

    Carrara, Paola; Corgnati, Lorenzo; Cosoli, Simone; Griffa, Annalisa; Kalampokis, Alkiviadis; Mantovani, Carlo; Oggioni, Alessandro; Pepe, Monica; Raffa, Francesco; Serafino, Francesco; Uttieri, Marco; Zambianchi, Enrico

    2014-05-01

    Coastal radars provide information on the environmental state of oceans, namely maps of surface currents at time intervals of the order of one hour with spatial coverage of the order of several km, depending on the transmission frequency. The observations are of crucial importance for monitoring ports and ship tracks close to the coast, providing support for safe navigation in densely operated areas and fast response in case of accidents at sea, such as oil spill or search and rescue. Besides these applications, coastal radar observations provide fundamental support in MPAs surveillance, connectivity and marine population circulation. In the framework of the Italian RITMARE flagship project coordinated by CNR (Consiglio Nazionale delle Ricerche), a coastal radar network has been designed and implemented with a number of innovative characteristics. The network includes both HF and X-band radars, allowing coverage of wide areas with different spatial and temporal resolutions. HF radars cover up to 80 km with a spatial resolution ranging between 1 and 5 km, while X-band radars provide 5 km coverage with a spatial resolution of 10 m. Joining these two capabilities, the RITMARE coastal radar network enables both a highly effective coverage of wide coastal areas and integrated monitoring of different phenomena, thus allowing the collection of current and wave parameters and detection of bathymetries of both open sea and coastal areas. A dedicated action to foster interoperability among data providers has been undertaken within RITMARE; an IT framework is under development to provide software tools for data collection and data sharing. It suggests standard, data format definitions, Quality Control strategies, data management and dissemination policies. In particular, the implementation of tools exploits both standards of OGC (Open Geospatial Consortium) and web services offered to manage, access and deliver geospatial data. Radar data produced in RITMARE by the coastal

  11. Accumulation of radionuclides in selected marine biota from Manjung coastal area

    SciTech Connect

    Abdullah, Anisa Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad; Alias, Masitah

    2015-04-29

    Distribution of radionuclides from anthropogenic activities has been intensively studied due to the accumulation of radionuclides in marine ecosystem. Manjung area is affected by rapid population growth and socio-economic development such as heavy industrial activities including coal fired power plant, iron foundries, port development and factories, agricultural runoff, waste and toxic discharge from factories.It has radiological risk and toxic effect when effluent from the industries in the area containing radioactive materials either being transported to the atmosphere and deposited back over the land or by run off to the river and flow into coastal area and being absorbed by marine biota. Radionuclides presence in the marine ecosystem can be adversely affect human health when it enters the food chain. This study is focusing on the radionuclides [thorium (Th), uranium (U), radium-226 ({sup 226}Ra), radium-228 ({sup 228}Ra) and potassium-40 ({sup 40}K)] content in marine biota and sea water from Manjung coastal area. Five species of marine biota including Johnius dussumieri (Ikan Gelama), Pseudorhombus malayanus (Ikan Sebelah), Arius maculatus (Ikan Duri), Portunus pelagicus (Ketam Renjong) and Charybdis natator (Ketam Salib) were collected during rainy and dry seasons. Measurements were carried out using Inductively Coupled Plasma Mass Spectrometer (ICPMS). The results show that the concentration of radionuclides varies depends on ecological environment of respective marine biota species. The concentrations and activity concentrations are used for the assessment of potential internal hazard index (H{sub in}), transfer factor (TF), ingestion dose rate (D) and health risk index (HRI) to monitor radiological risk for human consumption.

  12. Biodiversity of benthic microbial communities in bioturbated coastal sediments is controlled by geochemical microniches.

    PubMed

    Bertics, Victoria J; Ziebis, Wiebke

    2009-11-01

    We used a combination of field and laboratory approaches to address how the bioturbation activity of two crustaceans, the ghost shrimp Neotrypaea californiensis and the fiddler crab Uca crenulata, affects the microbial diversity in the seabed of a coastal lagoon (Catalina Harbor, Santa Catalina Island, CA, USA). Detailed geochemical analyses, including oxygen microsensor measurements, were performed to characterize environmental parameters. We used a whole-assemblage fingerprinting approach (ARISA: amplified ribosomal intergenic spacer analysis) to compare bacterial diversity along geochemical gradients and in relation to subsurface microniches. The two crustaceans have different burrowing behaviors. The ghost shrimp maintains complex, deep-reaching burrows and permanently lives subterranean, supplying its burrow with oxygen-rich water. In contrast, the fiddler crab constructs simpler, J-shaped burrows, which it does not inhabit permanently and does not actively ventilate. Our goal was to address how varying environmental parameters affect benthic microbial communities. An important question in benthic microbial ecology has been whether burrows support similar or unique communities compared with the sediment surface. Our results showed that sediment surface microbial communities are distinct from subsurface assemblages and that different burrow types support diverse bacterial taxa. Statistical comparisons by canonical correspondence analysis indicated that the availability of oxidants (oxygen, nitrate, ferric iron) play a key role in determining the presence and abundance of different taxa. When geochemical parameters were alike, microbial communities associated with burrows showed significant similarity to sediment surface communities. Our study provides implications on the community structure of microbial communities in marine sediments and the factors controlling their distribution. PMID:19458658

  13. Field Evaluation of Seepage Meters in the Coastal Marine Environment

    NASA Astrophysics Data System (ADS)

    Cable, J. E.; Burnett, W. C.; Chanton, J. P.; Corbett, D. R.; Cable, P. H.

    1997-09-01

    The response of seepage meters was evaluated in a nearshore marine environment where water motion effects are more pronounced than in lake settings, where these meters have been used traditionally. Temporal and spatial variations of seepage, as well as potential artifacts, were evaluated using empty and 1000-ml pre-filled bag measurements. Time-series measurements confirmed earlier observations that anomalously high fluxes occur during the early stages (≤10 min) of collection. As deployment times increased (30-60 min), measured flow rates stabilized at a level thought to represent the actual seepage flux. Pre-filling the plastic measurement bags effectively alleviated this anomalous, short-term influx. Reliable seepage measurements required deployment times sufficient to allow a net volume of at least 150 ml into the collection bag. Control experiments, designed by placing seepage meters inside sand-filled plastic swimming pools, served as indicators of external effects on these measurements, i.e. they served as seepage meter blanks. When winds were under 15 knots, little evidence was found that water motion caused artifacts in the seepage measurements. Tidal cycle influences on seepage rates were negligible in the present study area, but long-term temporal variations (weeks to months) proved substantial. Observed long-term changes in groundwater flux into the Gulf of Mexico correlated with water table elevation at a nearby monitoring well.

  14. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems.

    PubMed

    Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F

    2016-08-01

    Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. PMID:26648483

  15. North Carolina Marine Education Manual. Connections: Guide to Marine Resources, Living Marine Systems and Coastal Field Trips.

    ERIC Educational Resources Information Center

    Spence, L.; Medlicott, J.

    This collection of teaching and resource materials is designed to help middle school teachers put marine perspectives into their lessons. Materials are organized into three parts. Part 1 describes the preparation and maintenance of brackish water aquariums, marine aquariums, and touch tanks. Activities related to and sources of information on…

  16. Do anthropogenic, continental or coastal aerosol sources impact on a marine aerosol signature at Mace Head?

    NASA Astrophysics Data System (ADS)

    O'Dowd, C.; Ceburnis, D.; Ovadnevaite, J.; Vaishya, A.; Rinaldi, M.; Facchini, M. C.

    2014-10-01

    Atmospheric aerosols have been sampled and characterised at the Mace Head north-east (NE) Atlantic atmospheric research station since 1958, with many interesting phenomena being discovered. However, with the range of new discoveries and scientific advances, there has been a range of concomitant criticisms challenging the representativeness of aerosol sampled at the station compared to that of aerosol over the pristine open-ocean. Two recurring criticisms relate to the lack of representativeness due to potentially enhanced coastal sources, possibly leading to artificially high values of aerosol concentrations, and to the influence of long-range transport of anthropogenic or continental aerosol and its potential dominance over, or perturbation of, a natural marine aerosol signal. Here, we review the results of previous experimental studies on marine aerosols over the NE Atlantic and at Mace Head with the aim of evaluating their representativeness relative to that of a pristine open-ocean aerosol, i.e. with negligible anthropogenic/continental influence. Particular focus is given to submicron organic matter (OM) aerosol. In summary, no correlation was found between OM and black carbon (BC) in marine air conforming to clean-air sampling criteria, either at BC levels of 0-15 or 15-50 ng m-3, suggesting that OM concentrations, up to observed peak values of 3.8 μg m-3, are predominantly natural in origin. Sophisticated carbon isotope analysis and aerosol mass spectral finger printing techniques corroborate the conclusion that there is a predominant natural source of OM, with 80% biogenic source apportionment being observed for general clean-air conditions, rising to ∼98% during specific primary marine organic plumes when peak OM mass concentrations > 3 μg m-3 are observed. Similarly, a maximum contribution of 20% OM mass coming from non-marine sources was established by dual carbon isotope analysis. Further, analysis of a series of experiments conducted at Mace Head

  17. Proceedings of the fourth international conference on remote sensing for marine and coastal environments. Technology and applications: Volume II

    SciTech Connect

    1997-08-01

    The conference proceedings contain papers which focus on the application of remote sensing technology and geographic information systems to solve problems in marine and coastal environments. Thirty-one papers were selected for the database from Volume 2 of the proceedings. The topics included in the proceedings are: natural resource management, coastal hazards, oceanographic applications, mapping and charting, data access, coastal ocean color, radar satellites/coastal radars, underwater remote sensing, and new sensors and systems. Subtopics of papers in Volume 2 include: optics and models; air-sea interactions and sea ice; sensors and information systems; hyperspectral sensors and applications; charting and mapping; and color imagery.

