Sample records for marine macroalgal diversity

  1. Macroalgal blooms alter community structure and primary productivity in marine ecosystems.

    PubMed

    Lyons, Devin A; Arvanitidis, Christos; Blight, Andrew J; Chatzinikolaou, Eva; Guy-Haim, Tamar; Kotta, Jonne; Orav-Kotta, Helen; Queirós, Ana M; Rilov, Gil; Somerfield, Paul J; Crowe, Tasman P

    2014-09-01

    Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programmes. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulphide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta-analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and

  2. Macroalgal diversity along an inshore-offshore environmental gradient in the Jakarta Bay - Thousand Islands reef complex, Indonesia

    NASA Astrophysics Data System (ADS)

    Draisma, Stefano G. A.; Prud'homme van Reine, Willem F.; Herandarudewi, Sekar M. C.; Hoeksema, Bert W.

    2018-01-01

    The Jakarta Bay - Thousand Islands reef complex extends to more than 80 km in northwest direction from the major conurbation Jakarta (Indonesia) along a pronounced inshore to offshore environmental gradient. The present study aims to determine to what extent environmental factors can explain the composition of macroalgal communities on the reefs off Jakarta. Therefore, the presence-absence of 67 macroalgal taxa was recorded for 27 sampling sites along the inshore-offshore disturbance gradient and analysed with substrate variables and water quality variables. The macroalgal richness pattern matches the pattern of other reef taxa. The 27 sites could be assigned to one of four geographical zones with 85% certainty based on their macroalgal taxon assemblages. These four zones (i.e., Jakarta Bay and, respectively, South, Central, and North Thousand Islands) had significantly different macroalgal assemblages, except for the North and South zones. Along the nearshore gradient there was a greater shift in taxon composition than within the central Thousand Islands. The patterns of ten habitat and water quality variables resembled the macroalgal diversity patterns by 56%. All ten variables together explained 69% of the variation in macroalgal composition. Shelf depth, % sand cover, gelbstoff/detrital material, chlorophyll a concentration, seawater surface temperature, and % dead coral cover were the best predictors of seaweed flora composition. Furthermore, 44 macroalgal species represented new records for the area. The present study provides important baseline data of macroalgae in the area for comparison in future biodiversity assessments in the area and elsewhere in the region.

  3. The macroalgal carbonate factory at a cool-to-warm temperate marine transition, Southern Australia

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Reid, Catherine M.; Bone, Yvonne; Levings, Andrew; Malcolm, Isabelle

    2013-06-01

    The shallow neritic seafloor to depths of ~ 30 m along the coast of southwestern Victoria Australia, is the site of rocky reefs on volcanic and aeolianite bathymetric highs. The region, located near the warm- to cool-temperate environmental transition, is a site of prolific macroalgae (kelp) growth. Kelps are most prolific and diverse in high-energy, open-ocean environments whereas broad-leafed seagrasses, at their cold-water eastern limit, are restricted to local protected embayments. The seagrasses are reduced to one species of Amphibolis whereas the kelps are diverse and include the large intertidal bull kelp (Durvillaea), not present in warmer waters. The macroalgal forest extends from the intertidal to ~ 30 mwd (metres water depth) as a series of distinct biomes; 1) the Peritidal, 2) the Phaeophyte Forest (0-17 mwd), 3) the Rhodophyte Thicket (17-15 mwd), and 4) the Invertebrate Coppice (> 25 mwd). The Phaeophyte Forest is partitioned into a Durvillaea zone (0-2 mwd), a Phyllospora zone (2-10 mwd) and an Ecklonia zone (10-17mwd). The two major habitats within each biome comprise 1) an upward facing illuminated surface that supports a macroalgal canopy over an understorey of coralline algae and herbivorous gastropods, and 2) a separate, cryptic, shaded habitat dominated by a diverse community of filter-feeding invertebrates. These communities produce two different sediments; 1) geniculate and encrusting corallines and diverse gastropods from the upper surface, and 2) bryozoans, molluscs, barnacles, chitons, serpulids, and benthic foraminifers from the shaded, cryptic habitats. These particles are blended together with the latter becoming proportionally more abundant with increasing depth. Results of this study, when integrated with recent investigations in warm-temperate (South Australia) and cool-temperate (New Zealand) environments now define carbonate sedimentology of the macroalgal reef depositional system in this part of the northern Southern Ocean.

  4. Marine macroalgal community structure, metal content and reproductive function near an acid mine drainage outflow.

    PubMed

    Marsden, A D; DeWreede, R E

    2000-12-01

    Marine macroalgal communities were examined near the outflow of acid mine drainage (AMD) from the Britannia Mine, British Columbia, Canada. No marine algae were present within 100 m of the mouth of Britannia Creek, which carries the AMD into the marine environment. At greater distances (300-700 m) from this Creek, mean summer cover of filamentous green algae, mostly Enteromorpha intestinalis, was >60%, which was significantly higher than at nearby reference stations. At still greater distances (600-1000 m) from Britannia Creek, Fucus gardneri dominated algal communities that were similar to those at reference stations. No consistent differences were detected in mean plant length, mean per cent cover or mean oocyte production between F. gardneri near Britannia Creek and those at reference stations. Cu body burden in F. gardneri near Britannia Creek was five to 17 times higher than in reference plants.

  5. Shining Light on Benthic Macroalgae: Mechanisms of Complementarity in Layered Macroalgal Assemblages

    PubMed Central

    Tait, Leigh W.; Hawes, Ian; Schiel, David R.

    2014-01-01

    Phototrophs underpin most ecosystem processes, but to do this they need sufficient light. This critical resource, however, is compromised along many marine shores by increased loads of sediments and nutrients from degraded inland habitats. Increased attenuation of total irradiance within coastal water columns due to turbidity is known to reduce species' depth limits and affect the taxonomic structure and architecture of algal-dominated assemblages, but virtually no attention has been paid to the potential for changes in spectral quality of light energy to impact production dynamics. Pioneering studies over 70 years ago showed how different pigmentation of red, green and brown algae affected absorption spectra, action spectra, and photosynthetic efficiency across the PAR (photosynthetically active radiation) spectrum. Little of this, however, has found its way into ecological syntheses of the impacts of optically active contaminants on coastal macroalgal communities. Here we test the ability of macroalgal assemblages composed of multiple functional groups (including representatives from the chlorophyta, rhodophyta and phaeophyta) to use the total light resource, including different light wavelengths and examine the effects of suspended sediments on the penetration and spectral quality of light in coastal waters. We show that assemblages composed of multiple functional groups are better able to use light throughout the PAR spectrum. Macroalgal assemblages with four sub-canopy species were between 50–75% more productive than assemblages with only one or two sub-canopy species. Furthermore, attenuation of the PAR spectrum showed both a loss of quanta and a shift in spectral distribution with depth across coastal waters of different clarity, with consequences to productivity dynamics of diverse layered assemblages. The processes of light complementarity may help provide a mechanistic understanding of how altered turbidity affects macroalgal assemblages in coastal

  6. The invasibility of marine algal assemblages: role of functional diversity and identity.

    PubMed

    Arenas, Francisco; Sánchez, Iñigo; Hawkins, Stephen J; Jenkins, Stuart R

    2006-11-01

    The emergence of the biodiversity-ecosystem functioning debate in the last decade has renewed interest in understanding why some communities are more easily invaded than others and how the impact of invasion on recipient communities and ecosystems varies. To date most of the research on invasibility has focused on taxonomic diversity, i.e., species richness. However, functional diversity of the communities should be more relevant for the resistance of the community to invasions, as the extent of functional differences among the species in an assemblage is a major determinant of ecosystem processes. Although coastal marine habitats are among the most heavily invaded ecosystems, studies on community invasibility and vulnerability in these habitats are scarce. We carried out a manipulative field experiment in tide pools of the rocky intertidal to test the hypothesis that increasing functional richness reduces the susceptibility of macroalgal communities to invasion. We selected a priori four functional groups on the basis of previous knowledge of local species characteristics: encrusting, turf, subcanopy, and canopy species. Synthetic assemblages containing one, two, three, or four different functional groups of seaweeds were created, and invasion by native species was monitored over an eight-month period. Cover and resource availability in the assemblages with only one functional group showed different patterns in the use of space and light, confirming true functional differences among our groups. Experimental results showed that the identity of functional groups was more important than functional richness in determining the ability of macroalgal communities to resist invasion and that resistance to invasion was resource-mediated.

  7. Context-Dependent Diversity-Effects of Seaweed Consumption on Coral Reefs in Kenya

    PubMed Central

    Humphries, Austin T.; McQuaid, Christopher D.; McClanahan, Tim R.

    2015-01-01

    Consumers and prey diversity, their interactions, and subsequent effects on ecosystem function are important for ecological processes but not well understood in high diversity ecosystems such as coral reefs. Consequently, we tested the potential for diversity-effects with a series of surveys and experiments evaluating the influence of browsing herbivores on macroalgae in Kenya’s fringing reef ecosystem. We surveyed sites and undertook experiments in reefs subject to three levels of human fishing influence: open access fished reefs, small and recently established community-managed marine reserves, and larger, older government-managed marine reserves. Older marine reserves had a greater overall diversity of herbivores and browsers but this was not clearly associated with reduced macroalgal diversity or abundance. Experiments studying succession on hard substrata also found no effects of consumer diversity. Instead, overall browser abundance of either sea urchins or fishes was correlated with declines in macroalgal cover. An exception was that the absence of a key fish browser genus, Naso, which was correlated with the persistence of Sargassum in a marine reserve. Algal selectivity assays showed that macroalgae were consumed at variable rates, a product of strong species-specific feeding and low overlap in the selectivity of browsing fishes. We conclude that the effects of browser and herbivore diversity are less than the influences of key species, whose impacts emerge in different contexts that are influenced by fisheries management. Consequently, identifying key herbivore species and managing to protect them may assist protecting reef functions. PMID:26673609

  8. An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass

    NASA Astrophysics Data System (ADS)

    Trivedi, Nitin; Baghel, Ravi S.; Bothwell, John; Gupta, Vishal; Reddy, C. R. K.; Lali, Arvind M.; Jha, Bhavanath

    2016-07-01

    We describe an integrated process that can be applied to biomass of the green seaweed, Ulva fasciata, to allow the sequential recovery of four economically important fractions; mineral rich liquid extract (MRLE), lipid, ulvan, and cellulose. The main benefits of our process are: a) its simplicity and b) the consistent yields obtained from the residual biomass after each successive extraction step. For example, dry Ulva biomass yields ~26% of its starting mass as MRLE, ~3% as lipid, ~25% as ulvan, and ~11% as cellulose, with the enzymatic hydrolysis and fermentation of the final cellulose fraction under optimized conditions producing ethanol at a competitive 0.45 g/g reducing sugar. These yields are comparable to those obtained by direct processing of the individual components from primary biomass. We propose that this integration of ethanol production and chemical feedstock recovery from macroalgal biomass could substantially enhance the sustainability of marine biomass use.

  9. Decapod assemblages associated with shallow macroalgal communities in the northwestern Alboran Sea: Microhabitat use and temporal variability

    NASA Astrophysics Data System (ADS)

    Mateo-Ramírez, Á.; Urra, J.; Rueda, J. L.; Marina, P.; García Raso, J. E.

    2018-05-01

    Decapod assemblages associated with algal fronds and the underlying substratum in two different photophilous macroalgal beds dominated by the brown algae Halopteris scoparia were studied in the northwestern Alboran Sea, between July 2007 and April 2008. A total of 35 decapod species were found in the macroalgal beds, most of them inhabiting both strata and with Hippolyte leptocerus, Pilumnus hirtellus, Sirpus zariquieyi, Acanthonyx lunulatus, Athanas nitescens and Achaeus gracilis as the dominant species. Assemblages on algal fronds and sediment displayed significant variations mainly due to differences in the abundance values of some dominant species (e.g. H. leptocerus) and/or the presence of certain species exclusively in one strata (e.g. Pisa nodipes in algal fronds, Atelecyclus rotundatus and Sicyonia carinata on the sediment stratum). Higher abundance, species richness and Shannon-Wiener diversity index values were registered in the sediment stratum, with a higher contribution of adults-large individuals than of juvenile-small individuals. The temporal variability of the studied assemblages showed maximum abundance values in November, when algal development is minimal. This decoupling between temporal patterns of decapod assemblages and macroalgal dynamic could be related to the lifestyles (recruitment events, movements of species between adjacent habitats and microhabitats) and trophic guilds of dominant species, fish predation pressure and the structural complexity of the habitat. A similar trophic structure was observed for both strata, however there was a predominance of grazers in the algae stratum and of predators and scavengers in the sediment stratum. The high diversity and abundance of predator decapods, the relatively balanced distribution of most trophic groups, and the overall high values of species richness and evenness, could indicate a healthy status of at least two of the eleven "Good Environmental Status" indicators (biodiversity and food

  10. Gene expression of corals in response to macroalgal competitors.

    PubMed

    Shearer, Tonya L; Snell, Terry W; Hay, Mark E

    2014-01-01

    As corals decline and macroalgae proliferate on coral reefs, coral-macroalgal competition becomes more frequent and ecologically important. Whether corals are damaged by these interactions depends on susceptibility of the coral and traits of macroalgal competitors. Investigating changes in gene expression of corals and their intracellular symbiotic algae, Symbiodinium, in response to contact with different macroalgae provides insight into the biological processes and cellular pathways affected by competition with macroalgae. We evaluated the gene expression profiles of coral and Symbiodinium genes from two confamilial corals, Acropora millepora and Montipora digitata, after 6 h and 48 h of contact with four common macroalgae that differ in their allelopathic potency to corals. Contacts with macroalgae affected different biological pathways in the more susceptible (A. millepora) versus the more resistant (M. digitata) coral. Genes of coral hosts and of their associated Symbiodinium also responded in species-specific and time-specific ways to each macroalga. Changes in number and expression intensity of affected genes were greater after 6 h compared to 48 h of contact and were greater following contact with Chlorodesmis fastigiata and Amphiroa crassa than following contact with Galaxaura filamentosa or Turbinaria conoides. We documented a divergence in transcriptional responses between two confamilial corals and their associated Symbiodinium, as well as a diversity of dynamic responses within each coral species with respect to the species of macroalgal competitor and the duration of exposure to that competitor. These responses included early initiation of immune processes by Montipora, which is more resistant to damage after long-term macroalgal contact. Activation of the immune response by corals that better resist algal competition is consistent with the hypothesis that some macroalgal effects on corals may be mediated by microbial pathogens.

  11. Macroalgal herbivory on recovering versus degrading coral reefs

    NASA Astrophysics Data System (ADS)

    Chong-Seng, K. M.; Nash, K. L.; Bellwood, D. R.; Graham, N. A. J.

    2014-06-01

    Macroalgal-feeding fishes are considered to be a key functional group on coral reefs due to their role in preventing phase shifts from coral to macroalgal dominance, and potentially reversing the shift should it occur. However, assessments of macroalgal herbivory using bioassay experiments are primarily from systems with relatively high coral cover. This raises the question of whether continued functionality can be ensured in degraded systems. It is clearly important to determine whether the species that remove macroalgae on coral-dominated reefs will still be present and performing significant algal removal on macroalgal-dominated reefs. We compared the identity and effectiveness of macroalgal-feeding fishes on reefs in two conditions post-disturbance—those regenerating with high live coral cover (20-46 %) and those degrading with high macroalgal cover (57-82 %). Using filmed Sargassum bioassays, we found significantly different Sargassum biomass loss between the two conditions; mean assay weight loss due to herbivory was 27.9 ± 4.9 % on coral-dominated reefs and 2.2 ± 1.1 % on reefs with high macroalgal cover. However, once standardised for the availability of macroalgae on the reefs, the rates of removal were similar between the two reef conditions (4.8 ± 4.1 g m-2 h-1 on coral-dominated and 5.3 ± 2.1 g m-2 h-1 on macroalgal-dominated reefs). Interestingly, the Sargassum-assay consumer assemblages differed between reef conditions; nominally grazing herbivores, Siganus puelloides and Chlorurus sordidus, and the browser , Siganus sutor, dominated feeding on high coral cover reefs, whereas browsing herbivores, Naso elegans, Naso unicornis, and Leptoscarus vaigiensis, prevailed on macroalgal-dominated reefs. It appeared that macroalgal density in the surrounding habitat had a strong influence on the species driving the process of macroalgal removal. This suggests that although the function of macroalgal removal may continue, the species responsible may change

  12. Insights from natural history collections: analysing the New Zealand macroalgal flora using herbarium data

    PubMed Central

    Nelson, Wendy A.; Dalen, Jennifer; Neill, Kate F.

    2013-01-01

    Abstract Herbaria and natural history collections (NHC) are critical to the practice of taxonomy and have potential to serve as sources of data for biodiversity and conservation. They are the repositories of vital reference specimens, enabling species to be studied and their distribution in space and time to be documented and analysed, as well as enabling the development of hypotheses about species relationships. The herbarium of the Museum of New Zealand Te Papa Tongarewa (WELT) contains scientifically and historically significant marine macroalgal collections, including type specimens, primarily of New Zealand species, as well as valuable exsiccatae from New Zealand and Australia. The herbarium was initiated in 1865 with the establishment of the Colonial Museum and is the only herbarium in New Zealand where there has been consistent expert taxonomic attention to the macroalgae over the past 50 years. We examined 19,422 records of marine macroalgae from around New Zealand collected over the past 164 years housed in WELT, assessing the records in terms of their spatial and temporal coverage as well as their uniqueness and abundance. The data provided an opportunity to review the state of knowledge of the New Zealand macroalgal flora reflected in the collections at WELT, to examine how knowledge of the macroalgal flora has been built over time in terms of the number of collections and the number of species recognised, and identify where there are gaps in the current collections as far as numbers of specimens per taxon, as well as with respect to geographical and seasonal coverage. PMID:24399897

  13. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Cheal, A. J.; MacNeil, M. Aaron; Cripps, E.; Emslie, M. J.; Jonker, M.; Schaffelke, B.; Sweatman, H.

    2010-12-01

    Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral-macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral-macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global

  14. Consumer diversity interacts with prey defenses to drive ecosystem function

    PubMed Central

    Rasher, Douglas B.; Hoey, Andrew S.; Hay, Mark E.

    2013-01-01

    Prey traits linking consumer diversity to ecosystem function remain poorly understood. On tropical coral reefs, herbivores promote coral dominance by suppressing competing macroalgae, but the roles of herbivore identity and diversity, macroalgal defenses, and their interactions in affecting reef resilience and function are unclear. We studied adjacent pairs of no-take marine reserves and fished areas on reefs in Fiji, and found that protected reefs supported 7–17x greater biomass and 2–3x higher species richness of herbivorous fishes, and 3–11x more live coral cover than did fished reefs. In contrast, macroalgae were 27–61x more abundant and 3–4x more species rich on fished reefs. When we transplanted seven common macroalgae from fished reefs into reserves they were rapidly consumed, suggesting that rates of herbivory (ecosystem functioning) differed inside versus outside reserves. We then video recorded feeding activity on the same seven macroalgae when transplanted into reserves, and assessed the functional redundancy versus complementarity of herbivorous fishes consuming these macroalgae. Of 29 species of larger herbivorous fishes on these reefs, only four species accounted for 97% of macroalgal consumption. Two unicornfish consumed a range of brown macroalgae, a parrotfish consumed multiple red algae, and a rabbitfish consumed a green alga, with almost no diet overlap among these groups. The two most chemically rich, allelopathic algae were each consumed by a single, but different, fish species. This striking complementarity resulted from herbivore species differing in their tolerances to macroalgal chemical and structural defenses. A model of assemblage diet breadth based on our feeding observations predicted that high browser diversity would be required for effective control of macroalgae on Fijian reefs. In support of this model, we observed strong, negative relationships between herbivore diversity and macroalgal abundance and diversity across the

  15. Consumer diversity interacts with prey defenses to drive ecosystem function.

    PubMed

    Rasher, Douglas B; Hoey, Andrew S; Hay, Mark E

    2013-06-01

    Prey traits linking consumer diversity to ecosystem function remain poorly understood. On tropical coral reefs, herbivores promote coral dominance by suppressing competing macroalgae, but the roles of herbivore identity and diversity, macroalgal defenses, and their interactions in affecting reef resilience and function are unclear. We studied adjacent pairs of no-take marine reserves and fished areas on reefs in Fiji and found that protected reefs supported 7-17x greater biomass, 2-3x higher species richness of herbivorous fishes, and 3-11x more live coral cover than did fished reefs. In contrast, macroalgae were 27-61x more abundant and 3-4x more species-rich on fished reefs. When we transplanted seven common macroalgae from fished reefs into reserves they were rapidly consumed, suggesting that rates of herbivory (ecosystem functioning) differed inside vs. outside reserves. We then video-recorded feeding activity on the same seven macroalgae when transplanted into reserves, and assessed the functional redundancy vs. complementarity of herbivorous fishes consuming these macroalgae. Of 29 species of larger herbivorous fishes on these reefs, only four species accounted for 97% of macroalgal consumption. Two unicornfish consumed a range of brown macroalgae, a parrotfish consumed multiple red algae, and a rabbitfish consumed a green alga, with almost no diet overlap among these groups. The two most chemically rich, allelopathic algae were each consumed by a single, but different, fish species. This striking complementarity resulted from herbivore species differing in their tolerances to macroalgal chemical and structural defenses. A model of assemblage diet breadth based on our feeding observations predicted that high browser diversity would be required for effective control of macroalgae on Fijian reefs. In support of this model, we observed strong negative relationships between herbivore diversity and macroalgal abundance and diversity across the six study reefs. Our

  16. Marine Fungi: Their Ecology and Molecular Diversity

    NASA Astrophysics Data System (ADS)

    Richards, Thomas A.; Jones, Meredith D. M.; Leonard, Guy; Bass, David

    2012-01-01

    Fungi appear to be rare in marine environments. There are relatively few marine isolates in culture, and fungal small subunit ribosomal DNA (SSU rDNA) sequences are rarely recovered in marine clone library experiments (i.e., culture-independent sequence surveys of eukaryotic microbial diversity from environmental DNA samples). To explore the diversity of marine fungi, we took a broad selection of SSU rDNA data sets and calculated a summary phylogeny. Bringing these data together identified a diverse collection of marine fungi, including sequences branching close to chytrids (flagellated fungi), filamentous hypha-forming fungi, and multicellular fungi. However, the majority of the sequences branched with ascomycete and basidiomycete yeasts. We discuss evidence for 36 novel marine lineages, the majority and most divergent of which branch with the chytrids. We then investigate what these data mean for the evolutionary history of the Fungi and specifically marine-terrestrial transitions. Finally, we discuss the roles of fungi in marine ecosystems.

  17. Patterns of distribution and environmental correlates of macroalgal assemblages and sediment chlorophyll a in Oregon tidal wetlands

    EPA Science Inventory

    Algae have important functional roles in estuarine wetlands along the Pacific coast of the United States. We quantified differences in macroalgal abundance, composition and diversity, and sediment chlorophyll a and pheophytin a among three National Wetlands Inventory emergent mar...

  18. Evolution of a Vegetarian Vibrio: Metabolic Specialization of V. breoganii to Macroalgal Substrates.

    PubMed

    Corzett, Christopher H; Elsherbini, Joseph; Chien, Diana M; Hehemann, Jan-Hendrik; Henschel, Andreas; Preheim, Sarah P; Yu, Xiaoqian; Alm, Eric J; Polz, Martin F

    2018-04-09

    While most Vibrionaceae are considered generalists that thrive on diverse substrates including animal-derived material, we show that V. breoganii has specialized for the consumption of marine macroalgae-derived substrates. Genomic and physiological comparison of V. breoganii with other Vibrionaceae isolates revealed the ability to degrade alginate, laminarin, and additional glycans present in algal cell walls. Moreover, the widely conserved ability to hydrolyze animal-derived polymers including chitin and glycogen was lost along with the ability to efficiently grow on a variety of amino acids. Ecological data showing associations with particulate algal material but not zooplankton further support this shift in niche preference, and the loss of motility appears to reflect a sessile macroalgal-associated lifestyle. Together, these findings indicate algal polysaccharides have become a major source of carbon and energy in V. breoganii , and these ecophysiological adaptations may facilitate transient commensal associations with marine invertebrates that feed on algae. Importance: Vibrios are often considered animal specialists or generalists. Here we show that Vibrio breoganii has undergone massive genomic changes to become specialized on algal carbohydrates. Accompanying genomic changes include massive gene import and loss. These vibrios may help better understand how algal biomass is degraded in the environment and may serve as a blueprint how to optimize conversion of algae to biofuels. Copyright © 2018 American Society for Microbiology.

  19. Macroalgal blooms favor heterotrophic diazotrophic bacteria in nitrogen-rich and phosphorus-limited coastal surface waters in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoli; Song, Yanjing; Liu, Dongyan; Keesing, John K.; Gong, Jun

    2015-09-01

    Macroalgal blooms may lead to dramatic changes in physicochemical variables and biogeochemical cycling in affected waters. However, little is known about the effects of macroalgal blooms on marine bacteria, especially those functioning in nutrient cycles. We measured environmental factors and investigated bacterial diazotrophs in two niches, surface waters that were covered (CC) and non-covered (CF) with massive macroalgal canopies of Ulva prolifera, in the Yellow Sea in the summer of 2011 using real-time PCR and clone library analysis of nifH genes. We found that heterotrophic diazotrophs (Gammaproteobacteria) dominated the communities and were mostly represented by Vibrio-related phylotypes in both CC and CF. Desulfovibrio-related phylotypes were only detected in CC. There were significant differences in community composition in these two environments (p < 0.001) and a much higher abundance of nifH in CC (4.55 × 106 copies l-1) than in CF (2.49 × 106 copies l-1). The nifH copy number was inversely related to concentrations of ammonium and dissolved inorganic nitrogen and to the stoichiometric ratios of N:P and N:Si. This indicates that macroalgal blooms significantly affect diazotrophic abundance and community composition and that vibrios and Desulfovibrio-related heterotrophic diazotrophs adapt well to the (N-rich but P-limited) environment during blooming. Potential ecological and microbiological mechanisms behind this scenario are discussed.

  20. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp.

    PubMed Central

    Teichberg, Mirta; Fox, Sophia E; Olsen, Ylva S; Valiela, Ivan; Martinetto, Paulina; Iribarne, Oscar; Muto, Elizabeti Yuriko; Petti, Monica A V; Corbisier, Thaïs N; Soto-Jiménez, Martín; Páez-Osuna, Federico; Castro, Paula; Freitas, Helena; Zitelli, Andreina; Cardinaletti, Massimo; Tagliapietra, Davide

    2010-01-01

    Receiving coastal waters and estuaries are among the most nutrient-enriched environments on earth, and one of the symptoms of the resulting eutrophication is the proliferation of opportunistic, fast-growing marine seaweeds. Here, we used a widespread macroalga often involved in blooms, Ulva spp., to investigate how supply of nitrogen (N) and phosphorus (P), the two main potential growth-limiting nutrients, influence macroalgal growth in temperate and tropical coastal waters ranging from low- to high-nutrient supplies. We carried out N and P enrichment field experiments on Ulva spp. in seven coastal systems, with one of these systems represented by three different subestuaries, for a total of nine sites. We showed that rate of growth of Ulva spp. was directly correlated to annual dissolved inorganic nitrogen (DIN) concentrations, where growth increased with increasing DIN concentration. Internal N pools of macroalgal fronds were also linked to increased DIN supply, and algal growth rates were tightly coupled to these internal N pools. The increases in DIN appeared to be related to greater inputs of wastewater to these coastal waters as indicated by high δ15N signatures of the algae as DIN increased. N and P enrichment experiments showed that rate of macroalgal growth was controlled by supply of DIN where ambient DIN concentrations were low, and by P where DIN concentrations were higher, regardless of latitude or geographic setting. These results suggest that understanding the basis for macroalgal blooms, and management of these harmful phenomena, will require information as to nutrient sources, and actions to reduce supply of N and P in coastal waters concerned.

  1. Macroalgal-sediment nutrient interactions and their importance to macroalgal nutrition in a eutrophic estuary

    NASA Astrophysics Data System (ADS)

    Lavery, Paul S.; McComb, A. J.

    1991-03-01

    The potential for algal banks to influence water quality and sediment nutrient flux was examined through laboratory experiments and in situ monitoring of algal banks. Loose macroalgal banks displayed seasonal changes in tissue nutrient concentrations suggesting a strong dependence on water column nutrients. These banks fail to generate conditions suitable to sediment nutrient release. Dense banks generated low oxygen conditions in the inter-algal water (0-1 mg l -1), corresponding to zones of high, and relatively stable, phosphate and ammonium concentrations (up to 96 μg l -1 PO 4P and 166 μg l -1 NH 4N). Laboratory experiments confirmed that macroalgal banks can generate reducing conditions at the sediment surface, regardless of the aeration regime, through the decomposition of macroalgal tissue. Platinum electrode potentials as low as -200 mV were recorded in the inter-algal water. In such banks, redox-dependent sediment nutrient release and anaerobic accumulation of nitrogen accounted for inter-algal nutrient concentrations of over 60 μg l -1 phosphate and 800 μg l -1 ammonium. The generation of reducing conditions in inter-algal water required 7 days of still conditions and so this mechanism of nutrient generation is unlikely to be important in winter, when strong winds frequently shift the algal banks. It is suggested that in summer this mechanism may provide a source of nutrients to dense algal banks, supplementing reserves stored in winter.

  2. The marine diversity spectrum

    PubMed Central

    Reuman, Daniel C; Gislason, Henrik; Barnes, Carolyn; Mélin, Frédéric; Jennings, Simon

    2014-01-01

    Distributions of species body sizes within a taxonomic group, for example, mammals, are widely studied and important because they help illuminate the evolutionary processes that produced these distributions. Distributions of the sizes of species within an assemblage delineated by geography instead of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts the form of the ‘diversity spectrum’, which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope −0·5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between −0·5 and −0·1. Slopes of −0·5 and −0·1 represent markedly different communities: a slope of −0·5 depicts a 10-fold reduction in diversity for every 100-fold increase in asymptotic mass; a slope of −0·1 depicts a 1·6-fold reduction. Steeper slopes are predicted for larger or colder regions, meaning fewer large species per small species for such regions. Predictions were largely validated by a global empirical analysis. Results explain for the first time a new and widespread phenomenon of biodiversity. Results have implications for estimating numbers of species of small asymptotic mass, where taxonomic inventories are far from complete. Results show that the relationship between diversity and body mass can be explained from the dependence of predation behaviour

  3. Selection of effective macroalgal species and tracing nitrogen sources on the different part of Yantai coast, China indicated by macroalgal δ(15)N values.

    PubMed

    Wang, Yujue; Liu, Dongyan; Richard, Pierre; Di, Baoping

    2016-01-15

    To determine the dominant nitrogen sources and select effective macroalgal species for monitoring eutrophication along the Yantai coast, the total carbon (TOC), total nitrogen (TN) and nitrogen stable isotope ratio (δ(15)N) in macroalgal tissue were analyzed in conjunction with environmental variables in seawater along the Yantai coastline. The ranges of macroalgal tissue δ(15)N values together with dissolved inorganic nitrogen (DIN) composition indicated that except for the atmospheric deposition, there were three dominant types of nitrogen sources along the Yantai coast, with the agricultural fertilizer usage and factorial wastewater input at the S1 (Zhifu Island coast), the sewage discharge at S2 (the Moon Bay coast), the sewage discharge together with aquaculture impacts at S3 (Fisherman Wharf coast) and S4 (the Horse Island coast). Macroalgal growth were not limited by DIN but limited by P at S2, S3 and S4. Macroalgal species suitable or not for DIN source tracing along the Yantai coast were discussed. For sites with low DIN concentration, many species of three phyla could be used for DIN sources tracing with Laurencia okamurai, Gloiopeltis furcata and Ulva pertusa being ideal species. For site with high DIN concentration, however, species of Rhodophyta were not suitable and only Scytosiphon lomentaria and Monostroma nitidium were chosen. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Diversity and evolution of marine phytoplankton.

    PubMed

    Simon, Nathalie; Cras, Anne-Lise; Foulon, Elodie; Lemée, Rodolphe

    2009-01-01

    Marine phytoplankton organisms account for more than 45% of the photosynthetic net primary production on Earth. They are distributed across many of the major clades of the tree of life and include prokaryotes, and eukaryotes that acquired photosynthesis through the process of endosymbiosis. If the number of extant described species is relatively low compared to the diversity of the terrestrial plants, recent insights into the genetic diversity of natural assemblages have revealed a large unsuspected diversity at different taxonomic levels. Wide infra-specific diversity is also being discovered in many widespread and well known morphological species. This review summarizes data obtained in the fields of ecology, evolutionary biology, physiology and genomics that have improved our understanding of the biodiversity and evolution of marine phytoplankton.

  5. Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae.

    PubMed

    Soliman, Ramadan M; Younis, Sherif A; El-Gendy, Nour Sh; Mostafa, Soha S M; El-Temtamy, Seham A; Hashim, Ahmed I

    2018-04-19

    Marine seaweeds (macroalgae) cause eutrophication problem and affects the touristic activities. The success of the production of the third generation bioethanol from marine macroalgae depends mainly on the development of an ecofriendly and eco-feasible pretreatment (i.e. hydrolysis) technique, a highly effective saccharification step and finally an efficient bioethanol fermentation step. Therefore, this study aimed to investigate the potentiality of different marine macroalgal strains, collected from Egyptian coasts, for bioethanol production via different saccharification processes. Different marine macroalgal strains; red Jania rubens, green Ulva lactuca. and brown Sargassum latifolium, have been collected from Egyptian Mediterranean and Red Sea shores. Different hydrolysis processes were evaluated to maximize the extraction of fermentable sugars; thermo-chemical hydrolysis with diluted acids (HCl and H 2 SO 4 ) and base (NaOH), hydrothermal hydrolysis followed by saccharification with different fungal strains and finally, thermo-chemical hydrolysis with diluted HCl, followed by fungal saccharification. The hydrothermal hydrolysis of Sargassum latifolium followed by biological saccharification using Trichoderma asperellum RM1 produced maximum total sugars of 510 mg g -1 macroalgal biomass. The integration of the hydrothermal and fungal hydrolyses of the macroalgal biomass with a separate batch fermentation of the produced sugars using two Saccharomyces cerevisiae strains, produced approximately 0.29 g bioethanol g -1 total reducing sugars. A simulated regression modeling for the batch bioethanol fermentation was also performed. This study, supported the possibility of using seaweeds as a renewable source of bioethanol, throughout a suggested integration of macroalgal biomass hydrothermal- and fungal- hydrolysis with a separate batch bioethanol fermentation process of the produced sugars. The usage of marine macroalgae (i.e. seaweeds) as feedstock for bioethanol

  6. Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs

    PubMed Central

    Suchley, Adam; McField, Melanie D.

    2016-01-01

    Long-term phase shifts from coral to macroalgal dominated reef systems are well documented in the Caribbean. Although the impact of coral diseases, climate change and other factors is acknowledged, major herbivore loss through disease and overfishing is often assigned a primary role. However, direct evidence for the link between herbivore abundance, macroalgal and coral cover is sparse, particularly over broad spatial scales. In this study we use a database of coral reef surveys performed at 85 sites along the Mesoamerican Reef of Mexico, Belize, Guatemala and Honduras, to examine potential ecological links by tracking site trajectories over the period 2005–2014. Despite the long-term reduction of herbivory capacity reported across the Caribbean, the Mesoamerican Reef region displayed relatively low macroalgal cover at the onset of the study. Subsequently, increasing fleshy macroalgal cover was pervasive. Herbivorous fish populations were not responsible for this trend as fleshy macroalgal cover change was not correlated with initial herbivorous fish biomass or change, and the majority of sites experienced increases in macroalgae browser biomass. This contrasts the coral reef top-down herbivore control paradigm and suggests the role of external factors in making environmental conditions more favourable for algae. Increasing macroalgal cover typically suppresses ecosystem services and leads to degraded reef systems. Consequently, policy makers and local coral reef managers should reassess the focus on herbivorous fish protection and consider complementary measures such as watershed management in order to arrest this trend. PMID:27280075

  7. Life between tides: Spatial and temporal variations of an intertidal macroalgal community at Potter Peninsula, South Shetland Islands, Antarctica

    NASA Astrophysics Data System (ADS)

    Marcías, María Laura; Deregibus, Dolores; Saravia, Leonardo Ariel; Campana, Gabriela Laura; Quartino, María Liliana

    2017-03-01

    Intertidal zones are one of the most studied habitats in the world. However, in Antarctica, further studies are needed for a more complete understanding of these systems. When conspicuous Antarctic intertidal communities occur, macroalgae are a key component. Given that intertidal communities have a fast response to variations in environmental conditions and could reflect climate fluctuations, we conducted a non-destructive study with photographic transects in an intertidal zone at Potter Peninsula, Isla 25 de Mayo/King George Island, over four years and during five months of the warm season. We tested the general hypothesis that macroalgal intertidal communities are mainly structured by the vertical stress gradient and that changes in temperature between seasons and between years have a great influence in the macroalgal community structure. Spatial, seasonal and inter-annual variations were studied using GLM, quantile regression and NMDS ordinations. The vertical stress gradient was the main factor that explained macroalgal cover. The Low and the Middle level shared similarities, but the latter was more variable. The High level had the lowest cover, richness and diversity. The dominant species here was the endemic red alga Pyropia endiviifolia, which is strongly adapted to extreme conditions. At the Middle level, there was a significant increase in macroalgal cover during spring months, and it stabilized in summer. Inter-annual variations showed that there is a strong variation in the total macroalgal cover and community structure over the studied years. Environmental conditions have a significant effect in shaping the studied intertidal community, which is very sensitive to climate oscillations. An increase in temperature produced a decrease of annual ice foot cover, number of snow days and - as a result - an increase in macroalgal cover. In a global climate-change scenario, a shift in species composition could also occur. Species with wide physiological

  8. Macroalgal accumulation in a Pacific Northwest estuary - evidence of poor eutrophic condition?

    EPA Science Inventory

    A five year study of benthic macroalgal dynamics was conducted in Yaquina estuary, Oregon, yielding 400 surveys of average macroalgal cover and biomass within three intertidal bathymetric zones at six sites covering the range of native eelgrass habitat. Application of a publishe...

  9. Hysteresis in coral reefs under macroalgal toxicity and overfishing.

    PubMed

    Bhattacharyya, Joydeb; Pal, Samares

    2015-03-01

    Macroalgae and corals compete for the available space in coral reef ecosystems.While herbivorous reef fish play a beneficial role in decreasing the growth of macroalgae, macroalgal toxicity and overfishing of herbivores leads to proliferation of macroalgae. The abundance of macroalgae changes the community structure towards a macroalgae-dominated reef ecosystem. We investigate coral-macroalgal phase shifts by means of a continuous time model in a food chain. Conditions for local asymptotic stability of steady states are derived. It is observed that in the presence of macroalgal toxicity and overfishing, the system exhibits hysteresis through saddle-node bifurcation and transcritical bifurcation. We examine the effects of time lags in the liberation of toxins by macroalgae and the recovery of algal turf in response to grazing of herbivores on macroalgae by performing equilibrium and stability analyses of delay-differential forms of the ODE model. Computer simulations have been carried out to illustrate the different analytical results.

  10. Diversity dynamics of marine planktonic diatoms across the Cenozoic.

    PubMed

    Rabosky, Daniel L; Sorhannus, Ulf

    2009-01-08

    Diatoms are the dominant group of phytoplankton in the modern ocean. They account for approximately 40% of oceanic primary productivity and over 50% of organic carbon burial in marine sediments. Owing to their role as a biological carbon pump and effects on atmospheric CO(2) levels, there is great interest in elucidating factors that influenced the rapid rise in diatom diversity during the past 40 million years. Two biotic controls on diversification have been proposed to explain this diversity increase: (1) geochemical coupling between terrestrial grasslands and marine ecosystems through the global silicon cycle; and (2) competitive displacement of other phytoplankton lineages. However, these hypotheses have not been tested using sampling-standardized fossil data. Here we show that reconstructions of species diversity in marine phytoplankton reject these proposed controls and suggest a new pattern for oceanic diatom diversity across the Cenozoic. Peak species diversity in marine planktonic diatoms occurred at the Eocene-Oligocene boundary and was followed by a pronounced decline, from which diversity has not recovered. Although the roles of abiotic and biotic drivers of diversification remain unclear, major features of oceanic diatom evolution are decoupled from both grassland expansion and competition among phytoplankton groups.

  11. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    PubMed

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence. © 2013 Published by Elsevier Inc.

  12. Diverse molecular signatures for ribosomally ‘active’ Perkinsea in marine sediments

    PubMed Central

    2014-01-01

    Background Perkinsea are a parasitic lineage within the eukaryotic superphylum Alveolata. Recent studies making use of environmental small sub-unit ribosomal RNA gene (SSU rDNA) sequencing methodologies have detected a significant diversity and abundance of Perkinsea-like phylotypes in freshwater environments. In contrast only a few Perkinsea environmental sequences have been retrieved from marine samples and only two groups of Perkinsea have been cultured and morphologically described and these are parasites of marine molluscs or marine protists. These two marine groups form separate and distantly related phylogenetic clusters, composed of closely related lineages on SSU rDNA trees. Here, we test the hypothesis that Perkinsea are a hitherto under-sampled group in marine environments. Using 454 diversity ‘tag’ sequencing we investigate the diversity and distribution of these protists in marine sediments and water column samples taken from the Deep Chlorophyll Maximum (DCM) and sub-surface using both DNA and RNA as the source template and sampling four European offshore locations. Results We detected the presence of 265 sequences branching with known Perkinsea, the majority of them recovered from marine sediments. Moreover, 27% of these sequences were sampled from RNA derived cDNA libraries. Phylogenetic analyses classify a large proportion of these sequences into 38 cluster groups (including 30 novel marine cluster groups), which share less than 97% sequence similarity suggesting this diversity encompasses a range of biologically and ecologically distinct organisms. Conclusions These results demonstrate that the Perkinsea lineage is considerably more diverse than previously detected in marine environments. This wide diversity of Perkinsea-like protists is largely retrieved in marine sediment with a significant proportion detected in RNA derived libraries suggesting this diversity represents ribosomally ‘active’ and intact cells. Given the phylogenetic range

  13. Small Marine Protected Areas in Fiji Provide Refuge for Reef Fish Assemblages, Feeding Groups, and Corals.

    PubMed

    Bonaldo, Roberta M; Pires, Mathias M; Guimarães, Paulo Roberto; Hoey, Andrew S; Hay, Mark E

    2017-01-01

    The establishment of no-take marine protected areas (MPAs) on coral reefs is a common management strategy for conserving the diversity, abundance, and biomass of reef organisms. Generally, well-managed and enforced MPAs can increase or maintain the diversity and function of the enclosed coral reef, with some of the benefits extending to adjacent non-protected reefs. A fundamental question in coral reef conservation is whether these benefits arise within small MPAs (<1 km2), because larval input of reef organisms is largely decoupled from local adult reproduction. We examined the structure of fish assemblages, composition of fish feeding groups, benthic cover, and key ecosystem processes (grazing, macroalgal browsing, and coral replenishment) in three small (0.5-0.8 km2) no-take MPAs and adjacent areas where fisheries are allowed (non-MPAs) on coral reefs in Fiji. The MPAs exhibited greater species richness, density, and biomass of fishes than non-MPAs. Furthermore, MPAs contained a greater abundance and biomass of grazing herbivores and piscivores as well as a greater abundance of cleaners than fished areas. We also found differences in fish associations when foraging, with feeding groups being generally more diverse and having greater biomass within MPAs than adjacent non-MPAs. Grazing by parrotfishes was 3-6 times greater, and macroalgal browsing was 3-5 times greater in MPAs than in non-MPAs. On average, MPAs had 260-280% as much coral cover and only 5-25% as much macroalgal cover as their paired non-MPA sites. Finally, two of the three MPAs had three-fold more coral recruits than adjacent non-MPAs. The results of this study indicate that small MPAs benefit not only populations of reef fishes, but also enhance ecosystem processes that are critical to reef resilience within the MPAs.

  14. Small Marine Protected Areas in Fiji Provide Refuge for Reef Fish Assemblages, Feeding Groups, and Corals

    PubMed Central

    Pires, Mathias M.; Guimarães, Paulo Roberto; Hoey, Andrew S.; Hay, Mark E.

    2017-01-01

    The establishment of no-take marine protected areas (MPAs) on coral reefs is a common management strategy for conserving the diversity, abundance, and biomass of reef organisms. Generally, well-managed and enforced MPAs can increase or maintain the diversity and function of the enclosed coral reef, with some of the benefits extending to adjacent non-protected reefs. A fundamental question in coral reef conservation is whether these benefits arise within small MPAs (<1 km2), because larval input of reef organisms is largely decoupled from local adult reproduction. We examined the structure of fish assemblages, composition of fish feeding groups, benthic cover, and key ecosystem processes (grazing, macroalgal browsing, and coral replenishment) in three small (0.5–0.8 km2) no-take MPAs and adjacent areas where fisheries are allowed (non-MPAs) on coral reefs in Fiji. The MPAs exhibited greater species richness, density, and biomass of fishes than non-MPAs. Furthermore, MPAs contained a greater abundance and biomass of grazing herbivores and piscivores as well as a greater abundance of cleaners than fished areas. We also found differences in fish associations when foraging, with feeding groups being generally more diverse and having greater biomass within MPAs than adjacent non-MPAs. Grazing by parrotfishes was 3–6 times greater, and macroalgal browsing was 3–5 times greater in MPAs than in non-MPAs. On average, MPAs had 260–280% as much coral cover and only 5–25% as much macroalgal cover as their paired non-MPA sites. Finally, two of the three MPAs had three-fold more coral recruits than adjacent non-MPAs. The results of this study indicate that small MPAs benefit not only populations of reef fishes, but also enhance ecosystem processes that are critical to reef resilience within the MPAs. PMID:28122006

  15. Characterization of phylogenetically diverse astroviruses of marine mammals.

    PubMed

    Rivera, Rebecca; Nollens, Hendrik H; Venn-Watson, Stephanie; Gulland, Frances M D; Wellehan, James F X

    2010-01-01

    Astroviruses are small, non-enveloped, positive-stranded RNA viruses. Previously studied mammalian astroviruses have been associated with diarrhoeal disease. Knowledge of astrovirus diversity is very limited, with only six officially recognized astrovirus species from mammalian hosts and, in addition, one human and some bat astroviruses were recently described. We used consensus PCR techniques for initial identification of five astroviruses of marine mammals: three from California sea lions (Zalophus californianus), one from a Steller sea lion (Eumetopias jubatus) and one from a bottlenose dolphin (Tursiops truncatus). Bayesian and maximum-likelihood phylogenetic analysis found that these viruses showed significant diversity at a level consistent with novel species. Astroviruses that we identified from marine mammals were found across the mamastrovirus tree and did not form a monophyletic group. Recombination analysis found that a recombination event may have occurred between a human and a California sea lion astrovirus, suggesting that both lineages may have been capable of infecting the same host at one point. The diversity found amongst marine mammal astroviruses and their similarity to terrestrial astroviruses suggests that the marine environment plays an important role in astrovirus ecology.

  16. Censusing marine eukaryotic diversity in the twenty-first century

    PubMed Central

    Knowlton, Nancy

    2016-01-01

    The ocean constitutes one of the vastest and richest biomes on our planet. Most recent estimations, all based on indirect approaches, suggest that there are millions of marine eukaryotic species. Moreover, a large majority of these are small (less than 1 mm), cryptic and still unknown to science. However, this knowledge gap, caused by the lack of diagnostic morphological features in small organisms and the limited sampling of the global ocean, is currently being filled, thanks to new DNA-based approaches. The molecular technique of PCR amplification of homologous gene regions combined with high-throughput sequencing, routinely used to census unculturable prokaryotes, is now also being used to characterize whole communities of marine eukaryotes. Here, we review how this methodological advancement has helped to better quantify the magnitude and patterns of marine eukaryotic diversity, with an emphasis on taxonomic groups previously largely overlooked. We then discuss obstacles remaining to achieve a global understanding of marine eukaryotic diversity. In particular, we argue that 18S variable regions do not provide sufficient taxonomic resolution to census marine life, and suggest combining broad eukaryotic surveys targeting the 18S rRNA region with more taxon-focused analyses of hypervariable regions to improve our understanding of the diversity of species, the functional units of marine ecosystems. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481783

  17. Growth responses of Ulva prolifera to inorganic and organic nutrients: Implications for macroalgal blooms in the southern Yellow Sea, China

    PubMed Central

    Li, Hongmei; Zhang, Yongyu; Han, Xiurong; Shi, Xiaoyong; Rivkin, Richard B.; Legendre, Louis

    2016-01-01

    The marine macrophyte Ulva prolifera is the dominant green-tide-forming seaweed in the southern Yellow Sea, China. Here we assessed, in the laboratory, the growth rate and nutrient uptake responses of U. prolifera to different nutrient treatments. The growth rates were enhanced in incubations with added organic and inorganic nitrogen [i.e. nitrate (NO3−), ammonium (NH4+), urea and glycine] and phosphorus [i.e. phosphate (PO43−), adenosine triphosphate (ATP) and glucose 6-phosphate (G-6-P)], relative to the control. The relative growth rates of U. prolifera were higher when enriched with dissolved organic nitrogen (urea and glycine) and phosphorus (ATP and G-6-P) than inorganic nitrogen (NO3− and NH4+) and phosphorus (PO43−). In contrast, the affinity was higher for inorganic than organic nutrients. Field data in the southern Yellow Sea showed significant inverse correlations between macroalgal biomass and dissolved organic nutrients. Our laboratory and field results indicated that organic nutrients such as urea, glycine and ATP, may contribute to the development of macroalgal blooms in the southern Yellow Sea. PMID:27199215

  18. Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity.

    PubMed

    Grange, Laura J; Smith, Craig R

    2013-01-01

    Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436-725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400-700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the

  19. Megafaunal Communities in Rapidly Warming Fjords along the West Antarctic Peninsula: Hotspots of Abundance and Beta Diversity

    PubMed Central

    Grange, Laura J.; Smith, Craig R.

    2013-01-01

    Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436–725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400–700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the

  20. Mapping benthic macroalgal communities in the coastal zone using CHRIS-PROBA mode 2 images

    NASA Astrophysics Data System (ADS)

    Casal, G.; Kutser, T.; Domínguez-Gómez, J. A.; Sánchez-Carnero, N.; Freire, J.

    2011-09-01

    The ecological importance of benthic macroalgal communities in coastal ecosystems has been recognised worldwide and the application of remote sensing to study these communities presents certain advantages respect to in situ methods. The present study used three CHRIS-PROBA images to analyse macroalgal communities distribution in the Seno de Corcubión (NW Spain). The use of this sensor represent a challenge given that its design, build and deployment programme is intended to follow the principles of the "faster, better, cheaper". To assess the application of this sensor to macroalgal mapping, two types of classifications were carried out: Maximum Likelihood and Spectral Angle Mapper (SAM). Maximum Likelihood classifier showed positive results, reaching overall accuracy percentages higher than 90% and kappa coefficients higher than 0.80 for the bottom classes shallow submerged sand, deep submerged sand, macroalgae less than 5 m and macroalgae between 5 and 10 m depth. The differentiation among macroalgal groups using SAM classifications showed positive results for green seaweeds although the differentiation between brown and red algae was not clear in the study area.

  1. Communicating marine reserve science to diverse audiences

    PubMed Central

    Grorud-Colvert, Kirsten; Lester, Sarah E.; Airamé, Satie; Neeley, Elizabeth; Gaines, Steven D.

    2010-01-01

    As human impacts cause ecosystem-wide changes in the oceans, the need to protect and restore marine resources has led to increasing calls for and establishment of marine reserves. Scientific information about marine reserves has multiplied over the last decade, providing useful knowledge about this tool for resource users, managers, policy makers, and the general public. This information must be conveyed to nonscientists in a nontechnical, credible, and neutral format, but most scientists are not trained to communicate in this style or to develop effective strategies for sharing their scientific knowledge. Here, we present a case study from California, in which communicating scientific information during the process to establish marine reserves in the Channel Islands and along the California mainland coast expanded into an international communication effort. We discuss how to develop a strategy for communicating marine reserve science to diverse audiences and highlight the influence that effective science communication can have in discussions about marine management. PMID:20427745

  2. Communicating marine reserve science to diverse audiences.

    PubMed

    Grorud-Colvert, Kirsten; Lester, Sarah E; Airamé, Satie; Neeley, Elizabeth; Gaines, Steven D

    2010-10-26

    As human impacts cause ecosystem-wide changes in the oceans, the need to protect and restore marine resources has led to increasing calls for and establishment of marine reserves. Scientific information about marine reserves has multiplied over the last decade, providing useful knowledge about this tool for resource users, managers, policy makers, and the general public. This information must be conveyed to nonscientists in a nontechnical, credible, and neutral format, but most scientists are not trained to communicate in this style or to develop effective strategies for sharing their scientific knowledge. Here, we present a case study from California, in which communicating scientific information during the process to establish marine reserves in the Channel Islands and along the California mainland coast expanded into an international communication effort. We discuss how to develop a strategy for communicating marine reserve science to diverse audiences and highlight the influence that effective science communication can have in discussions about marine management.

  3. Biotic transitions in global marine diversity

    NASA Technical Reports Server (NTRS)

    Miller, A. I.

    1998-01-01

    Long-term transitions in the composition of Earth's marine biota during the Phanerozoic have historically been explained in two different ways. One view is that they were mediated through biotic interactions among organisms played out over geologic time. The other is that mass extinctions transcended any such interactions and governed diversity over the long term by resetting the relative diversities of higher taxa. However, a growing body of evidence suggests that macroevolutionary processes effecting biotic transitions during background times were not fundamentally different from those operating during mass extinctions. Physical perturbations at many geographic scales combined to produce the long-term trajectory of Phanerozoic diversity.

  4. Macroalgal Introductions by Hull Fouling on Recreational Vessels: Seaweeds and Sailors

    NASA Astrophysics Data System (ADS)

    Mineur, Frédéric; Johnson, Mark P.; Maggs, Christine A.

    2008-10-01

    Macroalgal invasions in coastal areas have been a growing concern during the past decade. The present study aimed to assess the role of hull fouling on recreational yachts as a vector for macroalgal introductions. Questionnaire and hull surveys were carried out in marinas in France and Spain. The questionnaires revealed that the majority of yacht owners are aware of seaweed introductions, usually undertake short range journeys, dry dock their boat at least once a year, and use antifouling paints. The hull survey showed that many in-service yachts were completely free of macroalgae. When present, fouling assemblages consisted mainly of one to two macroalgal species. The most commonly found species was the tolerant green seaweed Ulva flexuosa. Most of the other species found are also cosmopolitan and opportunistic. A few nonnative and potentially invasive Ceramiales (Rhodophyta) were found occasionally on in-service yachts. On the basis of the information gathered during interviews of yacht owners in the surveyed area, these occurrences are likely to be uncommon. However they can pose a significant risk of primary or secondary introductions of alien macroalgal species, especially in the light of the increase in yachting activities. With large numbers of recreational yachts and relatively rare occurrences of nonnative species on hulls, comprehensive screening programs do not seem justified or practical. The risks of transferring nonnative species may, however, be minimized by encouraging the behaviors that prevent fouling on hulls and by taking action against neglected boats before they can act as vectors.

  5. Macroalgal introductions by hull fouling on recreational vessels: seaweeds and sailors.

    PubMed

    Mineur, Frédéric; Johnson, Mark P; Maggs, Christine A

    2008-10-01

    Macroalgal invasions in coastal areas have been a growing concern during the past decade. The present study aimed to assess the role of hull fouling on recreational yachts as a vector for macroalgal introductions. Questionnaire and hull surveys were carried out in marinas in France and Spain. The questionnaires revealed that the majority of yacht owners are aware of seaweed introductions, usually undertake short range journeys, dry dock their boat at least once a year, and use antifouling paints. The hull survey showed that many in-service yachts were completely free of macroalgae. When present, fouling assemblages consisted mainly of one to two macroalgal species. The most commonly found species was the tolerant green seaweed Ulva flexuosa. Most of the other species found are also cosmopolitan and opportunistic. A few nonnative and potentially invasive Ceramiales (Rhodophyta) were found occasionally on in-service yachts. On the basis of the information gathered during interviews of yacht owners in the surveyed area, these occurrences are likely to be uncommon. However they can pose a significant risk of primary or secondary introductions of alien macroalgal species, especially in the light of the increase in yachting activities. With large numbers of recreational yachts and relatively rare occurrences of nonnative species on hulls, comprehensive screening programs do not seem justified or practical. The risks of transferring nonnative species may, however, be minimized by encouraging the behaviors that prevent fouling on hulls and by taking action against neglected boats before they can act as vectors.

  6. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages

    PubMed Central

    Nelson, Craig E; Goldberg, Stuart J; Wegley Kelly, Linda; Haas, Andreas F; Smith, Jennifer E; Rohwer, Forest; Carlson, Craig A

    2013-01-01

    Increasing algal cover on tropical reefs worldwide may be maintained through feedbacks whereby algae outcompete coral by altering microbial activity. We hypothesized that algae and coral release compositionally distinct exudates that differentially alter bacterioplankton growth and community structure. We collected exudates from the dominant hermatypic coral holobiont Porites spp. and three dominant macroalgae (one each Ochrophyta, Rhodophyta and Chlorophyta) from reefs of Mo'orea, French Polynesia. We characterized exudates by measuring dissolved organic carbon (DOC) and fractional dissolved combined neutral sugars (DCNSs) and subsequently tracked bacterioplankton responses to each exudate over 48 h, assessing cellular growth, DOC/DCNS utilization and changes in taxonomic composition (via 16S rRNA amplicon pyrosequencing). Fleshy macroalgal exudates were enriched in the DCNS components fucose (Ochrophyta) and galactose (Rhodophyta); coral and calcareous algal exudates were enriched in total DCNS but in the same component proportions as ambient seawater. Rates of bacterioplankton growth and DOC utilization were significantly higher in algal exudate treatments than in coral exudate and control incubations with each community selectively removing different DCNS components. Coral exudates engendered the smallest shift in overall bacterioplankton community structure, maintained high diversity and enriched taxa from Alphaproteobacteria lineages containing cultured representatives with relatively few virulence factors (VFs) (Hyphomonadaceae and Erythrobacteraceae). In contrast, macroalgal exudates selected for less diverse communities heavily enriched in copiotrophic Gammaproteobacteria lineages containing cultured pathogens with increased VFs (Vibrionaceae and Pseudoalteromonadaceae). Our results demonstrate that algal exudates are enriched in DCNS components, foster rapid growth of bacterioplankton and select for bacterial populations with more potential VFs than

  7. Diversity and Phylogenetic Structure of Two Complex Marine Microbial Communities

    DTIC Science & Technology

    2004-09-01

    Science 190 and Engineering DOCTORAL DISSERTATION Diversity and Phylogenetic Structure of Two Complex Marine Microbial Communities by Vanja Klepac-Ceraj...Two Complex Marine Microbial Communities by Vanja Klepac-Ceraj Massachusetts Institute of Technology Cambridge, Massachusetts 02139 and Woods Hole...Phylogenetic Structure of Two Complex Marine Microbial Communities. Ph.D. Thesis. MIT/WHOI, 2004-11. Approved for publication; distribution unlimited

  8. Latitudinal species diversity gradient of marine zooplankton for the last three million years

    USGS Publications Warehouse

    Yasuhara, Moriaki; Hunt, Gene; Dowsett, Harry J.; Robinson, Marci M.; Stoll, Danielle K.

    2012-01-01

    High tropical and low polar biodiversity is one of the most fundamental patterns characterising marine ecosystems, and the influence of temperature on such marine latitudinal diversity gradients is increasingly well documented. However, the temporal stability of quantitative relationships among diversity, latitude and temperature is largely unknown. Herein we document marine zooplankton species diversity patterns at four time slices [modern, Last Glacial Maximum (18 000 years ago), last interglacial (120 000 years ago), and Pliocene (~3.3–3.0 million years ago)] and show that, although the diversity-latitude relationship has been dynamic, diversity-temperature relationships are remarkably constant over the past three million years. These results suggest that species diversity is rapidly reorganised as species' ranges respond to temperature change on ecological time scales, and that the ecological impact of future human-induced temperature change may be partly predictable from fossil and paleoclimatological records.

  9. Diversity of Marine Animals. Man and the Gulf of Mexico Series.

    ERIC Educational Resources Information Center

    Irby, Bobby N., Comp.; And Others

    "Man and the Gulf of Mexico" (MGM) is a marine science curriculum series developed to meet the needs of 10th through 12th grade students in Mississippi and Alabama schools. This MGM unit on the diversity of marine animals is divided into 16 sections. These sections focus on: marine protozoans; sponges; coelenterates; ctenophores;…

  10. Abundance and Diversity of Crypto- and Necto-Benthic Coastal Fish Are Higher in Marine Forests than in Structurally Less Complex Macroalgal Assemblages

    PubMed Central

    Thiriet, Pierre D.; Cheminée, Adrien; Guidetti, Paolo; Bianchimani, Olivier; Basthard-Bogain, Solène; Cottalorda, Jean-Michel; Arceo, Hazel; Moranta, Joan; Lejeune, Pierre; Francour, Patrice; Mangialajo, Luisa

    2016-01-01

    In Mediterranean subtidal rocky reefs, Cystoseira spp. (Phaeophyceae) form dense canopies up to 1 m high. Such habitats, called ‘Cystoseira forests’, are regressing across the entire Mediterranean Sea due to multiple anthropogenic stressors, as are other large brown algae forests worldwide. Cystoseira forests are being replaced by structurally less complex habitats, but little information is available regarding the potential difference in the structure and composition of fish assemblages between these habitats. To fill this void, we compared necto-benthic (NB) and crypto-benthic (CB) fish assemblage structures between Cystoseira forests and two habitats usually replacing the forests (turf and barren), in two sampling regions (Corsica and Menorca). We sampled NB fish using Underwater Visual Census (UVC) and CB fish using Enclosed Anaesthetic Station Vacuuming (EASV), since UVC is known to underestimate the diversity and density of the ‘hard to spot’ CB fish. We found that both taxonomic diversity and total density of NB and CB fish were highest in Cystoseira forests and lowest in barrens, while turfs, that could be sampled only at Menorca, showed intermediate values. Conversely, total biomass of NB and CB fish did not differ between habitats because the larger average size of fish in barrens (and turfs) compensated for their lower densities. The NB families Labridae and Serranidae, and the CB families Blenniidae, Cliniidae, Gobiidae, Trypterigiidae and Scorpaenidae, were more abundant in forests. The NB taxa Diplodus spp. and Thalassoma pavo were more abundant in barrens. Our study highlights the importance of using EASV for sampling CB fish, and shows that Cystoseira forests support rich and diversified fish assemblages. This evidence suggests that the ongoing loss of Cystoseira forests may impair coastal fish assemblages and related goods and services to humans, and stresses the need to implement strategies for the successful conservation and/or recovery

  11. Abundance and Diversity of Crypto- and Necto-Benthic Coastal Fish Are Higher in Marine Forests than in Structurally Less Complex Macroalgal Assemblages.

    PubMed

    Thiriet, Pierre D; Di Franco, Antonio; Cheminée, Adrien; Guidetti, Paolo; Bianchimani, Olivier; Basthard-Bogain, Solène; Cottalorda, Jean-Michel; Arceo, Hazel; Moranta, Joan; Lejeune, Pierre; Francour, Patrice; Mangialajo, Luisa

    2016-01-01

    In Mediterranean subtidal rocky reefs, Cystoseira spp. (Phaeophyceae) form dense canopies up to 1 m high. Such habitats, called 'Cystoseira forests', are regressing across the entire Mediterranean Sea due to multiple anthropogenic stressors, as are other large brown algae forests worldwide. Cystoseira forests are being replaced by structurally less complex habitats, but little information is available regarding the potential difference in the structure and composition of fish assemblages between these habitats. To fill this void, we compared necto-benthic (NB) and crypto-benthic (CB) fish assemblage structures between Cystoseira forests and two habitats usually replacing the forests (turf and barren), in two sampling regions (Corsica and Menorca). We sampled NB fish using Underwater Visual Census (UVC) and CB fish using Enclosed Anaesthetic Station Vacuuming (EASV), since UVC is known to underestimate the diversity and density of the 'hard to spot' CB fish. We found that both taxonomic diversity and total density of NB and CB fish were highest in Cystoseira forests and lowest in barrens, while turfs, that could be sampled only at Menorca, showed intermediate values. Conversely, total biomass of NB and CB fish did not differ between habitats because the larger average size of fish in barrens (and turfs) compensated for their lower densities. The NB families Labridae and Serranidae, and the CB families Blenniidae, Cliniidae, Gobiidae, Trypterigiidae and Scorpaenidae, were more abundant in forests. The NB taxa Diplodus spp. and Thalassoma pavo were more abundant in barrens. Our study highlights the importance of using EASV for sampling CB fish, and shows that Cystoseira forests support rich and diversified fish assemblages. This evidence suggests that the ongoing loss of Cystoseira forests may impair coastal fish assemblages and related goods and services to humans, and stresses the need to implement strategies for the successful conservation and/or recovery of marine

  12. Global marine bacterial diversity peaks at high latitudes in winter

    PubMed Central

    Ladau, Joshua; Sharpton, Thomas J; Finucane, Mariel M; Jospin, Guillaume; Kembel, Steven W; O'Dwyer, James; Koeppel, Alexander F; Green, Jessica L; Pollard, Katherine S

    2013-01-01

    Genomic approaches to characterizing bacterial communities are revealing significant differences in diversity and composition between environments. But bacterial distributions have not been mapped at a global scale. Although current community surveys are way too sparse to map global diversity patterns directly, there is now sufficient data to fit accurate models of how bacterial distributions vary across different environments and to make global scale maps from these models. We apply this approach to map the global distributions of bacteria in marine surface waters. Our spatially and temporally explicit predictions suggest that bacterial diversity peaks in temperate latitudes across the world's oceans. These global peaks are seasonal, occurring 6 months apart in the two hemispheres, in the boreal and austral winters. This pattern is quite different from the tropical, seasonally consistent diversity patterns observed for most macroorganisms. However, like other marine organisms, surface water bacteria are particularly diverse in regions of high human environmental impacts on the oceans. Our maps provide the first picture of bacterial distributions at a global scale and suggest important differences between the diversity patterns of bacteria compared with other organisms. PMID:23514781

  13. Marine-derived Penicillium in Korea: diversity, enzyme activity, and antifungal properties.

    PubMed

    Park, Myung Soo; Fong, Jonathan J; Oh, Seung-Yoon; Kwon, Kae Kyoung; Sohn, Jae Hak; Lim, Young Woon

    2014-08-01

    The diversity of marine-derived Penicillium from Korea was investigated using morphological and multigene phylogenetic approaches, analyzing sequences of the internal transcribed spacer region, β-tubulin gene, and RNA polymerase subunit II gene. In addition, the biological activity of all isolated strains was evaluated. We tested for the extracellular enzyme activity of alginase, endoglucanase, and β-glucosidase, and antifungal activity against two plant pathogens (Colletotrichum acutatum and Fusarium oxysporum). A total of 184 strains of 36 Penicillium species were isolated, with 27 species being identified. The most common species were Penicillium polonicum (19.6 %), P. rubens (11.4 %), P. chrysogenum (11.4 %), and P. crustosum (10.9 %). The diversity of Penicillium strains isolated from soil (foreshore soil and sand) and marine macroorganisms was higher than the diversity of strains isolated from seawater. While many of the isolated strains showed alginase and β-glucosidase activity, no endoglucanase activity was found. More than half the strains (50.5 %) showed antifungal activity against at least one of the plant pathogens tested. Compared with other strains in this study, P. citrinum (strain SFC20140101-M662) showed high antifungal activity against both plant pathogens. The results reported here expand our knowledge of marine-derived Penicillium diversity. The relatively high proportion of strains that showed antifungal and enzyme activity demonstrates that marine-derived Penicillium have great potential to be used in the production of natural bioactive products for pharmaceutical and/or industrial use.

  14. Macroalgal communities on multi-stressed coral reefs in the Caribbean: Long-term changes, spatial variations, and relationships with environmental variables

    NASA Astrophysics Data System (ADS)

    Sangil, Carlos; Guzman, Hector M.

    2016-11-01

    Long-term changes in macroalgal cover, spatial variation between macroalgal communities, and relationships with environmental variables and benthic groups were assessed in coral reefs along the Caribbean coast of Panama. Sampling was conducted in two regions: Western and Central. Data collected between 2000 and 2012 showed a continuous increase in macroalgal abundance, although patterns differed according to region and site. There were differences in macroalgal communities between regions, as well as within regions between different wave-exposure levels. There were also differences between sites within regions exposed to the same level of wave action. Multivariate analysis found that wave exposure along with herbivore density (Echinometra viridis) and sedimentation were the variables that explained most of the variability between communities. Other variables such as Echinometra lucunter and Diadema antillarum densities, fish density, productivity, and live coral cover had significant relationships with community structure, but explained less of the variability.

  15. Molecular diversity and distribution of marine fungi across 130 European environmental samples.

    PubMed

    Richards, Thomas A; Leonard, Guy; Mahé, Frédéric; Del Campo, Javier; Romac, Sarah; Jones, Meredith D M; Maguire, Finlay; Dunthorn, Micah; De Vargas, Colomban; Massana, Ramon; Chambouvet, Aurélie

    2015-11-22

    Environmental DNA and culture-based analyses have suggested that fungi are present in low diversity and in low abundance in many marine environments, especially in the upper water column. Here, we use a dual approach involving high-throughput diversity tag sequencing from both DNA and RNA templates and fluorescent cell counts to evaluate the diversity and relative abundance of fungi across marine samples taken from six European near-shore sites. We removed very rare fungal operational taxonomic units (OTUs) selecting only OTUs recovered from multiple samples for a detailed analysis. This approach identified a set of 71 fungal 'OTU clusters' that account for 66% of all the sequences assigned to the Fungi. Phylogenetic analyses demonstrated that this diversity includes a significant number of chytrid-like lineages that had not been previously described, indicating that the marine environment encompasses a number of zoosporic fungi that are new to taxonomic inventories. Using the sequence datasets, we identified cases where fungal OTUs were sampled across multiple geographical sites and between different sampling depths. This was especially clear in one relatively abundant and diverse phylogroup tentatively named Novel Chytrid-Like-Clade 1 (NCLC1). For comparison, a subset of the water column samples was also investigated using fluorescent microscopy to examine the abundance of eukaryotes with chitin cell walls. Comparisons of relative abundance of RNA-derived fungal tag sequences and chitin cell-wall counts demonstrate that fungi constitute a low fraction of the eukaryotic community in these water column samples. Taken together, these results demonstrate the phylogenetic position and environmental distribution of 71 lineages, improving our understanding of the diversity and abundance of fungi in marine environments. © 2015 The Authors.

  16. Molecular diversity and distribution of marine fungi across 130 European environmental samples

    PubMed Central

    Richards, Thomas A.; Leonard, Guy; Mahé, Frédéric; del Campo, Javier; Romac, Sarah; Jones, Meredith D. M.; Maguire, Finlay; Dunthorn, Micah; De Vargas, Colomban; Massana, Ramon; Chambouvet, Aurélie

    2015-01-01

    Environmental DNA and culture-based analyses have suggested that fungi are present in low diversity and in low abundance in many marine environments, especially in the upper water column. Here, we use a dual approach involving high-throughput diversity tag sequencing from both DNA and RNA templates and fluorescent cell counts to evaluate the diversity and relative abundance of fungi across marine samples taken from six European near-shore sites. We removed very rare fungal operational taxonomic units (OTUs) selecting only OTUs recovered from multiple samples for a detailed analysis. This approach identified a set of 71 fungal ‘OTU clusters' that account for 66% of all the sequences assigned to the Fungi. Phylogenetic analyses demonstrated that this diversity includes a significant number of chytrid-like lineages that had not been previously described, indicating that the marine environment encompasses a number of zoosporic fungi that are new to taxonomic inventories. Using the sequence datasets, we identified cases where fungal OTUs were sampled across multiple geographical sites and between different sampling depths. This was especially clear in one relatively abundant and diverse phylogroup tentatively named Novel Chytrid-Like-Clade 1 (NCLC1). For comparison, a subset of the water column samples was also investigated using fluorescent microscopy to examine the abundance of eukaryotes with chitin cell walls. Comparisons of relative abundance of RNA-derived fungal tag sequences and chitin cell-wall counts demonstrate that fungi constitute a low fraction of the eukaryotic community in these water column samples. Taken together, these results demonstrate the phylogenetic position and environmental distribution of 71 lineages, improving our understanding of the diversity and abundance of fungi in marine environments. PMID:26582030

  17. Diversity and community structure of marine microbes around the Benham Rise underwater plateau, northeastern Philippines.

    PubMed

    Gajigan, Andrian P; Yñiguez, Aletta T; Villanoy, Cesar L; San Diego-McGlone, Maria Lourdes; Jacinto, Gil S; Conaco, Cecilia

    2018-01-01

    Microbes are central to the structuring and functioning of marine ecosystems. Given the remarkable diversity of the ocean microbiome, uncovering marine microbial taxa remains a fundamental challenge in microbial ecology. However, there has been little effort, thus far, to describe the diversity of marine microorganisms in the region of high marine biodiversity around the Philippines. Here, we present data on the taxonomic diversity of bacteria and archaea in Benham Rise, Philippines, Western Pacific Ocean, using 16S V4 rRNA gene sequencing. The major bacterial and archaeal phyla identified in the Benham Rise are Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Marinimicrobia, Thaumarchaeota and, Euryarchaeota. The upper mesopelagic layer exhibited greater microbial diversity and richness compared to surface waters. Vertical zonation of the microbial community is evident and may be attributed to physical stratification of the water column acting as a dispersal barrier. Canonical Correspondence Analysis (CCA) recapitulated previously known associations of taxa and physicochemical parameters in the environment, such as the association of oligotrophic clades with low nutrient surface water and deep water clades that have the capacity to oxidize ammonia or nitrite at the upper mesopelagic layer. These findings provide foundational information on the diversity of marine microbes in Philippine waters. Further studies are warranted to gain a more comprehensive picture of microbial diversity within the region.

  18. Diversity and community structure of marine microbes around the Benham Rise underwater plateau, northeastern Philippines

    PubMed Central

    Gajigan, Andrian P.; Yñiguez, Aletta T.; Villanoy, Cesar L.; San Diego-McGlone, Maria Lourdes; Jacinto, Gil S.

    2018-01-01

    Microbes are central to the structuring and functioning of marine ecosystems. Given the remarkable diversity of the ocean microbiome, uncovering marine microbial taxa remains a fundamental challenge in microbial ecology. However, there has been little effort, thus far, to describe the diversity of marine microorganisms in the region of high marine biodiversity around the Philippines. Here, we present data on the taxonomic diversity of bacteria and archaea in Benham Rise, Philippines, Western Pacific Ocean, using 16S V4 rRNA gene sequencing. The major bacterial and archaeal phyla identified in the Benham Rise are Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Marinimicrobia, Thaumarchaeota and, Euryarchaeota. The upper mesopelagic layer exhibited greater microbial diversity and richness compared to surface waters. Vertical zonation of the microbial community is evident and may be attributed to physical stratification of the water column acting as a dispersal barrier. Canonical Correspondence Analysis (CCA) recapitulated previously known associations of taxa and physicochemical parameters in the environment, such as the association of oligotrophic clades with low nutrient surface water and deep water clades that have the capacity to oxidize ammonia or nitrite at the upper mesopelagic layer. These findings provide foundational information on the diversity of marine microbes in Philippine waters. Further studies are warranted to gain a more comprehensive picture of microbial diversity within the region. PMID:29785352

  19. Seasonal regulation of herbivory and nutrient effects on macroalgal recruitment and succession in a Florida coral reef

    PubMed Central

    Collado-Vides, Ligia; Burkepile, Deron E.

