Science.gov

Sample records for marine particles development

  1. Optical assessment of large marine particles: Development of an imaging and analysis system for quantifying large particle distributions and fluxes. Final report, June 1992--May 1996

    SciTech Connect

    Walsh, I.D.; Gardner, W.D.

    1997-04-01

    The central goal of DOE`s Ocean Margin Program (OMP) has been to determine whether continental shelves are quantitatively significant in removing carbon dioxide from the atmosphere and isolating it via burial in sediments or exporting it to the open ocean. The overall objective of this work within OMP was to develop an instrument package to measure the large aggregate population of particles in the shelf/slope environment at a rate sufficient to integrate the observed particle distributions into the coupled physical and biogeochemical models necessary to understand the shelf and slope as a system. Pursuant to this the authors have developed a video and optical instrument package (LAPS: Large Aggregate Profiling System) and assembled the computer and software methods to routinely measure a wide spectrum of the large aggregate population of particles in the shelf/slope environment. This particle population, encompassing the `marine snow` size particles (dia. > 0.5 mm), is thought to be the major pathway of material flux in the ocean. The instrument package collects aggregate abundance and size spectrum data using two video camera/strobe subsystems with a third subsystem collecting CTD, beam attenuation and fluorescence data. Additionally, measurements of particle flux were made with sediment traps deployed on the continental slope in conjunction with the physical oceanography mooring program. The authors envisioned a three stages development of the instrument package: (1) design, assembly, and laboratory testing of all components and the package as a whole, (2) a short period of laboratory and field testing of the instrument package to determine the best operational parameters, and (3) operations within a framework of complementary analytical sampling such as an appropriate process study funded under the OMP. The first two stages were covered by this proposal and completed. The third stage was limited to scoping work with the LAPS and deployment of sediment traps.

  2. Optical assessment of large marine particles: development of an imaging and analysis system for quantifying large particle distributions and fluxes. Annual report, 1993-1994

    SciTech Connect

    Walsh, I.D.; Gardner, W.D.

    1994-12-31

    The central goal of DOE`s Ocean Margin Program (OMP) is to determine whether continental shelves are quantitatively significant in removing carbon dioxide from the atmosphere and isolating it via burial in sediments or exporting it to the open ocean (Program Announcement, 1991). A major component of the OMP will be to measure carbon flux on the shelf and across the shelf to the slope and open ocean. In the first round of OMP funding we proposed to develop an optical instrument package and the analytical techniques to measure a wide spectrum of the large aggregate population of particles in the shelf/slope environment. This particle population, encompassing the ``marine snow`` size particles (diameters > 0.5 mm), is thought to be the major pathway of material flux in the ocean (McCave, 1975; Asper, 1987; Walsh and Gardner, 1992). The overall objective of this proposal was to develop an instrument package and the analytical techniques to precisely measure a wide spectrum of the large aggregate population of particles in the shelf/slope environment at a rate sufficient to integrate the observed particle distributions into the coupled physical and biogeochemical models necessary to understand the shelf and slope as a system. We envisioned three stages of development of the instrument package: (1) design, assembly, and laboratory testing of all components and the package as a whole, (2) a short period of laboratory and field testing of the instrument package to determine the best operational parameters, and (3) operations within a framework of complementary analytical sampling such as an appropriate process study funded under the OMP. The first two stages were covered by this proposal. A renewal proposal follows to cover the third stage. 6 figs.

  3. Marine & hydrokinetic technology development.

    SciTech Connect

    LiVecchi, Al; Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power plants while mitigating nearby and distant impacts. Activities may include laboratory and computational modeling of mooring design or research on device spacing. The geographies, resources, technologies, and even nomenclature of the U.S. marine and hydrokinetic technology industry have yet to be fully understood or defined. The program characterizes and assesses marine and hydrokinetic devices, and then organizes the collected information into a comprehensive and searchable Web-based database, the Marine and Hydrokinetic Technology Database. The database, which reflects intergovernmental and international collaboration, provides industry with one of the most comprehensive and up-to-date public resources on marine and hydrokinetic devices.

  4. Optical assessment of large marine particles: development of an imaging and analysis sytem for quantifying large particle distributions and fluxes. Annual report, 1992-1993

    SciTech Connect

    Walsh, I.D.; Gardner, W.D.

    1994-05-01

    The central goal of DOE`s Ocean Margin Program (OMP) is to determine whether continental shelves are quantitatively significant in removing carbon dioxide from the atmosphere and isolating it via burial in sediments or exporting it to the open ocean (Program Announcement, 1991). A major component of the OMP will be to measure carbon flux on the shelf and across the shelf to the slope and open ocean. We are developing a video and optical instrument package (LAPS: Large Aggregate Profiling System) and the analytical techniques to precisely measure a wide spectrum of the large aggregate population of particles in the shelf/slope environment. This particle population, encompassing the ``marine snow`` size particles (diameters > 0.5 mm), is thought to be the major pathway of material flux in the ocean (McCave, 1975; Asper, 1987; Walsh and Gardner, 1992). Our goal is to use aggregate abundance and size spectrum data along with the CTD, beam attenuation and fluorescence data collected with our instrument package to collect data rapidly, repeatedly and accurately such that it is both linkable to carbon flux and usable in biophysical models. Additionally, measurements of particle flux will be made with sediment traps deployed on the continental slope in conjunction with the physical oceanography program. The combination of profiles and sections of aggregate data along with the measured mass flux and chemistry from the sediment traps will allow for a robust estimate of the mass transport and flux of organic carbon via the aggregate pathway. The LAPS will be tested in the field area during a cruise in June/July 1994. Sediment traps will also be deployed on that cruise to make the first comparisons between measured flux and aggregate abundance in the field area. Efforts to streamline the image processing have resulted in a suite of programs to handle data from capture to binned data. 5 refs.

  5. Fractionation of iron isotopes during leaching of natural particles by acidic and circumneutral leaches and development of an optimal leach for marine particulate iron isotopes

    NASA Astrophysics Data System (ADS)

    Revels, Brandi N.; Zhang, Ruifeng; Adkins, Jess F.; John, Seth G.

    2015-10-01

    Iron (Fe) is an essential nutrient for life on land and in the oceans. Iron stable isotope ratios (?56Fe) can be used to study the biogeochemical cycling of Fe between particulate and dissolved phases in terrestrial and marine environments. We have investigated the dissolution of Fe from natural particles both to understand the mechanisms of Fe dissolution, and to choose a leach appropriate for extracting labile Fe phases of marine particles. With a goal of finding leaches which would be appropriate for studying dissolved-particle interactions in an oxic water column, three particle types were chosen including oxic seafloor sediments (MESS-3), terrestrial dust (Arizona Test Dust - A2 Fine), and ocean sediment trap material from the Cariaco basin. Four leaches were tested, including three acidic leaches similar to leaches previously applied to marine particles and sediments (25% acetic acid, 0.01 N HCl, and 0.5 N HCl) and a pH 8 oxalate-EDTA leach meant to mimic the dissolution of particles by organic complexation, as occurs in natural seawater. Each leach was applied for three different times (10 min, 2 h, 24 h) at three different temperatures (25 °C, 60 °C, 90 °C). MESS-3 was also leached under various redox conditions (0.02 M hydroxylamine hydrochloride or 0.02 M hydrogen peroxide). For all three sample types tested, we find a consistent relationship between the amount of Fe leached and leachate ?56Fe for all of the acidic leaches, and a different relationship between the amount of Fe leached and leachate ?56Fe for the oxalate-EDTA leach, suggesting that Fe was released through proton-promoted dissolution for all acidic leaches and by ligand-promoted dissolution for the oxalate-EDTA leach. Fe isotope fractionations of up to 2‰ were observed during acidic leaching of MESS-3 and Cariaco sediment trap material, but not for Arizona Test Dust, suggesting that sample composition influences fractionation, perhaps because Fe isotopes are greatly fractionated during leaching of silicates and clays but only minimally fractionated during dissolution of Fe oxyhydroxides. Two different analytical models were developed to explain the relationship between amount of Fe leached and ?56Fe, one of which assumes mixing between two Fe phases with different ?56Fe and different dissolution rates, and the other of which assumes dissolution of a single phase with a kinetic isotope effect. We apply both models to fit results from the acidic leaches of MESS-3 and find that the fit for both models is very similar, suggesting that isotope data will never be sufficient to distinguish between these two processes for natural materials. Next, we utilize our data to choose an optimal leach for application to marine particles. The oxalate-EDTA leach is well-suited to this purpose because it does not greatly fractionate Fe isotopes for a diversity of particle types over a wide variety of leaching conditions, and because it approximates the conditions by which particulate Fe dissolves in the oceans. We recommend a 2 h leach at 90 °C with 0.1 M oxalate and 0.05 M EDTA at pH 8 to measure labile "ligand-leachable" particulate ?56Fe on natural marine materials with a range of compositions.

  6. NOAAINMFS Developments Marine Bacteria Seen as Precipitation Key

    E-print Network

    NOAAINMFS Developments Marine Bacteria Seen as Precipitation Key Oceanic bacteria may be the marine to produce precipitation. The bacteria live in association with marine phytoplankton according to Schnell cause particles of supercooled fog in the chamber to freeze, grow into snow crystals, and fall

  7. Marine Policy Challenges in developing China's marine protected area system

    E-print Network

    Jones, Peter JS

    Marine Policy Challenges in developing China's marine protected area system Wanfei Qiu a,* , Bin Department of Marine Environment Protection, State Oceanic Administration, No. 1 Fuxingmenwai Avenue, Beijing increases in the coverage of marine protected areas (MPAs) in China, and a total of 158 MPAs have been

  8. Carbonaceous particles reduce marine microgel formation.

    PubMed

    Shiu, Ruei-Feng; Chin, Wei-Chun; Lee, Chon-Lin

    2014-01-01

    An increase in ambient carbonaceous particle (CNP) levels has been found, potentially leading to significant environmental/health hazards. These particles will ultimately enter the oceanic environment and interact with dissolved organic carbon. However, a detailed mechanistic understanding of their behavior, transport, and fate in marine systems is still much needed. This study, using carbon black (CB, 14?nm) nanoparticles as a model, aimed to investigate the impact of CNPs on marine microgel formation, a critical shunt between DOC and particulate organic carbon that potentially represents a ~70-Gt organic carbon flux. We found that CB can enhance the stability of DOC polymers and reduce microgel equilibrium sizes in concentration as low as 1??gL(-1) CB, possibly due to negative surface charges on CB that decrease cross-linking bridges through Ca(2+) bonds. The reduction of marine microgel formation induced by CB could lead to a decrease in the downward transportation of microbial substrates and nutrients, and therefore, could have a significant impact on the carbon cycle and the marine ecosystem. PMID:25068549

  9. Surface charge and size spectra of marine particles

    NASA Astrophysics Data System (ADS)

    Hunter, Keith A.

    This technique is well established in colloid chemistry, but needs modification for application to marine particles. The technique measures the electrophoretic mobility of individual particles in suspension, i.e., their velocity per unit of applied field. It is closely related to other electrokinetic techniques: electro-osmosis, streaming potential and sedimentation potential. The theory and practice of electrophoresis has been reviewed by Shaw [1969]. The electric field surrounding a particle in an electrolyte suspension is determined by several factors. These include charges developed at the particle surface through ionization processes, specific adsorption of ions in the inner and outer compact layers and the diffuse double layer. During electrophoretic motion, a viscous slipping plane develops within the double layer. This results in part of the double layer moving with the particle in a combined electrophoretic unit. Consequently, electrophoretic mobilities cannot be directly related to the charge on the surface of the particle.

  10. Expression and Self-Assembly of Virus-Like Particles from Two Genotypes of Marine Vesiviruses and Development of an ELISA for the Detection of Antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sequences encoding the major capsid protein (VP1) from two marine vesivirus isolates (Steller sea lion viruses V810 and V1415) were engineered for expression of virus-like particles (VLPs) in the baculovirus system. The resulting VLPs were morphologically similar to native vesivirus virions. Purif...

  11. NOAAINMFS Developments National Registry of Marine Pathology

    E-print Network

    NOAAINMFS Developments National Registry of Marine Pathology Opens, Seeks Fish Disease Information Registry of Marine Pathology makes available to marine and estuarine biologists and patholo- gists- ment facility consists of slidecollections illustrating pathology, parasitism, or anomalies in species

  12. Intermittent particle dynamics in marine coastal waters

    NASA Astrophysics Data System (ADS)

    Renosh, P. R.; Schmitt, F. G.; Loisel, H.

    2015-10-01

    Marine coastal processes are highly variable over different space scales and timescales. In this paper we analyse the intermittency properties of particle size distribution (PSD) recorded every second using a LISST instrument (Laser In-Situ Scattering and Transmissometry). The particle concentrations have been recorded over 32 size classes from 2.5 to 500 ?m, at 1 Hz resolution. Such information is used to estimate at each time step the hyperbolic slope of the particle size distribution, and to consider its dynamics. Shannon entropy, as an indicator of the randomness, is estimated at each time step and its dynamics is analysed. Furthermore, particles are separated into four classes according to their size, and the intermittent properties of these classes are considered. The empirical mode decomposition (EMD) is used, associated with arbitrary-order Hilbert spectral analysis (AHSA), in order to retrieve scaling multifractal moment functions, for scales from 10 s to 8 min. The intermittent properties of two other indicators of particle concentration are also considered in the same range of scales: the total volume concentration Cvol-total and the particulate beam attenuation coefficient cp(670). Both show quite similar intermittent dynamics and are characterised by the same exponents. Globally we find here negative Hurst exponents (meaning the small scales show larger fluctuation than large scales) for each time series considered, and nonlinear moment functions.

  13. Glyoxal and methylglyoxal in Atlantic seawater and marine aerosol particles: method development and first application during the Polarstern cruise ANT XXVII/4

    NASA Astrophysics Data System (ADS)

    van Pinxteren, M.; Herrmann, H.

    2013-12-01

    An analytical method for the determination of the alpha dicarbonyls glyoxal (GLY) and methylglyoxal (MGLY) from seawater and marine aerosol particles is presented. The method is based on derivatization with o-(2,3,4,5,6-Pentafluorobenzyl)-hydroxylamine (PFBHA) reagent, solvent extraction and GC-MS (SIM) analysis. The method showed good precision (RSD < 10%), sensitivity (detection limits in the low ng L-1 range), and accuracy (good agreement between external calibration and standard addition). The method was applied to determine GLY and MGLY in oceanic water sampled during the Polarstern cruise ANT XXVII/4 from Capetown to Bremerhaven in spring 2011. GLY and MGLY were determined in the sea surface microlayer (SML) of the ocean and corresponding bulk water (BW) with average concentrations of 228 ng L-1 (GLY) and 196 ng L-1 (MGLY). The results show a significant enrichment (factor of 4) of GLY and MGLY in the SML. Furthermore, marine aerosol particles (PM1) were sampled during the cruise and analyzed for GLY (average concentration 0.19 ng m-3) and MGLY (average concentration 0.15 ng m-3). On aerosol particles, both carbonyls show a very good correlation with oxalate, supporting the idea of a secondary formation of oxalic acid via GLY and MGLY. Concentrations of GLY and MGLY in seawater and on aerosol particles were correlated to environmental parameters such as global radiation, temperature, distance to the coastline and biological activity. There are slight hints for a photochemical production of GLY and MGLY in the SML (significant enrichment in the SML, higher enrichment at higher temperature). However, a clear connection of GLY and MGLY to global radiation as well as to biological activity cannot be concluded from the data. A slight correlation between GLY and MGLY in the SML and in aerosol particles could be a hint for interactions, in particular of GLY, between seawater and the atmosphere.

  14. Particles in the oceans: Implication for a safe marine environment.

    PubMed

    Blasco, Julian; Corsi, Ilaria; Matranga, Valeria

    2015-10-01

    Strategies and technologies for the ecosafety assessment and design of engineered particles entering the marine environment are urgently needed. As the application of nanoparticles in science and technology grows, the need to understand their impact on the marine environment becomes increasingly important. This Editorial introduces a Special Issue on the topic of a sustainable and safety use of nanoparticles for protecting, recovering and supporting the oceans' environment and consequently human health. The issue focus on the impact of micro/nano-plastics and metallic nanoparticles on marine organisms, as well as some methodological aspects associated to the eco/toxicity and analytical approaches for in deep physico-chemical characterization of nanoparticles in marine waters and sediment media. Important and urgent topics are addressed in the field of nano-ecosafety in order to assess more precisely both exposure routes and environmental hazards of nanoparticles in the ocean. Ecotoxicological and toxicological data, obtained using a wide variety of organisms representative of different trophic levels and biological organization, from whole animals to macromolecules, will be useful for a better definition of cleaner and safer nanoparticles. Efforts in developing a broad understanding of target species, expected results, benchmarks and timelines, will be of primary importance. PMID:26515473

  15. Marine pollution from antifouling paint particles.

    PubMed

    Turner, Andrew

    2010-02-01

    Antifouling paint particles (APP) are generated during the maintenance of boats and are shed from abandoned structures and grounded ships. Although they afford a highly visible, colourful reflection of contamination in the vicinity of the source, little systematic study has been undertaken regarding the distribution, composition and effects of APP in the wider marine environment. This paper reviews the state of knowledge in respect of APP, with particular emphasis on those generated by recreational boatyards. The likely biogeochemical pathways of the biocidal and non-biocidal metals in current use (mainly Cu and Zn) are addressed in light of recent research and an understanding of the more general behaviour of contaminants in marine systems. Analyses of paint fragment composites from recreational facilities in the UK reveal chemical compositions that are similar to those representing the net signal of the original formulations; significantly, dry weight concentrations of Cu and Zn of up to about 35% and 15%, respectively, are observed and, relative to ambient dusts and sediment, elevated concentrations of other trace metals, like Ba, Cd, Cr, Ni, Pb and Sn, occur. These metals leach more rapidly from APP than a painted surface due to the greater surface area of pigments and additives exposed to the aqueous medium. In suspension, APP are subject to greater and more rapid environmental variation (e.g. salinity, pH, dissolved oxygen) than painted hulls, while settled APP represent an important source of persistent and degradable biocides to poorly circulating environments. Through diffusion and abrasion, high concentrations of contaminants are predicted in interstitial waters that may be accumulated directly by benthic invertebrates. Animals that feed non-selectively and that are exposed to or ingest paint-contaminated sediment are able to accelerate the leaching, deposition and burial of biocides and other substances, and represent an alternative vehicle for contaminant entry into the marine foodchain. Clearly, an extensive understanding of biocide behaviour on painted surfaces is not sufficient for predictive or management purposes regarding APP. Greater caution is required by boaters and boatyards during the removal and disposal of solid wastes, and more awareness or stricter enforcement of relevant codes of practice or legislation is recommended. PMID:20060546

  16. Glyoxal and methylglyoxal in Atlantic seawater and marine aerosol particles: method development and first application during the Polarstern cruise ANT XXVII/4

    NASA Astrophysics Data System (ADS)

    van Pinxteren, M.; Herrmann, H.

    2013-06-01

    An analytical method for the determination of the alpha dicarbonyls glyoxal (GLY) and methylglyoxal (MGLY) from seawater and marine aerosol samples is presented. The method is based on derivatisation with o-(2,3,4,5,6-Pentafluorobenzyl)-hydroxylamine (PFBHA) reagent, solvent extraction and GC-MS (SIM) analysis. The method showed good precision (RSD <10%), sensitivity (detection limits in the low ng L-1 range), and accuracy (good agreement between external calibration and standard addition). The method was applied to determine GLY and MGLY in oceanic water sampled during the POLARSTERN cruise ANT XXVII/4 from Capetown to Bremerhaven in spring 2011. GLY and MGLY were determined in the sea surface microlayer (SML) of the ocean and corresponding bulkwater (BW) with average concentrations of 228 ng L-1 (GLY) and 196 ng L-1 (MGLY). The results show a significant enrichment (factor of 4) of GLY and MGLY in the SML. Furthermore, marine aerosol particles (PM1) were sampled during the cruise and analyzed for GLY (average concentration 0.19 ng m-3) and MGLY (average concentration 0.15 ng m-3). On aerosol particles, both carbonyls show a very good correlation with oxalate, supporting the idea of a secondary formation of oxalic acid via GLY and MGLY. Concentrations of GLY and MGLY in seawater and on aerosol particles were correlated to environmental parameters such as global radiation, temperature, distance to the coastline and biological activity. There are slight hints for a photochemical production of GLY and MGLY in the SML (significant enrichment in the SML, higher enrichment at higher temperature). However, a clear connection of GLY and MGLY to global radiation as well as to biological activity cannot be concluded from the data. A slight correlation between GLY and MGLY in the SML and in aerosols could be a hint for interactions of especially GLY between seawater and the atmosphere.

  17. Glyoxal and Methylglyoxal in Atlantic Seawater and marine Aerosol Particles

    NASA Astrophysics Data System (ADS)

    van Pinxteren, Manuela; Herrmann, Hartmut

    2014-05-01

    The two ?-dicarbonyls glyoxal (CHOCHO; GLY) and methylglyoxal (CH3COCHO; MGLY) have attracted increasing attention over the past years because of their potential role in secondary organic aerosol formation. Recently Sinreich et al. (2010) suggested the open ocean as an important (so far unknown) source for GLY in the atmosphere. To date, there are few available field data of these compounds in the marine area. In this study we present measurements of GLY and MGLY in seawater and marine aerosol particles sampled during a transatlantic Polarstern cruise in spring 2011. In seawater we especially investigated the sea surface microlayer (sampled with the glass plate technique) as it is the direct interface between ocean and atmosphere. Analytical measurements were based on derivatisation with o-(2,3,4,5,6-Pentafluorobenzyl)-hydroxylamine reagent, solvent extraction and GC-MS (SIM) analysis. The results show that GLY and MGLY are present in the sea surface microlayer of the ocean and corresponding bulkwater with average concentrations of 228 ng L-1 (GLY) and 196 ng L-1 (MGLY). Significant enrichment (factor of 4) of GLY and MGLY in the sea surface microlayer was found implying photochemical production of the two carbonyls though a clear connection to global radiation was not observed. On aerosol particles, both carbonyls were detected (average concentration 0.2 ng m-3) and are strongly connected to each other, suggesting similar formation mechanisms. Both carbonyls show a very good correlation with particulate oxalate, supporting the idea of a secondary formation of oxalic acid via GLY and MGLY. A slight correlation of the two carbonyls in the sea surface microlayer and in the aerosol particles was found at co-located sampling areas. In summary, the results of GLY and MGLY in marine aerosol particles and in the oceanic water give first insights towards interaction processes of these alpha dicarbonyls between ocean and atmosphere (van Pinxteren and Herrmann (2013)). References: Sinreich et al., Ship-based detection of glyoxal over the remote tropical Pacific Ocean. Atmos. Chem. Phys. 10(23), 11359-11371 (2010). van Pinxteren and Herrmann, Glyoxal and Methylglyoxal in Atlantic Seawater and marine Aerosol Particles: Method development and first application during the Polarstern cruise ANT XXVII/4. Atmos. Chem. Phys. 13, 11791-11802 (2013).

  18. Ice Nuclei in Marine Air: Biogenic Particles or Dust?

    SciTech Connect

    Burrows, Susannah M.; Hoose, C.; Poschl, U.; Lawrence, M.

    2013-01-11

    Ice nuclei impact clouds, but their sources and distribution in the atmosphere are still not well known. Particularly little attention has been paid to IN sources in marine environments, although evidence from field studies suggests that IN populations in remote marine regions may be dominated by primary biogenic particles associated with sea spray. In this exploratory model study, we aim to bring attention to this long-neglected topic and identify promising target regions for future field campaigns. We assess the likely global distribution of marine biogenic ice nuclei using a combination of historical observations, satellite data and model output. By comparing simulated marine biogenic immersion IN distributions and dust immersion IN distributions, we predict strong regional differences in the importance of marine biogenic IN relative to dust IN. Our analysis suggests that marine biogenic IN are most likely to play a dominant role in determining IN concentrations in near-surface-air over the Southern Ocean, so future field campaigns aimed at investigating marine biogenic IN should target that region. Climate related changes in the abundance and emission of biogenic marine IN could affect marine cloud properties, thereby introducing previously unconsidered feedbacks that influence the hydrological cycle and the Earth’s energy balance. Furthermore, marine biogenic IN may be an important aspect to consider in proposals for marine cloud brightening by artificial sea spray production.

  19. Regional signatures in the organic composition of marine aerosol particles

    NASA Astrophysics Data System (ADS)

    Frossard, Amanda A.; Russell, Lynn M.; Keene, William C.; Kieber, David J.; Quinn, Patricia K.; Bates, Timothy S.

    2013-05-01

    Marine aerosol particles play an important role in the earth's radiative balance, yet the sources and composition of the organic fraction remain largely unconstrained. Recent measurements have been made in order to characterize the sources, composition, and concentration of aerosol particles in the marine boundary layer. The organic composition of submicron particles derived from multiple seawater regions have been measured using Fourier Transform Infrared (FTIR) spectroscopy. Cluster analysis of FTIR organic spectra suggest different spectral signatures based on collection location, seawater composition, and ambient conditions. Measurements including non-refractory aerosol composition from a high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS), seawater composition, and wind speed were used to interpret the cluster results, depending on the availability from each campaign. FTIR spectra of ambient particles are compared to FTIR spectra of primary marine particles generated from model ocean systems to infer the ambient particle production mechanisms and aging processes. Recent measurements used in the comparison include ambient and generated marine aerosol particles measured off the coast of California during CalNex in May and June 2010. Remote ambient marine aerosol particles were collected 100 miles off the coast of Monterey in the eastern Pacific during the EPEACE experiment in July 2011. Ambient and generated marine particles were measured in two different seawater types during WACS 2012 including colder, more productive water off the coast of the northeastern United States and warmer, oligotrophic water in the Sargasso Sea. These particles are also compared with those measured in the southeastern Pacific during VOCALS and the north Atlantic during ICEALOT.

  20. A marine biogenic source of atmospheric ice-nucleating particles.

    PubMed

    Wilson, Theodore W; Ladino, Luis A; Alpert, Peter A; Breckels, Mark N; Brooks, Ian M; Browse, Jo; Burrows, Susannah M; Carslaw, Kenneth S; Huffman, J Alex; Judd, Christopher; Kilthau, Wendy P; Mason, Ryan H; McFiggans, Gordon; Miller, Lisa A; Nájera, Juan J; Polishchuk, Elena; Rae, Stuart; Schiller, Corinne L; Si, Meng; Temprado, Jesús Vergara; Whale, Thomas F; Wong, Jenny P S; Wurl, Oliver; Yakobi-Hancock, Jacqueline D; Abbatt, Jonathan P D; Aller, Josephine Y; Bertram, Allan K; Knopf, Daniel A; Murray, Benjamin J

    2015-09-10

    The amount of ice present in clouds can affect cloud lifetime, precipitation and radiative properties. The formation of ice in clouds is facilitated by the presence of airborne ice-nucleating particles. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice. Sea-spray aerosol contains large amounts of organic material that is ejected into the atmosphere during bubble bursting at the organically enriched sea-air interface or sea surface microlayer. Here we show that organic material in the sea surface microlayer nucleates ice under conditions relevant for mixed-phase cloud and high-altitude ice cloud formation. The ice-nucleating material is probably biogenic and less than approximately 0.2 micrometres in size. We find that exudates separated from cells of the marine diatom Thalassiosira pseudonana nucleate ice, and propose that organic material associated with phytoplankton cell exudates is a likely candidate for the observed ice-nucleating ability of the microlayer samples. Global model simulations of marine organic aerosol, in combination with our measurements, suggest that marine organic material may be an important source of ice-nucleating particles in remote marine environments such as the Southern Ocean, North Pacific Ocean and North Atlantic Ocean. PMID:26354482

  1. A marine biogenic source of atmospheric ice-nucleating particles

    NASA Astrophysics Data System (ADS)

    Wilson, Theodore W.; Ladino, Luis A.; Alpert, Peter A.; Breckels, Mark N.; Brooks, Ian M.; Browse, Jo; Burrows, Susannah M.; Carslaw, Kenneth S.; Huffman, J. Alex; Judd, Christopher; Kilthau, Wendy P.; Mason, Ryan H.; McFiggans, Gordon; Miller, Lisa A.; Nájera, Juan J.; Polishchuk, Elena; Rae, Stuart; Schiller, Corinne L.; Si, Meng; Temprado, Jesús Vergara; Whale, Thomas F.; Wong, Jenny P. S.; Wurl, Oliver; Yakobi-Hancock, Jacqueline D.; Abbatt, Jonathan P. D.; Aller, Josephine Y.; Bertram, Allan K.; Knopf, Daniel A.; Murray, Benjamin J.

    2015-09-01

    The amount of ice present in clouds can affect cloud lifetime, precipitation and radiative properties. The formation of ice in clouds is facilitated by the presence of airborne ice-nucleating particles. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice. Sea-spray aerosol contains large amounts of organic material that is ejected into the atmosphere during bubble bursting at the organically enriched sea-air interface or sea surface microlayer. Here we show that organic material in the sea surface microlayer nucleates ice under conditions relevant for mixed-phase cloud and high-altitude ice cloud formation. The ice-nucleating material is probably biogenic and less than approximately 0.2 micrometres in size. We find that exudates separated from cells of the marine diatom Thalassiosira pseudonana nucleate ice, and propose that organic material associated with phytoplankton cell exudates is a likely candidate for the observed ice-nucleating ability of the microlayer samples. Global model simulations of marine organic aerosol, in combination with our measurements, suggest that marine organic material may be an important source of ice-nucleating particles in remote marine environments such as the Southern Ocean, North Pacific Ocean and North Atlantic Ocean.

  2. Characteristics of aerosolized ice forming marine biogenic particles

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.

    Ice particles are ubiquitous in the atmosphere existing as the sole constituents of glaciated cirrus clouds or coexisting with supercooled liquid droplets in mixed-phase clouds. Aerosol particles serving as heterogeneous ice nuclei for ice crystal formation impact the global radiative balance by modification of cloud radiative properties, and thus climate. Atmospheric ice formation is not a well understood process and represents great uncertainty for climate prediction. The oceans which cover the majority of the earth's surface host nearly half the total global primary productivity and contribute to the greatest aerosol production by mass. However, the effect of biological activity on particle aerosolization, particle composition, and ice nucleation is not well established. This dissertation investigates the link between marine biological activity, aerosol particle production, physical/chemical particle characteristics, and ice nucleation under controlled laboratory conditions. Dry and humidified aerosol size distributions of particles from bursting bubbles generated by plunging water jets and aeration through frits in a seawater mesocosm containing bacteria and/or phytoplankton cultures, were measured as a function of biological activity. Total particle production significantly increases primarily due to enhanced aerosolization of particles ?100 nm in diameter attributable to the presence and growth of phytoplankton. Furthermore, hygroscopicity measurements indicate primary organic material associated with the sea salt particles, providing additional evidence for the importance of marine biological activity for ocean derived aerosol composition. Ice nucleation experiments show that these organic rich particles nucleate ice efficiently in the immersion and deposition modes, which underscores their importance in mixed-phase and cirrus cloud formation processes. In separate ice nucleation experiments employing pure cultures of Thalassiosira pseudonana, Nannochloris atomus and Emiliania huxleyi, cells and cell fragments efficiently nucleate ice in the deposition mode, however, only T. pseudonana and N. atomus form ice in the immersion mode, presumably due to different cell wall compositions. This further corroborates the role of phytoplanktonic species for aerosolization of marine biogenic cloud active particles. Experimental data are used to parameterize marine biogenic particle fluxes and heterogeneous ice nucleation as a function of biological activity. The atmospheric implications of the results and their implementation into cloud and climate models are discussed.

  3. Australian developments in marine science

    NASA Astrophysics Data System (ADS)

    Coffin, Millard F.

    2012-07-01

    Australia is an island nation with about two thirds of its jurisdiction underwater. On 25 May 2012, Australia instituted the Seas and Submerged Lands (Limits of Continental Shelf) Proclamation 2012, confirming areas of seabed where Australia has exclusive rights to explore and exploit marine resources. This proclamation follows recommendations by the Commission on the Limits of the Continental Shelf, a body established under the United Nations Convention on the Law of the Sea, confirming Australia's entitlement to extended continental shelf, i.e., that beyond 200 nautical miles from the coastline, of some 2.56 million square kilometers, excluding Australian Antarctic Territory [Symonds et al., 2009] (Figure 1a).

  4. Techniques employed for detection of hot particles in the marine environment.

    PubMed

    Pillsbury, G D

    2007-09-01

    During the decommissioning of the Maine Yankee nuclear plant, several methods were developed and employed to survey for hot particles in the marine environment surrounding the site. The methods used and the sensitivities achieved in the search for environmentally dispersed particles during the various decommissioning activities performed are described in detail. Surveys were performed on dry soil, exposed marine sediment and submerged marine sediment. Survey techniques ranged from the use of the basic NaI detector coupled to a count rate meter to an intrinsic germanium detector deployed in a submarine housing coupled to a multi-channel analyser. The initial surveys consisted of collecting samples of marine sediment, spreading them out over a 1 m2 surface in a thin layer, and scanning the deposited sediment by hand using a 5 cm by 5 cm NaI detector coupled to a standard count rate meter. This technique was later replaced by walkover scans with the 5 cm by 5 cm NaI detector moved in a serpentine pattern over the sediment surface. By coupling the detector to a 'smart meter', an alarm set point could be used to alert the surveyor to the presence of a particle within the instrument's field of view. A similar technique, with the detector mounted in a watertight housing secured to the end of a pole, was also employed to scan underwater locations. The most sensitive method developed for performing underwater surveys was the use of the intrinsic germanium detector placed in a submarine housing. Detailed descriptions of the methods employed and the results obtained are presented. This work demonstrates that there are several approaches to surveying for discrete particles in the marine environment and the relative merits of each are considered. PMID:17768317

  5. Development of Particle Flow Calorimetry

    E-print Network

    Jose Repond

    2011-10-10

    This talk reviews the development of imaging calorimeters for the purpose of applying Particle Flow Algorithms (PFAs) to the measurement of hadronic jets at a future lepton collider. After a short introduction, the current status of PFA developments is presented, followed by a review of the major developments in electromagnetic and hadronic calorimetry.

  6. Oil-Particle Interactions and Submergence from Crude Oil Spills in Marine and Freshwater Environments--

    E-print Network

    Oil-Particle Interactions and Submergence from Crude Oil Spills in Marine and Freshwater of the Interior U.S. Geological Survey #12;#12;Oil-Particle Interactions and Submergence from Crude Oil Spills, 2015, Oil-particle interactions and submergence from crude oil spills in marine and freshwater

  7. Sound pressure and particle acceleration audiograms in three marine fish species from the Adriatic Sea

    E-print Network

    Ladich, Friedrich

    Sound pressure and particle acceleration audiograms in three marine fish species from the Adriatic measured in terms of sound pressure level and particle acceleration level in the three Cartesian directions be either described as acoustic displacement, particle velocity, or particle acceleration, each of which can

  8. Self-assembly of marine exudate particles and their impact on the CCN properties of nascent marine aerosol

    NASA Astrophysics Data System (ADS)

    Schill, S.; Zimmermann, K.; Ryder, O. S.; Campbell, N.; Collins, D. B.; Gianneschi, N.; Bertram, T. H.

    2013-12-01

    Spontaneous self-assembly of marine exudate particles has previously been observed in filtered seawater samples. The chemicophysical properties of these particles may alter the chemical composition and CCN properties of nascent marine aerosol, yet to date simultaneous measurement of seawater exudate particle formation rates and number distributions, with aerosol particle formation rates and CCN activity are lacking. Here, we use a novel Marine Aerosol Reference Tank (MART) system to experimentally mimic a phytoplankton bloom via sequential addition of biological surrogates, including sterol, galactose, lipopolysaccharide, BSA protein, and dipalmitoylphosphatidylcholine. Nascent sea-spray aerosol are generated in the MART system via a continuous plunging waterfall. Exudate particle assembly in the water is monitored via dynamic light scattering (DLS) and transmission electron microscopy (TEM) to obtain both the assembly kinetics of the particles as well as particle number distributions Simultaneous characterization of both particle production rates and super-saturated particle hygroscopicity are also discussed. This study permits analysis of the controlling role of the molecular composition of dissolved organic carbon in setting the production rates of colloidal material in the surface oceans.

  9. Coated particle waste form development

    SciTech Connect

    Oma, K.H.; Buckwalter, C.Q.; Chick, L.A.

    1981-12-01

    Coated particle waste forms have been developed as part of the multibarrier concept at Pacific Northwest Laboratory under the Alternative Waste Forms Program for the Department of Energy. Primary efforts were to coat simulated nuclear waste glass marbles and ceramic pellets with low-temperature pyrolytic carbon (LT-PyC) coatings via the process of chemical vapor deposition (CVD). Fluidized bed (FB) coaters, screw agitated coaters (SAC), and rotating tube coaters were used. Coating temperatures were reduced by using catalysts and plasma activation. In general, the LT-PyC coatings did not provide the expected high leach resistance as previously measured for carbon alone. The coatings were friable and often spalled off the substrate. A totally different concept, thermal spray coating, was investigated at PNL as an alternative to CVD coating. Flame spray, wire gun, and plasma gun systems were evaluated using glass, ceramic, and metallic coating materials. Metal plasma spray coatings (Al, Sn, Zn, Pb) provided a two to three orders-of-magnitude increase in chemical durability. Because the aluminum coatings were porous, the superior leach resistance must be due to either a chemical interaction or to a pH buffer effect. Because they are complex, coated waste form processes rank low in process feasibility. Of all the possible coated particle processes, plasma sprayed marbles have the best rating. Carbon coating of pellets by CVD ranked ninth when compared with ten other processes. The plasma-spray-coated marble process ranked sixth out of eleven processes.

  10. The Development of a Virtual Marine Museum for Educational Applications

    ERIC Educational Resources Information Center

    Tarng, Wermhuar; Change, Mei-Yu; Ou, Kuo-Liang; Chang, Ya-Wen; Liou, Hsin-Hun

    2009-01-01

    The objective of this article is to investigate the computer animation and virtual reality technologies for developing a virtual marine museum. The museum consists of three exhibition areas. The first area displays fishes in freshwater, including creeks, rivers, and dams in Taiwan. The second area exhibits marine ecology and creatures of different…

  11. Thorium isotopes in the western Mediterranean Sea: an insight into the marine particle dynamics

    E-print Network

    Coppola, Laurent

    Thorium isotopes in the western Mediterranean Sea: an insight into the marine particle dynamics M rights reserved. Keywords: thorium; isotopes; sea water; particles; sedimentation; Mediterranean Sea 1 physical, chemical and biological processes and sometimes non-steady-state condi- tions [1^4]. Thorium

  12. Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources

    PubMed

    Clarke; Davis; Kapustin; Eisele; Chen; Paluch; Lenschow; Bandy; Thornton; Moore; Mauldin; Tanner; Litchy; Carroll; Collins; Albercook

    1998-10-01

    New particle formation in a tropical marine boundary layer setting was characterized during NASA's Pacific Exploratory Mission-Tropics A program. It represents the clearest demonstration to date of aerosol nucleation and growth being linked to the natural marine sulfur cycle. This conclusion was based on real-time observations of dimethylsulfide, sulfur dioxide, sulfuric acid (gas), hydroxide, ozone, temperature, relative humidity, aerosol size and number distribution, and total aerosol surface area. Classic binary nucleation theory predicts no nucleation under the observed marine boundary layer conditions. PMID:9756483

  13. 76 FR 78290 - Cooperative Research and Development Agreement: Usage of Biodiesel Fuel Blends Within Marine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ...and Development Agreement: Usage of Biodiesel Fuel Blends Within Marine Inboard Engines...and other issues associated with using biodiesel fuel blends in marine inboard engines...this notice (investigating the use of biodiesel fuel blends in marine inboard...

  14. Characterization of particles from a marine engine operating at low loads

    NASA Astrophysics Data System (ADS)

    Anderson, Maria; Salo, Kent; Hallquist, Åsa M.; Fridell, Erik

    2015-01-01

    Particle emissions from a marine diesel engine operating at low loads with four different fuels were characterized with respect to particle number (PN) and particle mass (PM), size distribution, volatility and chemical composition. The four different fuels used were Swedish Environmental class 1 (MK1) and class 3 diesel (MK3), heavy fuel oil (HFO, 0.12 wt% S) and marine diesel oil (MDO, 0.52 wt% S). The measurements were performed for a marine diesel engine in a test-bed engine lab and the particle emissions were measured with an Engine Exhaust Particle Sizer and a Dust Monitor, giving the number concentrations in the size range of 5.6-560 nm and 300 nm to 20 ?m, respectively. To quantify the amount of solid particles a thermodenuder was used. Additionally, filter samples were taken for gravimetric, black carbon (BC) and elemental analysis. The particle emissions showed a bimodal size distribution by number and the number concentrations were dominated by nanoparticles (diameter (Dp) < 50 nm). The nanoparticles measured were both primary and secondary particles, depending on fuel and engine load, while the particles with Dp > 50 nm generally were solid primary particles. Combustion of HFO resulted in the highest PN and PM concentrations. Emission factors (EFs) for PM and PN for both the total particle emissions and the fraction of primary, solid particles are presented for different fuels and loads. EFs for nitrogen oxides (NOx), BC and some elements (Ca, Fe, V, Ni, Zn) are presented as well. This study contributes to understanding particle emissions from potential future fuels as well as emissions in ports and coastal areas where lower engine loads are common.

  15. DETERMINATION OF CHEMICAL COMPOSITION OF MARINE AEROSOL PARTICLES AND ITS EFFECTS ON AEROSOL AND CLOUD PROPERTIES

    E-print Network

    AND CLOUD PROPERTIES DURING THE 2005 MASE FIELD CAMPAIGN Y.-N. Lee, J. Jayne, M. Alexander, S. Springston, J and longer-lived, enhancing the cooling effect, the presence of soluble components such as sea-salt particles play in the properties of marine stratus clouds, we measured aerosol and cloud properties on board

  16. The purication of chlorins from marine particles and sediments for nitrogen and carbon isotopic analysis

    E-print Network

    Sachs, Julian P.

    The puri®cation of chlorins from marine particles and sediments for nitrogen and carbon isotopic to author for revision 12 August 1999) Abstract Methods are presented for the separation of chlorins from of 91 and 96%, respectively, were obtained for particulate chlorins, with recoveries of 88%. Sedimentary

  17. Enhancing effect of marine oligotrophy on environmental concentrations of particle-reactive trace elements

    SciTech Connect

    Jeffree, R.A.; Szymczak, R.

    2000-05-15

    A biogeochemical model has been previously developed that explains the inverse and nonlinear relationship between Po-210 concentration in zooplankton and their biomass, under oligotrophic conditions in French Polynesia. In this study the model structure was reviewed to determine a set of biogeochemical behaviors of Po-210, proposed to be critical to its environmental enhancement under oligotrophy: this set was then used to identify 25 other elements with comparable behaviors to Po-210. Field investigation in the Timor Sea showed that four of these a priori identified elements, viz. Cd, Co, Pb, and Mn as well as Cr and Ni, showed elevated water concentrations with reduced particle removal rates in the euphotic zone, results that are consistent with those previously obtained for Po-210 and the proposed explanatory model. These findings point to the enhanced susceptibility to contamination with particle-reactive elements of oligotrophic marine systems, whose degree and geographic extent may be enhanced by projected increases in sea surface temperatures from global warming.

  18. Fine-Mode Marine Aerosol Composition over the Southern Ocean Exampled by Individual Particle Analysis

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Anderson, J. R.

    2012-12-01

    During a cruise in the Southern Ocean in the austral summer of 2010-2011, the fine-mode aerosol particles (0.1 - 1.0 microns in diameter) were collected on a transect from 55S, 94E to 69S, 76E to characterize marine aerosols, as aerosol particles in that size fraction may effectively serve as cloud condensation nuclei and scatter solar radiation in the marine atmospheric boundary layer. Analyses of individual aerosol particles were performed by automated scanning electron microscopy. Preliminary results indicate that the main components of the aerosol particles examined so far include sodium chloride, calcium sulfate and aluminum oxide (alumina), and the great majority of the particles consist of these components or mixtures of these components. A small percentage of fine particles were detected to have minor Fe. The aerosol samples collected appeared to be impacted by air masses from the Antarctic Peninsula and Patagonia. The presence of fine Al-rich particles suggests transport from a source or sources in Patagonia, such as the complex at Puerto Madryn, Argentina. The presence of Al of industrial origin (and the lack of Al-rich silicates from soil dust) in these fine particles is of interest, since its presence in aerosols is sometimes used as a marker for dust. The possible impact of anthropogenic pollutant aerosols on this remote oceanic region is also striking.

  19. Chemical Speciation of Sulfur in Marine Cloud Droplets and Particles: Analysis of Individual Particles from Marine Boundary Layer over the California Current

    SciTech Connect

    William R. Wiley Environmental Sciences Laboratory, Pacific Northwest National Laboratory; Gilles, Mary K; Hopkins, Rebecca J.; Desyaterik, Yury; Tivanski, Alexei V.; Zaveri, Rahul A.; Berkowitz, Carl M.; Tyliszczak, Tolek; Gilles, Mary K.; Laskin, Alexander

    2008-03-12

    Detailed chemical speciation of the dry residue particles from individual cloud droplets and interstitial aerosol collected during the Marine Stratus Experiment (MASE) was performed using a combination of complementary microanalysis techniques. Techniques include computer controlled scanning electron microscopy with energy dispersed analysis of X-rays (CCSEM/EDX), time-of-flight secondary ionization mass spectrometry (TOF-SIMS), and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Samples were collected at the ground site located in Point Reyes National Seashore, approximately 1 km from the coast. This manuscript focuses on the analysis of individual particles sampled from air masses that originated over the open ocean and then passed through the area of the California current located along the northern California coast. Based on composition, morphology, and chemical bonding information, two externally mixed, distinct classes of sulfur containing particles were identified: chemically modified (aged) sea salt particles and secondary formed sulfate particles. The results indicate substantial heterogeneous replacement of chloride by methanesulfonate (CH3SO3-) and non-sea salt sulfate (nss-SO42-) in sea-salt particles with characteristic ratios of nss-S/Na>0.10 and CH3SO3-/nss-SO42->0.6.

  20. Marine ecology service reuse through taxonomy-oriented SPL development

    NASA Astrophysics Data System (ADS)

    Buccella, Agustina; Cechich, Alejandra; Pol`la, Matias; Arias, Maximiliano; del Socorro Doldan, Maria; Morsan, Enrique

    2014-12-01

    Nowadays, reusing software applications encourages researchers and industrials to collaborate in order to increase software quality and to reduce software development costs. However, effective reuse is not easy and only a limited portion of reusable models actually offers effective evidence regarding their appropriateness, usability and/or effectiveness. Focusing reuse on a particular domain, such as marine ecology, allows us to narrow the scope; and along with a systematic approach such as software product line development, helps us to potentially improving reuse. From our experiences developing a subdomain-oriented software product line (SPL for the marine ecology subdomain), in this paper we describe semantic resources created for assisting this development and thus promoting systematic software reuse. The main contributions of our work are focused on the definition of a standard conceptual model for marine ecology applications together with a set of services and guides which assist the process of product derivation. The services are structured in a service taxonomy (as a specialization of the ISO 19119 std) in which we create a new set of categories and services built over a conceptual model for marine ecology applications. We also define and exemplify a set of guides for composing the services of the taxonomy in order to fulfill different functionalities of particular systems in the subdomain.

  1. DEVELOPMENT OF A SPERM CELL TOXICITY TEST FOR MARINE WATERS

    EPA Science Inventory

    Preliminary methods for conducting a quick and sensitive sperm cell toxicity test for marine waters have been developed. This paper presents a simple static test in which sea urchin or sand dollar sperm cells are exposed to test or control solutions for short periods of time (typ...

  2. Offshore Petroleum Resource Development and Marine Mammals: A Review and

    E-print Network

    Offshore Petroleum Resource Development and Marine Mammals: A Review and Research Recommendations J with all phases of petroleum exploration and production. The physical, physiological, and behavioral ef to cause acute toxicity. However, the long- term effects of accumulation of petroleum basic data needed

  3. Atmospheric new particle formation as a source of CCN in the eastern Mediterranean marine boundary layer

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Kerminen, V.-M.; Kouvarakis, G.; Stavroulas, I.; Bougiatioti, A.; Nenes, A.; Manninen, H. E.; Petäjä, T.; Kulmala, M.; Mihalopoulos, N.

    2015-08-01

    While cloud condensation nuclei (CCN) production associated with atmospheric new particle formation (NPF) is thought to be frequent throughout the continental boundary layers, few studies on this phenomenon in marine air exist. Here, based on simultaneous measurement of particle number size distributions, CCN properties and aerosol chemical composition, we present the first direct evidence on CCN production resulting from NPF in the eastern Mediterranean atmosphere. We show that condensation of both gaseous sulfuric acid and organic compounds from multiple sources leads to the rapid growth of nucleated particles to CCN sizes in this environment during the summertime. Sub-100 nm particles were found to be substantially less hygroscopic than larger particles during the period with active NPF and growth (the value of ? was lower by 0.2-0.4 for 60 nm particles compared with 120 nm particles), probably due to enrichment of organic material in the sub-100 nm size range. The aerosol hygroscopicity tended to be at minimum just before the noon and at maximum in the afternoon, which was very likely due to the higher sulfate-to-organic ratios and higher degree of oxidation of the organic material during the afternoon. Simultaneous with the formation of new particles during daytime, particles formed during the previous day or even earlier were growing into the size range relevant to cloud droplet activation, and the particles formed in the atmosphere were possibly mixed with long-range-transported particles.

  4. High-temperature LDV seed particle development

    NASA Technical Reports Server (NTRS)

    Frish, Michael B.; Pierce, Vicky G.

    1989-01-01

    The feasibility of developing a method for making monodisperse, unagglomerated spherical particles greater than 50 nm in diameter was demonstrated. Carbonaceous particles were made by pyrolyzing ethylene with a pulsed CO2 laser, thereby creating a non-equilibrium mixture of carbon, hydrogen, hydrocarbon vapors, and unpyrolyzed ethylene. Via a complex series of reactions, the carbon and hydrocarbon vapors quickly condensed into the spherical particles. By cooling and dispersing them in a supersonic expansion immediately after their creation, the hot newly-formed spheres were prevented from colliding and coalescing, thus preventing the problem of agglomeration which as plagued other investigators studying laser-simulated particle formation. The cold particles could be left suspended in the residual gases indefinitely without agglomerating. Their uniform sizes and unagglomerated nature were visualized by collecting the particles on filters that were subsequently examined using electron microscopy. It was found the mean particle size can be coarsely controlled by varying the initial ethylene pressure, and can be finely controlled by varying the fluence (energy/unit area) with which the laser irradiates the gas. The motivating application for this research was to manufacture particles that could be used as laser Doppler velocimetry (LDV) seeds in high-temperature high-speed flows. Though the particles made in this program will not evaporate until heated to about 3000 K, and thus could serve as LDV seeds in some applications, they are not ideal when the hot atmosphere is also oxidizing. In that situation, ceramic materials would be preferable. Research performed elsewhere has demonstrated that selected ceramic materials can be manufactured by laser pyrolysis of appropriate supply gases. It is anticipated that, when the same gases are used in conjunction with the rapid cooling technique, unagglomerated spherical ceramic particles can be made with little difficulty. Such particles would also be valuable to manufacturers of ceramic or abrasive products, and this technique may find its greatest commercial potential in those areas.

  5. High-temperature LDV seed particle development

    NASA Astrophysics Data System (ADS)

    Frish, Michael B.; Pierce, Vicky G.

    1989-05-01

    The feasibility of developing a method for making monodisperse, unagglomerated spherical particles greater than 50 nm in diameter was demonstrated. Carbonaceous particles were made by pyrolyzing ethylene with a pulsed CO2 laser, thereby creating a non-equilibrium mixture of carbon, hydrogen, hydrocarbon vapors, and unpyrolyzed ethylene. Via a complex series of reactions, the carbon and hydrocarbon vapors quickly condensed into the spherical particles. By cooling and dispersing them in a supersonic expansion immediately after their creation, the hot newly-formed spheres were prevented from colliding and coalescing, thus preventing the problem of agglomeration which as plagued other investigators studying laser-simulated particle formation. The cold particles could be left suspended in the residual gases indefinitely without agglomerating. Their uniform sizes and unagglomerated nature were visualized by collecting the particles on filters that were subsequently examined using electron microscopy. It was found the mean particle size can be coarsely controlled by varying the initial ethylene pressure, and can be finely controlled by varying the fluence (energy/unit area) with which the laser irradiates the gas. The motivating application for this research was to manufacture particles that could be used as laser Doppler velocimetry (LDV) seeds in high-temperature high-speed flows. Though the particles made in this program will not evaporate until heated to about 3000 K, and thus could serve as LDV seeds in some applications, they are not ideal when the hot atmosphere is also oxidizing. In that situation, ceramic materials would be preferable. Research performed elsewhere has demonstrated that selected ceramic materials can be manufactured by laser pyrolysis of appropriate supply gases. It is anticipated that, when the same gases are used in conjunction with the rapid cooling technique, unagglomerated spherical ceramic particles can be made with little difficulty. Such particles would also be valuable to manufacturers of ceramic or abrasive products, and this technique may find its greatest commercial potential in those areas.

  6. DEVELOPMENT OF MARINE WATER QUALITY CRITERIA

    EPA Science Inventory

    The U.S. Environmental Protectional Agency has developed guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. These guidelines provide the method for deriving water quality criteria, including minimum data base...

  7. Developing Regional Marine Ecosystem Approaches to Management

    E-print Network

    and stakeholders besides NOAA, with interests and regulatory authority for transportation, energy, water and air quality, permitting, etc., to participate in a common venue and use a collaborative process to develop for an ecosystem approach to fisheries management in direct collaboration with Regional Fishery Management Councils

  8. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 ?m in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles <100 nm generated by means of jets were enhanced with time compared with larger sizes. In contrast, all particle sizes were equally enhanced when frits were used. Aerosolized particles were hygroscopic, a finding with significance for warm cloud formation and potential liquid-to-ice phase transformations. Aqueous and dry aerosolized particles from biologically active mesocosm water were found to efficiently nucleate ice exposed to supersaturated water vapor. The majority of particles, including those nucleating ice, consisted of a sea salt core coated with organic material dominated by the carboxyl functional group, and corresponded to a particle type commonly found in marine air. Our results provide improved estimates of marine aerosol production, chemical composition, and hygroscopicity, as well as an accurate physical and chemical representation of ice nucleation by marine biogenic aerosol particles for use in cloud and climate models.

  9. Marine management efforts for the Pagerungan gas development

    SciTech Connect

    Hamzah, A.; Saleh, A.A.; Budhi, T.S.

    1996-12-31

    ARCO and Pertamina in Indonesia have developed and are producing from gas reserves in the Pagerungan Field. The substantial commercial gas reserves of Pagerungan Field were discovered 1985. The gas producing facilities were built in 1991-1993 on Pagerungan and were designed for 350 MMSCFD of dry gas and 3,500 bbl/day of condensate. About 9 of the 16 planned wells are producing. The gas and condensate sales commenced on January 1994. In Pagerungan island, the aquatic marine environment plays an important role in sustaining organisms which in turn provide both employment and business opportunities for the local people. The Pagerungan gas development has been completed with a series of environmental studies. The studies point out that the development is likely to have a significant impact on the marine environment. For this reason, the company are responsible for managing and monitoring these possible effects and taking action to mitigate potential or actual problems.

  10. Dispersal kernel estimation: A comparison of empirical and modelled particle dispersion in a coastal marine system

    NASA Astrophysics Data System (ADS)

    Hrycik, Janelle M.; Chassé, Joël; Ruddick, Barry R.; Taggart, Christopher T.

    2013-11-01

    Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conservation to the design of marine reserves and the mitigation of species invasions. Here we compare estimates of real particle dispersion in a coastal marine environment with similar estimates provided by hydrodynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location dispersed through the collector array over a 5-7 d period. A virtual release and observed (real-time) environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector array and the number of VPs that passed through each corresponding model location were enumerated and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the range of 5.19-11.44 km, while those from the model simulations were comparable at 1.89-6.52 km, and also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in modelling and are postulated to be related to MAP losses from the water column and (or) shear dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic systems, and 2) quantitatively assessing and (or) improving regional hydrodynamic models.

  11. The phase function of Venus cloud particles from Mariner 10 data

    NASA Technical Reports Server (NTRS)

    Hapke, B.

