Science.gov

Sample records for marine macroalgal diversity

  1. Marine Macroalgal Diversity Assessment of Saba Bank, Netherlands Antilles

    PubMed Central

    Littler, Mark M.; Littler, Diane S.; Brooks, Barrett L.

    2010-01-01

    Background Located in the Dutch Windward Islands, Saba Bank is a flat-topped seamount (20–45 m deep in the shallower regions). The primary goals of the survey were to improve knowledge of biodiversity for one of the world's most significant, but little-known, seamounts and to increase basic data and analyses to promote the development of an improved management plan. Methodology/Principal Findings Our team of three divers used scuba to collect algal samples to depths of 50 m at 17 dive sites. Over 360 macrophyte specimens (12 putative new species) were collected, more than 1,000 photographs were taken in truly exceptional habitats, and three astonishing new seaweed community types were discovered. These included: (1) “Field of Greens” (N 17°30.620′, W 63°27.707′) dominated by green seaweeds as well as some filamentous reds, (2) “Brown Town” (N 17°28.027′, W 63°14.944′) dominated by large brown algae, and (3) “Seaweed City” (N 17°26.485′, W 63°16.850′) with a diversity of spectacular fleshy red algae. Conclusions/Significance Dives to 30 m in the more two-dimensional interior habitats revealed particularly robust specimens of algae typical of shallower seagrass beds, but here in the total absence of any seagrasses (seagrasses generally do not grow below 20 m). Our preliminary estimate of the number of total seaweed species on Saba Bank ranges from a minimum of 150 to 200. Few filamentous and thin sheet forms indicative of stressed or physically disturbed environments were observed. A more precise number still awaits further microscopic and molecular examinations in the laboratory. The expedition, while intensive, has only scratched the surface of this unique submerged seamount/atoll. PMID:20505757

  2. The macroalgal carbonate factory at a cool-to-warm temperate marine transition, Southern Australia

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Reid, Catherine M.; Bone, Yvonne; Levings, Andrew; Malcolm, Isabelle

    2013-06-01

    The shallow neritic seafloor to depths of ~ 30 m along the coast of southwestern Victoria Australia, is the site of rocky reefs on volcanic and aeolianite bathymetric highs. The region, located near the warm- to cool-temperate environmental transition, is a site of prolific macroalgae (kelp) growth. Kelps are most prolific and diverse in high-energy, open-ocean environments whereas broad-leafed seagrasses, at their cold-water eastern limit, are restricted to local protected embayments. The seagrasses are reduced to one species of Amphibolis whereas the kelps are diverse and include the large intertidal bull kelp (Durvillaea), not present in warmer waters. The macroalgal forest extends from the intertidal to ~ 30 mwd (metres water depth) as a series of distinct biomes; 1) the Peritidal, 2) the Phaeophyte Forest (0-17 mwd), 3) the Rhodophyte Thicket (17-15 mwd), and 4) the Invertebrate Coppice (> 25 mwd). The Phaeophyte Forest is partitioned into a Durvillaea zone (0-2 mwd), a Phyllospora zone (2-10 mwd) and an Ecklonia zone (10-17mwd). The two major habitats within each biome comprise 1) an upward facing illuminated surface that supports a macroalgal canopy over an understorey of coralline algae and herbivorous gastropods, and 2) a separate, cryptic, shaded habitat dominated by a diverse community of filter-feeding invertebrates. These communities produce two different sediments; 1) geniculate and encrusting corallines and diverse gastropods from the upper surface, and 2) bryozoans, molluscs, barnacles, chitons, serpulids, and benthic foraminifers from the shaded, cryptic habitats. These particles are blended together with the latter becoming proportionally more abundant with increasing depth. Results of this study, when integrated with recent investigations in warm-temperate (South Australia) and cool-temperate (New Zealand) environments now define carbonate sedimentology of the macroalgal reef depositional system in this part of the northern Southern Ocean.

  3. Current Patterns of Macroalgal Diversity and Biomass in Northern Hemisphere Rocky Shores

    PubMed Central

    Konar, Brenda; Iken, Katrin; Cruz-Motta, Juan José; Benedetti-Cecchi, Lisandro; Knowlton, Ann; Pohle, Gerhard; Miloslavich, Patricia; Edwards, Matt; Trott, Thomas; Kimani, Edward; Riosmena-Rodriguez, Rafael; Wong, Melisa; Jenkins, Stuart; Silva, Angelica; Pinto, Isabel Sousa; Shirayama, Yoshihisa

    2010-01-01

    Latitudinal gradients in species abundance and diversity have been postulated for nearshore taxa but few analyses have been done over sufficiently broad geographic scales incorporating various nearshore depth strata to empirically test these gradients. Typically, gradients are based on literature reviews and species lists and have focused on alpha diversity across the entire nearshore zone. No studies have used a standardized protocol in the field to examine species density among sites across a large spatial scale while also focusing on particular depth strata. The present research used field collected samples in the northern hemisphere to explore the relationships between macroalgal species density and biomass along intertidal heights and subtidal depths and latitude. Results indicated no overall correlations between either estimates of species density or biomass with latitude, although the highest numbers of both were found at mid-latitudes. However, when strata were examined separately, significant positive correlations were found for both species numbers and biomass at particular strata, namely the intertidal ones. While the data presented in this paper have some limitations, we show that latitudinal macroalgal trends in species density and biomass do exist for some strata in the northern hemisphere with more taxa and biomass at higher latitudes. PMID:20949030

  4. An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass

    PubMed Central

    Trivedi, Nitin; Baghel, Ravi S.; Bothwell, John; Gupta, Vishal; Reddy, C. R. K.; Lali, Arvind M.; Jha, Bhavanath

    2016-01-01

    We describe an integrated process that can be applied to biomass of the green seaweed, Ulva fasciata, to allow the sequential recovery of four economically important fractions; mineral rich liquid extract (MRLE), lipid, ulvan, and cellulose. The main benefits of our process are: a) its simplicity and b) the consistent yields obtained from the residual biomass after each successive extraction step. For example, dry Ulva biomass yields ~26% of its starting mass as MRLE, ~3% as lipid, ~25% as ulvan, and ~11% as cellulose, with the enzymatic hydrolysis and fermentation of the final cellulose fraction under optimized conditions producing ethanol at a competitive 0.45 g/g reducing sugar. These yields are comparable to those obtained by direct processing of the individual components from primary biomass. We propose that this integration of ethanol production and chemical feedstock recovery from macroalgal biomass could substantially enhance the sustainability of marine biomass use. PMID:27470705

  5. An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass.

    PubMed

    Trivedi, Nitin; Baghel, Ravi S; Bothwell, John; Gupta, Vishal; Reddy, C R K; Lali, Arvind M; Jha, Bhavanath

    2016-01-01

    We describe an integrated process that can be applied to biomass of the green seaweed, Ulva fasciata, to allow the sequential recovery of four economically important fractions; mineral rich liquid extract (MRLE), lipid, ulvan, and cellulose. The main benefits of our process are: a) its simplicity and b) the consistent yields obtained from the residual biomass after each successive extraction step. For example, dry Ulva biomass yields ~26% of its starting mass as MRLE, ~3% as lipid, ~25% as ulvan, and ~11% as cellulose, with the enzymatic hydrolysis and fermentation of the final cellulose fraction under optimized conditions producing ethanol at a competitive 0.45 g/g reducing sugar. These yields are comparable to those obtained by direct processing of the individual components from primary biomass. We propose that this integration of ethanol production and chemical feedstock recovery from macroalgal biomass could substantially enhance the sustainability of marine biomass use. PMID:27470705

  6. Effect of macroalgal expansion and marine protected areas on coral recovery following a climatic disturbance.

    PubMed

    Wilson, Shaun K; Graham, Nicholas A J; Fisher, Rebecca; Robinson, Jan; Nash, Kirsty; Chong-Seng, Karen; Polunin, Nicholas V C; Aumeeruddy, Riaz; Quatre, Rodney

    2012-12-01

    Disturbance plays an important role in structuring marine ecosystems, and there is a need to understand how conservation practices, such as the designation of Marine Protected Areas (MPAs), facilitate postdisturbance recovery. We evaluated the association of MPAs, herbivorous fish biomass, substrate type, postdisturbance coral cover, and change in macroalgal cover with coral recovery on the fringing reefs of the inner Seychelle islands, where coral mortality after a 1998 bleaching event was extensive. We visually estimated benthic cover and fish biomass at 9 sites in MPAs where fishing is banned and at 12 sites where fishing is permitted in 1994, 2005, 2008, and 2011. We used analysis of variance to examine spatial and temporal variations in coral cover and generalized additive models to identify relations between coral recovery and the aforementioned factors that may promote recovery. Coral recovery occurred on all substrate types, but it was highly variable among sites and times. Between 2005 and 2011 the increase in coral cover averaged 1%/year across 21 sites, and the maximum increase was 4%/year. However, mean coral cover across the study area (14%) remained at half of 1994 levels (28%). Sites within MPAs had faster rates of coral recovery than sites in fished areas only where cover of macroalgae was low and had not increased over time. In MPAs where macroalgae cover expanded since 1998 there was no recovery. Where coral was recovering on granite reefs there was a shift in relative prevalence of colony life-form from branching to encrusting species. This simplification of reef structure may affect associated reef fauna even if predisturbance levels of coral cover are attained. PMID:22971046

  7. Marine macroalgal extracts to maintain gut homeostasis in the weaning piglet.

    PubMed

    Sweeney, T; O'Doherty, J V

    2016-07-01

    The mammalian gastrointestinal tract (GIT) is a dynamic environment, where a symbiotic relationship exists between the resident microbiota and the digestive and immune systems of the host. The development of the immune system begins in-utero and is further developed after the colonization of the GIT with microbiota during birth and postnatal life. The early establishment of this relationship is fundamental to the development and long-term maintenance of gut homeostasis. Regulatory mechanisms ensure an appropriate level of immune reactivity in the gut to accommodate the presence of beneficial and dietary microorganisms, whereas allowing effective immune responses to clear pathogens. However, unfavorable alterations in the composition of the microbiota, known as dysbiosis, have been implicated in many conditions including post-weaning diarrhea in pigs. Weaning is a major critical period in pig husbandry. It involves complex dietary, social, and environmental stresses that interfere with gut development. Post-weaning complications in piglets are characterized by a reduction in-feed intake and growth, atrophy of small intestine architecture, upregulation of intestinal inflammatory cytokines, alterations in GIT microflora, diarrhea, and heightened susceptibility to infection. These challenges have been controlled with in-feed prophylactic antibiotics and dietary minerals. However, these strategies are under scrutiny because of their role in promoting multidrug resistant bacteria and the accumulation of minerals in the environment, respectively. Therefore, significant efforts are being made to identify natural alternatives to support homeostasis in the piglet GIT, in particular during the weaning period. Chemodiversity in nature; including microorganisms, terrestrial plants, seaweeds, and marine organisms, offers a valuable source for novel bioactives. In this review, we discuss the advances in our understanding of the immune mechanisms by which the dynamic interplay of

  8. The marine diversity spectrum.

    PubMed

    Reuman, Daniel C; Gislason, Henrik; Barnes, Carolyn; Mélin, Frédéric; Jennings, Simon

    2014-07-01

    Distributions of species body sizes within a taxonomic group, for example, mammals, are widely studied and important because they help illuminate the evolutionary processes that produced these distributions. Distributions of the sizes of species within an assemblage delineated by geography instead of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts the form of the 'diversity spectrum', which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope -0.5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between -0.5 and -0.1. Slopes of -0.5 and -0.1 represent markedly different communities: a slope of -0.5 depicts a 10-fold reduction in diversity for every 100-fold increase in asymptotic mass; a slope of -0.1 depicts a 1.6-fold reduction. Steeper slopes are predicted for larger or colder regions, meaning fewer large species per small species for such regions. Predictions were largely validated by a global empirical analysis. Results explain for the first time a new and widespread phenomenon of biodiversity. Results have implications for estimating numbers of species of small asymptotic mass, where taxonomic inventories are far from complete. Results show that the relationship between diversity and body mass can be explained from the dependence of predation behaviour, dispersal, and life history on

  9. Marine Protistan Diversity

    NASA Astrophysics Data System (ADS)

    Caron, David A.; Countway, Peter D.; Jones, Adriane C.; Kim, Diane Y.; Schnetzer, Astrid

    2012-01-01

    Protists have fascinated microbiologists since their discovery nearly 350 years ago. These single-celled, eukaryotic species span an incredible range of sizes, forms, and functions and, despite their generally diminutive size, constitute much of the genetic diversity within the domain Eukarya. Protists in marine ecosystems play fundamental ecological roles as primary producers, consumers, decomposers, and trophic links in aquatic food webs. Much of our knowledge regarding the diversity and ecological activities of these species has been obtained during the past half century, and only within the past few decades have hypotheses depicting the evolutionary relationships among the major clades of protists attained some degree of consensus. This recent progress is attributable to the development of genetic approaches, which have revealed an unexpectedly large diversity of protists, including cryptic species and previously undescribed clades of protists. New genetic tools now exist for identifying protistan species of interest and for reexamining long-standing debates regarding the biogeography of protists. Studies of protistan diversity provide insight regarding how species richness and community composition contribute to ecosystem function. These activities support the development of predictive models that describe how microbial communities will respond to natural or anthropogenically mediated changes in environmental conditions.

  10. VarR controls colonization and virulence in the marine macroalgal pathogen Nautella italica R11

    PubMed Central

    Gardiner, Melissa; Fernandes, Neil D.; Nowakowski, Dennis; Raftery, Mark; Kjelleberg, Staffan; Zhong, Ling; Thomas, Torsten; Egan, Suhelen

    2015-01-01

    There is increasing evidence to suggest that macroalgae (seaweeds) are susceptible to infectious disease. However, to date, little is known about the mechanisms that facilitate the colonization and virulence of microbial seaweed pathogens. One well-described example of a seaweed disease is the bleaching of the red alga Delisea pulchra, which can be caused by the bacterium Nautella italica R11, a member of the Roseobacter clade. This pathogen contains a unique luxR-type gene, varR, which we hypothesize controls its colonization and virulence. We show here that a varR knock-out strain is deficient in its ability to cause disease in D. pulchra and is defective in biofilm formation and attachment to a common algal polysaccharide. Moreover complementation of the varR gene in trans can restore these functions to the wild type levels. Proteomic analysis of bacterial cells in planktonic and biofilm growth highlight the potential importance of nitrogen scavenging, mobilization of energy reserves, and stress resistance in the biofilm lifestyle of N. italica R11. Moreover, we show that VarR regulates the expression of a specific subset of biofilm-associated proteins. Taken together these data suggest that VarR controls colonization and persistence of N. italica R11 on the surface of a macroalgal host and that it is an important regulator of virulence. PMID:26528274

  11. Marine Technology: Diversity and Flexibility

    ERIC Educational Resources Information Center

    Buck, Dale R.

    1973-01-01

    Training for a specific field must reflect the diversity of that field and also remain flexible enough to accommodate fluctuations in the job market and the field, as marine technology illustrates. (Editor)

  12. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Cheal, A. J.; MacNeil, M. Aaron; Cripps, E.; Emslie, M. J.; Jonker, M.; Schaffelke, B.; Sweatman, H.

    2010-12-01

    Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral-macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral-macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global

  13. Spatiotemporal variation in community structure of marine benthic ciliates in the Yellow Sea during and after macroalgal and giant jellyfish blooms

    NASA Astrophysics Data System (ADS)

    Zhou, Bailing; Xu, Kuidong

    2016-01-01

    The annual bloom of the green macroalgal Ulva prolifera from May through July since 2008 and another of giant jellyfish Nemopilema nomurai from June through September have been frequent events in the Yellow Sea. However, the patterns of benthic ciliate communities during and after the blooms are still not known. In combination with analyses of benthic environmental factors, we investigated the distribution and community composition of benthic ciliates in the Yellow Sea in July and November 2011. In July, ciliates had high standing crops and diversity in the northern Yellow Sea, and in the inshore area off the southern Shandong Peninsula, where large numbers of green macroalgae accumulated. In November, the abundance, biomass and diversity of ciliates were high in the sea areas off the Shandong Peninsula and Changjiang estuary, where a large quantity of jellyfish occurred in August. Neither the abundance nor the biomass had significant diff erence between seasons, or between diff erent compartments of the Yellow Sea. The species number, and both Margalef and Shannon-Wiener indices of ciliates were all significantly higher in November than in July. In both seasons, prostomateans and karyorelicteans consistently constituted the first and second most important ciliate groups in biomass; and carnivorous ciliates constituted the primary feeding type in terms of biomass as well as species richness, followed by bacterivores, algivores and omnivores. Compared with that in June 2007 when no macroalgae occurred, the percentage of small-sized bacterivores (e.g. Metacystis spp., Euplotes spp. and scuticociliates) increased in July 2011. The proportion of carnivorous ciliates increased in November, and this increased dominance of carnivorous ciliates may be a response to the increase in predominance of heterotrophic nanoflagellates, which might in turn be ascribed to an eff ect of green macroalgal and giant jellyfish blooms in the Yellow Sea.

  14. Spatiotemporal variation in community structure of marine benthic ciliates in the Yellow Sea during and after macroalgal and giant jellyfish blooms

    NASA Astrophysics Data System (ADS)

    Zhou, Bailing; Xu, Kuidong

    2016-07-01

    The annual bloom of the green macroalgal Ulva prolifera from May through July since 2008 and another of giant jellyfish Nemopilema nomurai from June through September have been frequent events in the Yellow Sea. However, the patterns of benthic ciliate communities during and after the blooms are still not known. In combination with analyses of benthic environmental factors, we investigated the distribution and community composition of benthic ciliates in the Yellow Sea in July and November 2011. In July, ciliates had high standing crops and diversity in the northern Yellow Sea, and in the inshore area off the southern Shandong Peninsula, where large numbers of green macroalgae accumulated. In November, the abundance, biomass and diversity of ciliates were high in the sea areas off the Shandong Peninsula and Changjiang estuary, where a large quantity of jellyfish occurred in August. Neither the abundance nor the biomass had significant difference between seasons, or between different compartments of the Yellow Sea. The species number, and both Margalef and Shannon-Wiener indices of ciliates were all significantly higher in November than in July. In both seasons, prostomateans and karyorelicteans consistently constituted the first and second most important ciliate groups in biomass; and carnivorous ciliates constituted the primary feeding type in terms of biomass as well as species richness, followed by bacterivores, algivores and omnivores. Compared with that in June 2007 when no macroalgae occurred, the percentage of small-sized bacterivores (e.g. Metacystis spp., Euplotes spp. and scuticociliates) increased in July 2011. The proportion of carnivorous ciliates increased in November, and this increased dominance of carnivorous ciliates may be a response to the increase in predominance of heterotrophic nanoflagellates, which might in turn be ascribed to an effect of green macroalgal and giant jellyfish blooms in the Yellow Sea.

  15. Biotic transitions in global marine diversity

    NASA Technical Reports Server (NTRS)

    Miller, A. I.

    1998-01-01

    Long-term transitions in the composition of Earth's marine biota during the Phanerozoic have historically been explained in two different ways. One view is that they were mediated through biotic interactions among organisms played out over geologic time. The other is that mass extinctions transcended any such interactions and governed diversity over the long term by resetting the relative diversities of higher taxa. However, a growing body of evidence suggests that macroevolutionary processes effecting biotic transitions during background times were not fundamentally different from those operating during mass extinctions. Physical perturbations at many geographic scales combined to produce the long-term trajectory of Phanerozoic diversity.

  16. Rafting rocks reveal marine biological dispersal: A case study using clasts from beach-cast macroalgal holdfasts

    NASA Astrophysics Data System (ADS)

    Garden, Christopher J.; Craw, Dave; Waters, Jonathan M.; Smith, Abigail

    2011-12-01

    Tracking and quantifying biological dispersal presents a major challenge in marine systems. Most existing methods for measuring dispersal are limited by poor resolution and/or high cost. Here we use geological data to quantify the frequency of long-distance dispersal in detached bull-kelp (Phaeophyceae: Durvillaea) in southern New Zealand. Geological resolution in this region is enhanced by the presence of a number of distinct and readily-identifiable geological terranes. We sampled 13,815 beach-cast bull-kelp plants across 130 km of coastline. Rocks were found attached to 2639 of the rafted plants, and were assigned to specific geological terranes (source regions) to quantify dispersal frequencies and distances. Although the majority of kelp-associated rock specimens were found to be locally-derived, a substantial number (4%) showed clear geological evidence of long-distance dispersal, several having travelled over 200 km from their original source regions. The proportion of local versus foreign clasts varied considerably between regions. While short-range dispersal clearly predominates, long-distance travel of detached bull-kelp plants is shown to be a common and ongoing process that has potential to connect isolated coastal populations. Geological analyses represent a cost-effective and powerful method for assigning large numbers of drifted macroalgae to their original source regions.

  17. Microbial diversity of marine sponges.

    PubMed

    Hentschel, U; Fieseler, L; Wehrl, M; Gernert, C; Steinert, M; Hacker, J; Horn, M

    2003-01-01

    The recent application of molecular microbial ecology tools to sponge-microbe associations has revealed a glimpse into the biodiversity of these microbial communities, that is considered just 'the tip of the iceberg'. This chapter provides an overview over these new findings with regard to identity, diversity and distribution patterns of sponge-associated microbial consortia. The sponges Aplysina aerophoba (Verongida), Rhopaloeides odorabile (Dicytoceratida) and Theonella swinhoei (Lithistida) were chosen as model systems for this review because they have been subject to both, cultivation-dependent and cultivation-independent approaches. A discussion of the microbial assemblages of Halichondriapanicea is presented in the accompanying chapter by Imhoff and Stöhr. Considering that a large fraction of sponge-associated microbes is not yet amenable to cultivation, an emphasis has been placed on the techniques centering around the 16S rRNA gene. A section has been included that covers the potential of sponge microbial communities for drug discovery. Finally, a 'sponge-microbe interaction model' is presented that summarizes our current understanding of the processes that might have shaped the community structure of the microbial assemblages within sponges. PMID:15825640

  18. Global distribution and diversity of marine Verrucomicrobia

    PubMed Central

    Freitas, Sara; Hatosy, Stephen; Fuhrman, Jed A; Huse, Susan M; Mark Welch, David B; Sogin, Mitchell L; Martiny, Adam C

    2012-01-01

    Verrucomicrobia is a bacterial phylum that is commonly detected in soil, but little is known about the distribution and diversity of this phylum in the marine environment. To address this, we analyzed the marine microbial community composition in 506 samples from the International Census of Marine Microbes as well as 11 coastal samples taken from the California Current. These samples from both the water column and sediments covered a wide range of environmental conditions. Verrucomicrobia were present in 98% of the analyzed samples, and thus appeared nearly ubiquitous in the ocean. Based on the occurrence of amplified 16S ribosomal RNA sequences, Verrucomicrobia constituted on average 2% of the water column and 1.4% of the sediment bacterial communities. The diversity of Verrucomicrobia displayed a biogeography at multiple taxonomic levels and thus, specific lineages appeared to have clear habitat preference. We found that subdivision 1 and 4 generally dominated marine bacterial communities, whereas subdivision 2 was more frequent in low salinity waters. Within the subdivisions, Verrucomicrobia community composition were significantly different in the water column compared with sediment as well as within the water column along gradients of salinity, temperature, nitrate, depth and overall water column depth. Although we still know little about the ecophysiology of Verrucomicrobia lineages, the ubiquity of this phylum suggests that it may be important for the biogeochemical cycle of carbon in the ocean. PMID:22318305

  19. The dynamical landscape of marine phytoplankton diversity.

    PubMed

    Lévy, Marina; Jahn, Oliver; Dutkiewicz, Stephanie; Follows, Michael J; d'Ovidio, Francesco

    2015-10-01

    Observations suggest that the landscape of marine phytoplankton assemblage might be strongly heterogeneous at the dynamical mesoscale and submesoscale (10-100 km, days to months), with potential consequences in terms of global diversity and carbon export. But these variations are not well documented as synoptic taxonomic data are difficult to acquire. Here, we examine how phytoplankton assemblage and diversity vary between mesoscale eddies and submesoscale fronts. We use a multi-phytoplankton numerical model embedded in a mesoscale flow representative of the North Atlantic. Our model results suggest that the mesoscale flow dynamically distorts the niches predefined by environmental contrasts at the basin scale and that the phytoplankton diversity landscape varies over temporal and spatial scales that are one order of magnitude smaller than those of the basin-scale environmental conditions. We find that any assemblage and any level of diversity can occur in eddies and fronts. However, on a statistical level, the results suggest a tendency for larger diversity and more fast-growing types at fronts, where nutrient supplies are larger and where populations of adjacent water masses are constantly brought into contact; and lower diversity in the core of eddies, where water masses are kept isolated long enough to enable competitive exclusion. PMID:26400196

  20. Shining Light on Benthic Macroalgae: Mechanisms of Complementarity in Layered Macroalgal Assemblages

    PubMed Central

    Tait, Leigh W.; Hawes, Ian; Schiel, David R.

    2014-01-01

    Phototrophs underpin most ecosystem processes, but to do this they need sufficient light. This critical resource, however, is compromised along many marine shores by increased loads of sediments and nutrients from degraded inland habitats. Increased attenuation of total irradiance within coastal water columns due to turbidity is known to reduce species' depth limits and affect the taxonomic structure and architecture of algal-dominated assemblages, but virtually no attention has been paid to the potential for changes in spectral quality of light energy to impact production dynamics. Pioneering studies over 70 years ago showed how different pigmentation of red, green and brown algae affected absorption spectra, action spectra, and photosynthetic efficiency across the PAR (photosynthetically active radiation) spectrum. Little of this, however, has found its way into ecological syntheses of the impacts of optically active contaminants on coastal macroalgal communities. Here we test the ability of macroalgal assemblages composed of multiple functional groups (including representatives from the chlorophyta, rhodophyta and phaeophyta) to use the total light resource, including different light wavelengths and examine the effects of suspended sediments on the penetration and spectral quality of light in coastal waters. We show that assemblages composed of multiple functional groups are better able to use light throughout the PAR spectrum. Macroalgal assemblages with four sub-canopy species were between 50–75% more productive than assemblages with only one or two sub-canopy species. Furthermore, attenuation of the PAR spectrum showed both a loss of quanta and a shift in spectral distribution with depth across coastal waters of different clarity, with consequences to productivity dynamics of diverse layered assemblages. The processes of light complementarity may help provide a mechanistic understanding of how altered turbidity affects macroalgal assemblages in coastal

  1. Diversity history of Cenozoic marine siliceous plankton

    NASA Astrophysics Data System (ADS)

    Lazarus, David; Renaudie, Johan

    2014-05-01

    Marine planktonic diatoms and polycystine radiolarians, both with shells of opaline silica, make up a large part of the deep-sea sediment fossil record. Diatom export of organic material to the deep ocean and sediments strongly affects the global carbon cycle; while both groups compete for, and are regulated by the availability of, dissolved silica derived from global weathering. Diatoms and radiolarians also both have a relatively (compared to foraminifera or coccolithophores) complex biogeography, with diverse, endemic polar and tropical assemblages. Changes in past diatom and radiolarian diversity can be used to understand how the ocean's biologic pump has evolved, how co-evolution between groups occurs, and how nutrient availability controls evolutionary change. Lazarus et al. (2014) recently showed that diatom diversity increased by a factor of ca 3.5X over the Cenozoic, with a temporary peak in the latest Eocene, a late Oligocene-early Miocene low interval, very strong diversification in the late Miocene-early Pliocene, and minor decline in the late Pliocene-Recent. Only Phanerozoic scale radiolarian diversity estimates have been available until now, and these are strongly biased by sample size. We employed similar data (NSB database) and methods (1 my bins, 'sqs' subsampling, outlier removal using Pacman trims) as Lazarus et al. (2014) to calculate, for the first time, a detailed estimate of radiolarian diversity history, and origination and extinction rates over the last 50 my, the period for which sufficient NSB data is available. Radiolarian diversity increases almost monotonically by a factor of 5, with relatively rapid increases in the mid Eocene (high relative origination) and early Miocene (due to low extinction rates), and a moderate decline in the Plio-Pleistocene due to high extinction rates. Combined high rates of both extinction and origination, with little diversity change, are seen at the Eocene-Oligocene boundary. Most of these events can be

  2. Artificial soft sediment resuspension and high density opportunistic macroalgal mat fragmentation as method for increasing sediment zoobenthic assemblage diversity in a eutrophic lagoon.

    PubMed

    Martelloni, Tatiana; Tomassetti, Paolo; Gennaro, Paola; Vani, Danilo; Persia, Emma; Persiano, Marco; Falchi, Riccardo; Porrello, Salvatore; Lenzi, Mauro

    2016-09-15

    Superficial soft sediment resuspension and partial fragmentation of high density opportunistic macroalgal mats were investigated by boat to determine the impact on zoobenthic assemblages in a eutrophic Mediterranean lagoon. Sediment resuspension was used to oxidise superficial organic sediments as a method to counteract the effects of eutrophication. Likewise, artificial decay of macroalgal mat was calculated to reduce a permanent source of sediment organic matter. An area of 9ha was disturbed (zone D) and two other areas of the same size were left undisturbed (zones U). We measured chemical-physical variables, estimated algal biomass and sedimentary organic matter, and conducted qualitative and quantitative determinations of the zoobenthic species detected in sediment and among algal mats. The results showed a constant major reduction in labile organic matter (LOM) and algal biomass in D, whereas values in U remained stable or increased. In the three zones, however, bare patches of lagoon bed increased in size, either by direct effect of the boats in D or by anaerobic decay of the algal mass in U. Zoobenthic assemblages in algal mats reduced the number of species in D, probably due to the sharp reduction in biomass, but remained stable in U, whereas in all three areas abundance increased. Sediment zoobenthic assemblages increased the number of species in D, as expected, due to drastic reduction in LOM, whereas values in U remained stable and again abundance increased in all three zones. In conclusion, we confirmed that reduction of sediment organic load enabled an increase in the number of species, while the algal mats proved to be an important substrate in the lagoon environment for zoobenthic assemblages, especially when mat alternated with bare intermat areas of lagoon bed. Sediment resuspension is confirmed as a management criterion for counteracting the effects of eutrophication and improving the biodiversity of zoobenthic assemblages in eutrophic lagoon

  3. Carbonate production and deposition in a warm-temperate macroalgal environment, Investigator Strait, South Australia

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Bone, Yvonne

    2011-08-01

    The prolific macroalgal forests in shallow (< 20 m), warm-temperate, marine environments off southern Yorke Peninsula, South Australia have two carbonate-producing habitats, 1) upward-facing, exposed rock surfaces beneath large phaeophytes, and 2) concealed rock surfaces under overhangs, on rock walls, in crevasses, and indentations that all lie behind a curtain of brown macroalgae. Exposed surfaces have three growth tiers; 1) a basal, cm-high veneer or turf of crustose corallines, geniculate corallines, and short fleshy red algae that are grazed by herbivorous gastropods, 2) an intermediate, 5-20 cm-high community of fleshy red algae, and 3) a 20-100 cm+-high canopy of large phaeophytes (especially Ecklonia, Cystophora and Xiophora) whose blades are locally encrusted with bryozoans, such as Membranipora membranacea, and spirorbids. Concealed surfaces of subvertical rock walls and cryptic habitats behind the macroalgal curtain have two tiers; 1) a cornucopia of encrusting plants and animals, especially crustose and geniculate corallines in shallow water, that give way in water depths > 4 m to numerous bryozoans (especially fenestrates), serpulid worms, numerous and diverse demosponges, ascidians, small solitary corals, epifaunal echinoids, and gastropods, and 2) a veil of macroalgae (mainly Cystophora and Ecklonia) that drapes down and shades the rock walls. Most carbonate sediment production does not come from calcareous epiphytes on the macroalgae but comes from the coralline algae and calcareous invertebrates living on the rock walls and in concealed depressions. Mollusks (gastropods and bivalves) and geniculate coralline algae with numerous lithoclasts, crustose coralline fragments, barnacle plates, serpulid worms, bryozoans, and large benthic foraminifers (especially Amphistegina) dominate the resultant gravels and sands; but there is little or no mud. This is because carbonate sediment is the result of production not only in the macrophyte factory but also in

  4. Seasonality Affects Macroalgal Community Response to Increases in pCO2

    PubMed Central

    Baggini, Cecilia; Salomidi, Maria; Voutsinas, Emanuela; Bray, Laura; Krasakopoulou, Eva; Hall-Spencer, Jason M.

    2014-01-01

    Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed. Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial replication of these observations is needed to strengthen confidence our predictions, especially because very few studies have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal communities at CO2 seeps off Methana (Aegean Sea). Monitoring from 2011 to 2013 showed that seawater pH decreased to levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity, temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our results show that benthic community responses to ocean acidification are

  5. Seasonality affects macroalgal community response to increases in pCO2.

    PubMed

    Baggini, Cecilia; Salomidi, Maria; Voutsinas, Emanuela; Bray, Laura; Krasakopoulou, Eva; Hall-Spencer, Jason M

    2014-01-01

    Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed. Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial replication of these observations is needed to strengthen confidence our predictions, especially because very few studies have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal communities at CO2 seeps off Methana (Aegean Sea). Monitoring from 2011 to 2013 showed that seawater pH decreased to levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity, temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our results show that benthic community responses to ocean acidification are

  6. Wave action modifies the effects of consumer diversity and warming on algal assemblages.

    PubMed

    Mrowicki, Robert J; O'Connor, Nessa E

    2015-04-01

    To understand the consequences of biodiversity loss, it is necessary to test how biodiversity-ecosystem functioning relationships may vary with predicted environmental change. In particular, our understanding will be advanced by studies addressing the interactive effects of multiple stressors on the role of biodiversity across trophic levels. Predicted increases in wave disturbance and ocean warming, together with climate-driven range shifts of key consumer species, are likely to have profound impacts on the dynamics of coastal marine communities. We tested whether wave action and temperature modified the effects of gastropod grazer diversity (Patella vulgata, Littorina littorea, and Gibbula umbilicalis) on algal assemblages in experimental rock pools. The presence or absence of L. littorea appeared to drive changes in microalgal and macroalgal biomass and macroalgal assemblage structure. Macroalgal biomass also decreased with increasing grazer species richness, but only when wave action was enhanced. Further, independently of grazer diversity, wave action and temperature had interactive effects on macroalgal assemblage structure. Warming also led to a reversal of grazer-macroalgal interaction strengths from negative to positive, but only when there was no wave action. Our results show that hydrodynamic disturbance can exacerbate the effects of changing consumer diversity, and may also disrupt the influence of other environmental stressors on key consumer-resource interactions. These findings suggest that the combined effects of anticipated abiotic and biotic change on the functioning of coastal marine ecosystems, although difficult to predict, may be substantial. PMID:26230022

  7. Unraveling the Functions of the Macroalgal Microbiome

    PubMed Central

    Singh, Ravindra Pal; Reddy, C. R. K.

    2016-01-01

    Macroalgae are a diverse group of photosynthetic eukaryotic lower organisms and offer indispensable ecosystem services toward sustainable productivity of rocky coastal areas. The earlier studies have mainly focused on elucidation of the roles of the epiphytic bacterial communities in the ecophysiology of the host macroalga. However, mutualistic interactions have become topic of current interest. It is evident from recent studies that a fraction of epiphytic bacterial communities can be categorized as “core microbial species”, suggesting an obligate association. Epiphytic bacterial communities have also been reported to protect macroalgal surfaces from biofouling microorganisms through production of biologically active metabolites. Because of their intrinsic roles in the host life cycle, the host in turn may provide necessary organic nutrients in order to woo pelagic microbial communities to settle on the host surfaces. However, the precise composition of microbiomes and their functional partnership with hosts are hardly understood. In contrast, the microbial studies associated with human skin and gut and plants have significantly advanced our knowledge on microbiome and their functional interactions with the host. This has led to manipulation of the microbial flora of the human gut and of agricultural plants for improving health and performance. Therefore, it is highly imperative to investigate the functional microbiome that is closely involved in the life cycles of the host macroalgae using high-throughput techniques (metagenomics and metatranscriptomics). The findings from such investigations would help in promoting health and productivity in macroalgal species through regulation of functionally active microbiome. PMID:26779144

  8. Gene expression of corals in response to macroalgal competitors.

    PubMed

    Shearer, Tonya L; Snell, Terry W; Hay, Mark E

    2014-01-01

    As corals decline and macroalgae proliferate on coral reefs, coral-macroalgal competition becomes more frequent and ecologically important. Whether corals are damaged by these interactions depends on susceptibility of the coral and traits of macroalgal competitors. Investigating changes in gene expression of corals and their intracellular symbiotic algae, Symbiodinium, in response to contact with different macroalgae provides insight into the biological processes and cellular pathways affected by competition with macroalgae. We evaluated the gene expression profiles of coral and Symbiodinium genes from two confamilial corals, Acropora millepora and Montipora digitata, after 6 h and 48 h of contact with four common macroalgae that differ in their allelopathic potency to corals. Contacts with macroalgae affected different biological pathways in the more susceptible (A. millepora) versus the more resistant (M. digitata) coral. Genes of coral hosts and of their associated Symbiodinium also responded in species-specific and time-specific ways to each macroalga. Changes in number and expression intensity of affected genes were greater after 6 h compared to 48 h of contact and were greater following contact with Chlorodesmis fastigiata and Amphiroa crassa than following contact with Galaxaura filamentosa or Turbinaria conoides. We documented a divergence in transcriptional responses between two confamilial corals and their associated Symbiodinium, as well as a diversity of dynamic responses within each coral species with respect to the species of macroalgal competitor and the duration of exposure to that competitor. These responses included early initiation of immune processes by Montipora, which is more resistant to damage after long-term macroalgal contact. Activation of the immune response by corals that better resist algal competition is consistent with the hypothesis that some macroalgal effects on corals may be mediated by microbial pathogens. PMID:25500576

  9. Gene Expression of Corals in Response to Macroalgal Competitors

    PubMed Central

    Shearer, Tonya L.; Snell, Terry W.; Hay, Mark E.

    2014-01-01

    As corals decline and macroalgae proliferate on coral reefs, coral-macroalgal competition becomes more frequent and ecologically important. Whether corals are damaged by these interactions depends on susceptibility of the coral and traits of macroalgal competitors. Investigating changes in gene expression of corals and their intracellular symbiotic algae, Symbiodinium, in response to contact with different macroalgae provides insight into the biological processes and cellular pathways affected by competition with macroalgae. We evaluated the gene expression profiles of coral and Symbiodinium genes from two confamilial corals, Acropora millepora and Montipora digitata, after 6 h and 48 h of contact with four common macroalgae that differ in their allelopathic potency to corals. Contacts with macroalgae affected different biological pathways in the more susceptible (A. millepora) versus the more resistant (M. digitata) coral. Genes of coral hosts and of their associated Symbiodinium also responded in species-specific and time-specific ways to each macroalga. Changes in number and expression intensity of affected genes were greater after 6 h compared to 48 h of contact and were greater following contact with Chlorodesmis fastigiata and Amphiroa crassa than following contact with Galaxaura filamentosa or Turbinaria conoides. We documented a divergence in transcriptional responses between two confamilial corals and their associated Symbiodinium, as well as a diversity of dynamic responses within each coral species with respect to the species of macroalgal competitor and the duration of exposure to that competitor. These responses included early initiation of immune processes by Montipora, which is more resistant to damage after long-term macroalgal contact. Activation of the immune response by corals that better resist algal competition is consistent with the hypothesis that some macroalgal effects on corals may be mediated by microbial pathogens. PMID:25500576

  10. Censusing marine eukaryotic diversity in the twenty-first century

    PubMed Central

    Knowlton, Nancy

    2016-01-01

    The ocean constitutes one of the vastest and richest biomes on our planet. Most recent estimations, all based on indirect approaches, suggest that there are millions of marine eukaryotic species. Moreover, a large majority of these are small (less than 1 mm), cryptic and still unknown to science. However, this knowledge gap, caused by the lack of diagnostic morphological features in small organisms and the limited sampling of the global ocean, is currently being filled, thanks to new DNA-based approaches. The molecular technique of PCR amplification of homologous gene regions combined with high-throughput sequencing, routinely used to census unculturable prokaryotes, is now also being used to characterize whole communities of marine eukaryotes. Here, we review how this methodological advancement has helped to better quantify the magnitude and patterns of marine eukaryotic diversity, with an emphasis on taxonomic groups previously largely overlooked. We then discuss obstacles remaining to achieve a global understanding of marine eukaryotic diversity. In particular, we argue that 18S variable regions do not provide sufficient taxonomic resolution to census marine life, and suggest combining broad eukaryotic surveys targeting the 18S rRNA region with more taxon-focused analyses of hypervariable regions to improve our understanding of the diversity of species, the functional units of marine ecosystems. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481783

  11. Censusing marine eukaryotic diversity in the twenty-first century.

    PubMed

    Leray, Matthieu; Knowlton, Nancy

    2016-09-01

    The ocean constitutes one of the vastest and richest biomes on our planet. Most recent estimations, all based on indirect approaches, suggest that there are millions of marine eukaryotic species. Moreover, a large majority of these are small (less than 1 mm), cryptic and still unknown to science. However, this knowledge gap, caused by the lack of diagnostic morphological features in small organisms and the limited sampling of the global ocean, is currently being filled, thanks to new DNA-based approaches. The molecular technique of PCR amplification of homologous gene regions combined with high-throughput sequencing, routinely used to census unculturable prokaryotes, is now also being used to characterize whole communities of marine eukaryotes. Here, we review how this methodological advancement has helped to better quantify the magnitude and patterns of marine eukaryotic diversity, with an emphasis on taxonomic groups previously largely overlooked. We then discuss obstacles remaining to achieve a global understanding of marine eukaryotic diversity. In particular, we argue that 18S variable regions do not provide sufficient taxonomic resolution to census marine life, and suggest combining broad eukaryotic surveys targeting the 18S rRNA region with more taxon-focused analyses of hypervariable regions to improve our understanding of the diversity of species, the functional units of marine ecosystems.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481783

  12. Patterns of distribution and environmental correlates of macroalgal assemblages and sediment chlorophyll a in Oregon tidal wetlands

    EPA Science Inventory

    Algae have important functional roles in estuarine wetlands along the Pacific coast of the United States. We quantified differences in macroalgal abundance, composition and diversity, and sediment chlorophyll a and pheophytin a among three National Wetlands Inventory emergent mar...