    2016-01-01

    Herbivory and nutrient enrichment are drivers of benthic dynamics of coral reef macroalgae; however, their impact may vary seasonally. In this study we evaluated the effects of herbivore pressure, nutrient availability and potential propagule supply on seasonal recruitment and succession of macroalgal communities on a Florida coral reef. Recruitment tiles, replaced every three months, and succession tiles, kept in the field for nine months, were established in an ongoing factorial nutrient enrichment-herbivore exclusion experiment. The ongoing experiment had already created very different algal communities across the different herbivory and nutrient treatments. We tracked algal recruitment, species richness, and species abundance through time. Our results show seasonal variation in the effect of herbivory and nutrient availability on recruitment of coral reef macroalgae. In the spring, when there was higher macroalgal species richness and abundance of recruits, herbivory appeared to have more control on macroalgal community structure than did nutrients. In contrast, there was no effect of either herbivory or nutrient enrichment on macroalgal communities on recruitment tiles in cooler seasons. The abundance of recruits on tiles was positively correlated with the abundance of algal in the ongoing, established experiment, suggesting that propagule abundance is likely a strong influence on algal recruitment and early succession. Results of the present study suggest that abundant herbivorous fishes control recruitment and succession of macroalgae, particularly in the warm season when macroalgal growth is higher. However, herbivory appears less impactful on algal recruitment and community dynamics in cooler seasons. Ultimately, our data suggest that the timing of coral mortality (e.g., summer vs. winter mortality) and freeing of benthic space may strongly influence the dynamics of algae that colonize open space. PMID:27833810

  20. Seasonal regulation of herbivory and nutrient effects on macroalgal recruitment and succession in a Florida coral reef.

    PubMed

    Duran, Alain; Collado-Vides, Ligia; Burkepile, Deron E

    2016-01-01

    Herbivory and nutrient enrichment are drivers of benthic dynamics of coral reef macroalgae; however, their impact may vary seasonally. In this study we evaluated the effects of herbivore pressure, nutrient availability and potential propagule supply on seasonal recruitment and succession of macroalgal communities on a Florida coral reef. Recruitment tiles, replaced every three months, and succession tiles, kept in the field for nine months, were established in an ongoing factorial nutrient enrichment-herbivore exclusion experiment. The ongoing experiment had already created very different algal communities across the different herbivory and nutrient treatments. We tracked algal recruitment, species richness, and species abundance through time. Our results show seasonal variation in the effect of herbivory and nutrient availability on recruitment of coral reef macroalgae. In the spring, when there was higher macroalgal species richness and abundance of recruits, herbivory appeared to have more control on macroalgal community structure than did nutrients. In contrast, there was no effect of either herbivory or nutrient enrichment on macroalgal communities on recruitment tiles in cooler seasons. The abundance of recruits on tiles was positively correlated with the abundance of algal in the ongoing, established experiment, suggesting that propagule abundance is likely a strong influence on algal recruitment and early succession. Results of the present study suggest that abundant herbivorous fishes control recruitment and succession of macroalgae, particularly in the warm season when macroalgal growth is higher. However, herbivory appears less impactful on algal recruitment and community dynamics in cooler seasons. Ultimately, our data suggest that the timing of coral mortality (e.g., summer vs. winter mortality) and freeing of benthic space may strongly influence the dynamics of algae that colonize open space.

  1. Macroalgal spore dysfunction: ocean acidification delays and weakens adhesion.

    PubMed

    Guenther, Rebecca; Miklasz, Kevin; Carrington, Emily; Martone, Patrick T

    2018-04-01

    Early life stages of marine organisms are predicted to be vulnerable to ocean acidification. For macroalgae, reproduction and population persistence rely on spores to settle, adhere and continue the algal life cycle, yet the effect of ocean acidification on this critical life stage has been largely overlooked. We explicitly tested the biomechanical impact of reduced pH on early spore adhesion. We developed a shear flume to examine the effect of reduced pH on spore attachment time and strength in two intertidal rhodophyte macroalgae, one calcified (Corallina vancouveriensis) and one noncalcified (Polyostea robusta). Reduced pH delayed spore attachment of both species by 40%-52% and weakened attachment strength in C. vancouveriensis, causing spores to dislodge at lower flow-induced shear forces, but had no effect on the attachment strength of P. robusta. Results are consistent with our prediction that reduced pH disrupts proper curing and gel formation of spore adhesives (anionic polysaccharides and glycoproteins) via protonation and cation displacement, although experimental verification is needed. Our results demonstrate that ocean acidification negatively, and differentially, impacts spore adhesion in two macroalgae. If results hold in field conditions, reduced ocean pH has the potential to impact macroalgal communities via spore dysfunction, regardless of the physiological tolerance of mature thalli. © 2017 Phycological Society of America.

  2. Modern and Interglacial Marine Ostracode Species Diversity Patterns off Eastern North America

    NASA Astrophysics Data System (ADS)

    Chiu, W. T. R.; Yasuhara, M.; Cronin, T. M.; Hunt, G.; Gemery, L.

    2016-02-01

    Latitudinal species diversity gradients (LSDGs) are a major feature of various marine groups. However, the detailed shape of LSDG in each marine taxonomic group and the causes of the diversity patterns, notably climatic factors, are still controversial due to limited sampling of many taxa in the world's oceans. We analyzed benthic podocopid ostracode faunal assemblages on the continental shelf regions from Arctic to tropical regions off eastern North America to determine biodiversity patterns and their relationships to oceanographic conditions (temperature, productivity, etc). Our database consists of 200 ostracode species from more than 100 bottom sediment samples. Preliminary results suggest that biodiversity, as measured using simple diversity (S), rarefaction, Shannon and α-Fisher indices, show strong latitudinal diversity gradients in which diversity is 2 to 3 times higher in tropical and subtropical regions that in northern high latitude areas. These modern ostracode diversity patterns will be compared with those from past interglacial periods of global warmth during the Pliocene and Pleistocene to assess the impact of warmer-than- present climate conditions on diversity.

  3. Spatial variability in intertidal macroalgal assemblages on the North Portuguese coast: consistence between species and functional group approaches

    NASA Astrophysics Data System (ADS)

    Veiga, P.; Rubal, M.; Vieira, R.; Arenas, F.; Sousa-Pinto, I.

    2013-03-01

    Natural assemblages are variable in space and time; therefore, quantification of their variability is imperative to identify relevant scales for investigating natural or anthropogenic processes shaping these assemblages. We studied the variability of intertidal macroalgal assemblages on the North Portuguese coast, considering three spatial scales (from metres to 10 s of kilometres) following a hierarchical design. We tested the hypotheses that (1) spatial pattern will be invariant at all the studied scales and (2) spatial variability of macroalgal assemblages obtained by using species will be consistent with that obtained using functional groups. This was done considering as univariate variables: total biomass and number of taxa as well as biomass of the most important species and functional groups and as multivariate variables the structure of macroalgal assemblages, both considering species and functional groups. Most of the univariate results confirmed the first hypothesis except for the total number of taxa and foliose macroalgae that showed significant variability at the scale of site and area, respectively. In contrast, when multivariate patterns were examined, the first hypothesis was rejected except at the scale of 10 s of kilometres. Both uni- and multivariate results indicated that variation was larger at the smallest scale, and thus, small-scale processes seem to have more effect on spatial variability patterns. Macroalgal assemblages, both considering species and functional groups as surrogate, showed consistent spatial patterns, and therefore, the second hypothesis was confirmed. Consequently, functional groups may be considered a reliable biological surrogate to study changes on macroalgal assemblages at least along the investigated Portuguese coastline.

  4. Diversity of Marine Plants. Man and the Gulf of Mexico Series.

    ERIC Educational Resources Information Center

    Irby, Bobby N., Comp.; And Others

    "Man and the Gulf of Mexico" (MGM) is a marine science curriculum series developed to meet the needs of 10th through 12th grade students in Mississippi and Alabama schools. This MGM unit on the diversity of marine plants is divided into 12 sections. The first section introduces the unit by providing objectives and activities on why…

  5. The dynamical landscape of marine phytoplankton diversity

    PubMed Central

    Lévy, Marina; Jahn, Oliver; Dutkiewicz, Stephanie; Follows, Michael J.; d'Ovidio, Francesco

    2015-01-01

    Observations suggest that the landscape of marine phytoplankton assemblage might be strongly heterogeneous at the dynamical mesoscale and submesoscale (10–100 km, days to months), with potential consequences in terms of global diversity and carbon export. But these variations are not well documented as synoptic taxonomic data are difficult to acquire. Here, we examine how phytoplankton assemblage and diversity vary between mesoscale eddies and submesoscale fronts. We use a multi-phytoplankton numerical model embedded in a mesoscale flow representative of the North Atlantic. Our model results suggest that the mesoscale flow dynamically distorts the niches predefined by environmental contrasts at the basin scale and that the phytoplankton diversity landscape varies over temporal and spatial scales that are one order of magnitude smaller than those of the basin-scale environmental conditions. We find that any assemblage and any level of diversity can occur in eddies and fronts. However, on a statistical level, the results suggest a tendency for larger diversity and more fast-growing types at fronts, where nutrient supplies are larger and where populations of adjacent water masses are constantly brought into contact; and lower diversity in the core of eddies, where water masses are kept isolated long enough to enable competitive exclusion. PMID:26400196

  6. MARINE LEECH ANTICOAGULANT DIVERSITY AND EVOLUTION.

    PubMed

    Tessler, Michael; Marancik, David; Champagne, Donald; Dove, Alistair; Camus, Alvin; Siddall, Mark E; Kvist, Sebastian

    2018-03-16

    Leeches (Annelida: Hirudinea) possess powerful salivary anticoagulants and, accordingly, are frequently employed in modern, authoritative medicine. Members of the almost exclusively marine family Piscicolidae account for 20% of leech species diversity, and feed on host groups (e.g., sharks) not encountered by their freshwater and terrestrial counterparts. Moreover, some species of Ozobranchidae feed on endangered marine turtles and have been implicated as potential vectors for the tumor-associated turtle herpesvirus. In spite of their ecological importance and unique host associations, there is a distinct paucity of data regarding the salivary transcriptomes of either of these families. Using next generation sequencing, we profiled transcribed, putative anticoagulants and other salivary bioactive compounds that have previously been linked to bloodfeeding from 7 piscicolid species (3 elasmobranch-feeders; 4 non-cartilaginous fish-feeders) and 1 ozobranchid species (2 samples). In total, 149 putative anticoagulants and bioactive loci were discovered in varying constellations throughout the different samples. The putative anticoagulants showed a broad spectrum of described antagonistic pathways, such as inhibition of factor Xa and platelet aggregation, that likely have similar bioactive roles in marine fish and turtles. A transcript with homology to ohanin, originally isolated from king cobras, was found in Cystobranchus vividus but is otherwise unknown from leeches. Estimation of selection pressures for the putative anticoagulants recovered evidence for both positive and purifying selection along several isolated branches in the gene trees and positive selection was also estimated for a few select codons in a variety of marine species. Similarly, phylogenetic analyses of the amino acid sequences for several anticoagulants indicated divergent evolution.

  7. Marine biological diversity: Some important issues, opportunities and critical research needs

    NASA Astrophysics Data System (ADS)

    Butman, Cheryl Ann; Carlton, James T.

    1995-07-01

    Marine biological diversity is changing, dramatically in some cases, and most recent changes are due to broad-scale human activities. Knowledge of "biodiversity" — the variety of genomes (the genetic material specifying all characteristics and functions within an organism), species and ecosystems — is the foundation for understanding and predicting how human and natural effects can change the ocean's ecosystems. Evaluating the scale and ultimate consequences to life in the sea of a plethora of anthropogenic effects is difficult, however, because there is inadequate knowledge of both the patterns of and the processes that control marine biodiversity. Recognizing change and evaluating its consequences require sufficient knowledge of present and historical natural patterns of biodiversity, and sufficient understanding of how and why these patterns vary in space and time. Data on biodiversity patterns and their causes are sorely lacking for most marine ecosystems. Adequate understanding of what creates and maintains diversity must be the scientific underpinning for policy decisions regarding pollutant and waste disposal, habitat alteration, fisheries management and the preservation of threatened or endangered species. The inability, at this time, to provide such information to policy makers may have important implications for the conservation of marine life [Norse, 1993].

  8. Intertidal Eelgrass Response to Benthic Macroalgal Accumulation in a Pacific Northwest Estuary

    EPA Science Inventory

    High accumulations of benthic macroalgae from excessive nutrient inputs to estuaries is commonly cited as a major cause of seagrass decline. Two measures of macroalgal abundance, biomass and percent cover, have been used in an assessment framework for estuarine condition propose...

  9. Effects of ocean acidification on the potency of macroalgal allelopathy to a common coral

    PubMed Central

    Del Monaco, Carlos; Hay, Mark E.; Gartrell, Patrick; Mumby, Peter J.; Diaz-Pulido, Guillermo

    2017-01-01

    Many coral reefs have phase shifted from coral to macroalgal dominance. Ocean acidification (OA) due to elevated CO2 is hypothesised to advantage macroalgae over corals, contributing to these shifts, but the mechanisms affecting coral-macroalgal interactions under OA are unknown. Here, we show that (i) three common macroalgae are more damaging to a common coral when they compete under CO2 concentrations predicted to occur in 2050 and 2100 than under present-day conditions, (ii) that two macroalgae damage corals via allelopathy, and (iii) that one macroalga is allelopathic under conditions of elevated CO2, but not at ambient levels. Lipid-soluble, surface extracts from the macroalga Canistrocarpus (=Dictyota) cervicornis were significantly more damaging to the coral Acropora intermedia growing in the field if these extracts were from thalli grown under elevated vs ambient concentrations of CO2. Extracts from the macroalgae Chlorodesmis fastigiata and Amansia glomerata were not more potent when grown under elevated CO2. Our results demonstrate increasing OA advantages seaweeds over corals, that algal allelopathy can mediate coral-algal interactions, and that OA may enhance the allelopathy of some macroalgae. Other mechanisms also affect coral-macroalgal interactions under OA, and OA further suppresses the resilience of coral reefs suffering blooms of macroalgae. PMID:28145458

  10. Effects of ocean acidification on the potency of macroalgal allelopathy to a common coral.

    PubMed

    Del Monaco, Carlos; Hay, Mark E; Gartrell, Patrick; Mumby, Peter J; Diaz-Pulido, Guillermo

    2017-02-01

    Many coral reefs have phase shifted from coral to macroalgal dominance. Ocean acidification (OA) due to elevated CO 2 is hypothesised to advantage macroalgae over corals, contributing to these shifts, but the mechanisms affecting coral-macroalgal interactions under OA are unknown. Here, we show that (i) three common macroalgae are more damaging to a common coral when they compete under CO 2 concentrations predicted to occur in 2050 and 2100 than under present-day conditions, (ii) that two macroalgae damage corals via allelopathy, and (iii) that one macroalga is allelopathic under conditions of elevated CO 2 , but not at ambient levels. Lipid-soluble, surface extracts from the macroalga Canistrocarpus (=Dictyota) cervicornis were significantly more damaging to the coral Acropora intermedia growing in the field if these extracts were from thalli grown under elevated vs ambient concentrations of CO 2 . Extracts from the macroalgae Chlorodesmis fastigiata and Amansia glomerata were not more potent when grown under elevated CO 2 . Our results demonstrate increasing OA advantages seaweeds over corals, that algal allelopathy can mediate coral-algal interactions, and that OA may enhance the allelopathy of some macroalgae. Other mechanisms also affect coral-macroalgal interactions under OA, and OA further suppresses the resilience of coral reefs suffering blooms of macroalgae.

  11. Effects of ocean acidification on the potency of macroalgal allelopathy to a common coral

    NASA Astrophysics Data System (ADS)

    Del Monaco, Carlos; Hay, Mark E.; Gartrell, Patrick; Mumby, Peter J.; Diaz-Pulido, Guillermo

    2017-02-01

    Many coral reefs have phase shifted from coral to macroalgal dominance. Ocean acidification (OA) due to elevated CO2 is hypothesised to advantage macroalgae over corals, contributing to these shifts, but the mechanisms affecting coral-macroalgal interactions under OA are unknown. Here, we show that (i) three common macroalgae are more damaging to a common coral when they compete under CO2 concentrations predicted to occur in 2050 and 2100 than under present-day conditions, (ii) that two macroalgae damage corals via allelopathy, and (iii) that one macroalga is allelopathic under conditions of elevated CO2, but not at ambient levels. Lipid-soluble, surface extracts from the macroalga Canistrocarpus (=Dictyota) cervicornis were significantly more damaging to the coral Acropora intermedia growing in the field if these extracts were from thalli grown under elevated vs ambient concentrations of CO2. Extracts from the macroalgae Chlorodesmis fastigiata and Amansia glomerata were not more potent when grown under elevated CO2. Our results demonstrate increasing OA advantages seaweeds over corals, that algal allelopathy can mediate coral-algal interactions, and that OA may enhance the allelopathy of some macroalgae. Other mechanisms also affect coral-macroalgal interactions under OA, and OA further suppresses the resilience of coral reefs suffering blooms of macroalgae.

  12. Ecological and physiological controls of species composition in green macroalgal blooms.

    PubMed

    Nelson, Timothy A; Haberlin, Karalon; Nelson, Amorah V; Ribarich, Heather; Hotchkiss, Ruth; Van Alstyne, Kathryn L; Buckingham, Lee; Simunds, Dejah J; Fredrickson, Kerri

    2008-05-01

    Green macroalgal blooms have substantially altered marine community structure and function, specifically by smothering seagrasses and other primary producers that are critical to commercial fisheries and by creating anoxic conditions in enclosed embayments. Bottom-up factors are viewed as the primary drivers of these blooms, but increasing attention has been paid to biotic controls of species composition. In Washington State, USA, blooms are often dominated by Ulva spp. intertidally and Ulvaria obscura subtidally. Factors that could cause this spatial difference were examined, including competition, grazer preferences, salinity, photoacclimation, nutrient requirements, and responses to nutrient enrichment. Ulva specimens grew faster than Ulvaria in intertidal chambers but not significantly faster in subtidal chambers. Ulva was better able to acclimate to a high-light environment and was more tolerant of low salinity than Ulvaria. Ulvaria had higher tissue N content, chlorophyll, chlorophyll b: chlorophyll a, and protein content than Ulva. These differences suggest that nitrogen availability could affect species composition. A suite of five grazers preferred Ulva to Ulvaria in choice experiments. Thus, bottom-up factors allow Ulva to dominate the intertidal zone while resistance to grazers appears to allow Ulvaria to dominate the subtidal zone. While ulvoid algae are in the same functional-form group, they are not functionally redundant.

  13. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    PubMed Central

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  14. Characterization of marine macroalgae by fluorescence signatures

    NASA Technical Reports Server (NTRS)

    Topinka, J. A.; Bellows, W. Korjeff; Yentsch, C. S.

    1990-01-01

    The feasibility of distinguishing macroalgal classes by their fluorescence signatures was investigated using narrow-waveband light to excite groups of accessory pigments in brown, red, and green macroalgae and measuring fluorescence emission at 685 nm. Results obtained on 20 marine macroalgae field-collected samples showed that fluorescence excitation signatures were relatively uniform within phylogenetic classes but were substantially different for different classes. It is suggested that it may be possible to characterize the type and the abundance of subtidal macroalgae from low-flying aircraft using existing laser-induced fluorescence methodology.

  15. Interactions between macro-algal mats and invertebrates in the Ythan estuary, Aberdeenshire, Scotland

    NASA Astrophysics Data System (ADS)

    Raffaelli, D.

    2000-07-01

    Blooms of opportunistic green macro-algae are a common feature of coastal areas and their effects on mudflat invertebrates can be dramatic. On the Ythan estuary, Aberdeenshire, Scotland, we have carried out a number of manipulative field experiments designed to evaluate the effects on invertebrates of different species of macro-algae with contrasting ecologies, and the effects of invertebrates on the development of the blooms. Macro-algal mats were found to have dramatic nega- tive effects on the density of the amphipod Corophium volutator, with higher algal biomasses having greater impact. The mechanism for this interaction seems to be interference by the algal filaments with the feeding behaviour of the amphipod. In contrast, the polychaete Capitella spp. increases in abundance under macro-algal mats due to enrichment of the sediment with organic material. These two interactions are seen at all scales, in areas of less than 1 m2 to the scale of the entire estuary, irrespective of the species composition of the macro- algal mats. Bioturbation by Corophium and grazing by the snail Hydrobia ulvae had little effect on macro-algal biomass, but there were less algae when the polychaete Nereis diversicolor was present. The most significant interaction in this system is the pronounced negative impact of algal mats on the abundance of Corophium, probably the most important invertebrate species in the diets of the estuary's shorebirds, fish and epibenthic crustaceans.

  16. The influence of species, density, and diversity of macroalgal aggregations on microphytobenthic settlement.

    PubMed

    Umanzor, Schery; Ladah, Lydia; Zertuche-González, José A

    2017-10-01

    Intertidal macroalgae can modulate their biophysical environment by ameliorating physical conditions and creating habitats. Exploring how seaweed aggregations made up of different species at different densities modify the local environment may help explain how associated organisms respond to the attenuation of extreme physical conditions. Using Silvetia compressa, Chondracanthus canaliculatus, and Pyropia perforata, we constructed monocultures representing the leathery, corticated and foliose functional forms as well as a mixed tri-culture assemblage including the former three, at four densities. Treatment quadrats were installed in the intertidal where we measured irradiance, temperature, particle retention, and water motion underneath the canopies. Additionally, we examined the abundance and richness of the understory microphytobenthos with settlement slides. We found that the density and species composition of the assemblages modulated the amelioration of extreme physical conditions, with macroalgal aggregations of greater structural complexity due to their form and density showing greater physical factor attenuation. However, increasing the number of species within a patch did not directly result in increased complexity and therefore, did not necessarily cause greater amelioration of the environment. Microphytobenthic composition was also affected by species composition and density, with higher abundances under S. compressa and C. canaliculatus canopies at high and mid densities. These results support the idea that the environmental modifications driven by these macroalgae have a significant effect on the dynamics of the intertidal environment by promoting distinct temporal and spatial patchiness in the microphytobenthos, with potentially significant effects on the overall productivity of these ecosystems. © 2017 Phycological Society of America.

  17. Plate tectonic regulation of global marine animal diversity.

    PubMed

    Zaffos, Andrew; Finnegan, Seth; Peters, Shanan E

    2017-05-30

    Valentine and Moores [Valentine JW, Moores EM (1970) Nature 228:657-659] hypothesized that plate tectonics regulates global biodiversity by changing the geographic arrangement of continental crust, but the data required to fully test the hypothesis were not available. Here, we use a global database of marine animal fossil occurrences and a paleogeographic reconstruction model to test the hypothesis that temporal patterns of continental fragmentation have impacted global Phanerozoic biodiversity. We find a positive correlation between global marine invertebrate genus richness and an independently derived quantitative index describing the fragmentation of continental crust during supercontinental coalescence-breakup cycles. The observed positive correlation between global biodiversity and continental fragmentation is not readily attributable to commonly cited vagaries of the fossil record, including changing quantities of marine rock or time-variable sampling effort. Because many different environmental and biotic factors may covary with changes in the geographic arrangement of continental crust, it is difficult to identify a specific causal mechanism. However, cross-correlation indicates that the state of continental fragmentation at a given time is positively correlated with the state of global biodiversity for tens of millions of years afterward. There is also evidence to suggest that continental fragmentation promotes increasing marine richness, but that coalescence alone has only a small negative or stabilizing effect. Together, these results suggest that continental fragmentation, particularly during the Mesozoic breakup of the supercontinent Pangaea, has exerted a first-order control on the long-term trajectory of Phanerozoic marine animal diversity.

  18. Plate tectonic regulation of global marine animal diversity

    NASA Astrophysics Data System (ADS)

    Zaffos, Andrew; Finnegan, Seth; Peters, Shanan E.

    2017-05-01

    Valentine and Moores [Valentine JW, Moores EM (1970) Nature 228:657-659] hypothesized that plate tectonics regulates global biodiversity by changing the geographic arrangement of continental crust, but the data required to fully test the hypothesis were not available. Here, we use a global database of marine animal fossil occurrences and a paleogeographic reconstruction model to test the hypothesis that temporal patterns of continental fragmentation have impacted global Phanerozoic biodiversity. We find a positive correlation between global marine invertebrate genus richness and an independently derived quantitative index describing the fragmentation of continental crust during supercontinental coalescence-breakup cycles. The observed positive correlation between global biodiversity and continental fragmentation is not readily attributable to commonly cited vagaries of the fossil record, including changing quantities of marine rock or time-variable sampling effort. Because many different environmental and biotic factors may covary with changes in the geographic arrangement of continental crust, it is difficult to identify a specific causal mechanism. However, cross-correlation indicates that the state of continental fragmentation at a given time is positively correlated with the state of global biodiversity for tens of millions of years afterward. There is also evidence to suggest that continental fragmentation promotes increasing marine richness, but that coalescence alone has only a small negative or stabilizing effect. Together, these results suggest that continental fragmentation, particularly during the Mesozoic breakup of the supercontinent Pangaea, has exerted a first-order control on the long-term trajectory of Phanerozoic marine animal diversity.

  19. Inhibition of biofouling by marine microorganisms and their metabolites.

    PubMed

    Dobretsov, Sergey; Dahms, Hans-Uwe; Qian, Peri-Yuan

    2006-01-01

    Development of microbial biofilms and the recruitment of propagules on the surfaces of man-made structures in the marine environment cause serious problems for the navies and for marine industries around the world. Current antifouling technology is based on the application of toxic substances that can be harmful to the natural environment. For this reason and the global ban of tributyl tin (TBT), there is a need for the development of "environmentally-friendly" antifoulants. Marine microbes are promising potential sources of non-toxic or less-toxic antifouling compounds as they can produce substances that inhibit not only the attachment and/or growth of microorganisms but also the settlement of invertebrate larvae and macroalgal spores. However, so far only few antilarval settlement compounds have been isolated and identified from bacteria. In this review knowledge about antifouling compounds produced by marine bacteria and diatoms are summarised and evaluated and future research directions are highlighted.

  20. Cenozoic planktonic marine diatom diversity and correlation to climate change.

    PubMed

    Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas

    2014-01-01

    Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂(18)O (climate) and carbon cycle records (∂(13)C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p<.001; detrended, r = .6, p = .01). Diatoms were 20% less diverse in the early late Miocene, when temperatures and pCO2 were only moderately higher than today. Diversity is strongly correlated to both ∂(13)C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic

  1. Positive Feedbacks Enhance Macroalgal Resilience on Degraded Coral Reefs.

    PubMed

    Dell, Claire L A; Longo, Guilherme O; Hay, Mark E

    2016-01-01

    Many reefs have shifted from coral and fish dominated habitats to less productive macroalgal dominated habitats, and current research is investigating means of reversing this phase shift. In the tropical Pacific, overfished reefs with inadequate herbivory can become dominated by the brown alga Sargassum polycystum. This alga suppresses recruitment and survival of corals and fishes, thus limiting the potential for reef recovery. Here we investigate the mechanisms that reinforce S. polycystum dominance and show that in addition to negatively affecting other species, this species acts in a self-reinforcing manner, positively promoting survival and growth of conspecifics. We found that survival and growth of both recruit-sized and mature S. polycystum fronds were higher within Sargassum beds than outside the beds and these results were found in both protected and fished reefs. Much of this benefit resulted from reduced herbivory within the Sargassum beds, but adult fronds also grew ~50% more within the beds even when herbivory did not appear to be occurring, suggesting some physiological advantage despite the intraspecific crowding. Thus via positive feedbacks, S. polycystum enhances its own growth and resistance to herbivores, facilitating its dominance (perhaps also expansion) and thus its resilience on degraded reefs. This may be a key feedback mechanism suppressing the recovery of coral communities in reefs dominated by macroalgal beds.

  2. Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica.

    PubMed

    Quartino, María Liliana; Deregibus, Dolores; Campana, Gabriela Laura; Latorre, Gustavo Edgar Juan; Momo, Fernando Roberto

    2013-01-01

    Climate warming has been related to glacial retreat along the Western Antarctic Peninsula. Over the last years, a visible melting of Fourcade Glacier (Potter Cove, South Shetland Islands) has exposed newly ice-free hard bottom areas available for benthic colonization. However, ice melting produces a reduction of light penetration due to an increase of sediment input and higher ice impact. Seventeen years ago, the coastal sites close to the glacier cliffs were devoid of macroalgae. Are the newly ice-free areas suitable for macroalgal colonization? To tackle this question, underwater video transects were performed at six newly ice-free areas with different degree of glacial influence. Macroalgae were found in all sites, even in close proximity to the retreating glacier. We can show that: 1. The complexity of the macroalgal community is positively correlated to the elapsed time from the ice retreat, 2. Algae development depends on the optical conditions and the sediment input in the water column; some species are limited by light availability, 3. Macroalgal colonization is negatively affected by the ice disturbance, 4. The colonization is determined by the size and type of substrate and by the slope of the bottom. As macroalgae are probably one of the main energy sources for the benthos, an expansion of the macroalgal distribution can be expected to affect the matter and energy fluxes in Potter Cove ecosystem.

  3. Evidence of Macroalgal Colonization on Newly Ice-Free Areas following Glacial Retreat in Potter Cove (South Shetland Islands), Antarctica

    PubMed Central

    Quartino, María Liliana; Deregibus, Dolores; Campana, Gabriela Laura; Latorre, Gustavo Edgar Juan; Momo, Fernando Roberto

    2013-01-01

    Climate warming has been related to glacial retreat along the Western Antarctic Peninsula. Over the last years, a visible melting of Fourcade Glacier (Potter Cove, South Shetland Islands) has exposed newly ice-free hard bottom areas available for benthic colonization. However, ice melting produces a reduction of light penetration due to an increase of sediment input and higher ice impact. Seventeen years ago, the coastal sites close to the glacier cliffs were devoid of macroalgae. Are the newly ice-free areas suitable for macroalgal colonization? To tackle this question, underwater video transects were performed at six newly ice-free areas with different degree of glacial influence. Macroalgae were found in all sites, even in close proximity to the retreating glacier. We can show that: 1. The complexity of the macroalgal community is positively correlated to the elapsed time from the ice retreat, 2. Algae development depends on the optical conditions and the sediment input in the water column; some species are limited by light availability, 3. Macroalgal colonization is negatively affected by the ice disturbance, 4. The colonization is determined by the size and type of substrate and by the slope of the bottom. As macroalgae are probably one of the main energy sources for the benthos, an expansion of the macroalgal distribution can be expected to affect the matter and energy fluxes in Potter Cove ecosystem. PMID:23484000

  4. Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology

    PubMed Central

    DeLong, Edward F.; Béjà, Oded; González, José M.; Pedrós-Alió, Carlos

    2016-01-01

    SUMMARY The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of “heterotrophic” bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes. PMID:27630250

  5. Plate tectonic regulation of global marine animal diversity

    PubMed Central

    Zaffos, Andrew; Finnegan, Seth

    2017-01-01

    Valentine and Moores [Valentine JW, Moores EM (1970) Nature 228:657–659] hypothesized that plate tectonics regulates global biodiversity by changing the geographic arrangement of continental crust, but the data required to fully test the hypothesis were not available. Here, we use a global database of marine animal fossil occurrences and a paleogeographic reconstruction model to test the hypothesis that temporal patterns of continental fragmentation have impacted global Phanerozoic biodiversity. We find a positive correlation between global marine invertebrate genus richness and an independently derived quantitative index describing the fragmentation of continental crust during supercontinental coalescence–breakup cycles. The observed positive correlation between global biodiversity and continental fragmentation is not readily attributable to commonly cited vagaries of the fossil record, including changing quantities of marine rock or time-variable sampling effort. Because many different environmental and biotic factors may covary with changes in the geographic arrangement of continental crust, it is difficult to identify a specific causal mechanism. However, cross-correlation indicates that the state of continental fragmentation at a given time is positively correlated with the state of global biodiversity for tens of millions of years afterward. There is also evidence to suggest that continental fragmentation promotes increasing marine richness, but that coalescence alone has only a small negative or stabilizing effect. Together, these results suggest that continental fragmentation, particularly during the Mesozoic breakup of the supercontinent Pangaea, has exerted a first-order control on the long-term trajectory of Phanerozoic marine animal diversity. PMID:28507147

  6. Cenozoic planktonic marine diatom diversity and correlation to climate change

    USGS Publications Warehouse

    Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas

    2014-01-01

    Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂18O (climate) and carbon cycle records (∂13C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p2 were only moderately higher than today. Diversity is strongly correlated to both ∂13C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  7. Valuable natural products from marine and freshwater macroalgae obtained from supercritical fluid extracts.

    PubMed

    Messyasz, Beata; Michalak, Izabela; Łęska, Bogusława; Schroeder, Grzegorz; Górka, Bogusława; Korzeniowska, Karolina; Lipok, Jacek; Wieczorek, Piotr; Rój, Edward; Wilk, Radosław; Dobrzyńska-Inger, Agnieszka; Górecki, Henryk; Chojnacka, Katarzyna

    2018-01-01

    The biologically active compounds (fatty acids, pigments, phenolics, and flavonoid content) were studied in supercritical fluid extracts from the biomass of marine ( Ulva clathrata , Cladophora glomerata , Polysiphonia fucoides , and their multi-species mixture) and freshwater ( C. glomerata ) macroalgae. Different extraction techniques were used in order to compare differences in the biologically active compound composition of the macroalgal extracts. The results indicated that the saturated and unsaturated fatty acids ranged from C9:0 to C22:0. The analysis of differences in the composition of unsaturated to saturated fatty acids in extracts showed that palmitic acid (C16:0) and oleic acid (C18:1, n-9) reached the highest value not only in marine monospecies and multi-species biomass but also in the freshwater macroalga C. glomerata . When comparing the similarity between the concentration of fatty acids and the ratio of the concentration of unsaturated fatty acids to saturated in macroalgal extracts, we found small but not statistically significant variations in values between years (up to 10%). This is acceptable for applications as a stable raw material for industrial purposes. Significantly higher values of fatty acids, carotenoids, and chlorophylls were obtained in the case of SC-CO 2 extraction. The active ingredients of polyphenols, possessing antioxidant activity ranged from approximately 2-4%. Moreover, flavonoids represented less than 10% of the total content of polyphenolic compounds. The extraction efficiency of polyphenols was higher from a mixture of marine algae for the ultrasound-assisted extraction compared to freshwater. All these findings show that marine and freshwater macroalgae, as a raw material, have the optimal biologically active compounds composition for cosmetics.

  8. Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing

    PubMed Central

    Logares, Ramiro; Audic, Stephane; Santini, Sebastien; Pernice, Massimo C; de Vargas, Colomban; Massana, Ramon

    2012-01-01

    Flagellated heterotrophic microeukaryotes have key roles for the functioning of marine ecosystems as they channel large amounts of organic carbon to the upper trophic levels and control the population sizes of bacteria and archaea. Still, we know very little on the diversity patterns of most groups constituting this evolutionary heterogeneous assemblage. Here, we investigate 11 groups of uncultured flagellates known as MArine STramenopiles (MASTs). MASTs are ecologically very important and branch at the base of stramenopiles. We explored the diversity patterns of MASTs using pyrosequencing (18S rDNA) in coastal European waters. We found that MAST groups range from highly to lowly diversified. Pyrosequencing (hereafter ‘454') allowed us to approach to the limits of taxonomic diversity for all MAST groups, which varied in one order of magnitude (tens to hundreds) in terms of operational taxonomic units (98% similarity). We did not evidence large differences in activity, as indicated by ratios of DNA:RNA-reads. Most groups were strictly planktonic, although we found some groups that were active in sediments and even in anoxic waters. The proportion of reads per size fraction indicated that most groups were composed of very small cells (∼2–5 μm). In addition, phylogenetically different assemblages appeared to be present in different size fractions, depths and geographic zones. Thus, MAST diversity seems to be highly partitioned in spatial scales. Altogether, our results shed light on these ecologically very important but poorly known groups of uncultured marine flagellates. PMID:22534609

  9. Phanerozoic marine diversity: rock record modelling provides an independent test of large-scale trends.

    PubMed

    Smith, Andrew B; Lloyd, Graeme T; McGowan, Alistair J

    2012-11-07

    Sampling bias created by a heterogeneous rock record can seriously distort estimates of marine diversity and makes a direct reading of the fossil record unreliable. Here we compare two independent estimates of Phanerozoic marine diversity that explicitly take account of variation in sampling-a subsampling approach that standardizes for differences in fossil collection intensity, and a rock area modelling approach that takes account of differences in rock availability. Using the fossil records of North America and Western Europe, we demonstrate that a modelling approach applied to the combined data produces results that are significantly correlated with those derived from subsampling. This concordance between independent approaches argues strongly for the reality of the large-scale trends in diversity we identify from both approaches.

  10. The world's largest macroalgal bloom in the Yellow Sea, China: Formation and implications

    NASA Astrophysics Data System (ADS)

    Liu, Dongyan; Keesing, John K.; He, Peimin; Wang, Zongling; Shi, Yajun; Wang, Yujue

    2013-09-01

    The world's largest trans-regional macroalgal blooms during 2008-2012 occurred in the Yellow Sea, China. This review addresses the causes, development and future challenges in this unique case. Satellite imagery and field observations showed that the macroalgal blooms in the Yellow Sea originated from the coast of Jiangsu province and that favorable geographic and oceanographic conditions brought the green macroalgae from the coast offshore. Optimal temperature, light, nutrients and wind contributed to the formation and transport of the massive bloom north into the Yellow Sea and its deposition onshore along the coast of Shandong province. Morphological and genetic evidence demonstrated that the species involved was Ulva prolifera, a fouling green commonly found growing on structures provided by facilities of Porphyra aquaculture. Large scale Porphyra aquaculture (covering >20,000 ha) along the Jiangsu coast thus hypothetically provided a nursery bed for the original biomass of U. prolifera. Porphyra growers remove U. prolifera from the mariculture rafts, and the cleaning releases about 5000 wet weight tonnes of green algae into the water column along the coast of Jiangsu province; the biomass then is dispersed by hydrographic forcing, and takes advantage of rather high nutrient supply and suitable temperatures to grow to impressive levels. Certain biological traits of U. prolifera —efficient photosynthesis, rapid growth rates, high capacity for nutrient uptake, and diverse reproductive systems— allowed growth of the original 5000 tonnes of U. prolifera biomass into more than one million tonnes of biomass in just two months. The proliferation of U. prolifera in the Yellow Sea resulted from a complex contingency of circumstances, including human activity (eutrophication by release of nutrients from wastewater, agriculture, and aquaculture), natural geographic and hydrodynamic conditions (current, wind) and the key organism's biological attributes. Better

  11. Diversity of the free-living marine and freshwater Copepoda (Crustacea) in Costa Rica: a review

    PubMed Central

    Morales-Ramírez, Álvaro; Suárez-Morales, Eduardo; Corrales-Ugalde, Marco; Garrote, Octavio Esquivel

    2014-01-01

    Abstract The studies on marine copepods of Costa Rica started in the 1990’s and focused on the largest coastal-estuarine systems in the country, particularly along the Pacific coast. Diversity is widely variable among these systems: 40 species have been recorded in the Culebra Bay influenced by upwelling, northern Pacific coast, only 12 in the Gulf of Nicoya estuarine system, and 38 in Golfo Dulce, an anoxic basin in the southern Pacific coast of the country. Freshwater environments of Costa Rica are known to harbor a moderate diversity of continental copepods (25 species), which includes 6 calanoids, 17 cyclopoids and only two harpacticoids. Of the +100 freshwater species recorded in Central America, six are known only from Costa Rica, and one appears to be endemic to this country. The freshwater copepod fauna of Costa Rica is clearly the best known in Central America. Overall, six of the 10 orders of Copepoda are reported from Costa Rica. A previous summary by 2001 of the free-living copepod diversity in the country included 80 marine species (67 pelagic, 13 benthic). By 2009, the number of marine species increased to 209: 164 from the Pacific (49% of the copepod fauna from the Eastern Tropical Pacific) and 45 from the Caribbean coast (8% of species known from the Caribbean Basin). Both the Caribbean and Pacific species lists are growing. Additional collections of copepods at Cocos Island, an oceanic island 530 km away of the Pacific coast, have revealed many new records, including five new marine species from Costa Rica. Currently, the known diversity of marine copepods of Costa Rica is still in development and represents up to 52.6% of the total marine microcrustaceans recorded in the country. Future sampling and taxonomic efforts in the marine habitats should emphasize oceanic environments including deep waters but also littoral communities. Several Costa Rican records of freshwater copepods are likely to represent undescribed species. Also, the

  12. Diversity of the free-living marine and freshwater Copepoda (Crustacea) in Costa Rica: a review.

    PubMed

    Morales-Ramírez, Álvaro; Suárez-Morales, Eduardo; Corrales-Ugalde, Marco; Garrote, Octavio Esquivel

    2014-01-01

    The studies on marine copepods of Costa Rica started in the 1990's and focused on the largest coastal-estuarine systems in the country, particularly along the Pacific coast. Diversity is widely variable among these systems: 40 species have been recorded in the Culebra Bay influenced by upwelling, northern Pacific coast, only 12 in the Gulf of Nicoya estuarine system, and 38 in Golfo Dulce, an anoxic basin in the southern Pacific coast of the country. Freshwater environments of Costa Rica are known to harbor a moderate diversity of continental copepods (25 species), which includes 6 calanoids, 17 cyclopoids and only two harpacticoids. Of the +100 freshwater species recorded in Central America, six are known only from Costa Rica, and one appears to be endemic to this country. The freshwater copepod fauna of Costa Rica is clearly the best known in Central America. Overall, six of the 10 orders of Copepoda are reported from Costa Rica. A previous summary by 2001 of the free-living copepod diversity in the country included 80 marine species (67 pelagic, 13 benthic). By 2009, the number of marine species increased to 209: 164 from the Pacific (49% of the copepod fauna from the Eastern Tropical Pacific) and 45 from the Caribbean coast (8% of species known from the Caribbean Basin). Both the Caribbean and Pacific species lists are growing. Additional collections of copepods at Cocos Island, an oceanic island 530 km away of the Pacific coast, have revealed many new records, including five new marine species from Costa Rica. Currently, the known diversity of marine copepods of Costa Rica is still in development and represents up to 52.6% of the total marine microcrustaceans recorded in the country. Future sampling and taxonomic efforts in the marine habitats should emphasize oceanic environments including deep waters but also littoral communities. Several Costa Rican records of freshwater copepods are likely to represent undescribed species. Also, the biogeographic relevance

  13. Broad-scale impacts of salmon farms on temperate macroalgal assemblages on rocky reefs.

    PubMed

    Oh, E S; Edgar, G J; Kirkpatrick, J B; Stuart-Smith, R D; Barrett, N S

    2015-09-15

    Intensive fish culture in open sea pens delivers large amounts of nutrients to coastal environments. Relative to particulate waste impacts, the ecological impacts of dissolved wastes are poorly known despite their potential to substantially affect nutrient-assimilating components of surrounding ecosystems. Broad-scale enrichment effects of salmonid farms on Tasmanian reef communities were assessed by comparing macroalgal cover at four fixed distances from active fish farm leases across 44 sites. Macroalgal assemblages differed significantly between sites immediately adjacent (100m) to fish farms and reference sites at 5km distance, while sites at 400m and 1km exhibited intermediate characteristics. Epiphyte cover varied consistently with fish farm impacts in both sheltered and exposed locations. The green algae Chaetomorpha spp. predominated near fish farms at swell-exposed sites, whereas filamentous green algae showed elevated densities near sheltered farms. Cover of canopy-forming perennial algae appeared unaffected by fish farm impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Application of a Eutrophic Condition Index to Benthic Macroalgal Accumulation in Pacific Northwest Estuaries

    EPA Science Inventory

    Studies of benthic macroalgal accumulation in coastal estuaries of the Pacific Northwest, USA, were conducted over a 12-year period, including aerial mapping and ground surveys. The results were applied to an assessment framework for eutrophication developed by the European Unio...

  15. Ubiquity and Diversity of Heterotrophic Bacterial nasA Genes in Diverse Marine Environments

    PubMed Central

    Jiang, Xuexia; Dang, Hongyue; Jiao, Nianzhi

    2015-01-01

    Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase) gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides) bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III). Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating that NAB may be

  16. Cenozoic Planktonic Marine Diatom Diversity and Correlation to Climate Change

    PubMed Central

    Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas

    2014-01-01

    Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂18O (climate) and carbon cycle records (∂13C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p<.001; detrended, r = .6, p = .01). Diatoms were 20% less diverse in the early late Miocene, when temperatures and pCO2 were only moderately higher than today. Diversity is strongly correlated to both ∂13C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic

  17. Microbial Diversity in Extreme Marine Habitats and Their Biomolecules

    PubMed Central

    Poli, Annarita; Finore, Ilaria; Romano, Ida; Gioiello, Alessia; Lama, Licia; Nicolaus, Barbara

    2017-01-01

    Extreme marine environments have been the subject of many studies and scientific publications. For many years, these environmental niches, which are characterized by high or low temperatures, high-pressure, low pH, high salt concentrations and also two or more extreme parameters in combination, have been thought to be incompatible to any life forms. Thanks to new technologies such as metagenomics, it is now possible to detect life in most extreme environments. Starting from the discovery of deep sea hydrothermal vents up to the study of marine biodiversity, new microorganisms have been identified, and their potential uses in several applied fields have been outlined. Thermophile, halophile, alkalophile, psychrophile, piezophile and polyextremophile microorganisms have been isolated from these marine environments; they proliferate thanks to adaptation strategies involving diverse cellular metabolic mechanisms. Therefore, a vast number of new biomolecules such as enzymes, polymers and osmolytes from the inhabitant microbial community of the sea have been studied, and there is a growing interest in the potential returns of several industrial production processes concerning the pharmaceutical, medical, environmental and food fields. PMID:28509857

  18. Genetic diversity and temporal variation of the marine Synechococcus community in the subtropical coastal waters of Hong Kong.

    PubMed

    Jing, Hongmei; Zhang, Rui; Pointing, Stephen B; Liu, Hongbin; Qian, Peiyuan

    2009-03-01

    The phylogenetic diversity of the marine Synechococcus community in the subtropical coastal waters of Hong Kong, China, was examined through intergenic transcribed spacer clone libraries. All the sequences obtained fell within both marine cluster A (MC-A) and B (MC-B), with MC-A phylotypes dominating throughout the year. Distinct phylogenetic lineages specific to Hong Kong waters were detected from both MC-A and MC-B. The highest Synechococcus community diversity occurred in December, but the highest Synechococcus abundance occurred in August. On the other hand, both the abundance and diversity of Synechococcus showed a minimum in February. The remarkable seasonal variations of Synechococcus diversity observed were likely the result of the changes of hydrographic condition modulated by monsoons. Principal component analysis revealed that the in situ abiotic water characteristics, especially salinity and water turbidity, explained much of the variability of the marine Synechococcus population diversity in Hong Kong coastal waters. In addition, the temporal changes of Synechococcus abundance were largely driven by water temperature.

  19. Biodiversity loss and turnover in alternative states in the Mediterranean Sea: a case study on meiofauna

    PubMed Central

    Bianchelli, Silvia; Buschi, Emanuela; Danovaro, Roberto; Pusceddu, Antonio

    2016-01-01

    In the Mediterranean Sea hard-bottom macroalgal meadows may switch to alternative and less-productive barrens grounds, as a result of sea urchins overgrazing. Meiofauna (and especially nematodes) represent key components of benthic ecosystems, are highly-diversified, sensitive to environmental change and anthropogenic impacts, but, so-far, have been neglected in studies on regime shifts. We report here that sedimentary organic matter contents, meiofaunal taxa richness and community composition, nematode α- and β-biodiversity vary significantly between alternative macroalgal and barren states. The observed differences are consistent in six areas spread across the Mediterranean Sea, irrespective of barren extent. Our results suggest also that the low biodiversity levels in barren states are the result of habitat loss/fragmentation, which is associated also with a lower availability of trophic resources. Furthermore, differences in meiofaunal and nematode abundance, biomass and diversity between macroalgal meadow and barren states persist when the latter is not fully formed, or consists of patches interspersed in macroalgal meadows. Since barren grounds are expanding rapidly along the Mediterranean Sea and meiofauna are a key trophic component in marine ecosystems, we suggest that the extension and persistence of barrens at the expenses of macroalgal meadows could also affect resilience of higher trophic level. PMID:27708343

  20. Biodiversity loss and turnover in alternative states in the Mediterranean Sea: a case study on meiofauna.

    PubMed

    Bianchelli, Silvia; Buschi, Emanuela; Danovaro, Roberto; Pusceddu, Antonio

    2016-10-06

    In the Mediterranean Sea hard-bottom macroalgal meadows may switch to alternative and less-productive barrens grounds, as a result of sea urchins overgrazing. Meiofauna (and especially nematodes) represent key components of benthic ecosystems, are highly-diversified, sensitive to environmental change and anthropogenic impacts, but, so-far, have been neglected in studies on regime shifts. We report here that sedimentary organic matter contents, meiofaunal taxa richness and community composition, nematode α- and β-biodiversity vary significantly between alternative macroalgal and barren states. The observed differences are consistent in six areas spread across the Mediterranean Sea, irrespective of barren extent. Our results suggest also that the low biodiversity levels in barren states are the result of habitat loss/fragmentation, which is associated also with a lower availability of trophic resources. Furthermore, differences in meiofaunal and nematode abundance, biomass and diversity between macroalgal meadow and barren states persist when the latter is not fully formed, or consists of patches interspersed in macroalgal meadows. Since barren grounds are expanding rapidly along the Mediterranean Sea and meiofauna are a key trophic component in marine ecosystems, we suggest that the extension and persistence of barrens at the expenses of macroalgal meadows could also affect resilience of higher trophic level.

  1. Biodiversity loss and turnover in alternative states in the Mediterranean Sea: a case study on meiofauna

    NASA Astrophysics Data System (ADS)

    Bianchelli, Silvia; Buschi, Emanuela; Danovaro, Roberto; Pusceddu, Antonio

    2016-10-01

    In the Mediterranean Sea hard-bottom macroalgal meadows may switch to alternative and less-productive barrens grounds, as a result of sea urchins overgrazing. Meiofauna (and especially nematodes) represent key components of benthic ecosystems, are highly-diversified, sensitive to environmental change and anthropogenic impacts, but, so-far, have been neglected in studies on regime shifts. We report here that sedimentary organic matter contents, meiofaunal taxa richness and community composition, nematode α- and β-biodiversity vary significantly between alternative macroalgal and barren states. The observed differences are consistent in six areas spread across the Mediterranean Sea, irrespective of barren extent. Our results suggest also that the low biodiversity levels in barren states are the result of habitat loss/fragmentation, which is associated also with a lower availability of trophic resources. Furthermore, differences in meiofaunal and nematode abundance, biomass and diversity between macroalgal meadow and barren states persist when the latter is not fully formed, or consists of patches interspersed in macroalgal meadows. Since barren grounds are expanding rapidly along the Mediterranean Sea and meiofauna are a key trophic component in marine ecosystems, we suggest that the extension and persistence of barrens at the expenses of macroalgal meadows could also affect resilience of higher trophic level.

  2. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing.

    PubMed

    Massana, Ramon; Gobet, Angélique; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Chambouvet, Aurélie; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Dolan, John R; Dunthorn, Micah; Edvardsen, Bente; Forn, Irene; Forster, Dominik; Guillou, Laure; Jaillon, Olivier; Kooistra, Wiebe H C F; Logares, Ramiro; Mahé, Frédéric; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Probert, Ian; Romac, Sarah; Richards, Thomas; Santini, Sébastien; Shalchian-Tabrizi, Kamran; Siano, Raffaele; Simon, Nathalie; Stoeck, Thorsten; Vaulot, Daniel; Zingone, Adriana; de Vargas, Colomban

    2015-10-01

    Although protists are critical components of marine ecosystems, they are still poorly characterized. Here we analysed the taxonomic diversity of planktonic and benthic protist communities collected in six distant European coastal sites. Environmental deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from three size fractions (pico-, nano- and micro/mesoplankton), as well as from dissolved DNA and surface sediments were used as templates for tag pyrosequencing of the V4 region of the 18S ribosomal DNA. Beta-diversity analyses split the protist community structure into three main clusters: picoplankton-nanoplankton-dissolved DNA, micro/mesoplankton and sediments. Within each cluster, protist communities from the same site and time clustered together, while communities from the same site but different seasons were unrelated. Both DNA and RNA-based surveys provided similar relative abundances for most class-level taxonomic groups. Yet, particular groups were overrepresented in one of the two templates, such as marine alveolates (MALV)-I and MALV-II that were much more abundant in DNA surveys. Overall, the groups displaying the highest relative contribution were Dinophyceae, Diatomea, Ciliophora and Acantharia. Also, well represented were Mamiellophyceae, Cryptomonadales, marine alveolates and marine stramenopiles in the picoplankton, and Monadofilosa and basal Fungi in sediments. Our extensive and systematic sequencing of geographically separated sites provides the most comprehensive molecular description of coastal marine protist diversity to date. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus

    PubMed Central

    Biller, Steven J.; Berube, Paul M.; Berta-Thompson, Jessie W.; Kelly, Libusha; Roggensack, Sara E.; Awad, Lana; Roache-Johnson, Kathryn H.; Ding, Huiming; Giovannoni, Stephen J.; Rocap, Gabrielle; Moore, Lisa R.; Chisholm, Sallie W.

    2014-01-01

    The marine cyanobacterium Prochlorococcus is the numerically dominant photosynthetic organism in the oligotrophic oceans, and a model system in marine microbial ecology. Here we report 27 new whole genome sequences (2 complete and closed; 25 of draft quality) of cultured isolates, representing five major phylogenetic clades of Prochlorococcus. The sequenced strains were isolated from diverse regions of the oceans, facilitating studies of the drivers of microbial diversity—both in the lab and in the field. To improve the utility of these genomes for comparative genomics, we also define pre-computed clusters of orthologous groups of proteins (COGs), indicating how genes are distributed among these and other publicly available Prochlorococcus genomes. These data represent a significant expansion of Prochlorococcus reference genomes that are useful for numerous applications in microbial ecology, evolution and oceanography. PMID:25977791

  4. Large-scale patterns of benthic marine communities in the Brazilian Province.

    PubMed

    Aued, Anaide W; Smith, Franz; Quimbayo, Juan P; Cândido, Davi V; Longo, Guilherme O; Ferreira, Carlos E L; Witman, Jon D; Floeter, Sergio R; Segal, Bárbara

    2018-01-01

    As marine ecosystems are influenced by global and regional processes, standardized information on community structure has become crucial for assessing broad-scale responses to natural and anthropogenic disturbances. Extensive biogeographic provinces, such as the Brazilian Province in the southwest Atlantic, present numerous theoretical and methodological challenges for understanding community patterns on a macroecological scale. In particular, the Brazilian Province is composed of a complex system of heterogeneous reefs and a few offshore islands, with contrasting histories and geophysical-chemical environments. Despite the large extent of the Brazilian Province (almost 8,000 kilometers), most studies of shallow benthic communities are qualitative surveys and/or have been geographically restricted. We quantified community structure of shallow reef habitats from 0° to 27°S latitude using a standard photographic quadrat technique. Percent cover data indicated that benthic communities of Brazilian reefs were dominated by algal turfs and frondose macroalgae, with low percent cover of reef-building corals. Community composition differed significantly among localities, mostly because of their macroalgal abundance, despite reef type or geographic region, with no evident latitudinal pattern. Benthic diversity was lower in the tropics, contrary to the general latitudinal diversity gradient pattern. Richness peaked at mid-latitudes, between 20°S to 23°S, where it was ~3.5-fold higher than localities with the lowest richness. This study provides the first large-scale description of benthic communities along the southwestern Atlantic, providing a baseline for macroecological comparisons and evaluation of future impacts. Moreover, the new understanding of richness distribution along Brazilian reefs will contribute to conservation planning efforts, such as management strategies and the spatial prioritization for the creation of new marine protected areas.

  5. Large-scale patterns of benthic marine communities in the Brazilian Province

    PubMed Central

    Smith, Franz; Quimbayo, Juan P.; Cândido, Davi V.; Longo, Guilherme O.; Ferreira, Carlos E. L.; Witman, Jon D.; Floeter, Sergio R.; Segal, Bárbara

    2018-01-01

    As marine ecosystems are influenced by global and regional processes, standardized information on community structure has become crucial for assessing broad-scale responses to natural and anthropogenic disturbances. Extensive biogeographic provinces, such as the Brazilian Province in the southwest Atlantic, present numerous theoretical and methodological challenges for understanding community patterns on a macroecological scale. In particular, the Brazilian Province is composed of a complex system of heterogeneous reefs and a few offshore islands, with contrasting histories and geophysical-chemical environments. Despite the large extent of the Brazilian Province (almost 8,000 kilometers), most studies of shallow benthic communities are qualitative surveys and/or have been geographically restricted. We quantified community structure of shallow reef habitats from 0° to 27°S latitude using a standard photographic quadrat technique. Percent cover data indicated that benthic communities of Brazilian reefs were dominated by algal turfs and frondose macroalgae, with low percent cover of reef-building corals. Community composition differed significantly among localities, mostly because of their macroalgal abundance, despite reef type or geographic region, with no evident latitudinal pattern. Benthic diversity was lower in the tropics, contrary to the general latitudinal diversity gradient pattern. Richness peaked at mid-latitudes, between 20°S to 23°S, where it was ~3.5-fold higher than localities with the lowest richness. This study provides the first large-scale description of benthic communities along the southwestern Atlantic, providing a baseline for macroecological comparisons and evaluation of future impacts. Moreover, the new understanding of richness distribution along Brazilian reefs will contribute to conservation planning efforts, such as management strategies and the spatial prioritization for the creation of new marine protected areas. PMID:29883496

  6. Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae

    PubMed Central

    Luzzatto-Knaan, Tal; Garg, Neha; Wang, Mingxun; Glukhov, Evgenia; Peng, Yao; Ackermann, Gail; Amir, Amnon; Duggan, Brendan M; Ryazanov, Sergey; Gerwick, Lena; Knight, Rob; Alexandrov, Theodore; Bandeira, Nuno; Gerwick, William H; Dorrestein, Pieter C

    2017-01-01

    Natural product screening programs have uncovered molecules from diverse natural sources with various biological activities and unique structures. However, much is yet underexplored and additional information is hidden in these exceptional collections. We applied untargeted mass spectrometry approaches to capture the chemical space and dispersal patterns of metabolites from an in-house library of marine cyanobacterial and algal collections. Remarkably, 86% of the metabolomics signals detected were not found in other available datasets of similar nature, supporting the hypothesis that marine cyanobacteria and algae possess distinctive metabolomes. The data were plotted onto a world map representing eight major sampling sites, and revealed potential geographic locations with high chemical diversity. We demonstrate the use of these inventories as a tool to explore the diversity and distribution of natural products. Finally, we utilized this tool to guide the isolation of a new cyclic lipopeptide, yuvalamide A, from a marine cyanobacterium. DOI: http://dx.doi.org/10.7554/eLife.24214.001 PMID:28492366

  7. High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages.

    PubMed

    Hoey, Andrew S; Pratchett, Morgan S; Cvitanovic, Christopher

    2011-01-01

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2)), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1)), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.

  8. High Macroalgal Cover and Low Coral Recruitment Undermines the Potential Resilience of the World's Southernmost Coral Reef Assemblages

    PubMed Central

    Hoey, Andrew S.; Pratchett, Morgan S.; Cvitanovic, Christopher

    2011-01-01

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32′S, 159°04′E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m−2), however, were 5–200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha−1), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances. PMID:21991366

  9. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments.

    PubMed

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R; Jørgensen, Bo B; Kjeldsen, Kasper U

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  10. Diversity of pigmented Gram-positive bacteria associated with marine macroalgae from Antarctica.

    PubMed

    Leiva, Sergio; Alvarado, Pamela; Huang, Ying; Wang, Jian; Garrido, Ignacio

    2015-12-01

    Little is known about the diversity and roles of Gram-positive and pigmented bacteria in Antarctic environments, especially those associated with marine macroorganisms. This work is the first study about the diversity and antimicrobial activity of culturable pigmented Gram-positive bacteria associated with marine Antarctic macroalgae. A total of 31 pigmented Gram-positive strains were isolated from the surface of six species of macroalgae collected in the King George Island, South Shetland Islands. On the basis of 16S rRNA gene sequence similarities ≥99%, 18 phylotypes were defined, which were clustered into 11 genera of Actinobacteria (Agrococcus, Arthrobacter, Brachybacterium, Citricoccus, Kocuria, Labedella, Microbacterium, Micrococcus, Rhodococcus, Salinibacterium and Sanguibacter) and one genus of the Firmicutes (Staphylococcus). It was found that five isolates displayed antimicrobial activity against a set of macroalgae-associated bacteria. The active isolates were phylogenetically related to Agrococcus baldri, Brachybacterium rhamnosum, Citricoccus zhacaiensis and Kocuria palustris. The results indicate that a diverse community of pigmented Gram-positive bacteria is associated with Antartic macroalgae and suggest its potential as a promising source of antimicrobial and pigmented natural compounds. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts

    PubMed Central

    Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J.; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A.; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K.

    2014-01-01

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065

  12. Chemoecological Screening Reveals High Bioactivity in Diverse Culturable Portuguese Marine Cyanobacteria

    PubMed Central

    Leão, Pedro N.; Ramos, Vitor; Gonçalves, Patrício B.; Viana, Flávia; Lage, Olga M.; Gerwick, William H.; Vasconcelos, Vitor M.

    2013-01-01

    Marine cyanobacteria, notably those from tropical regions, are a rich source of bioactive secondary metabolites. Tropical marine cyanobacteria often grow to high densities in the environment, allowing direct isolation of many secondary metabolites from field-collected material. However, in temperate environments culturing is usually required to produce enough biomass for investigations of their chemical constituents. In this work, we cultured a selection of novel and diverse cyanobacteria isolated from the Portuguese coast, and tested their organic extracts in a series of ecologically-relevant bioassays. The majority of the extracts showed activity in at least one of the bioassays, all of which were run in very small scale. Phylogenetically related isolates exhibited different activity profiles, highlighting the value of microdiversity for bioprospection studies. Furthermore, LC-MS analyses of selected active extracts suggested the presence of previously unidentified secondary metabolites. Overall, the screening strategy employed here, in which previously untapped cyanobacterial diversity was combined with multiple bioassays, proved to be a successful strategy and allowed the selection of several strains for further investigations based on their bioactivity profiles. PMID:23609580

  13. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level

    PubMed Central

    Tian, Xinpeng; Zhang, Zhewen; Yang, Tingting; Chen, Meili; Li, Jie; Chen, Fei; Yang, Jin; Li, Wenjie; Zhang, Bing; Zhang, Zhang; Wu, Jiayan; Zhang, Changsheng; Long, Lijuan; Xiao, Jingfa

    2016-01-01

    Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea’s genetic data sources. PMID:27446038

  14. Phylogenetic Diversity of Bacteria Associated with the Marine Sponge Rhopaloeides odorabile†

    PubMed Central

    Webster, Nicole S.; Wilson, Kate J.; Blackall, Linda L.; Hill, Russell T.

    2001-01-01

    Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the β- and γ-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge. PMID:11133476

  15. Light Limitation within Southern New Zealand Kelp Forest Communities

    PubMed Central

    Desmond, Matthew J.; Pritchard, Daniel W.; Hepburn, Christopher D.

    2015-01-01

    Light is the fundamental driver of primary productivity in the marine environment. Reduced light availability has the potential to alter the distribution, community composition, and productivity of key benthic primary producers, potentially reducing habitat and energy provision to coastal food webs. We compared the underwater light environment of macroalgal dominated shallow subtidal rocky reef habitats on a coastline modified by human activities with a coastline of forested catchments. Key metrics describing the availability of photosynthetically active radiation (PAR) were determined over 295 days and were related to macroalgal depth distribution, community composition, and standing biomass patterns, which were recorded seasonally. Light attenuation was more than twice as high in shallow subtidal zones along the modified coast. Macroalgal biomass was 2–5 times greater within forested sites, and even in shallow water (2m) a significant difference in biomass was observed. Long-term light dose provided the best explanation for differences in observed biomass between modified and forested coasts, with light availability over the study period differing by 60 and 90 mol photons m−2 at 2 and 10 metres, respectively. Higher biomass on the forested coast was driven by the presence of larger individuals rather than species diversity or density. This study suggests that commonly used metrics such as species diversity and density are not as sensitive as direct measures of biomass when detecting the effects of light limitation within macroalgal communities. PMID:25902185

  16. Polyunsaturated fatty acids in various macroalgal species from North Atlantic and tropical seas.

    PubMed

    van Ginneken, Vincent J T; Helsper, Johannes P F G; de Visser, Willem; van Keulen, Herman; Brandenburg, Willem A

    2011-06-22

    In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. The fatty acid (FA) composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum) and two from tropical seas (Caulerpa taxifolia, Sargassum natans) was determined using GCMS. Four independent replicates were taken from each seaweed species. Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs), were in the concentration range of 2-14 mg/g dry matter (DM), while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6) and/or eicosapentaenoic acids (EPA, C20:5, n-3), the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3) at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6) FA: (n-3) FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3), while in S. natans also docosahexaenoic acid (DHA, C22:6, n-3) was detected.

  17. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas

    PubMed Central

    2011-01-01

    Background In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. Methods The fatty acid (FA) composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum) and two from tropical seas (Caulerpa taxifolia, Sargassum natans) was determined using GCMS. Four independent replicates were taken from each seaweed species. Results Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs), were in the concentration range of 2-14 mg/g dry matter (DM), while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6) and/or eicosapentaenoic acids (EPA, C20:5, n-3), the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3) at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Conclusion Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6) FA: (n-3) FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3), while in S. natans also docosahexaenoic acid (DHA, C22:6, n-3) was

  18. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters.

    PubMed

    Oberbeckmann, Sonja; Loeder, Martin G J; Gerdts, Gunnar; Osborn, A Mark

    2014-11-01

    Plastic pollution is now recognised as a major threat to marine environments and marine biota. Recent research highlights that diverse microbial species are found to colonise plastic surfaces (the plastisphere) within marine waters. Here, we investigate how the structure and diversity of marine plastisphere microbial community vary with respect to season, location and plastic substrate type. We performed a 6-week exposure experiment with polyethylene terephthalate (PET) bottles in the North Sea (UK) as well as sea surface sampling of plastic polymers in Northern European waters. Scanning electron microscopy revealed diverse plastisphere communities comprising prokaryotic and eukaryotic microorganisms. Denaturing gradient gel electrophoresis (DGGE) and sequencing analysis revealed that plastisphere microbial communities on PET fragments varied both with season and location and comprised of bacteria belonging to Bacteroidetes, Proteobacteria, Cyanobacteria and members of the eukaryotes Bacillariophyceae and Phaeophyceae. Polymers sampled from the sea surface mainly comprised polyethylene, polystyrene and polypropylene particles. Variation within plastisphere communities on different polymer types was observed, but communities were primarily dominated by Cyanobacteria. This research reveals that the composition of plastisphere microbial communities in marine waters varies with season, geographical location and plastic substrate type. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. The Madeira Archipelago As a Significant Source of Marine-Derived Actinomycete Diversity with Anticancer and Antimicrobial Potential

    PubMed Central

    Prieto-Davó, Alejandra; Dias, Tiago; Gomes, Sofia E.; Rodrigues, Sara; Parera-Valadez, Yessica; Borralho, Pedro M.; Pereira, Florbela; Rodrigues, Cecilia M. P.; Santos-Sanches, Ilda; Gaudêncio, Susana P.

    2016-01-01

    Marine-derived actinomycetes have demonstrated an ability to produce novel compounds with medically relevant biological activity. Studying the diversity and biogeographical patterns of marine actinomycetes offers an opportunity to identify genera that are under environmental pressures, which may drive adaptations that yield specific biosynthetic capabilities. The present study describes research efforts to explore regions of the Atlantic Ocean, specifically around the Madeira Archipelago, where knowledge of the indigenous actinomycete diversity is scarce. A total of 400 actinomycetes were isolated, sequenced, and screened for antimicrobial and anticancer activities. The three most abundant genera identified were Streptomyces, Actinomadura, and Micromonospora. Phylogenetic analyses of the marine OTUs isolated indicated that the Madeira Archipelago is a new source of actinomycetes adapted to life in the ocean. Phylogenetic differences between offshore (>100 m from shore) and nearshore (< 100 m from shore) populations illustrates the importance of sampling offshore in order to isolate new and diverse bacterial strains. Novel phylotypes from chemically rich marine actinomycete groups like MAR4 and the genus Salinispora were isolated. Anticancer and antimicrobial assays identified Streptomyces, Micromonospora, and Salinispora as the most biologically active genera. This study illustrates the importance of bioprospecting efforts at unexplored regions of the ocean to recover bacterial strains with the potential to produce novel and interesting chemistry. PMID:27774089

  20. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-10-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic.

  1. Artificial soft sediment resuspension and high density opportunistic macroalgal mat fragmentation as method for increasing sediment zoobenthic assemblage diversity in a eutrophic lagoon.

    PubMed

    Martelloni, Tatiana; Tomassetti, Paolo; Gennaro, Paola; Vani, Danilo; Persia, Emma; Persiano, Marco; Falchi, Riccardo; Porrello, Salvatore; Lenzi, Mauro

    2016-09-15

    Superficial soft sediment resuspension and partial fragmentation of high density opportunistic macroalgal mats were investigated by boat to determine the impact on zoobenthic assemblages in a eutrophic Mediterranean lagoon. Sediment resuspension was used to oxidise superficial organic sediments as a method to counteract the effects of eutrophication. Likewise, artificial decay of macroalgal mat was calculated to reduce a permanent source of sediment organic matter. An area of 9ha was disturbed (zone D) and two other areas of the same size were left undisturbed (zones U). We measured chemical-physical variables, estimated algal biomass and sedimentary organic matter, and conducted qualitative and quantitative determinations of the zoobenthic species detected in sediment and among algal mats. The results showed a constant major reduction in labile organic matter (LOM) and algal biomass in D, whereas values in U remained stable or increased. In the three zones, however, bare patches of lagoon bed increased in size, either by direct effect of the boats in D or by anaerobic decay of the algal mass in U. Zoobenthic assemblages in algal mats reduced the number of species in D, probably due to the sharp reduction in biomass, but remained stable in U, whereas in all three areas abundance increased. Sediment zoobenthic assemblages increased the number of species in D, as expected, due to drastic reduction in LOM, whereas values in U remained stable and again abundance increased in all three zones. In conclusion, we confirmed that reduction of sediment organic load enabled an increase in the number of species, while the algal mats proved to be an important substrate in the lagoon environment for zoobenthic assemblages, especially when mat alternated with bare intermat areas of lagoon bed. Sediment resuspension is confirmed as a management criterion for counteracting the effects of eutrophication and improving the biodiversity of zoobenthic assemblages in eutrophic lagoon

  2. Bioactive Potential of Marine Macroalgae from the Central Red Sea (Saudi Arabia) Assessed by High-Throughput Imaging-Based Phenotypic Profiling

    PubMed Central

    Kremb, Stephan; Müller, Constanze; Schmitt-Kopplin, Philippe; Voolstra, Christian R.

    2017-01-01

    Marine algae represent an important source of novel natural products. While their bioactive potential has been studied to some extent, limited information is available on marine algae from the Red Sea. This study aimed at the broad discovery of new bioactivities from a collection of twelve macroalgal species from the Central Red Sea. We used imaging-based High-Content Screening (HCS) with a diverse spectrum of cellular markers for detailed cytological profiling of fractionated algal extracts. The cytological profiles for 3 out of 60 algal fractions clustered closely to reference inhibitors and showed strong inhibitory activities on the HIV-1 reverse transcriptase in a single-enzyme biochemical assay, validating the suggested biological target. Subsequent chemical profiling of the active fractions of two brown algal species by ultra-high resolution mass spectrometry (FT-ICR-MS) revealed possible candidate molecules. A database query of these molecules led us to groups of compounds with structural similarities, which are suggested to be responsible for the observed activity. Our work demonstrates the versatility and power of cytological profiling for the bioprospecting of unknown biological resources and highlights Red Sea algae as a source of bioactives that may serve as a starting point for further studies. PMID:28335513

  3. Bioactive Potential of Marine Macroalgae from the Central Red Sea (Saudi Arabia) Assessed by High-Throughput Imaging-Based Phenotypic Profiling.

    PubMed

    Kremb, Stephan; Müller, Constanze; Schmitt-Kopplin, Philippe; Voolstra, Christian R

    2017-03-20

    Marine algae represent an important source of novel natural products. While their bioactive potential has been studied to some extent, limited information is available on marine algae from the Red Sea. This study aimed at the broad discovery of new bioactivities from a collection of twelve macroalgal species from the Central Red Sea. We used imaging-based High-Content Screening (HCS) with a diverse spectrum of cellular markers for detailed cytological profiling of fractionated algal extracts. The cytological profiles for 3 out of 60 algal fractions clustered closely to reference inhibitors and showed strong inhibitory activities on the HIV-1 reverse transcriptase in a single-enzyme biochemical assay, validating the suggested biological target. Subsequent chemical profiling of the active fractions of two brown algal species by ultra-high resolution mass spectrometry (FT-ICR-MS) revealed possible candidate molecules. A database query of these molecules led us to groups of compounds with structural similarities, which are suggested to be responsible for the observed activity. Our work demonstrates the versatility and power of cytological profiling for the bioprospecting of unknown biological resources and highlights Red Sea algae as a source of bioactives that may serve as a starting point for further studies.

  4. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts.

    PubMed

    Vergés, Adriana; Steinberg, Peter D; Hay, Mark E; Poore, Alistair G B; Campbell, Alexandra H; Ballesteros, Enric; Heck, Kenneth L; Booth, David J; Coleman, Melinda A; Feary, David A; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M; Mizerek, Toni; Mumby, Peter J; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K

    2014-08-22

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to 'barrens' when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Comparative genomics of the marine bacterial genus Glaciecola reveals the high degree of genomic diversity and genomic characteristic for cold adaptation.

    PubMed

    Qin, Qi-Long; Xie, Bin-Bin; Yu, Yong; Shu, Yan-Li; Rong, Jin-Cheng; Zhang, Yan-Jiao; Zhao, Dian-Li; Chen, Xiu-Lan; Zhang, Xi-Ying; Chen, Bo; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2014-06-01

    To what extent the genomes of different species belonging to one genus can be diverse and the relationship between genomic differentiation and environmental factor remain unclear for oceanic bacteria. With many new bacterial genera and species being isolated from marine environments, this question warrants attention. In this study, we sequenced all the type strains of the published species of Glaciecola, a recently defined cold-adapted genus with species from diverse marine locations, to study the genomic diversity and cold-adaptation strategy in this genus.The genome size diverged widely from 3.08 to 5.96 Mb, which can be explained by massive gene gain and loss events. Horizontal gene transfer and new gene emergence contributed substantially to the genome size expansion. The genus Glaciecola had an open pan-genome. Comparative genomic research indicated that species of the genus Glaciecola had high diversity in genome size, gene content and genetic relatedness. This may be prevalent in marine bacterial genera considering the dynamic and complex environments of the ocean. Species of Glaciecola had some common genomic features related to cold adaptation, which enable them to thrive and play a role in biogeochemical cycle in the cold marine environments.