    1978-01-01

    Mariner 10 images of Venus taken at several phase angles were photometrically reduced. The analysis shows that the phase function of the cloud particles is not isotropic, as had been deduced earlier from the brightness distribution on spacecraft images taken at a single phase angle, but has a broad minimum near 60 deg and is forward-scattering. The scattering properties are in quantitative agreement with previous deductions from earth-based polarization measurements by Hansen and his associates.

  12. The oceanographic toolbox for the collection of sinking and suspended marine particles

    NASA Astrophysics Data System (ADS)

    McDonnell, Andrew M. P.; Lam, Phoebe J.; Lamborg, Carl H.; Buesseler, Ken O.; Sanders, Richard; Riley, Jennifer S.; Marsay, Chris; Smith, Helen E. K.; Sargent, Elizabeth C.; Lampitt, Richard S.; Bishop, James K. B.

    2015-04-01

    Marine particles play a central role in controlling the transport, cycling, and inventories of many major elements and trace elements and isotopes throughout the oceans. Studies seeking to elucidate the biogeochemical roles of marine particles often require reliable ways to collect them from the ocean. Here, we review the oceanographic toolbox of techniques and instrumentation that are employed to collect both suspended and sinking particles. With these tools, it is possible to determine both the concentrations and vertical fluxes of important elements and individual particle types. We describe the various methods for quantifying the concentrations of particulate matter with in situ pumps, towed sampling devices, bottle collectors, and large volume capture devices. The uses of various types of flux collection platforms are discussed including surface tethered, neutrally buoyant, and bottom moored devices. We address the issues of sediment trap collection biases and the apparent inconsistencies that can arise due to differences in the temporal and spatial scales sampled by the various methodologies. Special attention is given to collection considerations made for the analysis of trace metals and isotopes, as these methodologies are of high importance to the ongoing GEOTRACES program which seeks to identify the processes and quantify fluxes that control the distributions of key trace elements and isotopes in the ocean. With the emergence of new particle collection methodologies and the continued reliance on traditional collection methods, it is imperative that we combine these multiple approaches in ways that will help improve their accuracy and precision while enhancing their utility in advancing understanding of the biogeochemical and ecological roles of marine particles.

  13. Chemical Speciation of Sulfur in Marine Cloud Droplets and Particles: Analysis of Individual Particles from the Marine Boundary Layer Over the California Current

    SciTech Connect

    Hopkins, Rebecca J.; Desyaterik, Yury; Tivanski, Alexei V.; Zaveri, Rahul A.; Berkowitz, Carl M.; Tyliszczak, T.; Gilles, Marry K.; Laskin, Alexander

    2008-02-27

    Detailed chemical speciation of the dry residue particles from individual cloud droplets and interstitial aerosol collected during the Marine Stratus Experiment (MASE) was performed using a complementary combination of microanalysis techniques. Techniques include computer controlled scanning electron microscopy with energy dispersed analysis of X-rays (CCSEM/EDX), time-of-flight secondary ionization mass spectrometry (TOFSIMS), and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Samples were collected at the ground site located in Point Reyes National Seashore, approximately 1 km from the coast. This manuscript focuses on the analysis of individual particles sampled from an air mass that originated over the open ocean and then passed through the area of the California current located along the northern California coast. Based on composition, morphology, and chemical bonding information, two externally mixed, distinct classes of sulfur containing particles were identified: chemically modified (aged) sea salt particles and secondary formed sulfate particles. The results indicate substantial heterogeneous replacement of chloride by methanesulfonate (CH3SO3 -) and non-sea salt sulfate (nss-SO4 2-) in sea-salt particles with the characteristic ratios of CH3SO3 ?/nss-SO4 2?> 0.6. Although this value seems too high for a mid-latitude site, our model calculations suggest that high CH3SO3 -/nss-SO4 2- ratios are expected during the early stages of dimethyl sulfide (DMS) oxidation when CH3SO3H forms more rapidly than H2SO4.

  14. The expanding role of marine microbes in pharmaceutical development

    PubMed Central

    Waters, Amanda L.; Hill, Russell T.; Place, Allen R.; Hamann, Mark T.

    2010-01-01

    Marine microbes have received growing attention as sources of bioactive metabolites and offer a unique opportunity to both increase the number of marine natural products in clinical trials as well as expedite their development. This review focuses specifically on those molecules currently in the clinical pipeline that are established or highly likely to be produced by bacteria based on expanding circumstantial evidence. We also include an example of how compounds from harmful algal blooms may yield lead both tools for measuring environmental change as well as leads for pharmaceutical development. An example of the karlotoxin class of compounds isolated from the dinoflagellate Karlodinium veneficum reveals a significant environmental impact in the form of massive fish kills but also provides opportunities to construct new molecules for the control cancer and serum cholesterol assisted by tools associated with rational drug design. PMID:20956080

  15. Primary and secondary particles chemical composition of marine emissions from Mediterranean seawaters

    NASA Astrophysics Data System (ADS)

    D'Anna, Barbara; Meme, Aurelie; Rmili, Badr; Pey, Jorge; Marchand, Nicolas; Schwier, Allison; Sellegri, Karine; Charriere, Bruno; Sempere, Richard; Mas, Sebastien; Parin, David

    2015-04-01

    Marine emissions are among the largest source of both primary particles and do highly contribute secondary organic aerosols (SOA) at a global scale. Whereas physical processes control the primary production of marine aerosols, biological activity is responsible for most of the organic fraction released from marine sources, potentially transformed into SOA when exposed to atmospheric oxidants. The Mediterranean atmosphere displays important concentrations of SOA, especially in summer, when atmospheric oxidants and photochemical activity are at their maximum. The origin of these elevated concentrations of SOA remain unclear. Here we present the results from a mesocosms study in a remote location in Corsica and a chamber study (using fresh sea water from Western Mediterranean) as part of the Source of marine Aerosol particles in the Mediterranean atmosphere (SAM) project. The mesocosm study was conducted at the Oceanographic and Marine Station STARESO (Corsica) in May 2013. One mesocosm was used as a control (with no enrichment) and the other two were enriched with nitrate and phosphate respecting Redfield ratio (N:P = 16) in order to produce a bloom of biological activity. Physical and chemical properties of the enclosed water samples together with their surrounding atmosphere were monitored during 20 days by a multi-instrumental high-time resolution set-up. In parallel, numerous additional measurements were conducted including water temperature, incident light, pH, conductivity, chemical and biological analyses, fluorescence of chlorophyll, dissolved oxygen concentration. The chamber studies were performed in a Teflon chamber of 1. 5m3 that accommodates a pyrex-container for the fresh sea-water samples. After injection of sea-water in the pyrex-container, the system is allowed to stabilize to 20-30 minutes, then it was exposed to 60-100ppbv of ozone and/or UV-A irradiation. Aerosol concentrations and their physical characteristics were followed by means of Scanning Mobility Particle Sizers; clusters concentration was monitored using a Particle Size Magnifyer (PSM); the gas-phase composition of volatile organic compounds was determined by using Proton Transfer Reaction Time-of-Flight Mass Spectrometer and cartridges. Aerosol chemical composition was investigated using High Resolution Time-of-Flight Aerosol Mass Spectrometer, filters analysis and TEM-EDX microscopy. Results evidence a complex nature of the primary emitted aerosol which is not clearly associated to the biological bloom (ex. cholrophyll), VOCs emission was observed during high biological activity periods. Formation of new particles was observed in the chamber and seemed to be related to iodine species (in the absence of any macroalgea population).

  16. Microbial Surface Colonization and Biofilm Development in Marine Environments.

    PubMed

    Dang, Hongyue; Lovell, Charles R

    2016-03-01

    Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. PMID:26700108

  17. The sources and forms of phosphorus in marine aerosol particles and rain from Northern New Zealand

    NASA Astrophysics Data System (ADS)

    Chen, Liqi; Arimoto, Richard; Duce, Robert A.

    Various forms of phosphorus were measured in marine aerosol particles and rain samples collected from the northern tip of the North Island of New Zealand. Approximately 58 % of the total phosphorus in the aerosol particles was organic and 7 % was soluble in deionized water. The remaining 35 % was not released by treatment with potassium persulfate, and it was defined as a refractory fraction. Stepwise regression analyses suggested that (1) the concentrations of organic phosphorus in the aerosol particles were related to those of sodium, which was regarded as sea salt tracer, (2) the concentrations of water soluble phosphorus were correlated with those of aluminum, which was considered an indicator of crustal material and (3) total phosphorus was derived from the ocean and from the earth's crust. The mass particle-size distribution of the refractory and organic phosphorus combined was similar to that of sodium and aluminum. However, on submicrometer particles the concentrations of all forms of phosphorus appeared to increase relative to those of sodium, suggesting that small particle phosphorus may be derived from a non-marine source, possibly weathered crustal material or wind blown fertilizer. The wet deposition rates for water soluble and organic phosphorus were calculated to be 0.30 and 0.61 ?g cm -2 y -1, respectively. The dry deposition of these two forms of phosphorus combined (0.14 ?g cm -2 y -1 ) was clearly lower than the wet deposition rate. Total deposition of phosphorus to the site was estimated to be 1.5?gcm -2y -1.

  18. Characterizing marine particles and their impact on biogeochemical cycles in the GEOTRACES program

    NASA Astrophysics Data System (ADS)

    Anderson, Robert F.; Hayes, Christopher T.

    2015-04-01

    Trace elements and their isotopes (TEIs) are of priority interest in several subdisciplines of oceanography. For example, the vital role of trace element micronutrients in regulating the growth of marine organisms, which, in turn, may influence the structure and composition of marine ecosystems, is now well established (Morel and Price, 2003; Twining and Baines, 2013). Natural distributions of some TEIs have been severely impacted by anthropogenic emissions, leading to substantial perturbations of natural ocean inventories. Pb and Hg, for example, (Lamborg et al., 2002; Schaule and Patterson, 1981), may represent a significant threat to human food supply. Furthermore, much of our knowledge of past variability in the ocean environment, including the ocean's role in climate change, has been developed using TEI proxies archived in marine substrates such as sediments, corals and microfossils. Research in each of these areas relies on a comprehensive knowledge of the distributions of TEIs in the ocean, and on the sensitivity of these distributions to changing environmental conditions. With numerous processes affecting the regional supply and removal of TEIs in the ocean, a comprehensive understanding of the marine biogeochemical cycles of TEIs can be attained only by a global, coordinated, international effort. GEOTRACES, an international program designed to study the marine biogeochemical cycles of trace elements and their isotopes (Anderson et al., 2014; Henderson et al., 2007), aims to achieve these goals.

  19. Development of a portable ?-particle spectrometer

    NASA Astrophysics Data System (ADS)

    Kwak, S.-W.; Park, S.; Kang, H.-B.; Shin, J.-K.; Chung, H.; Kim, M.-J.

    2015-06-01

    The detection of undeclared nuclear activities and the verification of declared nuclear facilities and materials are a matter of great concern worldwide. With the purpose of detecting and locating undeclared nuclear activities on site, a portable ?-particle spectrometer was designed and built with a weight of 14 kg and a size of 30 cm × 30 cm × 30 cm that can be operated at normal temperature and with a maximum pressure of 1.0 torr. A feasibility study of this new portable ?-particle spectrometer was conducted. The experimental results were compared with results from a laboratory ?-particle spectrometry system. The 235U/238U ratio determined by the portable spectrometer was about 3.86%, while the laboratory spectrometry system gave the ratio of 3.90%. Their detection efficiencies were nearly identical for those two spectrometers. To improve the energy resolution of the portable spectrometer, a hexagonal-type collimator was designed by using GEANT4 and employed. With this collimator, the average full width at half maximum (FWHM) was enhanced from 29 keV to 24 keV . This study showed that the newly developed portable ?-particle spectrometer, employing a small vacuum pump and minimized electronics, can be used for on-site measurement to detect and locate undeclared nuclear facilities and activities in a timely manner.

  20. Production, Organic Characterization, and Phase Transformations of Marine Particles Aerosolized from a Laboratory Mesocosm Phytoplankton Bioreactor

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Knopf, D. A.; Aller, J. Y.; Radway, J.; Kilthau, W.

    2012-12-01

    Previous studies have shown that particles emitted from bubble bursting and wave breaking of ocean waters with high biological activity can contain sea salts associated with organic material, with smaller particles containing a larger mass fraction of organics than larger particles. This likely indicates a link between phytoplankton productivity in oceans and particulate organic material in marine air. Once aerosolized, particles with significant amount of organic material can affect cloud activation and formation of ice crystals, among other atmospheric processes, thus influencing climate. This is significant for clouds and climate particularly over nutrient rich polar seas, in which concentrations of biological organisms can reach up to 109 cells per ml during spring phytoplankton blooms. Here we present results of bubble bursting aerosol production from a seawater mesocosm containing artificial seawater, natural seawater and unialgal cultures of three representative phytoplankton species. These phytoplankton (Thalassiosira pseudonana, Emilianaia huxleyi, and Nannochloris atomus), possessed siliceous frustules, calcareous frustules and no frustules, respectively. Bubbles were generated employing recirculating impinging water jets or glass frits. Dry and humidified aerosol size distributions and bulk aerosol organic composition were measured as a function of phytoplankton growth, and chlorophyll composition and particulate and dissolved organic carbon in the water were determined. Finally, particles were collected on substrates for ice nucleation and water uptake experiments, their elemental compositions were determined using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEMEDAX), and their carbon speciation was determined using scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Particle size distributions exposed to dry and humidified air employing artificial seawater show agreement with previous studies. As the phytoplankton population grows, particle production increases, with particles smaller than 200 nm in diameter primarily contributing to this increase. CCSEM/EDAX and STXM/NEXAFS analysis shows that phytoplankton presence can result in purely organic airborne particles, NaCl particles coated with organic material and organic particles containing phytoplankton frustule fragments. We also have observed that submicrometer particles can efficiently nucleate ice and that the same ice nucleating particles examined with CCSEM/EDAX and STXM/NEXAFS contain significant organic material by mass. These results will aid in understanding the effects of biological activity on the composition and mixing state of ocean derived aerosol particles and their potential impact on cold cloud formation.

  1. Marine Tactical Command and Control System (MTACCS) Field Development System-1 (FDS-1) assessment: Final report

    SciTech Connect

    Avery, L.W.; Hunt, S.T.; Savage, S.F. ); McLaughlin, P.D.; Shepdard, A.P.; Worl, J.C. )

    1992-04-01

    The United State Marine Corps (USMC) is continuing the development and fielding of the Marine Corps Tactical Command and Control System (MTACCS), a system which exists in varying states of development, fielding, or modernization. MTACCS is currently composed of the following components: Tactical Combat Operations System (TCO) for ground command and control (C2), Intelligence Analysis System (IAS) with a Genser terminal connected to a TCO workstation for intelligence C2, Marine Integrated Personnel System (MIPS) and a TCO workstation using the Marine Combat Personnel System (MCPERS) software for personnel C2, Marine Integrated Logistics System (MILOGS) which is composed of the Landing Force Asset Distribution System (LFADS), the Marine Air-Ground Task Force (MAGTF) II, and a TCO terminal using the Marine Combat Logistics System (MCLOG) for logistics C2, Marine Corps Fire Support System (MCFSS) for fire support C2, and Advanced Tactical Air Command Central (ATACC) and the Improved Direct Air Support Central for aviation C2.

  2. Asian dust particles converted into aqueous droplets under remote marine atmospheric conditions

    PubMed Central

    Tobo, Yutaka; Zhang, Daizhou; Matsuki, Atsushi; Iwasaka, Yasunobu

    2010-01-01

    The chemical history of dust particles in the atmosphere is crucial for assessing their impact on both the Earth’s climate and ecosystem. So far, a number of studies have shown that, in the vicinity of strong anthropogenic emission sources, Ca-rich dust particles can be converted into aqueous droplets mainly by the reaction with gaseous HNO3 to form Ca(NO3)2. Here we show that other similar processes have the potential to be activated under typical remote marine atmospheric conditions. Based on field measurements at several sites in East Asia and thermodynamic predictions, we examined the possibility for the formation of two highly soluble calcium salts, Ca(NO3)2 and CaCl2, which can deliquesce at low relative humidity. According to the results, the conversion of insoluble CaCO3 to Ca(NO3)2 tends to be dominated over urban and industrialized areas of the Asian continent, where the concentrations of HNO3 exceed those of HCl ([HNO3/HCl] >  ? 1). In this regime, CaCl2 is hardly detected from dust particles. However, the generation of CaCl2 becomes detectable around the Japan Islands, where the concentrations of HCl are much higher than those of HNO3 ([HNO3/HCl] <  ? 0.3). We suggest that elevated concentrations of HCl in the remote marine boundary layer are sufficient to modify Ca-rich particles in dust storms and can play a more important role in forming a deliquescent layer on the particle surfaces as they are transported toward remote ocean regions. PMID:20921372

  3. Marine Fisheries Case Studies. Appropriate Technologies for Development. Case Study No. 1.

    ERIC Educational Resources Information Center

    Chakroff, Marilyn; DuBois, Random

    This guide was developed to aid Peace Corps volunteers interested in programming marine fisheries projects. Although these projects are not new to the Peace Corps, new staff members may not be aware of the history of marine fisheries efforts in their country. Chapter 1 discusses all past marine fisheries projects initiated by the Peace Corps in…

  4. The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution

    NASA Astrophysics Data System (ADS)

    Vaattovaara, P.; Huttunen, P. E.; Yoon, Y. J.; Joutsensaari, J.; Lehtinen, K. E. J.; O'Dowd, C. D.; Laaksonen, A.

    2006-04-01

    Newly-formed nanometer-sized particles have been observed at coastal and marine environments worldwide. Interestingly, organic species have so far not been detected in those newly-formed nucleation mode particles. In this study, we applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer) method to study the possible existence of an organic fraction in recently formed coastal nucleation mode particles (d<20 nm) at the Mace Head research station. Furthermore, effects of those nucleation events to potential CCN (cloud condensation nuclei) were studied. The coastal events were typical for the Mace Head region and they occurred at low tide conditions during efficient solar radiation and high biological activity (HBA, i.e. a high mass concentration of chlorophyll a of the ocean) in spring 2002. Additionally, a PHA-UCPC (pulse height analyzer ultrafine condensation particle counter) technique was used to study the composition of newly-formed particles formed in low tide conditions during a lower biological activity (LBA, i.e. a lower mass concentration of chlorophyll a of the ocean) in October 2002. The overall results of the UFO-TDMA and the PHA-UCPC measurements indicate that those coastally/marinely formed nucleation mode particles include a remarkable fraction of secondary organic products, beside iodine oxides, which are likely to be responsible for the nucleation. During clean marine air mass conditions, the origin of those secondary organic oxidation compounds can be related to marine/coastal biota and thus a major fraction of the organics may originate from biosynthetic production of alkenes such as isoprene and their oxidation by iodine, hydroxyl radical, and ozone. During modified marine conditions, also anthropogenic secondary organic compounds may contribute to the nucleation mode organic mass, in addition to biogenic secondary organic compounds. Thus, the UFO-TDMA results suggest that the secondary organic compounds may, in addition to being significant contributors to the nucleation mode processes, accelerate the growth of freshly nucleated particles and increase their survival probability to CCN and even larger radiatively active particle sizes. The results give new insights to the coastal/marine particle formation, growth, and properties. The marine biota driven secondary organic contributions to coastal/marine particle formation and composition can be anticipated in other species specific biologically active oceans and fresh-waters areas around the world and thus, they may be significant also to the global radiative bugdet, atmosphere-biosphere feedbacks, and climate change.

  5. National Data Program for the Marine Environment Technical Development Plan. Final Report, Volume Two.

    ERIC Educational Resources Information Center

    System Development Corp., Santa Monica, CA.

    A national data program for the marine environment is recommended. Volume 2 includes: (1) objectives, scope, and methodology; (2) summary of the technical development plan; (3) agency development plans - Great Lakes and coastal development and (4) marine data network development plans. (Author)

  6. Sources and composition of submicron organic mass in marine aerosol particles

    SciTech Connect

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-27

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemical reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group peak location is closer to that of polysaccharides. This may result from the larger saccharides preferentially remaining in the seawater during gPMA and aPMA production

  7. Sources and composition of submicron organic mass in marine aerosol particles

    DOE PAGESBeta

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-27

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemicalmore »reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group peak location is closer to that of polysaccharides. This may result from the larger saccharides preferentially remaining in the seawater during gPMA and aPMA production« less

  8. Paulsenella Chatton (Dinophyta), ectoparasites of marine diatoms: development and taxonomy

    NASA Astrophysics Data System (ADS)

    Drebes, G.; Schnepf, E.

    1988-09-01

    All members of the dinophyte Paulsenella are ectoparasites on marine planktonic diatoms. At present three species are known, two of which are described here for the first time. The taxonomy of the type species, P. chaetoceratis, is paid critical attention. The species are clearly distinguished by their host specificity and additionally by differences in morphology, especially of the trophonts. Using clonal cultures the life cycles of the three species are compared. The vegetative development may be interrupted by formation of temporary and resting cysts. In ageing cultures, stages with nuclear cyclosis occur, believed to indicate meiosis. In P. vonstoschii, the meiospores are capable of developing into resting cysts. As yet, knowledge on sexual reproduction is still incomplete.

  9. On the modeling of the bottom particles segregation with non-linear diffusion equations: application to the marine sand ripples

    NASA Astrophysics Data System (ADS)

    Tiguercha, Djlalli; Bennis, Anne-claire; Ezersky, Alexander

    2015-04-01

    The elliptical motion in surface waves causes an oscillating motion of the sand grains leading to the formation of ripple patterns on the bottom. Investigation how the grains with different properties are distributed inside the ripples is a difficult task because of the segration of particle. The work of Fernandez et al. (2003) was extended from one-dimensional to two-dimensional case. A new numerical model, based on these non-linear diffusion equations, was developed to simulate the grain distribution inside the marine sand ripples. The one and two-dimensional models are validated on several test cases where segregation appears. Starting from an homogeneous mixture of grains, the two-dimensional simulations demonstrate different segregation patterns: a) formation of zones with high concentration of light and heavy particles, b) formation of «cat's eye» patterns, c) appearance of inverse Brazil nut effect. Comparisons of numerical results with the new set of field data and wave flume experiments show that the two-dimensional non-linear diffusion equations allow us to reproduce qualitatively experimental results on particles segregation.

  10. Distribution and isotopic signature of Thorium and REE-bearing phases in marine particles and sediments

    NASA Astrophysics Data System (ADS)

    Marchandise, S.; Roy-Barman, M.; Ayrault, S.; Colin, C. C.

    2010-12-01

    Particle-reactive tracers like Thorium (Th) and Neodymium (Nd) are widely used to evaluate marine particle fluxes but theirs host phases are controversial. We study the Th and Nd-rich phases in marine sediments from the Mediterranean Sea (DYFAMED site) in order to: (1) constrain the nature of the phases carrying Th isotopes (232Th which is a “lithogenic” tracer but also, potentially, in situ produced 230Thex) and (2) determine the nature of the phases involved in the Boundary Exchange which is a key feature of the Nd cycle in the ocean. Using systematic survey and quantitative analysis by scanning electron microscopy (SEM), we have identified on the Th-REE rich phases of clearly lithogenic origin such as zircon ZrSiO4, xenotime YPO4, monazite (REE, Th)PO4, allanite (REE,Y)2(Al,Fe3)3(SiO4)3(OH)6 but also florencite (REE)Al3(PO4)3(OH)6, a mineral of possible authigenic origin. The two main 232Th-carrying phases are monazite and zircon. The average U/Th ratio in zircon (0.6 g/g) is higher than the crustal average (0,3) but this ratio is very heterogeneous among the zircon crystal population. The U/Th ratio of monazite grains is (~ 0.20 g/g) lower than the crustal average. The inventory of these grains indicates that a large fraction of the 232Th and of the Nd contained in the sediment could reside in monazite (for Th), zircon and florencite (for Th and Nd). Mineral separates micron size-phases were obtained by density and chemical separation for isotopic analyses by Thermal Ionization Mass Spectrometer (TIMS). Their purity was checked by SEM. The low 230Th/232Th ratio (~ 2.7×10-6 mol/mol) of the monazite fraction is significantly below the crustal average (4-5×10-6), in agreement with the low U/Th ratio of these minerals (assuming secular equilibrium between 238U and 230Th). The 230Th/232Th ratio of florencite shows no 230Thxs enrichment compared to secular equilibrium, indicating that it is of lithogenic origin and leads us to the conclusion that 230Th et 232Th may not be carried by the same particles in the ocean (at least in these Mediterranean sediments). It’s consistent with the Nd analysis demonstrating identical isotopic compositions in monazite phase, florencite phase and bulk samples. These results help to understand the large variability of the U/Th ratio in marine particles collected in sediment traps moored in the Mediterranean Sea and to better evaluate the 230Thxs in these samples. Concerning boundary exchange, it suggests that most Nd and Th in marine sediments is locked in refractory minerals and therefore may not participate to this isotopic exchange. Analyses of Th and Nd isotopes in small filtered particles and large trapped particles collected in the Mediterranean Sea following the same protocol are underway in order to improve these first observations. Besides, the study of samples from the Austral Ocean, where the lithogenic inputs are much lower than in the Mediterranean sea, are also in progress to ameliorate our previous results about the 230Thxs bearing phases.

  11. Particle sizes and composition of Mars atmospheric dust based upon Viking and Mariner 9 observations

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.

    Mars atmospheric dust can play an important role in the thermal structure of the Mars atmosphere during periods of high dust loading. However, the radiative properties of Mars atmospheric dust remain uncertain due to uncertain definitions of the dust composition and size distribution. The analysis by Toon et al., of Mariner 9 IRIS spectra during the 1971-1972 global dust storm indicated a reasonable match between the modeled 9-micron absorption of montmorillinite and the observed 9-micron absorption. Toon et al. also determined that an effective (cross-section weighted) mean radius of 2.5 microns (Rmode = 0.4 microns) provided a consistent fit of montmorillinite to the IRIS dust spectra at 9 microns. Pollack et al. analyzed Viking lander observations of atmospheric extinction and scattering at visible-near IR wavelengths (0.5-1.0 microns), and obtained consistency with the Toon et al. dust size distribution when the effects of nonspherical particle shapes were included. An additional, minor (1 percent) component of visible-ultraviolet absorbing material was required to model the derived visible (0.86) and ultraviolet (0.4-0.6) single-scattering albedos of the dust, since montmorillinite does not absorb sufficiently in this wavelength region. A combined analysis of the Viking IRTM and Mariner 9 observations was conducted to reassess the model of Mars atmospheric ultraviolet-to-infrared measurements of dust absorption and scattering. The optical constants for palagonite are incorporated in a doubling-adding radiative transfer model of the Mars atmosphere to simulate Mariner 9 IRIS spectra as well as the Viking IRTM IR band observations. Visible and ultraviolet single-scattering albedos based on the Hansen and Travis Mie scattering code were also derived. A tentative conclusion is that smaller dust particles (Rmode = 0.15 microns, cross-section weighted mean R = 1.2 microns) composed of palagonite provide a much improved fit to the Mariner 9 IRIS spectra; agreement with the observed ratio of visible-to-infrared extinction opacities; and ultraviolet and visible single-scattering albedos comparable to their observed values.

  12. Marine and Hydrokinetic Technology Development Risk Management Framework

    SciTech Connect

    Snowberg, David; Weber, Jochem

    2015-09-01

    Over the past decade, the global marine and hydrokinetic (MHK) industry has suffered a number of serious technological and commercial setbacks. To help reduce the risks of industry failures and advance the development of new technologies, the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) developed an MHK Risk Management Framework. By addressing uncertainties, the MHK Risk Management Framework increases the likelihood of successful development of an MHK technology. It covers projects of any technical readiness level (TRL) or technical performance level (TPL) and all risk types (e.g. technological risk, regulatory risk, commercial risk) over the development cycle. This framework is intended for the development and deployment of a single MHK technology—not for multiple device deployments within a plant. This risk framework is intended to meet DOE’s risk management expectations for the MHK technology research and development efforts of the Water Power Program (see Appendix A). It also provides an overview of other relevant risk management tools and documentation.1 This framework emphasizes design and risk reviews as formal gates to ensure risks are managed throughout the technology development cycle. Section 1 presents the recommended technology development cycle, Sections 2 and 3 present tools to assess the TRL and TPL of the project, respectively. Section 4 presents a risk management process with design and risk reviews for actively managing risk within the project, and Section 5 presents a detailed description of a risk registry to collect the risk management information into one living document. Section 6 presents recommendations for collecting and using lessons learned throughout the development process.

  13. DEVELOPMENT OF PHONON-MEDIATED CRYOGENIC PARTICLE DETECTORS WITH

    E-print Network

    California at Berkeley, University of

    DEVELOPMENT OF PHONON-MEDIATED CRYOGENIC PARTICLE DETECTORS WITH ELECTRON AND NUCLEAR RECOIL massive particls (WIMPs). This thesis describes the development of silicon based cryogenic particle detectors designed to directly detect interactions with these WIMPs. These detectors are part of a new class

  14. MISTRA mechanism development: A new mechanism focused on marine environments

    NASA Astrophysics Data System (ADS)

    Bräuer, Peter; Sommariva, Roberto; von Glasow, Roland

    2015-04-01

    The tropospheric multiphase chemistry of halogen compounds plays a key role in marine environments. Moreover, halogen compounds have an impact on the tropospheric oxidation capacity and climate. With more than two thirds of the Earth's surface covered with oceans, effects are of global importance. Various conditions are found in marine environments ranging from pristine regions to polluted regimes in the continental outflow. Furthermore, there are important sources for halogen compounds over land, such as volcanoes, salt lakes, or emissions from industrial processes. To assess the impact of halogen chemistry with numerical models under these distinct conditions, a multiphase mechanism has been developed in the last decades and applied successfully in numerous box and 1D model studies. Contributions from these model studies helped to identify important chemical cycles affecting the composition and chemistry of the troposphere. However, several discrepancies between model results and field measurements remain. Therefore, a major revision of the chemical mechanism has been performed including an update of the kinetic data and the addition of new reaction cycles. The extended mechansims have been evaluated in several model studies with the 1D model MISTRA. Current work focuses at the identification of the most important reaction cycles, which led to significant changes in the concentration-time profiles of several halogen species. Subsequently, the mechanism will be reduced to the most imporatant reactions, which are currently investigated. As regional and global model studies become more important to identify the importance of tropospheric halogen multiphase chemistry, the goal is to derive parameterisations for the most important halogen chemistry cycles, which can than be implemented in regional and global 3D models. In the reduction process, the extented MISTRA version will serve as a benchmark to assess the quality and accuracy of the reduced mechansim versions.

  15. Chemical Composition and Sources of Coastal Marine Aerosol Particles during the 2008 VOCALS-REx Campaign

    SciTech Connect

    Lee, Y.- N.; Springston, S.; Jayne, John T.; Wang, Jian; Hubbe, John M.; Senum, Gunnar I.; Kleinman, Lawrence I.; Daum, Peter H.

    2014-05-23

    The chemical composition of aerosol particles (Dp 1.5 ?m) was measured over the southeast Pacific Ocean during the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) between 16 October and 15 November 2008 using the US Department of Energy (DOE) G-1 aircraft. The objective of these flights was to gain an understanding of the sources and evolution of these aerosols, and of how they interact with the marine stratus cloud layer that prevails in this region of the globe. Our measurements showed that the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO2?4, followed by Na+, Cl?, Org (total organics), NH+4 , and NO?3 , in decreasing order of importance; CH3SO?3 (MSA), Ca2+, and K+ rarely exceeded their limits of detection. Aerosols were strongly acidic with a NH+4 to SO2?4 equivalents ratio typically < 0.3. Sea-salt aerosol (SSA) particles, represented by NaCl, exhibited Cl? deficits caused by both HNO3 and H2SO4, but for the most part were externally mixed with particles, mainly SO2?4. SSA contributed only a small fraction of the total accumulation mode particle number concentration. It was inferred that all aerosol species (except SSA) were of predominantly continental origin because of their strong land-to-sea concentration gradient. Comparison of relative changes in median values suggests that (1) an oceanic source of NH3 is present between 72° W and 76° W, (2) additional organic aerosols from biomass burns or biogenic precursors were emitted from coastal regions south of 31° S, with possible cloud processing, and (3) free tropospheric (FT) contributions to MBL gas and aerosol concentrations were negligible. The very low levels of CH3SO?3 observed as well as the correlation between SO2?4 and NO?3 (which is thought primarily anthropogenic) suggest a limited contribution of DMS to SO2?4 aerosol production during VOCALS.

  16. Virus-like particles in vaccine development.

    PubMed

    Roldão, António; Mellado, Maria Candida M; Castilho, Leda R; Carrondo, Manuel J T; Alves, Paula M

    2010-10-01

    Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome, potentially yielding safer and cheaper vaccine candidates. A handful of prophylactic VLP-based vaccines is currently commercialized worldwide: GlaxoSmithKline's Engerix (hepatitis B virus) and Cervarix (human papillomavirus), and Merck and Co., Inc.'s Recombivax HB (hepatitis B virus) and Gardasil (human papillomavirus) are some examples. Other VLP-based vaccine candidates are in clinical trials or undergoing preclinical evaluation, such as, influenza virus, parvovirus, Norwalk and various chimeric VLPs. Many others are still restricted to small-scale fundamental research, despite their success in preclinical tests. This article focuses on the essential role of VLP technology in new-generation vaccines against prevalent and emergent diseases. The implications of large-scale VLP production are discussed in the context of process control, monitorization and optimization. The main up- and down-stream technical challenges are identified and discussed accordingly. Successful VLP-based vaccine blockbusters are briefly presented concomitantly with the latest results from clinical trials and the recent developments in chimeric VLP-based technology for either therapeutic or prophylactic vaccination. PMID:20923267

  17. Planar Particle Imaging Doppler Velocimetry Developed

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2000-01-01

    Two current techniques exist for the measurement of planar, three-component velocity fields. Both techniques require multiple views of the illumination plane in order to extract all three velocity components. Particle image velocimetry (PIV) is a high-resolution, high accuracy, planar velocimetry technique that provides valuable instantaneous velocity information in aeropropulsion test facilities. PIV can provide three-component flow-field measurements using a two-camera, stereo viewing configuration. Doppler global velocimetry (DGV) is another planar velocimetry technique that can provide three component flow-field measurements; however, it requires three detector systems that must be located at oblique angles from the measurement plane. The three-dimensional configurations of either technique require multiple (DGV) or at least large (stereo PIV) optical access ports in the facility in which the measurements are being conducted. Optical access is extremely limited in aeropropulsion test facilities. In many cases, only one optical access port is available. A hybrid measurement technique has been developed at the NASA Glenn Research Center, planar particle image and Doppler velocimetry (PPIDV), which combines elements from both the PIV and DGV techniques into a single detection system that can measure all three components of velocity across a planar region of a flow field through a single optical access port. In the standard PIV technique, a pulsed laser is used to illuminate the flow field at two closely spaced instances in time, which are recorded on a "frame-straddling" camera, yielding a pair of single-exposure image frames. The PIV camera is oriented perpendicular to the light sheet, and the processed PIV data yield the two-component velocity field in the plane of the light sheet. In the standard DGV technique, an injection-seeded Nd:YAG pulsed laser light sheet illuminates the seeded flow field, and three receiver systems are used to measure three components of velocity. The receiver systems are oriented at oblique angles to the light sheet in order to accurately resolve the three-component velocity. Each DGV receiver system contains two cameras, which share a common view of the illuminated flow through a beam-splitting cube. One camera views the illuminated flow directly (reference camera) and the second camera images the illuminated flow through an iodine vapor cell (signal camera). The laser frequency (wavelength) is adjusted so that the Doppler-shifted light from particles in the flow falls on an iodine absorption feature, see the following graph. The iodine vapor cell acts as a frequency-to-velocity filter by modulating the intensity of the transmitted light as a function of the flow velocity (Doppler shift). The ratio of the signal and reference images yields the component of the flow velocity along the bisector of the laser sheet propagation direction and the receiver system observation direction. The hybrid system employs a single-component DGV receiver system configured to simultaneously acquire PIV image data, as shown in the following diagram. The cameras used in the DGV receiver are replaced with PIV frame-straddling cameras, and the receiver system views the illuminated light sheet plane at 90 (as in the standard PIV configuration).

  18. Monitoring ship noise to assess the impact of coastal developments on marine mammals q

    E-print Network

    Aberdeen, University of

    Monitoring ship noise to assess the impact of coastal developments on marine mammals q Nathan D, Lighthouse Field Station, Cromarty, Ross-shire IV11 8YL, UK a r t i c l e i n f o Keywords: Ship noise, an important marine mammal habitat that may be exposed to increased shipping activity from proposed offshore

  19. Ice nucleating particles at a coastal marine boundary layer site: correlations with aerosol type and meteorological conditions

    NASA Astrophysics Data System (ADS)

    Mason, R. H.; Si, M.; Li, J.; Chou, C.; Dickie, R.; Toom-Sauntry, D.; Pöhlker, C.; Yakobi-Hancock, J. D.; Ladino, L. A.; Jones, K.; Leaitch, W. R.; Schiller, C. L.; Abbatt, J. P. D.; Huffman, J. A.; Bertram, A. K.

    2015-11-01

    Information on what aerosol particle types are the major sources of ice nucleating particles (INPs) in the atmosphere is needed for climate predictions. To determine which aerosol particles are the major sources of immersion-mode INPs at a coastal site in Western Canada, we investigated correlations between INP number concentrations and both concentrations of different atmospheric particles and meteorological conditions. We show that INP number concentrations are strongly correlated with the number concentrations of fluorescent bioparticles between -15 and -25 °C, and that the size distribution of INPs is most consistent with the size distribution of fluorescent bioparticles. We conclude that biological particles were likely the major source of ice nuclei at freezing temperatures between -15 and -25 °C at this site for the time period studied. At -30 °C, INP number concentrations are also well correlated with number concentrations of the total aerosol particles ? 0.5 ?m, suggesting that non-biological particles may have an important contribution to the population of INPs active at this temperature. As we found that black carbon particles were unlikely to be a major source of ice nuclei during this study, these non-biological INPs may include mineral dust. Furthermore, correlations involving chemical tracers of marine aerosols and marine biological activity, sodium and methanesulfonic acid, indicate that the majority of INPs measured at the coastal site likely originated from terrestrial rather than marine sources. Finally, six existing empirical parameterizations of ice nucleation were tested to determine if they accurately predict the measured INP number concentrations. We found that none of the parameterizations selected are capable of predicting INP number concentrations with high accuracy over the entire temperature range investigated. This finding illustrates that additional measurements are needed to improve parameterizations of INPs and their subsequent climatic impacts.

  20. Ice nucleating particles at a coastal marine boundary layer site: correlations with aerosol type and meteorological conditions

    NASA Astrophysics Data System (ADS)

    Mason, R. H.; Si, M.; Li, J.; Chou, C.; Dickie, R.; Toom-Sauntry, D.; Pöhlker, C.; Yakobi-Hancock, J. D.; Ladino, L. A.; Jones, K.; Leaitch, W. R.; Schiller, C. L.; Abbatt, J. P. D.; Huffman, J. A.; Bertram, A. K.

    2015-06-01

    Information on what aerosol particle types are the major sources of ice nucleating particles (INPs) in the atmosphere is needed for climate predictions. To determine which aerosol particles are the major sources of immersion-mode INPs at a coastal site in Western Canada, we investigated correlations between INP number concentrations and both concentrations of different atmospheric particles and meteorological conditions. We show that INP number concentrations are strongly correlated with the number concentrations of fluorescent bioparticles between -15 and -25 °C, and that the size distribution of INPs is most consistent with the size distribution of fluorescent bioparticles. We conclude that biological particles were likely the major source of ice nuclei at freezing temperatures between -15 and -25 °C at this site for the time period studied. At -30 °C, INP number concentrations are also well correlated with number concentrations of the total aerosol particles ? 0.5 ?m, suggesting that non-biological particles may have an important contribution to the population of INPs active at this temperature. As we found that black carbon particles were unlikely to be a major source of ice nuclei during this study, these non-biological INPs may include mineral dust. Furthermore, correlations involving tracers of marine aerosols and marine biological activity indicate that the majority of INPs measured at the coastal site likely originated from terrestrial rather than marine sources. Finally, six existing empirical parameterizations of ice nucleation were tested to determine if they accurately predict the measured INP number concentrations. We found that none of the parameterizations selected are capable of predicting INP number concentrations with high accuracy over the entire temperature range investigated.

  1. Charged particle environment for NGST: model development

    NASA Astrophysics Data System (ADS)

    Blackwell, William C.; Minow, Joseph I.; Evans, Steven W.; Hardage, Donna M.; Suggs, Robert M.

    2000-07-01

    This paper describes the engineering-level phenomenology code (LRAD) environment models for the deep magnetotail (XGSE < -100 Re) and solar wind, and presents predictions of the charged particle environment for NGST.

  2. Microscale Simulations of Shock Interaction with Large Assembly of Particles for Developing Point-Particle Models

    NASA Astrophysics Data System (ADS)

    Thakur, Siddharth; Neal, Chris; Mehta, Yash; Sridharan, Prashanth; Jackson, Tom; Balachandar, S.; University of Florida Team

    2015-06-01

    Micrsoscale simulations are being conducted for developing point-particle models that are needed for macroscale simulations of explosive dispersal of particles. These particle models are required to compute instantaneous force and heat transfer between particles and surroundings. A strategy for a sequence of microscale simulations has been devised for systematic development of hybrid surrogate models that are applicable at conditions representative of explosive dispersal. The microscale simulations examine particle force dependence on: Mach number, Reynolds number, and volume fraction (particle arrangements such as cubic, face-centered cubic, body-centered cubic and random). Future plans include investigation of sequences of fully-resolved microscale simulations consisting of an array of particles subjected to more realistic time-dependent flows that progressively better approximate the problem of explosive dispersal. Additionally, effects of particle shape, size, and number as well as the transient particle deformation dependence on parameters including: (a) particle material, (b) medium material, (c) multiple particles, (d) incoming shock pressure and speed, (e) medium to particle impedance ratio, (f) particle shape and orientation to shock, etc. are being investigated.

  3. Influence of melting icebergs on distribution, characteristics and transport of marine particles in an East Greenland fjord

    NASA Astrophysics Data System (ADS)

    Azetsu-Scott, Kumiko; Syvitski, James P. M.

    1999-03-01

    A detailed study of distribution of suspended sediments in an East Greenland fjord with a high iceberg production rate reveals the existence of intermediate nepheloid layers (INLs). Observed INLs extended from the head to the mouth of the fjord at water depths between 100 and 400 m. Particulate organic carbon and nitrogen, chlorophyll a, and nutrient measurements and observation by microscope and energy dispersive X-ray analyses were used to characterize marine particles. Particles in the INLs are composed of glacial flour including >50 ?m quartz and feldspar grains with angular and sharp edges, considered to be released from melting icebergs. In situ photographs show large aggregates (>1 mm) at high concentration (>300 particles per liter) in and below INLs. These aggregates, in comparison with the dispersed particle size distribution, demonstrate that smaller size particles (e.g., clay) settle effectively along with larger single size grains. In Kangerlugssuaq Fjord, the mass transport of marine particles was governed by the subsurface iceberg melting, producing observed INLs, rather than the surface meltwater plume. This suggests that the subsurface water temperature controls release of iceberg debris and the existence of warm subsurface water, as well as the spread of cold and fresh water in the surface layer, needs to be considered to evaluate the occurrence of ice-rafted debris layers, including Heinrich layers. This study provides the field evidence of a modern analogue on ocean conditions that could form iceberg-rafted layers.

  4. Development of innovative tools for understanding marine biodiversity and assessing good environmental status, within the European Marine Strategy Framework Directive

    NASA Astrophysics Data System (ADS)

    Borja, Angel; Uyarra, María C.

    2014-05-01

    Marine natural resources and ecosystem services constitute the natural capital that supports economies, societies and individual well-being. Good governance requires a quantification of the interactions and trade-offs among ecosystem services and understanding of how biodiversity underpins ecosystem functions and services across time, scales and sectors. Marine biodiversity is a key descriptor for the assessment within the Marine Strategy Framework Directive (MSFD), approved in 2008, which comprises a total of 11 descriptors. However, the relationships between pressures from human activities and climatic influences and their effects on marine biological diversity are still only partially understood. Hence, these relationships need to be better understood in order to fully achieve a good environmental status (GEnS), as required by the MSFD. This contribution is based upon the FP7 EU project DEVOTES (DEVelopment Of innovative Tools for understanding marine biodiversity and assessing good Environmental Status), which focus on developing innovative conceptual frameworks, methods and coherent, shared protocols to provide consistent datasets and knowledge at different scales, within four regional seas (Black Sea, Mediterranean, Atlantic and Baltic Sea). This project is developing innovative approaches to valuate biodiversity and ecosystem services and to develop public goods and sustainable economic activities from them. The research will benefit sea users and stakeholders, and will contribute to assess and monitor the environmental status of marine waters. The main objectives are: (i) to improve our understanding of the impact of human activities and variations associated to climate on marine biodiversity, (ii) to test indicators (referred in the Commission Decision on GEnS) and develop new ones for assessment at several ecological levels (species, habitat, ecosystems) and for the characterization and status classification of the marine waters, (iii) to develop, test and validate, on the basis of observations, innovative integrative modelling tools in order to further strengthen our understanding of ecosystem and biodiversity changes in space and time. The resultant models are being developed for implementation as operational tools for managers, decision takers and policy makers. The project is contributing (i) to enable the adaptive development of management (ecosystem-based management approach) strategies and management measures as a result of their implementation taking into account the role of industry and relevant stakeholders, (ii) to provide economic assessment of the consequences of management practices, (iii) to identify the barriers (socio-economic and legislative) that prevent the GES to be achieved (e.g. eutrophication), (iv) to provide a set of policy options for the relevant authorities. In addition the project should propose and demonstrate the utility of innovative monitoring systems capable of providing data on a range of parameters, efficiently and effectively, that may be used as indicators of good environmental status. This contribution presents a summary of most of these aspects.

  5. Contributions of Participatory Modeling to Development and Support of Coastal and Marine Management Plans

    EPA Science Inventory

    The role of participatory modeling- at various scales- to assist in developing shared visions, understanding the decision landscape, identifying and selecting management options, and monitoring outcomes will be explored in the context of coastal and marine planning, ecosystem ser...

  6. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy.

    PubMed

    Fries, Elke; Dekiff, Jens H; Willmeyer, Jana; Nuelle, Marie-Theres; Ebert, Martin; Remy, Dominique

    2013-10-01

    Any assessment of plastic contamination in the marine environment requires knowledge of the polymer type and the additive content of microplastics. Sequential pyrolysis-gas chromatography coupled to mass spectrometry (Pyr-GC/MS) was applied to simultaneously identify polymer types of microplastic particles and associated organic plastic additives (OPAs). In addition, a scanning electron microscope equipped with an energy-dispersive X-ray microanalyser was used to identify the inorganic plastic additives (IPAs) contained in these particles. A total of ten particles, which were optically identified as potentially being plastics, were extracted from two sediment samples collected from Norderney, a North Sea island, by density separation in sodium chloride. The weights of these blue, white and transparent fragments varied between 10 and 350 ?g. Polymer types were identified by comparing the resulting pyrograms with those obtained from the pyrolysis of selected standard polymers. The particles consisted of polyethylene (PE), polypropylene, polystyrene, polyamide, chlorinated PE and chlorosulfonated PE. The polymers contained diethylhexyl phthalate, dibutyl phthalate, diethyl phthalate, diisobutyl phthalate, dimethyl phthalate, benzaldehyde and 2,4-di-tert-butylphenol. Sequential Py-GC/MS was found to be an appropriate tool for identifying marine microplastics for polymer types and OPAs. The IPAs identified were titanium dioxide nanoparticles (TiO2-NPs), barium, sulphur and zinc. When polymer-TiO2 composites are degraded in the marine environment, TiO2-NPs are probably released. Thus, marine microplastics may act as a TiO2-NP source, which has not yet been considered. PMID:24056666

  7. Stress and Microstructure Development in Particle-Based Coatings

    NASA Astrophysics Data System (ADS)

    Price, Kyle Kirk-Arthur

    Particle-based coatings have a wide range of uses and applications in everyday life. Stress development during the drying process has the potential to impact the performance of the coating. Stress development can be monitored in-situ using a cantilever deflection technique with a laser-photodiode combination. Stress development in the film is directly related to the development of the coating microstructure during drying. Cryogenic scanning electron microscopy (cryoSEM) is a powerful characterization method capable of visualizing the microstructure of the coating during the intermediate stages of drying. Using this method, the coating is frozen to arrest microstructure development and solidify the sample so that it can survive the high-vacuum environment of the SEM. This thesis explores the connections between stress and microstructure development in particle-based coatings during drying. Characterization is often complicated by lateral drying, a common phenomenon in particle-based coatings. To avoid these complications, walled substrates were developed which are used to suppress lateral drying and promote drying uniformity. CryoSEM revealed that latex coatings dried on substrates (with photoresist walls) exhibit a greater degree of drying uniformity. Silicon cantilevers with poly(dimethyl siloxane) (PDMS) walls along the perimeter were used to suppress the effects of lateral drying during stress measurement. The walled cantilevers were used to characterize stress development in ceramic particle coatings and latex films. For the ceramic particle coatings, stress measurements were combined with cryoSEM revealing the origins of stress development in hard particle coatings. Stress development was correlated with the extent of drying and the degree of saturation in the coating. Stress development in latex particle coatings was influenced by the composition and morphology of the latex particles. Additionally, the influence of coalescing aids on stress development was also investigated. The film formation behavior was studied using a variety of techniques including AFM, cryoSEM, and minimum film formation temperature (MFFT) measurements.

  8. A case study of columnar marine and dust particle ratios calculated with photometric and lidar measurements during the CHARADMEXP campaign

    NASA Astrophysics Data System (ADS)

    Panagiotis Raptis, Ioannis; Kokkalis, Panagiotis; Amiridis, Vassilis; Taylor, Michael; Kazadzis, Stelios

    2015-04-01

    The CHARADMEXP campaign took place at the Finokalia meteorological station on the island of Crete, Greece from the 20th of June to 10th July 2014 deploying various instruments to monitor aerosol mixtures of dust and marine origin (more info at http://charadmexp.gr). In this study we focus on data recorded on 1st July. This day gain our interest because we had two distinguished layer of particles at different heights, sea salt near the ground and dust at planetary boundary layer height. A raman/depolarization lidar (EMORAL) and a CIMEL photometer were simultaneously operating during the time of interest in the area. Multimodal analysis of retrieved AERONET volume size distributions on that day was used to distinguish between dominant aerosol types and to calculate the percentage contribution of each mode to the columnar volume concentration. Selection of the method was based on previous work which showed that in cases of mixtures that contain sea salt, bi-lognormals fail to recover key features of the average size distribution. Linear particle depolarization ratio profiles were used to discriminate spherical from non-spherical particles and to validate the columnar volume percentage contribution of different types provided by multimodal analysis. We found that the column was dominated mainly by coarse mode aerosol of marine and dust origin in equal volume proportion in the morning hours. As the day progressed, dust concentrations declined and marine particles became dominant . Lidar profiles confirmed dual layering of particles. The aerosol load was found to be low (AOD?0.1-0.2) and allowed for a test of the sensitivity of the multimodal method at small concentrations.

  9. Development of a Charged Particle Microbeam for Targeted and Single Particle Subcellular Irradiation

    SciTech Connect

    Yanch, Jacquelyn C.

    2004-03-12

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube.

  10. Laser wakefield simulations towards development of compact particle accelerators

    E-print Network

    Geddes, Cameron Guy Robinson

    Laser wakefield simulations towards development of compact particle accelerators C.G.R. Geddes1, D understanding of accelerator physics to advance beam performance and stability, and particle simulations model, France; 9 Oxford University, UK E-mail: cgrgeddes@lbl.gov Abstract. Laser driven wakefield accelerators

  11. Marine Tactical Command and Control System (MTACCS) Field Development System-1 (FDS-1) assessment: Final report. Volume 1

    SciTech Connect

    Avery, L.W.; Hunt, S.T.; Savage, S.F.; McLaughlin, P.D.; Shepdard, A.P.; Worl, J.C.

    1992-04-01

    The United State Marine Corps (USMC) is continuing the development and fielding of the Marine Corps Tactical Command and Control System (MTACCS), a system which exists in varying states of development, fielding, or modernization. MTACCS is currently composed of the following components: Tactical Combat Operations System (TCO) for ground command and control (C2), Intelligence Analysis System (IAS) with a Genser terminal connected to a TCO workstation for intelligence C2, Marine Integrated Personnel System (MIPS) and a TCO workstation using the Marine Combat Personnel System (MCPERS) software for personnel C2, Marine Integrated Logistics System (MILOGS) which is composed of the Landing Force Asset Distribution System (LFADS), the Marine Air-Ground Task Force (MAGTF) II, and a TCO terminal using the Marine Combat Logistics System (MCLOG) for logistics C2, Marine Corps Fire Support System (MCFSS) for fire support C2, and Advanced Tactical Air Command Central (ATACC) and the Improved Direct Air Support Central for aviation C2.

  12. Current Development Status of a Particle Size Analyzer for Coated Particle Fuel

    SciTech Connect

    Nelson, Andrew T; Hunn, John D; Karnowski, Thomas Paul

    2007-08-01

    Work was performed to develop a prototype Particle Size Analyzer (PSA) for application to coated particle fuel characterization. This system was based on a light obscuration method and targeted towards high throughput analysis. Although never matured to the point of replacing existing lower throughput optical microscopy shadowgraph methods, the system was successfully applied to automating the counting of large particle samples for increased accuracy in calculating mean particle properties based on measurements of multiparticle samples. The measurement of particle size with the PSA was compared to current shadowgraph techniques and found to result in considerably greater throughput at the cost of larger measurement uncertainty. The current algorithm used by the PSA is more sensitive to particle shape and this is a likely cause of the greater uncertainty when attempting to measure average particle diameter. The use of the PSA to measure particle shape will require further development. Particle transport through the PSA and stability of the light source/detector are key elements in the successful application of this technique. A number of system pitfalls were studied and addressed.

  13. Development and application of a particle-particle particle-mesh Ewald method for dispersion interactions.

    PubMed

    Isele-Holder, Rolf E; Mitchell, Wayne; Ismail, Ahmed E

    2012-11-01

    For inhomogeneous systems with interfaces, the inclusion of long-range dispersion interactions is necessary to achieve consistency between molecular simulation calculations and experimental results. For accurate and efficient incorporation of these contributions, we have implemented a particle-particle particle-mesh Ewald solver for dispersion (r(-6)) interactions into the LAMMPS molecular dynamics package. We demonstrate that the solver's O(N log N) scaling behavior allows its application to large-scale simulations. We carefully determine a set of parameters for the solver that provides accurate results and efficient computation. We perform a series of simulations with Lennard-Jones particles, SPC/E water, and hexane to show that with our choice of parameters the dependence of physical results on the chosen cutoff radius is removed. Physical results and computation time of these simulations are compared to results obtained using either a plain cutoff or a traditional Ewald sum for dispersion. PMID:23145717

  14. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production.

    PubMed

    Zhou, Hao; Pan, Haixia; Xu, Jianqiang; Xu, Weiping; Liu, Lifen

    2016-03-01

    Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N2 adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8mgg(-1) adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na3MnPO4CO3. Results suggested the complexity of natural microbe-mediated Mn transformation. PMID:26606462

  15. Assessing the Effects of Marine and Hydrokinetic Energy Development on Marine and Estuarine Resources

    SciTech Connect

    Ward, Jeffrey A.; Schultz, Irvin R.; Woodruff, Dana L.; Roesijadi, Guritno; Copping, Andrea E.

    2010-07-30

    The world’s oceans and estuaries offer an enormous potential to meet the nation’s growing demand for energy. The use of marine and hydrokinetic (MHK) devices to harness the power of wave and tidal energy could contribute significantly toward meeting federal- and state-mandated renewable energy goals while supplying a substantial amount of clean energy to coastal communities. Locations along the eastern and western coasts of the United States between 40° and 70° north latitude are ideal for MHK deployment, and recent estimates of energy potential for the coasts of Washington, Oregon, and California suggest that up to 25 gigawatts could be generated from wave and tidal devices in these areas. Because energy derived from wave and tidal devices is highly predictable, their inclusion in our energy portfolio could help balance available sources of energy production, including hydroelectric, coal, nuclear, wind, solar, geothermal, and others.