  13. Contrasting "Fish" Diversity Dynamics between Marine and Freshwater Environments.

    PubMed

    Guinot, Guillaume; Cavin, Lionel

    2015-08-31

    Two theoretical models have been proposed to describe long-term dynamics of diversification: the equilibrium model considers the Earth as a closed system with a fixed maximum biological carrying capacity, whereas the expansion model hypothesizes a continuously increasing diversification of life. Based on the analysis of the fossil record of all organisms, Benton suggested contrasting models of diversity dynamics between marine and continental realms. Diversity in marine environments is characterized by phases of rapid diversification followed by plateaux, i.e., an equilibrium model directly derived from insular biogeography theories, whereas diversity in continental environments is characterized by exponential growth. Previous studies that aimed at testing these models with empirical data were based on datasets extracted directly from the reading of the vagaries of the raw fossil record, without correcting for common fossil record biases (preservation and sampling). Although correction of datasets for the incompleteness of the fossil record is now commonly performed for addressing long-term biodiversity variations, only a few attempts have been made to produce diversity curves corrected by phylogenetic data from extant and extinct taxa. Here we show that phylogenetically corrected diversity curves for "fish" (actinopterygians and elasmobranchs) during the last 200 million years fit an equilibrium model in the marine realm and an expansion model in the freshwater realm. These findings demonstrate that the rate of diversification has decreased for marine fish over the Cenozoic but is in sharp expansion for freshwater fish. PMID:26279235

  14. Are large macroalgal blooms necessarily bad? Nutrient impacts on seagrass in upwelling-influenced estuaries.

    PubMed

    Hessing-Lewis, Margot L; Hacker, Sally D; Menge, Bruce A; McConville, Sea-oh; Henderson, Jeremy

    2015-07-01

    Knowledge of nutrient pathways and their resulting ecological interactions can alleviate numerous environmental problems associated with nutrient increases in both natural and managed systems. Although not unique, coastal systems are particularly prone to complex ecological interactions resulting from nutrient inputs from both the land and sea. Nutrient inputs to coastal systems often spur ulvoid macroalgal blooms, with negative consequences for seagrasses, primarily through shading, as well as through changes in local biogeochemistry. We conducted complementary field and mesocosm experiments in an upwelling-influenced estuary, where marine-derived nutrients dominate, to understand the direct and indirect effects of nutrients on the macroalgal-eelgrass (Zostera marina L.) interaction. In the field experiment, we found weak evidence that nutrients and/or macroalgal treatments had a negative effect on eelgrass. However, in the mesocosm experiment, we found that a combination of nutrient and macroalgal treatments led to strongly negative eelgrass responses, primarily via indirect effects associated with macroalgal additions. Together, increased total light attenuation and decreased sediment oxygen levels were associated with larger effects on eelgrass than shading alone, which was evaluated using mimic algae treatments that did not alter sediment redox potential. Nutrient addition in the mesocosms directly affected seagrass density; biomass, and morphology, but not as strongly as macroalgae. We hypothesize that the contrary results from these parallel experiments are a consequence of differences in the hydrodynamics between field and mesocosm settings. We suggest that the high rates of water movement and tidal submersion of our intertidal field experiments alleviated the light reduction and negative biogeochemical changes in the sediment associated with macroalgal canopies, as well as the nutrient effects observed in the mesocosm experiments. Furthermore, adaptation

  15. Latitudinal gradients in marine diatom and coccolithophore diversity

    NASA Astrophysics Data System (ADS)

    O'Brien, Colleen; Vogt, Meike; Leblanc, Karine; Gruber, Nicolas

    2013-04-01

    Latitudinal gradients in biodiversity have long been recognised in terrestrial ecosystems, with the highest diversity of many groups occurring in the tropics and declining towards the poles. For marine phytoplankton, a latitudinal gradient has been observed in dinoflagellates, and there seems to be some consensus that coccolithophore diversity also follows the typical pattern of highest diversity at low latitudes. Mixed results have so far been reported for marine diatoms. We use the new MAREDAT (Marine Ecosystem DATa) diatom and coccolithophore datasets to investigate global patterns in species diversity. This database contains global biomass and abundance observations for 10 plankton functional groups, including 91 704 samples of diatom abundance and biomass and 11 703 for coccolithophores. We find evidence for a poleward decline in species richness and diversity for both groups, with total observed species richness per 5 degree latitudinal band declining by approximately 75% between the equator and 60°. Mean station diversity is measured using both species richness and the Shannon diversity index. For the diatoms, species richness per station declines from a mean of 25 between 20°S and 20°N to values less than 10 for stations above 60°S and N. For the coccolithophores, the trend is less clear: mean station richness reaches a maximum of 22 between 10 and 15°N and shows a clear northward decline, with only one species per station reported north of 60°N. Mean coccolithophore richness per station is, however, relatively low at the equator, with highest richness per station in the Southern Hemisphere observed between 20 and 40°S. Highest richness and diversity of both groups is associated with low group-specific biomass and low total chlorophyll, with higher productivity regions typically dominated by one or few species.

  16. Diversity of fungal isolates from three Hawaiian marine sponges.

    PubMed

    Li, Quanzi; Wang, Guangyi

    2009-01-01

    Sponges harbor diverse prokaryotic and eukaryotic microbes. However, the nature of sponge-fungal association and diversity of sponge-derived fungi have barely been addressed. In this study, the cultivation-dependent approach was applied to study fungal diversity in the Hawaiian sponges Gelliodes fibrosa, Haliclona caerulea, and Mycale armata. The cultivated fungal isolates were representatives of 8 taxonomic orders, belonging to at least 25 genera of Ascomycota and 1 of Basidiomycota. A portion of these isolates (n=15, 17%) were closely affiliated with fungal isolates isolated from other marine habitats; the rest of the isolates had affiliation with terrestrial fungal strains. Cultivated fungal isolates were classified into 3 groups: 'sponge-generalists'-found in all sponge species, 'sponge-associates'-found in more than one sponge species, and 'sponge-specialists'-found only in one sponge species. Individuals of G. fibrosa collected at two different locations shared the same group of 'sponge-specialists'. Also, representatives of 15 genera were identified for the first time in marine sponges. Large-scale phylogenetic analysis of sponge-derived fungi may provide critical information to distinguish between 'resident fungi' and 'transient fungi' in sponges as it has been done in other marine microbial groups. This is the first report of the host specificity analysis of culturable fungal communities in marine sponges. PMID:17681460

  17. Global marine bacterial diversity peaks at high latitudes in winter

    PubMed Central

    Ladau, Joshua; Sharpton, Thomas J; Finucane, Mariel M; Jospin, Guillaume; Kembel, Steven W; O'Dwyer, James; Koeppel, Alexander F; Green, Jessica L; Pollard, Katherine S

    2013-01-01

    Genomic approaches to characterizing bacterial communities are revealing significant differences in diversity and composition between environments. But bacterial distributions have not been mapped at a global scale. Although current community surveys are way too sparse to map global diversity patterns directly, there is now sufficient data to fit accurate models of how bacterial distributions vary across different environments and to make global scale maps from these models. We apply this approach to map the global distributions of bacteria in marine surface waters. Our spatially and temporally explicit predictions suggest that bacterial diversity peaks in temperate latitudes across the world's oceans. These global peaks are seasonal, occurring 6 months apart in the two hemispheres, in the boreal and austral winters. This pattern is quite different from the tropical, seasonally consistent diversity patterns observed for most macroorganisms. However, like other marine organisms, surface water bacteria are particularly diverse in regions of high human environmental impacts on the oceans. Our maps provide the first picture of bacterial distributions at a global scale and suggest important differences between the diversity patterns of bacteria compared with other organisms. PMID:23514781

  18. Consistent Richness-Biomass Relationship across Environmental Gradients in a Marine Macroalgal-Dominated Subtidal Community on the Western Antarctic Peninsula

    PubMed Central

    Valdivia, Nelson; Díaz, María José; Garrido, Ignacio; Gómez, Iván

    2015-01-01

    Biodiversity loss has spurred the biodiversity-ecosystem functioning research over a range of ecosystems. In Antarctica, however, the relationship of taxonomic and functional diversity with ecosystem properties (e.g., community biomass) has received less attention, despite the presence of sharp and dynamic environmental stress gradients that might modulate these properties. Here, we investigated whether the richness-biomass relationship in macrobenthic subtidal communities is still apparent after accounting for environmental stress gradients in Fildes Bay, King George Island, Antarctica. Measurements of biomass of mobile and sessile macrobenthic taxa were conducted in the austral summer 2013/4 across two environmental stress gradients: distance from nearest glaciers and subtidal depth (from 5 to 30 m). In general, community biomass increased with distance from glaciers and water depth. However, generalised additive models showed that distance from glaciers and depth accounted for negligible proportions of variation in the number of functional groups (i.e., functional richness) and community biomass when compared to taxonomic richness. Functional richness and community biomass were positive and saturating functions of taxonomic richness. Large endemic, canopy-forming brown algae of the order Desmarestiales dominated the community biomass across both gradients. Accordingly, differences in the composition of taxa accounted for a significant and large proportion (51%) of variation in community biomass in comparison with functional richness (10%). Our results suggest that the environmental factors here analysed may be less important than biodiversity in shaping mesoscale (several km) biomass patterns in this Antarctic system. We suggest that further manipulative, hypothesis-driven research should address the role of biodiversity and species’ functional traits in the responses of Antarctic subtidal communities to environmental variation. PMID:26381149

  19. Consistent Richness-Biomass Relationship across Environmental Gradients in a Marine Macroalgal-Dominated Subtidal Community on the Western Antarctic Peninsula.

    PubMed

    Valdivia, Nelson; Díaz, María José; Garrido, Ignacio; Gómez, Iván

    2015-01-01

    Biodiversity loss has spurred the biodiversity-ecosystem functioning research over a range of ecosystems. In Antarctica, however, the relationship of taxonomic and functional diversity with ecosystem properties (e.g., community biomass) has received less attention, despite the presence of sharp and dynamic environmental stress gradients that might modulate these properties. Here, we investigated whether the richness-biomass relationship in macrobenthic subtidal communities is still apparent after accounting for environmental stress gradients in Fildes Bay, King George Island, Antarctica. Measurements of biomass of mobile and sessile macrobenthic taxa were conducted in the austral summer 2013/4 across two environmental stress gradients: distance from nearest glaciers and subtidal depth (from 5 to 30 m). In general, community biomass increased with distance from glaciers and water depth. However, generalised additive models showed that distance from glaciers and depth accounted for negligible proportions of variation in the number of functional groups (i.e., functional richness) and community biomass when compared to taxonomic richness. Functional richness and community biomass were positive and saturating functions of taxonomic richness. Large endemic, canopy-forming brown algae of the order Desmarestiales dominated the community biomass across both gradients. Accordingly, differences in the composition of taxa accounted for a significant and large proportion (51%) of variation in community biomass in comparison with functional richness (10%). Our results suggest that the environmental factors here analysed may be less important than biodiversity in shaping mesoscale (several km) biomass patterns in this Antarctic system. We suggest that further manipulative, hypothesis-driven research should address the role of biodiversity and species' functional traits in the responses of Antarctic subtidal communities to environmental variation. PMID:26381149

  20. Environmental Barcoding Reveals Massive Dinoflagellate Diversity in Marine Environments

    PubMed Central

    Stern, Rowena F.; Horak, Ales; Andrew, Rose L.; Coffroth, Mary-Alice; Andersen, Robert A.; Küpper, Frithjof C.; Jameson, Ian; Hoppenrath, Mona; Véron, Benoît; Kasai, Fumai; Brand, Jerry; James, Erick R.; Keeling, Patrick J.

    2010-01-01

    Background Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups. We used this approach to systematically sample known “species”, as a reference to measure the natural diversity in three marine environments. Methodology/Principal Findings In this study, we assembled a large cytochrome c oxidase 1 (COI) barcode database from 8 public algal culture collections plus 3 private collections worldwide resulting in 336 individual barcodes linked to specific cultures. We demonstrate that COI can identify to the species level in 15 dinoflagellate genera, generally in agreement with existing species names. Exceptions were found in species belonging to genera that were generally already known to be taxonomically challenging, such as Alexandrium or Symbiodinium. Using this barcode database as a baseline for cultured dinoflagellate diversity, we investigated the natural diversity in three diverse marine environments (Northeast Pacific, Northwest Atlantic, and Caribbean), including an evaluation of single-cell barcoding to identify uncultivated groups. From all three environments, the great majority of barcodes were not represented by any known cultured dinoflagellate, and we also observed an explosion in the diversity of genera that previously contained a modest number of known species, belonging to Kareniaceae. In total, 91.5% of non-identical environmental barcodes represent distinct species, but only 51 out of 603 unique environmental barcodes could be linked to cultured species using a conservative cut-off based on distances between cultured species. Conclusions/Significance COI barcoding was successful in identifying species from 70% of cultured genera. When applied to environmental samples, it revealed a massive amount of

  1. Low genome content diversity of marine planktonic Thaumarchaeota.

    PubMed

    Luo, Haiwei; Sun, Ying; Hollibaugh, James T; Moran, Mary Ann

    2016-08-01

    Members of Thaumarchaeota are responsible for much of the ammonia oxidation occurring in the ocean. Recent studies showed that marine Thaumarchaeota have versatile metabolic capabilities, but sequencing additional genomes has not significantly increased the gene content ascribed to this group. We used the assembly-free dN pipeline software in combination with phylogenetic analyses to interrogate shotgun metagenomic data sets to gain a better understanding of the genomic diversity of Thaumarchaeota populations. The program confidently assigned ∼3,000 paired-end reads to Thaumarchaeota, independent of homologies to any known Thaumarchaeota genome sequence. Only 2% of these reads potentially harbor new genes that were absent from the genome of 'Candidatus Nitrosopumilus maritimus' str. SCM1, even though this strain was isolated from a marine aquarium rather than directly from the ocean. One of these novel genes encode proteins associated with the CRISPR/Cas system, Cas1, suggesting that phage defense through CRISPR may be also present in planktonic Thaumarchaeota lineages. Our results suggest that marine Thaumarchaeota populations have very low diversity in genome content, which is corroborated using computer simulation analyses of two bacterial lineages with known genome content diversity. PMID:27120311

  2. Cenozoic Planktonic Marine Diatom Diversity and Correlation to Climate Change

    PubMed Central

    Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas

    2014-01-01

    Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂18O (climate) and carbon cycle records (∂13C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p<.001; detrended, r = .6, p = .01). Diatoms were 20% less diverse in the early late Miocene, when temperatures and pCO2 were only moderately higher than today. Diversity is strongly correlated to both ∂13C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic

  3. Cenozoic planktonic marine diatom diversity and correlation to climate change

    USGS Publications Warehouse

    Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas

    2014-01-01

    Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂18O (climate) and carbon cycle records (∂13C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p2 were only moderately higher than today. Diversity is strongly correlated to both ∂13C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  4. Diversity and novelty of actinobacteria in Arctic marine sediments.

    PubMed

    Zhang, Gaiyun; Cao, Tingfeng; Ying, Jianxi; Yang, Yanliu; Ma, Lingqi

    2014-04-01

    The actinobacterial diversity of Arctic marine sediments was investigated using culture-dependent and culture-independent approaches. A total of 152 strains were isolated from seven different media; 18 isolates were selected for phylogenetic analysis on the basis of their 16S rRNA gene sequences. Results showed that the 18 isolates belonged to a potential novel genus and 10 known genera including Actinotalea, Arthrobacter, Brachybacterium, Brevibacterium, Kocuria, Kytococcus, Microbacterium, Micrococcus, Mycobacterium, and Pseudonocardia. Subsequently, 172 rDNA clones were selected by restriction fragment length polymorphism analysis from 692 positive clones within four actinobacteria-specific 16S rDNA libraries of Arctic marine sediments, and then these 172 clones were sequenced. In total, 67 phylotypes were clustered in 11 known genera of actinobacteria including Agrococcus, Cellulomonas, Demequina, Iamia, Ilumatobacter, Janibacter, Kocuria, Microbacterium, Phycicoccus, Propionibacterium, and Pseudonocardia, along with other, unidentified actinobacterial clones. Based on the detection of a substantial number of uncultured phylotypes showing low BLAST identities (<95 %), this study confirms that Arctic marine environments harbour highly diverse actinobacterial communities, many of which appear to be novel, uncultured species. PMID:24519808

  5. Low genetic diversity in a marine nature reserve: re-evaluating diversity criteria in reserve design

    PubMed Central

    Bell, J.J; Okamura, B

    2005-01-01

    Little consideration has been given to the genetic composition of populations associated with marine reserves, as reserve designation is generally to protect specific species, communities or habitats. Nevertheless, it is important to conserve genetic diversity since it provides the raw material for the maintenance of species diversity over longer, evolutionary time-scales and may also confer the basis for adaptation to environmental change. Many current marine reserves are small in size and isolated to some degree (e.g. sea loughs and offshore islands). While such features enable easier management, they may have important implications for the genetic structure of protected populations, the ability of populations to recover from local catastrophes and the potential for marine reserves to act as sources of propagules for surrounding areas. Here, we present a case study demonstrating genetic differentiation, isolation, inbreeding and reduced genetic diversity in populations of the dogwhelk Nucella lapillus in Lough Hyne Marine Nature Reserve (an isolated sea lough in southern Ireland), compared with populations on the local adjacent open coast and populations in England, Wales and France. Our study demonstrates that this sea lough is isolated from open coast populations, and highlights that there may be long-term genetic consequences of selecting reserves on the basis of isolation and ease of protection. PMID:16024366

  6. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis.

    PubMed

    Dubilier, Nicole; Bergin, Claudia; Lott, Christian

    2008-10-01

    Chemosynthetic symbioses between bacteria and marine invertebrates were discovered 30 years ago at hydrothermal vents on the Galapagos Rift. Remarkably, it took the discovery of these symbioses in the deep sea for scientists to realize that chemosynthetic symbioses occur worldwide in a wide range of habitats, including cold seeps, whale and wood falls, shallow-water coastal sediments and continental margins. The evolutionary success of these symbioses is evident from the wide range of animal groups that have established associations with chemosynthetic bacteria; at least seven animal phyla are known to host these symbionts. The diversity of the bacterial symbionts is equally high, and phylogenetic analyses have shown that these associations have evolved on multiple occasions by convergent evolution. This Review focuses on the diversity of chemosynthetic symbionts and their hosts, and examines the traits that have resulted in their evolutionary success. PMID:18794911

  7. Diversity of Actinobacteria Associated with the Marine Ascidian Eudistoma toealensis.

    PubMed

    Steinert, Georg; Taylor, Michael W; Schupp, Peter J

    2015-08-01

    Ascidians have yielded a wide variety of bioactive natural products. The colonial ascidian Eudistoma toealensis from Micronesia has been identified as the source of a series of staurosporine derivatives, though the exact origin of these derivatives is still unknown. To identify known staurosporine-producing microbes associated with E. toealensis, we analyzed with 16S rRNA gene tag pyrosequencing the overall bacterial community and focused on potential symbiotic bacteria already known from other ascidians or other marine hosts, such as sponges. The described microbiota was one of very high diversity, comprising 43 phyla: two from archaea, 34 described bacterial phyla, and seven candidate bacterial phyla. Many bacteria, which are renowned community members of other ascidians and marine holobionts, such as sponges and corals, were also part of the E. toealensis microbial community. Furthermore, two known producers of indolocarbazoles, Salinispora and Verrucosispora, were found with high abundance exclusively in the ascidian tissue, suggesting that microbial symbionts and not the organism itself may be the true producers of the staurosporines in E. toealensis. PMID:25678260

  8. Diversity of Marine Animals. Man and the Gulf of Mexico Series.

    ERIC Educational Resources Information Center

    Irby, Bobby N., Comp.; And Others

    "Man and the Gulf of Mexico" (MGM) is a marine science curriculum series developed to meet the needs of 10th through 12th grade students in Mississippi and Alabama schools. This MGM unit on the diversity of marine animals is divided into 16 sections. These sections focus on: marine protozoans; sponges; coelenterates; ctenophores; polychaetes;…

  9. Context-Dependent Diversity-Effects of Seaweed Consumption on Coral Reefs in Kenya.

    PubMed

    Humphries, Austin T; McQuaid, Christopher D; McClanahan, Tim R

    2015-01-01

    Consumers and prey diversity, their interactions, and subsequent effects on ecosystem function are important for ecological processes but not well understood in high diversity ecosystems such as coral reefs. Consequently, we tested the potential for diversity-effects with a series of surveys and experiments evaluating the influence of browsing herbivores on macroalgae in Kenya's fringing reef ecosystem. We surveyed sites and undertook experiments in reefs subject to three levels of human fishing influence: open access fished reefs, small and recently established community-managed marine reserves, and larger, older government-managed marine reserves. Older marine reserves had a greater overall diversity of herbivores and browsers but this was not clearly associated with reduced macroalgal diversity or abundance. Experiments studying succession on hard substrata also found no effects of consumer diversity. Instead, overall browser abundance of either sea urchins or fishes was correlated with declines in macroalgal cover. An exception was that the absence of a key fish browser genus, Naso, which was correlated with the persistence of Sargassum in a marine reserve. Algal selectivity assays showed that macroalgae were consumed at variable rates, a product of strong species-specific feeding and low overlap in the selectivity of browsing fishes. We conclude that the effects of browser and herbivore diversity are less than the influences of key species, whose impacts emerge in different contexts that are influenced by fisheries management. Consequently, identifying key herbivore species and managing to protect them may assist protecting reef functions. PMID:26673609

  10. Context-Dependent Diversity-Effects of Seaweed Consumption on Coral Reefs in Kenya

    PubMed Central

    Humphries, Austin T.; McQuaid, Christopher D.; McClanahan, Tim R.

    2015-01-01

    Consumers and prey diversity, their interactions, and subsequent effects on ecosystem function are important for ecological processes but not well understood in high diversity ecosystems such as coral reefs. Consequently, we tested the potential for diversity-effects with a series of surveys and experiments evaluating the influence of browsing herbivores on macroalgae in Kenya’s fringing reef ecosystem. We surveyed sites and undertook experiments in reefs subject to three levels of human fishing influence: open access fished reefs, small and recently established community-managed marine reserves, and larger, older government-managed marine reserves. Older marine reserves had a greater overall diversity of herbivores and browsers but this was not clearly associated with reduced macroalgal diversity or abundance. Experiments studying succession on hard substrata also found no effects of consumer diversity. Instead, overall browser abundance of either sea urchins or fishes was correlated with declines in macroalgal cover. An exception was that the absence of a key fish browser genus, Naso, which was correlated with the persistence of Sargassum in a marine reserve. Algal selectivity assays showed that macroalgae were consumed at variable rates, a product of strong species-specific feeding and low overlap in the selectivity of browsing fishes. We conclude that the effects of browser and herbivore diversity are less than the influences of key species, whose impacts emerge in different contexts that are influenced by fisheries management. Consequently, identifying key herbivore species and managing to protect them may assist protecting reef functions. PMID:26673609

  11. The diverse genetic switch of enterobacterial and marine telomere phages.

    PubMed

    Hammerl, Jens A; Jäckel, Claudia; Funk, Eugenia; Pinnau, Sabrina; Mache, Christin; Hertwig, Stefan

    2016-01-01

    Temperate bacteriophages possess a genetic switch which regulates the lytic and lysogenic cycle. The genomes of the enterobacterial telomere phages N15, PY54 and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor, the lytic repressor and a putative antiterminator, similar to CI, Cro and Q of lambda, respectively. Moreover, N15 and ϕKO2 contain 3 related operator (OR) sites between cI and cro, while only one site (OR3) has been detected in PY54. Marine telomere phages possess a putative cI gene but not a cro-like gene. Instead, a gene is located at the position of cro, whose product shows some similarity to the PY54 ORF42 product, the function of which is unknown. We have determined the transcription start sites of the predicted repressor genes of N15, PY54, ϕKO2 and of the marine telomere phage VP58.5. The influence of the genes on phage propagation was analyzed in E. coli, Y. enterocolitica and V.parahaemolyticus. We show that the repressors and antiterminators of N15, ϕKO2 and PY54 exerted their predicted activities. However, while the proteins of both N15 and ϕKO2 affected lysis and lysogeny by N15, they did not affect PY54 propagation. On the other hand, the respective PY54 proteins exclusively influenced the propagation of this phage. The immB region of VP58.5 contains 2 genes that revealed prophage repressor activity, while a lytic repressor gene could not be identified. The results indicate an unexpected diversity of the growth regulation mechanisms in these temperate phages. PMID:27607141

  12. Unique marine derived cyanobacterial biosynthetic genes for chemical diversity.

    PubMed

    Kleigrewe, Karin; Gerwick, Lena; Sherman, David H; Gerwick, William H

    2016-02-01

    Cyanobacteria are a prolific source of structurally unique and biologically active natural products that derive from intriguing biochemical pathways. Advancements in genome sequencing have accelerated the identification of unique modular biosynthetic gene clusters in cyanobacteria and reveal a wealth of unusual enzymatic reactions involved in their construction. This article examines several interesting mechanistic transformations involved in cyanobacterial secondary metabolite biosynthesis with a particular focus on marine derived modular polyketide synthases (PKS), nonribosomal peptide synthetases (NRPS) and combinations thereof to form hybrid natural products. Further, we focus on the cyanobacterial genus Moorea and the co-evolution of its enzyme cassettes that create metabolic diversity. Progress in the development of heterologous expression systems for cyanobacterial gene clusters along with chemoenzymatic synthesis makes it possible to create new analogs. Additionally, phylum-wide genome sequencing projects have enhanced the discovery rate of new natural products and their distinctive enzymatic reactions. Summarizing, cyanobacterial biosynthetic gene clusters encode for a large toolbox of novel enzymes that catalyze unique chemical reactions, some of which may be useful in synthetic biology. PMID:26758451

  13. Ubiquity and Diversity of Heterotrophic Bacterial nasA Genes in Diverse Marine Environments

    PubMed Central

    Jiang, Xuexia; Dang, Hongyue; Jiao, Nianzhi

    2015-01-01

    Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase) gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides) bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III). Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating that NAB may be

  14. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments.

    PubMed

    Jiang, Xuexia; Dang, Hongyue; Jiao, Nianzhi

    2015-01-01

    Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase) gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides) bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III). Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating that NAB may be

  15. Diversity of Marine Plants. Man and the Gulf of Mexico Series.

    ERIC Educational Resources Information Center

    Irby, Bobby N., Comp.; And Others

    "Man and the Gulf of Mexico" (MGM) is a marine science curriculum series developed to meet the needs of 10th through 12th grade students in Mississippi and Alabama schools. This MGM unit on the diversity of marine plants is divided into 12 sections. The first section introduces the unit by providing objectives and activities on why people classify…

  16. Effects of Trophic Skewing of Species Richness on Ecosystem Functioning in a Diverse Marine Community

    PubMed Central

    Reynolds, Pamela L.; Bruno, John F.

    2012-01-01

    Widespread overharvesting of top consumers of the world’s ecosystems has “skewed” food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions. PMID:22693549

  17. Marine-derived fungi: diversity of enzymes and biotechnological applications

    PubMed Central

    Bonugli-Santos, Rafaella C.; dos Santos Vasconcelos, Maria R.; Passarini, Michel R. Z.; Vieira, Gabriela A. L.; Lopes, Viviane C. P.; Mainardi, Pedro H.; dos Santos, Juliana A.; de Azevedo Duarte, Lidia; Otero, Igor V. R.; da Silva Yoshida, Aline M.; Feitosa, Valker A.; Pessoa, Adalberto; Sette, Lara D.

    2015-01-01

    The ocean is considered to be a great reservoir of biodiversity. Microbial communities in marine environments are ecologically relevant as intermediaries of energy, and play an important role in nutrient regeneration cycles as decomposers of dead and decaying organic matter. In this sense, marine-derived fungi can be considered as a source of enzymes of industrial and/or environmental interest. Fungal strains isolated from different substrates, such as invertebrates, decaying wood, seawater, sediments, and mangrove detritus, have been reported to be producers of hydrolytic and/or oxidative enzymes, with alginate lyase, amylase, cellulase, chitinase, glucosidase, inulinase, keratinase, ligninase, lipase, nuclease, phytase, protease, and xylanase being among the enzymes produced by fungi of marine origin. These enzymes present temperature and pH optima ranging from 35 to 70∘C, and 3.0 to 11.0, respectively. High-level production in bioreactors is mainly performed using submerged-state fermentation. Certain marine-derived fungal strains present enzymes with alkaline and cold-activity characteristics, and salinity is considered an important condition in screening and production processes. The adaptability of marine-derived fungi to oceanic conditions can be considered an attractive point in the field of fungal marine biotechnology. In this review, we focus on the advances in discovering enzymes from marine-derived fungi and their biotechnological relevance. PMID:25914680

  18. Marine-derived fungi: diversity of enzymes and biotechnological applications.

    PubMed

    Bonugli-Santos, Rafaella C; Dos Santos Vasconcelos, Maria R; Passarini, Michel R Z; Vieira, Gabriela A L; Lopes, Viviane C P; Mainardi, Pedro H; Dos Santos, Juliana A; de Azevedo Duarte, Lidia; Otero, Igor V R; da Silva Yoshida, Aline M; Feitosa, Valker A; Pessoa, Adalberto; Sette, Lara D

    2015-01-01

    The ocean is considered to be a great reservoir of biodiversity. Microbial communities in marine environments are ecologically relevant as intermediaries of energy, and play an important role in nutrient regeneration cycles as decomposers of dead and decaying organic matter. In this sense, marine-derived fungi can be considered as a source of enzymes of industrial and/or environmental interest. Fungal strains isolated from different substrates, such as invertebrates, decaying wood, seawater, sediments, and mangrove detritus, have been reported to be producers of hydrolytic and/or oxidative enzymes, with alginate lyase, amylase, cellulase, chitinase, glucosidase, inulinase, keratinase, ligninase, lipase, nuclease, phytase, protease, and xylanase being among the enzymes produced by fungi of marine origin. These enzymes present temperature and pH optima ranging from 35 to 70(∘)C, and 3.0 to 11.0, respectively. High-level production in bioreactors is mainly performed using submerged-state fermentation. Certain marine-derived fungal strains present enzymes with alkaline and cold-activity characteristics, and salinity is considered an important condition in screening and production processes. The adaptability of marine-derived fungi to oceanic conditions can be considered an attractive point in the field of fungal marine biotechnology. In this review, we focus on the advances in discovering enzymes from marine-derived fungi and their biotechnological relevance. PMID:25914680

  19. Top-down and bottom-up regulation of macroalgal community structure on a Kenyan reef

    NASA Astrophysics Data System (ADS)

    Mörk, Erik; Sjöö, Gustaf Lilliesköld; Kautsky, Nils; McClanahan, Tim R.

    2009-09-01

    Top-down and bottom-up regulation in the form of grazing by herbivores and nutrient availability are important factors governing macroalgal communities in the coral reef ecosystem. Today, anthropogenic activities, such as over-harvesting of herbivorous fish and sea urchins and increased nutrient loading, are altering the interaction of these two structuring forces. The present study was conducted in Kenya and investigates the relative importance of herbivory and nutrient loading on macroalgal community dynamics, by looking at alterations in macroalgal functional groups, species diversity ( H') and biomass within experimental quadrats. The experiment was conducted in situ for 42 days during the dry season. Cages excluding large herbivorous fish and sea urchins were used in the study and nutrient addition was conducted using coated, slow-release fertilizer (nitrogen and phosphorous) at a site where herbivory is generally low and nutrient levels are relatively high for the region. Nutrient addition increased tissue nutrient content in the algae, and fertilized quadrats had 24% higher species diversity. Herbivore exclusion resulted in a 77% increase in algal biomass, mainly attributable to a >1000% increase in corticated forms. These results are in accordance with similar studies in other regions, but are unique in that they indicate that, even when prevailing nutrient levels are relatively high and herbivore pressure is relatively low, continued anthropogenic disturbance results in further ecological responses and increased reef degradation.

  20. Diversity of secondary metabolites from marine Bacillus species: chemistry and biological activity.

    PubMed

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-08-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  1. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    PubMed Central

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  2. Diversity of the candidate phylum Poribacteria in the marine sponge Aplysina fulva.

    PubMed

    Hardoim, C C P; Cox, C J; Peixoto, R S; Rosado, A S; Costa, R; van Elsas, J D

    2013-01-01

    Poribacterial clone libraries constructed for Aplysina fulva sponge specimens were analysed with respect to diversity and phylogeny. Results imply the coexistence of several, prevalently "intra-specific" poribacterial genotypes in a single sponge host, and suggest quantitative analysis as a desirable approach in studies of the diversity and distribution of poribacterial cohorts in marine sponges. PMID:24159324

  3. Occurrence and diversity of Candida genus in marine environments

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Chi, Zhenming; Yue, Lixi; Chi, Zhe; Zhang, Dechao

    2008-11-01

    A total of 317 yeast isolates from seawater, sediments, mud of salterns, guts of marine fishes and marine algae were obtained. The results of routine identification and molecular characterization showed that six isolates among these marine yeasts belonged to Candida genus as Candida intermedia for YA01a, Candida parapsilosis for 3eA2, Candida quercitrusa for JHSb, Candia rugosa for wl8, Candida zeylanoides for TJY13a, and Candida membranifaciens for W14-3. Isolates YA01a ( Candida intermedia), wl8 ( Candida rugosa), 3eA2 ( Candida parapsilosis), and JHSb ( Candida quercitrusa) were found producing cell-bound lipase, while isolate W14-3 ( Candida membranifaciens) producing riboflavin. These marine yeast Candida spp. seem to have wide potential applications in biotechnology.

  4. Diverse molecular signatures for ribosomally ‘active’ Perkinsea in marine sediments

    PubMed Central

    2014-01-01

    Background Perkinsea are a parasitic lineage within the eukaryotic superphylum Alveolata. Recent studies making use of environmental small sub-unit ribosomal RNA gene (SSU rDNA) sequencing methodologies have detected a significant diversity and abundance of Perkinsea-like phylotypes in freshwater environments. In contrast only a few Perkinsea environmental sequences have been retrieved from marine samples and only two groups of Perkinsea have been cultured and morphologically described and these are parasites of marine molluscs or marine protists. These two marine groups form separate and distantly related phylogenetic clusters, composed of closely related lineages on SSU rDNA trees. Here, we test the hypothesis that Perkinsea are a hitherto under-sampled group in marine environments. Using 454 diversity ‘tag’ sequencing we investigate the diversity and distribution of these protists in marine sediments and water column samples taken from the Deep Chlorophyll Maximum (DCM) and sub-surface using both DNA and RNA as the source template and sampling four European offshore locations. Results We detected the presence of 265 sequences branching with known Perkinsea, the majority of them recovered from marine sediments. Moreover, 27% of these sequences were sampled from RNA derived cDNA libraries. Phylogenetic analyses classify a large proportion of these sequences into 38 cluster groups (including 30 novel marine cluster groups), which share less than 97% sequence similarity suggesting this diversity encompasses a range of biologically and ecologically distinct organisms. Conclusions These results demonstrate that the Perkinsea lineage is considerably more diverse than previously detected in marine environments. This wide diversity of Perkinsea-like protists is largely retrieved in marine sediment with a significant proportion detected in RNA derived libraries suggesting this diversity represents ribosomally ‘active’ and intact cells. Given the phylogenetic range

  5. Intraspecific diversity of Aureobasidium pullulans strains from different marine environments

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Liu, Zhiqiang; Chi, Zhenming; Zhang, Liang; Zhang, Dechao

    2009-09-01

    Totally more than 500 yeast strains were isolated from seawater, sea sediments, mud of sea salterns, marine fish guts and marine algae. The results of routine and molecular biology identification methods show that nine strains among these marine yeasts belong to Aureobasidium pullulans, although the morphologies of their colonies are very different. The marine yeasts isolated from different marine environments indicate that A. pullulans is widely distributed in different environmental conditions. These Aureobasidium pullulans strains include A. pullulans 4#2, A. pullulans N13d, A. pullulans HN3-11, A. pullulans HN2-3, A. pullulans JHSc, A. pullulans HN4.7, A. pullulans HN5.3, A. pullulans HN6.2 and A. pullulans W13a. A. pullulans 4#2 could produce cellulase and single cell protein. A. pullulans N13d could produce protease, lipase, amylase and cellulase. Both A. pullulans HN3-11 and A. pullulans HN2-3 were able to produce protease, lipase and cellulase. A. pullulans JHSc could secrete cellulase and killer toxin. Both A. pullulans HN4.7 and A. pullulans HN5.3 could yield lipase and cellulase. A. pullulans W13a was able to secrete extracellular amylase and cellulase while A. pullulans HN4.7 and A. pullulans N13d could produce siderophores. This means that different A. pullulans strains from different marine environments have different physiological characteristics, which may be applied in many different biotechnological industries.

  6. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp.

    PubMed Central

    Teichberg, Mirta; Fox, Sophia E; Olsen, Ylva S; Valiela, Ivan; Martinetto, Paulina; Iribarne, Oscar; Muto, Elizabeti Yuriko; Petti, Monica A V; Corbisier, Thaïs N; Soto-Jiménez, Martín; Páez-Osuna, Federico; Castro, Paula; Freitas, Helena; Zitelli, Andreina; Cardinaletti, Massimo; Tagliapietra, Davide

    2010-01-01

    Receiving coastal waters and estuaries are among the most nutrient-enriched environments on earth, and one of the symptoms of the resulting eutrophication is the proliferation of opportunistic, fast-growing marine seaweeds. Here, we used a widespread macroalga often involved in blooms, Ulva spp., to investigate how supply of nitrogen (N) and phosphorus (P), the two main potential growth-limiting nutrients, influence macroalgal growth in temperate and tropical coastal waters ranging from low- to high-nutrient supplies. We carried out N and P enrichment field experiments on Ulva spp. in seven coastal systems, with one of these systems represented by three different subestuaries, for a total of nine sites. We showed that rate of growth of Ulva spp. was directly correlated to annual dissolved inorganic nitrogen (DIN) concentrations, where growth increased with increasing DIN concentration. Internal N pools of macroalgal fronds were also linked to increased DIN supply, and algal growth rates were tightly coupled to these internal N pools. The increases in DIN appeared to be related to greater inputs of wastewater to these coastal waters as indicated by high δ15N signatures of the algae as DIN increased. N and P enrichment experiments showed that rate of macroalgal growth was controlled by supply of DIN where ambient DIN concentrations were low, and by P where DIN concentrations were higher, regardless of latitude or geographic setting. These results suggest that understanding the basis for macroalgal blooms, and management of these harmful phenomena, will require information as to nutrient sources, and actions to reduce supply of N and P in coastal waters concerned.

  7. Bioprospecting from Marine Sediments of New Brunswick, Canada: Exploring the Relationship between Total Bacterial Diversity and Actinobacteria Diversity

    PubMed Central

    Duncan, Katherine; Haltli, Bradley; Gill, Krista A.; Kerr, Russell G.