  6. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments

    PubMed Central

    Kubo, Kyoko; Lloyd, Karen G; F Biddle, Jennifer; Amann, Rudolf; Teske, Andreas; Knittel, Katrin

    2012-01-01

    Members of the highly diverse Miscellaneous Crenarchaeotal Group (MCG) are globally distributed in various marine and continental habitats. In this study, we applied a polyphasic approach (rRNA slot blot hybridization, quantitative PCR (qPCR) and catalyzed reporter deposition FISH) using newly developed probes and primers for the in situ detection and quantification of MCG crenarchaeota in diverse types of marine sediments and microbial mats. In general, abundance of MCG (cocci, 0.4 μm) relative to other archaea was highest (12–100%) in anoxic, low-energy environments characterized by deeper sulfate depletion and lower microbial respiration rates (P=0.06 for slot blot and P=0.05 for qPCR). When studied in high depth resolution in the White Oak River estuary and Hydrate Ridge methane seeps, changes in MCG abundance relative to total archaea and MCG phylogenetic composition did not correlate with changes in sulfate reduction or methane oxidation with depth. In addition, MCG abundance did not vary significantly (P>0.1) between seep sites (with high rates of methanotrophy) and non-seep sites (with low rates of methanotrophy). This suggests that MCG are likely not methanotrophs. MCG crenarchaeota are highly diverse and contain 17 subgroups, with a range of intragroup similarity of 82 to 94%. This high diversity and widespread distribution in subsurface sediments indicates that this group is globally important in sedimentary processes. PMID:22551871

  7. High Bacterial Diversity in Permanently Cold Marine Sediments

    PubMed Central

    Ravenschlag, Katrin; Sahm, Kerstin; Pernthaler, Jakob; Amann, Rudolf

    1999-01-01

    A 16S ribosomal DNA (rDNA) clone library from permanently cold marine sediments was established. Screening 353 clones by dot blot hybridization with group-specific oligonucleotide probes suggested a predominance of sequences related to bacteria of the sulfur cycle (43.4% potential sulfate reducers). Within this fraction, the major cluster (19.0%) was affiliated with Desulfotalea sp. and other closely related psychrophilic sulfate reducers isolated from the same habitat. The cloned sequences showed between 93 and 100% similarity to these bacteria. Two additional groups were frequently encountered: 13% of the clones were related to Desulfuromonas palmitatis, and a second group was affiliated with Myxobacteria spp. and Bdellovibrio spp. Many clones (18.1%) belonged to the γ subclass of the class Proteobacteria and were closest to symbiotic or free-living sulfur oxidizers. Probe target groups were further characterized by amplified rDNA restriction analysis to determine diversity within the groups and within the clone library. Rarefaction analysis suggested that the total diversity assessed by 16S rDNA analysis was very high in these permanently cold sediments and was only partially revealed by screening of 353 clones. PMID:10473405

  8. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass.

    PubMed

    Son, Eun-Bi; Poo, Kyung-Min; Chang, Jae-Soo; Chae, Kyu-Jung

    2018-02-15

    Despite the excellent sorption ability of biochar for heavy metals, it is difficult to separate and reuse after adsorption when applied to wastewater treatment process. To overcome these drawbacks, we developed an engineered magnetic biochar by pyrolyzing waste marine macro-algae as a feedstock, and we doped iron oxide particles (e.g., magnetite, maghemite) to impart magnetism. The physicochemical characteristics and adsorption properties of the biochar were evaluated. When compared to conventional pinewood sawdust biochar, the waste marine algae-based magnetic biochar exhibited a greater potential to remove heavy metals despite having a lower surface area (0.97m 2 /g for kelp magnetic biochar and 63.33m 2 /g for hijikia magnetic biochar). Although magnetic biochar could be effectively separated from the solution, however, the magnetization of the biochar partially reduced its heavy metal adsorption efficiency due to the biochar's surface pores becoming plugged with iron oxide particles. Therefore, it is vital to determine the optimum amount of iron doping that maximizes the biochar's separation without sacrificing its heavy metal adsorption efficiency. The optimum concentration of the iron loading solution for the magnetic biochar was determined to be 0.025-0.05mol/L. The magnetic biochar's heavy metal adsorption capability is considerably higher than that of other types of biochar reported previously. Further, it demonstrated a high selectivity for copper, showing two-fold greater removal (69.37mg/g for kelp magnetic biochar and 63.52mg/g for hijikia magnetic biochar) than zinc and cadmium. This high heavy metal removal performance can likely be attributed to the abundant presence of various oxygen-containing functional groups (COOH and OH) on the magnetic biochar, which serve as potential adsorption sites for heavy metals. The unique features of its high heavy metal removal performance and easy separation suggest that the magnetic algae biochar can potentially

  9. Macroalgal Extracts Induce Bacterial Assemblage Shifts and Sublethal Tissue Stress in Caribbean Corals

    PubMed Central

    Morrow, Kathleen M.; Ritson-Williams, Raphael; Ross, Cliff; Liles, Mark R.; Paul, Valerie J.

    2012-01-01

    Benthic macroalgae can be abundant on present-day coral reefs, especially where rates of herbivory are low and/or dissolved nutrients are high. This study investigated the impact of macroalgal extracts on both coral-associated bacterial assemblages and sublethal stress response of corals. Crude extracts and live algal thalli from common Caribbean macroalgae were applied onto the surface of Montastraea faveolata and Porites astreoides corals on reefs in both Florida and Belize. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene amplicons was used to examine changes in the surface mucus layer (SML) bacteria in both coral species. Some of the extracts and live algae induced detectable shifts in coral-associated bacterial assemblages. However, one aqueous extract caused the bacterial assemblages to shift to an entirely new state (Lobophora variegata), whereas other organic extracts had little to no impact (e.g. Dictyota sp.). Macroalgal extracts more frequently induced sublethal stress responses in M. faveolata than in P. astreoides corals, suggesting that cellular integrity can be negatively impacted in selected corals when comparing co-occurring species. As modern reefs experience phase-shifts to a higher abundance of macroalgae with potent chemical defenses, these macroalgae are likely impacting the composition of microbial assemblages associated with corals and affecting overall reef health in unpredicted and unprecedented ways. PMID:23028648

  10. Macroalgal extracts induce bacterial assemblage shifts and sublethal tissue stress in Caribbean corals.

    PubMed

    Morrow, Kathleen M; Ritson-Williams, Raphael; Ross, Cliff; Liles, Mark R; Paul, Valerie J

    2012-01-01

    Benthic macroalgae can be abundant on present-day coral reefs, especially where rates of herbivory are low and/or dissolved nutrients are high. This study investigated the impact of macroalgal extracts on both coral-associated bacterial assemblages and sublethal stress response of corals. Crude extracts and live algal thalli from common Caribbean macroalgae were applied onto the surface of Montastraea faveolata and Porites astreoides corals on reefs in both Florida and Belize. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene amplicons was used to examine changes in the surface mucus layer (SML) bacteria in both coral species. Some of the extracts and live algae induced detectable shifts in coral-associated bacterial assemblages. However, one aqueous extract caused the bacterial assemblages to shift to an entirely new state (Lobophora variegata), whereas other organic extracts had little to no impact (e.g. Dictyota sp.). Macroalgal extracts more frequently induced sublethal stress responses in M. faveolata than in P. astreoides corals, suggesting that cellular integrity can be negatively impacted in selected corals when comparing co-occurring species. As modern reefs experience phase-shifts to a higher abundance of macroalgae with potent chemical defenses, these macroalgae are likely impacting the composition of microbial assemblages associated with corals and affecting overall reef health in unpredicted and unprecedented ways.

  11. Latitudinal diversity gradients in Mesozoic non-marine turtles

    NASA Astrophysics Data System (ADS)

    Nicholson, David B.; Holroyd, Patricia A.; Valdes, Paul; Barrett, Paul M.

    2016-11-01

    The latitudinal biodiversity gradient (LBG)-the pattern of increasing taxonomic richness with decreasing latitude-is prevalent in the structure of the modern biota. However, some freshwater taxa show peak richness at mid-latitudes; for example, extant Testudines (turtles, terrapins and tortoises) exhibit their greatest diversity at 25° N, a pattern sometimes attributed to recent bursts of climatically mediated species diversification. Here, we test whether this pattern also characterizes the Mesozoic distribution of turtles, to determine whether it was established during either their initial diversification or as a more modern phenomenon. Using global occurrence data for non-marine testudinate genera, we find that subsampled richness peaks at palaeolatitudes of 15-30° N in the Jurassic, 30-45° N through the Cretaceous to the Campanian, and from 30° to 60° N in the Maastrichtian. The absence of a significant diversity peak in southern latitudes is consistent with results from climatic models and turtle niche modelling that demonstrate a dearth of suitable turtle habitat in Gondwana during the Jurassic and Late Cretaceous. Our analyses confirm that the modern testudinate LBG has a deep-time origin and further demonstrate that LBGs are not always expressed as a smooth, equator-to-pole distribution.

  12. Biomethanation of Harmful Macroalgal Biomass in Leach-Bed Reactor Coupled to Anaerobic Filter: Effect of Water Regime and Filter Media

    PubMed Central

    Jung, Heejung; Kim, Jaai; Lee, Changsoo

    2018-01-01

    Ulva is a marine macroalgal genus which causes serious green tides in coastal areas worldwide. This study investigated anaerobic digestion as a way to manage Ulva waste in a leach-bed reactor coupled to an anaerobic filter (LBR-AF). Two LBR-AF systems with different filter media, blast furnace slag grains for R1, and polyvinyl chloride rings for R2, were run at increasing water replacement rates (WRRs). Both achieved efficient volatile solids reduction (68.4–87.1%) and methane yield (148–309 mL/g VS fed) at all WRRs, with the optimal WRR for maximum methane production being 100 mL/d. R1 maintained more stable methanation performance than R2, possibly due to the different surface properties (i.e., biomass retention capacity) of the filter media. Such an effect was also noted in the different behaviors of the LBR and AF between R1 and R2. The molecular analysis results revealed that the development of the microbial community structure in the reactors was primarily determined by the fermentation type, i.e., dry (LBR) or wet (AF). PMID:29701670

  13. Spatiotemporal variations of inorganic nutrients along the Jiangsu coast, China, and the occurrence of macroalgal blooms (green tides) in the southern Yellow Sea.

    PubMed

    Li, Hongmei; Zhang, Yongyu; Tang, Hongjie; Shi, Xiaoyong; Rivkin, Richard B; Legendre, Louis

    2017-03-01

    Large macroalgal blooms (i.e. green tides of Ulva prolifera) occurred in the southern Yellow Sea, China, yearly from 2007 to 2016. They were among the largest of such outbreaks around the world, and these blooms likely originated along the coast of the Jiangsu Province, China. Understanding the roles of nutrients in the onset of these macroalgal blooms is needed to identify their origin. This study analyzes the spatiotemporal variations in dissolved inorganic nitrogen and phosphorus (DIN and PO 4 -P) and the N/P ratio along the Jiangsu coast from 1996 to 2014 during late-March to April, the months which corresponds to the pre-bloom period of green tides since 2007. A zone of high DIN and PO 4 -P concentrations has developed along the Jiangsu coast, between the cities of Sheyang and Nantong, since 1996. There was an 18-year trend of increasing DIN concentrations during the pre-bloom period as well as a positive correlation between the U. prolifera biomass and DIN concentrations. Nutrient inputs from rivers and mariculture in the Jiangsu Province may have provided nitrogen that contributed the magnitude of macroalgal blooms that subsequently spread into the southern Yellow Sea. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Seabird diversity hotspot linked to ocean productivity in the Canary Current Large Marine Ecosystem

    PubMed Central

    Attrill, Martin J.; Becker, Peter H.; Egevang, Carsten; Furness, Robert W.; Grémillet, David; Kopp, Matthias; Lescroël, Amélie; Matthiopoulos, Jason; Peter, Hans-Ulrich; Phillips, Richard A.

    2016-01-01

    Upwelling regions are highly productive habitats targeted by wide-ranging marine predators and industrial fisheries. In this study, we track the migratory movements of eight seabird species from across the Atlantic; quantify overlap with the Canary Current Large Marine Ecosystem (CCLME) and determine the habitat characteristics that drive this association. Our results indicate the CCLME is a biodiversity hotspot for migratory seabirds; all tracked species and more than 70% of individuals used this upwelling region. Relative species richness peaked in areas where sea surface temperature averaged between 15 and 20°C, and correlated positively with chlorophyll a, revealing the optimum conditions driving bottom-up trophic effects for seabirds. Marine vertebrates are not confined by international boundaries, making conservation challenging. However, by linking diversity to ocean productivity, our research reveals the significance of the CCLME for seabird populations from across the Atlantic, making it a priority for conservation action. PMID:27531154

  15. Exposure-driven macroalgal phase shift following catastrophic disturbance on coral reefs

    NASA Astrophysics Data System (ADS)

    Roff, George; Chollett, Iliana; Doropoulos, Christopher; Golbuu, Yimnang; Steneck, Robert S.; Isechal, Adelle L.; van Woesik, Robert; Mumby, Peter J.

    2015-09-01

    Environmental conditions play an important role in post-disturbance dynamics of ecosystems by modulating recovery of surviving communities and influencing patterns of succession. Here, we document the effects of wave exposure following a catastrophic disturbance on coral reefs in driving a phase shift to macroalgal dominance. In December 2012, a Category 5 super typhoon (`Typhoon Bopha') passed 50 km to the south of Palau (Micronesia), causing a major loss of reef corals. Immediately post-disturbance, a rapid and extensive phase shift of the macroalgae Liagora sp. (Rhodophyta) was observed at sites exposed to chronic wave exposure. To quantify the influence of biotic and abiotic drivers in modulating the extent of post-disturbance Liagora blooms, we compared benthic substrates and herbivore assemblages at sites surveyed pre- and post-disturbance across a gradient of wave exposure. Relative changes in herbivore biomass and coral cover before and after disturbance did not significantly predict the extent of Liagora cover, indicating that changes in herbivore biomass or reductions in grazing pressure were not directly responsible for driving the Liagora blooms. By contrast, the degree of wave exposure experienced at sites post-disturbance explained >90 % of model variance ( p < 0.001, R 2 = 0.69), in that Liagora was absent at low exposure sites, while most extensive blooms were observed at highly exposed sites. At regional scales, spatial maps of wave exposure accurately predicted the presence of Liagora at impacted sites throughout the Palau archipelago (>150 km distance), highlighting the predictive capacity of wave exposure as an explanatory variable and the deterministic nature of post-disturbance macroalgal blooms. Understanding how physical conditions modulate recovery of ecosystems after disturbance allows insight into post-disturbance dynamics and succession of communities, ultimately allowing management strategies to prioritise restoration efforts in regions

  16. Comparing Ecological and Genetic Diversity Within the Marine Diatom Genus Pseudo-nitzschia: A Multiregional Synthesis

    NASA Astrophysics Data System (ADS)

    Hubbard, K.; Bruzek, S.

    2016-02-01

    The globally distributed marine diatom genus Pseudo-nitzschia consists of approximately 40 species, more than half of which occur in US coastal waters. Here, sensitive genetic tools targeting a variable portion of the internal transcribed spacer 1 (ITS1) region of the rRNA gene were used to assess Pseudo-nitzschia spp. diversity in more than 600 environmental DNA samples collected from US Atlantic, Pacific, and Gulf of Mexico waters. Community-based approaches employed genus-specific primers for environmental DNA fingerprinting and targeted sequencing. For the Gulf of Mexico samples especially, a nested PCR approach (with or without degenerate primers) improved resolution of species diversity. To date, more than 40 unique ITS1 amplicon sizes have been repeatedly observed in ITS1 fingerprints. Targeted sequencing of environmental DNA as well as single chains isolated from live samples indicate that many of these represent novel and known inter- and intra-specific Pseudo-nitzschia diversity. A few species (e.g., P. pungens, P. cuspidata) occur across all three regions, whereas other species and intraspecific variants occurred at local to regional spatial scales only. Generally, species frequently co-occur in complex assemblages, and transitions in Pseudo-nitzschia community composition occur seasonally, prior to bloom initiation, and across (cross-shelf, latitudinal, and vertical) environmental gradients. These observations highlight the dynamic nature of diatom community composition in the marine environment and the importance of classifying diversity at relevant ecological and/or taxonomic scales.

  17. The interaction between the proliferating macroalga Asparagopsis taxiformis and the coral Astroides calycularis induces changes in microbiome and metabolomic fingerprints.

    PubMed

    Greff, Stéphane; Aires, Tânia; Serrão, Ester A; Engelen, Aschwin H; Thomas, Olivier P; Pérez, Thierry

    2017-02-20

    Mediterranean Sea ecosystems are considered as hotspots of biological introductions, exposed to possible negative effects of non-indigenous species. In such temperate marine ecosystems, macroalgae may be dominant, with a great percentage of their diversity represented by introduced species. Their interaction with temperate indigenous benthic organisms have been poorly investigated. To provide new insights, we performed an experimental study on the interaction between the introduced proliferative red alga Asparagopsis taxiformis and the indigenous Mediterranean coral Astroides calycularis. The biological response measurements included meta-barcoding of the associated microbial communities and metabolomic fingerprinting of both species. Significant changes were detected among both associated microbial communities, the interspecific differences decreasing with stronger host interaction. No short term effects of the macroalga on the coral health, neither on its polyp activity or its metabolism, were detected. In contrast, the contact interaction with the coral induced a change in the macroalgal metabolomic fingerprint with a significant increase of its bioactivity against the marine bacteria Aliivibrio fischeri. This induction was related to the expression of bioactive metabolites located on the macroalgal surface, a phenomenon which might represent an immediate defensive response of the macroalga or an allelopathic offense against coral.

  18. The interaction between the proliferating macroalga Asparagopsis taxiformis and the coral Astroides calycularis induces changes in microbiome and metabolomic fingerprints

    NASA Astrophysics Data System (ADS)

    Greff, Stéphane; Aires, Tânia; Serrão, Ester A.; Engelen, Aschwin H.; Thomas, Olivier P.; Pérez, Thierry

    2017-02-01

    Mediterranean Sea ecosystems are considered as hotspots of biological introductions, exposed to possible negative effects of non-indigenous species. In such temperate marine ecosystems, macroalgae may be dominant, with a great percentage of their diversity represented by introduced species. Their interaction with temperate indigenous benthic organisms have been poorly investigated. To provide new insights, we performed an experimental study on the interaction between the introduced proliferative red alga Asparagopsis taxiformis and the indigenous Mediterranean coral Astroides calycularis. The biological response measurements included meta-barcoding of the associated microbial communities and metabolomic fingerprinting of both species. Significant changes were detected among both associated microbial communities, the interspecific differences decreasing with stronger host interaction. No short term effects of the macroalga on the coral health, neither on its polyp activity or its metabolism, were detected. In contrast, the contact interaction with the coral induced a change in the macroalgal metabolomic fingerprint with a significant increase of its bioactivity against the marine bacteria Aliivibrio fischeri. This induction was related to the expression of bioactive metabolites located on the macroalgal surface, a phenomenon which might represent an immediate defensive response of the macroalga or an allelopathic offense against coral.

  19. Seabird diversity hotspot linked to ocean productivity in the Canary Current Large Marine Ecosystem.

    PubMed

    Grecian, W James; Witt, Matthew J; Attrill, Martin J; Bearhop, Stuart; Becker, Peter H; Egevang, Carsten; Furness, Robert W; Godley, Brendan J; González-Solís, Jacob; Grémillet, David; Kopp, Matthias; Lescroël, Amélie; Matthiopoulos, Jason; Patrick, Samantha C; Peter, Hans-Ulrich; Phillips, Richard A; Stenhouse, Iain J; Votier, Stephen C

    2016-08-01

    Upwelling regions are highly productive habitats targeted by wide-ranging marine predators and industrial fisheries. In this study, we track the migratory movements of eight seabird species from across the Atlantic; quantify overlap with the Canary Current Large Marine Ecosystem (CCLME) and determine the habitat characteristics that drive this association. Our results indicate the CCLME is a biodiversity hotspot for migratory seabirds; all tracked species and more than 70% of individuals used this upwelling region. Relative species richness peaked in areas where sea surface temperature averaged between 15 and 20°C, and correlated positively with chlorophyll a, revealing the optimum conditions driving bottom-up trophic effects for seabirds. Marine vertebrates are not confined by international boundaries, making conservation challenging. However, by linking diversity to ocean productivity, our research reveals the significance of the CCLME for seabird populations from across the Atlantic, making it a priority for conservation action. © 2016 The Authors.

  20. Microbial Diversity in Sulfate-Reducing Marine Sediment Enrichment Cultures Associated with Anaerobic Biotransformation of Coastal Stockpiled Phosphogypsum (Sfax, Tunisia)

    PubMed Central

    Zouch, Hana; Karray, Fatma; Armougom, Fabrice; Chifflet, Sandrine; Hirschler-Réa, Agnès; Kharrat, Hanen; Kamoun, Lotfi; Ben Hania, Wajdi; Ollivier, Bernard; Sayadi, Sami; Quéméneur, Marianne

    2017-01-01

    Anaerobic biotechnology using sulfate-reducing bacteria (SRB) is a promising alternative for reducing long-term stockpiling of phosphogypsum (PG), an acidic (pH ~3) by-product of the phosphate fertilizer industries containing high amounts of sulfate. The main objective of this study was to evaluate, for the first time, the diversity and ability of anaerobic marine microorganisms to convert sulfate from PG into sulfide, in order to look for marine SRB of biotechnological interest. A series of sulfate-reducing enrichment cultures were performed using different electron donors (i.e., acetate, formate, or lactate) and sulfate sources (i.e., sodium sulfate or PG) as electron acceptors. Significant sulfide production was observed from enrichment cultures inoculated with marine sediments, collected near the effluent discharge point of a Tunisian fertilizer industry (Sfax, Tunisia). Sulfate sources impacted sulfide production rates from marine sediments as well as the diversity of SRB species belonging to Deltaproteobacteria. When PG was used as sulfate source, Desulfovibrio species dominated microbial communities of marine sediments, while Desulfobacter species were mainly detected using sodium sulfate. Sulfide production was also affected depending on the electron donor used, with the highest production obtained using formate. In contrast, low sulfide production (acetate-containing cultures) was associated with an increase in the population of Firmicutes. These results suggested that marine Desulfovibrio species, to be further isolated, are potential candidates for bioremediation of PG by immobilizing metals and metalloids thanks to sulfide production by these SRB. PMID:28871244

  1. Glycolipids from seaweeds and their potential biotechnological applications.

    PubMed

    Plouguerné, Erwan; da Gama, Bernardo A P; Pereira, Renato C; Barreto-Bergter, Eliana

    2014-01-01

    Marine macroalgae, or seaweeds, are a formidable source of natural compounds with diverse biological activities. In the last five decades it has been estimated that more than 3000 natural compounds were discovered from these organisms. The great majority of the published works have focused on terpenoids. In comparison, glycolipids are a neglected class of macroalgal secondary metabolites therefore remaining as a largely unknown reservoir of molecular diversity. Nevertheless, the interest regarding these compounds has been growing fast in the last decades as activities of ecological or pharmaceutical interest have been highlighted. This paper will review recent work regarding isolation and structural characterization of glycolipids from seaweeds and their prospective biological activities.

  2. Environmental Predictors of Diversity in Recent Planktonic Foraminifera as Recorded in Marine Sediments

    PubMed Central

    Pearson, Paul N.; Dunkley Jones, Tom; Purvis, Andy

    2016-01-01

    Global diversity patterns are thought to result from a combination of environmental and historical factors. This study tests the set of ecological and evolutionary hypotheses proposed to explain the global variation in present-day coretop diversity in the macroperforate planktonic foraminifera, a clade with an exceptional fossil record. Within this group, marine surface sediment assemblages are thought to represent an accurate, although centennial to millennial time-averaged, representation of recent diversity patterns. Environmental variables chosen to capture ocean temperature, structure, productivity and seasonality were used to model a range of diversity measures across the world’s oceans. Spatial autoregressive models showed that the same broad suite of environmental variables were important in shaping each of the four largely independent diversity measures (rarefied species richness, Simpson’s evenness, functional richness and mean evolutionary age). Sea-surface temperature explains the largest portion of diversity in all four diversity measures, but not in the way predicted by the metabolic theory of ecology. Vertical structure could be linked to increased diversity through the strength of stratification, but not through the depth of the mixed layer. There is limited evidence that seasonal turnover explains diversity patterns. There is evidence for functional redundancy in the low-latitude sites. The evolutionary mechanism of deep-time stability finds mixed support whilst there is relatively little evidence for an out-of-the-tropics model. These results suggest the diversity patterns of planktonic foraminifera cannot be explained by any one environmental variable or proposed mechanism, but instead reflect multiple processes acting in concert. PMID:27851751

  3. Environmental Predictors of Diversity in Recent Planktonic Foraminifera as Recorded in Marine Sediments.

    PubMed

    Fenton, Isabel S; Pearson, Paul N; Dunkley Jones, Tom; Purvis, Andy

    2016-01-01

    Global diversity patterns are thought to result from a combination of environmental and historical factors. This study tests the set of ecological and evolutionary hypotheses proposed to explain the global variation in present-day coretop diversity in the macroperforate planktonic foraminifera, a clade with an exceptional fossil record. Within this group, marine surface sediment assemblages are thought to represent an accurate, although centennial to millennial time-averaged, representation of recent diversity patterns. Environmental variables chosen to capture ocean temperature, structure, productivity and seasonality were used to model a range of diversity measures across the world's oceans. Spatial autoregressive models showed that the same broad suite of environmental variables were important in shaping each of the four largely independent diversity measures (rarefied species richness, Simpson's evenness, functional richness and mean evolutionary age). Sea-surface temperature explains the largest portion of diversity in all four diversity measures, but not in the way predicted by the metabolic theory of ecology. Vertical structure could be linked to increased diversity through the strength of stratification, but not through the depth of the mixed layer. There is limited evidence that seasonal turnover explains diversity patterns. There is evidence for functional redundancy in the low-latitude sites. The evolutionary mechanism of deep-time stability finds mixed support whilst there is relatively little evidence for an out-of-the-tropics model. These results suggest the diversity patterns of planktonic foraminifera cannot be explained by any one environmental variable or proposed mechanism, but instead reflect multiple processes acting in concert.

  4. Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends

    NASA Technical Reports Server (NTRS)

    Miller, A. I.; Foote, M.

    1996-01-01

    It has long been suspected that trends in global marine biodiversity calibrated for the Phanerozoic may be affected by sampling problems. However, this possibility has not been evaluated definitively, and raw diversity trends are generally accepted at face value in macroevolutionary investigations. Here, we analyze a global-scale sample of fossil occurrences that allows us to determine directly the effects of sample size on the calibration of what is generally thought to be among the most significant global biodiversity increases in the history of life: the Ordovician Radiation. Utilizing a composite database that includes trilobites, brachiopods, and three classes of molluscs, we conduct rarefaction analyses to demonstrate that the diversification trajectory for the Radiation was considerably different than suggested by raw diversity time-series. Our analyses suggest that a substantial portion of the increase recognized in raw diversity depictions for the last three Ordovician epochs (the Llandeilian, Caradocian, and Ashgillian) is a consequence of increased sample size of the preserved and catalogued fossil record. We also use biometric data for a global sample of Ordovician trilobites, along with methods of measuring morphological diversity that are not biased by sample size, to show that morphological diversification in this major clade had leveled off by the Llanvirnian. The discordance between raw diversity depictions and more robust taxonomic and morphological diversity metrics suggests that sampling effects may strongly influence our perception of biodiversity trends throughout the Phanerozoic.

  5. Brackish habitat dictates cultivable Actinobacterial diversity from marine sponges

    PubMed Central

    Chanana, Shaurya; Adnani, Navid; Szachowicz, Emily; Braun, Doug R.; Harper, Mary Kay; Wyche, Thomas P.; Bugni, Tim S.

    2017-01-01

    Bacterial communities associated with marine invertebrates such as sponges and ascidians have demonstrated potential as sources of bio-medically relevant small molecules. Metagenomic analysis has shown that many of these invertebrates harbor populations of Actinobacteria, many of which are cultivable. While some populations within invertebrates are transmitted vertically, others are obtained from the environment. We hypothesized that cultivable diversity from sponges living in brackish mangrove habitats have associations with Actinobacterial populations that differ from those found in clear tropical waters. In this study, we analyzed the cultivable Actinobacterial populations from sponges found in these two distinct habitats with the aim of understanding the secondary metabolite potential. Importantly, we wanted to broadly evaluate the potential differences among these groups to guide future Actinobacterial collection strategies for the purposes of drug discovery. PMID:28692665

  6. How marine debris ingestion differs among megafauna species in a tropical coastal area.

    PubMed

    Di Beneditto, Ana Paula Madeira; Awabdi, Danielle Rodrigues

    2014-11-15

    The marine debris ingested by megafauna species (Trichiurus lepturus, Chelonia mydas, Pontoporia blainvillei, and Sotalia guianensis) was recorded in a coastal area of southeastern Brazil (21-23°S). Marine debris was recorded in all species, mainly consisting of plastic material (flexible and hard plastics - clear, white, and colored- and nylon filaments). The 'pelagic predators' T. lepturus and S. guianesis showed the lowest percent frequencies of debris ingestion (0.7% and 1.3%, respectively), followed by the 'benthic predator' P. blainvillei (15.7%) and the 'benthic herbivorous C. mydas (59.2%). The debris found in C. mydas stomachs was opportunistically ingested during feeding activities on local macroalgal banks. In the study area, the benthic environment accumulates more anthropogenic debris than the pelagic environment, and benthic/demersal feeders are more susceptible to encounters and ingestion. The sub-lethal effects observed in C. mydas, such as intestinal obstruction due to hardened fecal material, should be considered a local conservation concern. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications.

    PubMed

    Lee, Yeji; Phat, Chanvorleak; Hong, Soon-Cheol

    2017-09-01

    Many cyclic peptides and analogues derived from marine sources are known to possess biological properties, including anticancer, antitumor, antibacterial, antifungal, antiparasitic, anti-inflammation, anti-proliferative, anti-hypertensive, cytotoxic, and antibiotic properties. These compounds demonstrate different activities and modes of action according to their structure such as cyclic oligopeptide, cyclic lipopeptide, cyclic glycopeptide and cyclic depsipeptide. The recent advances in application of the above-mentioned cyclic peptides were reported in dolastatins, soblidotin, didemnin B, aplidine, salinosporamide A, kahalalide F and bryostatin 1 and they are currently in clinical trials. These cyclic peptides are possible novel drugs discovered and developed from marine origin. Literature data concerning the potential properties of marine cyclic peptides were reviewed here, and the structural diversity and biological activities of marine cyclic peptides are discussed in relation to the molecular mechanisms of these marine cyclic peptides. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation.

    PubMed

    Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We

  9. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation

    PubMed Central

    Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    Objectives The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Spatio-Temporal Patterns of the Microbial Communities Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Macrofauna, Microbes and the Benthic N-Cycle Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided

  10. Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples

    PubMed Central

    Iversen, Lars Lønsmann; Møller, Peter Rask; Rasmussen, Morten; Willerslev, Eske

    2012-01-01

    Marine ecosystems worldwide are under threat with many fish species and populations suffering from human over-exploitation. This is greatly impacting global biodiversity, economy and human health. Intriguingly, marine fish are largely surveyed using selective and invasive methods, which are mostly limited to commercial species, and restricted to particular areas with favourable conditions. Furthermore, misidentification of species represents a major problem. Here, we investigate the potential of using metabarcoding of environmental DNA (eDNA) obtained directly from seawater samples to account for marine fish biodiversity. This eDNA approach has recently been used successfully in freshwater environments, but never in marine settings. We isolate eDNA from ½-litre seawater samples collected in a temperate marine ecosystem in Denmark. Using next-generation DNA sequencing of PCR amplicons, we obtain eDNA from 15 different fish species, including both important consumption species, as well as species rarely or never recorded by conventional monitoring. We also detect eDNA from a rare vagrant species in the area; European pilchard (Sardina pilchardus). Additionally, we detect four bird species. Records in national databases confirmed the occurrence of all detected species. To investigate the efficiency of the eDNA approach, we compared its performance with 9 methods conventionally used in marine fish surveys. Promisingly, eDNA covered the fish diversity better than or equal to any of the applied conventional methods. Our study demonstrates that even small samples of seawater contain eDNA from a wide range of local fish species. Finally, in order to examine the potential dispersal of eDNA in oceans, we performed an experiment addressing eDNA degradation in seawater, which shows that even small (100-bp) eDNA fragments degrades beyond detectability within days. Although further studies are needed to validate the eDNA approach in varying environmental conditions, our

  11. Detection of a diverse marine fish fauna using environmental DNA from seawater samples.

    PubMed

    Thomsen, Philip Francis; Kielgast, Jos; Iversen, Lars Lønsmann; Møller, Peter Rask; Rasmussen, Morten; Willerslev, Eske

    2012-01-01

    Marine ecosystems worldwide are under threat with many fish species and populations suffering from human over-exploitation. This is greatly impacting global biodiversity, economy and human health. Intriguingly, marine fish are largely surveyed using selective and invasive methods, which are mostly limited to commercial species, and restricted to particular areas with favourable conditions. Furthermore, misidentification of species represents a major problem. Here, we investigate the potential of using metabarcoding of environmental DNA (eDNA) obtained directly from seawater samples to account for marine fish biodiversity. This eDNA approach has recently been used successfully in freshwater environments, but never in marine settings. We isolate eDNA from ½-litre seawater samples collected in a temperate marine ecosystem in Denmark. Using next-generation DNA sequencing of PCR amplicons, we obtain eDNA from 15 different fish species, including both important consumption species, as well as species rarely or never recorded by conventional monitoring. We also detect eDNA from a rare vagrant species in the area; European pilchard (Sardina pilchardus). Additionally, we detect four bird species. Records in national databases confirmed the occurrence of all detected species. To investigate the efficiency of the eDNA approach, we compared its performance with 9 methods conventionally used in marine fish surveys. Promisingly, eDNA covered the fish diversity better than or equal to any of the applied conventional methods. Our study demonstrates that even small samples of seawater contain eDNA from a wide range of local fish species. Finally, in order to examine the potential dispersal of eDNA in oceans, we performed an experiment addressing eDNA degradation in seawater, which shows that even small (100-bp) eDNA fragments degrades beyond detectability within days. Although further studies are needed to validate the eDNA approach in varying environmental conditions, our

  12. Biomass and Habitat Characteristics of Epiphytic Macroalgae in the Sibuti Mangroves, Sarawak, Malaysia.

    PubMed

    Isa, Hasmidah Md; Kamal, Abu Hena Mustafa; Idris, Mohd Hanafi; Rosli, Zamri; Ismail, Johan

    2017-01-01

    Mangroves support diverse macroalgal assemblages as epibionts on their roots and tree trunks. These algae provide nutrients to the primary consumers in the aquatic food web and have been reported to be substantial contributors to marine ecosystems. The species diversity, biomass, and habitat characteristics of mangrove macroalgae were investigated at three stations in the Sibuti mangrove estuary, Sarawak, Malaysia, from November 2012 to October 2013. Three groups of macroalgae were recorded and were found to be growing on mangrove prop roots, namely Rhodophyta ( Caloglossa ogasawaraensis , Caloglossa adhaerens , Caloglossa stipitata , Bostrychia anomala, and Hypnea sp.), Chlorophyta ( Chaetomorpha minima and Chaetomorpha sp.), and Phaeophyta ( Dictyota sp.). The biomass of macroalgae was not influenced ( p >0.05) by the season in this mangrove forest habitat. The macroalgal species Hypnea sp. contributed the highest biomass at both Station 1 (210.56 mg/cm 2 ) and Station 2 (141.72 mg/cm 2 ), while the highest biomass was contributed by B. anomala (185.89 mg/cm 2 ) at Station 3. This study shows that the species distribution and assemblages of mangrove macroalgae were influenced by environmental parameters such as water nutrients, dissolved solids, and salinity in the estuarine mangrove habitats of Sibuti, Sarawak.

  13. Coral reef grazer-benthos dynamics complicated by invasive algae in a small marine reserve

    PubMed Central

    Stamoulis, Kostantinos A.; Friedlander, Alan M.; Meyer, Carl G.; Fernandez-Silva, Iria; Toonen, Robert J.

    2017-01-01

    Blooms of alien invasive marine algae have become common, greatly altering the health and stability of nearshore marine ecosystems. Concurrently, herbivorous fishes have been severely overfished in many locations worldwide, contributing to increases in macroalgal cover. We used a multi-pronged, interdisciplinary approach to test if higher biomass of herbivorous fishes inside a no-take marine reserve makes this area more resistant to invasive algal overgrowth. Over a two year time period, we (1) compared fish biomass and algal cover between two fished and one unfished patch reef in Hawai’i, (2) used acoustic telemetry to determine fidelity of herbivorous fishes to the unfished reef, and (3) used metabarcoding and next-generation sequencing to determine diet composition of herbivorous fishes. Herbivore fish biomass was significantly higher in the marine reserve compared to adjacent fished reefs, whereas invasive algal cover differed by species. Herbivorous fish movements were largely confined to the unfished patch reef where they were captured. Diet analysis indicated that the consumption of invasive algae varied among fish species, with a high prevalence of comparatively rare native algal species. Together these findings demonstrate that the contribution of herbivores to coral reef resilience, via resistance to invasive algae invasion, is complex and species-specific. PMID:28276458

  14. Global diversity of aloricate Oligotrichea (Protista, Ciliophora, Spirotricha) in marine and brackish sea water.

    PubMed

    Agatha, Sabine

    2011-01-01

    Oligotrichids and choreotrichids are ciliate taxa contributing to the multi-step microbial food web and episodically dominating the marine microzooplankton. The global diversity and distribution of aloricate Oligotrichea are unknown. Here, the geographic ranges of the 141 accepted species and their synonyms in marine and brackish sea water are analyzed, using hundreds of taxonomical and ecological studies; the quality of the records is simultaneously evaluated. The aloricate Oligotrichea match the moderate endemicity model, i.e., the majority (94) of morphospecies has a wide, occasionally cosmopolitan distribution, while 47 morphospecies show biogeographic patterns: they are restricted to single geographic regions and probably include 12 endemic morphospecies. These endemics are found in the Antarctic, North Pacific, and Black Sea, whereas the "flagship" species Strombidinopsis cercionis is confined to the Caribbean Sea. Concerning genera, again several geographic patterns are recognizable. The species richness is distinctly lower in the southern hemisphere than in the northern, ranging from nine morphospecies in the South Pacific to 95 in the North Atlantic; however, this pattern is probably caused by undersampling. Since the loss of species might affect higher trophical levels substantially, the aloricate Oligotrichea should not any longer be ignored in conservation issues. The ecophysiological diversity is considerably larger than the morphological, and even tops the richness of SSrRNA and ITS haplotypes, indicating that probably more than 83-89% of the diversity in aloricate Oligotrichea are unknown. The huge challenge to discover all these species can only be managed by combining the expertises of morphological taxonomists, molecular biologists, ecologists, and physiologists.

  15. Global Diversity of Aloricate Oligotrichea (Protista, Ciliophora, Spirotricha) in Marine and Brackish Sea Water

    PubMed Central

    Agatha, Sabine

    2011-01-01

    Oligotrichids and choreotrichids are ciliate taxa contributing to the multi-step microbial food web and episodically dominating the marine microzooplankton. The global diversity and distribution of aloricate Oligotrichea are unknown. Here, the geographic ranges of the 141 accepted species and their synonyms in marine and brackish sea water are analyzed, using hundreds of taxonomical and ecological studies; the quality of the records is simultaneously evaluated. The aloricate Oligotrichea match the moderate endemicity model, i.e., the majority (94) of morphospecies has a wide, occasionally cosmopolitan distribution, while 47 morphospecies show biogeographic patterns: they are restricted to single geographic regions and probably include 12 endemic morphospecies. These endemics are found in the Antarctic, North Pacific, and Black Sea, whereas the “flagship” species Strombidinopsis cercionis is confined to the Caribbean Sea. Concerning genera, again several geographic patterns are recognizable. The species richness is distinctly lower in the southern hemisphere than in the northern, ranging from nine morphospecies in the South Pacific to 95 in the North Atlantic; however, this pattern is probably caused by undersampling. Since the loss of species might affect higher trophical levels substantially, the aloricate Oligotrichea should not any longer be ignored in conservation issues. The ecophysiological diversity is considerably larger than the morphological, and even tops the richness of SSrRNA and ITS haplotypes, indicating that probably more than 83–89% of the diversity in aloricate Oligotrichea are unknown. The huge challenge to discover all these species can only be managed by combining the expertises of morphological taxonomists, molecular biologists, ecologists, and physiologists. PMID:21853034

  16. Multilocus sequence analysis for assessment of phylogenetic diversity and biogeography in Thalassospira bacteria from diverse marine environments.

    PubMed

    Lai, Qiliang; Liu, Yang; Yuan, Jun; Du, Juan; Wang, Liping; Sun, Fengqin; Shao, Zongze

    2014-01-01

    Thalassospira bacteria are widespread and have been isolated from various marine environments. Less is known about their genetic diversity and biogeography, as well as their role in marine environments, many of them cannot be discriminated merely using the 16S rRNA gene. To address these issues, in this report, the phylogenetic analysis of 58 strains from seawater and deep sea sediments were carried out using the multilocus sequence analysis (MLSA) based on acsA, aroE, gyrB, mutL, rpoD and trpB genes, and the DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) based on genome sequences. The MLSA analysis demonstrated that the 58 strains were clearly separated into 15 lineages, corresponding to seven validly described species and eight potential novel species. The DDH and ANI values further confirmed the validity of the MLSA analysis and eight potential novel species. The MLSA interspecies gap of the genus Thalassospira was determined to be 96.16-97.12% sequence identity on the basis of the combined analyses of the DDH and MLSA, while the ANIm interspecies gap was 95.76-97.20% based on the in silico DDH analysis. Meanwhile, phylogenetic analyses showed that the Thalassospira bacteria exhibited distribution pattern to a certain degree according to geographic regions. Moreover, they clustered together according to the habitats depth. For short, the phylogenetic analyses and biogeography of the Thalassospira bacteria were systematically investigated for the first time. These results will be helpful to explore further their ecological role and adaptive evolution in marine environments.

  17. Multilocus Sequence Analysis for Assessment of Phylogenetic Diversity and Biogeography in Thalassospira Bacteria from Diverse Marine Environments

    PubMed Central

    Yuan, Jun; Du, Juan; Wang, Liping; Sun, Fengqin; Shao, Zongze

    2014-01-01

    Thalassospira bacteria are widespread and have been isolated from various marine environments. Less is known about their genetic diversity and biogeography, as well as their role in marine environments, many of them cannot be discriminated merely using the 16S rRNA gene. To address these issues, in this report, the phylogenetic analysis of 58 strains from seawater and deep sea sediments were carried out using the multilocus sequence analysis (MLSA) based on acsA, aroE, gyrB, mutL, rpoD and trpB genes, and the DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) based on genome sequences. The MLSA analysis demonstrated that the 58 strains were clearly separated into 15 lineages, corresponding to seven validly described species and eight potential novel species. The DDH and ANI values further confirmed the validity of the MLSA analysis and eight potential novel species. The MLSA interspecies gap of the genus Thalassospira was determined to be 96.16–97.12% sequence identity on the basis of the combined analyses of the DDH and MLSA, while the ANIm interspecies gap was 95.76–97.20% based on the in silico DDH analysis. Meanwhile, phylogenetic analyses showed that the Thalassospira bacteria exhibited distribution pattern to a certain degree according to geographic regions. Moreover, they clustered together according to the habitats depth. For short, the phylogenetic analyses and biogeography of the Thalassospira bacteria were systematically investigated for the first time. These results will be helpful to explore further their ecological role and adaptive evolution in marine environments. PMID:25198177

  18. Bioactive terpenes from marine-derived fungi.

    PubMed

    Elissawy, Ahmed M; El-Shazly, Mohamed; Ebada, Sherif S; Singab, AbdelNasser B; Proksch, Peter

    2015-04-03

    Marine-derived fungi continue to be a prolific source of secondary metabolites showing diverse bioactivities. Terpenoids from marine-derived fungi exhibit wide structural diversity including numerous compounds with pronounced biological activities. In this review, we survey the last five years' reports on terpenoidal metabolites from marine-derived fungi with particular attention on those showing marked biological activities.

  19. Large-scale associations between macroalgal cover and grazer biomass on mid-depth reefs in the Caribbean

    NASA Astrophysics Data System (ADS)

    Williams, I.; Polunin, N.

    2001-05-01

    Since the 1970s, macroalgae have become considerably more abundant on many Caribbean reefs and overfishing of grazing fishes has been implicated as a contributory factor. We explored relationships between algal cover and grazers (biomass of herbivorous fishes and abundance of the sea-urchin Diadema antillarum) on mid-depth reefs (12-15 m) in 19 areas at seven locations in Jamaica, Barbados, Belize, Grand Cayman and Cuba, between April 1997 and April 1998. Diadema antillarum density was never >0.01 m-2, while herbivorous fish biomass (acanthurids and scarids ≥12 cm total length) varied from 2-5 g m-2 in Jamaica to 17.1 g m-2 in Barbados, and was strongly correlated, negatively with macroalgal cover and positively with 'cropped' substratum (sum of 'bare', turf and crustose-coralline substrata) cover. However, overfishing of herbivorous fishes alone cannot explain the widespread abundance of macroalgae, as even on lightly fished reefs, macroalgal cover was mostly >20%. Herbivorous fish populations on those reefs were apparently only able to maintain approximately 40-60% of reef substratum in cropped states, but due to low space-occupation by coral and other invertebrates, 70-90% of substratum was available to algae. The abundance of macroalgae on lightly fished reefs may therefore be a symptom of low coral cover in combination with the continuing absence of Diadema antillarum.

  20. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat

    NASA Astrophysics Data System (ADS)

    Sunday, Jennifer M.; Fabricius, Katharina E.; Kroeker, Kristy J.; Anderson, Kathryn M.; Brown, Norah E.; Barry, James P.; Connell, Sean D.; Dupont, Sam; Gaylord, Brian; Hall-Spencer, Jason M.; Klinger, Terrie; Milazzo, Marco; Munday, Philip L.; Russell, Bayden D.; Sanford, Eric; Thiyagarajan, Vengatesen; Vaughan, Megan L. H.; Widdicombe, Stephen; Harley, Christopher D. G.

    2017-01-01

    The effects of ocean acidification (OA) on the structure and complexity of coastal marine biogenic habitat have been broadly overlooked. Here we explore how declining pH and carbonate saturation may affect the structural complexity of four major biogenic habitats. Our analyses predict that indirect effects driven by OA on habitat-forming organisms could lead to lower species diversity in coral reefs, mussel beds and some macroalgal habitats, but increases in seagrass and other macroalgal habitats. Available in situ data support the prediction of decreased biodiversity in coral reefs, but not the prediction of seagrass bed gains. Thus, OA-driven habitat loss may exacerbate the direct negative effects of OA on coastal biodiversity; however, we lack evidence of the predicted biodiversity increase in systems where habitat-forming species could benefit from acidification. Overall, a combination of direct effects and community-mediated indirect effects will drive changes in the extent and structural complexity of biogenic habitat, which will have important ecosystem effects.

  1. Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes.

    PubMed

    He, W-H; Shi, G R; Twitchett, R J; Zhang, Y; Zhang, K-X; Song, H-J; Yue, M-L; Wu, S-B; Wu, H-T; Yang, T-L; Xiao, Y-F

    2015-03-01

    Analysis of Permian-Triassic brachiopod diversity and body size changes from different water depths spanning the continental shelf to basinal facies in South China provides insights into the process of environmental deterioration. Comparison of the temporal changes of brachiopod diversity between deepwater and shallow-water facies demonstrates that deepwater brachiopods disappeared earlier than shallow-water brachiopods. This indicates that high environmental stress commenced first in deepwater settings and later extended to shallow waters. This environmental stress is attributed to major volcanic eruptions, which first led to formation of a stratified ocean and a chemocline in the outer shelf and deeper water environments, causing the disappearance of deep marine benthos including brachiopods. The chemocline then rapidly migrated upward and extended to shallow waters, causing widespread mass extinction of shallow marine benthos. We predict that the spatial and temporal patterns of earlier onset of disappearance/extinction and ecological crisis in deeper water ecosystems will be recorded during other episodes of rapid global warming. © 2014 John Wiley & Sons Ltd.

  2. Microeukaryotic diversity in marine environments, an analysis of surface layer sediments from the East Sea.

    PubMed

    Park, Soo-Je; Park, Byoung-Joon; Pham, Vinh Hoa; Yoon, Dae-No; Kim, Si-Kwan; Rhee, Sung-Keun

    2008-06-01

    Molecular techniques, based on clone library of 18S rRNA gene, were employed to ascertain the diversity of microeukaryotic organisms in sediments from the East Sea. A total of 261 clones were recovered from surface sediments. Most of the clone sequences (90%) were affiliated with protists, dominated by Ciliates (18%) and Dinoflagellates (19%) of Alveolates, phototrophic Stramenopiles (11%), and Cercozoa (20%). Many of the clones were related to uncultivated eukaryotes clones retrieved from anoxic environments with several highly divergent 18S rRNA gene sequences. However, no clones were related to cultivated obligate anaerobic protists. Protistan communities between subsurface layers of 1 and 9 cm shared 23% of total phylotypes which comprised 64% of total clones retrieved. Analysis of diversity indices and rarefaction curve showed that the protistan community within the 1 cm layer exhibited higher diversity than the 9 cm layer. Our results imply that diverse protists remain to be uncovered within marine benthic environments.

  3. Sustaining Rare Marine Microorganisms: Macroorganisms As Repositories and Dispersal Agents of Microbial Diversity.

    PubMed

    Troussellier, Marc; Escalas, Arthur; Bouvier, Thierry; Mouillot, David

    2017-01-01

    Recent analyses revealed that most of the biodiversity observed in marine microbial communities is represented by organisms with low abundance but, nonetheless essential for ecosystem dynamics and processes across both temporal and spatial scales. Surprisingly, few studies have considered the effect of macroorganism-microbe interactions on the ecology and distribution dynamics of rare microbial taxa. In this review, we synthesize several lines of evidence that these relationships cannot be neglected any longer. First, we provide empirical support that the microbiota of macroorganisms represents a significant part of marine bacterial biodiversity and that host-microbe interactions benefit to certain microbial populations which are part of the rare biosphere (i.e., opportunistic copiotrophic organisms). Second, we reveal the major role that macroorganisms may have on the dispersal and the geographic distribution of microbes. Third, we introduce an innovative and integrated view of the interactions between microbes and macroorganisms, namely sustaining the rares , which suggests that macroorganisms favor the maintenance of marine microbial diversity and are involved in the regulation of its richness and dynamics. Finally, we show how this hypothesis complements existing theories in microbial ecology and offers new perspectives about the importance of macroorganisms for the microbial biosphere, particularly the rare members.

  4. Sustaining Rare Marine Microorganisms: Macroorganisms As Repositories and Dispersal Agents of Microbial Diversity

    PubMed Central

    Troussellier, Marc; Escalas, Arthur; Bouvier, Thierry; Mouillot, David

    2017-01-01

    Recent analyses revealed that most of the biodiversity observed in marine microbial communities is represented by organisms with low abundance but, nonetheless essential for ecosystem dynamics and processes across both temporal and spatial scales. Surprisingly, few studies have considered the effect of macroorganism–microbe interactions on the ecology and distribution dynamics of rare microbial taxa. In this review, we synthesize several lines of evidence that these relationships cannot be neglected any longer. First, we provide empirical support that the microbiota of macroorganisms represents a significant part of marine bacterial biodiversity and that host-microbe interactions benefit to certain microbial populations which are part of the rare biosphere (i.e., opportunistic copiotrophic organisms). Second, we reveal the major role that macroorganisms may have on the dispersal and the geographic distribution of microbes. Third, we introduce an innovative and integrated view of the interactions between microbes and macroorganisms, namely sustaining the rares, which suggests that macroorganisms favor the maintenance of marine microbial diversity and are involved in the regulation of its richness and dynamics. Finally, we show how this hypothesis complements existing theories in microbial ecology and offers new perspectives about the importance of macroorganisms for the microbial biosphere, particularly the rare members. PMID:28611749

  5. Hydrographic controls on marine organic matter fate and microbial diversity in the western Irish Sea

    NASA Astrophysics Data System (ADS)

    O'Reilly, Shane; Szpak, Michal; Monteys, Xavier; Flanagan, Paul; Allen, Christopher; Kelleher, Brian

    2014-05-01

    Cycling of organic matter (OM) is the key biological process in the marine environment1 and knowledge of the sources and the reactivity of OM, in addition to factors controlling its distribution in estuarine, coastal and shelf sediments are of key importance for understanding global biogeochemical cycles2. With recent advances in cultivation-independent molecular approaches to microbial ecology, the key role of prokaryotes in global biogeochemical cycling in marine ecosystems has been emphasised3,4. However, spatial studies combining the distribution and fate of OM with microbial community abundance and diversity remain rare. Here, a combined spatial lipid biomarker and 16S rRNA tagged pyrosequencing study was conducted in surface sediments and particulate matter across hydrographically distinct zones associated with the seasonal western Irish Sea gyre. The aim was to assess the spatial variation of, and factors controlling, marine organic cycling and sedimentary microbial communities across these distinct zones. The distribution of phospholipid fatty acids, source-specific sterols, wax esters and C25 highly branched isoprenoids indicate that diatoms, dinoflagellates and green algae were the major contributors of marine organic matter, while the distribution of cholesterol, wax esters and C20 and C22 polyunsaturated fatty acids have highlighted the importance of copepod grazing for mineralizing organic matter in the water column5. This marine OM production and mineralisation was greatest in well-mixed waters compared to offshore stratified waters. Lipid analysis and 16S rRNA PCR-DGGE profiling also suggests that sedimentary bacterial abundance increases while community diversity decreases in offshore stratified waters. The major bacterial classes are the Deltaproteobacteria, Clostridia, Flavobacteriia, Gammaproteobactera and Bacteroiidia. At the family/genus level most groups appear to be associated with organoheterotrophic processing of sedimentary OM, ranging

  6. Building diversity in REU programs through MIMSUP at the Shannon Point Marine Center

    NASA Astrophysics Data System (ADS)

    Bingham, B. L.; Sulkin, S.

    2011-12-01

    The road to a career in the ocean sciences can be long and challenging, particularly for students from racial/ethnic groups underrepresented in the field. For the past 21 years, faculty and staff at the Shannon Point Marine Center, Western Washington University have annually administered the NSF-funded Multicultural Initiative in the Marine Sciences: Undergraduate Participation (MIMSUP) program. The goal of MIMSUP is to increase diversity in the ocean sciences by moving students though their undergraduate programs into advanced education and leadership positions in the field. Helping students find positions in REU and other focused research programs is an important step along this path. Primary obstacles for the students include 1) a lack of knowledge about opportunities available to them, 2) a lack of experience preparing quality applications and 3) a lack of confidence in their ability to compete for positions. Focused mentoring, with an emphasis on skills development is important in helping outstanding, though inexperienced, students find and excel in REU programs.

  7. Construction and screening of marine metagenomic libraries.

    PubMed

    Weiland, Nancy; Löscher, Carolin; Metzger, Rebekka; Schmitz, Ruth

    2010-01-01

    Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. Besides, the surfaces of marine multicellular organisms are typically covered by a consortium of epibiotic bacteria and act as barriers, where diverse interactions between microorganisms and hosts take place. Thus, microbial diversity in the water column of the oceans and the microbial consortia on marine tissues of multicellular organisms are rich sources for isolating novel bioactive compounds and genes. Here we describe the sampling, construction of large-insert metagenomic libraries from marine habitats and exemplarily one function based screen of metagenomic clones.

  8. Diversity of Marine-Derived Fungal Cultures Exposed by DNA Barcodes: The Algorithm Matters

    PubMed Central

    Andreakis, Nikos; Høj, Lone; Kearns, Philip; Hall, Michael R.; Ericson, Gavin; Cobb, Rose E.; Gordon, Benjamin R.; Evans-Illidge, Elizabeth

    2015-01-01

    Marine fungi are an understudied group of eukaryotic microorganisms characterized by unresolved genealogies and unstable classification. Whereas DNA barcoding via the nuclear ribosomal internal transcribed spacer (ITS) provides a robust and rapid tool for fungal species delineation, accurate classification of fungi is often arduous given the large number of partial or unknown barcodes and misidentified isolates deposited in public databases. This situation is perpetuated by a paucity of cultivable fungal strains available for phylogenetic research linked to these data sets. We analyze ITS barcodes produced from a subsample (290) of 1781 cultured isolates of marine-derived fungi in the Bioresources Library located at the Australian Institute of Marine Science (AIMS). Our analysis revealed high levels of under-explored fungal diversity. The majority of isolates were ascomycetes including representatives of the subclasses Eurotiomycetidae, Hypocreomycetidae, Sordariomycetidae, Pleosporomycetidae, Dothideomycetidae, Xylariomycetidae and Saccharomycetidae. The phylum Basidiomycota was represented by isolates affiliated with the genera Tritirachium and Tilletiopsis. BLAST searches revealed 26 unknown OTUs and 50 isolates corresponding to previously uncultured, unidentified fungal clones. This study makes a significant addition to the availability of barcoded, culturable marine-derived fungi for detailed future genomic and physiological studies. We also demonstrate the influence of commonly used alignment algorithms and genetic distance measures on the accuracy and comparability of estimating Operational Taxonomic Units (OTUs) by the automatic barcode gap finder (ABGD) method. Large scale biodiversity screening programs that combine datasets using algorithmic OTU delineation pipelines need to ensure compatible algorithms have been used because the algorithm matters. PMID:26308620

  9. Marine cosmeceuticals.

    PubMed

    Kim, Se-Kwon

    2014-03-01

    Recently, a great deal of interest has been expressed in the cosmetic industry regarding marine-derived cosmetic active ingredients due to their numerous beneficial effects on human skin health. Bioactive substances derived from marine resources have diverse functional roles as natural skin care agents, and these properties can be applied to the development of novel cosmetics as well as nutricosmetics (from edible seaweeds and edible marine animals). This contribution focuses on marine-derived cosmeceutical active ingredients and presents an overview of their health beneficial effects on human skin. © 2014 Wiley Periodicals, Inc.

  10. Actinobacterial diversity across a marine transgression in the deep subsurface off Shimokita Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Harrison, B. K.; Bailey, J. V.

    2013-12-01

    Sediment horizons represent a significant - but not permanent - barrier to microbial transport. Cells commonly attach to mineral surfaces in unconsolidated sediments. However, by taxis, growth, or passive migration under advecting fluids, some portion of the microbial community may transgress sedimentary boundaries. Few studies have attempted to constrain such transport of community signatures in the marine subsurface and its potential impact on biogeography. Integrated Ocean Drilling Program (IODP) Expedition 337 off the Shimokita Peninsula recovered sediments over a greater than 1km interval representing a gradual decrease of terrestrial influence, from tidal to continental shelf depositional settings. This sequence represents a key opportunity to link subsurface microbial communities to lithological variability and investigate the permanence of community signatures characteristic of distinct depositional regimes. The phylogenetic connectivity between marine and terrestrially-influenced deposits may demonstrate to what degree sediments offer a substantial barrier to cell transport in the subsurface. Previous work has demonstrated that the Actinobacterial phylum is broadly distributed in marine sediments (Maldonado et al., 2005), present and active in the deep subsurface (Orsi et al., 2013), and that marine and terrestrial lineages may potentially be distinguished by 16S rRNA gene sequencing (e.g. Prieto-Davó et al., 2013). We report on Actinobacteria-specific 16S rRNA gene diversity recovered between 1370 and 2642 mbsf with high-throughput sequencing using the Illumina MiSeq platform, as well as selective assembly and analysis of environmental clone libraries.

  11. THE RELATIVE IMPORTANCE OF NUTRIENT ENRICHMENT AND HERBIVORY ON MACROALGAL COMMUNITIES NEAR NORMAN'S POND CAY, EXUMAS CAYS, BAHAMAS: A "NATURAL" ENRICHMENT EXPERIMENT. (R830414)

    EPA Science Inventory

    The simultaneous effects of grazing and nutrient enrichment on macroalgal communities were experimentally investigated using plastic mesh enclosure/exclosure cages along a natural nutrient (DIN, SRP) gradient from the discharge of a tidal mangrove creek on the west side of Nor...

  12. Distribution and abundance of phytobenthic communities: Implications for connectivity and ecosystem functioning in a Black Sea Marine Protected Area

    NASA Astrophysics Data System (ADS)

    Berov, Dimitar; Todorova, Valentina; Dimitrov, Lubomir; Rinde, Eli; Karamfilov, Ventzislav

    2018-01-01

    The distribution and abundance of macroalgal communities in a Marine Protected Area (MPA) along the Bulgarian Black Sea coast were mapped and quantified, with particular focus on the previously unstudied P. crispa lower-infralittoral communities on Ostrea edulis biogenic reefs. Data from high resolution geophysical substrate mapping were combined with benthic community observations from georeferenced benthic photographic surveys and sampling. Multivariate analysis identified four distinct assemblages of lower-infralittoral macroalgal communities at depths between 10 and 17 m, dominated by Phyllophora crispa, Apoglossum ruscifoluim, Zanardinia typus and Gelidium spp. Maxent software analysis showed distinct preferences of the identified communities to areas with specific ranges of depth, inclination and curvature, with P. crispa more frequently occurring on vertical oyster biogenic reef structures. By combining production rates from literature, biomass measurements and the produced habitat maps, the highest proportion of primary production and DOC release was shown for the upper infralittoral Cystoseira barbata and Cystoseira bosphorica, followed by the production of the lower-infralittoral macroalgae. The observed distribution of P. crispa within the studied MPA was related to the network of Natura 2000 maritime MPAs along the Bulgarian Black Sea coast, which indicated that the connectivity of the populations of the species within the established network is insufficient within this cell of ecosystem functioning.

  13. Genetic diversity affects the strength of population regulation in a marine fish.

    PubMed

    Johnson, D W; Freiwald, J; Bernardi, G

    2016-03-01

    Variation is an essential feature of biological populations, yet much of ecological theory treats individuals as though they are identical. This simplifying assumption is often justified by the perception that variation among individuals does not have significant effects on the dynamics of whole populations. However, this perception may be skewed by a historic focus on studying single populations. A true evaluation of the extent to which among-individual variation affects the dynamics of populations requires the study of multiple populations. In this study, we examined variation in the dynamics of populations of a live-bearing, marine fish (black surfperch; Embiotoca jacksoni). In collaboration with an organization of citizen scientists (Reef Check California), we were able to examine the dynamics of eight populations that were distributed throughout approximately 700 km of coastline, a distance that encompasses much of this species' range. We hypothesized that genetic variation within a local population would be related to the intensity of competition and to the strength of population regulation. To test this hypothesis, we examined whether genetic diversity (measured by the diversity of mitochondrial DNA haplotypes) was related to the strength of population regulation. Low-diversity populations experienced strong density dependence in population growth rates and population sizes were regulated much more tightly than they were in high-diversity populations. Mechanisms that contributed to this pattern include links between genetic diversity, habitat use, and spatial crowding. On average, low-diversity populations used less of the available habitat and exhibited greater spatial clustering (and more intense competition) for a given level of density (measured at the scale of the reef). Although the populations we studied also varied with respect to exogenous characteristics (habitat complexity, densities of predators, and interspecific competitors), none of these

  14. Degradation of marine ecosystems and decline of fishery resources in marine protected areas in the US Virgin Islands

    USGS Publications Warehouse

    Rogers, C.S.; Beets, J.

    2001-01-01

    The large number of marine protected areas (MPAs) in the Caribbean (over 100) gives a misleading impression of the amount of protection the reefs and other marine resources in this region are receiving. This review synthesizes information on marine resources in two of the first MPAs established in the USA, namely Virgin Islands National Park (1962) and Buck Island Reef National Monument (1961), and provides compelling evidence that greater protection is needed, based on data from some of the longest running research projects on coral reefs, reef fish assemblages, and seagrass beds for the Caribbean. Most of the stresses affecting marine resources throughout the Caribbean (e.g. damage from boats, hurricanes and coral diseases) are also causing deterioration in these MPAs. Living coral cover has decreased and macroalgal cover has increased. Seagrass densities have decreased because of storms and anchor damage. Intensive fishing in the US Virgin Islands has caused loss of spawning aggregations and decreases in mean fish size and abundance. Groupers and snappers are far less abundant and herbivorous fishes comprise a greater proportion of samples than in the 1960s. Effects of intensive fishing are evident even within MPA boundaries. Although only traditional fishing with traps of 'conventional design' is allowed, commercial trap fishing is occurring. Visual samples of fishes inside and outside Virgin Islands National 'Park showed no significant differences in number of species, biomass, or mean size of fishes. Similarly, the number of fishes per trap was statistically similar inside and outside park waters. These MPAs have not been effective because an unprecedented combination of natural and human factors is assaulting the resources, some of the greatest damage is from stresses outside the control of park managers (e.g. hurricanes), and enforcement of the few regulations has been limited. Fully functioning MPAs which prohibit fishing and other extractive uses (e.g. no

  15. Does the globally invasive marine angiosperm, Halophila stipulacea, have high genetic diversity or unique mutations?

    NASA Astrophysics Data System (ADS)

    Chiquillo, K.; Campese, L.; Barber, P. H.; Willette, D. A.

    2016-02-01

    Seagrasses are important primary producers in many marine ecosystems, and support a wide diversity of marine life. However, invasive seagrasses like Halophila stipulacea can have pronounced negative impacts on an ecosystem by displacing native seagrasses and changing the community composition of the reef. Endemic to the Red Sea, Persian Gulf and Indian Ocean, Halophila stipulacea has become invasive in the Mediterranean and Caribbean Seas, presumably as a result of the opening of the Suez Canal and international ship traffic. However, it is unclear why this marine angiosperm has become invasive in parts of its range and not others. It is hypothesized that invasive forms may have evolved rapidly in response to natural selection in new and novel environments. Alternatively, genetic variation of introduced populations may be uniquely suited to thrive in regions where it is invasive. In this study, we use RAD next-generation sequencing to screen thousands of SNPs to investigate the genetic basis of adaptation in both native and invasive populations. We test whether genes under selection in the native range are the same as in the invasive range, or whether new genes have arisen with the invasion of each marine basin. The comparison of SNP frequencies unique among basins and environmental variables will aid in predicting new areas of invasion, assisting in improved management strategies to combat this invasive seagrass.

  16. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats

    NASA Astrophysics Data System (ADS)

    Comeau, André M.; Vincent, Warwick F.; Bernier, Louis; Lovejoy, Connie

    2016-07-01

    In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling.

  17. Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea.

    PubMed

    Sun, Wei; Dai, Shikun; Jiang, Shumei; Wang, Guanghua; Liu, Guohui; Wu, Houbo; Li, Xiang

    2010-06-01

    In this report, the diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve collected from a remote island of the South China Sea was investigated employing classical cultivation and characterization, 16S rDNA library construction, 16S rDNA-restriction fragment length polymorphism (rDNA-RFLP) and phylogenetic analysis. A total of 184 strains were isolated using seven different media and 24 isolates were selected according to their morphological characteristics for phylogenetic analysis on the basis of their 16S rRNA gene sequences. Results showed that the 24 isolates were assigned to six genera including Salinispora, Gordonia, Mycobacterium, Nocardia, Rhodococcus and Streptomyces. This is the first report that Salinispora is present in a marine sponge from the South China Sea. Subsequently, 26 rDNA clones were selected from 191 clones in an Actinobacteria-specific 16S rDNA library of the H. perleve sample, using the RFLP technique for sequencing and phylogenetic analysis. In total, 26 phylotypes were clustered in eight known genera of Actinobacteria including Mycobacterium, Amycolatopsis, Arthrobacter, Brevibacterium, Microlunatus, Nocardioides, Pseudonocardia and Streptomyces. This study contributes to our understanding of actinobacterial diversity in the marine sponge H. perleve from the South China Sea.

  18. Trophic cascade facilitates coral recruitment in a marine reserve

    PubMed Central

    Mumby, Peter J.; Harborne, Alastair R.; Williams, Jodene; Kappel, Carrie V.; Brumbaugh, Daniel R.; Micheli, Fiorenza; Holmes, Katherine E.; Dahlgren, Craig P.; Paris, Claire B.; Blackwell, Paul G.

    2007-01-01

    Reduced fishing pressure and weak predator–prey interactions within marine reserves can create trophic cascades that increase the number of grazing fishes and reduce the coverage of macroalgae on coral reefs. Here, we show that the impacts of reserves extend beyond trophic cascades and enhance the process of coral recruitment. Increased fish grazing, primarily driven by reduced fishing, was strongly negatively correlated with macroalgal cover and resulted in a 2-fold increase in the density of coral recruits within a Bahamian reef system. Our conclusions are robust because four alternative hypotheses that may generate a spurious correlation between grazing and coral recruitment were tested and rejected. Grazing appears to influence the density and community structure of coral recruits, but no detectable influence was found on the overall size-frequency distribution, community structure, or cover of corals. We interpret this absence of pattern in the adult coral community as symptomatic of the impact of a recent disturbance event that masks the recovery trajectories of individual reefs. Marine reserves are not a panacea for conservation but can facilitate the recovery of corals from disturbance and may help sustain the biodiversity of organisms that depend on a complex three-dimensional coral habitat. PMID:17488824

  19. The Marine Corps Challenges in Creating a Diverse Force

    DTIC Science & Technology

    2013-03-22

    demographics, young adult’s perception of the Marines, etc.  The majority of Marine Corps Officer Selection Offices ( OSO ) has a majority of Caucasian...officers in senior the billets at the OSO . This makes potential candidates view of the Marine Corps unappealing because they feel as if leadership

  20. PHENOTYPIC DIFFERENTIATION AT SOUTHERN LIMIT BORDERS: THE CASE STUDY OF TWO FUCOID MACROALGAL SPECIES WITH DIFFERENT LIFE-HISTORY TRAITS1.

    PubMed

    Araújo, Rita; Serrão, Ester A; Sousa-Pinto, Isabel; Åberg, Per

    2011-06-01

    Marginal populations are often geographically isolated, smaller, and more fragmented than central populations and may frequently have to face suboptimal local environmental conditions. Persistence of these populations frequently involves the development of adaptive traits at phenotypic and genetic levels. We compared population structure and demographic variables in two fucoid macroalgal species contrasting in patterns of genetic diversity and phenotypic plasticity at their southern distribution limit with a more central location. Models were Ascophyllum nodosum (L.) Le Jol. (whose extreme longevity and generation overlap may buffer genetic loss by drift) and Fucus serratus L. (with low genetic diversity at southern margins). At edge locations, both species exhibited trends in life-history traits compatible with population persistence but by using different mechanisms. Marginal populations of A. nodosum had higher reproductive output in spite of similar mortality rates at all life stages, making edge populations denser and with smaller individuals. In F. serratus, rather than demographic changes, marginal populations differed in habitat, occurring restricted to a narrower vertical habitat range. We conclude that persistence of both A. nodosum and F. serratus at the southern-edge locations depends on different strategies. Marginal population persistence in A. nodosum relies on a differentiation in life-history traits, whereas F. serratus, putatively poorer in evolvability potential, is restricted to a narrower vertical range at border locations. These results contribute to the general understanding of mechanisms that lead to population persistence at distributional limits and to predict population resilience under a scenario of environmental change. © 2011 Phycological Society of America.

  1. Biomass and Habitat Characteristics of Epiphytic Macroalgae in the Sibuti Mangroves, Sarawak, Malaysia

    PubMed Central

    Isa, Hasmidah Md; Kamal, Abu Hena Mustafa; Idris, Mohd Hanafi; Rosli, Zamri; Ismail, Johan

    2017-01-01

    Mangroves support diverse macroalgal assemblages as epibionts on their roots and tree trunks. These algae provide nutrients to the primary consumers in the aquatic food web and have been reported to be substantial contributors to marine ecosystems. The species diversity, biomass, and habitat characteristics of mangrove macroalgae were investigated at three stations in the Sibuti mangrove estuary, Sarawak, Malaysia, from November 2012 to October 2013. Three groups of macroalgae were recorded and were found to be growing on mangrove prop roots, namely Rhodophyta (Caloglossa ogasawaraensis, Caloglossa adhaerens, Caloglossa stipitata, Bostrychia anomala, and Hypnea sp.), Chlorophyta (Chaetomorpha minima and Chaetomorpha sp.), and Phaeophyta (Dictyota sp.). The biomass of macroalgae was not influenced (p>0.05) by the season in this mangrove forest habitat. The macroalgal species Hypnea sp. contributed the highest biomass at both Station 1 (210.56 mg/cm2) and Station 2 (141.72 mg/cm2), while the highest biomass was contributed by B. anomala (185.89 mg/cm2) at Station 3. This study shows that the species distribution and assemblages of mangrove macroalgae were influenced by environmental parameters such as water nutrients, dissolved solids, and salinity in the estuarine mangrove habitats of Sibuti, Sarawak. PMID:28228913

  2. Temperate macroalgae impacts tropical fish recruitment at forefronts of range expansion

    NASA Astrophysics Data System (ADS)

    Beck, H. J.; Feary, D. A.; Nakamura, Y.; Booth, D. J.

    2017-06-01

    Warming waters and changing ocean currents are increasing the supply of tropical fish larvae to temperature regions where they are exposed to novel habitats, namely temperate macroalgae and barren reefs. Here, we use underwater surveys on the temperate reefs of south-eastern (SE) Australia and western Japan ( 33.5°N and S, respectively) to investigate how temperate macroalgal and non-macroalgal habitats influence recruitment success of a range of tropical fishes. We show that temperate macroalgae strongly affected recruitment of many tropical fish species in both regions and across three recruitment seasons in SE Australia. Densities and richness of recruiting tropical fishes, primarily planktivores and herbivores, were over seven times greater in non-macroalgal than macroalgal reef habitat. Species and trophic diversity ( K-dominance) were also greater in non-macroalgal habitat. Temperate macroalgal cover was a stronger predictor of tropical fish assemblages than temperate fish assemblages, reef rugosities or wave exposure. Tropical fish richness, diversity and density were greater on barren reef than on reef dominated by turfing algae. One common species, the neon damselfish ( Pomacentrus coelestis), chose non-macroalgal habitat over temperate macroalgae for settlement in an aquarium experiment. This study highlights that temperate macroalgae may partly account for spatial variation in recruitment success of many tropical fishes into higher latitudes. Hence, habitat composition of temperate reefs may need to be considered to accurately predict the geographic responses of many tropical fishes to climate change.

  3. A case study of rhodolith beds associated with offshore NW Gulf of Mexico hard banks: viewing rhodoliths as diversity-rich holobionts

    NASA Astrophysics Data System (ADS)

    Fredericq, S.; Sauvage, T.; Krayesky-Self, S.; Schmidt, W. E.