  18. Assessment of marine debris in beaches or seawaters around the China Seas and coastal provinces.

    PubMed

    Zhou, Changchun; Liu, Xu; Wang, Zhengwen; Yang, Tiantian; Shi, Linna; Wang, Linlin; You, Suwen; Li, Min; Zhang, Cuicui

    2016-02-01

    Compared with United States of America (USA), Brazil, Chile, Australia, limited attention has been paid to marine debris research in China and few studies have attempted to quantify the abundance and mass of marine debris. In this study, firstly the general status and sources of marine debris in China were assessed in the time period between 2007 and 2014, and secondly marine debris situation was evaluated in three China Sea Areas (the North China Sea, the East China Sea and the South China Sea) from 2009 to 2013, and finally marine debris conditions and sources were analyzed in beaches or seawaters around some coastal provinces of China during 2007-2013. Based on above analysis, the primary conclusions were as follows: (1) The mean number and weight densities of beached marine debris (BMD) and submerged marine debris (SMD) were 4.30, 0.13items/100m(2) and 133.80, 22.60g/100m(2) in China from 2007 to 2014, respectively. The average number density of the large size FMD (LOSFMD) was 0.0024items/100m(2) and that of the small and medium size FMD (SMSFMD) was 0.30items/100m(2), and the mean weight density of the SMSFMD was 1.40g/100m(2) from 2008 to 2014. The SMD and FMD densities were at the low level and the BMD density was at the high level in China. (2) The marine debris primarily was comprised of plastic, Styrofoam, wood, glass, rubber, fabric/fiber and metal, which included almost all major categories of marine debris. (3) Sources of BMD and FMD were as follows: the first source was coastal/recreational activities, followed by other disposal sources, navigation/fishing activities and the activities related smoking, and the least source being those associated with medical/sanitary activities, while the source of SMD remained unknown. (4) The mean number and weight densities of BMD were the biggest in the North China Sea, while those of FMD and SMD were the highest in the northern South China Sea. The results of this study were beneficial to the establishment of

  19. The sociological perspective in coastal management and geoengineering approach: effects of hydraulic structures on the resilience of fishing communities (NW Portugal)

    NASA Astrophysics Data System (ADS)

    Rocha, Fernando; Pires, Ana; Chamine, Helder

    2014-05-01

    The coast plays an important role in global transportation and is the most popular tourist destination around the world. During the years coastal scientists "walking on the shore", have tried to understand the shoreline in relation to the processes that shape it, and its interrelationships with the contiguous superficial marine and terrestrial hinterland environments. Those factors encourage the need for Integrated Coastal Zone Management (ICZM), because of its possible use in identifying coastal management issues to take into account in policy strategies, measures and planning. Therefore this research presents an integrated strategy and a holistic approach to researching and studying coastal areas involving a wide number of sciences including sociology. Because of the numerous types of hazards in coastal areas the only possible response involves a holistic, integrated and long term approach. Combining marine sociological research, resilience and flexibility of a particular coastal community with other scientific fields will help to understand and manage marine social problems. This study also shows an integrative and "eclectic" methodology and adapts it to coastal management. Hence a new integrated coastal geoengineering approach for maritime environments was proposed, which is the core foundation of this approach. Also it was important to incorporate in a broader sense coastal geosciences and geoengineering GIS mapping to this final equation resulting in conceptual models. In Portugal there are several areas buffeted by sea invasions, coastal erosion and severe storms. The Portuguese coastal zone is one of Europe's most vulnerable regarding coastal erosion. The case study presented herein is an example of one of the most vulnerable sites in Portugal in terms of coastal erosion and sea invasions and how the meeting of local fishing community and coastal projects are extremely important. The coastal stretch between Figueira da Foz and Espinho (Centre and NW

  20. State of knowledge of coastal and marine biodiversity of Indian Ocean countries.

    PubMed

    Wafar, Mohideen; Venkataraman, Krishnamurthy; Ingole, Baban; Ajmal Khan, Syed; Lokabharathi, Ponnapakkam

    2011-01-01

    The Indian Ocean (IO) extends over 30% of the global ocean area and is rimmed by 36 littoral and 11 hinterland nations sustaining about 30% of the world's population. The landlocked character of the ocean along its northern boundary and the resultant seasonally reversing wind and sea surface circulation patterns are features unique to the IO. The IO also accounts for 30% of the global coral reef cover, 40,000 km² of mangroves,some of the world's largest estuaries, and 9 large marine ecosystems. Numerous expeditions and institutional efforts in the last two centuries have contributed greatly to our knowledge of coastal and marine biodiversity within the IO. The current inventory, as seen from the Ocean Biogeographic Information System, stands at 34,989 species, but the status of knowledge is not uniform among countries. Lack of human, institutional, and technical capabilities in some IO countries is the main cause for the heterogeneous level of growth in our understanding of the biodiversity of the IO. The gaps in knowledge extend to several smaller taxa and to large parts of the shelf and deep-sea ecosystems, including seamounts. Habitat loss, uncontrolled developmental activities in the coastal zone, over extraction of resources, and coastal pollution are serious constraints on maintenance of highly diverse biota, especially in countries like those of the IO, where environmental regulations are weak. PMID:21297949

  1. Downscaling and extrapolating dynamic seasonal marine forecasts for coastal ocean users

    NASA Astrophysics Data System (ADS)

    Vanhatalo, Jarno; Hobday, Alistair J.; Little, L. Richard; Spillman, Claire M.

    2016-04-01

    Marine weather and climate forecasts are essential in planning strategies and activities on a range of temporal and spatial scales. However, seasonal dynamical forecast models, that provide forecasts in monthly scale, often have low offshore resolution and limited information for inshore coastal areas. Hence, there is increasing demand for methods capable of fine scale seasonal forecasts covering coastal waters. Here, we have developed a method to combine observational data with dynamical forecasts from POAMA (Predictive Ocean Atmosphere Model for Australia; Australian Bureau of Meteorology) in order to produce seasonal downscaled, corrected forecasts, extrapolated to include inshore regions that POAMA does not cover. We demonstrate the method in forecasting the monthly sea surface temperature anomalies in the Great Australian Bight (GAB) region. The resolution of POAMA in the GAB is approximately 2° × 1° (lon. × lat.) and the resolution of our downscaled forecast is approximately 1° × 0.25°. We use data and model hindcasts for the period 1994-2010 for forecast validation. The predictive performance of our statistical downscaling model improves on the original POAMA forecast. Additionally, this statistical downscaling model extrapolates forecasts to coastal regions not covered by POAMA and its forecasts are probabilistic which allows straightforward assessment of uncertainty in downscaling and prediction. A range of marine users will benefit from access to downscaled and nearshore forecasts at seasonal timescales.

  2. Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces.

    PubMed

    Lee, Jin-Woo; Nam, Ji-Hyun; Kim, Yang-Hoon; Lee, Kyu-Ho; Lee, Dong-Hun

    2008-04-01

    Succession of bacterial communities during the first 36 h of biofilm formation in coastal water was investigated at 3 approximately 15 h intervals. Three kinds of surfaces (i.e., acryl, glass, and steel substratum) were submerged in situ at Sacheon harbor, Korea. Biofilms were harvested by scraping the surfaces, and the compositions of bacterial communities were analyzed by terminal restriction fragment length polymorphism (T-RFLP), and cloning and sequencing of 16S rRNA genes. While community structure based on T-RFLP analysis showed slight differences by substratum, dramatic changes were commonly observed for all substrata between 9 and 24 h. Identification of major populations by 16S rRNA gene sequences indicated that gamma-Proteobacteria (Pseudomonas, Acinetobacter, Alteromonas, and uncultured gamma-Proteobacteria) were predominant in the community during 0 approximately 9 h, while the ratio of alpha-Proteobacteria (Loktanella, Methylobacterium, Pelagibacter, and uncultured alpha-Proteobacteria) increased 2.6 approximately 4.8 folds during 24 approximately 36 h of the biofilm formation, emerging as the most predominant group. Previously, alpha-Proteobacteria were recognized as the pioneering organisms in marine biofilm formation. However, results of this study, which revealed the bacterial succession with finer temporal resolution, indicated some species of gamma-Proteobacteria were more important as the pioneering population. Measures to control pioneering activities of these species can be useful in prevention of marine biofilm formation. PMID:18545967

  3. Temporal Stability of the Microbial Community in Sewage-Polluted Seawater Exposed to Natural Sunlight Cycles and Marine Microbiota

    PubMed Central

    Sassoubre, Lauren M.; Yamahara, Kevan M.

    2015-01-01

    Billions of gallons of untreated wastewater enter the coastal ocean each year. Once sewage microorganisms are in the marine environment, they are exposed to environmental stressors, such as sunlight and predation. Previous research has investigated the fate of individual sewage microorganisms in seawater but not the entire sewage microbial community. The present study used next-generation sequencing (NGS) to examine how the microbial community in sewage-impacted seawater changes over 48 h when exposed to natural sunlight cycles and marine microbiota. We compared the results from microcosms composed of unfiltered seawater (containing naturally occurring marine microbiota) and filtered seawater (containing no marine microbiota) to investigate the effect of marine microbiota. We also compared the results from microcosms that were exposed to natural sunlight cycles with those from microcosms kept in the dark to investigate the effect of sunlight. The microbial community composition and the relative abundance of operational taxonomic units (OTUs) changed over 48 h in all microcosms. Exposure to sunlight had a significant effect on both community composition and OTU abundance. The effect of marine microbiota, however, was minimal. The proportion of sewage-derived microorganisms present in the microcosms decreased rapidly within 48 h, and the decrease was the most pronounced in the presence of both sunlight and marine microbiota, where the proportion decreased from 85% to 3% of the total microbial community. The results from this study demonstrate the strong effect that sunlight has on microbial community composition, as measured by NGS, and the importance of considering temporal effects in future applications of NGS to identify microbial pollution sources. PMID:25576619

  4. Temporal stability of the microbial community in sewage-polluted seawater exposed to natural sunlight cycles and marine microbiota.