    2014-01-01

    Actinomycetes are an important resource for the discovery of natural products with therapeutic properties. Bioprospecting for actinomycetes typically proceeds without a priori knowledge of the bacterial diversity present in sampled habitats. In this study, we endeavored to determine if overall bacterial diversity in marine sediments, as determined by 16S rDNA amplicon pyrosequencing, could be correlated with culturable actinomycete diversity, and thus serve as a powerful tool in guiding future bioprospecting efforts. Overall bacterial diversity was investigated in eight marine sediments from four sites in New Brunswick, Canada, resulting in over 44,000 high quality sequences (x = 5610 per sample). Analysis revealed all sites exhibited significant diversity (H’ = 5.4 to 6.7). Furthermore, statistical analysis of species level bacterial communities (D = 0.03) indicated community composition varied according to site and was strongly influenced by sediment physiochemical composition. In contrast, cultured actinomycetes (n = 466, 98.3% Streptomyces) were ubiquitously distributed among all sites and distribution was not influenced by sediment composition, suggesting that the biogeography of culturable actinomycetes does not correlate with overall bacterial diversity in the samples examined. These actinomycetes provide a resource for future secondary metabolite discovery, as exemplified by the antimicrobial activity observed from preliminary investigation. PMID:24531187

  8. Occurrence and diversity of Pichia spp. in marine environments

    NASA Astrophysics Data System (ADS)

    Li, Jing; Chi, Zhenming; Wang, Xianghong; Wang, Lin; Sheng, Jun; Gong, Fang

    2008-08-01

    A total of 328 yeast strains from seawater, sediments, mud of salterns, the guts of marine fish and marine algae were obtained. The results of routine identification and molecular methods show that five yeast strains obtained in this study belonged to Pichia spp., including Pichia guilliermondii 1uv-small, Pichia ohmeri YF04d, Pichia fermentans YF12b, Pichia burtonii YF11A and Pichia anomala YF07b. Further studies revealed that Pichia anomala YF07b could produce killer toxin against pathogenic yeasts in crabs while Pichia guilliermondii 1uv-small could produce high activity of extracellular inulinase. It is advisable to test if Pichia ohmeri YF04d obtained in this study is related to central-venous-catheter-associated infection.

  9. Macroalgal herbivory on recovering versus degrading coral reefs

    NASA Astrophysics Data System (ADS)

    Chong-Seng, K. M.; Nash, K. L.; Bellwood, D. R.; Graham, N. A. J.

    2014-06-01

    Macroalgal-feeding fishes are considered to be a key functional group on coral reefs due to their role in preventing phase shifts from coral to macroalgal dominance, and potentially reversing the shift should it occur. However, assessments of macroalgal herbivory using bioassay experiments are primarily from systems with relatively high coral cover. This raises the question of whether continued functionality can be ensured in degraded systems. It is clearly important to determine whether the species that remove macroalgae on coral-dominated reefs will still be present and performing significant algal removal on macroalgal-dominated reefs. We compared the identity and effectiveness of macroalgal-feeding fishes on reefs in two conditions post-disturbance—those regenerating with high live coral cover (20-46 %) and those degrading with high macroalgal cover (57-82 %). Using filmed Sargassum bioassays, we found significantly different Sargassum biomass loss between the two conditions; mean assay weight loss due to herbivory was 27.9 ± 4.9 % on coral-dominated reefs and 2.2 ± 1.1 % on reefs with high macroalgal cover. However, once standardised for the availability of macroalgae on the reefs, the rates of removal were similar between the two reef conditions (4.8 ± 4.1 g m-2 h-1 on coral-dominated and 5.3 ± 2.1 g m-2 h-1 on macroalgal-dominated reefs). Interestingly, the Sargassum-assay consumer assemblages differed between reef conditions; nominally grazing herbivores, Siganus puelloides and Chlorurus sordidus, and the browser , Siganus sutor, dominated feeding on high coral cover reefs, whereas browsing herbivores, Naso elegans, Naso unicornis, and Leptoscarus vaigiensis, prevailed on macroalgal-dominated reefs. It appeared that macroalgal density in the surrounding habitat had a strong influence on the species driving the process of macroalgal removal. This suggests that although the function of macroalgal removal may continue, the species responsible may change

  10. Statistical Approaches for Estimating Actinobacterial Diversity in Marine Sediments

    PubMed Central

    Stach, James E. M.; Maldonado, Luis A.; Masson, Douglas G.; Ward, Alan C.; Goodfellow, Michael; Bull, Alan T.

    2003-01-01

    Bacterial diversity in a deep-sea sediment was investigated by constructing actinobacterium-specific 16S ribosomal DNA (rDNA) clone libraries from sediment sections taken 5 to 12, 15 to 18, and 43 to 46 cm below the sea floor at a depth of 3,814 m. Clones were placed into operational taxonomic unit (OTU) groups with ≥99% 16S rDNA sequence similarity; the cutoff value for an OTU was derived by comparing 16S rRNA homology with DNA-DNA reassociation values for members of the class Actinobacteria. Diversity statistics were used to determine how the level of dominance, species richness, and genetic diversity varied with sediment depth. The reciprocal of Simpson's index (1/D) indicated that the pattern of diversity shifted toward dominance from uniformity with increasing sediment depth. Nonparametric estimation of the species richness in the 5- to 12-, 15- to 18-, and 43- to 46-cm sediment sections revealed a trend of decreasing species number with depth, 1,406, 308, and 212 OTUs, respectively. Application of the LIBSHUFF program indicated that the 5- to 12-cm clone library was composed of OTUs significantly (P = 0.001) different from those of the 15- to 18- and 43- to 46-cm libraries. FST and phylogenetic grouping of taxa (P tests) were both significant (P < 0.00001 and P < 0.001, respectively), indicating that genetic diversity decreased with sediment depth and that each sediment community harbored unique phylogenetic lineages. It was also shown that even nonconservative OTU definitions result in severe underestimation of species richness; unique phylogenetic clades detected in one OTU group suggest that OTUs do not correspond to real ecological groups sensu Palys (T. Palys, L. K. Nakamura, and F. M. Cohan, Int. J. Syst. Bacteriol. 47:1145-1156, 1997). Mechanisms responsible for diversity and their implications are discussed. PMID:14532080

  11. Insights from natural history collections: analysing the New Zealand macroalgal flora using herbarium data

    PubMed Central

    Nelson, Wendy A.; Dalen, Jennifer; Neill, Kate F.

    2013-01-01

    Abstract Herbaria and natural history collections (NHC) are critical to the practice of taxonomy and have potential to serve as sources of data for biodiversity and conservation. They are the repositories of vital reference specimens, enabling species to be studied and their distribution in space and time to be documented and analysed, as well as enabling the development of hypotheses about species relationships. The herbarium of the Museum of New Zealand Te Papa Tongarewa (WELT) contains scientifically and historically significant marine macroalgal collections, including type specimens, primarily of New Zealand species, as well as valuable exsiccatae from New Zealand and Australia. The herbarium was initiated in 1865 with the establishment of the Colonial Museum and is the only herbarium in New Zealand where there has been consistent expert taxonomic attention to the macroalgae over the past 50 years. We examined 19,422 records of marine macroalgae from around New Zealand collected over the past 164 years housed in WELT, assessing the records in terms of their spatial and temporal coverage as well as their uniqueness and abundance. The data provided an opportunity to review the state of knowledge of the New Zealand macroalgal flora reflected in the collections at WELT, to examine how knowledge of the macroalgal flora has been built over time in terms of the number of collections and the number of species recognised, and identify where there are gaps in the current collections as far as numbers of specimens per taxon, as well as with respect to geographical and seasonal coverage. PMID:24399897

  12. Diversity and Detection of Nitrate Assimilation Genes in Marine Bacteria

    PubMed Central

    Allen, Andrew E.; Booth, Melissa G.; Frischer, Marc E.; Verity, Peter G.; Zehr, Jonathan P.; Zani, Sabino

    2001-01-01

    A PCR approach was used to construct a database of nasA genes (called narB genes in cyanobacteria) and to detect the genetic potential for heterotrophic bacterial nitrate utilization in marine environments. A nasA-specific PCR primer set that could be used to selectively amplify the nasA gene from heterotrophic bacteria was designed. Using seawater DNA extracts obtained from microbial communities in the South Atlantic Bight, the Barents Sea, and the North Pacific Gyre, we PCR amplified and sequenced nasA genes. Our results indicate that several groups of heterotrophic bacterial nasA genes are common and widely distributed in oceanic environments. PMID:11679368

  13. Bacterial diversity in oil-polluted marine coastal sediments.

    PubMed

    Acosta-González, Alejandro; Marqués, Silvia

    2016-04-01

    Marine environments harbour a persistent microbial seed which can be shaped by changes of the environmental conditions such as contamination by petroleum components. Oil spills, together with small but continuous discharges of oil from transportation and recreational activities, are important sources of hydrocarbon pollution within the marine realm. Consequently, prokaryotic communities have become well pre-adapted toward oil pollution, and many microorganisms that are exposed to its presence develop an active degradative response. The natural attenuation of oil pollutants, as has been demonstrated in many sites, is modulated according to the intrinsic environmental properties such as the availability of terminal electron acceptors and elemental nutrients, together with the degree of pollution and the type of hydrocarbon fractions present. Whilst dynamics in the bacterial communities in the aerobic zones of coastal sediments are well characterized and the key players in hydrocarbon biodegradation have been identified, the subtidal ecology of the anaerobic community is still not well understood. However, current data suggest common patterns of response in these ecosystems. PMID:26773654

  14. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing.

    PubMed

    Massana, Ramon; Gobet, Angélique; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Chambouvet, Aurélie; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Dolan, John R; Dunthorn, Micah; Edvardsen, Bente; Forn, Irene; Forster, Dominik; Guillou, Laure; Jaillon, Olivier; Kooistra, Wiebe H C F; Logares, Ramiro; Mahé, Frédéric; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Probert, Ian; Romac, Sarah; Richards, Thomas; Santini, Sébastien; Shalchian-Tabrizi, Kamran; Siano, Raffaele; Simon, Nathalie; Stoeck, Thorsten; Vaulot, Daniel; Zingone, Adriana; de Vargas, Colomban

    2015-10-01

    Although protists are critical components of marine ecosystems, they are still poorly characterized. Here we analysed the taxonomic diversity of planktonic and benthic protist communities collected in six distant European coastal sites. Environmental deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from three size fractions (pico-, nano- and micro/mesoplankton), as well as from dissolved DNA and surface sediments were used as templates for tag pyrosequencing of the V4 region of the 18S ribosomal DNA. Beta-diversity analyses split the protist community structure into three main clusters: picoplankton-nanoplankton-dissolved DNA, micro/mesoplankton and sediments. Within each cluster, protist communities from the same site and time clustered together, while communities from the same site but different seasons were unrelated. Both DNA and RNA-based surveys provided similar relative abundances for most class-level taxonomic groups. Yet, particular groups were overrepresented in one of the two templates, such as marine alveolates (MALV)-I and MALV-II that were much more abundant in DNA surveys. Overall, the groups displaying the highest relative contribution were Dinophyceae, Diatomea, Ciliophora and Acantharia. Also, well represented were Mamiellophyceae, Cryptomonadales, marine alveolates and marine stramenopiles in the picoplankton, and Monadofilosa and basal Fungi in sediments. Our extensive and systematic sequencing of geographically separated sites provides the most comprehensive molecular description of coastal marine protist diversity to date. PMID:26119494

  15. [Northward shift in faunal diversity is a general pattern of evolution of the phanerozoic marine biota].

    PubMed

    Naĭmark, E B; Markov, A V

    2010-01-01

    The analysis of two global databases on spatio-temporal distribution of fossil marine animal genera (Sepkoski's compendium and The Paleobiology Database) has revealed the presence of the latitudinal diversity gradient (LDG) in the marine realm throughout the Phanerozoic. Within each time interval, LDG is characterized by two parameters: the latitudinal position of peak diversity and the steepness of monotonous decline of diversity with increasing distance from the zone of the highest diversity. During the Phanerozoic, peak diversity has drifted gradually from the tropics and subtropics of the Southern hemisphere into northern midlatitudes. The shift in peak diversity is not likely to be an artifact of incompleteness of the fossil record or uneven sampling of different regions. The shift proceeded in a stepwise manner, with periods of relatively fast changes separated by longer periods of little or no change. The latitudinal shift in peak diversity was probably due to a combination of several causes: tectonic (northward shift in the latitudinal distribution of continental shelf area), climatic (as demonstrated by the fact that peak diversity tended to occur near equator during the cold epochs and in midlatitudes during the warm epochs), and historical ("evolutionary inertia" of local faunas). PMID:21061643

  16. Functional diversity of marine ecosystems after the Late Permian mass extinction event

    NASA Astrophysics Data System (ADS)

    Foster, William J.; Twitchett, Richard J.

    2014-03-01

    The Late Permian mass extinction event about 252 million years ago was the most severe biotic crisis of the past 500 million years and occurred during an episode of global warming. The loss of around two-thirds of marine genera is thought to have had substantial ecological effects, but the overall impacts on the functioning of marine ecosystems and the pattern of marine recovery are uncertain. Here we analyse the fossil occurrences of all known benthic marine invertebrate genera from the Permian and Triassic periods, and assign each to a functional group based on their inferred lifestyle. We show that despite the selective extinction of 62-74% of these genera, all but one functional group persisted through the crisis, indicating that there was no significant loss of functional diversity at the global scale. In addition, only one new mode of life originated in the extinction aftermath. We suggest that Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed. Functional diversity was, however, reduced in particular regions and habitats, such as tropical reefs; at these smaller scales, recovery varied spatially and temporally, probably driven by migration of surviving groups. We find that marine ecosystems did not return to their pre-extinction state, and by the Middle Triassic greater functional evenness is recorded, resulting from the radiation of previously subordinate groups such as motile, epifaunal grazers.

  17. The shifting balance of diversity among major marine animal groups.

    PubMed

    Alroy, J

    2010-09-01

    The fossil record demonstrates that each major taxonomic group has a consistent net rate of diversification and a limit to its species richness. It has been thought that long-term changes in the dominance of major taxonomic groups can be predicted from these characteristics. However, new analyses show that diversity limits may rise or fall in response to adaptive radiations or extinctions. These changes are idiosyncratic and occur at different times in each taxa. For example, the end-Permian mass extinction permanently reduced the diversity of important, previously dominant groups such as brachiopods and crinoids. The current global crisis may therefore permanently alter the biosphere's taxonomic composition by changing the rules of evolution. PMID:20813951

  18. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm

    PubMed Central

    Bambach, Richard K.; Knoll, Andrew H.; Sepkoski, J. John

    2002-01-01

    We grouped the fossil records of marine animal genera into suites defined by function and physiology. The stratigraphic coherence of the resulting diversity history indicates the importance of ecological structure in constraining taxonomic richness through time. The proportional representation of major functional groups was stably maintained for intervals as long as 200 million years, despite evolutionary turnover and changes in total diversity. Early Paleozoic radiations established stable ecosystem relationships, and thereafter only the great era-bounding mass extinctions were able to break patterns of incumbency, permitting the emergence of new community structures with distinct proportional diversity relationships. PMID:12011444

  19. Phanerozoic marine diversity: rock record modelling provides an independent test of large-scale trends

    PubMed Central

    Smith, Andrew B.; Lloyd, Graeme T.; McGowan, Alistair J.

    2012-01-01

    Sampling bias created by a heterogeneous rock record can seriously distort estimates of marine diversity and makes a direct reading of the fossil record unreliable. Here we compare two independent estimates of Phanerozoic marine diversity that explicitly take account of variation in sampling—a subsampling approach that standardizes for differences in fossil collection intensity, and a rock area modelling approach that takes account of differences in rock availability. Using the fossil records of North America and Western Europe, we demonstrate that a modelling approach applied to the combined data produces results that are significantly correlated with those derived from subsampling. This concordance between independent approaches argues strongly for the reality of the large-scale trends in diversity we identify from both approaches. PMID:22951734

  20. Global diversity of marine isopods (except Asellota and crustacean symbionts).

    PubMed

    Poore, Gary C B; Bruce, Niel L

    2012-01-01

    The crustacean order Isopoda (excluding Asellota, crustacean symbionts and freshwater taxa) comprise 3154 described marine species in 379 genera in 37 families according to the WoRMS catalogue. The history of taxonomic discovery over the last two centuries is reviewed. Although a well defined order with the Peracarida, their relationship to other orders is not yet resolved but systematics of the major subordinal taxa is relatively well understood. Isopods range in size from less than 1 mm to Bathynomus giganteus at 365 mm long. They inhabit all marine habitats down to 7280 m depth but with few doubtful exceptions species have restricted biogeographic and bathymetric ranges. Four feeding categories are recognised as much on the basis of anecdotal evidence as hard data: detritus feeders and browsers, carnivores, parasites, and filter feeders. Notable among these are the Cymothooidea that range from predators and scavengers to external blood-sucking micropredators and parasites. Isopods brood 10-1600 eggs depending on individual species. Strong sexual dimorphism is characteristic of several families, notably in Gnathiidae where sessile males live with a harem of females while juvenile praniza stages are ectoparasites of fish. Protandry is known in Cymothoidae and protogyny in Anthuroidea. Some Paranthuridae are neotenous. About half of all coastal, shelf and upper bathyal species have been recorded in the MEOW temperate realms, 40% in tropical regions and the remainder in polar seas. The greatest concentration of temperate species is in Australasia; more have been recorded from temperate North Pacific than the North Atlantic. Of tropical regions, the Central Indo-Pacific is home to more species any other region. Isopods are decidedly asymmetrical latitudinally with 1.35 times as many species in temperate Southern Hemisphere than the temperate North Atlantic and northern Pacific, and almost four times as many Antarctic as Arctic species. More species are known from the

  1. Global Diversity of Marine Isopods (Except Asellota and Crustacean Symbionts)

    PubMed Central

    Poore, Gary C. B.; Bruce, Niel L.

    2012-01-01

    The crustacean order Isopoda (excluding Asellota, crustacean symbionts and freshwater taxa) comprise 3154 described marine species in 379 genera in 37 families according to the WoRMS catalogue. The history of taxonomic discovery over the last two centuries is reviewed. Although a well defined order with the Peracarida, their relationship to other orders is not yet resolved but systematics of the major subordinal taxa is relatively well understood. Isopods range in size from less than 1 mm to Bathynomus giganteus at 365 mm long. They inhabit all marine habitats down to 7280 m depth but with few doubtful exceptions species have restricted biogeographic and bathymetric ranges. Four feeding categories are recognised as much on the basis of anecdotal evidence as hard data: detritus feeders and browsers, carnivores, parasites, and filter feeders. Notable among these are the Cymothooidea that range from predators and scavengers to external blood-sucking micropredators and parasites. Isopods brood 10–1600 eggs depending on individual species. Strong sexual dimorphism is characteristic of several families, notably in Gnathiidae where sessile males live with a harem of females while juvenile praniza stages are ectoparasites of fish. Protandry is known in Cymothoidae and protogyny in Anthuroidea. Some Paranthuridae are neotenous. About half of all coastal, shelf and upper bathyal species have been recorded in the MEOW temperate realms, 40% in tropical regions and the remainder in polar seas. The greatest concentration of temperate species is in Australasia; more have been recorded from temperate North Pacific than the North Atlantic. Of tropical regions, the Central Indo-Pacific is home to more species any other region. Isopods are decidedly asymmetrical latitudinally with 1.35 times as many species in temperate Southern Hemisphere than the temperate North Atlantic and northern Pacific, and almost four times as many Antarctic as Arctic species. More species are known from

  2. Species, trophic, and functional diversity in marine protected and non-protected areas

    NASA Astrophysics Data System (ADS)

    Villamor, Adriana; Becerro, Mikel A.

    2012-10-01

    The number of Marine Protected Areas (MPAs) has grown exponentially in the last decades as marine environments steadily deteriorate. The success of MPAs stems from the overall positive benefits attributed to the "reserve effect," the totality of the consequences of protecting marine systems. The reserve effect includes but is beyond the goal of protecting particular species or areas with economical or cultural value. However, most data on the effects of MPAs focus on target species and there is limited evidence for the consequences of protection at larger levels of organization. Quantitative information on the reserve effect remains elusive partly because of its complex nature. Data on biodiversity can be used to quantify the reserve effect if not restricted to specific taxonomic groups. In our study, we quantified species diversity, trophic diversity, and an approach to functional diversity in five MPAs and adjacent non-protected areas along the Mediterranean coast of Spain. Our three measures of diversity were based on the abundance of algae, fish, sessile and mobile invertebrates in shallow water rocky communities and could be used to estimate the reserve effect based on species, trophic levels, or functional roles. We tested the hypothesis that species, trophic, and functional diversity were higher in protected areas than in adjacent non-protected areas. Species diversity varied with geographic area but not with protection status. However, we found higher functional diversity inside MPAs. Also, the effect of protection on functional diversity varied as a function of the geographic area. Our results support the uniqueness of MPAs at a species level and the universality of the reserve effect at the level of the trophic groups' composition. This type of comprehensive ecological approach may broaden our understanding of MPAs and their efficiency as management tools.

  3. Molecular diversity and distribution of marine fungi across 130 European environmental samples

    PubMed Central

    Richards, Thomas A.; Leonard, Guy; Mahé, Frédéric; del Campo, Javier; Romac, Sarah; Jones, Meredith D. M.; Maguire, Finlay; Dunthorn, Micah; De Vargas, Colomban; Massana, Ramon; Chambouvet, Aurélie

    2015-01-01

    Environmental DNA and culture-based analyses have suggested that fungi are present in low diversity and in low abundance in many marine environments, especially in the upper water column. Here, we use a dual approach involving high-throughput diversity tag sequencing from both DNA and RNA templates and fluorescent cell counts to evaluate the diversity and relative abundance of fungi across marine samples taken from six European near-shore sites. We removed very rare fungal operational taxonomic units (OTUs) selecting only OTUs recovered from multiple samples for a detailed analysis. This approach identified a set of 71 fungal ‘OTU clusters' that account for 66% of all the sequences assigned to the Fungi. Phylogenetic analyses demonstrated that this diversity includes a significant number of chytrid-like lineages that had not been previously described, indicating that the marine environment encompasses a number of zoosporic fungi that are new to taxonomic inventories. Using the sequence datasets, we identified cases where fungal OTUs were sampled across multiple geographical sites and between different sampling depths. This was especially clear in one relatively abundant and diverse phylogroup tentatively named Novel Chytrid-Like-Clade 1 (NCLC1). For comparison, a subset of the water column samples was also investigated using fluorescent microscopy to examine the abundance of eukaryotes with chitin cell walls. Comparisons of relative abundance of RNA-derived fungal tag sequences and chitin cell-wall counts demonstrate that fungi constitute a low fraction of the eukaryotic community in these water column samples. Taken together, these results demonstrate the phylogenetic position and environmental distribution of 71 lineages, improving our understanding of the diversity and abundance of fungi in marine environments. PMID:26582030

  4. Molecular diversity and distribution of marine fungi across 130 European environmental samples.

    PubMed

    Richards, Thomas A; Leonard, Guy; Mahé, Frédéric; Del Campo, Javier; Romac, Sarah; Jones, Meredith D M; Maguire, Finlay; Dunthorn, Micah; De Vargas, Colomban; Massana, Ramon; Chambouvet, Aurélie

    2015-11-22

    Environmental DNA and culture-based analyses have suggested that fungi are present in low diversity and in low abundance in many marine environments, especially in the upper water column. Here, we use a dual approach involving high-throughput diversity tag sequencing from both DNA and RNA templates and fluorescent cell counts to evaluate the diversity and relative abundance of fungi across marine samples taken from six European near-shore sites. We removed very rare fungal operational taxonomic units (OTUs) selecting only OTUs recovered from multiple samples for a detailed analysis. This approach identified a set of 71 fungal 'OTU clusters' that account for 66% of all the sequences assigned to the Fungi. Phylogenetic analyses demonstrated that this diversity includes a significant number of chytrid-like lineages that had not been previously described, indicating that the marine environment encompasses a number of zoosporic fungi that are new to taxonomic inventories. Using the sequence datasets, we identified cases where fungal OTUs were sampled across multiple geographical sites and between different sampling depths. This was especially clear in one relatively abundant and diverse phylogroup tentatively named Novel Chytrid-Like-Clade 1 (NCLC1). For comparison, a subset of the water column samples was also investigated using fluorescent microscopy to examine the abundance of eukaryotes with chitin cell walls. Comparisons of relative abundance of RNA-derived fungal tag sequences and chitin cell-wall counts demonstrate that fungi constitute a low fraction of the eukaryotic community in these water column samples. Taken together, these results demonstrate the phylogenetic position and environmental distribution of 71 lineages, improving our understanding of the diversity and abundance of fungi in marine environments. PMID:26582030

  5. Fungal diversity from various marine habitats deduced through culture-independent studies.

    PubMed

    Manohar, Cathrine Sumathi; Raghukumar, Chandralata

    2013-04-01

    Studies on the molecular diversity of the micro-eukaryotic community have shown that fungi occupy a central position in a large number of marine habitats. Environmental surveys using molecular tools have shown the presence of fungi from a large number of marine habitats such as deep-sea habitats, pelagic waters, coastal regions, hydrothermal vent ecosystem, anoxic habitats, and ice-cold regions. This is of interest to a variety of research disciplines like ecology, evolution, biogeochemistry, and biotechnology. In this review, we have summarized how molecular tools have helped to broaden our understanding of the fungal diversity in various marine habitats. Majority of the environmental phylotypes could be grouped as novel clades within Ascomycota, Basidiomycota, and Chytridiomycota or as basal fungal lineages. Deep-branching novel environmental clusters could be grouped within Ascomycota as the Pezizomycotina clone group, deep-sea fungal group-I, and soil clone group-I, within Basidiomycota as the hydrothermal and/or anaerobic fungal group, and within Chytridiomycota as Cryptomycota or the Rozella clade. However, a basal true marine environmental cluster is still to be identified as most of the clusters include representatives from terrestrial regions. The challenge for future research is to explore the true marine fungi using molecular techniques. PMID:23363246

  6. Consumer diversity interacts with prey defenses to drive ecosystem function

    PubMed Central

    Rasher, Douglas B.; Hoey, Andrew S.; Hay, Mark E.

    2013-01-01

    Prey traits linking consumer diversity to ecosystem function remain poorly understood. On tropical coral reefs, herbivores promote coral dominance by suppressing competing macroalgae, but the roles of herbivore identity and diversity, macroalgal defenses, and their interactions in affecting reef resilience and function are unclear. We studied adjacent pairs of no-take marine reserves and fished areas on reefs in Fiji, and found that protected reefs supported 7–17x greater biomass and 2–3x higher species richness of herbivorous fishes, and 3–11x more live coral cover than did fished reefs. In contrast, macroalgae were 27–61x more abundant and 3–4x more species rich on fished reefs. When we transplanted seven common macroalgae from fished reefs into reserves they were rapidly consumed, suggesting that rates of herbivory (ecosystem functioning) differed inside versus outside reserves. We then video recorded feeding activity on the same seven macroalgae when transplanted into reserves, and assessed the functional redundancy versus complementarity of herbivorous fishes consuming these macroalgae. Of 29 species of larger herbivorous fishes on these reefs, only four species accounted for 97% of macroalgal consumption. Two unicornfish consumed a range of brown macroalgae, a parrotfish consumed multiple red algae, and a rabbitfish consumed a green alga, with almost no diet overlap among these groups. The two most chemically rich, allelopathic algae were each consumed by a single, but different, fish species. This striking complementarity resulted from herbivore species differing in their tolerances to macroalgal chemical and structural defenses. A model of assemblage diet breadth based on our feeding observations predicted that high browser diversity would be required for effective control of macroalgae on Fijian reefs. In support of this model, we observed strong, negative relationships between herbivore diversity and macroalgal abundance and diversity across the

  7. The relation between productivity and species diversity in temperate-Arctic marine ecosystems.

    PubMed

    Witman, Jon D; Cusson, Mathieu; Archambault, Philippe; Pershing, Andrew J; Mieszkowska, Nova

    2008-11-01

    Energy variables, such as evapotranspiration, temperature, and productivity explain significant variation in the diversity of many groups of terrestrial plants and animals at local to global scales. Although the ocean represents the largest continuous habitat on earth with a vast spectrum of primary productivity and species richness, little is known about how productivity influences species diversity in marine systems. To search for general relationships between productivity and species richness in the ocean, we analyzed data from three different benthic marine ecosystems (epifaunal communities on subtidal rock walls, on navigation buoys in the Gulf of St. Lawrence, and Canadian Arctic macrobenthos) across local to continental spatial scales (<20 to >1000 km) using a standardized proxy for productivity, satellite-derived chlorophyll a. Theoretically, the form of the function between productivity and species richness is either monotonically increasing or decreasing, or curvilinear (hump- or U-shaped). We found three negative linear and three hump-shaped relationships between chlorophyll a and species richness out of 10 independent comparisons. Scale dependence was suggested by more prevalent diversity-productivity relationships at smaller (local, landscape) than larger (regional, continental) spatial scales. Differences in the form of the functions were more closely allied with community type than with scale, as negative linear functions were restricted to sessile epifauna while hump-shaped functions occurred in Arctic macrobenthos (mixed epifauna, infauna). In two of the data sets, (St. Lawrence epifauna and Arctic macrobenthos) significant effects of chlorophyll a co-varied with the effects of salinity, suggesting that environmental stress as well as productivity influences diversity in these marine systems. The co-varying effect of salinity may commonly arise in broad-scale studies of productivity and diversity in marine ecosystems when attempting to sample the

  8. Diversity of the free-living marine and freshwater Copepoda (Crustacea) in Costa Rica: a review

    PubMed Central

    Morales-Ramírez, Álvaro; Suárez-Morales, Eduardo; Corrales-Ugalde, Marco; Garrote, Octavio Esquivel

    2014-01-01

    Abstract The studies on marine copepods of Costa Rica started in the 1990’s and focused on the largest coastal-estuarine systems in the country, particularly along the Pacific coast. Diversity is widely variable among these systems: 40 species have been recorded in the Culebra Bay influenced by upwelling, northern Pacific coast, only 12 in the Gulf of Nicoya estuarine system, and 38 in Golfo Dulce, an anoxic basin in the southern Pacific coast of the country. Freshwater environments of Costa Rica are known to harbor a moderate diversity of continental copepods (25 species), which includes 6 calanoids, 17 cyclopoids and only two harpacticoids. Of the +100 freshwater species recorded in Central America, six are known only from Costa Rica, and one appears to be endemic to this country. The freshwater copepod fauna of Costa Rica is clearly the best known in Central America. Overall, six of the 10 orders of Copepoda are reported from Costa Rica. A previous summary by 2001 of the free-living copepod diversity in the country included 80 marine species (67 pelagic, 13 benthic). By 2009, the number of marine species increased to 209: 164 from the Pacific (49% of the copepod fauna from the Eastern Tropical Pacific) and 45 from the Caribbean coast (8% of species known from the Caribbean Basin). Both the Caribbean and Pacific species lists are growing. Additional collections of copepods at Cocos Island, an oceanic island 530 km away of the Pacific coast, have revealed many new records, including five new marine species from Costa Rica. Currently, the known diversity of marine copepods of Costa Rica is still in development and represents up to 52.6% of the total marine microcrustaceans recorded in the country. Future sampling and taxonomic efforts in the marine habitats should emphasize oceanic environments including deep waters but also littoral communities. Several Costa Rican records of freshwater copepods are likely to represent undescribed species. Also, the

  9. Seabird diversity hotspot linked to ocean productivity in the Canary Current Large Marine Ecosystem

    PubMed Central

    Attrill, Martin J.; Becker, Peter H.; Egevang, Carsten; Furness, Robert W.; Grémillet, David; Kopp, Matthias; Lescroël, Amélie; Matthiopoulos, Jason; Peter, Hans-Ulrich; Phillips, Richard A.

    2016-01-01

    Upwelling regions are highly productive habitats targeted by wide-ranging marine predators and industrial fisheries. In this study, we track the migratory movements of eight seabird species from across the Atlantic; quantify overlap with the Canary Current Large Marine Ecosystem (CCLME) and determine the habitat characteristics that drive this association. Our results indicate the CCLME is a biodiversity hotspot for migratory seabirds; all tracked species and more than 70% of individuals used this upwelling region. Relative species richness peaked in areas where sea surface temperature averaged between 15 and 20°C, and correlated positively with chlorophyll a, revealing the optimum conditions driving bottom-up trophic effects for seabirds. Marine vertebrates are not confined by international boundaries, making conservation challenging. However, by linking diversity to ocean productivity, our research reveals the significance of the CCLME for seabird populations from across the Atlantic, making it a priority for conservation action. PMID:27531154

  10. Seabird diversity hotspot linked to ocean productivity in the Canary Current Large Marine Ecosystem.

    PubMed

    Grecian, W James; Witt, Matthew J; Attrill, Martin J; Bearhop, Stuart; Becker, Peter H; Egevang, Carsten; Furness, Robert W; Godley, Brendan J; González-Solís, Jacob; Grémillet, David; Kopp, Matthias; Lescroël, Amélie; Matthiopoulos, Jason; Patrick, Samantha C; Peter, Hans-Ulrich; Phillips, Richard A; Stenhouse, Iain J; Votier, Stephen C

    2016-08-01

    Upwelling regions are highly productive habitats targeted by wide-ranging marine predators and industrial fisheries. In this study, we track the migratory movements of eight seabird species from across the Atlantic; quantify overlap with the Canary Current Large Marine Ecosystem (CCLME) and determine the habitat characteristics that drive this association. Our results indicate the CCLME is a biodiversity hotspot for migratory seabirds; all tracked species and more than 70% of individuals used this upwelling region. Relative species richness peaked in areas where sea surface temperature averaged between 15 and 20°C, and correlated positively with chlorophyll a, revealing the optimum conditions driving bottom-up trophic effects for seabirds. Marine vertebrates are not confined by international boundaries, making conservation challenging. However, by linking diversity to ocean productivity, our research reveals the significance of the CCLME for seabird populations from across the Atlantic, making it a priority for conservation action. PMID:27531154

  11. [The dynamics of Phanerozoic marine animal diversity agrees with the hyperbolic growth model].

    PubMed

    Markov, A V; Korotaev, A V

    2007-01-01

    Generic diversity dynamics of the Phanerozoic marine animals is far better described by the hyperbolic model, widely used in demography and macrosociology, than by the exponential and logistic models from population dynamics traditionally employed for this purpose. Exponential and logistic models imply zero influence of interactions between taxa on the dynamics of diversity, with the exception of competing for unoccupied ecological space, whereas the hyperbolic model implies non-linear second-order positive feedback in the development of the biota. The hyperbolic human population growth is caused by positive feedback between population size and the rate of technological and cultural development (the more individuals, the more inventors, the more rapid progress, the more rapid growth of the Earth's bearing capacity; the smaller death-rate, the more accelerated growth-rate of the population). Probably there is also non-linear second-order positive feedback between diversity and community structure (the more genera, the higher alpha-diversity, which is defined as average number of genera per community, the more complicated and stable, "buffered" communities, the greater "taxonomic capacity of the environment" and average duration of the existence of genera; extinction rate dencreases, biodiversity growth-rate increases). The simplest mathematical model of biodiversity dynamics based on this assumption is confirmed by empirical data on alpha-diversity dynamics. Progressive complexification of marine communities during the Phanerozoic is also confirmed by the growing evennes of generic abundance distribution in paleocommunities. PMID:17338263

  12. Cyanobacterial assimilatory nitrate reductase gene diversity in coastal and oligotrophic marine environments.

    PubMed

    Jenkins, Bethany D; Zehr, Jonathan P; Gibson, Angela; Campbell, Lisa

    2006-12-01

    Cyanobacteria are important primary producers in many marine ecosystems and their abundances and growth rates depend on their ability to assimilate various nitrogen sources. To examine the diversity of nitrate-utilizing marine cyanobacteria, we developed PCR primers specific for cyanobacterial assimilatory nitrate reductase (narB) genes. We obtained amplification products from diverse strains of cultivated cyanobacteria and from several marine environments. Phylogenetic trees constructed with the narB gene are congruent with those based on ribosomal RNA genes and RNA polymerase genes. Analysis of sequence library data from coastal and oligotrophic marine environments shows distinct groups of Synechococcus sp. in each environment; some of which are represented by sequences from cultivated organisms and others that are unrelated to known sequences and likely represent novel phylogenetic groups. We observed spatial differences in the distribution of sequences between two sites in Monterey Bay and differences in the vertical distribution of sequence types at the Hawai'i Ocean Time-series Station ALOHA, suggesting that nitrogen assimilation in Synechococcus living in different ecological niches can be followed with the nitrate reductase gene. PMID:17107550

  13. Comparative Analysis of Glycoside Hydrolases Activities from Phylogenetically Diverse Marine Bacteria of the Genus Arenibacter

    PubMed Central

    Bakunina, Irina; Nedashkovskaya, Olga; Balabanova, Larissa; Zvyagintseva, Tatyana; Rasskasov, Valery; Mikhailov, Valery

    2013-01-01

    A total of 16 marine strains belonging to the genus Arenibacter, recovered from diverse microbial communities associated with various marine habitats and collected from different locations, were evaluated in degradation of natural polysaccharides and chromogenic glycosides. Most strains were affiliated with five recognized species, and some presented three new species within the genus Arenibacter. No strains contained enzymes depolymerizing polysaccharides, but synthesized a wide spectrum of glycosidases. Highly active β-N-acetylglucosaminidases and α-N-acetylgalactosaminidases were the main glycosidases for all Arenibacter. The genes, encoding two new members of glycoside hydrolyses (GH) families, 20 and 109, were isolated and characterized from the genomes of Arenibacter latericius. Molecular genetic analysis using glycosidase-specific primers shows the absence of GH27 and GH36 genes. A sequence comparison with functionally-characterized GH20 and GH109 enzymes shows that both sequences are closest to the enzymes of chitinolytic bacteria Vibrio furnissii and Cellulomonas fimi of marine and terrestrial origin, as well as human pathogen Elisabethkingia meningoseptica and simbionts Akkermansia muciniphila, gut and non-gut Bacteroides, respectively. These results revealed that the genus Arenibacter is a highly taxonomic diverse group of microorganisms, which can participate in degradation of natural polymers in marine environments depending on their niche and habitat adaptations. They are new prospective candidates for biotechnological applications due to their production of unique glycosidases. PMID:23752354

  14. Marine biological diversity: Some important issues, opportunities and critical research needs

    NASA Astrophysics Data System (ADS)

    Butman, Cheryl Ann; Carlton, James T.

    1995-07-01

    Marine biological diversity is changing, dramatically in some cases, and most recent changes are due to broad-scale human activities. Knowledge of "biodiversity" — the variety of genomes (the genetic material specifying all characteristics and functions within an organism), species and ecosystems — is the foundation for understanding and predicting how human and natural effects can change the ocean's ecosystems. Evaluating the scale and ultimate consequences to life in the sea of a plethora of anthropogenic effects is difficult, however, because there is inadequate knowledge of both the patterns of and the processes that control marine biodiversity. Recognizing change and evaluating its consequences require sufficient knowledge of present and historical natural patterns of biodiversity, and sufficient understanding of how and why these patterns vary in space and time. Data on biodiversity patterns and their causes are sorely lacking for most marine ecosystems. Adequate understanding of what creates and maintains diversity must be the scientific underpinning for policy decisions regarding pollutant and waste disposal, habitat alteration, fisheries management and the preservation of threatened or endangered species. The inability, at this time, to provide such information to policy makers may have important implications for the conservation of marine life [Norse, 1993].