    2016-02-01

    Rhodolith beds offshore Louisiana in the NW Gulf of Mexico are associated with salt domes, unique deep bank habitats at 55-75m depth on the continental shelf. Seven sampling expeditions following the 2010 Deepwater Horizon (DWH) oil spill to 2 rhodolith bed habitats revealed a drastic macroalgal die-off that has persisted up to this day (last collections from September 2014) in locations that were diversity-rich pre-DWH. Laboratory observations of bare, denuded, and apparently "dead" rhodoliths collected post-DWH and placed in 75-liter microcosms in our lab, have shown macroalgal regeneration within 3 weeks. Metabarcoding of endolithic rhodolith environmental DNAs with newly designed primers for tufA recovered a wide microbiotal diversity of photosynthetic organisms including numerous seaweed species comprising red, green, brown (and other Ochrophyta) algae, as well as other phototrophic lineages (e.g. Cyanobacteria). Metabarcoding of 16S V4 from the same endolithic rhodolith DNAs used for tufA metabarcoding recovered in-depth microbiotal taxon coverage, including abundant prokaryotic (phototrophic Cyanobacteria, heterotrophic Bacteria and Archaea), and eukaryotic phototrophic diversity. 16S V4 recovered a similar proportion of phototrophs within rhodoliths pre- and post-DWH suggesting that although not visible in the field, seaweeds are still present in the NWGMx in the form of `resting' microscopic stages (dormant spores and filaments) within the CaCO3 of rhodoliths. Using tufA and 16S metabarcoding we were able to link the taxonomic identity of the "invisible," cryptic (hidden) parts of a macroalga that are part of a rhodolith's CaCO3 microbiota, with their corresponding "visible" macroscopic thalli through Sanger sequencing of plastid tufA and plastid 16S. We are continuing to characterize rhodoliths as holobionts critical for the cycling of macroalgal communities and as seedbank reservoirs and refugia of dormant microscopic stages of macroalgae. This research

  4. Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria.

    PubMed

    Ross, Avena C; Xu, Ying; Lu, Liang; Kersten, Roland D; Shao, Zongze; Al-Suwailem, Abdulaziz M; Dorrestein, Pieter C; Qian, Pei-Yuan; Moore, Bradley S

    2013-01-23

    Thalassospiramides A and B are immunosuppressant cyclic lipopeptides first reported from the marine α-proteobacterium Thalassospira sp. CNJ-328. We describe here the discovery and characterization of an extended family of 14 new analogues from four Tistrella and Thalassospira isolates. These potent calpain 1 protease inhibitors belong to six structure classes in which the length and composition of the acylpeptide side chain varies extensively. Genomic sequence analysis of the thalassospiramide-producing microbes revealed related, genus-specific biosynthetic loci encoding hybrid nonribosomal peptide synthetase/polyketide synthases consistent with thalassospiramide assembly. The bioinformatics analysis of the gene clusters suggests that structural diversity, which ranges from the 803.4 Da thalassospiramide C to the 1291.7 Da thalassospiramide F, results from a complex sequence of reactions involving amino acid substrate channeling and enzymatic multimodule skipping and iteration. Preliminary biochemical analysis of the N-terminal nonribosomal peptide synthetase module from the Thalassospira TtcA megasynthase supports a biosynthetic model in which in cis amino acid activation competes with in trans activation to increase the range of amino acid substrates incorporated at the N terminus.

  5. Biosynthetic Multitasking Facilitates Thalassospiramide Structural Diversity in Marine Bacteria

    PubMed Central

    Ross, Avena C.; Xu, Ying; Lu, Liang; Kersten, Roland D.; Shao, Zongze; Al-Suwailem, Abdulaziz M.; Dorrestein, Pieter C.; Qian, Pei-Yuan; Moore, Bradley S.

    2013-01-01

    Thalassospiramides A and B are immunosuppressant cyclic lipopeptides first reported from the marine α-proteobacterium Thalassospira sp. CNJ-328. We describe here the discovery and characterization of an extended family of 14 new analogues from four Tistrella and Thalassospira isolates. These potent calpain 1 protease inhibitors belong to six structure classes in which the length and composition of the acylpeptide side chain varies extensively. Genomic sequence analysis of the thalassospiramide-producing microbes revealed related, genus-specific biosynthetic loci encoding hybrid nonribosomal peptide synthetase/polyketide synthases consistent with thalassospiramide assembly. The bioinformatics analysis of the gene clusters suggests that structural diversity, which ranges from the 803.4 Da thalassospiramide C to the 1291.7 Da thalassospiramide F, results from a complex sequence of reactions involving amino acid substrate channeling and enzymatic multi-module skipping and iteration. Preliminary biochemical analysis of the N-terminal NRPS module from the Thalassospira TtcA megasynthase supports a biosynthetic model in which in cis amino acid activation competes with in trans activation to increase the range of amino acid substrates incorporated at the N-terminus. PMID:23270364

  6. Marine-derived fungi: diversity of enzymes and biotechnological applications

    PubMed Central

    Bonugli-Santos, Rafaella C.; dos Santos Vasconcelos, Maria R.; Passarini, Michel R. Z.; Vieira, Gabriela A. L.; Lopes, Viviane C. P.; Mainardi, Pedro H.; dos Santos, Juliana A.; de Azevedo Duarte, Lidia; Otero, Igor V. R.; da Silva Yoshida, Aline M.; Feitosa, Valker A.; Pessoa, Adalberto; Sette, Lara D.

    2015-01-01

    The ocean is considered to be a great reservoir of biodiversity. Microbial communities in marine environments are ecologically relevant as intermediaries of energy, and play an important role in nutrient regeneration cycles as decomposers of dead and decaying organic matter. In this sense, marine-derived fungi can be considered as a source of enzymes of industrial and/or environmental interest. Fungal strains isolated from different substrates, such as invertebrates, decaying wood, seawater, sediments, and mangrove detritus, have been reported to be producers of hydrolytic and/or oxidative enzymes, with alginate lyase, amylase, cellulase, chitinase, glucosidase, inulinase, keratinase, ligninase, lipase, nuclease, phytase, protease, and xylanase being among the enzymes produced by fungi of marine origin. These enzymes present temperature and pH optima ranging from 35 to 70∘C, and 3.0 to 11.0, respectively. High-level production in bioreactors is mainly performed using submerged-state fermentation. Certain marine-derived fungal strains present enzymes with alkaline and cold-activity characteristics, and salinity is considered an important condition in screening and production processes. The adaptability of marine-derived fungi to oceanic conditions can be considered an attractive point in the field of fungal marine biotechnology. In this review, we focus on the advances in discovering enzymes from marine-derived fungi and their biotechnological relevance. PMID:25914680

  7. Exploring the Diversity and Antimicrobial Potential of Marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile

    PubMed Central

    Undabarrena, Agustina; Beltrametti, Fabrizio; Claverías, Fernanda P.; González, Myriam; Moore, Edward R. B.; Seeger, Michael; Cámara, Beatriz

    2016-01-01

    Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although, Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae, and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera) was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus, and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium, and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%), PKS I (18%), and PKS II (73%). Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds. PMID:27486455

  8. Congruence in demersal fish, macroinvertebrate, and macroalgal community turnover on shallow temperate reefs.

    PubMed

    Thomson, Russell J; Hill, Nicole A; Leaper, Rebecca; Ellis, Nick; Pitcher, C Roland; Barrett, Neville S; Edgar, Graham J

    2014-03-01

    To support coastal planning through improved understanding of patterns of biotic and abiotic surrogacy at broad scales, we used gradient forest modeling (GFM) to analyze and predict spatial patterns of compositional turnover of demersal fishes, macroinvertebrates, and macroalgae on shallow, temperate Australian reefs. Predictive models were first developed using environmental surrogates with estimates of prediction uncertainty, and then the efficacy of the three assemblages as biosurrogates for each other was assessed. Data from underwater visual surveys of subtidal rocky reefs were collected from the southeastern coastline of continental Australia (including South Australia and Victoria) and the northern coastline of Tasmania. These data were combined with 0.01 degree-resolution gridded environmental variables to develop statistical models of compositional turnover (beta diversity) using GFM. GFM extends the machine learning, ensemble tree-based method of random forests (RF), to allow the simultaneous modeling of multiple taxa. The models were used to generate predictions of compositional turnover for each of the three assemblages within unsurveyed areas across the 6600 km of coastline in the region of interest. The most important predictor for all three assemblages was variability in sea surface temperature (measured as standard deviation from measures taken interannually). Spatial predictions of compositional turnover within unsurveyed areas across the region of interest were remarkably congruent across the three taxa. However, the greatest uncertainty in these predictions varied in location among the different assemblages. Pairwise congruency comparisons of observed and predicted turnover among the three assemblages showed that invertebrate and macroalgal biodiversity were most similar, followed by fishes and macroalgae, and lastly fishes and invertebrate biodiversity, suggesting that of the three assemblages, macroalgae would make the best biosurrogate for

  9. Marine Indole Alkaloids

    PubMed Central

    Netz, Natalie; Opatz, Till

    2015-01-01

    Marine indole alkaloids comprise a large and steadily growing group of secondary metabolites. Their diverse biological activities make many compounds of this class attractive starting points for pharmaceutical development. Several marine-derived indoles were found to possess cytotoxic, antineoplastic, antibacterial and antimicrobial activities, in addition to the action on human enzymes and receptors. The newly isolated indole alkaloids of marine origin since the last comprehensive review in 2003 are reported, and biological aspects will be discussed. PMID:26287214

  10. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities

    PubMed Central

    Fouillaud, Mireille; Venkatachalam, Mekala; Girard-Valenciennes, Emmanuelle; Caro, Yanis; Dufossé, Laurent

    2016-01-01

    Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s) due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi′s productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances. PMID:27023571

  11. Extensive cryptic species diversity and fine-scale endemism in the marine red alga Portieria in the Philippines

    PubMed Central

    Payo, Dioli Ann; Leliaert, Frederik; Verbruggen, Heroen; D'hondt, Sofie; Calumpong, Hilconida P.; De Clerck, Olivier

    2013-01-01

    We investigated species diversity and distribution patterns of the marine red alga Portieria in the Philippine archipelago. Species boundaries were tested based on mitochondrial, plastid and nuclear encoded loci, using a general mixed Yule-coalescent (GMYC) model-based approach and a Bayesian multilocus species delimitation method. The outcome of the GMYC analysis of the mitochondrial encoded cox2-3 dataset was highly congruent with the multilocus analysis. In stark contrast with the current morphology-based assumption that the genus includes a single, widely distributed species in the Indo-West Pacific (Portieria hornemannii), DNA-based species delimitation resulted in the recognition of 21 species within the Philippines. Species distributions were found to be highly structured with most species restricted to island groups within the archipelago. These extremely narrow species ranges and high levels of intra-archipelagic endemism contrast with the wide-held belief that marine organisms generally have large geographical ranges and that endemism is at most restricted to the archipelagic level. Our results indicate that speciation in the marine environment may occur at spatial scales smaller than 100 km, comparable with some terrestrial systems. Our finding of fine-scale endemism has important consequences for marine conservation and management. PMID:23269854

  12. Ion channels in key marine invertebrates; their diversity and potential for applications in biotechnology.

    PubMed

    Brown, Euan R; Piscopo, Stefania

    2011-01-01

    Of the intra-membrane proteins, the class that comprises voltage and ligand-gated ion channels represents the major substrate whereby signals pass between and within cells in all organisms. It has been presumed that vertebrate and particularly mammalian ion channels represent the apex of evolutionary complexity and diversity and much effort has been focused on understanding their function. However, the recent availability of cheap high throughput genome sequencing has massively broadened and deepened the quality of information across phylogeny and is radically changing this view. Here we review current knowledge on such channels in key marine invertebrates where physiological evidence is backed up by molecular sequences and expression/functional studies. As marine invertebrates represent a much greater range of phyla than terrestrial vertebrates and invertebrates together, we argue that these animals represent a highly divergent, though relatively underused source of channel novelty. As ion channels are exquisitely selective sensors for voltage and ligands, their potential and actual applications in biotechnology are manifold. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Understanding the association of Escherichia coli with diverse macroalgae in the lagoon of Venice

    NASA Astrophysics Data System (ADS)

    Quero, Grazia M.; Fasolato, Luca; Vignaroli, Carla; Luna, Gian Marco

    2015-06-01

    Recent studies provided evidence that the macroalga Cladopohora in lakes hosts associated Escherichia coli, with consequences on the environmental and human health. We expanded these investigations to other macroalgae (Ulva spp., Sargassum muticum and Undaria pinnatifida) widespread in the lagoon of Venice (Italy). Attached E. coli were abundant, accounting up to 3,250 CFU gram-1 of alga. Macroalgal-associated isolates belonged to all E. coli phylogroups, including pathogenic ones, and to Escherichia cryptic clades. Attached E. coli showed potential to grow even at in situ temperature on macroalgal extracts as only source of carbon and nutrients, and ability to produce biofilm in vitro. The genotypic diversity of the attached isolates was high, with significant differences between algae and the overlying water. Our evidences suggest that attached populations consist of both resident and transient strains, likely resulting from the heterogeneous input of fecal bacteria from the city. We report that cosmopolitan and invasive macroalgae may serve as source of E. coli, including pathogenic genotypes, and that this habitat can potentially support their growth. Considering the global diffusion of the macroalgae here studied, this phenomenon is likely occurring in other coastal cities worldwide and deserves further investigations from either the sanitary and ecological perspectives.

  14. Understanding the association of Escherichia coli with diverse macroalgae in the lagoon of Venice

    PubMed Central

    Quero, Grazia M.; Fasolato, Luca; Vignaroli, Carla; Luna, Gian Marco

    2015-01-01

    Recent studies provided evidence that the macroalga Cladopohora in lakes hosts associated Escherichia coli, with consequences on the environmental and human health. We expanded these investigations to other macroalgae (Ulva spp., Sargassum muticum and Undaria pinnatifida) widespread in the lagoon of Venice (Italy). Attached E. coli were abundant, accounting up to 3,250 CFU gram−1 of alga. Macroalgal-associated isolates belonged to all E. coli phylogroups, including pathogenic ones, and to Escherichia cryptic clades. Attached E. coli showed potential to grow even at in situ temperature on macroalgal extracts as only source of carbon and nutrients, and ability to produce biofilm in vitro. The genotypic diversity of the attached isolates was high, with significant differences between algae and the overlying water. Our evidences suggest that attached populations consist of both resident and transient strains, likely resulting from the heterogeneous input of fecal bacteria from the city. We report that cosmopolitan and invasive macroalgae may serve as source of E. coli, including pathogenic genotypes, and that this habitat can potentially support their growth. Considering the global diffusion of the macroalgae here studied, this phenomenon is likely occurring in other coastal cities worldwide and deserves further investigations from either the sanitary and ecological perspectives. PMID:26043415

  15. Understanding the association of Escherichia coli with diverse macroalgae in the lagoon of Venice.

    PubMed

    Quero, Grazia M; Fasolato, Luca; Vignaroli, Carla; Luna, Gian Marco

    2015-06-04

    Recent studies provided evidence that the macroalga Cladopohora in lakes hosts associated Escherichia coli, with consequences on the environmental and human health. We expanded these investigations to other macroalgae (Ulva spp., Sargassum muticum and Undaria pinnatifida) widespread in the lagoon of Venice (Italy). Attached E. coli were abundant, accounting up to 3,250 CFU gram(-1) of alga. Macroalgal-associated isolates belonged to all E. coli phylogroups, including pathogenic ones, and to Escherichia cryptic clades. Attached E. coli showed potential to grow even at in situ temperature on macroalgal extracts as only source of carbon and nutrients, and ability to produce biofilm in vitro. The genotypic diversity of the attached isolates was high, with significant differences between algae and the overlying water. Our evidences suggest that attached populations consist of both resident and transient strains, likely resulting from the heterogeneous input of fecal bacteria from the city. We report that cosmopolitan and invasive macroalgae may serve as source of E. coli, including pathogenic genotypes, and that this habitat can potentially support their growth. Considering the global diffusion of the macroalgae here studied, this phenomenon is likely occurring in other coastal cities worldwide and deserves further investigations from either the sanitary and ecological perspectives.

  16. Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds

    PubMed Central

    Fan, Meiqi; Nath, Amit Kumar; Tang, Yujiao; Choi, Young-Jin; Debnath, Trishna; Choi, Eun-Ju

    2018-01-01

    This review focuses on marine compounds with anti-prostate cancer properties. Marine species are unique and have great potential for the discovery of anticancer drugs. Marine sources are taxonomically diverse and include bacteria, cyanobacteria, fungi, algae, and mangroves. Marine-derived compounds, including nucleotides, amides, quinones, polyethers, and peptides are biologically active compounds isolated from marine organisms such as sponges, ascidians, gorgonians, soft corals, and bryozoans, including those mentioned above. Several compound classes such as macrolides and alkaloids include drugs with anti-cancer mechanisms, such as antioxidants, anti-angiogenics, antiproliferatives, and apoptosis-inducing drugs. Despite the diversity of marine species, most marine-derived bioactive compounds have not yet been evaluated. Our objective is to explore marine compounds to identify new treatment strategies for prostate cancer. This review discusses chemically and pharmacologically diverse marine natural compounds and their sources in the context of prostate cancer drug treatment. PMID:29757237

  17. Vast assembly of vocal marine mammals from diverse species on fish spawning ground.

    PubMed

    Wang, Delin; Garcia, Heriberto; Huang, Wei; Tran, Duong D; Jain, Ankita D; Yi, Dong Hoon; Gong, Zheng; Jech, J Michael; Godø, Olav Rune; Makris, Nicholas C; Ratilal, Purnima

    2016-03-17

    Observing marine mammal (MM) populations continuously in time and space over the immense ocean areas they inhabit is challenging but essential for gathering an unambiguous record of their distribution, as well as understanding their behaviour and interaction with prey species. Here we use passive ocean acoustic waveguide remote sensing (POAWRS) in an important North Atlantic feeding ground to instantaneously detect, localize and classify MM vocalizations from diverse species over an approximately 100,000 km(2) region. More than eight species of vocal MMs are found to spatially converge on fish spawning areas containing massive densely populated herring shoals at night-time and diffuse herring distributions during daytime. We find the vocal MMs divide the enormous fish prey field into species-specific foraging areas with varying degrees of spatial overlap, maintained for at least two weeks of the herring spawning period. The recorded vocalization rates are diel (24 h)-dependent for all MM species, with some significantly more vocal at night and others more vocal during the day. The four key baleen whale species of the region: fin, humpback, blue and minke have vocalization rate trends that are highly correlated to trends in fish shoaling density and to each other over the diel cycle. These results reveal the temporospatial dynamics of combined multi-species MM foraging activities in the vicinity of an extensive fish prey field that forms a massive ecological hotspot, and would be unattainable with conventional methodologies. Understanding MM behaviour and distributions is essential for management of marine ecosystems and for accessing anthropogenic impacts on these protected marine species.

  18. Recent Progress of Marine Polypeptides as Anticancer Agents

    PubMed

    Zheng, Lanhong; Xua, Yixin; Lin, Xiukun; Yuan, Zhixin; Liu, Minghua; Cao, Shousong; Zhang, Fuming; Linhardt, Robert J

    2018-04-29

    Marine environment constitutes an almost infinite resource for novel anticancer drugs discovery. The biodiversity of marine organisms provides a rich source for the discovery and development of novel anticancer peptides in the treatment of human cancer. Marine peptides represent a new opportunity to obtain lead compounds in biomedical field, particularly for cancer therapy. Providing an insight of the recent progress of patented marine peptides and presenting information about the structures and mechanistic mode of anticancer activities of these marine peptides. We reviewed recent progress on the patented anticancer peptides from marine organisms according to their targets on different signal pathways. This work focuses on relevant recent patents (2010-2018) that entail the anticancer activity with associated mechanism and related molecular diversity of marine peptides. The related cellular signaling pathways for novel peptides that induce apoptosis and affect tubulin-microtubule equilibrium, angiogenesis and kinase activity that are related to the anticancer and related pharmacological properties are also discussed. The recent patents (2010-2018) of marine peptides with anticancer activity were reviewed, and the anticancer activity of marine peptides with associated mechanism and related molecular diversity of marine peptides were also discussed. Marine peptides possess chemical diversity and displays potent anticancer activity via targeting different signal pathways. Some of the marine peptides are promising to be developed as novel anticancer agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Occurrence and diversity of Candida genus in marine environments

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Chi, Zhenming; Yue, Lixi; Chi, Zhe; Zhang, Dechao

    2008-11-01

    A total of 317 yeast isolates from seawater, sediments, mud of salterns, guts of marine fishes and marine algae were obtained. The results of routine identification and molecular characterization showed that six isolates among these marine yeasts belonged to Candida genus as Candida intermedia for YA01a, Candida parapsilosis for 3eA2, Candida quercitrusa for JHSb, Candia rugosa for wl8, Candida zeylanoides for TJY13a, and Candida membranifaciens for W14-3. Isolates YA01a ( Candida intermedia), wl8 ( Candida rugosa), 3eA2 ( Candida parapsilosis), and JHSb ( Candida quercitrusa) were found producing cell-bound lipase, while isolate W14-3 ( Candida membranifaciens) producing riboflavin. These marine yeast Candida spp. seem to have wide potential applications in biotechnology.

  20. Volcanic ash supports a diverse bacterial community in a marine mesocosm

    USGS Publications Warehouse

    Verena Witt,; Paul M Ayris,; Damby, David; Corrado Cimarelli,; Ulrich Kueppers,; Donald B Dingwell,; Gert Wörheide,

    2017-01-01

    Shallow-water coral reef ecosystems, particularly those already impaired by anthropogenic pressures, may be highly sensitive to disturbances from natural catastrophic events, such as volcanic eruptions. Explosive volcanic eruptions expel large quantities of silicate ash particles into the atmosphere, which can disperse across millions of square kilometres and deposit into coral reef ecosystems. Following heavy ash deposition, mass mortality of reef biota is expected, but little is known about the recovery of post-burial reef ecosystems. Reef regeneration depends partly upon the capacity of the ash deposit to be colonised by waterborne bacterial communities and may be influenced to an unknown extent by the physiochemical properties of the ash substrate itself. To determine the potential for volcanic ash to support pioneer bacterial colonisation, we exposed five well-characterised volcanic and coral reef substrates to a marine aquarium under low light conditions for 3 months: volcanic ash, synthetic volcanic glass, carbonate reef sand, calcite sand and quartz sand. Multivariate statistical analysis of Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting data demonstrates clear segregation of volcanic substrates from the quartz and coral reef substrates over 3 months of bacterial colonisation. Overall bacterial diversity showed shared and substrate-specific bacterial communities; however, the volcanic ash substrate supported the most diverse bacterial community. These data suggest a significant influence of substrate properties (composition, granulometry and colour) on bacterial settlement. Our findings provide first insights into physicochemical controls on pioneer bacterial colonisation of volcanic ash and highlight the potential for volcanic ash deposits to support bacterial diversity in the aftermath of reef burial, on timescales that could permit cascading effects on larval settlement.

  1. Carotenoids in Marine Animals

    PubMed Central

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine animal carotenoids from natural product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from marine animals over the last decade. PMID:21566799

  2. Natural Products from Marine Fungi—Still an Underrepresented Resource

    PubMed Central

    Imhoff, Johannes F.

    2016-01-01

    Marine fungi represent a huge potential for new natural products and an increased number of new metabolites have become known over the past years, while much of the hidden potential still needs to be uncovered. Representative examples of biodiversity studies of marine fungi and of natural products from a diverse selection of marine fungi from the author’s lab are highlighting important aspects of this research. If one considers the huge phylogenetic diversity of marine fungi and their almost ubiquitous distribution, and realizes that most of the published work on secondary metabolites of marine fungi has focused on just a few genera, strictly speaking Penicillium, Aspergillus and maybe also Fusarium and Cladosporium, the diversity of marine fungi is not adequately represented in investigations on their secondary metabolites and the less studied species deserve special attention. In addition to results on recently discovered new secondary metabolites of Penicillium species, the diversity of fungi in selected marine habitats is highlighted and examples of groups of secondary metabolites produced by representatives of a variety of different genera and their bioactivities are presented. Special focus is given to the production of groups of derivatives of metabolites by the fungi and to significant differences in biological activities due to small structural changes. PMID:26784209

  3. Diversity and biological activities of the bacterial community associated with the marine sponge Phorbas tenacior (Porifera, Demospongiae).

    PubMed

    Dupont, S; Carré-Mlouka, A; Descarrega, F; Ereskovsky, A; Longeon, A; Mouray, E; Florent, I; Bourguet-Kondracki, M L

    2014-01-01

    The diversity of the cultivable microbiota of the marine sponge Phorbas tenacior frequently found in the Mediterranean Sea was investigated, and its potential as a source of antimicrobial, antioxidant and antiplasmodial compounds was evaluated. The cultivable bacterial community was studied by isolation, cultivation and 16S rRNA gene sequencing. Twenty-three bacterial strains were isolated and identified in the Proteobacteria (α or γ classes) and Actinobacteria phyla. Furthermore, three different bacterial morphotypes localized extracellularly within the sponge tissues were revealed by microscopic observations. Bacterial strains were assigned to seven different genera, namely Vibrio, Photobacterium, Shewanella, Pseudomonas, Ruegeria, Pseudovibrio and Citricoccus. The strains affiliated to the same genus were differentiated according to their genetic dissimilarities using random amplified polymorphic DNA (RAPD) analyses. Eleven bacterial strains were selected for evaluation of their bioactivities. Three isolates Pseudovibrio P1Ma4, Vibrio P1MaNal1 and Citricoccus P1S7 revealed antimicrobial activity; Citricoccus P1S7 and Vibrio P1MaNal1 isolates also exhibited antiplasmodial activity, while two Vibrio isolates P1Ma8 and P1Ma5 displayed antioxidant activity. These data confirmed the importance of Proteobacteria and Actinobacteria associated with marine sponges as a reservoir of bioactive compounds. This study presents the first report on the diversity of the cultivable bacteria associated with the marine sponge Phorbas tenacior, frequently found in the Mediterranean Sea. Evaluation of the antiplasmodial, antimicrobial and antioxidant activities of the isolates has been investigated and allowed to select bacterial strains, confirming the importance of Proteobacteria and Actinobacteria as sources of bioactive compounds. © 2013 The Society for Applied Microbiology.

  4. Macroalgal Composition Determines the Structure of Benthic Assemblages Colonizing Fragmented Habitats.

    PubMed

    Matias, Miguel G; Arenas, Francisco; Rubal, Marcos; Pinto, Isabel S

    2015-01-01

    Understanding the consequences of fragmentation of coastal habitats is an important topic of discussion in marine ecology. Research on the effects of fragmentation has revealed complex and context-dependent biotic responses, which prevent generalizations across different habitats or study organisms. The effects of fragmentation in marine environments have been rarely investigated across heterogeneous habitats, since most studies have focused on a single type of habitat or patch. In this study, we assessed the effects of different levels of fragmentation (i.e. decreasing size of patches without overall habitat loss). We measured these effects using assemblages of macro-invertebrates colonizing representative morphological groups of intertidal macroalgae (e.g. encrusting, turf and canopy-forming algae). For this purpose, we constructed artificial assemblages with different combinations of morphological groups and increasing levels of fragmentation by manipulating the amount of bare rock or the spatial arrangement of different species in mixed assemblages. In general, our results showed that 1) fragmentation did not significantly affect the assemblages of macroinvertebrates; 2) at greater levels of fragmentation, there were greater numbers of species in mixed algal assemblages, suggesting that higher habitat complexity promotes species colonization. Our results suggest that predicting the consequences of fragmentation in heterogeneous habitats is dependent on the type and diversity of morphological groups making up those habitats.

  5. Macroalgal response to a warmer ocean with higher CO2 concentration.

    PubMed

    Hernández, Celso A; Sangil, Carlos; Fanai, Alessandra; Hernández, José Carlos

    2018-05-01

    Primary production and respiration rates were studied for six seaweed species (Cystoseira abies-marina, Lobophora variegata, Pterocladiella capillacea, Canistrocarpus cervicornis, Padina pavonica and Corallina caespitosa) from Subtropical North-East Atlantic, to estimate the combined effects of different pH and temperature levels. Macroalgal samples were cultured at temperature and pH combinations ranging from current levels to those predicted for the next century (19, 21, 23, 25 °C, pH: 8.1, 7.7 and 7.4). Decreased pH had a positive effect on short-term production of the studied species. Raised temperatures had a more varied and species dependent effect on short term primary production. Thermophilic algae increased their production at higher temperatures, while temperate species were more productive at lower or present temperature conditions. Temperature also affected algal respiration rates, which were higher at low temperature levels. The results suggest that biomass and productivity of the more tropical species in coastal ecosystems would be enhanced by future ocean conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Climate-driven regime shifts in Arctic marine benthos

    PubMed Central

    Kortsch, Susanne; Primicerio, Raul; Beuchel, Frank; Renaud, Paul E.; Rodrigues, João; Lønne, Ole Jørgen; Gulliksen, Bjørn

    2012-01-01

    Climate warming can trigger abrupt ecosystem changes in the Arctic. Despite the considerable interest in characterizing and understanding the ecological impact of rapid climate warming in the Arctic, few long time series exist that allow addressing these research goals. During a 30-y period (1980–2010) of gradually increasing seawater temperature and decreasing sea ice cover in Svalbard, we document rapid and extensive structural changes in the rocky-bottom communities of two Arctic fjords. The most striking component of the benthic reorganization was an abrupt fivefold increase in macroalgal cover in 1995 in Kongsfjord and an eightfold increase in 2000 in Smeerenburgfjord. Simultaneous changes in the abundance of benthic invertebrates suggest that the macroalgae played a key structuring role in these communities. The abrupt, substantial, and persistent nature of the changes observed is indicative of a climate-driven ecological regime shift. The ecological processes thought to drive the observed regime shifts are likely to promote the borealization of these Arctic marine communities in the coming years. PMID:22891319

  7. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts and gabbros

    NASA Astrophysics Data System (ADS)

    Mason, O. U.; di Meo-Savoie, C. A.; Nakagawa, T.; van Nostrand, J. D.; Rosner, M.; Maruyama, A.; Zhou, J.; Fisk, M. R.; Giovannoni, S. J.

    2008-12-01

    Oceanic crust covers nearly 70% of the Earth's surface, of which, the upper, sediment layer is estimated to harbor substantial microbial biomass. Marine crust, however, extends several kilometers beyond this surficial layer, and includes the basalt and gabbro layers. The microbial diversity in basalts is well characterized, yet metabolic diversity is unknown. To date, the microflora associated with gabbros, including microbial and metabolic diversity has not been reported. In our analyses basaltic and gabbroic endoliths were analyzed using terminal restriction fragment length polymorphism, cloning and sequencing, and microarray analysis of functional genes. Our results suggest that despite nearly identical chemical compositions of basalt and gabbro the associated microflora did not overlap. Basalt samples harbor a surprising diversity of seemingly cosmopolitan microorganisms, some of which appear to be basalt specialists. Conversely, gabbros have a low diversity of endoliths, none of which appear to be specifically adapted to the gabbroic environment. Microarray analysis (GeoChip) was used to assay for functional gene diversity in basalts and gabbros. In basalt genes coding for previously unreported processes such as carbon fixation, methane-oxidation, methanogenesis, and nitrogen fixation were present, suggesting that basalts harbor previously unrecognized metabolic diversity. Similar processes were observed in gabbroic samples, yet metabolic inference from phylogenetic relationships of gabbroic endoliths with other microorganisms, suggests that hydrocarbon oxidation is the prevailing metabolism in this environment. Our analyses revealed that the basalt and gabbro layers harbor microorganisms with the genetic potential to significantly impact biogeochemical cycling in the lithosphere and overlying hydrosphere.

  8. Volcanic ash supports a diverse bacterial community in a marine mesocosm.

    PubMed

    Witt, V; Ayris, P M; Damby, D E; Cimarelli, C; Kueppers, U; Dingwell, D B; Wörheide, G

    2017-05-01

    Shallow-water coral reef ecosystems, particularly those already impaired by anthropogenic pressures, may be highly sensitive to disturbances from natural catastrophic events, such as volcanic eruptions. Explosive volcanic eruptions expel large quantities of silicate ash particles into the atmosphere, which can disperse across millions of square kilometres and deposit into coral reef ecosystems. Following heavy ash deposition, mass mortality of reef biota is expected, but little is known about the recovery of post-burial reef ecosystems. Reef regeneration depends partly upon the capacity of the ash deposit to be colonised by waterborne bacterial communities and may be influenced to an unknown extent by the physiochemical properties of the ash substrate itself. To determine the potential for volcanic ash to support pioneer bacterial colonisation, we exposed five well-characterised volcanic and coral reef substrates to a marine aquarium under low light conditions for 3 months: volcanic ash, synthetic volcanic glass, carbonate reef sand, calcite sand and quartz sand. Multivariate statistical analysis of Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting data demonstrates clear segregation of volcanic substrates from the quartz and coral reef substrates over 3 months of bacterial colonisation. Overall bacterial diversity showed shared and substrate-specific bacterial communities; however, the volcanic ash substrate supported the most diverse bacterial community. These data suggest a significant influence of substrate properties (composition, granulometry and colour) on bacterial settlement. Our findings provide first insights into physicochemical controls on pioneer bacterial colonisation of volcanic ash and highlight the potential for volcanic ash deposits to support bacterial diversity in the aftermath of reef burial, on timescales that could permit cascading effects on larval settlement. © 2017 The Authors. Geobiology Published by John Wiley

  9. Reef-scale failure of coral settlement following typhoon disturbance and macroalgal bloom in Palau, Western Pacific

    NASA Astrophysics Data System (ADS)

    Doropoulos, Christopher; Roff, George; Zupan, Mirta; Nestor, Victor; Isechal, Adelle L.; Mumby, Peter J.

    2014-09-01

    Factors affecting coral recruitment are critical in influencing the scope and rate of reef recovery after disturbance. In December 2012, super-typhoon Bopha caused immense damage to the eastern reefs of Palau, resulting in near complete loss of coral cover. Within weeks following the typhoon, an ephemeral monospecific bloom of the foliose red macroalga Liagora (up to 40 % cover in February 2013) was recorded at impacted reefs with moderate wave exposure. Conversely, impacted and un-impacted reefs in areas of low wave exposure remained Liagora free. To quantify the effect of this ephemeral macroalgal bloom on coral recruitment, we installed settlement tiles during the major spawning period (March-April 2013) at forereefs with and without Liagora. Reefs ( n = 3) with Liagora (13-24 % cover in April) experienced an almost complete failure of settlement, with only two individual corals recorded on settlement tiles ( n = 90). This settlement failure was unexpected, as tiles were situated adjacent to, and not within Liagora canopies. In contrast, settlement was significantly higher on reefs that lacked macroalgae ( n = 3), ranging from an average of 0.5-2.5 and 2.7-18.9 individuals 25 cm-2 per top- and under-sided tile, respectively. Reefs with and without Liagora were in close proximity (≤8 km), and hydrodynamic models predicted that larval supply did not limit coral settlement among sites. While some differences in the community composition on the tiles were observed among sites, settlement substrate availability also did not limit coral settlement. Generalised linear mixed effects models indicated that while no settlement substrate explained more than 10 % of the variability in coral settlement, coral cover positively accounted for 26 %, and the cover of Liagora on reefs negatively accounted for more than 50 % of the observed variation. Combined, our results indicate that the typhoon induced ephemeral macroalgal bloom resulted in a reef-scale failure of coral

  10. Secondary Metabolites from Marine Microorganisms. II. Marine Fungi and Their Habitats.

    PubMed

    Orlova, T I; Bulgakova, V G; Polin, A N

    Marine-derived fungi are of great interest as a new promising source of biologically active products such as anticancer compounds, antibiotics, inhibitors of biochemical processes. Since marine organisms inhabit biologically competitive environment with unique conditions, the chemical diversity of the secondary metabolites from marine fungi is considerably high. Recent genomic studies demonstrated that fungi can carry gene clasters encoding production of previously unknown secondary metabolites. Activation of the attenuated or silent genes would be useful either for improving activities of the known compounds or for discovery of new products.

  11. Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments

    PubMed Central

    Kennedy, Jonathan; Marchesi, Julian R; Dobson, Alan DW

    2008-01-01

    Metagenomic based strategies have previously been successfully employed as powerful tools to isolate and identify enzymes with novel biocatalytic activities from the unculturable component of microbial communities from various terrestrial environmental niches. Both sequence based and function based screening approaches have been employed to identify genes encoding novel biocatalytic activities and metabolic pathways from metagenomic libraries. While much of the focus to date has centred on terrestrial based microbial ecosystems, it is clear that the marine environment has enormous microbial biodiversity that remains largely unstudied. Marine microbes are both extremely abundant and diverse; the environments they occupy likewise consist of very diverse niches. As culture-dependent methods have thus far resulted in the isolation of only a tiny percentage of the marine microbiota the application of metagenomic strategies holds great potential to study and exploit the enormous microbial biodiversity which is present within these marine environments. PMID:18717988

  12. Bioprospecting Marine Plankton

    PubMed Central

    Abida, Heni; Ruchaud, Sandrine; Rios, Laurent; Humeau, Anne; Probert, Ian; De Vargas, Colomban; Bach, Stéphane; Bowler, Chris

    2013-01-01

    The ocean dominates the surface of our planet and plays a major role in regulating the biosphere. For example, the microscopic photosynthetic organisms living within provide 50% of the oxygen we breathe, and much of our food and mineral resources are extracted from the ocean. In a time of ecological crisis and major changes in our society, it is essential to turn our attention towards the sea to find additional solutions for a sustainable future. Remarkably, while we are overexploiting many marine resources, particularly the fisheries, the planktonic compartment composed of zooplankton, phytoplankton, bacteria and viruses, represents 95% of marine biomass and yet the extent of its diversity remains largely unknown and underexploited. Consequently, the potential of plankton as a bioresource for humanity is largely untapped. Due to their diverse evolutionary backgrounds, planktonic organisms offer immense opportunities: new resources for medicine, cosmetics and food, renewable energy, and long-term solutions to mitigate climate change. Research programs aiming to exploit culture collections of marine micro-organisms as well as to prospect the huge resources of marine planktonic biodiversity in the oceans are now underway, and several bioactive extracts and purified compounds have already been identified. This review will survey and assess the current state-of-the-art and will propose methodologies to better exploit the potential of marine plankton for drug discovery and for dermocosmetics. PMID:24240981

  13. New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade.

    PubMed

    Mi, Yue; Zhang, Jinrong; He, Shan; Yan, Xiaojun

    2017-05-05

    Marine cyanobacteria are significant sources of structurally diverse marine natural products with broad biological activities. In the past 10 years, excellent progress has been made in the discovery of marine cyanobacteria-derived peptides with diverse chemical structures. Most of these peptides exhibit strong pharmacological activities, such as neurotoxicity and cytotoxicity. In the present review, we summarized peptides isolated from marine cyanobacteria since 2007.

  14. Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea.

    PubMed

    Ding, Bo; Yin, Ying; Zhang, Fengli; Li, Zhiyong

    2011-08-01

    Sponge-associated fungi represent an important source of marine natural products, but little is known about the fungal diversity and the relationship of sponge-fungal association, especially no research on the fungal diversity in the South China Sea sponge has been reported. In this study, a total of 111 cultivable fungi strains were isolated from two South China Sea sponges Clathrina luteoculcitella and Holoxea sp. using eight different media. Thirty-two independent representatives were selected for analysis of phylogenetic diversity according to ARDRA and morphological characteristics. The culturable fungal communities consisted of at least 17 genera within ten taxonomic orders of two phyla (nine orders of the phylum Ascomycota and one order of the phylum Basidiomycota) including some potential novel marine fungi. Particularly, eight genera of Apiospora, Botryosphaeria, Davidiella, Didymocrea, Lentomitella, Marasmius, Pestalotiopsis, and Rhizomucor were isolated from sponge for the first time. Sponge C. luteoculcitella has greater culturable fungal diversity than sponge Holoxea sp. Five genera of Aspergillus, Davidiella, Fusarium, Paecilomyces, and Penicillium were isolated from both sponges, while 12 genera of Apiospora, Botryosphaeria, Candida, Marasmius, Cladosporium, Didymocrea, Hypocrea, Lentomitella, Nigrospora, Pestalotiopsis, Rhizomucor, and Scopulariopsis were isolated from sponge C. luteoculcitella only. Order Eurotiales especially genera Penicillium, Aspergillus, and order Hypocreales represented the dominant culturable fungi in these two South China Sea sponges. Nigrospora oryzae strain PF18 isolated from sponge C. luteoculcitella showed a strong and broad spectrum antimicrobial activities suggesting the potential for antimicrobial compounds production.

  15. Diversity of bacteria and archaea from two shallow marine hydrothermal vents from Vulcano Island.

    PubMed

    Antranikian, Garabed; Suleiman, Marcel; Schäfers, Christian; Adams, Michael W W; Bartolucci, Simonetta; Blamey, Jenny M; Birkeland, Nils-Kåre; Bonch-Osmolovskaya, Elizaveta; da Costa, Milton S; Cowan, Don; Danson, Michael; Forterre, Patrick; Kelly, Robert; Ishino, Yoshizumi; Littlechild, Jennifer; Moracci, Marco; Noll, Kenneth; Oshima, Tairo; Robb, Frank; Rossi, Mosè; Santos, Helena; Schönheit, Peter; Sterner, Reinhard; Thauer, Rudolf; Thomm, Michael; Wiegel, Jürgen; Stetter, Karl Otto

    2017-07-01

    To obtain new insights into community compositions of hyperthermophilic microorganisms, defined as having optimal growth temperatures of 80 °C and above, sediment and water samples were taken from two shallow marine hydrothermal vents (I and II) with temperatures of 100 °C at Vulcano Island, Italy. A combinatorial approach of denaturant gradient gel electrophoresis (DGGE) and metagenomic sequencing was used for microbial community analyses of the samples. In addition, enrichment cultures, growing anaerobically on selected polysaccharides such as starch and cellulose, were also analyzed by the combinatorial approach. Our results showed a high abundance of hyperthermophilic archaea, especially in sample II, and a comparable diverse archaeal community composition in both samples. In particular, the strains of the hyperthermophilic anaerobic genera Staphylothermus and Thermococcus, and strains of the aerobic hyperthermophilic genus Aeropyrum, were abundant. Regarding the bacterial community, ε-Proteobacteria, especially the genera Sulfurimonas and Sulfurovum, were highly abundant. The microbial diversity of the enrichment cultures changed significantly by showing a high dominance of archaea, particularly the genera Thermococcus and Palaeococcus, depending on the carbon source and the selected temperature.

  16. Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity

    PubMed Central

    Edgar, Graham J.; Alexander, Timothy J.; Lefcheck, Jonathan S.; Bates, Amanda E.; Kininmonth, Stuart J.; Thomson, Russell J.; Duffy, J. Emmett; Costello, Mark J.; Stuart-Smith, Rick D.

    2017-01-01

    Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and −15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas. PMID:29057321

  17. Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity.

    PubMed

    Edgar, Graham J; Alexander, Timothy J; Lefcheck, Jonathan S; Bates, Amanda E; Kininmonth, Stuart J; Thomson, Russell J; Duffy, J Emmett; Costello, Mark J; Stuart-Smith, Rick D

    2017-10-01

    Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and -15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas.

  18. Limited genetic diversity among Sarcocystis neurona strains infecting southern sea otters precludes distinction between marine and terrestrial isolates

    PubMed Central

    Wendte, J.M.; Miller, M.A.; Nandra, A.K.; Peat, S.M.; Crosbie, P.R.; Conrad, P.A.; Grigg, M.E.

    2010-01-01

    Sarcocystis neurona is an apicomplexan parasite identified as a cause of fatal neurological disease in the threatened southern sea otter (Enhydra lutris nereis). In an effort to characterize virulent S. neurona strains circulating in the marine ecosystem, this study developed a range of markers relevant for molecular genotyping. Highly conserved sequences within the 18S ribosomal gene array, the plastid-encoded RNA polymerase (RPOb) and the cytochrome c oxidase subunit 1 mitochondrial gene (CO1) were assessed for their ability to distinguish isolates at the genus and species level. For within-species comparisons, five surface antigens (SnSAG1-SnSAG5) and one high resolution microsatellite marker (Sn9) were developed as genotyping markers to evaluate intra-strain diversity. Molecular analysis at multiple loci revealed insufficient genetic diversity to distinguish terrestrial isolates from strains infecting marine mammals. Furthermore, SnSAG specific primers applied against DNA from the closely related species, Sarcocystis falcatula, lead to the discovery of highly similar orthologs to SnSAG2, 3, and 4, calling into question the specificity of diagnostic tests based on these antigens. The results of this study suggest a population genetic structure for S. neurona similar to that reported for the related parasite, Toxoplasma gondii, dominated by a limited number of successful genotypes. PMID:20071081

  19. Phylogenetic Diversity and Biological Activity of Actinobacteria Isolated from the Chukchi Shelf Marine Sediments in the Arctic Ocean

    PubMed Central

    Yuan, Meng; Yu, Yong; Li, Hui-Rong; Dong, Ning; Zhang, Xiao-Hua

    2014-01-01

    Marine environments are a rich source of Actinobacteria and have the potential to produce a wide variety of biologically active secondary metabolites. In this study, we used four selective isolation media to culture Actinobacteria from the sediments collected from the Chukchi Shelf in the Arctic Ocean. A total of 73 actinobacterial strains were isolated. Based on repetitive DNA fingerprinting analysis, we selected 30 representatives for partial characterization according to their phylogenetic diversity, antimicrobial activities and secondary-metabolite biosynthesis genes. Results from the 16S rRNA gene sequence analysis indicated that the 30 strains could be sorted into 18 phylotypes belonging to 14 different genera: Agrococcus, Arsenicicoccus, Arthrobacter, Brevibacterium, Citricoccus, Janibacter, Kocuria, Microbacterium, Microlunatus, Nocardioides, Nocardiopsis, Saccharopolyspora, Salinibacterium and Streptomyces. To our knowledge, this paper is the first report on the isolation of Microlunatus genus members from marine habitats. Of the 30 isolates, 11 strains exhibited antibacterial and/or antifungal activity, seven of which have activities against Bacillus subtilis and Candida albicans. All 30 strains have at least two biosynthetic genes, one-third of which possess more than four biosynthetic genes. This study demonstrates the significant diversity of Actinobacteria in the Chukchi Shelf sediment and their potential for producing biologically active compounds and novel material for genetic manipulation or combinatorial biosynthesis. PMID:24663116

  20. Seaweed raft and farm design in the United States and China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKay, L.B.

    1983-01-01

    The following topics are discussed in this report: pilot-scale mariculture of seaweeds in Washington; experimental-scale raft culture of marine macroalgae in inland marine waters; macroalgal culture in California and China; land-based cultivation of seaweeds: an assessment of their potential yields for 'energy farming'; a design for energy-independent seaweed raft culture in tidal creeks and rivers; and the New York State marine biomass program.

  1. Microbial community phylogenetic and trait diversity declines with depth in a marine oxygen minimum zone.

    PubMed

    Bryant, Jessica A; Stewart, Frank J; Eppley, John M; DeLong, Edward F

    2012-07-01

    Oxygen minimum zones (OMZs) are natural physical features of the world's oceans. They create steep physiochemical gradients in the water column, which most notably include a dramatic draw down in oxygen concentrations over small vertical distances (<100 m). Microbial communities within OMZs play central roles in ocean and global biogeochemical cycles, yet we still lack a fundamental understanding of how microbial biodiversity is distributed across OMZs. Here, we used metagenomic sequencing to investigate microbial diversity across a vertical gradient in the water column during three seasons in the Eastern Tropical South Pacific (ETSP) OMZ. Based on analysis of small subunit ribosomal RNA (SSU rRNA) gene fragments, we found that both taxonomic and phylogenetic diversity declined steeply along the transition from oxygen-rich surface water to the permanent OMZ. We observed similar declines in the diversity of protein-coding gene categories, suggesting a decrease in functional (trait) diversity with depth. Metrics of functional and trait dispersion indicated that microbial communities are phylogenetically and functionally more overdispersed in oxic waters, but clustered within the OMZ. These dispersion patterns suggest that community assembly drivers (e.g., competition, environmental filtering) vary strikingly across the oxygen gradient. To understand the generality of our findings, we compared OMZ results to two marine depth gradients in subtropical oligotrophic sites and found that the oligotrophic sites did not display similar patterns, likely reflecting unique features found in the OMZ. Finally, we discuss how our results may relate to niche theory, diversity-energy relationships and stress gradients.

  2. Protection Enhances Community and Habitat Stability: Evidence from a Mediterranean Marine Protected Area

    PubMed Central

    Fraschetti, Simonetta; Guarnieri, Giuseppe; Bevilacqua, Stanislao; Terlizzi, Antonio; Boero, Ferdinando

    2013-01-01

    Rare evidences support that Marine Protected Areas (MPAs) enhance the stability of marine habitats and assemblages. Based on nine years of observation (2001–2009) inside and outside a well managed MPA, we assessed the potential of conservation and management actions to modify patterns of spatial and/or temporal variability of Posidonia oceanica meadows, the lower midlittoral and the shallow infralittoral rock assemblages. Significant differences in both temporal variations and spatial patterns were observed between protected and unprotected locations. A lower temporal variability in the protected vs. unprotected assemblages was found in the shallow infralittoral, demonstrating that, at least at local scale, protection can enhance community stability. Macrobenthos with long-lived and relatively slow-growing invertebrates and structurally complex algal forms were homogeneously distributed in space and went through little fluctuations in time. In contrast, a mosaic of disturbed patches featured unprotected locations, with small-scale shifts from macroalgal stands to barrens, and harsh temporal variations between the two states. Opposite patterns of spatial and temporal variability were found for the midlittoral assemblages. Despite an overall clear pattern of seagrass regression through time, protected meadows showed a significantly higher shoot density than unprotected ones, suggesting a higher resistance to local human activities. Our results support the assumption that the exclusion/management of human activities within MPAs enhance the stability of the structural components of protected marine systems, reverting or arresting threat-induced trajectories of change. PMID:24349135

  3. New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade

    PubMed Central

    Mi, Yue; Zhang, Jinrong; He, Shan; Yan, Xiaojun

    2017-01-01

    Marine cyanobacteria are significant sources of structurally diverse marine natural products with broad biological activities. In the past 10 years, excellent progress has been made in the discovery of marine cyanobacteria-derived peptides with diverse chemical structures. Most of these peptides exhibit strong pharmacological activities, such as neurotoxicity and cytotoxicity. In the present review, we summarized peptides isolated from marine cyanobacteria since 2007. PMID:28475149

  4. Macroalgal Composition Determines the Structure of Benthic Assemblages Colonizing Fragmented Habitats

    PubMed Central

    Matias, Miguel G.; Arenas, Francisco; Rubal, Marcos; Pinto, Isabel S.

    2015-01-01

    Understanding the consequences of fragmentation of coastal habitats is an important topic of discussion in marine ecology. Research on the effects of fragmentation has revealed complex and context-dependent biotic responses, which prevent generalizations across different habitats or study organisms. The effects of fragmentation in marine environments have been rarely investigated across heterogeneous habitats, since most studies have focused on a single type of habitat or patch. In this study, we assessed the effects of different levels of fragmentation (i.e. decreasing size of patches without overall habitat loss). We measured these effects using assemblages of macro-invertebrates colonizing representative morphological groups of intertidal macroalgae (e.g. encrusting, turf and canopy-forming algae). For this purpose, we constructed artificial assemblages with different combinations of morphological groups and increasing levels of fragmentation by manipulating the amount of bare rock or the spatial arrangement of different species in mixed assemblages. In general, our results showed that 1) fragmentation did not significantly affect the assemblages of macroinvertebrates; 2) at greater levels of fragmentation, there were greater numbers of species in mixed algal assemblages, suggesting that higher habitat complexity promotes species colonization. Our results suggest that predicting the consequences of fragmentation in heterogeneous habitats is dependent on the type and diversity of morphological groups making up those habitats. PMID:26554924

  5. Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts.

    PubMed

    Alex, Anoop; Antunes, Agostinho

    2018-01-01

    Bacteria belonging to the genus Pseudovibrio have been frequently found in association with a wide variety of marine eukaryotic invertebrate hosts, indicative of their versatile and symbiotic lifestyle. A recent comparison of the sponge-associated Pseudovibrio genomes has shed light on the mechanisms influencing a successful symbiotic association with sponges. In contrast, the genomic architecture of Pseudovibrio bacteria associated with other marine hosts has received less attention. Here, we performed genus-wide comparative analyses of 18 Pseudovibrio isolated from sponges, coral, tunicates, flatworm, and seawater. The analyses revealed a certain degree of commonality among the majority of sponge- and coral-associated bacteria. Isolates from other marine invertebrate host, tunicates, exhibited a genetic repertoire for cold adaptation and specific metabolic abilities including mucin degradation in the Antarctic tunicate-associated bacterium Pseudovibrio sp. Tun.PHSC04_5.I4. Reductive genome evolution was simultaneously detected in the flatworm-associated bacteria and the sponge-associated bacterium P. axinellae AD2, through the loss of major secretion systems (type III/VI) and virulence/symbioses factors such as proteins involved in adhesion and attachment to the host. Our study also unraveled the presence of a CRISPR-Cas system in P. stylochi UST20140214-052 a flatworm-associated bacterium possibly suggesting the role of CRISPR-based adaptive immune system against the invading virus particles. Detection of mobile elements and genomic islands (GIs) in all bacterial members highlighted the role of horizontal gene transfer for the acquisition of novel genetic features, likely enhancing the bacterial ecological fitness. These findings are insightful to understand the role of genome diversity in Pseudovibrio as an evolutionary strategy to increase their colonizing success across a wide range of marine eukaryotic hosts.

  6. Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts

    PubMed Central

    Alex, Anoop

    2018-01-01

    Bacteria belonging to the genus Pseudovibrio have been frequently found in association with a wide variety of marine eukaryotic invertebrate hosts, indicative of their versatile and symbiotic lifestyle. A recent comparison of the sponge-associated Pseudovibrio genomes has shed light on the mechanisms influencing a successful symbiotic association with sponges. In contrast, the genomic architecture of Pseudovibrio bacteria associated with other marine hosts has received less attention. Here, we performed genus-wide comparative analyses of 18 Pseudovibrio isolated from sponges, coral, tunicates, flatworm, and seawater. The analyses revealed a certain degree of commonality among the majority of sponge- and coral-associated bacteria. Isolates from other marine invertebrate host, tunicates, exhibited a genetic repertoire for cold adaptation and specific metabolic abilities including mucin degradation in the Antarctic tunicate-associated bacterium Pseudovibrio sp. Tun.PHSC04_5.I4. Reductive genome evolution was simultaneously detected in the flatworm-associated bacteria and the sponge-associated bacterium P. axinellae AD2, through the loss of major secretion systems (type III/VI) and virulence/symbioses factors such as proteins involved in adhesion and attachment to the host. Our study also unraveled the presence of a CRISPR-Cas system in P. stylochi UST20140214-052 a flatworm-associated bacterium possibly suggesting the role of CRISPR-based adaptive immune system against the invading virus particles. Detection of mobile elements and genomic islands (GIs) in all bacterial members highlighted the role of horizontal gene transfer for the acquisition of novel genetic features, likely enhancing the bacterial ecological fitness. These findings are insightful to understand the role of genome diversity in Pseudovibrio as an evolutionary strategy to increase their colonizing success across a wide range of marine eukaryotic hosts. PMID:29775460

  7. Marine genomics: News and views.

    PubMed

    Ribeiro, Ângela M; Foote, Andrew D; Kupczok, Anne; Frazão, Bárbara; Limborg, Morten T; Piñeiro, Rosalía; Abalde, Samuel; Rocha, Sara; da Fonseca, Rute R

    2017-02-01

    Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag between observed and estimated diversity is in part due to the elusiveness of most aquatic species and the technical difficulties of exploring extreme environments, as for instance the abyssal plains and polar waters. In the last decade, the rapid development of affordable and flexible high-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from evolutionary biology of non-model organisms to species of commercial relevance for fishing, aquaculture and biomedicine. Instead of providing an exhaustive list of available genomic data, we rather set to present contextualized examples that best represent the current status of the field of marine genomics. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Grazer responses to variable macroalgal resource conditions facilitate habitat structuring

    PubMed Central

    Perissinotto, Renzo; Bird, Matthew S.; Pelletier, Noémie

    2018-01-01

    Consumer responses to altered resource conditions can vary depending on dietary preference, resource characteristics and secondary resource features such as shelter. These can have cascading effects, especially if the consumed resource impacts on overall ecological functioning. In this study, we assessed the dietary composition of grazer communities following seasonal changes in the characteristics of their staple food-source (macroalgae). This was conducted in the living stromatolite pools growing along the coast of South Africa. Stable isotope mixing models suggested that following macroalgal bleaching in summer, metazoan consumers shifted their diet from predominantly macroalgae to a generalist composition. This has important implications for the integrity of the stromatolite matrix and its layered deposition. Where previously in winter stromatolite microalgae comprised a minor component of metazoan consumer diets, in summer, following a change in the resource conditions of macroalgae, microalgae featured more prominently in grazer diets. This seasonal grazing pressure on stromatolite-related resources probably promotes the pattern of annual layering observed in the stromatolite accretion. It also demonstrates a mechanism whereby grazer dietary shifts following a change in their preferred food resource can affect the ecosystem structure of their environment, specifically the stromatolite layering process which responds to microalgal growth or grazing conditions. PMID:29410845

  9. A comprehensive framework for functional diversity patterns of marine chromophytic phytoplankton using rbcL phylogeny

    PubMed Central

    Samanta, Brajogopal; Bhadury, Punyasloke

    2016-01-01

    Marine chromophytes are taxonomically diverse group of algae and contribute approximately half of the total oceanic primary production. To understand the global patterns of functional diversity of chromophytic phytoplankton, robust bioinformatics and statistical analyses including deep phylogeny based on 2476 form ID rbcL gene sequences representing seven ecologically significant oceanographic ecoregions were undertaken. In addition, 12 form ID rbcL clone libraries were generated and analyzed (148 sequences) from Sundarbans Biosphere Reserve representing the world’s largest mangrove ecosystem as part of this study. Global phylogenetic analyses recovered 11 major clades of chromophytic phytoplankton in varying proportions with several novel rbcL sequences in each of the seven targeted ecoregions. Majority of OTUs was found to be exclusive to each ecoregion, whereas some were shared by two or more ecoregions based on beta-diversity analysis. Present phylogenetic and bioinformatics analyses provide a strong statistical support for the hypothesis that different oceanographic regimes harbor distinct and coherent groups of chromophytic phytoplankton. It has been also shown as part of this study that varying natural selection pressure on form ID rbcL gene under different environmental conditions could lead to functional differences and overall fitness of chromophytic phytoplankton populations. PMID:26861415

  10. Culture-dependent and independent studies of microbial diversity in highly copper-contaminated Chilean marine sediments.

    PubMed

    Besaury, Ludovic; Marty, Florence; Buquet, Sylvaine; Mesnage, Valérie; Muyzer, Gerard; Quillet, Laurent

    2013-02-01

    Cultivation and molecular-based approaches were used to study microbial diversity in two Chilean marine sediments contaminated with high (835 ppm) and very high concentrations of copper (1,533 ppm). The diversity of cultivable bacteria resistant to copper was studied at oxic and anoxic conditions, focusing on sulfate-, thiosulfate-, and iron-reducing bacteria. For both sediments, the cultivable bacteria isolated at oxic conditions were mostly affiliated to the genus Bacillus, while at anoxic conditions the majority of the cultivable bacteria found were closely related to members of the genera Desulfovibrio, Sphingomonas, and Virgibacillus. Copper resistance was between 100 and 400 ppm, with the exception of a strain affiliated to members of the genus Desulfuromonas, which was resistant up to 1,000 ppm of copper. In parallel, cloning and sequencing of 16S rRNA was performed to study the total bacterial diversity in the sediments. A weak correlation was observed between the isolated strains and the 16S rRNA operational taxonomic units detected. The presence of copper resistance genes (copA, cusA, and pcoA) was tested for all the strains isolated; only copA was detected in a few isolates, suggesting that other copper resistance mechanisms could be used by the bacteria in those highly copper-contaminated sediments.

  11. Limits to the Positive Effect of Ocean Acidification on Macroalgal Primary Production, Interactions with Light and Temperature

    NASA Astrophysics Data System (ADS)

    Kubler, J.; Dudgeon, S. R.; Nisumaa, A. M.

    2016-02-01

    About one third of macroalgal species lack any carbon concentrating mechanism (CCM), which prevents carbon limitation under air equilibrium in other seaweed species. It is predicted that those species lacking CCM's will benefit from ongoing ocean acidification in terms of primary productivity and growth. The absolute sizes and pattern of those benefits are not known. Here, we compare the results of a model based on composite data from the literature, with a growth experiment using Plocamium cartilagineum, a broadly distributed rhodophyte species lacking a carbon concentrating mechanism and hypothesized to be carbon limited under current conditions. We grew P. cartilagineum, at 15 and 20°C in seawater aerated with a total of 53 different pCO2s (from 344 to 1053µatm), in 8 multiweek trials over 12 months. We measured growth and photosynthetic rates. A linear mixed model analysis was used to partition the effect sizes of drivers of variation in the experiment. The growth rates and maximum photosynthetic rates responded nonlinearly to OA, increasing with elevated pCO2 from recent atmospheric level to up 450µatm and decreasing at higher pCO2. Light harvesting efficiency was unaffected by pCO2 and inversely related to temperature. We were able to compare the results of the growth experiment directly to the model based on the additive effects of temperature and pCO2 on photosynthetic rates, finding concordance of the pattern of response. The size of the effect of pCO2 on growth rate in the experiment was greater than the effect predicted by the model for net primary productivity. These results predict that the benefit of OA for macroalgal growth may disappear as ocean acidification continues through this century.

  12. Construction and Screening of Marine Metagenomic Large Insert Libraries.

    PubMed

    Weiland-Bräuer, Nancy; Langfeldt, Daniela; Schmitz, Ruth A

    2017-01-01

    The marine environment covers more than 70 % of the world's surface. Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. In the past, marine microbes, mostly bacteria of microbial consortia attached to marine tissues of multicellular organisms, have proven to be a rich source of highly potent bioactive compounds, which represent a considerable number of drug candidates. However, to date, the biodiversity of marine microbes and the versatility of their bioactive compounds and metabolites have not been fully explored. This chapter describes sampling in the marine environment, construction of metagenomic large insert libraries from marine habitats, and exemplarily one function based screen of metagenomic clones for identification of quorum quenching activities.

  13. Sea Urchins Predation Facilitates Coral Invasion in a Marine Reserve

    PubMed Central

    Coma, Rafel; Serrano, Eduard; Linares, Cristina; Ribes, Marta; Díaz, David; Ballesteros, Enric

    2011-01-01

    Macroalgae is the dominant trophic group on Mediterranean infralittoral rocky bottoms, whereas zooxanthellate corals are extremely rare. However, in recent years, the invasive coral Oculina patagonica appears to be increasing its abundance through unknown means. Here we examine the pattern of variation of this species at a marine reserve between 2002 and 2010 and contribute to the understanding of the mechanisms that allow its current increase. Because indirect interactions between species can play a relevant role in the establishment of species, a parallel assessment of the sea urchin Paracentrotus lividus, the main herbivorous invertebrate in this habitat and thus a key species, was conducted. O. patagonica has shown a 3-fold increase in abundance over the last 8 years and has become the most abundant invertebrate in the shallow waters of the marine reserve, matching some dominant erect macroalgae in abundance. High recruitment played an important role in this increasing coral abundance. The results from this study provide compelling evidence that the increase in sea urchin abundance may be one of the main drivers of the observed increase in coral abundance. Sea urchins overgraze macroalgae and create barren patches in the space-limited macroalgal community that subsequently facilitate coral recruitment. This study indicates that trophic interactions contributed to the success of an invasive coral in the Mediterranean because sea urchins grazing activity indirectly facilitated expansion of the coral. Current coral abundance at the marine reserve has ended the monopolization of algae in rocky infralittoral assemblages, an event that could greatly modify both the underwater seascape and the sources of primary production in the ecosystem. PMID:21789204

  14. Fungal diversity from deep marine subsurface sediments (IODP 317, Canterbury Basin, New Zealand)

    NASA Astrophysics Data System (ADS)

    Redou, V.; Arzur, D.; Burgaud, G.; Barbier, G.

    2012-12-01

    Recent years have seen a growing interest regarding micro-eukaryotic communities in extreme environments as a third microbial domain after Bacteria and Archaea. However, knowledge is still scarce and the diversity of micro-eukaryotes in such environments remains hidden and their ecological role unknown. Our research program is based on the deep sedimentary layers of the Canterbury Basin in New Zealand (IODP 317) from the subsurface to the record depth of 1884 meters below seafloor. The objectives of our study are (i) to assess the genetic diversity of fungi in deep-sea sediments and (ii) identify the functional part in order to better understand the origin and the ecological role of fungal communities in this extreme ecosystem. Fingerprinting-based methods using capillary electrophoresis single-strand conformation polymorphism and denaturing high-performance liquid chromatography were used as a first step to raise our objectives. Molecular fungal diversity was assessed using amplification of ITS1 (Internal Transcribed Spacer 1) as a biomarker on 11 samples sediments from 3.76 to 1884 meters below seafloor. Fungal molecular signatures were detected throughout the sediment core. The phyla Ascomycota and Basidiomycota were revealed with DNA as well as cDNA. Most of the phylotypes are affiliated to environmental sequences and some to common fungal cultured species. The discovery of a present and metabolically active fungal component in this unique ecosystem allows some interesting first hypotheses that will be further combined to culture-based methods and deeper molecular methods (454 pyrosequencing) to highlight essential informations regarding physiology and ecological role of fungal communities in deep marine sediments.

  15. Limited genetic diversity among Sarcocystis neurona strains infecting southern sea otters precludes distinction between marine and terrestrial isolates.

    PubMed

    Wendte, J M; Miller, M A; Nandra, A K; Peat, S M; Crosbie, P R; Conrad, P A; Grigg, M E

    2010-04-19

    Sarcocystis neurona is an apicomplexan parasite identified as a cause of fatal neurological disease in the threatened southern sea otter (Enhydra lutris nereis). In an effort to characterize virulent S. neurona strains circulating in the marine ecosystem, this study developed a range of markers relevant for molecular genotyping. Highly conserved sequences within the 18S ribosomal gene array, the plastid-encoded RNA polymerase (RPOb) and the cytochrome c oxidase subunit 1 mitochondrial gene (CO1) were assessed for their ability to distinguish isolates at the genus and species level. For within-species comparisons, five surface antigens (SnSAG1-SnSAG5) and one high resolution microsatellite marker (Sn9) were developed as genotyping markers to evaluate intra-strain diversity. Molecular analysis at multiple loci revealed insufficient genetic diversity to distinguish terrestrial isolates from strains infecting marine mammals. Furthermore, SnSAG specific primers applied against DNA from the closely related species, Sarcocystis falcatula, lead to the discovery of highly similar orthologs to SnSAG2, 3, and 4, calling into question the specificity of diagnostic tests based on these antigens. The results of this study suggest a population genetic structure for S. neurona similar to that reported for the related parasite, Toxoplasma gondii, dominated by a limited number of successful genotypes. Published by Elsevier B.V.

  16. Is benthic food web structure related to diversity of marine macrobenthic communities?

    NASA Astrophysics Data System (ADS)

    Sokołowski, A.; Wołowicz, M.; Asmus, H.; Asmus, R.; Carlier, A.; Gasiunaité, Z.; Grémare, A.; Hummel, H.; Lesutiené, J.; Razinkovas, A.; Renaud, P. E.; Richard, P.; Kędra, M.

    2012-08-01

    Numerical structure and the organisation of food webs within macrozoobenthic communities has been assessed in the European waters (Svalbard, Barents Sea, Baltic Sea, North Sea, Atlantic Ocean and the Mediterranean Sea) to address the interactions between biodiversity and ecosystem functioning. Abundance and classical species diversity indices (S, H', J) of macrofaunal communities were related to principal attributes of food webs (relative trophic level and food chain length, FCL) that were determined from carbon and nitrogen stable isotope values. Structure of marine macrobenthos varies substantially at a geographical scale; total abundance ranges from 63 ind. m-2 to 34,517 ind. m-2, species richness varies from 3 to 166 and the Shannon-Weaver diversity index from 0.26 to 3.26 while Pielou's evenness index is below 0.73. The major source of energy for macrobenthic communities is suspended particulate organic matter, consisting of phytoplankton and detrital particles, sediment particulate organic matter, and microphytobenthos in varying proportions. These food sources support the presence of suspension- and deposit-feeding communities, which dominate numerically on the sea floor. Benthic food webs include usually four to five trophic levels (FCL varies from 3.08 to 4.86). Most species are assigned to the second trophic level (primary consumers), fewer species are grouped in the third trophic level (secondary consumers), and benthic top predators are the least numerous. Most species cluster primarily at the lowest trophic level that is consistent with the typical organization of pyramidal food webs. Food chain length increases with biodiversity, highlighting a positive effect of more complex community structure on food web organisation. In more diverse benthic communities, energy is transferred through more trophic levels while species-poor communities sustain a shorter food chain.

  17. Natural selection on marine carnivores elaborated a diverse family of classical MHC class I genes exhibiting haplotypic gene content variation and allelic polymorphism

    PubMed Central

    Norman, Paul J.; Parham, Peter

    2012-01-01

    Pinnipeds, marine carnivores, diverged from terrestrial carnivores ~45 million years ago, before their adaptation to marine environments. This lifestyle change exposed pinnipeds to different microbiota and pathogens, with probable impact on their MHC class I genes. Investigating this question, genomic sequences were determined for 71 MHC class I variants: 27 from harbor seal and 44 from gray seal. These variants form three MHC class I gene lineages, one comprising a pseudogene. The second, a candidate nonclassical MHC class I gene, comprises a nonpolymorphic transcribed gene related to dog DLA-79 and giant panda Aime-1906. The third is the diversity lineage, which includes 62 of the 71 seal MHC class I variants. All are transcribed, and they minimally represent six harbor and 12 gray seal MHC class I genes. Besides species-specific differences in gene number, seal MHC class I haplotypes exhibit gene content variation and allelic polymorphism. Patterns of sequence variation, and of positions for positively selected sites, indicate the diversity lineage genes are the seals’ classical MHC class I genes. Evidence that expansion of diversity lineage genes began before gray and harbor seals diverged is the presence in both species of two distinctive sublineages of diversity lineage genes. Pointing to further expansion following the divergence are the presence of species-specific genes and greater MHC class I diversity in gray seals than harbor seals. The elaboration of a complex variable family of classical MHC class I genes in pinnipeds contrasts with the single, highly polymorphic classical MHC class I gene of dog and giant panda, terrestrial carnivores. PMID:23001684

  18. Marine biodiversity of Aotearoa New Zealand.

    PubMed

    Gordon, Dennis P; Beaumont, Jennifer; MacDiarmid, Alison; Robertson, Donald A; Ahyong, Shane T

    2010-08-02

    The marine-biodiversity assessment of New Zealand (Aotearoa as known to Māori) is confined to the 200 nautical-mile boundary of the Exclusive Economic Zone, which, at 4.2 million km(2), is one of the largest in the world. It spans 30 degrees of latitude and includes a high diversity of seafloor relief, including a trench 10 km deep. Much of this region remains unexplored biologically, especially the 50% of the EEZ deeper than 2,000 m. Knowledge of the marine biota is based on more than 200 years of marine exploration in the region. The major oceanographic data repository is the National Institute of Water and Atmospheric Research (NIWA), which is involved in several Census of Marine Life field projects and is the location of the Southwestern Pacific Regional OBIS Node; NIWA is also data manager and custodian for fisheries research data owned by the Ministry of Fisheries. Related data sources cover alien species, environmental measures, and historical information. Museum collections in New Zealand hold more than 800,000 registered lots representing several million specimens. During the past decade, 220 taxonomic specialists (85 marine) from 18 countries have been engaged in a project to review New Zealand's entire biodiversity. The above-mentioned marine information sources, published literature, and reports were scrutinized to give the results summarized here for the first time (current to 2010), including data on endemism and invasive species. There are 17,135 living species in the EEZ. This diversity includes 4,315 known undescribed species in collections. Species diversity for the most intensively studied phylum-level taxa (Porifera, Cnidaria, Mollusca, Brachiopoda, Bryozoa, Kinorhyncha, Echinodermata, Chordata) is more or less equivalent to that in the ERMS (European Register of Marine Species) region, which is 5.5 times larger in area than the New Zealand EEZ. The implication is that, when all other New Zealand phyla are equally well studied, total marine

  19. Marine Biodiversity of Aotearoa New Zealand

    PubMed Central

    Gordon, Dennis P.; Beaumont, Jennifer; MacDiarmid, Alison; Robertson, Donald A.; Ahyong, Shane T.

    2010-01-01

    The marine-biodiversity assessment of New Zealand (Aotearoa as known to Māori) is confined to the 200 nautical-mile boundary of the Exclusive Economic Zone, which, at 4.2 million km2, is one of the largest in the world. It spans 30° of latitude and includes a high diversity of seafloor relief, including a trench 10 km deep. Much of this region remains unexplored biologically, especially the 50% of the EEZ deeper than 2,000 m. Knowledge of the marine biota is based on more than 200 years of marine exploration in the region. The major oceanographic data repository is the National Institute of Water and Atmospheric Research (NIWA), which is involved in several Census of Marine Life field projects and is the location of the Southwestern Pacific Regional OBIS Node; NIWA is also data manager and custodian for fisheries research data owned by the Ministry of Fisheries. Related data sources cover alien species, environmental measures, and historical information. Museum collections in New Zealand hold more than 800,000 registered lots representing several million specimens. During the past decade, 220 taxonomic specialists (85 marine) from 18 countries have been engaged in a project to review New Zealand's entire biodiversity. The above-mentioned marine information sources, published literature, and reports were scrutinized to give the results summarized here for the first time (current to 2010), including data on endemism and invasive species. There are 17,135 living species in the EEZ. This diversity includes 4,315 known undescribed species in collections. Species diversity for the most intensively studied phylum-level taxa (Porifera, Cnidaria, Mollusca, Brachiopoda, Bryozoa, Kinorhyncha, Echinodermata, Chordata) is more or less equivalent to that in the ERMS (European Register of Marine Species) region, which is 5.5 times larger in area than the New Zealand EEZ. The implication is that, when all other New Zealand phyla are equally well studied, total marine diversity

  20. Biodiversity research sets sail: showcasing the diversity of marine life.

    PubMed

    Webb, Thomas J

    2009-04-23

    The World Congress on Marine Biodiversity was held in the City of Arts and Sciences, Valencia, from 10 to 15 November 2008, showcasing research on all aspects of marine biodiversity from basic taxonomic exploration to innovative conservation strategies and methods to integrate research into environmental policy.

  1. Light dose versus rate of delivery: implications for macroalgal productivity.

    PubMed

    Desmond, Matthew J; Pritchard, Daniel W; Hepburn, Christopher D

    2017-06-01

    The role of how light is delivered over time is an area of macroalgal photosynthesis that has been overlooked but may play a significant role in controlling rates of productivity and the structure and persistence of communities. Here we present data that quantify the relative influence of total quantum dose and delivery rate on the photosynthetic productivity of five ecologically important Phaeophyceae species from southern New Zealand. Results suggested that greater net oxygen production occurs when light is delivered at a lower photon flux density (PFD) over a longer period compared to a greater PFD over a shorter period, given the same total dose. This was due to greater efficiency (α) at a lower PFD which, for some species, meant a compensatory effect can occur. This resulted in equal or greater productivity even when the total quantum dose of the lower PFD was significantly reduced. It was also shown that light limitation at Huriawa Peninsula, where macroaglae were sourced, may be restricting the acclimation potential of species at greater depths, and that even at shallow depth periods of significant light limitation are likely to occur. This research is of particular interest as the variability of light delivery to coastal reef systems increases as a result of anthropogenic disturbances, and as the value of in situ community primary productivity estimates is recognised.