  16. Effect of Type and Concentration of Ballasting Particles on Sinking Rate of Marine Snow Produced by the Appendicularian Oikopleura dioica

    PubMed Central

    Lombard, Fabien; Guidi, Lionel; Kiørboe, Thomas

    2013-01-01

    Ballast material (organic, opal, calcite, lithogenic) is suggested to affect sinking speed of aggregates in the ocean. Here, we tested this hypothesis by incubating appendicularians in suspensions of different algae or Saharan dust, and observing the sinking speed of the marine snow formed by their discarded houses. We show that calcite increases the sinking speeds of aggregates by ~100% and lithogenic material by ~150% while opal only has a minor effect. Furthermore the effect of ballast particle concentration was causing a 33 m d-1 increase in sinking speed for a 5×105 µm3 ml-1 increase in particle concentration, near independent on ballast type. We finally compare our observations to the literature and stress the need to generate aggregates similar to those in nature in order to get realistic estimates of the impact of ballast particles on sinking speeds. PMID:24086610

  17. A comparative study of the number and mass of fine particles emitted with diesel fuel and marine gas oil (MGO)

    NASA Astrophysics Data System (ADS)

    Nabi, Md. Nurun; Brown, Richard J.; Ristovski, Zoran; Hustad, Johan Einar

    2012-09-01

    The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.

  18. Particle and Wave: Developing the Quantum Wave Accompanying a Classical Particle

    E-print Network

    C. L. Herzenberg

    2008-12-04

    The relationship between classical and quantum mechanics is explored in an intuitive manner by the exercise of constructing a wave in association with a classical particle. Using special relativity, the time coordinate in the frame of reference of a moving particle is expressed in terms of the coordinates in the laboratory frame of reference in order to provide an initial spatiotemporal function to work from in initiating the development of a quantum wave. When temporal periodicity is ascribed to the particle, a provisional spatiotemporal function for a particle travelling at constant velocity manifests itself as an running wave characterized by parameters associated with the moving particle. A wave description for bidirectional motion is generated based on an average time coordinate for a combination of oppositely directed elementary running waves, and the resulting spatiotemporal function exhibits wave behavior characteristic of a standing wave. Ascribing directional orientation to the intrinsic periodicity of the particle introduces directional sub-states; variations in the relative number of sub-states as a function of angle in combined states lead to spatially varying magnitudes for the associated waves. Further analysis leads to full mathematical expression for all waves representing free particle motion. A generalization for particles subject to force fields enables us to develop a governing differential equation identical in form to the Schroedinger equation.

  19. The impact of lactation strategy on physiological development of juvenile marine

    E-print Network

    Burns, Jennifer M.

    The impact of lactation strategy on physiological development of juvenile marine mammals on the physiological status of newly weaned pups has rarely been considered. Recent comparative studies on the development of diving capacity, as assessed by measuring total body oxygen stores, have demonstrated

  20. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania, 41° S

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Keywood, M. D.; Galbally, I. E.; Gras, J. L.; Cainey, J. M.; Cope, M. E.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Bentley, S. T.; Meyer, C. P.; Ristovski, Z.; Goldstein, A. H.

    2015-07-01

    Biomass burning (BB) plumes were measured at the Cape Grim Baseline Air Pollution Station during the 2006 Precursors to Particles campaign, when emissions from a fire on nearby Robbins Island impacted the station. Measurements made included non methane organic compounds (NMOCs) (PTR-MS), particle number size distribution, condensation nuclei (CN) > 3 nm, black carbon (BC) concentration, cloud condensation nuclei (CCN) number, ozone (O3), methane (CH4), carbon monixide (CO), hydrogen (H2), carbon dioxide (CO2), nitrous oxide (N2O), halocarbons and meteorology. During the first plume strike event (BB1), a four hour enhancement of CO (max ~ 2100 ppb), BC (~ 1400 ng m-3) and particles > 3 nm (~ 13 000 cm-3) with dominant particle mode of 120 nm were observed overnight. Dilution of the plume resulted in a drop in the dominant particle mode to 50 nm, and then growth to 80 nm over 5 h. This was accompanied by an increase in O3, suggesting that photochemical processing of air and condensation of low volatility oxidation products may be driving particle growth. The ability of particles > 80 nm (CN80) to act as CCN at 0.5 % supersaturation was investigated. The ?CCN / ?CN80 ratio was lowest during the fresh BB plume (56 %), higher during the particle growth event (77 %) and higher still (104 %) in background marine air. Particle size distributions indicate that changes to particle chemical composition, rather than particle size, are driving these changes. Hourly average CCN during both BB events were between 2000-5000 CCN cm-3, which were enhanced above typical background levels by a factor of 6-34, highlighting the dramatic impact BB plumes can have on CCN number in clean marine regions. During the 29 h of the second plume strike event (BB2) CO, BC and a range of NMOCs including acetonitrile and hydrogen cyanide (HCN) were clearly enhanced and some enhancements in O3 were observed (?O3 / ?CO 0.001-0.074). A shortlived increase in NMOCs by a factor of 10 corresponded with a large CO enhancement, an increase of the NMOC / CO emission ratio (ER) by a factor of 2-4 and a halving of the BC / CO ratio. Rainfall on Robbins Island was observed by radar during this period which likely resulted in a lower fire combustion efficiency, and higher emission of compounds associated with smouldering. This highlights the importance of relatively minor meterological events on BB emissions. Emission factors (EF) were derived for a range of trace gases, some never before reported for Australian conditions, (including hydrogen, phenol and toluene) using a calculated ER to CO and a published CO EF. The EF derived for most species are comparable to other temperate Australian studies but lower than Northern Hemisphere temperate studies. This work demonstrates the substantial impact that BB plumes have on the composition of marine air, and the significant changes that can occur as the plume is diluted and interacts with other emission sources. We also provide new trace gas and particle EF for temperate southern Australia.

  1. Contribution to the Understanding of Particle Motion Perception in Marine Invertebrates.

    PubMed

    André, Michel; Kaifu, Kenzo; Solé, Marta; van der Schaar, Mike; Akamatsu, Tomonari; Balastegui, Andreu; Sánchez, Antonio M; Castell, Joan V

    2016-01-01

    Marine invertebrates potentially represent a group of species whose ecology may be influenced by artificial noise. Exposure to anthropogenic sound sources could have a direct consequence on the functionality and sensitivity of their sensory organs, the statocysts, which are responsible for their equilibrium and movements in the water column. The availability of novel laser Doppler vibrometer techniques has recently opened the possibility of measuring whole body (distance, velocity, and acceleration) vibration as a direct stimulus eliciting statocyst response, offering the scientific community a new level of understanding of the marine invertebrate hearing mechanism. PMID:26610943

  2. Variability of CCN Activation Behaviour of Aerosol Particles in the Marine Boundary Layer of the Northern and Southern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Henning, Silvia; Dieckmann, Katrin; Hartmann, Susan; Schäfer, Michael; Wu, Zhijun; Merkel, Maik; Wiedensohler, Alfred; Stratmann, Frank

    2013-04-01

    The variability of cloud condensation nucleus (CCN) activation behaviour and total CCN number concentrations was investigated during three ship cruises. Measurements were performed in a mobile laboratory on the German research vessel FS Polarstern cruising between Cape Town and Bremerhaven (April / May and October / November 2011) as well as between Punta Arenas and Bremerhaven (April / May 2012). CCN size distributions were measured for supersaturations between 0.1% and 0.4% using a Cloud Condensation Nucleus Counter (DMT, USA). Aerosol particle and CCN total number concentrations as well as the hygroscopicity parameter ? (Petters and Kreidenweis, 2007) were determined. Furthermore, size distribution data were collected. The hygroscopicity parameter ? featured a high variability during the cruises, with a median ?-value of 0.52 ± 0.26. The ?-values are depended on air mass origin; and are as expected mainly dominated by marine influences, but also long range transport of aerosol particles was detected. In the Celtic Sea, ? was found to be lower than that of clean marine aerosol particles (0.72 ± 0.24; Pringle et al., 2010) with ?-values ~0.2, possibly influenced by anthropogenic emissions from Europe. Close to the West African coast particle hygroscopicity was found to be influenced by the Saharan dust plume, resulting in low ?-values ~0.25. Petters, M.D. and S.M. Kreidenweis (2007), A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. and Phys., 7, 1961-1971. Pringle, K.J., H. Tost, A. Pozzer, U. Pöschl, and J. Lelieveld (2010), Global distribution of the effective aerosol hygroscopicity parameter for CCN activation, Atmos. Chem. Phys., 10, 5241-5255.

  3. Developing human capital for successful implementation of international marine scientific research projects.

    PubMed

    Morrison, R J; Zhang, J; Urban, E R; Hall, J; Ittekkot, V; Avril, B; Hu, L; Hong, G H; Kidwai, S; Lange, C B; Lobanov, V; Machiwa, J; San Diego-McGlone, M L; Oguz, T; Plumley, F G; Yeemin, T; Zhu, W; Zuo, F

    2013-12-15

    The oceans play a crucial role in the global environment and the sustainability of human populations, because of their involvement in climate regulation and provision of living and non-living resources to humans. Maintenance of healthy oceans in an era of increasing human pressure requires a high-level understanding of the processes occurring in the marine environment and the impacts of anthropogenic activities. Effective protection and sustainable resource management must be based, in part, on knowledge derived from successful research. Current marine research activities are being limited by a need for high-quality researchers capable of addressing critical issues in broad multidisciplinary research activities. This is particularly true for developing countries which will require the building of capacity for marine scientific research. This paper reviews the current activities aimed at increasing marine research capacity in developing and emerging countries and analyses the challenges faced, including: appropriate alignment of the research goals and societal and policy-relevant needs; training in multidisciplinary research; increasing capacity for overall synthesis of scientific data; building the capacity of technical staff; keeping highly qualified personnel in marine scientific research roles; cross-cultural issues in training; minimising duplication in training activities; improving linkages among human capital, project resources and infrastructure. Potential solutions to these challenges are provided, along with some priorities for action aimed at improving the overall research effort. PMID:24055460

  4. The impact of particle size, relative humidity, and sulfur dioxide on iron solubility in simulated atmospheric marine aerosols.

    PubMed

    Cartledge, Benton T; Marcotte, Aurelie R; Herckes, Pierre; Anbar, Ariel D; Majestic, Brian J

    2015-06-16

    Iron is a limiting nutrient in about half of the world's oceans, and its most significant source is atmospheric deposition. To understand the pathways of iron solubilization during atmospheric transport, we exposed size segregated simulated marine aerosols to 5 ppm sulfur dioxide at arid (23 ± 1% relative humidity, RH) and marine (98 ± 1% RH) conditions. Relative iron solubility increased as the particle size decreased for goethite and hematite, while for magnetite, the relative solubility was similar for all of the fine size fractions (2.5-0.25 ?m) investigated but higher than the coarse size fraction (10-2.5 ?m). Goethite and hematite showed increased solubility at arid RH, but no difference (p > 0.05) was observed between the two humidity levels for magnetite. There was no correlation between iron solubility and exposure to SO2 in any mineral for any size fraction. X-ray absorption near edge structure (XANES) measurements showed no change in iron speciation [Fe(II) and Fe(III)] in any minerals following SO2 exposure. SEM-EDS measurements of SO2-exposed goethite revealed small amounts of sulfur uptake on the samples; however, the incorporated sulfur did not affect iron solubility. Our results show that although sulfur is incorporated into particles via gas-phase processes, changes in iron solubility also depend on other species in the aerosol. PMID:26000788

  5. Size-resolved observations of refractory black carbon particles in cloud droplets at a marine boundary layer site

    NASA Astrophysics Data System (ADS)

    Schroder, J. C.; Hanna, S. J.; Modini, R. L.; Corrigan, A. L.; Kreidenwies, S. M.; Macdonald, A. M.; Noone, K. J.; Russell, L. M.; Leaitch, W. R.; Bertram, A. K.

    2015-02-01

    Size-resolved observations of aerosol particles and cloud droplet residuals were studied at a marine boundary layer site (251 m a.m.s.l.) in La Jolla, San Diego, California, during 2012. A counterflow virtual impactor (CVI) was used as the inlet to sample cloud residuals while a total inlet was used to sample both cloud residuals and interstitial particles. Two cloud events totaling 10 h of in-cloud sampling were analyzed. Based on bulk aerosol particle concentrations, mass concentrations of refractory black carbon (rBC), and back trajectories, the two air masses sampled were classified as polluted marine air. Since the fraction of cloud droplets sampled by the CVI was less than 100%, the measured activated fractions of rBC should be considered as lower limits to the total fraction of rBC activated during the two cloud events. Size distributions of rBC and a coating analysis showed that sub-100 nm rBC cores with relatively thick coatings were incorporated into the cloud droplets (i.e., 95 nm rBC cores with median coating thicknesses of at least 65 nm were incorporated into the cloud droplets). Measurements also show that the coating volume fraction of rBC cores is relatively large for sub-100 nm rBC cores. For example, the median coating volume fraction of 95 nm rBC cores incorporated into cloud droplets was at least 0.9, a result that is consistent with ?-Köhler theory. Measurements of the total diameter of the rBC-containing particles (rBC core and coating) suggest that the total diameter of rBC-containing particles needed to be at least 165 nm to be incorporated into cloud droplets when the core rBC diameter is ? 85 nm. This result is consistent with previous work that has shown that particle diameter is important for activation of non-rBC particles. The activated fractions of rBC determined from the measurements ranged from 0.01 to 0.1 for core rBC diameters ranging from 70 to 220 nm. This type of data is useful for constraining models used for predicting rBC concentrations in the atmosphere.

  6. Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii.

    PubMed

    García-Alonso, Javier; Rodriguez-Sanchez, Neus; Misra, Superb K; Valsami-Jones, Eugenia; Croteau, Marie-Noële; Luoma, Samuel N; Rainbow, Philip S

    2014-04-01

    Pollutants affecting species at the population level generate ecological instability in natural systems. The success of early life stages, such as those of aquatic invertebrates, is highly affected by adverse environmental conditions. Silver released into the environment from emerging nanotechnology represents such a threat. Sediments are sinks for numerous pollutants, which aggregate and/or associate with depositing suspended particles. Deposit feeder such as the annelid Platynereis dumerilii, which has a large associated literature on its development, is an excellent model organism for exposure studies in coastal environments. We exposed eggs, larvae, juveniles and adults of P. dumerilii to various concentrations of citrate (cit-Ag NPs) or humic acid (HA-Ag NPs) capped silver nanoparticles (Ag NPs) as well to dissolved Ag (added as AgNO3). We showed that mortality and abnormal development rate increased with younger life stages. While adults and juvenile were the most tolerant life stages, fertilized eggs were highly sensitive to AgNO3, cit-Ag NPs and HA-Ag NPs. Exposures to HA-Ag NPs triggered the highest cute toxicity responses in P. dumerilii and in most cases both Ag NPs were more toxic than AgNO3. Uptake rate of HA-Ag NPs in adult worms was also higher than from other Ag forms, consistent with toxicity to other life stages. The early stages of the life cycle of marine coastal organisms are more affected by Ag NPs than the juvenile or adult life stages, indicating that exposure experiments at the larval level contribute to realistic eco-toxicological studies in aquatic environments. PMID:24514586

  7. Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii

    USGS Publications Warehouse

    García-Alonso, Javier; Rodriguez-Sanchez, Neus; Misra, Superb K.; Valsami-Jones, Eugenia; Croteau, Marie-Noële; Luoma, Samuel N.; Rainbow, Philip S.

    2014-01-01

    Pollutants affecting species at the population level generate ecological instability in natural systems. The success of early life stages, such as those of aquatic invertebrates, is highly affected by adverse environmental conditions. Silver released into the environment from emerging nanotechnology represents such a threat. Sediments are sinks for numerous pollutants, which aggregate and/or associate with depositing suspended particles. Deposit feeder such as the annelid Platynereis dumerilii, which has a large associated literature on its development, is an excellent model organism for exposure studies in coastal environments. We exposed eggs, larvae, juveniles and adults of P. dumerilii to various concentrations of citrate (cit-Ag NPs) or humic acid (HA-Ag NPs) capped silver nanoparticles (Ag NPs) as well to dissolved Ag (added as AgNO3). We showed that mortality and abnormal development rate increased with younger life stages. While adults and juvenile were the most tolerant life stages, fertilized eggs were highly sensitive to AgNO3, cit-Ag NPs and HA-Ag NPs. Exposures to HA-Ag NPs triggered the highest cute toxicity responses in P. dumerilii and in most cases both Ag NPs were more toxic than AgNO3. Uptake rate of HA-Ag NPs in adult worms was also higher than from other Ag forms, consistent with toxicity to other life stages. The early stages of the life cycle of marine coastal organisms are more affected by Ag NPs than the juvenile or adult life stages, indicating that exposure experiments at the larval level contribute to realistic eco-toxicological studies in aquatic environments.

  8. Retention of radioactive particles and associated effects in the filter-feeding marine mollusc Mytilus edulis.

    PubMed

    Jaeschke, B C; Lind, O C; Bradshaw, C; Salbu, B

    2015-01-01

    Radioactive particles are aggregates of radioactive atoms that may contain significant activity concentrations. They have been released into the environment from nuclear weapons tests, and from accidents and effluents associated with the nuclear fuel cycle. Aquatic filter-feeders can capture and potentially retain radioactive particles, which could then provide concentrated doses to nearby tissues. This study experimentally investigated the retention and effects of radioactive particles in the blue mussel, Mytilus edulis. Spent fuel particles originating from the Dounreay nuclear establishment, and collected in the field, comprised a U and Al alloy containing fission products such as (137)Cs and (90)Sr/(90)Y. Particles were introduced into mussels in suspension with plankton-food or through implantation in the extrapallial cavity. Of the particles introduced with food, 37% were retained for 70 h, and were found on the siphon or gills, with the notable exception of one particle that was ingested and found in the stomach. Particles not retained seemed to have been actively rejected and expelled by the mussels. The largest and most radioactive particle (estimated dose rate 3.18 ± 0.06 Gyh(-1)) induced a significant increase in Comet tail-DNA %. In one case this particle caused a large white mark (suggesting necrosis) in the mantle tissue with a simultaneous increase in micronucleus frequency observed in the haemolymph collected from the muscle, implying that non-targeted effects of radiation were induced by radiation from the retained particle. White marks found in the tissue were attributed to ionising radiation and physical irritation. The results indicate that current methods used for risk assessment, based upon the absorbed dose equivalent limit and estimating the "no-effect dose" are inadequate for radioactive particle exposures. Knowledge is lacking about the ecological implications of radioactive particles released into the environment, for example potential recycling within a population, or trophic transfer in the food chain. PMID:25240099

  9. Development of Marine Diesel Particulate Filter Using High frequency Induction Heating

    NASA Astrophysics Data System (ADS)

    Hatanaka, Yoshihiro; Takashima, Kohei; Kifune, Hiroyasu

    Novel marine diesel particulate filter (DPF) using high frequency induction heating is developed. Particulate matter exhausted from diesel engine is trapped by the DPF and is successfully burned by induction heating. The effectiveness of the DPF system is verified by experiments.

  10. BlLLETIN OF MARINE SCIENCE. 691): 191911207201RL PATTERNS OF CORAL REEF DEVELOPMENT

    E-print Network

    Kerr, Alexander M.

    BlLLETIN OF MARINE SCIENCE. 691): 191911207201RL PATTERNS OF CORAL REEF DEVELOPMENT ON TARAWA ATOLL. Coral communities of these central reefs are dominated by clonal. fragmenting species ofen- crusting shape, and high human population density-may have influenced reef communities. 1191 CORAL REEF PAPER #12

  11. Hawaii's Marine Fisheries: Some History, Long-term Trends, and Recent Developments

    E-print Network

    Hawaii's Marine Fisheries: Some History, Long-term Trends, and Recent Developments Introduction Recently Hawaii's commercial ma rine fishery has experienced a period of rapid growth and structural change Dole Street, Honolulu, HI 96822-2396. ABSTRACT - This paper provides an overview ofHawaii

  12. Marine Information Centre Development: An Introductory Manual. Manuals and Guides 23.

    ERIC Educational Resources Information Center

    Varley, Allan

    The purpose of this introductory manual is briefly to explain and put into context the elements involved in marine information center development and operation. Its goal is to provide an overview and create an awareness of the range of the inter-connected procedures, activities, and products that make up an information service. The introductory…

  13. The development of CACTUS : a wind and marine turbine performance simulation code.

    SciTech Connect

    Barone, Matthew Franklin; Murray, Jonathan

    2010-12-01

    CACTUS (Code for Axial and Cross-flow TUrbine Simulation) is a turbine performance simulation code, based on a free wake vortex method, under development at Sandia National Laboratories (SNL) as part of a Department of Energy program to study marine hydrokinetic (MHK) devices. The current effort builds upon work previously done at SNL in the area of vertical axis wind turbine simulation, and aims to add models to handle generic device geometry and physical models specific to the marine environment. An overview of the current state of the project and validation effort is provided.

  14. Current developments in marine microbiology: high-pressure biotechnology and the genetic engineering of piezophiles.

    PubMed

    Zhang, Yu; Li, Xuegong; Bartlett, Douglas H; Xiao, Xiang

    2015-06-01

    A key aspect of marine environments is elevated pressure; for example, ?70% of the ocean is at a pressure of at least 38MPa. Many types of Bacteria and Archaea reside under these high pressures, which drive oceanic biogeochemical cycles and catalyze reactions among rocks, sediments and fluids. Most marine prokaryotes are classified as piezotolerant or as (obligate)-piezophiles with few cultivated relatives. The biochemistry and physiology of these organisms are largely unknown. Recently, high-pressure cultivation technology has been combined with omics and DNA recombination methodologies to examine the physiology of piezophilic marine microorganisms. We are now beginning to understand the adaptive mechanisms of these organisms, along with their ecological functions and evolutionary processes. This knowledge is leading to the further development of high-pressure-based biotechnology. PMID:25776196

  15. Developing hyperpolarized silicon particles for advanced biomedical imaging applications

    NASA Astrophysics Data System (ADS)

    Whiting, Nicholas; Hu, Jingzhe; Constantinou, Pamela; Millward, Niki Z.; Bankson, James; Gorenstein, David; Sood, Anil; Carson, Daniel; Bhattacharya, Pratip

    2015-03-01

    Silicon-based nanoparticles are ideally suited as biomedical imaging agents, due to their biocompatibility, biodegradability, and simple surface chemistry that is amenable to drug loading and targeting. A method of hyperpolarizing silicon particles using dynamic nuclear polarization (DNP), which increases magnetic resonance imaging (MRI) signals by 4-5 orders of magnitude through enhanced nuclear spin alignment, has recently been developed and shown viable as a contrast agent for in vivo MRI. Naturally occurring electronic defects on the particle surface obviate the need for exogenous radicals, and the enhanced spin polarization lasts for significantly longer than other hyperpolarized agents (tens of minutes, instead of <1 minute for other species). We report our recent advances in determining the MR characteristics of hyperpolarized silicon particles, which could lead to non-invasive, non-radioactive molecular targeted imaging of various cancer systems. A variety of particle sizes (20 nm-2 ?m) were found to have hyperpolarized relaxation times ranging from ~10-50 minutes. The addition of various functional groups to the particle surface, including biocompatible polymers, aptamers, and antibodies had no effect to the hyperpolarization dynamics or relaxation times, and appear to satisfactorily survive the harsh temperature conditions of DNP. Preliminary in vivo studies examined a variety of particle administration routes in mice, including intraperitoneal, tail vein, and rectal injections, as well as oral gavage. Ongoing experiments include targeted molecular imaging in orthotopic murine models of ovarian and colorectal cancers.

  16. HEASD PM RESEARCH METHODS: PARTICLE METHODS EVALUATION AND DEVELOPMENT

    EPA Science Inventory

    The FRM developed by NERL forms the backbone of the EPA's national monitoring strategy. It is the measurement that defines attainment of the new standard. However, the agency has numerous other needs in assessing the physical and chemical characteristics of ambient fine particl...

  17. Environmental epigenetics: A promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates.

    PubMed

    Suarez-Ulloa, Victoria; Gonzalez-Romero, Rodrigo; Eirin-Lopez, Jose M

    2015-09-15

    Environmental epigenetics investigates the cause-effect relationships between specific environmental factors and the subsequent epigenetic modifications triggering adaptive responses in the cell. Given the dynamic and potentially reversible nature of the different types of epigenetic marks, environmental epigenetics constitutes a promising venue for developing fast and sensible biomonitoring programs. Indeed, several epigenetic biomarkers have been successfully developed and applied in traditional model organisms (e.g., human and mouse). Nevertheless, the lack of epigenetic knowledge in other ecologically and environmentally relevant organisms has hampered the application of these tools in a broader range of ecosystems, most notably in the marine environment. Fortunately, that scenario is now changing thanks to the growing availability of complete reference genome sequences along with the development of high-throughput DNA sequencing and bioinformatic methods. Altogether, these resources make the epigenetic study of marine organisms (and more specifically marine invertebrates) a reality. By building on this knowledge, the present work provides a timely perspective highlighting the extraordinary potential of environmental epigenetic analyses as a promising source of rapid and sensible tools for pollution biomonitoring, using marine invertebrates as sentinel organisms. This strategy represents an innovative, groundbreaking approach, improving the conservation and management of natural resources in the oceans. PMID:26088539

  18. Environmental effects of marine energy development around the world. Annex IV Final Report

    SciTech Connect

    Copping, Andrea; Hanna, Luke; Whiting, Johnathan; Geerlofs, Simon; Grear, Molly; Blake, Kara ); Coffey, Anna; Massaua, Meghan; Brown-Saracino, Jocelyn; Battey, Hoyt )

    2013-01-15

    Annex IV is an international collaborative project to examine the environmental effects of marine energy devices among countries through the International Energy Agency’s Ocean Energy Systems Initiative (OES). The U.S. Department of Energy (DOE) serves as the Operating Agent for the Annex, in partnership with the Bureau of Ocean Energy Management (BOEM; formerly the Minerals Management Service), the Federal Energy Regulatory Commission (FERC), and National Oceanographic and Atmospheric Administration (NOAA). Numerous ocean energy technologies and devices are being developed around the world, and the few data that exist about the environmental effects of these technologies are dispersed among countries and developers. The purpose of Annex IV is to facilitate efficient government oversight of the development of ocean energy systems by compiling and disseminating information about the potential environmental effects of marine energy technologies and to identify methods of monitoring for these effects. Beginning in 2010, this three-year effort produced a publicly available searchable online database of environmental effects information (Tethys). It houses scientific literature pertaining to the environmental effects of marine energy systems, as well as metadata on international ocean energy projects and research studies. Two experts’ workshops were held in Dublin, Ireland (September 2010 and October 2012) to engage with international researchers, developers, and regulators on the scope and outcomes of the Annex IV project. Metadata and information stored in the Tethys database and feedback obtained from the two experts’ workshops were used as resources in the development of this report. This Annex IV final report contains three case studies of specific interactions of marine energy devices with the marine environment that survey, compile, and analyze the best available information in one coherent location. These case studies address 1) the physical interactions between animals and tidal turbines; 2) the acoustic impact of marine energy devices on marine animals; and 3) the effects of energy removal on physical systems. Each case study contains a description of environmental monitoring efforts and research studies, lessons learned, and analysis of remaining information gaps. The information collected through the Annex IV effort and referenced in this report, can be accessed on the Tethys database at http://mhk.pnnl.gov/wiki/index.php/Tethys_ Home.

  19. Some developments in neutron and charged particle dosimetry.

    PubMed

    Bos, Adrie J J; d'Errico, Francesco

    2006-01-01

    There is an increasing need for dosimetry of neutrons and charged particles. Increasing exposure levels are reported in the nuclear industry, deriving from more frequent in-service entries at commercial nuclear power plants, and from increased plant decommissioning and refurbishment activities. Another need stems from the compliance with requirements of the regulations and standards. The European Council directive 96/29 requires dosimetric precautions if the effective dose exceeds 1 mSv a(-1). On average, aircrew members exceed this value. Further, there is a trend of increasing use of charged particles in radiotherapy. The present situation is that we have reasonably good photon dosemeters, but neutron and charged particle dosemeters are still in need of improvements. This work highlights some of the developments in this field. It is mainly concentrated on some developments in passive dosimetry, in particular thermally and optically stimulated luminescent detectors, indicating the direction of ongoing research. It shows that passive dosemeters are still a very active field. Active dosemeters will not be discussed with the exception of new developments in microdosimetric measurements [new types of tissue equivalent proportional counters (TEPCs)]. The TEPC is unique in its ability to provide a simultaneous determination of neutron / charged particle / gamma ray doses, or dose equivalents using a single detector. PMID:16987918

  20. Biologically Induced Deposition of Fine Suspended Particles by Filter-Feeding Bivalves in Land-Based Industrial Marine Aquaculture Wastewater

    PubMed Central

    Zhou, Yi; Zhang, Shaojun; Liu, Ying; Yang, Hongsheng

    2014-01-01

    Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67±0.99 cm) and M. galloprovincialis (shell height: 4.43±0.98 cm) was 77.84±7.77 and 6.37±0.67 mg ind?1•d?1, respectively. The total solid suspension (TSS) deposition rates of oyster and mussel treatments were 3.73±0.27 and 2.76±0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P<0.001). Furthermore, organic matter and C, N in the sediments of bivalve treatments were significantly lower than those in the sediments of the control (P<0.05). It was suggested that the filter feeders C. gigas and M. galloprovincialis had considerable potential to filter and accelerate the deposition of suspended particles from industrial aquaculture wastewater, and simultaneously yield value-added biological products. PMID:25250730

  1. Magnetic particle imaging: current developments and future directions

    PubMed Central

    Panagiotopoulos, Nikolaos; Duschka, Robert L; Ahlborg, Mandy; Bringout, Gael; Debbeler, Christina; Graeser, Matthias; Kaethner, Christian; Lüdtke-Buzug, Kerstin; Medimagh, Hanne; Stelzner, Jan; Buzug, Thorsten M; Barkhausen, Jörg; Vogt, Florian M; Haegele, Julian

    2015-01-01

    Magnetic particle imaging (MPI) is a novel imaging method that was first proposed by Gleich and Weizenecker in 2005. Applying static and dynamic magnetic fields, MPI exploits the unique characteristics of superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs’ response allows a three-dimensional visualization of their distribution in space with a superb contrast, a very high temporal and good spatial resolution. Essentially, it is the SPIONs’ superparamagnetic characteristics, the fact that they are magnetically saturable, and the harmonic composition of the SPIONs’ response that make MPI possible at all. As SPIONs are the essential element of MPI, the development of customized nanoparticles is pursued with the greatest effort by many groups. Their objective is the creation of a SPION or a conglomerate of particles that will feature a much higher MPI performance than nanoparticles currently available commercially. A particle’s MPI performance and suitability is characterized by parameters such as the strength of its MPI signal, its biocompatibility, or its pharmacokinetics. Some of the most important adjuster bolts to tune them are the particles’ iron core and hydrodynamic diameter, their anisotropy, the composition of the particles’ suspension, and their coating. As a three-dimensional, real-time imaging modality that is free of ionizing radiation, MPI appears ideally suited for applications such as vascular imaging and interventions as well as cellular and targeted imaging. A number of different theories and technical approaches on the way to the actual implementation of the basic concept of MPI have been seen in the last few years. Research groups around the world are working on different scanner geometries, from closed bore systems to single-sided scanners, and use reconstruction methods that are either based on actual calibration measurements or on theoretical models. This review aims at giving an overview of current developments and future directions in MPI about a decade after its first appearance. PMID:25960650

  2. Charged Particle Environment Definition for NGST: Model Development

    NASA Technical Reports Server (NTRS)

    Blackwell, William C.; Minow, Joseph I.; Evans, Steven W.; Hardage, Donna M.; Suggs, Robert M.

    2000-01-01

    NGST will operate in a halo orbit about the L2 point, 1.5 million km from the Earth, where the spacecraft will periodically travel through the magnetotail region. There are a number of tools available to calculate the high energy, ionizing radiation particle environment from galactic cosmic rays and from solar disturbances. However, space environment tools are not generally available to provide assessments of charged particle environment and its variations in the solar wind, magnetosheath, and magnetotail at L2 distances. An engineering-level phenomenology code (LRAD) was therefore developed to facilitate the definition of charged particle environments in the vicinity of the L2 point in support of the NGST program. LRAD contains models tied to satellite measurement data of the solar wind and magnetotail regions. The model provides particle flux and fluence calculations necessary to predict spacecraft charging conditions and the degradation of materials used in the construction of NGST. This paper describes the LRAD environment models for the deep magnetotail (XGSE < -100 Re) and solar wind, and presents predictions of the charged particle environment for NGST.

  3. Developing a strawberry yogurt fortified with marine fish oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fortified dairy products appeal to a wide variety of consumers and have the potential to increase sales in the yogurt industry and contribute to boost the intake of omega-3 fatty acids. The objectives of this study were to develop a strawberry yogurt containing microencapsulated salmon oil (2% w/v) ...

  4. Investigating Primary Marine Aerosol Properties: CCN Activity of Sea Salt and Mixed Inorganic–Organic Particles

    PubMed Central

    2012-01-01

    Sea spray particles ejected as a result of bubbles bursting from artificial seawater containing salt and organic matter in a stainless steel tank were sampled for size distribution, morphology, and cloud condensation nucleus (CCN) activity. Bubbles were generated either by aeration through a diffuser or by water jet impingement on the seawater surface. Three objectives were addressed in this study. First, CCN activities of NaCl and two types of artificial sea salt containing only inorganic components were measured to establish a baseline for further measurements of mixed organic–inorganic particles. Second, the effect of varying bubble residence time in the bulk seawater solution on particle size and CCN activity was investigated and was found to be insignificant for the organic compounds studied. Finally, CCN activities of particles produced from jet impingement were compared with those produced from diffuser aeration. Analyses indicate a considerable amount of organic enrichment in the jet-produced particles relative to the bulk seawater composition when sodium laurate, an organic surfactant, is present in the seawater. In this case, the production of a thick foam layer during impingement may explain the difference in activation and supports hypotheses that particle production from the two methods of generating bubbles is not equal. PMID:22809370

  5. International Conference on Developments in Marine CFD, 18 -19 November 2011, Chennai, India 2011: The Royal Institution of Naval Architects

    E-print Network

    Al Hanbali, Ahmad

    International Conference on Developments in Marine CFD, 18 - 19 November 2011, Chennai, India PROPAGATION OVER A SHOAL D Adytia and E van Groesen, LabMath-Indonesia and University of Twente with experiments from MARIN hydrodynamic laboratory for focusing wave group running above a flat bottom [2

  6. Size-resolved observations of refractory black carbon particles in cloud droplets at a marine boundary layer site

    NASA Astrophysics Data System (ADS)

    Schroder, J. C.; Hanna, S. J.; Modini, R. L.; Corrigan, A. L.; Macdonald, A. M.; Noone, K. J.; Russell, L. M.; Leaitch, W. R.; Bertram, A. K.

    2014-05-01

    Size resolved observations of aerosol particles (including black carbon particles) and cloud residuals were studied at a marine boundary layer site (251 m a.m.s.l.) in La Jolla, CA during 2012. A counterflow virtual impactor was used to sample cloud residuals while a total inlet was used to sample both cloud residuals and interstitial particles. Two cloud events totaling ten hours of in-cloud sampling were analyzed. Since the CVI only sampled cloud droplets larger than ?11 ?m, less than 100% of the cloud droplets were sampled during the two cloud events (?38% of the cloud droplets for the first cloud event and ?24% of the cloud droplets for the second cloud were sampled). Back trajectories showed that air masses for both cloud events spent at least 96 h over the Pacific Ocean and traveled near, or over populated regions just before sampling. Based on bulk aerosol particle concentrations measured from the total inlet the two air masses sampled were classified as polluted marine air, a classification that was consistent with back trajectory analysis and the mass concentrations of refractory black carbon (rBC) measured from the total inlet. The activated fraction of rBC, estimated from the measurements, ranged from 0.01 to 0.1 for core diameters ranging from 70 to 220 nm. Since the fraction of cloud droplets sampled by the CVI was less than 100%, the measured activated fractions of rBC should be considered as lower limits to the total fraction of rBC activated during the two cloud events. Size distributions of rBC sampled from the residual inlet show that sub-100 nm rBC cores were incorporated into the droplets in both clouds. The coating analysis shows that the rBC cores had average coating thicknesses of 75 nm for core diameters of 70 nm and 29 nm for core diameters of 220 nm. The presence of sub-100 nm rBC cores in the cloud residuals is consistent with kappa-Köhler theory and the measured coating thicknesses of the rBC cores.

  7. Development and testing of the infrared radiometer for the Mariner Venus/Mercury 1973 spacecraft

    NASA Technical Reports Server (NTRS)

    Clarke, T. C.

    1975-01-01

    The science objectives, development history, functional description, and testing of the Mariner Venus/Mercury 1973 infrared radiometer are discussed. Included in the functional description section is a thorough discussion of the IRR optical system, electronic operation, and thermal control. Signal development and its conversion to engineering units is traced, starting with the radiant space object, passing through the IRR optics and electronics, and culminating with data number development and interpretation. The test program section includes discussion of IRR calibration and alignment verification. Finally, the problems and failures encountered by the IRR during the period of its development and testing are reviewed.

  8. Marine toxicity tests development with a New Zealand echinoid

    SciTech Connect

    Nipper, M.G.; Roper, D.S.; Martin, M.L.; Williams, E.K.

    1995-12-31

    The generally low levels of contamination around New Zealand lead to the search for a sensitive toxicity test, which could be used to screen effluent and to detect contaminant effects in coastal waters and sediments. Echinoid early life stage tests were considered ideal candidates. However, the adaptation of international toxicity test methods to indigenous species has not been straightforward or troublefree! The echinoid Fellaster zelandiae was selected because it is abundant around New Zealand and is fertile year round. Fertilization tests showed that gamete density, rather than sperm/egg ratio, was a crucial factor for successful control fertilization rates. This method, however, presented several problems related to (1) temporal variability in the quality of sperm batches, (2) rapid reduction of egg quality and viability after spawning, and (3) highly variable sensitivity in reference toxicant tests. Embryo tests were more reliable, with good control results (> 80% normal embryos) and consistent sensitivity to a reference toxicant, zinc sulfate. EC{sub 50} values averaged 0.06 mg Zn/L, comparable to the sensitivity of echinoid species used elsewhere. Brine prepared by freezing seawater was suitable for adjusting the salinity of effluents, with more than 90% normal embryos developing in brine diluted with UV-treated deionized water as a test-control. The assessment of the embryo development test as a tool for screening sediment toxicity (using sediment pore water), is presently underway, concurrently with growth and behavioral endpoint tests using indigenous amphipods and bivalves.

  9. Development of 2D Ionization Chamber for Particle Therapy

    NASA Astrophysics Data System (ADS)

    Ho, Chi-Li

    2010-11-01

    Recently rapid growth in particle therapy has imposed new detector developments for quality assurance (QA) purposes. Relatively high dose deposition from proton or carbon ion beam requires stringent performance from detectors. Cyclotron, synchrotron, or future laser driven accelerators represent DC and pulse sources which need different timing designs in electronics. Dose and position measurements of particle beams can serve clinical, beam diagnosis and QA purposes. We categorize the parameters of detectors - electronics, DAQ, and simulation--to serve for later optimizations. Gaseous detector is preferred because of its radiation hardness, and operation at ionization mode provides stable condition. We present our progresses in 2D ionization chamber development. Basic studies are carried out on 1D ionization chamber, which consists of 16 6-mm-wide strips. Results of measuring electron and proton beams are compared with MC simulations. 2D array ionization chamber design is optimized and based on 1D prototype measurements.

  10. Global Simulations of Radiative Forcing from Sea Salt Injections into Marine Clouds: The Effect of Injection Rate and Particle Size

    NASA Astrophysics Data System (ADS)

    Alterskjaer, K.; Kristjánsson, J.

    2011-12-01

    Sea salt seeding of low level marine clouds is a suggested technique to counteract or slow global warming. The injected sea salt is to act as cloud condensation nuclei (CCN) and through the aerosol indirect effect increase the cloud albedo and therefore the reflection of solar radiation from the earth-atmosphere system. Using the Norwegian Earth System Model (NorESM) we investigate the global radiative forcing achieved through sea salt seeding as a function of both (i) emission rate and (ii) sea salt particle size. The injection rates are uniform and confined over ocean between 30°S and 30°N, and range from 10-9 to 10-11 kg m-2 s-1. The size of the particles ranges from a dry modal radius of 0.022 ?m to 0.13 ?m, with geometric standard deviations of 1.59. The study includes aerosol indirect effects both in the shortwave and the longwave and investigates the direct radiative effect of the added sea salt particles. Preliminary results show that increasing emissions of the 0.13 ?m sea salt mode leads to an aerosol indirect effect of between -3.4 Wm-2 and -0.04 Wm-2, depending on emission rate. The maximum achieved forcing is close to cancelling the positive forcing resulting from a doubling of atmospheric CO2 concentrations (-3.8 Wm-2). Results also show that the direct effect of the sea salt parties is much larger than previously assumed, and the total radiative effect and the cooling potential of this geo-engineering technique may therefore be much greater than what has been assumed earlier. We find that ignoring the direct effect of sea salt may lead to serious errors in determining both the effectiveness of sea salt seeding and possible side effects. The longwave forcing resulting from a change in cloud emissivity with added sea salt is found to be negligible. Results also show that the size of the added sea salt is of crucial importance for the achieved radiative forcing. While adding large sea salt particles leads to a significant negative forcing at the top of the atmosphere, the opposite is true for particles below a certain size. This happens because the injected sea salt provide a large surface area for water vapor and gaseous sulfuric acid to condense on, thereby lowering the maximum cloud supersaturation and suppressing the nucleation of sulfate particles. Adding particles that are too small to become activated to cloud droplets merely leads to a reduced supersaturation and sulfate concentration and therefore to a decrease in the overall CCN concentration. This results in a reduced cloud droplet number concentration and a positive globally averaged forcing.

  11. Emerging morbillivirus infections of marine mammals: development of two diagnostic approaches.

    PubMed

    Saliki, Jeremiah T; Cooper, Emily J; Gustavson, Jonathan P

    2002-10-01

    In the last 13 years, four viruses belonging in the Morbillivirus genus of the Paramyxoviridae family have emerged as significant causes of disease and mortality in marine mammals. The viruses involved are canine distemper virus (CDV) in seals and polar bears, dolphin morbillivirus (DMV) and porpoise morbillivirus (PMV) in cetaceans, and phocine distemper virus (PDV) in pinnipeds. The two cetacean morbilliviruses (DMV and PMV) are now considered to be the same viral species, named cetacean morbillivirus (CMV). All three morbillivirus species (CDV, CMV, and PDV) are genetically and antigenically related and cross-react in various serological tests. The diagnosis of morbilliviral infections in marine mammal specimens poses two challenges. First, various marine mammal species can be infected by more than one closely related but distinct morbilliviruses, making definitive virus identification unattainable by classical virology methods. Second, standard immunological reagents such as anti-species conjugates are unavailable for most marine mammal species, rendering definitive serological diagnosis difficult by classical serological techniques. The objectives of this study were to develop two diagnostic approaches that alleviate these difficulties, providing simple, rapid, and cost-effective diagnostic methods. For nucleic acid detection, reverse transcription-polymerase chain reaction (RT-PCR) and restriction endonuclease digestions were used to differentiate the three viruses. For antibody detection, a monoclonal antibody-based competitive enzyme-linked immunosorbent assay (c-ELISA) was used on sera from several species, thus avoiding the need for multiple anti-species enzyme conjugates. PMID:12381563

  12. Development of a gene cloning system for the hydrogen-producing marine photosynthetic bacterium Rhodopseudomonas sp

    SciTech Connect

    Matsunaga, T.; Matsunaga, N.; Tsubaki, K.; Tanaka, T.

    1986-10-01

    Seventy-six strains of marine photosynthetic bacteria were analyzed by agarose gel electrophoresis for plasmid DNA content. Among these strains, 12 carried two to four different plasmids with sizes ranging from 3.1 to 11.0 megadaltons. The marine photosynthetic bacterium Rhodopseudomonas sp. NKPB002106 had two plasmids, pRD06S and pRD06L. The smaller plasmid, pRD06S, had a molecular weight of 3.8 megadaltons and was cut at a single site by restriction endonucleases SalI, SmaI, PstI, XhoI, and BglII. Moreover, the marine photosynthetic bacterium Rhodopseudomonas sp. NKPB002106 containing plasmid pRD06 had a satisfactory growth rate (doubling time, 7.5 h), a hydrogen-producing rate of 0.96 ..mu..mol/mg (dry weight) of cells per h, and nitrogen fixation capability. Plasmid pRD06S, however, had neither drug resistance nor heavy-metal resistance, and its copy number was less than 10. Therefore, a recombinant plasmid consisting of pRD06S and Escherichia coli cloning vector pUC13 was constructed and cloned in E. coli. The recombinant plasmid was transformed into Rhodopseudomonas sp. NKPB002106. As a result, Rhodopseudomonas sp. NKPB002106 developed ampicillin resistance. Thus, a shuttle vector for gene transfer was constructed for marine photosynthetic bacteria.

  13. Great skua (Stercorarius skua) movements at sea in relation to marine renewable energy developments.

    PubMed

    Wade, H M; Masden, E A; Jackson, A C; Thaxter, C B; Burton, N H K; Bouten, W; Furness, R W

    2014-10-01

    Marine renewable energy developments (MREDs) are an increasing feature of the marine environment. Owing to the relatively small number of existing developments and the early stage of their associated environmental monitoring programmes, the effects of MREDs on seabirds are not fully known. Our ability to fully predict potential effects is limited by a lack of knowledge regarding movements of seabirds at sea. We used GPS tracking to improve our understanding of the movements at sea of a protected seabird species breeding in Scotland, the great skua (Stercorarius skua), to better predict how this species may be affected by MREDs. We found that the overlap of great skuas with leased and proposed MREDs was low; particularly with offshore wind sites, which are predicted to present a greater risk to great skuas than wave or tidal-stream developments. Failed breeders overlapped with larger areas of MREDs than breeding birds but the overall overlap with core areas used remained low. Overlap with wave energy development sites was greater than for offshore wind and tidal-stream sites. Comparison of 2011 data with historical data indicates that distances travelled by great skuas have likely increased over recent decades. This suggests that basing marine spatial planning decisions on short-term tracking data could be less informative than longer-term data. PMID:25262489

  14. International Standards Development for Marine and Hydrokinetic Renewable Energy - Final Report on Technical Status

    SciTech Connect

    Rondorf, Neil E.; Busch, Jason; Kimball, Richard

    2011-10-29

    This report summarizes the progress toward development of International Standards for Marine and Hydrokinetic Renewable Energy, as funded by the U.S. Department of Energy (DOE) under the International Electrotechnical Commission (IEC) Technical Committee 114. The project has three main objectives: 1. Provide funding to support participation of key U.S. industry technical experts in 6 (originally 4) international working groups and/or project teams (the primary standards-making committees) and to attend technical meetings to ensure greater U.S. involvement in the development of these standards. 2. Provide a report to DOE and industry stakeholders summarizing the IEC standards development process for marine and hydrokinetic renewable energy, new international standards and their justifications, and provide standards guidance to industry members. 3. Provide a semi-annual (web-based) newsletter to the marine renewable energy community. The newsletter will educate industry members and stakeholders about the processes, progress, and needs of the US efforts to support the international standards development effort. The newsletter is available at www.TC114.us

  15. TEM study of aerosol particles from clean and polluted marine boundary layers over the North Atlantic

    NASA Astrophysics Data System (ADS)

    Li, Jia; Anderson, James R.; Buseck, Peter R.

    2003-03-01

    Aerosol samples were collected from Punta del Hidalgo in the Canary Islands and Sagres in Portugal during June-July 1997 as part of the Aerosol Characterization Experiment-2 (ACE-2) over the North Atlantic Ocean. We studied individual aerosol particles using transmission and scanning electron microscopy. The major aerosol types include fresh and partly or completely reacted sea salt that consist of NaCl, mixed-cation (Na, Mg, K, and Ca) sulfate, Na2SO4, and NaNO3; particles of industrial origin that include (NH4)2SO4, soot, flyash, silica, Fe oxide, and CaSO4; and minor terrestrial mineral dust. Because of their different geographic locations, samples from these two sites showed different degrees of impact from anthropogenic emissions from Europe. At Sagres, depending on the samples, between 0 and 30% of sea salt particles remain unreacted, while 0 to 50% were partly reacted, and 20 to 100% were completely converted to sulfate and nitrate through reactions with pollutants from the European continent. In contrast, at Punta del Hidalgo, the sea salt particles were much less affected by industrial pollution. Even during polluted periods, only less than 5% were completely reacted. The dramatic difference between the sea salt particles from Punta del Hidalgo and Sagres indicates dilution of pollution, rapid reaction, and exhaustion of reactive pollutants as they were transported to the open ocean.

  16. The Pandora Software Development Kit for Particle Flow Calorimetry

    NASA Astrophysics Data System (ADS)

    Marshall, J. S.; Thomson, M. A.

    2012-12-01

    Pandora is a robust and efficient framework for developing and running pattern-recognition algorithms. It was designed to perform particle flow calorimetry, which requires many complex pattern-recognition techniques to reconstruct the paths of individual particles through fine granularity detectors. The Pandora C++ software development kit (SDK) consists of a single library and a number of carefully designed application programming interfaces (APIs). A client application can use the Pandora APIs to pass details of tracks and hits/cells to the Pandora framework, which then creates and manages named lists of self-describing objects. These objects can be accessed by Pandora algorithms, which perform the pattern-recognition reconstruction. Development with the Pandora SDK promotes the creation of small, re-usable algorithms containing just the kernel of a specific operation. The algorithms are configured via XML and can be nested to perform complex reconstruction tasks. As the algorithms only access the Pandora objects in a controlled manner, via the APIs, the framework can perform most book-keeping and memory-management operations. The Pandora SDK has been fully exploited in the implementation of PandoraPFA, which uses over 60 algorithms to provide the state of the art in particle flow calorimetry for ILC and CLIC.

  17. Development and application of a marine sediment porewater toxicity test using algal spores

    SciTech Connect

    Hooten, R.; Carr, R.S.

    1995-12-31

    An acute pore water toxicity test protocol using germination and growth of marine macroalgae as endpoints was developed to indicate the presence of toxic compounds in marine/estuarine and sediment porewater samples. Zoospores collected from Ulva fasciata and U. lactuca were used as test organisms. Preliminary results with sodium dodecyl sulfate (SDS, a reference toxicant) indicate that zoospores germination and growth of embryonic gametophytes are as sensitive as the sea urchin fertilization and embryological development toxicity tests. Algal germination and growth data for copper, mercury and other metals will be presented. The results of tests utilizing this algal assay with sediment pore water from contaminated sediments will be compared with more traditional sediment toxicity test methods.

  18. Investigating primary marine aerosol properties: CCN activity of sea salt and mixed particles

    NASA Astrophysics Data System (ADS)

    King, S. M.; Butcher, A. C.; Rosenoern, T.; Coz, E.; Lieke, K. I.; de Leeuw, G.; Nilsson, E. D.; Bilde, M.

    2012-04-01

    Sea salt particles ejected as a result of bubbles bursting from artificial seawater in a closed stainless steel tank were sampled for size distribution, morphology, and cloud condensation nucleus (CCN) activity. The two-component artificial seawater consisted of salt, either NaCl or sea salt, and one organic compound in deionized water. Several organic molecules representative of oceanic organic matter were investigated. Bubbles were generated either by aeration through a porous diffuser or by water jet impingement on the surface of the artificial seawater. The effect of bubble lifetime, which was controlled by varying the depth of the diffuser in the water column, on particle size and CCN activity was investigated and was found to be insignificant for the organic compounds studied. The CCN activities of particles produced from diffuser-generated bubbles were generally governed by the high hygroscopicity of salt, such that activation was indistinguishable from that of salt, except in the case of very low mass ratio of salt to organic matter in the seawater solution. There was, however, a considerable decrease in CCN activity for particles produced from jet impingement on seawater that had a salinity of 10‰ and contained 0.45 mM of sodium laurate, an organic surfactant. The production of a thick foam layer from impingement may explain the difference in activation and supports hypotheses that particle production from the two methods of generating bubbles is not similar. Accurate conclusions from observed CCN activities of particles from artificial seawater containing organic matter require knowledge of the CCN activity of the inorganic component, especially as a small amount of the inorganic can heavily influence activation. Therefore, the CCN activity of both artificial sea salt and NaCl were measured and compared. Part of the discrepancy observed between the CCN activities of the two salts may be due to morphological differences, which were investigated using electron microscopy.

  19. Developing a strawberry yogurt fortified with marine fish oil.

    PubMed

    Estrada, J D; Boeneke, C; Bechtel, P; Sathivel, S

    2011-12-01

    Fortified dairy products appeal to a wide variety of consumers and have the potential to increase sales in the yogurt industry and help increase intake of long-chain n-3 fatty acids. The objectives of this study were to develop a strawberry yogurt containing microencapsulated salmon oil (MSO; 2% wt/vol) and evaluate its characteristics during 1 mo of storage. Unpurified salmon oil (USO) was purified (PSO) and both USO and PSO were analyzed for peroxide value (PV), anisidine value (AV), total oxidation, free fatty acids (FFA), and moisture content. A stable emulsion was prepared with 7% PSO, 22% gum arabic, 11% maltodextrin, and 60% water. The emulsion was spray-dried to produce MSO. The MSO was added to strawberry-flavored yogurt (SYMSO) before pasteurization and homogenization, and a control (SY) without MSO was produced. Both yogurts were stored for 1 mo at 4°C and we determined the quality characteristics including acidity (pH), syneresis, thiobarbituric acid (TBA), fatty acid methyl ester composition, color, and lactic acid bacteria (LAB) count. The entire experiment was replicated 3 times. Total oxidation (unitless) of USO, PSO, and MSO was calculated to be 20.7±1.26, 10.9±0.1, and 13.4±0.25, respectively. Free fatty acid contents were 1.61±0.19%, 0.59±0.02%, and 0.77±0.02% for USO, PSO, and MSO, respectively. Eicosapentaenoic acid and docosahexaenoic acid were the predominant polyunsaturated fatty acids in MSO and in SYMSO, but neither was detected in SY. Fortification of SY with MSO had no significant effect on yogurt pH or syneresis. A decrease in concentration of lactic acid bacteria was observed during the storage of all yogurts. Thiobarbituric acid values significantly increased as storage time increased and SY had a significantly lighter (higher L*) and less yellow (lower b*) color than SYMSO. Although some slight differences were observed in the color and oxidation of SYMSO compared with SY, the study demonstrated that SY could be fortified with salmon oil. PMID:22118066

  20. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. II - Marine stratocumulus observations

    NASA Technical Reports Server (NTRS)

    Nakajima, Teruyuki; King, Michael D.; Spinhirne, James D.; Radke, Lawrence F.

    1991-01-01

    A multispectral scanning radiometer has been used to obtain measurements of the reflection function of marine stratocumulus clouds at 0.75 micron and at 1.65 and 2.16 microns. These observations were obtained from the NASA ER-2 aircraft as part of the FIRE, conducted off the coast of southern California during July 1987. Multispectral images of the reflection function were used to derive the optical thickness and the effective particle radius of stratiform cloud layers on four days. In addition to the radiation measurements, in situ microphysical measurements were obtained from an aircraft. In this paper, the remote sensing results are compared with in situ observations, which show a good spatial correlation for both optical thickness and effective radius. These comparisons further show systematic differences between remote sensing and in situ values, with a tendency for remote sensing to overestimate the effective radius by about 2-3 microns, independent of particle radius. The optical thickness, in contrast, is somewhat overestimated for small optical thicknesses and underestimated for large optical thicknesses. An introduction of enhanced gaseous absorption at a wavelength of 2.16 microns successfully explains some of these observed discrepancies.

  1. Development of training modules for magnetic particle inspection

    NASA Astrophysics Data System (ADS)

    Kosaka, Daigo; Eisenmann, David J.; Enyart, Darrel; Nakagawa, Norio; Lo, Chester; Orman, David

    2015-03-01

    Magnetic particle inspection (MPI) is a nondestructive evaluation technique used with ferromagnetic materials. Although the application of this method may appear straightforward, MPI combines the complicated nature of electromagnetics, metallurgical material effects, fluid-particle motion dynamics, and physiological human factors into a single inspection. To fully appreciate industry specifications such as ASTM E-1444, users should develop a basic understanding of the many factors that are involved in MPI. We have developed a series of MPI training modules that are aimed at addressing this requirement. The modules not only offer qualitative explanations, but also show quantitative explanations in terms of measurement and numerical simulation data in many instances. There are five modules in all. Module ?1 shows characteristics of waveforms and magnetizing methods. This allows MPI practitioners to make optimum choice of waveform and magnetizing method. Module ?2 explains how material properties relate to the magnetic characteristics. Module ?3 shows the strength of the excitation field or the flux leakage from a crack and how it compares to the detectability of a crack by MPI. Module ?4 shows how specimen status may influence defect detection. Module ?5 shows the effects of particle properties on defect detection.