    PubMed

    Sassoubre, Lauren M; Yamahara, Kevan M; Boehm, Alexandria B

    2015-03-01

    Billions of gallons of untreated wastewater enter the coastal ocean each year. Once sewage microorganisms are in the marine environment, they are exposed to environmental stressors, such as sunlight and predation. Previous research has investigated the fate of individual sewage microorganisms in seawater but not the entire sewage microbial community. The present study used next-generation sequencing (NGS) to examine how the microbial community in sewage-impacted seawater changes over 48 h when exposed to natural sunlight cycles and marine microbiota. We compared the results from microcosms composed of unfiltered seawater (containing naturally occurring marine microbiota) and filtered seawater (containing no marine microbiota) to investigate the effect of marine microbiota. We also compared the results from microcosms that were exposed to natural sunlight cycles with those from microcosms kept in the dark to investigate the effect of sunlight. The microbial community composition and the relative abundance of operational taxonomic units (OTUs) changed over 48 h in all microcosms. Exposure to sunlight had a significant effect on both community composition and OTU abundance. The effect of marine microbiota, however, was minimal. The proportion of sewage-derived microorganisms present in the microcosms decreased rapidly within 48 h, and the decrease was the most pronounced in the presence of both sunlight and marine microbiota, where the proportion decreased from 85% to 3% of the total microbial community. The results from this study demonstrate the strong effect that sunlight has on microbial community composition, as measured by NGS, and the importance of considering temporal effects in future applications of NGS to identify microbial pollution sources. PMID:25576619

  5. Marine bacterial communities are resistant to elevated carbon dioxide levels.

    PubMed

    Oliver, Anna E; Newbold, Lindsay K; Whiteley, Andrew S; van der Gast, Christopher J

    2014-12-01

    It is well established that the release of anthropogenic-derived CO2 into the atmosphere will be mainly absorbed by the oceans, with a concomitant drop in pH, a process termed ocean acidification. As such, there is considerable interest in how changes in increased CO2 and lower pH will affect marine biota, such as bacteria, which play central roles in oceanic biogeochemical processes. Set within an ecological framework, we investigated the direct effects of elevated CO2, contrasted with ambient conditions on the resistance and resilience of marine bacterial communities in a replicated temporal seawater mesocosm experiment. The results of the study strongly indicate that marine bacterial communities are highly resistant to the elevated CO2 and lower pH conditions imposed, as demonstrated from measures of turnover using taxa–time relationships and distance–decay relationships. In addition, no significant differences in community abundance, structure or composition were observed. Our results suggest that there are no direct effects on marine bacterial communities and that the bacterial fraction of microbial plankton holds enough flexibility and evolutionary capacity to withstand predicted future changes from elevated CO2 and subsequent ocean acidification. PMID:25756110

  6. Marine and coastal environmental awareness building within the context of UNESCO's activities in Asia and the Pacific.

    PubMed

    Kuijper, Maarten W M

    2003-01-01

    UNESCO is one of the specialized agencies under the United Nations charged with the advancement and improvement of education, social and natural sciences, culture and communication. This global mandate translates into programmes in the field tailored to the member states' specific requirements that build on the full breadth of expertise available in UNESCO. Environmental awareness building is an integral component of many of UNESCO's programmes. This paper describes how UNESCO addresses the need for awareness building in a variety of settings under different programmes and sectors. A first example is taken from the work of the education sector, which aims at introducing innovative learning methods and curricula that change or cultivate the perspective of people of all ages on sustainable development. The second example is taken from the Man and Biosphere Programme. The Biosphere Reserve concept has had a long history within UNESCO and is increasingly applied to protected areas in the coastal zone. Notable examples are Ranong Biosphere Reserve in Thailand, Can Gio Biosphere Reserve in Vietnam and the Island of Palawan in the Philippines. The concept is currently experiencing a revival as more and more countries realize the importance of striking a balance between human development and strict conservation. Many people know about UNESCO through the so-called World Heritage Sites. These are sites that are recognized by the world community as particular monuments, either natural or cultural, that warrant preservation for the whole of mankind. In the Asia-Pacific region, there are quite a number of coastal and marine sites that have been designated as natural world heritage sites, e.g. Halong Bay in Vietnam, the Komodo marine national park, Indonesia, the Great Barrier Reef in Australia, East-Rennell Island in the Solomon Islands, and Tubbataha Reef in the Philippines. The need for a cross-sectoral approach is evident under the so-called Coastal Zone and Small Islands

  7. Coastal erosion as a source of mercury into the marine environment along the Polish Baltic shore.

    PubMed

    Bełdowska, Magdalena; Jędruch, Agnieszka; Łęczyński, Leszek; Saniewska, Dominika; Kwasigroch, Urszula

    2016-08-01

    The climate changes in recent years in the southern Baltic have been resulting in an increased frequency of natural extreme phenomena (i.e. storms, floods) and intensification of abrasion processes, which leads to introduction of large amounts of sedimentary deposits into the marine environment. The aim of this study was to determine the mercury load introduced to the Baltic Sea with deposits crumbling off the cliffs-parts of the coast that are the most exposed to abrasion. The studies were carried out close to five cliffs located on the Polish coast in the years 2011-2014. The results show that coastal erosion could be an important Hg source into the marine environment. This process is the third most important route, after riverine and precipitation input, by which Hg may enter the Gulf of Gdańsk. In the Hg budget in the gulf, the load caused by erosion (14.3 kg a(-1)) accounted for 80 % of the wet deposition and was 50 % higher than the amount of mercury introduced with dry deposition. Although the Hg concentration in the cliff deposits was similar to the natural background, due to their large mass, this problem could be significant. In addition, the preliminary studies on the impact of coastal erosion on the Hg level in the marine ecosystem have shown that this process may be one of the Hg sources into the trophic chain. PMID:27164873

  8. Low mercury levels in marine fish from estuarine and coastal environments in southern China.

    PubMed

    Pan, Ke; Chan, Heidi; Tam, Yin Ki; Wang, Wen-Xiong

    2014-02-01

    This study is the first comprehensive evaluation of total Hg and methylmercury (MeHg) concentrations in wild marine fish from an estuarine and a coastal ecosystem in southern China. A total of 571 fish from 54 different species were examined. Our results showed that the Hg levels were generally low in the fish, and the Hg levels were below 30 ng g(-1) (wet weight) for 82% of the samples, which may be related to the reduced size of the fish and altered food web structure due to overfishing. Decreased coastal wetland coverage and different carbon sources may be responsible for the habitat-specific Hg concentrations. The degree of biomagnification was relatively low in the two systems. PMID:24292441

  9. Halogenated phenolic contaminants in the blood of marine mammals from Japanese coastal waters.

    PubMed

    Nomiyama, Kei; Kanbara, Chika; Ochiai, Mari; Eguchi, Akifumi; Mizukawa, Hazuki; Isobe, Tomohiko; Matsuishi, Takashi; Yamada, Tadasu K; Tanabe, Shinsuke

    2014-02-01

    Information on accumulation of halogenated phenolic contaminants in the blood of marine mammal is limited. The present study, we determined the residue levels and patterns of chlorinated and brominated phenolic contaminants (OH-PCBs, OH-PBDEs and bromophenols) in the blood collected from pinnipeds (northern fur seal, spotted seal, Steller sea lion and ribbon seal) and small cetaceans (harbor porpoise and Dall's porpoise) from Japanese coastal waters. Concentrations of PCBs and OH-PCBs found in pinnipeds were the same as in small cetaceans living in the same coastal area. However, significantly lower concentrations of brominated compounds (PBDEs, MeO-PBDEs, OH-PBDEs) were found in the blood of pinnipeds than the levels found in cetacean species which live same area (p < 0.05). This difference of accumulation pattern suggested pinnipeds have an enhanced capability to degrade organobromine compounds relative to cetaceans. PMID:24060385

  10. Marine Chemical Ecology: Chemical Signals and Cues Structure Marine Populations, Communities, and Ecosystems

    PubMed Central

    Hay, Mark E.

    2012-01-01

    Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequately recognized. PMID:21141035

  11. Marine Chemical Ecology: Chemical Signals and Cues Structure Marine Populations, Communities, and Ecosystems

    NASA Astrophysics Data System (ADS)

    Hay, Mark E.

    2009-01-01

    Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequately recognized.

  12. Effects of thermal effluents on communities of benthic marine macroalgae

    SciTech Connect

    Devinny; J.S.

    1980-11-01

    Surveys of marine benthic macro-algae were made at two study areas receiving thermal effluents from power plants. A third, at an area where a natural thermal gradient exists, was investigated for comparison. Ordination analysis of the algal communities indicated changes in species composition of about 10% for each degree of temperature change up to 3/sup 0/C. Temperatures 7/sup 0/C above ambient altered the algal community by eliminating the large phaeophytes. Temperatures 10/sup 0/C above ambient left only a species-poor community of ephemeral populations.

  13. Habitat type and nursery function for coastal marine fish species, with emphasis on the Eastern Cape region, South Africa

    NASA Astrophysics Data System (ADS)

    Whitfield, Alan K.; Pattrick, Paula

    2015-07-01

    A considerable amount of research has been undertaken to document and assess the nursery function of a variety of coastal habitats for marine fish species around the world. Most of these studies have focused on particular habitats and have generally been confined to a limited range of fish species associated with specific nursery areas. In this review we conduct a general assessment of the state of knowledge of coastal habitats in fulfilling the nursery-role concept for marine fishes, with particular emphasis on biotic and abiotic factors that influence nursery value. A primary aim was to synthesize information that can be used to drive sound conservation planning and provide a conceptual framework so that new marine protected areas (MPAs) incorporate the full range of nursery areas that are present within the coastal zone. We also use published data from a coastal section in the Eastern Cape Province, South Africa, to highlight the differential use of shallow aquatic habitats by a range of juvenile marine fish species within this region. Although the Eastern Cape case study does not assess the relative growth, food availability or predation in nursery and non-nursery areas within the coastal zone, it does document which habitats are important to the juveniles of dominant marine species within each area. These habitats, which range from intertidal pools, subtidal gulleys and surf zones to estuaries, do appear to perform a key role in the biological success of species assemblages, with the juveniles of particular marine fishes tending to favour specific nursery areas. According to a multivariate analysis of nursery habitat use within this region, marine species using estuaries tend to differ considerably from those using nearshore coastal waters, with a similar pattern likely to occur elsewhere in the world.