  2. Marine intervals in Neogene fluvial deposits of western Amazonia

    NASA Astrophysics Data System (ADS)

    Boonstra, Melanie; Troelstra, Simon; Lammertsma, Emmy; Hoorn, Carina

    2014-05-01

    Amazonia is one of the most species rich areas on Earth, but this high diversity is not homogeneous over the entire region. Highest mammal and tree-alpha diversity is found in the fluvio-lacustrine Pebas system, a Neogene wetland associated with rapid radiation of species. The estuarine to marine origin of various modern Amazonian fish, plants, and invertebrates has been associated with past marine ingressions into this freshwater Pebas system. The exact nature and age of these invasions is, however, debated. Here we present new evidence from fluvial and fluvio-lacustrine deposits of Neogene age in southeast Colombia, that point to periods of widespread marine conditions in western Amazonia. Our evidence is based on an analysis of marine palynomorphs, such as organic linings of foraminifera and dinoflagellate cysts, present in dark sandy clay sediments that outcrop along the Caqueta and Amazon rivers. Characteristically, the foraminiferal linings can be assigned to three benthic morphotypes only, e.g. Ammonia, Elphidium and Trochammina. This low diversity assemblage is associated with estuarine/marginal marine conditions. No distinct marine elements such as shelf or planktonic species were encountered. The observed foraminiferal linings and dinocyst assemblages are typical for a (eutrophic) shallow marine environment, suggesting that the Pebas freshwater wetland system occasionally changed to (marginal) marine. Although some reworked elements are found, a typical Neogene dinocyst taxon is commonly found supporting in situ deposition. Sedimentological features typical for tidal conditions that are reported for sites in Peru and northeastern Brazil likely relate to these marine ingressions. Sea level changes as well as foreland basin development related to Andes formation may have facilitated the entry of marine water during the Neogene.

  3. Taxonomic and functional diversity of a coastal planktonic bacterial community in a river-influenced marine area.

    PubMed

    Thiele, Stefan; Richter, Michael; Balestra, Cecilia; Glöckner, Frank Oliver; Casotti, Raffaella

    2017-04-01

    The Gulf of Naples is a dynamical area with intense exchanges between offshore oligotrophic and coastal eutrophic waters with frequent freshwater inputs. The Sarno River, one of the most polluted rivers in Europe, strongly contributes to the pollution of the area, discharging high amounts of heavy metals and organic wastes from heavily cultivated and industrial areas. This paper reports on the diversity and community structure of the marine residential Bacteria and Archaea of the Gulf of Naples in an area close to the river Sarno plume and investigates their small-scale taxonomic diversity and expression patterns as a proxy of potential metabolic activity using metagenomics and metatranscriptomics. Bacteria and Archaea were mainly represented by marine clades, with only minor contributors from freshwater ones. The community was dominated by Alpha- and Gammaproteobacteria, of which Rhodospirillales, Pelagibacteriales, and Oceanospirilalles were most represented. However, Alteromonadales and Rhodobacterales were the most active, despite their relative lower abundance, suggesting that they are important for overall ecosystem functioning and nutrient cycling. Nitrification and a reversed form of dissimilatory sulfate reduction were the major metabolic processes found in the metatrascriptomes and were mainly associated to Nitrosopumilales and Pelagibacter, respectively. No clear indication of transcripts related to stress induced by heavy metals or organic pollutants was found. In general, despite the high loads of pollutants discharged continuously by the Sarno River, the microbial community did not show marks of stress-induced changes neither structural nor functional, thus suggesting that this river has little or no effect on the planktonic bacterial community of the Gulf of Naples. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Grazer removal and nutrient enrichment as recovery enhancers for overexploited rocky subtidal habitats.

    PubMed

    Guarnieri, Giuseppe; Bevilacqua, Stanislao; Vignes, Fabio; Fraschetti, Simonetta

    2014-07-01

    Increasing anthropogenic pressures are causing long-lasting regime shifts from high-diversity ecosystems to low-diversity degraded ones. Understanding the effects of multiple threats on ecosystems, and identifying processes allowing for the recovery of biodiversity, are the current major challenges in ecology. In several temperate marine areas, large parts of rocky subtidal habitats characterised by high diversity have been completely degraded to barren grounds by overfishing, including illegal date mussel fishing. Bare areas are characterized by the dominance of sea urchins whose grazing perpetuates the impact of overfishing. We investigated experimentally the separate and combined effects of nutrient enrichment and sea urchin exclusion on the recovery of barren grounds. Our results indicate that the two factors have a synergistic effect leading to the re-establishment of erect macroalgal canopies, enhancing the structural complexity of subtidal assemblages. In particular, in the overfished system considered here, the recovery of disturbed assemblages could occur only if sea urchins are removed. However, the recolonization of barren grounds by erect macroalgae is further enhanced under enriched conditions. This study demonstrates that the recovery of dramatically depleted marine habitats is possible, and provides useful indications for specific management actions, which at present are totally lacking, to achieve the restoration of barren grounds caused by human activity.

  5. The seaweed holobiont: understanding seaweed-bacteria interactions.

    PubMed

    Egan, Suhelen; Harder, Tilmann; Burke, Catherine; Steinberg, Peter; Kjelleberg, Staffan; Thomas, Torsten

    2013-05-01

    Seaweeds (macroalgae) form a diverse and ubiquitous group of photosynthetic organisms that play an essential role in aquatic ecosystems. These ecosystem engineers contribute significantly to global primary production and are the major habitat formers on rocky shores in temperate waters, providing food and shelter for aquatic life. Like other eukaryotic organisms, macroalgae harbor a rich diversity of associated microorganisms with functions related to host health and defense. In particular, epiphytic bacterial communities have been reported as essential for normal morphological development of the algal host, and bacteria with antifouling properties are thought to protect chemically undefended macroalgae from detrimental, secondary colonization by other microscopic and macroscopic epibiota. This tight relationship suggests that macroalgae and epiphytic bacteria interact as a unified functional entity or holobiont, analogous to the previously suggested relationship in corals. Moreover, given that the impact of diseases in marine ecosystems is apparently increasing, understanding the role of bacteria as saprophytes and pathogens in seaweed communities may have important implications for marine management strategies. This review reports on the recent advances in the understanding of macroalgal-bacterial interactions with reference to the diversity and functional role of epiphytic bacteria in maintaining algal health, highlighting the holobiont concept. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Experimental investigation of the impact of macroalgal mats on flow dynamics and sediment stability in shallow tidal areas

    NASA Astrophysics Data System (ADS)

    Venier, C.; Figueiredo da Silva, J.; McLelland, S. J.; Duck, R. W.; Lanzoni, S.

    2012-10-01

    This study aims to quantify the impact of macroalgal mats of Ulva intestinalis on flow dynamics and sediment stability. Such mats are becoming increasingly common in many coastal and estuarine intertidal habitats, thus it is important to determine whether they increase flow resistance, promote bed stability and therefore reduce the risk of erosion leading to tidal flooding or to degradation of coastal lagoons. The study has been carried out through a systematic series of experiments conducted in the large open-channel flume of the Total Environment Simulator (TES) facility, University of Hull, UK. The experimental facility was set up with a bed of fine sand, partially covered by strands of U. intestinalis; living individuals attached to large clasts were collected from Budle Bay, in the Lindisfarne National Nature Reserve, UK, and transplanted to the flume. The TES was equipped with acoustic doppler velocimetry (ADV) and acoustic backscatter (ABS) sensors, which measured current velocity, water level, bed level, and suspended sediment concentration. The experiments consisted of several unidirectional flow runs, firstly with a mobile sediment bed covered with U. intestinalis, then with a bare sediment surface, conducted at three different water depths. Under the investigated experimental range of velocities, typical of tidal environments, the macroalgal filaments were bent parallel to the sediment bed. The resulting velocity profile departed from the classical logarithmic trend, implying an increase of the overall roughness. This result reflects the different vertical Reynolds shear stress profiles and energy spectra features of the turbulent flow with respect to a bare sandy bed configuration. Macroalgae are also found to affect the morphological configuration of bedforms. The overall result is significant bio-stabilization, with increased flow resistance and reduced sediment transport.

  7. Taxonomic and environmental soil diversity of marine terraces of Gronfjord (West Spitsbergen island)

    NASA Astrophysics Data System (ADS)

    Alekseev, Ivan; Abakumov, Evgeny

    2017-04-01

    Soil surveys in polar region are faced to problems of soil diagnostics, evolution, geography and pedogenesis with the aim to assess the actual state and future dynamics of soil cover under changing environmental conditions. This investigation is devoted to specification of taxonomic and environmental soil diversity of marine terraces of Gronfjord (Svalbard archipelago, West Spitsbergen Island). It was established 3 key plots (Grendasselva, Aldegonda rivers and marine terrace in surroundings of Barentsburg aerodrome). Soil diagnostics was carried out according to Russian soil classification system and WRB. Grendasselva river valley is characterized by numerous patterned ground elements combined with lichen-moss and moss-lichen patches with sporadic inclusions of higher plants (mostly Lusula pilosa). Soil cover is represented by Typic Cryosols on elevated sites and Histic Gleysols, Turbic Gleysols and Histosols on well-drained boggy sites. Aldegonda river valley characterizes by predominance of entic soils (soil with non-pronounced profile differentiation) on moraine material (mostly Cryic Leptosols). Vegetation is presented by sporadic plant communities comprised by Lusula pilosa and thin lichen-moss ground layer (developed only in well-moistened micro depression). Marine terrace in surroundings of Barentsburg aerodrome is covered by moss-lichen tundra with sporadic inclusions of Lusula pilosa. On the top of the terrace compressed barren circles are quite abundant. Soil catena has been established within this key plot. Soil types are represented by Typic Cryosols in watershed parts of catena, Gleysols and Histic Gleysols in accumulation positions. The active layer depths have been distinguished using vertical electrical sounding. They ranged from 80-90 cm at Grendasselva and Aldegonda river key plot to 140-150 cm at marine terrace in surroundings of Barentsburg aerodrome. Regional differences in this indicator may be explained not only by local differences in

  8. Marine protected areas increase temporal stability of community structure, but not density or diversity, of tropical seagrass fish communities

    PubMed Central

    Jiddawi, Narriman S.; Eklöf, Johan S.

    2017-01-01

    Marine protected areas (MPAs) have been shown to increase long-term temporal stability of fish communities and enhance ecosystem resilience to anthropogenic disturbance. Yet, the potential ability of MPAs to buffer effects of environmental variability at shorter time scales remains widely unknown. In the tropics, the yearly monsoon cycle is a major natural force affecting marine organisms in tropical regions, and its timing and severity are predicted to change over the coming century, with potentially severe effects on marine organisms, ecosystems and ecosystem services. Here, we assessed the ability of MPAs to buffer effects of monsoon seasonality on seagrass-associated fish communities, using a field survey in two MPAs (no-take zones) and two unprotected (open-access) sites around Zanzibar (Tanzania). We assessed the temporal stability of fish density and community structure within and outside MPAs during three monsoon seasons in 2014–2015, and investigated several possible mechanisms that could regulate temporal stability. Our results show that MPAs did not affect fish density and diversity, but that juvenile fish densities were temporally more stable within MPAs. Second, fish community structure was more stable within MPAs for juvenile and adult fish, but not for subadult fish or the total fish community. Third, the observed effects may be due to a combination of direct and indirect (seagrass-mediated) effects of seasonality and, potentially, fluctuating fishing pressure outside MPAs. In summary, these MPAs may not have the ability to enhance fish density and diversity and to buffer effects of monsoon seasonality on the whole fish community. However, they may increase the temporal stability of certain groups, such as juvenile fish. Consequently, our results question whether MPAs play a general role in the maintenance of biodiversity and ecosystem functioning under changing environmental conditions in tropical seagrass fish communities. PMID:28854231

  9. Capturing diversity of marine heterotrophic protists: one cell at a time

    PubMed Central

    Heywood, Jane L; Sieracki, Michael E; Bellows, Wendy; Poulton, Nicole J; Stepanauskas, Ramunas

    2011-01-01

    Recent applications of culture-independent, molecular methods have revealed unexpectedly high diversity in a variety of functional and phylogenetic groups of microorganisms in the ocean. However, none of the existing research tools are free from significant limitations, such as PCR and cloning biases, low phylogenetic resolution and others. Here, we employed novel, single-cell sequencing techniques to assess the composition of small (<10 μm diameter), heterotrophic protists from the Gulf of Maine. Single cells were isolated by flow cytometry, their genomes amplified, and 18S rRNA marker genes were amplified and sequenced. We compared the results to traditional environmental PCR cloning of sorted cells. The diversity of heterotrophic protists was significantly higher in the library of single amplified genomes (SAGs) than in environmental PCR clone libraries of the 18S rRNA gene, obtained from the same coastal sample. Libraries of SAGs, but not clones contained several recently discovered, uncultured groups, including picobiliphytes and novel marine stramenopiles. Clone, but not SAG, libraries contained several large clusters of identical and nearly identical sequences of Dinophyceae, Cercozoa and Stramenopiles. Similar results were obtained using two alternative primer sets, suggesting that PCR biases may not be the only explanation for the observed patterns. Instead, differences in the number of 18S rRNA gene copies among the various protist taxa probably had a significant role in determining the PCR clone composition. These results show that single-cell sequencing has the potential to more accurately assess protistan community composition than previously established methods. In addition, the creation of SAG libraries opens opportunities for the analysis of multiple genes or entire genomes of the uncultured protist groups. PMID:20962875

  10. Microbial diversity and stratification of South Pacific abyssal marine sediments.

    PubMed

    Durbin, Alan M; Teske, Andreas

    2011-12-01

    Abyssal marine sediments cover a large proportion of the ocean floor, but linkages between their microbial community structure and redox stratification have remained poorly constrained. This study compares the downcore gradients in microbial community composition to porewater oxygen and nitrate concentration profiles in an abyssal marine sediment column in the South Pacific Ocean. Archaeal 16S rRNA clone libraries showed a stratified archaeal community that changed from Marine Group I Archaea in the aerobic and nitrate-reducing upper sediment column towards deeply branching, uncultured crenarchaeotal and euryarchaeotal lineages in nitrate-depleted, anaerobic sediment horizons. Bacterial 16S rRNA clone libraries revealed a similar shift on the phylum and subphylum level within the bacteria, from a complex community of Alpha-, Gamma- and Deltaproteobacteria, Actinobacteria and Gemmatimonadetes in oxic surface sediments towards uncultured Chloroflexi and Planctomycetes in the anaerobic sediment column. The distinct stratification of largely uncultured bacterial and archaeal groups within the oxic and nitrate-reducing marine sediment column provides initial constraints for their microbial habitat preferences. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. The global diversity of sea pens (Cnidaria: Octocorallia: Pennatulacea).

    PubMed

    Williams, Gary C

    2011-01-01

    Recent advances in deep-sea exploration technology coupled with an increase in worldwide biotic surveys, biological research, and underwater photography in shallow water marine regions such as coral reefs, has allowed for a relatively rapid expansion of our knowledge in the global diversity of many groups of marine organisms. This paper is part of the PLoS ONE review collection of WoRMS (the Worldwide Register of Marine Species), on the global diversity of marine species, and treats the pennatulacean octocorals, a group of cnidarians commonly referred to as sea pens or sea feathers. This also includes sea pansies, some sea whips, and various vermiform taxa. Pennatulaceans are a morphologically diverse group with an estimated 200 or more valid species, displaying worldwide geographic and bathymetric distributions from polar seas to the equatorial tropics and from intertidal flats to over 6100 m in depth. The paper treats new discoveries and taxa new to science, and provides greater resolution in geographic and bathymetric distributions data than was previously known, as well as descriptions of life appearances in life and in situ observations at diverse depth.

  12. Diversity of Microbial Communities and Quantitative Chemodiversity in Layers of Marine Sediment Cores from a Causeway (Kaichu-Doro) in Okinawa Island, Japan.

    PubMed

    Soliman, Taha; Reimer, James D; Yang, Sung-Yin; Villar-Briones, Alejandro; Roy, Michael C; Jenke-Kodama, Holger

    2017-01-01

    Microbial community diversity and chemodiversity were investigated in marine sediments adjacent to the Okinawan "Kaichu-Doro" Causeway, which was constructed 46 years ago to connect a group of four islands (Henza-jima, Miyagi-jima, Ikei-jima, Hamahiga-jima) to the Okinawan main island. This causeway was not built on pilings, but by land reclamation; hence, it now acts as a long, thin peninsula. The construction of this causeway was previously shown to have influenced the surrounding marine ecosystem, causing ecosystem fragmentation and loss of water circulation. In this study, we collected sediment cores ( n = 10) from five paired sites in 1 m water depths. Each pair of sites consisted of one site each on the immediate north and south sides of the causeway. Originally the members of each pair were much closer to each other (<150 m) than to other pairs, but now the members of each pair are isolated by the causeway. Each core was 60-80 cm long and was divided into 15-cm layers. We examined the vertical diversity of microbial communities and chemical compounds to determine the correlation between chemodiversity and microbial communities among marine sediment cores and layers. Principal coordinate analyses (PCoA) of detected compounds and of bacterial and archaeal operational taxonomic units (OTUs) revealed that the north and south sides of the causeway are relatively isolated, with each side having unique microbial OTUs. Additionally, some bacterial families (e.g., Acidaminobacteraceae, Rhizobiaceae, and Xanthomonadaceae) were found only on the south side of Kaichu-Doro. Interestingly, we found that the relative abundance of OTUs for some microbial families increased from top to bottom, but this was reversed in some other families. We conclude that the causeway has altered microbial community composition and metabolite profiles in marine sediments.

  13. Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem

    PubMed Central

    Lee, Jonathan D.

    2015-01-01

    While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55–183 m depth) and slope habitats (184–1280 m depth) off the US West Coast (47°20′N—32°40′N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast

  14. Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem.

    PubMed

    Piacenza, Susan E; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lee, Jonathan D; Lindsley, Amy J; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Thurman, Lindsey L; Heppell, Selina S

    2015-01-01

    While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55-183 m depth) and slope habitats (184-1280 m depth) off the US West Coast (47°20'N-32°40'N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast-wide scale

  15. Deep Water, Shallow Water: Marine Animal Homes.

    ERIC Educational Resources Information Center

    Soltow, Willow

    1984-01-01

    Examines the diversity of life in the oceans and ways in which teachers can explore ocean habitats with their students without leaving the classroom. Topic areas considered include: restricted habitats, people and marine habitats, pollution, incidental kills, and the commercial and recreational uses of marine waters. (JN)

  16. Emerging biopharmaceuticals from marine actinobacteria.

    PubMed

    Hassan, Syed Shams Ul; Anjum, Komal; Abbas, Syed Qamar; Akhter, Najeeb; Shagufta, Bibi Ibtesam; Shah, Sayed Asmat Ali; Tasneem, Umber

    2017-01-01

    Actinobacteria are quotidian microorganisms in the marine world, playing a crucial ecological role in the recycling of refractory biomaterials and producing novel secondary metabolites with pharmaceutical applications. Actinobacteria have been isolated from the huge area of marine organisms including sponges, tunicates, corals, mollusks, crabs, mangroves and seaweeds. Natural products investigation of the marine actinobacteria revealed that they can synthesize numerous natural products including alkaloids, polyketides, peptides, isoprenoids, phenazines, sterols, and others. These natural products have a potential to provide future drugs against crucial diseases like cancer, HIV, microbial and protozoal infections and severe inflammations. Therefore, marine actinobacteria portray as a pivotal resource for marine drugs. It is an upcoming field of research to probe a novel and pharmaceutically important secondary metabolites from marine actinobacteria. In this review, we attempt to summarize the present knowledge on the diversity, chemistry and mechanism of action of marine actinobacteria-derived secondary metabolites from 2007 to 2016. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Results of efforts by the Convention on Biological Diversity to describe ecologically or biologically significant marine areas.

    PubMed

    Bax, Nicholas J; Cleary, Jesse; Donnelly, Ben; Dunn, Daniel C; Dunstan, Piers K; Fuller, Mike; Halpin, Patrick N

    2016-06-01

    In 2004, Parties to the Convention on Biological Diversity (CBD) addressed a United Nations (UN) call for area-based planning, including for marine-protected areas that resulted in a global effort to describe ecologically or biologically significant marine areas (EBSAs). We summarized the results, assessed their consistency, and evaluated the process developed by the Secretariat of the CBD to engage countries and experts in 9 regional workshops held from 2011 to 2014. Experts from 92 countries and 79 regional or international bodies participated. They considered 250 million km(2) of the world's ocean area (two-thirds of the total). The 204 areas they examined in detail differed widely in area (from 5.5 km(2) to 11.1 million km(2) ). Despite the initial focus of the CBD process on areas outside national jurisdiction, only 31 of the areas examined were solely outside national jurisdiction. Thirty-five extended into national jurisdictions, 137 were solely within national jurisdictions, and 28 included the jurisdictions of more than 1 country (1 area lacked precise boundaries). Data were sufficient to rank 88-99% of the areas relative to each of the 7 criteria for EBSAs agreed to previously by Parties to the CBD. The naturalness criterion ranked high for a smaller percentage of the EBSAs (31%) than other criteria (51-70%), indicating the difficulty in finding relatively undisturbed areas in the ocean. The highly participatory nature of the workshops, including easy and consistent access to the relevant information facilitated by 2 technical teams, contributed to the workshop participants success in identifying areas that could be ranked relative to most criteria and areas that extend across jurisdictional boundaries. The formal recognition of workshop results by the Conference of Parties to the CBD resulted in these 204 areas being identified as EBSAs by the 196 Parties. They represent the only suite of marine areas recognized by the international community for their

  18. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas.

    PubMed

    Neave, Matthew J; Apprill, Amy; Ferrier-Pagès, Christine; Voolstra, Christian R

    2016-10-01

    Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses.

  19. 2008 Marine Microbes Gordon Research Conference (July 13-17, 2008)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Kirchman

    2009-09-16

    Marine microbes are very abundant and diverse. They play significant roles in all element cycles, both quantitatively and qualitatively. However, they are little known, as the continuous series of surprising discoveries in the last few years shows. In the present conference the main focus will be on how these microbes interact: with other cells of their own species, with other microbes and with large living beings, from biofilms to symbiants. Another important topic will be the exploration of marine microbial diversity based on the recently developed sequencing approaches and on efforts to obtain marine organisms in pure cultures. This conferencemore » will be the third in the Marine Microorganisms series. We hope it will contribute to enlarge the community of marine microbiologists and help in pointing the future directions of research even more than the two previous meetings.« less

  20. The Smithsonian-led Marine Global Earth Observatory (MarineGEO): Proposed Model for a Collaborative Network Linking Marine Biodiversity to Ecosystem Processes

    NASA Astrophysics Data System (ADS)

    Duffy, J. E.

    2016-02-01

    Biodiversity - the variety of functional types of organisms - is the engine of marine ecosystem processes, including productivity, nutrient cycling, and carbon sequestration. Biodiversity remains a black box in much of ocean science, despite wide recognition that effectively managing human interactions with marine ecosystems requires understanding both structure and functional consequences of biodiversity. Moreover, the inherent complexity of biological systems puts a premium on data-rich, comparative approaches, which are best met via collaborative networks. The Smithsonian Institution's MarineGEO program links a growing network of partners conducting parallel, comparative research to understand change in marine biodiversity and ecosystems, natural and anthropogenic drivers of that change, and the ecological processes mediating it. The focus is on nearshore, seabed-associated systems where biodiversity and human population are concentrated and interact most, yet which fall through the cracks of existing ocean observing programs. MarineGEO offers a standardized toolbox of research modules that efficiently capture key elements of biological diversity and its importance in ecological processes across a range of habitats. The toolbox integrates high-tech (DNA-based, imaging) and low-tech protocols (diver surveys, rapid assays of consumer activity) adaptable to differing institutional capacity and resources. The model for long-term sustainability involves leveraging in-kind support among partners, adoption of best practices wherever possible, engagement of students and citizen scientists, and benefits of training, networking, and global relevance as incentives for participation. Here I highlight several MarineGEO comparative research projects demonstrating the value of standardized, scalable assays and parallel experiments for measuring fish and invertebrate diversity, recruitment, benthic herbivory and generalist predation, decomposition, and carbon sequestration. Key

  1. Climate change and ocean acidification effects on seagrasses and marine macroalgae.

    PubMed

    Koch, Marguerite; Bowes, George; Ross, Cliff; Zhang, Xing-Hai

    2013-01-01

    Although seagrasses and marine macroalgae (macro-autotrophs) play critical ecological roles in reef, lagoon, coastal and open-water ecosystems, their response to ocean acidification (OA) and climate change is not well understood. In this review, we examine marine macro-autotroph biochemistry and physiology relevant to their response to elevated dissolved inorganic carbon [DIC], carbon dioxide [CO2 ], and lower carbonate [CO3 (2-) ] and pH. We also explore the effects of increasing temperature under climate change and the interactions of elevated temperature and [CO2 ]. Finally, recommendations are made for future research based on this synthesis. A literature review of >100 species revealed that marine macro-autotroph photosynthesis is overwhelmingly C3 (≥ 85%) with most species capable of utilizing HCO3 (-) ; however, most are not saturated at current ocean [DIC]. These results, and the presence of CO2 -only users, lead us to conclude that photosynthetic and growth rates of marine macro-autotrophs are likely to increase under elevated [CO2 ] similar to terrestrial C3 species. In the tropics, many species live close to their thermal limits and will have to up-regulate stress-response systems to tolerate sublethal temperature exposures with climate change, whereas elevated [CO2 ] effects on thermal acclimation are unknown. Fundamental linkages between elevated [CO2 ] and temperature on photorespiration, enzyme systems, carbohydrate production, and calcification dictate the need to consider these two parameters simultaneously. Relevant to calcifiers, elevated [CO2 ] lowers net calcification and this effect is amplified by high temperature. Although the mechanisms are not clear, OA likely disrupts diffusion and transport systems of H(+) and DIC. These fluxes control micro-environments that promote calcification over dissolution and may be more important than CaCO3 mineralogy in predicting macroalgal responses to OA. Calcareous macroalgae are highly vulnerable to OA

  2. Diverse and Abundant Secondary Metabolism Biosynthetic Gene Clusters in the Genomes of Marine Sponge Derived Streptomyces spp. Isolates.

    PubMed

    Jackson, Stephen A; Crossman, Lisa; Almeida, Eduardo L; Margassery, Lekha Menon; Kennedy, Jonathan; Dobson, Alan D W

    2018-02-20

    The genus Streptomyces produces secondary metabolic compounds that are rich in biological activity. Many of these compounds are genetically encoded by large secondary metabolism biosynthetic gene clusters (smBGCs) such as polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) which are modular and can be highly repetitive. Due to the repeats, these gene clusters can be difficult to resolve using short read next generation datasets and are often quite poorly predicted using standard approaches. We have sequenced the genomes of 13 Streptomyces spp. strains isolated from shallow water and deep-sea sponges that display antimicrobial activities against a number of clinically relevant bacterial and yeast species. Draft genomes have been assembled and smBGCs have been identified using the antiSMASH (antibiotics and Secondary Metabolite Analysis Shell) web platform. We have compared the smBGCs amongst strains in the search for novel sequences conferring the potential to produce novel bioactive secondary metabolites. The strains in this study recruit to four distinct clades within the genus Streptomyces . The marine strains host abundant smBGCs which encode polyketides, NRPS, siderophores, bacteriocins and lantipeptides. The deep-sea strains appear to be enriched with gene clusters encoding NRPS. Marine adaptations are evident in the sponge-derived strains which are enriched for genes involved in the biosynthesis and transport of compatible solutes and for heat-shock proteins. Streptomyces spp. from marine environments are a promising source of novel bioactive secondary metabolites as the abundance and diversity of smBGCs show high degrees of novelty. Sponge derived Streptomyces spp. isolates appear to display genomic adaptations to marine living when compared to terrestrial strains.

  3. Realizing the promises of marine biotechnology.

    PubMed

    Luiten, Esther E M; Akkerman, Ida; Koulman, Albert; Kamermans, Pauline; Reith, Hans; Barbosa, Maria J; Sipkema, Detmer; Wijffels, René H

    2003-07-01

    High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals, nutritional supplements, (feed-)products for aquaculture and bioremediation solutions) is not the only factor to realise the commercial applications of marine biotechnology. What else is needed to exploit the promising potential of marine biotechnology and to create new industrial possibilities? In the study project 'Ocean Farming-Sustainable exploitation of marine organisms', we explore the possibilities of marine organisms to fulfill needs, such as safe and healthy food, industrial (raw) materials and renewable energy in a sustainable way. One of the three design groups is envisioning the future of strong land-based 'marine' market chains. Marine biotechnology is one of the foci of attention in this design group. This article provides a model of future-oriented thinking in which a variety of experts actively participate.

  4. Diversity of compounds in femoral secretions of Galápagos iguanas (genera: Amblyrhynchus and Conolophus), and their potential role in sexual communication in lek-mating marine iguanas (Amblyrhynchus cristatus).

    PubMed

    Ibáñez, Alejandro; Menke, Markus; Quezada, Galo; Jiménez-Uzcátegui, Gustavo; Schulz, Stefan; Steinfartz, Sebastian

    2017-01-01

    Chemical signals are widely used in the animal kingdom, enabling communication in various social contexts, including mate selection and the establishment of dominance. Femoral glands, which produce and release waxy secretions into the environment, are organs of central importance in lizard chemical communication. The Galápagos marine iguana ( Amblyrhynchus cristatus ) is a squamate reptile with a lek-mating system. Although the lekking behaviour of marine iguanas has been well-studied, their potential for sexual communication via chemical cues has not yet been investigated. Here we describe the diversity of the lipophilic fraction of males' femoral gland secretions among 11 island populations of marine iguanas, and compare it with the composition of its sister species, the Galápagos land iguana ( Conolophus subcristatus ). We also conducted behavioural observations in marine iguana territorial males in order to explore the possible function of these substances in the context of male dominance in leks. Femoral secretions were analysed by gas chromatography coupled to mass spectrometry (GC-MS), and chromatography with a flame ionisation detector (GC-FID) in order to characterise the lipophilic composition. To understand the potential role of femoral secretions in marine iguana intraspecific communication, territorial males were sampled for their femoral glands and monitored to record their head bob rate-a territorial display behaviour in males-as well as the number of females present in their leks. We found that the gland secretions were composed of ten saturated and unsaturated carboxylic acids ranging in chain length between C 16 and C 24 , as well as three sterols. Cholesterol was the main compound found. Intriguingly, land iguanas have a higher diversity of lipophilic compounds, with structural group of lipids (i.e. aldehydes) entirely absent in marine iguanas; overall the chemical signals of both species were strongly differentiated. Lipid profiles also

  5. Diversity of compounds in femoral secretions of Galápagos iguanas (genera: Amblyrhynchus and Conolophus), and their potential role in sexual communication in lek-mating marine iguanas (Amblyrhynchus cristatus)

    PubMed Central

    Menke, Markus; Quezada, Galo; Jiménez-Uzcátegui, Gustavo; Steinfartz, Sebastian

    2017-01-01

    Background Chemical signals are widely used in the animal kingdom, enabling communication in various social contexts, including mate selection and the establishment of dominance. Femoral glands, which produce and release waxy secretions into the environment, are organs of central importance in lizard chemical communication. The Galápagos marine iguana (Amblyrhynchus cristatus) is a squamate reptile with a lek-mating system. Although the lekking behaviour of marine iguanas has been well-studied, their potential for sexual communication via chemical cues has not yet been investigated. Here we describe the diversity of the lipophilic fraction of males’ femoral gland secretions among 11 island populations of marine iguanas, and compare it with the composition of its sister species, the Galápagos land iguana (Conolophus subcristatus). We also conducted behavioural observations in marine iguana territorial males in order to explore the possible function of these substances in the context of male dominance in leks. Methods Femoral secretions were analysed by gas chromatography coupled to mass spectrometry (GC–MS), and chromatography with a flame ionisation detector (GC-FID) in order to characterise the lipophilic composition. To understand the potential role of femoral secretions in marine iguana intraspecific communication, territorial males were sampled for their femoral glands and monitored to record their head bob rate—a territorial display behaviour in males—as well as the number of females present in their leks. Results We found that the gland secretions were composed of ten saturated and unsaturated carboxylic acids ranging in chain length between C16 and C24, as well as three sterols. Cholesterol was the main compound found. Intriguingly, land iguanas have a higher diversity of lipophilic compounds, with structural group of lipids (i.e. aldehydes) entirely absent in marine iguanas; overall the chemical signals of both species were strongly differentiated

  6. Trace Elements in Calcifying Marine Invertebrates Indicate Diverse Sensitivities to the Seawater Carbonate System

    NASA Astrophysics Data System (ADS)

    Doss, W. C.

    2015-12-01

    Surface ocean absorption of anthropogenic CO2 emissions resulting in ocean acidification may interfere with the ability of calcifying marine organisms to biomineralize, since the drop in pH is accompanied by reductions in CaCO3 saturation state. However, recent experiments show that net calcification rates of cultured benthic invertebrate taxa exhibit diverse responses to pCO2-induced changes in saturation state (Ries et al., 2009). Advancement of geochemical tools as biomineralization indicators will enable us to better understand these results and therefore help predict the impacts of ongoing and future decrease in seawater pH on marine organisms. Here we build upon previous work on these specimens by measuring the elemental composition of biogenic calcite and aragonite precipitated in four pCO2 treatments (400; 600; 900; and 2850 ppm). Element ratios (including Sr/Ca, Mg/Ca, Li/Ca, B/Ca, U/Ca, Ba/Ca, Cd/Ca, and Zn/Ca) were analyzed in 18 macro-invertebrate species representing seven phyla (crustacea, cnidaria, echinoidea, rhodophyta, chlorophyta, gastropoda, bivalvia, annelida), then compared to growth rate data and experimental seawater carbonate system parameters: [CO32-], [HCO3-], pH, saturation state, and DIC. Correlations between calcite or aragonite composition and seawater carbonate chemistry are highly taxa-specific, but do not resemble trends observed in growth rate for all species. Apparent carbonate system sensitivities vary widely by element, ranging from strongly correlated to no significant response. Interpretation of these results is guided by mounting evidence for the capacity of individual species to modulate pH and/or saturation state at the site of calcification in response to ambient seawater chemistry. Such biomineralization pathways and strategies in turn likely influence elemental fractionation during CaCO3 precipitation. Ries, J.B., A.L. Cohen, A.L., and D.C. McCorkle (2009), Marine calcifiers exhibit mixed responses to CO2-induced ocean

  7. Antifungal potential of marine natural products.

    PubMed

    El-Hossary, Ebaa M; Cheng, Cheng; Hamed, Mostafa M; El-Sayed Hamed, Ashraf Nageeb; Ohlsen, Knut; Hentschel, Ute; Abdelmohsen, Usama Ramadan

    2017-01-27

    Fungal diseases represent an increasing threat to human health worldwide which in some cases might be associated with substantial morbidity and mortality. However, only few antifungal drugs are currently available for the treatment of life-threatening fungal infections. Furthermore, plant diseases caused by fungal pathogens represent a worldwide economic problem for the agriculture industry. The marine environment continues to provide structurally diverse and biologically active secondary metabolites, several of which have inspired the development of new classes of therapeutic agents. Among these secondary metabolites, several compounds with noteworthy antifungal activities have been isolated from marine microorganisms, invertebrates, and algae. During the last fifteen years, around 65% of marine natural products possessing antifungal activities have been isolated from sponges and bacteria. This review gives an overview of natural products from diverse marine organisms that have shown in vitro and/or in vivo potential as antifungal agents, with their mechanism of action whenever applicable. The natural products literature is covered from January 2000 until June 2015, and we are reporting the chemical structures together with their biological activities, as well as the isolation source. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Diversity and Distribution Characteristics of Viruses in Soils of a Marine-Terrestrial Ecotone in East China.

    PubMed

    Yu, Dan-Ting; Han, Li-Li; Zhang, Li-Mei; He, Ji-Zheng

    2018-02-01

    A substantial gap remains in our understanding of the abundance, diversity, and ecology of viruses in soil although some advances have been achieved in recent years. In this study, four soil samples according to the salinity gradient from shore to inland in East China have been characterized. Results showed that spherical virus particles represented the largest viral component in all of the four samples. The viromes had remarkably different taxonomic compositions, and most of the sequences were derived from single-stranded DNA viruses, especially from families Microviridae and Circoviridae. Compared with viromes from other aquatic and sediment samples, the community compositions of our four soil viromes resembled each other, meanwhile coastal sample virome closely congregated with sediment and hypersaline viromes, and high salinity paddy soil sample virome was similar with surface sediment virome. Phylogenetic analysis of functional genes showed that four viromes have high diversity of the subfamily Gokushovirinae in family Microviridae and most of Circoviridae replicase protein sequences grouped within the CRESS-DNA viruses. This work provided an initial outline of the viral communities in marine-terrestrial ecotone and will improve our understanding of the ecological functions of soil viruses.

  9. School Projects for Monitoring the State of the Marine Environment.

    ERIC Educational Resources Information Center

    Benkendorff, Kirsten

    Australia's marine environment hosts a high level of diverse endemic species along with some of the highest biodiversity in the world. Two-thirds of the population of Australia are living in coastal areas and can be considered a threat to marine life which is very vulnerable to human impacts. Although marine environments conserve high economic…

  10. Marine products with anti-protozoal activity: a review.

    PubMed

    García, Marley; Monzote, Lianet

    2014-01-01

    The marine organisms are a rich source of varied natural products with unique functionality. A variety of natural products of new molecular structures with diverse biological activities have been reported from marine flora and fauna for treatment and/or prevention of human diseases. The present review briefly illustrates current status of marine products as antiprotozoal agents. The in vitro and in vivo studies of marine algae, invertebrates and micro-organism against different protozoa parasites are included. The marine products studied, according to international criterions for selection of more promisory products in the different models reported, demonstrated their potentialities as antiprozoal agents. Herein, the interest of scientific community to search new alternatives from marine environment has been demonstrated.

  11. New α-Pyridones with Quorum-Sensing Inhibitory Activity from Diversity-Enhanced Extracts of a Streptomyces sp. Derived from Marine Algae.

    PubMed

    Du, Yuqi; Sun, Jian; Gong, Qianhong; Wang, Yi; Fu, Peng; Zhu, Weiming

    2018-02-28

    Four new α-pyrones (1-4) and eight known analogues (5-12) were identified from the secondary metabolites of Streptomyces sp. OUCMDZ-3436 derived from the marine green algae Enteromorpha prolifera. Seven new α-pyridones (14-20) were constructed by diversity-oriented synthesis, which has been an effective approach to expanding the chemical space of natural-product-like compounds. Compounds 16, 17, 19, and 20 were found to have inhibitory effect on the gene expression controlled by quorum sensing in Pseudomonas aeruginosa QSIS-lasI.

  12. Molecular techniques revealed highly diverse microbial communities in natural marine biofilms on polystyrene dishes for invertebrate larval settlement.

    PubMed

    Lee, On On; Chung, Hong Chun; Yang, Jiangke; Wang, Yong; Dash, Swagatika; Wang, Hao; Qian, Pei-Yuan

    2014-07-01

    Biofilm microbial communities play an important role in the larval settlement response of marine invertebrates. However, the underlying mechanism has yet to be resolved, mainly because of the uncertainties in characterizing members in the communities using traditional 16S rRNA gene-based molecular methods and in identifying the chemical signals involved. In this study, pyrosequencing was used to characterize the bacterial communities in intertidal and subtidal marine biofilms developed during two seasons. We revealed highly diverse biofilm bacterial communities that varied with season and tidal level. Over 3,000 operational taxonomic units with estimates of up to 8,000 species were recovered in a biofilm sample, which is by far the highest number recorded in subtropical marine biofilms. Nineteen phyla were found, of which Cyanobacteria and Proteobacteria were the most dominant one in the intertidal and subtidal biofilms, respectively. Apart from these, Actinobacteria, Bacteroidetes, and Planctomycetes were the major groups recovered in both intertidal and subtidal biofilms, although their relative abundance varied among samples. Full-length 16S rRNA gene clone libraries were constructed for the four biofilm samples and showed similar bacterial compositions at the phylum level to those revealed by pyrosequencing. Laboratory assays confirmed that cyrids of the barnacle Balanus amphitrite preferred to settle on the intertidal rather than subtidal biofilms. This preference was independent of the biofilm bacterial density or biomass but was probably related to the biofilm community structure, particularly, the Proteobacterial and Cyanobacterial groups.

  13. Is marine biodiversity at risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culotta, E.

    1994-02-18

    Evidence is beginning to accumulate that human development of coastlines and overfishing may be having deleterious effects on marine biodiversity. Although some biologists doubt marine extinctions, the possibility is being taken seriously by scientific organizations, who have been sponsoring conferences and workshops on the changing diversity of the oceans. Four federal agencies (NSF, NOAA, the Office of Naval Research, and DOE) have banded together to sponsor a National Research Council initiative to chart a research agenda.

  14. Occurrence and diversity of Pichia spp. in marine environments

    NASA Astrophysics Data System (ADS)

    Li, Jing; Chi, Zhenming; Wang, Xianghong; Wang, Lin; Sheng, Jun; Gong, Fang

    2008-08-01

    A total of 328 yeast strains from seawater, sediments, mud of salterns, the guts of marine fish and marine algae were obtained. The results of routine identification and molecular methods show that five yeast strains obtained in this study belonged to Pichia spp., including Pichia guilliermondii 1uv-small, Pichia ohmeri YF04d, Pichia fermentans YF12b, Pichia burtonii YF11A and Pichia anomala YF07b. Further studies revealed that Pichia anomala YF07b could produce killer toxin against pathogenic yeasts in crabs while Pichia guilliermondii 1uv-small could produce high activity of extracellular inulinase. It is advisable to test if Pichia ohmeri YF04d obtained in this study is related to central-venous-catheter-associated infection.

  15. High abundance and diversity of consumers associated with eutrophic areas in a semi-desert macrotidal coastal ecosystem in Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Martinetto, Paulina; Daleo, Pedro; Escapa, Mauricio; Alberti, Juan; Isacch, Juan Pablo; Fanjul, Eugenia; Botto, Florencia; Piriz, Maria Luz; Ponce, Gabriela; Casas, Graciela; Iribarne, Oscar

    2010-07-01

    Here we evaluated the response to eutrophication in terms of abundance and diversity of flora and fauna in a semi-desert macrotidal coastal system (San Antonio bay, Patagonia, Argentina, 40° 48' S) where signs of eutrophication (high nutrient concentration, seaweed blooms, high growth rate of macroalgae) have been reported. We compared abundances and species composition of macroalgae, small infaunal and epifaunal invertebrates, and birds associated with tidal channels of the San Antonio Bay subject to contrasting anthropogenic influence. Macroalgae were more abundant and diverse in the channel closer to human activity where nutrient concentrations were also higher. In contrast to what others have observed in eutrophic sites, small invertebrates and birds were also more abundant and diverse in the channel with macroalgal blooms and high nutrient concentration. The large water flushing during the tidal cycle could prevent anoxic or hypoxic events, making the environment suitable for consumers. Thus, this could be a case in which eutrophication supports high densities of consumers by increasing food availability, rather than negatively affecting the survival of organisms.

  16. Diversity in transcripts and translational pattern of stress proteins in marine extremophiles.

    PubMed

    Ambily Nath, I V; Loka Bharathi, P A

    2011-03-01

    Extremophiles occur in a diverse range of habitats, from the frigid waters of Antarctic to the superheated plumes of hydrothermal vents. Their in-depth study could provide important insights into the biochemical, ecological and evolutionary aspects of marine microbes. The cellular machinery of such extreme-lovers could be highly flexible to cope with such harsh environments. Extreme conditions of temperature, pressure, salinity, pH, oxidative stress, radiation, etc., above the physiological tolerance level can disrupt the natural conformation of proteins in the cell. The induction of stress proteins (heat/cold shock proteins/salt stress proteins/pressure-induced proteins) plays a vital role in the acclimatization of extremophiles. The present review focuses on the in vitro studies conducted on the transcripts and translational pattern of stress proteins in extremophiles. Though some proteins are unique, a commonality in stress resistance mechanism has been observed, for example, the universal occurrence of HSP60, 70 and the expression of metabolic and DNA repair proteins. The review highlights that among all the stressful conditions, salt/osmotic stress evokes the expression of highest number of transcripts/proteins while psychrophilic condition the least.

  17. Metabolomic response of a marine bacterium to 3,6-anhydro-l-galactose, the rare sugar from red macroalgae, as the sole carbon source.

    PubMed

    Yun, Eun Ju; Yu, Sora; Kim, Sooah; Kim, Kyoung Heon

    2018-03-20

    Marine red macroalgae have received much attention as sustainable resources for producing bio-based products. Therefore, understanding the metabolic pathways of carbohydrates from red macroalgae, in fermentative microorganisms, is crucial for efficient bioconversion of the carbohydrates into bio-based products. Recently, the novel catabolic pathway of 3,6-anhydro-l-galactose (AHG), the main component of red macroalgae, was discovered in a marine bacterium, Vibrio sp. strain EJY3. However, the global metabolic network in response to AHG remains unclear. Here, the intracellular metabolites of EJY3 grown on AHG, glucose, or galactose were comparatively profiled using gas chromatography/time-of-flight mass spectrometry. The global metabolite profiling results revealed that the metabolic profile for AHG significantly differed from those for other common sugars. Specifically, the metabolic intermediate of the AHG pathway, 3,6-anhydrogalactonate, was detected during growth only in the presence of AHG; thus, the recently discovered key steps in AHG catabolism was found not to occur in the catabolism of other common sugars. Moreover, the levels of metabolic intermediates related to glycerolipid metabolism and valine biosynthesis were higher with AHG than those with other sugars. These comprehensive metabolomic analytical results for AHG in this marine bacterium can be used as the basis for having fermentative microbial strains to engineered to efficiently utilize AHG from macroalgal biomass. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. The diversity and origins of toxins in ciguatera fish poisoning.

    PubMed

    Tosteson, T R

    1995-06-01

    The source of the diversity of phytotoxins found in the marine food web is not well understood. It is not clear what roles these secondary metabolites might have in the phytoplankton that produce them. The phytotoxins do not appear to be deterrents of predation, although the production of antibiotics by marine macroalgae might be considered in this light (86). It is equally doubtful that the production and/or presence of these toxins confers a selective advantage on the phytoplankton producers, when in fact the diversity of naturally occurring phytoplankton species may well be maintained by lytic viral infections (22,64). On the other hand, these multiple, diverse toxins may be the products of the different adaptations and interactions that take place between microalgal vectors and the highly variable spectrum of their microbial symbionts. We do not know what selective signals these toxic products may be providing in the maintenance of the symbiont-host consortia in which they are produced, however, their diversity most likely reflects the diversity of symbiotic interactions that exist in these consortia. Woven into the very fabric of the traditional marine food web is an invisible empire of marine micro-organisms, that by its very existence may determine the intense diversity of toxins found in marine biota. Marine bacteria are very likely the most abundant organisms in the sea and to a large degree maintain a food web of their own, often referred to as the microbial loop (64). This microbial web sustains the biogeochemical cycles in the sea. Much of the food produced by phytoplankton and cyanobacteria is consumed by bacteria in the microbial loop and may never enter the food web of larger invertebrates and fishes. Traditionally, the marine food web has been viewed, so to speak, from the top, however, it is now clear that there is an enormous marine microbial food web from which the food web of larger invertebrates and fishes emanates (Figure 13). In many respects

  19. Preference of the herbivorous marine teleost Siganus canaliculatus for different macroalgae

    NASA Astrophysics Data System (ADS)

    You, Cuihong; Zeng, Fangui; Wang, Shuqi; Li, Yuanyou

    2014-06-01

    The decomposition of a large amount of unexploited macroalgal resource along the coast of China often results in heavy environmental pollution. In order to pave a way of using macroalgae as the dietary ingredient of rabbitfish Siganus canaliculatus, one of a few farmed herbivorous marine teleosts in China, its preference (feeding selectivity) for different macroalgae was determined in this study. Seven seaweed species abundantly inhabiting the coast of east Guangdong Province were exposed simultaneously to rabbitfish juveniles in laboratory (multiple-choice feeding) with their content and absolute intake assayed. It was found that the most preferred algae were Ulva prolifera, Gracilaria lemaneiformis and Chaetomorpha linum, less preferred algae were U. pertusa and Porphyra haitanensis, and least preferred ones were Sargassum fusiforme and Corallina sessilis. Such an order did not change when one to four relatively preferred seaweeds were removed. The preferred seaweeds were richer in protein and soluble sugar thus higher in energy than the least preferred. In addition, this fish was found to favor filamentous and flat algae rather than calcified ones. Accordingly, the richness of nutrients and morphological characteristics determined the preference of S. canaliculatus for tested macroalgae.

  20. Alternative and Efficient Extraction Methods for Marine-Derived Compounds

    PubMed Central

    Grosso, Clara; Valentão, Patrícia; Ferreres, Federico; Andrade, Paula B.

    2015-01-01

    Marine ecosystems cover more than 70% of the globe’s surface. These habitats are occupied by a great diversity of marine organisms that produce highly structural diverse metabolites as a defense mechanism. In the last decades, these metabolites have been extracted and isolated in order to test them in different bioassays and assess their potential to fight human diseases. Since traditional extraction techniques are both solvent- and time-consuming, this review emphasizes alternative extraction techniques, such as supercritical fluid extraction, pressurized solvent extraction, microwave-assisted extraction, ultrasound-assisted extraction, pulsed electric field-assisted extraction, enzyme-assisted extraction, and extraction with switchable solvents and ionic liquids, applied in the search for marine compounds. Only studies published in the 21st century are considered. PMID:26006714

  1. Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products.

    PubMed

    Valliappan, Karuppiah; Sun, Wei; Li, Zhiyong

    2014-09-01

    Actinobacteria are ubiquitous in the marine environment, playing an important ecological role in the recycling of refractory biomaterials and producing novel natural products with pharmic applications. Actinobacteria have been detected or isolated from the marine creatures such as sponges, corals, mollusks, ascidians, seaweeds, and seagrass. Marine organism-associated actinobacterial 16S rRNA gene sequences, i.e., 3,003 sequences, deposited in the NCBI database clearly revealed enormous numbers of actinobacteria associated with marine organisms. For example, RDP classification of these sequences showed that 112 and 62 actinobacterial genera were associated with the sponges and corals, respectively. In most cases, it is expected that these actinobacteria protect the host against pathogens by producing bioactive compounds. Natural products investigation and functional gene screening of the actinobacteria associated with the marine organisms revealed that they can synthesize numerous natural products including polyketides, isoprenoids, phenazines, peptides, indolocarbazoles, sterols, and others. These compounds showed anticancer, antimicrobial, antiparasitic, neurological, antioxidant, and anti-HIV activities. Therefore, marine organism-associated actinobacteria represent an important resource for marine drugs. It is an upcoming field of research to search for novel actinobacteria and pharmaceutical natural products from actinobacteria associated with the marine organisms. In this review, we attempt to summarize the present knowledge on the diversity and natural products production of actinobacteria associated with the marine organisms, based on the publications from 1991 to 2013.

  2. Marine Natural Products as Prototype Agrochemical Agents

    PubMed Central

    Peng, Jiangnan; Shen, Xiaoyu; El Sayed, Khalid A.; Dunbar, D. C Harles; Perry, Tony L.; Wilkins, Scott P.; Hamann, Mark T.; Bobzin, Steve; Huesing, Joseph; Camp, Robin; Prinsen, Mike; Krupa, Dan; Wideman, Margaret A.

    2016-01-01

    In the interest of identifying new leads that could serve as prototype agrochemical agents, 18 structurally diverse marine-derived compounds were examined for insecticidal, herbicidal, and fungicidal activities. Several new classes of compounds have been shown to be insecticidal, herbicidal, and fungicidal, which suggests that marine natural products represent an intriguing source for the discovery of new agrochemical agents. PMID:12670165

  3. Microbial diversity in methane hydrate-bearing deep marine sediments core preserved in the original pressure.

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Hata, T.; Nishida, H.

    2017-12-01

    In normal coring of deep marine sediments, the sampled cores are exposed to the pressure of the atmosphere, which results in dissociation of gas-hydrates and might change microbial diversity. In this study, we analyzed microbial composition in methane hydrate-bearing sediment core sampled and preserved by Hybrid-PCS (Pressure Coring System). We sliced core into three layers; (i) outside layer, which were most affected by drilling fluids, (ii) middle layer, and (iii) inner layer, which were expected to be most preserved as the original state. From each layer, we directly extracted DNA, and amplified V3-V4 region of 16S rRNA gene. We determined at least 5000 of nucleotide sequences of the partial 16S rDNA from each layer by Miseq (Illumina). In the all layers, facultative anaerobes, which can grow with or without oxygen because they can metabolize energy aerobically or anaerobically, were detected as majority. However, the genera which are often detected anaerobic environment is abundant in the inner layer compared to the outside layer, indicating that condition of drilling and preservation affect the microbial composition in the deep marine sediment core. This study was conducted as a part of the activity of the Research Consortium for Methane Hydrate Resources in Japan [MH21 consortium], and supported by JOGMEC (Japan Oil, Gas and Metals National Corporation). The sample was provided by AIST (National Institute of Advanced Industrial Science and Technology).

  4. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters.

    PubMed

    Schorn, Michelle A; Alanjary, Mohammad M; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R; Ziemert, Nadine; Moore, Bradley S

    2016-12-01

    Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites.

  5. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters

    PubMed Central

    Schorn, Michelle A.; Alanjary, Mohammad M.; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R.; Ziemert, Nadine

    2016-01-01

    Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites. PMID:27902408

  6. Marine Web Portal as an Interface between Users and Marine Data and Information Sources

    NASA Astrophysics Data System (ADS)

    Palazov, A.; Stefanov, A.; Marinova, V.; Slabakova, V.

    2012-04-01

    Fundamental elements of the success of marine data and information management system and an effective support of marine and maritime economic activities are the speed and the ease with which users can identify, locate, get access, exchange and use oceanographic and marine data and information. There are a lot of activities and bodies have been identified as marine data and information users, such as: science, government and local authorities, port authorities, shipping, marine industry, fishery and aquaculture, tourist industry, environmental protection, coast protection, oil spills combat, Search and Rescue, national security, civil protection, and general public. On other hand diverse sources of real-time and historical marine data and information exist and generally they are fragmented, distributed in different places and sometimes unknown for the users. The marine web portal concept is to build common web based interface which will provide users fast and easy access to all available marine data and information sources, both historical and real-time such as: marine data bases, observing systems, forecasting systems, atlases etc. The service is regionally oriented to meet user needs. The main advantage of the portal is that it provides general look "at glance" on all available marine data and information as well as direct user to easy discover data and information in interest. It is planned to provide personalization ability, which will give the user instrument to tailor visualization according its personal needs.

  7. Marine natural flavonoids: chemistry and biological activities.

    PubMed

    Martins, Beatriz T; Correia da Silva, Marta; Pinto, Madalena; Cidade, Honorina; Kijjoa, Anake

    2018-05-04

    As more than 70% of the world's surface is covered by oceans, marine organisms offer a rich and unlimited resource of structurally diverse bioactive compounds. These organisms have developed unique properties and bioactive compounds that are, in majority of them, unparalleled by their terrestrial counterparts due to the different surrounding ecological systems. Marine flavonoids have been extensively studied in the last decades due to a growing interest concerning their promising biological/pharmacological activities. The most common classes of marine flavonoids are flavones and flavonols, which are mostly isolated from marine plants. Although most of flavonoids are hydroxylated and methoxylated, some marine flavonoids possess an unusual substitution pattern, not commonly found in terrestrial organisms, namely the presence of sulphate, chlorine, and amino groups. This review presents, for the first time in a systematic way, the structure, natural occurrence, and biological activities of marine flavonoids.

  8. Comparative toxicology for risk assessment of marine fishes and crustaceans. [Cyprinodon variegatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suter, G.W. II; Rosen, A.E.

    1988-05-01

    The goal of this study was to collect data on the effects of chemicals on marine fishes and crustaceans and to evaluate the predictive power of the data for assessing risks to marine resources. The data sets consisted of acute median lethal concentrations (LC{sub 50s}) and chronic maximum acceptable toxicant concentrations (MATCs). They were analyzed with regression models and simple comparisons. The conclusions include the following: (1) the variability found in the marine data was comparable to that found in freshwater data; (2) the standard marine test fish Cyprinodon variegatus appears to be representative of marine fishes; (3) the responsesmore » of marine crustaceans are so highly diverse that the concept of a representative crustacean is questionable; (4) mysid and penaeid shrimp appear to be particularly sensitive to toxic chemicals. These conclusions are subject to the constraints of the existing limited data base and should be confirmed by a systematic study of the relative sensitivity of marine organisms to chemicals with diverse modes of action.« less

  9. Phylogenetically diverse macrophyte community promotes species diversity of mobile epi-benthic invertebrates

    NASA Astrophysics Data System (ADS)

    Nakamoto, Kenta; Hayakawa, Jun; Kawamura, Tomohiko; Kodama, Masafumi; Yamada, Hideaki; Kitagawa, Takashi; Watanabe, Yoshiro

    2018-07-01

    Various aspects of plant diversity such as species diversity and phylogenetic diversity enhance the species diversity of associated animals in terrestrial systems. In marine systems, however, the effects of macrophyte diversity on the species diversity of associated animals have received little attention. Here, we sampled in a subtropical seagrass-seaweed mixed bed to elucidate the effect of the macrophyte phylogenetic diversity based on the taxonomic relatedness as well as the macrophyte species diversity on species diversity of mobile epi-benthic invertebrates. Using regression analyses for each macrophyte parameter as well as multiple regression analyses, we found that the macrophyte phylogenetic diversity (taxonomic diversity index: Delta) positively influenced the invertebrate species richness and diversity index (H‧). Although the macrophyte species richness and H‧ also positively influenced the invertebrate species richness, the best fit model for invertebrate species richness did not include them, suggesting that the macrophyte species diversity indirectly influenced invertebrate species diversity. Possible explanations of the effects of macrophyte Delta on the invertebrate species diversity were the niche complementarity effect and the selection effect. This is the first study which demonstrates that macrophyte phylogenetic diversity has a strong effect on the species diversity of mobile epi-benthic invertebrates.

  10. Marine invasions by non-sea snakes, with thoughts on terrestrial-aquatic-marine transitions.

    PubMed

    Murphy, John C

    2012-08-01

    Few species of snakes show extensive adaptations to aquatic environments and even fewer exploit the oceans. A survey of morphology, lifestyles, and habitats of 2552 alethenophidian snakes revealed 362 (14%) that use aquatic environments, are semi-aquatic, or aquatic; about 70 (2.7%) of these are sea snakes (Hydrophiinae and Laticaudinae). The ancient and aquatic family Acrochordidae contains three extant species, all of which have populations inhabiting brackish or marine environments, as well as freshwater. The Homalopsidae have the most ecologically diverse representatives in coastal habitats. Other families containing species exploiting saline waters with populations in freshwater environments include: the Dipsadidae of the western hemisphere, the cosmopolitan Natricidae, the African Grayinae, and probably a few Colubridae. Species with aquatic and semi-aquatic lifestyles are compared with more terrestrial (fossorial, cryptozoic, and arboreal) species for morphological traits and life histories that are convergent with those found in sea snakes; this may provide clues to the evolution of marine snakes and increase our understanding of snake diversity.

  11. Biological and Chemical Diversity of Bacteria Associated with a Marine Flatworm.

    PubMed

    Lin, Hui-Na; Wang, Kai-Ling; Wu, Ze-Hong; Tian, Ren-Mao; Liu, Guo-Zhu; Xu, Ying

    2017-09-01

    The aim of this research is to explore the biological and chemical diversity of bacteria associated with a marine flatworm Paraplanocera sp., and to discover the bioactive metabolites from culturable strains. A total of 141 strains of bacteria including 45 strains of actinomycetes and 96 strains of other bacteria were isolated, identified and fermented on a small scale. Bioactive screening (antibacterial and cytotoxic activities) and chemical screening (ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)) yielded several target bacterial strains. Among these strains, the ethyl acetate (EA) crude extract of Streptomyces sp. XY-FW47 fermentation broth showed strong antibacterial activity against methicillin-resistant Staphylococcus aureus ATCC43300 (MRSA ATCC43300) and potent cytotoxic effects on HeLa cells. The UPLC-MS spectral analysis of the crude extract indicated that the strain XY-FW47 could produce a series of geldanamycins (GMs). One new geldanamycin (GM) analog, 4,5-dihydro-17-O-demethylgeldanamycin (1), and three known GMs (2-4) were obtained. All of these compounds were tested for antibacterial, cytotoxic, and antifungal activities, yet only GM (3) showed potent cytotoxic (HeLa cells, EC 50 = 1.12 μg/mL) and antifungal ( Setosphaeria turcica MIC = 2.40 μg/mL) activities. Their structure-activity relationship (SAR) was also preliminarily discussed in this study.

  12. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology.

    PubMed

    Gogineni, Vedanjali; Hamann, Mark T

    2018-01-01

    The oceans are a uniquely rich source of bioactive metabolites, of which sponges have been shown to be among the most prolific producers of diverse bioactive secondary metabolites with valuable therapeutic potential. Much attention has been focused on marine bioactive peptides due to their novel chemistry and diverse biological properties. As summarized in this review, marine peptides are known to exhibit various biological activities such as antiviral, anti-proliferative, antioxidant, anti-coagulant, anti-hypertensive, anti-cancer, antidiabetic, antiobesity, and calcium-binding activities. This review focuses on the chemistry and biology of peptides isolated from sponges, bacteria, cyanobacteria, fungi, ascidians, and other marine sources. The role of marine invertebrate microbiomes in natural products biosynthesis is discussed in this review along with the biosynthesis of modified peptides from different marine sources. The status of peptides in various phases of clinical trials is presented, as well as the development of modified peptides including optimization of PK and bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Rafting rocks reveal marine biological dispersal: A case study using clasts from beach-cast macroalgal holdfasts

    NASA Astrophysics Data System (ADS)

    Garden, Christopher J.; Craw, Dave; Waters, Jonathan M.; Smith, Abigail

    2011-12-01

    Tracking and quantifying biological dispersal presents a major challenge in marine systems. Most existing methods for measuring dispersal are limited by poor resolution and/or high cost. Here we use geological data to quantify the frequency of long-distance dispersal in detached bull-kelp (Phaeophyceae: Durvillaea) in southern New Zealand. Geological resolution in this region is enhanced by the presence of a number of distinct and readily-identifiable geological terranes. We sampled 13,815 beach-cast bull-kelp plants across 130 km of coastline. Rocks were found attached to 2639 of the rafted plants, and were assigned to specific geological terranes (source regions) to quantify dispersal frequencies and distances. Although the majority of kelp-associated rock specimens were found to be locally-derived, a substantial number (4%) showed clear geological evidence of long-distance dispersal, several having travelled over 200 km from their original source regions. The proportion of local versus foreign clasts varied considerably between regions. While short-range dispersal clearly predominates, long-distance travel of detached bull-kelp plants is shown to be a common and ongoing process that has potential to connect isolated coastal populations. Geological analyses represent a cost-effective and powerful method for assigning large numbers of drifted macroalgae to their original source regions.

  14. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts

    PubMed Central

    Neave, Matthew J.; Michell, Craig T.; Apprill, Amy; Voolstra, Christian R.

    2017-01-01

    Endozoicomonas bacteria are globally distributed and often abundantly associated with diverse marine hosts including reef-building corals, yet their function remains unknown. In this study we generated novel Endozoicomonas genomes from single cells and metagenomes obtained directly from the corals Stylophora pistillata, Pocillopora verrucosa, and Acropora humilis. We then compared these culture-independent genomes to existing genomes of bacterial isolates acquired from a sponge, sea slug, and coral to examine the functional landscape of this enigmatic genus. Sequencing and analysis of single cells and metagenomes resulted in four novel genomes with 60–76% and 81–90% genome completeness, respectively. These data also confirmed that Endozoicomonas genomes are large and are not streamlined for an obligate endosymbiotic lifestyle, implying that they have free-living stages. All genomes show an enrichment of genes associated with carbon sugar transport and utilization and protein secretion, potentially indicating that Endozoicomonas contribute to the cycling of carbohydrates and the provision of proteins to their respective hosts. Importantly, besides these commonalities, the genomes showed evidence for differential functional specificity and diversification, including genes for the production of amino acids. Given this metabolic diversity of Endozoicomonas we propose that different genotypes play disparate roles and have diversified in concert with their hosts. PMID:28094347

  15. Oxygen Minimum Zones in Miniature: Microbial Community Diversity, Activity, and Assembly Across Oxygen Gradients in Meromictic Marine Lakes, Palau

    NASA Astrophysics Data System (ADS)

    Beman, J. M.

    2016-02-01

    Oxygen minimum zones (OMZs) play a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet our understanding of these changes is limited by a lack of systematic analyses of low-oxygen ecosystems. In particular, forecasting biogeochemical feedbacks to deoxygenation requires detailed knowledge of microbial community assembly and activity as oxygen declines. Marine `lakes'—isolated bodies of seawater surrounded by land—are an ideal comparative system, as they provide a pronounced oxygen gradient extending from well-mixed, holomictic lakes to stratified, meromictic lakes that vary in their extent of anoxia. We examined 13 marine lakes using pyrosequencing of 16S rRNA genes, quantitative PCR for nitrogen (N)- and sulfur (S)-cycling functional genes and groups, and N- and carbon (C)-cycling rate measurements. All lakes were inhabited by well-known marine bacteria, demonstrating the broad relevance of this study system. Microbial diversity was typically highest in the anoxic monimolimnion of meromictic lakes, with marine cyanobacteria, SAR11, and other common bacteria replaced by anoxygenic phototrophs, sulfate-reducing bacteria (SRBs), and SAR406 in the monimolimnion. Denitrifier nitrite reductase (nirS) genes were also detected alongside high abundances (>106 ml-1) of dissimilatory sulfite reductase (dsrA) genes from SRBs in the monimolimnion. Sharp changes in community structure were linked to environmental gradients (constrained variation in redundancy analysis=76%) and deterministic processes dominated community assembly at all depths (nearest taxon index values >4). These results indicate that oxygen is a strong, deterministic driver of microbial community assembly. We also observed enhanced N- and C-cycling rates along the transition from hypoxic to anoxic to sulfidic conditions, suggesting that microbial communities form a positive feedback loop that may accelerate deoxygenation and OMZ expansion.

  16. Bacterial production of free fatty acids from freshwater macroalgal cellulose

    PubMed Central

    Hoovers, Spencer W.; Marner, Wesley D.; Brownson, Amy K.; Lennen, Rebecca M.; Wittkopp, Tyler M.; Yoshitani, Jun; Zulkifly, Shahrizim; Graham, Linda E.; Chaston, Sheena D.; McMahon, Katherine D.

    2013-01-01

    The predominant strategy for using algae to produce biofuels relies on the overproduction of lipids in microalgae with subsequent conversion to biodiesel (methyl-esters) or green diesel (alkanes). Conditions that both optimize algal growth and lipid accumulation rarely overlap, and differences in growth rates can lead to wild species outcompeting the desired lipid-rich strains. Here, we demonstrate an alternative strategy in which cellulose contained in the cell walls of multicellular algae is used as a feedstock for cultivating biofuel-producing micro-organisms. Cellulose was extracted from an environmental sample of Cladophora glomerata-dominated periphyton that was collected from Lake Mendota, WI, USA. The resulting cellulose cake was hydrolyzed by commercial enzymes to release fermentable glucose. The hydrolysis mixture was used to formulate an undefined medium that was able to support the growth, without supplementation, of a free fatty acid (FFA)-overproducing strain of Escherichia coli (Lennen et. al 2010). To maximize free fatty acid production from glucose, an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible vector was constructed to express the Umbellularia californica acyl–acyl carrier protein (ACP) thioesterase. Thioesterase expression was optimized by inducing cultures with 50 μM IPTG. Cell density and FFA titers from cultures grown on algae-based media reached 50% of those (~90 μg/mL FFA) cultures grown on rich Luria–Bertani broth supplemented with 0.2% glucose. In comparison, cultures grown in two media based on AFEX-pretreated corn stover generated tenfold less FFA than cultures grown in algae-based media. This study demonstrates that macroalgal cellulose is a potential carbon source for the production of biofuels or other microbially synthesized compounds. PMID:21643704

  17. Sulfur isotope variability of oceanic DMSP generation and its contributions to marine biogenic sulfur emissions

    NASA Astrophysics Data System (ADS)

    Oduro, Harry; Van Alstyne, Kathryn L.; Farquhar, James

    2012-06-01

    Oceanic dimethylsulfoniopropionate (DMSP) is the precursor to dimethylsulfide (DMS), which plays a role in climate regulation through transformation to methanesulfonic acid (MSA) and non-seasalt sulfate (NSS-SO42-) aerosols. Here, we report measurements of the abundance and sulfur isotope compositions of DMSP from one phytoplankton species (Prorocentrum minimum) and five intertidal macroalgal species (Ulva lactuca, Ulva linza, Ulvaria obscura, Ulva prolifera, and Polysiphonia hendryi) in marine waters. We show that the sulfur isotope compositions (δ34S) of DMSP are depleted in 34S relative to the source seawater sulfate by ∼1-3‰ and are correlated with the observed intracellular content of methionine, suggesting a link to metabolic pathways of methionine production. We suggest that this variability of δ34S is transferred to atmospheric geochemical products of DMSP degradation (DMS, MSA, and NSS-SO42-), carrying implications for the interpretation of variability in δ34S of MSA and NSS-SO42- that links them to changes in growth conditions and populations of DMSP producers rather than to the contributions of DMS and non-DMS sources.

  18. Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: A global review and meta-analysis.

    PubMed

    Guy-Haim, Tamar; Lyons, Devin A; Kotta, Jonne; Ojaveer, Henn; Queirós, Ana M; Chatzinikolaou, Eva; Arvanitidis, Christos; Como, Serena; Magni, Paolo; Blight, Andrew J; Orav-Kotta, Helen; Somerfield, Paul J; Crowe, Tasman P; Rilov, Gil

    2018-03-01

    Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical-chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta-analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non-significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE-related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity-ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans. © 2017 John Wiley & Sons Ltd.

  19. Limited differences in fish and benthic communities and possible cascading effects inside and outside a protected marine area in Sagres (SW Portugal).

    PubMed

    Gil Fernández, C; Paulo, D; Serrão, E A; Engelen, A H

    2016-03-01

    Marine protected areas (MPAs) are a relatively recent fisheries management and conservation tool for conservation of marine ecosystems and serve as experimental grounds to assess trophic cascade effects in areas were fishing is restricted to some extent. A series of descriptive field studies were performed to assess fish and benthic communities between two areas within a newly established MPA in SW Portugal. We characterized benthic macroalgal composition and determined the size, density and biomass of the main benthic predatory and herbivorous fish species as well as the main benthic herbivorous invertebrates to assess indications of top-down control on the phytobenthic assemblages. Fish species were identical inside and outside the MPA, in both cases Sarpa salpa was the most abundant fish herbivore and Diplodus spp. accounted for the great majority of the benthic predators. However, size and biomass of D. spp. were higher inside than outside the MPA. The main herbivorous invertebrate was the sea urchin Paracentrotus lividus, which was smaller and predominantly showing a crevice-dwelling behaviour in the MPA. In addition, P. lividus size frequency distribution showed a unimodal pattern outside and a bimodal pattern inside the MPA. We found significant differences in the algal assemblages between inside and outside the MPA, with higher abundance of turf and foliose algae inside, and articulated calcareous and corticated macrophytes outside the MPA, but no differences in the invasive Asparagopsis spp. The obtained results show differences in predatory fish and benthic community structure, but not in species richness, inside and outside the MPA. We hypothesize these differences lead to variation in species interactions: directly through predation and indirectly via affecting sea urchins behavioural patterns, predators might drive changes in macroalgal assemblages via trophic cascade in the study area. However due to non-biological differences between the two areas it

  20. Marine Viruses: Truth or Dare

    NASA Astrophysics Data System (ADS)

    Breitbart, Mya

    2012-01-01

    Over the past two decades, marine virology has progressed from a curiosity to an intensely studied topic of critical importance to oceanography. At concentrations of approximately 10 million viruses per milliliter of surface seawater, viruses are the most abundant biological entities in the oceans. The majority of these viruses are phages (viruses that infect bacteria). Through lysing their bacterial hosts, marine phages control bacterial abundance, affect community composition, and impact global biogeochemical cycles. In addition, phages influence their hosts through selection for resistance, horizontal gene transfer, and manipulation of bacterial metabolism. Recent work has also demonstrated that marine phages are extremely diverse and can carry a variety of auxiliary metabolic genes encoding critical ecological functions. This review is structured as a scientific "truth or dare," revealing several well-established "truths" about marine viruses and presenting a few "dares" for the research community to undertake in future studies.

  1. Investigation of Marine-Derived Fungal Diversity and Their Exploitable Biological Activities

    PubMed Central

    Hong, Joo-Hyun; Jang, Seokyoon; Heo, Young Mok; Min, Mihee; Lee, Hwanhwi; Lee, Young Min; Lee, Hanbyul; Kim, Jae-Jin

    2015-01-01

    Marine fungi are potential producers of bioactive compounds that may have pharmacological and medicinal applications. Fungi were cultured from marine brown algae and identified using multiple target genes to confirm phylogenetic placement. These target genes included the internal transcribed spacer (ITS), the nuclear large subunit (LSU), and the β-tubulin region. Various biological activities of marine-derived fungi were evaluated, including their antifungal, antioxidant and cellulolytic enzyme activities. As a result, a total of 50 fungi was isolated from the brown algae Sargassum sp. Among the 50 isolated fungi, Corollospora angusta was the dominant species in this study. The genus Arthrinium showed a relatively strong antifungal activity to all of the target plant pathogenic fungi. In particular, Arthrinium saccharicola KUC21221 showed high radical scavenging activity and the highest activities in terms of filter paper units (0.39 U/mL), endoglucanase activity (0.38 U/mL), and β-glucosidase activity (1.04 U/mL). PMID:26133554

  2. Green Marine: An environmental program to establish sustainability in marine transportation.

    PubMed

    Walker, Tony R

    2016-04-15

    European maritime companies have adopted programs to limit operational impacts on the environment. For maritime companies in North America, the Green Marine Environmental Program (GMEP) offers a framework to establish and reduce environmental footprints. Green Marine (GM) participants demonstrate annual improvements of specific environmental performance indicators (e.g., reductions in air pollution emissions) to maintain certification. Participants complete annual self-evaluations with results determining rankings for performance indicators on a 1-to-5 scale. Self-evaluations are independently verified every two years to ensure rigor and individual results are made publicly available annually to achieve transparency. GM benefits the marine industry across North America by encouraging sustainable development initiatives. GM's credibility is reflected through a diverse network of environmental groups and government agencies that endorse and help shape the program. Merits of this relatively new maritime certification (not previously described in the academic literature), are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Future direction in marine bacterial agarases for industrial applications.

    PubMed

    Jahromi, Saeid Tamadoni; Barzkar, Noora

    2018-06-16

    The marine ecosystem has been known to be a rich source of novel enzymes. Agarase is a key enzyme that can hydrolyze agar in the marine environment. Marine bacterial agarase has been isolated from various sources, such as sediments, coastal water, and deep sea and from the surface of crustaceans and seaweeds. This review presents an account of the agarase production of marine bacteria. General information about agar, agarase, isolation, and purification of marine bacterial agarases; the biochemical properties of native agarase from marine bacteria; the biochemical properties of recombinant marine bacterial agarases from engineered microorganisms; and the industrial future of marine bacterial agarases is analyzed. With recent biotechnological processes, researchers need novel functional enzymes like agarase from marine resources, such as marine bacteria, that can be used for diverse applications in the biotechnological industry. Marine bacterial agarases might be of significant interest to the industry because they are safe and are a natural source. This review highlights the potential of marine bacteria as important sources of agarase for application in various industries.