  2. MarineSIM: Robot simulation for marine environments

    E-print Network

    Senarathne, P. G. C. Namal

    Development of robust navigation algorithms for marine robotics is a challenge faced by many marine robotists. This paper presents MarineSIM, a marine robot simulation platform which provides an infrastructure to easily ...

  3. Development of a site-specific marine water quality standard for cyanide

    SciTech Connect

    Arredondo, L.A.; Brix, K.V.; Cardwell, R.D.; Marsden, A.

    1995-12-31

    A study was conducted to develop a site-specific marine standard for cyanide. The generic cyanide standard of 1 {micro}g/L is ``driven`` by toxicity data for eastern rock crab (Cancer irroratus) zoeae. The reported LC50 for C. irroratus is 4.9 {micro}g/L cyanide and is six times more sensitive that any other marine species tested. In order to develop a site-specific standard for Washington state, cyanide toxicity tests were conducted using the first stage zoeae of Cancer magister and Cancer oregonensis, two Cancer resident to Puget Sound, in accordance with standard ASTM test methods. Testing with C. magister and C. oregonensis resulted in Species Mean Acute Values (SMAVS) of 68 and 131 {micro}g/L cyanide based on measured test concentrations. This is considerably higher than that reported for C. irroratus, is more consistent with cyanide toxicity values for other species tested, and results in a water quality criterion of 9.85 {micro}g/L cyanide with inclusion of these values in the data set. This paper presents the test methods used and the potential effects the test results may have on the marine water quality criterion for cyanide.

  4. Development progress of the Materials Analysis and Particle Probe

    SciTech Connect

    Lucia, M. Kaita, R.; Majeski, R.; Boyle, D. P.; Schmitt, J. C.; Onge, D. A. St.; Bedoya, F.; Allain, J. P.

    2014-11-15

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

  5. Development progress of the Materials Analysis and Particle Probe.

    PubMed

    Lucia, M; Kaita, R; Majeski, R; Bedoya, F; Allain, J P; Boyle, D P; Schmitt, J C; Onge, D A St

    2014-11-01

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques. PMID:25430248

  6. Marine Fisheries Marine recreational angling. Florida

    E-print Network

    Marine Fisheries ~~WD~W Marine recreational angling. Florida News Bureau photo by Jack Fortune 1980 Jay D. Andrews 1 Social Considerations Associated With Marine Recreational Fishing Under FCMA/NMFS Developments Index, 1980 Papers in Marine Fisheries Review, 1980 Chad P. Dawson and Bruce T. Wilkins 12 Charles

  7. Environmental Effects of Marine Energy Development Around the World. Annex IV Final Report

    SciTech Connect

    Copping, Andrea; Hanna, L.; Whiting, J.; Geerlofs, S.; Grear, M.; Blake, K.; Coffey, A.; Massaua, M.; Brown-Saracino, J.; Battey, H.

    2013-01-01

    This Annex IV report contains three case studies of specific interactions of marine energy devices with the marine environment addressing the physical interactions between animals and tidal turbines, the acoustic impact of marine energy devices on marine animals, and the effects of energy removal on physical systems.

  8. The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

    NASA Astrophysics Data System (ADS)

    Lee, Hyungmin; Jeong, Yeonhwan

    2012-12-01

    This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC) had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF) at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from 25 °C to 300 °C, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

  9. Seabed characterization for the development of marine renewable energy on the Pacific margin of Canada

    NASA Astrophysics Data System (ADS)

    Barrie, J. Vaughn; Conway, Kim W.

    2014-07-01

    An inventory of Canada's marine renewable energy resources based on numerical modeling of the potential tidal, wave and wind energy has been published that identifies areas with maximum resource potential. However, the inventory does not consider the seabed geological conditions that will control the safe development of seabed installations and cable corridors. The Geological Survey of Canada (Natural Resources Canada) has therefore undertaken an assessment of seafloor geological characteristics and physical environmental parameters that will be encountered during any extensive deployment of marine renewable energy systems for the Pacific offshore of Canada. Here we present an overview of seabed characterization for key sites for each of the three energy types. Narrow passages exiting the Salish Sea near the Canadian boundary with the United States and northwards out of the Strait of Georgia provide very promising sites for tidal generation. Here, elliptical fields of very large subaqueous dunes, from 12 to 28 m in height, present a significant challenge to site development. Along the exposed continental shelf of Vancouver Island focused wave-energy close to shore (40-60 m water depth) offers significant energy potential, but any engineering systems would have to be founded on a seafloor made up of a mobile gravel lag and an extensive boulder pavement. A large wind farm proposed for the Pacific North Coast would be built on an extensive shallow bank that has active sediment transport and a large field of sand ridges that have developed within a macrotidal environment. A significant challenge is providing for a safe seafloor cable corridor of over 100 km that crosses a large subaqueous dune field to connect to the electrical grid on the mainland. These examples show how geoscience has and will provide critical information to project proponents and regulators for the safe development of marine renewable energy.

  10. Development of Pressure sensing Particles through SERS and Upconversion

    NASA Astrophysics Data System (ADS)

    Widejko, Ryan; Wang, Fenglin; Anker, Jeff

    2012-03-01

    With the increasing distance of space travel, there is a critical need for non-invasive point-of-care diagnostic techniques. According to the NASA Human Research Roadmap, the ``lack of non-invasive diagnostic imaging capability and techniques to diagnose identified Exploration Medical Conditions involving internal body parts,'' is a critical capability gap for long distance space travel. To address this gap, we developed a novel technique for non-invasive monitoring of strain on implanted devices. We constructed a prototype tension-indicating washer with an upconversion spectrum that depended upon strain. The washer was made of a polydimethylsiloxane (PDMS) mixture with upconversion particles embedded in it. This mixture was cured onto a lenticular lens. Methylene blue dye solution was sealed between the lenticular lens and PDMS so that pressure on the washer displaced the dye and uncovered the upconversion particles. We also began work on a tension-indicating screw based upon surface enhanced Raman spectroscopy (SERS). Future work for this project is to quantitatively correlate the spectral intensity with pressure, further develop SERS washers, and construct SERS and/or upconversion screws or bolts. Non-invasive tension-indicating devices and techniques such as these can be applied to orthopedics, used as a general technique for measuring micro-strain, verifying proper assembly of equipment, and observing/studying bolt loosening.

  11. Bioaccessibility of metals in soils and dusts contaminated by marine antifouling paint particles.

    PubMed

    Turner, Andrew; Singh, Nimisha; Richards, Jonathan P

    2009-05-01

    Fragments of antifouling paint and environmental geosolids have been sampled from the island of Malta and analysed for total and bioaccessible metals. Total concentrations of Ba, Cd, Cu, Pb, Sn and Zn were two to three orders of magnitude higher in spent antifouling composites relative to respective values in background soils and road dusts. Paint fragments were visible in geosolids taken from the immediate vicinity of boat maintenance facilities and mass balance calculations, based on Ba as a paint tracer, suggested that the most contaminated soils, road dusts and boatyard dusts contained about 1%, 7% and 9%, respectively, of antifouling particles. Human bioaccessibilities of metals were evaluated in selected samples using a physiologically based extraction technique. Accessibilities of Cd, Cu, Pb and Zn in the most contaminated solids were sufficient to be cause for concern for individuals working in the boat repair industry and to the wider, local community. PMID:19231052

  12. The Effect of Organic Material on Heterogeneous Ice Nucleation - Insights from Microscopic Analysis of Field-Collected, Laboratory Generated, and Marine Biogenic Particles (Invited)

    NASA Astrophysics Data System (ADS)

    Knopf, D. A.

    2010-12-01

    Heterogeneous ice nucleation has been shown to play an important role in the formation of cirrus and mixed-phase clouds. Although their importance is widely acknowledged, the actual effects of aerosol particles on heterogeneous ice formation are insufficiently understood. Here, we present laboratory studies investigating the ice nucleation efficiency of organic dominated anthropogenic particles impacted by different degrees of photochemical aging collected in and around Mexico City, particles sampled in Los Angeles, laboratory generated organic particles composed of humic and fulvic acids exposed to O3, and biogenic marine particles. Using the optical microscope (OM) method, heterogeneous ice nucleation by particles deposited on hydrophobically coated substrates via immersion and deposition mode has been determined. Heterogeneous freezing temperatures and corresponding nucleation rates are derived, the latter being discussed in terms of atmospherically relevant ice particle production rates. The physical and chemical characteristics of the field collected particles were determined by SEM (Scanning Electron Microscopy), CCSEM/EDX analysis (computer controlled SEM with energy dispersed analysis of X-rays and STXM/NEXAFS (scanning transmission X-ray microscopy combined with near edge X-ray absorption fine structure spectroscopy). The anthropogenic particles examined nucleate ice heterogeneously at temperatures and relative humidity relevant to cirrus onset conditions observed in the northern hemisphere. Increases in organic content due to photochemical aging did not affect the particles’ IN efficiencies. Solid humic and fulvic acid particles nucleate ice via immersion and deposition modes at atmospherically relevant conditions and a corresponding ice nucleation parameterization is derived. Oxidation by O3, has various effects on the particles’ IN efficiency but no clear relationship between increased particle hydrophilicity due to oxidation and IN efficiency was found. Planktonic diatoms are the first unambiguously identified marine organism which acts as efficient IN in the immersion and deposition modes. These findings can resolve elevated atmospheric IN concentrations observed over surface waters containing phytoplankton. Heterogeneous freezing of micrometer-sized aqueous NaCl droplets containing intact diatoms as well as fragments occurs up to 30 K higher than expected by homogeneous ice nucleation. Nucleation is found to behave stochastically and is independent of diatom surface area and droplet volume. Corresponding heterogeneous ice nucleation rates are about one order of magnitude higher than homogeneous ice nucleation making diatoms and/or their fragments competitive IN even at atmospheric updrafts typically dominated by homogeneous ice nucleation. In summary, single particle resolved analytical techniques and the particles-on-substrate approach coupled to OM can provide a very useful tool to improve our understanding of the phase transition of aerosol particles.

  13. SCHOOL OF MARINE SCIENCES Program of Study

    E-print Network

    Thomas, Andrew

    oceanography; aquaculture; marine biology; marine geology; marine resource development and policy; seafloor; M.S. and Ph.D. degrees in Marine Biology; M.S. degree in Marine Policy; Dual M.S. degree in Marine Policy and either Oceanography or Marine Biology; M.S. and Ph.D. degrees in Marine Bio

  14. Tool kit development to refine and visualize essential climate data and information for marine protected areas

    NASA Astrophysics Data System (ADS)

    Cecil, L.; Stachniewicz, J.; Shein, K. A.; Ansari, S.; Jarvis, C.

    2013-05-01

    Marine ecosystem responses to climate variability and change such as changing water temperature, water chemistry (e.g., pH, salinity), water level, or storminess may result in adverse impacts including mass mortality, loss of habitat, increased disease susceptibility, and trophic cascade feedbacks. Unfortunately, while marine ecosystem resource managers are aware of these threats, they often lack sufficient expertise with identifying, accessing and using the many large and complex climate data products that would inform ecosystem-scale climate impact assessments. NOAA's National Climatic Data Center (NCDC) has been working with the Gulf of the Farallones National Marine Sanctuary Ocean Climate Center to enhance and expand the functionality of NCDC's Weather and Climate Toolkit (WCT) to begin to address this limitation. The WCT is a freely available, Java-based user interface (http://www.ncdc.noaa.gov/oa/wct/) designed to access, analyze, and display a variety of NCDC's georeferenced climate data products (e.g., satellite data, radar, reanalysis datasets, in-situ observations). However, the WCT requires the user to have already identified a data set of interest and gained access to it. This can limit its utility by users who are not knowledgeable about which data sets are relevant to their needs and where those data sets can be found. The Integrated Marine Protected Area Climate Tools (IMPACT) prototype modification to the WCT addresses those requirements through an iterative process between climate scientists and resource managers. The WCT-IMPACT prototype couples a user query approach with a quasi-expert system that determines, retrieves, and loads the appropriate data products for visualization and analysis by the user. Relevant data products are identified based on the environmental variables in which ecosystem managers have indicated an importance to their ecosystems. To improve response time, the user, through the WCT-IMPACT interface, crops (or subsets) the larger gridded data products, such as NOAA's satellite Climate Data Records to the geographic boundaries of each included marine protected area (MPA). These clipped data sets are processed to produce MPA-specific analytics (e.g., files for averages, extremes, peaks over threshold, etc). Once a specific MPA has been selected, the associated data may be visualized, analyzed, and exported to other formats (e.g., netCDF, KML) from within the tool. The WCT-IMPACT tool kit will provide marine ecosystem managers with the capacity to answer such questions as what was the climate like during periods of optimal ecological health, or have climate conditions changed equally across an ecosystem's domain? The WCT-IMPACT extension is being developed specifically to address the needs of marine ecosystem managers to have access to relevant climate data and information for developing ecosystem-scale climate assessments, while retaining the ability for a WCT user to identify and access the full suite of georeferenced climate data provided by NCDC. In this tool kit development scheme, the need to coordinate with the resource managers is paramount and end user participation in an iterative process with the climate scientists is essential.

  15. Development of EV71 virus-like particle purification processes.

    PubMed

    Lin, Shih-Yeh; Chiu, Hsin-Yi; Chiang, Bor-Luen; Hu, Yu-Chen

    2015-11-01

    Enterovirus 71 (EV71) causes the outbreaks of hand-foot-and-mouth disease and results in deaths of hundreds of young children. EV71 virus-like particles (VLPs) are empty capsids consisting of viral structural proteins and can elicit potent immune responses, thus holding promise as an EV71 vaccine candidate. However, an efficient, scalable production and purification scheme is missing. For mass production of EV71 VLPs, this study aimed to develop a production and chromatography-based purification process. We first demonstrated the successful EV71 VLPs production in the stirred-tank bioreactor in which High Five™ cells were infected with a recombinant baculovirus co-expressing EV71 structural polyprotein P1 and protease 3CD. The culture supernatant containing the VLPs was subjected to tangential flow filtration (TFF) for concentration/diafiltration, which enabled the removal of >80% of proteins while recovering >80% of VLPs. The concentrated VLPs were next subjected to hydroxyapatite chromatography (HAC) in which the VLPs were mainly found in the flow through. After another TFF concentration/diafiltration, the VLPs were purified by size-exclusion chromatography (SEC) and concentrated/diafiltered by a final TFF. The integrated process yielded an overall VLPs recovery of ?36% and a purity of ?83%, which was better or comparable to the recovery and purity for the purification of live EV71 virus particles. This process thus may move the EV71 VLPs vaccine one step closer to the clinical applications. PMID:25939279

  16. Developing an Empirical Model for Predicting Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Quinn, R. A.; Winter, L. M.; Ledbetter, K.; Ashley, S. F.

    2014-12-01

    Solar energetic particle (SEP) events are powerful enhancements in the particle flux received at Earth. These events, often related to coronal mass ejections, can be disruptive to ionospheric communications, destructive to satellites, and pose a health risk to astronauts. To develop a useful forecast for the onset time and peak flux of SEP events, we are examining the radio burst, proton, and electron properties associated with the SEPs of the current solar cycle. Using the Wind/WAVES radio observations from 2010-2013, we analyzed the 123 decametric-hectometric type II solar radio burst properties, the associated type III burst properties, and their correlation with SEP properties determined from analysis of the Geostationary Operational Environmental Satellite (GOES) observations. Through a principal component and logistic regression analyses, we find that the radio properties alone can be used to predict the occurrence of an SEP event with a false alarm rate of 17%, a probability of detection of 65%, and with 88% of the classifications correct. We also explore the use of the > 2 MeV electron flux to forecast proton peak flux and event onset time, with preliminary results suggesting a correlation between the peak electron and proton flux.

  17. Development of a novel protocol for generating flavivirus reporter particles.

    PubMed

    Fernández, Igor Velado; Okamoto, Natsumi; Ito, Aki; Fukuda, Miki; Someya, Azusa; Nishino, Yosii; Sasaki, Nobuya; Maeda, Akihiko

    2014-11-01

    Infection with West Nile virus (WNV), a mosquito-borne flavivirus, is a growing public and animal health concern worldwide. Prevention, diagnosis and treatment strategies for the infection are urgently required. Recently, viral reverse genetic systems have been developed and applied to clinical WNV virology. We developed a protocol for generating reporter virus particles (RVPs) of WNV with the aim of overcoming two major problems associated with conventional protocols, the difficulty in generating RVPs due to the specific skills required for handling RNAs, and the potential for environmental contamination by antibiotic-resistant genes encoded within the genome RNA of the RVPs. By using the proposed protocol, cells were established in which the RVP genome RNA is replicated constitutively and does not encode any antibiotic-resistant genes, and used as the cell supply for RVP genome RNA. Generation of the WNV RVPs requires only the simple transfection of the expression vectors for the viral structural proteins into the cells. Therefore, no RNA handling is required in this protocol. The WNV RVP yield obtained using this protocol was similar that obtained using the conventional protocol. According to these results, the newly developed protocol appears to be a good alternative for the generation of WNV RVPs, particularly for clinical applications. PMID:25116200

  18. Observing and simulating soil development using a chronosequence of cold raised marine terraces on Spitsbergen

    NASA Astrophysics Data System (ADS)

    van der Meij, Marijn; de Kleijn, Christian; Temme, Arnaud; Zwolinski, Zbigniew; Rymer, Krzysztof

    2015-04-01

    The coasts of Spitsbergen are covered with raised marine beaches, developed under the isostatic rebound after the Last Glacial Maximum. This chronosequence of beaches provides a unique chance to study the speed of soil forming processes in cold and dry Arctic regions. Fieldwork was performed on gravelly marine beaches in the Ebba valley, central Spitsbergen, with ages ranging from 3.000 up to 14.000 years. The soils on 30 random selected locations were described and sampled. Results indicate several soil forming processes, which have a strong dependence on time, but also on landscape setting and vegetation presence. These processes include the accumulation of organic matter, aeolian deposition of sand and weathering and dissolution of the limestone gravel that dominates the parent material. This last process results in translocation of silt through the profile, creating silt caps on remaining limestone gravel, and when enough silt is accumulated, a Bl horizon. The carbonates from the limestone form precipitates under the gravel grains. Results support the notion that even under cold, permafrost conditions, soil formation and particularly weathering can still happen reasonably fast if some water is available. Using an early version of soilscape model LORICA, some of the pedogenic processes are simulated in order to get better insight in their dynamics and distribution in the study area. The model links geomorphic processes such as aeolian deposition, isostatic rebound and erosion to the vertical development of the soil profiles in the area.

  19. Effects of Marine Toxins on the Reproduction and Early Stages Development of Aquatic Organisms

    PubMed Central

    Vasconcelos, Vítor; Azevedo, Joana; Silva, Marisa; Ramos, Vítor

    2010-01-01

    Marine organisms, and specially phytoplankton species, are able to produce a diverse array of toxic compounds that are not yet fully understood in terms of their main targets and biological function. Toxins such as saxitoxins, tetrodotoxin, palytoxin, nodularin, okadaic acid, domoic acid, may be produced in large amounts by dinoflagellates, cyanobacteria, bacteria and diatoms and accumulate in vectors that transfer the toxin along food chains. These may affect top predator organisms, including human populations, leading in some cases to death. Nevertheless, these toxins may also affect the reproduction of aquatic organisms that may be in contact with the toxins, either by decreasing the amount or quality of gametes or by affecting embryonic development. Adults of some species may be insensitive to toxins but early stages are more prone to intoxication because they lack effective enzymatic systems to detoxify the toxins and are more exposed to the toxins due to a higher metabolic growth rate. In this paper we review the current knowledge on the effects of some of the most common marine toxins on the reproduction and development of early stages of some organisms. PMID:20161971

  20. Ocean Data Interoperability Platform (ODIP): Developing a Common Framework for Marine Data Management on a Global Scale

    NASA Astrophysics Data System (ADS)

    Glaves, H. M.; Schaap, D.

    2014-12-01

    As marine research becomes increasingly multidisciplinary in its approach there has been a corresponding rise in the demand for large quantities of high quality interoperable data. A number of regional initiatives are already addressing this requirement through the establishment of e-infrastructures to improve the discovery and access of marine data. Projects such as Geo-Seas and SeaDataNet in Europe, Rolling Deck to Repository (R2R) in the USA and IMOS in Australia have implemented local infrastructures to facilitate the exchange of standardised marine datasets. However, each of these regional initiatives has been developed to address their own requirements and independently of other regions. To establish a common framework for marine data management on a global scale these is a need to develop interoperability solutions that can be implemented across these initiatives.Through a series of workshops attended by the relevant domain specialists, the Ocean Data Interoperability Platform (ODIP) project has identified areas of commonality between the regional infrastructures and used these as the foundation for the development of three prototype interoperability solutions addressing: the use of brokering services for the purposes of providing access to the data available in the regional data discovery and access services including via the GEOSS portal the development of interoperability between cruise summary reporting systems in Europe, the USA and Australia for routine harvesting of cruise data for delivery via the Partnership for Observation of Global Oceans (POGO) portal the establishment of a Sensor Observation Service (SOS) for selected sensors installed on vessels and in real-time monitoring systems using sensor web enablement (SWE) These prototypes will be used to underpin the development of a common global approach to the management of marine data which can be promoted to the wider marine research community. ODIP is a community lead project that is currently focussed on regional initiatives in Europe, the USA and Australia but which is seeking to expand this framework to include other regional marine data infrastructures.

  1. Marine Tactical Command and Control System (MTACCS), Field Development System-1 (FDS-1) assessment: Volume 2

    SciTech Connect

    Avery, L W; Hunt, S T; Savage, S F; McLaughlin, P D; Shepard, A P; Worl, J C

    1992-04-01

    The following appendices contain the detailed analysis data for the questionnaires and various FDS-1 after action reports submitted to the Marine Corps Systems Command (MARCORSYSCOM) Marine Tactical Command and Control System (MTACCS) Systems' Engineer.

  2. Development and sea trials of a subsea holographic camera for large volume in-situ recording of marine organisms

    NASA Astrophysics Data System (ADS)

    Watson, John; Alexander, Stephen J.; Craig, Gary; Hendry, David C.; Hobson, Peter R.; Lampitt, R. S.; Marteau, J.-M.; Nareid, Helge; Nebrensky, J. J.; Player, Michael A.; Saw, Kevin; Tipping, Keith

    2002-06-01

    We describe the development, construction and sea testing of An underwater holographic camera (HoloCam) for in situ recording of marine organisms and particles in large volumes of sea water. HoloCam comprises a laser, power supply, holographic recording optics, and plate holders, a water- tight housing and a support frame. Added to this are control electronics such that the entire camera is remotely operable and controllable from ship or dock-side. Uniquely the camera can simultaneously record both in-line and off-axis holograms using a pulsed frequency double Nd:YAG laser. In- line holography is capable of producing images of organisms with a resolution of better than 10 micrometers . Off-axis holograms of aquatic systems of up to 50,000 cm3 volume, have been recorded. Following initial laboratory testing, the holo-camera was evaluated in an observation tank and ultimately was tested in Loch Etive, Scotland. In-line and off-axis holograms were recorded to a depth of 100 m. We will present result on the ste dives and evaluation of the camera performance.

  3. Education and Conservation Benefits of Marine Wildlife Tours: Developing Free-Choice Learning Experiences

    ERIC Educational Resources Information Center

    Zeppel, Heather

    2008-01-01

    Marine wildlife tours can provide a range of education and conservation benefits for visitors, including emotional (i.e., affective) responses and learning (i.e., cognition). Interpretive programs cover the biology, ecology, and behavior of marine species; best practice guidelines; and human threats to marine areas. The author reviews the…

  4. Developing an Informational Web Portal for Coastal Data in Ireland: Data Issues in the Marine Irish Digital Atlas

    E-print Network

    Dwyer, Ned

    Developing an Informational Web Portal for Coastal Data in Ireland: Data Issues in the Marine Irish Cork Abstract Data accessibility is a problem for many GIS users. In Ireland, improving accessibility. Introduction In November 2002, Ireland began the process of developing the Irish Spatial Data Infrastructure

  5. A new generation of marine turbine that can harness energy from the sea is being developed by Nautricity,

    E-print Network

    Strathclyde, University of

    A new generation of marine turbine that can harness energy from the sea is being developed to develop the concept of this unique contra rotating tidal turbine (CoRMaT). The first fully functional conventional turbines, the CoRMaT design uses two rotors which turn in opposite directions, making it extremely

  6. The implications of developments on the Atlantic Frontier for marine mammals

    NASA Astrophysics Data System (ADS)

    Harwood, John; Wilson, Ben

    2001-05-01

    We review the available information on the distribution and abundance of marine mammals in the Atlantic Frontier area, and the literature on the potential effects of oil exploration and extraction on these species. Reliable estimates of seal abundance are only available for two species (grey and harbour seals). For grey seals and hooded seals there is also information from telemetry studies on their distribution at sea. Data on cetaceans comes from a variety of sources including whaling statistics, dedicated surveys, observers placed on vessels of opportunity, and from bottom-mounted hydrophone arrays. These indicate that the Atlantic Frontier region is of national, and possibly international, importance for a number of cetacean species. The most abundant small cetacean is likely to be the white-sided dolphin; however, smaller numbers of large whales, including endangered blue, right, fin and sei whales, and vulnerable humpback and sperm whales are also likely to be present in summer. There is growing evidence that a number of marine mammal species respond to the acoustic and physical disturbance associated with exploration for oil and gas resources, although the ecological impact of these responses is unclear. We describe how risk assessment frameworks, initially developed for evaluating the environmental impacts of hazardous chemicals, can be used to address this problem.

  7. The Influence of Bioactive Oxylipins from Marine Diatoms on Invertebrate Reproduction and Development

    PubMed Central

    Caldwell, Gary S.

    2009-01-01

    Diatoms are one of the main primary producers in aquatic ecosystems and occupy a vital link in the transfer of photosynthetically-fixed carbon through aquatic food webs. Diatoms produce an array of biologically-active metabolites, many of which have been attributed as a form of chemical defence and may offer potential as candidate marine drugs. Of considerable interest are molecules belonging to the oxylipin family which are broadly disruptive to reproductive and developmental processes. The range of reproductive impacts includes; oocyte maturation; sperm motility; fertilization; embryogenesis and larval competence. Much of the observed bioactivity may be ascribed to disruption of intracellular calcium signalling, induction of cytoskeletal instability and promotion of apoptotic pathways. From an ecological perspective, the primary interest in diatom-oxylipins is in relation to the potential impact on energy flow in planktonic systems whereby the reproductive success of copepods (the main grazers of diatoms) is compromised. Much data exists providing evidence for and against diatom reproductive effects; however detailed knowledge of the physiological and molecular processes involved remains poor. This paper provides a review of the current state of knowledge of the mechanistic impacts of diatom-oxylipins on marine invertebrate reproduction and development. PMID:19841721

  8. Insights and ideas garnered from marine metabolites for development of dual-function acetylcholinesterase and amyloid-? aggregation inhibitors.

    PubMed

    Stoddard, Shana V; Hamann, Mark T; Wadkins, Randy M

    2014-04-01

    Due to the diversity of biological activities that can be found in aquatic ecosystems, marine metabolites have been an active area of drug discovery for the last 30 years. Marine metabolites have been found to inhibit a number of enzymes important in the treatment of human disease. Here, we focus on marine metabolites that inhibit the enzyme acetylcholinesterase, which is the cellular target for treatment of early-stage Alzheimer's disease. Currently, development of anticholinesterase drugs with improved potency, and drugs that act as dual acetylcholinesterase and amyloid-? aggregation inhibitors, are being sought to treat Alzheimer's disease. Seven classes of marine metabolites are reported to possess anti-cholinesterase activity. We compared these metabolites to clinically-used acetylcholinesterase inhibitors having known mechanisms of inhibition. We performed a docking simulation and compared them to published experimental data for each metabolite to determine the most likely mechanism of inhibition for each class of marine inhibitor. Our results indicate that several marine metabolites bind to regions of the acetylcholinesterase active site that are not bound by the clinically-used drugs rivastigmine, galanthamine, donepezil, or tacrine. We use the novel poses adopted for computational drug design of tighter binding anticholinesterase drugs likely to act as inhibitors of both acetylcholinesterase activity and amyloid-? aggregation inhibition. PMID:24714126

  9. Single-particle detection efficiencies of aerosol time-of-flight mass spectrometry during the North Atlantic marine boundary layer experiment.

    PubMed

    Dall'Osto, Manuel; Harrison, Roy M; Beddows, David C S; Freney, Evelyn J; Heal, Mathew R; Donovan, Robert J

    2006-08-15

    During the North Atlantic marine boundary layer experiment (NAMBLEX) sampling campaign at Mace Head, Ireland, both continental and maritime air masses were sampled. Aerosol was characterized both with a TSI 3800 time-of-flight mass spectrometer (ATOFMS) and a MOUDI microorifice impactor, and particle number counts were measured independently with an aerodynamic particle sizer. The data have been analyzed in order to elucidate factors determining the particle detection efficiencies of the ATOFMS. These are broken down according to the efficiency of the inlet system, the hit efficiency on particles which enter the sensing zone of the instrument and the sensitivity of the measured ion signal to the chemical species. A substantial matrix effect depending on the chemical composition of the aerosol sampled at the time was found, which is reflected in variations in the hit efficiency of particles entering the sensing zone of the instrument with the main desorption-ionization laser. This is in addition to the strong inverse power-law dependence of inlet transmission efficiency on particle diameter. The variation in hit efficiency with particle type is likely attributable to differences in the energetics of laser energy absorption, ablation, and ion formation. However, once variations in both inlet transmission and hit efficiencies are taken into account, no additional matrix dependence of ATOFMS response is required to obtain a linear relationship between the ion signal and the concentration of a particular chemical species. The observations show that a constant mass of material is ionized from each particle, irrespective of size. Consequently the integrated ion signal for a given chemical component and particle size class needs to be increased by a factor related to the cube of particle diameter in order to correlate with the airborne mass of that component. PMID:16955903

  10. Submicron Sea Salt Aerosol Inside and Outside of the Surf Plume: Size Segregated and Total Sea salt Aerosol Distributions by Single Particle Analysis at a Coastal Marine Site

    NASA Astrophysics Data System (ADS)

    Campuzano-Jost, P.; Donohoue, D.; Maring, H. B.; Hynes, A. J.

    2004-12-01

    The uncertainties in the shape of the source function for sea salt aerosols as well as in the of the shape of the size distribution of sea salt aerosol in the marine boundary layer (MBL) are considered, after even greater uncertainties for dust aerosol, the biggest open question to assess the impact of aerosols on climate change [1]. In a recent intercomparison of global models, satellite retrievals and ground-based measurements, Kinne et al [2] found large discrepancies between simulated and measured aerosol extinction in the Southern Ocean, and suggested that this might be indicative of an underestimation of the contribution of submicron sea salt aerosol in current models. Although since at least Murphy et al's [3] the importance of submicron sea salt aerosol in the clean MBL for radiative forcing is recognized, high quality data on the size distribution and on the source function of sea salt in this size range is sparse. Field measurements from O'Dowd et al and Clarke et al [4,5], based on the aerosol volatility technique, yielded contrasting results in the two size regions crucial for direct and indirect forcing. We have developed a sea salt specific aerosol particle sizer [6,7], the Aerosol Sodium Detector (ASD), that in its current, improved version is able to quantitatively measure the amount of sea salt in single aerosol particles using sodium as a proxy in the range between 1 fg NaCl equivalent (95 nm NaCl dry diameter) and 7000 fg NaCl equivalent (1800 nm diameter) with a sizing accuracy better than 5% and no losses within the valid detection range. This instrument was deployed at a coastal site at Bellows AFB in Oahu, Hawaii to study the contribution of sea salt to the total aerosol load in both remote marine air and the surf zone at wind speeds up to 10 m/s. Full sea salt number size distributions were acquired continuously in 2 s samples and matched the results of a commercial aerodynamic particle sizer down to 400 nm better than 20% in all cases. The distributions showed a main submicron mode at 520 nm dry diameter as well as a second mode below 300 nm that was strongly enhanced in breaking waves, in agreement with Clarke et al's recent findings [5]. Total sea salt particle count down to the detection limit was about 12-14 part/cc at 9.5 m/s u10. In size-segregated mode, the extent of internal mixing of surf zone aerosol was monitored. The results were consistent with pure sea salt with little processing down to the detection limit of 100 nm. Average size dependent sea salt mixing ratios were calculated, with sea salt being the primary aerosol component down to 200 nm, in good agreement with Murphy et al's reported ratios [3]. The results of this study suggest a much larger contribution to total aerosol scattering by sea salt aerosols in remote marine air than current parameterizations of the sea salt size distribution imply [4,8]. They also hint at a very effective removal process of very small sea salt particles (<200 nm) formed in breaking waves in the MBL. References: 1.Penner, J. et al.,in: 3rd IPCC Report, 2001, Cambridge University Press: Cambridge. p.289-348. 2.Kinne, S. et al., J. Geophys. Res.-Atmos., 2003. 108(D20). 3.Murphy, D.M. et al., Nature, 1998, 392(6671): p.62-65. 4.O'Dowd, C.D. et al., Atmos. Environ., 1997, 31(1): p.73-80. 5.Clarke, A.D. et al., J. Atmos. Ocean. Tech., 2003, 20(10): p.1362-1374. 6.Clark, C.D. et al., J. Aerosol Sci., 2001, 32(6):p.765-778. 7.Campuzano-Jost, P. et al., J. Atmos. Ocean. Tech., 2003, 20(10):p.1421-1430. 8.Gong, S.L., Global Biogeochem. Cy., 2003, 17(4).

  11. Ocean Data Interoperability Platform (ODIP): developing a common global framework for marine data management through international collaboration

    NASA Astrophysics Data System (ADS)

    Glaves, Helen

    2015-04-01

    Marine research is rapidly moving away from traditional discipline specific science to a wider ecosystem level approach. This more multidisciplinary approach to ocean science requires large amounts of good quality, interoperable data to be readily available for use in an increasing range of new and complex applications. Significant amounts of marine data and information are already available throughout the world as a result of e-infrastructures being established at a regional level to manage and deliver marine data to the end user. However, each of these initiatives has been developed to address specific regional requirements and independently of those in other regions. Establishing a common framework for marine data management on a global scale necessitates that there is interoperability across these existing data infrastructures and active collaboration between the organisations responsible for their management. The Ocean Data Interoperability Platform (ODIP) project is promoting co-ordination between a number of these existing regional e-infrastructures including SeaDataNet and Geo-Seas in Europe, the Integrated Marine Observing System (IMOS) in Australia, the Rolling Deck to Repository (R2R) in the USA and the international IODE initiative. To demonstrate this co-ordinated approach the ODIP project partners are currently working together to develop several prototypes to test and evaluate potential interoperability solutions for solving the incompatibilities between the individual regional marine data infrastructures. However, many of the issues being addressed by the Ocean Data Interoperability Platform are not specific to marine science. For this reason many of the outcomes of this international collaborative effort are equally relevant and transferable to other domains.

  12. Navy/Marine Corps innovative science and technology developments for future enhanced mine detection capabilities

    NASA Astrophysics Data System (ADS)

    Holloway, John H., Jr.; Witherspoon, Ned H.; Miller, Richard E.; Davis, Kenn S.; Suiter, Harold R.; Hilton, Russell J.

    2000-08-01

    JMDT is a Navy/Marine Corps 6.2 Exploratory Development program that is closely coordinated with the 6.4 COBRA acquisition program. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. Prior to transition to acquisition, the COBRA ATD was extremely successful in demonstrating a passive airborne multispectral video sensor system operating in the tactical Pioneer unmanned aerial vehicle (UAV), combined with an integrated ground station subsystem to detect and locate minefields from surf zone to inland areas. JMDT is investigating advanced technology solutions for future enhancements in mine field detection capability beyond the current COBRA ATD demonstrated capabilities. JMDT has recently been delivered next- generation, innovative hardware which was specified by the Coastal System Station and developed under contract. This hardware includes an agile-tuning multispectral, polarimetric, digital video camera and advanced multi wavelength laser illumination technologies to extend the same sorts of multispectral detections from a UAV into the night and over shallow water and other difficult littoral regions. One of these illumination devices is an ultra- compact, highly-efficient near-IR laser diode array. The other is a multi-wavelength range-gateable laser. Additionally, in conjunction with this new technology, algorithm enhancements are being developed in JMDT for future naval capabilities which will outperform the already impressive record of automatic detection of minefields demonstrated by the COBAR ATD.

  13. Development of integrated marine monitoring network on southern coastline of Caspian sea

    NASA Astrophysics Data System (ADS)

    Najafi-Jilani, A.; Nik-Khah, A.

    2011-06-01

    Monitoring of water surfaces through permanent measurement of hydrodynamic and meteorological data is one of the main requirements in safe and sustainable water management. The Caspian Sea, the major surface water body in Iran, significantly affects more than 600 km of urban and industrial coastline. In the present work, an integrated marine monitoring network for the entire southern coastline of the Caspian Sea was developed. The main design concerns centered on the network measuring components and data recording, checking, filtering, gap recognition, and transferring systems. Four coastal monitoring stations were assigned, along with two regional collecting stations and one central data station for gathering, checking and delivering recorded data at different access levels. Applicable guidelines on selection of measuring devices for both shallow and deep water zones are presented herein.

  14. Ocean Data Interoperability Platform (ODIP): developing a common framework for marine data management on a global scale

    NASA Astrophysics Data System (ADS)

    Glaves, Helen; Schaap, Dick

    2015-04-01

    As marine research becomes increasingly multidisciplinary in its approach there has been a corresponding rise in the demand for large quantities of high quality interoperable data. A number of regional initiatives are already addressing this requirement through the establishment of e-infrastructures to improve the discovery and access of marine data. Projects such as SeaDataNet in Europe, Rolling Deck to Repository (R2R) in the USA and the Integrated Marine Observing System (IMOS) in Australia have implemented local infrastructures to facilitate the exchange of standardised marine datasets. However, each of these systems has been developed to address local requirements and created in isolation from those in other regions. To establish a common framework for marine data management on a global scale there is a need to develop interoperability solutions that can be implemented across these initiatives. Through a series of workshops attended by the relevant domain specialists, the Ocean Data Interoperability Platform (ODIP) project has identified areas of commonality between the regional infrastructures and used these as the foundation for the development of three prototype interoperability solutions addressing: 1. the use of brokering services for the purposes of providing access to the data available in the regional data discovery and access services including via the GEOSS portal 2. the development of interoperability between cruise summary reporting systems in Europe, the USA and Australia for routine harvesting of cruise data for delivery via the Partnership for Observation of Global Oceans (POGO) portal 3. the establishment of a Sensor Observation Service (SOS) for selected sensors installed on vessels and in real-time monitoring systems using sensor web enablement (SWE) These prototypes will be used to underpin the development of a common global approach to the management of marine data which can be promoted to the wider marine research community. ODIP is a community lead project that is currently focussed on regional initiatives in Europe, the USA and Australia but which is seeking to expand this framework to include other regional marine data infrastructures.

  15. A Sourcebook of Marine Activities Developed in the Milwaukee Great Lakes Summer Education Program, 1977 and 1978.

    ERIC Educational Resources Information Center

    Haney, Richard E., Ed.

    Twenty-seven activities dealing with the marine environment of the Great Lakes are presented. Designed for junior and senior high school students, these activities develop awareness of the biological, physical, social, economical, and aesthetic dimensions of the Great Lakes. Field trips, films, discussion, and hands-on activities are used to teach…

  16. 338 Int. J. Sustainable Development, Vol. 5, No. 3, 2002 Marine ecotourism in Kaikoura 33S Mark B. Orams

    E-print Network

    Stockin, Karen

    338 Int. J. Sustainable Development, Vol. 5, No. 3, 2002 Marine ecotourism in Kaikoura 33S Mark B. Orams The concept of 'ecotourism' has, in part, arisen as a result of concerns about the sustainability in an environmental and socio-cultural sense. Fennell [4] considers ecotourism to be one type of alternative tourism

  17. Development of marine sediment bioassays and toxicity tests for monitoring and regulation in Europe

    SciTech Connect

    Thain, J.; Matthiessen, P.

    1995-12-31

    There is a need in Europe and elsewhere for a broad suite of whole-sediment bioassays and toxicity tests which can be used for routine monitoring and assessment of the marine environment and for evaluating the toxic effects of chemicals which may find their way into sediments. Until recently, few European species had been incorporated into such tests but the availability of suitable methodologies is now increasing rapidly. Perhaps the most important recent activity in this area consisted of an international ring test of acute sediment toxicity test methods which was organized by the Oslo and Paris Commissions in 1993, using up to 4 offshore chemicals as test materials. It evaluated the performance of 4 acute (5--10 day) tests involving: the sea urchin Echinocardium cordatum, the bivalve mollusc Abra alba, the amphipod crustacean Corophium volutator, and the polychaete worm Arenicola marina. The ring test concluded that the C. volutator test was the most appropriate for evaluating offshore chemicals, but all these methods are now widely used in Europe, both as toxicity tests and as bioassays. For example, the A. marina procedure (which has both lethal and sublethal endpoints), in combination with the C. volutator method, is now routinely used in the UK for monitoring the toxicity of estuarine sediments. Further activities are in progress. Perhaps the most important is the development of chronic marine sediment tests and bioassays which can be used to assess the long-term effects of the many sedimentary contaminants which are able to persist in this type of habitat and possibly cause delayed effects on the growth and reproduction, etc. of benthic fauna.

  18. Application of ecological criteria in selecting marine reserves and developing reserve networks

    USGS Publications Warehouse

    Roberts, C.M.; Branch, G.; Bustamante, R.H.; Castilla, J.C.; Dugan, J.; Halpern, B.S.; Lafferty, K.D.; Leslie, H.; Lubchenco, J.; McArdle, D.; Ruckelshaus, M.; Warner, R.R.

    2003-01-01

    Marine reserves are being established worldwide in response to a growing recognition of the conservation crisis that is building in the oceans. However, designation of reserves has been largely opportunistic, or protective measures have been implemented (often overlapping and sometimes in conflict) by different entities seeking to achieve different ends. This has created confusion among both users and enforcers, and the proliferation of different measures provides a false sense of protection where little is offered. This paper sets out a procedure grounded in current understanding of ecological processes, that allows the evaluation and selection of reserve sites in order to develop functional, interconnected networks of fully protected reserves that will fulfill multiple objectives. By fully protected we mean permanently closed to fishing and other resource extraction. We provide a framework that unifies the central aims of conservation and fishery management, while also meeting other human needs such as the provision of ecosystem services (e.g., maintenance of coastal water quality, shoreline protection, and recreational opportunities). In our scheme, candidate sites for reserves are evaluated against 12 criteria focused toward sustaining the biological integrity and productivity of marine systems at both local and regional scales. While a limited number of sites will be indispensable in a network, many will be of similar value as reserves, allowing the design of numerous alternative, biologically adequate networks. Devising multiple network designs will help ensure that ecological functionality is preserved throughout the socioeconomic evaluation process. Too often, socioeconomic criteria have dominated the process of reserve selection, potentially undermining their efficacy. We argue that application of biological criteria must precede and inform socioeconomic evaluation, since maintenance of ecosystem functioning is essential for meeting all of the goals for reserves. It is critical that stakeholders are fully involved throughout this process. Application of the proposed criteria will lead to networks whose multifunctionality will help unite the objectives of different management entities, so accelerating progress toward improved stewardship of the oceans.

  19. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores

    USGS Publications Warehouse

    Hooten, R.L.; Carr, R.S.

    1998-01-01

    An acute (96 h) pore-water toxicity test protocol using germination and growth of Ulva fasciata zoospores as endpoints was developed to test the toxicity of marine and estuarine sediment pore-water samples. Tests with an organic toxicant (sodium dodecyl sulfate; SDS), three metals (Cd, Cu, and Zn), and ammonia (NH3) were conducted to determine zoospore sensitivity. Zoospore germination and gametophyte growth were as sensitive to SDS as sea urchin (Arbacia punctulata) fertilization and embryological development. Zoospore sensitivity to metals was greater than or comparable to that of adult macroalgae. Zoospores were less sensitive to NH3 than were other commonly used toxicity test organisms. Test results using this algal assay with sediment pore-water samples with high NH3 concentrations were compared with results from sea urchin fertilization and embryological development tests for the same samples. Ulva fasciata zoospore germination was not affected by samples with high NH3 concentrations that were toxic in both sea urchin tests. Zoospore tolerance of NH3 and sensitivity to other contaminants indicate that their response may be useful in toxicity identification evaluation studies with pore-water samples that contain high concentrations of unionized NH3.

  20. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores

    SciTech Connect

    Hooten, R.L.; Carr, R.S.

    1998-01-01

    An acute (96 h) pore-water toxicity test protocol using germination and growth of Ulva fasciata zoospores as endpoints was developed to test the toxicity of marine and estuarine sediment pore-water samples. Tests with an organic toxicant (sodium dodecyl sulfate; SDS), three metals (Cd, Cu, and Zn), and ammonia (NH{sub 3}) were conducted to determine zoospore sensitivity. Zoospore germination and gametophyte growth were as sensitive to SDS as sea urchin (Arbacia punctulata) fertilization and embryological development. Zoospore sensitivity to metals was greater than or comparable to that of adult macroalgae. Zoospores were less sensitive to NH{sub 3} than were other commonly used toxicity test organisms. Test results using this algal assay with sediment pore-water samples with high NH{sub 3} concentrations were compared with results from sea urchin fertilization and embryological development tests for the same samples. Ulva fasciata zoospore germination was not affected by samples with high NH{sub 3} concentrations that were toxic in both sea urchin tests. Zoospore tolerance of NH{sub 3} and sensitivity to other contaminants indicate that their response may be useful in toxicity identification evaluation studies with pore-water samples that contain high concentrations of unionized NH{sub 3}.

  1. Engaging Scientists in K-12 Professional Development and Curriculum Development in the Context of Alaska's Large Marine Ecosystems

    NASA Astrophysics Data System (ADS)

    Sigman, M.; Anderson, A.; Deans, N. L.; Dublin, R.; Dugan, D.; Matsumoto, G. I.; Warburton, J.

    2012-12-01

    Alaska marine ecosystem-based professional development workshops have proven to be a robust context for engaging scientists from a variety of disciplines in overcoming barriers to communication and collaboration among scientists and educators. Scientists came away from scientist-teacher workshops with effective K-12 outreach strategies as well as a deeper understanding about how to contribute meaningfully to K-12 education. The establishment of the Alaskan Center for Ocean Sciences Education Excellence (COSEE-AK) in 2009 was the catalyst for a series of professional development workshops related to the North Pacific Research Board's (NPRB) marine focus areas (Bering Sea/Aleutian Islands, Gulf of Alaska, and Arctic Ocean) for Integrated Ecosystem Research Programs (IERPs). During 2010-2012, COSEE-AK and NPRB partnered with the Arctic Research Consortium of the U.S. (ARCUS), the Alaska Ocean Observing System (AOOS), and the Monterey Bay Aquarium Research Institute (MBARI) to support a five-day professional development workshop focused on each ecosystem. The workshops brought together three types of participants: 1) Alaska-focused marine ecosystem scientists; 2) rural Alaskan teachers living within each ecosystem; and 3) teachers from outside Alaska who had research experiences with scientists in the ecosystem. Over the course of the workshops, we developed a workshop model with four objectives: 1) to increase the science content knowledge of educators and their ability to teach ecosystem science; 2) to provide the scientists an opportunity to have broader impacts from their research on educators and Alaska Native and rural students; 3) to increase the knowledge and skills of educator and scientist participants to provide effective learning experiences for K-12 students; and 4) to facilitate the collaborative development of lesson plans. A total of 28 scientists and 41 educators participated in the three workshops. The success of the workshop for the educators was evaluated by pre- and post-workshop surveys of their perceived increase in content knowledge in specific topics and increased confidence in teaching those topics. The experiences of the scientists were evaluated based on recorded one-on-one interviews. Preliminary results indicate that the Arctic Ocean workshop was the most successful of the three in meeting the workshop objectives for both teacher and scientist participants. The gain in teachers' level of knowledge and confidence was significant for five scientific topics. Scientists reported gains in their understanding of K-12 education, working with teachers, lesson plan design, and how to make their science relevant to Alaska Native students and communities. A comparison of scientists responses from all three workshops indicate that the factors unique to the Arctic Ocean Workshop which contributed to meeting the workshop objectives in terms of scientist engagement were: 1) the sustained involvement of the scientists throughout the workshop, 2) an effective ratio of scientists to teachers (1:1), with flexibility for smaller group work), and 3) the involvement of Alaska Native scientists, educators, and community members in the collaborative work. The lesson plans have been posted to the ARCUS (http://www.polartrec.com) and MBARI (http://www.mbari/earth) websites.

  2. Development of focused microsized particle-beam technology and its application to microfabrication

    NASA Astrophysics Data System (ADS)

    Egashira, Mitsuru; Shinya, Norio; Saito, Hidekazu

    1999-07-01

    A new powder particle beam drawing apparatus is being developed in order to realize a solid free-form fabrication using a focused powder particle beam. The powder particle beam drawing apparatus was constructed of a powder particle injector, a powder particle beam gun, a beam deflector and focusing lenses. The powder particle injector supplies micro-sized powder particles of 0.1 to 100 micrometers gradually and continuously from a powder particle reservoir to a powder particle beam gun. The powder particle beam gun generates the beam of highly charged powder particles. The powder particles draws lines and figures on substrates through the beam deflector and focusing lenses. Preliminary experiments were carried out using carbon powder particles of 10 micrometers size. It was possible to focalize the beam size within 500 micrometers diameter and draw lines using the beam. These results suggests that the powder particle technology can be applied to fabrication processes of micro-electronics devices and micro-machines.

  3. 77 FR 12010 - Takes of Marine Mammals Incidental to Specified Activities; Navy Research, Development, Test and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... Warfare Center Panama City Division AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... City Division (NSWC PCD). Pursuant to the Marine Mammal Protection Act (MMPA), NMFS is requesting... Naval Surface Warfare Center, Panama City Division (NSWC PCD) testing range in the Gulf of Mexico...

  4. 78 FR 34047 - Takes of Marine Mammals Incidental to Specified Activities; Navy Research, Development, Test and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... Warfare Center Panama City Division AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... City Division (NSWC PCD). Pursuant to the Marine Mammal Protection Act (MMPA), NMFS is requesting... Testing Activities in the Naval Surface Warfare Center Panama City Division'' and signed a Finding of...

  5. Development of lipid productivities under different CO2 conditions of marine microalgae Chlamydomonas sp. JSC4.

    PubMed

    Nakanishi, Akihito; Aikawa, Shimpei; Ho, Shih-Hsin; Chen, Chun-Yen; Chang, Jo-Shu; Hasunuma, Tomohisa; Kondo, Akihiko

    2014-01-01

    Biodiesel production from microalgae has become a popular research topic. In this study, Chlamydomonas sp. JSC4 isolated from the southern coast of Taiwan was selected for a detailed study on cell growth and lipid accumulation under marine salinity (3.5% sea salt). Proper CO2 was supplied as the improvement of lipid productivity. Under the optimal condition, the highest lipid productivity was 169.1mg/L/d, which was significantly higher than those reported in current studies for marine green algae. To date, only very few studies have reported a marine algae strain with both high cell growth and lipid productivity. This study demonstrated that a newly isolated marine green alga Chlamydomonas sp. JSC4 would be a feasible oil producer due to its high biomass production and lipid productivity under marine salinity. PMID:24296120

  6. Effect of Marine Collagen Peptides on Physiological and Neurobehavioral Development of Male Rats with Perinatal Asphyxia

    PubMed Central

    Xu, Linlin; Dong, Wenhong; Zhao, Jie; Xu, Yajun

    2015-01-01

    Asphyxia during delivery produces long-term deficits in brain development. We investigated the neuroprotective effects of marine collagen peptides (MCPs), isolated from Chum Salmon skin by enzymatic hydrolysis, on male rats with perinatal asphyxia (PA). PA was performed by immersing rat fetuses with uterine horns removed from ready-to-deliver rats into a water bath for 15 min. Caesarean-delivered pups were used as controls. PA rats were intragastrically administered with 0.33 g/kg, 1.0 g/kg and 3.0 g/kg body weight MCPs from postnatal day 0 (PND 0) till the age of 90-days. Behavioral tests were carried out at PND21, PND 28 and PND 90. The results indicated that MCPs facilitated early body weight gain of the PA pups, however had little effects on early physiological development. Behavioral tests revealed that MCPs facilitated long-term learning and memory of the pups with PA through reducing oxidative damage and acetylcholinesterase (AChE) activity in the brain, and increasing hippocampus phosphorylated cAMP-response element binding protein (p-CREB) and brain derived neurotrophic factor (BDNF) expression. PMID:26058015

  7. Anthropogenic noise playback impairs embryonic development and increases mortality in a marine invertebrate

    PubMed Central

    Nedelec, Sophie L.; Radford, Andrew N.; Simpson, Stephen D.; Nedelec, Brendan; Lecchini, David; Mills, Suzanne C.

    2014-01-01

    Human activities can create noise pollution and there is increasing international concern about how this may impact wildlife. There is evidence that anthropogenic noise may have detrimental effects on behaviour and physiology in many species but there are few examples of experiments showing how fitness may be directly affected. Here we use a split-brood, counterbalanced, field experiment to investigate the effect of repeated boat-noise playback during early life on the development and survival of a marine invertebrate, the sea hare Stylocheilus striatus at Moorea Island (French Polynesia). We found that exposure to boat-noise playback, compared to ambient-noise playback, reduced successful development of embryos by 21% and additionally increased mortality of recently hatched larvae by 22%. Our work, on an understudied but ecologically and socio-economically important taxon, demonstrates that anthropogenic noise can affect individual fitness. Fitness costs early in life have a fundamental influence on population dynamics and resilience, with potential implications for community structure and function. PMID:25080997

  8. Anthropogenic noise playback impairs embryonic development and increases mortality in a marine invertebrate

    NASA Astrophysics Data System (ADS)

    Nedelec, Sophie L.; Radford, Andrew N.; Simpson, Stephen D.; Nedelec, Brendan; Lecchini, David; Mills, Suzanne C.

    2014-07-01

    Human activities can create noise pollution and there is increasing international concern about how this may impact wildlife. There is evidence that anthropogenic noise may have detrimental effects on behaviour and physiology in many species but there are few examples of experiments showing how fitness may be directly affected. Here we use a split-brood, counterbalanced, field experiment to investigate the effect of repeated boat-noise playback during early life on the development and survival of a marine invertebrate, the sea hare Stylocheilus striatus at Moorea Island (French Polynesia). We found that exposure to boat-noise playback, compared to ambient-noise playback, reduced successful development of embryos by 21% and additionally increased mortality of recently hatched larvae by 22%. Our work, on an understudied but ecologically and socio-economically important taxon, demonstrates that anthropogenic noise can affect individual fitness. Fitness costs early in life have a fundamental influence on population dynamics and resilience, with potential implications for community structure and function.

  9. Marine Science in Support for Sustainable Development of the Indian Ocean Region

    NASA Astrophysics Data System (ADS)

    Visbeck, Martin

    2014-05-01

    The Indian Ocean rim is home to a significant part of the global population. Its large heat capacity and ocean circulation responds to and regulates seasonal to multi-decadal and long term climate change. In particular the monsoon type circulation regulates rain and drought patterns over India, Africa and Southern Asia. Fishing and more recently resource extraction of energy and materials make the ocean economically important. Global trade and ocean related hazards (such as ocean warming, ocean acidification, ocean de-oxygenation, loss of biodiversity, sea level rise and earth quakes and tsunamis) have important other economic impacts on all societies. On the other hand our current scientific understanding, ability to continually observe changes in the marine environment, model all aspects of the connected ocean system and develop plausible scenarios for the Indian Ocean of the future are still in its infancy. The possibility for a decade long comprehensive Indian Ocean Study in support of providing the information needed for sustainable development of the region is explored.