  14. Structuring factors and recent changes in subtidal macrozoobenthic communities of a coastal lagoon, Arcachon Bay (France)

    NASA Astrophysics Data System (ADS)

    Blanchet, Hugues; de Montaudouin, Xavier; Chardy, Pierre; Bachelet, Guy

    2005-09-01

    Fourteen years after a previous investigation in Arcachon Bay (SW France), the quantitative distribution of subtidal macrozoobenthic communities was assessed in 2002 through a stratified sampling strategy involving a larger number of stations (89 vs. 18) than in 1988. A total of 226 taxa were recorded. Cluster Analysis and Correspondence Analysis identified nine station groups corresponding to benthic faunal assemblages and their characteristic species. Multiple Discriminant Analysis showed that the main environmental factors influencing the distribution of faunal assemblages were sediment parameters and distance from the ocean. Depth was a minor structuring factor. At the scale of the lagoon, biogenic structures such as Zostera marina beds, Crepidula fornicata-dominated bottoms or dead oyster shell bottoms did not display any particular assemblage of infauna. Comparison with previous quantitative data from the 1988 survey provided more precision on the distribution of benthic assemblages and revealed community changes at a 14-year scale. These modifications reflected a general increase of silt and clay content in the sediment in the internal parts of channels, inducing community change. These changes can be correlated to the recent first signs of a moderate eutrophication process which have appeared, since 1988, through the development of green macroalgae in some parts of the lagoon. This trend was enhanced in transverse channels with reduced hydrodynamics and led to muddy areas where green macroalgae tended to accumulate. Locally, the dredging of sandbanks induced stronger currents and allowed the marine influence to occur, and also induced community change. These observations confirm that surveys of macrobenthic communities are useful tools to assess coastal ecosystem change even in moderately disturbed environments.

  15. Recommendations on methods for the detection and control of biological pollution in marine coastal waters.

    PubMed

    Olenin, Sergej; Elliott, Michael; Bysveen, Ingrid; Culverhouse, Phil F; Daunys, Darius; Dubelaar, George B J; Gollasch, Stephan; Goulletquer, Philippe; Jelmert, Anders; Kantor, Yuri; Mézeth, Kjersti Bringsvor; Minchin, Dan; Occhipinti-Ambrogi, Anna; Olenina, Irina; Vandekerkhove, Jochen

    2011-12-01

    Adverse effects of invasive alien species (IAS), or biological pollution, is an increasing problem in marine coastal waters, which remains high on the environmental management agenda. All maritime countries need to assess the size of this problem and consider effective mechanisms to prevent introductions, and if necessary and where possible to monitor, contain, control or eradicate the introduced impacting organisms. Despite this, and in contrast to more enclosed water bodies, the openness of marine systems indicates that once species are in an area then eradication is usually impossible. Most institutions in countries are aware of the problem and have sufficient governance in place for management. However, there is still a general lack of commitment and concerted action plans are needed to address this problem. This paper provides recommendations resulting from an international workshop based upon a large amount of experience relating to the assessment and control of biopollution. PMID:21889171

  16. Is the Coastal Ocean a Source of Mercury to Marine Advective Fog

    NASA Astrophysics Data System (ADS)

    Heim, W. A.; Weiss-Penzias, P. S.; Fernandez, D.; Byington, A.; Bonnema, A.; Beebe, C.; Chiswell, H.; Olson, A.; Coale, K. H.

    2014-12-01

    Marine advective fog is a common feature along the California coast during the summer season. This fog provides an important water source to many endemic fauna and flora. Studies are underway to better understand the chemical makeup of Pacific marine fog as it is an important input to the hydrologic cycle. We report results from our study focused on investigating the potential for coastal ocean upwelling to contribute volatile organic mercury to the overlying atmosphere where it could be incorporated into cloud droplets as monomethyl mercury (MMHg). Preliminary research by this group has indicated that fog water inputs to certain coastal locations may contribute up to 99% of the MMHg flux to land compared to the MMHg flux in rain. Mercury measurements, including total mercury (Hgt), MMHg, elemental mercury (Hg0), and dimethyl mercury (DMHg), were made to unfiltered water collected from depth profiles at 12 stations from Big Sur to Trinidad Head over the California shelf during summer 2014. Profiles of Hgt ranged from 0.3-2.4 pM and were similar to other reported measurements of Hgt for the North Pacific. A large range in concentration was observed for MMHg (10-540 fM) with elevated values generally occurring below the oxycline (>50m). Concentrations of Hg0 were 0.06 to 0.57 pM with elevated concentrations at depth relative to surface values. Depth profiles of DMHg were similar to MMHg and concentrations were measured from 10-295 fM with highest concentrations observed below the oxycline. Surface concentrations of DMHg averaged 40 ± 22 fM. Given the observed profiles for DMHg and the fact that it is sparingly soluble in water, a net flux of DMHg to the atmosphere is likely occurring. Based on these findings and the fact that MMHg and DMHg concentrations in the coastal ocean were highest in the low oxygen zone, we speculate that mercury is methylated in the water column and/or sediments as DMHg and that this water is upwelled seasonally in the coastal zones and

  17. Do anthropogenic or coastal aerosol sources impact on a clean marine aerosol signature at Mace Head?

    NASA Astrophysics Data System (ADS)

    O'Dowd, C.; Ceburnis, D.; Ovadnevaite, J.; Rinaldi, M.; Facchini, M. C.

    2013-03-01

    Atmospheric aerosols have been sampled and characterised at the Mace Head North East (N.E.) Atlantic atmospheric research station since 1958, with many interesting phenomena being discovered. However, with the range of new discoveries and scientific advances, there has been a range of concomitant criticisms challenging the representativeness of aerosol sampled at the station to that of aerosol over the open ocean. Two recurring criticisms relate to the lack of representativeness due to enhanced coastal sources, thereby leading to artificially high values to aerosol parameters, and to the influence of long-range transport of anthropogenic aerosol and its potential dominance over, or drowning-out of, a natural marine aerosol signal. Here we review the results of previous experimental studies into marine aerosols over the N.E. Atlantic and at Mace Head with the aim of evaluating their representativeness relative to that of an open ocean aerosol with negligible anthropogenic influence. Particular focus is given to organic matter (OM) aerosol. In summary, no correlation was found between OM and black carbon (BC) either at BC levels of 0-15 or 15-50 ng m-3, suggesting that OM concentrations up to peak values of 3.8 μg m-3 are predominantly natural in origin. Sophisticated carbon isotope analysis and aerosol mass spectral finger printing corroborate the natural source of OM with 80% biogenic source apportionment being observed for general clean air conditions, rising to 98% during specific primary marine organic plumes when peak concentrations >3 μg m-3 are observed. A range of other experiments are discussed which corroborate the dominance of a marine signal under Mace Head clean air criteria along. Further, analysis of a series of experiments conducted at Mace Head conclude that negligible coastal, surf zone, or tidal effects are discernible in the submicron size range for sampling heights of 7 m and above. The Mace Head clean air criteria ensures anthropogenic and

  18. Dispersal kernel estimation: A comparison of empirical and modelled particle dispersion in a coastal marine system

    NASA Astrophysics Data System (ADS)

    Hrycik, Janelle M.; Chassé, Joël; Ruddick, Barry R.; Taggart, Christopher T.

    2013-11-01

    Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conservation to the design of marine reserves and the mitigation of species invasions. Here we compare estimates of real particle dispersion in a coastal marine environment with similar estimates provided by hydrodynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location dispersed through the collector array over a 5-7 d period. A virtual release and observed (real-time) environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector array and the number of VPs that passed through each corresponding model location were enumerated and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the range of 5.19-11.44 km, while those from the model simulations were comparable at 1.89-6.52 km, and also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in modelling and are postulated to be related to MAP losses from the water column and (or) shear dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic systems, and 2) quantitatively assessing and (or) improving regional hydrodynamic

  19. Occurrence of synthetic musk fragrances in marine mammals and sharks from Japanese coastal waters.

    PubMed

    Nakata, Haruhiko

    2005-05-15

    In this study, the occurrence of the polycyclic musk fragrances HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2-benzopyran) and AHTN (7-acetyl-1,1,3,4,4,6-hexamethyltetrahydeonaphthalene) in marine mammals and sharks collected from Japanese coastal waters is reported. HHCB was present in the blubbers of all finless porpoises (Neophocaena phocaenoides) analyzed (n = 8), at levels ranging from 13 to 149 ng/g on a wet weight basis. A fetus sample of finless porpoise contained a notable concentration of HHCB (26 ng/g wet wt), suggesting transplacental transfer of this compound. Among 12 tissues and organs of a finless porpoise analyzed, the highest HHCB concentration was found in blubber, followed by kidney. This indicates that HHCB accumulates in lipid-rich tissues in marine mammals, which is similar to the accumulation profiles of persistent organochlorines, such as PCBs and DDTs. In general, the residue levels of AHTN and nitro musks were low or below the detection limits in finless porpoises, implying either less usage in Japan or high metabolic capacity of these compounds in this animal. HHCB was also found in the livers of five hammerhead sharks (Sphrna lewini) from Japanese coastal waters, at concentrations ranging from 16 to 48 ng/g wet wt. Occurrence of HHCB in higher trophic organisms strongly suggests that it is less degradable in the environment and accumulates in the top predators of marine food chains. This is the first report on the accumulation of synthetic musk fragrances in marine mammals and sharks. PMID:15952346

  20. Impact of Roundup on the marine microbial community, as shown by an in situ microcosm experiment.

    PubMed

    Stachowski-Haberkorn, Sabine; Becker, Beatriz; Marie, Dominique; Haberkorn, Hansy; Coroller, Louis; de la Broise, Denis

    2008-09-29

    The effects of the herbicide Roundup (glyphosate) on natural marine microbial communities were assessed in a 7-day field experiment using microcosms. Bottles were maintained underwater at 6m depth, and 10% of their water content was changed every other day. The comparison of control microcosms and surrounding surface water showed that the microcosm system tested here can be considered as representative of the natural surrounding environment. A temporal temperature gradient gel electrophoresis (TTGE) was run on 16S and 18S rDNA-amplified extracts from the whole microbial community. Cluster analysis of the 16S gel showed differences between control and treatment fingerprints for Roundup at 1 microg L(-1) (ANOSIM, p=0.055; R=0.53), and 10 microg L(-1) (ANOSIM, p=0.086; R=0.40). Flow cytometry analysis revealed a significant increase in the prasinophyte-like population when Roundup concentration was increased to 10 microg L(-1). This study demonstrates that a disturbance was caused to the marine microbial community exposed to 1 microg L(-1) Roundup concentration, a value typical of those reported in coastal waters during a run-off event. PMID:18760491

  1. Climate change impacts on U.S. coastal and marine ecosystems

    USGS Publications Warehouse

    Scavia, Donald; Field, John C.; Boesch, Donald F.; Buddemeier, Robert W.; Burkett, Virginia; Cayan, Daniel R.; Fogarty, Michael; Harwell, Mark A.; Howarth, Robert W.; Mason, Curt; Reed, Denise J.; Royer, Thomas C.; Sallenger, Asbury H.; Titus, James G.