  4. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms.

    PubMed

    Satpute, Surekha K; Banat, Ibrahim M; Dhakephalkar, Prashant K; Banpurkar, Arun G; Chopade, Balu A

    2010-01-01

    Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.

  5. Marine Peptides and Their Anti-Infective Activities

    PubMed Central

    Kang, Hee Kyoung; Seo, Chang Ho; Park, Yoonkyung

    2015-01-01

    Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish) from 2006 to the present. PMID:25603351

  6. Marine-derived angiogenesis inhibitors for cancer therapy.

    PubMed

    Wang, Ying-Qing; Miao, Ze-Hong

    2013-03-15

    Angiogenesis inhibitors have been successfully used for cancer therapy in the clinic. Many marine-derived natural products and their analogues have been reported to show antiangiogenic activities. Compared with the drugs in the clinic, these agents display interesting characteristics, including diverse sources, unique chemical structures, special modes of action, and distinct activity and toxicity profiles. This review will first provide an overview of the current marine-derived angiogenesis inhibitors based on their primary targets and/or mechanisms of action. Then, the marine-derived antiangiogenic protein kinase inhibitors will be focused on. And finally, the clinical trials of the marine-derived antiangiogenic agents will be discussed, with special emphasis on their application potentials, problems and possible coping strategies in their future development as anticancer drugs.

  7. Positive relationships between genetic diversity and abundance in fishes.

    PubMed

    McCusker, Megan R; Bentzen, Paul

    2010-11-01

    Molecular markers, such as mitochondrial DNA and microsatellite loci, are widely studied to assess population genetics and phylogeography; however, the selective neutrality of these markers is increasingly being questioned. Given the importance of molecular markers in fisheries science and conservation, we evaluated the neutrality of both mtDNA and microsatellite loci through their associations with population size. We surveyed mtDNA and microsatellite data from the primary literature and determined whether genetic diversity increased with abundance across a total of 105 marine and freshwater fishes, with both global fisheries catch data and body size as proxies for abundance (with an additional 57 species for which only body size data were assessed). We found that microsatellite data generally yielded higher associations with abundance than mtDNA data, and within mtDNA analyses, number of haplotypes and haplotype diversity were more strongly associated with abundance than nucleotide diversity, particularly for freshwater fishes. We compared genetic diversity between freshwater and marine fishes and found that marine fishes had higher values of all measures of genetic diversity than freshwater fishes. Results for both mtDNA and microsatellites generally conformed to neutral expectations, although weaker relationships were often found between mtDNA nucleotide diversity and 'abundance' compared to any other genetic statistic. We speculate that this is because of historical events unrelated to natural selection, although a role for selection cannot be ruled out. © 2010 Blackwell Publishing Ltd.

  8. The potential of freshwater macroalgae as a biofuels feedstock and the influence of nutrient availability on freshwater macroalgal biomass production

    NASA Astrophysics Data System (ADS)

    Yun, Jin-Ho

    environmental change. In Chapter 2, I performed a review and an analysis of data from the published literature on the large-cultivation of freshwater macroalgae. This study revealed that the large-scale cultivation of freshwater macroalgae is feasible at relatively low cost using currently available technologies such as the Algal Turf Scrubber system (ATS). In addition, graphical analyses of published data obtained from ATS systems of varying sizes in operation worldwide revealed that both macroalgal biomass productivity and nutrient removal rates are hyperbolically related to the areal loading rates of both total nitrogen and total phosphorus. An assessment of the limited existing literature on carbon dioxide amendments suggested that the effectiveness and need for CO2 supplementation of macroalgal production systems like the ATS has not yet been conclusively demonstrated. Overall, this thesis demonstrates that filamentous freshwater macroalgae have great potential as a feedstock for both liquid and solid fuels, especially if nutrient-rich wastewater can be used as the supply of water and mineral nutrients. In addition, this thesis highlights the importance of studying the algal cultivation conditions that influence trade-offs between nutrient loading, biomass productivity, and biomass energy content. In particular, the hyperbolic relationship between algal biomass productivity and the areal loading rates of both total nitrogen and total phosphorus should provide critical insight when considering the production costs of macroalgal biomass at the commercial-scale.

  9. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds.

    PubMed

    Motani, Ryosuke; Chen, Xiao-hong; Jiang, Da-yong; Cheng, Long; Tintori, Andrea; Rieppel, Olivier

    2015-03-10

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic.

  10. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds

    PubMed Central

    Motani, Ryosuke; Chen, Xiao-hong; Jiang, Da-yong; Cheng, Long; Tintori, Andrea; Rieppel, Olivier

    2015-01-01

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic. PMID:25754468

  11. Global regime shift dynamics of catastrophic sea urchin overgrazing

    PubMed Central

    Ling, S. D.; Scheibling, R. E.; Rassweiler, A.; Johnson, C. R.; Shears, N.; Connell, S. D.; Salomon, A. K.; Norderhaug, K. M.; Pérez-Matus, A.; Hernández, J. C.; Clemente, S.; Blamey, L. K.; Hereu, B.; Ballesteros, E.; Sala, E.; Garrabou, J.; Cebrian, E.; Zabala, M.; Fujita, D.; Johnson, L. E.

    2015-01-01

    A pronounced, widespread and persistent regime shift among marine ecosystems is observable on temperate rocky reefs as a result of sea urchin overgrazing. Here, we empirically define regime-shift dynamics for this grazing system which transitions between productive macroalgal beds and impoverished urchin barrens. Catastrophic in nature, urchin overgrazing in a well-studied Australian system demonstrates a discontinuous regime shift, which is of particular management concern as recovery of desirable macroalgal beds requires reducing grazers to well below the initial threshold of overgrazing. Generality of this regime-shift dynamic is explored across 13 rocky reef systems (spanning 11 different regions from both hemispheres) by compiling available survey data (totalling 10 901 quadrats surveyed in situ) plus experimental regime-shift responses (observed during a total of 57 in situ manipulations). The emergent and globally coherent pattern shows urchin grazing to cause a discontinuous ‘catastrophic’ regime shift, with hysteresis effect of approximately one order of magnitude in urchin biomass between critical thresholds of overgrazing and recovery. Different life-history traits appear to create asymmetry in the pace of overgrazing versus recovery. Once shifted, strong feedback mechanisms provide resilience for each alternative state thus defining the catastrophic nature of this regime shift. Importantly, human-derived stressors can act to erode resilience of desirable macroalgal beds while strengthening resilience of urchin barrens, thus exacerbating the risk, spatial extent and irreversibility of an unwanted regime shift for marine ecosystems.

  12. Does terrestrial epidemiology apply to marine systems?

    USGS Publications Warehouse

    McCallum, Hamish I.; Kuris, Armand M.; Harvell, C. Drew; Lafferty, Kevin D.; Smith, Garriet W.; Porter, James

    2004-01-01

    Most of epidemiological theory has been developed for terrestrial systems, but the significance of disease in the ocean is now being recognized. However, the extent to which terrestrial epidemiology can be directly transferred to marine systems is uncertain. Many broad types of disease-causing organism occur both on land and in the sea, and it is clear that some emergent disease problems in marine environments are caused by pathogens moving from terrestrial to marine systems. However, marine systems are qualitatively different from terrestrial environments, and these differences affect the application of modelling and management approaches that have been developed for terrestrial systems. Phyla and body plans are more diverse in marine environments and marine organisms have different life histories and probably different disease transmission modes than many of their terrestrial counterparts. Marine populations are typically more open than terrestrial ones, with the potential for long-distance dispersal of larvae. Potentially, this might enable unusually rapid propagation of epidemics in marine systems, and there are several examples of this. Taken together, these differences will require the development of new approaches to modelling and control of infectious disease in the ocean.

  13. Conserving endangered marine organisms: causes, trends and challenges

    NASA Astrophysics Data System (ADS)

    Ambariyanto

    2017-02-01

    Increasing demand for marine resources in recent decades for human needs has led to intensified exploitation. This increase accelerates the process of extinction of various marine resources. In order to avoid extinction, it requires conservation measures of marine resources appropriately. This paper provides an overview of causes of extinction, trends and challenges in the conservation of endangered marine organisms. The success of conservation measures is highly dependent on various stakeholders such as governments, communities, the private sector and academics. Differences of the interest of these parties often lead to the failure of conservation programs. In general there is an increasing public awareness of the importance of protecting the diversity of marine resources and avoiding extinction of marine organisms, especially endangered organisms. The existence of comprehensive actions, legislation and improved coordination among government, community, private sector, and academics will significantly improve the success in overcoming all the challenges.

  14. Biodiversity of free-living marine nematodes in the southern Yellow Sea, China

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoshou; Xu, Man; Hua, Er; Zhang, Zhinan

    2016-02-01

    Biodiversity patterns of free-living marine nematodes were studied using specific, taxonomic and phylogenetic diversity measures in the southern Yellow Sea, China. The results showed that the average of Shannon-Wiener diversity index ( H') in the study area was 3.17. The higher values were distributed in the east part of Shandong coastal waters and north part of Jiangsu coastal waters, while the lower values were distributed in the southern Yellow Sea Cold Water Mass (YSCWM). The average of taxonomic diversity ( Δ) was 62.09 in the study region. The higher values were distributed in the transitional areas between the coastal areas and the southern YSCWM, while the lower values were distributed near the north part of Jiangsu coastal waters and the YSCWM. Results of correlation analysis of species diversity and taxonomic diversity showed that some of the two kinds of diversity index were independent, which suggested that combining the two kinds of diversity indices can reflect the ecological characteristics better. A test for 95% probability funnels of average taxonomic distinctness and variation in taxonomic distinctness suggested that Station 8794 (in the YSCWM) was outside of the 95% probability funnels, which may be due to the environmental stress. Results of correlation analysis between marine nematodes biodiversity and environmental variables showed that the sediment characteristics (Mdø and Silt-clay fraction) and phaeophorbide a (Pha- a) were the most important factors to determine the biodiversity patterns of marine nematodes.

  15. Emerging concepts promising new horizons for marine biodiscovery and synthetic biology.

    PubMed

    Reen, F Jerry; Gutiérrez-Barranquero, José A; Dobson, Alan D W; Adams, Claire; O'Gara, Fergal

    2015-05-13

    The vast oceans of the world, which comprise a huge variety of unique ecosystems, are emerging as a rich and relatively untapped source of novel bioactive compounds with invaluable biotechnological and pharmaceutical potential. Evidence accumulated over the last decade has revealed that the diversity of marine microorganisms is enormous with many thousands of bacterial species detected that were previously unknown. Associated with this diversity is the production of diverse repertoires of bioactive compounds ranging from peptides and enzymes to more complex secondary metabolites that have significant bioactivity and thus the potential to be exploited for innovative biotechnology. Here we review the discovery and functional potential of marine bioactive peptides such as lantibiotics, nanoantibiotics and peptidomimetics, which have received particular attention in recent years in light of their broad spectrum of bioactivity. The significance of marine peptides in cell-to-cell communication and how this may be exploited in the discovery of novel bioactivity is also explored. Finally, with the recent advances in bioinformatics and synthetic biology, it is becoming clear that the integration of these disciplines with genetic and biochemical characterization of the novel marine peptides, offers the most potential in the development of the next generation of societal solutions.

  16. Emerging Concepts Promising New Horizons for Marine Biodiscovery and Synthetic Biology

    PubMed Central

    Reen, F. Jerry; Gutiérrez-Barranquero, José A.; Dobson, Alan D. W.; Adams, Claire; O’Gara, Fergal

    2015-01-01

    The vast oceans of the world, which comprise a huge variety of unique ecosystems, are emerging as a rich and relatively untapped source of novel bioactive compounds with invaluable biotechnological and pharmaceutical potential. Evidence accumulated over the last decade has revealed that the diversity of marine microorganisms is enormous with many thousands of bacterial species detected that were previously unknown. Associated with this diversity is the production of diverse repertoires of bioactive compounds ranging from peptides and enzymes to more complex secondary metabolites that have significant bioactivity and thus the potential to be exploited for innovative biotechnology. Here we review the discovery and functional potential of marine bioactive peptides such as lantibiotics, nanoantibiotics and peptidomimetics, which have received particular attention in recent years in light of their broad spectrum of bioactivity. The significance of marine peptides in cell-to-cell communication and how this may be exploited in the discovery of novel bioactivity is also explored. Finally, with the recent advances in bioinformatics and synthetic biology, it is becoming clear that the integration of these disciplines with genetic and biochemical characterization of the novel marine peptides, offers the most potential in the development of the next generation of societal solutions. PMID:25984990

  17. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans

    NASA Astrophysics Data System (ADS)

    Coutinho, Felipe H.; Silveira, Cynthia B.; Gregoracci, Gustavo B.; Thompson, Cristiane C.; Edwards, Robert A.; Brussaard, Corina P. D.; Dutilh, Bas E.; Thompson, Fabiano L.

    2017-07-01

    Marine viruses are key drivers of host diversity, population dynamics and biogeochemical cycling and contribute to the daily flux of billions of tons of organic matter. Despite recent advancements in metagenomics, much of their biodiversity remains uncharacterized. Here we report a data set of 27,346 marine virome contigs that includes 44 complete genomes. These outnumber all currently known phage genomes in marine habitats and include members of previously uncharacterized lineages. We designed a new method for host prediction based on co-occurrence associations that reveals these viruses infect dominant members of the marine microbiome such as Prochlorococcus and Pelagibacter. A negative association between host abundance and the virus-to-host ratio supports the recently proposed Piggyback-the-Winner model of reduced phage lysis at higher host densities. An analysis of the abundance patterns of viruses throughout the oceans revealed how marine viral communities adapt to various seasonal, temperature and photic regimes according to targeted hosts and the diversity of auxiliary metabolic genes.

  18. Ningaloo Reef: Shallow Marine Habitats Mapped Using a Hyperspectral Sensor

    PubMed Central

    Kobryn, Halina T.; Wouters, Kristin; Beckley, Lynnath E.; Heege, Thomas

    2013-01-01

    Research, monitoring and management of large marine protected areas require detailed and up-to-date habitat maps. Ningaloo Marine Park (including the Muiron Islands) in north-western Australia (stretching across three degrees of latitude) was mapped to 20 m depth using HyMap airborne hyperspectral imagery (125 bands) at 3.5 m resolution across the 762 km2 of reef environment between the shoreline and reef slope. The imagery was corrected for atmospheric, air-water interface and water column influences to retrieve bottom reflectance and bathymetry using the physics-based Modular Inversion and Processing System. Using field-validated, image-derived spectra from a representative range of cover types, the classification combined a semi-automated, pixel-based approach with fuzzy logic and derivative techniques. Five thematic classification levels for benthic cover (with probability maps) were generated with varying degrees of detail, ranging from a basic one with three classes (biotic, abiotic and mixed) to the most detailed with 46 classes. The latter consisted of all abiotic and biotic seabed components and hard coral growth forms in dominant or mixed states. The overall accuracy of mapping for the most detailed maps was 70% for the highest classification level. Macro-algal communities formed most of the benthic cover, while hard and soft corals represented only about 7% of the mapped area (58.6 km2). Dense tabulate coral was the largest coral mosaic type (37% of all corals) and the rest of the corals were a mix of tabulate, digitate, massive and soft corals. Our results show that for this shallow, fringing reef environment situated in the arid tropics, hyperspectral remote sensing techniques can offer an efficient and cost-effective approach to mapping and monitoring reef habitats over large, remote and inaccessible areas. PMID:23922921

  19. Evidence for marine microfossils from amber.

    PubMed

    Girard, Vincent; Schmidt, Alexander R; Saint Martin, Simona; Struwe, Steffi; Perrichot, Vincent; Saint Martin, Jean-Paul; Grosheny, Danièle; Breton, Gérard; Néraudeau, Didier

    2008-11-11

    Amber usually contains inclusions of terrestrial and rarely limnetic organisms that were embedded in the places were they lived in the amber forests. Therefore, it has been supposed that amber could not have preserved marine organisms. Here, we report the discovery amber-preserved marine microfossils. Diverse marine diatoms as well as radiolarians, sponge spicules, a foraminifer, and a spine of a larval echinoderm were found in Late Albian and Early Cenomanian amber samples of southwestern France. The highly fossiliferous resin samples solidified approximately 100 million years ago on the floor of coastal mixed forests dominated by conifers. The amber forests of southwestern France grew directly along the coast of the Atlantic Ocean and were influenced by the nearby sea: shells and remnants of marine organisms were probably introduced by wind, spray, or high tide from the beach or the sea onto the resin flows.

  20. Late Neogene marine incursions and the ancestral Gulf of California

    USGS Publications Warehouse

    McDougall, K.

    2008-01-01

    The late Neogene section in the Salton Trough, California, and along the lower Colorado River in Arizona is composed of marine units bracketed by nonmarine units. Microfossils from the marine deposits indicate that a marine incursion inundated the Salton Trough during the late Miocene. Water depths increased rapidly in the Miocene and eventually flooded the region now occupied by the Colorado River as far north as Parker, Arizona. Marine conditions were restricted in the Pliocene as the Colorado River filled the Salton Trough with sediments and the Gulf of California assumed its present configuration. Microfossils from the early part of this incursion include a diverse assemblage of benthic foraminifers (Amphistegina gibbosa, Uvigerina peregrina, Cassidulina delicata, and Bolivina interjuncta), planktic foraminifers (Globigerinoides obliquus, G. extremus, and Globigerina nepenthes), and calcareous nannoplankton (Discoaster brouweri, Discoaster aff. Discoaster surculus, Sphenolithus abies, and S. neoabies), whereas microfossils in the final phase contain a less diverse assemblage of benthic foraminifers that are diagnostic of marginal shallow-marine conditions (Ammonia, Elphidium, Bolivina, Cibicides, and Quinqueloculina). Evidence of an earlier middle Miocene marine incursion comes from reworked microfossils found near Split Mountain Gorge in the Fish Creek Gypsum (Sphenolithus moriformis) and near San Gorgonio Pass (Cyclicargolithus floridanus and Sphenolithus heteromorphus and planktic foraminifers). The middle Miocene incursion may also be represented by the older marine sedimentary rocks encountered in the subsurface near Yuma, Arizona, where rare middle Miocene planktic foraminifers are found. ?? 2008 The Geological Society of America.

  1. Climate change can cause complex responses in Baltic Sea macroalgae: A systematic review

    NASA Astrophysics Data System (ADS)

    Takolander, Antti; Cabeza, Mar; Leskinen, Elina

    2017-05-01

    Estuarine macroalgae are important primary producers in aquatic ecosystems, and often foundation species providing structurally complex habitat. Climate change alters many abiotic factors that affect their long-term persistence and distribution. Here, we review the existing scientific literature on the tolerance of key macroalgal species in the Baltic Sea, the world's largest brackish water body. Elevated temperature is expected to intensify coastal eutrophication, further promoting growth of opportunistic, filamentous species, especially green algae, which are often species associated with intensive filamentous algal blooms. Declining salinities will push the distributions of marine species towards south, which may alter the Baltic Sea community compositions towards a more limnic state. Together with increasing eutrophication trends this may cause losses in marine-originating foundation species such as Fucus, causing severe biodiversity impacts. Experimental results on ocean acidification effects on macroalgae are mixed, with only few studies conducted in the Baltic Sea. We conclude that climate change can alter the structure and functioning of macroalgal ecosystems especially in the northern Baltic coastal areas, and can potentially act synergistically with eutrophication. We briefly discuss potential adaptation measures.

  2. Diversification dynamics, species sorting, and changes in the functional diversity of marine benthic gastropods during the Pliocene-Quaternary at temperate western South America.

    PubMed

    Rivadeneira, Marcelo M; Nielsen, Sven N

    2017-01-01

    Functional diversity based on species traits is a powerful tool to investigate how changes in species richness and composition affect ecosystem functioning. However, studies aimed at understanding changes in functional diversity over large temporal and spatial scales are still scant. Here we evaluate the combined effect of diversification and species sorting on functional diversity of fossil marine gastropods during the Pliocene-Quaternary transition in the Pacific coast of South America. We analyzed a total of 172 species in 29 Pliocene and 97 Quaternary sites. Each species was characterized according to six functional traits: body size, feeding type, mobility, attachment, life-habit, and larval mode. Functional diversity was estimated according to four indexes (functional richness, evenness, divergence and dispersion) based on functional traits measured. Extrapolated species richness showed a slight yet not significant decrease from the Pliocene to the Quaternary despite the fact that a large faunal turnover took place; furthermore, a large extinction of Pliocene species (61-76%) was followed by a high pulse of appearances (49-56%) during the Quaternary. Three out of four indices of functional diversity (evenness, divergence and dispersion) increased significantly towards the Quaternary which is more than expected under a random turnover of species. The increase in functional diversity is associated with a loss of large-sized carnivore forms, which tended to be replaced by small-sized grazers. Hence, this trait-selective species turnover, even in the absence of significant changes in species richness, likely had a large effect and has shaped the functional diversity of present-day assemblages.

  3. Emergent Patterns of Diversity and Dynamics in Natural Populations of Planktonic Vibrio Bacteria

    DTIC Science & Technology

    2005-06-01

    Associations Abiotic Factors 3. Routes of Transmission Seafood Consumption Seawater Exposure Aerosol Exposure Marine Zoonoses 4. Indicators for Marine ...is a general feature of seawater environments. Overall, the effect of salinity, temperature, and nutrients on the proliferation of marine pathogens...diversity within coastal bacterioplankton using the genus Vibrio as a model system. Vibrios are ubiquitous marine bacteria, and include a variety of

  4. Drugs from the Oceans: Marine Natural Products as Leads for Drug Discovery.

    PubMed

    Altmann, Karl-Heinz

    2017-10-25

    The marine environment harbors a vast number of species that are the source of a wide array of structurally diverse bioactive secondary metabolites. At this point in time, roughly 27'000 marine natural products are known, of which eight are (were) at the origin of seven marketed drugs, mostly for the treatment of cancer. The majority of these drugs and also of drug candidates currently undergoing clinical evaluation (excluding antibody-drug conjugates) are unmodified natural products, but synthetic chemistry has played a central role in the discovery and/or development of all but one of the approved marine-derived drugs. More than 1000 new marine natural products have been isolated per year over the last decade, but the pool of new and unique structures is far from exhausted. To fully leverage the potential offered by the structural diversity of marine-produced secondary metabolites for drug discovery will require their broad assessment for different bioactivities and the productive interplay between new fermentation technologies, synthetic organic chemistry, and medicinal chemistry, in order to secure compound supply and enable lead optimization.

  5. Workshop held to discuss population connectivity in marine systems

    NASA Astrophysics Data System (ADS)

    Cowen, Robert K.; Thorrold, Simon; Pineda, Jesus; Gawarkiewicz, Glen

    A central goal of marine ecology is to achieve a mechanistic understanding of the factors regulating the abundance and distribution of marine populations. One critical component of the above goal is to quantify rates of exchange, or connectivity among sub-populations of marine organisms via larval dispersal. Theoretical studies suggest that these linkages play a fundamental role in local and meta-population dynamics, community structure, genetic diversity, and the resiliency of populations to human exploitation [Fogarty, 1998].Understanding population connectivity is also key in efforts to develop spatial management methods for marine-capture fisheries, including the design of networks of marine reserves [Sala et al., 2002]. We have made considerable advances in our understanding of the biology of juvenile and adult life history stages through experimental marine ecology However, there has been no concomitant increase in our knowledge of the biological and physical processes that determine the extent to which marine populations are connected via larval dispersal.

  6. DNA barcoding of marine ornamental fishes from India.

    PubMed

    Bamaniya, Dhaval C; Pavan-Kumar, A; Gireesh-Babu, P; Sharma, Niti; Reang, Dhalongsaih; Krishna, Gopal; Lakra, W S

    2016-09-01

    India has rich marine ornamental fish diversity with 400 fish species distributed in Gulf of Munnar/Palk Bay, Gulf of Kutch, and in reefs around Andaman & Nicobar and Lakshadweep Islands. Marine ornamental fish identification at the field level is very difficult because of their high diversity and profound changes in appearance during their developmental stages and camouflage. To facilitate ornamental fish trading with ease and in compliance with the biodiversity act, DNA barcoding technique could be used to accurately identify species. In this study, DNA barcodes were generated for 31 species of commercially important marine ornamental fishes from India. The average genetic distance (K2P model) within species, genus, and family was 0.446, 13.08, and 20.09%, respectively. Intraspecific variation has increased several folds (15-20 times) after including conspecific sequences from different geographical locations. The presence of allopatric lineages/cryptic species was observed in the Indo-pacific region. The NJ tree constructed based on K2P values showed distinct clusters shared by congeneric species specific to populations.

  7. Morphological Identification and Single-Cell Genomics of Marine Diplonemids.

    PubMed

    Gawryluk, Ryan M R; Del Campo, Javier; Okamoto, Noriko; Strassert, Jürgen F H; Lukeš, Julius; Richards, Thomas A; Worden, Alexandra Z; Santoro, Alyson E; Keeling, Patrick J

    2016-11-21

    Recent global surveys of marine biodiversity have revealed that a group of organisms known as "marine diplonemids" constitutes one of the most abundant and diverse planktonic lineages [1]. Though discovered over a decade ago [2, 3], their potential importance was unrecognized, and our knowledge remains restricted to a single gene amplified from environmental DNA, the 18S rRNA gene (small subunit [SSU]). Here, we use single-cell genomics (SCG) and microscopy to characterize ten marine diplonemids, isolated from a range of depths in the eastern North Pacific Ocean. Phylogenetic analysis confirms that the isolates reflect the entire range of marine diplonemid diversity, and comparisons to environmental SSU surveys show that sequences from the isolates range from rare to superabundant, including the single most common marine diplonemid known. SCG generated a total of ∼915 Mbp of assembled sequence across all ten cells and ∼4,000 protein-coding genes with homologs in the Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology database, distributed across categories expected for heterotrophic protists. Models of highly conserved genes indicate a high density of non-canonical introns, lacking conventional GT-AG splice sites. Mapping metagenomic datasets [4] to SCG assemblies reveals virtually no overlap, suggesting that nuclear genomic diversity is too great for representative SCG data to provide meaningful phylogenetic context to metagenomic datasets. This work provides an entry point to the future identification, isolation, and cultivation of these elusive yet ecologically important cells. The high density of nonconventional introns, however, also portends difficulty in generating accurate gene models and highlights the need for the establishment of stable cultures and transcriptomic analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Isolation of Bacteriophages of the Marine Bacterium Beneckea natriegens from Coastal Salt Marshes1

    PubMed Central

    Zachary, Arthur

    1974-01-01

    Bacteriophages of the marine bacterium Beneckea natriegens were isolated from coastal marshes where they were limited to brackish and marine waters. The phages were widely distributed and morphologically diverse in the marshes. Images PMID:4133830

  9. Phylogeography of the Sponge Suberites diversicolor in Indonesia: Insights into the Evolution of Marine Lake Populations

    PubMed Central

    Becking, Leontine E.; Erpenbeck, Dirk; Peijnenburg, Katja T. C. A.; de Voogd, Nicole J.

    2013-01-01

    The existence of multiple independently derived populations in landlocked marine lakes provides an opportunity for fundamental research into the role of isolation in population divergence and speciation in marine taxa. Marine lakes are landlocked water bodies that maintain a marine character through narrow submarine connections to the sea and could be regarded as the marine equivalents of terrestrial islands. The sponge Suberites diversicolor (Porifera: Demospongiae: Suberitidae) is typical of marine lake habitats in the Indo-Australian Archipelago. Four molecular markers (two mitochondrial and two nuclear) were employed to study genetic structure of populations within and between marine lakes in Indonesia and three coastal locations in Indonesia, Singapore and Australia. Within populations of S. diversicolor two strongly divergent lineages (A & B) (COI: p = 0.4% and ITS: p = 7.3%) were found, that may constitute cryptic species. Lineage A only occurred in Kakaban lake (East Kalimantan), while lineage B was present in all sampled populations. Within lineage B, we found low levels of genetic diversity in lakes, though there was spatial genetic population structuring. The Australian population is genetically differentiated from the Indonesian populations. Within Indonesia we did not record an East-West barrier, which has frequently been reported for other marine invertebrates. Kakaban lake is the largest and most isolated marine lake in Indonesia and contains the highest genetic diversity with genetic variants not observed elsewhere. Kakaban lake may be an area where multiple putative refugia populations have come into secondary contact, resulting in high levels of genetic diversity and a high number of endemic species. PMID:24098416

  10. Phylogeography of the sponge Suberites diversicolor in Indonesia: insights into the evolution of marine lake populations.

    PubMed

    Becking, Leontine E; Erpenbeck, Dirk; Peijnenburg, Katja T C A; de Voogd, Nicole J

    2013-01-01

    The existence of multiple independently derived populations in landlocked marine lakes provides an opportunity for fundamental research into the role of isolation in population divergence and speciation in marine taxa. Marine lakes are landlocked water bodies that maintain a marine character through narrow submarine connections to the sea and could be regarded as the marine equivalents of terrestrial islands. The sponge Suberites diversicolor (Porifera: Demospongiae: Suberitidae) is typical of marine lake habitats in the Indo-Australian Archipelago. Four molecular markers (two mitochondrial and two nuclear) were employed to study genetic structure of populations within and between marine lakes in Indonesia and three coastal locations in Indonesia, Singapore and Australia. Within populations of S. diversicolor two strongly divergent lineages (A & B) (COI: p = 0.4% and ITS: p = 7.3%) were found, that may constitute cryptic species. Lineage A only occurred in Kakaban lake (East Kalimantan), while lineage B was present in all sampled populations. Within lineage B, we found low levels of genetic diversity in lakes, though there was spatial genetic population structuring. The Australian population is genetically differentiated from the Indonesian populations. Within Indonesia we did not record an East-West barrier, which has frequently been reported for other marine invertebrates. Kakaban lake is the largest and most isolated marine lake in Indonesia and contains the highest genetic diversity with genetic variants not observed elsewhere. Kakaban lake may be an area where multiple putative refugia populations have come into secondary contact, resulting in high levels of genetic diversity and a high number of endemic species.

  11. Diversity of picoeukaryotes at an oligotrophic site off the Northeastern Red Sea Coast

    PubMed Central

    2013-01-01

    Background Picoeukaryotes are protists ≤ 3 μm composed of a wide diversity of taxonomic groups. They are an important constituent of the ocean’s microbiota and perform essential ecological roles in marine nutrient and carbon cycles. Despite their importance, the true extent of their diversity has only recently been uncovered by molecular surveys that resulted in the discovery of a substantial number of previously unknown groups. No study on picoeukaryote diversity has been conducted so far in the main Red Sea basin-a unique marine environment characterized by oligotrophic conditions, high levels of irradiance, high salinity and increased water temperature. Results We sampled surface waters off the coast of the northeastern Red Sea and analyzed the picoeukaryotic diversity using Sanger-based clone libraries of the 18S rRNA gene in order to produce high quality, nearly full-length sequences. The community captured by our approach was dominated by three main phyla, the alveolates, stramenopiles and chlorophytes; members of Radiolaria, Cercozoa and Haptophyta were also found, albeit in low abundances. Photosynthetic organisms were especially diverse and abundant in the sample, confirming the importance of picophytoplankton for primary production in the basin as well as indicating the existence of numerous ecological micro-niches for this trophic level in the upper euphotic zone. Heterotrophic organisms were mostly composed of the presumably parasitic Marine Alveolates (MALV) and the presumably bacterivorous Marine Stramenopiles (MAST) groups. A small number of sequences that did not cluster closely with known clades were also found, especially in the MALV-II group, some of which could potentially belong to novel clades. Conclusions This study provides the first snapshot of the picoeukaryotic diversity present in surface waters of the Red Sea, hence setting the stage for large-scale surveying and characterization of the eukaryotic diversity in the entire basin

  12. Diversity of picoeukaryotes at an oligotrophic site off the Northeastern Red Sea Coast.

    PubMed

    Acosta, Francisco; Ngugi, David Kamanda; Stingl, Ulrich

    2013-08-20

    Picoeukaryotes are protists ≤ 3 μm composed of a wide diversity of taxonomic groups. They are an important constituent of the ocean's microbiota and perform essential ecological roles in marine nutrient and carbon cycles. Despite their importance, the true extent of their diversity has only recently been uncovered by molecular surveys that resulted in the discovery of a substantial number of previously unknown groups. No study on picoeukaryote diversity has been conducted so far in the main Red Sea basin-a unique marine environment characterized by oligotrophic conditions, high levels of irradiance, high salinity and increased water temperature. We sampled surface waters off the coast of the northeastern Red Sea and analyzed the picoeukaryotic diversity using Sanger-based clone libraries of the 18S rRNA gene in order to produce high quality, nearly full-length sequences. The community captured by our approach was dominated by three main phyla, the alveolates, stramenopiles and chlorophytes; members of Radiolaria, Cercozoa and Haptophyta were also found, albeit in low abundances. Photosynthetic organisms were especially diverse and abundant in the sample, confirming the importance of picophytoplankton for primary production in the basin as well as indicating the existence of numerous ecological micro-niches for this trophic level in the upper euphotic zone. Heterotrophic organisms were mostly composed of the presumably parasitic Marine Alveolates (MALV) and the presumably bacterivorous Marine Stramenopiles (MAST) groups. A small number of sequences that did not cluster closely with known clades were also found, especially in the MALV-II group, some of which could potentially belong to novel clades. This study provides the first snapshot of the picoeukaryotic diversity present in surface waters of the Red Sea, hence setting the stage for large-scale surveying and characterization of the eukaryotic diversity in the entire basin. Our results indicate that the

  13. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials

    PubMed Central

    Choudhary, Alka; Naughton, Lynn M.; Montánchez, Itxaso

    2017-01-01

    The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012–2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds. PMID:28846659

  14. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials.

    PubMed

    Choudhary, Alka; Naughton, Lynn M; Montánchez, Itxaso; Dobson, Alan D W; Rai, Dilip K

    2017-08-28

    The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012-2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds.

  15. Functionally diverse reef-fish communities ameliorate coral disease.

    PubMed

    Raymundo, Laurie J; Halford, Andrew R; Maypa, Aileen P; Kerr, Alexander M

    2009-10-06

    Coral reefs, the most diverse of marine ecosystems, currently experience unprecedented levels of degradation. Diseases are now recognized as a major cause of mortality in reef-forming corals and are complicit in phase shifts of reef ecosystems to algal-dominated states worldwide. Even so, factors contributing to disease occurrence, spread, and impact remain poorly understood. Ecosystem resilience has been linked to the conservation of functional diversity, whereas overfishing reduces functional diversity through cascading, top-down effects. Hence, we tested the hypothesis that reefs with trophically diverse reef fish communities have less coral disease than overfished reefs. We surveyed reefs across the central Philippines, including well-managed marine protected areas (MPAs), and found that disease prevalence was significantly negatively correlated with fish taxonomic diversity. Further, MPAs had significantly higher fish diversity and less disease than unprotected areas. We subsequently investigated potential links between coral disease and the trophic components of fish diversity, finding that only the density of coral-feeding chaetodontid butterflyfishes, seldom targeted by fishers, was positively associated with disease prevalence. These previously uncharacterized results are supported by a second large-scale dataset from the Great Barrier Reef. We hypothesize that members of the charismatic reef-fish family Chaetodontidae are major vectors of coral disease by virtue of their trophic specialization on hard corals and their ecological release in overfished areas, particularly outside MPAs.

  16. Glowing Worms: Biological, Chemical, and Functional Diversity of Bioluminescent Annelids.

    PubMed

    Verdes, Aida; Gruber, David F

    2017-07-01

    Bioluminescence, the ability to produce light by living organisms, has evolved independently in numerous lineages across the tree of life. Luminous forms are found in a wide range of taxonomic groups from bacteria to vertebrates, although the great majority of bioluminescent organisms are marine taxa. Within the phylum Annelida, bioluminescence is widespread, present in at least 98 terrestrial and marine species that represent 45 genera distributed in thirteen lineages of clitellates and polychaetes. The ecological diversity of luminous annelids is unparalleled, with species occupying a great variety of habitats including both terrestrial and marine ecosystems, from coastal waters to the deep-sea, in benthic and pelagic habitats from polar to tropical regions. This great taxonomic and ecological diversity is matched by the wide array of bioluminescent colors-including yellow light, which is very rare among marine taxa-different emission wavelengths even between species of the same genus, and varying patterns, chemical reactions and kinetics. This diversity of bioluminescence colors and patterns suggests that light production in annelids might be involved in a variety of different functions, including defensive mechanisms like sacrificial lures or aposematic signals, and intraspecific communication systems. In this review, we explore the world of luminous annelids, particularly focusing on the current knowledge regarding their taxonomic and ecological diversity and discussing the putative functions and chemistries of their bioluminescent systems. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology 2017. This work is written by US Government employees and is in the public domain in the US.

  17. Marine Geology

    NASA Astrophysics Data System (ADS)

    van Andel, Tjeerd H.

    Marine geology was blessed early, about 30 years ago, with two great textbooks, one by P.H. Kuenen, the other by Francis P. Shepard, but in more recent years, no one has dared synthesize a field that has become so diverse and is growing so rapidly. There are many texts written for the beginning undergraduate student, mostly by marine geologists, but none can be handed conveniently to a serious advanced student or given to a colleague interested in what the field has wrought. The reason for this regrettable state is obvious; only an active, major scholar could hope to write such a book well, but the years would pass, his students dwindle, his grants vanish. He himself might be out of date before his book was. Kennett has earned a large measure of gratitude for his attempt to undertake this task. His personal price must have been high but so are our rewards.

  18. Marine microorganisms and global nutrient cycles

    NASA Astrophysics Data System (ADS)

    Arrigo, Kevin R.

    2005-09-01

    The way that nutrients cycle through atmospheric, terrestrial, oceanic and associated biotic reservoirs can constrain rates of biological production and help structure ecosystems on land and in the sea. On a global scale, cycling of nutrients also affects the concentration of atmospheric carbon dioxide. Because of their capacity for rapid growth, marine microorganisms are a major component of global nutrient cycles. Understanding what controls their distributions and their diverse suite of nutrient transformations is a major challenge facing contemporary biological oceanographers. What is emerging is an appreciation of the previously unknown degree of complexity within the marine microbial community.

  19. Marine reptiles from the Late Cretaceous of northern Patagonia

    NASA Astrophysics Data System (ADS)

    Gasparini, Z.; Casadio, S.; Fernández, M.; Salgado, L.

    2001-04-01

    During the Campanian-Maastrichtian, Patagonia was flooded by the Atlantic and reduced to an archipelago. Several localities of northern Patagonia have yielded marine reptiles. Analysis of several assemblages suggests that the diversity and abundance of pelagic marine reptiles in northern Patagonia was higher by the end of the Cretaceous than previously thought. Several plesiosaurids, including Aristonectes parvidens and the polycotylid Sulcusuchus, and the first remains of mosasaurinae have been found. The Cretaceous marine reptile record from South America is scanty. Nevertheless, materials described here suggest that Tethyan and Weddelian forms converged in northern Patagonia, as seen with invertebrates.

  20. Bioactive sterols from marine resources and their potential benefits for human health.

    PubMed

    Kim, Se-Kwon; Van Ta, Quang

    2012-01-01

    Bioactive agents from marine resources have shown their valuable health beneficial effects. Therefore, increase knowledge on novel functional ingredients with biological activities from marine animal and microbe has gained much attention. Sterols are recognized as potential in development functional food ingredients and pharmaceutical agents. Marine resources, with a great diversity, can be a very interesting natural resource of sterols. This chapter focuses on biological activities of marine animal and microbe sterols with potential health beneficial applications in functional foods and pharmaceuticals. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves

    USGS Publications Warehouse

    Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.

    2003-01-01

    Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.

  2. Marine Carotenoids against Oxidative Stress: Effects on Human Health.

    PubMed

    Gammone, Maria Alessandra; Riccioni, Graziano; D'Orazio, Nicolantonio

    2015-09-30

    Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases.

  3. Marine Carotenoids against Oxidative Stress: Effects on Human Health

    PubMed Central

    Gammone, Maria Alessandra; Riccioni, Graziano; D’Orazio, Nicolantonio

    2015-01-01

    Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases. PMID:26437420

  4. Marine Fungi: A Source of Potential Anticancer Compounds

    PubMed Central

    Deshmukh, Sunil K.; Prakash, Ved; Ranjan, Nihar

    2018-01-01

    Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012–2016 against specific cancer cell lines. PMID:29354097

  5. Is the molecular diversity of marine dissolved organic matter already imprinted in the exometabolome of single strains?

    NASA Astrophysics Data System (ADS)

    Noriega-Ortega, B. E.; Wienhausen, G.; Dittmar, T.; Simon, M.; Niggemann, J.

    2016-02-01

    Dissolved organic matter (DOM) in the ocean, the marine geometabolome, is an extremely complex mixture composed of a wide variety of compounds. The molecular chemodiversity affects the function and turnover rate of DOM in the ocean. We hypothesize that the active microbial community essentially contributes to the complexity of the DOM pool through uptake and excretion of compounds. We tested this hypothesis in culture experiments with fully-sequenced strains of the Roseobacter clade. Bacteria of the Roseobacter clade are among the most abundant microbial players in the ocean. We studied the exometabolome of two representatives of the Roseobacter clade, Phaeobacter inhibens DSM 17395 and Dinoroseobacter shibae. The organisms were grown separately in cultures on defined single model substrates (acetate, succinate, glutamate, glucose). We used a non-targeted analytical approach via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to characterize the exometabolome at the molecular level, complemented by compound-specific analyses of free and combined amino acids and carbohydrates. The exometabolome composition varied between the tested strains, which released a different suite of compounds depending on the growth phase as well as on growth conditions (substrate). Both organisms exhibited a core exometabolome with compounds released when growing on either substrate and at all growth phases, and a variable exometabolome specific for different substrates and growth phases. However, only a small fraction of the exometabolites detected by FT-ICR-MS could be directly linked to the genome or transcriptome. We interpret these findings as evidence for the excretion of molecularly highly-diverse metabolic waste, whose composition is dependent on the metabolic state and genetic repertoire of the organisms. The molecular diversity of compounds excreted by a single strain is extraordinary and is likely the reason for the molecular diversity of natural DOM in

  6. National Marine Sanctuaries as Sentinel Sites for a Demonstration Marine Biodiversity Observation Network (MBON)

    NASA Astrophysics Data System (ADS)

    Chavez, F.; Montes, E.; Muller-Karger, F. E.; Gittings, S.; Canonico, G.; Kavanaugh, M.; Iken, K.; Miller, R. J.; Duffy, J. E.; Miloslavich, P.

    2016-12-01

    The U.S. Federal government (NOAA, NASA, BOEM, and the Smithsonian Institution), academic researchers, and private partners in the U.S. and around the world are working on the design and implementation of a Marine Biodiversity Observation Network (MBON). The program is being coordinated internationally with the Group on Earth Observations (GEO BON) and two key Intergovernmental Oceanographic Commission (IOC) programs, namely the Global Ocean Observing System (GOOS) and the Ocean Biogeographic Information System (OBIS). The goal is to monitor changes in marine biodiversity within various geographic settings. In the U.S., demonstration projects include four National Marine Sanctuaries (NMS): Florida Keys, Monterey Bay, Flower Garden Banks, and Channel Islands. The Smithsonian is implementing several programs around the world under the Marine Global Earth Observatory (MarineGEO) partnership, directed by the Smithsonian's Tennenbaum Marine Observatories Network (TMON). The overarching goal is to observe and understand life, from microbes to whales, in different coastal and continental shelf habitats, and its role in maintaining resilient ecosystems. The project also seeks to determine biodiversity baselines in these ecosystems based on time-series observations to assess changes in populations and overall biodiversity over time. Efforts are being made to engage with various countries in the Americas to participate in an MBON Pole to Pole in the Americas initiative proposed by Mexico. We are looking to have other regions organized to conduct similar planning efforts. The present MBON pilot projects encompass a range of marine environments, including deep sea, continental shelves, and coastal habitats including estuaries, wetlands, and coral reefs. The MBON will facilitate and enable regional biodiversity assessments, and contributes to addressing several U.N. Sustainable Development Goals to conserve and sustainably use marine resources, and provide a means for countries

  7. Effects of Gelling Agent and Extracellular Signaling Molecules on the Culturability of Marine Bacteria

    PubMed Central

    Rygaard, Anita Mac; Thøgersen, Mariane Schmidt; Nielsen, Kristian Fog; Gram, Lone

    2017-01-01

    ABSTRACT Only 1% of marine bacteria are currently culturable using standard laboratory procedures, and this is a major obstacle for our understanding of the biology of marine microorganisms and for the discovery of novel microbial natural products. Therefore, the purpose of this study was to investigate if improved cultivation conditions, including the use of an alternative gelling agent and supplementation with signaling molecules, improve the culturability of bacteria from seawater. Replacing agar with gellan gum improved viable counts 3- to 40-fold, depending on medium composition and incubation conditions, with a maximum of 6.6% culturability relative to direct cell counts. Through V4 amplicon sequencing we found that culturable diversity was also affected by a change in gelling agent, facilitating the growth of orders not culturable on agar-based substrates. Community analyses showed that communities grown on gellan gum substrates were significantly different from communities grown on agar and that they covered a larger fraction of the seawater community. Other factors, such as incubation temperature and time, had less obvious effects on viable counts and culturable diversity. Supplementation with acylated homoserine lactones (AHLs) did not have a positive effect on total viable counts or a strong effect on culturable diversity. However, low concentrations of AHLs increased the relative abundance of sphingobacteria. Hence, with alternative growth substrates, it is possible to significantly increase the number and diversity of cultured marine bacteria. IMPORTANCE Serious challenges to human health, such as the occurrence and spread of antibiotic resistance and an aging human population in need of bioactive pharmaceuticals, have revitalized the search for natural microbial products. The marine environment, representing the largest ecosystem in the biosphere, harbors an immense and virtually untapped microbial diversity producing unique bioactive compounds

  8. Marine botany. Second edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawes, C.J.

    Marine plants are a diverse group that include unicellular algae, seaweeds, seagrasses, salt marshes, and mangrove forests. They carry out a variety of ecological functions and serve as the primary producers in coastal wetlands and oceanic waters. The theme that connects such a wide variety of plants is their ecology, which was also emphasized in the 1981 edition. The goal of this revision is to present taxonomic, physiological, chemical, and ecological aspects of marine plants, their adaptations, and how abiotic and biotic factors interact in their communities. The data are presented in a concise, comparative manner in order to identifymore » similarities and differences between communities such as salt marsh and mangroves or subtidal seaweeds and seagrasses. To accomplish this, the text is organized into five chapters that introduce the marine habitats, consider abiotic and biotic factors, and anthropogenic influences on the communities followed by seven chapters that deal with microalgae, seaweeds, salt marshes, mangroves, seagrasses, and coral reefs. Two appendixes are included; one presents simple field techniques and the other is a summary of seaweed uses.« less

  9. The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Bidle, Kay D.

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  10. Bacterial communities in sediment of a Mediterranean marine protected area.

    PubMed

    Catania, Valentina; Sarà, Gianluca; Settanni, Luca; Quatrini, Paola

    2017-04-01

    Biodiversity is crucial in preservation of ecosystems, and bacterial communities play an indispensable role for the functioning of marine ecosystems. The Mediterranean marine protected area (MPA) "Capo Gallo-Isola delle Femmine" was instituted to preserve marine biodiversity. The bacterial diversity associated with MPA sediment was compared with that from sediment of an adjacent harbour exposed to intense nautical traffic. The MPA sediment showed higher diversity with respect to the impacted site. A 16S rDNA clone library of the MPA sediment allowed the identification of 7 phyla: Proteobacteria (78%), Firmicutes (11%), Acidobacteria (3%), Actinobacteria (3%), Bacteroidetes (2%), Planctomycetes (2%), and Cyanobacteria (1%). Analysis of the hydrocarbon (HC)-degrading bacteria was performed using enrichment cultures. Most of the MPA sediment isolates were affiliated with Gram-positive G+C rich bacteria, whereas the majority of taxa in the harbour sediment clustered with Alpha- and Gammaproteobacteria; no Gram-positive HC degraders were isolated from the harbour sediment. Our results show that protection probably has an influence on bacterial diversity, and suggest the importance of monitoring the effects of protection at microbial level as well. This study creates a baseline of data that can be used to assess changes over time in bacterial communities associated with a Mediterranean MPA.

  11. National Marine Sanctuaries as Sentinel Sites for a Demonstration Marine Biodiversity Observation Network (MBON)

    NASA Astrophysics Data System (ADS)

    Muller-Karger, F. E.; Chavez, F.; Gittings, S.; Doney, S. C.; Kavanaugh, M.; Montes, E.; Breitbart, M.; Kirkpatrick, B. A.; Anderson, D. M.; Tartt, M.

    2016-02-01

    The U.S. Federal government (NOAA and NASA), academic researchers, and private partners are implementing a Demonstration Marine Biodiversity Observation Network (MBON) to monitor changes in marine biodiversity within two US National Marine Sanctuaries (NMS): Florida Keys and Monterey Bay. The overarching goal is to observe and understand life, from microbes to whales, in different coastal and continental shelf habitats. The specific objectives are to 1) Establish a protocol for MBON information to dynamically update Sanctuary status and trends reports; 2) Define an efficient set of observations required for implementing a useful MBON; 3) Develop technology for biodiversity assessments including emerging environmental DNA (eDNA) and remote sensing to coordinate with classical sampling; 4) Integrate and synthesize information in coordination with other MBON projects, the Smithsonian Institution's Tennenbaum Marine Observatories Network (TMON), the Integrated Ocean Observing System (IOOS), the international Group on Earth Observations Biodiversity Observation Network(GEO BON), and the UNESCO-IOC Ocean Biogeographic Information System (OBIS); and 5) Understand the linkages between marine biodiversity, ecosystem processes, and the social-economic context of a region. Pilot projects have been implemented within the Florida Keys and Monterey Bay NMS. Limited observations will be collected at the Flower Garden Banks NMS. These encompass a range of marine environments, including deep sea, continental shelves, and coastal habitats including estuaries, wetlands, and coral reefs. The program will use novel eDNA techniques and ongoing observations to evaluate diversity. Multidisciplinary remote sensing will be used to evaluate dynamic 'seascapes'. The MBON will facilitate and enable regional biodiversity assessments, and contributes to addressing U.N. Sustainable Development Goal 14 to conserve and sustainably use marine resources.

  12. Initiatives, prospects, and challenges in tropical marine biosciences in Jagna Bay, Bohol Island, Philippines

    NASA Astrophysics Data System (ADS)

    Bernido, Christopher C.; Halasan, Lorenzo C.; Carpio-Bernido, M. Victoria; Saguil, Noel A.; Sadudaquil, Jerome A.; Salas, Rochelle I.; Nayga, Prince Niño I.; Baja, Paz Kenneth S.; Jumawan, Ethel Jade V.

    2017-08-01

    Marine specimens exhibit diversity in structure as an offshoot of their survival and ecological role in marine communities. The shell structure of gastropods, for example, is so diverse that taxonomic classification could hardly catch up with the myriad specimens many of which remain unidentified, nameless, or worse, unrecorded as large numbers become extinct. As a step towards alleviating the lack of comprehensive marine life assessment, we discuss initial studies conducted in Jagna Bay in the northern part of Bohol Sea to determine the level of biodiversity in this locale. The methods of collecting specimens and their identification are discussed as exemplified by a specimen belonging to the genus Cycloscala. Data collected for specimens whose sizes range from around 1 mm to 250 mm helps establish baseline indicators that could determine ecological balance in this area for monitoring longitudinal effects of climate and human intervention. Given the remarkable marine biodiversity, the perennial challenge is to uncover and learn from the biological structure and functions of many marine specimens for possible applications in different emerging technologies. We illustrate this by citing recent examples where our understanding of marine life inspires innovations for tomorrow's technology.

  13. Distribution of macroalgae and sediment chlorophyll A along salinity and elevation gradients in Oregon tidal marshes

    EPA Science Inventory

    Algae contribute to trophic and biogeochemical processes in tidal wetlands. We investigated patterns of sediment pigment content and macroalgal abundance and diversity in marshes in four Oregon estuaries representing a variety of vegetation types, salinity regimes, and tidal ele...

  14. Marine drugs: A hidden wealth and a new epoch for cancer management.

    PubMed

    Shakeel, Eram; Arora, Deepika; Jamal, Qazi Mohammad Sajid; Akhtar, Salman; Khan, Mohd Kalim Ahmad; Kamal, Mohammad A; Siddiqui, Mohd Haris; Lohani, Mohtashim; Arif, Jamal M

    2017-02-20

    Malignant tumors are the leading cause of death in humans. Due to tedious efforts and investigation made in the field of marine drug discovery, there is now a scientific bridge between marine and pharmaceutical sciences. However, at present only few marine drugs have been paved towards anticancer management, yet many more to be established. Marine organisms are profuse manufacturer of structurally inimitable bioactive metabolites that have unusual mechanisms of action and diverse biosynthetic pathways. Some of the compounds derived from marine organisms have antioxidant property and anticancer activities, but they are largely unexplored. The present review is summarising various source of marine chemicals and their exploration of anticancerous potential. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. The role of infectious disease in marine communities: chapter 5

    USGS Publications Warehouse

    Lafferty, Kevin D.; Harvell, C. Drew

    2014-01-01

    Marine ecologists recognize that infectious diseases play and important role in ocean ecosystems. This role may have increased in some host taxa over time (Ward and Lafferty 2004). We begin this chapter by introducing infectious agents and their relationships with their hosts in marine systems. We then put infectious disease agents with their hosts in marine systems. We then put infectious disease agents in the perspective of marine biodiversity and discuss the various factors that affect parasites. Specifically, we introduce some basin epidemiological concepts, including the effects of stress and free-living diversity on parasites. Following this, we give brief consideration to communities of parasites within their hosts, particularly as these can lead to general insights into community ecology. We also give examples of how infectious diseases affect host populations, scaling up to marine communities. Finally, we present examples of marine infectious disease that impair conservation and fisheries.

  16. Contrasting responses of functional diversity to major losses in taxonomic diversity.

    PubMed

    Edie, Stewart M; Jablonski, David; Valentine, James W

    2018-01-23

    Taxonomic diversity of benthic marine invertebrate shelf species declines at present by nearly an order of magnitude from the tropics to the poles in each hemisphere along the latitudinal diversity gradient (LDG), most steeply along the western Pacific where shallow-sea diversity is at its tropical maximum. In the Bivalvia, a model system for macroevolution and macroecology, this taxonomic trend is accompanied by a decline in the number of functional groups and an increase in the evenness of taxa distributed among those groups, with maximum functional evenness (FE) in polar waters of both hemispheres. In contrast, analyses of this model system across the two era-defining events of the Phanerozoic, the Permian-Triassic and Cretaceous-Paleogene mass extinctions, show only minor declines in functional richness despite high extinction intensities, resulting in a rise in FE owing to the persistence of functional groups. We hypothesize that the spatial decline of taxonomic diversity and increase in FE along the present-day LDG primarily reflect diversity-dependent factors, whereas retention of almost all functional groups through the two mass extinctions suggests the operation of diversity-independent factors. Comparative analyses of different aspects of biodiversity thus reveal strongly contrasting biological consequences of similarly severe declines in taxonomic diversity and can help predict the consequences for functional diversity among different drivers of past, present, and future biodiversity loss.

  17. Biogeography of photosynthetic light-harvesting genes in marine phytoplankton.

    PubMed

    Bibby, Thomas S; Zhang, Yinan; Chen, Min

    2009-01-01

    Photosynthetic light-harvesting proteins are the mechanism by which energy enters the marine ecosystem. The dominant prokaryotic photoautotrophs are the cyanobacterial genera Prochlorococcus and Synechococcus that are defined by two distinct light-harvesting systems, chlorophyll-bound protein complexes or phycobilin-bound protein complexes, respectively. Here, we use the Global Ocean Sampling (GOS) Project as a unique and powerful tool to analyze the environmental diversity of photosynthetic light-harvesting genes in relation to available metadata including geographical location and physical and chemical environmental parameters. All light-harvesting gene fragments and their metadata were obtained from the GOS database, aligned using ClustalX and classified phylogenetically. Each sequence has a name indicative of its geographic location; subsequent biogeographical analysis was performed by correlating light-harvesting gene budgets for each GOS station with surface chlorophyll concentration. Using the GOS data, we have mapped the biogeography of light-harvesting genes in marine cyanobacteria on ocean-basin scales and show that an environmental gradient exists in which chlorophyll concentration is correlated to diversity of light-harvesting systems. Three functionally distinct types of light-harvesting genes are defined: (1) the phycobilisome (PBS) genes of Synechococcus; (2) the pcb genes of Prochlorococcus; and (3) the iron-stress-induced (isiA) genes present in some marine Synechococcus. At low chlorophyll concentrations, where nutrients are limited, the Pcb-type light-harvesting system shows greater genetic diversity; whereas at high chlorophyll concentrations, where nutrients are abundant, the PBS-type light-harvesting system shows higher genetic diversity. We interpret this as an environmental selection of specific photosynthetic strategy. Importantly, the unique light-harvesting system isiA is found in the iron-limited, high-nutrient low-chlorophyll region of

  18. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, Olivia U.; Di Meo-Savoie, Carol A.; Van Nostrand, Joy D.

    2008-09-30

    We used molecular techniques to analyze basalts of varying ages that were collected from the East Pacific Rise, 9 oN, from the rift axis of the Juan de Fuca Ridge, and from neighboring seamounts. Cluster analysis of 16S rDNA Terminal Restriction Fragment Polymorphism data revealed that basalt endoliths are distinct from seawater and that communities clustered, to some degree, based on the age of the host rock. This age-based clustering suggests that alteration processes may affect community structure. Cloning and sequencing of bacterial and archaeal 16S rRNA genes revealed twelve different phyla and sub-phyla associated with basalts. These include themore » Gemmatimonadetes, Nitrospirae, the candidate phylum SBR1093 in the c, andin the Archaea Marine Benthic Group B, none of which have been previously reported in basalts. We delineated novel ocean crust clades in the gamma-Proteobacteria, Planctomycetes, and Actinobacteria that are composed entirely of basalt associated microflora, and may represent basalt ecotypes. Finally, microarray analysis of functional genes in basalt revealed that genes coding for previously unreported processes such as carbon fixation, methane-oxidation, methanogenesis, and nitrogen fixation are present, suggesting that basalts harbor previously unrecognized metabolic diversity. These novel processes could exert a profound influence on ocean chemistry.« less

  19. Anticancer Drugs from Marine Flora: An Overview

    PubMed Central

    Sithranga Boopathy, N.; Kathiresan, K.

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease. PMID:21461373

  20. Anticancer drugs from marine flora: an overview.

    PubMed

    Sithranga Boopathy, N; Kathiresan, K

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  1. Evolution and survival of marine carnivores did not require a diversity of KIR or Ly49 NK cell receptors1

    PubMed Central

    Hammond, John A.; Guethlein, Lisbeth A.; Abi-Rached, Laurent; Moesta, Achim K; Parham, Peter

    2009-01-01

    Ly49 lectin-like receptors and killer cell immunoglobulin-like receptors (KIR) are structurally unrelated cell-surface glycoproteins that evolved independently to function as diverse NK cell receptors for MHC class I molecules. Comparison of primates and various domesticated animals has shown that species have either a diverse Ly49 or KIR gene family, but not both. In four pinniped species of wild marine carnivore, three seals and one sea lion, we find that Ly49 and KIR are each represented by single, orthologous genes that exhibit little polymorphism and are transcribed to express cell-surface protein. Pinnipeds are therefore species in which neither Ly49 nor KIR are polygenic but retain the ancestral single-copy state. Whereas pinniped Ly49 has been subject to purifying selection, we find evidence for positive selection on KIR3DL during pinniped evolution. This selection, which focused on the D0 domain and the stem, points to the functionality of the KIR and likely led to the sea lion’s loss of D0. In contrast to the dynamic and rapid evolution of the KIR and Ly49 genes in other species, the pinniped KIR and Ly49 have been remarkably stable during the > 33 million years since the last common ancestor of seals and sea lions. These results demonstrate that long-term survival of placental mammal species need not require a diverse system of either Ly49 or KIR NK-cell receptors. PMID:19265140

  2. Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle

    PubMed Central

    Irmis, Randall B.; Whiteside, Jessica H.

    2012-01-01

    During the end-Permian mass extinction, marine ecosystems suffered a major drop in diversity, which was maintained throughout the Early Triassic until delayed recovery during the Middle Triassic. This depressed diversity in the Early Triassic correlates with multiple major perturbations to the global carbon cycle, interpreted as either intrinsic ecosystem or external palaeoenvironmental effects. In contrast, the terrestrial record of extinction and recovery is less clear; the effects and magnitude of the end-Permian extinction on non-marine vertebrates are particularly controversial. We use specimen-level data from southern Africa and Russia to investigate the palaeodiversity dynamics of non-marine tetrapods across the Permo-Triassic boundary by analysing sample-standardized generic richness, evenness and relative abundance. In addition, we investigate the potential effects of sampling, geological and taxonomic biases on these data. Our analyses demonstrate that non-marine tetrapods were severely affected by the end-Permian mass extinction, and that these assemblages did not begin to recover until the Middle Triassic. These data are congruent with those from land plants and marine invertebrates. Furthermore, they are consistent with the idea that unstable low-diversity post-extinction ecosystems were subject to boom–bust cycles, reflected in multiple Early Triassic perturbations of the carbon cycle. PMID:22031757

  3. Decadal changes in the ichthyofauna of a eutrophic estuary following a remedial engineering modification and subsequent environmental shifts

    NASA Astrophysics Data System (ADS)

    Potter, Ian C.; Veale, Lauren; Tweedley, James R.; Clarke, K. Robert

    2016-11-01

    This study has determined how the characteristics of the ichthyofauna of a large eutrophic microtidal estuary changed, initially in response to major structural remedial modifications, and then, during later years, as the environment became further modified, due mainly to effects of climate change. Data on the ichthyofauna of the Peel-Harvey Estuary, in south-western Australia, were derived firstly by seining seasonally in five regions over two consecutive twelve months (two years) in 2008-10. These data were then collated with those recorded previously using the same sampling regime throughout 1980 and 1981, when massive macroalgal growths were present, and throughout 1996 and 1997, soon after the opening, in 1994, of an artificial, deep and second entrance channel. The latter resulted in greater tidal flushing, consistently high salinities and reduced macroalgal biomass. Ichthyofaunal composition changed significantly overall and in four of the five regions across the three periods. Although increased tidal exchange did not lead to a rise in the number either of those marine species that typically use estuaries as nursery areas (marine estuarine-opportunists) or of those that complete their life cycle within the estuary (estuarine residents), the contributions made by the abundances of the representatives of those two groups to the total catch of fish varied markedly between periods. Those differences were largely responsible for the inter-period changes in species composition. In contrast to the situation with marine estuarine-opportunists, increased tidal exchange and higher salinities resulted in a greater number of marine straggler species entering the system, albeit in low numbers. The ichthyofauna during 1980-81 contained relatively large numbers of species that are typically associated with macrophytes, including marine estuarine-opportunists, e.g. Pelates octolineatus, and estuarine residents e.g. Ostorhinchus rueppellii and Hyporhamphus regularis

  4. Research on florfenicol residue in coastal area of dalian (northern china) and analysis of functional diversity of the microbial community in marine sediment.

    PubMed

    Zong, Humin; Ma, Deyi; Wang, Juying; Hu, Jiangtao

    2010-02-01

    An analytical method based on high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) has been developed to investigate florfenicol residues. Among 11 stations, florfenicol was detected in six water samples. The concentrations of florfenicol in the six samples were 64.2 microg L(-1), 390.6 microg L(-1), 1.1 x 10(4) microg L(-1), 29.8 microg L(-1), 61.6 microg L(-1), 34.9 microg L(-1), respectively. These results showed that high levels of florfenicol were observed in water samples collected from stations influenced by aquaculture discharges. However, no florfenicol residue was detected in the sediment samples. Furthermore, the functional diversities of microbial community in four marine sediment samples were analyzed by Biolog microplate. For the sediment samples from the stations where antibacterials had been used, the functional diversity of microbial community was much lower than those from the stations where antibacterials were not used.

  5. Methyl mercury uptake by diverse marine phytoplankton and trophic transfer to zooplankton

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Fisher, N. S.

    2014-12-01

    While it is well known that methylmercury (MeHg) biomagnifies in aquatic food chains, few studies have quantified its bioaccumulation in marine phytoplankton from seawater, even though that is overwhelmingly the largest bioaccumulation step. Aquatic animals acquire MeHg mainly from dietary exposure and it is important to evaluate the bioaccumulation of this compound in planktonic organisms that form the base of marine food webs. We used a gamma-emitting radioisotope, 203Hg, to assess the rate and extent of MeHg uptake in marine diatoms, dinoflagellates, coccolithophores, cryptophytes chlorophytes, and cyanobacteria held in unialgal cultures under varying temperature and light conditions. For experimental conditions in which the dissolved MeHg was at 300 pM, the uptake rates in all species ranged from 0.004 to 0.75 amol Hg μm-3 cell volume d-1 and reached steady state within 2 d. Volume concentration factors (VCFs) ranged from 0.4 to 60 x 105 for the different species. Temperature and light conditions had no direct effect on cellular MeHg uptake but ultimately affected growth of the cells, resulting in greater suspended particulate matter and associated MeHg. VCFs strongly correlated with cell surface area to volume ratios in all species. Assimilation efficiencies of MeHg from phytoplankton food (Thalassiosira pseudonana, Dunaliella tertiolecta and Rhodomonas salina) in a marine copepod grazer (Acartia tonsa) ranged from 74 to 92%, directly proportional to the cytoplasmic partitioning of MeHg in the phytoplankton cells. MeHg uptake in copepods from the aqueous phase was low and modeling shows that nearly all the MeHg acquired by this zooplankter is from diet. Herbivorous zooplankton can be an important link from phytoplankton at the base of the food web to fish higher in the food chain.

  6. Phase shifts and the role of herbivory in the resilience of coral reefs

    NASA Astrophysics Data System (ADS)

    Ledlie, M. H.; Graham, N. A. J.; Bythell, J. C.; Wilson, S. K.; Jennings, S.; Polunin, N. V. C.; Hardcastle, J.

    2007-09-01

    Cousin Island marine reserve (Seychelles) has been an effectively protected no-take marine protected area (MPA) since 1968 and was shown in 1994 to support a healthy herbivorous fish assemblage. In 1998 Cousin Island reefs suffered extensive coral mortality following a coral bleaching event, and a phase shift from coral to algal dominance ensued. By 2005 mean coral cover was <1%, structural complexity had fallen and there had been a substantial increase in macroalgal cover, up to 40% in some areas. No clear trends were apparent in the overall numerical abundance and biomass of herbivorous fishes between 1994 and 2005, although smaller individuals became relatively scarce, most likely due to the loss of reef structure. Analysis of the feeding habits of six abundant and representative herbivorous fish species around Cousin Island in 2006 demonstrated that epilithic algae were the preferred food resource of all species and that macroalgae were avoided. Given the current dominance of macroalgae and the apparent absence of macroalgal consumers, it is suggested that the increasing abundance of macroalgae is reducing the probability of the system reverting to a coral dominated state.

  7. Diversity and population structure of Marine Group A bacteria in the Northeast subarctic Pacific Ocean.

    PubMed

    Allers, Elke; Wright, Jody J; Konwar, Kishori M; Howes, Charles G; Beneze, Erica; Hallam, Steven J; Sullivan, Matthew B

    2013-02-01

    Marine Group A (MGA) is a candidate phylum of Bacteria that is ubiquitous and abundant in the ocean. Despite being prevalent, the structural and functional properties of MGA populations remain poorly constrained. Here, we quantified MGA diversity and population structure in relation to nutrients and O(2) concentrations in the oxygen minimum zone (OMZ) of the Northeast subarctic Pacific Ocean using a combination of catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) and 16S small subunit ribosomal RNA (16S rRNA) gene sequencing (clone libraries and 454-pyrotags). Estimates of MGA abundance as a proportion of total bacteria were similar across all three methods although estimates based on CARD-FISH were consistently lower in the OMZ (5.6%±1.9%) than estimates based on 16S rRNA gene clone libraries (11.0%±3.9%) or pyrotags (9.9%±1.8%). Five previously defined MGA subgroups were recovered in 16S rRNA gene clone libraries and five novel subgroups were defined (HF770D10, P262000D03, P41300E03, P262000N21 and A714018). Rarefaction analysis of pyrotag data indicated that the ultimate richness of MGA was very nearly sampled. Spearman's rank analysis of MGA abundances by CARD-FISH and O(2) concentrations resulted in significant correlation. Analyzed in more detail by 16S rRNA pyrotag sequencing, MGA operational taxonomic units affiliated with subgroups Arctic95A-2 and A714018 comprised 0.3-2.4% of total bacterial sequences and displayed strong correlations with decreasing O(2) concentration. This study is the first comprehensive description of MGA diversity using complementary techniques. These results provide a phylogenetic framework for interpreting future studies on ecotype selection among MGA subgroups, and suggest a potentially important role for MGA in the ecology and biogeochemistry of OMZs.

  8. Epigenomics in marine fishes.

    PubMed

    Metzger, David C H; Schulte, Patricia M

    2016-12-01

    Epigenetic mechanisms are an underappreciated and often ignored component of an organism's response to environmental change and may underlie many types of phenotypic plasticity. Recent technological advances in methods for detecting epigenetic marks at a whole-genome scale have launched new opportunities for studying epigenomics in ecologically relevant non-model systems. The study of ecological epigenomics holds great promise to better understand the linkages between genotype, phenotype, and the environment and to explore mechanisms of phenotypic plasticity. The many attributes of marine fish species, including their high diversity, variable life histories, high fecundity, impressive plasticity, and economic value provide unique opportunities for studying epigenetic mechanisms in an environmental context. To provide a primer on epigenomic research for fish biologists, we start by describing fundamental aspects of epigenetics, focusing on the most widely studied and most well understood of the epigenetic marks: DNA methylation. We then describe the techniques that have been used to investigate DNA methylation in marine fishes to date and highlight some new techniques that hold great promise for future studies. Epigenomic research in marine fishes is in its early stages, so we first briefly discuss what has been learned about the establishment, maintenance, and function of DNA methylation in fishes from studies in zebrafish and then summarize the studies demonstrating the pervasive effects of the environment on the epigenomes of marine fishes. We conclude by highlighting the potential for ongoing research on the epigenomics of marine fishes to reveal critical aspects of the interaction between organisms and their environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Expanding the World of Marine Bacterial and Archaeal Clades

    PubMed Central

    Yilmaz, Pelin; Yarza, Pablo; Rapp, Josephine Z.; Glöckner, Frank O.

    2016-01-01

    Determining which microbial taxa are out there, where they live, and what they are doing is a driving approach in marine microbial ecology. The importance of these questions is underlined by concerted, large-scale, and global ocean sampling initiatives, for example the International Census of Marine Microbes, Ocean Sampling Day, or Tara Oceans. Given decades of effort, we know that the large majority of marine Bacteria and Archaea belong to about a dozen phyla. In addition to the classically culturable Bacteria and Archaea, at least 50 “clades,” at different taxonomic depths, exist. These account for the majority of marine microbial diversity, but there is still an underexplored and less abundant portion remaining. We refer to these hitherto unrecognized clades as unknown, as their boundaries, names, and classifications are not available. In this work, we were able to characterize up to 92 of these unknown clades found within the bacterial and archaeal phylogenetic diversity currently reported for marine water column environments. We mined the SILVA 16S rRNA gene datasets for sequences originating from the marine water column. Instead of the usual subjective taxa delineation and nomenclature methods, we applied the candidate taxonomic unit (CTU) circumscription system, along with a standardized nomenclature to the sequences in newly constructed phylogenetic trees. With this new phylogenetic and taxonomic framework, we performed an analysis of ICoMM rRNA gene amplicon datasets to gain insights into the global distribution of the new marine clades, their ecology, biogeography, and interaction with oceanographic variables. Most of the new clades we identified were interspersed by known taxa with cultivated members, whose genome sequences are available. This result encouraged us to perform metabolic predictions for the novel marine clades using the PICRUSt approach. Our work also provides an update on the taxonomy of several phyla and widely known marine clades as

  10. Characterization of bioactive peptides obtained from marine invertebrates.

    PubMed

    Lee, Jung Kwon; Jeon, Joong-Kyun; Kim, Se-Kwon; Byun, Hee-Guk

    2012-01-01

    Bioactive peptides as products of hydrolysis of diverse marine invertebrate (shellfish, crustacean, rotifer, etc.) proteins are the focus of current research. After much research on these muscles and by-products, some biologically active peptides were identified and applied to useful compounds for human utilization. This chapter reviews bioactive peptides from marine invertebrates in regarding to their bioactivities. Additionally, specific characteristics of antihypertensive, anti-Alzheimer, antioxidant, antimicrobial peptide enzymatic production, methods to evaluate bioactivity capacity, bioavailability, and safety concerns of peptides are reviewed. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Limb-use by foraging marine turtles, an evolutionary perspective

    PubMed Central

    McLeish, Don; Brooks, Andrew J.; Gaskell, John; Van Houtan, Kyle S.

    2018-01-01

    The use of limbs for foraging is documented in both marine and terrestrial tetrapods. These behaviors were once believed to be less likely in marine tetrapods due to the physical constraints of body plans adapted to locomotion in a fluid environment. Despite these obstacles, ten distinct types of limb-use while foraging have been previously reported in nine marine tetrapod families. Here, we expand the types of limb-use documented in marine turtles and put it in context with the diversity of marine tetrapods currently known to use limbs for foraging. Additionally, we suggest that such behaviors could have occurred in ancestral turtles, and thus, possibly extend the evolutionary timeline of limb-use behavior in marine tetrapods back approximately 70 million years. Through direct observation in situ and crowd-sourcing, we document the range of behaviors across habitats and prey types, suggesting its widespread occurrence. We argue the presence of these behaviors among marine tetrapods may be limited by limb mobility and evolutionary history, rather than foraging ecology or social learning. These behaviors may also be remnant of ancestral forelimb-use that have been maintained due to a semi-aquatic life history. PMID:29610708

  12. Limb-use by foraging marine turtles, an evolutionary perspective.

    PubMed

    Fujii, Jessica A; McLeish, Don; Brooks, Andrew J; Gaskell, John; Van Houtan, Kyle S

    2018-01-01

    The use of limbs for foraging is documented in both marine and terrestrial tetrapods. These behaviors were once believed to be less likely in marine tetrapods due to the physical constraints of body plans adapted to locomotion in a fluid environment. Despite these obstacles, ten distinct types of limb-use while foraging have been previously reported in nine marine tetrapod families. Here, we expand the types of limb-use documented in marine turtles and put it in context with the diversity of marine tetrapods currently known to use limbs for foraging. Additionally, we suggest that such behaviors could have occurred in ancestral turtles, and thus, possibly extend the evolutionary timeline of limb-use behavior in marine tetrapods back approximately 70 million years. Through direct observation in situ and crowd-sourcing, we document the range of behaviors across habitats and prey types, suggesting its widespread occurrence. We argue the presence of these behaviors among marine tetrapods may be limited by limb mobility and evolutionary history, rather than foraging ecology or social learning. These behaviors may also be remnant of ancestral forelimb-use that have been maintained due to a semi-aquatic life history.