  15. Diversity of KaiC-based timing systems in marine Cyanobacteria.

    PubMed

    Axmann, Ilka M; Hertel, Stefanie; Wiegard, Anika; Dörrich, Anja K; Wilde, Annegret

    2014-04-01

    The coordination of biological activities into daily cycles provides an important advantage for the fitness of diverse organisms. Most eukaryotes possess an internal clock ticking with a periodicity of about one day to anticipate sunrise and sunset. The 24-hour period of the free-running rhythm is highly robust against many changes in the natural environment. Among prokaryotes, only Cyanobacteria are known to harbor such a circadian clock. Its core oscillator consists of just three proteins, KaiA, KaiB, and KaiC that produce 24-hour oscillations of KaiC phosphorylation, even in vitro. This unique three-protein oscillator is well documented for the freshwater cyanobacterium Synechococcus elongatus PCC 7942. Several physiological studies demonstrate a circadian clock also for other Cyanobacteria including marine species. Genes for the core clock components are present in nearly all marine cyanobacterial species, though there are large differences in the specific composition of these genes. In the first section of this review we summarize data on the model circadian clock from S. elongatus PCC 7942 and compare it to the reduced clock system of the marine cyanobacterium Prochlorococcus marinus MED4. In the second part we discuss the diversity of timing mechanisms in other marine Cyanobacteria with regard to the presence or absence of different components of the clock. PMID:24388874

  16. Development of phoH as a novel signature gene for assessing marine phage diversity.

    PubMed

    Goldsmith, Dawn B; Crosti, Giuseppe; Dwivedi, Bhakti; McDaniel, Lauren D; Varsani, Arvind; Suttle, Curtis A; Weinbauer, Markus G; Sandaa, Ruth-Anne; Breitbart, Mya

    2011-11-01

    Phages play a key role in the marine environment by regulating the transfer of energy between trophic levels and influencing global carbon and nutrient cycles. The diversity of marine phage communities remains difficult to characterize because of the lack of a signature gene common to all phages. Recent studies have demonstrated the presence of host-derived auxiliary metabolic genes in phage genomes, such as those belonging to the Pho regulon, which regulates phosphate uptake and metabolism under low-phosphate conditions. Among the completely sequenced phage genomes in GenBank, this study identified Pho regulon genes in nearly 40% of the marine phage genomes, while only 4% of nonmarine phage genomes contained these genes. While several Pho regulon genes were identified, phoH was the most prevalent, appearing in 42 out of 602 completely sequenced phage genomes. Phylogenetic analysis demonstrated that phage phoH sequences formed a cluster distinct from those of their bacterial hosts. PCR primers designed to amplify a region of the phoH gene were used to determine the diversity of phage phoH sequences throughout a depth profile in the Sargasso Sea and at six locations worldwide. phoH was present at all sites examined, and a high diversity of phoH sequences was recovered. Most phoH sequences belonged to clusters without any cultured representatives. Each depth and geographic location had a distinct phoH composition, although most phoH clusters were recovered from multiple sites. Overall, phoH is an effective signature gene for examining phage diversity in the marine environment. PMID:21926220

  17. Structure and Function of Macroalgal Natural Products.

    PubMed

    Young, Ryan M; Schoenrock, Kathryn M; von Salm, Jacqueline L; Amsler, Charles D; Baker, Bill J

    2015-01-01

    Since the initial discovery of marine phyco-derived secondary metabolites in the 1950s there has been a rapid increase in the description of new algal natural products. These metabolites have multiple ecological roles as well as commercial value as potential drugs or lead compounds. With the emergence of resistance to our current arsenal of drugs as well as the development of new chemotherapies for currently untreatable diseases, new compounds must be sourced. As outlined in this chapter algae produce a diverse range of chemicals many of which have potential for the treatment of human afflictions.In this chapter we outline the classes of metabolites produced by this chemically rich group of organisms as well as their respective ecological roles in the environment. Algae are found in nearly every environment on earth, with many of these organisms possessing the ability to shape the ecosystem they inhabit. With current challenges to climate stability, understanding how these important organisms interact with their environment as well as one another might afford better insight into how they respond to a changing climate. PMID:26108497

  18. Diversity and dynamics of Antarctic marine microbial eukaryotes under manipulated environmental UV radiation.

    PubMed

    Piquet, Anouk M-T; Bolhuis, Henk; Davidson, Andrew T; Thomson, Paul G; Buma, Anita G J

    2008-11-01

    In the light of the predicted global climate change, it is essential that the status and diversity of polar microbial communities is described and understood. In the present study, molecular tools were used to investigate the marine eukaryotic communities of Prydz Bay, Eastern Antarctica, from November 2002 to January 2003. Additionally, we conducted four series of minicosm experiments, where natural Prydz Bay communities were incubated under six different irradiation regimes, in order to investigate the effects of natural UV radiation on marine microbial eukaryotes. Denaturing gradient gel electrophoresis (DGGE) and 18S rRNA gene sequencing revealed a eukaryotic Shannon diversity index averaging 2.26 and 2.12, respectively. Phylogenetic analysis of 472 sequenced clones revealed 47 phylotypes, belonging to the Dinophyceae, Stramenopiles, Choanoflagellidae, Ciliophora, Cercozoa and Metazoa. Throughout the studied period, three communities were distinguished: a postwinter/early spring community comprising dinoflagellates, ciliates, cercozoans, stramenopiles, viridiplantae, haptophytes and metazoans; a dinoflagellate-dominated community; and a diatom-dominated community that developed after sea ice breakup. DGGE analysis showed that size fraction and time had a strong shaping effect on the community composition; however, a significant contribution of natural UV irradiance towards microeukaryotic community composition could not be detected. Overall, dinoflagellates dominated our samples and their diversity suggests that they fulfill an important role in Antarctic coastal marine ecosystems preceding ice breakup as well as between phytoplankton bloom events. PMID:18801046

  19. Phylogenetic Diversity of the Bacillus pumilus Group and the Marine Ecotype Revealed by Multilocus Sequence Analysis

    PubMed Central

    Dong, Chunming; Sun, Fengqin; Wang, Liping; Li, Guangyu; Shao, Zongze

    2013-01-01

    Bacteria closely related to Bacillus pumilus cannot be distinguished from such other species as B. safensis, B. stratosphericus, B. altitudinis and B. aerophilus simply by 16S rRNA gene sequence. In this report, 76 marine strains were subjected to phylogenetic analysis based on 7 housekeeping genes to understand the phylogeny and biogeography in comparison with other origins. A phylogenetic tree based on the 7 housekeeping genes concatenated in the order of gyrB-rpoB-pycA-pyrE-mutL-aroE-trpB was constructed and compared with trees based on the single genes. All these trees exhibited a similar topology structure with small variations. Our 79 strains were divided into 6 groups from A to F; Group A was the largest and contained 49 strains close to B. altitudinis. Additional two large groups were presented by B. safensis and B. pumilus respectively. Among the housekeeping genes, gyrB and pyrE showed comparatively better resolution power and may serve as molecular markers to distinguish these closely related strains. Furthermore, a recombinant phylogenetic tree based on the gyrB gene and containing 73 terrestrial and our isolates was constructed to detect the relationship between marine and other sources. The tree clearly showed that the bacteria of marine origin were clustered together in all the large groups. In contrast, the cluster belonging to B. safensis was mainly composed of bacteria of terrestrial origin. Interestingly, nearly all the marine isolates were at the top of the tree, indicating the possibility of the recent divergence of this bacterial group in marine environments. We conclude that B. altitudinis bacteria are the most widely spread of the B. pumilus group in marine environments. In summary, this report provides the first evidence regarding the systematic evolution of this bacterial group, and knowledge of their phylogenetic diversity will help in the understanding of their ecological role and distribution in marine environments. PMID:24244618

  20. Hysteresis in coral reefs under macroalgal toxicity and overfishing.

    PubMed

    Bhattacharyya, Joydeb; Pal, Samares

    2015-03-01

    Macroalgae and corals compete for the available space in coral reef ecosystems.While herbivorous reef fish play a beneficial role in decreasing the growth of macroalgae, macroalgal toxicity and overfishing of herbivores leads to proliferation of macroalgae. The abundance of macroalgae changes the community structure towards a macroalgae-dominated reef ecosystem. We investigate coral-macroalgal phase shifts by means of a continuous time model in a food chain. Conditions for local asymptotic stability of steady states are derived. It is observed that in the presence of macroalgal toxicity and overfishing, the system exhibits hysteresis through saddle-node bifurcation and transcritical bifurcation. We examine the effects of time lags in the liberation of toxins by macroalgae and the recovery of algal turf in response to grazing of herbivores on macroalgae by performing equilibrium and stability analyses of delay-differential forms of the ODE model. Computer simulations have been carried out to illustrate the different analytical results. PMID:25708511

  1. Crouania pumila sp. nov. (Callithamniaceae: Rhodophyta), a new species of marine red algae from the Seaflower International Biosphere Reserve, Caribbean Colombia.

    PubMed

    Gavio, Brigitte; Reyes-Gómez, Viviana P; Wynne, Michael J

    2013-09-01

    In the Colombian Caribbean, the marine macroalgal flora of the Seaflower International Biosphere Reserve has been little studied, despite its ecological importance. Historical records have reported only 201 macroalgae species within its area of almost 350,000 km2. However, recent surveys have shown a diversity of small algae previously overlooked. With the aim to determine the macroalgal diversity in the Reserve, we undertook field surveys in different ecosystems: coral reefs, seagrass beds, and rocky and sandy substrates, at different depths, from intertidal to 37 m. During these field surveys, we collected a small described species belonging to the genus Crouania (Callithamniaceae, Rhodophyta), Crouania pumila sp. nov. that is decribed in this paper. This new species was distinguished from other species of the genus by a distinctive suite of traits including its diminutive size (to only 3.5 mm in length), its decumbent, slightly calcified habit (epiphytic on other algae), its ramisympodial branching, the ecorticate main axes, and the elongate shape of the terminal cells of the cortical filaments. The observations were provided for both female (cystocarpic) and tetrasporangiate thalli; however, male thalli were not seen. Further studies have to be undertaken in this Reserve in order to carry out other macroalgal analysis and descriptions. PMID:24027904

  2. Local contamination in relation to population genetic diversity and resilience of an arctic marine amphipod.

    PubMed

    Bach, Lis; Dahllöf, Ingela

    2012-06-15

    The objective of this study was to investigate whether populations inhabiting a contaminated environment are affected in terms of decreased genetic diversity due to selection of tolerant genotypes and if such effect carries a cost. Marine arctic amphipod populations (Orchomenella pinguis) were collected from sites within a contaminated fjord, as well as from sites outside the fjord on the west-coast of Greenland over three years (2006-2008). Impacts on genetic diversity, effects on resilience such as development of tolerance and cost were determined. AFLP-analysis was used to explore within and between population genetic diversity, and exposure studies were performed where the populations were subjected to known and unknown stressors to assess resilience. Populations collected at three contaminated sites all had reduced genetic diversity in 2007 compared to populations outside the fjord. This pattern was different in 2008 as all contaminated site populations increased in diversity, whereas a decrease in diversity occurred at the outer sites. However, tolerance, but even more so, cost, was related to contamination exposure in 2008, in spite of the shift in genetic diversity. We suggest that contamination rapidly induces effects that can be captured as tolerance and associated cost, whereas effects on genetic diversity can be difficult to separate from recent migration events that dilute eventual decreases in diversity due to contamination pressure. As long as impacted populations can be influenced by migration events that increase the genetic diversity and add health to an affected population, populations in contaminated areas may have enhanced probability of survival. PMID:22421731

  3. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments

    PubMed Central

    Kubo, Kyoko; Lloyd, Karen G; F Biddle, Jennifer; Amann, Rudolf; Teske, Andreas; Knittel, Katrin

    2012-01-01

    Members of the highly diverse Miscellaneous Crenarchaeotal Group (MCG) are globally distributed in various marine and continental habitats. In this study, we applied a polyphasic approach (rRNA slot blot hybridization, quantitative PCR (qPCR) and catalyzed reporter deposition FISH) using newly developed probes and primers for the in situ detection and quantification of MCG crenarchaeota in diverse types of marine sediments and microbial mats. In general, abundance of MCG (cocci, 0.4 μm) relative to other archaea was highest (12–100%) in anoxic, low-energy environments characterized by deeper sulfate depletion and lower microbial respiration rates (P=0.06 for slot blot and P=0.05 for qPCR). When studied in high depth resolution in the White Oak River estuary and Hydrate Ridge methane seeps, changes in MCG abundance relative to total archaea and MCG phylogenetic composition did not correlate with changes in sulfate reduction or methane oxidation with depth. In addition, MCG abundance did not vary significantly (P>0.1) between seep sites (with high rates of methanotrophy) and non-seep sites (with low rates of methanotrophy). This suggests that MCG are likely not methanotrophs. MCG crenarchaeota are highly diverse and contain 17 subgroups, with a range of intragroup similarity of 82 to 94%. This high diversity and widespread distribution in subsurface sediments indicates that this group is globally important in sedimentary processes. PMID:22551871

  4. The Antarctic region as a marine biodiversity hotspot for echinoderms: Diversity and diversification of sea cucumbers

    NASA Astrophysics Data System (ADS)

    Mark O'Loughlin, P.; Paulay, Gustav; Davey, Niki; Michonneau, François

    2011-03-01

    The Antarctic region is renowned for its isolated, unusual, diverse, and disharmonic marine fauna. Holothuroids are especially diverse, with 187 species (including 51 that are undescribed) recorded south of the Antarctic Convergence. This represents ˜4% of the documented Antarctic marine biota, and ˜10% of the world's holothuroid diversity. We present evidence that both inter-regional speciation with southern cold-temperate regions and intra-regional diversification has contributed to species richness. The Antarctic fauna is isolated, with few shallow-water Antarctic species known from north of the Convergence, yet several species show recent transgression of this boundary followed by genetic divergence. Interchange at longer time scales is evidenced by the scarcity of endemic genera (10 of 55) and occurrence of all six holothuroid orders within the region. While most Antarctic holothuroid morphospecies have circum-polar distributions, mtDNA sequence data demonstrate substantial geographic differentiation in many of these. Thus, most of the 37 holothuroid species recorded from shelf/slope depths in the Weddell Sea have also been found in collections from Prydz Bay and the Ross Sea. Yet 17 of 28 morphospecies and complexes studied show allopatric differentiation around the continent, on average into three divergent lineages each, suggesting that morphological data fails to reflect the level of differentiation. Interchange and local radiation of colonizers appear to have rapidly built diversity in the Antarctic, despite the potential of cold temperatures (and associated long generation times) to slow the rate of evolution.

  5. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level

    PubMed Central

    Tian, Xinpeng; Zhang, Zhewen; Yang, Tingting; Chen, Meili; Li, Jie; Chen, Fei; Yang, Jin; Li, Wenjie; Zhang, Bing; Zhang, Zhang; Wu, Jiayan; Zhang, Changsheng; Long, Lijuan; Xiao, Jingfa

    2016-01-01

    Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea’s genetic data sources. PMID:27446038

  6. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level.

    PubMed

    Tian, Xinpeng; Zhang, Zhewen; Yang, Tingting; Chen, Meili; Li, Jie; Chen, Fei; Yang, Jin; Li, Wenjie; Zhang, Bing; Zhang, Zhang; Wu, Jiayan; Zhang, Changsheng; Long, Lijuan; Xiao, Jingfa

    2016-01-01

    Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea's genetic data sources. PMID:27446038

  7. [A new approach to modeling the diversity dynamics of Phanerozoic marine biota].

    PubMed

    Markov, A V

    2001-01-01

    Modeling of fossil diversity dynamics is usually done with the help of the models borrowed from the population dynamics theory. However there are principal differences between organisms and taxa, reproduction and divergence, mortality and extinction that make this approach doubtful. Another model is presented here, in which absolute origination rate does not depend on diversity, the ability of new genera to sustain unpredictable environmental changes increases three times abruptly at Cambrian/Ordovician, Permian/Triassic and Cretaceous/Tertiary boundaries. In this model the diversity increases due to accumulation of long-lived genera. The computer simulation showed that the model agrees with empirical data by 15 major criteria. The laws of community evolution apparently can explain the general pattern of punctuated equilibrium in the evolution of marine biota. PMID:11871265

  8. Diversity of free-living marine nematodes (Enoplida) from Baja California assessed by integrative taxonomy.

    PubMed

    Pereira, Tiago José; Fonseca, Gustavo; Mundo-Ocampo, Manuel; Guilherme, Betânia Cristina; Rocha-Olivares, Axayácatl

    2010-01-01

    We used morphological and molecular approaches to evaluate the diversity of free-living marine nematodes (order Enoplida) at four coastal sites in the Gulf of California and three on the Pacific coast of Baja California, Mexico. We identified 22 morphological species belonging to six families, of which Thoracostomopsidae and Oncholaimidae were the most diverse. The genus Mesacanthion (Thoracostomopsidae) was the most widespread and diverse. Five allopatric species, genetically and morphologically differentiated, were found in two localities in the Gulf of California (M. sp1 and M. sp2) and three in the Pacific coast (M. sp3, M. sp4 and M. sp5). Overall, we produced 19 and 20 sequences for the 18S and 28S genes, respectively. Neither gene displayed intraspecific polymorphisms, which allowed us to establish that some morphological variation was likely either ontogenetic or due to phenotypic plasticity. Although 18S and 28S phylogenies were topologically congruent (incongruence length difference test, P > 0.05), divergences between species were much higher in the 28S gene. Moreover, this gene possessed a stronger phylogenetic signal to resolve relationships involving Rhabdodemania and Bathylaimus. On the other hand, the close relationship of Pareurystomina (Enchilidiidae) with oncholaimids warrants further study. The 28S sequences (D2D3 domain) may be better suited for DNA barcoding of marine nematodes than those from the 18S rDNA, particularly for differentiating closely related or cryptic species. Finally, our results underline the relevance of adopting an integrative approach encompassing morphological and molecular analyses to improve the assessment of marine nematode diversity and advance their taxonomy. PMID:24391248

  9. Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends

    NASA Technical Reports Server (NTRS)

    Miller, A. I.; Foote, M.

    1996-01-01

    It has long been suspected that trends in global marine biodiversity calibrated for the Phanerozoic may be affected by sampling problems. However, this possibility has not been evaluated definitively, and raw diversity trends are generally accepted at face value in macroevolutionary investigations. Here, we analyze a global-scale sample of fossil occurrences that allows us to determine directly the effects of sample size on the calibration of what is generally thought to be among the most significant global biodiversity increases in the history of life: the Ordovician Radiation. Utilizing a composite database that includes trilobites, brachiopods, and three classes of molluscs, we conduct rarefaction analyses to demonstrate that the diversification trajectory for the Radiation was considerably different than suggested by raw diversity time-series. Our analyses suggest that a substantial portion of the increase recognized in raw diversity depictions for the last three Ordovician epochs (the Llandeilian, Caradocian, and Ashgillian) is a consequence of increased sample size of the preserved and catalogued fossil record. We also use biometric data for a global sample of Ordovician trilobites, along with methods of measuring morphological diversity that are not biased by sample size, to show that morphological diversification in this major clade had leveled off by the Llanvirnian. The discordance between raw diversity depictions and more robust taxonomic and morphological diversity metrics suggests that sampling effects may strongly influence our perception of biodiversity trends throughout the Phanerozoic.

  10. The structural diversity of carbohydrate antigens of selected gram-negative marine bacteria.

    PubMed

    Nazarenko, Evgeny L; Crawford, Russell J; Ivanova, Elena P

    2011-01-01

    Marine microorganisms have evolved for millions of years to survive in the environments characterized by one or more extreme physical or chemical parameters, e.g., high pressure, low temperature or high salinity. Marine bacteria have the ability to produce a range of biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents, and as a result, they have been a topic of research interest for many years. Among these biologically active molecules, the carbohydrate antigens, lipopolysaccharides (LPSs, O-antigens) found in cell walls of gram-negative marine bacteria, show great potential as candidates in the development of drugs to prevent septic shock due to their low virulence. The structural diversity of LPSs is thought to be a reflection of the ability for these bacteria to adapt to an array of habitats, protecting the cell from being compromised by exposure to harsh environmental stress factors. Over the last few years, the variety of structures of core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been discovered. In this review, we discuss the most recently encountered structures that have been identified from bacteria belonging to the genera Aeromonas, Alteromonas, Idiomarina, Microbulbifer, Pseudoalteromonas, Plesiomonas and Shewanella of the Gammaproteobacteria phylum; Sulfitobacter and Loktanella of the Alphaproteobactera phylum and to the genera Arenibacter, Cellulophaga, Chryseobacterium, Flavobacterium, Flexibacter of the Cytophaga-Flavobacterium-Bacteroides phylum. Particular attention is paid to the particular chemical features of the LPSs, such as the monosaccharide type, non-sugar substituents and phosphate groups, together with some of the typifying traits of LPSs obtained from marine bacteria. A possible correlation is then made between such features and the environmental adaptations undertaken by marine bacteria. PMID:22073003

  11. The Structural Diversity of Carbohydrate Antigens of Selected Gram-Negative Marine Bacteria

    PubMed Central

    Nazarenko, Evgeny L.; Crawford, Russell J.; Ivanova, Elena P.

    2011-01-01

    Marine microorganisms have evolved for millions of years to survive in the environments characterized by one or more extreme physical or chemical parameters, e.g., high pressure, low temperature or high salinity. Marine bacteria have the ability to produce a range of biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents, and as a result, they have been a topic of research interest for many years. Among these biologically active molecules, the carbohydrate antigens, lipopolysaccharides (LPSs, O-antigens) found in cell walls of Gram-negative marine bacteria, show great potential as candidates in the development of drugs to prevent septic shock due to their low virulence. The structural diversity of LPSs is thought to be a reflection of the ability for these bacteria to adapt to an array of habitats, protecting the cell from being compromised by exposure to harsh environmental stress factors. Over the last few years, the variety of structures of core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been discovered. In this review, we discuss the most recently encountered structures that have been identified from bacteria belonging to the genera Aeromonas, Alteromonas, Idiomarina, Microbulbifer, Pseudoalteromonas, Plesiomonas and Shewanella of the Gammaproteobacteria phylum; Sulfitobacter and Loktanella of the Alphaproteobactera phylum and to the genera Arenibacter, Cellulophaga, Chryseobacterium, Flavobacterium, Flexibacter of the Cytophaga-Flavobacterium-Bacteroides phylum. Particular attention is paid to the particular chemical features of the LPSs, such as the monosaccharide type, non-sugar substituents and phosphate groups, together with some of the typifying traits of LPSs obtained from marine bacteria. A possible correlation is then made between such features and the environmental adaptations undertaken by marine bacteria. PMID:22073003

  12. Bioremediation of contaminated marine sediments can enhance metal mobility due to changes of bacterial diversity.

    PubMed

    Fonti, Viviana; Beolchini, Francesca; Rocchetti, Laura; Dell'Anno, Antonio

    2015-01-01

    Bioremediation strategies applied to contaminated marine sediments can induce important changes in the mobility and bioavailability of metals with potential detrimental consequences on ecosystem health. In this study we investigated changes of bacterial abundance and diversity (by a combination of molecular fingerprinting and next generation sequencing analyses) during biostimulation experiments carried out on anoxic marine sediments characterized by high metal content. We provide evidence that the addition of organic (lactose and/or acetate) and/or inorganic compounds to contaminated sediments determines a significant increase of bacterial growth coupled with changes in bacterial diversity and assemblage composition. Experimental systems supplied only with organic substrates were characterized by an increase of the relative importance of sulfate reducing bacteria belonging to the families Desulfobacteraceae and Desulfobulbaceae with a concomitant decrease of taxa affiliated with Flavobacteriaceae. An opposite effect was observed in the experimental treatments supplied also with inorganic nutrients. The increase of bacterial metabolism coupled with the increase of bacterial taxa affiliated with Flavobacteriaceae were reflected in a significant decrease of Cd and Zn associated with sedimentary organic matter and Pb and As associated with the residual fraction of the sediment. However, independently from the experimental conditions investigated no dissolution of metals occurred, suggesting a role of bacterial assemblages in controlling metal solubilization processes. Overall results of this study have allowed to identify key biogeochemical interactions influencing the metal behavior and provide new insights for a better understanding of the potential consequences of bio-treatments on the metal fate in contaminated marine sediments. PMID:25462769

  13. Diversity of Marine-Derived Fungal Cultures Exposed by DNA Barcodes: The Algorithm Matters

    PubMed Central

    Andreakis, Nikos; Høj, Lone; Kearns, Philip; Hall, Michael R.; Ericson, Gavin; Cobb, Rose E.; Gordon, Benjamin R.; Evans-Illidge, Elizabeth

    2015-01-01

    Marine fungi are an understudied group of eukaryotic microorganisms characterized by unresolved genealogies and unstable classification. Whereas DNA barcoding via the nuclear ribosomal internal transcribed spacer (ITS) provides a robust and rapid tool for fungal species delineation, accurate classification of fungi is often arduous given the large number of partial or unknown barcodes and misidentified isolates deposited in public databases. This situation is perpetuated by a paucity of cultivable fungal strains available for phylogenetic research linked to these data sets. We analyze ITS barcodes produced from a subsample (290) of 1781 cultured isolates of marine-derived fungi in the Bioresources Library located at the Australian Institute of Marine Science (AIMS). Our analysis revealed high levels of under-explored fungal diversity. The majority of isolates were ascomycetes including representatives of the subclasses Eurotiomycetidae, Hypocreomycetidae, Sordariomycetidae, Pleosporomycetidae, Dothideomycetidae, Xylariomycetidae and Saccharomycetidae. The phylum Basidiomycota was represented by isolates affiliated with the genera Tritirachium and Tilletiopsis. BLAST searches revealed 26 unknown OTUs and 50 isolates corresponding to previously uncultured, unidentified fungal clones. This study makes a significant addition to the availability of barcoded, culturable marine-derived fungi for detailed future genomic and physiological studies. We also demonstrate the influence of commonly used alignment algorithms and genetic distance measures on the accuracy and comparability of estimating Operational Taxonomic Units (OTUs) by the automatic barcode gap finder (ABGD) method. Large scale biodiversity screening programs that combine datasets using algorithmic OTU delineation pipelines need to ensure compatible algorithms have been used because the algorithm matters. PMID:26308620

  14. Multilocus Sequence Analysis for Assessment of Phylogenetic Diversity and Biogeography in Thalassospira Bacteria from Diverse Marine Environments

    PubMed Central

    Yuan, Jun; Du, Juan; Wang, Liping; Sun, Fengqin; Shao, Zongze

    2014-01-01

    Thalassospira bacteria are widespread and have been isolated from various marine environments. Less is known about their genetic diversity and biogeography, as well as their role in marine environments, many of them cannot be discriminated merely using the 16S rRNA gene. To address these issues, in this report, the phylogenetic analysis of 58 strains from seawater and deep sea sediments were carried out using the multilocus sequence analysis (MLSA) based on acsA, aroE, gyrB, mutL, rpoD and trpB genes, and the DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) based on genome sequences. The MLSA analysis demonstrated that the 58 strains were clearly separated into 15 lineages, corresponding to seven validly described species and eight potential novel species. The DDH and ANI values further confirmed the validity of the MLSA analysis and eight potential novel species. The MLSA interspecies gap of the genus Thalassospira was determined to be 96.16–97.12% sequence identity on the basis of the combined analyses of the DDH and MLSA, while the ANIm interspecies gap was 95.76–97.20% based on the in silico DDH analysis. Meanwhile, phylogenetic analyses showed that the Thalassospira bacteria exhibited distribution pattern to a certain degree according to geographic regions. Moreover, they clustered together according to the habitats depth. For short, the phylogenetic analyses and biogeography of the Thalassospira bacteria were systematically investigated for the first time. These results will be helpful to explore further their ecological role and adaptive evolution in marine environments. PMID:25198177

  15. Diversity of pigmented Gram-positive bacteria associated with marine macroalgae from Antarctica.

    PubMed

    Leiva, Sergio; Alvarado, Pamela; Huang, Ying; Wang, Jian; Garrido, Ignacio

    2015-12-01

    Little is known about the diversity and roles of Gram-positive and pigmented bacteria in Antarctic environments, especially those associated with marine macroorganisms. This work is the first study about the diversity and antimicrobial activity of culturable pigmented Gram-positive bacteria associated with marine Antarctic macroalgae. A total of 31 pigmented Gram-positive strains were isolated from the surface of six species of macroalgae collected in the King George Island, South Shetland Islands. On the basis of 16S rRNA gene sequence similarities ≥99%, 18 phylotypes were defined, which were clustered into 11 genera of Actinobacteria (Agrococcus, Arthrobacter, Brachybacterium, Citricoccus, Kocuria, Labedella, Microbacterium, Micrococcus, Rhodococcus, Salinibacterium and Sanguibacter) and one genus of the Firmicutes (Staphylococcus). It was found that five isolates displayed antimicrobial activity against a set of macroalgae-associated bacteria. The active isolates were phylogenetically related to Agrococcus baldri, Brachybacterium rhamnosum, Citricoccus zhacaiensis and Kocuria palustris. The results indicate that a diverse community of pigmented Gram-positive bacteria is associated with Antartic macroalgae and suggest its potential as a promising source of antimicrobial and pigmented natural compounds. PMID:26507390

  16. Hidden persistence of salinity and productivity gradients shaping pelagic diversity in highly dynamic marine ecosystems.

    PubMed

    Hidalgo, M; Reglero, P; Álvarez-Berastegui, D; Torres, A P; Álvarez, I; Rodriguez, J M; Carbonell, A; Balbín, R; Alemany, F

    2015-03-01

    While large-scale patterns of pelagic marine diversity are generally well described, they remain elusive at regional-scale given the high temporal and spatial dynamics of biological and local oceanographic processes. We here evaluated whether the main drivers of pelagic diversity can be more pervasive than expected at regional scale, using a meroplankton community of a frontal system in the Western Mediterranean. We evidence that regional biodiversity in a highly dynamic ecosystem can be summarized attending to both static (bathymetric) and ephemeral (biological and hydrographical) environmental axes of seascape. This pattern can be observed irrespectively of the regional hydroclimatic scenario with distance to coast, salinity gradient and chlorophyll a concentration being the main and recurrent drivers. By contrast, their effect is overridden in common analyses given that different non-linear effects are buffered between years of contrasting scenarios, emerging the influence of secondary effects on diversity. We conclude that community studies may reveal hidden persistent processes when they take into account different functional effects related to hydroclimatic variability. A better understanding of regional dynamics of the pelagic realm will improve our capability to forecast future responses of plankton communities as well as impacts of climate change on marine biodiversity. PMID:25617678

  17. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    PubMed Central

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-01-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic. PMID:26494429

  18. Phylogenetic Diversity of Bacteria Associated with the Marine Sponge Rhopaloeides odorabile†

    PubMed Central

    Webster, Nicole S.; Wilson, Kate J.; Blackall, Linda L.; Hill, Russell T.

    2001-01-01

    Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the β- and γ-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge. PMID:11133476

  19. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-10-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic.

  20. Visualizing Patterns of Marine Eukaryotic Diversity from Metabarcoding Data Using QIIME.

    PubMed

    Leray, Matthieu; Knowlton, Nancy

    2016-01-01

    PCR amplification followed by deep sequencing of homologous gene regions is increasingly used to characterize the diversity and taxonomic composition of marine eukaryotic communities. This approach may generate millions of sequences for hundreds of samples simultaneously. Therefore, tools that researchers can use to visualize complex patterns of diversity for these massive datasets are essential. Efforts by microbiologists to understand the Earth and human microbiomes using high-throughput sequencing of the 16S rRNA gene has led to the development of several user-friendly, open-source software packages that can be similarly used to analyze eukaryotic datasets. Quantitative Insights Into Microbial Ecology (QIIME) offers some of the most helpful data visualization tools. Here, we describe functionalities to import OTU tables generated with any molecular marker (e.g., 18S, COI, ITS) and associated metadata into QIIME. We then present a range of analytical tools implemented within QIIME that can be used to obtain insights about patterns of alpha and beta diversity for marine eukaryotes. PMID:27460381

  1. Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis

    PubMed Central

    Rua, Cintia P.J.; Trindade-Silva, Amaro E.; Appolinario, Luciana R.; Venas, Tainá M.; Garcia, Gizele D.; Carvalho, Lucas S.; Lima, Alinne; Kruger, Ricardo; Pereira, Renato C.; Berlinck, Roberto G.S.; Valle, Rogério A.B.; Thompson, Cristiane C.

    2014-01-01

    Marine sponges are the oldest Metazoa, very often presenting a complex microbial consortium. Such is the case of the marine sponge Arenosclera brasiliensis, endemic to Rio de Janeiro State, Brazil. In this investigation we characterized the diversity of some of the culturable heterotrophic bacteria living in association with A. brasiliensis and determined their antimicrobial activity. The genera Endozoicomonas (N = 32), Bacillus (N = 26), Shewanella (N = 17), Pseudovibrio (N = 12), and Ruegeria (N = 8) were dominant among the recovered isolates, corresponding to 97% of all isolates. Approximately one third of the isolates living in association with A. brasiliensis produced antibiotics that inhibited the growth of Bacillus subtilis, suggesting that bacteria associated with this sponge play a role in its health. PMID:25024903

  2. Genetic Diversity Affects the Daily Transcriptional Oscillations of Marine Microbial Populations

    PubMed Central

    Shilova, Irina N.; Robidart, Julie C.; DeLong, Edward F.; Zehr, Jonathan P.

    2016-01-01

    Marine microbial communities are genetically diverse but have robust synchronized daily transcriptional patterns at the genus level that are similar across a wide variety of oceanic regions. We developed a microarray-inspired gene-centric approach to resolve transcription of closely-related but distinct strains/ecotypes in high-throughput sequence data. Applying this approach to the existing metatranscriptomics datasets collected from two different oceanic regions, we found unique and variable patterns of transcription by individual taxa within the abundant picocyanobacteria Prochlorococcus and Synechococcus, the alpha Proteobacterium Pelagibacter and the eukaryotic picophytoplankton Ostreococcus. The results demonstrate that marine microbial taxa respond differentially to variability in space and time in the ocean. These intra-genus individual transcriptional patterns underlie whole microbial community responses, and the approach developed here facilitates deeper insights into microbial population dynamics. PMID:26751368

  3. Structural diversity and chemical synthesis of peroxide and peroxide-derived polyketide metabolites from marine sponges.

    PubMed

    Norris, Matthew D; Perkins, Michael V

    2016-07-28

    Covering: up to early 2016Marine sponges are widely known as a rich source of natural products, especially of polyketide origin, with a wealth of chemical diversity. Within this vast collection, peroxide and peroxide-derived secondary metabolites have attracted significant interest in the fields of natural product isolation and chemical synthesis for their structural distinction and promising in vitro antimicrobial and anticancer properties. In this review, peroxide and peroxide-derived polyketide metabolites isolated from marine sponges in the past 35 years are summarised. Efforts toward their synthesis are detailed with a focus on methods that utilise or attempt to elucidate the complex biosynthetic interrelationships of these compounds beyond enzymatic polyketide synthesis. Recent isolations, advances in synthetic methodology and theories of biogenesis are highlighted and critically evaluated. PMID:27163115

  4. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments.

    PubMed

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R; Jørgensen, Bo B; Kjeldsen, Kasper U

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  5. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments

    PubMed Central

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R.; Jørgensen, Bo B.; Kjeldsen, Kasper U.

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  6. Direct evaluation of macroalgal removal by herbivorous coral reef fishes

    NASA Astrophysics Data System (ADS)

    Mantyka, C. S.; Bellwood, D. R.

    2007-06-01

    Few studies have examined the relative functional impacts of individual herbivorous fish species on coral reef ecosystem processes in the Indo-Pacific. This study assessed the potential grazing impact of individual species within an inshore herbivorous reef fish assemblage on the central Great Barrier Reef (GBR), by determining which fish species were able to remove particular macroalgal species. Transplanted multiple-choice algal assays and remote stationary underwater digital video cameras were used to quantify the impact of local herbivorous reef fish species on 12 species of macroalgae. Macroalgal removal by the fishes was rapid. Within 3 h of exposure to herbivorous reef fishes there was significant evidence of intense grazing. After 12 h of exposure, 10 of the 12 macroalgal species had decreased to less than 15% of their original mass. Chlorodesmis fastigiata (Chlorophyta) and Galaxaura sp. (Rhodophyta) showed significantly less susceptibility to herbivorous reef fish grazing than all other macroalgae, even after 24 h exposure. Six herbivorous and/or nominally herbivorous reef fish species were identified as the dominant grazers of macroalgae: Siganus doliatus, Siganus canaliculatus, Chlorurus microrhinos, Hipposcarus longiceps, Scarus rivulatus and Pomacanthus sexstriatus. The siganid S. doliatus fed heavily on Hypnea sp., while S. canaliculatus fed intensively on Sargassum sp. Variation in macroalgal susceptibility was not clearly correlated with morphological and/or chemical defenses that have been previously suggested as deterrents against herbivory. Nevertheless, the results stress the potential importance of individual herbivorous reef fish species in removing macroalgae from coral reefs.

  7. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation

    PubMed Central

    Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    Objectives The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Spatio-Temporal Patterns of the Microbial Communities Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Macrofauna, Microbes and the Benthic N-Cycle Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided

  8. Microbial mat controls on infaunal abundance and diversity in modern marine microbialites.

    PubMed

    Tarhan, L G; Planavsky, N J; Laumer, C E; Stolz, J F; Reid, R P

    2013-09-01

    Microbialites are the most abundant macrofossils of the Precambrian. Decline in microbialite abundance and diversity during the terminal Proterozoic and early Phanerozoic has historically been attributed to the concurrent radiation of complex metazoans. Similarly, the apparent resurgence of microbialites in the wake of Paleozoic and Mesozoic mass extinctions is frequently linked to drastic declines in metazoan diversity and abundance. However, it has become increasing clear that microbialites are relatively common in certain modern shallow, normal marine carbonate environments-foremost the Bahamas. For the first time, we present data, collected from the Exuma Cays, the Bahamas, systematically characterizing the relationship between framework-building cyanobacteria, microbialite fabrics, and microbialite-associated metazoan abundance and diversity. We document the coexistence of diverse microbialite and infaunal metazoan communities and demonstrate that the predominant control upon both microbialite fabric and metazoan community structure is microbial mat type. These findings necessitate that we rethink prevalent interpretations of microbialite-metazoan interactions and imply that microbialites are not passive recipients of metazoan-mediated alteration. Additionally, this work provides support for the theory that certain Precambrian microbialites may have been havens of early complex metazoan life, rather than bereft of metazoans, as has been traditionally envisaged. PMID:23889904

  9. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora

    PubMed Central

    Ziemert, Nadine; Lechner, Anna; Wietz, Matthias; Millán-Aguiñaga, Natalie; Chavarria, Krystle L.; Jensen, Paul Robert

    2014-01-01

    Access to genome sequence data has challenged traditional natural product discovery paradigms by revealing that the products of most bacterial biosynthetic pathways have yet to be discovered. Despite the insight afforded by this technology, little is known about the diversity and distributions of natural product biosynthetic pathways among bacteria and how they evolve to generate structural diversity. Here we analyze genome sequence data derived from 75 strains of the marine actinomycete genus Salinispora for pathways associated with polyketide and nonribosomal peptide biosynthesis, the products of which account for some of today’s most important medicines. The results reveal high levels of diversity, with a total of 124 pathways identified and 229 predicted with continued sequencing. Recent horizontal gene transfer accounts for the majority of pathways, which occur in only one or two strains. Acquired pathways are incorporated into genomic islands and are commonly exchanged within and between species. Acquisition and transfer events largely involve complete pathways, which subsequently evolve by gene gain, loss, and duplication followed by divergence. The exchange of similar pathway types at the precise chromosomal locations in different strains suggests that the mechanisms of integration include pathway-level homologous recombination. Despite extensive horizontal gene transfer there is clear evidence of species-level vertical inheritance, supporting the concept that secondary metabolites represent functional traits that help define Salinispora species. The plasticity of the Salinispora secondary metabolome provides an effective mechanism to maximize population-level secondary metabolite diversity while limiting the number of pathways maintained within any individual genome. PMID:24616526

  10. Marine Actinobacteria from the Gulf of California: diversity, abundance and secondary metabolite biosynthetic potential

    PubMed Central

    Becerril-Espinosa, Amayaly; Freel, Kelle C.; Jensen, Paul R.