  10. Effect of Terrestrial and Marine Organic Aerosol on Regional and Global Climate: Model Development, Application, and Verification with Satellite Data

    SciTech Connect

    Meskhidze, Nicholas; Zhang, Yang; Kamykowski, Daniel

    2012-03-28

    In this DOE project the improvements to parameterization of marine primary organic matter (POM) emissions, hygroscopic properties of marine POM, marine isoprene derived secondary organic aerosol (SOA) emissions, surfactant effects, new cloud droplet activation parameterization have been implemented into Community Atmosphere Model (CAM 5.0), with a seven mode aerosol module from the Pacific Northwest National Laboratory (PNNL)���¢��������s Modal Aerosol Model (MAM7). The effects of marine aerosols derived from sea spray and ocean emitted biogenic volatile organic compounds (BVOCs) on microphysical properties of clouds were explored by conducting 10 year CAM5.0-MAM7 model simulations at a grid resolution 1.9�������°��������2.5�������° with 30 vertical layers. Model-predicted relationship between ocean physical and biological systems and the abundance of CCN in remote marine atmosphere was compared to data from the A-Train satellites (MODIS, CALIPSO, AMSR-E). Model simulations show that on average, primary and secondary organic aerosol emissions from the ocean can yield up to 20% increase in Cloud Condensation Nuclei (CCN) at 0.2% Supersaturation, and up to 5% increases in droplet number concentration of global maritime shallow clouds. Marine organics were treated as internally or externally mixed with sea salt. Changes associated with cloud properties reduced (absolute value) the model-predicted short wave cloud forcing from -1.35 Wm-2 to -0.25 Wm-2. By using different emission scenarios, and droplet activation parameterizations, this study suggests that addition of marine primary aerosols and biologically generated reactive gases makes an important difference in radiative forcing assessments. All baseline and sensitivity simulations for 2001 and 2050 using global-through-urban WRF/Chem (GU-WRF) were completed. The main objective of these simulations was to evaluate the capability of GU-WRF for an accurate representation of the global atmosphere by exploring the most accurate configuration of physics options in GWRF for global scale modeling in 2001 at a horizontal grid resolution of 1�������° x 1�������°. GU-WRF model output was evaluated using observational datasets from a variety of sources including surface based observations (NCDC and BSRN), model reanalysis (NCEP/ NCAR Reanalysis and CMAP), and remotely-sensed data (TRMM) to evaluate the ability of GU-WRF to simulate atmospheric variables at the surface as well as aloft. Explicit treatment of nanoparticles produced from new particle formation in GU-WRF/Chem-MADRID was achieved by expanding particle size sections from 8 to 12 to cover particles with the size range of 1.16 nm to 11.6 �������µm. Simulations with two different nucleation parameterizations were conducted for August 2002 over a global domain at a 4�������º by 5�������º horizontal resolution. The results are evaluated against field measurement data from the 2002 Aerosol Nucleation and Real Time Characterization Experiment (ANARChE) in Atlanta, Georgia, as well as satellite and reanalysis data. We have also explored the relationship between ���¢��������clean marine���¢������� aerosol optical properties and ocean surface wind speed using remotely sensed data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the CALIPSO satellite and the Advanced Microwave Scanning Radiometer (AMSR-E) on board the AQUA satellite. Detailed data analyses

  11. Electromagnetic Boundary Layer Flow Control Facility Development Using Conductive Particle Seeding

    E-print Network

    Texas at Arlington, University of

    particle seeding is in the initial stages of development, fabrication and testing. The facility consists earth magnets. Initial bench-top testing is reported with the future intention of testing the facilityElectromagnetic Boundary Layer Flow Control Facility Development Using Conductive Particle Seeding

  12. Single-ultrafine-particle mass spectrometer development and application 

    E-print Network

    Glagolenko, Stanislav Yurievich

    2004-11-15

    in this paper. Nitrate, potassium, carbon, and silicon/silicon oxide were the most frequently observed ions. Nitrate was present in most of the particles, probably due to the agricultural activity in the vicinity of the sampling site. The nitrate detection...

  13. Delayed settling of marine snow: Effects of density gradient and particle properties and implications for carbon cycling

    E-print Network

    McLaughlin, Richard M.

    and implications for carbon cycling Jennifer C. Prairie a,b, , Kai Ziervogel a , Roberto Camassa b , Richard M. Mc and larger-scale carbon cycling in the ocean. © 2015 Elsevier B.V. All rights reserved. 1. Introduction Marine snow plays an important role in the carbon cycle, as a prima- ry component of carbon export from

  14. Development of a Testing Platform for Scaled-Laboratory Studies of Marine Hydrokinetic Devices

    NASA Astrophysics Data System (ADS)

    Beninati, M. L.; Volpe, M. A.; Riley, D. R.; Krane, M. H.

    2010-12-01

    A small-scale platform for testing model hydrokinetic devices in riverine environments has been developed for the hydraulic flume facility (32 ft long, 4 ft wide, 1.5 ft deep) in the Environmental Fluid Mechanics and Hydraulics Laboratory (EFM&H) at Bucknell University. This platform is being used to advance development of marine hydrokinetic technologies by providing scaled-laboratory testing in a controlled environment. The results will provide validation of numerical predictions for device effects on the local substrate. Specifically, the flume is being used to model the effect of an underwater turbine on the sediment transport through its wake flow as it converts hydrokinetic energy to power. A test bed has been designed and assembled to hold sediment of varying size and material, where a single model turbine or an array formation, can be rooted within an erodible bed to conduct scour and erosion studies. Additionally, the facility is equipped with contraction inserts to increase the range of flow speeds available for turbine testing. For accurate flow field measurements the testing platform is instrumented with a Sontek Horizon 16 MHz Micro Acoustic Doppler Velocimeter (ADV) which is used to characterize the mean velocity field of the wake generated by the turbine to correlate the strength of the wake with changes in the sediment bed. Finally, the testing platform includes an HR Wallingford 2D Sediment Bed Profiler with a low-powered laser distance sensor mounted inside a waterproof housing to enable characterization of changes in bed form topology for various turbine performance regimes. The flume is equipped with a track that allows a precision 3D traversing system to position measurement probes along the length, width and depth of the flume. Model turbine performance in terms of torque and power are characterized. This testing platform for laboratory-scaled studies are instrumental in yielding physical measurements of the alteration of sediment caused by variations in flow and wake structures due to the presence of marine hydrokinetic devices. These results will facilitate siting assessment for green energy technologies.

  15. Development of magnetic luminescent core/shell nanocomplex particles with fluorescence using Rhodamine 6G

    SciTech Connect

    Lee, Hee Uk; Song, Yoon Seok; Park, Chulhwan; Kim, Seung Wook

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ? A simple method was developed to synthesize Co-B/SiO{sub 2}/dye/SiO{sub 2} composite particles. ? The magnetic particle shows that highly luminescent and core/shell particles are formed. ? Such core/shell particles can be easily suspended in water. ? The magnetic particles could detect fluorescence for the application of biosensor. -- Abstract: A simple and reproducible method was developed to synthesize a novel class of Co-B/SiO{sub 2}/dye/SiO{sub 2} composite core/shell particles. Using a single cobalt core, Rhodamine 6G of organic dye molecules was entrapped in a silica shell, resulting in core/shell particles of ?200 nm diameter. Analyses using a variety of techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, vibration sample magnetometry, confocal laser scanning microscopy, and fluorescence intensity demonstrated that dye molecules were trapped inside the core/shell particles. A photoluminescence investigation showed that highly luminescent and photostable core/shell particles were formed. Such core/shell particles can be easily suspended in water. The synthesized magnetic particles could be used to detect fluorescence on glass substrate arrays for bioassay and biosensor applications.

  16. Development and bias assessment of a method for targeted metagenomic sequencing of marine cyanobacteria.

    PubMed

    Batmalle, Cécilia S; Chiang, Hsin-I; Zhang, Kun; Lomas, Michael W; Martiny, Adam C

    2014-02-01

    Prochlorococcus and Synechococcus are the most abundant photosynthetic organisms in oligotrophic waters and responsible for a significant percentage of the earth's primary production. Here we developed a method for metagenomic sequencing of sorted Prochlorococcus and Synechococcus populations using a transposon-based library preparation technique. First, we observed that the cell lysis technique and associated amount of input DNA had an important role in determining the DNA library quality. Second, we found that our transposon-based method provided a more even coverage distribution and matched more sequences of a reference genome than multiple displacement amplification, a commonly used method for metagenomic sequencing. We then demonstrated the method on Prochlorococcus and Synechococcus field populations from the Sargasso Sea and California Current isolated by flow cytometric sorting and found clear environmentally related differences in ecotype distributions and gene abundances. In addition, we saw a significant correspondence between metagenomic libraries sequenced with our technique and regular sequencing of bulk DNA. Our results show that this targeted method is a viable replacement for regular metagenomic approaches and will be useful for identifying the biogeography and genome content of specific marine cyanobacterial populations. PMID:24296495

  17. Bioassay development using early life stages of the marine macroalga, Ecklonia radiata

    SciTech Connect

    Bidwell, J.R.; Wheeler, K.D.; Roper, J.; Burridge, T.R.

    1995-12-31

    A lack of standard toxicity test methods for species native to Australia has stimulated research to overcome this deficiency. In the present work, germination inhibition was utilized as an endpoint in 48h bioassays with the marine macroalga Ecklonia radiata. E radiata is often a dominant member of temperate subtidal communities in Australia and other parts of the southern hemisphere. The alga fills an ecological niche similar to that of Macrocystis pyrifera, the giant kelp which occurs in the northern hemisphere. In an adaptation of test methods used for M. pyrifera, release of E. radiata zoospores was induced in the laboratory. Settled spores were then exposed to toxicants for 48 h and germination success was determined by scoring the spores for the development of a germination tube. At 20 C, EC{sub 50} values ranging between 53.4 and 77.4 mg/L were generated in tests with hexavalent chromium (potassium chromate). The EC{sub 50} for copper (cupric chloride) was 0.53 mg/L. Sensitivity of E. radiata to metals such as copper may have significance toward assessing the environmental impacts of some antifoulant coatings used on seagoing vessels. In future studies, growth of zoospore germination tubes and comparative sensitivity of different E. radiata populations will be examined.

  18. Development of analytical and numerical models predicting the deposition rate of electrically charged particles in turbulent channel flows 

    E-print Network

    Ko, Hanseo

    1994-01-01

    An analytical model is established to predict an electrostatically charged particle deposition as a function of particle size in fully-developed turbulent pipe flow. The convectivediffusion flux equation is solved for the particle concentration as a...

  19. Glass formation and unusual hygroscopic growth of iodic acid solution droplets with relevance for iodine mediated particle formation in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Murray, B. J.; Haddrell, A. E.; Peppe, S.; Davies, J. F.; Reid, J. P.; O'Sullivan, D.; Price, H. C.; Kumar, R.; Saunders, R. W.; Plane, J. M. C.; Umo, N. S.; Wilson, T. W.

    2012-09-01

    Iodine oxide particles are known to nucleate in the marine boundary layer where gas phase molecular iodine and organoiodine species are produced by macroalgae. These ultra-fine particles may then grow through the condensation of other materials to sizes where they may serve as cloud condensation nuclei. There has been some debate over the chemical identity of the initially nucleated particles. In laboratory simulations, hygroscopic measurements have been used to infer that they are composed of insoluble I2O4, while elemental analysis of laboratory generated particles suggests soluble I2O5 or its hydrated form iodic acid, HIO3 (I2O5·H2O). In this paper we explore the response of super-micron sized aqueous iodic acid solution droplets to varying humidity using both Raman microscopy and single particle electrodynamic traps. These measurements reveal that the propensity of an iodic acid solution droplet to crystallise is negligible on drying to ~0% relative humidity (RH). On applying mechanical pressure to these droplets they shatter in a manner consistent with an ultra-viscous liquid or a brittle glass. Water retention in amorphous material at low RH is important for understanding the hygroscopic growth of aerosol particles and uptake of other condensable material. Subsequent water uptake between 10 and 20% RH causes their viscosity to reduce sufficiently that the cracked droplets flow and merge. The persistence of iodic acid solution in an amorphous state, rather than a crystalline state, suggests they will more readily accommodate other condensable material and are therefore more likely to grow to sizes where they may serve as cloud condensation nuclei. On increasing the humidity to ~90% the mass of the droplets only increases by ~20% with a corresponding increase in radius of only 6%, which is remarkably small for a highly soluble material. We suggest that the small growth factor of aqueous iodic acid solution droplets is consistent with the small aerosol growth factors observed in previous experiments.

  20. Development of a calibration system for a laser-based particle analyzing system designed to measure nonspherical particles

    NASA Astrophysics Data System (ADS)

    Martin, Stefan R.

    1997-11-01

    The application of a laser Doppler velocimeter to size measurements of non-spherical particles is discussed in terms of the light scattering properties of spherical particles. The necessary modifications to the probe volume shape and the receiver optics to enable reliable intensity measurements are described. Various approximations must be made to allow size measurements, and the particles should not be too irregular in shape. An exact knowledge of the refractive index of the material to be measured is not necessary, since the technique is sensitive to diffracted light. The development of a rapid and reliable calibration method relying on a combination of Mie-Lorenz and Fraunhofer diffraction theory is described. Finally, some experimental data obtained from cornstarch is compared with measurements of the same material taken from an electron micrograph. These data were in good agreement.

  1. Development and testing of the ultraviolet spectrometer for the Mariner Mars 1971 spacecraft

    NASA Technical Reports Server (NTRS)

    Farrar, J. W.

    1972-01-01

    The Mariner Mars 1971 ultraviolet spectrometer is an Ebert-Fastie type of the same basic design as the Mariner Mars 1969 instrument. Light enters the instrument and is split into component wavelengths by a scanning reflection diffraction grating. Two monochrometer exit slits allow the use of two independent photomultiplier tube sensors. Channel 1 has a spectral range of 1100 to 1692 A with a fixed gain, while Channel 2 has a spectral range of 1450 to 3528 A with an automatic step gain control, providing a dynamic range over the expected atmosphere and surface brightness of Mars. The scientific objectives, basic operation, design, testing, and calibration for the Mariner Mars 1971 ultraviolet spectrometer are described. The design discussion includes those modifications that were necessary to extend the lifetime of the instrument in order to accomplish the Mariner Mars 1971 mission objectives.

  2. Doped hydrophobic silica nano- and micro-particles as novel agents for developing latent fingerprints.

    PubMed

    Theaker, Brenden J; Hudson, Katherine E; Rowell, Frederick J

    2008-01-15

    Novel hydrophobic silica based particles have been developed to visualise latent fingerprints. The composition of the particles has been designed to maximise both hydrophobic and ionic interactions between a variety of coloured and fluorescent reporter molecules and the silicate backbone within the particles. The resulting doped particles retain the incorporated dyes with high affinity. In addition, a variety of sub-particles have also been embedded to again produce coloured or magnetisable hydrophobic particles. The particles can be harvested as nanoparticles or microparticles. The former are applied to latent fingerprints as an aqueous suspension and the latter as a dusting agent using brushes or a magnetic wand. Examples of the prints produced using these agents are given. The resulting prints have good definition. PMID:17418514

  3. Marine Fisheries On the cover

    E-print Network

    Marine Fisheries ~~WD~~ On the cover: A spring chinook gillnetter on the Columbia River at Astoria, Macrobrachium rosenbergii Departments NOAA/NMFS Developments Foreign Fishery Developments Index Papers in Marine For Fisheries National Marine Fisheries Service Editor: W. Hobart Marine Fisheries Review (USPS 090-080) is pub

  4. Osteogenic cell response to 3-D hydroxyapatite scaffolds developed via replication of natural marine sponges.

    PubMed

    Clarke, S A; Choi, S Y; McKechnie, Melanie; Burke, G; Dunne, N; Walker, G; Cunningham, E; Buchanan, F

    2016-02-01

    Bone tissue engineering may provide an alternative to autograft, however scaffold optimisation is required to maximize bone ingrowth. In designing scaffolds, pore architecture is important and there is evidence that cells prefer a degree of non-uniformity. The aim of this study was to compare scaffolds derived from a natural porous marine sponge (Spongia agaricina) with unique architecture to those derived from a synthetic polyurethane foam. Hydroxyapatite scaffolds of 1 cm(3) were prepared via ceramic infiltration of a marine sponge and a polyurethane (PU) foam. Human foetal osteoblasts (hFOB) were seeded at 1 × 10(5) cells/scaffold for up to 14 days. Cytotoxicity, cell number, morphology and differentiation were investigated. PU-derived scaffolds had 84-91 % porosity and 99.99 % pore interconnectivity. In comparison marine sponge-derived scaffolds had 56-61 % porosity and 99.9 % pore interconnectivity. hFOB studies showed that a greater number of cells were found on marine sponge-derived scaffolds at than on the PU scaffold but there was no significant difference in cell differentiation. X-ray diffraction and inductively coupled plasma mass spectrometry showed that Si ions were released from the marine-derived scaffold. In summary, three dimensional porous constructs have been manufactured that support cell attachment, proliferation and differentiation but significantly more cells were seen on marine-derived scaffolds. This could be due both to the chemistry and pore architecture of the scaffolds with an additional biological stimulus from presence of Si ions. Further in vivo tests in orthotopic models are required but this marine-derived scaffold shows promise for applications in bone tissue engineering. PMID:26704539

  5. Research and development of two marine-degradable biopolymers. Rept. for 1 Oct 89-30 Sep 90

    SciTech Connect

    Andrady, A.L.; Pegram, J.E.; Olson, T.M.

    1992-03-01

    The Navy is developing a biopolymeric film material suitable for fabrication into marine-disposable trash bags so that it can comply with impending national and international requirements which will prohibit the discharge of plastics into the sea. Two biopolymers, chitosan and regenerated cellulose, were selected and tested to meet this need. After 6 weeks of marine exposure, regenerated cellulose samples disappeared; after 10 weeks, chitosan samples became brittle and separated, while chitosan showed greater anaerobic degradation than regenerated cellulose in soil studies, the opposite occurred in the marine sediment environment. Aerobic degradation was much higher than anaerobic degradation for both biopolymers. To improve flexibility, 50 plasticizers were tested in chitosan. Ten percent lithium bromide and 5% lithium acetate/10% PEG 400 in chitosan were the most effective plasticizers. Regenerated cellulose films treated with lithium salt solutions also showed improved flexibility. Incorporating urea and potassium phosphate into cellulose showed that degradation could be increased in soil. Tests are ongoing to further accelerate the rate of biodegradation by increasing the availability of nitrogen and phosphorus. Fabricating trash bags will require adhesive bonding. Five adhesives were evaluated with regenerated cellulose. Covinax 220, JW 2-47, and Adcote 333T proved acceptable. Chitosan requires further development to be produced and processed into bags efficiently. With minor adjustments, regenerated cellulose presently meets this requirement; thus, it is the more promising film. Progress towards the goal of developing a biopolymeric film material meeting the Navy's requirements is continuing.

  6. Combinatorial materials research applied to the development of new surface coatings: VIII: Overview of the high-throughput measurement systems developed for a marine coating workflow

    NASA Astrophysics Data System (ADS)

    Chisholm, Bret J.; Stafslien, Shane J.; Christianson, David A.; Gallagher-Lein, Christy; Daniels, Justin W.; Rafferty, Crystal; Wal, Lyndsi Vander; Webster, Dean C.

    2007-11-01

    A combinatorial workflow has been produced for the development of novel, environmental-friendly marine coatings. A particularly challenging aspect of the workflow development was the selection and development of high-throughput screening methods that allow for some degree of prediction of coating performance in the aquatic environment of interest. The high-throughput screening methods currently in place include measurements of surface energy, viscoelastic properties, pseudobarnacle adhesion, and a suite of biological assays based on various marine organisms. An experiment involving a series of fouling-release coatings was used to correlate high-throughput screening data to data obtained from ocean site immersion testing. The results of the experiment showed that both bacterial biofilm surface coverage and storage modulus at 30 °C showed a good correlation with barnacle adhesion strength and a fair correlation with fouling rating, but surface energy and pseudobarnacle adhesion did not correlate with the results from ocean site testing.

  7. Development of a particle injection system for impurity transport study in KSTAR

    SciTech Connect

    Lee, H. Y.; Hong, Joohwan; Lee, Seung Hun; Jang, Siwon; Jang, Juhyeok; Jeon, Taemin; Park, Jae Sun; Choe, Wonho; Hong, Suk-Ho

    2014-11-15

    A solid particle injection system is developed for KSTAR. The system has a compact size, compatibility with a strong magnetic field and high vacuum environment, and the capability to inject a small amount of solid particles with a narrow injection angle. The target flight-distance of 10 cm has been achieved with a particle loss rate of less than 10%. Solid impurity particles such as tungsten and carbon will be injected by this system at the midplane in KSTAR. The impurity transport feature will be studied with a soft X-ray array, a vacuum ultra-violet diagnostic, and Stand Alone Non-Corona code.

  8. Neogene vegetation development in the Amazon Basin: evidence from marine well-2, Foz do Amazonas (Brazil)

    NASA Astrophysics Data System (ADS)

    Bogota-Angel, Raul; Chemale Junior, Farid; Davila, Roberto; Soares, Emilson; Pinto, Ricardo; Do Carmo, Dermeval; Hoorn, Carina

    2014-05-01

    Origen and development of the highly diverse Amazon tropical forest has mostly been inferred from continental sites. However, sediment records in the marine Foz do Amazonas Basin can provide important information to better understand the influence of the Andes uplift and climate change on its plant biomes evolution since the Neogene. Sediment analyses of samples from BP-Petrobras well 1 and 2, drilled in the Amazon Fan, allowed to infer the onset of the transcontinental Amazon river and the fan phase during the middle to late Miocene (c. 10.5 Ma). As part of the CLIMAMAZON research programme we performed pollen analysis on the 10.5 to 0.4 Ma time interval. 76 ditch cutting samples of the upper 4165 m sediments of well 2 permitted us to infer changes in floral composition in the Amazon Basin. The palynological spectra across this interval (nannofossil based age model) include pollen, fern spores, dinocysts and foram lignings. When possible pollen and fern spores were grouped in four vegetation types: estuarine, tropical, mountain forest and high mountain open treeless vegetation. Pollen is generally corroded and reflects the effects of sediment transportation while reworked material is also common. Good pollen producers such as Poaceae, Asteraceae and Cyperaceae are common and reflect indistinctive vegetation types particularly those associated to riverine systems. Rhizophora/Zonocostites spp. indicate "close-distance" mangrove development. Tropical forest biomes are represented by pollen that resemble Moraceae-Urticaceae, Melastomataceae-Combretaceae, Sapotaceae, Alchornea, Euphorbiaceae, Rubiaceae, Bignoniaceae, Mauritia and Arecaceae. Myrica, and particularly sporadic occurrences of fossil fern spores like Lophosoria, and Cyathea suggest the development of a moist Andean forest in areas above 1000 m. First indicators of high altitudes appear in the last part of late Miocene with taxa associated to current Valeriana and particularly Polylepis, a neotropical taxon currently growing along the Andean fluvial system on altitudes between c. 2000 up to c. 4800 m. Alnus is an important Andean forest taxa since Pliocene. In summary, the Neogene palynological record of the Amazon Fan strongly reflects and confirms the influence of the uplift of the Andes and its transcontinental character from late Miocene onwards.

  9. Development, characterization, and application of a charged particle microbeam for radiobiological research

    E-print Network

    Folkert, Michael R. (Michael Ryan), 1975-

    2005-01-01

    The goal of this work is to develop a charged-particle microbeam for use in radiobiological research at the MIT Laboratory for Accelerator Beam Applications (LABA). The purpose of this device is to precisely explore the ...

  10. Development of a Multi-directional Direct Simple Shear Testing Device for Characterization of the Cyclic Shear Response of Marine Clays 

    E-print Network

    Rutherford, Cassandra Jane

    2012-07-16

    This dissertation describes the development of a new multi-directional direct simple shear testing device, the Texas A&M Multi-directional Direct Simple Shear (TAMU-MDSS), for testing marine soil samples under conditions, which simulate...

  11. Development of a "genome-proxy" microarray for profiling marine microbial communities, and its application to a time series in Monterey Bay, California

    E-print Network

    Rich, Virginia Isabel

    2008-01-01

    This thesis describes the development and application of a new tool for profiling marine microbial communities. Chapter 1 places the tool in the context of the range of methods used currently. Chapter 2 describes the ...

  12. Marine Animal Alert System -- Task 2.1.5.3: Development of Monitoring Technologies -- FY 2011 Progress Report

    SciTech Connect

    Carlson, Thomas J.; Deng, Zhiqun; Myers, Joshua R.; Matzner, Shari; Copping, Andrea E.

    2011-09-30

    The Marine Animal Alert System (MAAS) in development by the Pacific Northwest National Laboratory is focused on providing elements of compliance monitoring to support deployment of marine hydrokinetic energy devices. An initial focus is prototype tidal turbines to be deployed in Puget Sound in Washington State. The MAAS will help manage the risk of injury or mortality to marine animals from blade strike or contact with tidal turbines. In particular, development has focused on detection, classification, and localization of listed Southern Resident killer whales within 200 m of prototype turbines using both active and passive acoustic approaches. At the close of FY 2011, a passive acoustic system consisting of a pair of four-element star arrays and parallel processing of eight channels of acoustic receptions has been designed and built. Field tests of the prototype system are scheduled for the fourth quarter of calendar year 2011. Field deployment and testing of the passive acoustic prototype is scheduled for the first quarter of FY 2012. The design of an active acoustic system that could be built using commercially available off-the-shelf components from active acoustic system vendors is also in the final stages of design and specification.

  13. Environmental Proteomics: Changes in the Proteome of Marine Organisms in Response to Environmental Stress, Pollutants, Infection, Symbiosis, and Development

    NASA Astrophysics Data System (ADS)

    Tomanek, Lars

    2011-01-01

    Environmental proteomics, the study of changes in the abundance of proteins and their post-translational modifications, has become a powerful tool for generating hypotheses regarding how the environment affects the biology of marine organisms. Proteomics discovers hitherto unknown cellular effects of environmental stressors such as changes in thermal, osmotic, and anaerobic conditions. Proteomic analyses have advanced the characterization of the biological effects of pollutants and identified comprehensive and pollutant-specific sets of biomarkers, especially those highlighting post-translational modifications. Proteomic analyses of infected organisms have highlighted the broader changes occurring during immune responses and how the same pathways are attenuated during the maintenance of symbiotic relationships. Finally, proteomic changes occurring during the early life stages of marine organisms emphasize the importance of signaling events during development in a rapidly changing environment. Changes in proteins functioning in energy metabolism, cytoskeleton, protein stabilization and turnover, oxidative stress, and signaling are common responses to environmental change.

  14. Coordinated Parameterization Development and Large-Eddy Simulation for Marine and Arctic Cloud-Topped Boundary Layers

    NASA Technical Reports Server (NTRS)

    Bretherton, Christopher S.

    2002-01-01

    The goal of this project was to compare observations of marine and arctic boundary layers with: (1) parameterization systems used in climate and weather forecast models; and (2) two and three dimensional eddy resolving (LES) models for turbulent fluid flow. Based on this comparison, we hoped to better understand, predict, and parameterize the boundary layer structure and cloud amount, type, and thickness as functions of large scale conditions that are predicted by global climate models. The principal achievements of the project were as follows: (1) Development of a novel boundary layer parameterization for large-scale models that better represents the physical processes in marine boundary layer clouds; and (2) Comparison of column output from the ECMWF global forecast model with observations from the SHEBA experiment. Overall the forecast model did predict most of the major precipitation events and synoptic variability observed over the year of observation of the SHEBA ice camp.

  15. A Model for Particle Microphysics, Turbulent Mixing, and Radiative Transfer in the Stratocumulus-Topped Marine Boundary Layer and Comparisons with Measurements

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Toon, Owen B.; Hobbs, Peter V.

    1995-01-01

    A detailed 1D model of the stratocumulus-topped marine boundary layer is described. The model has three coupled components: a microphysics module that resolves the size distributions of aerosols and cloud droplets, a turbulence module that treats vertical mixing between layers, and a multiple wavelength radiative transfer module that calculates radiative heating rates and cloud optical properties. The results of a 12-h model simulation reproduce reasonably well the bulk thermodynamics, microphysical properties, and radiative fluxes measured in an approx. 500-m thick, summertime marine stratocumulus cloud layer by Nicholls. However, in this case, the model predictions of turbulent fluxes between the cloud and subcloud layers exceed the measurements. Results of model simulations are also compared to measurements of a marine stratus layer made under gale conditions and with measurements of a high, thin marine stratocumulus layer. The variations in cloud properties are generally reproduced by the model, although it underpredicts the entrainment of overlying air at cloud top under gale conditions. Sensitivities of the model results are explored. The vertical profile of cloud droplet concentration is sensitive to the lower size cutoff of the droplet size distribution due to the presence of unactivated haze particles in the lower region of the modeled cloud. Increases in total droplet concentrations do not always produce less drizzle and more cloud water in the model. The radius of the mean droplet volume does not correlate consistently with drizzle, but the effective droplet radius does. The greatest impacts on cloud properties predicted by the model are produced by halving the width of the size distribution of input condensation nuclei and by omitting the effect of cloud-top radiative cooling on the condensational growth of cloud droplets. The omission of infrared scattering produces noticeable changes in cloud properties. The collection efficiencies for droplets less than 30-micrometers radius, and the value of the accommodation coefficient for condensational droplet growth, have noticeable effects on cloud properties. The divergence of the horizontal wind also has a significant effect on a 12-h model simulation of cloud structure. Conclusions drawn from the model are tentative because of the limitations of the 1D model framework. A principal simplification is that the model assumes horizontal homogeneity, and, therefore, does not resolve updrafts and downdrafts. Likely consequences of this simplification include overprediction of the growth of droplets by condensation in the upper region of the cloud, underprediction of droplet condensational growth in the lower region of the cloud, and underprediction of peak supersaturations.

  16. A Model for Particle Microphysics,Turbulent Mixing, and Radiative Transfer in the Stratocumulus-Topped Marine Boundary Layer and Comparisons with Measurements

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Toon, Owen B.; Hobbs, Peter V.

    1995-01-01

    A detailed 1D model of the stratocumulus-topped marine boundary layer is described. The model has three coupled components: a microphysics module that resolves the size distributions of aerosols and cloud droplets, a turbulence module that treats vertical mixing between layers, and a multiple wavelength radiative transfer module that calculates radiative heating rates and cloud optical properties. The results of a 12-h model simulation reproduce reasonably well the bulk thermodynamics, microphysical properties, and radiative fluxes measured in an approx. 500-m thick, summertime marine stratocumulus cloud layer by Nicholls. However, in this case, the model predictions of turbulent fluxes between the cloud and subcloud layers exceed the measurements. Results of model simulations are also compared to measurements of a marine stratus layer made under gate conditions and with measurements of a high, thin marine stratocumulus layer. The variations in cloud properties are generally reproduced by the model, although it underpredicts the entrainment of overlying air at cloud top under gale conditions. Sensitivities of the model results are explored. The vertical profile of cloud droplet concentration is sensitive to the lower size cutoff of the droplet size distribution due to the presence of unactivated haze particles in the lower region of the modeled cloud. Increases in total droplet concentrations do not always produce less drizzle and more cloud water in the model. The radius of the mean droplet volume does not correlate consistently with drizzle, but the effective droplet radius does. The greatest impacts on cloud properties predicted by the model are produced by halving the width of the size distribution of input condensation nuclei and by omitting the effect of cloud-top radiative cooling on the condensational growth of cloud droplets. The omission of infrared scattering produces noticeable changes in cloud properties. The collection efficiencies for droplets less than 30-micron radius, and the value of the accommodation coefficient for condensational droplet growth, have noticeable effects on cloud properties. The divergence of the horizontal wind also has a significant effect on a 12-h model simulation of cloud structure. Conclusions drawn from the model are tentative because of the limitations of the 1D model framework. A principal simplification is that the model assumes horizontal homogeneity, and, therefore, does not resolve updrafts and downdrafts. Likely consequences of this simplification include overprediction of the growth of droplets by condensation in the upper region of the cloud, underprediction of droplet condensational growth in the lower region of the cloud, and under-prediction of peak supersaturations.

  17. Marine Toxins

    MedlinePLUS

    ... Contact CDC-INFO Home > Disease Listing > Marine Toxins Marine Toxins Disease Listing | General Information | Technical Information | Additional ... this and other public health problems? What are marine toxins? Marine toxins are naturally occurring chemicals that ...

  18. Ocean Data Interoperability Platform (ODIP): supporting the development of a common global framework for marine data management through international collaboration

    NASA Astrophysics Data System (ADS)

    Glaves, Helen; Schaap, Dick; Arko, Robert; Proctor, Roger

    2014-05-01

    Ecosystem level marine research necessitates that large amounts of interoperable data are readily available for use in a wide range of new and complex multidisciplinary applications. Significant amounts of marine data and information are available throughout the world due to the implementation of e-infrastructures at a regional level to manage and deliver this data to the end user. However, each of these initiatives has been developed to address specific regional requirements and independently of those in other regions. To establish a common framework for marine data management on a global scale that supports an ecosystem level approach to marine research there is a need to develop interoperability across these existing data infrastructures. The Ocean Data Interoperability (ODIP) project is creating a co-ordination platform to support collaboration between a number of these existing regional e-infrastructures which include Rolling Deck to Repository (R2R) in the USA, SeaDataNet and Geo-Seas in Europe, IMOS in Australia and also the international IODE initiative. To demonstrate this co-ordinated approach several prototypes will be developed to test and evaluate potential interoperability solutions for solving the incompatibilities identified between the different regional data infrastructures. These prototypes will be used to underpin the development of a common approach to the management of marine data which can also be promoted to the wider marine research community with a view to expanding this framework to include other regional marine data infrastructures. To achieve these objectives relevant domain experts are coming together at a series of workshops where areas of commonality between the regional infrastructures will be identified which can then be used as the foundation for the development of the prototype solutions. As a result six topics are currently being addressed by the ODIP project which have been identified and analysed during the first two ODIP workshops. These topics are: use of controlled vocabularies, standardised data discovery metadata formats, existing implementations of standards and protocols, sensor web enablement, interoperability between metadata and data exchange mechanisms and data formats. For each of these topics a series of actions and potential interoperability solutions have been identified and work has now begun to implement these solutions within three prototype development tasks which will be outlined as part of this presentation. ODIP is a community led project that is currently focussed on regional initiatives in Europe, the USA and Australia. It is supported by parallel funding from the responsible agencies in each region. The European component of ODIP includes 10 partners from six European countries and is funded by the EU Framework 7 (FP7) programme. The US participation in the project is being supported through a supplement from the NSF for the R2R project, and the Australian contribution is being sponsored by the Australian government.

  19. THE ROLE OF A UNIVERSITY IN DEVELOPING MARINE SCIENCE, TECHNOLOGY AND MANAGEMENT IN SUPPORT OF

    E-print Network

    Brownstone, Rob

    of oxygen CHANGES in ocean circulation (e.g., El Niño) affect climate, economies and society ¼ of human RESEARCHER #12;Ransom A. Myers (1952 ­ 2007) #12;Blue shows declines Example 3: Global decline · Highly technical · No headlines #12;"TARGETED" RESEARCH Marine Environmental Observation, Prediction

  20. Marine Biology

    E-print Network

    Zaffino, Kyle

    2013-01-01

    this  door. ”   Marine  Biology   I  joined  the  military  RIVERSIDE   Marine  Biology   A Thesis submitted in partialBiology                                                                                                                        

  1. On the morphological development of second-phase particles in elastically-stressed solids

    NASA Technical Reports Server (NTRS)

    Voorhees, P. W.; Mcfadden, G. B.; Johnson, W. C.

    1992-01-01

    We examine the equilibrium shape and the dynamics of the morphological evolution of a coherent misfitting particle in an elastically anisotropic medium. No a priori assumptions are made on the possible particle morphologies; the particle evolves in a manner consistent with both the diffusion and elastic fields surrounding the particle and the thermodynamics of interfaces in stressed solids. Through these calculations we find the thermodynamically stable equilibrium shape of a misfitting particle. By thermodynamically stable we mean that all the equilibrium conditions, elastic, chemical and interfacial are satisfied simultaneously, in contrast to previous treatments which determined the equilibrium shape by minimizing the sum of the elastic and interfacial energies for certain classes of particle shapes. We find that the equilibrium particle morphologies are not simple geometric shapes, have fourfold symmetry and a continuously varying interfacial curvature with position along the interface. Furthermore, the results show that the times required for a particle to evolve to its equilibrium morphology are likely to be within those which are accessible experimentally. In addition, we develop a general approach for determining the equilibrium shape of a particle in an elastically stressed solid.

  2. particles

    NASA Astrophysics Data System (ADS)

    Xia, Yu; Chen, Zhihong; Zhang, Zhengguo; Fang, Xiaoming; Liang, Guozheng

    2014-05-01

    We explore a facile and nontoxic hydrothermal route for synthesis of a Cu2ZnSnS4 nanocrystalline material by using l-cysteine as the sulfur source and ethylenediaminetetraacetic acid (EDTA) as the complexing agent. The effects of the amount of EDTA, the mole ratio of the three metal ions, and the hydrothermal temperature and time on the phase composition of the obtained product have been systematically investigated. The addition of EDTA and an excessive dose of ZnCl2 in the hydrothermal reaction system favor the generation of kesterite Cu2ZnSnS4. Pure kesterite Cu2ZnSnS4 has been synthesized at 180°C for 12 h from the reaction system containing 2 mmol of EDTA at 2:2:1 of Cu/Zn/Sn. It is confirmed by Raman spectroscopy that those binary and ternary phases are absent in the kesterite Cu2ZnSnS4 product. The kesterite Cu2ZnSnS4 material synthesized by the hydrothermal process consists of flower-like particles with 250 to 400 nm in size. It is revealed that the flower-like particles are assembled from single-crystal Cu2ZnSnS4 nanoflakes with ca. 20 nm in size. The band gap of the Cu2ZnSnS4 nanocrystalline material is estimated to be 1.55 eV. The films fabricated from the hierarchical Cu2ZnSnS4 particles exhibit fast photocurrent responses under intermittent visible-light irradiation, implying that they show potentials for use in solar cells and photocatalysis.

  3. Sulfur isotope analysis of individual aerosol particles - a new tool for studying heterogeneous oxidation processes in the marine environment

    NASA Astrophysics Data System (ADS)

    Sinha, B. W.; Hoppe, P.; Huth, J.; Foley, S.; Andreae, M. O.

    2009-02-01

    Understanding the importance of the different oxidation pathways of sulfur dioxide (SO2) to sulfate is crucial for an interpretation of the climate effects of sulfate aerosols. Sulfur isotope analysis of atmospheric aerosol is a well established tool for identifying sources of sulfur in the atmosphere and assessment of anthropogenic influence. The power of this tool is enhanced by a new ion microprobe technique that permits isotope analysis of individual aerosol particles as small as 0.5 ?m diameter. With this new single particle technique, different types of primary and secondary sulfates are first identified based on their chemical composition, and then their individual isotopic signature is measured. Our samples were collected at Mace Head, Ireland, a remote coastal station on the North Atlantic Ocean. Sea-salt-sulfate (10-60%), ammonium sulfate/sulfuric acid particles (15-65%), and non-sea-salt-sulfate (nss-sulfate) on aged salt particles all contributed significantly to sulfate loadings in our samples. The isotopic composition of secondary sulfates depends on the isotopic composition of precursor SO2 and the oxidation process. The fractionation with respect to the source SO2 is poorly characterized. In the absence of conclusive laboratory experiments, we consider the kinetic fractionation of -9‰ during the gas phase oxidation of SO2 by OH as suggested by Saltzman et al. (1983) and Tanaka et al. (1994) to be the most reasonable estimate for the isotope fractionation during gas phase oxidation of SO2 (?hom=0.991) and the equilibrium fractionation for the uptake of SO2(g) into the aqueous phase and the dissociation to HSO3- of +16.5‰ measured by Eriksen (1972a) to be the best approximation for the fractionation during oxidation in the aqueous phase (?het=1.0165). The sulfur isotope ratio of secondary sulfate particles can therefore be used to identify the oxidation pathway by which this sulfate was formed. However, the fraction of heterogeneous and homogeneous oxidation pathway calculated is very sensitive to the isotope fractionation assumed for both pathways. Particles with known oxidation pathway (fine mode ammonium sulfate) are used to estimate the isotopic composition of the source SO2. It ranged from ?34SVCDT=0±3‰ to ?34SVCDT=(14±3)‰ under clean conditions and ?34SVCDT=(3±1)‰ under polluted condition. Condensation of H2SO4(g) onto sea salt aerosol produces an isotopic ratio that, when plotted against the sea-salt-sulfate content of the sample, lies on a mixing line between sea salt and ammonium sulfate. The contribution of heterogeneous oxidation is estimated based on the deviation of non-sea-salt-sulfate from this isotopic mixing line. The contribution of heterogeneous oxidation to nss-sulfate formation on aged sea salt sodium sulfate, magnesium sulfate gypsum and mixed sulfate particles under clean conditions is on average 10% for coarse and 25% for fine mode particles. Under polluted conditions, the contribution of heterogeneous oxidation to nss-sulfate formation increased to 60% on coarse mode and 75% on fine mode particles. However, large day-to-day variations in the contribution of heterogeneous oxidation to nss-sulfate formation occurred. Our results suggest that a~significant portion of SO2 in coastal regions is converted to fine mode ammonium sulfate/sulfuric acid particles (40-80% of nss-sulfate) and that condensation of H2SO4(g) contributes significantly even to the nss-sulfate in aged sea salt particles (20-85%).

  4. Development of marine magnetic vector measurement system using AUV and deep-towed vehicle

    NASA Astrophysics Data System (ADS)

    Sayanagi, K.; Isezaki, N.; Matsuo, J.; Harada, M.; Kasaya, T.; Nishimura, K.; Baba, H.

    2012-04-01

    Marine magnetic survey is one of useful methods in order to investigate the nature of the oceanic crust. Most of the data are, however, intensity of the geomagnetic field without its direction. Therefore we cannot properly apply a physical formula describing the relation between magnetic field and magnetization to analyses of the data. With this problem, Isezaki (1986) developed a shipboard three-component magnetometer which measures the geomagnetic vector at the sea. On the other hand, geophysical surveys near the seafloor have been more and more necessary in order to show the details of the oceanic crust. For instance, development of seabed resources like hydrothermal deposits needs higher resolution surveys compared with conventional surveys at the sea for accurate estimation of abundance of the resources. From these viewpoints, we have been developing a measurement system of the deep-sea geomagnetic vector using AUV and deep-towed vehicle. The measurement system consists of two 3-axis flux-gate magnetometers, an Overhauser magnetometer, an optical fiber gyro, a main unit (control, communication, recording), and an onboard unit. These devices except for the onboard unit are installed in pressure cases (depth limit: 6000m). Thus this measurement system can measure three components and intensity of the geomagnetic field in the deep-sea. In 2009, the first test of the measurement system was carried out in the Kumano Basin using AUV Urashima and towing vehicle Yokosuka Deep-Tow during the R/V Yokosuka YK09-09 cruise. In this test, we sank a small magnetic target to the seafloor, and examined how the system worked. As a result, we successfully detected magnetic anomaly of the target to confirm the expected performance of that in the sea. In 2010, the measurement system was tested in the Bayonnaise Knoll area both using a titanium towing frame during the R/V Bosei-maru cruise and using AUV Urashima during the R/V Yokosuka YK10-17 cruise. The purpose of these tests was to evaluate the performance of the system in an actual hydrothermal deposit area for practical applications of that. The Bayonnaise Knoll is a submarine caldera with an outer rim of 2.5-3 km and a floor of 840-920 m, which is located in the Izu-Ogasawara arc. A large hydrothermal deposit, Hakurei deposit lies in the southeast part of the caldera. In the R/V Bosei-maru cruise, we observed three components of magnetic anomalies at depths of 400-570 m along SE-NW and WE tracks across the caldera. In the R/V Yokosuka YK10-17 cruise, we observed three components and intensity of magnetic anomalies at altitudes of 60-100 m around the Hakurei deposit and at depth of 500 m above the caldera. From these tests, we have succeeded in measuring the geomagnetic vector and intensity using the AUV and the deep-towed vehicle, and also have obtained detailed magnetic anomaly in the Hakurei deposit area. We will here present the outlines of the measurement system and the tests in the sea. Note that this study has been supported by the Ministry of Education, Culture, Sports, Science & Technology (MEXT).

  5. Development of laboratory and process sensors to monitor particle size distribution of industrial slurries

    SciTech Connect

    Pendse, H.P.

    1992-10-01

    In this paper we present a novel measurement technique for monitoring particle size distributions of industrial colloidal slurries based on ultrasonic spectroscopy and mathematical deconvolution. An on-line sensor prototype has been developed and tested extensively in laboratory and production settings using mineral pigment slurries. Evaluation to date shows that the sensor is capable of providing particle size distributions, without any assumptions regarding their functional form, over diameters ranging from 0.1 to 100 micrometers in slurries with particle concentrations of 10 to 50 volume percents. The newly developed on-line sensor allows one to obtain particle size distributions of commonly encountered inorganic pigment slurries under industrial processing conditions without dilution.

  6. Is Dark Matter made out of particles. Current searches and detector developments

    SciTech Connect

    Sadoulet, B.

    1987-05-01

    The hypothesis that Dark Matter is made out of exotic particles is definite enough to be testable in a variety of ways. We review the first generation experiments looking for dark matter particles, using conventional techniques. They may find those particles and in any case will provide powerful constraints. We argue that in the long run, cryogenic detectors will have to be used for that type of physics, and since the European effort is covered by other speakers, we review the present developments in this area in the USA. 18 refs., 1 fig.

  7. Developments in digital in-line holography enable validated measurement of 3D particle field dynamics.

    SciTech Connect

    Guildenbecher, Daniel Robert

    2013-12-01

    Digital in-line holography is an optical technique which can be applied to measure the size, three-dimensional position, and three-component velocity of disperse particle fields. This work summarizes recent developments at Sandia National Laboratories focused on improvement in measurement accuracy, experimental validation, and applications to multiphase flows. New routines are presented which reduce the uncertainty in measured position along the optical axis to a fraction of the particle diameter. Furthermore, application to liquid atomization highlights the ability to measure complex, three-dimensional structures. Finally, investigation of particles traveling at near sonic conditions prove accuracy despite significant experimental noise due to shock-waves.

  8. Development of phoH as a novel signature gene for assessing marine phage diversity.

    PubMed

    Goldsmith, Dawn B; Crosti, Giuseppe; Dwivedi, Bhakti; McDaniel, Lauren D; Varsani, Arvind; Suttle, Curtis A; Weinbauer, Markus G; Sandaa, Ruth-Anne; Breitbart, Mya

    2011-11-01

    Phages play a key role in the marine environment by regulating the transfer of energy between trophic levels and influencing global carbon and nutrient cycles. The diversity of marine phage communities remains difficult to characterize because of the lack of a signature gene common to all phages. Recent studies have demonstrated the presence of host-derived auxiliary metabolic genes in phage genomes, such as those belonging to the Pho regulon, which regulates phosphate uptake and metabolism under low-phosphate conditions. Among the completely sequenced phage genomes in GenBank, this study identified Pho regulon genes in nearly 40% of the marine phage genomes, while only 4% of nonmarine phage genomes contained these genes. While several Pho regulon genes were identified, phoH was the most prevalent, appearing in 42 out of 602 completely sequenced phage genomes. Phylogenetic analysis demonstrated that phage phoH sequences formed a cluster distinct from those of their bacterial hosts. PCR primers designed to amplify a region of the phoH gene were used to determine the diversity of phage phoH sequences throughout a depth profile in the Sargasso Sea and at six locations worldwide. phoH was present at all sites examined, and a high diversity of phoH sequences was recovered. Most phoH sequences belonged to clusters without any cultured representatives. Each depth and geographic location had a distinct phoH composition, although most phoH clusters were recovered from multiple sites. Overall, phoH is an effective signature gene for examining phage diversity in the marine environment. PMID:21926220

  9. Central Heating Plant site characterization report, Marine Corps Combat Development Command, Quantico, Virginia

    SciTech Connect

    Not Available

    1990-08-01

    This report presents the methodology and results of a characterization of the operation and maintenance (O M) environment at the US Marine Corps (USMC) Quantico, Virginia, Central Heating Plant (CHP). This characterization is part of a program intended to provide the O M staff with a computerized artificial intelligence (AI) decision support system that will assist the plant staff in more efficient operation of their plant. 3 refs., 12 figs.

  10. Development of miniaturized submersible fluorometers for the detection of aromatic hydrocarbons in marine waters

    NASA Astrophysics Data System (ADS)

    Tedetti, Marc; Bachet, Caroline; Joffre, Pascal; Ferretto, Nicolas; Guigue, Catherine; Goutx, Madeleine

    2014-05-01

    Polycyclic aromatic hydrocarbons (PAHs) are among the most widespread organic contaminants in aquatic environments. Due to their physico-chemical properties, PAHs are persistent and mobile, can strongly bioaccumulate in food chains and are harmful to living organisms. They are thus recognized by various international organizations as priority contaminants and are included in the list of 45 priority regulated substances by the European Union. Because of their aromatic structure, PAHs are "optically active" and have inherent fluorescence properties in the ultraviolet (UV) spectral domain (200-400 nm). Therefore, UV fluorescence spectroscopy has been successfully used to develop PAH sensors (i.e. UV fluorometers). Currently, five UV submersible fluorometers are commercially available for in situ measurements of PAHs: EnviroFlu-HC (TriOS Optical Sensors, Germany), Hydrocarbon Fluorometer (Sea & Sun Technology, Germany), HydroC ™ / PAH (CONTROS, Germany), UviLux AquaTracka (Chelsea Technology Group, UK) and Cyclops-7 (Turner Designs, US). These UV fluorometers are all dedicated to the measurement of phenanthrene (?Ex /?Em: 255/360 nm), one of the most abundant and fluorescent PAHs found in the aquatic environment. In this study, we developed original, miniaturized submersible fluorometers based on deep UV light-emitting diodes (LEDs) for simultaneous measurements of two PAHs of interest: the MiniFluo-UV 1 for the detection of phenanthrene (PHE, at ?Ex /?Em: 255/360 nm) and naphthalene (NAP, at ?Ex /?Em: 270/340 nm), and the MiniFluo-UV 2 for the detection of fluorene (FLU, at ?Ex /?Em: 255/315 nm) and pyrene (PYR, at ?Ex /?Em: 270/380 nm). The MiniFluo-UV sensors have several features: measurements of two PAHs at the same time, small size (puck format, 80 x 60 mm), very low energy consumption (500 mW at 12V), LED monitoring, analog and numerical communication modes. The two MiniFluo-UV sensors were first tested in the laboratory: 1) on standard solutions of PHE, NAP, FLU and PYR in the range 0.1-100 µg l-1 and 2) on a water soluble fraction (WSF) of crude oil diluted in 0.2 µm filtered seawater (0 to 50% of WSF in seawater). Then, the MiniFluo-UV sensors were mounted onto a conductivity temperature depth (CTD) vertical profiler and tested at sea. Several profiles were performed in the Bay of Marseilles, in different harbours and hydrocarbon-impacted sites. The MiniFluo-UV measurements performed in the laboratory and in the field were associated with spectrofluorometric (EEM/PARAFAC) and/or chromatographic (GC-MS) analyses. The result obtained show that the MiniFluo-UV are pertinent and efficient tool for monitoring hydrocarbon pollutions in the marine environment. This work is a contribution of three projects labelled by the Competitivity Cluster Mer PACA: FUI SEA EXPLORER, DGCIS - Eco industries VASQUE (PI: ACSA-ALCEN, Meyreuil, France) and ANR - ECOTECH IBISCUS (PI: M. Goutx, MIO, Marseille, France).

  11. Marine biomass program: anaerobic digestion systems development and stability study. Final report 1 Feb-31 Dec 82

    SciTech Connect

    Fannin, K.F.; Srivastava, V.J.; Mensinger, J.D.; Chynoweth, D.P.

    1983-07-01

    Marine biomass represents a significant potential worldwide energy resource that can be converted to methane by anaerobic digestion. Through efficient biomass production, harvesting, and conversion techniques, competitive methane gas costs are achievable. The objective of this research project is to develop and define an anaerobic digestion process for producing methane from giant brown kelp (Macrocystis pyrifera). Kelp continues to show superior performance as a feedstock for gas production when compared with other particulate biomass feedstocks. Further work on upflow solids reactors and two-phase reactor systems is expected to improve gas cost estimates over those made using other state-of-the-art reactors.

  12. MARINE RESEARCH Volume 62, Number 1

    E-print Network

    Griffa, Annalisa

    Journal of MARINE RESEARCH Volume 62, Number 1 Predictability of Lagrangian particle trajectories, University of Southern California, Los Angeles, California, 90089, U.S.A. Journal of Marine Research, 62, 1

  13. Subvisible (2-100 ?m) particle analysis during biotherapeutic drug product development: Part 2, experience with the application of subvisible particle analysis.

    PubMed

    Corvari, Vincent; Narhi, Linda O; Spitznagel, Thomas M; Afonina, Nataliya; Cao, Shawn; Cash, Patricia; Cecchini, Irene; DeFelippis, Michael R; Garidel, Patrick; Herre, Andrea; Koulov, Atanas V; Lubiniecki, Tony; Mahler, Hanns-Christian; Mangiagalli, Paolo; Nesta, Douglas; Perez-Ramirez, Bernardo; Polozova, Alla; Rossi, Mara; Schmidt, Roland; Simler, Robert; Singh, Satish; Weiskopf, Andrew; Wuchner, Klaus

    2015-11-01

    Measurement and characterization of subvisible particles (including proteinaceous and non-proteinaceous particulate matter) is an important aspect of the pharmaceutical development process for biotherapeutics. Health authorities have increased expectations for subvisible particle data beyond criteria specified in the pharmacopeia and covering a wider size range. In addition, subvisible particle data is being requested for samples exposed to various stress conditions and to support process/product changes. Consequently, subvisible particle analysis has expanded beyond routine testing of finished dosage forms using traditional compendial methods. Over the past decade, advances have been made in the detection and understanding of subvisible particle formation. This article presents industry case studies to illustrate the implementation of strategies for subvisible particle analysis as a characterization tool to assess the nature of the particulate matter and applications in drug product development, stability studies and post-marketing changes. PMID:26324466

  14. An Optimized Method for Delivering Flow Tracer Particles to Intravital Fluid Environments in the Developing Zebrafish

    PubMed Central

    Gilday, Steven D.; Dabiri, Dana; Hove, Jay R.

    2012-01-01

    Abstract Growing evidence suggests that intravital flow–structure interactions are critical morphogens for normal embryonic development and disease progression, but fluid mechanical studies aimed at investigating these interactions have been limited in their ability to visualize and quantify fluid flow. In this study, we describe a protocol for injecting small (?1.0??m) tracer particles into fluid beds of the larval zebrafish to facilitate microscale fluid mechanical analyses. The microinjection apparatus and associated borosilicate pipette design, typically blunt-tipped with a 2–4 micron tip O.D., yielded highly linear (r2=0.99) in vitro bolus ejection volumes. The physical characteristics of the tracer particles were optimized for efficient particle delivery. Seeding densities suitable for quantitative blood flow mapping (?50 thousand tracers per fish) were routinely achieved and had no adverse effects on zebrafish physiology or long-term survivorship. The data and methods reported here will prove valuable for a broad range of in vivo imaging technologies [e.g., particle-tracking velocimetry, ?-Doppler, digital particle image velocimetry (DPIV), and 4-dimensional-DPIV] which rely on tracer particles to visualize and quantify fluid flow in the developing zebrafish. PMID:22985309

  15. FOCUS: MARINE GEOMORPHOLOGY AS A DETERMINANT FOR

    E-print Network

    Wright, Dawn Jeannine

    FOCUS: MARINE GEOMORPHOLOGY AS A DETERMINANT FOR ESSENTIAL LIFE HABITAT AND MARINE PROTECTED AREA DESIGN Marine Geomorphology in the Design of Marine Reserve Networks William D. Heyman Texas A Geographer explores the development of marine reserve networks based on geomorphology, fish biology

  16. Marine Geoscience Leadership Symposium: A New Paradigm for Early Career Development

    NASA Astrophysics Data System (ADS)

    Meth, C. E.; Powell, E. A.; Schuffert, J.; O'Riordan, C.

    2009-12-01

    Earth and marine geoscientists are crossing the boundaries between traditional scientific disciplines, pushing the frontiers of scientific research, and addressing the needs of society. As it becomes increasingly important for scientists to form interdisciplinary collaborations and communicate their science to the public and policymakers, early career scientists are seeking insight into the non-traditional skills needed today to achieve a successful career. With funding from the National Science Foundation (NSF), the Consortium for Ocean Leadership organized the first Marine Geoscience Leadership Symposium to provide valuable leadership training to early career scientists. The symposium established a new paradigm for early career workshops by focusing on the different perspectives of leadership and the varied aspects of building a successful academic career. Meeting with over 40 leaders from the academic, policy, and education communities, the symposium exposed the 25 meeting participants to leadership qualities that will help them navigate the laboratory and beyond. The discussion and activities focused on the tangible and intangible aspects of building a career, such as proposal writing, research funding, building interdisciplinary collaborations, and communicating to non-academic audiences. The symposium took place in Washington, DC, where the participants had an opportunity to meet with program officers at the National Science Foundation and to attend a science policy function on Capitol Hill. Featured speakers addressed academic issues such as multidisciplinary science initiatives, achieving tenure, and collaborative research studies. Science policy and communication to non-scientific audiences were reoccurring themes throughout the symposium. The participants spent a portion of each day discussing research priorities for the Arctic region, blue water ocean, coastal areas, and in regions of active tectonics, and then discussed how these priorities could be made accessible to policymakers. Through exposure to skills that extend beyond the classroom and laboratory, the early career researchers who participated in the first Marine Geoscience Leadership Symposium gained a rare insight into the academic and policy world that will serve them and the community well in the years to come.