  13. Evolutionary potential of marine phytoplankton under ocean acidification.

    PubMed

    Collins, Sinéad; Rost, Björn; Rynearson, Tatiana A

    2014-01-01

    Marine phytoplankton have many obvious characters, such as rapid cell division rates and large population sizes, that give them the capacity to evolve in response to global change on timescales of weeks, months or decades. However, few studies directly investigate if this adaptive potential is likely to be realized. Because of this, evidence of to whether and how marine phytoplankton may evolve in response to global change is sparse. Here, we review studies that help predict evolutionary responses to global change in marine phytoplankton. We find limited support from experimental evolution that some taxa of marine phytoplankton may adapt to ocean acidification, and strong indications from studies of variation and structure in natural populations that selection on standing genetic variation is likely. Furthermore, we highlight the large body of literature on plastic responses to ocean acidification available, and evolutionary theory that may be used to link plastic and evolutionary responses. Because of the taxonomic breadth spanned by marine phytoplankton, and the diversity of roles they fill in ocean ecosystems and biogeochemical cycles, we stress the necessity of treating taxa or functional groups individually.

  14. An Analysis of Promotion and Retention Factors Among Hispanic and Non-Hispanic Marine Corps Officers

    DTIC Science & Technology

    2015-03-01

    PROMOTION AND RETENTION FACTORS AMONG HISPANIC AND NON-HISPANIC MARINE CORPS OFFICERS by Mateo E. Salas March 2015 Thesis Advisor: Simona...U.S. This thesis reviews Marine Corps policies on the recruitment, retention , and promotion of talented officers of a diverse background, and applies...source, military training and fitness report scores that explain any differences in job performance measures of Marine Corps officers of different ethnic

  15. [Isolation and structural elucidation of secondary metabolites from marine Streptomyces sp. SCSIO 1934].

    PubMed

    Niu, Siwen; Li, Sumei; Tian, Xinpeng; Hu, Tao; Ju, Jianhua; Ynag, Xiaohong; Zhang, Si; Zhang, Changsheng

    2011-07-01

    Marine Actinobacteria are emerging as new resources for bioactive natural products with promise in novel drug discovery. In recent years, the richness and diversity of marine Actinobacteria from the South China Sea and their ability in producing bioactive products have been investigated. The objective of this work is to isolate and identify bioactive secondary metabolites from a marine actinobacterium SCSIO 1934 derived from sediments of South China Sea. The strain was identified as a Streptomyces spieces by analyzing its 16S rDNA sequence. Streptomyces sp. SCSIO 1934 was fermented under optimized conditions and seven bioactive secondary metabolites were isolated and purified by chromatographic methods including colum chromatography over silica gel and Sephadex LH-20. Their structures were elucidated as 17-O-demethylgeldanamycin (1), lebstatin (2), 17-O-demethyllebstatin (3), nigericin (4), nigericin sodium salt (5), abierixin (6), respectively, by detailed NMR spectroscopic data (1H, 13C, COSY, HSQC and HMBC). This work provided a new marine actinobacterium Streptomyces sp. SCSIO 1934, capable of producing diverse bioactive natural products.

  16. Cratering in Marine Environments and on Ice

    NASA Astrophysics Data System (ADS)

    Newsom, Horton E.

    2004-09-01

    Since the discovery of plate tectonics, impact cratering is arguably the most significant geologic process now recognized as an important process on Earth. Impacts into ice, another main topic covered in this book, may be important on other worlds. Large numbers of impact craters that formed in marine environments on Earth have only been discovered in the last 10 years. Twenty-five craters that formed in marine environments have been documented, according to the first chapter of this book, although none are known that excavated oceanic crust. The papers in Cratering in Marine Environments and on Ice will whet your appetite for the exciting and ambitious range of topics implied by the title, which stems from a conference in Svalbard, Norway, in September 2001. This book provides a flavor of the rapidly advancing and diverse field of impact cratering.

  17. Are marine and nonmarine extinctions correlated?

    NASA Astrophysics Data System (ADS)

    Rampino, Michael R.

    Recent papers in Eos have debated the possible relationships between marine mass extinctions, comet showers, and volcanism [Alvarez, 1986; Officer and Grieve, 1986], and ail three might be linked [Rampino, 1987]. Moreover, as Officer and Grieve [ 1986] point out, various other causes have been suggested for given extinction events, including changes in climate, ocean circulation, and sea level fluctuations, possibly related to plate tectonics and continental positions. Also under debate is the issue of whether mass extinctions were gradual, stepped, or geologically sudden events (see, for example, Hut et al. [1987]). A missing ingredient thus far in these debates has been the record of faunal diversity of nonmarine animals. Does this show any agreement with the marine extinction record?

  18. Characterization and Applications of Marine Microbial Enzymes in Biotechnology and Probiotics for Animal Health.

    PubMed

    Nguyen, T H; Nguyen, V D

    Marine microorganisms have been recognized as potential sources of novel enzymes because they are relatively more stable than the corresponding enzymes derived from plants and animals. Enzymes from marine microorganisms also differ from homologous enzymes in terrestrial microorganisms based on salinity, pressure, temperature, and lighting conditions. Marine microbial enzymes can be used in diverse industrial applications. This chapter will focus on the biotechnological applications of marine enzymes and also their use as a tool of marine probiotics to improve host digestion (food digestion, food absorption, and mucus utilization) and cleave molecular signals involved in quorum sensing in pathogens to control disease in aquaculture. © 2017 Elsevier Inc. All rights reserved.

  19. Microbial community diversity, structure and assembly across oxygen gradients in meromictic marine lakes, Palau.

    PubMed

    Meyerhof, Matthew S; Wilson, Jesse M; Dawson, Michael N; Michael Beman, J

    2016-12-01

    Microbial communities consume oxygen, alter biogeochemistry and compress habitat in aquatic ecosystems, yet our understanding of these microbial-biogeochemical-ecological interactions is limited by a lack of systematic analyses of low-oxygen ecosystems. Marine lakes provide an ideal comparative system, as they range from well-mixed holomictic lakes to stratified, anoxic, meromictic lakes that vary in their vertical extent of anoxia. We examined microbial communities inhabiting six marine lakes and one ocean site using pyrosequencing of 16S rRNA genes. Microbial richness and evenness was typically highest in the anoxic monimolimnion of meromictic lakes, with common marine bacteria present in mixolimnion communities replaced by anoxygenic phototrophs, sulfate-reducing bacteria and SAR406 in the monimolimnion. These sharp changes in community structure were linked to environmental gradients (constrained variation in redundancy analysis = 68%-76%) - particularly oxygen and pH. However, in those lakes with the steepest oxygen gradients, salinity and dissolved nutrients were important secondary constraining variables, indicating that subtle but substantive differences in microbial communities occur within similar low-oxygen habitats. Deterministic processes were a dominant influence on whole community assembly (all nearest taxon index values >4), demonstrating that the strong environmental gradients present in meromictic marine lakes drive microbial community assembly. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Development of phoH as a Novel Signature Gene for Assessing Marine Phage Diversity▿

    PubMed Central

    Goldsmith, Dawn B.; Crosti, Giuseppe; Dwivedi, Bhakti; McDaniel, Lauren D.; Varsani, Arvind; Suttle, Curtis A.; Weinbauer, Markus G.; Sandaa, Ruth-Anne; Breitbart, Mya

    2011-01-01

    Phages play a key role in the marine environment by regulating the transfer of energy between trophic levels and influencing global carbon and nutrient cycles. The diversity of marine phage communities remains difficult to characterize because of the lack of a signature gene common to all phages. Recent studies have demonstrated the presence of host-derived auxiliary metabolic genes in phage genomes, such as those belonging to the Pho regulon, which regulates phosphate uptake and metabolism under low-phosphate conditions. Among the completely sequenced phage genomes in GenBank, this study identified Pho regulon genes in nearly 40% of the marine phage genomes, while only 4% of nonmarine phage genomes contained these genes. While several Pho regulon genes were identified, phoH was the most prevalent, appearing in 42 out of 602 completely sequenced phage genomes. Phylogenetic analysis demonstrated that phage phoH sequences formed a cluster distinct from those of their bacterial hosts. PCR primers designed to amplify a region of the phoH gene were used to determine the diversity of phage phoH sequences throughout a depth profile in the Sargasso Sea and at six locations worldwide. phoH was present at all sites examined, and a high diversity of phoH sequences was recovered. Most phoH sequences belonged to clusters without any cultured representatives. Each depth and geographic location had a distinct phoH composition, although most phoH clusters were recovered from multiple sites. Overall, phoH is an effective signature gene for examining phage diversity in the marine environment. PMID:21926220

  1. A trait database for marine copepods

    NASA Astrophysics Data System (ADS)

    Brun, Philipp; Payne, Mark R.; Kiørboe, Thomas

    2017-02-01

    The trait-based approach is gaining increasing popularity in marine plankton ecology but the field urgently needs more and easier accessible trait data to advance. We compiled trait information on marine pelagic copepods, a major group of zooplankton, from the published literature and from experts and organized the data into a structured database. We collected 9306 records for 14 functional traits. Particular attention was given to body size, feeding mode, egg size, spawning strategy, respiration rate, and myelination (presence of nerve sheathing). Most records were reported at the species level, but some phylogenetically conserved traits, such as myelination, were reported at higher taxonomic levels, allowing the entire diversity of around 10 800 recognized marine copepod species to be covered with a few records. Aside from myelination, data coverage was highest for spawning strategy and body size, while information was more limited for quantitative traits related to reproduction and physiology. The database may be used to investigate relationships between traits, to produce trait biogeographies, or to inform and validate trait-based marine ecosystem models. The data can be downloaded from PANGAEA, doi:10.1594/PANGAEA.862968.

  2. Marine reserves lag behind wilderness in the conservation of key functional roles

    PubMed Central

    D'agata, Stéphanie; Mouillot, David; Wantiez, Laurent; Friedlander, Alan M.; Kulbicki, Michel; Vigliola, Laurent

    2016-01-01

    Although marine reserves represent one of the most effective management responses to human impacts, their capacity to sustain the same diversity of species, functional roles and biomass of reef fishes as wilderness areas remains questionable, in particular in regions with deep and long-lasting human footprints. Here we show that fish functional diversity and biomass of top predators are significantly higher on coral reefs located at more than 20 h travel time from the main market compared with even the oldest (38 years old), largest (17,500 ha) and most restrictive (no entry) marine reserve in New Caledonia (South-Western Pacific). We further demonstrate that wilderness areas support unique ecological values with no equivalency as one gets closer to humans, even in large and well-managed marine reserves. Wilderness areas may therefore serve as benchmarks for management effectiveness and act as the last refuges for the most vulnerable functional roles. PMID:27354026

  3. Novel anti-infective compounds from marine bacteria.

    PubMed

    Rahman, Hafizur; Austin, Brian; Mitchell, Wilfrid J; Morris, Peter C; Jamieson, Derek J; Adams, David R; Spragg, Andrew Mearns; Schweizer, Michael

    2010-03-05

    As a result of the continuous evolution of microbial pathogens towards antibiotic-resistance, there have been demands for the development of new and effective antimicrobial compounds. Since the 1960s, the scientific literature has accumulated many publications about novel pharmaceutical compounds produced by a diverse range of marine bacteria. Indeed, marine micro-organisms continue to be a productive and successful focus for natural products research, with many newly isolated compounds possessing potentially valuable pharmacological activities. In this regard, the marine environment will undoubtedly prove to be an increasingly important source of novel antimicrobial metabolites, and selective or targeted approaches are already enabling the recovery of a significant number of antibiotic-producing micro-organisms. The aim of this review is to consider advances made in the discovery of new secondary metabolites derived from marine bacteria, and in particular those effective against the so called "superbugs", including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant enterococci (VRE), which are largely responsible for the increase in numbers of hospital acquired, i.e., nosocomial, infections.

  4. Ancient marine hunter-gatherers from Patagonia and Tierra Del Fuego: Diversity and differentiation using uniparentally inherited genetic markers.

    PubMed

    de la Fuente, Constanza; Galimany, Jacqueline; Kemp, Brian M; Judd, Kathleen; Reyes, Omar; Moraga, Mauricio

    2015-12-01

    The human population history from Patagonia and Tierra del Fuego has been of great interest in the context of the American peopling. Different sources of evidence have contributed to the characterization of the local populations, but some main questions about their history remain unsolved. Among the native populations, two marine hunter-gatherers groups inhabited the Patagonian channels below the 478S: Kawéskar and Yámana. Regardless of their geographical proximity and cultural resemblance, their languages were mutually unintelligible. In this study we aim to evaluate the genetic diversity of uniparental genetic markers in both groups and to test if there is a high genetic differentiation between them, mirroring their linguistic differences. Ancient DNA was extracted from 37 samples from both populations. We compared their genetic variability of their mitochondrial lineages and Y-STR as well as with other modern native populations from the area and further north. We observed an important differentiation in their maternal lineages: while Kawéskar shows a high frequency of D (80%), Yámana shows a high frequency of C (90%). The analysis of paternal lineages reveals the presence of only Q1a2a1a1 and little variation was found between individuals. Both groups show very low levels of genetic diversity compared with modern populations. We also notice shared and unique mitochondrial DNA variants between modern and ancient samples of Kawéskar and Yámana. © 2015 Wiley Periodicals, Inc.

  5. Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects.

    PubMed

    Fedorov, Sergey N; Ermakova, Svetlana P; Zvyagintseva, Tatyana N; Stonik, Valentin A

    2013-12-02

    Many marine-derived polysaccharides and their analogues have been reported as showing anticancer and cancer preventive properties. These compounds demonstrate interesting activities and special modes of action, differing from each other in both structure and toxicity profile. Herein, literature data concerning anticancer and cancer preventive marine polysaccharides are reviewed. The structural diversity, the biological activities, and the molecular mechanisms of their action are discussed.

  6. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats

    PubMed Central

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-01-01

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. PMID:26481363

  7. Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds

    PubMed Central

    Savoca, Matthew S.; Wohlfeil, Martha E.; Ebeler, Susan E.; Nevitt, Gabrielle A.

    2016-01-01

    Plastic debris is ingested by hundreds of species of organisms, from zooplankton to baleen whales, but how such a diversity of consumers can mistake plastic for their natural prey is largely unknown. The sensory mechanisms underlying plastic detection and consumption have rarely been examined within the context of sensory signals driving marine food web dynamics. We demonstrate experimentally that marine-seasoned microplastics produce a dimethyl sulfide (DMS) signature that is also a keystone odorant for natural trophic interactions. We further demonstrate a positive relationship between DMS responsiveness and plastic ingestion frequency using procellariiform seabirds as a model taxonomic group. Together, these results suggest that plastic debris emits the scent of a marine infochemical, creating an olfactory trap for susceptible marine wildlife. PMID:28861463

  8. A mosaic of diverse ideas: The ecological legacy of J. Frederick Grassle

    USGS Publications Warehouse

    Snelgrove, Paul V.R; Petrecca, Rose; Stocks, Karen I.; Van Dover, Cindy L.; Zimmer, Cheryl A.

    2009-01-01

    During the 40 years (and counting) of his scientific career, J. Frederick Grassle has made fundamental contributions to our understanding of marine ecosystems from coral reefs to deep-sea sediments. His advocacy and passion for marine biodiversity in the form of myriad groundbreaking studies and influential reviews, his generosity of ideas and capacity to catalyze and inspire those working with him as well as the science community in general, his breakthroughs in improved ocean observation, his marine science infrastructure initiatives, together with his tireless persistence, have helped lead to major shifts in approaches to marine science and the shape of modern ocean studies to one that favours multidisciplinary research, teamwork, continuous, long-term observation, in situ experimentation, recognition of the importance of marine biodiversity, and global cooperation on research and data sharing. In shallow-water ecology, he co-discovered sibling species of Capitella spp., important not only because it is a key pollution indicator but also because the work helped to pave the way for the discovery of numerous sibling species in other taxa with major ramifications for ecological understanding. He was also a key player in the West Falmouth oil spill study which, along with complementary mesocosm experiments, remains one of the most important and detailed studies of its kind. He was also a lead player in the first biological expedition to hydrothermal vents and wrote the seminal articles that helped to inspire the flurry of vent research that followed. He is perhaps best known for his deep-sea work, where he brought submersibles to the forefront as a sampling tool, brought experimental manipulative studies to the primarily descriptive discipline of deep-sea benthic ecology, and generated tremendous excitement, debate, and rekindled interest in marine biodiversity with the first quantitative estimate of global deep-sea diversity. His efforts to document marine

  9. Biotechnological Applications of Marine Enzymes From Algae, Bacteria, Fungi, and Sponges.

    PubMed

    Parte, S; Sirisha, V L; D'Souza, J S

    Diversity is the hallmark of all life forms that inhabit the soil, air, water, and land. All these habitats pose their unique inherent challenges so as to breed the "fittest" creatures. Similarly, the biodiversity from the marine ecosystem has evolved unique properties due to challenging environment. These challenges include permafrost regions to hydrothermal vents, oceanic trenches to abyssal plains, fluctuating saline conditions, pH, temperature, light, atmospheric pressure, and the availability of nutrients. Oceans occupy 75% of the earth's surface and harbor most ancient and diverse forms of organisms (algae, bacteria, fungi, sponges, etc.), serving as an excellent source of natural bioactive molecules, novel therapeutic compounds, and enzymes. In this chapter, we introduce enzyme technology, its current state of the art, unique enzyme properties, and the biocatalytic potential of marine algal, bacterial, fungal, and sponge enzymes that have indeed boosted the Marine Biotechnology Industry. Researchers began exploring marine enzymes, and today they are preferred over the chemical catalysts for biotechnological applications and functions, encompassing various sectors, namely, domestic, industrial, commercial, and healthcare. Next, we summarize the plausible pros and cons: the challenges encountered in the process of discovery of the potent compounds and bioactive metabolites such as biocatalysts/enzymes of biomedical, therapeutic, biotechnological, and industrial significance. The field of Marine Enzyme Technology has recently assumed importance, and if it receives further boost, it could successfully substitute other chemical sources of enzymes useful for industrial and commercial purposes and may prove as a beneficial and ecofriendly option. With appropriate directions and encouragement, marine enzyme technology can sustain the rising demand for enzyme production while maintaining the ecological balance, provided any undesired exploitation of the marine

  10. DEGRADATION OF WEATHERED OIL BY MIXED MARINE BACTERIA AND THE TOXICITY OF ACCUMULATED WATER-SOLUBLE MATERIAL TO TWO MARINE CRUSTACEA

    EPA Science Inventory

    Artificially weathered crude oil was degraded by four diverse cultures of mixed marine bacteria under optimized conditions for 7 and 14 days. Loss in total weight of starting oil (30 g) ranged from 6.8-17.3% in biologically active incubations compared with only 0.9-1.1% in steril...

  11. Prey size diversity hinders biomass trophic transfer and predator size diversity promotes it in planktonic communities

    PubMed Central

    García-Comas, Carmen; Sastri, Akash R.; Ye, Lin; Chang, Chun-Yi; Lin, Fan-Sian; Su, Min-Sian; Gong, Gwo-Ching; Hsieh, Chih-hao

    2016-01-01

    Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models. PMID:26865298

  12. Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects.

    PubMed

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-09-17

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  13. Tropical rainforest response to marine sky brightening climate engineering

    NASA Astrophysics Data System (ADS)

    Muri, Helene; Niemeier, Ulrike; Kristjánsson, Jón Egill

    2015-04-01

    Tropical forests represent a major atmospheric carbon dioxide sink. Here the gross primary productivity (GPP) response of tropical rainforests to climate engineering via marine sky brightening under a future scenario is investigated in three Earth system models. The model response is diverse, and in two of the three models, the tropical GPP shows a decrease from the marine sky brightening climate engineering. Partial correlation analysis indicates precipitation to be important in one of those models, while precipitation and temperature are limiting factors in the other. One model experiences a reversal of its Amazon dieback under marine sky brightening. There, the strongest partial correlation of GPP is to temperature and incoming solar radiation at the surface. Carbon fertilization provides a higher future tropical rainforest GPP overall, both with and without climate engineering. Salt damage to plants and soils could be an important aspect of marine sky brightening.

  14. Stress physiology in marine mammals: how well do they fit the terrestrial model?

    PubMed

    Atkinson, Shannon; Crocker, Daniel; Houser, Dorian; Mashburn, Kendall

    2015-07-01

    Stressors are commonly accepted as the causal factors, either internal or external, that evoke physiological responses to mediate the impact of the stressor. The majority of research on the physiological stress response, and costs incurred to an animal, has focused on terrestrial species. This review presents current knowledge on the physiology of the stress response in a lesser studied group of mammals, the marine mammals. Marine mammals are an artificial or pseudo grouping from a taxonomical perspective, as this group represents several distinct and diverse orders of mammals. However, they all are fully or semi-aquatic animals and have experienced selective pressures that have shaped their physiology in a manner that differs from terrestrial relatives. What these differences are and how they relate to the stress response is an efflorescent topic of study. The identification of the many facets of the stress response is critical to marine mammal management and conservation efforts. Anthropogenic stressors in marine ecosystems, including ocean noise, pollution, and fisheries interactions, are increasing and the dramatic responses of some marine mammals to these stressors have elevated concerns over the impact of human-related activities on a diverse group of animals that are difficult to monitor. This review covers the physiology of the stress response in marine mammals and places it in context of what is known from research on terrestrial mammals, particularly with respect to mediator activity that diverges from generalized terrestrial models. Challenges in conducting research on stress physiology in marine mammals are discussed and ways to overcome these challenges in the future are suggested.

  15. Unexpected biodiversity of ciliates in marine samples from below the photic zone.

    PubMed

    Grattepanche, Jean-David; Santoferrara, Luciana F; McManus, George B; Katz, Laura A

    2016-08-01

    Marine microbial eukaryotes play critical roles in planktonic food webs and have been described as most diverse in the photic zone where productivity is high. We used high-throughput sequencing (HTS) to analyse the spatial distribution of planktonic ciliate diversity from shallow waters (<30 m depth) to beyond the continental shelf (>800 m depth) along a 163 km transect off the coast of New England, USA. We focus on ciliates in the subclasses Oligotrichia and Choreotrichia (class Spirotrichea), as these taxa are major components of marine food webs. We did not observe the decrease of diversity below the photic zone expected based on productivity and previous analyses. Instead, we saw an increase of diversity with depth. We also observed that the ciliate communities assessed by HTS cluster by depth layer and degree of water column stratification, suggesting that community assembly is driven by environmental factors. Across our samples, abundant OTUs tend to match previously characterized morphospecies while rare OTUs are more often undescribed, consistent with the idea that species in the rare biosphere remain to be characterized by microscopy. Finally, samples taken below the photic zone also reveal the prevalence of two uncharacterized (i.e. lacking sequenced morphospecies) clades - clusters X1 and X2 - that are enriched within the nano-sized fraction (2-10 μm) and are defined by deletions within the region of the SSU-rDNA analysed here. Together, these data reinforce that we still have much to learn about microbial diversity in marine ecosystems, especially in deep-waters that may be a reservoir for rare species and uncharacterized taxa. © 2016 John Wiley & Sons Ltd.

  16. Marine Pharmacology in 2005-6: Antitumour and Cytotoxic Compounds

    PubMed Central

    Mayer, Alejandro M.S.; Gustafson, Kirk R.

    2009-01-01

    During 2005 and 2006, marine pharmacology research directed towards the discovery and development of novel antitumour agents was reported in 171 peer-reviewed articles. The purpose of this article is to present a structured review of the antitumour and cytotoxic properties of 136 marine natural products, many of which are novel compounds that belong to diverse structural classes, including polyketides, terpenes, steroids, and peptides. The organisms yielding these bioactive marine compounds included invertebrate animals, algae, fungi and bacteria. Antitumour pharmacological studies were conducted with 42 structurally defined marine natural products in a number of experimental and clinical models which further defined their mechanisms of action. Particularly potent in vitro cytotoxicity data generated with murine and human tumour cell lines was reported for 94 novel marine chemicals with as yet undetermined mechanisms of action. Noteworthy is the fact that marine anticancer research was sustained by a global collaborative effort, involving researchers from Australia, Belgium, Benin, Brazil, Canada, China, Egypt, France, Germany, India, Indonesia, Italy, Japan, Mexico, the Netherlands, New Zealand, Panama, the Philippines, Slovenia, South Korea, Spain, Sweden, Taiwan, Thailand, United Kingdom, and the United States. Finally, this 2005-6 overview of the marine pharmacology literature highlights the fact that the discovery of novel marine antitumour agents continued at the same active pace as during 1998-2004. PMID:18701274

  17. Marine Protists Are Not Just Big Bacteria.

    PubMed

    Keeling, Patrick J; Campo, Javier Del

    2017-06-05

    The study of marine microbial ecology has been completely transformed by molecular and genomic data: after centuries of relative neglect, genomics has revealed the surprising extent of microbial diversity and how microbial processes transform ocean and global ecosystems. But the revolution is not complete: major gaps in our understanding remain, and one obvious example is that microbial eukaryotes, or protists, are still largely neglected. Here we examine various ways in which protists might be better integrated into models of marine microbial ecology, what challenges this will present, and why understanding the limitations of our tools is a significant concern. In part this is a technical challenge - eukaryotic genomes are more difficult to characterize - but eukaryotic adaptations are also more dependent on morphology and behaviour than they are on the metabolic diversity that typifies bacteria, and these cannot be inferred from genomic data as readily as metabolism can be. We therefore cannot simply follow in the methodological footsteps of bacterial ecology and hope for similar success. Understanding microbial eukaryotes will require different approaches, including greater emphasis on taxonomically and trophically diverse model systems. Molecular sequencing will continue to play a role, and advances in environmental sequence tag studies and single-cell methods for genomic and transcriptomics offer particular promise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. [New natural products from the marine-derived Aspergillus fungi-A review].

    PubMed

    Zhao, Chengying; Liu, Haishan; Zhu, Weiming

    2016-03-04

    Marine-derived fungi were the main source of marine microbial natural products (NPs) due to their complex genetic background, chemodiversity and high yield of NPs. According to our previous survey for marine microbial NPs from 2010 to 2013, Aspergillus fungi have received the most of attention among all the marine-derived fungi, which accounted for 31% NPs of the marine fungal origins. This paper reviewed the sources, chemical structures and bioactivites of all the 512 new marine NPs of Aspergillus fungal origins from 1992 to 2014. These marine NPs have diverse chemical structures including polyketides, fatty acids, sterols and terpenoids, alkaloids, peptides, and so on, 36% of which displayed bioactivities such as cytotoxicity, antimicrobial activity, antioxidant and insecticidal activity. Nitrogen compounds are the major secondary metabolites accounting for 52% NPs from the marine-derived Aspergillus fungi. Nitrogen compounds are also the class with the highest ratio of bioactive compounds, 40% of which are bioactive. Plinabulin, a dehydrodiketopiperazine derivative of halimide had been ended its phase II trial and has received its phase III study from the third quarter of 2015 for the treatment of advanced, metastatic non-small cell lung cancer.

  19. Cohabitation promotes high diversity of clownfishes in the Coral Triangle

    PubMed Central

    De Brauwer, Maarten; Dumbrell, Alex J.; Smith, David J.

    2016-01-01

    Global marine biodiversity peaks within the Coral Triangle, and understanding how such high diversity is maintained is a central question in marine ecology. We investigated broad-scale patterns in the diversity of clownfishes and their host sea anemones by conducting 981 belt-transects at 20 locations throughout the Indo-Pacific. Of the 1508 clownfishes encountered, 377 fish occurred in interspecific cohabiting groups and cohabitation was almost entirely restricted to the Coral Triangle. Neither the diversity nor density of host anemone or clownfish species alone influenced rates of interspecific cohabitation. Rather cohabitation occurred in areas where the number of clownfish species exceeds the number of host anemone species. In the Coral Triangle, cohabiting individuals were observed to finely partition their host anemone, with the subordinate species inhabiting the periphery. Furthermore, aggression did not increase in interspecific cohabiting groups, instead dominant species were accepting of subordinate species. Various combinations of clownfish species were observed cohabiting (independent of body size, phylogenetic relatedness, evolutionary age, dentition, level of specialization) in a range of anemone species, thereby ensuring that each clownfish species had dominant reproductive individuals in some cohabiting groups. Clownfishes are obligate commensals, thus cohabitation is an important process in maintaining biodiversity in high diversity systems because it supports the persistence of many species when host availability is limiting. Cohabitation is a likely explanation for high species richness in other obligate commensals within the Coral Triangle, and highlights the importance of protecting these habitats in order to conserve unique marine biodiversity. PMID:27030417

  20. Cohabitation promotes high diversity of clownfishes in the Coral Triangle.

    PubMed

    Camp, Emma F; Hobbs, Jean-Paul A; De Brauwer, Maarten; Dumbrell, Alex J; Smith, David J

    2016-03-30

    Global marine biodiversity peaks within the Coral Triangle, and understanding how such high diversity is maintained is a central question in marine ecology. We investigated broad-scale patterns in the diversity of clownfishes and their host sea anemones by conducting 981 belt-transects at 20 locations throughout the Indo-Pacific. Of the 1508 clownfishes encountered, 377 fish occurred in interspecific cohabiting groups and cohabitation was almost entirely restricted to the Coral Triangle. Neither the diversity nor density of host anemone or clownfish species alone influenced rates of interspecific cohabitation. Rather cohabitation occurred in areas where the number of clownfish species exceeds the number of host anemone species. In the Coral Triangle, cohabiting individuals were observed to finely partition their host anemone, with the subordinate species inhabiting the periphery. Furthermore, aggression did not increase in interspecific cohabiting groups, instead dominant species were accepting of subordinate species. Various combinations of clownfish species were observed cohabiting (independent of body size, phylogenetic relatedness, evolutionary age, dentition, level of specialization) in a range of anemone species, thereby ensuring that each clownfish species had dominant reproductive individuals in some cohabiting groups. Clownfishes are obligate commensals, thus cohabitation is an important process in maintaining biodiversity in high diversity systems because it supports the persistence of many species when host availability is limiting. Cohabitation is a likely explanation for high species richness in other obligate commensals within the Coral Triangle, and highlights the importance of protecting these habitats in order to conserve unique marine biodiversity. © 2016 The Author(s).

  1. Hopping hotspots: global shifts in marine biodiversity.

    PubMed

    Renema, W; Bellwood, D R; Braga, J C; Bromfield, K; Hall, R; Johnson, K G; Lunt, P; Meyer, C P; McMonagle, L B; Morley, R J; O'Dea, A; Todd, J A; Wesselingh, F P; Wilson, M E J; Pandolfi, J M

    2008-08-01

    Hotspots of high species diversity are a prominent feature of modern global biodiversity patterns. Fossil and molecular evidence is starting to reveal the history of these hotspots. There have been at least three marine biodiversity hotspots during the past 50 million years. They have moved across almost half the globe, with their timing and locations coinciding with major tectonic events. The birth and death of successive hotspots highlights the link between environmental change and biodiversity patterns. The antiquity of the taxa in the modern Indo-Australian Archipelago hotspot emphasizes the role of pre-Pleistocene events in shaping modern diversity patterns.

  2. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    PubMed Central

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-01-01

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations. PMID:25233369

  3. Marine actinomycetes: an ongoing source of novel bioactive metabolites.

    PubMed

    Subramani, Ramesh; Aalbersberg, William

    2012-12-20

    Actinomycetes are virtually unlimited sources of novel compounds with many therapeutic applications and hold a prominent position due to their diversity and proven ability to produce novel bioactive compounds. There are more than 22,000 known microbial secondary metabolites, 70% of which are produced by actinomycetes, 20% from fungi, 7% from Bacillus spp. and 1-2% by other bacteria. Among the actinomycetes, streptomycetes group are considered economically important because out of the approximately more than 10,000 known antibiotics, 50-55% are produced by this genus. The ecological role of actinomycetes in the marine ecosystem is largely neglected and various assumptions meant there was little incentive to isolate marine strains for search and discovery of new drugs. The search for and discovery of rare and new actinomycetes is of significant interest to drug discovery due to a growing need for the development of new and potent therapeutic agents. Modern molecular technologies are adding strength to the target-directed search for detection and isolation of bioactive actinomycetes, and continued development of improved cultivation methods and molecular technologies for accessing the marine environment promises to provide access to this significant new source of chemical diversity with novel/rare actinomycetes including new species of previously reported actinomycetes. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. The diversity and structure of marine protists in the coastal waters of China revealed by morphological observation and 454 pyrosequencing

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Song, Shuqun; Chen, Tiantian; Li, Caiwen

    2017-04-01

    Pyrosequencing of the 18S rRNA gene has been widely adopted to study the eukaryotic diversity in various types of environments, and has an advantage over traditional morphology methods in exploring unknown microbial communities. To comprehensively assess the diversity and community composition of marine protists in the coastal waters of China, we applied both morphological observations and high-throughput sequencing of the V2 and V3 regions of 18S rDNA simultaneously to analyze samples collected from the surface layer of the Yellow and East China Seas. Dinoflagellates, diatoms and ciliates were the three dominant protistan groups as revealed by the two methods. Diatoms were the first dominant protistan group in the microscopic observations, with Skeletonema mainly distributed in the nearshore eutrophic waters and Chaetoceros in higher temperature and higher pH waters. The mixotrophic dinoflagellates, Gymnodinium and Gyrodinium, were more competitive in the oligotrophic waters. The pyrosequencing method revealed an extensive diversity of dinoflagellates. Chaetoceros was the only dominant diatom group in the pyrosequencing dataset. Gyrodinium represented the most abundant reads and dominated the offshore oligotrophic protistan community as they were in the microscopic observations. The dominance of parasitic dinoflagellates in the pyrosequencing dataset, which were overlooked in the morphological observations, indicates more attention should be paid to explore the potential role of this group. Both methods provide coherent clustering of samples. Nutrient levels, salinity and pH were the main factors influencing the distribution of protists. This study demonstrates that different primer pairs used in the pyrosequencing will indicate different protistan community structures. A suitable marker may reveal more comprehensive composition of protists and provide valuable information on environmental drivers.

  5. Marine microbial L-asparaginase: Biochemistry, molecular approaches and applications in tumor therapy and in food industry.

    PubMed

    Izadpanah Qeshmi, Fatemeh; Homaei, Ahmad; Fernandes, Pedro; Javadpour, Sedigheh

    2018-03-01

    The marine environment is a rich source of biological and chemical diversity. It covers more than 70% of the Earth's surface and features a wide diversity of habitats, often displaying extreme conditions, where marine organisms thrive, offering a vast pool for microorganisms and enzymes. Given the dissimilarity between marine and terrestrial habitats, enzymes and microorganisms, either novel or with different and appealing features as compared to terrestrial counterparts, may be identified and isolated. L-asparaginase (E.C. 3.5.1.1), is among the relevant enzymes that can be obtained from marine sources. This amidohydrolase acts on L-asparagine and produce L-aspartate and ammonia, accordingly it has an acknowledged chemotherapeutic application, namely in acute lymphoblastic leukemia. Moreover, L-asparaginase is also of interest in the food industry as it prevents acrylamide formation. Terrestrial organisms have been largely tapped for L-asparaginases, but most failed to comply with criteria for practical applications, whereas marine sources have only been marginally screened. This work provides an overview on the relevant features of this enzyme and the framework for its application, with a clear emphasis on the use of L-asparaginase from marine sources. The review envisages to highlight the unique properties of marine L-asparaginases that could make them good candidates for medical applications and industries, especially in food safety. Copyright © 2018 Elsevier GmbH. All rights reserved.

  6. Climate Change and the Potential Spreading of Marine Mucilage and Microbial Pathogens in the Mediterranean Sea

    PubMed Central

    Danovaro, Roberto; Fonda Umani, Serena; Pusceddu, Antonio

    2009-01-01

    Background Marine snow (small amorphous aggregates with colloidal properties) is present in all oceans of the world. Surface water warming and the consequent increase of water column stability can favour the coalescence of marine snow into marine mucilage, large marine aggregates representing an ephemeral and extreme habitat. Marine mucilage characterize aquatic systems with altered environmental conditions. Methodology/Principal Findings We investigated, by means of molecular techniques, viruses and prokaryotes within the mucilage and in surrounding seawater to examine the potential of mucilage to host new microbial diversity and/or spread marine diseases. We found that marine mucilage contained a large and unexpectedly exclusive microbial biodiversity and hosted pathogenic species that were absent in surrounding seawater. We also investigated the relationship between climate change and the frequency of mucilage in the Mediterranean Sea over the last 200 years and found that the number of mucilage outbreaks increased almost exponentially in the last 20 years. The increasing frequency of mucilage outbreaks is closely associated with the temperature anomalies. Conclusions/Significance We conclude that the spreading of mucilage in the Mediterranean Sea is linked to climate-driven sea surface warming. The mucilage can act as a controlling factor of microbial diversity across wide oceanic regions and could have the potential to act as a carrier of specific microorganisms, thereby increasing the spread of pathogenic bacteria. PMID:19759910

  7. Marine Natural Products from New Caledonia—A Review

    PubMed Central

    Motuhi, Sofia-Eléna; Mehiri, Mohamed; Payri, Claude Elisabeth; La Barre, Stéphane; Bach, Stéphane

    2016-01-01

    Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species identification, biological and/or pharmaceutical analyses are performed on marine organisms to assess their bioactivities. A total of 3582 genera, 1107 families and 9372 species have been surveyed and more than 350 novel molecular structures have been identified. Along with their bioactivities that hold promise for therapeutic applications, most of these molecules are also potentially useful for cosmetics and food biotechnology. This review highlights the tremendous marine diversity in New Caledonia, and offers an outline of the vast possibilities for natural products, especially in the interest of pursuing collaborative fundamental research programs and developing local biotechnology programs. PMID:26999165

  8. Marine Natural Products from New Caledonia--A Review.

    PubMed

    Motuhi, Sofia-Eléna; Mehiri, Mohamed; Payri, Claude Elisabeth; La Barre, Stéphane; Bach, Stéphane

    2016-03-16

    Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species identification, biological and/or pharmaceutical analyses are performed on marine organisms to assess their bioactivities. A total of 3582 genera, 1107 families and 9372 species have been surveyed and more than 350 novel molecular structures have been identified. Along with their bioactivities that hold promise for therapeutic applications, most of these molecules are also potentially useful for cosmetics and food biotechnology. This review highlights the tremendous marine diversity in New Caledonia, and offers an outline of the vast possibilities for natural products, especially in the interest of pursuing collaborative fundamental research programs and developing local biotechnology programs.

  9. Epilithic Cyanobacterial Communities of a Marine Tropical Beach Rock (Heron Island, Great Barrier Reef): Diversity and Diazotrophy▿

    PubMed Central

    Díez, Beatriz; Bauer, Karolina; Bergman, Birgitta

    2007-01-01

    The diversity and nitrogenase activity of epilithic marine microbes in a Holocene beach rock (Heron Island, Great Barrier Reef, Australia) with a proposed biological calcification “microbialite” origin were examined. Partial 16S rRNA gene sequences from the dominant mat (a coherent and layered pink-pigmented community spread over the beach rock) and biofilms (nonstratified, differently pigmented microbial communities of small shallow depressions) were retrieved using denaturing gradient gel electrophoresis (DGGE), and a clone library was retrieved from the dominant mat. The 16S rRNA gene sequences and morphological analyses revealed heterogeneity in the cyanobacterial distribution patterns. The nonheterocystous filamentous genus Blennothrix sp., phylogenetically related to Lyngbya, dominated the mat together with unidentified nonheterocystous filaments of members of the Pseudanabaenaceae and the unicellular genus Chroococcidiopsis. The dominance and three-dimensional intertwined distribution of these organisms were confirmed by nonintrusive scanning microscopy. In contrast, the less pronounced biofilms were dominated by the heterocystous cyanobacterial genus Calothrix, two unicellular Entophysalis morphotypes, Lyngbya spp., and members of the Pseudanabaenaceae family. Cytophaga-Flavobacterium-Bacteroides and Alphaproteobacteria phylotypes were also retrieved from the beach rock. The microbial diversity of the dominant mat was accompanied by high nocturnal nitrogenase activities (as determined by in situ acetylene reduction assays). A new DGGE nifH gene optimization approach for cyanobacterial nitrogen fixers showed that the sequences retrieved from the dominant mat were related to nonheterocystous uncultured cyanobacterial phylotypes, only distantly related to sequences of nitrogen-fixing cultured cyanobacteria. These data stress the occurrence and importance of nonheterocystous epilithic cyanobacteria, and it is hypothesized that such epilithic cyanobacteria

  10. Bioprospecting for Exopolysaccharides from Deep-Sea Hydrothermal Vent Bacteria: Relationship between Bacterial Diversity and Chemical Diversity

    PubMed Central

    Delbarre-Ladrat, Christine; Leyva Salas, Marcia; Zykwinska, Agata; Colliec-Jouault, Sylvia

    2017-01-01

    Many bacteria biosynthesize structurally diverse exopolysaccharides (EPS) and excrete them into their surrounding environment. The EPS functional features have found many applications in industries such as cosmetics and pharmaceutics. In particular, some EPS produced by marine bacteria are composed of uronic acids, neutral sugars, and N-acetylhexosamines, and may also bear some functional sulfate groups. This suggests that they can share common structural features with glycosaminoglycans (GAG) like the two EPS (HE800 and GY785) originating from the deep sea. In an attempt to discover new EPS that may be promising candidates as GAG-mimetics, fifty-one marine bacterial strains originating from deep-sea hydrothermal vents were screened. The analysis of the EPS chemical structure in relation to bacterial species showed that Vibrio, Alteromonas, and Pseudoalteromonas strains were the main producers. Moreover, they produced EPS with distinct structural features, which might be useful for targeting marine bacteria that could possibly produce structurally GAG-mimetic EPS. PMID:28930185

  11. Natural products with health benefits from marine biological resources

    USDA-ARS?s Scientific Manuscript database

    The ocean is the cradle of lives, which provides a diverse array of intriguing natural products that has captured scientists’ attention in the past few decades due to their significant and extremely potent biological activities. In addition to being rich sources for pharmaceutical drugs, marine nat...

  12. ELIXIR pilot action: Marine metagenomics - towards a domain specific set of sustainable services.

    PubMed

    Robertsen, Espen Mikal; Denise, Hubert; Mitchell, Alex; Finn, Robert D; Bongo, Lars Ailo; Willassen, Nils Peder

    2017-01-01

    Metagenomics, the study of genetic material recovered directly from environmental samples, has the potential to provide insight into the structure and function of heterogeneous microbial communities.  There has been an increased use of metagenomics to discover and understand the diverse biosynthetic capacities of marine microbes, thereby allowing them to be exploited for industrial, food, and health care products. This ELIXIR pilot action was motivated by the need to establish dedicated data resources and harmonized metagenomics pipelines for the marine domain, in order to enhance the exploration and exploitation of marine genetic resources. In this paper, we summarize some of the results from the ELIXIR pilot action "Marine metagenomics - towards user centric services".

  13. Microbial dehalogenation of organohalides in marine and estuarine environments.

    PubMed

    Zanaroli, Giulio; Negroni, Andrea; Häggblom, Max M; Fava, Fabio

    2015-06-01

    Marine sediments are the ultimate sink and a major entry way into the food chain for many highly halogenated and strongly hydrophobic organic pollutants, such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polybrominated diphenylethers (PBDEs) and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT). Microbial reductive dehalogenation in anaerobic sediments can transform these contaminants into less toxic and more easily biodegradable products. Although little is still known about the diversity of respiratory dehalogenating bacteria and their catabolic genes in marine habitats, the occurrence of dehalogenation under actual site conditions has been reported. This suggests that the activity of dehalogenating microbes may contribute, if properly stimulated, to the in situ bioremediation of marine and estuarine contaminated sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Marine Biogeochemistry of Zinc Isotopes

    DTIC Science & Technology

    2007-06-01

    hydrothermal fluids and minerals, cultured marine phytoplankton, natural plankton, and seawater. By measuring Zn isotopes in a diverse array of...variations were discovered in hydrothermal fluids and minerals, with hydrothermal fluids ranging in 6 66Zn from 0.02 %o to +0.93 %o, and chimney minerals...drives much of the Zn isotope fractionation in hydrothermal systems. In cultured diatoms, a relationship was discovered between Zn transport by

  15. Medicinal benefits of marine invertebrates: sources for discovering natural drug candidates.

    PubMed

    De Zoysa, Mahanama

    2012-01-01

    Marine invertebrates are one of the major groups of organisms, which could be diversified under the major taxonomic groups of Porifera, Cnidaria, Mollusca, Arthropoda, Echinodermata, and many other minor phyla. To date, range of medicinal benefits and a significant number of marine natural products (MNPs) have been discovered from marine invertebrates. Seafood diet from edible marine invertebrates such as mollusks and crustaceans has been linked with various medicinal benefits to improve human health. Among marine invertebrates, spongers from phylum Porifera is the most dominant group responsible for discovering large number of MNPs, which have been used as template to develop therapeutic drugs. MNPs isolated from invertebrates have shown wide range of therapeutic properties including antimicrobial, antioxidant, antihypertensive, anticoagulant, anticancer, anti-inflammatory, wound healing and immune modulator, and other medicinal effects. Therefore, marine invertebrates are rich sources of chemical diversity and health benefits for developing drug candidates, cosmetics, nutritional supplements, and molecular probes that can be supported to increase the healthy life span of human. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Predator and prey biodiversity relationship and its consequences on marine ecosystem functioning-interplay between nanoflagellates and bacterioplankton.

    PubMed

    Yang, Jinny Wu; Wu, Wenxue; Chung, Chih-Ching; Chiang, Kuo-Ping; Gong, Gwo-Ching; Hsieh, Chih-Hao

    2018-06-01

    The importance of biodiversity effects on ecosystem functioning across trophic levels, especially via predatory-prey interactions, is receiving increased recognition. However, this topic has rarely been explored for marine microbes, even though microbial biodiversity contributes significantly to marine ecosystem function and energy flows. Here we examined diversity and biomass of bacteria (prey) and nanoflagellates (predators), as well as their effects on trophic transfer efficiency in the East China Sea. Specifically, we investigated: (i) predator diversity effects on prey biomass and trophic transfer efficiency (using the biomass ratio of predator/prey as a proxy), (ii) prey diversity effects on predator biomass and trophic transfer efficiency, and (iii) the relationship between predator and prey diversity. We found higher prey diversity enhanced both diversity and biomass of predators, as well as trophic transfer efficiency, which may arise from more balanced diet and/or enhanced niche complementarity owing to higher prey diversity. By contrast, no clear effect was detected for predator diversity on prey biomass and transfer efficiency. Notably, we found prey diversity effects on predator-prey interactions; whereas, we found no significant diversity effect on biomass within the same trophic level. Our findings highlight the importance of considering multi-trophic biodiversity effects on ecosystem functioning in natural ecosystems.

  17. Recruiting Implications of the Long War for the Marine Corps

    DTIC Science & Technology

    2008-01-01

    forecast future demographic complexion. Thus today’s marketing and advertising efforts can be tailored to shape tomorrow’s desired force diversity... marketing and advertising campaign. Continue to place Hispanic recruiters in urban centers with dense Hispanic population. Lastly, the Marine Corps

  18. Ancient DNA from marine mammals: studying long-lived species over ecological and evolutionary timescales.

    PubMed

    Foote, Andrew D; Hofreiter, Michael; Morin, Phillip A

    2012-01-20

    Marine mammals have long generation times and broad, difficult to sample distributions, which makes inferring evolutionary and demographic changes using field studies of extant populations challenging. However, molecular analyses from sub-fossil or historical materials of marine mammals such as bone, tooth, baleen, skin, fur, whiskers and scrimshaw using ancient DNA (aDNA) approaches provide an opportunity for investigating such changes over evolutionary and ecological timescales. Here, we review the application of aDNA techniques to the study of marine mammals. Most of the studies have focused on detecting changes in genetic diversity following periods of exploitation and environmental change. To date, these studies have shown that even small sample sizes can provide useful information on historical genetic diversity. Ancient DNA has also been used in investigations of changes in distribution and range of marine mammal species; we review these studies and discuss the limitations of such 'presence only' studies. Combining aDNA data with stable isotopes can provide further insights into changes in ecology and we review past studies and suggest future potential applications. We also discuss studies reconstructing inter- and intra-specific phylogenies from aDNA sequences and discuss how aDNA sequences could be used to estimate mutation rates. Finally, we highlight some of the problems of aDNA studies on marine mammals, such as obtaining sufficient sample sizes and calibrating for the marine reservoir effect when radiocarbon-dating such wide-ranging species. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats.

    PubMed

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-11-16

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Pharmaceutically active secondary metabolites of marine actinobacteria.

    PubMed

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Threats, Challenges, and Promise of Marine Microbes: A NOAA Perspective with Emphasis on Ecological Forecasting

    NASA Astrophysics Data System (ADS)

    Sandifer, P. A.

    2012-12-01

    Fully functioning ecosystems, as well as healthy humans, depend on robust and diverse communities of microbes. The diversity of microbes in the marine environment is estimated to be huge, dwarfing diversity of other life forms, and crucial for many ecosystem processes. Despite the ubiquity and extreme importance of microbial life in the sea - from the air-surface interface to the deepest abyss and sediments - we know relatively little about this biotic component that may compose a large proportion of the total biomass on the planet. As the nation's principal steward of marine living resources, NOAA is both responsible for and vitally interested in marine microbes, from a variety of perspectives. These include (1) health threats to humans and other organisms and how these may be affected by climate change and ecosystem alteration; (2) detoxification of organic pollutants such as hydrocarbons (e.g., in the Deep Water Horizon oil catastrophe); (3) production of valuable natural products including potential new pharmaceuticals; (4) roles in biogeochemical cycles (e.g., for carbon, nitrogen, phosphorus, iron, etc.) and how human activities may affect these roles; (5) development and deployment of new methods to detect and quantify certain marine microbes, and incorporation of these into ocean observing systems; (6) development of Earth System models that include much improved understanding of microbial functional diversity and microbially mediated biogeochemical processes; (7) dynamics of bacterial, phyto- and zooplankton blooms, including for harmful algae and bacteria; (8) effects of climate change factors (e.g., temperature, CO2 concentrations, ocean acidification, changes in habitats and species distribution, etc.) on marine microbes; and others. Many of these topics likely will be discussed by others in this session. This presentation will focus primarily on NOAA's activities in addressing health threats emanating from a variety of microbes in the marine

  2. Horizontal gene transfer and mobile genetic elements in marine systems.

    PubMed

    Sobecky, Patricia A; Hazen, Tracy H

    2009-01-01

    The pool of mobile genetic elements (MGE) in microbial communities consists of viruses, plasmids, and associated elements (insertion sequences, transposons, and integrons) that are either self-transmissible or use mobile plasmids and viruses as vehicles for their dissemination. This mobilome facilitates the horizontal transfer of genes that promote the evolution and adaptation of microbial communities. Efforts to characterize MGEs from microbial populations resident in a variety of ecological habitats have revealed a surprisingly novel and seemingly untapped biodiversity. To better understand the impact of horizontal gene transfer (HGT), as well as the agents that promote HGT in marine ecosystems and to determine whether or not environmental parameters can effect the composition and structure of the mobilome in marine microbial communities, information on the distribution, diversity, and ecological traits of the marine mobilome is presented. In this chapter we discuss recent insights gained from different methodological approaches used to characterize the biodiversity and ecology of MGE in marine environments and their contributions to HGT. In addition, we present case studies that highlight specific HGT examples in coastal, open-ocean, and deep-sea marine ecosystems.

  3. Marine-Derived Bioactive Peptides for Biomedical Sectors: A Review.

    PubMed

    Ruiz-Ruiz, Federico; Mancera-Andrade, Elena I; Iqbal, Hafiz M N

    2017-01-01

    Marine-based resources such as algae and other marine by-products have been recognized as rich sources of structurally diverse bioactive peptides. Evidently, their structural characteristics including unique amino acid residues are responsible for their biological activity. Several of the above-mentioned marine-origin species show multi-functional bioactivities that are useful for a new discovery and/or reinvention of biologically active ingredients, nutraceuticals and/or pharmaceuticals. Therefore, in recent years, marine-derived bioactive peptides have gained a considerable attention with high-value biomedical and/or pharmaceutical potentials. Furthermore, a wider spectrum of bioactive peptides can be produced through proteolytic-assisted hydrolysis of various marine resources under controlled physicochemical (pH and temperature of the reaction media) environment. Owing to their numerous health-related beneficial effects and therapeutic potential in the treatment and/or prevention of many diseases, such marine-derived bioactive peptides exhibit a wider spectrum of biological activities such as anti-cancerous, anti-proliferative, anti-coagulant, antibacterial, antifungal, and anti-tumor activities among many others. Based on emerging evidence of marine-derived peptide mining, the above-mentioned marine resources contain noteworthy levels of high-value protein. The present review article mainly summarizes the marine-derived bioactive peptides and emphasizing their potential applications in biomedical and/or pharmaceutical sectors of the modern world. In conclusion, recent literature has provided evidence that marine-derived bioactive peptides play a critical role in human health along with many possibilities of designing new functional nutraceuticals and/or pharmaceuticals to clarify potent mechanisms of action for a wider spectrum of diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Mass Spectrometry-Based Metabolomics to Elucidate Functions in Marine Organisms and Ecosystems

    PubMed Central

    Goulitquer, Sophie; Potin, Philippe; Tonon, Thierry

    2012-01-01

    Marine systems are very diverse and recognized as being sources of a wide range of biomolecules. This review provides an overview of metabolite profiling based on mass spectrometry (MS) approaches in marine organisms and their environments, focusing on recent advances in the field. We also point out some of the technical challenges that need to be overcome in order to increase applications of metabolomics in marine systems, including extraction of chemical compounds from different matrices and data management. Metabolites being important links between genotype and phenotype, we describe added value provided by integration of data from metabolite profiling with other layers of omics, as well as their importance for the development of systems biology approaches in marine systems to study several biological processes, and to analyze interactions between organisms within communities. The growing importance of MS-based metabolomics in chemical ecology studies in marine ecosystems is also illustrated. PMID:22690147

  5. Methods to examine reproductive biology in free-ranging, fully-marine mammals.

    PubMed

    Lanyon, Janet M; Burgess, Elizabeth A

    2014-01-01

    Historical overexploitation of marine mammals, combined with present-day pressures, has resulted in severely depleted populations, with many species listed as threatened or endangered. Understanding breeding patterns of threatened marine mammals is crucial to assessing population viability, potential recovery and conservation actions. However, determining reproductive parameters of wild fully-marine mammals (cetaceans and sirenians) is challenging due to their wide distributions, high mobility, inaccessible habitats, cryptic lifestyles and in many cases, large body size and intractability. Consequently, reproductive biologists employ an innovative suite of methods to collect useful information from these species. This chapter reviews historic, recent and state-of-the-art methods to examine diverse aspects of reproduction in fully-aquatic mammals.

  6. Interdependence of specialization and biodiversity in Phanerozoic marine invertebrates.

    PubMed

    Nürnberg, Sabine; Aberhan, Martin

    2015-03-17

    Studies of the dynamics of biodiversity often suggest that diversity has upper limits, but the complex interplay between ecological and evolutionary processes and the relative role of biotic and abiotic factors that set upper limits to diversity are poorly understood. Here we statistically assess the relationship between global biodiversity and the degree of habitat specialization of benthic marine invertebrates over the Phanerozoic eon. We show that variation in habitat specialization correlates positively with changes in global diversity, that is, times of high diversity coincide with more specialized faunas. We identify the diversity dynamics of specialists but not generalists, and origination rates but not extinction rates, as the main drivers of this ecological interdependence. Abiotic factors fail to show any significant relationship with specialization. Our findings suggest that the overall level of specialization and its fluctuations over evolutionary timescales are controlled by diversity-dependent processes--driven by interactions between organisms competing for finite resources.

  7. Ecology of selected marine communities in Glacier Bay: Zooplankton, forage fish, seabirds and marine mammals

    USGS Publications Warehouse

    Robards, Martin D.; Drew, Gary S.; Piatt, John F.; Anson, Jennifer Marie; Abookire, Alisa A.; Bodkin, James L.; Hooge, Philip N.; Speckman, Suzann G.

    2003-01-01

    We studied oceanography (including primary production), secondary production, small schooling fish (SSF), and marine bird and mammal predators in Glacier Bay during 1999 and 2000. Results from these field efforts were combined with a review of current literature relating to the Glacier Bay environment. Since the conceptual model developed by Hale and Wright (1979) ‘changes and cycles’ continue to be the underlying theme of the Glacier Bay ecosystem. We found marked seasonality in many of the parameters that we investigated over the two years of research, and here we provide a comprehensive description of the distribution and relative abundance of a wide array of marine biota. Glacier Bay is a tidally mixed estuary that leads into basins, which stratify in summer, with the upper arms behaving as traditional estuaries. The Bay is characterized by renewal and mixing events throughout the year, and markedly higher primary production than in many neighboring southeast Alaska fjords (Hooge and Hooge, 2002). Zooplankton diversity and abundance within the upper 50 meters of the water column in Glacier Bay is similar to communities seen throughout the Gulf of Alaska. Zooplankton in the lower regions of Glacier Bay peak in abundance in late May or early June, as observed at Auke Bay and in the Gulf of Alaska. The key distinction between the lower Bay and other estuaries in the Gulf of Alaska is that a second smaller peak in densities occurs in August. The upper Bay behaved uniformly in temporal trends, peaking in July. Densities had begun to decline in August, but were still more than twice those observed in that region in May. The highest density of zooplankton observed was 17,870 organisms/m3 in Tarr Inlet during July. Trends in zooplankton community abundance and diversity within the lower Bay were distinct from upper-Glacier Bay trends. Whereas the lower Bay is strongly influenced by Gulf of Alaska processes, local processes are the strongest influence in the upper

  8. Different Planctomycetes diversity patterns in latitudinal surface seawater of the open sea and in sediment.

    PubMed

    Shu, Qinglong; Jiao, Nianzhi

    2008-04-01

    The 16S rRNA gene approach was applied to investigate the diversity of Planctomycetes in latitudinal surface seawater of the Western Pacific Ocean. The results revealed that the Pirellula-Rhodopirellula-Blastopirellula clade dominated the Planctomycetes community at all surface seawater sites while the minority genera Gemmata and Planctomyces were only found at sites H5 and H2 respectively. Although the clone frequency of the PRB clade seemed stable (between 83.3% and 94.1%) for all surface seawater sites, the retrieved Pirellula-Rhodopirellula-Blastopirellula clade presented unexpected diversity. Interestingly, low latitude seawater appeared to have higher diversity than mid-latitudes. integral-LIBSHUFF software analysis revealed significantly different diversity patterns between in latitudinal surface seawater and in the sediment of South China Sea station M2896. Our data suggested that different hydrological and geographic features contributed to the shift of Planctomycetes diversity in marine environments. This is, to our knowledge, the first systematic assessment of Planctomycetes in latitudinal surface seawater of the open sea and the first comparison of diversity pattern between surface seawater and sediments and has broadened our understanding of Planctomycetes diversity in marine environments.

  9. Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal

    PubMed Central

    Assis, J.; Berecibar, E.; Claro, B.; Alberto, F.; Reed, D.; Raimondi, P.; Serrão, E. A.

    2017-01-01

    Global climate change is likely to constrain low latitude range edges across many taxa and habitats. Such is the case for NE Atlantic marine macroalgal forests, important ecosystems whose main structuring species is the annual kelp Saccorhiza polyschides. We coupled ecological niche modelling with simulations of potential dispersal and delayed development stages to infer the major forces shaping range edges and to predict their dynamics. Models indicated that the southern limit is set by high winter temperatures above the physiological tolerance of overwintering microscopic stages and reduced upwelling during recruitment. The best range predictions were achieved assuming low spatial dispersal (5 km) and delayed stages up to two years (temporal dispersal). Reconstructing distributions through time indicated losses of ~30% from 1986 to 2014, restricting S. polyschides to upwelling regions at the southern edge. Future predictions further restrict populations to a unique refugium in northwestern Iberia. Losses were dependent on the emissions scenario, with the most drastic one shifting ~38% of the current distribution by 2100. Such distributional changes might not be rescued by dispersal in space or time (as shown for the recent past) and are expected to drive major biodiversity loss and changes in ecosystem functioning. PMID:28276501

  10. Species diversity in the marine microturbellarian Astrotorhynchus bifidus sensu lato (Platyhelminthes: Rhabdocoela) from the Northeast Pacific Ocean.

    PubMed

    Van Steenkiste, Niels W L; Herbert, Elizabeth R; Leander, Brian S

    2018-03-01

    Increasing evidence suggests that many widespread species of meiofauna are in fact regional complexes of (pseudo-)cryptic species. This knowledge has challenged the 'Everything is Everywhere' hypothesis and also partly explains the meiofauna paradox of widespread nominal species with limited dispersal abilities. Here, we investigated species diversity within the marine microturbellarian Astrotorhynchus bifidus sensu lato in the Northeast Pacific Ocean. We used a multiple-evidence approach combining multi-gene (18S, 28S, COI) phylogenetic analyses, several single-gene and multi-gene species delimitation methods, haplotype networks and conventional taxonomy to designate Primary Species Hypotheses (PSHs). This included the development of rhabdocoel-specific COI barcode primers, which also have the potential to aid in species identification and delimitation in other rhabdocoels. Secondary Species Hypotheses (SSHs) corresponding to morphospecies and pseudo-cryptic species were then proposed based on the minimum consensus of different PSHs. Our results showed that (a) there are at least five species in the A. bifidus complex in the Northeast Pacific Ocean, four of which can be diagnosed based on stylet morphology, (b) the A. bifidus complex is a mixture of sympatric and allopatric species with regional and/or subglobal distributions, (c) sympatry occurs on local (sample sites), regional (Northeastern Pacific) and subglobal (Northern Atlantic, Arctic, Northeastern Pacific) scales. Mechanisms for this co-occurrence are still poorly understood, but we hypothesize they could include habitat differentiation (spatial and/or seasonal) and life history characteristics such as sexual selection and dispersal abilities. Our results also suggest the need for improved sampling and exploration of molecular markers to accurately map gene flow and broaden our understanding of species diversity and distribution of microturbellarians in particular and meiofauna in general. Copyright

  11. Insect diversity in the fossil record

    NASA Technical Reports Server (NTRS)

    Labandeira, C. C.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1993-01-01

    Insects possess a surprisingly extensive fossil record. Compilation of the geochronologic ranges of insect families demonstrates that their diversity exceeds that of preserved vertebrate tetrapods through 91 percent of their evolutionary history. The great diversity of insects was achieved not by high origination rates but rather by low extinction rates comparable to the low rates of slowly evolving marine invertebrate groups. The great radiation of modern insects began 245 million years ago and was not accelerated by the expansion of angiosperms during the Cretaceous period. The basic trophic machinery of insects was in place nearly 100 million years before angiosperms appeared in the fossil record.

  12. ELIXIR pilot action: Marine metagenomics – towards a domain specific set of sustainable services

    PubMed Central

    Robertsen, Espen Mikal; Denise, Hubert; Mitchell, Alex; Finn, Robert D.; Bongo, Lars Ailo; Willassen, Nils Peder

    2017-01-01

    Metagenomics, the study of genetic material recovered directly from environmental samples, has the potential to provide insight into the structure and function of heterogeneous microbial communities.  There has been an increased use of metagenomics to discover and understand the diverse biosynthetic capacities of marine microbes, thereby allowing them to be exploited for industrial, food, and health care products. This ELIXIR pilot action was motivated by the need to establish dedicated data resources and harmonized metagenomics pipelines for the marine domain, in order to enhance the exploration and exploitation of marine genetic resources. In this paper, we summarize some of the results from the ELIXIR pilot action “Marine metagenomics – towards user centric services”. PMID:28620454

  13. Culturable heterotrophic bacteria from the marine sponge Dendrilla nigra: isolation and phylogenetic diversity of actinobacteria

    NASA Astrophysics Data System (ADS)

    Selvin, Joseph; Gandhimathi, R.; Kiran, G. Seghal; Priya, S. Shanmugha; Ravji, T. Rajeetha; Hema, T. A.

    2009-09-01

    Culturable heterotrophic bacterial composition of marine sponge Dendrilla nigra was analysed using different enrichments. Five media compositions including without enrichment (control), enriched with sponge extract, with growth regulator (antibiotics), with autoinducers, and complete enrichment containing sponge extract, antibiotics, and autoinducers were developed. DNA hybridization assay was performed to explore host specific bacteria and ecotypes of culturable sponge-associated bacteria. Enrichment with selective inducers (AHLs and sponge extract) and regulators (antibiotics) considerably enhanced the cultivation potential of sponge-associated bacteria. It was found that Marinobacter (MSI032), Micromonospora (MSI033), Streptomyces (MSI051), and Pseudomonas (MSI057) were sponge-associated obligate symbionts. The present findings envisaged that “ Micromonospora-Saccharomonospora-Streptomyces” group was the major culturable actinobacteria in the marine sponge D. nigra. The DNA hybridization assay was a reliable method for the analysis of culturable bacterial community in marine sponges. Based on the culturable community structure, the sponge-associated bacteria can be grouped (ecotypes) as general symbionts, specific symbionts, habitat flora, and antagonists.

  14. Viruses infecting marine molluscs.

    PubMed

    Arzul, Isabelle; Corbeil, Serge; Morga, Benjamin; Renault, Tristan

    2017-07-01

    Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Archaeal Diversity Associated with Deep Sea Whalefalls

    NASA Astrophysics Data System (ADS)

    Wilpiszeski, R.; Goffredi, S.; Turk, K.; Vrijenhoek, R.; House, C. H.; Orphan, V.

    2005-12-01

    Deep sea whale fall sites support a diverse population of organisms in an otherwise sparsely populated environment. While the macro- and megafauna of these ecosystems have been investigated in some detail, less is known about the nature of associated microbial populations. 16S rRNA gene surveys were used to evaluate the diversity of Archaea in the sediment below one such whale fall at 2800 m water depth and at a nearby control site. A variety of Archaea were identified, including diverse uncultured marine crenarchaeota, phylotypes related to hydrogenotrophic methanogens (Methanogenium spp.), and methylotrophic methanogens associated with the Methanococcoides. No methanogens were discovered at the control site, while hydrogenotrophic methanogens accounted for approximately 20% of the samples from surface sediments below the whale and 35% of the Archaea identified from 12.5 to 15 cm below the whale; the single methylotrophic methanogen was identified within the 12.5 to 15 cm depth sample. The presence of methanogenic phylotypes associated with the whale fall corroborates geochemical observations of elevated methane concentrations observed in the shallow sediments directly beneath the whale fall. This combined geochemical and microbiological evidence suggests that near surface organic matter remineralization is occurring via a methanogenic pathway within this deep sea whale fall habitat rather than the typical sulfidogenic dominated diagenesis commonly observed at other whale fall locations and within shallow marine sediments worldwide.

  16. Marine sources influence fog bioaerosol composition in Namibia and Maine

    NASA Astrophysics Data System (ADS)

    Evans, S. E.; Dueker, E.; Logan, J. R. V.; Weathers, K. C.

    2017-12-01

    Organic aerosol particles act as condensation nuclei for fogs and clouds (CCN) and are main determinants of fog evolution, chemical processing, and overall aerosol-fog-cloud interactions. Recent work has confirmed the presence of marine bioaerosols, but little is known about their sources, transport, taxonomic diversity or viability. The few studies that have characterized bioaerosols in fog have been limited to culture-based approaches that capture only a fraction of microbial diversity. We characterized fungal and bacterial communities in the fog in two iconic fog systems, the Coast of Maine (USA) and the Namib Desert (Namibia). The biology of fog in both systems was diverse and distinct, by geography, from dry aerosols, and from local sources. The local environment had a dominant influence on fog in both the Namib and Maine; in particular, the biology of fog in Maine, which was collected near the coast, was more similar to microbial communities from the ocean surface. In both systems, differences between pre- and post-fog aerosol communities suggest that fog events can significantly alter microbial aerosol diversity and composition. This insight into the microbial composition of fog indicates that its origin and frequency has the potential to influence the number and diversity of microorganisms that settle in a given environment, and the composition of microbial aerosol communities in ambient or clear conditions. Here we suggest that fog microbes can possess specific traits that enhance nucleation, altering the transport and deposition of marine- and soil-derived organic matter in terrestrial systems.

  17. Taxonomic and Environmental Variation of Metabolite Profiles in Marine Dinoflagellates of the Genus Symbiodinium

    PubMed Central

    Klueter, Anke; Crandall, Jesse B.; Archer, Frederick I.; Teece, Mark A.; Coffroth, Mary Alice

    2015-01-01

    Microorganisms in terrestrial and marine ecosystems are essential to environmental sustainability. In the marine environment, invertebrates often depend on metabolic cooperation with their endosymbionts. Coral reefs, one of the most important marine ecosystems, are based on the symbiosis between a broad diversity of dinoflagellates of the genus Symbiodinium and a wide phyletic diversity of hosts (i.e., cnidarian, molluscan, poriferan). This diversity is reflected in the ecology and physiology of the symbionts, yet the underlying biochemical mechanisms are still poorly understood. We examined metabolite profiles of four cultured species of Symbiodinium known to form viable symbioses with reef-building corals, S. microadriaticum (cp-type A194), S. minutum (cp-type B184), S. psygmophilum (cp-type B224) and S. trenchii (cp-type D206). Metabolite profiles were shown to differ among Symbiodinium species and were found to be affected by their physiological response to growth in different temperatures and light regimes. A combined Random Forests and Bayesian analysis revealed that the four Symbiodinium species examined primarily differed in their production of sterols and sugars, including a C29 stanol and the two sterols C28Δ5 and C28Δ5,22, as well as differences in metabolite abundances of a hexose and inositol. Inositol levels were also strongly affected by changes in temperature across all Symbiodinium species. Our results offer a detailed view of the metabolite profile characteristic of marine symbiotic dinoflagellates of the genus Symbiodinium, and identify patterns of metabolites related to several growth conditions. PMID:25693143

  18. Molecular Diversity and Gene Evolution of the Venom Arsenal of Terebridae Predatory Marine Snails

    PubMed Central

    Gorson, Juliette; Ramrattan, Girish; Verdes, Aida; Wright, Elizabeth M.; Kantor, Yuri; Rajaram Srinivasan, Ramakrishnan; Musunuri, Raj; Packer, Daniel; Albano, Gabriel; Qiu, Wei-Gang; Holford, Mandë

    2015-01-01

    Venom peptides from predatory organisms are a resource for investigating evolutionary processes such as adaptive radiation or diversification, and exemplify promising targets for biomedical drug development. Terebridae are an understudied lineage of conoidean snails, which also includes cone snails and turrids. Characterization of cone snail venom peptides, conotoxins, has revealed a cocktail of bioactive compounds used to investigate physiological cellular function, predator-prey interactions, and to develop novel therapeutics. However, venom diversity of other conoidean snails remains poorly understood. The present research applies a venomics approach to characterize novel terebrid venom peptides, teretoxins, from the venom gland transcriptomes of Triplostephanus anilis and Terebra subulata. Next-generation sequencing and de novo assembly identified 139 putative teretoxins that were analyzed for the presence of canonical peptide features as identified in conotoxins. To meet the challenges of de novo assembly, multiple approaches for cross validation of findings were performed to achieve reliable assemblies of venom duct transcriptomes and to obtain a robust portrait of Terebridae venom. Phylogenetic methodology was used to identify 14 teretoxin gene superfamilies for the first time, 13 of which are unique to the Terebridae. Additionally, basic local algorithm search tool homology-based searches to venom-related genes and posttranslational modification enzymes identified a convergence of certain venom proteins, such as actinoporin, commonly found in venoms. This research provides novel insights into venom evolution and recruitment in Conoidean predatory marine snails and identifies a plethora of terebrid venom peptides that can be used to investigate fundamental questions pertaining to gene evolution. PMID:26025559

  19. An Overview of Marine Biodiversity in United States Waters

    PubMed Central

    Fautin, Daphne; Dalton, Penelope; Incze, Lewis S.; Leong, Jo-Ann C.; Pautzke, Clarence; Rosenberg, Andrew; Sandifer, Paul; Sedberry, George; Tunnell, John W.; Abbott, Isabella; Brainard, Russell E.; Brodeur, Melissa; Eldredge, Lucius G.; Feldman, Michael; Moretzsohn, Fabio; Vroom, Peter S.; Wainstein, Michelle; Wolff, Nicholas

    2010-01-01

    Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise. PMID:20689852

  20. An overview of marine biodiversity in United States waters

    USGS Publications Warehouse

    Fautin, Daphne G.; Delton, Penelope; Incze, Lewis S.; Leong, Jo-Ann C.; Pautzke, Clarence; Rosenberg, Andrew A.; Sandifer, Paul; Sedberry, George R.; Tunnell, John W.; Abbott, Isabella; Brainard, Russell E.; Brodeur, Melissa; Eldredge, Lucius G.; Feldman, Michael; Moretzsohn, Fabio; Vroom, Peter S.; Wainstein, Michelle; Wolff, Nicholas

    2010-01-01

    Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.

  1. An overview of marine biodiversity in United States waters.

    PubMed

    Fautin, Daphne; Dalton, Penelope; Incze, Lewis S; Leong, Jo-Ann C; Pautzke, Clarence; Rosenberg, Andrew; Sandifer, Paul; Sedberry, George; Tunnell, John W; Abbott, Isabella; Brainard, Russell E; Brodeur, Melissa; Eldredge, Lucius G; Feldman, Michael; Moretzsohn, Fabio; Vroom, Peter S; Wainstein, Michelle; Wolff, Nicholas

    2010-08-02

    Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.

  2. Marine Pharmacology in 2000: Marine Compounds with Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiplatelet, Antituberculosis, and Antiviral Activities; Affecting the Cardiovascular, Immune, and Nervous Systems and Other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M. S.; Hamann, Mark T.

    2016-01-01

    During 2000 research on the pharmacology of marine chemicals involved investigators from Australia, Brazil, Canada, Egypt, France, Germany, India, Indonesia, Israel, Italy, Japan, the Netherlands, New Zealand, Phillipines, Singapore, Slovenia, South Korea, Spain, Sweden, Switzerland, United Kingdom, and the United States. This current review, a sequel to the authors’ 1998 and 1999 reviews, classifies 68 peer-reviewed articles on the basis of the reported preclinical pharmacologic properties of marine chemicals derived from a diverse group of marine animals, algae, fungi, and bacteria. Antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antituberculosis, or antiviral activity was reported for 35 marine chemicals. An additional 20 marine compounds were shown to have significant effects on the cardiovascular and nervous system, and to possess anti-inflammatory or immunosuppressant properties. Finally, 23 marine compounds were reported to act on a variety of molecular targets and thus could potentially contribute to several pharmacologic classes. Thus, as in 1998 and 1999, during 2000 pharmacologic research with marine chemicals continued to contribute potentially novel chemical leads to the ongoing global search for therapeutic agents in the treatment of multiple disease categories. PMID:14583811

  3. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    PubMed Central

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-01-01

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery. PMID:21116414

  4. Immense essence of excellence: marine microbial bioactive compounds.

    PubMed

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-10-15

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.

  5. Conservation science for marine megafauna in Europe: Historical perspectives and future directions

    NASA Astrophysics Data System (ADS)

    Authier, M.; Spitz, J.; Blanck, A.; Ridoux, V.