    2002-01-01

    Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction

  2. Victims or vectors: a survey of marine vertebrate zoonoses from coastal waters of the Northwest Atlantic.

    PubMed

    Bogomolni, Andrea L; Gast, Rebecca J; Ellis, Julie C; Dennett, Mark; Pugliares, Katie R; Lentell, Betty J; Moore, Michael J

    2008-08-19

    Surveillance of zoonotic pathogens in marine birds and mammals in the Northwest Atlantic revealed a diversity of zoonotic agents. We found amplicons to sequences from Brucella spp., Leptospira spp., Giardia spp. and Cryptosporidium spp. in both marine mammals and birds. Avian influenza was detected in a harp seal and a herring gull. Routine aerobic and anaerobic culture showed a broad range of bacteria resistant to multiple antibiotics. Of 1460 isolates, 797 were tested for resistance, and 468 were resistant to one or more anti-microbials. 73% (341/468) were resistant to 1-4 drugs and 27% (128/468) resistant to 5-13 drugs. The high prevalence of resistance suggests that many of these isolates could have been acquired from medical and agricultural sources and inter-microbial gene transfer. Combining birds and mammals, 45% (63/141) of stranded and 8% (2/26) of by-caught animals in this study exhibited histopathological and/or gross pathological findings associated with the presence of these pathogens. Our findings indicate that marine mammals and birds in the Northwest Atlantic are reservoirs for potentially zoonotic pathogens, which they may transmit to beachgoers, fishermen and wildlife health personnel. Conversely, zoonotic pathogens found in marine vertebrates may have been acquired via contamination of coastal waters by sewage, run-off and agricultural and medical waste. In either case these animals are not limited by political boundaries and are therefore important indicators of regional and global ocean health. PMID:18828560

  3. Cyanobacterial assimilatory nitrate reductase gene diversity in coastal and oligotrophic marine environments.

    PubMed

    Jenkins, Bethany D; Zehr, Jonathan P; Gibson, Angela; Campbell, Lisa

    2006-12-01

    Cyanobacteria are important primary producers in many marine ecosystems and their abundances and growth rates depend on their ability to assimilate various nitrogen sources. To examine the diversity of nitrate-utilizing marine cyanobacteria, we developed PCR primers specific for cyanobacterial assimilatory nitrate reductase (narB) genes. We obtained amplification products from diverse strains of cultivated cyanobacteria and from several marine environments. Phylogenetic trees constructed with the narB gene are congruent with those based on ribosomal RNA genes and RNA polymerase genes. Analysis of sequence library data from coastal and oligotrophic marine environments shows distinct groups of Synechococcus sp. in each environment; some of which are represented by sequences from cultivated organisms and others that are unrelated to known sequences and likely represent novel phylogenetic groups. We observed spatial differences in the distribution of sequences between two sites in Monterey Bay and differences in the vertical distribution of sequence types at the Hawai'i Ocean Time-series Station ALOHA, suggesting that nitrogen assimilation in Synechococcus living in different ecological niches can be followed with the nitrate reductase gene. PMID:17107550

  4. Elevated Accumulation of Parabens and their Metabolites in Marine Mammals from the United States Coastal Waters.

    PubMed

    Xue, Jingchuan; Sasaki, Nozomi; Elangovan, Madhavan; Diamond, Guthrie; Kannan, Kurunthachalam

    2015-10-20

    The widespread exposure of humans to parabens present in personal care products is well-known. Nevertheless, little is known about the accumulation of parabens in marine organisms. In this study, six parabens and four common metabolites of parabens were measured in 121 tissue samples from eight species of marine mammals collected along the coastal waters of Florida, California, Washington, and Alaska. Methyl paraben (MeP) was the predominant compound found in the majority of the marine mammal tissues analyzed, and the highest concentration found was 865 ng/g (wet weight [wet wt]) in the livers of bottlenose dolphins from Sarasota Bay, FL. 4-Hydroxybenzoic acid (4-HB) was the predominant paraben metabolite found in all tissue samples. The measured concentrations of 4-HB were on the order of hundreds to thousands of ng/g tissue, and these values are some of the highest ever reported in the literature. MeP and 4-HB concentrations showed a significant positive correlation (p < 0.05), which suggested a common source of exposure to these compounds in marine mammals. Trace concentrations of MeP and 4-HB were found in the livers of polar bears from the Chuckchi Sea and Beaufort Sea, which suggested widespread distribution of MeP and 4-HB in the oceanic environment. PMID:26379094

  5. COASTAL WETLAND INSECT COMMUNITIES ALONG A TROPHIC GRADIENT IN GREEN BAY, LAKE MICHIGAN

    EPA Science Inventory

    Insects of Great Lakes coastal wetlands have received little attention in spite of their importance in food webs and sensitivity to anthropogenic stressors. We characterized insect communities from four coastal wetlands that spanned the length of a trophic gradient in Green Bay d...

  6. Environmental controls on microbial community cycling in modern marine stromatolites

    NASA Astrophysics Data System (ADS)

    Bowlin, Emily M.; Klaus, James S.; Foster, Jamie S.; Andres, Miriam S.; Custals, Lillian; Reid, R. Pamela

    2012-07-01

    Living stromatolites on the margins of Exuma Sound, Bahamas, are the only examples of modern stromatolites forming in open marine conditions similar to those that may have existed on Precambrian platforms. Six microbial mat types have previously been documented on the surfaces of stromatolites along the eastern side of Highborne Cay (Schizothrix, Solentia, heterotrophic biofilm, stalked diatom, tube diatom and Phormidium mats). Cycling of these communities create laminae with distinct microstructures. Subsurface laminae thus represent a chronology of former surface mats. The present study documents the effects of environmental factors on surface microbial communities of modern marine stromatolites and identifies potential causes of microbial mat cycling. Mat type and burial state at 43 markers along a stromatolitic reef on the margin of Highborne Cay were monitored over a two-year period (2005-2006). Key environmental parameters (i.e., temperature, light, wind, water chemistry) were also monitored. Results indicated that the composition of stromatolite surface mats and transitions from one mat type to another are controlled by both seasonal and stochastic events. All six stromatolite mat communities at Highborne Cay showed significant correlations with water temperature. Heterotrophic biofilms, Solentia, stalked diatom and Phormidium mats showed positive correlations with temperature, whereas Schizothrix and tube diatom communities showed negative correlations. A significant correlation with light (photosynthetically active radiation, PAR) was detected only for the heterotrophic biofilm community. No significant correlations were found between mat type and the monitored wind intensity data, but field observations indicated that wind-related events such as storms and sand abrasion play important roles in the transitions from one mat type to another. An integrated model of stromatolite mat community cycling is developed that includes both predictable seasonal

  7. Phytoplankton community composition in nearshore coastal waters of Louisiana.

    PubMed

    Schaeffer, Blake A; Kurtz, Janis C; Hein, Michael K

    2012-08-01

    Phytoplankton community compositions within near-shore coastal and estuarine waters of Louisiana were characterized by group diversity, evenness, relative abundance and biovolume. Sixty-six taxa were identified in addition to eight potentially harmful algal genera including Gymnodinium sp. Phytoplankton group diversity was lowest at Vermillion Bay in February 2008, but otherwise ranged between 2.16 and 3.40. Phytoplankton evenness was also lowest at Vermillion Bay in February 2008, but otherwise ranged between 0.54 and 0.77. Dissolved oxygen increased with increased biovolume (R² = 0.85, p < 0.001) and biovolume decreased with increased light attenuation (R² = 0.34, p = 0.007), which supported the importance of light in regulating oxygen dynamics. Diatoms were dominant in relative abundance and biovolume at almost all stations and all cruises. Brunt-Väisälä frequency was used as a measure of water column stratification and was negatively correlated (p = 0.02) to diatom relative percent total abundance. PMID:22498318

  8. Multiresolution in CROCO (Coastal and Regional Ocean Community model)

    NASA Astrophysics Data System (ADS)

    Debreu, Laurent; Auclair, Francis; Benshila, Rachid; Capet, Xavier; Dumas, Franck; Julien, Swen; Marchesiello, Patrick

    2016-04-01

    CROCO (Coastal and Regional Ocean Community model [1]) is a new oceanic modeling system built upon ROMS_AGRIF and the non-hydrostatic kernel of SNH, gradually including algorithms from MARS3D (sediments)and HYCOM (vertical coordinates). An important objective of CROCO is to provide the possibility of running truly multiresolution simulations. Our previous work on structured mesh refinement [2] allowed us to run two-way nesting with the following major features: conservation, spatial and temporal refinement, coupling at the barotropic level. In this presentation, we will expose the current developments in CROCO towards multiresolution simulations: connection between neighboring grids at the same level of resolution and load balancing on parallel computers. Results of preliminary experiments will be given both on an idealized test case and on a realistic simulation of the Bay of Biscay with high resolution along the coast. References: [1] : CROCO : http://www.croco-ocean.org [2] : Debreu, L., P. Marchesiello, P. Penven, and G. Cambon, 2012: Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. Ocean Modelling, 49-50, 1-21.