    2015-01-01

    The Gulf of California is a coastal marine ecosystem characterized as having abundant biological resources and a high level of endemism. In this work we report the isolation and characterization of Actinobacteria from different sites in the western Gulf of California. We collected 126 sediment samples and isolated on average 3.1–38.3 Actinobacterial strains from each sample. Phylogenetic analysis of 136 strains identified them as members of the genera Actinomadura, Micromonospora, Nocardiopsis, Nonomuraea, Saccharomonospora, Salinispora, Streptomyces and Verrucosispora. These strains were grouped into 26–56 operational taxonomic units (OTUs) based on 16S rRNA gene sequence identities of 98–100 %. At 98 % sequence identity, three OTUs appear to represent new taxa while nine (35 %) have only been reported from marine environments. Sixty-three strains required seawater for growth. These fell into two OTUs at the 98 % identity level and include one that failed to produce aerial hyphae and was only distantly related (≤95.5 % 16S identity) to any previously cultured Streptomyces sp. Phylogenetic analyses of ketosynthase domains associated with polyketide synthase genes revealed sequences that ranged from 55 to 99 % nucleotide identity to experimentally characterized biosynthetic pathways suggesting that some may be associated with the production of new secondary metabolites. These results indicate that marine sediments from the Gulf of California harbor diverse Actinobacterial taxa with the potential to produce new secondary metabolites. PMID:23229438

  11. Hydrographic controls on marine organic matter fate and microbial diversity in the western Irish Sea

    NASA Astrophysics Data System (ADS)

    O'Reilly, Shane; Szpak, Michal; Monteys, Xavier; Flanagan, Paul; Allen, Christopher; Kelleher, Brian

    2014-05-01

    Cycling of organic matter (OM) is the key biological process in the marine environment1 and knowledge of the sources and the reactivity of OM, in addition to factors controlling its distribution in estuarine, coastal and shelf sediments are of key importance for understanding global biogeochemical cycles2. With recent advances in cultivation-independent molecular approaches to microbial ecology, the key role of prokaryotes in global biogeochemical cycling in marine ecosystems has been emphasised3,4. However, spatial studies combining the distribution and fate of OM with microbial community abundance and diversity remain rare. Here, a combined spatial lipid biomarker and 16S rRNA tagged pyrosequencing study was conducted in surface sediments and particulate matter across hydrographically distinct zones associated with the seasonal western Irish Sea gyre. The aim was to assess the spatial variation of, and factors controlling, marine organic cycling and sedimentary microbial communities across these distinct zones. The distribution of phospholipid fatty acids, source-specific sterols, wax esters and C25 highly branched isoprenoids indicate that diatoms, dinoflagellates and green algae were the major contributors of marine organic matter, while the distribution of cholesterol, wax esters and C20 and C22 polyunsaturated fatty acids have highlighted the importance of copepod grazing for mineralizing organic matter in the water column5. This marine OM production and mineralisation was greatest in well-mixed waters compared to offshore stratified waters. Lipid analysis and 16S rRNA PCR-DGGE profiling also suggests that sedimentary bacterial abundance increases while community diversity decreases in offshore stratified waters. The major bacterial classes are the Deltaproteobacteria, Clostridia, Flavobacteriia, Gammaproteobactera and Bacteroiidia. At the family/genus level most groups appear to be associated with organoheterotrophic processing of sedimentary OM, ranging

  12. Methods used to study bacterial diversity in the marine environment around Qingdao

    NASA Astrophysics Data System (ADS)

    Robertson, P. A. W.; Macinnes, J.; Sparagano, O. A. E.; Purdom, I.; Li, Y.; Yu, D. H.; Du, Z. J.; Xu, H. S.; Austin, B.

    2002-10-01

    Pollution has a considerable effect on biological communities, in terms of size and diversity of the populations. Yet, the precise consequences of human activity on microbial communities in the marine environment are poorly understood. Therefore, in an ongoing collaborative research programme between Heriot-Watt University and the Ocean University of Qingdao, bacteria were isolated in 1999 and 2000 from marine sediment, seawater, seaweed, fish and shellfish, taken from locations in Shandong Province adjacent to Qingdao. Sampling locations were comprised of industrial and aquacultural sites and a clean, control site. In order to analyse microbial diversity, a polyphasic approach was adopted for characterisation of these isolates, specifically through examination of key phenotypic traits, i.e. using Biolog GN MicroPlate™ profiles, bacterial whole cell protein profiles and 16S and 23S rRNA gene sequences. These techniques yielded complex taxonomic data, which were subjected to statistical and cluster analyses. The application of these methods to studies of microbial communities is discussed.

  13. Unusual Symbiotic Cyanobacteria Association in the Genetically Diverse Intertidal Marine Sponge Hymeniacidon perlevis (Demospongiae, Halichondrida)

    PubMed Central

    Alex, Anoop; Vasconcelos, Vitor; Tamagnini, Paula; Santos, Arlete; Antunes, Agostinho

    2012-01-01

    Cyanobacteria represent one of the most common members of the sponge-associated bacterial community and are abundant symbionts of coral reef ecosystems. In this study we used Transmission Electron Microscopy (TEM) and molecular techniques (16S rRNA gene marker) to characterize the spatial distribution of cyanobionts in the widely dispersed marine intertidal sponge Hymeniacidon perlevis along the coast of Portugal (Atlantic Ocean). We described new sponge associated cyanobacterial morphotypes (Xenococcus-like) and we further observed Acaryochloris sp. as a sponge symbiont, previously only reported in association with ascidians. Besides these two unique cyanobacteria, H. perlevis predominantly harbored Synechococcus sp. and uncultured marine cyanobacteria. Our study supports the hypothesis that the community of sponge cyanobionts varies irrespective of the geographical location and is likely influenced by seasonal fluctuations. The observed multiple cyanobacterial association among sponges of the same host species over a large distance may be attributed to horizontal transfer of symbionts. This may explain the absence of a co-evolutionary pattern between the sponge host and its symbionts. Finally, in spite of the short geographic sampling distance covered, we observed an unexpected high intra-specific genetic diversity in H. perlevis using the mitochondrial genes ATP6 (π = 0.00177), COI (π = 0.00241) and intergenic spacer SP1 (π = 0.00277) relative to the levels of genetic variation of marine sponges elsewhere. Our study suggests that genotypic variation among the sponge host H. perlevis and the associated symbiotic cyanobacteria diversity may be larger than previously recognized. PMID:23251637

  14. Global Diversity of Aloricate Oligotrichea (Protista, Ciliophora, Spirotricha) in Marine and Brackish Sea Water

    PubMed Central

    Agatha, Sabine

    2011-01-01

    Oligotrichids and choreotrichids are ciliate taxa contributing to the multi-step microbial food web and episodically dominating the marine microzooplankton. The global diversity and distribution of aloricate Oligotrichea are unknown. Here, the geographic ranges of the 141 accepted species and their synonyms in marine and brackish sea water are analyzed, using hundreds of taxonomical and ecological studies; the quality of the records is simultaneously evaluated. The aloricate Oligotrichea match the moderate endemicity model, i.e., the majority (94) of morphospecies has a wide, occasionally cosmopolitan distribution, while 47 morphospecies show biogeographic patterns: they are restricted to single geographic regions and probably include 12 endemic morphospecies. These endemics are found in the Antarctic, North Pacific, and Black Sea, whereas the “flagship” species Strombidinopsis cercionis is confined to the Caribbean Sea. Concerning genera, again several geographic patterns are recognizable. The species richness is distinctly lower in the southern hemisphere than in the northern, ranging from nine morphospecies in the South Pacific to 95 in the North Atlantic; however, this pattern is probably caused by undersampling. Since the loss of species might affect higher trophical levels substantially, the aloricate Oligotrichea should not any longer be ignored in conservation issues. The ecophysiological diversity is considerably larger than the morphological, and even tops the richness of SSrRNA and ITS haplotypes, indicating that probably more than 83–89% of the diversity in aloricate Oligotrichea are unknown. The huge challenge to discover all these species can only be managed by combining the expertises of morphological taxonomists, molecular biologists, ecologists, and physiologists. PMID:21853034

  15. Global diversity of aloricate Oligotrichea (Protista, Ciliophora, Spirotricha) in marine and brackish sea water.

    PubMed

    Agatha, Sabine

    2011-01-01

    Oligotrichids and choreotrichids are ciliate taxa contributing to the multi-step microbial food web and episodically dominating the marine microzooplankton. The global diversity and distribution of aloricate Oligotrichea are unknown. Here, the geographic ranges of the 141 accepted species and their synonyms in marine and brackish sea water are analyzed, using hundreds of taxonomical and ecological studies; the quality of the records is simultaneously evaluated. The aloricate Oligotrichea match the moderate endemicity model, i.e., the majority (94) of morphospecies has a wide, occasionally cosmopolitan distribution, while 47 morphospecies show biogeographic patterns: they are restricted to single geographic regions and probably include 12 endemic morphospecies. These endemics are found in the Antarctic, North Pacific, and Black Sea, whereas the "flagship" species Strombidinopsis cercionis is confined to the Caribbean Sea. Concerning genera, again several geographic patterns are recognizable. The species richness is distinctly lower in the southern hemisphere than in the northern, ranging from nine morphospecies in the South Pacific to 95 in the North Atlantic; however, this pattern is probably caused by undersampling. Since the loss of species might affect higher trophical levels substantially, the aloricate Oligotrichea should not any longer be ignored in conservation issues. The ecophysiological diversity is considerably larger than the morphological, and even tops the richness of SSrRNA and ITS haplotypes, indicating that probably more than 83-89% of the diversity in aloricate Oligotrichea are unknown. The huge challenge to discover all these species can only be managed by combining the expertises of morphological taxonomists, molecular biologists, ecologists, and physiologists. PMID:21853034

  16. Demographic histories and genetic diversities of Fennoscandian marine and landlocked ringed seal subspecies

    PubMed Central

    Nyman, Tommi; Valtonen, Mia; Aspi, Jouni; Ruokonen, Minna; Kunnasranta, Mervi; Palo, Jukka U

    2014-01-01

    Island populations are on average smaller, genetically less diverse, and at a higher risk to go extinct than mainland populations. Low genetic diversity may elevate extinction probability, but the genetic component of the risk can be affected by the mode of diversity loss, which, in turn, is connected to the demographic history of the population. Here, we examined the history of genetic erosion in three Fennoscandian ringed seal subspecies, of which one inhabits the Baltic Sea ‘mainland’ and two the ‘aquatic islands’ composed of Lake Saimaa in Finland and Lake Ladoga in Russia. Both lakes were colonized by marine seals after their formation c. 9500 years ago, but Lake Ladoga is larger and more contiguous than Lake Saimaa. All three populations suffered dramatic declines during the 20th century, but the bottleneck was particularly severe in Lake Saimaa. Data from 17 microsatellite loci and mitochondrial control-region sequences show that Saimaa ringed seals have lost most of the genetic diversity present in their Baltic ancestors, while the Ladoga population has experienced only minor reductions. Using Approximate Bayesian computing analyses, we show that the genetic uniformity of the Saimaa subspecies derives from an extended founder event and subsequent slow erosion, rather than from the recent bottleneck. This suggests that the population has persisted for nearly 10,000 years despite having low genetic variation. The relatively high diversity of the Ladoga population appears to result from a high number of initial colonizers and a high post-colonization population size, but possibly also by a shorter isolation period and/or occasional gene flow from the Baltic Sea. PMID:25535558

  17. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    PubMed

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence. PMID:24433792

  18. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages

    PubMed Central

    Nelson, Craig E; Goldberg, Stuart J; Wegley Kelly, Linda; Haas, Andreas F; Smith, Jennifer E; Rohwer, Forest; Carlson, Craig A

    2013-01-01

    Increasing algal cover on tropical reefs worldwide may be maintained through feedbacks whereby algae outcompete coral by altering microbial activity. We hypothesized that algae and coral release compositionally distinct exudates that differentially alter bacterioplankton growth and community structure. We collected exudates from the dominant hermatypic coral holobiont Porites spp. and three dominant macroalgae (one each Ochrophyta, Rhodophyta and Chlorophyta) from reefs of Mo'orea, French Polynesia. We characterized exudates by measuring dissolved organic carbon (DOC) and fractional dissolved combined neutral sugars (DCNSs) and subsequently tracked bacterioplankton responses to each exudate over 48 h, assessing cellular growth, DOC/DCNS utilization and changes in taxonomic composition (via 16S rRNA amplicon pyrosequencing). Fleshy macroalgal exudates were enriched in the DCNS components fucose (Ochrophyta) and galactose (Rhodophyta); coral and calcareous algal exudates were enriched in total DCNS but in the same component proportions as ambient seawater. Rates of bacterioplankton growth and DOC utilization were significantly higher in algal exudate treatments than in coral exudate and control incubations with each community selectively removing different DCNS components. Coral exudates engendered the smallest shift in overall bacterioplankton community structure, maintained high diversity and enriched taxa from Alphaproteobacteria lineages containing cultured representatives with relatively few virulence factors (VFs) (Hyphomonadaceae and Erythrobacteraceae). In contrast, macroalgal exudates selected for less diverse communities heavily enriched in copiotrophic Gammaproteobacteria lineages containing cultured pathogens with increased VFs (Vibrionaceae and Pseudoalteromonadaceae). Our results demonstrate that algal exudates are enriched in DCNS components, foster rapid growth of bacterioplankton and select for bacterial populations with more potential VFs than

  19. A comprehensive framework for functional diversity patterns of marine chromophytic phytoplankton using rbcL phylogeny

    NASA Astrophysics Data System (ADS)

    Samanta, Brajogopal; Bhadury, Punyasloke

    2016-02-01

    Marine chromophytes are taxonomically diverse group of algae and contribute approximately half of the total oceanic primary production. To understand the global patterns of functional diversity of chromophytic phytoplankton, robust bioinformatics and statistical analyses including deep phylogeny based on 2476 form ID rbcL gene sequences representing seven ecologically significant oceanographic ecoregions were undertaken. In addition, 12 form ID rbcL clone libraries were generated and analyzed (148 sequences) from Sundarbans Biosphere Reserve representing the world’s largest mangrove ecosystem as part of this study. Global phylogenetic analyses recovered 11 major clades of chromophytic phytoplankton in varying proportions with several novel rbcL sequences in each of the seven targeted ecoregions. Majority of OTUs was found to be exclusive to each ecoregion, whereas some were shared by two or more ecoregions based on beta-diversity analysis. Present phylogenetic and bioinformatics analyses provide a strong statistical support for the hypothesis that different oceanographic regimes harbor distinct and coherent groups of chromophytic phytoplankton. It has been also shown as part of this study that varying natural selection pressure on form ID rbcL gene under different environmental conditions could lead to functional differences and overall fitness of chromophytic phytoplankton populations.

  20. A comprehensive framework for functional diversity patterns of marine chromophytic phytoplankton using rbcL phylogeny

    PubMed Central

    Samanta, Brajogopal; Bhadury, Punyasloke

    2016-01-01

    Marine chromophytes are taxonomically diverse group of algae and contribute approximately half of the total oceanic primary production. To understand the global patterns of functional diversity of chromophytic phytoplankton, robust bioinformatics and statistical analyses including deep phylogeny based on 2476 form ID rbcL gene sequences representing seven ecologically significant oceanographic ecoregions were undertaken. In addition, 12 form ID rbcL clone libraries were generated and analyzed (148 sequences) from Sundarbans Biosphere Reserve representing the world’s largest mangrove ecosystem as part of this study. Global phylogenetic analyses recovered 11 major clades of chromophytic phytoplankton in varying proportions with several novel rbcL sequences in each of the seven targeted ecoregions. Majority of OTUs was found to be exclusive to each ecoregion, whereas some were shared by two or more ecoregions based on beta-diversity analysis. Present phylogenetic and bioinformatics analyses provide a strong statistical support for the hypothesis that different oceanographic regimes harbor distinct and coherent groups of chromophytic phytoplankton. It has been also shown as part of this study that varying natural selection pressure on form ID rbcL gene under different environmental conditions could lead to functional differences and overall fitness of chromophytic phytoplankton populations. PMID:26861415

  1. A comprehensive framework for functional diversity patterns of marine chromophytic phytoplankton using rbcL phylogeny.

    PubMed

    Samanta, Brajogopal; Bhadury, Punyasloke

    2016-01-01

    Marine chromophytes are taxonomically diverse group of algae and contribute approximately half of the total oceanic primary production. To understand the global patterns of functional diversity of chromophytic phytoplankton, robust bioinformatics and statistical analyses including deep phylogeny based on 2476 form ID rbcL gene sequences representing seven ecologically significant oceanographic ecoregions were undertaken. In addition, 12 form ID rbcL clone libraries were generated and analyzed (148 sequences) from Sundarbans Biosphere Reserve representing the world's largest mangrove ecosystem as part of this study. Global phylogenetic analyses recovered 11 major clades of chromophytic phytoplankton in varying proportions with several novel rbcL sequences in each of the seven targeted ecoregions. Majority of OTUs was found to be exclusive to each ecoregion, whereas some were shared by two or more ecoregions based on beta-diversity analysis. Present phylogenetic and bioinformatics analyses provide a strong statistical support for the hypothesis that different oceanographic regimes harbor distinct and coherent groups of chromophytic phytoplankton. It has been also shown as part of this study that varying natural selection pressure on form ID rbcL gene under different environmental conditions could lead to functional differences and overall fitness of chromophytic phytoplankton populations. PMID:26861415

  2. Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes.

    PubMed Central

    Chen, F; Suttle, C A; Short, S M

    1996-01-01

    Algal-virus-specific PCR primers were used to amplify DNA polymerase gene (pol) fragments (683 to 689 bp) from the virus-sized fraction (0.02 to 0.2 microns) concentrated from inshore and offshore water samples collected from the Gulf of Mexico. Algal-virus-like DNA pol genes were detected in five samples collected from the surface and deep chlorophyll maximum. PCR products from an offshore station were cloned, and the genetic diversity of 33 fragments was examined by restriction fragment length polymorphism and sequence analysis. The five different genotypes or operational taxonomic units (OTUs) that were identified on the basis of restriction fragment length polymorphism banding patterns were present in different relative abundances (9 to 34%). One clone from each OTU was sequenced, and phylogenetic analysis showed that all of the OTUs fell within the family Phycodnaviridae. Four of the OTUs fell within a group of viruses (MpV) which infect the photosynthetic picoplankter Micromonas pusilla. The genetic diversity among these genotypes was as large as that previously found for MpV isolates from different oceans. The remaining genotype formed its own clade between viruses which infect M. pusilla and Chrysochromulina brevifilum. These results imply that marine virus communities contain a diverse assemblage of MpV-like viruses, as well as other unknown members of the Phycodnaviridae. PMID:8702280

  3. Genetic diversity affects the strength of population regulation in a marine fish.

    PubMed

    Johnson, D W; Freiwald, J; Bernardi, G

    2016-03-01

    Variation is an essential feature of biological populations, yet much of ecological theory treats individuals as though they are identical. This simplifying assumption is often justified by the perception that variation among individuals does not have significant effects on the dynamics of whole populations. However, this perception may be skewed by a historic focus on studying single populations. A true evaluation of the extent to which among-individual variation affects the dynamics of populations requires the study of multiple populations. In this study, we examined variation in the dynamics of populations of a live-bearing, marine fish (black surfperch; Embiotoca jacksoni). In collaboration with an organization of citizen scientists (Reef Check California), we were able to examine the dynamics of eight populations that were distributed throughout approximately 700 km of coastline, a distance that encompasses much of this species' range. We hypothesized that genetic variation within a local population would be related to the intensity of competition and to the strength of population regulation. To test this hypothesis, we examined whether genetic diversity (measured by the diversity of mitochondrial DNA haplotypes) was related to the strength of population regulation. Low-diversity populations experienced strong density dependence in population growth rates and population sizes were regulated much more tightly than they were in high-diversity populations. Mechanisms that contributed to this pattern include links between genetic diversity, habitat use, and spatial crowding. On average, low-diversity populations used less of the available habitat and exhibited greater spatial clustering (and more intense competition) for a given level of density (measured at the scale of the reef). Although the populations we studied also varied with respect to exogenous characteristics (habitat complexity, densities of predators, and interspecific competitors), none of these

  4. Vast assembly of vocal marine mammals from diverse species on fish spawning ground.

    PubMed

    Wang, Delin; Garcia, Heriberto; Huang, Wei; Tran, Duong D; Jain, Ankita D; Yi, Dong Hoon; Gong, Zheng; Jech, J Michael; Godø, Olav Rune; Makris, Nicholas C; Ratilal, Purnima

    2016-03-17

    Observing marine mammal (MM) populations continuously in time and space over the immense ocean areas they inhabit is challenging but essential for gathering an unambiguous record of their distribution, as well as understanding their behaviour and interaction with prey species. Here we use passive ocean acoustic waveguide remote sensing (POAWRS) in an important North Atlantic feeding ground to instantaneously detect, localize and classify MM vocalizations from diverse species over an approximately 100,000 km(2) region. More than eight species of vocal MMs are found to spatially converge on fish spawning areas containing massive densely populated herring shoals at night-time and diffuse herring distributions during daytime. We find the vocal MMs divide the enormous fish prey field into species-specific foraging areas with varying degrees of spatial overlap, maintained for at least two weeks of the herring spawning period. The recorded vocalization rates are diel (24 h)-dependent for all MM species, with some significantly more vocal at night and others more vocal during the day. The four key baleen whale species of the region: fin, humpback, blue and minke have vocalization rate trends that are highly correlated to trends in fish shoaling density and to each other over the diel cycle. These results reveal the temporospatial dynamics of combined multi-species MM foraging activities in the vicinity of an extensive fish prey field that forms a massive ecological hotspot, and would be unattainable with conventional methodologies. Understanding MM behaviour and distributions is essential for management of marine ecosystems and for accessing anthropogenic impacts on these protected marine species. PMID:26934221

  5. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities

    PubMed Central

    Fouillaud, Mireille; Venkatachalam, Mekala; Girard-Valenciennes, Emmanuelle; Caro, Yanis; Dufossé, Laurent

    2016-01-01

    Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s) due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi′s productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances. PMID:27023571

  6. Building diversity in REU programs through MIMSUP at the Shannon Point Marine Center

    NASA Astrophysics Data System (ADS)

    Bingham, B. L.; Sulkin, S.

    2011-12-01

    The road to a career in the ocean sciences can be long and challenging, particularly for students from racial/ethnic groups underrepresented in the field. For the past 21 years, faculty and staff at the Shannon Point Marine Center, Western Washington University have annually administered the NSF-funded Multicultural Initiative in the Marine Sciences: Undergraduate Participation (MIMSUP) program. The goal of MIMSUP is to increase diversity in the ocean sciences by moving students though their undergraduate programs into advanced education and leadership positions in the field. Helping students find positions in REU and other focused research programs is an important step along this path. Primary obstacles for the students include 1) a lack of knowledge about opportunities available to them, 2) a lack of experience preparing quality applications and 3) a lack of confidence in their ability to compete for positions. Focused mentoring, with an emphasis on skills development is important in helping outstanding, though inexperienced, students find and excel in REU programs.

  7. Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture.

    PubMed

    Mohamed, Naglaa M; Rao, Venkateswara; Hamann, Mark T; Kelly, Michelle; Hill, Russell T

    2008-07-01

    Marine sponges in the genus Ircinia are known to be good sources of secondary metabolites with biological activities. A major obstacle in the development of sponge-derived metabolites is the difficulty in ensuring an economic, sustainable supply of the metabolites. A promising strategy is the ex situ culture of sponges in closed or semiclosed aquaculture systems. In this study, the marine sponge Ircinia strobilina (order Dictyoceratida: family Irciniidae) was collected from the wild and maintained for a year in a recirculating aquaculture system. Microbiological and molecular community analyses were performed on freshly collected sponges and sponges maintained in aquaculture for 3 months and 9 months. Chemical analyses were performed on wild collected sponges and individuals maintained in aquaculture for 3 months and 1 year. Denaturing gradient gel electrophoresis was used to assess the complexity of and to monitor changes in the microbial communities associated with I. strobilina. Culture-based and molecular techniques showed an increase in the Bacteroidetes and Alpha- and Gammaproteobacteria components of the bacterial community in aquaculture. Populations affiliated with Beta- and Deltaproteobacteria, Clostridia, and Planctomycetes emerged in sponges maintained in aquaculture. The diversity of bacterial communities increased upon transfer into aquaculture. PMID:18469126

  8. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities.

    PubMed

    Fouillaud, Mireille; Venkatachalam, Mekala; Girard-Valenciennes, Emmanuelle; Caro, Yanis; Dufossé, Laurent

    2016-04-01

    Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s) due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi's productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances. PMID:27023571

  9. Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica.

    PubMed

    Panno, Luigi; Bruno, Maurizio; Voyron, Samuele; Anastasi, Antonella; Gnavi, Giorgio; Miserere, Luca; Varese, Giovanna Cristina

    2013-09-25

    The marine environment is characterized by high salinity and exerts a strong selective pressure on the biota, favouring the development of halo-tolerant microorganisms. Part of this microbial diversity is made up of fungi, important organisms from ecological and biotechnological points of view. In this study, for the first time, the qualitative and quantitative composition of the mycoflora associated to leaves, rhizomes, roots and matte of the seagrass Posidonia oceanica was estimated. A total of 88 fungal taxa, mainly belonging to Ascomycota, were identified by morphological and molecular methods. The most represented genera were Penicillium, Cladosporium and Acremonium. Most of the species (70) were selectively associated with one district; only two species (Penicillium chrysogenum var. chrysogenum and P. janczewskii) were isolated from all the districts. Moreover the capability to produce laccases, peroxidases and tannases by 107 fungal isolated by the different districts of P. oceanica was carried out. These results show that the mycoflora associated to P. oceanica is very rich and characterized by fungi able to produce ligninolytic enzymes and tannases useful to degrade and detoxify lignocellulose residues in presence of high salt concentrations. These fungi, hence, may play important ecological roles in marine environments but can also be very useful in different biotechnological areas. PMID:23410985

  10. Data supporting functional diversity of the marine bacterium Cobetia amphilecti KMM 296.

    PubMed

    Balabanova, Larissa; Nedashkovskaya, Olga; Podvolotskaya, Anna; Slepchenko, Lubov; Golotin, Vasily; Belik, Alexey; Shevchenko, Ludmila; Son, Oksana; Rasskazov, Valery

    2016-09-01

    Data is presented in support of functionality of hyper-diverse protein families encoded by the Cobetia amphilecti KMM 296 (formerly Cobetia marina KMM 296) genome ("The genome of the marine bacterium Cobetia marina KMM 296 isolated from the mussel Crenomytilus grayanus (Dunker, 1853)" [1]) providing its nutritional versatility, adaptability and biocontrol that could be the basis of the marine bacterium evolutionary and application potential. Presented data include the information of growth and biofilm-forming properties of the food-associated isolates of Pseudomonas, Bacillus, Listeria, Salmonella and Staphylococcus under the conditions of their co-culturing with C. amphilecti KMM 296 to confirm its high inter-species communication and anti-microbial activity. Also included are the experiments on the crude petroleum consumption by C. amphilecti KMM 296 as the sole source of carbon in the presence of sulfate or nitrate to ensure its bioremediation capacity. The multifunctional C. amphilecti KMM 296 genome is a promising source for the beneficial psychrophilic enzymes and essential secondary metabolites. PMID:27508225

  11. Genomic and Metabolic Diversity of Marine Group I Thaumarchaeota in the Mesopelagic of Two Subtropical Gyres

    PubMed Central

    Swan, Brandon K.; Chaffin, Mark D.; Martinez-Garcia, Manuel; Morrison, Hilary G.; Field, Erin K.; Poulton, Nicole J.; Masland, E. Dashiell P.; Harris, Christopher C.; Sczyrba, Alexander; Chain, Patrick S. G.; Koren, Sergey; Woyke, Tanja; Stepanauskas, Ramunas

    2014-01-01

    Marine Group I (MGI) Thaumarchaeota are one of the most abundant and cosmopolitan chemoautotrophs within the global dark ocean. To date, no representatives of this archaeal group retrieved from the dark ocean have been successfully cultured. We used single cell genomics to investigate the genomic and metabolic diversity of thaumarchaea within the mesopelagic of the subtropical North Pacific and South Atlantic Ocean. Phylogenetic and metagenomic recruitment analysis revealed that MGI single amplified genomes (SAGs) are genetically and biogeographically distinct from existing thaumarchaea cultures obtained from surface waters. Confirming prior studies, we found genes encoding proteins for aerobic ammonia oxidation and the hydrolysis of urea, which may be used for energy production, as well as genes involved in 3-hydroxypropionate/4-hydroxybutyrate and oxidative tricarboxylic acid pathways. A large proportion of protein sequences identified in MGI SAGs were absent in the marine cultures Cenarchaeum symbiosum and Nitrosopumilus maritimus, thus expanding the predicted protein space for this archaeal group. Identifiable genes located on genomic islands with low metagenome recruitment capacity were enriched in cellular defense functions, likely in response to viral infections or grazing. We show that MGI Thaumarchaeota in the dark ocean may have more flexibility in potential energy sources and adaptations to biotic interactions than the existing, surface-ocean cultures. PMID:24743558

  12. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats.

    PubMed

    Comeau, André M; Vincent, Warwick F; Bernier, Louis; Lovejoy, Connie

    2016-01-01

    In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling. PMID:27444055

  13. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats

    PubMed Central

    Comeau, André M.; Vincent, Warwick F.; Bernier, Louis; Lovejoy, Connie

    2016-01-01

    In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling. PMID:27444055

  14. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats

    NASA Astrophysics Data System (ADS)

    Comeau, André M.; Vincent, Warwick F.; Bernier, Louis; Lovejoy, Connie

    2016-07-01

    In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling.

  15. The world's largest macroalgal bloom in the Yellow Sea, China: Formation and implications

    NASA Astrophysics Data System (ADS)

    Liu, Dongyan; Keesing, John K.; He, Peimin; Wang, Zongling; Shi, Yajun; Wang, Yujue

    2013-09-01

    The world's largest trans-regional macroalgal blooms during 2008-2012 occurred in the Yellow Sea, China. This review addresses the causes, development and future challenges in this unique case. Satellite imagery and field observations showed that the macroalgal blooms in the Yellow Sea originated from the coast of Jiangsu province and that favorable geographic and oceanographic conditions brought the green macroalgae from the coast offshore. Optimal temperature, light, nutrients and wind contributed to the formation and transport of the massive bloom north into the Yellow Sea and its deposition onshore along the coast of Shandong province. Morphological and genetic evidence demonstrated that the species involved was Ulva prolifera, a fouling green commonly found growing on structures provided by facilities of Porphyra aquaculture. Large scale Porphyra aquaculture (covering >20,000 ha) along the Jiangsu coast thus hypothetically provided a nursery bed for the original biomass of U. prolifera. Porphyra growers remove U. prolifera from the mariculture rafts, and the cleaning releases about 5000 wet weight tonnes of green algae into the water column along the coast of Jiangsu province; the biomass then is dispersed by hydrographic forcing, and takes advantage of rather high nutrient supply and suitable temperatures to grow to impressive levels. Certain biological traits of U. prolifera —efficient photosynthesis, rapid growth rates, high capacity for nutrient uptake, and diverse reproductive systems— allowed growth of the original 5000 tonnes of U. prolifera biomass into more than one million tonnes of biomass in just two months. The proliferation of U. prolifera in the Yellow Sea resulted from a complex contingency of circumstances, including human activity (eutrophication by release of nutrients from wastewater, agriculture, and aquaculture), natural geographic and hydrodynamic conditions (current, wind) and the key organism's biological attributes. Better

  16. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity

    PubMed Central

    Leray, Matthieu; Knowlton, Nancy

    2015-01-01

    Documenting the diversity of marine life is challenging because many species are cryptic, small, and rare, and belong to poorly known groups. New sequencing technologies, especially when combined with standardized sampling, promise to make comprehensive biodiversity assessments and monitoring feasible on a large scale. We used this approach to characterize patterns of diversity on oyster reefs across a range of geographic scales comprising a temperate location [Virginia (VA)] and a subtropical location [Florida (FL)]. Eukaryotic organisms that colonized multilayered settlement surfaces (autonomous reef monitoring structures) over a 6-mo period were identified by cytochrome c oxidase subunit I barcoding (>2-mm mobile organisms) and metabarcoding (sessile and smaller mobile organisms). In a total area of ∼15.64 m2 and volume of ∼0.09 m3, 2,179 operational taxonomic units (OTUs) were recorded from 983,056 sequences. However, only 10.9% could be matched to reference barcodes in public databases, with only 8.2% matching barcodes with both genus and species names. Taxonomic coverage was broad, particularly for animals (22 phyla recorded), but 35.6% of OTUs detected via metabarcoding could not be confidently assigned to a taxonomic group. The smallest size fraction (500 to 106 μm) was the most diverse (more than two-thirds of OTUs). There was little taxonomic overlap between VA and FL, and samples separated by ∼2 m were significantly more similar than samples separated by ∼100 m. Ground-truthing with independent assessments of taxonomic composition indicated that both presence–absence information and relative abundance information are captured by metabarcoding data, suggesting considerable potential for ecological studies and environmental monitoring. PMID:25646458

  17. Fungal diversity from deep marine subsurface sediments (IODP 317, Canterbury Basin, New Zealand)

    NASA Astrophysics Data System (ADS)

    Redou, V.; Arzur, D.; Burgaud, G.; Barbier, G.

    2012-12-01

    Recent years have seen a growing interest regarding micro-eukaryotic communities in extreme environments as a third microbial domain after Bacteria and Archaea. However, knowledge is still scarce and the diversity of micro-eukaryotes in such environments remains hidden and their ecological role unknown. Our research program is based on the deep sedimentary layers of the Canterbury Basin in New Zealand (IODP 317) from the subsurface to the record depth of 1884 meters below seafloor. The objectives of our study are (i) to assess the genetic diversity of fungi in deep-sea sediments and (ii) identify the functional part in order to better understand the origin and the ecological role of fungal communities in this extreme ecosystem. Fingerprinting-based methods using capillary electrophoresis single-strand conformation polymorphism and denaturing high-performance liquid chromatography were used as a first step to raise our objectives. Molecular fungal diversity was assessed using amplification of ITS1 (Internal Transcribed Spacer 1) as a biomarker on 11 samples sediments from 3.76 to 1884 meters below seafloor. Fungal molecular signatures were detected throughout the sediment core. The phyla Ascomycota and Basidiomycota were revealed with DNA as well as cDNA. Most of the phylotypes are affiliated to environmental sequences and some to common fungal cultured species. The discovery of a present and metabolically active fungal component in this unique ecosystem allows some interesting first hypotheses that will be further combined to culture-based methods and deeper molecular methods (454 pyrosequencing) to highlight essential informations regarding physiology and ecological role of fungal communities in deep marine sediments.

  18. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity.

    PubMed

    Leray, Matthieu; Knowlton, Nancy

    2015-02-17

    Documenting the diversity of marine life is challenging because many species are cryptic, small, and rare, and belong to poorly known groups. New sequencing technologies, especially when combined with standardized sampling, promise to make comprehensive biodiversity assessments and monitoring feasible on a large scale. We used this approach to characterize patterns of diversity on oyster reefs across a range of geographic scales comprising a temperate location [Virginia (VA)] and a subtropical location [Florida (FL)]. Eukaryotic organisms that colonized multilayered settlement surfaces (autonomous reef monitoring structures) over a 6-mo period were identified by cytochrome c oxidase subunit I barcoding (>2-mm mobile organisms) and metabarcoding (sessile and smaller mobile organisms). In a total area of ∼ 15.64 m(2) and volume of ∼ 0.09 m(3), 2,179 operational taxonomic units (OTUs) were recorded from 983,056 sequences. However, only 10.9% could be matched to reference barcodes in public databases, with only 8.2% matching barcodes with both genus and species names. Taxonomic coverage was broad, particularly for animals (22 phyla recorded), but 35.6% of OTUs detected via metabarcoding could not be confidently assigned to a taxonomic group. The smallest size fraction (500 to 106 μm) was the most diverse (more than two-thirds of OTUs). There was little taxonomic overlap between VA and FL, and samples separated by ∼ 2 m were significantly more similar than samples separated by ∼ 100 m. Ground-truthing with independent assessments of taxonomic composition indicated that both presence-absence information and relative abundance information are captured by metabarcoding data, suggesting considerable potential for ecological studies and environmental monitoring. PMID:25646458

  19. Is benthic food web structure related to diversity of marine macrobenthic communities?

    NASA Astrophysics Data System (ADS)

    Sokołowski, A.; Wołowicz, M.; Asmus, H.; Asmus, R.; Carlier, A.; Gasiunaité, Z.; Grémare, A.; Hummel, H.; Lesutiené, J.; Razinkovas, A.; Renaud, P. E.; Richard, P.; Kędra, M.

    2012-08-01

    Numerical structure and the organisation of food webs within macrozoobenthic communities has been assessed in the European waters (Svalbard, Barents Sea, Baltic Sea, North Sea, Atlantic Ocean and the Mediterranean Sea) to address the interactions between biodiversity and ecosystem functioning. Abundance and classical species diversity indices (S, H', J) of macrofaunal communities were related to principal attributes of food webs (relative trophic level and food chain length, FCL) that were determined from carbon and nitrogen stable isotope values. Structure of marine macrobenthos varies substantially at a geographical scale; total abundance ranges from 63 ind. m-2 to 34,517 ind. m-2, species richness varies from 3 to 166 and the Shannon-Weaver diversity index from 0.26 to 3.26 while Pielou's evenness index is below 0.73. The major source of energy for macrobenthic communities is suspended particulate organic matter, consisting of phytoplankton and detrital particles, sediment particulate organic matter, and microphytobenthos in varying proportions. These food sources support the presence of suspension- and deposit-feeding communities, which dominate numerically on the sea floor. Benthic food webs include usually four to five trophic levels (FCL varies from 3.08 to 4.86). Most species are assigned to the second trophic level (primary consumers), fewer species are grouped in the third trophic level (secondary consumers), and benthic top predators are the least numerous. Most species cluster primarily at the lowest trophic level that is consistent with the typical organization of pyramidal food webs. Food chain length increases with biodiversity, highlighting a positive effect of more complex community structure on food web organisation. In more diverse benthic communities, energy is transferred through more trophic levels while species-poor communities sustain a shorter food chain.

  20. Macroalgal accumulation in a Pacific Northwest estuary - evidence of poor eutrophic condition?

    EPA Science Inventory

    A five year study of benthic macroalgal dynamics was conducted in Yaquina estuary, Oregon, yielding 400 surveys of average macroalgal cover and biomass within three intertidal bathymetric zones at six sites covering the range of native eelgrass habitat. Application of a publishe...

  1. Growth responses of Ulva prolifera to inorganic and organic nutrients: Implications for macroalgal blooms in the southern Yellow Sea, China.

    PubMed

    Li, Hongmei; Zhang, Yongyu; Han, Xiurong; Shi, Xiaoyong; Rivkin, Richard B; Legendre, Louis

    2016-01-01

    The marine macrophyte Ulva prolifera is the dominant green-tide-forming seaweed in the southern Yellow Sea, China. Here we assessed, in the laboratory, the growth rate and nutrient uptake responses of U. prolifera to different nutrient treatments. The growth rates were enhanced in incubations with added organic and inorganic nitrogen [i.e. nitrate (NO3(-)), ammonium (NH4(+)), urea and glycine] and phosphorus [i.e. phosphate (PO4(3-)), adenosine triphosphate (ATP) and glucose 6-phosphate (G-6-P)], relative to the control. The relative growth rates of U. prolifera were higher when enriched with dissolved organic nitrogen (urea and glycine) and phosphorus (ATP and G-6-P) than inorganic nitrogen (NO3(-) and NH4(+)) and phosphorus (PO4(3-)). In contrast, the affinity was higher for inorganic than organic nutrients. Field data in the southern Yellow Sea showed significant inverse correlations between macroalgal biomass and dissolved organic nutrients. Our laboratory and field results indicated that organic nutrients such as urea, glycine and ATP, may contribute to the development of macroalgal blooms in the southern Yellow Sea. PMID:27199215

  2. Growth responses of Ulva prolifera to inorganic and organic nutrients: Implications for macroalgal blooms in the southern Yellow Sea, China

    NASA Astrophysics Data System (ADS)

    Li, Hongmei; Zhang, Yongyu; Han, Xiurong; Shi, Xiaoyong; Rivkin, Richard B.; Legendre, Louis

    2016-05-01

    The marine macrophyte Ulva prolifera is the dominant green-tide-forming seaweed in the southern Yellow Sea, China. Here we assessed, in the laboratory, the growth rate and nutrient uptake responses of U. prolifera to different nutrient treatments. The growth rates were enhanced in incubations with added organic and inorganic nitrogen [i.e. nitrate (NO3‑), ammonium (NH4+), urea and glycine] and phosphorus [i.e. phosphate (PO43‑), adenosine triphosphate (ATP) and glucose 6-phosphate (G-6-P)], relative to the control. The relative growth rates of U. prolifera were higher when enriched with dissolved organic nitrogen (urea and glycine) and phosphorus (ATP and G-6-P) than inorganic nitrogen (NO3‑ and NH4+) and phosphorus (PO43‑). In contrast, the affinity was higher for inorganic than organic nutrients. Field data in the southern Yellow Sea showed significant inverse correlations between macroalgal biomass and dissolved organic nutrients. Our laboratory and field results indicated that organic nutrients such as urea, glycine and ATP, may contribute to the development of macroalgal blooms in the southern Yellow Sea.