    2017-07-01

    A broad range of marine species have been named as marine megafauna, however providing a precise definition of this term is difficult. It is not a taxonomically defined group, as it includes sea mammals, birds, reptiles, large fish and elasmobranchs (Fig. 1). Overall, marine megafauna species are large vertebrates that depend on marine resources for their food. These mobile species are generally at the top of their trophic food webs and have none or few predators. From the tiny storm-petrel to the gigantic blue whale, this group is biologically diverse and brings together species which cannot be strictly defined by morphological or physiological similarities. Rather, our perception of marine megafauna as a coherent group is based on ecological similarities and shared conservation issues. These species are exposed to similar threats and generally show limited resilience due to their intrinsic life history traits such as low fecundity rates and high longevity. Consequently, they share common conservation challenges (e.g. Hooker and Gerber, 2004; Lascelles et al., 2014).

  6. Cryptic diversity, geographical endemism and allopolyploidy in NE Pacific seaweeds.

    PubMed

    Neiva, João; Serrão, Ester A; Anderson, Laura; Raimondi, Peter T; Martins, Neusa; Gouveia, Licínia; Paulino, Cristina; Coelho, Nelson C; Miller, Kathy Ann; Reed, Daniel C; Ladah, Lydia B; Pearson, Gareth A

    2017-01-23

    Molecular markers are revealing a much more diverse and evolutionarily complex picture of marine biodiversity than previously anticipated. Cryptic and/or endemic marine species are continually being found throughout the world oceans, predominantly in inconspicuous tropical groups but also in larger, canopy-forming taxa from well studied temperate regions. Interspecific hybridization has also been found to be prevalent in many marine groups, for instance within dense congeneric assemblages, with introgressive gene-flow being the most common outcome. Here, using a congeneric phylogeographic approach, we investigated two monotypic and geographically complementary sister genera of north-east Pacific intertidal seaweeds (Hesperophycus and Pelvetiopsis), for which preliminary molecular tests revealed unexpected conflicts consistent with unrecognized cryptic diversity and hybridization. The three recovered mtDNA clades did not match a priori species delimitations. H. californicus was congruent, whereas widespread P. limitata encompassed two additional narrow-endemic species from California - P. arborescens (here genetically confirmed) and P. hybrida sp. nov. The congruence between the genotypic clusters and the mtDNA clades was absolute. Fixed heterozygosity was apparent in a high proportion of loci in P. limitata and P. hybrida, with genetic analyses showing that the latter was composed of both H. californicus and P. arborescens genomes. All four inferred species could be distinguished based on their general morphology. This study confirmed additional diversity and reticulation within NE Pacific Hesperophycus/Pelvetiopsis, including the validity of the much endangered, modern climatic relict P. arborescens, and the identification of a new, stable allopolyploid species (P. hybrida) with clearly discernable ancestry (♀ H. californicus x ♂ P. arborescens), morphology, and geographical distribution. Allopolyploid speciation is otherwise completely unknown in brown

  7. Vampires in the oceans: predatory cercozoan amoebae in marine habitats.

    PubMed

    Berney, Cédric; Romac, Sarah; Mahé, Frédéric; Santini, Sébastien; Siano, Raffaele; Bass, David

    2013-12-01

    Vampire amoebae (vampyrellids) are predators of algae, fungi, protozoa and small metazoans known primarily from soils and in freshwater habitats. They are among the very few heterotrophic naked, filose and reticulose protists that have received some attention from a morphological and ecological point of view over the last few decades, because of the peculiar mode of feeding of known species. Yet, the true extent of their biodiversity remains largely unknown. Here we use a complementary approach of culturing and sequence database mining to address this issue, focusing our efforts on marine environments, where vampyrellids are very poorly known. We present 10 new vampyrellid isolates, 8 from marine or brackish sediments, and 2 from soil or freshwater sediment. Two of the former correspond to the genera Thalassomyxa Grell and Penardia Cash for which sequence data were previously unavailable. Small-subunit ribosomal DNA analysis confirms they are all related to previously sequenced vampyrellids. An exhaustive screening of the NCBI GenBank database and of 454 sequence data generated by the European BioMarKs consortium revealed hundreds of distinct environmental vampyrellid sequences. We show that vampyrellids are much more diverse than previously thought, especially in marine habitats. Our new isolates, which cover almost the full phylogenetic range of vampyrellid sequences revealed in this study, offer a rare opportunity to integrate data from environmental DNA surveys with phenotypic information. However, the very large genetic diversity we highlight within vampyrellids (especially in marine sediments and soils) contrasts with the paradoxically low morphological distinctiveness we observed across our isolates.

  8. Vampires in the oceans: predatory cercozoan amoebae in marine habitats

    PubMed Central

    Berney, Cédric; Romac, Sarah; Mahé, Frédéric; Santini, Sébastien; Siano, Raffaele; Bass, David

    2013-01-01

    Vampire amoebae (vampyrellids) are predators of algae, fungi, protozoa and small metazoans known primarily from soils and in freshwater habitats. They are among the very few heterotrophic naked, filose and reticulose protists that have received some attention from a morphological and ecological point of view over the last few decades, because of the peculiar mode of feeding of known species. Yet, the true extent of their biodiversity remains largely unknown. Here we use a complementary approach of culturing and sequence database mining to address this issue, focusing our efforts on marine environments, where vampyrellids are very poorly known. We present 10 new vampyrellid isolates, 8 from marine or brackish sediments, and 2 from soil or freshwater sediment. Two of the former correspond to the genera Thalassomyxa Grell and Penardia Cash for which sequence data were previously unavailable. Small-subunit ribosomal DNA analysis confirms they are all related to previously sequenced vampyrellids. An exhaustive screening of the NCBI GenBank database and of 454 sequence data generated by the European BioMarKs consortium revealed hundreds of distinct environmental vampyrellid sequences. We show that vampyrellids are much more diverse than previously thought, especially in marine habitats. Our new isolates, which cover almost the full phylogenetic range of vampyrellid sequences revealed in this study, offer a rare opportunity to integrate data from environmental DNA surveys with phenotypic information. However, the very large genetic diversity we highlight within vampyrellids (especially in marine sediments and soils) contrasts with the paradoxically low morphological distinctiveness we observed across our isolates. PMID:23864128

  9. Calcium Isotopic Evidence for Vulnerable Marine Ecosystem Structure Prior to the K/Pg Extinction.

    PubMed

    Martin, Jeremy E; Vincent, Peggy; Tacail, Théo; Khaldoune, Fatima; Jourani, Essaid; Bardet, Nathalie; Balter, Vincent

    2017-06-05

    The collapse of marine ecosystems during the end-Cretaceous mass extinction involved the base of the food chain [1] up to ubiquitous vertebrate apex predators [2-5]. Large marine reptiles became suddenly extinct at the Cretaceous-Paleogene (K/Pg) boundary, whereas other contemporaneous groups such as bothremydid turtles or dyrosaurid crocodylomorphs, although affected at the familial, genus, or species level, survived into post-crisis environments of the Paleocene [5-9] and could have found refuge in freshwater habitats [10-12]. A recent hypothesis proposes that the extinction of plesiosaurians and mosasaurids could have been caused by an important drop in sea level [13]. Mosasaurids are unusually diverse and locally abundant in the Maastrichtian phosphatic deposits of Morocco, and with large sharks and one species of elasmosaurid plesiosaurian recognized so far, contribute to an overabundance of apex predators [3, 7, 14, 15]. For this reason, high local diversity of marine reptiles exhibiting different body masses and a wealth of tooth morphologies hints at complex trophic interactions within this latest Cretaceous marine ecosystem. Using calcium isotopes, we investigated the trophic structure of this extinct assemblage. Our results are consistent with a calcium isotope pattern observed in modern marine ecosystems and show that plesiosaurians and mosasaurids indiscriminately fall in the tertiary piscivore group. This suggests that marine reptile apex predators relied onto a single dietary calcium source, compatible with the vulnerable wasp-waist food webs of the modern world [16]. This inferred peculiar ecosystem structure may help explain plesiosaurian and mosasaurid extinction following the end-Cretaceous biological crisis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. CoralWatch Data Analysis at Hoi Ha Wan Marine Park, Hong Kong

    NASA Astrophysics Data System (ADS)

    Lau, A.; Hodgson, P.

    2015-12-01

    CoralWatch is a conservation organization that is based at the University of Queensland in Australia. Their development of the "Coral Health Chart" standardized the colour of corals for the further investigation of coral health and bleaching. The location of this project is in the NE part of Hong Kong in New Territories. The location faces ShenZhen, a heavily industrialized city, which is known for its pollution of the Pearl River. This area is protected by the Hong Kong Government and the WWF since 1996.Human activities have caused large amounts of greenhouse gasses to be released into the atmosphere. Carbon dioxide has caused the global temperature to rise and made ocean waters more acidic due to ocean respiration. The ocean is a carbon sink for mankind and the effect of severe acidification is negatively affecting marine life. The increase of temperature diminishes the amount of diversity of marine life; the decreasing acidity of the water has eliminated many species of shellfish and sea anemone; the increase of marine exploitation has decreased the diversity of marine life. The release of toxic waste, mainly mercury, waste and plastic products has also polluted the oceans which negatively impact coral reefs and endanger marine life.The data has been collected by observing the colours and discolouration (bleaching) of the corals of approximately 40 colonies per month. The species of coral in Hoi Ha Wan include, Favites flexuosa, Goniopora columna,Leptastrea purpurea, Lithophyllon undulatum, Pavona decussata. and Platygyra acuta (AFCD,1). The evaluation of four years of coralwatch data has shown the bleaching of hard boulder corals in Hoi Ha Wan, Hong Kong, has halted and the reefs are being to show signs of regeneration. Local marine biologists credited the improved situation of the corals to protected status of the area.

  11. Current and potential uses of bioactive molecules from marine processing waste.

    PubMed

    Suleria, Hafiz Ansar Rasul; Masci, Paul; Gobe, Glenda; Osborne, Simone

    2016-03-15

    Food industries produce huge amounts of processing waste that are often disposed of incurring expenses and impacting upon the environment. For these and other reasons, food processing waste streams, in particular marine processing waste streams, are gaining popularity amongst pharmaceutical, cosmetic and nutraceutical industries as sources of bioactive molecules. In the last 30 years, there has been a gradual increase in processed marine products with a concomitant increase in waste streams that include viscera, heads, skins, fins, bones, trimmings and shellfish waste. In 2010, these waste streams equated to approximately 24 million tonnes of mostly unused resources. Marine processing waste streams not only represent an abundant resource, they are also enriched with structurally diverse molecules that possess a broad panel of bioactivities including anti-oxidant, anti-coagulant, anti-thrombotic, anti-cancer and immune-stimulatory activities. Retrieval and characterisation of bioactive molecules from marine processing waste also contributes valuable information to the vast field of marine natural product discovery. This review summarises the current use of bioactive molecules from marine processing waste in different products and industries. Moreover, this review summarises new research into processing waste streams and the potential for adoption by industries in the creation of new products containing marine processing waste bioactives. © 2015 Society of Chemical Industry.

  12. Does herbivorous fish protection really improve coral reef resilience? A case study from new caledonia (South Pacific).

    PubMed

    Carassou, Laure; Léopold, Marc; Guillemot, Nicolas; Wantiez, Laurent; Kulbicki, Michel

    2013-01-01

    Parts of coral reefs from New Caledonia (South Pacific) were registered at the UNESCO World Heritage list in 2008. Management strategies aiming at preserving the exceptional ecological value of these reefs in the context of climate change are currently being considered. This study evaluates the appropriateness of an exclusive fishing ban of herbivorous fish as a strategy to enhance coral reef resilience to hurricanes and bleaching in the UNESCO-registered areas of New Caledonia. A two-phase approach was developed: 1) coral, macroalgal, and herbivorous fish communities were examined in four biotopes from 14 reefs submitted to different fishing pressures in New Caledonia, and 2) results from these analyses were challenged in the context of a global synthesis of the relationship between herbivorous fish protection, coral recovery and relative macroalgal development after hurricanes and bleaching. Analyses of New Caledonia data indicated that 1) current fishing pressure only slightly affected herbivorous fish communities in the country, and 2) coral and macroalgal covers remained unrelated, and macroalgal cover was not related to the biomass, density or diversity of macroalgae feeders, whatever the biotope or level of fishing pressure considered. At a global scale, we found no relationship between reef protection status, coral recovery and relative macroalgal development after major climatic events. These results suggest that an exclusive protection of herbivorous fish in New Caledonia is unlikely to improve coral reef resilience to large-scale climatic disturbances, especially in the lightly fished UNESCO-registered areas. More efforts towards the survey and regulation of major chronic stress factors such as mining are rather recommended. In the most heavily fished areas of the country, carnivorous fish and large targeted herbivores may however be monitored as part of a precautionary approach.

  13. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential.

    PubMed

    Ruocco, Nadia; Costantini, Susan; Guariniello, Stefano; Costantini, Maria

    2016-04-27

    Carbohydrates, also called saccharides, are molecules composed of carbon, hydrogen, and oxygen. They are the most abundant biomolecules and essential components of many natural products and have attracted the attention of researchers because of their numerous human health benefits. Among carbohydrates the polysaccharides represent some of the most abundant bioactive substances in marine organisms. In fact, many marine macro- and microorganisms are good resources of carbohydrates with diverse applications due to their biofunctional properties. By acting on cell proliferation and cycle, and by modulating different metabolic pathways, marine polysaccharides (including mainly chitin, chitosan, fucoidan, carrageenan and alginate) also have numerous pharmaceutical activities, such as antioxidative, antibacterial, antiviral, immuno-stimulatory, anticoagulant and anticancer effects. Moreover, these polysaccharides have many general beneficial effects for human health, and have therefore been developed into potential cosmeceuticals and nutraceuticals. In this review we describe current advances in the development of marine polysaccharides for nutraceutical, cosmeceutical and pharmacological applications. Research in this field is opening new doors for harnessing the potential of marine natural products.

  14. Spatial Distribution and Effects of Sewage in Coastal Hawaiian Waters

    NASA Astrophysics Data System (ADS)

    Abaya, L.; Wiegner, T. N.; Colbert, S.; Lindsey, K.; Beets, J.

    2016-02-01

    Sewage pollution is a worldwide threat to marine ecosystems and human health through the release of pathogens and nutrients into nearshore waters. Goals of this study were to document hydrological connections between cesspools and nearshore waters, detect the presence of sewage through biological and chemical tracers, and determine the spatial extent of sewage offshore. Puakō, located on Hawaíi Island, was the focus of this study as most homes have cesspools. Fluorescein dye injected into cesspools was detected at the shoreline in as little as three days. Elevated δ 15N signatures in macroalgae and high Enterococcus counts further confirmed presence of sewage in nearshore waters. Offshore sampling revealed significant differences among distances from shore for fecal indicator bacteria and δ 15N signatures in macroalgae. Results indicated distance from shore and stations are important factors of variability. Additionally, nutrient concentrations and macroalgal cover were higher in areas with high groundwater discharge. Surprisingly, δ15N macroalgal signatures and Enterococcus were not correlated with salinity. These results suggest that possibly the location of cesspools, subsurface geology, and/or nearshore circulation may affect sewage transport to the coastline and offshore. Spatial analysis techniques helped visualize potential hot spots of sewage pollution using δ15N macroalgal and Enterococcus data. The combination of tools used here to document sewage pollution presence may be useful for communities facing similar environmental problems.

  15. Bioprospecting of Marine Macrophytes Using MS-Based Lipidomics as a New Approach

    PubMed Central

    Maciel, Elisabete; Leal, Miguel Costa; Lillebø, Ana Isabel; Domingues, Pedro; Domingues, Maria Rosário; Calado, Ricardo

    2016-01-01

    The marine environment supports a remarkable diversity of organisms which are a potential source of natural products with biological activities. These organisms include a wide variety of marine plants (from micro- to macrophytes), which have been used in the food and pharmaceutical industry. However, the biochemistry and biological activities of many of these macrophytes (namely macroalgae and halophytes, including seagrasses) are still far from being fully explored. Most popular bioactive components include polysaccharides, peptides, phenolics and fatty acids (FAs). Polar lipids (glycolipids, phospholipids and betaine lipids) are emerging as novel value-added bioactive phytochemicals, rich in n-3 FA, with high nutritional value and health beneficial effects for the prevention of chronic diseases. Polar lipids account various combinations of polar groups, fatty acyl chains and backbone structures. The polar lipidome of macrophytes is remarkably diverse, and its screening represents a significant analytical challenge. Modern research platforms, particularly mass spectrometry (MS)-based lipidomic approaches, have been recently used to address this challenge and are here reviewed. The application of lipidomics to address lipid composition of marine macrophytes will contribute to the stimulation of further research on this group and foster the exploration of novel applications. PMID:27005634

  16. Biological importance of marine algae

    PubMed Central

    El Gamal, Ali A.

    2009-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry. PMID:23960716

  17. STRATEGIES OF MARINE DINOFLAGELLATE SURVIVAL AND SOME RULES OF ASSEMBLY. (R829368)

    EPA Science Inventory

    Dinoflagellate ecology is based on multiple adaptive strategies and species having diverse habitat preferences. Nine types of mixing-irradiance-nutrient habitats selecting for specific marine dinoflagellate life-form types are recognised, with five rules of assembly proposed t...

  18. Diversity among macroalgae-consuming fishes on coral reefs: a transcontinental comparison.

    PubMed

    Vergés, Adriana; Bennett, Scott; Bellwood, David R

    2012-01-01

    Despite high diversity and abundance of nominally herbivorous fishes on coral reefs, recent studies indicate that only a small subset of taxa are capable of removing dominant macroalgae once these become established. This limited functional redundancy highlights the potential vulnerability of coral reefs to disturbance and stresses the need to assess the functional role of individual species of herbivores. However, our knowledge of species-specific patterns in macroalgal consumption is limited geographically, and there is a need to determine the extent to which patterns observed in specific reefs can be generalised at larger spatial scales. In this study, video cameras were used to quantify rates of macroalgae consumption by fishes in two coral reefs located at a similar latitude in opposite sides of Australia: the Keppel Islands in the Great Barrier Reef (eastern coast) and Ningaloo Reef (western coast). The community of nominally herbivorous fish was also characterised in both systems to determine whether potential differences in the species observed feeding on macroalgae were related to spatial dissimilarities in herbivore community composition. The total number of species observed biting on the dominant brown alga Sargassum myriocystum differed dramatically among the two systems, with 23 species feeding in Ningaloo, compared with just 8 in the Keppel Islands. Strong differences were also found in the species composition and total biomass of nominally herbivorous fish, which was an order of magnitude higher in Ningaloo. However, despite such marked differences in the diversity, biomass, and community composition of resident herbivorous fishes, Sargassum consumption was dominated by only four species in both systems, with Naso unicornis and Kyphosus vaigiensis consistently emerging as dominant feeders of macroalgae.

  19. Resilience and challenges of marine social-ecological systems under complex and interconnected drivers.

    PubMed

    Villasante, Sebastián; Macho, Gonzalo; Antelo, Manel; Rodríguez-González, David; Kaiser, Michel J

    2013-12-01

    In this paper, we summarize the contributions made by an interdisciplinary group of researchers from different disciplines (biology, ecology, economics, and law) that deal with key dimensions of marine social-ecological systems. Particularly, the local and global seafood provision; the feasibility and management of marine protected areas; the use of marine ecosystem services; the institutional dimension in European fisheries, and the affordable models for providing scientific advice to small-scale fisheries. This Special Issue presents key findings from selected case studies around the world available to educators, policy makers, and the technical community. Together, these papers show that a range of diverse ecological, economic, social, and institutional components often mutually interact at spatial and temporal scales, which evidence that managing marine social-ecological systems needs a continuous adaptability to navigate into new governance systems.

  20. Investigating the widespread introduction of a tropical marine fouling species.

    PubMed

    Sheets, Elizabeth A; Cohen, C Sarah; Ruiz, Gregory M; da Rocha, Rosana M

    2016-04-01

    Little is known about the number and rate of introductions into terrestrial and marine tropical regions, and if introduction patterns and processes differ from temperate latitudes. Botryllid ascidians (marine invertebrate chordates) are an interesting group to study such introduction differences because several congeners have established populations across latitudes. While temperate botryllid invasions have been repeatedly highlighted, the global spread of tropical Botrylloides nigrum (Herdman, 1886) has been largely ignored. We sampled B. nigrum from 16 worldwide warm water locations, including around the Panama Canal, one of the largest shipping hubs in the world and a possible introduction corridor. Using mitochondrial (COI) and nuclear (ANT) markers, we discovered a single species with low genetic divergence and diversity that has established in the Atlantic, Pacific, Indo-Pacific, and Mediterranean Oceans. The Atlantic Ocean contained the highest diversity and multilocus theta estimates and may be a source for introductions to other regions. A high frequency of one mitochondrial haplotype was detected in Pacific populations that may represent a recent introduction in this region. In comparison to temperate relatives, B. nigrum displayed lower (but similar to temperate Botrylloides violaceus) genetic divergence and diversity at both loci that may represent a more recent global spread or differences in introduction pressures in tropical regions. Additionally, chimeras (genetically distinct individuals sharing a single body) were detected in three populations by the mitochondrial locus and validated using cloning, and these individuals contained new haplotype diversity not detected in any other colonies.

  1. Hydrogen-producing microflora and Fe-Fe hydrogenase diversities in seaweed bed associated with marine hot springs of Kalianda, Indonesia.

    PubMed

    Xu, Shou-Ying; He, Pei-Qing; Dewi, Seswita-Zilda; Zhang, Xue-Lei; Ekowati, Chasanah; Liu, Tong-Jun; Huang, Xiao-Hang

    2013-05-01

    Microbial fermentation is a promising technology for hydrogen (H(2)) production. H(2) producers in marine geothermal environments are thermophilic and halotolerant. However, no one has surveyed an environment specifically for thermophilic bacteria that produce H(2) through Fe-Fe hydrogenases (H(2)ase). Using heterotrophic medium, several microflora from a seaweed bed associated with marine hot springs were enriched and analyzed for H(2) production. A H(2)-producing microflora was obtained from Sargassum sp., 16S rRNA genes and Fe-Fe H(2)ase diversities of this enrichment were also analyzed. Based on 16S rRNA genes analysis, 10 phylotypes were found in the H(2)-producing microflora showing 90.0-99.5 % identities to known species, and belonged to Clostridia, Gammaproteobacteria, and Bacillales. Clostridia were the most abundant group, and three Clostridia phylotypes were most related to known H(2) producers such as Anaerovorax odorimutans (94.0 % identity), Clostridium papyrosolvens (98.4 % identity), and Clostridium tepidiprofundi (93.1 % identity). For Fe-Fe H(2)ases, seven phylotypes were obtained, showing 63-97 % identities to known Fe-Fe H(2)ases, and fell into four distinct clusters. Phylotypes HW55-3 and HM55-1 belonged to thermophilic and salt-tolerant H(2)-producing Clostridia, Halothermothrix orenii-like Fe-Fe H(2)ases (80 % identity), and cellulolytic H(2)-producing Clostridia, C. papyrosolvens-like Fe-Fe H(2)ases (97 % identity), respectively. The results of both 16S rRNA genes and Fe-Fe H(2)ases surveys suggested that the thermophilic and halotolerant H(2)-producing microflora in seaweed bed of hot spring area represented previously unknown H(2) producers, and have potential application for H(2) production.

  2. Effects of reduced water quality on coral reefs in and out of no-take marine reserves.

    PubMed

    Wenger, Amelia S; Williamson, David H; da Silva, Eduardo T; Ceccarelli, Daniela M; Browne, Nicola K; Petus, Caroline; Devlin, Michelle J

    2016-02-01

    Near-shore marine environments are increasingly subjected to reduced water quality, and their ability to withstand it is critical to their persistence. The potential role marine reserves may play in mitigating the effects of reduced water quality has received little attention. We investigated the spatial and temporal variability in live coral and macro-algal cover and water quality during moderate and major flooding events of the Fitzroy River within the Keppel Bay region of the Great Barrier Reef Marine Park from 2007 to 2013. We used 7 years of remote sensing data on water quality and data from long-term monitoring of coral reefs to quantify exposure of coral reefs to flood plumes. We used a distance linear model to partition the contribution of abiotic and biotic factors, including zoning, as drivers of the observed changes in coral and macro-algae cover. Moderate flood plumes from 2007 to 2009 did not affect coral cover on reefs in the Keppel Islands, suggesting the reef has intrinsic resistance against short-term exposure to reduced water quality. However, from 2009 to 2013, live coral cover declined by ∼ 50% following several weeks of exposure to turbid, low salinity water from major flood plume events in 2011 and subsequent moderate events in 2012 and 2013. Although the flooding events in 2012 and 2013 were smaller than the flooding events between 2007 to 2009, the ability of the reefs to withstand these moderate floods was lost, as evidenced by a ∼ 20% decline in coral cover between 2011 to 2013. Although zoning (no-take reserve or fished) was identified a significant driver of coral cover, we recorded consistently lower coral cover on reserve reefs than on fished reefs throughout the study period and significantly lower cover in 2011. Our findings suggest that even reefs with an inherent resistance to reduced water quality are not able to withstand repeated disturbance events. The limitations of reserves in mitigating the effects of reduced water

  3. The identification of a new Giardia duodenalis assemblage in marine vertebrates and a preliminary analysis of G. duodenalis population biology in marine systems.

    PubMed

    Lasek-Nesselquist, Erica; Welch, David Mark; Sogin, Mitchell L

    2010-08-01

    Giardia duodenalis is an intestinal parasite of many vertebrates. The presence of G. duodenalis in the marine environment due to anthropogenic and wildlife activity is well documented, including the contributions from untreated sewage and storm water, agricultural run-off and droppings from terrestrial animals. Recently, studies have detected this protistan parasite in the faeces of marine vertebrates such as whales, dolphins, seals and shore birds. To explore the population biology of G. duodenalis in marine life, we determined the prevalence of G. duodenalis in two species of seal (Halichoerus grypus, Phoca vitulina vitulina and Phoca vitulina richardsi) from the east and west coasts of the USA, sequenced two loci from G. duodenalis-positive samples to assess molecular diversity and examined G. duodenalis distribution amongst these seals and other marine vertebrates along the east coast. We found a significant difference in the presence of G. duodenalis between east and west coast seal species. Only the zoonotic lineages of G. duodenalis, Assemblages A and B and a novel lineage, which we designated as Assemblage H, were identified in marine vertebrates. Assemblages A and B are broadly distributed geographically and show a lack of host specificity. Only grey seal (Halichoerus grypus) samples and one gull sample (Larus argentatus) from a northern location of Cape Cod, Massachusetts, USA, showed the presence of Assemblage H haplotypes; only one other study of harbour seals from the Puget Sound region of Washington, USA previously recorded the presence of an Assemblage H haplotype. Assemblage H sequences form a monophyletic clade that appears as divergent from the other seven Assemblages of G. duodenalis as these assemblages are from each other. The discovery of a previously uncharacterised lineage of G. duodenalis suggests that this parasite has more genetic diversity and perhaps a larger host range than previously believed. Copyright 2010 Australian Society for

  4. Novel lineage patterns from an automated water sampler to probe marine microbial biodiversity with ships of opportunity

    NASA Astrophysics Data System (ADS)

    Stern, Rowena F.; Picard, Kathryn T.; Hamilton, Kristina M.; Walne, Antony; Tarran, Glen A.; Mills, David; McQuatters-Gollop, Abigail; Edwards, Martin

    2015-09-01

    There is a paucity of data on long-term, spatially resolved changes in microbial diversity and biogeography in marine systems, and yet these organisms underpin fundamental ecological processes in the oceans affecting socio-economic values of the marine environment. We report results from a new autonomous Water and Microplankton Sampler (WaMS) that is carried within the Continuous Plankton Recorder (CPR). Whilst the CPR with its larger mesh size (270 μm), is designed to capture larger plankton, the WaMS was designed as an additional device to capture plankton below 50 μm and delicate larger species, often destroyed by net sampling methods. A 454 pyrosequencing and flow cytometric investigation of eukaryotic microbes using the partial 18S rDNA from thirteen WaMS samples collected over three months in the English Channel revealed a wide diversity of organisms. Alveolates, Fungi, and picoplanktonic Chlorophytes were the most common lineages captured despite the small sample volumes (200-250 ml). The survey also identified Cercozoa and MAST heterotrophic Stramenopiles, normally missed in microscopic-based plankton surveys. The most common was the likely parasitic LKM11 Rozellomycota lineage which comprised 43.2% of all reads and are rarely observed in marine pelagic surveys. An additional 9.5% of reads belonged to other parasitic lineages including marine Syndiniales and Ichthyosporea. Sample variation was considerable, indicating that microbial diversity is spatially or temporally patchy. Our study has shown that the WaMS sampling system is autonomous, versatile and robust, and due to its deployment on the established CPR network, is a cost-effective monitoring tool for microbial diversity for the detection of smaller and delicate taxa.

  5. Evidence of Unique and Generalist Microbes in Distantly Related Sympatric Intertidal Marine Sponges (Porifera: Demospongiae)

    PubMed Central

    Alex, Anoop; Silva, Vitor; Vasconcelos, Vitor; Antunes, Agostinho

    2013-01-01

    The diversity and specificity of microbial communities in marine environments is a key aspect of the ecology and evolution of both the eukaryotic hosts and their associated prokaryotes. Marine sponges harbor phylogenetically diverse and complex microbial lineages. Here, we investigated the sponge bacterial community and distribution patterns of microbes in three sympatric intertidal marine demosponges, Hymeniacidon perlevis, Ophlitaspongia papilla and Polymastia penicillus, from the Atlantic coast of Portugal using classical isolation techniques and 16S rRNA gene clone libraries. Microbial composition assessment, with nearly full-length 16S rRNA gene sequences (ca. 1400 bp) from the isolates (n = 31) and partial sequences (ca. 280 bp) from clone libraries (n = 349), revealed diverse bacterial communities and other sponge-associated microbes. The majority of the bacterial isolates were members of the order Vibrionales and other symbiotic bacteria like Pseudovibrio ascidiaceiocola, Roseobacter sp., Hahellaceae sp. and Cobetia sp. Extended analyses using ecological metrics comprising 142 OTUs supported the clear differentiation of bacterial community profiles among the sponge hosts and their ambient seawater. Phylogenetic analyses were insightful in defining clades representing shared bacterial communities, particularly between H. perlevis and the geographically distantly-related H. heliophila, but also among other sponges. Furthermore, we also observed three distinct and unique bacterial groups, Betaproteobactria (∼81%), Spirochaetes (∼7%) and Chloroflexi (∼3%), which are strictly maintained in low-microbial-abundance host species O. papilla and P. penicillus. Our study revealed the largely generalist nature of microbial associations among these co-occurring intertidal marine sponges. PMID:24265835

  6. A constant flux of diverse thermophilic bacteria into the cold Arctic seabed.

    PubMed

    Hubert, Casey; Loy, Alexander; Nickel, Maren; Arnosti, Carol; Baranyi, Christian; Brüchert, Volker; Ferdelman, Timothy; Finster, Kai; Christensen, Flemming Mønsted; Rosa de Rezende, Júlia; Vandieken, Verona; Jørgensen, Bo Barker

    2009-09-18

    Microorganisms have been repeatedly discovered in environments that do not support their metabolic activity. Identifying and quantifying these misplaced organisms can reveal dispersal mechanisms that shape natural microbial diversity. Using endospore germination experiments, we estimated a stable supply of thermophilic bacteria into permanently cold Arctic marine sediment at a rate exceeding 10(8) spores per square meter per year. These metabolically and phylogenetically diverse Firmicutes show no detectable activity at cold in situ temperatures but rapidly mineralize organic matter by hydrolysis, fermentation, and sulfate reduction upon induction at 50 degrees C. The closest relatives to these bacteria come from warm subsurface petroleum reservoir and ocean crust ecosystems, suggesting that seabed fluid flow from these environments is delivering thermophiles to the cold ocean. These transport pathways may broadly influence microbial community composition in the marine environment.

  7. Ecosystem productivity is associated with bacterial phylogenetic distance in surface marine waters.

    PubMed

    Galand, Pierre E; Salter, Ian; Kalenitchenko, Dimitri

    2015-12-01

    Understanding the link between community diversity and ecosystem function is a fundamental aspect of ecology. Systematic losses in biodiversity are widely acknowledged but the impact this may exert on ecosystem functioning remains ambiguous. There is growing evidence of a positive relationship between species richness and ecosystem productivity for terrestrial macro-organisms, but similar links for marine micro-organisms, which help drive global climate, are unclear. Community manipulation experiments show both positive and negative relationships for microbes. These previous studies rely, however, on artificial communities and any links between the full diversity of active bacterial communities in the environment, their phylogenetic relatedness and ecosystem function remain hitherto unexplored. Here, we test the hypothesis that productivity is associated with diversity in the metabolically active fraction of microbial communities. We show in natural assemblages of active bacteria that communities containing more distantly related members were associated with higher bacterial production. The positive phylogenetic diversity-productivity relationship was independent of community diversity calculated as the Shannon index. From our long-term (7-year) survey of surface marine bacterial communities, we also found that similarly, productive communities had greater phylogenetic similarity to each other, further suggesting that the traits of active bacteria are an important predictor of ecosystem productivity. Our findings demonstrate that the evolutionary history of the active fraction of a microbial community is critical for understanding their role in ecosystem functioning. © 2015 John Wiley & Sons Ltd.

  8. Modelling green macroalgal blooms on the coasts of Brittany, France to enhance water quality management

    NASA Astrophysics Data System (ADS)

    Perrot, Thierry; Rossi, Nadège; Ménesguen, Alain; Dumas, Franck

    2014-04-01

    First recorded in the 1970s, massive green macroalgal blooms have since become an annual recurrence in Brittany, France. Eutrophication (in particular to anthropogenic nitrogen input) has been identified as the main factor controlling Ulva ‘green tide' events. In this study, we modelled Ulva proliferation using a two-dimensional model by coupling hydrodynamic and biological models (coined ‘MARS-Ulves') for five sites along the Brittany coastline (La Fresnaye Bay, Saint-Brieuc Bay, Lannion Bay, Guissény Bay and Douarnenez Bay). Calibration of the biological model was mainly based on the seasonal variation of the maximum nitrogen uptake rate (VmaxN) and the half-saturation constant for nitrogen (KN) to reproduce the internal nutrient quotas measured in situ for each site. In each bay, model predictions were in agreement with observed algal coverage converted into biomass. A numerical tracking method was implemented to identify the contribution of the rivers that empty into the study bays, and scenarios of decreases in nitrate concentration in rivers were simulated. Results from numerical nitrogen tracking highlighted the main nitrogen sources of green tides and also showed that each river contributes locally to green tides. In addition, dynamic modelling showed that the nitrate concentrations in rivers must be limited to between 5 and 15 mg l- 1, depending on the bay, to reduce Ulva biomass by half on the coasts. The three-step methodology developed in this study (analysing total dissolved inorganic nitrogen flux from rivers, tracking nitrogen sources in Ulva and developing scenarios for reducing nitrogen) provides qualitative and quantitative guidelines for stakeholders to define specific nitrogen reduction targets for better environmental management of water quality.

  9. Patterns of DNA barcode variation in Canadian marine molluscs.

    PubMed

    Layton, Kara K S; Martel, André L; Hebert, Paul D N

    2014-01-01

    Molluscs are the most diverse marine phylum and this high diversity has resulted in considerable taxonomic problems. Because the number of species in Canadian oceans remains uncertain, there is a need to incorporate molecular methods into species identifications. A 648 base pair segment of the cytochrome c oxidase subunit I gene has proven useful for the identification and discovery of species in many animal lineages. While the utility of DNA barcoding in molluscs has been demonstrated in other studies, this is the first effort to construct a DNA barcode registry for marine molluscs across such a large geographic area. This study examines patterns of DNA barcode variation in 227 species of Canadian marine molluscs. Intraspecific sequence divergences ranged from 0-26.4% and a barcode gap existed for most taxa. Eleven cases of relatively deep (>2%) intraspecific divergence were detected, suggesting the possible presence of overlooked species. Structural variation was detected in COI with indels found in 37 species, mostly bivalves. Some indels were present in divergent lineages, primarily in the region of the first external loop, suggesting certain areas are hotspots for change. Lastly, mean GC content varied substantially among orders (24.5%-46.5%), and showed a significant positive correlation with nearest neighbour distances. DNA barcoding is an effective tool for the identification of Canadian marine molluscs and for revealing possible cases of overlooked species. Some species with deep intraspecific divergence showed a biogeographic partition between lineages on the Atlantic, Arctic and Pacific coasts, suggesting the role of Pleistocene glaciations in the subdivision of their populations. Indels were prevalent in the barcode region of the COI gene in bivalves and gastropods. This study highlights the efficacy of DNA barcoding for providing insights into sequence variation across a broad taxonomic group on a large geographic scale.

  10. Fungi from Admiralty Bay (King George Island, Antarctica) Soils and Marine Sediments.

    PubMed

    Wentzel, Lia Costa Pinto; Inforsato, Fábio José; Montoya, Quimi Vidaurre; Rossin, Bruna Gomes; Nascimento, Nadia Regina; Rodrigues, André; Sette, Lara Durães

    2018-06-19

    Extreme environments such as the Antarctic can lead to the discovery of new microbial taxa, as well as to new microbial-derived natural products. Considering that little is known yet about the diversity and the genetic resources present in these habitats, the main objective of this study was to evaluate the fungal communities from extreme environments collected at Aldmiralty Bay (Antarctica). A total of 891 and 226 isolates was obtained from soil and marine sediment samples, respectively. The most abundant isolates from soil samples were representatives of the genera Leucosporidium, Pseudogymnoascus, and a non-identified Ascomycota NIA6. Metschnikowia sp. was the most abundant taxon from marine samples, followed by isolates from the genera Penicillium and Pseudogymnoascus. Many of the genera were exclusive in marine sediment or terrestrial samples. However, representatives of eight genera were found in both types of samples. Data from non-metric multidimensional scaling showed that each sampling site is unique in their physical-chemical composition and fungal community. Biotechnological potential in relation to enzymatic production at low/moderate temperatures was also investigated. Ligninolytic enzymes were produced by few isolates from root-associated soil. Among the fungi isolated from marine sediments, 16 yeasts and nine fungi showed lipase activity and three yeasts and six filamentous fungi protease activity. The present study permitted increasing our knowledge on the diversity of fungi that inhabit the Antarctic, finding genera that have never been reported in this environment before and discovering putative new species of fungi.

  11. Cycles in fossil diversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohde, Robert A.; Muller, Richard A.

    It is well-known that the diversity of life appears to fluctuate during the course the Phanerozoic, the eon during which hard shells and skeletons left abundant fossils (0-542 Ma). Using Sepkoski's compendium of the first and last stratigraphic appearances of 36380 marine genera, we report a strong 62 {+-} 3 Myr cycle, which is particularly strong in the shorter-lived genera. The five great extinctions enumerated by Raup and Sepkoski may be an aspect of this cycle. Because of the high statistical significance, we also consider contributing environmental factors and possible causes.

  12. Ground-nesting marine birds and potential for human disturbance in Glacier Bay National Park

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Romano, Marc D.; Piatt, John F.; Piatt, John F.; Gende, S.M.

    2004-01-01

    Glacier Bay National Park and Preserve contains a diverse assemblage of marine birds that use the area for nesting, foraging and molting. The abundance and diversity of marine bird species in Glacier Bay is unmatched in the region, due in part to the geomorphic and successional characteristics that result in a wide array of habitat types (Robards and others, 2003). The opportunity for proactive management of these species is unique in Glacier Bay National Park because much of the suitable marine bird nesting habitat occurs in areas designated as wilderness. Ground-nesting marine birds are vulnerable to human disturbance wherever visitors can access nest sites during the breeding season. Human disturbance of nest sites can be significant because intense parental care is required for egg and hatchling survival, and repeated disturbance can result in reduced productivity (Leseberg and others, 2000). Temporary nest desertion by breeding birds in disturbed areas can lead to increased predation on eggs and hatchlings by conspecifics or other predators (Bolduc and Guillemette, 2003). Human disturbance of ground-nesting birds may also affect incubation time and adult foraging success, which in turn can alter breeding success (Verhulst and others, 2001). Furthermore, human activity can potentially cause colony failure when disturbance prevents the initiation of nesting (Hatch, 2002). There is management concern about the susceptibility of breeding birds to disturbance from human activities, but little historical data has been collected on the distribution of ground-nesting marine birds in Glacier Bay. This report summarizes results obtained during two years of a three-year study to determine the distribution of ground-nesting marine birds in Glacier Bay, and the potential for human disturbance of those nesting birds.

  13. Coastal urbanisation affects microbial communities on a dominant marine holobiont.

    PubMed

    Marzinelli, Ezequiel M; Qiu, Zhiguang; Dafforn, Katherine A; Johnston, Emma L; Steinberg, Peter D; Mayer-Pinto, Mariana

    2018-01-01

    Host-associated microbial communities play a fundamental role in the life of eukaryotic hosts. It is increasingly argued that hosts and their microbiota must be studied together as 'holobionts' to better understand the effects of environmental stressors on host functioning. Disruptions of host-microbiota interactions by environmental stressors can negatively affect host performance and survival. Substantial ecological impacts are likely when the affected hosts are habitat-forming species (e.g., trees, kelps) that underpin local biodiversity. In marine systems, coastal urbanisation via the addition of artificial structures is a major source of stress to habitat formers, but its effect on their associated microbial communities is unknown. We characterised kelp-associated microbial communities in two of the most common and abundant artificial structures in Sydney Harbour-pier-pilings and seawalls-and in neighbouring natural rocky reefs. The kelp Ecklonia radiata is the dominant habitat-forming species along 8000 km of the temperate Australian coast. Kelp-associated microbial communities on pilings differed significantly from those on seawalls and natural rocky reefs, possibly due to differences in abiotic (e.g., shade) and biotic (e.g., grazing) factors between habitats. Many bacteria that were more abundant on kelp on pilings belonged to taxa often associated with macroalgal diseases, including tissue bleaching in Ecklonia . There were, however, no differences in kelp photosynthetic capacity between habitats. The observed differences in microbial communities may have negative effects on the host by promoting fouling by macroorganisms or by causing and spreading disease over time. This study demonstrates that urbanisation can alter the microbiota of key habitat-forming species with potential ecological consequences.

  14. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections.

    PubMed

    Abdelmohsen, Usama Ramadan; Balasubramanian, Srikkanth; Oelschlaeger, Tobias A; Grkovic, Tanja; Pham, Ngoc B; Quinn, Ronald J; Hentschel, Ute

    2017-02-01

    Antibiotics have revolutionised medicine in many aspects, and their discovery is considered a turning point in human history. However, the most serious consequence of the use of antibiotics is the concomitant development of resistance against them. The marine environment has proven to be a very rich source of diverse natural products with significant antibacterial, antifungal, antiviral, antiparasitic, antitumour, anti-inflammatory, antioxidant, and immunomodulatory activities. Many marine natural products (MNPs)-for example, neoechinulin B-have been found to be promising drug candidates to alleviate the mortality and morbidity rates caused by drug-resistant infections, and several MNP-based anti-infectives have already entered phase 1, 2, and 3 clinical trials, with six approved for usage by the US Food and Drug Administration and one by the EU. In this Review, we discuss the diversity of marine natural products that have shown in-vivo efficacy or in-vitro potential against drug-resistant infections of fungal, viral, and parasitic origin, and describe their mechanism of action. We highlight the drug-like physicochemical properties of the reported natural products that have bioactivity against drug-resistant pathogens in order to assess their drug potential. Difficulty in isolation and purification procedures, toxicity associated with the active compound, ecological impacts on natural environment, and insufficient investments by pharmaceutical companies are some of the clear reasons behind market failures and a poor pipeline of MNPs available to date. However, the diverse abundance of natural products in the marine environment could serve as a ray of light for the therapy of drug-resistant infections. Development of resistance-resistant antibiotics could be achieved via the coordinated networking of clinicians, microbiologists, natural product chemists, and pharmacologists together with pharmaceutical venture capitalist companies. Copyright © 2017 Elsevier Ltd

  15. Inventory of marine and estuarine fishes in southeast and central Alaska National Parks

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Litzow, Michael A.; Piatt, John F.; Robards, Martin D.; Abookire, Alisa A.; Drew, Gary S.

    2003-01-01

    As part of a national inventory program funded by the National Park Service, we conducted an inventory of marine and estuarine fishes in Glacier Bay National Park and Preserve, Wrangell-St. Elias National Park and Preserve, Sitka National Historical Park, and Klondike Gold Rush National Historical Park in 2001 and 2002. In addition, marine fish data from a previous project that focused on forage fishes and marine predators during 1999 and 2000 in Glacier Bay proper were compiled for this study. Sampling was conducted with modified herring and Isaacs-Kidd midwater trawls, a plumb staff beam trawl, and beach seines. Species lists of relative abundance were generated for nearshore fishes in all parks, and for demersal and pelagic fishes in Glacier Bay National Park and Preserve and Wrangell-St. Elias National Park and Preserve. With a total sampling effort of 531 sets, we captured 100 species in Glacier Bay National Park and Preserve, 31 species in Wrangell-St. Elias National Park and Preserve, 23 species in Sitka National Historical Park, and 11 species in Klondike Gold Rush National Historical Park. We estimated that between 59 and 85 percent of the total marine fish species present were sampled by us in the various habitat-park units. We also combined these data with historical records and prepared an annotated species list of 160 marine and estuarine fishes known to occur in Glacier Bay National Park and Preserve. Shannon-Wiener diversity index and catch per unit effort were used to assess the effects of depth and latitude (distance from tidewater glaciers) on marine fish community ecology in Glacier Bay proper. Our findings suggest that demersal fishes are more abundant and diverse with increased distance from tidewater glaciers, and that pelagic fishes sampled deeper than 50 m are more abundant in areas closer to tidewater glaciers.

  16. Genetic diversity and connectivity in the East African giant mud crab Scylla serrata: Implications for fisheries management.

    PubMed

    Rumisha, Cyrus; Huyghe, Filip; Rapanoel, Diary; Mascaux, Nemo; Kochzius, Marc

    2017-01-01

    The giant mud crab Scylla serrata provides an important source of income and food to coastal communities in East Africa. However, increasing demand and exploitation due to the growing coastal population, export trade, and tourism industry are threatening the sustainability of the wild stock of this species. Because effective management requires a clear understanding of the connectivity among populations, this study was conducted to assess the genetic diversity and connectivity in the East African mangrove crab S. serrata. A section of 535 base pairs of the cytochrome oxidase subunit I (COI) gene and eight microsatellite loci were analysed from 230 tissue samples of giant mud crabs collected from Kenya, Tanzania, Mozambique, Madagascar, and South Africa. Microsatellite genetic diversity (He) ranged between 0.56 and 0.6. The COI sequences showed 57 different haplotypes associated with low nucleotide diversity (current nucleotide diversity = 0.29%). In addition, the current nucleotide diversity was lower than the historical nucleotide diversity, indicating overexploitation or historical bottlenecks in the recent history of the studied population. Considering that the coastal population is growing rapidly, East African countries should promote sustainable fishing practices and sustainable use of mangrove resources to protect mud crabs and other marine fauna from the increasing pressure of exploitation. While microsatellite loci did not show significant genetic differentiation (p > 0.05), COI sequences revealed significant genetic divergence between sites on the East coast of Madagascar (ECM) and sites on the West coast of Madagascar, mainland East Africa, as well as the Seychelles. Since East African countries agreed to achieve the Convention on Biological Diversity (CBD) target to protect over 10% of their marine areas by 2020, the observed pattern of connectivity and the measured genetic diversity can serve to provide useful information for designing networks of

  17. Glycobiology of Reproductive Processes in Marine Animals: The State of the Art

    PubMed Central

    Gallo, Alessandra; Costantini, Maria

    2012-01-01

    Glycobiology is the study of complex carbohydrates in biological systems and represents a developing field of science that has made huge advances in the last half century. In fact, it combines all branches of biomedical research, revealing the vast and diverse forms of carbohydrate structures that exist in nature. Advances in structure determination have enabled scientists to study the function of complex carbohydrates in more depth and to determine the role that they play in a wide range of biological processes. Glycobiology research in marine systems has primarily focused on reproduction, in particular for what concern the chemical communication between the gametes. The current status of marine glycobiology is primarily descriptive, devoted to characterizing marine glycoconjugates with potential biomedical and biotechnological applications. In this review, we describe the current status of the glycobiology in the reproductive processes from gametogenesis to fertilization and embryo development of marine animals. PMID:23247316

  18. Empirical models of transitions between coral reef states: effects of region, protection, and environmental change.

    PubMed

    Lowe, Phillip K; Bruno, John F; Selig, Elizabeth R; Spencer, Matthew

    2011-01-01

    There has been substantial recent change in coral reef communities. To date, most analyses have focussed on static patterns or changes in single variables such as coral cover. However, little is known about how community-level changes occur at large spatial scales. Here, we develop Markov models of annual changes in coral and macroalgal cover in the Caribbean and Great Barrier Reef (GBR) regions. We analyzed reef surveys from the Caribbean and GBR (1996-2006). We defined a set of reef states distinguished by coral and macroalgal cover, and obtained Bayesian estimates of the annual probabilities of transitions between these states. The Caribbean and GBR had different transition probabilities, and therefore different rates of change in reef condition. This could be due to differences in species composition, management or the nature and extent of disturbances between these regions. We then estimated equilibrium probability distributions for reef states, and coral and macroalgal cover under constant environmental conditions. In both regions, the current distributions are close to equilibrium. In the Caribbean, coral cover is much lower and macroalgal cover is higher at equilibrium than in the GBR. We found no evidence for differences in transition probabilities between the first and second halves of our survey period, or between Caribbean reefs inside and outside marine protected areas. However, our power to detect such differences may have been low. We also examined the effects of altering transition probabilities on the community state equilibrium, along a continuum from unfavourable (e.g., increased sea surface temperature) to favourable (e.g., improved management) conditions. Both regions showed similar qualitative responses, but different patterns of uncertainty. In the Caribbean, uncertainty was greatest about effects of favourable changes, while in the GBR, we are most uncertain about effects of unfavourable changes. Our approach could be extended to provide

  19. Global cooling as a driver of diversification in a major marine clade

    NASA Astrophysics Data System (ADS)

    Davis, Katie E.; Hill, Jon; Astrop, Tim I.; Wills, Matthew A.

    2016-10-01

    Climate is a strong driver of global diversity and will become increasingly important as human influences drive temperature changes at unprecedented rates. Here we investigate diversification and speciation trends within a diverse group of aquatic crustaceans, the Anomura. We use a phylogenetic framework to demonstrate that speciation rate is correlated with global cooling across the entire tree, in contrast to previous studies. Additionally, we find that marine clades continue to show evidence of increased speciation rates with cooler global temperatures, while the single freshwater clade shows the opposite trend with speciation rates positively correlated to global warming. Our findings suggest that both global cooling and warming lead to diversification and that habitat plays a role in the responses of species to climate change. These results have important implications for our understanding of how extant biota respond to ongoing climate change and are of particular importance for conservation planning of marine ecosystems.

  20. The Marine Realms Information Bank family of digital libraries: access to free online information for coastal and marine science

    USGS Publications Warehouse

    Lightsom, Frances L.; Allwardt, Alan O.

    2007-01-01

    Searching the World Wide Web for reliable information about specific topics or locations can be frustrating: too many hits, too little relevance. A well-designed digital library, offering a carefully selected collection of online resources, is an attractive alternative to web search engines. The U.S. Geological Survey (USGS) provides three digital libraries for coastal and marine science to serve the needs of a diverse audience--scientists, public servants, educators, and the public.

  1. The Evaluation and Utilization of Marine-derived Bioactive Compounds with Anti-obesity Effect.

    PubMed

    Jin, Qiu; Yu, Huahua; Li, Pengcheng

    2018-01-01

    Obesity is a global epidemic throughout the world. There is thus increasing interest in searching for natural bioactive compounds with anti-obesity effect. A number of marine compounds have been regarded as potential sources of bioactive compounds and are associated with an anti-obesity effect. Marine-derived compounds with anti-obesity effect and their current applications, methods and indicators for the evaluation of anti-obesity activity are summarized in this review. in order to make contributions to the development of marine-derived functional food against obesity. In this review, an overview of marine-derived compounds with anti-obesity effect, including marine polysaccharides, marine lipid, marine peptides, marine carotenoids is intensively made with an emphasis on their efficacy and mechanism of action. Meanwhile, methods and indicators for the evaluation of anti-obesity activity are discussed. We summarize these methods into three categories: in vitro assay (including adsorption experiments and enzyme inhibitory assay), cell line study, animal experiments and clinical experiments. In addition, a brief introduction of the current applications of marine bioactive compounds with anti-obesity activity is discussed. Marine environment is a rich source of both biological and chemical diversity. In the past decades, numerous novel compounds with anti-obesity activity have been obtained from marine organisms, and many of them have been applied to industrial production such as functional foods and pharmaceuticals. Further studies are needed to explore the above-mentioned facts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Phylogenetic Diversity of Sponge-Associated Fungi from the Caribbean and the Pacific of Panama and Their In Vitro Effect on Angiotensin and Endothelin Receptors.

    PubMed

    Bolaños, Jessica; De León, Luis Fernando; Ochoa, Edgardo; Darias, José; Raja, Huzefa A; Shearer, Carol A; Miller, Andrew N; Vanderheyden, Patrick; Porras-Alfaro, Andrea; Caballero-George, Catherina

    2015-10-01

    Fungi occupy an important ecological niche in the marine environment, and marine fungi possess an immense biotechnological potential. This study documents the fungal diversity associated with 39 species of sponges and determines their potential to produce secondary metabolites capable of interacting with mammalian G-protein-coupled receptors involved in blood pressure regulation. Total genomic DNA was extracted from 563 representative fungal strains obtained from marine sponges collected by SCUBA from the Caribbean and the Pacific regions of Panama. A total of 194 operational taxonomic units were found with 58% represented by singletons based on the internal transcribed spacer (ITS) and partial large subunit (LSU) rDNA regions. Marine sponges were highly dominated by Ascomycota fungi (95.6%) and represented by two major classes, Sordariomycetes and Dothideomycetes. Rarefaction curves showed no saturation, indicating that further efforts are needed to reveal the entire diversity at this site. Several unique clades were found during phylogenetic analysis with the highest diversity of unique clades in the order Pleosporales. From the 65 cultures tested to determine their in vitro effect on angiotensin and endothelin receptors, the extracts of Fusarium sp. and Phoma sp. blocked the activation of these receptors by more than 50% of the control and seven others inhibited between 30 and 45%. Our results indicate that marine sponges from Panama are a "hot spot" of fungal diversity as well as a rich resource for capturing, cataloguing, and assessing the pharmacological potential of substances present in previously undiscovered fungi associated with marine sponges.

  3. Global Diversity of Sponges (Porifera)

    PubMed Central

    Van Soest, Rob W. M.; Boury-Esnault, Nicole; Vacelet, Jean; Dohrmann, Martin; Erpenbeck, Dirk; De Voogd, Nicole J.; Santodomingo, Nadiezhda; Vanhoorne, Bart; Kelly, Michelle; Hooper, John N. A.

    2012-01-01

    With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all ‘known’ sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future. PMID:22558119

  4. Diversity and Dynamics of Microbial Community Structure in Different Mangrove, Marine and Freshwater Sediments During Anaerobic Debromination of PBDEs

    PubMed Central

    Wang, Ya Fen; Zhu, Hao Wen; Wang, Ying; Zhang, Xiang Ling; Tam, Nora Fung Yee

    2018-01-01

    Little is known about the diversity and succession of indigenous microbial community during debromination of polybrominated diphenyl ethers (PBDEs). This study examined the diversity and dynamics of microbial community structure in eight saline (mangrove and marine) and freshwater sediment microcosms exhibiting different debrominating capabilities for hexa-BDE 153, a common congener in sediments, using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses. The results showed that microbial community structure greatly differed between the saline and freshwater microcosms, likely leading to distinct variations in their debrominating capabilities and pathways. Higher relative abundances of Chloroflexi and Deltaproteobacteria succeed by Alphaproteobacteria and Betaproteobacteria were detected in the two mangrove microcosms with the fastest debrominating capabilities mainly via para pathway, respectively; the dominance of Alphaproteobacteria resulted in less accumulation of tetra-BDEs and more complete debromination of lower brominated congeners (from di- to tetra-BDEs). Meanwhile, the shifts in both microbial community structure and PBDE profiles were relatively small in the less efficient freshwater microcosms, with relatively more ortho and meta brominated products of BDE-153 resulted. Coincidently, one of the freshwater microcosms showed sudden increases of Chloroflexi and Deltaproteobacteria by the end of incubation, which synchronized with the increase in the removal rate of BDE-153. The significant relationship between microbial community structure and PBDEs was confirmed by redundancy analysis (18.7% of total variance explained, P = 0.002). However, the relative abundance of the well-known dechlorinator Dehalococcoides showed no clear correlation with the debrominating capability across different microcosms. These findings shed light in the significance of microbial community network in different saline environments on enhancement

  5. Diversity and Dynamics of Microbial Community Structure in Different Mangrove, Marine and Freshwater Sediments During Anaerobic Debromination of PBDEs.

    PubMed

    Wang, Ya Fen; Zhu, Hao Wen; Wang, Ying; Zhang, Xiang Ling; Tam, Nora Fung Yee

    2018-01-01

    Little is known about the diversity and succession of indigenous microbial community during debromination of polybrominated diphenyl ethers (PBDEs). This study examined the diversity and dynamics of microbial community structure in eight saline (mangrove and marine) and freshwater sediment microcosms exhibiting different debrominating capabilities for hexa-BDE 153, a common congener in sediments, using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses. The results showed that microbial community structure greatly differed between the saline and freshwater microcosms, likely leading to distinct variations in their debrominating capabilities and pathways. Higher relative abundances of Chloroflexi and Deltaproteobacteria succeed by Alphaproteobacteria and Betaproteobacteria were detected in the two mangrove microcosms with the fastest debrominating capabilities mainly via para pathway, respectively; the dominance of Alphaproteobacteria resulted in less accumulation of tetra-BDEs and more complete debromination of lower brominated congeners (from di- to tetra-BDEs). Meanwhile, the shifts in both microbial community structure and PBDE profiles were relatively small in the less efficient freshwater microcosms, with relatively more ortho and meta brominated products of BDE-153 resulted. Coincidently, one of the freshwater microcosms showed sudden increases of Chloroflexi and Deltaproteobacteria by the end of incubation, which synchronized with the increase in the removal rate of BDE-153. The significant relationship between microbial community structure and PBDEs was confirmed by redundancy analysis (18.7% of total variance explained, P = 0.002). However, the relative abundance of the well-known dechlorinator Dehalococcoides showed no clear correlation with the debrominating capability across different microcosms. These findings shed light in the significance of microbial community network in different saline environments on enhancement

  6. Marine pharmacology in 2003-4: marine compounds with anthelmintic antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action.

    PubMed

    Mayer, Alejandro M S; Rodríguez, Abimael D; Berlinck, Roberto G S; Hamann, Mark T

    2007-05-01

    The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as possessing anti-inflammatory effects. Finally, 54 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2003-2004, research on the pharmacology of marine natural products which involved investigators from Argentina, Australia, Brazil, Belgium, Canada, China, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Morocco, the Netherlands, New Zealand, Norway, Panama, the Philippines, Portugal, Russia, Slovenia, South Korea, Spain, Thailand, Turkey, United Kingdom, and the United States, contributed numerous chemical leads for the continued global search for novel therapeutic agents with broad spectrum activity.

  7. Marine pharmacology in 2003-4: Marine Compounds with Anthelminthic, Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiplatelet, Antiprotozoal, Antituberculosis, and Antiviral Activities; affecting the Cardiovascular, Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M.S.; Rodriguez, Abimael D.; Berlinck, Roberto G.S.; Hamann, Mark T.

    2007-01-01

    The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as possessing anti-inflammatory effects. Finally, 54 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2003-2004, research on the pharmacology of marine natural products which involved investigators from Argentina, Australia, Brazil, Belgium, Canada, China, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Morocco, the Netherlands, New Zealand, Norway, Panama, the Philippines, Portugal, Russia, Slovenia, South Korea, Spain, Thailand, Turkey, United Kingdom, and the United States, contributed numerous chemical leads for the continued global search for novel therapeutic agents with broad spectrum activity. PMID:17392033

  8. Sex Diversity Approach of Spiny Lobster (Panulirus spp) to Marine Oil Spill Pollution in Southern Waters of Java

    NASA Astrophysics Data System (ADS)

    Haryono, F. E. D.; Ambariyanto; Sulistyo, I.

    2018-02-01

    Coastal of southern Java waters is known as inhabit area of spiny lobster. Accumulation of hydrocarbon frequently occurs at the coastal waters as impact of oil pollution caused by oil leak from supplying ship of crude oil to Cilacap refinery. As shipping channel of oil, presence of oil spills is often detected at coastal areas of Cilacap. It can be indicated by range of sediment in the area which has risk levels in range of low to medium-low. It was, therefore, found that some locations suffered a greater impact on the ecological which giving high risk for marine organism life. Spiny lobster is one of many organism living at sea bed which threatened its life due to the presence of oil. Population of Spiny Lobster has to be protected because it has commercially valuable commodity for producing high nutrition. Considering the matters, it is therefore important to find a method for alleviating the problem. Investigation should be focused on biological aspect of spiny lobster in encountering extreme pollution at the coastal. For that purpose, a field research was conducted from January until July 2015. Using gillnet with 1 inch mesh size, the lobsters were randomly collected from southern Java districts waters. There were 1137 lobsters collected from six districts waters. Furthermore, the sample was morphologically identified and it was found that there were six species in the areas. In all area, P. homarus was found as dominant species, except in Gunung kidul district which was dominated by P. penicillatus. In term of sex diversity, there is statistically difference in number of female and male, each species no significant. Even though environment quality was very worse, there was found existence of ovigerous female in the research area as about 12% of the population. Those facts strongly indicated that the lobsters has a unique adaptation to survive in extremely low quality of environment due to marine oil spill.

  9. Genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV).

    PubMed

    Snow, M; Bain, N; Black, J; Taupin, V; Cunningham, C O; King, J A; Skall, H F; Raynard, R S

    2004-10-21

    The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders this the most comprehensive molecular epidemiological study of marine VHSV conducted to date. Phylogenetic analysis of nucleoprotein gene sequences confirmed the existence of the 4 major genotypes previously identified based on N- and subsequent G-gene based analyses. The range of Genotype I included subgroups of isolates associated with rainbow trout aquaculture (Genotype Ia) and those from the Baltic marine environment (Genotype Ib) to emphasise the relatively close genetic relationship between these isolates. The existence of an additional genotype circulating within the Baltic Sea (Genotype II) was also confirmed. Genotype III included marine isolates from around the British Isles in addition to those associated with turbot mariculture, highlighting a continued risk to the development of this industry. Genotype IV consisted of isolates from the marine environment in North America. Taken together, these findings suggest a marine origin of VHSV in rainbow trout aquaculture. The implications of these findings with respect to the future control of VHSV are discussed. The capacity for molecular phylogenetic analysis to resolve complex epidemiological problems is also demonstrated and its likely future importance to disease management issues highlighted.

  10. [The recent research progress of chemistry of marine natural products].

    PubMed

    Shi, Qing-wen; Li, Li-geng; Wang, Yu-fang; Huo, Chang-hong; Zhang, Man-li

    2010-10-01

    Ocean is a unique and excellent resource that provides a diverse array of intriguing natural products. Marine natural products have demonstrated significant and extremely potent biological activities and have captured the attention of natural products chemists in the past few decades. It is increasingly recognized that a wealth of fascinating natural products and novel chemical entities will play a dominant role in the discovery of useful leads for the development of pharmaceutical agents and provide useful probes to lead to breakthroughs in a variety of life-science fields. This article focused on the research progress of chemistry of marine natural products in recent five years.

  11. [Identification of marine and coastal biodiversity conservation priorities in Costa Rica].

    PubMed

    Alvarado, Juan José; Herrera, Bernal; Corrales, Lenin; Asch, Jenny; Paaby, Pía

    2011-06-01

    Costa Rica is recognized as one of the most diverse countries in species and ecosystems, in their terrestrial realm as well as in the marine. Besides this relevance, the country presents a delay on conservation and management of marine and coastal biodiversity, with respect to terrestrial. For 2006, the marine protected surface was 5,208.8 km2, with 331.5 km of coastline, in 20 protected areas. The country has made progress on the conservation priority sites identification for terrestrial and freshwater biodiversity, with few efforts on marine planning. This research presents the analysis and results of the gap identification process, for marine and coastal biodiversity conservation in the protected areas system of Costa Rica. The analysis was built with the spatial information available on the presence and distribution of coastal and marine biodiversity, the establishment of the conservation goals and a threat analysis over the ecological integrity of this biodiversity. The selection of high-priority sites was carried out using spatial optimization techniques and the superposition over the current shape of marine protected areas, in order to identify representation gaps. A total of 19,076 km2 of conservation gaps were indentified, with 1,323 km2 in the Caribbean and 17,753 km2 in the Pacific. Recommendations are aimed at planning and strengthening the marine protected areas system, using the gaps identified as a framework. It is expected that the results of this study would be the scientific base needed for planning and sustainable use of marine biodiversity in the country.

  12. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases.

    PubMed

    Lordan, Sinéad; Ross, R Paul; Stanton, Catherine

    2011-01-01

    The marine environment represents a relatively untapped source of functional ingredients that can be applied to various aspects of food processing, storage, and fortification. Moreover, numerous marine-based compounds have been identified as having diverse biological activities, with some reported to interfere with the pathogenesis of diseases. Bioactive peptides isolated from fish protein hydrolysates as well as algal fucans, galactans and alginates have been shown to possess anticoagulant, anticancer and hypocholesterolemic activities. Additionally, fish oils and marine bacteria are excellent sources of omega-3 fatty acids, while crustaceans and seaweeds contain powerful antioxidants such as carotenoids and phenolic compounds. On the basis of their bioactive properties, this review focuses on the potential use of marine-derived compounds as functional food ingredients for health maintenance and the prevention of chronic diseases.

  13. Marine Bioactives as Functional Food Ingredients: Potential to Reduce the Incidence of Chronic Diseases

    PubMed Central

    Lordan, Sinéad; Ross, R. Paul; Stanton, Catherine

    2011-01-01

    The marine environment represents a relatively untapped source of functional ingredients that can be applied to various aspects of food processing, storage, and fortification. Moreover, numerous marine-based compounds have been identified as having diverse biological activities, with some reported to interfere with the pathogenesis of diseases. Bioactive peptides isolated from fish protein hydrolysates as well as algal fucans, galactans and alginates have been shown to possess anticoagulant, anticancer and hypocholesterolemic activities. Additionally, fish oils and marine bacteria are excellent sources of omega-3 fatty acids, while crustaceans and seaweeds contain powerful antioxidants such as carotenoids and phenolic compounds. On the basis of their bioactive properties, this review focuses on the potential use of marine-derived compounds as functional food ingredients for health maintenance and the prevention of chronic diseases. PMID:21747748

  14. Ecological partitioning and diversity in tropical planktonic foraminifera

    PubMed Central

    2012-01-01

    Background Ecological processes are increasingly being viewed as an important mode of diversification in the marine environment, where the high dispersal potential of pelagic organisms, and a lack of absolute barriers to gene flow may limit the occurrence of allopatric speciation through vicariance. Here we focus on the potential role of ecological partitioning in the diversification of a widely distributed group of marine protists, the planktonic foraminifera. Sampling was conducted in the tropical Arabian Sea, during the southwest (summer) monsoon, when pronounced environmental conditions result in a strong disparity in temperature, salinity and productivity between distinct northern and southern water masses. Results We uncovered extensive genetic diversity within the Arabian Sea planktonic foraminifera, identifying 13 morphospecies, represented by 20 distinct SSU rRNA genetic types. Several morphospecies/genetic types displayed non-random biogeographical distributions, partitioning between the northern and southern water masses, giving a strong indication of independent ecological adaptations. Conclusions We propose sea-surface primary productivity as the main factor driving the geographical segregation of Arabian Sea planktonic foraminifera, during the SW monsoon, with variations in symbiotic associations possibly playing a role in the specific ecological adaptations observed. Our findings suggest that ecological partitioning could be contributing to the high levels of 'cryptic' genetic diversity observed within the planktonic foraminifera, and support the view that ecological processes may play a key role in the diversification of marine pelagic organisms. PMID:22507289

  15. Diversity and Biosynthetic Potential of Culturable Microbes Associated with Toxic Marine Animals

    PubMed Central

    Chau, Rocky; Kalaitzis, John A.; Wood, Susanna A.; Neilan, Brett A.

    2013-01-01

    Tetrodotoxin (TTX) is a neurotoxin that has been reported from taxonomically diverse organisms across 14 different phyla. The biogenic origin of tetrodotoxin is still disputed, however, TTX biosynthesis by host-associated bacteria has been reported. An investigation into the culturable microbial populations from the TTX-associated blue-ringed octopus Hapalochlaena sp. and sea slug Pleurobranchaea maculata revealed a surprisingly high microbial diversity. Although TTX was not detected among the cultured isolates, PCR screening identifiedsome natural product biosynthesis genes putatively involved in its assembly. This study is the first to report on the microbial diversity of culturable communities from H. maculosa and P. maculata and common natural product biosynthesis genes from their microbiota. We also reassess the production of TTX reported from three bacterial strains isolated from the TTX-containing gastropod Nassarius semiplicatus. PMID:23917066

  16. Diversity and biosynthetic potential of culturable microbes associated with toxic marine animals.

    PubMed

    Chau, Rocky; Kalaitzis, John A; Wood, Susanna A; Neilan, Brett A

    2013-08-02

    Tetrodotoxin (TTX) is a neurotoxin that has been reported from taxonomically diverse organisms across 14 different phyla. The biogenic origin of tetrodotoxin is still disputed, however, TTX biosynthesis by host-associated bacteria has been reported. An investigation into the culturable microbial populations from the TTX-associated blue-ringed octopus Hapalochlaena sp. and sea slug Pleurobranchaea maculata revealed a surprisingly high microbial diversity. Although TTX was not detected among the cultured isolates, PCR screening identifiedsome natural product biosynthesis genes putatively involved in its assembly. This study is the first to report on the microbial diversity of culturable communities from H. maculosa and P. maculata and common natural product biosynthesis genes from their microbiota. We also reassess the production of TTX reported from three bacterial strains isolated from the TTX-containing gastropod Nassarius semiplicatus.

  17. Biology of extinction risk in marine fishes

    PubMed Central

    Reynolds, John D; Dulvy, Nicholas K; Goodwin, Nicholas B; Hutchings, Jeffrey A

    2005-01-01

    We review interactions between extrinsic threats to marine fishes and intrinsic aspects of their biology that determine how populations and species respond to those threats. Information is available on the status of less than 5% of the world's approximately 15 500 marine fish species, most of which are of commercial importance. By 2001, based on data from 98 North Atlantic and northeast Pacific populations, marine fishes had declined by a median 65% in breeding biomass from known historic levels; 28 populations had declined by more than 80%. Most of these declines would be sufficient to warrant a status of threatened with extinction under international threat criteria. However, this interpretation is highly controversial, in part because of a perception that marine fishes have a suite of life history characteristics, including high fecundity and large geographical ranges, which might confer greater resilience than that shown by terrestrial vertebrates. We review 15 comparative analyses that have tested for these and other life history correlates of vulnerability in marine fishes. The empirical evidence suggests that large body size and late maturity are the best predictors of vulnerability to fishing, regardless of whether differences among taxa in fishing mortality are controlled; there is no evidence that high fecundity confers increased resilience. The evidence reviewed here is of direct relevance to the diverse criteria used at global and national levels by various bodies to assess threat status of fishes. Simple life history traits can be incorporated directly into quantitative assessment criteria, or used to modify the conclusions of quantitative assessments, or used as preliminary screening criteria for assessment of the ∼95% of marine fish species whose status has yet to be evaluated either by conservationists or fisheries scientists. PMID:16243696

  18. Biology of extinction risk in marine fishes.

    PubMed

    Reynolds, John D; Dulvy, Nicholas K; Goodwin, Nicholas B; Hutchings, Jeffrey A

    2005-11-22

    We review interactions between extrinsic threats to marine fishes and intrinsic aspects of their biology that determine how populations and species respond to those threats. Information is available on the status of less than 5% of the world's approximately 15500 marine fish species, most of which are of commercial importance. By 2001, based on data from 98 North Atlantic and northeast Pacific populations, marine fishes had declined by a median 65% in breeding biomass from known historic levels; 28 populations had declined by more than 80%. Most of these declines would be sufficient to warrant a status of threatened with extinction under international threat criteria. However, this interpretation is highly controversial, in part because of a perception that marine fishes have a suite of life history characteristics, including high fecundity and large geographical ranges, which might confer greater resilience than that shown by terrestrial vertebrates. We review 15 comparative analyses that have tested for these and other life history correlates of vulnerability in marine fishes. The empirical evidence suggests that large body size and late maturity are the best predictors of vulnerability to fishing, regardless of whether differences among taxa in fishing mortality are controlled; there is no evidence that high fecundity confers increased resilience. The evidence reviewed here is of direct relevance to the diverse criteria used at global and national levels by various bodies to assess threat status of fishes. Simple life history traits can be incorporated directly into quantitative assessment criteria, or used to modify the conclusions of quantitative assessments, or used as preliminary screening criteria for assessment of the approximately 95% of marine fish species whose status has yet to be evaluated either by conservationists or fisheries scientists.

  19. Intrinsic bioremediation potential of a chronically polluted marine coastal area.

    PubMed

    Catania, Valentina; Santisi, Santina; Signa, Geraldina; Vizzini, Salvatrice; Mazzola, Antonio; Cappello, Simone; Yakimov, Michail M; Quatrini, Paola

    2015-10-15

    A microbiological survey of the Priolo Bay (eastern coast of Sicily, Ionian Sea), a chronically polluted marine coastal area, was carried out in order to discern its intrinsic bioremediation potential. Microbiological analysis, 16S rDNA-based DGGE fingerprinting and PLFAs analysis were performed on seawater and sediment samples from six stations on two transects. Higher diversity and variability among stations was detected by DGGE in sediment than in water samples although seawater revealed higher diversity of culturable hydrocarbon-degrading bacteria. The most polluted sediment hosted higher total bacterial diversity and higher abundance and diversity of culturable HC degraders. Alkane- and PAH-degrading bacteria were isolated from all stations and assigned to Alcanivorax, Marinobacter, Thalassospira, Alteromonas and Oleibacter (first isolation from the Mediterranean area). High total microbial diversity associated to a large selection of HC degraders is believed to contribute to natural attenuation of the area, provided that new contaminant contributions are avoided. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Marine copepod cytochrome P450 genes and their applications for molecular ecotoxicological studies in response to oil pollution.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Kang, Hye-Min; Lee, Min-Chul; Jeong, Chang-Bum; Kim, Hui-Su; Hwang, Dae-Sik; Lee, Jae-Seong

    2017-11-30

    Recently, accidental spills of heavy oil have caused adverse effects in marine organisms. Oil pollution can induce damages on development and reproduction, linking with detrimental effects on diverse molecular levels of genes and proteins in plankton and fish. However, most information was mainly focused on marine vertebrates and consequently, limited information was available in marine invertebrates. Furthermore, there is still a lack of knowledge bridging in vivo endpoints with the functional regulation of cytochrome P450 (CYP) genes in response to oil spill pollution in marine invertebrates. In this paper, adverse effects of oil spill pollution in marine invertebrates are summarized with the importance of CYP genes as a potential biomarker, applying for environmental monitoring to detect oil spill using marine copepods. Copyright © 2016 Elsevier Ltd. All rights reserved.