  9. Seasonal succession and UV sensitivity of marine bacterioplankton at an Antarctic coastal site.

    PubMed

    Piquet, Anouk M-T; Bolhuis, Henk; Davidson, Andrew T; Buma, Anita G J

    2010-07-01

    Despite extensive microbial biodiversity studies around the globe, studies focusing on diversity and community composition of Bacteria in Antarctic coastal regions are still scarce. Here, we studied the diversity and development of bacterioplankton communities from Prydz Bay (Eastern Antarctic) during spring and early summer 2002-2003. Additionally, we investigated the possible shaping effects of solar UV radiation (UV-R: 280-400 nm) on bacterioplankton communities incubated for 13-14 days in 650-L minicosm tanks. Ribosomal DNA sequence analysis of the natural bacterioplankton communities revealed an initial springtime community composed of three evenly abundant bacterial classes: Cytophaga-Flavobacteria-Bacteroidetes (CFB), Gammaproteobacteria and Alphaproteobacteria. At the end of spring, a shift occurred toward a CFB-dominated community, most likely a response to the onset of a springtime phytoplankton bloom. The tail end of Prydz Bay clone library diversity revealed sequences related to Deltaproteobacteria, Verrucomicrobiales, Planctomycetes, Gemmatimonadetes and an unclassified bacterium (ANT4E12). Minicosm experiments showed that incubation time was the principal determinant of bacterial community composition and that UV-R treatment significantly changed the composition in only two of the four experiments. Thus, the successional maturity of the microbial community in our minicosm studies appears to be a greater determinant of bacterial community composition rather than the nonprofound and subtle effects of UV-R. PMID:20455939

  10. Groundwater Modeling in Coastal Arid Regions Under the Influence of Marine Saltwater Intrusion

    NASA Astrophysics Data System (ADS)

    Walther, Marc; Kolditz, Olaf; Grundmann, Jens; Liedl, Rudolf

    2010-05-01

    The optimization of an aquifer's "safe yield", especially within agriculturally used regions, is one of the fundamental tasks for nowaday's groundwater management. Due to the limited water ressources in arid regions, conflict of interests arise that need to be evaluated using scenario analysis and multicriterial optimization approaches. In the context of the government-financed research project "International Water Research Alliance Saxony" (IWAS), the groundwater quality for near-coastal, agriculturally used areas is investigated under the influence of marine saltwater intrusion. Within the near-coastal areas of the study region, i.e. the Batinah plains of Northern Oman, an increasing agricultural development could be observed during the recent decades. Simultaneously, a constant lowering of the groundwater table was registered, which is primarily due to the uncontrolled and unsupervised mining of the aquifers for the local agricultural irrigation. Intensively decreased groundwater levels, however, cause an inversion of the hydraulic gradient which is naturally aligned towards the coast. This, in turn,leads to an intrusion of marine saltwater flowing inland, endangering the productivity of farms near the coast. Utilizing the modeling software package OpenGeoSys, which has been developed and constantly enhanced by the Department of Environmental Informatics at the Helmholtz Centre for Environmental Research Leipzig (UFZ; Kolditz et al., 2008), a three-dimensional, density-dependent model including groundwater flow and mass transport is currently being built up. The model, comprehending three selected coastal wadis of interest, shall be used to investigate different management scenarios. The main focus of the groundwater modelling are the optimization of well positions and pumping schemes as well as the coupling with a surface runoff model, which is also used for the determination of the groundwater recharge due to wadi runoff downstream of retention dams. Based on

  11. Sea Level Rise: Vulnerability of California's Coastal Communities and Adaptation Strategies for Reducing Future Impacts Gary Griggs Director Institute of Marine Sciences University of California Santa Cruz Nicole L. Russell Ph.D. Student Department of Earth and Planetary Sciences University of California Santa Cruz

    NASA Astrophysics Data System (ADS)

    Griggs, G. B.; Russell, N.

    2010-12-01

    California’s coastal communities are vulnerable to the effects of rising sea levels, which may be 11 to 18 inches higher by 2050 and 23 to 55 inches higher by 2100 than in 2000. Local governments will need to plan for progressive inundation of low-lying areas, as well as increased erosion and storm damage. Although there is extensive research on climate change and sea level rise, local government staff is typically removed from this information and often lack the time or resources necessary for keeping up with the most recent information. Specifically, there is a disconnect between the latest science and the practice of coastal planners in dealing with sea level rise issues. Improving the transfer of relevant information and resources from scientists to decision-makers should encourage and assist local governments in their responses to this developing issue. Designing and implementing adaptation plans and developing policies for sea level rise are challenging. Each coastal community is unique in its geographic setting and demographics and therefore faces vulnerabilities that differ from those of other communities. Uplift and subsidence, for example, cause regional variations in the rate of sea level rise. Planning staff needs to understand the local impacts of sea level rise in order to take appropriate actions. Even when the potential threats are reasonably well understood, the gradual nature of sea level rise can make it hard to formulate, approve and implement policies that may not affect communities for decades to come. Fortunately, there are tools and resources available to assist planners. Several communities in California have recently completed climate change adaptation plans or are in the process of preparing such plans. However, these documents are not focused solely upon the specific issues associated with sea level rise. A study is underway to fill that void, which includes the development of an informative guide for local government agencies to use

  12. Hydrologic signals and patterns in coastal mangrove communities using space-borne remote sensing

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Price, R. M.

    2013-05-01

    The coastal mangrove ecotone, along the southern edge of the Florida Everglades, is the transition zone between the marine waters of the Gulf of Mexico and Florida Bay, and the freshwater from the "River of Grass". Hydrologically-dependent ecosystems, like the Florida Everglades, have been experiencing greater threats in the past decade from climate change, increased fresh water demand, and urban growth and development. Identifying changes to water chemistry and evapotranspiration (ET) over the coastal landscape is important to understanding the ecosystem response and adaptation with respect to environmental restoration projects, water management practices and sea-level rise. Space-borne remote sensing can be a cost-effective tool to remotely measure water chemistry and ET changes in remote areas of the coastal Everglades on a regional scale. The objectives of this research were to; 1) to measure surface and subsurface water chemistry by building relationships between satellite-based mangrove reflectance data and the ionic and nutrient concentrations in the surface water and groundwater across the coastal mangrove ecotone; and 2) to estimate ET across the coastal everglades. Water chemistry and Landsat 5TM satellite data were used to develop a linear model to quantitatively predict water chemistry on the landscape scale within the coastal mangrove communities of south Florida on seasonal and annual timescales. A satellite-based energy balance approach was used to determine regional scale ET estimates. Using this satellite-energy balance approach, we were able to account for the spatial variability in surface temperature, changes in albedo, and vegetation reflectance. Water samples were collected from the surface water and groundwater from five Long-term Ecological Research (LTER) sites that spanned a variety of mangrove communities and biomass production. Surface water samples were collected from 2008-2012 and groundwater samples were collected from 2009-2012. All

  13. Coastal and Marine Spatial Planning - Efforts to Bring Law and Order to Ocean Areas

    NASA Astrophysics Data System (ADS)

    Duff, J. A.

    2011-12-01

    In recent years a number of coastal states have engaged in planning and resource stewardship efforts that go markedly beyond single sector resource-oriented management. In some cases, proponents of such efforts have laid claim to the banner of "first" in characterizing their respective ocean (and Great Lakes) management plans. In particular, California, Massachusetts, New York, Oregon, and Rhode Island have each engaged in coastal and marine spatial planning (CMSP) management approaches that can be characterized as "firsts" in one way or another. This project will outline the bases upon which these claims have been made. It will employ a set of five chronologies designed to inform policy-makers, researchers, resource users and the general public with the context and contents of various state ocean management regimes. For each state, the impetus, apparatus, and status of the state's ocean (and Great Lakes) planning efforts will be examined. In each case CMSP has been legally authorized by the state. But the construction and discretion related to those legal authorizations varies. We will also examine whether there are any early 'signals' suggesting that stricter statutory control of the principles and constraints of a state's coastal and marine spatial planning (CMSP) effort might provide political "insulation" to executive branch personnel charged with implementing such plans but that benefit will come at the expense of a loss of employing valuable expertise and discretion of executive branch administrators. The researchers will assess each state's CMSP apparatus, in detail, to identify how the five states exert legislative control over their respective CMSP efforts. To the degree that substantial variation is identified among the five states, researchers will examine the control-status relationship to see whether and how the level of legislative control may influence the sought after objectives of a given state's CMSP management endeavor.

  14. Uncovering the volatile nature of tropical coastal marine ecosystems in a changing world.

    PubMed

    Exton, Dan A; McGenity, Terry J; Steinke, Michael; Smith, David J; Suggett, David J

    2015-04-01

    Biogenic volatile organic compounds (BVOCs), in particular dimethyl sulphide (DMS) and isoprene, have fundamental ecological, physiological and climatic roles. Our current understanding of these roles is almost exclusively established from terrestrial or oceanic environments but signifies a potentially major, but largely unknown, role for BVOCs in tropical coastal marine ecosystems. The tropical coast is a transition zone between the land and ocean, characterized by highly productive and biodiverse coral reefs, seagrass beds and mangroves, which house primary producers that are amongst the greatest emitters of BVOCs on the planet. Here, we synthesize our existing understanding of BVOC emissions to produce a novel conceptual framework of the tropical marine coast as a continuum from DMS-dominated reef producers to isoprene-dominated mangroves. We use existing and previously unpublished data to consider how current environmental conditions shape BVOC production across the tropical coastal continuum, and in turn how BVOCs can regulate environmental stress tolerance or species interactions via infochemical networks. We use this as a framework to discuss how existing predictions of future tropical coastal BVOC emissions, and the roles they play, are effectively restricted to present day 'baseline' trends of BVOC production across species and environmental conditions; as such, there remains a critical need to focus research efforts on BVOC responses to rapidly accelerating anthropogenic impacts at local and regional scales. We highlight the complete lack of current knowledge required to understand the future ecological functioning of these important systems, and to predict whether feedback mechanisms are likely to regulate or exacerbate current climate change scenarios through environmentally and ecologically mediated changes to BVOC budgets at the ecosystem level. PMID:25311223

  15. Spring bloom community change modifies carbon pathways and C : N : P : Chl a stoichiometry of coastal material fluxes

    NASA Astrophysics Data System (ADS)

    Spilling, K.; Kremp, A.; Klais, R.; Olli, K.; Tamminen, T.

    2014-08-01

    Diatoms and dinoflagellates are major bloom-forming phytoplankton groups competing for resources in the oceans and coastal seas. Recent evidence suggests that their competition is significantly affected by climatic factors under ongoing change, modifying especially the conditions for cold-water, spring bloom communities in temperate and arctic regions. We investigated the effects of phytoplankton community composition on spring bloom carbon flows and nutrient stoichiometry in multi-year mesocosm experiments. Comparison of differing communities showed that community structure significantly affected C accumulation parameters, with highest particulate organic carbon (POC) build-up and dissolved organic carbon (DOC) release in diatom-dominated communities. In terms of inorganic nutrient drawdown and bloom accumulation phase, the dominating groups behaved as functional surrogates. Dominance patterns, however, significantly affected C : N : P : Chl a ratios over the whole bloom event: when diatoms were dominant, these ratios increased compared to dinoflagellate dominance or mixed communities. Diatom-dominated communities sequestered carbon up to 3.6-fold higher than the expectation based on the Redfield ratio, and 2-fold higher compared to dinoflagellate dominance. To our knowledge, this is the first experimental report of consequences of climatically driven shifts in phytoplankton dominance patterns for carbon sequestration and related biogeochemical cycles in coastal seas. Our results also highlight the need for remote sensing technologies with taxonomical resolution, as the C : Chl a ratio was strongly dependent on community composition and bloom stage. Climate-driven changes in phytoplankton dominance patterns will have far-reaching consequences for major biogeochemical cycles and need to be considered in climate change scenarios for marine systems.