  3. Growth responses of Ulva prolifera to inorganic and organic nutrients: Implications for macroalgal blooms in the southern Yellow Sea, China

    PubMed Central

    Li, Hongmei; Zhang, Yongyu; Han, Xiurong; Shi, Xiaoyong; Rivkin, Richard B.; Legendre, Louis

    2016-01-01

    The marine macrophyte Ulva prolifera is the dominant green-tide-forming seaweed in the southern Yellow Sea, China. Here we assessed, in the laboratory, the growth rate and nutrient uptake responses of U. prolifera to different nutrient treatments. The growth rates were enhanced in incubations with added organic and inorganic nitrogen [i.e. nitrate (NO3−), ammonium (NH4+), urea and glycine] and phosphorus [i.e. phosphate (PO43−), adenosine triphosphate (ATP) and glucose 6-phosphate (G-6-P)], relative to the control. The relative growth rates of U. prolifera were higher when enriched with dissolved organic nitrogen (urea and glycine) and phosphorus (ATP and G-6-P) than inorganic nitrogen (NO3− and NH4+) and phosphorus (PO43−). In contrast, the affinity was higher for inorganic than organic nutrients. Field data in the southern Yellow Sea showed significant inverse correlations between macroalgal biomass and dissolved organic nutrients. Our laboratory and field results indicated that organic nutrients such as urea, glycine and ATP, may contribute to the development of macroalgal blooms in the southern Yellow Sea. PMID:27199215

  4. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters.

    PubMed

    Hardoim, C C P; Costa, R; Araújo, F V; Hajdu, E; Peixoto, R; Lins, U; Rosado, A S; van Elsas, J D

    2009-05-01

    Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To address this question, we assessed the composition of specific bacterial communities associated with Aplysina fulva, one of the prevalent sponge species inhabiting Brazilian waters. Specimens of A. fulva and surrounding seawater were collected in triplicate in shallow water at two sites, Caboclo Island and Tartaruga beach, Búzios, Brazil. Total community DNA was extracted from the samples using "direct" and "indirect" approaches. 16S rRNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses of the total bacterial community and of specific bacterial groups--Pseudomonas and Actinobacteria--revealed that the structure of these assemblages in A. fulva differed drastically from that observed in seawater. The DNA extraction methodology and sampling site were determinative for the composition of actinobacterial communities in A. fulva. However, no such effects could be gleaned from total bacterial and Pseudomonas PCR-DGGE profiles. Bacterial 16S rRNA gene clone libraries constructed from directly and indirectly extracted DNA did not differ significantly with respect to diversity and composition. Altogether, the libraries encompassed 15 bacterial phyla and the candidate division TM7. Clone sequences affiliated with the Cyanobacteria, Chloroflexi, Gamma- and Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were, in this order, most abundant. The bacterial communities associated with the A. fulva specimens were distinct and differed from those described in studies of sponge-associated microbiota performed with other sponge species. PMID:19304829

  5. Trace Elements in Calcifying Marine Invertebrates Indicate Diverse Sensitivities to the Seawater Carbonate System

    NASA Astrophysics Data System (ADS)

    Doss, W. C.

    2015-12-01

    Surface ocean absorption of anthropogenic CO2 emissions resulting in ocean acidification may interfere with the ability of calcifying marine organisms to biomineralize, since the drop in pH is accompanied by reductions in CaCO3 saturation state. However, recent experiments show that net calcification rates of cultured benthic invertebrate taxa exhibit diverse responses to pCO2-induced changes in saturation state (Ries et al., 2009). Advancement of geochemical tools as biomineralization indicators will enable us to better understand these results and therefore help predict the impacts of ongoing and future decrease in seawater pH on marine organisms. Here we build upon previous work on these specimens by measuring the elemental composition of biogenic calcite and aragonite precipitated in four pCO2 treatments (400; 600; 900; and 2850 ppm). Element ratios (including Sr/Ca, Mg/Ca, Li/Ca, B/Ca, U/Ca, Ba/Ca, Cd/Ca, and Zn/Ca) were analyzed in 18 macro-invertebrate species representing seven phyla (crustacea, cnidaria, echinoidea, rhodophyta, chlorophyta, gastropoda, bivalvia, annelida), then compared to growth rate data and experimental seawater carbonate system parameters: [CO32-], [HCO3-], pH, saturation state, and DIC. Correlations between calcite or aragonite composition and seawater carbonate chemistry are highly taxa-specific, but do not resemble trends observed in growth rate for all species. Apparent carbonate system sensitivities vary widely by element, ranging from strongly correlated to no significant response. Interpretation of these results is guided by mounting evidence for the capacity of individual species to modulate pH and/or saturation state at the site of calcification in response to ambient seawater chemistry. Such biomineralization pathways and strategies in turn likely influence elemental fractionation during CaCO3 precipitation. Ries, J.B., A.L. Cohen, A.L., and D.C. McCorkle (2009), Marine calcifiers exhibit mixed responses to CO2-induced ocean

  6. Diversity and functional analysis of light-driven pumping rhodopsins in marine Flavobacteria.

    PubMed

    Kwon, Yong Min; Kim, So-Young; Jung, Kwang-Hwan; Kim, Sang-Jin

    2016-04-01

    The aims of this study are the description of diversity for proteorhodopsin (PR)-containing flavobacteria in marine environments, the finding of novel photoreceptive membrane proteins, and the elucidation of the effect of light on the growth of three rhodopsin genes containing flavobacterium. We investigated novel sodium ion rhodopsin (NaR) and halorhodopsin (HR) genes from PR-containing flavobacteria that were previously isolated from diverse aquatic sites, mainly from tidal flat sediment (62.5%). In 16 PR-containing isolates, three new types of genes were found. Among these three isolates, one (Nonlabens sp. YIK11 isolated from sediment) contained both the NaR and chloride ion rhodopsin (ClR) - HR type of gene. The sequences showed that the DTE (proton pump), NDQ (sodium ion pump) and NTQ (chloride ion pump) motifs corresponding to the D85, T89, and D96 positions in bacteriorhodopsin (BR) were well conserved. Phylogenetic analysis indicated that three NaR and one ClR grouped within the same clade, as previously reported. Illumination of cell suspensions showed the change in proton pump activity, supporting that one or more rhodopsins are functional. The qRT-PCR study revealed that three rhodopsin genes, especially NaR, are highly induced when they are incubated in the presence of light or in the absence of sufficient nutrients. The expression levels of the DTE, NDQ, and NTQ motif-containing rhodopsin genes in YIK11 correlate positively with illumination, but negatively with nutrient levels. Based on those results, we concluded that light has a positive impact on the relative expression levels of the three rhodopsin genes in the flavobacterium, Nonlabens sp. YIK11, but with no apparent positive impact on growth. Consequently, light did not stimulate the growth of YIK11 as determined by cell numbers in a nutrient-limited or -enriched medium, although it contains and induces three rhodopsins. PMID:26663527

  7. Diversity and population structure of Marine Group A bacteria in the Northeast subarctic Pacific Ocean.

    PubMed

    Allers, Elke; Wright, Jody J; Konwar, Kishori M; Howes, Charles G; Beneze, Erica; Hallam, Steven J; Sullivan, Matthew B

    2013-02-01

    Marine Group A (MGA) is a candidate phylum of Bacteria that is ubiquitous and abundant in the ocean. Despite being prevalent, the structural and functional properties of MGA populations remain poorly constrained. Here, we quantified MGA diversity and population structure in relation to nutrients and O(2) concentrations in the oxygen minimum zone (OMZ) of the Northeast subarctic Pacific Ocean using a combination of catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) and 16S small subunit ribosomal RNA (16S rRNA) gene sequencing (clone libraries and 454-pyrotags). Estimates of MGA abundance as a proportion of total bacteria were similar across all three methods although estimates based on CARD-FISH were consistently lower in the OMZ (5.6%±1.9%) than estimates based on 16S rRNA gene clone libraries (11.0%±3.9%) or pyrotags (9.9%±1.8%). Five previously defined MGA subgroups were recovered in 16S rRNA gene clone libraries and five novel subgroups were defined (HF770D10, P262000D03, P41300E03, P262000N21 and A714018). Rarefaction analysis of pyrotag data indicated that the ultimate richness of MGA was very nearly sampled. Spearman's rank analysis of MGA abundances by CARD-FISH and O(2) concentrations resulted in significant correlation. Analyzed in more detail by 16S rRNA pyrotag sequencing, MGA operational taxonomic units affiliated with subgroups Arctic95A-2 and A714018 comprised 0.3-2.4% of total bacterial sequences and displayed strong correlations with decreasing O(2) concentration. This study is the first comprehensive description of MGA diversity using complementary techniques. These results provide a phylogenetic framework for interpreting future studies on ecotype selection among MGA subgroups, and suggest a potentially important role for MGA in the ecology and biogeochemistry of OMZs. PMID:23151638

  8. Diversity and population structure of Marine Group A bacteria in the Northeast subarctic Pacific Ocean

    PubMed Central

    Allers, Elke; Wright, Jody J; Konwar, Kishori M; Howes, Charles G; Beneze, Erica; Hallam, Steven J; Sullivan, Matthew B

    2013-01-01

    Marine Group A (MGA) is a candidate phylum of Bacteria that is ubiquitous and abundant in the ocean. Despite being prevalent, the structural and functional properties of MGA populations remain poorly constrained. Here, we quantified MGA diversity and population structure in relation to nutrients and O2 concentrations in the oxygen minimum zone (OMZ) of the Northeast subarctic Pacific Ocean using a combination of catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) and 16S small subunit ribosomal RNA (16S rRNA) gene sequencing (clone libraries and 454-pyrotags). Estimates of MGA abundance as a proportion of total bacteria were similar across all three methods although estimates based on CARD-FISH were consistently lower in the OMZ (5.6%±1.9%) than estimates based on 16S rRNA gene clone libraries (11.0%±3.9%) or pyrotags (9.9%±1.8%). Five previously defined MGA subgroups were recovered in 16S rRNA gene clone libraries and five novel subgroups were defined (HF770D10, P262000D03, P41300E03, P262000N21 and A714018). Rarefaction analysis of pyrotag data indicated that the ultimate richness of MGA was very nearly sampled. Spearman's rank analysis of MGA abundances by CARD-FISH and O2 concentrations resulted in significant correlation. Analyzed in more detail by 16S rRNA pyrotag sequencing, MGA operational taxonomic units affiliated with subgroups Arctic95A-2 and A714018 comprised 0.3–2.4% of total bacterial sequences and displayed strong correlations with decreasing O2 concentration. This study is the first comprehensive description of MGA diversity using complementary techniques. These results provide a phylogenetic framework for interpreting future studies on ecotype selection among MGA subgroups, and suggest a potentially important role for MGA in the ecology and biogeochemistry of OMZs. PMID:23151638

  9. Protocol for Assessing Antifouling Activities of Macroalgal Extracts.

    PubMed

    Hellio, Claire; Trepos, Rozenn; Aguila-Ramírez, R Noemí; Hernández-Guerrero, Claudia J

    2015-01-01

    The development of novel environmentally friendly antifouling (AF) solutions is a very active field in fundamental and applied research. An attractive option in producing such material resides in biomimetic studies: living organisms have evolved well-adapted structures and materials over geological times through natural selection. In this chapter, we explain the experimental procedure to be followed for the preparation of macroalgal extracts and to assess their AF efficiency towards key species. All bioassays described here have the advantage of being fast, reliable, and standardized. PMID:26108522

  10. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts.

    PubMed

    Mason, Olivia U; Di Meo-Savoie, Carol A; Van Nostrand, Joy D; Zhou, Jizhong; Fisk, Martin R; Giovannoni, Stephen J

    2009-02-01

    We used molecular techniques to analyze basalts of varying ages that were collected from the East Pacific Rise, 9 degrees N, from the rift axis of the Juan de Fuca Ridge and from neighboring seamounts. Cluster analysis of 16S rDNA terminal restriction fragment polymorphism data revealed that basalt endoliths are distinct from seawater and that communities clustered, to some degree, based on the age of the host rock. This age-based clustering suggests that alteration processes may affect community structure. Cloning and sequencing of bacterial and archaeal 16S rRNA genes revealed 12 different phyla and subphyla associated with basalts. These include the Gemmatimonadetes, Nitrospirae, the candidate phylum SBR1093 in the bacteria, and in the Archaea Marine Benthic Group B, none of which have been previously reported in basalts. We delineated novel ocean crust clades in the gamma-Proteobacteria, Planctomycetes and Actinobacteria that are composed entirely of basalt-associated microflora, and may represent basalt ecotypes. Finally, microarray analysis of functional genes in basalt revealed that genes coding for previously unreported processes such as carbon fixation, methane oxidation, methanogenesis and nitrogen fixation are present, suggesting that basalts harbor previously unrecognized metabolic diversity. These novel processes could exert a profound influence on ocean chemistry. PMID:18843298

  11. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts

    SciTech Connect

    Mason, Olivia U.; Di Meo-Savoie, Carol A.; Van Nostrand, Joy D.; Zhou, Jizhong; Fisk, Martin R.; Giovannoni, Stephen J.

    2008-09-30

    We used molecular techniques to analyze basalts of varying ages that were collected from the East Pacific Rise, 9 oN, from the rift axis of the Juan de Fuca Ridge, and from neighboring seamounts. Cluster analysis of 16S rDNA Terminal Restriction Fragment Polymorphism data revealed that basalt endoliths are distinct from seawater and that communities clustered, to some degree, based on the age of the host rock. This age-based clustering suggests that alteration processes may affect community structure. Cloning and sequencing of bacterial and archaeal 16S rRNA genes revealed twelve different phyla and sub-phyla associated with basalts. These include the Gemmatimonadetes, Nitrospirae, the candidate phylum SBR1093 in the c, andin the Archaea Marine Benthic Group B, none of which have been previously reported in basalts. We delineated novel ocean crust clades in the gamma-Proteobacteria, Planctomycetes, and Actinobacteria that are composed entirely of basalt associated microflora, and may represent basalt ecotypes. Finally, microarray analysis of functional genes in basalt revealed that genes coding for previously unreported processes such as carbon fixation, methane-oxidation, methanogenesis, and nitrogen fixation are present, suggesting that basalts harbor previously unrecognized metabolic diversity. These novel processes could exert a profound influence on ocean chemistry.

  12. α-Pyrones with Diverse Hydroxy Substitutions from Three Marine-Derived Nocardiopsis Strains.

    PubMed

    Zhang, Haibo; Saurav, Kumar; Yu, Ziquan; Mándi, Attila; Kurtán, Tibor; Li, Jie; Tian, Xinpeng; Zhang, Qingbo; Zhang, Wenjun; Zhang, Changsheng

    2016-06-24

    Eight new α-pyrones 1-8 and three known α-pyrones 9-11 were isolated from three marine-derived Nocardiopsis strains SCSIO 10419, SCSIO 04583, and SCSIO KS107. The structures of compounds 1-8 were elucidated by comprehensive spectral analyses. The absolute configurations of 4-deoxyphomapyrone C (1), 4-deoxy-11-hydroxyphomapyrone C (3), 4-deoxy-7R-hydroxyphomapyrone C (5), and phomapyrone C (11) were determined by TDDFT-ECD calculations for the solution conformers, which revealed that the conformation of the side chain was decisive for the sign of the characteristic high-wavelength ECD transition. (-)-4-Deoxy-8-hydroxyphomapyrone C (4) was isolated from SCSIO 10419 and was deduced as a diastereomeric mixture containing (8S)- and (8R)-4-deoxy-8-hydroxyphomapyrone C in a ratio of 2.6:1 (8R:8S), by chiral-phase HPLC analysis and Mosher's ester analysis. Interestingly, 7-hydroxymucidone (9) was isolated from both SCSIO 04583 and SCSIO KS107, as an enantiomeric mixture containing (7S)-hydroxymucidone (major in 9 from SCSIO 04583) and (7R)-hydroxymucidone (major in 9 from SCSIO KS107). α-Pyrones 3-5 were identified as three isomers of phomapyrone C (11) with diverse hydroxy substitutions. α-Pyrones 10-hydroxymucidone (6), 4-hydroxymucidone (8), and 9, differed in the position of the hydroxy group. Several α-pyrones exhibited moderate growth inhibitory activity against Micrococcus luteus and Bacillus subtilis. PMID:27300427

  13. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas.

    PubMed

    Neave, Matthew J; Apprill, Amy; Ferrier-Pagès, Christine; Voolstra, Christian R

    2016-10-01

    Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses. PMID:27557714

  14. Abrolhos bank reef health evaluated by means of water quality, microbial diversity, benthic cover, and fish biomass data.

    PubMed

    Bruce, Thiago; Meirelles, Pedro M; Garcia, Gizele; Paranhos, Rodolfo; Rezende, Carlos E; de Moura, Rodrigo L; Filho, Ronaldo-Francini; Coni, Ericka O C; Vasconcelos, Ana Tereza; Amado Filho, Gilberto; Hatay, Mark; Schmieder, Robert; Edwards, Robert; Dinsdale, Elizabeth; Thompson, Fabiano L

    2012-01-01

    The health of the coral reefs of the Abrolhos Bank (Southwestern Atlantic) was characterized with a holistic approach using measurements of four ecosystem components: (i) inorganic and organic nutrient concentrations, [1] fish biomass, [1] macroalgal and coral cover and (iv) microbial community composition and abundance. The possible benefits of protection from fishing were particularly evaluated by comparing sites with varying levels of protection. Two reefs within the well-enforced no-take area of the National Marine Park of Abrolhos (Parcel dos Abrolhos and California) were compared with two unprotected coastal reefs (Sebastião Gomes and Pedra de Leste) and one legally protected but poorly enforced coastal reef (the "paper park" of Timbebas Reef). The fish biomass was lower and the fleshy macroalgal cover was higher in the unprotected reefs compared with the protected areas. The unprotected and protected reefs had similar seawater chemistry. Lower vibrio CFU counts were observed in the fully protected area of California Reef. Metagenome analysis showed that the unprotected reefs had a higher abundance of archaeal and viral sequences and more bacterial pathogens, while the protected reefs had a higher abundance of genes related to photosynthesis. Similar to other reef systems in the world, there was evidence that reductions in the biomass of herbivorous fishes and the consequent increase in macroalgal cover in the Abrolhos Bank may be affecting microbial diversity and abundance. Through the integration of different types of ecological data, the present study showed that protection from fishing may lead to greater reef health. The data presented herein suggest that protected coral reefs have higher microbial diversity, with the most degraded reef (Sebastião Gomes) showing a marked reduction in microbial species richness. It is concluded that ecological conditions in unprotected reefs may promote the growth and rapid evolution of opportunistic microbial pathogens

  15. Abrolhos Bank Reef Health Evaluated by Means of Water Quality, Microbial Diversity, Benthic Cover, and Fish Biomass Data

    PubMed Central

    Bruce, Thiago; Meirelles, Pedro M.; Garcia, Gizele; Paranhos, Rodolfo; Rezende, Carlos E.; de Moura, Rodrigo L.; Filho, Ronaldo-Francini; Coni, Ericka O. C.; Vasconcelos, Ana Tereza; Amado Filho, Gilberto; Hatay, Mark; Schmieder, Robert; Edwards, Robert; Dinsdale, Elizabeth; Thompson, Fabiano L.

    2012-01-01

    The health of the coral reefs of the Abrolhos Bank (southwestern Atlantic) was characterized with a holistic approach using measurements of four ecosystem components: (i) inorganic and organic nutrient concentrations, [1] fish biomass, [1] macroalgal and coral cover and (iv) microbial community composition and abundance. The possible benefits of protection from fishing were particularly evaluated by comparing sites with varying levels of protection. Two reefs within the well-enforced no-take area of the National Marine Park of Abrolhos (Parcel dos Abrolhos and California) were compared with two unprotected coastal reefs (Sebastião Gomes and Pedra de Leste) and one legally protected but poorly enforced coastal reef (the “paper park” of Timbebas Reef). The fish biomass was lower and the fleshy macroalgal cover was higher in the unprotected reefs compared with the protected areas. The unprotected and protected reefs had similar seawater chemistry. Lower vibrio CFU counts were observed in the fully protected area of California Reef. Metagenome analysis showed that the unprotected reefs had a higher abundance of archaeal and viral sequences and more bacterial pathogens, while the protected reefs had a higher abundance of genes related to photosynthesis. Similar to other reef systems in the world, there was evidence that reductions in the biomass of herbivorous fishes and the consequent increase in macroalgal cover in the Abrolhos Bank may be affecting microbial diversity and abundance. Through the integration of different types of ecological data, the present study showed that protection from fishing may lead to greater reef health. The data presented herein suggest that protected coral reefs have higher microbial diversity, with the most degraded reef (Sebastião Gomes) showing a marked reduction in microbial species richness. It is concluded that ecological conditions in unprotected reefs may promote the growth and rapid evolution of opportunistic microbial

  16. Positive Feedbacks Enhance Macroalgal Resilience on Degraded Coral Reefs.

    PubMed

    Dell, Claire L A; Longo, Guilherme O; Hay, Mark E

    2016-01-01

    Many reefs have shifted from coral and fish dominated habitats to less productive macroalgal dominated habitats, and current research is investigating means of reversing this phase shift. In the tropical Pacific, overfished reefs with inadequate herbivory can become dominated by the brown alga Sargassum polycystum. This alga suppresses recruitment and survival of corals and fishes, thus limiting the potential for reef recovery. Here we investigate the mechanisms that reinforce S. polycystum dominance and show that in addition to negatively affecting other species, this species acts in a self-reinforcing manner, positively promoting survival and growth of conspecifics. We found that survival and growth of both recruit-sized and mature S. polycystum fronds were higher within Sargassum beds than outside the beds and these results were found in both protected and fished reefs. Much of this benefit resulted from reduced herbivory within the Sargassum beds, but adult fronds also grew ~50% more within the beds even when herbivory did not appear to be occurring, suggesting some physiological advantage despite the intraspecific crowding. Thus via positive feedbacks, S. polycystum enhances its own growth and resistance to herbivores, facilitating its dominance (perhaps also expansion) and thus its resilience on degraded reefs. This may be a key feedback mechanism suppressing the recovery of coral communities in reefs dominated by macroalgal beds. PMID:27186979

  17. Positive Feedbacks Enhance Macroalgal Resilience on Degraded Coral Reefs

    PubMed Central

    Dell, Claire L. A.; Longo, Guilherme O.

    2016-01-01

    Many reefs have shifted from coral and fish dominated habitats to less productive macroalgal dominated habitats, and current research is investigating means of reversing this phase shift. In the tropical Pacific, overfished reefs with inadequate herbivory can become dominated by the brown alga Sargassum polycystum. This alga suppresses recruitment and survival of corals and fishes, thus limiting the potential for reef recovery. Here we investigate the mechanisms that reinforce S. polycystum dominance and show that in addition to negatively affecting other species, this species acts in a self-reinforcing manner, positively promoting survival and growth of conspecifics. We found that survival and growth of both recruit-sized and mature S. polycystum fronds were higher within Sargassum beds than outside the beds and these results were found in both protected and fished reefs. Much of this benefit resulted from reduced herbivory within the Sargassum beds, but adult fronds also grew ~50% more within the beds even when herbivory did not appear to be occurring, suggesting some physiological advantage despite the intraspecific crowding. Thus via positive feedbacks, S. polycystum enhances its own growth and resistance to herbivores, facilitating its dominance (perhaps also expansion) and thus its resilience on degraded reefs. This may be a key feedback mechanism suppressing the recovery of coral communities in reefs dominated by macroalgal beds. PMID:27186979

  18. Genetic diversity in cultured and wild marine cyanomyoviruses reveals phosphorus stress as a strong selective agent.

    PubMed

    Kelly, Libusha; Ding, Huiming; Huang, Katherine H; Osburne, Marcia S; Chisholm, Sallie W

    2013-09-01

    Viruses that infect marine cyanobacteria-cyanophages-often carry genes with orthologs in their cyanobacterial hosts, and the frequency of these genes can vary with habitat. To explore habitat-influenced genomic diversity more deeply, we used the genomes of 28 cultured cyanomyoviruses as references to identify phage genes in three ocean habitats. Only about 6-11% of genes were consistently observed in the wild, revealing high gene-content variability in these populations. Numerous shared phage/host genes differed in relative frequency between environments, including genes related to phosphorous acquisition, photorespiration, photosynthesis and the pentose phosphate pathway, possibly reflecting environmental selection for these genes in cyanomyovirus genomes. The strongest emergent signal was related to phosphorous availability; a higher fraction of genomes from relatively low-phosphorus environments-the Sargasso and Mediterranean Sea-contained host-like phosphorus assimilation genes compared with those from the N. Pacific Gyre. These genes are known to be upregulated when the host is phosphorous starved, a response mediated by pho box motifs in phage genomes that bind a host regulatory protein. Eleven cyanomyoviruses have predicted pho boxes upstream of the phosphate-acquisition genes pstS and phoA; eight of these have a conserved cyanophage-specific gene (PhCOG173) between the pho box and pstS. PhCOG173 is also found upstream of other shared phage/host genes, suggesting a unique regulatory role. Pho boxes are found upstream of high light-inducible (hli) genes in cyanomyoviruses, suggesting that this motif may have a broader role than regulating phosphorous-stress responses in infected hosts or that these hlis are involved in the phosphorous-stress response. PMID:23657361

  19. Molecular Diversity and Gene Evolution of the Venom Arsenal of Terebridae Predatory Marine Snails

    PubMed Central

    Gorson, Juliette; Ramrattan, Girish; Verdes, Aida; Wright, Elizabeth M.; Kantor, Yuri; Rajaram Srinivasan, Ramakrishnan; Musunuri, Raj; Packer, Daniel; Albano, Gabriel; Qiu, Wei-Gang; Holford, Mandë

    2015-01-01

    Venom peptides from predatory organisms are a resource for investigating evolutionary processes such as adaptive radiation or diversification, and exemplify promising targets for biomedical drug development. Terebridae are an understudied lineage of conoidean snails, which also includes cone snails and turrids. Characterization of cone snail venom peptides, conotoxins, has revealed a cocktail of bioactive compounds used to investigate physiological cellular function, predator-prey interactions, and to develop novel therapeutics. However, venom diversity of other conoidean snails remains poorly understood. The present research applies a venomics approach to characterize novel terebrid venom peptides, teretoxins, from the venom gland transcriptomes of Triplostephanus anilis and Terebra subulata. Next-generation sequencing and de novo assembly identified 139 putative teretoxins that were analyzed for the presence of canonical peptide features as identified in conotoxins. To meet the challenges of de novo assembly, multiple approaches for cross validation of findings were performed to achieve reliable assemblies of venom duct transcriptomes and to obtain a robust portrait of Terebridae venom. Phylogenetic methodology was used to identify 14 teretoxin gene superfamilies for the first time, 13 of which are unique to the Terebridae. Additionally, basic local algorithm search tool homology-based searches to venom-related genes and posttranslational modification enzymes identified a convergence of certain venom proteins, such as actinoporin, commonly found in venoms. This research provides novel insights into venom evolution and recruitment in Conoidean predatory marine snails and identifies a plethora of terebrid venom peptides that can be used to investigate fundamental questions pertaining to gene evolution. PMID:26025559

  20. Telonemia-specific environmental 18S rDNA PCR reveals unknown diversity and multiple marine-freshwater colonizations

    PubMed Central

    2010-01-01

    Background Recent surveys of eukaryote 18S rDNA diversity in marine habitats have uncovered worldwide distribution of the heterotrophic eukaryote phylum Telonemia. Here we investigate the diversity and geographic distribution of Telonemia sequences by in-depth sequencing of several new 18S rDNA clone libraries from both marine and freshwater sites by using a Telonemia-specific PCR strategy. Results In contrast to earlier studies that have employed eukaryote-wide PCR design, we identified a large and unknown diversity of phylotypes and the first rigorous evidence for several freshwater species, altogether comprising 91 unique sequences. Phylogenies of these and publicly available sequences showed 20 statistically supported sub-clades as well as several solitary phylotypes with no clear phylogenetic affiliation. Most of these sub-clades were composed of phylotypes from different geographic regions. Conclusions By using specific PCR primers we reveal a much larger diversity of Telonemia from environmental samples than previously uncovered by eukaryote-wide primers. The new data substantially diminish the geographic structuring of clades identified in earlier studies. Nevertheless, since these clades comprise several distinct phylotypes we cannot exclude endemicity at species level. We identified two freshwater clades and a few solitary phylotypes, implying that Telonemia have colonized freshwater habitats and adapted to the different environmental and ecological conditions at independent occasions. PMID:20534135

  1. Selection of effective macroalgal species and tracing nitrogen sources on the different part of Yantai coast, China indicated by macroalgal δ(15)N values.

    PubMed

    Wang, Yujue; Liu, Dongyan; Richard, Pierre; Di, Baoping

    2016-01-15

    To determine the dominant nitrogen sources and select effective macroalgal species for monitoring eutrophication along the Yantai coast, the total carbon (TOC), total nitrogen (TN) and nitrogen stable isotope ratio (δ(15)N) in macroalgal tissue were analyzed in conjunction with environmental variables in seawater along the Yantai coastline. The ranges of macroalgal tissue δ(15)N values together with dissolved inorganic nitrogen (DIN) composition indicated that except for the atmospheric deposition, there were three dominant types of nitrogen sources along the Yantai coast, with the agricultural fertilizer usage and factorial wastewater input at the S1 (Zhifu Island coast), the sewage discharge at S2 (the Moon Bay coast), the sewage discharge together with aquaculture impacts at S3 (Fisherman Wharf coast) and S4 (the Horse Island coast). Macroalgal growth were not limited by DIN but limited by P at S2, S3 and S4. Macroalgal species suitable or not for DIN source tracing along the Yantai coast were discussed. For sites with low DIN concentration, many species of three phyla could be used for DIN sources tracing with Laurencia okamurai, Gloiopeltis furcata and Ulva pertusa being ideal species. For site with high DIN concentration, however, species of Rhodophyta were not suitable and only Scytosiphon lomentaria and Monostroma nitidium were chosen. PMID:26519590

  2. Biomass decay rates and tissue nutrient loss in bloom and non-bloom-forming macroalgal species

    NASA Astrophysics Data System (ADS)

    Conover, Jessie; Green, Lindsay A.; Thornber, Carol S.

    2016-09-01

    Macroalgal blooms occur in shallow, low-wave energy environments and are generally dominated by fast-growing ephemeral macroalgae. When macroalgal mats undergo senescence and decompose they can cause oxygen depletion and release nutrients into the surrounding water. There are relatively few studies that examine macroalgal decomposition rates in areas impacted by macroalgal blooms. Understanding the rate of macroalgal bloom decomposition is essential to understanding the impacts of macroalgal blooms following senescence. Here, we examined the biomass, organic content, nitrogen decay rates and δ15N values for five macroalgal species (the bloom-forming Agardhiella subulata, Gracilaria vermiculophylla, Ulva compressa, and Ulva rigida and the non-bloom-forming Fucus vesiculosus) in Narragansett Bay, Rhode Island, U.S.A. using a litterbag design. Bloom-forming macroalgae had similar biomass decay rates (0.34-0.51 k d-1) and decayed significantly faster than non-bloom-forming macroalgae (0.09 k d-1). Biomass decay rates also varied temporally, with a significant positive correlation between biomass decay rate and water temperature for U. rigida. Tissue organic content decreased over time in all species, although A. subulata and G. vermiculophylla displayed significantly higher rates of organic content decay than U. compressa, U. rigida, and F. vesiculosus. Agardhiella subulata had a significantly higher rate of tissue nitrogen decay (0.35 k d-1) than all other species. By contrast, only the δ15N of F. vesiculosus changed significantly over the decay period. Overall, our results indicate that bloom-forming macroalgal species decay more rapidly than non-bloom-forming species.

  3. Extensive cryptic species diversity and fine-scale endemism in the marine red alga Portieria in the Philippines

    PubMed Central

    Payo, Dioli Ann; Leliaert, Frederik; Verbruggen, Heroen; D'hondt, Sofie; Calumpong, Hilconida P.; De Clerck, Olivier

    2013-01-01

    We investigated species diversity and distribution patterns of the marine red alga Portieria in the Philippine archipelago. Species boundaries were tested based on mitochondrial, plastid and nuclear encoded loci, using a general mixed Yule-coalescent (GMYC) model-based approach and a Bayesian multilocus species delimitation method. The outcome of the GMYC analysis of the mitochondrial encoded cox2-3 dataset was highly congruent with the multilocus analysis. In stark contrast with the current morphology-based assumption that the genus includes a single, widely distributed species in the Indo-West Pacific (Portieria hornemannii), DNA-based species delimitation resulted in the recognition of 21 species within the Philippines. Species distributions were found to be highly structured with most species restricted to island groups within the archipelago. These extremely narrow species ranges and high levels of intra-archipelagic endemism contrast with the wide-held belief that marine organisms generally have large geographical ranges and that endemism is at most restricted to the archipelagic level. Our results indicate that speciation in the marine environment may occur at spatial scales smaller than 100 km, comparable with some terrestrial systems. Our finding of fine-scale endemism has important consequences for marine conservation and management. PMID:23269854

  4. Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs.

    PubMed

    Suchley, Adam; McField, Melanie D; Alvarez-Filip, Lorenzo

    2016-01-01

    Long-term phase shifts from coral to macroalgal dominated reef systems are well documented in the Caribbean. Although the impact of coral diseases, climate change and other factors is acknowledged, major herbivore loss through disease and overfishing is often assigned a primary role. However, direct evidence for the link between herbivore abundance, macroalgal and coral cover is sparse, particularly over broad spatial scales. In this study we use a database of coral reef surveys performed at 85 sites along the Mesoamerican Reef of Mexico, Belize, Guatemala and Honduras, to examine potential ecological links by tracking site trajectories over the period 2005-2014. Despite the long-term reduction of herbivory capacity reported across the Caribbean, the Mesoamerican Reef region displayed relatively low macroalgal cover at the onset of the study. Subsequently, increasing fleshy macroalgal cover was pervasive. Herbivorous fish populations were not responsible for this trend as fleshy macroalgal cover change was not correlated with initial herbivorous fish biomass or change, and the majority of sites experienced increases in macroalgae browser biomass. This contrasts the coral reef top-down herbivore control paradigm and suggests the role of external factors in making environmental conditions more favourable for algae. Increasing macroalgal cover typically suppresses ecosystem services and leads to degraded reef systems. Consequently, policy makers and local coral reef managers should reassess the focus on herbivorous fish protection and consider complementary measures such as watershed management in order to arrest this trend. PMID:27280075

  5. Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs

    PubMed Central

    Suchley, Adam; McField, Melanie D.

    2016-01-01

    Long-term phase shifts from coral to macroalgal dominated reef systems are well documented in the Caribbean. Although the impact of coral diseases, climate change and other factors is acknowledged, major herbivore loss through disease and overfishing is often assigned a primary role. However, direct evidence for the link between herbivore abundance, macroalgal and coral cover is sparse, particularly over broad spatial scales. In this study we use a database of coral reef surveys performed at 85 sites along the Mesoamerican Reef of Mexico, Belize, Guatemala and Honduras, to examine potential ecological links by tracking site trajectories over the period 2005–2014. Despite the long-term reduction of herbivory capacity reported across the Caribbean, the Mesoamerican Reef region displayed relatively low macroalgal cover at the onset of the study. Subsequently, increasing fleshy macroalgal cover was pervasive. Herbivorous fish populations were not responsible for this trend as fleshy macroalgal cover change was not correlated with initial herbivorous fish biomass or change, and the majority of sites experienced increases in macroalgae browser biomass. This contrasts the coral reef top-down herbivore control paradigm and suggests the role of external factors in making environmental conditions more favourable for algae. Increasing macroalgal cover typically suppresses ecosystem services and leads to degraded reef systems. Consequently, policy makers and local coral reef managers should reassess the focus on herbivorous fish protection and consider complementary measures such as watershed management in order to arrest this trend. PMID:27280075

  6. Diversity and characterization of culturable fungi from marine sediment collected from St. Helena Bay, South Africa.

    PubMed

    Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2012-08-01

    Marine fungi are known to originate from a wide variety of habitats within the marine environment. Marine sediment represents one environmental niche, with most fungi occurring in these sediments being facultative marine fungi with terrestrial origins. It has not been proven whether these fungi merely survive the harsh environmental conditions presented by the ocean sediment, as opposed to playing an active role in this ecological niche. During this study, marine sediment was collected from St. Helena Bay, on the west coast of the Western Cape, South Africa. Using dilution, enrichment, and repetitive culturing techniques, 59 fungal isolates were obtained from marine sediments and identified to at least genus level using morphological and molecular methods. Moreover, a series of tests were performed to characterize the physical and physicochemical attributes of the isolates. Results showed that the isolates not only survived but also had the potential to grow in the natural conditions present in this environment. Extracellular cellulase was produced by the filamentous fungal isolates indicating their probable role in detrital decay processes and therefore the carbon cycle on the ocean bed. Also, denitrification patterns were observed when isolates were grown in liquid media amended with NaNO(2), NaNO(3), and (NH(4))SO(4), implicating that these fungi have the potential to play an active role in denitrification, co-denitrification, and ammonification phases of nitrogen cycles occurring in the marine sediments. PMID:22430506

  7. Marine trophic diversity in an anadromous fish is linked to its life-history variation in fresh water.

    PubMed

    Johnson, Susan P; Schindler, Daniel E

    2013-02-23

    We used carbon and nitrogen stable isotopes from muscle tissues accrued in the ocean to examine whether marine foraging tactics in anadromous sockeye salmon (Oncorhynchus nerka) are linked to their ultimate freshwater life history as adults. Adults from large-bodied populations spawning in deep freshwater habitats had more enriched δ(15)N than individuals from small-bodied populations from shallow streams. Within populations, earlier maturing individuals had higher δ(15)N than older fish. These differences in δ(15)N suggest that the fish with different life histories or spawning habitats in freshwater either fed at different trophic positions or in different habitats in the ocean. We propose that, nested within interspecific diversity in the ecological attributes of salmon, population and life-history diversity in spawning adults is associated with variation in marine foraging tactics. These results further indicate that the trophic diversity of sockeye salmon in the ocean may be linked to trade-offs in ecological and evolutionary constraints they eventually experience as adults in freshwater ecosystems. PMID:23173190

  8. A sweet new wave: structures and mechanisms of enzymes that digest polysaccharides from marine algae.

    PubMed

    Hehemann, Jan-Hendrik; Boraston, Alisdair B; Czjzek, Mirjam

    2014-10-01

    Marine algae contribute approximately half of the global primary production. The large amounts of polysaccharides synthesized by these algae are degraded and consumed by microbes that utilize carbohydrate-active enzymes (CAZymes), thus creating one of the largest and most dynamic components of the Earth's carbon cycle. Over the last decade, structural and functional characterizations of marine CAZymes have revealed a diverse set of scaffolds and mechanisms that are used to degrade agars, carrageenan, alginate and ulvan-polysaccharides from red, brown and green seaweeds, respectively. The analysis of these CAZymes is not only expanding our understanding of their functions but is enabling the enhanced annotation of (meta)-genomic data sets, thus promoting an improved understanding of microbes that drive this marine component of the carbon cycle. Furthermore, this information is setting a foundation that will enable marine algae to be harnessed as a novel resource for biorefineries. In this review, we cover the most recent structural and functional analyses of marine CAZymes that are specialized in the digestion of macro-algal polysaccharides. PMID:25136767

  9. Emergence of diversity and stereochemical outcomes in the biosynthetic pathways of cyclobutane-centered marine alkaloid dimers.

    PubMed

    Beniddir, Mehdi A; Evanno, Laurent; Joseph, Delphine; Skiredj, Adam; Poupon, Erwan

    2016-07-28

    Covering: up to 2016Dictazoles and sceptrins are singular metabolites of marine origin. The present dichotomic case study provides a comprehensive perspective on these cyclobutane-centered alkaloids and their respective families. Indeed, their upstream and downstream chemistry are both treated herein. Relevant isolation reports and bio-inspired total syntheses are used to decipher the currently admitted biosynthetic hypotheses as well as the emergence of diversity in the two series. This review proposes a transversal vision of the topic, where most aspects of natural product chemistry have a critical importance. PMID:27220412

  10. Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates

    PubMed Central

    Trindade, Marla; van Zyl, Leonardo Joaquim; Navarro-Fernández, José; Abd Elrazak, Ahmed

    2015-01-01

    Microbial natural products exhibit immense structural diversity and complexity and have captured the attention of researchers for several decades. They have been explored for a wide spectrum of applications, most noteworthy being their prominent role in medicine, and their versatility expands to application as drugs for many diseases. Accessing unexplored environments harboring unique microorganisms is expected to yield novel bioactive metabolites with distinguishing functionalities, which can be supplied to the starved pharmaceutical market. For this purpose the oceans have turned out to be an attractive and productive field. Owing to the enormous biodiversity of marine microorganisms, as well as the growing evidence that many metabolites previously isolated from marine invertebrates and algae are actually produced by their associated bacteria, the interest in marine microorganisms has intensified. Since the majority of the microorganisms are uncultured, metagenomic tools are required to exploit the untapped biochemistry. However, after years of employing metagenomics for marine drug discovery, new drugs are vastly under-represented. While a plethora of natural product biosynthetic genes and clusters are reported, only a minor number of potential therapeutic compounds have resulted through functional metagenomic screening. This review explores specific obstacles that have led to the low success rate. In addition to the typical problems encountered with traditional functional metagenomic-based screens for novel biocatalysts, there are enormous limitations which are particular to drug-like metabolites. We also present how targeted and function-guided strategies, employing modern, and multi-disciplinary approaches have yielded some of the most exciting discoveries attributed to uncultured marine bacteria. These discoveries set the stage for progressing the production of drug candidates from uncultured bacteria for pre-clinical and clinical development. PMID:26379658

  11. Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates.