  17. Development of an Analytical Method for Quantitative Determination of Atmospheric Particles By Laap-TOF Instrument

    NASA Astrophysics Data System (ADS)

    Gemayel, R.; Temime-Roussel, B.; Hellebust, S.; Gligorovski, S.; Wortham, H.

    2014-12-01

    A comprehensive understanding of the chemical composition of the atmospheric particles is of paramount importance in order to understand their impact on the health and climate. Hence, there is an imperative need for the development of appropriate analytical methods of analysis for the on-line, time-resolved measurements of atmospheric particles. Laser Ablation Aerosol Particle Time of Flight Mass Spectrometry (LAAP-TOF-MS) allows a real time qualitative analysis of nanoparticles of differing composition and size. LAAP-TOF-MS is aimed for on-line and continuous measurements of atmospheric particles with the fast time resolution in order of millisecond. This system uses a 193 nm excimer laser for particle ablation/ionization and a 403 nm scattering laser for sizing (and single particle detection/triggering). The charged ions are then extracted into a bi-polar Time-of-Flight mass spectrometer. Here we present an analytical methodology for quantitative determination of the composition and size-distribution of the particles by LAAP-TOF instrument. We developed and validate an analytical methodology of this high time resolution instrument by comparison with the conventional analysis systems with lower time resolution (electronic microscopy, optical counters…) with final aim to render the methodology quantitative. This was performed with the aid of other instruments for on-line and off-line measurement such as Scanning Mobility Particle Sizer, electronic microscopy... Validation of the analytical method was performed under laboratory conditions by detection and identification of the targeted main types such as SiO2, CeO2, and TiO2

  18. Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts

    SciTech Connect

    Sippola, Mark R.; Nazaroff, William W.

    2003-08-01

    Particle deposition in ventilation ducts influences particle exposures of building occupants and may lead to a variety of indoor air quality concerns. Experiments have been performed in a laboratory to study the effects of particle size and air speed on deposition rates of particles from turbulent air flows in galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. The duct systems were constructed of materials typically found in commercial heating, ventilating and air conditioning (HVAC) systems. In the steel duct system, experiments with nominal particle sizes of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition rates of particles with nominal sizes of 1, 3, 5, 8 and 13 {micro}m were measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces (floor, wall and ceiling) at two straight duct sections where the turbulent flow profile was fully developed. In steel ducts, deposition rates were higher to the duct floor than to the wall, which were, in turn, greater than to the ceiling. In insulated ducts, deposition was nearly the same to the duct floor, wall and ceiling for a given particle size and air speed. Deposition to duct walls and ceilings was greatly enhanced in insulated ducts compared to steel ducts. Deposition velocities to each of the three duct surface orientations in both systems were found to increase with increasing particle size or air velocity over the ranges studied. Deposition rates measured in the current experiments were in general agreement with the limited observations of similar systems by previous researchers.

  19. Marine Tactical Command and Control System (MTACCS), Field Development System-1 (FDS-1) assessment: Volume 2. Final report

    SciTech Connect

    Avery, L.W.; Hunt, S.T.; Savage, S.F.; McLaughlin, P.D.; Shepard, A.P.; Worl, J.C.

    1992-04-01

    The following appendices contain the detailed analysis data for the questionnaires and various FDS-1 after action reports submitted to the Marine Corps Systems Command (MARCORSYSCOM) Marine Tactical Command and Control System (MTACCS) Systems` Engineer.

  20. Modelling the role of marine particle on large scale 231Pa, 230Th, Iron and Aluminium distributions

    NASA Astrophysics Data System (ADS)

    Dutay, J.-C.; Tagliabue, A.; Kriest, I.; van Hulten, M. M. P.

    2015-04-01

    The distribution of trace elements in the ocean is governed by the combined effects of various processes, and by exchanges with external sources. Modelling these represents an opportunity to better understand and quantify the mechanisms that regulate the oceanic tracer cycles. Observations collected during the GEOTRACES program provide an opportunity to improve our knowledge regarding processes that should be considered in biogeochemical models to adequately represent the distributions of trace elements in the ocean. Here we present a synthesis about the state of the art for simulating selected trace elements in biogeochemical models: Protactinium, Thorium, Iron and Aluminium. In this contribution we pay particular attention on the role of particles in the cycling of these tracers and how they may provide additional constraints on the transfer of matter in the ocean.

  1. Marine cloud brightening: regional applications

    PubMed Central

    Latham, John; Gadian, Alan; Fournier, Jim; Parkes, Ben; Wadhams, Peter; Chen, Jack

    2014-01-01

    The general principle behind the marine cloud brightening (MCB) climate engineering technique is that seeding marine stratocumulus clouds with substantial concentrations of roughly monodisperse sub-micrometre-sized seawater particles might significantly enhance cloud albedo and longevity, thereby producing a cooling effect. This paper is concerned with preliminary studies of the possible beneficial application of MCB to three regional issues: (1) recovery of polar ice loss, (2) weakening of developing hurricanes and (3) elimination or reduction of coral bleaching. The primary focus is on Item 1. We focus discussion herein on advantages associated with engaging in limited-area seeding, regional effects rather than global; and the levels of seeding that may be required to address changing current and near-term conditions in the Arctic. We also mention the possibility that MCB might be capable of producing a localized cooling to help stabilize the West Antarctic Ice Sheet. PMID:25404682

  2. Marine cloud brightening: regional applications.

    PubMed

    Latham, John; Gadian, Alan; Fournier, Jim; Parkes, Ben; Wadhams, Peter; Chen, Jack

    2014-12-28

    The general principle behind the marine cloud brightening (MCB) climate engineering technique is that seeding marine stratocumulus clouds with substantial concentrations of roughly monodisperse sub-micrometre-sized seawater particles might significantly enhance cloud albedo and longevity, thereby producing a cooling effect. This paper is concerned with preliminary studies of the possible beneficial application of MCB to three regional issues: (1) recovery of polar ice loss, (2) weakening of developing hurricanes and (3) elimination or reduction of coral bleaching. The primary focus is on Item 1. We focus discussion herein on advantages associated with engaging in limited-area seeding, regional effects rather than global; and the levels of seeding that may be required to address changing current and near-term conditions in the Arctic. We also mention the possibility that MCB might be capable of producing a localized cooling to help stabilize the West Antarctic Ice Sheet. PMID:25404682

  3. Monitoring Marine Microbial Fouling

    NASA Technical Reports Server (NTRS)

    Colwell, R.

    1985-01-01

    Two techniques developed for studying marine fouling. Methods originally developed to study fouling of materials used in Space Shuttle solid fuel booster rockets. Methods used to determine both relative fouling rates and efficacy of cleaning methods to remove fouling on various surfaces including paints, metals, and sealants intended for marine use.

  4. Significance of investigating allelopathic interactions of marine organisms in the discovery and development of cytotoxic compounds.

    PubMed

    Singh, Anshika; Thakur, Narsinh L

    2016-01-01

    Marine sessile organisms often inhabit rocky substrata, which are crowded by other sessile organisms. They acquire living space via growth interactions and/or by allelopathy. They are known to secrete toxic compounds having multiple roles. These compounds have been explored for their possible applications in cancer chemotherapy, because of their ability to kill rapidly dividing cells of competitor organisms. As compared to the therapeutic applications of these compounds, their possible ecological role in competition for space has received little attention. To select the potential candidate organisms for the isolation of lead cytotoxic molecules, it is important to understand their chemical ecology with special emphasis on their allelopathic interactions with their competitors. Knowledge of the ecological role of allelopathic compounds will contribute significantly to an understanding of their natural variability and help us to plan effective and sustainable wild harvests to obtain novel cytotoxic chemicals. This review highlights the significance of studying allelopathic interactions of marine invertebrates in the discovery of cytotoxic compounds, by selecting sponge as a model organism. PMID:26362501

  5. The dynamics of particle disks. III - Dense and spinning particle disks. [development of kinetic theory for planetary rings

    NASA Technical Reports Server (NTRS)

    Araki, Suguru

    1991-01-01

    The kinetic theory of planetary rings developed by Araki and Tremaine (1986) and Araki (1988) is extended and refined, with a focus on the implications of finite particle size: (1) nonlocal collisions and (2) finite filling factors. Consideration is given to the derivation of the equations for the local steady state, the low-optical-depth limit, and the steady state at finite filling factors (including the effects of collision inelasticity, spin degrees of freedom, and self-gravity). Numerical results are presented in extensive graphs and characterized in detail. The importance of distinguishing effects (1) and (2) at low optical depths is stressed, and the existence of vertical density profiles with layered structures at high filling factors is demonstrated.

  6. Development of Wireless Techniques in Data and Power Transmission - Application for Particle Physics Detectors

    E-print Network

    Brenner, R; Dehos, C; De Lurgio, P; Djurcic, Z; Drake, G; Gimenez, J L Gonzalez; Gustafsson, L; Kim, D W; Locci, E; Roehrich, D; Schoening, A; Siligaris, A; Soltveit, H K; Ullaland, K; Vincent, P; Wiednert, D; Yang, S

    2015-01-01

    Wireless techniques have developed extremely fast over the last decade and using them for data and power transmission in particle physics detectors is not science- fiction any more. During the last years several research groups have independently thought of making it a reality. Wireless techniques became a mature field for research and new developments might have impact on future particle physics experiments. The Instrumentation Frontier was set up as a part of the SnowMass 2013 Community Summer Study [1] to examine the instrumentation R&D for the particle physics research over the coming decades: {\\guillemotleft} To succeed we need to make technical and scientific innovation a priority in the field {\\guillemotright}. Wireless data transmission was identified as one of the innovations that could revolutionize the transmission of data out of the detector. Power delivery was another challenge mentioned in the same report. We propose a collaboration to identify the specific needs of different projects that m...

  7. Particle Engulfment and Pushing By Solidifying Interfaces - Recent Theoretical and Experimental Developments

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.; Catalina, A. V.; Juretzko, Frank R.; Sen, Subhayu; Curreri, P. A.

    2003-01-01

    The objective of the work on Particle Engulfment and Pushing by Solidifying Interfaces (PEP) include: 1) to obtain fundamental understanding of the physics of particle pushing and engulfment, 2) to develop mathematical models to describe the phenomenon, and 3) to perform critical experiments in the microgravity environment of space to provide benchmark data for model validation. Successful completion of this project will yield vital information relevant to a diverse area of terrestrial applications. With PEP being a long term research effort, this report will focus on advances in the theoretical treatment of the solid/liquid interface interaction with an approaching particle, experimental validation of some aspects of the developed models, and the experimental design aspects of future experiments to be performed on board the International Space Station.

  8. DEVELOPMENT AND EVALUATION OF A CONTINUOUS COARSE (PM10-PM2.5) PARTICLE MONITOR

    EPA Science Inventory

    In this paper, we describe the development and laboratory and field evaluation of a continuous coarse (2.5-10 um) particle mass (PM) monitor that can provide reliable measurements of the coarse mass (CM) concentrations in time intervals as short as 5-10 min. The operating princ...

  9. DEVELOPMENT AND LABORATORY CHARACTERIZATION OF A PROTOTYPE COARSE PARTICLE CONCENTRATOR FOR INHALATION TOXICOLOGICAL STUDIES. (R825270)

    EPA Science Inventory

    This paper presents the development and laboratory characterization of a prototype slit nozzle virtual impactor that can be used to concentrate coarse particles. A variety of physical design and flow parameters were evaluated including different acceleration and collection sli...

  10. Development of Contemporary Problem-Based Learning Projects in Particle Technology

    ERIC Educational Resources Information Center

    Harris, Andrew T.

    2009-01-01

    The University of Sydney has offered an undergraduate course in particle technology using a contemporary problem based learning (PBL) methodology since 2005. Student learning is developed through the solution of complex, open-ended problems drawn from modern chemical engineering practice. Two examples are presented; i) zero emission electricity…

  11. Development of Electromagnetic Particle Simulation Code in an Open System for Investigation of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ohtani, H.; Horiuchi, R.; Usami, S.

    2013-10-01

    In order to investigate magnetic reconnection from the microscopic viewpoint, we have developed a three-dimensional electromagnetic particle simulation code in an open system (PASMO). For performing the code on a distributed memory and multi-processor computer system with a distributed parallel algorithm, we distributed only information of particles and did not decompose the domain in the previous PASMO code. However, in the case that the memory size on one node of computer is limited, the previous code could not be performed for large-scale simulation because all field data were duplicated on each parallel process. In order to overcome this problem, we decompose the domain, in which the field variable defined by three coordinates is distributed. The processor performs the field solver in the mapped domain, and carries out the particle pusher for the particles which exist in the domain. In this paper, we develop the open boundary condition with the domain decomposition algorithm and perform more large-scale particle simulations. We will discuss the performance of the new PASMO and the simulation results on the magnetic reconnection. This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Grant No 23340182) and General Coordinated Research at NIFS (NIFS12KNSS027, NIFS13KNXN252).

  12. Marine Indole Alkaloids

    PubMed Central

    Netz, Natalie; Opatz, Till

    2015-01-01

    Marine indole alkaloids comprise a large and steadily growing group of secondary metabolites. Their diverse biological activities make many compounds of this class attractive starting points for pharmaceutical development. Several marine-derived indoles were found to possess cytotoxic, antineoplastic, antibacterial and antimicrobial activities, in addition to the action on human enzymes and receptors. The newly isolated indole alkaloids of marine origin since the last comprehensive review in 2003 are reported, and biological aspects will be discussed. PMID:26287214

  13. Development and testing of bio-inspired microelectromechanical pressure sensor arrays for increased situational awareness for marine vehicles

    NASA Astrophysics Data System (ADS)

    Dusek, J.; Kottapalli, A. G. P.; Woo, M. E.; Asadnia, M.; Miao, J.; Lang, J. H.; Triantafyllou, M. S.

    2013-01-01

    The lateral line found on most species of fish is a sensory organ without analog in humans. Using sensory feedback from the lateral line, fish are able to track prey, school, avoid obstacles, and detect vortical flow structures. Composed of both a superficial component, and a component contained within canals beneath the fish’s skin, the lateral line acts in a similar fashion to an array of differential pressure sensors. In an effort to enhance the situational and environmental awareness of marine vehicles, lateral-line-inspired pressure sensor arrays were developed to mimic the enhanced sensory capabilities observed in fish. Three flexible and waterproof pressure sensor arrays were fabricated for use as a surface-mounted ‘smart skin’ on marine vehicles. Two of the sensor arrays were based around the use of commercially available piezoresistive sensor dies, with innovative packaging schemes to allow for flexibility and underwater operation. The sensor arrays employed liquid crystal polymer and flexible printed circuit board substrates with metallic circuits and silicone encapsulation. The third sensor array employed a novel nanocomposite material set that allowed for the fabrication of a completely flexible sensor array. All three sensors were surface mounted on the curved hull of an autonomous kayak vehicle, and tested in both pool and reservoir environments. Results demonstrated that all three sensors were operational while deployed on the autonomous vehicle, and provided an accurate means for monitoring the vehicle dynamics.

  14. Development of an adhesively bonded beryllium propulsion structure for the Mariner Mars 1971 spacecraft

    NASA Technical Reports Server (NTRS)

    Stevens, J. H.; Layman, W. E.

    1972-01-01

    The design, testing, and fabrication of the support truss structure for the propulsion system of the Mariner 9 spacecraft are described. Support is provided by an 8.9-kg (19.5-lbm) truss assembly consisting of beryllium tubes adhesively bonded to magnesium end fittings. Beryllium was selected for the tubular struts in the truss because of its exceptionally high stiffness-to-weight ratio. Adhesive bonding, rather than riveting, was utilized to join the struts to the end fittings because of the low toughness (high notch sensitivity) of beryllium. Magnesium, used in the end fittings, resulted in a 50% weight saving over aluminum since geometric factors in the fitting design resulted in low stress areas where magnesium's lower density is a benefit.

  15. The Large Marine Ecosystem Approach for 21st Century Ocean Health and International Sustainable Development

    NASA Astrophysics Data System (ADS)

    Honey, K. T.

    2014-12-01

    The global coastal ocean and watersheds are divided into 66 Large Marine Ecosystems (LMEs), which encompass regions from river basins, estuaries, and coasts to the seaward boundaries of continental shelves and margins of major currents. Approximately 80% of global fisheries catch comes from LME waters. Ecosystem goods and services from LMEs contribute an estimated US 18-25 trillion dollars annually to the global economy in market and non-market value. The critical importance of these large-scale systems, however, is threatened by human populations and pressures, including climate change. Fortunately, there is pragmatic reason for optimism. Interdisciplinary frameworks exist, such as the Large Marine Ecosystem (LME) approach for adaptive management that can integrate both nature-centric and human-centric views into ecosystem monitoring, assessment, and adaptive management practices for long-term sustainability. Originally proposed almost 30 years ago, the LME approach rests on five modules are: (i) productivity, (ii) fish and fisheries, (iii) pollution and ecosystem health, (iv) socioeconomics, and (v) governance for iterative adaptive management at a large, international scale of 200,000 km2 or greater. The Global Environment Facility (GEF), World Bank, and United Nations agencies recognize and support the LME approach—as evidenced by over 3.15 billion in financial assistance to date for LME projects. This year of 2014 is an exciting milestone in LME history, after 20 years of the United Nations and GEF organizations adopting LMEs as a unit for ecosystem-based approaches to management. The LME approach, however, is not perfect. Nor is it immutable. Similar to the adaptive management framework it propones, the LME approach itself must adapt to new and emerging 21st Century technologies, science, and realities. The LME approach must further consider socioeconomics and governance. Within the socioeconomics module alone, several trillion-dollar opportunities exist for interdisciplinary integration with best practices in: (i) water-energy nexus infrastructure; (ii) responsible tourism; and (iii) open data innovations.

  16. Development of a predictive model for the growth kinetics of aerobic microbial population on pomegranate marinated chicken breast fillets under isothermal and dynamic temperature conditions.

    PubMed

    Lytou, Anastasia; Panagou, Efstathios Z; Nychas, George-John E

    2016-05-01

    The aim of this study was the development of a model to describe the growth kinetics of aerobic microbial population of chicken breast fillets marinated in pomegranate juice under isothermal and dynamic temperature conditions. Moreover, the effect of pomegranate juice on the extension of the shelf life of the product was investigated. Samples (10 g) of chicken breast fillets were immersed in marinades containing pomegranate juice for 3 h at 4 °C following storage under aerobic conditions at 4, 10, and 15 °C for 10 days. Total Viable Counts (TVC), Pseudomonas spp and lactic acid bacteria (LAB) were enumerated, in parallel with sensory assessment (odor and overall appearance) of marinated and non-marinated samples. The Baranyi model was fitted to the growth data of TVC to calculate the maximum specific growth rate (?max) that was further modeled as a function of temperature using a square root-type model. The validation of the model was conducted under dynamic temperature conditions based on two fluctuating temperature scenarios with periodic changes from 6 to 13 °C. The shelf life was determined both mathematically and with sensory assessment and its temperature dependence was modeled by an Arrhenius type equation. Results showed that the ?max of TVC of marinated samples was significantly lower compared to control samples regardless temperature, while under dynamic temperature conditions the model satisfactorily predicted the growth of TVC in both control and marinated samples. The shelf-life of marinated samples was significantly extended compared to the control (5 days extension at 4 °C). The calculated activation energies (Ea), 82 and 52 kJ/mol for control and marinated samples, respectively, indicated higher temperature dependence of the shelf life of control samples compared to marinated ones. The present results indicated that pomegranate juice could be used as an alternative ingredient in marinades to prolong the shelf life of chicken. PMID:26742613

  17. Progress and hurdles in the development of influenza virus-like particle vaccines for veterinary use

    PubMed Central

    2014-01-01

    Virus-like particles (VLPs), which resemble infectious virus particles in structure and morphology, have been proposed to provide a new generation of vaccine candidates against various viral infections. As effective immunogens, characterized by high immunogenicity and safety, VLPs have been employed in the development of human influenza vaccines. Recently, several influenza VLP vaccines have been developed for veterinary use and successfully evaluated in swine, canine, duck, and chicken models. These VLP vaccine candidates induced protective immune responses and enabled serological differentiation between vaccinated and infected animals in conjunction with a diagnostic test. Here, we review the current progress of influenza VLP development as a next-generation vaccine technology in the veterinary field and discuss the challenges and future direction of this technology. PMID:25003086

  18. Developing Supersonic Impactor and Aerodynamic Lens for Separation and Handling of Nano-Sized Particles

    SciTech Connect

    Goodarz Ahmadi

    2008-06-30

    A computational model for supersonic flows of compressible gases in an aerodynamic lens with several lenses and in a supersonic/hypersonic impactor was developed. Airflow conditions in the aerodynamic lens were analyzed and contour plots for variation of Mach number, velocity magnitude and pressure field in the lens were evaluated. The nano and micro-particle trajectories in the lens and their focusing and transmission efficiencies were evaluated. The computational model was then applied to design of a aerodynamic lens that could generate focus particle beams while operating under atmospheric conditions. The computational model was also applied to airflow condition in the supersonic/hypersonic impactor. Variations of airflow condition and particle trajectories in the impactor were evaluated. The simulation results could provide understanding of the performance of the supersonic and hypersonic impactors that would be helpful for the design of such systems.

  19. Development of an integrated energetic neutral particle measurement system on experimental advanced full superconducting tokamak

    SciTech Connect

    Zhu, Y. B. Liu, D.; Heidbrink, W. W.; Zhang, J. Z.; Qi, M. Z.; Xia, S. B.; Wan, B. N.; Li, J. G.

    2014-11-15

    Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.

  20. Research in particles and fields in space

    NASA Technical Reports Server (NTRS)

    Coleman, P. J., Jr.

    1973-01-01

    Theoretical and experimental work in charged particle and magnetic field research is reported. Activities center on plasma generation and acceleration, ATS 1 data processing for evaluation of magnetospheric substorms and micropulsations during magnetic disturbances, and the development of solar wind model using Mariner observations.

  1. The Development of Open Water-lubricated Polycrystalline Diamond (PCD) Thrust Bearings for Use in Marine Hydrokinetic (MHK) Energy Machines

    SciTech Connect

    Cooley, Craig, H.; Khonsari, Michael,, M; Lingwall, Brent

    2012-11-28

    Polycrstalline diamond (PCD) bearings were designed, fabricated and tested for marine-hydro-kinetic (MHK) application. Bearing efficiency and life were evaluated using the US Synthetic bearing test facility. Three iterations of design, build and test were conducted to arrive at the best bearing design. In addition life testing that simulated the starting and stopping and the loading of real MHK applications were performed. Results showed polycrystalline diamond bearings are well suited for MHK applications and that diamond bearing technology is TRL4 ready. Based on life tests results bearing life is estimated to be at least 11.5 years. A calculation method for evaluating the performance of diamond bearings of round geometry was also investigated and developed. Finally, as part of this effort test bearings were supplied free of charge to the University of Alaska for further evaluation. The University of Alaska test program will subject the diamond bearings to sediment laden lubricating fluid.

  2. An Assessment of Differences Between Cloud Effective Particle Radius Retrievals for Marine Water Clouds from Three MODIS Spectral Bands

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Zhang, Zhibo

    2011-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product provides three separate 1 km resolution retrievals of cloud particle effective radii (r (sub e)), derived from 1.6, 2.1 and 3.7 micron band observations. In this study, differences among the three size retrievals for maritime water clouds (designated as r (sub e), 1.6 r (sub e), 2.1 and r (sub e),3.7) were systematically investigated through a series of case studies and global analyses. Substantial differences are found between r (sub e),3.7 and r (sub e),2.1 retrievals (delta r (sub e),3.7-2.l), with a strong dependence on cloud regime. The differences are typically small, within +/- 2 micron, over relatively spatially homogeneous coastal stratocumulus cloud regions. However, for trade wind cumulus regimes, r (sub e),3.7 was found to be substantially smaller than r (sub e),2.1, sometimes by more than 10 micron. The correlation of delta r(sub e),3.7-2.1 with key cloud parameters, including the cloud optical thickness (tau), r (sub e) and a cloud horizontal heterogeneity index (H-sigma) derived from 250 m resolution MODIS 0.86 micron band observations, were investigated using one month of MODIS Terra data. It was found that differences among the three r (sub e) retrievals for optically thin clouds (tau <5) are highly variable, ranging from - 15 micron to 10 micron, likely due to the large MODIS retrieval uncertainties when the cloud is thin. The delta r (sub e),3.7-2.1 exhibited a threshold-like dependence on both r (sub e),2.l and H-sigma. The re,3.7 is found to agree reasonably well with re,2.! when re,2.l is smaller than about 15J-Lm, but becomes increasingly smaller than re,2.1 once re,2.! exceeds this size. All three re retrievals showed little dependence when H-sigma < 0.3 (defined as standard deviation divided by the mean for the 250 m pixels within a 1 km pixel retrieval). However, for H-=sigma >0.3, both r (sub e),1.6 and r (sub e),2.1 were seen to increase quickly with H-sigma. On the other hand, r (sub e),3.7 statistics showed little dependence on H-sigma and remained relatively stable over the whole range of H-sigma values. Potential contributing causes to the substantial r (sub e),3.7 and r (sub e),2.1 differences are discussed. In particular, based on both 1-D and 3-D radiative transfer simulations, we have elucidated mechanisms by which cloud heterogeneity and 3-D radiative effects can cause large differences between r (sub e),3.7 and r (sub e),2.l retrievals for highly inhomogeneous clouds. Our results suggest that the contrast in observed delta r (sub e)3.7-2.1 between cloud regimes is correlated with increases in both cloud r (sub e) and H-sigma. We also speculate that in some highly inhomogeneous drizzling clouds, vertical structure induced by drizzle and 3-D radiative effects might operate together to cause dramatic differences between r (sub e),3.7 and r (sub e),2.1 retrievals.

  3. Particle motion is broadly represented in the vestibular medulla of the bullfrog across larval development

    PubMed Central

    Flores, Victoria

    2012-01-01

    In their shallow-water habitats, bullfrog (Rana catesbeiana) tadpoles are exposed to both underwater and airborne sources of acoustic stimulation. We probed the representation of underwater particle motion throughout the tadpole’s dorsal medulla to determine its spatial extent over larval life. Using neurobiotin-filled micropipettes, we recorded neural activity to z-axis particle motion (frequencies of 40–200 Hz) in the medial vestibular nucleus, lateral vestibular nucleus, dorsal medullary nucleus (DMN), and along the dorsal arcuate pathway. Sensitivity was comparable in the medial and lateral vestibular nuclei, with estimated thresholds between 0.016 and 12.5 ?m displacement. Neither best responding frequency nor estimated threshold varied significantly over larval stage. Transport of neurobiotin from active recording sites was also stable over development. The DMN responded poorly to z-axis particle motion, but did respond to low-frequency pressure stimulation. These data suggest that particle motion is represented widely and stably in the tadpole’s vestibular medulla. This is in marked contrast to the representation of pressure stimulation in the auditory midbrain, where a transient “deaf period” of non-responsiveness and decreased connectivity occurs immediately prior to metamorphic climax. We suggest that, in bullfrogs, sensitivity to particle motion and to pressure follows different developmental trajectories. PMID:22198742

  4. 76 FR 78290 - Cooperative Research and Development Agreement: Usage of Biodiesel Fuel Blends Within Marine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Register (73 FR 3316). Cooperative Research and Development Agreements Cooperative Research and Development... Research and Development Center; 1 Chelsea Street, New London, CT 06320, telephone: (860) 271-2866; email... Research and Development Center; 1 Chelsea Street, New London, CT 06320, telephone: (860) 271-2866;...

  5. Stratigraphy and facies development of the marine Late Devonian near the Boulongour Reservoir, northwest Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Suttner, Thomas J.; Kido, Erika; Chen, Xiuqin; Mawson, Ruth; Waters, Johnny A.; Frýda, Ji?í; Mathieson, David; Molloy, Peter D.; Pickett, John; Webster, Gary D.; Frýdová, Barbora

    2014-02-01

    Late Devonian to Early Carboniferous stratigraphic units within the 'Zhulumute' Formation, Hongguleleng Formation (stratotype), 'Hebukehe' Formation and the Heishantou Formation near the Boulongour Reservoir in northwestern Xinjiang are fossil-rich. The Hongguleleng and 'Hebukehe' formations are biostratigraphically well constrained by microfossils from the latest Frasnian linguiformis to mid-Famennian trachytera conodont biozones. The Hongguleleng Formation (96.8 m) is characterized by bioclastic argillaceous limestones and marls (the dominant facies) intercalated with green spiculitic calcareous shales. It yields abundant and highly diverse faunas of bryozoans, brachiopods and crinoids with subordinate solitary rugose corals, ostracods, trilobites, conodonts and other fish teeth. The succeeding 'Hebukehe' Formation (95.7 m) consists of siltstones, mudstones, arenites and intervals of bioclastic limestone (e.g. 'Blastoid Hill') and cherts with radiolarians. A diverse ichnofauna, phacopid trilobites, echinoderms (crinoids and blastoids) together with brachiopods, ostracods, bryozoans and rare cephalopods have been collected from this interval. Analysis of geochemical data, microfacies and especially the distribution of marine organisms, which are not described in detail here, but used for facies analysis, indicate a deepening of the depositional environment at the Boulongour Reservoir section. Results presented here concern mainly the sedimentological and stratigraphical context of the investigated section. Additionally, one Late Devonian palaeo-oceanic and biotic event, the Upper Kellwasser Event is recognized near the section base.

  6. Physiography of the Monterey Bay National Marine Sanctuary and implications about continental margin development

    USGS Publications Warehouse

    Greene, H.D.; Maher, N.M.; Paull, C.K.

    2002-01-01

    Combined EM-300 multibeam bathymetric data and satellite photography reveal the physiography of the continental margin between 35°50? and 37°03?N and from the shoreline west of 122°40? and 122°37?W, which includes Monterey Bay, in a previously unprecedented detail. Patterns in these images clearly reveal the processes that are actively influencing the current geomorphology of the Monterey Bay region, including the Monterey Bay National Marine Sanctuary (MBNMS). Our data indicates that seafloor physiography within the MBNMS results from plate margin tectonic deformation, including uplift and erosion along structural lineaments, and from fluid flow. Mass wasting is the dominant process active within the Ascension–Monterey and Sur–Partington submarine canyon systems and along the lower slopes. Meanders, slump dams, and constricted channels within the submarine canyons, especially within Monterey Canyon, slow and interrupt down-canyon sediment transport. We have identified for the first time thin sediment flows, rotational slumps, rills, depressions that may be associated with pipes, and other fluid-induced features we call ‘scallops’ off the Ascension slope, and suggest that fluid flow has sculptured the seafloor morphologies here. These unusual seafloor morphologies are similar to morphologies found in terrestrial areas modified by ground-water flow.

  7. Development of Flow Imaging Analysis for Subvisible Particle Characterization in Glatiramer Acetate.

    PubMed

    Levin, Inna; Zigman, Shiri; Komlosh, Arthuer; Kettenring, Juergen

    2015-11-01

    Proteins, peptides, colloids, and polymers present a rapidly growing field of pharmaceutical industry. Bringing these products into market, however, is a huge regulatory challenge, especially because many of these therapeutics are intended for parenteral administration. Physicochemical properties of such products-size, shape, surface potential, and extent of particle-particle interaction-have to be well understood and monitored throughout manufacturing, release, and stability testing. First and foremost, size distribution of subvisible particles (SVP) in these products should be reliably measured. We present development of a flow imaging method to assess SVP in the polypeptide injectable therapeutic product-glatiramer acetate (Copaxone(®) ). Flow imaging comprises optical inspection of a flowing liquid and allows quantitation of particles in the range of 1-500 ?m. The challenges of method development are discussed and the method performance characteristics-accuracy, precision, linearity, and specificity-are demonstrated. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3977-3983, 2015. PMID:26099719

  8. Marine Attitude Survey

    ERIC Educational Resources Information Center

    Hounshell, Paul B.; Hampton, Carolyn

    This 22-item Marine Attitude Survey was developed for use in elementary/middle schools to measure students' attitudes about various aspects of marine science. Students are asked if they agree, are not sure, or disagree with such items as: (1) the seashore is a fun place to visit; (2) if all sharks were killed, the world would be a better place;…

  9. Development of Calculation Model for Metallic Particle Motion Considering Discharge Phenomenon under High Voltage Electric Field in SF6 Gas

    NASA Astrophysics Data System (ADS)

    Rokunohe, Toshiaki; Moriyama, Tomohiro; Yagihashi, Yoshitaka; Koizumi, Makoto; Endo, Fumihiro

    Clarification of metallic particle motion is important to attain high reliability of gas insulated switchgear (GIS). Existing calculation methods have been developed only for AC voltage, and have been not applicable for DC voltage. Because partial discharges at particles in gas gap have a great influence on particle motion under DC voltage and these existing calculation methods have not considered the partial discharges. Partial discharges of particle were investigated in order to adopt them into the calculation model. The calculation model considers the following phenomena: (1) moment of the particle around the center of gravity, (2) electric charge and discharge at both pointed tips of the particle, (3) mirror image of the particle near the wall. The model has been applied to DC electric field conditions, and was able to correctly calculate the crossing motion or firefly phenomenon of the metallic particle.

  10. The empirical and semiempirical methodology in the cosmic ray and solar energetic particle flux model development

    NASA Astrophysics Data System (ADS)

    Nymmik, R. A.

    Due to the complexity of processes, causing the occurrence of cosmic ray and solar energetic particle fluxes in space, the available physical models are hardly capable of giving a complete description of the fluxes and their dynamics. In order to describe the particle fluxes numerically, empirical and semi-empirical models are developed. Empirical models restrict themselves to a quantitative description of the final effect - particle fluxes and their dynamics or variations in the form of simple approximations, represented as tables or figures. When developing semi-empirical models, descriptions of intermediate regularities are used. The set of such intermediate regularities, comprising a logic series leads to the final effect. Such models are capable of describing not only the final effect, but also the intermediate phenomena, refinement of which permit to increase the reliability of the model in general. As an example of an empirical model we can indicate CRÈME-81, where particle flux variations during the solar cycle were described by means of a sinusoidal function. Later, a semi-empirical model was developed at Moscow State University. This model used Wolf numbers as the initial parameter, and accounted for effects, caused by the 22-year dynamics of the large-scale magnetic field. One of the versions of this model was used in CRÈME-96 and adopted as an International Standard (ISO 15390). A similar situation currently exists for SEP particle fluxes. Along with such empirical models as JPL-91 and Xapsos et al. (a number of publications), a semi-empirical model has been developed at MSU. This model has been submitted for discussion as the draft of an international standard. Whilst empirical models describe proton fluxes for some abstract active Sun period and for proton fluxes of certain fixed energies, a semi-empirical model describes particle fluxes for any solar activity level, providing the output data in analytical form and giving the user with additional information in the form of regularities, corresponding to SEP events and fluxes. The report gives a detailed analysis of the available models, and estimates their reliability, basing on comparison of their outputs with actual experimental data.

  11. Use of Anthropogenic Sea Floor Structures by Australian Fur Seals: Potential Positive Ecological Impacts of Marine Industrial Development?

    PubMed Central

    Arnould, John P. Y.; Monk, Jacquomo; Ierodiaconou, Daniel; Hindell, Mark A.; Semmens, Jayson; Hoskins, Andrew J.; Costa, Daniel P.; Abernathy, Kyler; Marshall, Greg J.

    2015-01-01

    Human-induced changes to habitats can have deleterious effects on many species that occupy them. However, some species can adapt and even benefit from such modifications. Artificial reefs have long been used to provide habitat for invertebrate communities and promote local fish populations. With the increasing demand for energy resources within ocean systems, there has been an expansion of infrastructure in near-shore benthic environments which function as de facto artificial reefs. Little is known of their use by marine mammals. In this study, the influence of anthropogenic sea floor structures (pipelines, cable routes, wells and shipwrecks) on the foraging locations of 36 adult female Australian fur seals (Arctocephalus pusillus doriferus) was investigated. For 9 (25%) of the individuals, distance to anthropogenic sea floor structures was the most important factor in determining the location of intensive foraging activity. Whereas the influence of anthropogenic sea floor structures on foraging locations was not related to age and mass, it was positively related to flipper length/standard length (a factor which can affect manoeuvrability). A total of 26 (72%) individuals tracked with GPS were recorded spending time in the vicinity of structures (from <1% to >75% of the foraging trip duration) with pipelines and cable routes being the most frequented. No relationships were found between the amount of time spent frequenting anthropogenic structures and individual characteristics. More than a third (35%) of animals foraging near anthropogenic sea floor structures visited more than one type of structure. These results further highlight potentially beneficial ecological outcomes of marine industrial development. PMID:26132329

  12. Development of Wireless Techniques in Data and Power Transmission - Application for Particle Physics Detectors

    E-print Network

    R. Brenner; S. Ceuterickx; C. Dehos; P. De Lurgio; Z. Djurcic; G. Drake; J. L. Gonzalez Gimenez; L. Gustafsson; D. W. Kim; E. Locci; D. Roehrich; A. Schoening; A. Siligaris; H. K. Soltveit; K. Ullaland; P. Vincent; D. Wiednert; S. Yang

    2015-11-18

    Wireless techniques have developed extremely fast over the last decade and using them for data and power transmission in particle physics detectors is not science- fiction any more. During the last years several research groups have independently thought of making it a reality. Wireless techniques became a mature field for research and new developments might have impact on future particle physics experiments. The Instrumentation Frontier was set up as a part of the SnowMass 2013 Community Summer Study [1] to examine the instrumentation R&D for the particle physics research over the coming decades: {\\guillemotleft} To succeed we need to make technical and scientific innovation a priority in the field {\\guillemotright}. Wireless data transmission was identified as one of the innovations that could revolutionize the transmission of data out of the detector. Power delivery was another challenge mentioned in the same report. We propose a collaboration to identify the specific needs of different projects that might benefit from wireless techniques. The objective is to provide a common platform for research and development in order to optimize effectiveness and cost, with the aim of designing and testing wireless demonstrators for large instrumentation systems.

  13. Experience with offloading in the North Sea: Development of new cost efficient technology for marine storage and production

    SciTech Connect

    Breivik, K.G.

    1995-12-01

    Statoil has 15 years of experience with offshore loading -- or ``off loading`` -- in the North Sea. Initially, this operation was based on a rather complex articulated loading platform (ALP) and a few modified conventional tankers. The technique has developed into today`s simple but efficient submerged turret loading (STL) system and a significant fleet of highly specialized vessels. These include the multipurpose shuttle tanker (MST), the first of which was recently ordered. The efficiency and regularity of off loading operations match that of pipeline transport. Experience gained during 15 years of off loading has yielded a constant series of improvements in operational safety and developments in standardized operating procedures. Statoil ranks today as one of the world`s largest exporters of crude oil, and offshore loading plays a key role in the group`s operations. The recent development of integrated off loading and vessel technologies opens the way to an interesting and promising future for off loading as well as marine storage production.

  14. Development of a nano condensation particle counter battery (nano-CPCb) to infer the composition of freshly formed particles down to 1 nm in the boreal forest

    NASA Astrophysics Data System (ADS)

    Kuang, C.; Kangasluoma, J.; Wimmer, D.; Rissanen, M.; Lehtipalo, K.; Worsnop, D. R.; Wang, J.; Kulmala, M. T.; Petaja, T.

    2013-12-01

    Atmospheric particle nucleation is an important environmental nano-scale process, with field measurements and modeling studies indicating that freshly nucleated particles are a significant source of global cloud condensation nuclei. However, our understanding of atmospheric nucleation and its influence on climate is limited as few ambient measurements have been made of either the nucleation rate or the chemical composition of the freshly formed clusters, both of which are necessary to constrain the nucleation mechanism and to develop a process-level model. In this study, a nano condensation particle counter battery (nano CPCb) was developed, characterized, and then deployed during an intensive field campaign to infer the size-resolved composition of freshly formed particles down to 1 nm. The nano CPCb is composed of four CPCs optimized for the detection of sub 3 nm particles, using diethylene glycol, water, and butanol as the CPC working fluids. The nano CPCb was characterized in the laboratory with mono-disperse challenge aerosols of diverse composition. By sampling electrical mobility-classified particles, the nano CPCb accounts for the strong dependence of CPC detection on particle size and charge below 3 nm. Measured differences between the various CPC responses are then attributed to composition-specific interactions between the sampled particles and the various working fluids of the nano CPCb. Characterization results for the composition dependent responses of the nano CPCb will be presented. After characterization, the nano CPCb was integrated as a detector in a Nano-SMPS system optimized for particle detection down to 1 nm. The combined instrument was deployed during an intensive field campaign in the Spring of 2013 to study atmospheric nucleation and initial growth at a long-term measurement site in the boreal forest in Hyytiälä, Finland. Preliminary measurements of freshly nucleated aerosol size distributions and the size-resolved composition-dependent response of the nano CPCb will be presented.

  15. Developments in Marine Current Turbine Research at the United States Naval Academy (Invited)

    NASA Astrophysics Data System (ADS)

    Flack, K. A.; Luznik, L.

    2013-12-01

    A series of tests have been performed on a 1/25th scale model of a two bladed horizontal axis marine current turbine. The tests were conducted in a large tow tank facility at the United States Naval Academy. The turbine model has a 0.8 m diameter (D) rotor with a NACA 63-618 cross section, which is Reynolds number independent with respect to the lift coefficient in the operating range of Rec ? 4 x 105. Baseline test were conducted to obtain torque, thrust and rotational speed at a range of tip speed ratios (TSR) from 5 < TSR < 11. The power and thrust coefficients for the model turbine match expected results from blade-element-momentum theory. The lift and drag curves for the numerical model were obtained by testing a 2D NACA 63-618 airfoil in a wind tunnel. Additional tests were performed at two rotor depths (1.3D and 2.25D) in the presence of intermediate and deep water waves. The average values for power and thrust coefficient are weakly dependent on turbine depth. The waves yield a small increase in turbine performance which can be explained by Stokes drift velocity. Phase averaged results indicate that the oscillatory wave velocity results in significant variations in measured turbine torque and rotational speed as a function of wave phase. The turbine rotation speed, power, and thrust reach a maximum with the passing of the wave crest and a minimum with the passing of the wave trough. The torque appears dependent on vertical velocity, which lags the horizontal velocity by 90° of wave phase. Variations of the performance parameters are of the same order of magnitude as the average value, especially when the turbine is near the mean free surface and in the presence of high energy waves. These results demonstrate the impact of surface gravity waves on power production and structural loading. Future tests will focus on measuring and modeling the wake of the turbine for unsteady flow conditions. Model Turbine Power Coefficient vs, Tip Speed Ratio

  16. Marine and Maritime Sector Skills Shortages in the South West of England: Developing Regional Training Provision

    ERIC Educational Resources Information Center

    Beer, Julian; Meethan, Kevin

    2007-01-01

    Clustering theory assumes that companies gravitate towards each other on the basis of locally and regionally specific resources and supply chain characteristics, which lead in turn to innovation and high-value economic development. In line with such thinking, UK government policy has devolved certain functions to regional development agencies such…

  17. Exploring Larval Development and Applications in Marine Fish Aquaculture Using Pink Snapper Embryos

    ERIC Educational Resources Information Center

    Tamaru, Clyde; Haverkort-Yeh, Roxanne D.; Gorospe, Kelvin D.; Rivera, Malia Ana J.

    2014-01-01

    This biology investigation on "Pristipomoides filamentosus" larval development, survival, and aquaculture research was developed with three educational objectives: to provide high school students with (1) a scientific background on the biology and science of fisheries as well as overfishing, its consequences, and possible mitigations;…

  18. Anticoagulant effect of marine algae.

    PubMed

    Kim, Se-Kwon; Wijesekara, Isuru

    2011-01-01

    Recently, a great deal of interest has been developed in the nutraceutical and pharmaceutical industries to isolate natural anticoagulant compounds from marine resources. Among marine resources, marine algae are valuable sources of novel bioactive compounds with anticoagulant effect. Phlorotannins and sulfated polysaccharides such as fucoidans in brown algae, carrageenans in red algae, and ulvans in green algae have been recognized as potential anticoagulant agents. Therefore, marine algae-derived phlorotannins and SPs have great potential for developing as anticoagulant drugs in nutraceutical and pharmaceutical areas. This chapter focuses on the potential anticoagulant agents in marine algae and presents an overview of their anticoagulant effect. PMID:22054951

  19. Integrating Conservation and Development at the National Marine Park of Alonissos, Northern Sporades, Greece: Perception and Practice

    NASA Astrophysics Data System (ADS)

    Oikonomou, Zoi-Sylvia; Dikou, Angela

    2008-11-01

    Available information on the socioeconomic implications of marine protected areas (MPAs) for the socioculturally diverse Mediterranean region is scant. The National Marine Park of Alonissos, Northern Sporades (NMPANS), Greece was established in 1992 as a foundation for the conservation of the endangered Mediterranean monk seal Monachus monachus. The evolution of the degree of acceptance of and satisfaction from the NMPANS by involved stakeholder groups (fishermen, tourism operators, hoteliers and owners of rooms to let, governmental bodies, nongovernmental bodies, students, domestic and foreign tourists) were investigated 13 years after its establishment using written questionnaires delivered during personal interviews. The initial positive attitude of local professionals for the NMPANS has eroded due to the unsatisfactory fulfillment of expectations for socioeconomic development. Fishermen expressed dissatisfaction with, mistrust toward, and a reluctancy to communicate with the NMPANS’s management body. They believe that the fishery areas have decreased in actual geographic area because of the prohibitive measures; fish stocks are declining; compensation for damage to fishery equipment by the Mediterranean monk seal and for the prohibitive measures should be provided; and stricter enforcement of regulations should take place. On the other hand, tourism operators, who organize trips for tourists to the NMPANS, unanimously reported direct economic benefits. Furthermore, there was a disparity in the perception of socioeconomic benefits derived from the NMPANS between governmental bodies and local stakeholders. The governmental bodies and the nongovernmental organization MOm-Hellenic Society for the Study and Protection of the Monk Seal postulated that there had been considerable socioeconomic benefits for the local community of Alonissos due to the establishment of the NMPANS, whereas the local nongovernmental organization Ecological and Cultural Movement of Alonissos claimed benefits were scant. Tourists (domestic and foreign) believe that the NMPANS is not the main attraction to Alonissos Island but is part of a composite, including serenity, aesthetic beauty, and small-scale tourism development, which can turn Alonissos Island into an ideal eco-tourism destination; a common aspiration for both the tourists and the local community by general consensus. The aim of the NMPANS to integrate conservation and development lies in (1) the effectiveness of the NMPANS management body in formulating a strategic management plan that would accommodate stakeholders’ interests and aspirations and (2) a national policy of conservation and enhancement of natural resources with consistency and continuity. Quantitative assessment of the socioeconomic effectiveness of the Mediterranean MPAs using a common methodology would facilitate the identification of intraregional variation and better planning for the network of MPAs in the Mediterranean.

  20. Integrating conservation and development at the National Marine Park of Alonissos, Northern Sporades, Greece: perception and practice.

    PubMed

    Oikonomou, Zoi-Sylvia; Dikou, Angela

    2008-11-01

    Available information on the socioeconomic implications of marine protected areas (MPAs) for the socioculturally diverse Mediterranean region is scant. The National Marine Park of Alonissos, Northern Sporades (NMPANS), Greece was established in 1992 as a foundation for the conservation of the endangered Mediterranean monk seal Monachus monachus. The evolution of the degree of acceptance of and satisfaction from the NMPANS by involved stakeholder groups (fishermen, tourism operators, hoteliers and owners of rooms to let, governmental bodies, nongovernmental bodies, students, domestic and foreign tourists) were investigated 13 years after its establishment using written questionnaires delivered during personal interviews. The initial positive attitude of local professionals for the NMPANS has eroded due to the unsatisfactory fulfillment of expectations for socioeconomic development. Fishermen expressed dissatisfaction with, mistrust toward, and a reluctancy to communicate with the NMPANS's management body. They believe that the fishery areas have decreased in actual geographic area because of the prohibitive measures; fish stocks are declining; compensation for damage to fishery equipment by the Mediterranean monk seal and for the prohibitive measures should be provided; and stricter enforcement of regulations should take place. On the other hand, tourism operators, who organize trips for tourists to the NMPANS, unanimously reported direct economic benefits. Furthermore, there was a disparity in the perception of socioeconomic benefits derived from the NMPANS between governmental bodies and local stakeholders. The governmental bodies and the nongovernmental organization MOm-Hellenic Society for the Study and Protection of the Monk Seal postulated that there had been considerable socioeconomic benefits for the local community of Alonissos due to the establishment of the NMPANS, whereas the local nongovernmental organization Ecological and Cultural Movement of Alonissos claimed benefits were scant. Tourists (domestic and foreign) believe that the NMPANS is not the main attraction to Alonissos Island but is part of a composite, including serenity, aesthetic beauty, and small-scale tourism development, which can turn Alonissos Island into an ideal eco-tourism destination; a common aspiration for both the tourists and the local community by general consensus. The aim of the NMPANS to integrate conservation and development lies in (1) the effectiveness of the NMPANS management body in formulating a strategic management plan that would accommodate stakeholders' interests and aspirations and (2) a national policy of conservation and enhancement of natural resources with consistency and continuity. Quantitative assessment of the socioeconomic effectiveness of the Mediterranean MPAs using a common methodology would facilitate the identification of intraregional variation and better planning for the network of MPAs in the Mediterranean. PMID:18626688

  1. Development of Modeling and Simulation for Magnetic Particle Inspection Using Finite Elements

    SciTech Connect

    Jun-Youl Lee

    2003-05-31

    Magnetic particle inspection (MPI) is a widely used nondestructive inspection method for aerospace applications essentially limited to experiment-based approaches. The analysis of MPI characteristics that affect sensitivity and reliability contributes not only reductions in inspection design cost and time but also improvement of analysis of experimental data. Magnetic particles are easily attracted toward a high magnetic field gradient. Selection of a magnetic field source, which produces a magnetic field gradient large enough to detect a defect in a test sample or component, is an important factor in magnetic particle inspection. In this work a finite element method (FEM) has been employed for numerical calculation of the MPI simulation technique. The FEM method is known to be suitable for complicated geometries such as defects in samples. This thesis describes the research that is aimed at providing a quantitative scientific basis for magnetic particle inspection. A new FEM solver for MPI simulation has been developed in this research for not only nonlinear reversible permeability materials but also irreversible hysteresis materials that are described by the Jiles-Atherton model. The material is assumed to have isotropic ferromagnetic properties in this research (i.e., the magnetic properties of the material are identical in all directions in a single crystal). In the research, with a direct current field mode, an MPI situation has been simulated to measure the estimated volume of magnetic particles around defect sites before and after removing any external current fields. Currently, this new MPI simulation package is limited to solving problems with the single current source from either a solenoid or an axial directional current rod.

  2. Development and use of radiation detection technology for buried seabed particles.

    PubMed

    Cassidy, Jim; Toole, Joe

    2007-09-01

    From the initial 1997 diver-based gamma survey of the seabed sediments offshore of Dounreay, there has been continuous development of instrumentation and techniques. The initial contract surveyed randomly chosen areas, to ascertain if any particles were indeed present, since they had been found on the Dounreay foreshore in previous years. In total 34 particles were located and recovered. The period 1998-2002 saw further diver-based surveys using more sensitive and better designed detection systems. A towed system incorporating the same detectors was also deployed, covering extensive areas of the seabed. Throughout this period a more detailed understanding of particle dispersion emerged. The primary source of particles was identified as the old diffuser, with evidence for a dispersion plume heading north-east. In late 2002, Fathoms selected a gamma spectrometry system for trial and evaluation for possible future subsea deployment. The positive results led to a field trial being awarded by UKAEA for deployment of a stationary platform with a 7.8 cm x 7.8 cm NaI detector on the seabed at various offshore locations. This trial identified particles by their 137Cs photopeak and delivered the explanation for the gamma activity banding in the 'anomalous' zone. This successful trial led in 2004 to a joint Fathoms/UKAEA lab trial of the SAM-935 system of the larger 10 cm x 10 cm x 40 cm NaI crystal, inside a marinising unit. These proved to be fit for purpose and UKAEA tasked Fathoms to deliver in 2004 a tracked remotely operated vehicle (ROV) capable of deploying the larger detectors to allow gamma mapping of seabed sediments, up to a maximum depth of 100 m. Preliminary results of the 2005 ROV work are presented. PMID:17768315

  3. Development and Demonstration of a Computational Tool for the Analysis of Particle Vitiation Effects in Hypersonic Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Perkins, Hugh Douglas

    2010-01-01

    In order to improve the understanding of particle vitiation effects in hypersonic propulsion test facilities, a quasi-one dimensional numerical tool was developed to efficiently model reacting particle-gas flows over a wide range of conditions. Features of this code include gas-phase finite-rate kinetics, a global porous-particle combustion model, mass, momentum and energy interactions between phases, and subsonic and supersonic particle drag and heat transfer models. The basic capabilities of this tool were validated against available data or other validated codes. To demonstrate the capabilities of the code a series of computations were performed for a model hypersonic propulsion test facility and scramjet. Parameters studied were simulated flight Mach number, particle size, particle mass fraction and particle material.

  4. Development of scintillator plates with high energy resolution for alpha particles made of GPS scintillator grains

    NASA Astrophysics Data System (ADS)

    Shimaoka, Takehiro; Kaneko, Junichi H.; Izaki, Kenji; Tsubota, Youichi; Higuchi, Mikio; Nishiyama, Shusuke

    2014-01-01

    A scintillator plate with high energy resolution was developed to produce an alpha particle monitor used in nuclear fuel reprocessing plants and mixed plutonium-uranium oxide (MOX) fuel plants. Grains of a Gd2Si2O7 (GPS) scintillator of several 10 to 550 ?m were fixed on a glass substrate and were then mechanically polished. By increasing the size of scintillator grains and removing fine powders, the collected light yield and energy resolution for alpha particles were drastically improved. Energy resolution of 9.3% was achieved using average grain size of 91 ?m. Furthermore, the ratios between counts in a peak and total counts were improved by more than 60% by the further increase of grain size and adoption of mechanically polished surfaces on both sides. Beta and gamma ray influences were suppressed sufficiently by the thin 100 ?m scintillator plates.

  5. Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments

    NASA Astrophysics Data System (ADS)

    Gonoskov, A.; Bastrakov, S.; Efimenko, E.; Ilderton, A.; Marklund, M.; Meyerov, I.; Muraviev, A.; Sergeev, A.; Surmin, I.; Wallin, E.

    2015-08-01

    We review common extensions of particle-in-cell (PIC) schemes which account for strong field phenomena in laser-plasma interactions. After describing the physical processes of interest and their numerical implementation, we provide solutions for several associated methodological and algorithmic problems. We propose a modified event generator that precisely models the entire spectrum of incoherent particle emission without any low-energy cutoff, and which imposes close to the weakest possible demands on the numerical time step. Based on this, we also develop an adaptive event generator that subdivides the time step for locally resolving QED events, allowing for efficient simulation of cascades. Further, we present a unified technical interface for including the processes of interest in different PIC implementations. Two PIC codes which support this interface, picador and elmis, are also briefly reviewed.

  6. A sol-particle immunoassay for determination of anti-rubella antibodies; development and clinical validation.

    PubMed

    Wielaard, F; Denissen, A; van der Veen, L; Rutjes, I

    1987-08-01

    A sol-particle immunoassay (SPIA) was developed for determination of anti-rubella antibodies. The test is based on antibody-coated gold sol particles, which may agglutinate in the presence of rubella haemagglutinin antigen. The agglutination which gives a decrease in optical density can be inhibited by specific antibodies present in sera incubated with the immunochemical reagents. The test is performed in microtitration plates and results can be read in a plate-reader. Clinical validation studies were performed comparing the anti-rubella SPIA with the haemagglutination inhibition test and with the latex agglutination test. The sensitivity of the SPIA was calculated to be 99%; the specificity of the test was at least 99.5%. The anti-rubella SPIA is highly suitable for large-scale screening to determine the rubella immune-status. PMID:3667854

  7. Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments.