  16. Spring bloom community change modifies carbon pathways and C : N : P : Chl a stoichiometry of coastal material fluxes

    NASA Astrophysics Data System (ADS)

    Spilling, K.; Kremp, A.; Klais, R.; Olli, K.; Tamminen, T.

    2014-12-01

    Diatoms and dinoflagellates are major bloom-forming phytoplankton groups competing for resources in the oceans and coastal seas. Recent evidence suggests that their competition is significantly affected by climatic factors under ongoing change, modifying especially the conditions for cold-water, spring bloom communities in temperate and Arctic regions. We investigated the effects of phytoplankton community composition on spring bloom carbon flows and nutrient stoichiometry in multiyear mesocosm experiments. Comparison of differing communities showed that community structure significantly affected C accumulation parameters, with highest particulate organic carbon (POC) buildup and dissolved organic carbon (DOC) release in diatom-dominated communities. In terms of inorganic nutrient drawdown and bloom accumulation phase, the dominating groups behaved as functional surrogates. Dominance patterns, however, significantly affected C : N : P : Chl a ratios over the whole bloom event: when diatoms were dominant, these ratios increased compared to dinoflagellate dominance or mixed communities. Diatom-dominated communities sequestered carbon up to 3.6-fold higher than the expectation based on the Redfield ratio, and 2-fold higher compared to dinoflagellate dominance. To our knowledge, this is the first experimental report of consequences of climatically driven shifts in phytoplankton dominance patterns for carbon sequestration and related biogeochemical cycles in coastal seas. Our results also highlight the need for remote sensing technologies with taxonomical resolution, as the C : Chl a ratio was strongly dependent on community composition and bloom stage. Climate-driven changes in phytoplankton dominance patterns will have far-reaching consequences for major biogeochemical cycles and need to be considered in climate change scenarios for marine systems.

  17. Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica)

    PubMed Central

    Garcias-Bonet, Neus; Arrieta, Jesus M.; de Santana, Charles N.; Duarte, Carlos M.; Marbà, Núria

    2012-01-01

    Bacterial endophytes are crucial for the survival of many terrestrial plants, but little is known about the presence and importance of bacterial endophytes of marine plants. We conducted a survey of the endophytic bacterial community of the long-living Mediterranean marine angiosperm Posidonia oceanica in surface-sterilized tissues (roots, rhizomes, and leaves) by Denaturing Gradient Gel Electrophoresis (DGGE). A total of 26 Posidonia oceanica meadows around the Balearic Islands were sampled, and the band patterns obtained for each meadow were compared for the three sampled tissues. Endophytic bacterial sequences were detected in most of the samples analyzed. A total of 34 OTUs (Operational Taxonomic Units) were detected. The main OTUs of endophytic bacteria present in P. oceanica tissues belonged primarily to Proteobacteria (α, γ, and δ subclasses) and Bacteroidetes. The OTUs found in roots significantly differed from those of rhizomes and leaves. Moreover, some OTUs were found to be associated to each type of tissue. Bipartite network analysis revealed differences in the bacterial endophyte communities present on different islands. The results of this study provide a pioneering step toward the characterization of the endophytic bacterial community associated with tissues of a marine angiosperm and reveal the presence of bacterial endophytes that differed among locations and tissue types. PMID:23049528

  18. The kelp highway hypothesis: marine ecology, the coastal migration theory, and the peopling of the Americas

    USGS Publications Warehouse

    Erlandson, Jon M.; Graham, Michael H.; Bourque, Bruce J.; Corbett, Debra; Estes, James A.; Steneck, Robert S.

    2007-01-01

    In this article, a collaborative effort between archaeologists and marine ecologists, we discuss the role kelp forest ecosystems may have played in facilitating the movement of maritime peoples from Asia to the Americas near the end of the Pleistocene. Growing in cool nearshore waters along rocky coastlines, kelp forests offer some of the most productive habitats on earth, with high primary productivity, magnified secondary productivity, and three-dimensional habitat supporting a diverse array of marine organisms. Today, extensive kelp forests are found around the North Pacific from Japan to Baja California. After a break in the tropicswhere nearshore mangrove forests and coral reefs are highly productivekelp forests are also found along the Andean Coast of South America. These Pacific Rim kelp forests support or shelter a wealth of shellfish, fish, marine mammals, seabirds, and seaweeds, resources heavily used historically by coastal peoples. By about 16,000 years ago, the North Pacific Coast offered a linear migration route, essentially unobstructed and entirely at sea level, from northeast Asia into the Americas. Recent reconstructions suggest that rising sea levels early in the postglacial created a highly convoluted and island-rich coast along Beringia's southern shore, conditions highly favorable to maritime hunter-gatherers. Along with the terrestrial resources available in adjacent landscapes, kelp forests and other nearshore habitats sheltered similar suites of food resources that required minimal adaptive adjustments for migrating coastal peoples. With reduced wave energy, holdfasts for boats, and productive fishing, these linear kelp forest ecosystems may have provided a kind of kelp highway for early maritime peoples colonizing the New World.

  19. The Seasonality of California Coastal Marine Layer Clouds from a New Satellite-Derived Dataset

    NASA Astrophysics Data System (ADS)

    Schwartz, R. E.; Gershunov, A.; Iacobellis, S.; Cayan, D. R.

    2013-12-01

    Low coastal stratiform clouds (typically stratus and fog), referred to here as marine layer clouds (MLCs), are a persistent seasonal feature of coastal California (CA). We have created a novel record of MLC spatial extent for CA and the near-shore waters utilizing NASA/NOAA Geostationary Operational Environmental Satellite (GOES). The low cloud satellite retrieval is optimized and validated against coastal airport cloud observations and is shown to be of excellent quality. The record spans 17 summers and is rich in its spatial (4 km) and temporal (half hourly day and night) resolution. This new data provides a detailed record of MLC variability on diurnal, intra-seasonal, and interannual time scales since 1997. The data reveal that MLC in the Southern California Bight has a greater inland and offshore diurnal movement than the MLC in central and northern CA. Differences also emerge in the seasonality of cloudiness. Seasonal peak MLC cover along the southern California coast is part of a tongue of high early summer cloud cover that extends to the southwest, while peak MLC in later summer along central and northern California is a pattern that occurs broadly in the offshore California region. The data indicates there is interesting differences in seasonal variability that operate diurnally over southern CA and central and northern CA coastal regions. These climatological tendencies are overlain by considerable spatial and temporal variation from synoptic to interannual time scales, which are also under investigation. Satellite retrieval findings are supported by airport cloud observations since 1950. Focusing first on the intricate structure of the seasonal cycle, we then begin to describe and quantify synoptic weather and large scale climatic controls on the finely resolved space-time variability of MLCs.

  20. Remnants of marine bacterial communities can be retrieved from deep sediments in lakes of marine origin.

    PubMed

    Langenheder, Silke; Comte, Jérôme; Zha, Yinghua; Samad, Md Sainur; Sinclair, Lucas; Eiler, Alexander; Lindström, Eva S

    2016-08-01

    Some bacteria can be preserved over time in deep sediments where they persist either in dormant or slow-growing vegetative stages. Here, we hypothesized that such cells can be revived when exposed to environmental conditions similar to those before they were buried in the sediments. To test this hypothesis, we collected bacteria from sediment samples of different ages (140-8500 calibrated years before present, cal BP) from three lakes that differed in the timing of their physical isolation from the Baltic Sea following postglacial uplift. After these bacterial communities were grown in sterile water from the Baltic Sea, we determined the proportion of 16S rRNA sequence reads associated with marine habitats by extracting the environment descriptive terms of homologous sequences retrieved from public databases. We found that the proportion of reads associated with marine descriptive term was significantly higher in cultures inoculated with sediment layers formed under Baltic conditions and where salinities were expected to be similar to current levels. Moreover, a similar pattern was found in the original sediment layers. Our study, therefore, suggests that remnants of marine bacterial communities can be preserved in sediments over thousands of years and can be revived from deep sediments in lakes of marine origin. PMID:26929161

  1. The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution

    NASA Astrophysics Data System (ADS)

    Vaattovaara, P.; Huttunen, P. E.; Yoon, Y. J.; Joutsensaari, J.; Lehtinen, K. E. J.; O'Dowd, C. D.; Laaksonen, A.

    2006-04-01

    Newly-formed nanometer-sized particles have been observed at coastal and marine environments worldwide. Interestingly, organic species have so far not been detected in those newly-formed nucleation mode particles. In this study, we applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer) method to study the possible existence of an organic fraction in recently formed coastal nucleation mode particles (d<20 nm) at the Mace Head research station. Furthermore, effects of those nucleation events to potential CCN (cloud condensation nuclei) were studied. The coastal events were typical for the Mace Head region and they occurred at low tide conditions during efficient solar radiation and high biological activity (HBA, i.e. a high mass concentration of chlorophyll a of the ocean) in spring 2002. Additionally, a PHA-UCPC (pulse height analyzer ultrafine condensation particle counter) technique was used to study the composition of newly-formed particles formed in low tide conditions during a lower biological activity (LBA, i.e. a lower mass concentration of chlorophyll a of the ocean) in October 2002. The overall results of the UFO-TDMA and the PHA-UCPC measurements indicate that those coastally/marinely formed nucleation mode particles include a remarkable fraction of secondary organic products, beside iodine oxides, which are likely to be responsible for the nucleation. During clean marine air mass conditions, the origin of those secondary organic oxidation compounds can be related to marine/coastal biota and thus a major fraction of the organics may originate from biosynthetic production of alkenes such as isoprene and their oxidation by iodine, hydroxyl radical, and ozone. During modified marine conditions, also anthropogenic secondary organic compounds may contribute to the nucleation mode organic mass, in addition to biogenic secondary organic compounds. Thus, the UFO-TDMA results suggest that the secondary organic compounds may, in addition to

  2. Spillover effects of a community-managed marine reserve.

    PubMed

    da Silva, Isabel Marques; Hill, Nick; Shimadzu, Hideyasu; Soares, Amadeu M V M; Dornelas, Maria