    PubMed

    Trindade, Marla; van Zyl, Leonardo Joaquim; Navarro-Fernández, José; Abd Elrazak, Ahmed

    2015-01-01

    Microbial natural products exhibit immense structural diversity and complexity and have captured the attention of researchers for several decades. They have been explored for a wide spectrum of applications, most noteworthy being their prominent role in medicine, and their versatility expands to application as drugs for many diseases. Accessing unexplored environments harboring unique microorganisms is expected to yield novel bioactive metabolites with distinguishing functionalities, which can be supplied to the starved pharmaceutical market. For this purpose the oceans have turned out to be an attractive and productive field. Owing to the enormous biodiversity of marine microorganisms, as well as the growing evidence that many metabolites previously isolated from marine invertebrates and algae are actually produced by their associated bacteria, the interest in marine microorganisms has intensified. Since the majority of the microorganisms are uncultured, metagenomic tools are required to exploit the untapped biochemistry. However, after years of employing metagenomics for marine drug discovery, new drugs are vastly under-represented. While a plethora of natural product biosynthetic genes and clusters are reported, only a minor number of potential therapeutic compounds have resulted through functional metagenomic screening. This review explores specific obstacles that have led to the low success rate. In addition to the typical problems encountered with traditional functional metagenomic-based screens for novel biocatalysts, there are enormous limitations which are particular to drug-like metabolites. We also present how targeted and function-guided strategies, employing modern, and multi-disciplinary approaches have yielded some of the most exciting discoveries attributed to uncultured marine bacteria. These discoveries set the stage for progressing the production of drug candidates from uncultured bacteria for pre-clinical and clinical development. PMID:26379658

  12. Culturable diversity and antimicrobial activity of Actinobacteria from marine sediments in Valparaíso bay, Chile

    PubMed Central

    Claverías, Fernanda P.; Undabarrena, Agustina; González, Myriam; Seeger, Michael; Cámara, Beatriz

    2015-01-01

    Marine-derived Actinobacteria are a source of a broad variety of secondary metabolites with diverse biological activities, such as antibiotics and antitumorals; many of which have been developed for clinical use. Rare Actinobacteria represent an untapped source of new bioactive compounds that have been scarcely recognized. In this study, rare Actinobacteria from marine sediments were isolated from the Valparaíso bay, Chile, and their potential to produce antibacterial compounds was evaluated. Different culture conditions and selective media that select the growth of Actinobacteria were used leading to the isolation of 68 bacterial strains. Comparative analysis of the 16S rRNA gene sequences led to identifying isolates that belong to the phylum Actinobacteria with genetic affiliations to 17 genera: Aeromicrobium, Agrococcus, Arthrobacter, Brachybacterium, Corynebacterium, Dietzia, Flaviflexus, Gordonia, Isoptericola, Janibacter, Microbacterium, Mycobacterium, Ornithinimicrobium, Pseudonocardia, Rhodococcus, Streptomyces, and Tessaracoccus. Also, one isolate could not be consistently classified and formed a novel phylogenetic branch related to the Nocardiopsaceae family. The antimicrobial activity of these isolates was evaluated, demonstrating the capability of specific novel isolates to inhibit the growth of Gram-positive and Gram-negative bacteria. In conclusion, this study shows a rich biodiversity of culturable Actinobacteria, associated to marine sediments from Valparaíso bay, highlighting novel rare Actinobacteria, and their potential for the production of biologically active compounds. PMID:26284034

  13. Megafaunal Communities in Rapidly Warming Fjords along the West Antarctic Peninsula: Hotspots of Abundance and Beta Diversity

    PubMed Central

    Grange, Laura J.; Smith, Craig R.

    2013-01-01

    Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436–725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400–700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the

  14. Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity.

    PubMed

    Grange, Laura J; Smith, Craig R

    2013-01-01

    Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436-725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400-700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the

  15. Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes.

    PubMed

    He, W-H; Shi, G R; Twitchett, R J; Zhang, Y; Zhang, K-X; Song, H-J; Yue, M-L; Wu, S-B; Wu, H-T; Yang, T-L; Xiao, Y-F

    2015-03-01

    Analysis of Permian-Triassic brachiopod diversity and body size changes from different water depths spanning the continental shelf to basinal facies in South China provides insights into the process of environmental deterioration. Comparison of the temporal changes of brachiopod diversity between deepwater and shallow-water facies demonstrates that deepwater brachiopods disappeared earlier than shallow-water brachiopods. This indicates that high environmental stress commenced first in deepwater settings and later extended to shallow waters. This environmental stress is attributed to major volcanic eruptions, which first led to formation of a stratified ocean and a chemocline in the outer shelf and deeper water environments, causing the disappearance of deep marine benthos including brachiopods. The chemocline then rapidly migrated upward and extended to shallow waters, causing widespread mass extinction of shallow marine benthos. We predict that the spatial and temporal patterns of earlier onset of disappearance/extinction and ecological crisis in deeper water ecosystems will be recorded during other episodes of rapid global warming. PMID:25412754

  16. Phylogenetic Diversity and Biological Activity of Actinobacteria Isolated from the Chukchi Shelf Marine Sediments in the Arctic Ocean

    PubMed Central

    Yuan, Meng; Yu, Yong; Li, Hui-Rong; Dong, Ning; Zhang, Xiao-Hua

    2014-01-01

    Marine environments are a rich source of Actinobacteria and have the potential to produce a wide variety of biologically active secondary metabolites. In this study, we used four selective isolation media to culture Actinobacteria from the sediments collected from the Chukchi Shelf in the Arctic Ocean. A total of 73 actinobacterial strains were isolated. Based on repetitive DNA fingerprinting analysis, we selected 30 representatives for partial characterization according to their phylogenetic diversity, antimicrobial activities and secondary-metabolite biosynthesis genes. Results from the 16S rRNA gene sequence analysis indicated that the 30 strains could be sorted into 18 phylotypes belonging to 14 different genera: Agrococcus, Arsenicicoccus, Arthrobacter, Brevibacterium, Citricoccus, Janibacter, Kocuria, Microbacterium, Microlunatus, Nocardioides, Nocardiopsis, Saccharopolyspora, Salinibacterium and Streptomyces. To our knowledge, this paper is the first report on the isolation of Microlunatus genus members from marine habitats. Of the 30 isolates, 11 strains exhibited antibacterial and/or antifungal activity, seven of which have activities against Bacillus subtilis and Candida albicans. All 30 strains have at least two biosynthetic genes, one-third of which possess more than four biosynthetic genes. This study demonstrates the significant diversity of Actinobacteria in the Chukchi Shelf sediment and their potential for producing biologically active compounds and novel material for genetic manipulation or combinatorial biosynthesis. PMID:24663116

  17. Limited genetic diversity among Sarcocystis neurona strains infecting southern sea otters precludes distinction between marine and terrestrial isolates.

    PubMed

    Wendte, J M; Miller, M A; Nandra, A K; Peat, S M; Crosbie, P R; Conrad, P A; Grigg, M E

    2010-04-19

    Sarcocystis neurona is an apicomplexan parasite identified as a cause of fatal neurological disease in the threatened southern sea otter (Enhydra lutris nereis). In an effort to characterize virulent S. neurona strains circulating in the marine ecosystem, this study developed a range of markers relevant for molecular genotyping. Highly conserved sequences within the 18S ribosomal gene array, the plastid-encoded RNA polymerase (RPOb) and the cytochrome c oxidase subunit 1 mitochondrial gene (CO1) were assessed for their ability to distinguish isolates at the genus and species level. For within-species comparisons, five surface antigens (SnSAG1-SnSAG5) and one high resolution microsatellite marker (Sn9) were developed as genotyping markers to evaluate intra-strain diversity. Molecular analysis at multiple loci revealed insufficient genetic diversity to distinguish terrestrial isolates from strains infecting marine mammals. Furthermore, SnSAG specific primers applied against DNA from the closely related species, Sarcocystis falcatula, lead to the discovery of highly similar orthologs to SnSAG2, 3, and 4, calling into question the specificity of diagnostic tests based on these antigens. The results of this study suggest a population genetic structure for S. neurona similar to that reported for the related parasite, Toxoplasma gondii, dominated by a limited number of successful genotypes. PMID:20071081

  18. Phylogenetic diversity and biological activity of actinobacteria isolated from the Chukchi Shelf marine sediments in the Arctic Ocean.

    PubMed

    Yuan, Meng; Yu, Yong; Li, Hui-Rong; Dong, Ning; Zhang, Xiao-Hua

    2014-03-01

    Marine environments are a rich source of Actinobacteria and have the potential to produce a wide variety of biologically active secondary metabolites. In this study, we used four selective isolation media to culture Actinobacteria from the sediments collected from the Chukchi Shelf in the Arctic Ocean. A total of 73 actinobacterial strains were isolated. Based on repetitive DNA fingerprinting analysis, we selected 30 representatives for partial characterization according to their phylogenetic diversity, antimicrobial activities and secondary-metabolite biosynthesis genes. Results from the 16S rRNA gene sequence analysis indicated that the 30 strains could be sorted into 18 phylotypes belonging to 14 different genera: Agrococcus, Arsenicicoccus, Arthrobacter, Brevibacterium, Citricoccus, Janibacter, Kocuria, Microbacterium, Microlunatus, Nocardioides, Nocardiopsis, Saccharopolyspora, Salinibacterium and Streptomyces. To our knowledge, this paper is the first report on the isolation of Microlunatus genus members from marine habitats. Of the 30 isolates, 11 strains exhibited antibacterial and/or antifungal activity, seven of which have activities against Bacillus subtilis and Candida albicans. All 30 strains have at least two biosynthetic genes, one-third of which possess more than four biosynthetic genes. This study demonstrates the significant diversity of Actinobacteria in the Chukchi Shelf sediment and their potential for producing biologically active compounds and novel material for genetic manipulation or combinatorial biosynthesis. PMID:24663116

  19. Molecular analyses of the diversity in marine bacterioplankton assemblages along the coastline of the northeastern Gulf of Mexico.

    PubMed

    Olapade, Ola A

    2010-10-01

    Bacterial community diversity in marine bacterioplankton assemblages were examined in 3 coastal locations along the northeastern Gulf of Mexico (GOM) using 16S rRNA gene libraries and fluorescence in situ hybridization approaches. The majority of the sequences (30%-60%) were similar to the 16S rRNA gene sequences of unknown bacteria; however, the operational taxonomic units from members of the Cyanobacteria, Proteobacteria, and Bacteroidetes were also present at the 3 GOM sites. Overall, sequence diversity was more similar between the Gulf sites of Carrabelle and Ochlockonee than between either of the Gulf sites and Apalachicola Bay. Fluorescence in situ hybridization analyses revealed the quantitative predominance of members of the Alphaproteobacteria subclass and the Cytophaga-Flavobacterium cluster within the bacterioplankton assemblages. In general, the study further reveals the presence of many bacterial taxa that have been previously found to be dominant in coastal marine environments. Differences observed in the representation of the various bacterial phylogenetic groups among the GOM coastal sites could be partly attributed to dynamic variations in several site-specific conditions, including intermittent tidal events, nutrient availability, and anthropogenic influences. PMID:20962909

  20. Exploring the Diversity and Antimicrobial Potential of Marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile.

    PubMed

    Undabarrena, Agustina; Beltrametti, Fabrizio; Claverías, Fernanda P; González, Myriam; Moore, Edward R B; Seeger, Michael; Cámara, Beatriz

    2016-01-01

    Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although, Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae, and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera) was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus, and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium, and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%), PKS I (18%), and PKS II (73%). Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds. PMID:27486455

  1. Exploring the Diversity and Antimicrobial Potential of Marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile

    PubMed Central

    Undabarrena, Agustina; Beltrametti, Fabrizio; Claverías, Fernanda P.; González, Myriam; Moore, Edward R. B.; Seeger, Michael; Cámara, Beatriz

    2016-01-01

    Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although, Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae, and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera) was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus, and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium, and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%), PKS I (18%), and PKS II (73%). Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds. PMID:27486455

  2. Multilocus Sequence Analysis for the Assessment of Phylogenetic Diversity and Biogeography in Hyphomonas Bacteria from Diverse Marine Environments

    PubMed Central

    Li, Guizhen; Liu, Yang; Sun, Fengqin; Shao, Zongze

    2014-01-01

    Hyphomonas, a genus of budding, prosthecate bacteria, are primarily found in the marine environment. Seven type strains, and 35 strains from our collections of Hyphomonas, isolated from the Pacific Ocean, Atlantic Ocean, Arctic Ocean, South China Sea and the Baltic Sea, were investigated in this study using multilocus sequence analysis (MLSA). The phylogenetic structure of these bacteria was evaluated using the 16S rRNA gene, and five housekeeping genes (leuA, clpA, pyrH, gatA and rpoD) as well as their concatenated sequences. Our results showed that each housekeeping gene and the concatenated gene sequence all yield a higher taxonomic resolution than the 16S rRNA gene. The 42 strains assorted into 12 groups. Each group represents an independent species, which was confirmed by virtual DNA-DNA hybridization (DDH) estimated from draft genome sequences. Hyphomonas MLSA interspecies and intraspecies boundaries ranged from 93.3% to 96.3%, similarity calculated using a combined DDH and MLSA approach. Furthermore, six novel species (groups I, II, III, IV, V and XII) of the genus Hyphomonas exist, based on sequence similarities of the MLSA and DDH values. Additionally, we propose that the leuA gene (93.0% sequence similarity across our dataset) alone could be used as a fast and practical means for identifying species within Hyphomonas. Finally, Hyphomonas' geographic distribution shows that strains from the same area tend to cluster together as discrete species. This study provides a framework for the discrimination and phylogenetic analysis of the genus Hyphomonas for the first time, and will contribute to a more thorough understanding of the biological and ecological roles of this genus. PMID:25019154

  3. Conserved small RNAs govern replication and incompatibility of a diverse new plasmid family from marine bacteria

    PubMed Central

    Le Roux, Frédérique; Davis, Brigid M.; Waldor, Matthew K.

    2011-01-01

    Plasmids are autonomously replicating extrachromosomal DNA molecules that often impart key phenotypes to their bacterial hosts. Plasmids are abundant in marine bacteria, but there is scant knowledge of the mechanisms that control their replication in these hosts. Here, we identified and characterized the factors governing replication of a new family of plasmids from marine bacteria, typified by the virulence-linked plasmid pB1067 of Vibrio nigripulchritudo. Members of this family are prevalent among, yet restricted to, the Vibrionaceae. Unlike almost all plasmid families characterized to date, the ori regions of these plasmids do not encode a Rep protein to initiate DNA replication; instead, the ori regions encode two partially complementary RNAs. The smaller, termed RNA I, is ∼68-nt long and functions as a negative regulator and the key determinant of plasmid incompatibility. This Marine RNA-based (MRB) plasmid family is the first characterized family of replicons derived from marine bacteria. Only one other plasmid family (the ColE1 family) has previously been reported to rely on RNA-mediated replication initiation. However, since the sequences and structures of MRB RNA I transcripts are not related to those of ColE1 replicons, these two families of RNA-dependent replicons likely arose by convergent evolution. PMID:20923782

  4. Using DNA Technology to Explore Marine Bacterial Diversity in a Coastal Georgia Salt Marsh

    ERIC Educational Resources Information Center

    Dong, Yihe; Guerrero, Stella; Moran, Mary Ann

    2008-01-01

    An important aspect of teaching biology is to expose students to the concept of biodiversity. For this purpose, bacteria are excellent examples. The advanced placement (AP) biology class at Cedar Shoals High School in Athens, Georgia, learned how to explore bacterial biodiversity using molecular fingerprinting. They collected marine water samples,…

  5. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas

    PubMed Central

    2011-01-01

    Background In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. Methods The fatty acid (FA) composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum) and two from tropical seas (Caulerpa taxifolia, Sargassum natans) was determined using GCMS. Four independent replicates were taken from each seaweed species. Results Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs), were in the concentration range of 2-14 mg/g dry matter (DM), while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6) and/or eicosapentaenoic acids (EPA, C20:5, n-3), the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3) at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Conclusion Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6) FA: (n-3) FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3), while in S. natans also docosahexaenoic acid (DHA, C22:6, n-3) was

  6. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guri; Zacher, Alan H.; Magnuson, Jon K.

    2014-02-03

    Wet macroalgal slurries have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale continuous-flow reactor system. Carbon conversion to a gravity-separable oil product of 58.8% was accomplished at relatively low temperature (350 °C) in a pressurized (subcritical liquid water) environment (20 MPa) when using feedstock slurries with a 21.7% concentration of dry solids. As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent, and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup and fuel gas production from water-soluble organics. Conversion of 99.2% of the carbon left in the aqueous phase was demonstrated. Finally, as a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of residual organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  7. Results of efforts by the Convention on Biological Diversity to describe ecologically or biologically significant marine areas.

    PubMed

    Bax, Nicholas J; Cleary, Jesse; Donnelly, Ben; Dunn, Daniel C; Dunstan, Piers K; Fuller, Mike; Halpin, Patrick N

    2016-06-01

    In 2004, Parties to the Convention on Biological Diversity (CBD) addressed a United Nations (UN) call for area-based planning, including for marine-protected areas that resulted in a global effort to describe ecologically or biologically significant marine areas (EBSAs). We summarized the results, assessed their consistency, and evaluated the process developed by the Secretariat of the CBD to engage countries and experts in 9 regional workshops held from 2011 to 2014. Experts from 92 countries and 79 regional or international bodies participated. They considered 250 million km(2) of the world's ocean area (two-thirds of the total). The 204 areas they examined in detail differed widely in area (from 5.5 km(2) to 11.1 million km(2) ). Despite the initial focus of the CBD process on areas outside national jurisdiction, only 31 of the areas examined were solely outside national jurisdiction. Thirty-five extended into national jurisdictions, 137 were solely within national jurisdictions, and 28 included the jurisdictions of more than 1 country (1 area lacked precise boundaries). Data were sufficient to rank 88-99% of the areas relative to each of the 7 criteria for EBSAs agreed to previously by Parties to the CBD. The naturalness criterion ranked high for a smaller percentage of the EBSAs (31%) than other criteria (51-70%), indicating the difficulty in finding relatively undisturbed areas in the ocean. The highly participatory nature of the workshops, including easy and consistent access to the relevant information facilitated by 2 technical teams, contributed to the workshop participants success in identifying areas that could be ranked relative to most criteria and areas that extend across jurisdictional boundaries. The formal recognition of workshop results by the Conference of Parties to the CBD resulted in these 204 areas being identified as EBSAs by the 196 Parties. They represent the only suite of marine areas recognized by the international community for their

  8. Methyl mercury uptake by diverse marine phytoplankton and trophic transfer to zooplankton

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Fisher, N. S.

    2014-12-01

    While it is well known that methylmercury (MeHg) biomagnifies in aquatic food chains, few studies have quantified its bioaccumulation in marine phytoplankton from seawater, even though that is overwhelmingly the largest bioaccumulation step. Aquatic animals acquire MeHg mainly from dietary exposure and it is important to evaluate the bioaccumulation of this compound in planktonic organisms that form the base of marine food webs. We used a gamma-emitting radioisotope, 203Hg, to assess the rate and extent of MeHg uptake in marine diatoms, dinoflagellates, coccolithophores, cryptophytes chlorophytes, and cyanobacteria held in unialgal cultures under varying temperature and light conditions. For experimental conditions in which the dissolved MeHg was at 300 pM, the uptake rates in all species ranged from 0.004 to 0.75 amol Hg μm-3 cell volume d-1 and reached steady state within 2 d. Volume concentration factors (VCFs) ranged from 0.4 to 60 x 105 for the different species. Temperature and light conditions had no direct effect on cellular MeHg uptake but ultimately affected growth of the cells, resulting in greater suspended particulate matter and associated MeHg. VCFs strongly correlated with cell surface area to volume ratios in all species. Assimilation efficiencies of MeHg from phytoplankton food (Thalassiosira pseudonana, Dunaliella tertiolecta and Rhodomonas salina) in a marine copepod grazer (Acartia tonsa) ranged from 74 to 92%, directly proportional to the cytoplasmic partitioning of MeHg in the phytoplankton cells. MeHg uptake in copepods from the aqueous phase was low and modeling shows that nearly all the MeHg acquired by this zooplankter is from diet. Herbivorous zooplankton can be an important link from phytoplankton at the base of the food web to fish higher in the food chain.

  9. Evolution and survival of marine carnivores did not require a diversity of KIR or Ly49 NK cell receptors1

    PubMed Central

    Hammond, John A.; Guethlein, Lisbeth A.; Abi-Rached, Laurent; Moesta, Achim K; Parham, Peter

    2009-01-01

    Ly49 lectin-like receptors and killer cell immunoglobulin-like receptors (KIR) are structurally unrelated cell-surface glycoproteins that evolved independently to function as diverse NK cell receptors for MHC class I molecules. Comparison of primates and various domesticated animals has shown that species have either a diverse Ly49 or KIR gene family, but not both. In four pinniped species of wild marine carnivore, three seals and one sea lion, we find that Ly49 and KIR are each represented by single, orthologous genes that exhibit little polymorphism and are transcribed to express cell-surface protein. Pinnipeds are therefore species in which neither Ly49 nor KIR are polygenic but retain the ancestral single-copy state. Whereas pinniped Ly49 has been subject to purifying selection, we find evidence for positive selection on KIR3DL during pinniped evolution. This selection, which focused on the D0 domain and the stem, points to the functionality of the KIR and likely led to the sea lion’s loss of D0. In contrast to the dynamic and rapid evolution of the KIR and Ly49 genes in other species, the pinniped KIR and Ly49 have been remarkably stable during the > 33 million years since the last common ancestor of seals and sea lions. These results demonstrate that long-term survival of placental mammal species need not require a diverse system of either Ly49 or KIR NK-cell receptors. PMID:19265140

  10. Reduced genetic diversity and increased reproductive isolation follow population-level loss of larval dispersal in a marine gastropod.

    PubMed

    Ellingson, Ryan A; Krug, Patrick J

    2016-01-01

    Population-level consequences of dispersal ability remain poorly understood, especially for marine animals in which dispersal is typically considered a species-level trait governed by oceanographic transport of microscopic larvae. Transitions from dispersive (planktotrophic) to nondispersive, aplanktonic larvae are predicted to reduce connectivity, genetic diversity within populations, and the spatial scale at which reproductive isolation evolves. However, larval dimorphism within a species is rare, precluding population-level tests. We show the sea slug Costasiella ocellifera expresses both larval morphs in Florida and the Caribbean, regions with divergent mitochondrial lineages. Planktotrophy predominated at 11 sites, 10 of which formed a highly connected and genetically diverse Caribbean metapopulation. Four populations expressed mainly aplanktonic development and had markedly reduced connectivity, and lower genetic diversity at one mitochondrial and six nuclear loci. Aplanktonic dams showed partial postzygotic isolation in most interpopulation crosses, regardless of genetic or geographic distance to the sire's source, suggesting that outbreeding depression affects fragmented populations. Dams from genetically isolated and neighboring populations also exhibited premating isolation, consistent with reinforcement contingent on historical interaction. By increasing self-recruitment and genetic drift, the loss of dispersal may thus initiate a feedback loop resulting in the evolution of reproductive isolation over small spatial scales in the sea. PMID:26635309

  11. Investigation of Marine-Derived Fungal Diversity and Their Exploitable Biological Activities.

    PubMed

    Hong, Joo-Hyun; Jang, Seokyoon; Heo, Young Mok; Min, Mihee; Lee, Hwanhwi; Lee, Young Min; Lee, Hanbyul; Kim, Jae-Jin

    2015-07-01

    Marine fungi are potential producers of bioactive compounds that may have pharmacological and medicinal applications. Fungi were cultured from marine brown algae and identified using multiple target genes to confirm phylogenetic placement. These target genes included the internal transcribed spacer (ITS), the nuclear large subunit (LSU), and the β-tubulin region. Various biological activities of marine-derived fungi were evaluated, including their antifungal, antioxidant and cellulolytic enzyme activities. As a result, a total of 50 fungi was isolated from the brown algae Sargassum sp. Among the 50 isolated fungi, Corollospora angusta was the dominant species in this study. The genus Arthrinium showed a relatively strong antifungal activity to all of the target plant pathogenic fungi. In particular, Arthrinium saccharicola KUC21221 showed high radical scavenging activity and the highest activities in terms of filter paper units (0.39 U/mL), endoglucanase activity (0.38 U/mL), and β-glucosidase activity (1.04 U/mL). PMID:26133554

  12. Prevalence and diversity of extended-spectrum-β-lactamase-producing Enterobacteriaceae from marine beach waters.

    PubMed

    Maravić, Ana; Skočibušić, Mirjana; Cvjetan, Svjetlana; Šamanić, Ivica; Fredotović, Željana; Puizina, Jasna

    2015-01-15

    A total of 1,351 Enterobacteriaceae isolates from 144 seawater samples were collected over a four-year period from three public beaches in the eastern Adriatic Sea in Croatia. Approximately 35% of the strains were multidrug-resistant. BlaESBL genes were detected in 4.2% of the isolated Enterobacteriaceae, the main species of which were Escherichia coli, Enterobacter cloacae and Klebsiella pneumoniae. BlaTEM-1+SHV-12 was the most dominant genotype, followed by blaCTX-M-15.Raoultella terrigena and E. intermedius simultaneously harboured blaTEM-1,blaSHV-11/12 and blaCTX-M-15. Isolate fingerprinting revealed that marine E. coli isolates were clonally related to CTX-M-producing strains from a regional university hospital. These results indicate that marine beach waters are reservoirs of ESBL-producing Enterobacteriaceae and thus constitute a public health problem with further potential to act as mediators in gene flow between marine coastal areas and clinical settings. PMID:25480155

  13. Culturable heterotrophic bacteria from the marine sponge Dendrilla nigra: isolation and phylogenetic diversity of actinobacteria

    NASA Astrophysics Data System (ADS)

    Selvin, Joseph; Gandhimathi, R.; Kiran, G. Seghal; Priya, S. Shanmugha; Ravji, T. Rajeetha; Hema, T. A.

    2009-09-01

    Culturable heterotrophic bacterial composition of marine sponge Dendrilla nigra was analysed using different enrichments. Five media compositions including without enrichment (control), enriched with sponge extract, with growth regulator (antibiotics), with autoinducers, and complete enrichment containing sponge extract, antibiotics, and autoinducers were developed. DNA hybridization assay was performed to explore host specific bacteria and ecotypes of culturable sponge-associated bacteria. Enrichment with selective inducers (AHLs and sponge extract) and regulators (antibiotics) considerably enhanced the cultivation potential of sponge-associated bacteria. It was found that Marinobacter (MSI032), Micromonospora (MSI033), Streptomyces (MSI051), and Pseudomonas (MSI057) were sponge-associated obligate symbionts. The present findings envisaged that “ Micromonospora-Saccharomonospora-Streptomyces” group was the major culturable actinobacteria in the marine sponge D. nigra. The DNA hybridization assay was a reliable method for the analysis of culturable bacterial community in marine sponges. Based on the culturable community structure, the sponge-associated bacteria can be grouped (ecotypes) as general symbionts, specific symbionts, habitat flora, and antagonists.

  14. Investigation of Marine-Derived Fungal Diversity and Their Exploitable Biological Activities

    PubMed Central

    Hong, Joo-Hyun; Jang, Seokyoon; Heo, Young Mok; Min, Mihee; Lee, Hwanhwi; Lee, Young Min; Lee, Hanbyul; Kim, Jae-Jin

    2015-01-01

    Marine fungi are potential producers of bioactive compounds that may have pharmacological and medicinal applications. Fungi were cultured from marine brown algae and identified using multiple target genes to confirm phylogenetic placement. These target genes included the internal transcribed spacer (ITS), the nuclear large subunit (LSU), and the β-tubulin region. Various biological activities of marine-derived fungi were evaluated, including their antifungal, antioxidant and cellulolytic enzyme activities. As a result, a total of 50 fungi was isolated from the brown algae Sargassum sp. Among the 50 isolated fungi, Corollospora angusta was the dominant species in this study. The genus Arthrinium showed a relatively strong antifungal activity to all of the target plant pathogenic fungi. In particular, Arthrinium saccharicola KUC21221 showed high radical scavenging activity and the highest activities in terms of filter paper units (0.39 U/mL), endoglucanase activity (0.38 U/mL), and β-glucosidase activity (1.04 U/mL). PMID:26133554

  15. Diversity and Biosynthetic Potential of Culturable Microbes Associated with Toxic Marine Animals

    PubMed Central

    Chau, Rocky; Kalaitzis, John A.; Wood, Susanna A.; Neilan, Brett A.

    2013-01-01

    Tetrodotoxin (TTX) is a neurotoxin that has been reported from taxonomically diverse organisms across 14 different phyla. The biogenic origin of tetrodotoxin is still disputed, however, TTX biosynthesis by host-associated bacteria has been reported. An investigation into the culturable microbial populations from the TTX-associated blue-ringed octopus Hapalochlaena sp. and sea slug Pleurobranchaea maculata revealed a surprisingly high microbial diversity. Although TTX was not detected among the cultured isolates, PCR screening identifiedsome natural product biosynthesis genes putatively involved in its assembly. This study is the first to report on the microbial diversity of culturable communities from H. maculosa and P. maculata and common natural product biosynthesis genes from their microbiota. We also reassess the production of TTX reported from three bacterial strains isolated from the TTX-containing gastropod Nassarius semiplicatus. PMID:23917066

  16. Diversity and biosynthetic potential of culturable microbes associated with toxic marine animals.

    PubMed

    Chau, Rocky; Kalaitzis, John A; Wood, Susanna A; Neilan, Brett A

    2013-08-01

    Tetrodotoxin (TTX) is a neurotoxin that has been reported from taxonomically diverse organisms across 14 different phyla. The biogenic origin of tetrodotoxin is still disputed, however, TTX biosynthesis by host-associated bacteria has been reported. An investigation into the culturable microbial populations from the TTX-associated blue-ringed octopus Hapalochlaena sp. and sea slug Pleurobranchaea maculata revealed a surprisingly high microbial diversity. Although TTX was not detected among the cultured isolates, PCR screening identifiedsome natural product biosynthesis genes putatively involved in its assembly. This study is the first to report on the microbial diversity of culturable communities from H. maculosa and P. maculata and common natural product biosynthesis genes from their microbiota. We also reassess the production of TTX reported from three bacterial strains isolated from the TTX-containing gastropod Nassarius semiplicatus. PMID:23917066

  17. Congruence in demersal fish, macroinvertebrate, and macroalgal community turnover on shallow temperate reefs.

    PubMed

    Thomson, Russell J; Hill, Nicole A; Leaper, Rebecca; Ellis, Nick; Pitcher, C Roland; Barrett, Neville S; Edgar, Graham J

    2014-03-01

    To support coastal planning through improved understanding of patterns of biotic and abiotic surrogacy at broad scales, we used gradient forest modeling (GFM) to analyze and predict spatial patterns of compositional turnover of demersal fishes, macroinvertebrates, and macroalgae on shallow, temperate Australian reefs. Predictive models were first developed using environmental surrogates with estimates of prediction uncertainty, and then the efficacy of the three assemblages as biosurrogates for each other was assessed. Data from underwater visual surveys of subtidal rocky reefs were collected from the southeastern coastline of continental Australia (including South Australia and Victoria) and the northern coastline of Tasmania. These data were combined with 0.01 degree-resolution gridded environmental variables to develop statistical models of compositional turnover (beta diversity) using GFM. GFM extends the machine learning, ensemble tree-based method of random forests (RF), to allow the simultaneous modeling of multiple taxa. The models were used to generate predictions of compositional turnover for each of the three assemblages within unsurveyed areas across the 6600 km of coastline in the region of interest. The most important predictor for all three assemblages was variability in sea surface temperature (measured as standard deviation from measures taken interannually). Spatial predictions of compositional turnover within unsurveyed areas across the region of interest were remarkably congruent across the three taxa. However, the greatest uncertainty in these predictions varied in location among the different assemblages. Pairwise congruency comparisons of observed and predicted turnover among the three assemblages showed that invertebrate and macroalgal biodiversity were most similar, followed by fishes and macroalgae, and lastly fishes and invertebrate biodiversity, suggesting that of the three assemblages, macroalgae would make the best biosurrogate for

  18. Biogeography and phylogenetic diversity of a cluster of exclusively marine myxobacteria

    PubMed Central

    Brinkhoff, Thorsten; Fischer, Doreen; Vollmers, John; Voget, Sonja; Beardsley, Christine; Thole, Sebastian; Mussmann, Marc; Kunze, Brigitte; Wagner-Döbler, Irene; Daniel, Rolf; Simon, Meinhard

    2012-01-01

    Myxobacteria are common in terrestrial habitats and well known for their formation of fruiting bodies and production of secondary metabolites. We studied a cluster of myxobacteria consisting only of sequences of marine origin (marine myxobacteria cluster, MMC) in sediments of the North Sea. Using a specific PCR, MMC sequences were detected in North Sea sediments down to 2.2 m depth, but not in the limnetic section of the Weser estuary and other freshwater habitats. In the water column, this cluster was only detected on aggregates up to a few meters above the sediment surface, but never in the fraction of free-living bacteria. A quantitative real-time PCR approach revealed that the MMC constituted up to 13% of total bacterial 16S rRNA genes in surface sediments of the North Sea. In a global survey, including sediments from the Mediterranean Sea, the Atlantic, Pacific and Indian Ocean and various climatic regions, the MMC was detected in most samples and to a water depth of 4300 m. Two fosmids of a library from sediment of the southern North Sea containing 16S rRNA genes affiliated with the MMC were sequenced. Both fosmids have a single unlinked 16S rRNA gene and no complete rRNA operon as found in most bacteria. No synteny to other myxobacterial genomes was found. The highest numbers of orthologues for both fosmids were assigned to Sorangium cellulosum and Haliangium ochraceum. Our results show that the MMC is an important and widely distributed but largely unknown component of marine sediment-associated bacterial communities. PMID:22189493

  19. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps

    PubMed Central

    Kleindienst, Sara; Herbst, Florian-Alexander; Stagars, Marion; von Netzer, Frederick; von Bergen, Martin; Seifert, Jana; Peplies, Jörg; Amann, Rudolf; Musat, Florin; Lueders, Tillmann; Knittel, Katrin

    2014-01-01

    Biogeochemical and microbiological data indicate that the anaerobic oxidation of non-methane hydrocarbons by sulfate-reducing bacteria (SRB) has an important role in carbon and sulfur cycling at marine seeps. Yet, little is known about the bacterial hydrocarbon degraders active in situ. Here, we provide the link between previous biogeochemical measurements and the cultivation of degraders by direct identification of SRB responsible for butane and dodecane degradation in complex on-site microbiota. Two contrasting seep sediments from Mediterranean Amon mud volcano and Guaymas Basin (Gulf of California) were incubated with 13C-labeled butane or dodecane under sulfate-reducing conditions and analyzed via complementary stable isotope probing (SIP) techniques. Using DNA- and rRNA-SIP, we identified four specialized clades of alkane oxidizers within Desulfobacteraceae to be distinctively active in oxidation of short- and long-chain alkanes. All clades belong to the Desulfosarcina/Desulfococcus (DSS) clade, substantiating the crucial role of these bacteria in anaerobic hydrocarbon degradation at marine seeps. The identification of key enzymes of anaerobic alkane degradation, subsequent β-oxidation and the reverse Wood–Ljungdahl pathway for complete substrate oxidation by protein-SIP further corroborated the importance of the DSS clade and indicated that biochemical pathways, analog to those discovered in the laboratory, are of great relevance for natural settings. The high diversity within identified subclades together with their capability to initiate alkane degradation and growth within days to weeks after substrate amendment suggest an overlooked potential of marine benthic microbiota to react to natural changes in seepage, as well as to massive hydrocarbon input, for example, as encountered during anthropogenic oil spills. PMID:24722631

  20. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps.

    PubMed

    Kleindienst, Sara; Herbst, Florian-Alexander; Stagars, Marion; von Netzer, Frederick; von Bergen, Martin; Seifert, Jana; Peplies, Jörg; Amann, Rudolf; Musat, Florin; Lueders, Tillmann; Knittel, Katrin

    2014-10-01

    Biogeochemical and microbiological data indicate that the anaerobic oxidation of non-methane hydrocarbons by sulfate-reducing bacteria (SRB) has an important role in carbon and sulfur cycling at marine seeps. Yet, little is known about the bacterial hydrocarbon degraders active in situ. Here, we provide the link between previous biogeochemical measurements and the cultivation of degraders by direct identification of SRB responsible for butane and dodecane degradation in complex on-site microbiota. Two contrasting seep sediments from Mediterranean Amon mud volcano and Guaymas Basin (Gulf of California) were incubated with (13)C-labeled butane or dodecane under sulfate-reducing conditions and analyzed via complementary stable isotope probing (SIP) techniques. Using DNA- and rRNA-SIP, we identified four specialized clades of alkane oxidizers within Desulfobacteraceae to be distinctively active in oxidation of short- and long-chain alkanes. All clades belong to the Desulfosarcina/Desulfococcus (DSS) clade, substantiating the crucial role of these bacteria in anaerobic hydrocarbon degradation at marine seeps. The identification of key enzymes of anaerobic alkane degradation, subsequent β-oxidation and the reverse Wood-Ljungdahl pathway for complete substrate oxidation by protein-SIP further corroborated the importance of the DSS clade and indicated that biochemical pathways, analog to those discovered in the laboratory, are of great relevance for natural settings. The high diversity within identified subclades together with their capability to initiate alkane degradation and growth within days to weeks after substrate amendment suggest an overlooked potential of marine benthic microbiota to react to natural changes in seepage, as well as to massive hydrocarbon input, for example, as encountered during anthropogenic oil spills. PMID:24722631

  1. Astonishing diversity of natural surfactants: 6. Biologically active marine and terrestrial alkaloid glycosides.

    PubMed

    Dembitsky, Valery M

    2005-11-01

    This review article presents 209 alkaloid glycosides isolated and identified from plants, microorganisms, and marine invertebrates that demonstrate different biological activities. They are of great interest, especially for the medicinal and/or pharmaceutical industries. These biologically active glycosides have good potential for future chemical preparation of compounds useful as antioxidants, anticancer, antimicrobial, and antibacterial agents. These glycosidic compounds have been subdivided into several groups, including: acridone; aporphine; benzoxazinoid; ergot; indole; enediyne alkaloidal antibiotics; glycosidic lupine alkaloids; piperidine, pyridine, pyrrolidine, and pyrrolizidine alkaloid glycosides; glycosidic quinoline and isoquinoline alkaloids; steroidal glycoalkaloids; and miscellaneous alkaloid glycosides. PMID:16459921

  2. Macroalgal terpenes function as allelopathic agents against reef corals

    PubMed Central

    Rasher, Douglas B.; Stout, E. Paige; Engel, Sebastian; Kubanek, Julia; Hay, Mark E.