    PubMed

    Gonoskov, A; Bastrakov, S; Efimenko, E; Ilderton, A; Marklund, M; Meyerov, I; Muraviev, A; Sergeev, A; Surmin, I; Wallin, E

    2015-08-01

    We review common extensions of particle-in-cell (PIC) schemes which account for strong field phenomena in laser-plasma interactions. After describing the physical processes of interest and their numerical implementation, we provide solutions for several associated methodological and algorithmic problems. We propose a modified event generator that precisely models the entire spectrum of incoherent particle emission without any low-energy cutoff, and which imposes close to the weakest possible demands on the numerical time step. Based on this, we also develop an adaptive event generator that subdivides the time step for locally resolving QED events, allowing for efficient simulation of cascades. Further, we present a unified technical interface for including the processes of interest in different PIC implementations. Two PIC codes which support this interface, PICADOR and ELMIS, are also briefly reviewed. PMID:26382544

  8. Method development and validation for measuring the particle size distribution of pentaerythritol tetranitrate (PETN) powders.

    SciTech Connect

    Young, Sharissa Gay

    2005-09-01

    Currently, the critical particle properties of pentaerythritol tetranitrate (PETN) that influence deflagration-to-detonation time in exploding bridge wire detonators (EBW) are not known in sufficient detail to allow development of a predictive failure model. The specific surface area (SSA) of many PETN powders has been measured using both permeametry and gas absorption methods and has been found to have a critical effect on EBW detonator performance. The permeametry measure of SSA is a function of particle shape, packed bed pore geometry, and particle size distribution (PSD). Yet there is a general lack of agreement in PSD measurements between laboratories, raising concerns regarding collaboration and complicating efforts to understand changes in EBW performance related to powder properties. Benchmarking of data between laboratories that routinely perform detailed PSD characterization of powder samples and the determination of the most appropriate method to measure each PETN powder are necessary to discern correlations between performance and powder properties and to collaborate with partnering laboratories. To this end, a comparison was made of the PSD measured by three laboratories using their own standard procedures for light scattering instruments. Three PETN powder samples with different surface areas and particle morphologies were characterized. Differences in bulk PSD data generated by each laboratory were found to result from variations in sonication of the samples during preparation. The effect of this sonication was found to depend on particle morphology of the PETN samples, being deleterious to some PETN samples and advantageous for others in moderation. Discrepancies in the submicron-sized particle characterization data were related to an instrument-specific artifact particular to one laboratory. The type of carrier fluid used by each laboratory to suspend the PETN particles for the light scattering measurement had no consistent effect on the resulting PSD data. Finally, the SSA of the three powders was measured using both permeametry and gas absorption methods, enabling the PSD to be linked to the SSA for these PETN powders. Consistent characterization of other PETN powders can be performed using the appropriate sample-specific preparation method, so that future studies can accurately identify the effect of changes in the PSD on the SSA and ultimately model EBW performance.

  9. High throughput screening of particle conditioning operations: I. System design and method development.

    PubMed

    Noyes, Aaron; Huffman, Ben; Godavarti, Ranga; Titchener-Hooker, Nigel; Coffman, Jonathan; Sunasara, Khurram; Mukhopadhyay, Tarit

    2015-08-01

    The biotech industry is under increasing pressure to decrease both time to market and development costs. Simultaneously, regulators are expecting increased process understanding. High throughput process development (HTPD) employs small volumes, parallel processing, and high throughput analytics to reduce development costs and speed the development of novel therapeutics. As such, HTPD is increasingly viewed as integral to improving developmental productivity and deepening process understanding. Particle conditioning steps such as precipitation and flocculation may be used to aid the recovery and purification of biological products. In this first part of two articles, we describe an ultra scale-down system (USD) for high throughput particle conditioning (HTPC) composed of off-the-shelf components. The apparatus is comprised of a temperature-controlled microplate with magnetically driven stirrers and integrated with a Tecan liquid handling robot. With this system, 96 individual reaction conditions can be evaluated in parallel, including downstream centrifugal clarification. A comprehensive suite of high throughput analytics enables measurement of product titer, product quality, impurity clearance, clarification efficiency, and particle characterization. HTPC at the 1?mL scale was evaluated with fermentation broth containing a vaccine polysaccharide. The response profile was compared with the Pilot-scale performance of a non-geometrically similar, 3?L reactor. An engineering characterization of the reactors and scale-up context examines theoretical considerations for comparing this USD system with larger scale stirred reactors. In the second paper, we will explore application of this system to industrially relevant vaccines and test different scale-up heuristics. PMID:25728932

  10. Developing an Instrumentation Package for in-Water Testing of Marine Hydrokinetic Energy Devices: Preprint

    SciTech Connect

    Nelson, E.

    2010-08-01

    The ocean-energy industry is still in its infancy and device developers have provided their own equipment and procedures for testing. Currently, no testing standards exist for ocean energy devices in the United States. Furthermore, as prototype devices move from the test tank to in-water testing, the logistical challenges and costs grow exponentially. Development of a common instrumentation package that can be moved from device to device is one means of reducing testing costs and providing normalized data to the industry as a whole. As a first step, the U.S. National Renewable Energy Laboratory (NREL) has initiated an effort to develop an instrumentation package to provide a tool to allow common measurements across various ocean energy devices. The effort is summarized in this paper. First, we present the current status of ocean energy devices. We then review the experiences of the wind industry in its development of the instrumentation package and discuss how they can be applied in the ocean environment. Next, the challenges that will be addressed in the development of the ocean instrumentation package are discussed. For example, the instrument package must be highly adaptable to fit a large array of devices but still conduct common measurements. Finally, some possible system configurations are outlined followed by input from the industry regarding its measurement needs, lessons learned from prior testing, and other ideas.

  11. Marine Recon 

    E-print Network

    Unknown

    2011-08-17

    Contamination of seafood by marine toxins has been a consistent public health problem. Gymnodimine (GYM) is a member of a family of spirocyclic imine containing marine natural products which was shown to be highly toxic ...

  12. Development of protocols for chronic toxicity testing of Pacific marine species

    SciTech Connect

    Langdon, C.J.; Seim, W.K.; Hoffman, R.L.; Weber, L.

    1990-03-01

    The development of a year-round capability for conducting short-term toxicity tests for estimating chronic-effect levels of toxic materials with a native Pacific coast fish and a native Pacific coast mysid shrimp was the goal of the project. In order to achieve acceptable sensitivity as a surrogate for chronic toxicity tests, targeting the reproductive portion of the mysid life cycle and all or part of the embryonic, larval, or early post-larval portion of the fish life cycle was deemed necessary. This targeting is consistent with conclusions based upon earlier work in developing similar tests with Atlantic coast, Gulf coast, and freshwater fish and invertebrates.

  13. 76 FR 25362 - Cooperative Research and Development Agreement: Butanol Fuel Blend Usage With Marine Outboard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... regarding our public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316... Chelsea Street, New London, CT 06320 (e-mail: James.W.Gynther@uscg.mil ). FOR FURTHER INFORMATION CONTACT... Development Center, 1 Chelsea Street, New London, CT 06320, telephone 860-271-2858, e-mail:...

  14. Environmental epigenetics: A promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates

    E-print Network

    Eirin Lopez, Jose Maria

    Review Environmental epigenetics: A promising venue for developing next-generation pollution Available online 16 June 2015 Keywords: Epigenetics Biomarkers Ecotoxicology Integrative methods High-throughput data Omics a b s t r a c t Environmental epigenetics investigates the cause-effect relationships

  15. Environmental epigenetics: A promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates

    E-print Network

    Eirin Lopez, Jose Maria

    Review Environmental epigenetics: A promising venue for developing next-generation pollution Available online xxxx Keywords: Epigenetics Biomarkers Ecotoxicology Integrative methods High-throughput data Omics a b s t r a c t Environmental epigenetics investigates the cause-effect relationships

  16. Marine pollution

    SciTech Connect

    Albaiges, J. )

    1989-01-01

    This book covers the following topics: Transport of marine pollutants; Transformation of pollutants in the marine environment; Biological effects of marine pollutants; Sources and transport of oil pollutants in the Persian Gulf; Trace metals and hydrocarbons in Syrian coastal waters; and Techniques for analysis of trace pollutants.

  17. Design and development of the associated-particle three-dimensional imaging technique

    SciTech Connect

    Ussery, L.E.; Hollas, C.L.

    1994-10-01

    The authors describe the development of the ``associated-particle`` imaging technique for producing low-resolution three-dimensional images of objects. Based on the t(d,n){sup 4}He reaction, the method requires access to only one side of the object being imaged and allows for the imaging of individual chemical elements in the material under observation. Studies were performed to (1) select the appropriate components of the system, including detectors, data-acquisition electronics, and neutron source, and (2) optimize experimental methods for collection and presentation of data. This report describes some of the development steps involved and provides a description of the complete final system that was developed.

  18. Development of a compact x-ray particle image velocimetry for measuring opaque flows

    SciTech Connect

    Lee, Sang Joon; Kim, Guk Bae; Yim, Dae Hyun; Jung, Sung Yong

    2009-03-15

    A compact x-ray particle image velocimetry (PIV) system employing a medical x-ray tube as a light source was developed to measure quantitative velocity field information of opaque flows. The x-ray PIV system consists of a medical x-ray tube, an x-ray charge coupled device camera, a programmable shutter for a pulse-type x ray, and a synchronization device. Through performance tests, the feasibility of the developed x-ray PIV system as a flow measuring device was verified. To check the feasibility of the developed system, we tested a tube flow at two different mean velocities of 1 and 2 mm/s. The x-ray absorption of tracer particles must be quite different from that of working fluid to have a good contrast in x-ray images. All experiments were performed under atmospheric pressure condition. This system is unique and useful for investigating various opaque flows or flows inside opaque conduits.

  19. Investigation using data from ERTS to develop and implement utilization of living marine resources

    NASA Technical Reports Server (NTRS)

    Stevenson, W. H. (principal investigator); Pastula, E. J., Jr.

    1973-01-01

    The author has identified the following significant results. The feasibility of utilizing ERTS-1 data in conjunction with aerial remote sensing and sea truth information to predict the distribution of menhaden in the Mississippi Sound during a specific time frame has been demonstrated by employing a number of uniquely designed empirical regression models. The construction of these models was made possible through innovative statistical routines specifically developed to meet the stated objectives.

  20. Development of large-area quadrant silicon detector for charged particles

    E-print Network

    Pengfei Bao; Chengjian Lin; Feng Yang; Zhaoqiao Guo; Tianshu Guo; Lei Yang; Lijie Sun; Huiming Jia; Xinxing Xu; Nanru Ma; Huanqiao Zhang; Zuhua Liu

    2014-01-28

    The quadrant silicon detector, a kind of passivated implanted planar silicon detector with quadrant structure on the junction side, gained its wide application in charged particle detection. In this paper, the manufacturing procedure, performance test and results of the quadrant silicon detector developed recently at the China Institute of Atomic Energy are presented. The detector is about 300 $\\mu$m thick with a 48$\\times$48 mm$^{2}$ active area. The leakage current under full depletion bias voltage of -16 V is about 2.5 nA, and the raising time is better than 160 ns. The energy resolution for 5.157 MeV $\\alpha$-particle is around the level of $1\\%$. Charge sharing effects between the neighboring quads, leading to complicated correlations between two quads, were observed when $\\alpha$ particles illuminated on the junction side. It is explained as a result of distortion of electric field of inter-quad region. Such events is only about $0.6\\%$ of all events and can be neglected in an actual application.

  1. Development of Thermal Spraying and Coating Techniques by Using Thixotropic Slurries Including Metals and Ceramics Particles

    NASA Astrophysics Data System (ADS)

    Kirihara, S.; Itakura, Y.; Tasaki, S.

    2013-03-01

    Thermal nanoparticles coating and microlines patterning were newly developed as novel technologies to fabricate fine ceramics layers and geometrical intermetallics patterns for mechanical properties modulations of practical alloys substrates. Nanometer sized alumina particles were dispersed into acrylic liquid resins, and the obtained slurries were sputtered by using compressed air jet. The slurry mists could blow into the arc plasma with argon gas spraying. On stainless steels substrates, the fine surface layers with high wear resistance were formed. In cross sectional microstructures of the coated layers, micromater sized cracks or pores were not observed. Subsequently, pure aluminum particles were dispersed into photo solidified acrylic resins, and the slurry was spread on the stainless steel substrates by using a mechanical knife blade. On the substrates, microline patterns with self similar fractal structures were drawn and fixed by using scanning of an ultra violet laser beam. The patterned pure metal particles were heated by the argon arc plasma spray assisting, and the intermetallics or alloys phases with high hardness were created through reaction diffusions. Microstructures in the coated layers and the patterned lines were observed by using a scanning electron microscopy.

  2. Development of new polysilsesquioxane spherical particles as stabilized active ingredients for sunscreens

    NASA Astrophysics Data System (ADS)

    Tolbert, Stephanie Helene

    Healthy skin is a sign of positive self-worth, attractiveness and vitality. Compromises to this are frequently caused by extended periods of recreation in the sun and in turn exposure to the harmful effects of UV radiation. To maintain strength and integrity, protection of the skin is paramount. This can be achieved by implementing skin-care products which contain sunscreen active ingredients that provide UV protection. Unfortunately, photo-degradation, toxicity, and photo-allergies limit the effectiveness of present day sunscreen ingredients. Currently, this is moderated by physically embedding within inert silica particles, but leaching of the active ingredient can occur, thereby negating protective efforts. Alternatively, this research details the preparation and investigation of bridged silsesquioxane analogues of commercial ingredients which can be chemically grafted to the silica matrix. Studies with bridged salicylate particles detail facile preparation, minimized leaching, and enhanced UV stability over physically encapsulated and pendant salicylate counterparts. In terms of UVB protective ability, the highest maintenance of sun protection factor (SPF) after extended UV exposure was achieved with bridged incorporation, and has been attributed to corollary UV stability. Additionally, bridged salicylate particles can be classified as broad-spectrum, and rate from moderate to good in terms of UVA protective ability. Particles incorporated with a bridged curcuminoid silsesquioxane were also prepared and displayed comparable results. As such, an attractive method for sunscreen isolation and stabilization has been developed to eliminate the problems associated with current sunscreens, all while maintaining the established UV absorbance profiles of the parent compound. To appreciate the technology utilized in this research, a thorough understanding of sol-gel science as it pertains to hybrid organic/silica particles, including methods of organic fragment incorporation and insight on the effect of incorporation method on ingredient leaching and UV stability, is vital. This was afforded by analysis of hybrid fluorescent dansyl particles, prepared by both O/W microemulsion polymerization and a modified Stober process, which detailed that covalent entrapment of bridged dansyl silsesquioxane is the incorporation method of choice to ensure minimized leaching and enhanced UV stability. As such, use of this method can provide exciting applications in fields where stability and retainment of the embedded ingredient is paramount for efficacy.

  3. Development of a Thermal Conductivity Measurement System Using the 3 ? Method and Application to Thermoelectric Particles

    NASA Astrophysics Data System (ADS)

    Nishino, Shunsuke; Koyano, Mikio; Suekuni, Koichiro; Ohdaira, Keisuke

    2014-06-01

    For this study, we developed a thermal conductivity, ?, measurement system using 3 ? method. We checked the system accuracy by measuring ? for a glass substrate (1737; Corning). Conventional evaporated aluminum wire and ink-jet printed silver wire were used as sensor wires. The system realized a ? measurement of glass within 10 % error. We estimated ? of aggregated p-type (Bi1- x Sb x )2Te3 particles using a two heat flow model. The estimated thermal conductivity of the sample ? sample are 0.06-0.27 WK-1 m-1, which is smaller than the bulk value.

  4. Development of porosity in an oxide dispersion strengthened ferritic alloy containing nanoscale oxide particles

    SciTech Connect

    Schneibel, Joachim H; Liu, Chain T; Hoelzer, David T; Mills, Michael J.; Sarosi, P. M.; Hayashi, Taisuke; Wendt, Ullrich; Heyse, Hartmut

    2007-01-01

    The development of porosity at 1000 C in an oxide dispersion strengthened ferritic alloy containing ultra-fine oxide particles with diameters on the order of a few nm is investigated. A comparison with an alloy fabricated by internal oxidation demonstrates that the porosity formation is associated with mechanical alloying with Y2O3 in argon. The pores grow in spite of a sub-micron grain size suggesting that the grain boundaries are not effective paths for removing entrapped gas from the pores.

  5. Testing the junk-food hypothesis on marine birds: Effects of prey type on growth and development

    USGS Publications Warehouse

    Romano, Marc D.; Piatt, J.F.; Roby, D.D.

    2006-01-01

    The junk-food hypothesis attributes declines in productivity of marine birds and mammals to changes in the species of prey they consume and corresponding differences in nutritional quality of those prey. To test this hypothesis nestling Black-legged Kittiwakes (Rissa tridactyla) and Tufted Puffins (Fratercula cirrhata) were raised in captivity under controlled conditions to determine whether the type and quality of fish consumed by young seabirds constrains their growth and development. Some nestlings were fed rations of Capelin (Mallotus villosus), Herring (Clupea pallasi) or Sand Lance (Ammodytes hexapterus) and their growth was compared with nestlings raised on equal biomass rations of Walleye Pollock (Theragra chalcograma). Nestlings fed rations of herring, sand lance, or capelin experienced higher growth increments than nestlings fed pollock. The energy density of forage fish fed to nestlings had a marked effect on growth increments and could be expected to have an effect on pre- and post-fledging survival of nestlings in the wild. These results provide empirical support for the junk-food hypothesis.

  6. Straw particle size in calf starters: Effects on digestive system development and rumen fermentation.

    PubMed

    Suarez-Mena, F X; Heinrichs, A J; Jones, C M; Hill, T M; Quigley, J D

    2016-01-01

    Two trials were conducted to determine effects of straw particle size in calf starter on rumen fermentation and development in calves. Holstein calves (n=17 in trial 1; n=25 in trial 2) were housed in individual pens; bedding (wood shavings) was covered with landscape fabric to completely avoid consumption of bedding. Milk replacer was fed at 12% of birth body weight per day and water offered free choice. Calves were randomly assigned to 4 treatments differing in geometric mean particle length (Xgm) of straw comprising 5% of starter dry matter. Straw was provided within the pellet at manufacture (PS; 0.82mm Xgm) or mixed with the pellet at time of feeding at Xgm of 3.04 (SS), 7.10 (MS), or 12.7 (LS) mm. Calves (n=12; 3/treatment) in trial 1 were fitted with a rumen cannula by wk 2 of age. A fixed amount of starter that was adjusted with age and orts were fed through the cannula in cannulated calves. Calves were euthanized 6 wk after starter was offered (9 and 7 wk of age for trials 1 and 2, respectively). Rumen digesta pH linearly decreased with age, whereas volatile fatty acid concentration increased with age. Overall pH had a cubic trend with SS lower than that of PS and MS. Molar proportion of acetate decreased with age whereas propionate proportion increased. Overall molar proportions of volatile fatty acids were not affected by diet. Fecal Xgm was not different in spite of changes in diet particle size and rumen digesta of PS being greater than SS, MS, and LS at slaughter. Fecal pH and starch concentration were not affected by diet; however, pH decreased whereas starch content increased with age. Weight of stomach compartments, rumen papillae length and width, and rumen wall thickness did not differ between diets. Omasum weight as a percentage of body weight at harvest linearly decreased as straw particle size increased. Under the conditions of this study, modifying straw particle length in starter grain resulted in minimal rumen fermentation parameter changes and no changes in rumen development. Rumen pH and fermentation changes with age were likely effects of increasing starter intake. PMID:26601592

  7. Development of a Promising Fish Model (Oryzias melastigma) for Assessing Multiple Responses to Stresses in the Marine Environment

    PubMed Central

    Dong, Sijun; Kang, Mei; Wu, Xinlong; Ye, Ting

    2014-01-01

    With the increasing number of contaminants in the marine environment, various experimental organisms have been “taken into labs” by investigators to find the most suitable environmentally relevant models for toxicity testing. The marine medaka, Oryzias melastigma, has a number of advantages that make it a prime candidate for these tests. Recently, many studies have been conducted on marine medaka, especially in terms of their physiological, biochemical, and molecular responses after exposure to contaminants and other environmental stressors. This review provides a literature survey highlighting the steady increase of ecotoxicological research on marine medaka, summarizes the advantages of using O. melastigma as a tool for toxicological research, and promotes the utilization of this organism in future studies. PMID:24724087

  8. 'Hot particles' in the cold light of day: principles for a stakeholder and public engagement architecture relating to historic liabilities in the marine environment.

    PubMed

    Wylie, Rick

    2007-09-01

    This paper discusses issues in stakeholder relations, focusing on the challenges of liabilities management associated with small fragments of irradiated nuclear fuel hereafter termed particles (and sometimes termed 'hot particles' in the public domain, from which this paper gets its title), produced over a number of decades from now ceased operations at Dounreay. It describes key problems confronting the nuclear industry in developing a stakeholder-relations strategy. Drawing upon examples of the stakeholder activity at Dounreay, and using an ecological metaphor, an innovative architecture for stakeholder engagement relating to nuclear issues is outlined. This is based upon the view that the solution of the stakeholder issue must reflect the complexity and connectivity of influences and interests within the stakeholder environment. It is argued that the lay public should be visualised as the stakeholder if an effective stakeholder-relations strategy is to be achieved. The importance of creating trust in a context of scientific uncertainty is highlighted. This will, it is argued, become an increasingly salient issue in the thrust for openness and transparency, two key drivers of nuclear industry public and stakeholder relations, which could make the limits of scientific knowledge and control more widely appreciated, and bring to the fore the role of lay conceptions of perceived risk. PMID:17768312

  9. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    SciTech Connect

    Keene, William C.; Long, Michael S.

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistryâ??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earthâ??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

  10. Development of ITSASGIS-5D: seeking interoperability between Marine GIS layers and scientific multidimensional data using open source tools and OGC services for multidisciplinary research.

    NASA Astrophysics Data System (ADS)

    Sagarminaga, Y.; Galparsoro, I.; Reig, R.; Sánchez, J. A.

    2012-04-01

    Since 2000, an intense effort was conducted in AZTI's Marine Research Division to set up a data management system which could gather all the marine datasets that were being produced by different in-house research projects. For that, a corporative GIS was designed that included a data and metadata repository, a database, a layer catalog & search application and an internet map viewer. Several layers, mostly dealing with physical, chemical and biological in-situ sampling, and basic and thematic cartography including bathymetry, geomorphology, different species habitat maps, and human pressure and activities maps, were successfully gathered in this system. Very soon, it was realised that new marine technologies yielding continuous multidimensional data, sometimes called FES (Fluid Earth System) data, were difficult to handle in this structure. The data affected, mainly included numerical oceanographic and meteorological models, remote sensing data, coastal RADAR data, and some in-situ observational systems such as CTD's casts, moored or lagrangian buoys, etc. A management system for gridded multidimensional data was developed using standardized formats (netcdf using CF conventions) and tools such as THREDDS catalog (UNIDATA/UCAR) providing web services such as OPENDAP, NCSS, and WCS, as well as ncWMS service developed by the Reading e-science Center. At present, a system (ITSASGIS-5D) is being developed, based on OGC standards and open-source tools to allow interoperability between all the data types mentioned before. This system includes, in the server side, postgresql/postgis databases and geoserver for GIS layers, and THREDDS/Opendap and ncWMS services for FES gridded data. Moreover, an on-line client is being developed to allow joint access, user configuration, data visualisation & query and data distribution. This client is using mapfish, ExtJS - GeoEXT, and openlayers libraries. Through this presentation the elements of the first released version of this system will be described and showed, together with the new topics to be developed in new versions that include among others, the integration of geoNetwork libraries and tools for both FES and GIS metadata management, and the use of new OGC Sensor Observation Services (SOS) to integrate non gridded multidimensional data such as time series, depth profiles or trajectories provided by different observational systems. The final aim of this approach is to contribute to the multidisciplinary access and use of marine data for management and research activities, and facilitate the implementation of integrated ecosystem based approaches in the fields of fisheries advice and management, marine spatial planning, or the implementation of the European policies such as the Water Framework Directive, the Marine Strategy Framework Directive or the Habitat Framework Directive.

  11. Development of Acoustic Microfluidic Platforms for Separation and Analysis of Particles and Cells 

    E-print Network

    Wang, Han

    2015-08-12

    oil droplets for environmental monitoring application. Crude oil spills have serious ecological and economic impacts. Detecting low concentrations of oil after dispersion into small oil droplets is challenging and has immense importance in marine...

  12. Effect of ocean acidification on otolith development in larvae of a tropical marine fish

    NASA Astrophysics Data System (ADS)

    Munday, P. L.; Hernaman, V.; Dixson, D. L.; Thorrold, S. R.

    2011-03-01

    Calcification in many invertebrate species is predicted to decline due to ocean acidification. The potential effects of elevated pCO2 and reduced carbonate saturation state on other species, such as fish, are less well understood. Fish otoliths (earbones) are composed of aragonite, and thus, might be susceptible to either the reduced availability of carbonate ions in seawater at low pH, or to changes in extracellular concentrations of bicarbonate and carbonate ions caused by acid-base regulation in fish exposed to high pCO2. We reared larvae of the clownfish Amphiprion percula from hatching to settlement at three pHNBS and pCO2 levels (control: pH 8.15 and 404 ?atm CO2; intermediate: pH 7.8 and 1050 ?atm CO2; extreme: pH 7.6 and 1721 ?atm CO2) to test the possible effects of ocean acidification on otolith development. There was no effect of the intermediate treatment (pH 7.8 and 1050 ?atm CO2) on otolith size, shape, symmetry between left and right otoliths, or otolith elemental chemistry, compared with controls. However, in the more extreme treatment (pH 7.6 and 1721 ?atm CO2) otolith area and maximum length were larger than controls, although no other traits were affected. Our results support the hypothesis that pH regulation in the otolith endolymph of fish exposed to elevated pCO2 can lead to increased precipitation of CaCO3 in otoliths of larval fish, as proposed by an earlier study, however, our results also show that sensitivity varies considerably among species. Importantly, our results suggest that otolith development in clownfishes is robust to even the more pessimistic changes in ocean chemistry predicted to occur by 2100.

  13. Effect of ocean acidification on otolith development in larvae of a tropical marine fish

    NASA Astrophysics Data System (ADS)

    Munday, P. L.; Hernaman, V.; Dixson, D. L.; Thorrold, S. R.

    2011-06-01

    Calcification in many invertebrate species is predicted to decline due to ocean acidification. The potential effects of elevated CO2 and reduced carbonate saturation state on other species, such as fish, are less well understood. Fish otoliths (earbones) are composed of aragonite, and thus, might be susceptible to either the reduced availability of carbonate ions in seawater at low pH, or to changes in extracellular concentrations of bicarbonate and carbonate ions caused by acid-base regulation in fish exposed to high pCO2. We reared larvae of the clownfish Amphiprion percula from hatching to settlement at three pHNBS and pCO2 levels (control: ~pH 8.15 and 404 ?atm CO2; intermediate: pH 7.8 and 1050 ?atm CO2; extreme: pH 7.6 and 1721 ?atm CO2) to test the possible effects of ocean acidification on otolith development. There was no effect of the intermediate treatment (pH 7.8 and 1050 ?atm CO2) on otolith size, shape, symmetry between left and right otoliths, or otolith elemental chemistry, compared with controls. However, in the more extreme treatment (pH 7.6 and 1721 ?atm CO2) otolith area and maximum length were larger than controls, although no other traits were significantly affected. Our results support the hypothesis that pH regulation in the otolith endolymph can lead to increased precipitation of CaCO3 in otoliths of larval fish exposed to elevated CO2, as proposed by an earlier study, however, our results also show that sensitivity varies considerably among species. Importantly, our results suggest that otolith development in clownfishes is robust to even the more pessimistic changes in ocean chemistry predicted to occur by 2100.

  14. Development of a Bioaerosol single particle detector (BIO IN) for the Fast Ice Nucleus CHamber FINCH

    NASA Astrophysics Data System (ADS)

    Bundke, U.; Reimann, B.; Nillius, B.; Jaenicke, R.; Bingemer, H.

    2010-02-01

    In this work we present the setup and first tests of our new BIO IN detector. This detector was constructed to classify atmospheric ice nuclei (IN) for their biological content. It is designed to be coupled to the Fast Ice Nucleus CHamber FINCH. If one particle acts as an ice nucleus, it will be at least partly covered with ice at the end of the development section of the FINCH chamber. The device combines an auto-fluorescence detector and a circular depolarization detector for simultaneous detection of biological material and discrimination between water droplets, ice crystals and non activated large aerosol particles. The excitation of biological material with UV light and analysis of auto-fluorescence is a common principle used for flow cytometry, fluorescence microscopy, spectroscopy and imaging. The detection of auto-fluorescence of airborne single particles demands some more experimental effort. However, expensive commercial sensors are available for special purposes, e.g. size distribution measurements. But these sensors will not fit the specifications needed for the FINCH IN counter (e.g. high sample flow of up 10 LPM). The newly developed -low cost- BIO IN sensor uses a single high-power UV LED for the electronic excitation instead of much more expensive UV lasers. Other key advantages of the new sensor are the low weight, compact size, and the little effect on the aerosol sample, which allows it to be coupled with other instruments for further analysis. The instrument will be flown on one of the first missions of the new German research aircraft "HALO" (High Altitude and LOng range).

  15. The development of optical microscopy techniques for the advancement of single-particle studies

    SciTech Connect

    Marchuk, Kyle

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.

  16. The development of optical microscopy techniques for the advancement of single-particle studies

    NASA Astrophysics Data System (ADS)

    Marchuk, Kyle

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called "non-blinking" quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.

  17. Using Image Pro Plus Software to Develop Particle Mapping on Genesis Solar Wind Collector Surfaces

    NASA Technical Reports Server (NTRS)

    Rodriquez, Melissa C.; Allton, J. H.; Burkett, P. J.

    2012-01-01

    The continued success of the Genesis mission science team in analyzing solar wind collector array samples is partially based on close collaboration of the JSC curation team with science team members who develop cleaning techniques and those who assess elemental cleanliness at the levels of detection. The goal of this collaboration is to develop a reservoir of solar wind collectors of known cleanliness to be available to investigators. The heart and driving force behind this effort is Genesis mission PI Don Burnett. While JSC contributes characterization, safe clean storage, and benign collector cleaning with ultrapure water (UPW) and UV ozone, Burnett has coordinated more exotic and rigorous cleaning which is contributed by science team members. He also coordinates cleanliness assessment requiring expertise and instruments not available in curation, such as XPS, TRXRF [1,2] and synchrotron TRXRF. JSC participates by optically documenting the particle distributions as cleaning steps progress. Thus, optical document supplements SEM imaging and analysis, and elemental assessment by TRXRF.

  18. Development of Labview based data acquisition and multichannel analyzer software for radioactive particle tracking system

    NASA Astrophysics Data System (ADS)

    Rahman, Nur Aira Abd; Yussup, Nolida; Abdullah, Jaafar B.; Ibrahim, Maslina Bt. Mohd; Abdullah, Nor Arymaswati; Mokhtar, Mukhlis B.; Hassan, Hearie B.

    2015-04-01

    A DAQ (data acquisition) software called RPTv2.0 has been developed for Radioactive Particle Tracking System in Malaysian Nuclear Agency. RPTv2.0 that features scanning control GUI, data acquisition from 12-channel counter via RS-232 interface, and multichannel analyzer (MCA). This software is fully developed on National Instruments Labview 8.6 platform. Ludlum Model 4612 Counter is used to count the signals from the scintillation detectors while a host computer is used to send control parameters, acquire and display data, and compute results. Each detector channel consists of independent high voltage control, threshold or sensitivity value and window settings. The counter is configured with a host board and twelve slave boards. The host board collects the counts from each slave board and communicates with the computer via RS-232 data interface.

  19. Development of Labview based data acquisition and multichannel analyzer software for radioactive particle tracking system

    SciTech Connect

    Rahman, Nur Aira Abd Yussup, Nolida; Ibrahim, Maslina Bt. Mohd; Abdullah, Nor Arymaswati; Mokhtar, Mukhlis B.; Abdullah, Jaafar B.; Hassan, Hearie B.

    2015-04-29

    A DAQ (data acquisition) software called RPTv2.0 has been developed for Radioactive Particle Tracking System in Malaysian Nuclear Agency. RPTv2.0 that features scanning control GUI, data acquisition from 12-channel counter via RS-232 interface, and multichannel analyzer (MCA). This software is fully developed on National Instruments Labview 8.6 platform. Ludlum Model 4612 Counter is used to count the signals from the scintillation detectors while a host computer is used to send control parameters, acquire and display data, and compute results. Each detector channel consists of independent high voltage control, threshold or sensitivity value and window settings. The counter is configured with a host board and twelve slave boards. The host board collects the counts from each slave board and communicates with the computer via RS-232 data interface.

  20. Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments

    SciTech Connect

    MacFarlane, Joseph J

    2009-08-07

    This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have: ? Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2]. ? Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’s PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas. ? Updated LSP to support the use of Prism’s multi-frequency opacity tables. ? Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies. ? Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP. ? Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations. ? Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments. ? Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments. ? Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output. ? Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP. ? Updated atomic physics modeling to provide for more comprehensive and accurate atomic databases that feed into the radiation physics modeling (spectral simulations and opacity tables). ? Developed polarization spectroscopy modeling techniques suitable for diagnosing energetic particle characteristics in HEDP experiments. A description of these items is provided in this report. The above efforts lay the groundwork for utilizing the LSP and SPECT3D codes in providing simulation support for DOE-sponsored HEDP experiments, such as plasma jet and fast ignition physics experiments. We believe that taken together, the LSP and SPECT3D codes have unique capabilities for advancing our understanding of the physics of these HEDP plasmas. Based on conversations early in this project with our DOE program manager, Dr. Francis Thio, our efforts emphasized developing radiation physics and atomic modeling capabilities that can be utilized in the LSP PIC code, and performing radiation physics studies for plasma jets. A relatively minor component focused on the development of methods to diagnose energetic particle characteristics in short-pulse laser experiments related to fast ignition physics. The period of performance for the grant was extended by one year to August 2009 with a one-year no-cost extension, at the request of subcontractor University of Nevada-Reno.

  1. 78 FR 57133 - Marine Mammals; File No. 14514

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... July 28, 2010 (75 FR 50748), authorizes the University of Florida to receive, import, and export marine... studies; development of a marine mammal histology database and atlas and marine mammal cell lines;...

  2. 75 FR 50748 - Marine Mammals; File No. 14514

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ...research on disease afflicting marine mammals including viral pathogens and brevetoxin studies; development of a marine mammal histology database and atlas and marine mammal cell lines; and comparative morphology studies. The permit is issued for a...

  3. Bioactive Marine Drugs and Marine Biomaterials for Brain Diseases

    PubMed Central

    Grosso, Clara; Valentão, Patrícia; Ferreres, Federico; Andrade, Paula B.

    2014-01-01

    Marine invertebrates produce a plethora of bioactive compounds, which serve as inspiration for marine biotechnology, particularly in drug discovery programs and biomaterials development. This review aims to summarize the potential of drugs derived from marine invertebrates in the field of neuroscience. Therefore, some examples of neuroprotective drugs and neurotoxins will be discussed. Their role in neuroscience research and development of new therapies targeting the central nervous system will be addressed, with particular focus on neuroinflammation and neurodegeneration. In addition, the neuronal growth promoted by marine drugs, as well as the recent advances in neural tissue engineering, will be highlighted. PMID:24798925

  4. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor.

    PubMed

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-01-01

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria. PMID:26555802

  5. Marine fragrance chemistry.

    PubMed

    Hügel, Helmut M; Drevermann, Britta; Lingham, Anthony R; Marriott, Philip J

    2008-06-01

    The main marine message in perfumery is projected by Calone 1951 (7-methyl-2H-1,5-benzodioxepin-3(4H)-one). Kraft (Givaudan) and Gaudin (Firmenich) further maximized the marine fragrance molecular membership by extending the carbon chain of the 7-Me group. Our research targeted the polar group of the benzodioxepinone parent compound to investigate how this region of molecular makeup resonates with the dominant marine fragrance of the Calone 1951 structure. The olfactory evaluation of analogues prepared by chemical modification or removal of the CO group resulted in the introduction of aldehydic, sweet and floral-fruity notes with a diluted/diminished potency of the marine odor. To further analyze the olfactory properties of benzodioxepinones containing a diverse range of aromatic ring substituents, a novel synthesis route was developed. We found that a 7-alkyl group in Calone 1951 was essential for the maintenance of the significant marine odor characteristic, and our studies support the concept that the odorant structure occupying the hydrophobic binding pocket adjacent to the aromatic ring-binding site of the olfactory receptor is pivotal in the design and discovery of more potent and characteristic marine fragrances. How the structure of benzodioxepinones connects to marine sea-breeze fragrances is our continuing challenging research focus at the chemistry-biology interface. PMID:18618392

  6. Development and Application of a Novel SPE-Method for Bioassay-Guided Fractionation of Marine Extracts

    PubMed Central

    Cutignano, Adele; Nuzzo, Genoveffa; Ianora, Adrianna; Luongo, Elvira; Romano, Giovanna; Gallo, Carmela; Sansone, Clementina; Aprea, Susanna; Mancini, Francesca; D’Oro, Ugo; Fontana, Angelo

    2015-01-01

    The biological diversity of marine habitats is a unique source of chemical compounds with potential use as pharmaceuticals, cosmetics and dietary supplements. However, biological screening and chemical analysis of marine extracts pose specific technical constraints and require adequate sample preparation. Here we report an improved method on Solid Phase Extraction (SPE) to fractionate organic extracts containing high concentration of salt that hampers the recovery of secondary metabolites. The procedure uses a water suspension to load the extracts on a poly(styrene-divynylbenzene)-based support and a stepwise organic solvent elution to effectively desalt and fractionate the organic components. The novel protocol has been tested on MeOH-soluble material from three model organisms (Reniera sarai, Dendrilla membranosa and Amphidinium carterae) and was validated on a small panel of 47 marine samples, including sponges and protists, within discovery programs for identification of immuno-stimulatory and anti-infective natural products. PMID:26378547

  7. Development and Application of a Novel SPE-Method for Bioassay-Guided Fractionation of Marine Extracts.

    PubMed

    Cutignano, Adele; Nuzzo, Genoveffa; Ianora, Adrianna; Luongo, Elvira; Romano, Giovanna; Gallo, Carmela; Sansone, Clementina; Aprea, Susanna; Mancini, Francesca; D'Oro, Ugo; Fontana, Angelo

    2015-09-01

    The biological diversity of marine habitats is a unique source of chemical compounds with potential use as pharmaceuticals, cosmetics and dietary supplements. However, biological screening and chemical analysis of marine extracts pose specific technical constraints and require adequate sample preparation. Here we report an improved method on Solid Phase Extraction (SPE) to fractionate organic extracts containing high concentration of salt that hampers the recovery of secondary metabolites. The procedure uses a water suspension to load the extracts on a poly(styrene-divynylbenzene)-based support and a stepwise organic solvent elution to effectively desalt and fractionate the organic components. The novel protocol has been tested on MeOH-soluble material from three model organisms (Reniera sarai, Dendrilla membranosa and Amphidinium carterae) and was validated on a small panel of 47 marine samples, including sponges and protists, within discovery programs for identification of immuno-stimulatory and anti-infective natural products. PMID:26378547

  8. Marine biology

    SciTech Connect

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  9. Some Developments of the Equilibrium Particle Simulation Method for the Direct Simulation of Compressible Flows

    NASA Technical Reports Server (NTRS)

    Macrossan, M. N.

    1995-01-01

    The direct simulation Monte Carlo (DSMC) method is the established technique for the simulation of rarefied gas flows. In some flows of engineering interest, such as occur for aero-braking spacecraft in the upper atmosphere, DSMC can become prohibitively expensive in CPU time because some regions of the flow, particularly on the windward side of blunt bodies, become collision dominated. As an alternative to using a hybrid DSMC and continuum gas solver (Euler or Navier-Stokes solver) this work is aimed at making the particle simulation method efficient in the high density regions of the flow. A high density, infinite collision rate limit of DSMC, the Equilibrium Particle Simulation method (EPSM) was proposed some 15 years ago. EPSM is developed here for the flow of a gas consisting of many different species of molecules and is shown to be computationally efficient (compared to DSMC) for high collision rate flows. It thus offers great potential as part of a hybrid DSMC/EPSM code which could handle flows in the transition regime between rarefied gas flows and fully continuum flows. As a first step towards this goal a pure EPSM code is described. The next step of combining DSMC and EPSM is not attempted here but should be straightforward. EPSM and DSMC are applied to Taylor-Couette flow with Kn = 0.02 and 0.0133 and S(omega) = 3). Toroidal vortices develop for both methods but some differences are found, as might be expected for the given flow conditions. EPSM appears to be less sensitive to the sequence of random numbers used in the simulation than is DSMC and may also be more dissipative. The question of the origin and the magnitude of the dissipation in EPSM is addressed. It is suggested that this analysis is also relevant to DSMC when the usual accuracy requirements on the cell size and decoupling time step are relaxed in the interests of computational efficiency.

  10. Connecting to the Standards through Marine Science.

    ERIC Educational Resources Information Center

    New Jersey Marine Sciences Consortium, Fort Hancock. New Jersey Sea Grant Coll. Program.

    Marine and related environmental science topics represent a rich resource of meaningful material for New Jersey's educators as they seek to develop standards-based instructional strategies. By adopting and integrating the marine environment science programs and curriculum materials developed by the Education Program at the New Jersey Marine…

  11. Mariner-Venus 1967

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Detailed information on the spacecraft performance, mission operations, and tracking and data acquisition is presented for the Mariner Venus 1967 and Mariner Venus 1967 extension projects. Scientific and engineering results and conclusions are discussed, and include the scientific mission, encounter with Venus, observations near Earth, and cruise phase of the mission. Flight path analysis, spacecraft subsystems, and mission-related hardware and computer program development are covered. The scientific experiments carried by Mariner 5 were ultraviolet photometer, solar plasma probe, helium magnetometer, trapped radiation detector, S-band radio occultation, dual-frequency radio propagation, and celestial mechanics. The engineering experience gained by converting a space Mariner Mars 1964 spacecraft into one flown to Venus is also described.

  12. White Paper for Developing Electromagnetic Particle Injector system for ITER on NSTX-U University of Washington (19 July 2012)

    E-print Network

    White Paper for Developing Electromagnetic Particle Injector system for ITER on NSTX-U University of Washington (19 July 2012) 1/2 White Paper@aa.washington.edu This white paper describes our plans for developing a new system for safely

  13. Development and Evaluation of Reverse Polyethylene Samplers for Marine Phase II Whole-Sediment Toxicity Identification Evaluation

    EPA Science Inventory

    Marine and estuarine sediments accumulate contaminants and act as a sink for a wide range of toxic chemicals. As a result, the sediments themselves can become a source of contamination. At sufficient levels, contaminated sediments can cause benthic impairments and toxicity to mar...

  14. Development and Evaluation of Polychaete Reverse Samplers for Marine Phase II Whole Sediment Toxicitiy Identification Evaluations (TIE)

    EPA Science Inventory

    Marine and estuarine sediments accumulate contaminants and act as a sink for a wide range of toxic chemicals. As a result, the sediments themselves can become a source of contamination. At sufficient levels, contaminated sediments can cause benthic impairments and toxicity to m...

  15. Marine-Sourced Anti-Cancer and Cancer Pain Control Agents in Clinical and Late Preclinical Development †

    PubMed Central

    Newman, David J.; Cragg, Gordon M.

    2014-01-01

    The marine habitat has produced a significant number of very potent marine-derived agents that have the potential to inhibit the growth of human tumor cells in vitro and, in a number of cases, in both in vivo murine models and in humans. Although many agents have entered clinical trials in cancer, to date, only Cytarabine, Yondelis® (ET743), Eribulin (a synthetic derivative based on the structure of halichondrin B), and the dolastatin 10 derivative, monomethylauristatin E (MMAE or vedotin) as a warhead, have been approved for use in humans (Adcetris®). In this review, we show the compounds derived from marine sources that are currently in clinical trials against cancer. We have included brief discussions of the approved agents, where they are in trials to extend their initial approved activity (a common practice once an agent is approved), and have also included an extensive discussion of the use of auristatin derivatives as warheads, plus an area that has rarely been covered, the use of marine-derived agents to ameliorate the pain from cancers in humans, and to act as an adjuvant in immunological therapies. PMID:24424355

  16. Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development.

    PubMed

    Newman, David J; Cragg, Gordon M

    2014-01-01

    The marine habitat has produced a significant number of very potent marine-derived agents that have the potential to inhibit the growth of human tumor cells in vitro and, in a number of cases, in both in vivo murine models and in humans. Although many agents have entered clinical trials in cancer, to date, only Cytarabine, Yondelis® (ET743), Eribulin (a synthetic derivative based on the structure of halichondrin B), and the dolastatin 10 derivative, monomethylauristatin E (MMAE or vedotin) as a warhead, have been approved for use in humans (Adcetris®). In this review, we show the compounds derived from marine sources that are currently in clinical trials against cancer. We have included brief discussions of the approved agents, where they are in trials to extend their initial approved activity (a common practice once an agent is approved), and have also included an extensive discussion of the use of auristatin derivatives as warheads, plus an area that has rarely been covered, the use of marine-derived agents to ameliorate the pain from cancers in humans, and to act as an adjuvant in immunological therapies. PMID:24424355

  17. Marine Biomedicine

    ERIC Educational Resources Information Center

    Bang, Frederik B.

    1977-01-01

    Describes early scientific research involving marine invertebrate pathologic processes that may have led to new insights into human disease. Discussed are inquiries of Metchnikoff, Loeb, and Cantacuzene (immunolgic responses in sea stars, horseshoe crabs, and marine worms, respectively). Describes current research stemming from these early…

  18. Marine Biology

    ERIC Educational Resources Information Center

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  19. Development and Testing of Quartz Crystal Microbalances For Spacecraft Missions To Measure Particle Fluxes From Minor Airless Solar System Bodies

    NASA Astrophysics Data System (ADS)

    Stephens, J.; Gustafson, B. A. S.; Waldemarsson, K. T.

    We are developing an instrument to measure the mass flux and size distribution of particles striking a spacecraft operating in the vicinity of airless minor solar system bodies including asteroids, small moons, and particularly, comets. The effort centers on developing and testing specialized quartz crystal microbalances (QCMs) with ro- bust particle capture coatings together with associated advanced oscillator electron- ics. The instrument is to be an advanced version of the QCMs that are part of the Grain Impact Analyzer and Dust Accumulator (GIADA) instrument that will be car- ried aboard the European Space Agency (ESA) Rosetta Spacecraft. Robust particle capture coatings are required that will survive the interplanetary environment for long periods and still provide effective particle capture and coupling to a QCM to allow mass measurements during rendezvous encounters. Our approach is to use aerogel for particle capture since aerogel consists of a very low density (99% void volume) web of rigidly connected, sub-micron silica fibers. In order to effectively oscillate a QCM with a thick particle capture coating, and retain its high mass sensitivity, so- phisticated oscillator circuits are required. Previously we reported on measurements of the electro-mechanical properties of thick (100 mm) layers of aerogel bonded to QCMs driven by sophisticated oscillator circuits. In this work we report the results of firing small (100-500 mm) grains at aerogel coated QCMs using a light gas gun at the University of Florida. We measured the particle capture efficiency of the aerogel lay- ers as a function of particle size, velocity, and material composition. The response of the aerogel/QCM combination to known number of captured particles was also mea- sured. The results will help guide the design of a second generation of aerosol capture coatings for QCMs.

  20. Applications of Beta Particle Detection for Synthesis and Usage of Radiotracers Developed for Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Dooraghi, Alex Abreu

    Positron Emission Tomography (PET) is a noninvasive molecular imaging tool that requires the use of a radioactive compound or radiotracer which targets a molecular pathway of interest. We have developed and employed three beta particle radiation detection systems to advance PET. Specifically, the goals of these systems are to: 1. Automate dispensing of solutions containing a positron emitting isotope. 2. Monitor radioactivity on-chip during synthesis of a positron emitting radiotracer. 3. Assay cellular uptake on-chip of a positron emitting radiotracer. Automated protocols for measuring and dispensing solutions containing radioisotopes are essential not only for providing an optimum environment for radiation workers, but also to ensure a quantitatively accurate workflow. For the first project, we describe the development and performance of a system for automated radioactivity distribution of beta particle emitting radioisotopes such as fluorine-18 (F-18). Key to the system is a radiation detector in-line with a peristaltic pump. The system demonstrates volume accuracy within 5 % for volumes of 20 muL or greater. When considering volumes of 20 muL or greater, delivered radioactivity is in agreement with the requested radioactivity as measured with the dose calibrator. The integration of the detector and pump leads to a flexible system that can accurately dispense solutions containing F-18 in radioactivity concentrations directly produced from a cyclotron (~ 0.1-1 mCi/muL), to low activity concentrations intended for preclinical mouse scans (~ 1-10 muCi/muL), and anywhere in between. Electrowetting on dielectric (EWOD) is an attractive microfluidic platform for batch synthesis of PET radiotracers. Visualization of radioisotopes on-chip is critical for synthesis optimization and technological development. For the second project, we describe the development and performance of a Cerenkov/real-time imaging system for PET radiotracer synthesis on EWOD. We also investigate fundamental physical characteristics of Cerenkov photon yield at different stages of [F-18]FDG synthesis on the EWOD platform. We are able to use this imaging system to optimize the mixing protocol as well as identify and correct for loss of radioactivity due to the migration of radioactive vapor outside of the EWOD heater, enabling an overall increase in the crude radiochemical yield from 50 +/- 3% (n = 3) to 72 +/- 13% (n = 5). Clinical use of PET has proven to be a critical tool for monitoring cancer treatment response. For the third project, we describe the redesign and performance of Betabox, a specialized device that incorporates PET radiotracers in an assay that gives clinicians and researchers the ability to assess the effectiveness of a drug therapy in-vitro by isolating small samples of patient tumor cells incubated in a polydimethylsiloxane (PDMS) microfluidic chip. We find that Betabox is a high sensitivity and low noise charged particle imaging system that can operate without significant impairment of its performance at both room and at elevated temperatures, such as those suitable for cell culture. The dark count rate is within range of the expected signal from cosmic rays, dictating a low detection limit that allows quantitative imaging of very small amounts of radioactivity. This system demonstrates the potential of direct cellular radioassay of small samples of cells (~100 cells per measurement).

  1. Technology Development for The ExaVolt Antenna (EVA) Suborbital Ultra-high Energy Particle Observatory

    NASA Astrophysics Data System (ADS)

    Gorham, Peter

    2012-07-01

    We describe technology development for the ExaVolt Antenna (EVA) mission, a planned ultra-high energy (UHE) particle observatory under development for NASA's suborbital super-pressure balloon program in Antarctica. The design is based on a novel application of toroidal reflector optics which utilizes a super-pressure balloon surface, along with a feed-array mounted on an inner membrane, to create an ultra-large radio antenna system with a synoptic view of the Antarctic ice sheet below it. Radio impulses arise via the Askaryan effect when UHE neutrinos interact within the ice, or via geosynchrotron emission when UHE cosmic rays interact in the atmosphere above the continent. EVA's instantaneous antenna aperture is estimated to be several hundred square meters for detection of these events within a 150-600 MHz band. For standard cosmogenic UHE neutrino models, EVA should detect of order 30 events per flight in the EeV energy regime. For UHE cosmic rays, of order 15,000 geosynchrotron events would be detected in total, several hundred above 10 EeV, and of order 60 above the GZK cutoff energy.

  2. Radiation Exposure Analyses Supporting the Development of Solar Particle Event Shielding Technologies

    NASA Technical Reports Server (NTRS)

    Walker, Steven A.; Clowdsley, Martha S.; Abston, H. Lee; Simon, Hatthew A.; Gallegos, Adam M.

    2013-01-01

    NASA has plans for long duration missions beyond low Earth orbit (LEO). Outside of LEO, large solar particle events (SPEs), which occur sporadically, can deliver a very large dose in a short amount of time. The relatively low proton energies make SPE shielding practical, and the possibility of the occurrence of a large event drives the need for SPE shielding for all deep space missions. The Advanced Exploration Systems (AES) RadWorks Storm Shelter Team was charged with developing minimal mass SPE storm shelter concepts for missions beyond LEO. The concepts developed included "wearable" shields, shelters that could be deployed at the onset of an event, and augmentations to the crew quarters. The radiation transport codes, human body models, and vehicle geometry tools contained in the On-Line Tool for the Assessment of Radiation In Space (OLTARIS) were used to evaluate the protection provided by each concept within a realistic space habitat and provide the concept designers with shield thickness requirements. Several different SPE models were utilized to examine the dependence of the shield requirements on the event spectrum. This paper describes the radiation analysis methods and the results of these analyses for several of the shielding concepts.

  3. Status of marine biomedical research.

    PubMed Central

    Bessey, O

    1976-01-01

    A meeting on Marine Biomedical Research, sponsored by the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health and the Smithsonian Institution Museum of Natural History, was attended by approximately 125 scientists, directors and representatives from many of the country's marine biological laboratories, and government agencies whose interests and responsibilites are in the marine biology and health areas. The purpose of the meeting was to explore the undeveloped research opportunities in the area of marine biology for the advancement of our understanding of human health problems and to provide information on the current status of marine biology laboratories. The meeting was devoted to presentations and discussions in four general areas: (1)Marine Species as Models for Human Disease; (2)Environmental Carcinogenesis and Mutagenesis; (3)Human Health and the Marine Environment--infectious agents and naturally occurring and foreign toxins; and (4)Drugs from the seas. Representatives from twelve of the country's approximatley 40 marine laboratories discussed their organization, developmental history, scientific programs, facilities, and present status of their support. The presentations served as a background and stimulated very lively analytical and constructive discussions of the undeveloped research and education potential residing in the marine environment and biological laboratories for a better understanding of many human health problems; some scientific areas that should be developed to realize this potential; and the needs and problems of marine laboratories that require attention and support if they are to survive and realize their possibilities. PMID:944630

  4. SeaDataNet II - Second phase of developments for the pan-European infrastructure for marine and ocean data management

    NASA Astrophysics Data System (ADS)

    Schaap, Dick M. A.; Fichaut, Michele

    2013-04-01

    The second phase of the project SeaDataNet started on October 2011 for another 4 years with the aim to upgrade the SeaDataNet infrastructure built during previous years. The numbers of the project are quite impressive: 59 institutions from 35 different countries are involved. In particular, 45 data centers are sharing human and financial resources in a common efforts to sustain an operationally robust and state-of-the-art Pan-European infrastructure for providing up-to-date and high quality access to ocean and marine metadata, data and data products. The main objective of SeaDataNet II is to improve operations and to progress towards an efficient data management infrastructure able to handle the diversity and large volume of data collected via the Pan-European oceanographic fleet and the new observation systems, both in real-time and delayed mode. The infrastructure is based on a semi-distributed system that incorporates and enhance the existing NODCs network. SeaDataNet aims at serving users from science, environmental management, policy making, and economical sectors. Better integrated data systems are vital for these users to achieve improved scientific research and results, to support marine environmental and integrated coastal zone management, to establish indicators of Good Environmental Status for sea basins, and to support offshore industry developments, shipping, fisheries, and other economic activities. The recent EU communication "MARINE KNOWLEDGE 2020 - marine data and observation for smart and sustainable growth" states that the creation of marine knowledge begins with observation of the seas and oceans. In addition, directives, policies, science programmes require reporting of the state of the seas and oceans in an integrated pan-European manner: of particular note are INSPIRE, MSFD, WISE-Marine and GMES Marine Core Service. These underpin the importance of a well functioning marine and ocean data management infrastructure. SeaDataNet is now one of the major players in informatics in oceanography and collaborative relationships have been created with other EU and non EU projects. In particular SeaDataNet has recognised roles in the continuous serving of common vocabularies, the provision of tools for data management, as well as giving access to metadata, data sets and data products of importance for society. The SeaDataNet infrastructure comprises a network of interconnected data centres and a central SeaDataNet portal. The portal provides users not only background information about SeaDataNet and the various SeaDataNet standards and tools, but also a unified and transparent overview of the metadata and controlled access to the large collections of data sets, managed by the interconnected data centres. The presentation will give information on present services of the SeaDataNet infrastructure and services, and highlight a number of key achievements in SeaDataNet II so far.

  5. Coordinated Parameterization Development and Large-Eddy Simulation for Marine and Arctic Cloud-Topped Boundary Layers

    NASA Technical Reports Server (NTRS)

    Bretherton, Christopher S.

    1998-01-01

    The goal of this project was to compare observations of marine and arctic boundary layers with (i) parameterization systems used in climate and weather forecast models, and (ii) two and three dimensional eddy resolving (LES) models for turbulent fluid flow. Based on this comparison, we hoped to better understand, predict, and parameterize the boundary layer structure and cloud amount, type and thickness as functions of large scale conditions that are predicted by global climate models.