    2015-01-01

    The value of no-take marine reserves as fisheries-management tools is controversial, particularly in high-poverty areas where human populations depend heavily on fish as a source of protein. Spillover, the net export of adult fish, is one mechanism by which no-take marine reserves may have a positive influence on adjacent fisheries. Spillover can contribute to poverty alleviation, although its effect is modulated by the number of fishermen and fishing intensity. In this study, we quantify the effects of a community-managed marine reserve in a high poverty area of Northern Mozambique. For this purpose, underwater visual censuses of reef fish were undertaken at three different times: 3 years before (2003), at the time of establishment (2006) and 6 years after the marine reserve establishment (2012). The survey locations were chosen inside, outside and on the border of the marine reserve. Benthic cover composition was quantified at the same sites in 2006 and 2012. After the reserve establishment, fish sizes were also estimated. Regression tree models show that the distance from the border and the time after reserve establishment were the variables with the strongest effect on fish abundance. The extent and direction of the spillover depends on trophic group and fish size. Poisson Generalized Linear Models show that, prior to the reserve establishment, the survey sites did not differ but, after 6 years, the abundance of all fish inside the reserve has increased and caused spillover of herbivorous fish. Spillover was detected 1 km beyond the limit of the reserve for small herbivorous fishes. Six years after the establishment of a community-managed reserve, the fish assemblages have changed dramatically inside the reserve, and spillover is benefitting fish assemblages outside the reserve. PMID:25927235

  3. Spillover Effects of a Community-Managed Marine Reserve

    PubMed Central

    da Silva, Isabel Marques; Hill, Nick; Shimadzu, Hideyasu; Soares, Amadeu M. V. M.; Dornelas, Maria

    2015-01-01

    The value of no-take marine reserves as fisheries-management tools is controversial, particularly in high-poverty areas where human populations depend heavily on fish as a source of protein. Spillover, the net export of adult fish, is one mechanism by which no-take marine reserves may have a positive influence on adjacent fisheries. Spillover can contribute to poverty alleviation, although its effect is modulated by the number of fishermen and fishing intensity. In this study, we quantify the effects of a community-managed marine reserve in a high poverty area of Northern Mozambique. For this purpose, underwater visual censuses of reef fish were undertaken at three different times: 3 years before (2003), at the time of establishment (2006) and 6 years after the marine reserve establishment (2012). The survey locations were chosen inside, outside and on the border of the marine reserve. Benthic cover composition was quantified at the same sites in 2006 and 2012. After the reserve establishment, fish sizes were also estimated. Regression tree models show that the distance from the border and the time after reserve establishment were the variables with the strongest effect on fish abundance. The extent and direction of the spillover depends on trophic group and fish size. Poisson Generalized Linear Models show that, prior to the reserve establishment, the survey sites did not differ but, after 6 years, the abundance of all fish inside the reserve has increased and caused spillover of herbivorous fish. Spillover was detected 1km beyond the limit of the reserve for small herbivorous fishes. Six years after the establishment of a community-managed reserve, the fish assemblages have changed dramatically inside the reserve, and spillover is benefitting fish assemblages outside the reserve. PMID:25927235

  4. University of Alaska Coastal Marine Institute annual report number 5, fiscal year 1998

    SciTech Connect

    Alexander, V.

    1998-12-18

    The University of Alaska Coastal Marine Institute (CMI) was created by a cooperative agreement between the University of Alaska and the Minerals Management Service (MMS) in June 1993 and the first full funding cycle began late in (federal) fiscal year 1994. CMI is pleased to present this 1998 Annual Report for studies ongoing in Oct 1997--Sep 1998. Only abstracts and study products for ongoing projects are included here. They include: An Economic Assessment of the Marine Biotechnology; Kachemak Bay Experimental and Monitoring Studies; Historical Changes in Trace Metals and Hydrocarbons in the Inner Shelf Sediments; Beaufort Sea: Prior and Subsequent to Petroleum-Related Industrial Developments; Physical-Biological Numerical Modeling on Alaskan Arctic Shelves; Defining Habitats for Juvenile Flatfishes in Southcentral Alaska; Relationship of Diet to Habitat Preferences of Juvenile Flatfishes, Phase 1; Subsistence Economies and North Slope Oil Development; Wind Field Representations and Their Effect on Shelf Circulation Models: A Case Study in the Chukchi Sea; Interaction between Marine Humic Matter and Polycyclic Aromatic Hydrocarbons in Lower Cook Inlet and Port Valdez, Alaska; Correction Factor for Ringed Seal Surveys in Northern Alaska; Feeding Ecology of Maturing Sockeye Salmon (Oncorhynchus nerka) in Nearshore Waters of the Kodiak Archipelago; and Circulation, Thermohaline Structure, and Cross-Shelf Transport in the Alaskan Beaufort Sea.

  5. Dispersal Patterns of Coastal Fish: Implications for Designing Networks of Marine Protected Areas

    PubMed Central

    Di Franco, Antonio; Gillanders, Bronwyn M.; De Benedetto, Giuseppe; Pennetta, Antonio; De Leo, Giulio A.; Guidetti, Paolo

    2012-01-01

    Information about dispersal scales of fish at various life history stages is critical for successful design of networks of marine protected areas, but is lacking for most species and regions. Otolith chemistry provides an opportunity to investigate dispersal patterns at a number of life history stages. Our aim was to assess patterns of larval and post-settlement (i.e. between settlement and recruitment) dispersal at two different spatial scales in a Mediterranean coastal fish (i.e. white sea bream, Diplodus sargus sargus) using otolith chemistry. At a large spatial scale (∼200 km) we investigated natal origin of fish and at a smaller scale (∼30 km) we assessed “site fidelity” (i.e. post-settlement dispersal until recruitment). Larvae dispersed from three spawning areas, and a single spawning area supplied post-settlers (proxy of larval supply) to sites spread from 100 to 200 km of coastline. Post-settlement dispersal occurred within the scale examined of ∼30 km, although about a third of post-settlers were recruits in the same sites where they settled. Connectivity was recorded both from a MPA to unprotected areas and vice versa. The approach adopted in the present study provides some of the first quantitative evidence of dispersal at both larval and post-settlement stages of a key species in Mediterranean rocky reefs. Similar data taken from a number of species are needed to effectively design both single marine protected areas and networks of marine protected areas. PMID:22355388

  6. Visible and infrared extinction of atmospheric aerosol in the marine and coastal environment.

    PubMed

    Kaloshin, Gennady A

    2011-05-10

    The microphysical model Marine Aerosol Extinction Profiles (MaexPro) for surface layer marine and coastal atmospheric aerosols, which is based on long-term observations of size distributions for 0.01-100 μm particles, is presented. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above the sea level (H), fetch (X), wind speed (U), and relative humidity is investigated. The model is primarily to characterize aerosols for the near-surface layer (within 25 m). The model is also applicable to higher altitudes within the atmospheric boundary layer, where the change in the vertical profile of aerosol is not very large. In this case, it is only valid for "clean" marine environments, in the absence of air pollution or any other major sources of continental aerosols, such desert dust or smoke from biomass burning. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro are in good agreement with observational data and the numerical results obtained by the well-known Navy Aerosol Model and Advanced Navy Aerosol Model codes. Moreover, MaexPro was found to be an accurate and reliable instrument for investigation of the optical properties of atmospheric aerosols. PMID:21556113

  7. Shifting sources of productivity in the coastal marine tropics during the Cenozoic era

    PubMed Central

    Vermeij, Geerat J.

    2011-01-01

    Changes in the rates and sources of marine primary production over time are difficult to document owing to the absence of direct estimates of past productivity. Here, I use the maximum body sizes of the largest species in each of 23 tropical shallow-water marine molluscan guilds (groups of species with similar habits and trophic roles) to trace the relative importance of planktonic and benthic primary productivity from the Eocene (55 Ma) onwards. The largest members of guilds are least constrained in exploiting resources and therefore reflect the availability and accessibility of those resources most accurately. Maximum sizes of suspension-feeders and predators increased by a factor of 2.3 and 4.0, respectively, whereas those in four out of five herbivorous guilds declined. I interpret these patterns, which are discernible throughout the coastal tropics, to mean that primary production in the Eocene marine tropics was concentrated on the seafloor, as is the case today on offshore reefs and islands, and that the Miocene to the recent interval witnessed a dramatic increase in planktonic productivity along continental margins. The rise in planktonic fertility is best explained by an increase in nutrient supply from the land associated with intense global tectonic activity and more vigorous ocean mixing owing to cooling. PMID:21177688

  8. Phytoplankton community structure in local water types at a coastal site in north-western Bay of Bengal.

    PubMed

    Baliarsingh, S K; Srichandan, Suchismita; Lotliker, Aneesh A; Sahu, K C; Srinivasa Kumar, T

    2016-07-01

    A comprehensive analysis on seasonal distribution of phytoplankton community structure and their interaction with environmental variables was carried out in two local water types (type 1 < 30 m isobath and Type 2 > 30 m isobath) at a coastal site in north-western Bay of Bengal. Phytoplankton community was represented by 211 taxa (146 marine, 37 fresh, 2 brackish, 20 marine-fresh, and 6 marine-brackish-fresh) belonging to seven major groups including 45 potential bloom forming and 22 potential toxin producing species. The seasonal variability depicted enrichment of phytoplankton during pre-monsoon in both water types. Total phytoplankton abundance pattern observed with inter-annual shift during monsoon and post-monsoon period at both water types. In both water types, diatom predominance was observed in terms of species richness and abundance comprising of centric (82 sp.) and pennate (58 sp.) forms. Pennate diatoms, Thalassiothrix longissima and Skeletonema costatum preponderated in both the water types. The diatom abundance was higher in type 1 in comparison to type 2. In general, SiO4 found to fuel growth of the dominant phytoplankton group, diatom in both the water types despite comparative lower concentration of other macronutrients in type 2. PMID:27334343

  9. Location, Location, Location: Management Uses of Marine Benthic Biogeographical Information in Coastal Waters of the Northeastern USA

    EPA Science Inventory

    Ecosystem-based management practices, along with coastal and marine spatial planning, have been adopted as foundational principles for ocean management in the United States. The success of these practices depends in large measure on a solid foundation of biogeographical informati...

  10. On the Response of pH to Inorganic Nutrient Enrichment in Well-Mixed Coastal Marine Waters

    EPA Science Inventory

    Recent concerns about declining pH in the surface ocean in response to anthropogenic increases of CO2 in the atmosphere have raised the question of how this declining baseline of oceanic pH might interact with the much larger diel and seasonal variations of pH in coastal marine e...