    2011-01-01

    During recent decades, many tropical reefs have transitioned from coral to macroalgal dominance. These community shifts increase the frequency of algal–coral interactions and may suppress coral recovery following both anthropogenic and natural disturbance. However, the extent to which macroalgae damage corals directly, the mechanisms involved, and the species specificity of algal–coral interactions remain uncertain. Here, we conducted field experiments demonstrating that numerous macroalgae directly damage corals by transfer of hydrophobic allelochemicals present on algal surfaces. These hydrophobic compounds caused bleaching, decreased photosynthesis, and occasionally death of corals in 79% of the 24 interactions assayed (three corals and eight algae). Coral damage generally was limited to sites of algal contact, but algae were unaffected by contact with corals. Artificial mimics for shading and abrasion produced no impact on corals, and effects of hydrophobic surface extracts from macroalgae paralleled effects of whole algae; both findings suggest that local effects are generated by allelochemical rather than physical mechanisms. Rankings of macroalgae from most to least allelopathic were similar across the three coral genera tested. However, corals varied markedly in susceptibility to allelopathic algae, with globally declining corals such as Acropora more strongly affected. Bioassay-guided fractionation of extracts from two allelopathic algae led to identification of two loliolide derivatives from the red alga Galaxaura filamentosa and two acetylated diterpenes from the green alga Chlorodesmis fastigiata as potent allelochemicals. Our results highlight a newly demonstrated but potentially widespread competitive mechanism to help explain the lack of coral recovery on many present-day reefs. PMID:22006333

  3. Bacterial production of free fatty acids from freshwater macroalgal cellulose

    PubMed Central

    Hoovers, Spencer W.; Marner, Wesley D.; Brownson, Amy K.; Lennen, Rebecca M.; Wittkopp, Tyler M.; Yoshitani, Jun; Zulkifly, Shahrizim; Graham, Linda E.; Chaston, Sheena D.; McMahon, Katherine D.

    2013-01-01

    The predominant strategy for using algae to produce biofuels relies on the overproduction of lipids in microalgae with subsequent conversion to biodiesel (methyl-esters) or green diesel (alkanes). Conditions that both optimize algal growth and lipid accumulation rarely overlap, and differences in growth rates can lead to wild species outcompeting the desired lipid-rich strains. Here, we demonstrate an alternative strategy in which cellulose contained in the cell walls of multicellular algae is used as a feedstock for cultivating biofuel-producing micro-organisms. Cellulose was extracted from an environmental sample of Cladophora glomerata-dominated periphyton that was collected from Lake Mendota, WI, USA. The resulting cellulose cake was hydrolyzed by commercial enzymes to release fermentable glucose. The hydrolysis mixture was used to formulate an undefined medium that was able to support the growth, without supplementation, of a free fatty acid (FFA)-overproducing strain of Escherichia coli (Lennen et. al 2010). To maximize free fatty acid production from glucose, an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible vector was constructed to express the Umbellularia californica acyl–acyl carrier protein (ACP) thioesterase. Thioesterase expression was optimized by inducing cultures with 50 μM IPTG. Cell density and FFA titers from cultures grown on algae-based media reached 50% of those (~90 μg/mL FFA) cultures grown on rich Luria–Bertani broth supplemented with 0.2% glucose. In comparison, cultures grown in two media based on AFEX-pretreated corn stover generated tenfold less FFA than cultures grown in algae-based media. This study demonstrates that macroalgal cellulose is a potential carbon source for the production of biofuels or other microbially synthesized compounds. PMID:21643704

  4. Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity.

    PubMed

    Graham, Michael H; Kinlan, Brian P; Druehl, Louis D; Garske, Lauren E; Banks, Stuart

    2007-10-16

    Classic marine ecological paradigms view kelp forests as inherently temperate-boreal phenomena replaced by coral reefs in tropical waters. These paradigms hinge on the notion that tropical surface waters are too warm and nutrient-depleted to support kelp productivity and survival. We present a synthetic oceanographic and ecophysiological model that accurately identifies all known kelp populations and, by using the same criteria, predicts the existence of >23,500 km(2) unexplored submerged (30- to 200-m depth) tropical kelp habitats. Predicted tropical kelp habitats were most probable in regions where bathymetry and upwelling resulted in mixed-layer shoaling above the depth of minimum annual irradiance dose for kelp survival. Using model predictions, we discovered extensive new deep-water Eisenia galapagensis populations in the Galápagos that increased in abundance with increasing depth to >60 m, complete with cold-water flora and fauna of temperate affinities. The predictability of deep-water kelp habitat and the discovery of expansive deep-water Galápagos kelp forests validate the extent of deep-water tropical kelp refugia, with potential implications for regional productivity and biodiversity, tropical food web ecology, and understanding of the resilience of tropical marine systems to climate change. PMID:17913882

  5. Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile

    PubMed Central

    Parris, Darren J.; Ganesh, Sangita; Edgcomb, Virginia P.; DeLong, Edward F.; Stewart, Frank J.

    2014-01-01

    Molecular surveys are revealing diverse eukaryotic assemblages in oxygen-limited ocean waters. These communities may play pivotal ecological roles through autotrophy, feeding, and a wide range of symbiotic associations with prokaryotes. We used 18S rRNA gene sequencing to provide the first snapshot of pelagic microeukaryotic community structure in two cellular size fractions (0.2–1.6 μm, >1.6 μm) from seven depths through the anoxic oxygen minimum zone (OMZ) off northern Chile. Sequencing of >154,000 amplicons revealed contrasting patterns of phylogenetic diversity across size fractions and depths. Protist and total eukaryote diversity in the >1.6 μm fraction peaked at the chlorophyll maximum in the upper photic zone before declining by ~50% in the OMZ. In contrast, diversity in the 0.2–1.6 μm fraction, though also elevated in the upper photic zone, increased four-fold from the lower oxycline to a maximum at the anoxic OMZ core. Dinoflagellates of the Dinophyceae and endosymbiotic Syndiniales clades dominated the protist assemblage at all depths (~40–70% of sequences). Other protist groups varied with depth, with the anoxic zone community of the larger size fraction enriched in euglenozoan flagellates and acantharean radiolarians (up to 18 and 40% of all sequences, respectively). The OMZ 0.2–1.6 μm fraction was dominated (11–99%) by Syndiniales, which exhibited depth-specific variation in composition and total richness despite uniform oxygen conditions. Metazoan sequences, though confined primarily to the 1.6 μm fraction above the OMZ, were also detected within the anoxic zone where groups such as copepods increased in abundance relative to the oxycline and upper OMZ. These data, compared to those from other low-oxygen sites, reveal variation in OMZ microeukaryote composition, helping to identify clades with potential adaptations to oxygen-depletion. PMID:25389417

  6. Ribonucleotide reductases reveal novel viral diversity and predict biological and ecological features of unknown marine viruses.

    PubMed

    Sakowski, Eric G; Munsell, Erik V; Hyatt, Mara; Kress, William; Williamson, Shannon J; Nasko, Daniel J; Polson, Shawn W; Wommack, K Eric

    2014-11-01

    Virioplankton play a crucial role in aquatic ecosystems as top-down regulators of bacterial populations and agents of horizontal gene transfer and nutrient cycling. However, the biology and ecology of virioplankton populations in the environment remain poorly understood. Ribonucleotide reductases (RNRs) are ancient enzymes that reduce ribonucleotides to deoxyribonucleotides and thus prime DNA synthesis. Composed of three classes according to O2 reactivity, RNRs can be predictive of the physiological conditions surrounding DNA synthesis. RNRs are universal among cellular life, common within viral genomes and virioplankton shotgun metagenomes (viromes), and estimated to occur within >90% of the dsDNA virioplankton sampled in this study. RNRs occur across diverse viral groups, including all three morphological families of tailed phages, making these genes attractive for studies of viral diversity. Differing patterns in virioplankton diversity were clear from RNRs sampled across a broad oceanic transect. The most abundant RNRs belonged to novel lineages of podoviruses infecting α-proteobacteria, a bacterial class critical to oceanic carbon cycling. RNR class was predictive of phage morphology among cyanophages and RNR distribution frequencies among cyanophages were largely consistent with the predictions of the "kill the winner-cost of resistance" model. RNRs were also identified for the first time to our knowledge within ssDNA viromes. These data indicate that RNR polymorphism provides a means of connecting the biological and ecological features of virioplankton populations. PMID:25313075

  7. Ribonucleotide reductases reveal novel viral diversity and predict biological and ecological features of unknown marine viruses

    PubMed Central

    Sakowski, Eric G.; Munsell, Erik V.; Hyatt, Mara; Kress, William; Williamson, Shannon J.; Nasko, Daniel J.; Polson, Shawn W.; Wommack, K. Eric

    2014-01-01

    Virioplankton play a crucial role in aquatic ecosystems as top-down regulators of bacterial populations and agents of horizontal gene transfer and nutrient cycling. However, the biology and ecology of virioplankton populations in the environment remain poorly understood. Ribonucleotide reductases (RNRs) are ancient enzymes that reduce ribonucleotides to deoxyribonucleotides and thus prime DNA synthesis. Composed of three classes according to O2 reactivity, RNRs can be predictive of the physiological conditions surrounding DNA synthesis. RNRs are universal among cellular life, common within viral genomes and virioplankton shotgun metagenomes (viromes), and estimated to occur within >90% of the dsDNA virioplankton sampled in this study. RNRs occur across diverse viral groups, including all three morphological families of tailed phages, making these genes attractive for studies of viral diversity. Differing patterns in virioplankton diversity were clear from RNRs sampled across a broad oceanic transect. The most abundant RNRs belonged to novel lineages of podoviruses infecting α-proteobacteria, a bacterial class critical to oceanic carbon cycling. RNR class was predictive of phage morphology among cyanophages and RNR distribution frequencies among cyanophages were largely consistent with the predictions of the “kill the winner–cost of resistance” model. RNRs were also identified for the first time to our knowledge within ssDNA viromes. These data indicate that RNR polymorphism provides a means of connecting the biological and ecological features of virioplankton populations. PMID:25313075

  8. Environmental factors determining ammonia-oxidizing organism distribution and diversity in marine environments.

    PubMed

    Bouskill, Nicholas J; Eveillard, Damien; Chien, Diana; Jayakumar, Amal; Ward, Bess B

    2012-03-01

    Ammonia-oxidizing bacteria (AOB) and archaea (AOA) play a vital role in bridging the input of fixed nitrogen, through N-fixation and remineralization, to its loss by denitrification and anammox. Yet the major environmental factors determining AOB and AOA population dynamics are little understood, despite both groups having a wide environmental distribution. This study examined the relative abundance of both groups of ammonia-oxidizing organisms (AOO) and the diversity of AOA across large-scale gradients in temperature, salinity and substrate concentration and dissolved oxygen. The relative abundance of AOB and AOA varied across environments, with AOB dominating in the freshwater region of the Chesapeake Bay and AOA more abundant in the water column of the coastal and open ocean. The highest abundance of the AOA amoA gene was recorded in the oxygen minimum zones (OMZs) of the Eastern Tropical South Pacific (ETSP) and the Arabian Sea (AS). The ratio of AOA : AOB varied from 0.7 in the Chesapeake Bay to 1600 in the Sargasso Sea. Relative abundance of both groups strongly correlated with ammonium concentrations. AOA diversity, as determined by phylogenetic analysis of clone library sequences and archetype analysis from a functional gene DNA microarray, detected broad phylogenetic differences across the study sites. However, phylogenetic diversity within physicochemically congruent stations was more similar than would be expected by chance. This suggests that the prevailing geochemistry, rather than localized dispersal, is the major driving factor determining OTU distribution. PMID:22050634

  9. Diversity of Nonribosomal Peptide Synthetase Genes in the Microbial Metagenomes of Marine Sponges

    PubMed Central

    Pimentel-Elardo, Sheila Marie; Grozdanov, Lubomir; Proksch, Sebastian; Hentschel, Ute

    2012-01-01

    Genomic mining revealed one major nonribosomal peptide synthetase (NRPS) phylogenetic cluster in 12 marine sponge species, one ascidian, an actinobacterial isolate and seawater. Phylogenetic analysis predicts its taxonomic affiliation to the actinomycetes and hydroxy-phenyl-glycine as a likely substrate. Additionally, a phylogenetically distinct NRPS gene cluster was discovered in the microbial metagenome of the sponge Aplysina aerophoba, which shows highest similarities to NRPS genes that were previously assigned, by ways of single cell genomics, to a Chloroflexi sponge symbiont. Genomic mining studies such as the one presented here for NRPS genes, contribute to on-going efforts to characterize the genomic potential of sponge-associated microbiota for secondary metabolite biosynthesis. PMID:22822366

  10. Sources of variation in extinction rates, turnover, and diversity of marine invertebrate families during the Paleozoic

    USGS Publications Warehouse

    Nichols, J.D.; Morris, R.W.; Brownie, C.; Pollock, K.H.

    1986-01-01

    The authors present a new method that can be used to estimate taxonomic turnover in conjunction with stratigraphic range data for families in five phyla of Paleozoic marine invertebrates. Encounter probabilities varied among taxa and showed evidence of a decrease over time for the geologic series examined. The number of families varied substantially among the five phyla and showed some evidence of an increase over the series examined. There was no evidence of variation in extinction probabilities among the phyla. Although there was evidence of temporal variation in extinction probabilities within phyla, there was no evidence of a linear decrease in extinction probabilities over time, as has been reported by others. The authors did find evidence of high extinction probabilities for the two intervals that had been identified by others as periods of mass extinction. They found no evidence of variation in turnover among the five phyla. There was evidence of temporal variation in turnover, with greater turnover occurring in the older series.

  11. A wide diversity of sulfated polysaccharides are synthesized by different species of marine sponges.

    PubMed

    Zierer, M S; Mourão, P A

    2000-09-01

    Sulfated polysaccharides were extracted from four species of marine sponges by exhaustive papain digestion. These compounds were purified by anion-exchange and gel-filtration chromatography. Analysis of the purified polysaccharides revealed a species-specific variation in their chemical composition and also in their molecular masses. In the species Aplysina fulva we found a sulfated glucan with a glycogen-like structure. The other three species contained sulfated polysaccharides with variable proportions of galactose, fucose, arabinose and hexuronic acid and also with different degrees of sulfation. Although the complex nature of these polysaccharides did not allow complete structure determination, we detected the occurrence of 4-sulfated residues of fucose and arabinose in the species Dysidea fragilis. The biological role of these sulfated polysaccharides requires further investigation. They may be involved in the species-specific aggregation of sponge cells and/or in the structural integrity of sponge, resembling the proteoglycans of mammalian connective tissues. PMID:11028788

  12. Diversity of nonribosomal peptide synthetase genes in the microbial metagenomes of marine sponges.

    PubMed

    Pimentel-Elardo, Sheila Marie; Grozdanov, Lubomir; Proksch, Sebastian; Hentschel, Ute

    2012-06-01

    Genomic mining revealed one major nonribosomal peptide synthetase (NRPS) phylogenetic cluster in 12 marine sponge species, one ascidian, an actinobacterial isolate and seawater. Phylogenetic analysis predicts its taxonomic affiliation to the actinomycetes and hydroxy-phenyl-glycine as a likely substrate. Additionally, a phylogenetically distinct NRPS gene cluster was discovered in the microbial metagenome of the sponge Aplysina aerophoba, which shows highest similarities to NRPS genes that were previously assigned, by ways of single cell genomics, to a Chloroflexi sponge symbiont. Genomic mining studies such as the one presented here for NRPS genes, contribute to on-going efforts to characterize the genomic potential of sponge-associated microbiota for secondary metabolite biosynthesis. PMID:22822366

  13. Prey patch patterns predict habitat use by top marine predators with diverse foraging strategies.

    PubMed

    Benoit-Bird, Kelly J; Battaile, Brian C; Heppell, Scott A; Hoover, Brian; Irons, David; Jones, Nathan; Kuletz, Kathy J; Nordstrom, Chad A; Paredes, Rosana; Suryan, Robert M; Waluk, Chad M; Trites, Andrew W

    2013-01-01

    Spatial coherence between predators and prey has rarely been observed in pelagic marine ecosystems. We used measures of the environment, prey abundance, prey quality, and prey distribution to explain the observed distributions of three co-occurring predator species breeding on islands in the southeastern Bering Sea: black-legged kittiwakes (Rissa tridactyla), thick-billed murres (Uria lomvia), and northern fur seals (Callorhinus ursinus). Predictions of statistical models were tested using movement patterns obtained from satellite-tracked individual animals. With the most commonly used measures to quantify prey distributions--areal biomass, density, and numerical abundance--we were unable to find a spatial relationship between predators and their prey. We instead found that habitat use by all three predators was predicted most strongly by prey patch characteristics such as depth and local density within spatial aggregations. Additional prey patch characteristics and physical habitat also contributed significantly to characterizing predator patterns. Our results indicate that the small-scale prey patch characteristics are critical to how predators perceive the quality of their food supply and the mechanisms they use to exploit it, regardless of time of day, sampling year, or source colony. The three focal predator species had different constraints and employed different foraging strategies--a shallow diver that makes trips of moderate distance (kittiwakes), a deep diver that makes trip of short distances (murres), and a deep diver that makes extensive trips (fur seals). However, all three were similarly linked by patchiness of prey rather than by the distribution of overall biomass. This supports the hypothesis that patchiness may be critical for understanding predator-prey relationships in pelagic marine systems more generally. PMID:23301063

  14. Prey Patch Patterns Predict Habitat Use by Top Marine Predators with Diverse Foraging Strategies

    PubMed Central

    Benoit-Bird, Kelly J.; Battaile, Brian C.; Heppell, Scott A.; Hoover, Brian; Irons, David; Jones, Nathan; Kuletz, Kathy J.; Nordstrom, Chad A.; Paredes, Rosana; Suryan, Robert M.; Waluk, Chad M.; Trites, Andrew W.

    2013-01-01

    Spatial coherence between predators and prey has rarely been observed in pelagic marine ecosystems. We used measures of the environment, prey abundance, prey quality, and prey distribution to explain the observed distributions of three co-occurring predator species breeding on islands in the southeastern Bering Sea: black-legged kittiwakes (Rissa tridactyla), thick-billed murres (Uria lomvia), and northern fur seals (Callorhinus ursinus). Predictions of statistical models were tested using movement patterns obtained from satellite-tracked individual animals. With the most commonly used measures to quantify prey distributions - areal biomass, density, and numerical abundance - we were unable to find a spatial relationship between predators and their prey. We instead found that habitat use by all three predators was predicted most strongly by prey patch characteristics such as depth and local density within spatial aggregations. Additional prey patch characteristics and physical habitat also contributed significantly to characterizing predator patterns. Our results indicate that the small-scale prey patch characteristics are critical to how predators perceive the quality of their food supply and the mechanisms they use to exploit it, regardless of time of day, sampling year, or source colony. The three focal predator species had different constraints and employed different foraging strategies – a shallow diver that makes trips of moderate distance (kittiwakes), a deep diver that makes trip of short distances (murres), and a deep diver that makes extensive trips (fur seals). However, all three were similarly linked by patchiness of prey rather than by the distribution of overall biomass. This supports the hypothesis that patchiness may be critical for understanding predator-prey relationships in pelagic marine systems more generally. PMID:23301063

  15. Marine bacterioplankton diversity and community composition in an antarctic coastal environment.

    PubMed

    Lo Giudice, Angelina; Caruso, Consolazione; Mangano, Santina; Bruni, Vivia; De Domenico, Maria; Michaud, Luigi

    2012-01-01

    The bacterial community inhabiting the water column at Terra Nova Bay (Ross Sea, Antarctica) was examined by the fluorescent in situ hybridization (FISH) technique and the genotypic and phenotypic characterization of 606 bacterial isolates. Overall, the FISH analysis revealed a bacterioplankton composition that was typical of Antarctic marine environments with the Cytophaga/Flavobacter (CF) group of Bacteroidetes that was equally dominant with the Actinobacteria and Gammaproteobacteria. As sampling was performed during the decay of sea-ice, it is plausible to assume the origin of Bacteroidetes from the sea-ice compartment where they probably thrive in high concentration of DOM which is efficiently remineralized to inorganic nutrients. This finding was supported by the isolation of Gelidibacter, Polaribacter, and Psychroflexus members (generally well represented in Antarctic sea-ice) which showed the ability to hydrolyze macromolecules, probably through the production of extracellular enzymes. A consistently pronounced abundance of the Gammaproteobacteria (67.8%) was also detected within the cultivable fraction. Altogether, the genera Psychromonas and Pseudoalteromonas accounted for 65.4% of total isolates and were ubiquitous, thus suggesting that they may play a key role within the analyzed bacterioplankton community. In particular, Pseudoalteromonas isolates possessed nitrate reductase and were able to hydrolyze substrates for protease, esterase, and β-galactosidase, thus indicating their involvement in the carbon and nitrogen cycling. Finally, the obtained results highlight the ability of the Actinobacteria to survive and proliferate in the Terra Nova Bay seawater as they generally showed a wide range of salt tolerance and appeared to be particularly competitive with strictly marine bacteria by better utilizing supplied carbon sources. PMID:21748267

  16. How DNA Barcodes Complement Taxonomy and Explore Species Diversity: The Case Study of a Poorly Understood Marine Fauna

    PubMed Central

    Chen, Jun; Li, Qi; Kong, Lingfeng; Yu, Hong

    2011-01-01

    Background The species boundaries of some venerids are difficult to define based solely on morphological features due to their indistinct intra- and interspecific phenotypic variability. An unprecedented biodiversity crisis caused by human activities has emerged. Thus, to access the biological diversity and further the conservation of this taxonomically muddling bivalve group, a fast and simple approach that can efficiently examine species boundaries and highlight areas of unrecognized diversity is urgently needed. DNA barcoding has proved its effectiveness in high-volume species identification and discovery. In the present study, Chinese fauna was chosen to examine whether this molecular biomarker is sensitive enough for species delimitation, and how it complements taxonomy and explores species diversity. Methodology/Principal Findings A total of 315 specimens from around 60 venerid species were included, qualifying the present study as the first major analysis of DNA barcoding for marine bivalves. Nearly all individuals identified to species level based on morphological traits possessed distinct barcode clusters, except for the specimens of one species pair. Among the 26 individuals that were not assigned binomial names a priori, twelve respectively nested within a species genealogy. The remaining individuals formed five monophyletic clusters that potentially represent species new to science or at least unreported in China. Five putative hidden species were also uncovered in traditional morphospecies. Conclusions/Significance The present study shows that DNA barcoding is effective in species delimitation and can aid taxonomists by indicating useful diagnostic morphological traits, informing needful revision, and flagging unseen species. Moreover, the BOLD system, which deposits barcodes, morphological, geographical and other data, has the potential as a convenient taxonomic platform. PMID:21698181

  17. Bioturbating shrimp alter the structure and diversity of bacterial communities in coastal marine sediments.

    PubMed

    Laverock, Bonnie; Smith, Cindy J; Tait, Karen; Osborn, A Mark; Widdicombe, Steve; Gilbert, Jack A

    2010-12-01

    Bioturbation is a key process in coastal sediments, influencing microbially driven cycling of nutrients as well as the physical characteristics of the sediment. However, little is known about the distribution, diversity and function of the microbial communities that inhabit the burrows of infaunal macroorganisms. In this study, terminal-restriction fragment length polymorphism analysis was used to investigate variation in the structure of bacterial communities in sediment bioturbated by the burrowing shrimp Upogebia deltaura or Callianassa subterranea. Analyses of 229 sediment samples revealed significant differences between bacterial communities inhabiting shrimp burrows and those inhabiting ambient surface and subsurface sediments. Bacterial communities in burrows from both shrimp species were more similar to those in surface-ambient than subsurface-ambient sediment (R=0.258, P<0.001). The presence of shrimp was also associated with changes in bacterial community structure in surrounding surface sediment, when compared with sediments uninhabited by shrimp. Bacterial community structure varied with burrow depth, and also between individual burrows, suggesting that the shrimp's burrow construction, irrigation and maintenance behaviour affect the distribution of bacteria within shrimp burrows. Subsequent sequence analysis of bacterial 16S rRNA genes from surface sediments revealed differences in the relative abundance of bacterial taxa between shrimp-inhabited and uninhabited sediments; shrimp-inhabited sediment contained a higher proportion of proteobacterial sequences, including in particular a twofold increase in Gammaproteobacteria. Chao1 and ACE diversity estimates showed that taxon richness within surface bacterial communities in shrimp-inhabited sediment was at least threefold higher than that in uninhabited sediment. This study shows that bioturbation can result in significant structural and compositional changes in sediment bacterial communities, increasing

  18. Intertidal Eelgrass Response to Benthic Macroalgal Accumulation in a Pacific Northwest Estuary

    EPA Science Inventory

    High accumulations of benthic macroalgae from excessive nutrient inputs to estuaries is commonly cited as a major cause of seagrass decline. Two measures of macroalgal abundance, biomass and percent cover, have been used in an assessment framework for estuarine condition propose...

  19. Macroalgal Introductions by Hull Fouling on Recreational Vessels: Seaweeds and Sailors

    NASA Astrophysics Data System (ADS)

    Mineur, Frédéric; Johnson, Mark P.; Maggs, Christine A.

    2008-10-01

    Macroalgal invasions in coastal areas have been a growing concern during the past decade. The present study aimed to assess the role of hull fouling on recreational yachts as a vector for macroalgal introductions. Questionnaire and hull surveys were carried out in marinas in France and Spain. The questionnaires revealed that the majority of yacht owners are aware of seaweed introductions, usually undertake short range journeys, dry dock their boat at least once a year, and use antifouling paints. The hull survey showed that many in-service yachts were completely free of macroalgae. When present, fouling assemblages consisted mainly of one to two macroalgal species. The most commonly found species was the tolerant green seaweed Ulva flexuosa. Most of the other species found are also cosmopolitan and opportunistic. A few nonnative and potentially invasive Ceramiales (Rhodophyta) were found occasionally on in-service yachts. On the basis of the information gathered during interviews of yacht owners in the surveyed area, these occurrences are likely to be uncommon. However they can pose a significant risk of primary or secondary introductions of alien macroalgal species, especially in the light of the increase in yachting activities. With large numbers of recreational yachts and relatively rare occurrences of nonnative species on hulls, comprehensive screening programs do not seem justified or practical. The risks of transferring nonnative species may, however, be minimized by encouraging the behaviors that prevent fouling on hulls and by taking action against neglected boats before they can act as vectors.

  20. Macroalgal introductions by hull fouling on recreational vessels: seaweeds and sailors.

    PubMed

    Mineur, Frédéric; Johnson, Mark P; Maggs, Christine A

    2008-10-01

    Macroalgal invasions in coastal areas have been a growing concern during the past decade. The present study aimed to assess the role of hull fouling on recreational yachts as a vector for macroalgal introductions. Questionnaire and hull surveys were carried out in marinas in France and Spain. The questionnaires revealed that the majority of yacht owners are aware of seaweed introductions, usually undertake short range journeys, dry dock their boat at least once a year, and use antifouling paints. The hull survey showed that many in-service yachts were completely free of macroalgae. When present, fouling assemblages consisted mainly of one to two macroalgal species. The most commonly found species was the tolerant green seaweed Ulva flexuosa. Most of the other species found are also cosmopolitan and opportunistic. A few nonnative and potentially invasive Ceramiales (Rhodophyta) were found occasionally on in-service yachts. On the basis of the information gathered during interviews of yacht owners in the surveyed area, these occurrences are likely to be uncommon. However they can pose a significant risk of primary or secondary introductions of alien macroalgal species, especially in the light of the increase in yachting activities. With large numbers of recreational yachts and relatively rare occurrences of nonnative species on hulls, comprehensive screening programs do not seem justified or practical. The risks of transferring nonnative species may, however, be minimized by encouraging the behaviors that prevent fouling on hulls and by taking action against neglected boats before they can act as vectors. PMID:18704562

  1. Mapping benthic macroalgal communities in the coastal zone using CHRIS-PROBA mode 2 images

    NASA Astrophysics Data System (ADS)

    Casal, G.; Kutser, T.; Domínguez-Gómez, J. A.; Sánchez-Carnero, N.; Freire, J.

    2011-09-01

    The ecological importance of benthic macroalgal communities in coastal ecosystems has been recognised worldwide and the application of remote sensing to study these communities presents certain advantages respect to in situ methods. The present study used three CHRIS-PROBA images to analyse macroalgal communities distribution in the Seno de Corcubión (NW Spain). The use of this sensor represent a challenge given that its design, build and deployment programme is intended to follow the principles of the "faster, better, cheaper". To assess the application of this sensor to macroalgal mapping, two types of classifications were carried out: Maximum Likelihood and Spectral Angle Mapper (SAM). Maximum Likelihood classifier showed positive results, reaching overall accuracy percentages higher than 90% and kappa coefficients higher than 0.80 for the bottom classes shallow submerged sand, deep submerged sand, macroalgae less than 5 m and macroalgae between 5 and 10 m depth. The differentiation among macroalgal groups using SAM classifications showed positive results for green seaweeds although the differentiation between brown and red algae was not clear in the study area.

  2. Application of a Eutrophic Condition Index to Benthic Macroalgal Accumulation in Pacific Northwest Estuaries

    EPA Science Inventory

    Studies of benthic macroalgal accumulation in coastal estuaries of the Pacific Northwest, USA, were conducted over a 12-year period, including aerial mapping and ground surveys. The results were applied to an assessment framework for eutrophication developed by the European Unio...

  3. Diversity of prokaryotic community at a shallow marine hydrothermal site elucidated by Illumina sequencing technology.

    PubMed

    Lentini, Valeria; Gugliandolo, Concetta; Bunk, Boyke; Overmann, Jörg; Maugeri, Teresa L

    2014-10-01

    To investigate the prokaryotic community structure and composition in an active hydrothermal site, named Black Point, off Panarea Island (Eolian Islands, Italy), we examined sediment and fluid samples, differing in temperature, by a massive parallel sequencing (Illumina) technique targeting the V3 region of the 16S rRNA gene. The used technique enabled us to detect a greater prokaryotic diversity than that until now observed and to reveal also microorganisms occurring at very low abundance (≤0.01 %). Most of sequences were assigned to Bacteria while Archaea were a minor component of the microbial community in both low- and high-temperature samples. Proteobacteria (mainly consisting of Alpha-, Gamma-, and Epsilonproteobacteria) dominated among all samples followed by Actinobacteria and Bacteroidetes. Analyzed DNA obtained from samples taken at different temperatures indicated the presence of members of different dominant genera. The main differences were observed between sediment samples where Rhodovulum and Thiohalospira prevailed at high temperature, while Thalassomonas and Sulfurimonas at low temperature. Chlorobium, Acinetobacter, Sulfurimonas, and Brevundimonas were abundant in both low- and high-temperature fluid samples. Euryarchaeota dominated the archaeal community in all samples. Classes of Euryarchaeota embracing hyperthermophilic members (Thermococci and Thermoplasmata) and of Crenarchaeota (Thermoprotei) were more abundant in high-temperature samples. A great number of sequences referred to Bacteria and Archaea still remained unaffiliated, indicating that Black Point site represents a rich source of so-far uncharted prokaryotic diversity. PMID:24849732

  4. Contrasted effects of diversity and immigration on ecological insurance in marine bacterioplankton communities.

    PubMed

    Bouvier, Thierry; Venail, Patrick; Pommier, Thomas; Bouvier, Corinne; Barbera, Claire; Mouquet, Nicolas

    2012-01-01

    The ecological insurance hypothesis predicts a positive effect of species richness on ecosystem functioning in a variable environment. This effect stems from temporal and spatial complementarity among species within metacommunities coupled with optimal levels of dispersal. Despite its importance in the context of global change by human activities, empirical evidence for ecological insurance remains scarce and controversial. Here we use natural aquatic bacterial communities to explore some of the predictions of the spatial and temporal aspects of the ecological insurance hypothesis. Addressing ecological insurance with bacterioplankton is of strong relevance given their central role in fundamental ecosystem processes. Our experimental set up consisted of water and bacterioplankton communities from two contrasting coastal lagoons. In order to mimic environmental fluctuations, the bacterioplankton community from one lagoon was successively transferred between tanks containing water from each of the two lagoons. We manipulated initial bacterial diversity for experimental communities and immigration during the experiment. We found that the abundance and production of bacterioplankton communities was higher and more stable (lower temporal variance) for treatments with high initial bacterial diversity. Immigration was only marginally beneficial to bacterial communities, probably because microbial communities operate at different time scales compared to the frequency of perturbation selected in this study, and of their intrinsic high physiologic plasticity. Such local "physiological insurance" may have a strong significance for the maintenance of bacterial abundance and production in the face of environmental perturbations. PMID:22701572

  5. Diversity of protease-producing marine bacteria from sub-antarctic environments.

    PubMed

    Cristóbal, Héctor Antonio; López, Maria Alejandra; Kothe, Erika; Abate, Carlos Mauricio

    2011-12-01

    From seawater and the intestines of benthonic organisms collected from the Beagle Channel, Argentina, 230 marine bacteria were isolated. Cultivable bacteria were characterized and classified as psychrotolerant, whereas few isolates were psychrophiles. These isolates were capable of producing proteases at 4 and 15 °C under neutral (pH 7.0), alkaline (pH 10.0) and acidic (pH 4.5) conditions on different media, revealing 62, 33 and 22% producers at cold and 84, 47 and 33% producers at low temperatures, respectively. More protease-producing strains (67%) were detected when isolated from benthic invertebrates as compared to seawater (33%), with protease production under neutral conditions resulting in milk protein hydrolysis halos between 27 and 30 ± 2 mm in diameter. Using sterile 0.22 μm membrane filters, 29 isolates exhibiting extracellular protease activity were detected. These were grouped into six operational taxonomic units by restriction analysis and identified based on 16S rDNA as γ-proteobacteria of the genera Pseudoalteromonas, Pseudomonas, Shewanella, Alteromonas, Aeromonas, and Serratia. Plasmids were found to be harbored by eight strains, mainly within the isolates from benthonic organisms. PMID:21656810

  6. Spatially structured populations with a low level of cryptic diversity in European marine Gastrotricha.

    PubMed

    Kieneke, Alexander; Martínez Arbizu, Pedro M; Fontaneto, Diego

    2012-03-01

    Species of the marine meiofauna such as Gastrotricha are known to lack dispersal stages and are thus assumed to have low dispersal ability and low levels of gene flow between populations. Yet, most species are widely distributed, and this creates a paradox. To shed light on this apparent paradox, we test (i) whether such wide distribution may be due to misidentification and lumping of cryptic species with restricted distributions and (ii) whether spatial structures exist for the phylogeography of gastrotrichs. As a model, we used the genus Turbanella in NW Europe. DNA taxonomy using a mitochondrial and a nuclear marker supports distinctness of four traditional species (Turbanella ambronensis, T. bocqueti, T. mustela and T. cornuta) and provides evidence for two cryptic species within T. hyalina. An effect of geography on the within-species genetic structure is indeed present, with the potential for understanding colonization processes and for performing phylogeographic inference from microscopic animals. On the other hand, the occurrence of widely distributed haplotypes indicates long-distance dispersal as well, despite the assumed low dispersal ability of gastrotrichs. PMID:22257178

  7. Chemical composition of inks of diverse marine molluscs suggests convergent chemical defenses.

    PubMed

    Derby, Charles D; Kicklighter, Cynthia E; Johnson, P M; Zhang, Xu

    2007-05-01

    Some marine molluscs, notably sea hares, cuttlefish, squid, and octopus, release ink when attacked by predators. The sea hare Aplysia californica releases secretions from the ink gland and opaline gland that protect individuals from injury or death from predatory spiny lobsters through a combination of mechanisms that include chemical deterrence, sensory disruption, and phagomimicry. The latter two mechanisms are facilitated by millimolar concentrations of free amino acids (FAA) in sea hare ink and opaline, which stimulate the chemosensory systems of predators, ultimately leading to escape by sea hares. We hypothesize that other inking molluscs use sensory disruption and/or phagomimicry as a chemical defense. To investigate this, we examined concentrations of 21 FAA and ammonium in the defensive secretions of nine species of inking molluscs: three sea hares (Aplysia californica, Aplysia dactylomela, Aplysia juliana) and six cephalopods (cuttlefish: Sepia officinalis; squid: Loligo pealei, Lolliguncula brevis, Dosidicus gigas; octopus: Octopus vulgaris, Octopus bimaculoides). We found millimolar levels of total FAA and ammonium in these secretions, and the FAA in highest concentration were taurine, aspartic acid, glutamic acid, alanine, and lysine. Crustaceans and fish, which are major predators of these molluscs, have specific receptor systems for these FAA. Our chemical analysis supports the hypothesis that inking molluscs have the potential to use sensory disruption and/or phagomimicry as a chemical defense. PMID:17393278

  8. Diversity and bioactivity of actinomycetes from marine sediments of the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Shumin; Ye, Liang; Tang, Xuexi

    2012-03-01

    Among the 116 actinomycetes collected from marine sediments of the Yellow Sea, 56 grew slowly and appeared after 2-3 weeks of incubation. Among the 56 strains, only 3 required seawater (SW) for growth, and 21 grew well in the medium prepared with SW rather than distilled water (DW), while the remaining 32 grew well either with SW or with DW. Six representatives with different morphological characteristics, including 1 SW-requiring strain and 5 well-growing with SW strains, were selected for phylogenetic analysis based on 16S rRNA gene. Two strains belong to Micrococcaceae and Nocardiopsaceae respectively. The other 4 strains belong to the family of Streptomycetaceae. In the analyzed 6 strains, one was related to Nocardiopsis spp. and the other three were related to Streptomyces spp., representing new taxa. Bioactivity testing of fermentation products from 3 SW-requiring strains and 21 well-growing with SW strains revealed that 17 strains possessed remarkable activities against gram-positive pathogen or/and tumor cells, suggesting that they were prolific resources for natural drug discovery.

  9. Bioprospecting Chemical Diversity and Bioactivity in a Marine Derived Aspergillus terreus.

    PubMed

    Adpressa, Donovon A; Loesgen, Sandra

    2016-02-01

    A comparative metabolomic study of a marine derived fungus (Aspergillus terreus) grown under various culture conditions is presented. The fungus was grown in eleven different culture conditions using solid agar, broth cultures, or grain based media (OSMAC). Multivariate analysis of LC/MS data from the organic extracts revealed drastic differences in the metabolic profiles and guided our subsequent isolation efforts. The compound 7-desmethylcitreoviridin was isolated and identified, and is fully described for the first time. In addition, 16 known fungal metabolites were also isolated and identified. All compounds were elucidated by detailed spectroscopic analysis and tested for antibacterial activities against five human pathogens and tested for cytotoxicity. This study demonstrates that LC/MS based multivariate analysis provides a simple yet powerful tool to analyze the metabolome of a single fungal strain grown under various conditions. This approach allows environmentally-induced changes in metabolite expression to be rapidly visualized, and uses these differences to guide the discovery of new bioactive molecules. PMID:26880440

  10. Towards a quantitative link between tidal macroalgal exposure and iodine-mediated CCN formation

    NASA Astrophysics Data System (ADS)

    McFiggans, G.; Bale, C.; Ball, S.; Bloss, W.; Carpenter, L.; Dorsey, J.; Dunk, R.; Flynn, M. J.; Furneaux, K.; Gallagher, M. W.; Heard, D. E.; Hollingsworth, A.; Hornsby, K. E.; Jones, C. E.; Jones, R.; Kramer, L.; Langridge, J.; Lee, J.; Leblanc, C.; Leigh, R.; Lowe, D.; Mahajan, A.; Monks, P.; Oetjen, H.; Plane, J. M.; Potin, P.; Saiz-Lopez, A.; Shillings, A.; Whalley, L.; Whitehead, J.

    2009-12-01

    In recent years the phenomenon of coastal ultrafine particle formation has been extensively reported and a qualitative linkage to molecular iodine emissions from macroalgae at low tide has now been well-established. In September 2006, within the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) programme, an extensive payload of instrumentation was deployed in Roscoff, Brittany, to characterise particle formation and reactive halogen chemistry at a coastal location rich in intertidal macroalgae. Aerosol measurements included particle number concentration (>2 nm and > 10 nm diameter) and size distributions from 3 nm. Particle and ozone fluxes were measured by Eddy Correlation. Optical absorption instruments were used to investigate the path integrated and in situ concentrations of iodine oxide radicals. Halocarbon concentrations were measured online by GC-MS and a Relaxed Eddy Accumulation system was deployed to measure halocarbon and molecular iodine fluxes. A digitised map of speciated macroalgal distribution was superimposed on local bathymetry, to enable areal exposure to be calculated for each species as a function of time through the tidal cycle. Molecular iodine source functions were established for each species and footprints calculated at the measurement “receptor” site. With transport driven by local meteorology and photochemistry by measured spectral radiometry, the predicted molecular iodine concentration was compared with in situ measurements. A 1-D model of halogen cycling through a size-resolved aerosol distribution, driven by remote boundary conditions and local iodine emissions was used to predict the temporal and vertical variability of I2 and IO. The predictions were compared with long-path and in situ measurements aiming to resolve discrepancies resulting from spatial heterogeneity. Correlations were investigated between the measured particle concentrations and in situ IO concentrations as was the relationship between measured ozone