  6. Marine spatial planning in Cyprus

    NASA Astrophysics Data System (ADS)

    Hadjimitsis, Diofantos; Agapiou, Athos; Mettas, Christodoulos; Themistocleous, Kyriacos; Evagorou, Evagoras; Cuca, Branka; Papoutsa, Christiana; Nisantzi, Argyro; Mamouri, Rodanthi-Elisavet; Soulis, George; Xagoraris, Zafiris; Lysandrou, Vasiliki; Aliouris, Kyriacos; Ioannou, Nicolas; Pavlogeorgatos, Gerasimos

    2015-06-01

    Marine Spatial Planning (MSP), which is in concept similar to land-use planning, is a public process by which the relevant Member State's authorities analyse and organise human activities in marine areas to achieve ecological, economic and social objectives. MSP aims to promote sustainable growth of maritime economies, sustainable development of marine areas and sustainable use of marine resources. This paper highlights the importance of MSP and provides basic outcomes of the main European marine development. The already successful MSP plans can provide useful feedback and guidelines for other countries that are in the process of implementation of an integrated MSP, such as Cyprus. This paper presents part of the MSP project, of which 80% funded by the European Regional Development Fund (ERDF) and 20% from national contribution. An overview of the project is presented, including data acquisition, methodology and preliminary results for the implementation of MSP in Cyprus.

  7. Development and Application of A Membrane-Based Thermodenuder for Measurement of Volatile Particles Emitted by A Jet Turbine Engine

    SciTech Connect

    Cheng, Mengdawn

    2010-01-01

    Measurement of volatile particles emitted by modern jet engines is a daunting task. Besides the complexity in sampling jet aircraft exhaust, the main difficulty lies at how to faithfully capture the phase-partition dynamics of volatile particles as they travel downstream from the engine exhaust nozzle. As a result, the physico-chemical properties of the exhaust are also transformed. We have developed a sampling instrument that aims at enabling study of the phase-partition dynamics. The objective of this research project was to design and evaluate a new thermodenuder for performing phase separation of the engine-emitted volatile particles. The backbone of the new thermodenuder is a thin metallic membrane. The membrane enables extraction of molecules that can be thermally desorbed from the condensed particulate phases and collected for subsequent chemical analysis. Toward realization of the technique in the future field aircraft emissions measurement we tested this new thermo-denuding device using laboratory-generated particles that were made of non-volatile or semi-volatile chemicals. The particle penetration efficiency, a measure of the device performance, of this thermodenuder was found to be better than 99%. Results obtained from the tests executed at a number of operating temperature conditions show reasonably good thermal separation. We have scheduled to apply this new device to characterize emissions from a T63 turboshaft engine in the spring of 2010 and are expecting to show the engine results at the conference. The test results based on the laboratory-generated particles were encouraging for the intended application. With excellent particle transmission efficiency and an ability to simultaneously measure the composition in the gas and particle phases of the engine particles, we believe the new technology will make a great contribution to measurement research of engine emissions.

  8. Marine Science Activities, Grade Two.

    ERIC Educational Resources Information Center

    Kolb, James A.

    This unit, one of a series designed to develop and foster an understanding of the marine environment, presents marine science activities for second grade students. The unit, focusing on awareness of living/non-living factors shaping life of the sea, is divided into sections dealing with: physical characteristics of oceans; fish; sea anemone;…

  9. The Wicked Problem of Oil & Gas Development in the Beaufort and Chukchi Seas: Current Permitting and Evaluation of Marine Spatial Planning as a Potential Management Tool 

    E-print Network

    Johannes, Emilie Ann

    2014-06-02

    stream_source_info JOHANNES-THESIS-2014.pdf.txt stream_content_type text/plain stream_size 185933 Content-Encoding UTF-8 stream_name JOHANNES-THESIS-2014.pdf.txt Content-Type text/plain; charset=UTF-8 THE WICKED... PROBLEM OF OIL & GAS DEVELOPMENT IN THE BEAUFORT AND CHUKCHI SEAS: CURRENT PERMITTING AND EVALUATION OF MARINE SPATIAL PLANNING AS A POTENTIAL MANAGEMENT TOOL A Thesis by EMILIE JOHANNES Submitted to the Office of Graduate and Professional...

  10. Advanced laser particle accelerator development at LANL: from fast ignition to radiation oncology

    SciTech Connect

    Flippo, Kirk A; Gaillard, Sandrine A; Offermann, D T; Cobble, J A; Schmitt, M J; Gautier, D C; Kwan, T J T; Montgomery, D S; Kluge, Thomas; Bussmann, Micheal; Bartal, T; Beg, F N; Gall, B; Geissel, M; Korgan, G; Kovaleski, S; Lockard, T; Malekos, S; Schollmeier, M; Sentoku, Y; Cowan, T E

    2010-01-01

    Laser-plasma accelerated ion and electron beam sources are an emerging field with vast prospects, and promise many superior applications in a variety of fields such as hadron cancer therapy, compact radioisotope generation, table-top nuclear physics, laboratory astrophysics, nuclear forensics, waste transmutation, SN M detection, and inertial fusion energy. LANL is engaged in several projects seeking to develop compact high current and high energy ion and electron sources. We are especially interested in two specific applications: ion fast ignition/capsule perturbation and radiation oncology in conjunction with our partners at the ForschungsZentrum Dresden-Rossendorf (FZD). Laser-to-beam conversion efficiencies of over 10% are needed for practical applications, and we have already shown inherent etliciencies of >5% from flat foils, on Trident using only a 5th of the intensity and energy of the Nova Petawatt. With clever target designs, like structured curved cone targets, we have also been able to achieve major ion energy gains, leading to the highest energy laser-accelerated proton beams in the world. These new target designs promise to help usher in the next generation of particle sources realizing the potential of laser-accelerated beams.

  11. Development of atomic layer deposition-activated microchannel plates for single particle detection at cryogenic temperatures

    SciTech Connect

    Gorelikov, Dmitry Sullivan, Neal; Rouffignac, Philippe de; Li, Huazhi; Narayanamoorthy, Jayasri; Tremsin, Anton S.

    2014-03-15

    Atomic layer deposition (ALD) technology is used to nanoengineer functional films inside the pores of microchannel plate (MCP) electron multipliers, enabling a novel MCP manufacturing technology that substantially improves performance and opens novel applications. The authors have developed custom tools and recipes for the growth of conformal films, with optimized conductance and secondary electron emission inside very long channels (?6–20??m diameter and >600??m length, with tens of millions of channels per single MCP) by ALD. The unique ability to tune the characteristics of these ALD films enables their optimization to applications where time-resolved single particle imaging can be performed in extreme conditions, such as high counting rates at cryogenic temperatures. Adhesion of the conductive and emissive nanofilms to the 20??m pore MCP glass substrates and their mechanical stability over a very wide range of temperatures (10–700?K) were confirmed experimentally. Resistance of ALD MCPs was reproducible during multiple cool-down cycles with no film degradation observed. Optimizing resistance of novel MCPs for operation at cryogenic temperature should enable high count rate event detection at temperatures below 20?K.

  12. Advanced Laser Particle Accelerator Development at LANL: From Fast Ignition to Radiation Oncology

    NASA Astrophysics Data System (ADS)

    Flippo, K. A.; Gaillard, S. A.; Kluge, T.; Bussmann, M.; Offermann, D. T.; Cobble, J. A.; Schmitt, M. J.; Bartal, T.; Beg, F. N.; Cowan, T. E.; Gall, B.; Gautier, D. C.; Geissel, M.; Kwan, T. J.; Korgan, G.; Kovaleski, S.; Lockard, T.; Malekos, S.; Montgomery, D. S.; Schollmeier, M.; Sentoku, Y.

    2010-11-01

    Laser-plasma accelerated ion and electron beam sources are an emerging field with vast prospects, and promise many superior applications in a variety of fields such as hadron cancer therapy, compact radioisotope generation, table-top nuclear physics, laboratory astrophysics, nuclear forensics, waste transmutation, Special Nuclear Material (SNM) detection, and inertial fusion energy. LANL is engaged in several projects seeking to develop compact high-current and high-energy ion and electron sources. We are especially interested in two specific applications: ion fast ignition/capsule perturbation and radiation oncology. Laser-to-beam conversion efficiencies of over 10% are needed for practical applications, and we have already shown inherent efficiencies of >5% from flat foils, on Trident using only a 5th of the intensity [1] and energy of the Nova Petawatt laser [2]. With clever target designs, like structured curved cone targets, we have also been able to achieve major ion energy gains, leading to the highest energy laser-accelerated proton beams in the world [3]. These new target designs promise to help usher in the next generation of particle sources realizing the potential of laser-accelerated beams.

  13. The Interaction Between an Insoluble Particle and an Advancing Solid/Liquid Interface: Micro-Gravity Experiments and Theoretical Developments

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Ssen, Subhayu; Stefanescu, Doru M.

    2003-01-01

    The interaction of an insoluble particle with an advancing solid/liquid interface (SLI) has been a subject of investigation for the past four decades. While the original interest stemmed from geology applications (e.g., frost heaving in soil), researchers soon realized that the complex science associated with such an interaction is relevant to many other scientific fields encompassing metal matrix composites (MMCs), high temperature superconductors, inclusion management in steel, growth of monotectics, and preservation of biological cells. During solidification of a liquid containing an insoluble particle, three distinct interaction phenomena have been experimentally observed: instantaneous engulfment of the particle, continuous pushing, and particle pushing followed by engulfment. It was also observed that for given experimental conditions and particle size there is a critical solidification velocity, V(sub cr), above which a particle is engulfed. During solidification of MMCs pushing leads to particle agglomeration at the grain boundaries and this has detrimental effects on mechanical properties of the casting. Consequently, the process must be designed for instantaneous engulfment to occur. This implies the development of accurate theoretical models to predict V(sub cr), and perform benchmark experiments to test the validity of such models. Although considerable progress has been made in understanding the pushing/engulfment phenomenon (PEP), its quantification in terms of the material and processing parameters remains a focus of research. Since natural convection currents occurring during terrestrial solidification experiments complicate the study of PEP, execution of experiments on the International Space Station (ISS) has been approved and funded by NASA. Extensive terrestrial (1g) experiments and preliminary micro-gravity (mu g) experiments on two space shuttle missions have been conducted in preparation for future experiments on the ISS. The investigated systems included metal-ceramic particles (pure aluminum - zirconia particles) and transparent organic - non-reactive particles (succinonitrile - polystyrene and biphenyl - glass). This paper will discuss the experimental results obtained in both lg and pg conditions and the influence of the natural convection on V(sub cr). A summary of past mathematical models and our recent theoretical developments will also be presented to explain the experimentally observed particle/SLI interaction.

  14. Mobile Measurements of Gas and Particle Emissions from Marcellus Shale Gas Development

    NASA Astrophysics Data System (ADS)

    DeCarlo, P. F.; Goetz, J. D.; Floerchinger, C. R.; Fortner, E.; Wormhoudt, J.; Knighton, W. B.; Herndon, S.; Kolb, C. E.; Shaw, S. L.; Knipping, E. M.

    2013-12-01

    Production of natural gas in the Marcellus shale is increasing rapidly due to the vast quantities of natural gas stored in the formation. Transient and long-term activities have associated emissions to the atmosphere of methane, volatile organic compounds, NOx, particulates and other species from gas production and transport infrastructure. In the summer of 2012, a team of researchers from Drexel University and Aerodyne Research deployed the Aerodyne mobile laboratory (AML) and measured in-situ concentrations of gas-phase and aerosol chemical components in the main gas producing regions of Pennsylvania, with the overall goal of understanding the impacts to regional ozone and particulate matter (PM) concentrations. State-of-the-art instruments including quantum cascade laser systems, proton transfer mass spectrometry, tunable diode lasers and a soot particle aerosol mass spectrometer, were used quantify concentrations of pollutants of interest. Chemical species measured include methane, ethane, NO, NO2, CO, CO2, SO2, and many volatile organic compounds, and aerosol size and chemical composition. Tracer-release techniques were employed to link sources with emissions and to quantify emission rates from gas facilities, in order to understand the regional burden of these chemical species from oil and gas development in the Marcellus. Measurements were conducted in two regions of Pennsylvania: the NE region that is predominantly dry gas (95% + methane), and the SW region where wet gas (containing greater than 5% higher hydrocarbons) is found. Regional scale measurements of current levels of air pollutants will be shown and will put into context how further development of the gas resource in one of the largest natural gas fields in the world impacts air quality in a region upwind of the highly urbanized east coast corridor.

  15. Development of Numerical Computational Model for Revolving Metallic Wire Particles’ Behavior in GIS and its Evaluation

    NASA Astrophysics Data System (ADS)

    Natsuume, Daisuke; Inami, Kiyoshi; Hama, Hiroyuki; Oda, Shinji; Yoshimura, Manabu; Miyamoto, Toshio; Hanaoka, Ryoichi; Fukami, Tadashi

    It has been widely accepted that Gas Insulated Switchgear (GIS) has proven to be reliable, compact and has high availability. However, metallic particles forced to fly and kept in motion in high electric field, can cause partial discharges which lead to a flashover of GIS. For the metallic wire particle with the length less than 3mm, its revolving flight and horizontal migration behavior become remarkable. This has been confirmed by the high speed framing video camera. For the revolving particle, we also found that the viscous drag which acts on it controls its flying behavior predominantly. Authors have formulated time motion equation for a revolving metallic particle on the basis of the statistical analysis of the time-resolved and digitized motion data obtained by a high speed framing video camera and taking the drag as one of the major force term. Numerical solution of the time-motion equation gives the maximum flight height-time curves, incidence, departure velocity and migration velocity of the revolving particle against the grounded electrode with or without slope. Fairly well-agreements have been confirmed between the measured and simulated dynamic behavior of the revolving particles. The other major parameters such as allowable maximum flight height, the climbing or descending speed and distance along the slope of the grounded electrode and the trapping factors of a particle trap has been revealed deductively through the simulation. This enables it to optimize the configuration and the operational performance of the particle trap.

  16. Development and Characterization of Embedded Sensory Particles Using Multi-Scale 3D Digital Image Correlation

    NASA Technical Reports Server (NTRS)

    Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.

    2014-01-01

    A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.

  17. Design and development of an ultrafine particle reflection-time-of-flight mass spectrometer 

    E-print Network

    Das, Rishiraj

    2002-01-01

    and characterization of a single-ultrafine-particle mass spectrometer. The instrument aerodynamically size selects fine and ultrafine aerosol particles (size range 20 nm-1 []m), with a constant Stokes number, and focuses them into a vacuum chamber. This is achieved...

  18. Subvisible (2-100 ?m) Particle Analysis During Biotherapeutic Drug Product Development: Part 1, Considerations and Strategy.

    PubMed

    Narhi, Linda O; Corvari, Vincent; Ripple, Dean C; Afonina, Nataliya; Cecchini, Irene; Defelippis, Michael R; Garidel, Patrick; Herre, Andrea; Koulov, Atanas V; Lubiniecki, Tony; Mahler, Hanns-Christian; Mangiagalli, Paolo; Nesta, Douglas; Perez-Ramirez, Bernardo; Polozova, Alla; Rossi, Mara; Schmidt, Roland; Simler, Robert; Singh, Satish; Spitznagel, Thomas M; Weiskopf, Andrew; Wuchner, Klaus

    2015-06-01

    Measurement and characterization of subvisible particles (defined here as those ranging in size from 2 to 100 ?m), including proteinaceous and nonproteinaceous particles, is an important part of every stage of protein therapeutic development. The tools used and the ways in which the information generated is applied depends on the particular product development stage, the amount of material, and the time available for the analysis. In order to compare results across laboratories and products, it is important to harmonize nomenclature, experimental protocols, data analysis, and interpretation. In this manuscript on perspectives on subvisible particles in protein therapeutic drug products, we focus on the tools available for detection, characterization, and quantification of these species and the strategy around their application. PMID:25832583

  19. Summary Report for the Initiation of Compact Development for Particles with 425-micron Kernels

    SciTech Connect

    Pappano, Peter J

    2007-09-01

    The purpose of this research was the initiation of overcoating TRISO particles with 425 {micro}m kernels. In the AGR-1 task, the overcoating process was optimized for particles with an outer diameter (OD) of 780 {micro}m and a 350 {micro}m kernel. Therefore it needed to be determined how well the overcoating process used to fabricate AGR-1 compacts would perform on particles with an 855 {micro}m OD and a 425 {micro}m kernel. The matrix properties and overcoating procedures were altered from the AGR-1 processes in order to attempt to optimize the overcoating of TRISO particles with 425 {micro}m kernels. This report summarizes the changes that were made to the matrix and the overcoating process in order to achieve successful overcoating of the larger particles.

  20. Development and characterization of an electrostatic particle sampling system for the selective collection of trace explosives.

    PubMed

    Beer, Sebastian; Müller, Gerhard; Wöllenstein, Jürgen

    2012-01-30

    Detection of trace explosives residues at people and cargo control points has become a key security challenge. A severe obstacle is that all commercial and military high explosives have low to extremely low vapor pressures which make them very hard to detect. With detectable vapors not being present, explosives detection needs to proceed through a series of sequential steps including particle collection, thermal vapor conversion and vapor detection. The present paper describes the design and test of an electrostatic particle precipitator which allows particle residue to be collected from the environment, the collected particle residue to be separated into high- and low-electron affinity fractions and the high-electron-affinity one to be concentrated onto a small-area collector surface for later vaporization. The selectivity of this particle collection and separation process is demonstrated and a full-chain demonstration of a DNT detection experiment is presented (DNT: di-nitro-toluene). PMID:22284515

  1. The biogeochemistry of marine particulate trace metals

    E-print Network

    Ohnemus, Daniel Chester

    2014-01-01

    Marine particles include all living and non-living solid components of seawater, representing an extremely dynamic and chemically diverse mixture of phases. The distributions of these phases are poorly constrained and ...

  2. A Plan for Marine Education in Hawaii

    ERIC Educational Resources Information Center

    Klemm, E. Barbara

    1976-01-01

    The plan for marine education in the elementary and secondary schools of Hawaii as devised by the Hawaii Marine Education Council in 1974 is described. The plan outlines guidelines for the development and dissemination of marine curricular programs (K-12) over the next eight years. (BT)

  3. Prospective and future for marine biotechnology

    E-print Network

    Prospective and future for marine biotechnology Torger Børresen, Ph.D. Senior Executive Officer the profile and awareness of European Marine Biotechnology research · 2: Stimulate the development of research strategies and programmes for Marine Biotechnology research and align these at the national, regional and pan

  4. Marine Science Career Awareness, Grade Four. Revised.

    ERIC Educational Resources Information Center

    Kolb, James A.

    This unit, one of a series designed to develop and foster an understanding of the marine environment, presents marine science activities for fourth grade students. The unit, focusing on the various types of careers and occupations connected directly and indirectly with marine science, is divided into sections dealing with: commerce and intertidal…

  5. Statistical guidelines for assessing marine avian hotspots and coldspots: A case study on wind energy development in the U.S. Atlantic Ocean

    USGS Publications Warehouse

    Zipkin, Elise F.; Kinlan, Brian P.; Sussman, Allison; Rypkema, Diana; Wimer, Mark; O'Connell, Allan F.

    2015-01-01

    Estimating patterns of habitat use is challenging for marine avian species because seabirds tend to aggregate in large groups and it can be difficult to locate both individuals and groups in vast marine environments. We developed an approach to estimate the statistical power of discrete survey events to identify species-specific hotspots and coldspots of long-term seabird abundance in marine environments. We illustrate our approach using historical seabird data from survey transects in the U.S. Atlantic Ocean Outer Continental Shelf (OCS), an area that has been divided into “lease blocks” for proposed offshore wind energy development. For our power analysis, we examined whether discrete lease blocks within the region could be defined as hotspots (3 × mean abundance in the OCS) or coldspots (1/3 ×) for individual species within a given season. For each of 74 species/season combinations, we determined which of eight candidate statistical distributions (ranging in their degree of skewedness) best fit the count data. We then used the selected distribution and estimates of regional prevalence to calculate and map statistical power to detect hotspots and coldspots, and estimate the p-value from Monte Carlo significance tests that specific lease blocks are in fact hotspots or coldspots relative to regional average abundance. The power to detect species-specific hotspots was higher than that of coldspots for most species because species-specific prevalence was relatively low (mean: 0.111; SD: 0.110). The number of surveys required for adequate power (> 0.6) was large for most species (tens to hundreds) using this hotspot definition. Regulators may need to accept higher proportional effect sizes, combine species into groups, and/or broaden the spatial scale by combining lease blocks in order to determine optimal placement of wind farms. Our power analysis approach provides a general framework for both retrospective analyses and future avian survey design and is applicable to a broad range of research and conservation problems.

  6. Experimental Particle Physics in the LHC Era and Possible Implications for Development in Africa (467th Brookhaven Lecture)

    SciTech Connect

    Assamagan, Ketevi

    2011-03-16

    Assamagan presented a talk titled “Experimental Particle Physics in the LHC Era and Possible Implications for Development in Africa,” in which he discussed the latest happenings at the LHC and ATLAS, and how African institutes’ participation in research at the LHC relates to the goals of the African School of Physics.

  7. PHOTOACOUSTIC DETERMINATION OF OPTICAL PROPERTIES OF AEROSOL PARTICLES COLLECTED ON FILTERS: DEVELOPMENT OF A METHOD TAKING INTO ACCOUNT SUBSTRATE REFLECTIVITY

    EPA Science Inventory

    The absorptivity and imaginary index of refraction for carbon and methylene blue particles were inferred from the photoacoustic spectra of samples collected on Teflon filter substrates. Three models of varying complexity were developed to describe the photoacoustic signal as a fu...

  8. DEVELOPMENT OF A MAGNETIC PARTICLE IMMUNOASSAY FOR POLYBROMINATED DIPHENYL ETHERS AND APPLICATION TO ENVIRONMENTAL AND FOOD MATRICES.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A sensitive magnetic particle enzyme-linked immunoassay (ELISA) was developed to analyze polybrominated diphenyl ethers (PBDEs) in water, milk, fish, and soil samples. The assay was rapid and can be used to analyze fifty samples in about one hour after sample cleanup. The assay has a limit of det...

  9. Development of laboratory and process sensors to monitor particle size distribution of industrial slurries (including shape characterization). Final technical report

    SciTech Connect

    Pendse, H.P.; Goetz, P.J.; Sharma, A.; Han, W; Bliss, T.C.

    1996-10-01

    The overall goal of the Particle Size Distribution (PSD) sensor projects was to develop and commercialize a sensor system capable of particle analysis, in terms of size distributions, using concentrated suspensions at high solids concentrations. The early research was focused on application of ultrasonic spectroscopy of inorganic pigment slurries (e.g. titanium dioxide) commonly encountered on paper industry. During the project prototypes were tested in both academic and industrial laboratories. Work also involved successful field tests of the on-line prototype at a pigment manufacturing facility. Pen Kem continued the work at its cost beyond the initial funded period from March `92 to September `94. The first project (DE- FC05-88CE40684), which began in September 1988, culminated in a commercial laboratory instrument, Pen Kem AcoustoPhor {trademark} 8000, put on the market in June 1993. The follow-on project was aimed at investigation of shape and orientation effects on ultrasonic spectroscopy. A new cooperative agreement was awarded in September 1994 (DE-FC05-94CE40005) to develop shape characterization capabilities deemed critical by the clay industry. This follow-on project achieved following successes: A theoretical model was developed to account for the effects of size-dependent aspect ratios of spheroid particles under different orientations on ultrasound attenuation spectra of concentrated slurries. The theoretical model was confirmed by laboratory tests on kaolin slurries. An algorithm was developed to simulate evolution of particle orientation fields in simple squeezing flows.

  10. DEVELOPMENT OF A MAGNETIC PARTICLE ENZYME IMMUNOASSAY AND ITS APPLICATION TO THE MEASUREMENT OF TRICLOSAN IN WATER AND WASTEWATER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A sensitive magnetic particle-based immunoassay for triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) was developed. Rabbit antiserum was produced by immunizing the rabbit with 6-(5-chloro-2-(2,4-dichlorophenoxy)phenoxy)hexanoic acid-keyhole limpet hemocyanin. The triclosan ligand and horse radis...

  11. Developing and bounding ice particle mass- and area-dimension expressions for use in atmospheric models and remote sensing

    NASA Astrophysics Data System (ADS)

    Erfani, E.; Mitchell, D. L.

    2015-10-01

    Ice particle mass- and projected area-dimension (m-D and A-D) power laws are commonly used in the treatment of ice cloud microphysical and optical properties and the remote sensing of ice cloud properties. Although there has long been evidence that a single m-D or A-D power law is often not valid over all ice particle sizes, few studies have addressed this fact. This study develops self-consistent m-D and A-D expressions that are not power laws, but can easily be reduced to power laws for the ice particle size (maximum dimension or D) range of interest, and they are valid over a much larger D range than power laws. This was done by combining field measurements of individual ice particle m and D formed at temperature T < -20 °C with 2-dimensional stereo (2D-S) and Cloud Particle Imager (CPI) probe measurements (or estimates) of D, A and m in synoptic and anvil ice clouds at similar temperatures. The resulting m-D and A-D expressions are functions of temperature and cloud type (synoptic vs. anvil), and are in good agreement with m-D power laws developed from recent field studies considering the same temperature range (-60 °C < T < -20 °C).

  12. Marine Strategy 20142019 1 Marine Strategy 20142019

    E-print Network

    Greenslade, Diana

    Marine Strategy 2014­2019 1 Marine Strategy 2014­2019 Providing Australians with marine environmental intelligence for their safety, sustainability, well-being and prosperity. #12;2 Marine Strategy 2014­2019 #12;Marine Strategy 2014­2019 3 Foreword I am pleased to present the Bureau of Meteorology

  13. New Developments In Particle Image Velocimetry (PIV) For The Study Of Complex Plasmas

    SciTech Connect

    Thomas, Edward Jr.; Fisher, Ross; Shaw, Joseph; Jefferson, Robert; Cianciosa, Mark; Williams, Jeremiah

    2011-11-29

    Particle Image Velocimetry (PIV) is a fluid measurement technique in which the average displacement of small groups of particles is made by comparing a pair of images that are separated in time by an interval {Delta}t. For over a decade, a several variations of the PIV technique, e.g., two-dimensional, stereoscopic, and tomographic PIV, have been used to characterize particle transport, instabilities, and the thermal properties of complex plasmas. This paper describes the basic principles involved in the PIV analysis technique and discusses potential future applications of PIV to the study of complex plasmas.

  14. Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities

    NASA Astrophysics Data System (ADS)

    Brines, M.; Dall'Osto, M.; Beddows, D. C. S.; Harrison, R. M.; Gómez-Moreno, F.; Núñez, L.; Artíñano, B.; Costabile, F.; Gobbi, G. P.; Salimi, F.; Morawska, L.; Sioutas, C.; Querol, X.

    2015-05-01

    Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies worldwide have shown that - in high-insolation urban regions at least - new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia). Three long-term data sets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. Compared to total particle number concentrations, aerosol size distributions offer far more information on the type, origin and atmospheric evolution of the particles. By applying k-means clustering analysis, we categorized the collected aerosol size distributions into three main categories: "Traffic" (prevailing 44-63% of the time), "Nucleation" (14-19%) and "Background pollution and Specific cases" (7-22%). Measurements from Rome (Italy) and Los Angeles (USA) were also included to complement the study. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed nucleation events. The photochemically nucleated particles' burst lasted 1-4 h, reaching sizes of 30-40 nm. On average, the occurrence of particle size spectra dominated by nucleation events was 16% of the time, showing the importance of this process as a source of UFP in urban environments exposed to high solar radiation. Nucleation events lasting for 2 h or more occurred on 55% of the days, this extending to > 4 h in 28% of the days, demonstrating that atmospheric conditions in urban environments are not favourable to the growth of photochemically nucleated particles. In summary, although traffic remains the main source of UFP in urban areas, in developed countries with high insolation urban nucleation events are also a main source of UFP. If traffic-related particle concentrations are reduced in the future, nucleation events will likely increase in urban areas, due to the reduced urban condensation sinks.

  15. The Evaluative Function of the Particle "ebe" in Swiss-German Children's Narratives. Papers and Reports on Child Language Development, Number 19.

    ERIC Educational Resources Information Center

    Stern, Otto

    Narratives about personal experiences were elicited from 33 kindergarten children in a suburb of Zurich. The narratives were analyzed for the development of the use of the particle "ebe" from a conversational context (where the use of the particle was already mastered) to an appropriate narrative context (in which the particle, as appropriately…

  16. Marine resources. [coastal processes, ice, oceanography, and living marine resources

    NASA Technical Reports Server (NTRS)

    Tilton, E. L., III

    1974-01-01

    Techniques have been developed for defining coastal circulation patterns using sediment as a natural tracer, allowing the formulation of new circulation concepts in some geographical areas and, in general, a better capability for defining the seasonal characteristics of coastal circulation. An analytical technique for measurement of absolute water depth based upon the ratios of two MSS channels has been developed. Suspended sediment has found wide use as a tracer, but a few investigators have reported limited success in measuring the type and amount of sediment quantitatively from ERTS-1 digital data. Significant progress has been made in developing techniques for using ERTS-1 data to locate, identify, and monitor sea and lake ice. Ice features greater than 70 meters in width can be detected, and both arctic and antarctic icebergs have been identified. In the application area of living marine resources, the use of ERTS-1 image-density patterns as a potential indicator of fish school location has been demonstrated for one coastal commercial resource, menhaden. ERTS-1 data have been used to locate ocean current boundaries using ERTS-1 image-density enhancement, and some techniques are under development for measurement of suspended particle concentration and chlorophyll concentration. The interrelationship of water color and surface characteristics (sea state) are also being studied to improve spectral and spatial interpretive techniques.

  17. Development of a High Temperature Gas-Cooled Reactor TRISO-coated particle fuel chemistry model

    E-print Network

    Diecker, Jane T

    2005-01-01

    The first portion of this work is a comprehensive analysis of the chemical environment in a High Temperature Gas-Cooled Reactor TRISO fuel particle. Fission product inventory versus burnup is calculated. Based on those ...

  18. Aspects of Marine Ecology.

    ERIC Educational Resources Information Center

    Awkerman, Gary L.

    This publication is designed for use in standard science curricula to develop oceanologic manifestations of certain science topics. Included are teacher guides, student activities, and demonstrations to impart ocean science understanding, specifically, aspects of marine ecology, to high school students. The course objectives include the ability of…

  19. Development of an ash particle deposition model considering build-up and removal mechanisms

    SciTech Connect

    Kjell Strandstroem; Christian Muellera; Mikko Hupa

    2007-12-15

    Slagging and fouling on heat exchanger surfaces in power boilers fired with fossil fuels and fuel mixtures has a significant influence on boiler efficiency and availability. Mathematical modelling has long been considered a suitable method to assist boiler operators to determine optimized operating conditions for an existing furnace. The ultimate goal in ash deposition prediction is hereby the determination of the total amount of material deposited and hence the determination of the total reduction in efficiency. Depending on the fuels fired the total deposited mass is a combination of ash particle deposition and ash particle erosion due to non-sticky particles. The novel ash particle deposition model presented in this work considers deposition of sticky ash particles, cleansing of deposit by non-sticky sand particles and sticking of sand due to contact with sticky ash. The steady-state modelling results for the total amount of ash deposited on the deposition probe of an entrained flow reactor presented in this work agree well with the experimental data. Only at very high fractions of sand added as non-sticky material, a significant influence of the sand on the overall mass deposited was found. Since the model considers sticking of non-sticking sand due to contact with sticky ash, the fraction of sand deposited on the probe was especially studied. Using a correction factor to consider the influence of operating time on the steady-state simulations led to good agreement between simulations and experimental data. 12 refs., 10 figs.

  20. Cancer Cell Radiobiological Studies Using In-House-Developed ?-Particle Irradiator.

    PubMed

    Nilsson, Jenny; Bauden, Monika Posaric; Nilsson, Jonas M; Strand, Sven-Erik; Elgqvist, Jörgen

    2015-11-01

    An ?-particle irradiator, enabling high-precision irradiation of cells for in vitro studies, has been constructed. The irradiation source was a (241)Am source, on which well inserts containing cancer cells growing in monolayer were placed. The total radioactivity, uniformity, and ?-particle spectrum were determined by use of HPGe detector, Gafchromic™ dosimetry film, and PIPS(®) detector measurements, respectively. Monte Carlo simulations were used for dosimetry. Three prostate cancer (LNCaP, DU145, PC3) and three pancreatic cancer (Capan-1, Panc-1, BxPC-3) cell lines were irradiated by ?-particles to the absorbed doses 0, 0.5, 1, and 2?Gy. For reference, cells were irradiated using (137)Cs to the absorbed doses 0, 1, 2, 4, 6, 8, and 10?Gy. Radiation sensitivity was estimated using a tetrazolium salt-based colorimetric assay with absorbance measurements at 450?nm. The relative biological effectiveness for ?-particles relative to ?-irradiation at 37% cell survival for the LNCaP, DU145, PC3, Capan-1, Panc-1, and BxPC-3 cells was 7.9?±?1.7, 8.0?±?0.8, 7.0?±?1.1, 12.5?±?1.6, 9.4?±?0.9, and 6.2?±?0.7, respectively. The results show the feasibility of constructing a desktop ?-particle irradiator as well as indicate that both prostate and pancreatic cancers are good candidates for further studies of ?-particle radioimmunotherapy. PMID:26560194

  1. Development of the meshless finite volume particle method with exact and efficient calculation of interparticle area

    NASA Astrophysics Data System (ADS)

    Quinlan, Nathan J.; Lobovský, Libor; Nestor, Ruairi M.

    2014-06-01

    The Finite Volume Particle Method (FVPM) is a meshless method based on a definition of interparticle area which is closely analogous to cell face area in the classical finite volume method. In previous work, the interparticle area has been computed by numerical integration, which is a source of error and is extremely expensive. We show that if the particle weight or kernel function is defined as a discontinuous top-hat function, the particle interaction vectors may be evaluated exactly and efficiently. The new formulation reduces overall computational time by a factor between 6.4 and 8.2. In numerical experiments on a viscous flow with an analytical solution, the method converges under all conditions. Significantly, in contrast with standard FVPM and SPH, error depends on particle size but not on particle overlap (as long as the computational domain is completely covered by particles). The new method is shown to be superior to standard FVPM for shock tube flow and inviscid steady transonic flow. In benchmarking on a viscous multiphase flow application, FVPM with exact interparticle area is shown to be competitive with a mesh-based volume-of-fluid solver in terms of computational time required to resolve the structure of an interface.

  2. Sphingosines Derived from Marine Sponge as Potential Multi-Target Drug Related to Disorders in Cancer Development

    PubMed Central

    Biegelmeyer, Renata; Schröder, Rafael; Rambo, Douglas F.; Dresch, Roger R.; Carraro, João L. F.; Mothes, Beatriz; Moreira, José Cláudio F.; da Frota Junior, Mário L. C.; Henriques, Amélia T.

    2015-01-01

    Haliclona tubifera, marine sponge species abundant in Brazilian coastline, presents only a few papers published in the literature. Recently, we have reported the isolation of two modified C18 sphingoid bases: (2R,3R,6R,7Z)-2-aminooctadec-7-ene-1,3,6-triol and and (2R,3R,6R)-2-aminooctadec-1,3,6-triol. In order to continue our research, in this work aimed at the biological investigation of fractions that led to the isolation of these compounds. We evaluated the cytotoxic effect of marine sponge H. tubifera fractions in glioma (U87) and neuroblastoma (SH-SY5Y) human cell lines. In addition, considering the link between cancer, imbalance of reactive oxygen species and coagulation disorders, we also investigated the in vitro effects on blood coagulation and their redox properties. We showed that the ethyl acetate (EtOAc) fraction, rich in sphingoid bases, had important cytotoxic effects in both cancer cell lines with an IC50 < 15 ?g/mL and also can inhibit the production of peroxyl radicals. Interestingly, this fraction increased the recalcification time of human blood, showing anticoagulant properties. The present study indicates the sphingosines fraction as a promising source of chemical prototypes, especially multifunctional drugs in cancer therapy. PMID:26308014

  3. Sphingosines Derived from Marine Sponge as Potential Multi-Target Drug Related to Disorders in Cancer Development.

    PubMed

    Biegelmeyer, Renata; Schröder, Rafael; Rambo, Douglas F; Dresch, Roger R; Carraro, João L F; Mothes, Beatriz; Moreira, José Cláudio F; Junior, Mário L C da Frota; Henriques, Amélia T

    2015-09-01

    Haliclona tubifera, marine sponge species abundant in Brazilian coastline, presents only a few papers published in the literature. Recently, we have reported the isolation of two modified C18 sphingoid bases: (2R,3R,6R,7Z)-2-aminooctadec-7-ene-1,3, 6-triol and and (2R,3R,6R)-2-aminooctadec-1,3,6-triol. In order to continue our research, in this work aimed at the biological investigation of fractions that led to the isolation of these compounds. We evaluated the cytotoxic effect of marine sponge H. tubifera fractions in glioma (U87) and neuroblastoma (SH-SY5Y) human cell lines. In addition, considering the link between cancer, imbalance of reactive oxygen species and coagulation disorders, we also investigated the in vitro effects on blood coagulation and their redox properties. We showed that the ethyl acetate (EtOAc) fraction, rich in sphingoid bases, had important cytotoxic effects in both cancer cell lines with an IC50 < 15 ?g/mL and also can inhibit the production of peroxyl radicals. Interestingly, this fraction increased the recalcification time of human blood, showing anticoagulant properties. The present study indicates the sphingosines fraction as a promising source of chemical prototypes, especially multifunctional drugs in cancer therapy. PMID:26308014

  4. Development of species-specific hybridization probes for marine luminous bacteria by using in vitro DNA amplification

    SciTech Connect

    Wimpee, C.F.; Nadeau, T.L.; Nealson, K.H. )

    1991-05-01

    By using two highly conserved regions of the luxA gene as primers, polymerase chain reaction amplification methods were used to prepare species-specific probes against the luciferase gene from four major groups of marine luminous bacteria. Laboratory studies with test strains indicated that three of the four probes cross-reacted with themselves and with one or more of the other species at low stringencies but were specific for members of their own species at high stringencies. The fourth probe, generated from Vibrio harveyi DNA, a cross-reacted with DNAs from two closely related species, V. orientalis and V. vulnificus. When nonluminous cultures were tested with the species-specific probes, no false-positive results were observed, even at low stringencies. Two field isolates were correctly identified as Photobacterium phosphoreum by using the species-specific hybridization probes at high stringency. A mixed probe (four different hybridization probes) used at low stringency gave positive results with all of the luminous bacteria tested, including the terrestrial species Xenorhabdus luminescens, and the taxonomically distinct marine bacterial species Shewanella hanedai; minimal cross-hybridization with these species was seen at higher stringencies.

  5. Development of management policy for the marine ornamental fish and invertebrate fishery in puerto rico: a case study.

    PubMed

    Hardin, M P; Legore, R S

    2005-05-01

    In recent years the collection of tropical marine organisms for the aquarium trade has become perceived as an activity with an unsustainable history as well as obvious potential for rehabilitation through resource-based fisheries management and consumer-oriented product certification. In the case of Puerto Rico, collection of ornamentals has existed for decades, though unregulated due to a weak fisheries law dating from the 1930's. The new Fisheries Law 278 of 1998 enabled new regulatory approaches for marine ornamentals, which were met with serious challenges rooted in (1) an information gap concerning the fishery regarding participant numbers, collection methods and export volumes, and (2) the absence of consultation of fishers by agency regulators. The information gap led to worst-case assumptions of impact by regulators, and a closure of the fishery, which set the stage for threatening personal confrontations and lawsuits, the latter leading to de facto resource management by judicial order. To redress these issues and move management back into the arena of science and public policy, regulators have initiated a three-phase program: (1) characterize fisher numbers, methods and exports, (2) describe populations and biology of commercial species, and (3) propose appropriate fisheries management approaches. This paper describes only the first phase of this program. PMID:17465153

  6. Mariner 9 navigation

    NASA Technical Reports Server (NTRS)

    Neil, W. J.; Jordan, J. F.; Zielenbach, J. W.; Wong, S. K.; Mitchell, R. T.; Webb, W. A.; Koskela, P. E.

    1973-01-01

    A final, comprehensive description of the navigation of Mariner 9-the first U.S. spacecraft to orbit another planet is provided. The Mariner 9 navigation function included not only precision flight path control but also pointing of the spacecraft's scientific instruments mounted on a two degree of freedom scan platform. To the extent appropriate, each section describes the perflight analyses on which the operational strategies and performance predictions were based. Inflight results are then discussed and compared with the preflight predictions. Postflight analyses, which were primarily concerned with developing a thorough understanding of unexpected in-flight results, are also presented.

  7. Marine cloud brightening.

    PubMed

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-09-13

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action. PMID:22869798

  8. Marine cloud brightening

    PubMed Central

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100?km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action. PMID:22869798

  9. Molecular and Physiological Responses of Two Classes of Marine Chromophytic Phytoplankton (Diatoms and Prymnesiophytes) during the Development of Nutrient-Stimulated Blooms

    PubMed Central

    Wyman, Michael; Davies, John T.; Crawford, David W.; Purdie, Duncan A.

    2000-01-01

    Generic taxon-specific DNA probes that target an internal region of the gene (rbcL) encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) were developed for two groups of marine phytoplankton (diatoms and prymnesiophytes). The specificity and utility of the probes were evaluated in the laboratory and also during a 1-month mesocosm experiment in which we investigated the temporal variability in RubisCO gene expression and primary production in response to inorganic nutrient enrichment. We found that the onset of successive bloom events dominated by each of the two classes of chromophyte algae was associated with marked taxon-specific increases in rbcL transcription rates. These observations suggest that measurements of RubisCO gene expression can provide an early indicator of the development of phytoplankton blooms and may also be useful in predicting which taxa are likely to dominate a bloom. PMID:10831410

  10. Extending the Marine Microcosm Laboratory

    ERIC Educational Resources Information Center

    Ryswyk, Hal Van; Hall, Eric W.; Petesch, Steven J.; Wiedeman, Alice E.

    2007-01-01

    The traditional range of marine microcosm laboratory experiments is presented as an ideal environment to teach the entire analysis process. The microcosm lab provides student-centered approach with opportunities for collaborative learning and to develop critical communication skills.

  11. Marine Mammal Health and Stranding Response I'rogram

    E-print Network

    Marine Mammal Health and Stranding Response I'rogram: Program Devellopment Plan Prepared by Paul R. Becker, Dean Wilkinson, and Ted I. Lillestolen National Marine Fisheries Service Office of Protected Marine Fisheries Se~wict? #12;Marine Mammal Health and Stranding Response Program: Program Development

  12. Marine Biology and Oceanography, Grades Nine to Twelve. Part II.

    ERIC Educational Resources Information Center

    Kolb, James A.

    This unit, one of a series designed to develop and foster an understanding of the marine environment, presents marine science activities for students in grades 9-12. The unit, focusing on sea plants/animals and their interactions with each other and the non-living environment, has sections dealing with: marine ecology; marine bacteriology;…

  13. Senior High School Earth Sciences and Marine Sciences.

    ERIC Educational Resources Information Center

    Hackenberg, Mary; And Others

    This guide was developed for earth sciences and marine sciences instruction in the senior high schools of Duval County, Jacksonville, Florida. The subjects covered are: (1) Earth Science for 10th, 11th, and 12th graders; (2) Marine Biology I for 10th, 11th, and 12th graders; (3) Marine Biology II, Advanced, for 11th and 12th graders; (4) Marine…

  14. Development of titanium oxide layer containing nanocrystalline zirconia particles with tetragonal structure: Structural and biological characteristics.

    PubMed

    Shin, Ki Ryong; Kim, Yeon Sung; Kim, Gye Won; Ko, Young Gun; Shin, Dong Hyuk

    2015-07-01

    This study investigated the microstructural, mechanical and biological properties of oxide layers containing tetragonal zirconia (t-ZrO2) particles on pure titanium produced by plasma electrolytic oxidation (PEO) process. For this purpose, PEO processes were carried out at an AC current density of 200mA/cm(2) for 180s in potassium pyrophosphate (K4P2O7) electrolytes with and without t-ZrO2 powder. Structural investigations using transmission electron microscopy exhibited that the present nanocrystalline oxide layer evidenced the successful incorporation of a myriad of t-ZrO2 particles working as an intermediate medium to reinforce the adhesion strength between the substrate and oxide layer. Regarding biomimetic apatite formation, the t-ZrO2 particles uniformly spread were of considerable importance in triggering the nucleation and growth of biomimetic apatite on the surface of the oxide layer immersed in a simulated body fluid solution. The growth and proliferation rates of the osteoblasts (MC3T3-E1) cultured on the oxide layer with t-ZrO2 particles were higher than that without t-ZrO2 particles due to the higher roughness providing the better sites for the filopodia extension and interlocking. PMID:25956745

  15. Development of a Model to Assess Masking Potential for Marine Mammals by the Use of Air Guns in Antarctic Waters.

    PubMed

    Wittekind, Dietrich; Tougaard, Jakob; Stilz, Peter; Dähne, Michael; Clark, Christopher W; Lucke, Klaus; von Benda-Beckmann, Sander; Ainslie, Michael A; Siebert, Ursula

    2016-01-01

    We estimated the long-range effects of air gun array noise on marine mammal communication ranges in the Southern Ocean. Air gun impulses are subject to significant distortion during propagation, potentially resulting in a quasi-continuous sound. Propagation modeling to estimate the received waveform was conducted. A leaky integrator was used as a hearing model to assess communication masking in three species due to intermittent/continuous air gun sounds. Air gun noise is most probably changing from impulse to continuous noise between 1,000 and 2,000 km from the source, leading to a reduced communication range for, e.g., blue and fin whales up to 2,000 km from the source. PMID:26611093

  16. Developing Antimatter Containment Technology: Modeling Charged Particle Oscillations in a Penning-Malmberg Trap

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Martin, J. J.; Pearson, J. B.; Lewis, R. A.

    2003-01-01

    The NASA MSFC Propulsion Research Center (PRC) is conducting a research activity examining the storage of low energy antiprotons. The High Performance Antiproton Trap (HiPAT) is an electromagnetic system (Penning-Malmberg design) consisting of a 4 Tesla superconductor, a high voltage confinement electrode system, and an ultra high vacuum test section; designed with an ultimate goal of maintaining charged particles with a half-life of 18 days. Currently, this system is being experimentally evaluated using normal matter ions which are cheap to produce and relatively easy to handle and provide a good indication of overall trap behavior, with the exception of assessing annihilation losses. Computational particle-in-cell plasma modeling using the XOOPIC code is supplementing the experiments. Differing electrode voltage configurations are employed to contain charged particles, typically using flat, modified flat and harmonic potential wells. Ion cloud oscillation frequencies are obtained experimentally by amplification of signals induced on the electrodes by the particle motions. XOOPIC simulations show that for given electrode voltage configurations, the calculated charged particle oscillation frequencies are close to experimental measurements. As a two-dimensional axisymmetric code, XOOPIC cannot model azimuthal plasma variations, such as those induced by radio-frequency (RF) modulation of the central quadrupole electrode in experiments designed to enhance ion cloud containment. However, XOOPIC can model analytically varying electric potential boundary conditions and particle velocity initial conditions. Application of these conditions produces ion cloud axial and radial oscillation frequency modes of interest in achieving the goal of optimizing HiPAT for reliable containment of antiprotons.

  17. MARINE MAMMAL SCIENCE, 26(4): 9971001 (October 2010) C 2010 by the Society for Marine Mammalogy

    E-print Network

    Reichmuth, Colleen

    Memories MARINE MAMMAL SCIENCE, 26(4): 997­1001 (October 2010) C 2010 by the Society for Marine of the Society for Marine Mammalogy Ronald J. Schusterman had a passion for living and a passion for science. It is hard to think about the Society for Marine Mammalogy and its beginnings and development without

  18. MARINE MAMMAL SCIENCE, 26(3): 733743 (July 2010) C 2010 by the Society for Marine Mammalogy

    E-print Network

    Fish, Frank

    MARINE MAMMAL SCIENCE, 26(3): 733­743 (July 2010) C 2010 by the Society for Marine Mammalogy DOI of Marine Biology and Wildlife and Fisheries Sciences, Texas A&M University, 5007 Avenue U, Galveston, Texas. The secondarily aquatic lifestyle required marine mammals to develop novel sensory modalities to operate in water

  19. The study and development of an active scattering particle size spectrometer for space environments

    NASA Technical Reports Server (NTRS)

    Knollenberg, R. G.

    1972-01-01

    The work is reported on laser operation in a vacuum, and the theoretical response of active scattering particle spectrometers (ASPS). The theoretical considerations connected with the thermal, interferometric and electrical problems that influence laser operation under vacuum conditions are discussed along with the scattering signal pulses with high frequency ripple content which were observed while operating the ASPS.

  20. Primary particle size distribution of eroded material affected by degree of aggregate slaking and seal development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Primary particle size distribution (PSD) of eroded sediments can be used to estimate potential nutrient losses from soil and pollution hazards to the environment. We studied eroded sediment PSDs from three saturated soils, packed in trays (20 x 40 x 4 cm), that had undergone either minimal aggregate...

  1. Marine Trades.

    ERIC Educational Resources Information Center

    Abbott, Alan

    This curriculum guide provides materials for a competency-based course in marine trades at the secondary level. The curriculum design uses the curriculum infused model for the teaching of basic skills as part of vocational education and demonstrates the relationship of vocationally related skills to communication, mathematics, and science…

  2. Marine Mammals.

    ERIC Educational Resources Information Center

    Meith, Nikki

    Marine mammals have not only fascinated and inspired human beings for thousands of years, but they also support a big business by providing flesh for sea-borne factories, sustaining Arctic lifestyles and traditions, and attracting tourists to ocean aquaria. While they are being harpooned, bludgeoned, shot, netted, and trained to jump through…

  3. Development of a Rhesus Monkey Lung Geometry Model and Application to Particle Deposition in Comparison to Humans

    SciTech Connect

    Asgharian, Bahman; Price, Owen; McClellan, Gene; Corley, Richard A.; Einstein, Daniel R.; Jacob, Rick E.; Harkema, Jack R.; Carey, Stephen A.; Schelegle, Edward; Hyde, D.; Kimbell, Julia; Miller, Frederick J.

    2012-11-01

    The exposure-dose-response characterization of an inhalation hazard established in an animal species needs to be translated to an equivalent characterization in humans relative to comparable doses or exposure scenarios. Here, the first geometry model of the conducting airways for rhesus monkeys is developed based upon CT images of the conducting airways of a 6-month-old male, rhesus monkey. An algorithm was developed for adding the alveolar region airways using published rhesus morphometric data. The resultant lung geometry model can be used in mechanistic particle or gaseous dosimetry models. Such dosimetry models require estimates of the upper respiratory tract volume of the animal and the functional residual capacity, as well as of the tidal volume and breathing frequency of the animal. The relationship of these variables to rhesus monkeys of differing body weights was established by synthesizing and modeling published data as well as modeling pulmonary function measurements on 121 rhesus control animals. Deposition patterns of particles up to 10 ?m in size were examined for endotracheal and and up to 5 ?m for spontaneous breathing in infant and young adult monkeys and compared to those for humans. Deposition fraction of respirable size particles was found to be higher in the conducting airways of infant and young adult rhesus monkeys compared to humans. Due to the filtering effect of the conducting airways, pulmonary deposition in rhesus monkeys was lower than that in humans. Future research areas are identified that would either allow replacing assumptions or improving the newly developed lung model.

  4. Development and calibration of differential mobility analyzer for 20 to 80 nm particles under low pressure conditions.

    PubMed

    Mun, Ji Hun; Cho, Dae Guen; Kim, Young Jin; Choi, Jae Boong; Kang, Sang Woo; Yun, Ju Young; Shin, Yong Hyeon; Kim, Tae Sung

    2011-07-01

    The vienna-type differential mobility analyzer (DMA) was developed for the measurement of wide-range nm-sized particles under low-pressure conditions (2.9-8 kPa) with the faraday cup electrometer (FCE). The length, inner and outer diameter of DMA are calculated as a function of flow rate, applied voltage, pressure, and particle diameter to avoide breakdown in DMA. The algorithm for the diffusion transfer function of the DMA was successfully developed and verified by comparing the numerical and experimental results. The DMA was calibrated via the tandem DMA (TDMA) method which using two DMA in parallel. The inversion algorithm was applied to the size distribution obtained from the current of the FCE. The calibration experiment was performed with 1% NaCl particles under atmospheric and low-pressure conditions. The calibration result showed that the development of the DMA was successful as it was able to measure 20- to 80-nm paricles under low-pressure conditions with various flow rates (0.1-0.5 l/min). PMID:22121701

  5. Aeolian particles in marine cores as a tool for quantitative high-resolution reconstruction of upwelling favorable winds along coastal Atacama Desert, Northern Chile

    NASA Astrophysics Data System (ADS)

    Flores-Aqueveque, Valentina; Alfaro, Stéphane; Vargas, Gabriel; Rutllant, José A.; Caquineau, Sandrine

    2015-05-01

    Upwelling areas play a major role in ocean biogeochemical cycles and ultimately in global climate, especially in higly productive regions as the South Eastern Pacific. This work is based on the analysis of the aeolian lithic particles accumulated in laminated sediments off Mejillones (23°S) in the eastern boundary Humboldt Current System. It proposes a high-resolution quantitative reconstruction of the upwelling-favorable southerly wind strength in the past ?250 years, comparing its variability with changes in organic carbon export/preserved changes to the sea bottom. The increase of the intensity and variability in fluxes of particles larger than 35 ?m and 100 ?m since the second half of the 19th century and during the 20th century confirms a general strengthening of southerly winds in the region. Spectral analysis on the complete time-series of yearly depositional fluxes indicates that sedimentary variability can be explained by a combination of interannual (ENSO) to decadal (PDO) oscillations similar to the ones yielded by the analysis of the Interdecadal Pacific Oscillation index. However, when applied separately to the lithic fluxes of the first and last centuries of the time-series, the method shows that relative to the one of the interannual mode of variability, the influence of the decadal mode has increased in the recent period. Based on the presence/absence of particles with sizes larger than 35/100 ?m, each year of the time series is classified as a 'Low wind' (<6 m/s), 'Intermediate wind' (6-8 m/s), or 'Strong wind' (10 to >12 m/s) year. From the AD 1754-1820 period to the AD 1878-1998 one, the proportion of Low and Intermediate wind years decreased from 12% and 74% to 3% and 68%, respectively, whereas the proportion of strong wind years increased from 14% to 29%. For these periods the mean organic carbon also increased 22%, stating the strong relation between export/preservation productivity rate and southerly wind intensity. In the recent period (from AD 1950 on) for which the Oceanic Niño Index is available, the strong wind years (AD 1982, 1983, 1994, and 1997) correspond to large values of this index, suggesting that constructive interferences that result from the interplay between interannual and decadal oscillations modes might explain in part the reinforcement of the winds along the North Chilean coast.

  6. Mapping Habitats and Developing Baselines in Offshore Marine Reserves with Little Prior Knowledge: A Critical Evaluation of a New Approach.

    PubMed

    Lawrence, Emma; Hayes, Keith R; Lucieer, Vanessa L; Nichol, Scott L; Dambacher, Jeffrey M; Hill, Nicole A; Barrett, Neville; Kool, Johnathan; Siwabessy, Justy

    2015-01-01

    The recently declared Australian Commonwealth Marine Reserve (CMR) Network covers a total of 3.1 million km2 of continental shelf, slope, and abyssal habitat. Managing and conserving the biodiversity values within this network requires knowledge of the physical and biological assets that lie within its boundaries. Unfortunately very little is known about the habitats and biological assemblages of the continental shelf within the network, where diversity is richest and anthropogenic pressures are greatest. Effective management of the CMR estate into the future requires this knowledge gap to be filled efficiently and quantitatively. The challenge is particularly great for the shelf as multibeam echosounder (MBES) mapping, a key tool for identifying and quantifying habitat distribution, is time consuming in shallow depths, so full coverage mapping of the CMR shelf assets is unrealistic in the medium-term. Here we report on the results of a study undertaken in the Flinders Commonwealth Marine Reserve (southeast Australia) designed to test the benefits of two approaches to characterising shelf habitats: (i) MBES mapping of a continuous (~30 km2) area selected on the basis of its potential to include a range of seabed habitats that are potentially representative of the wider area, versus; (ii) a novel approach that uses targeted mapping of a greater number of smaller, but spatially balanced, locations using a Generalized Random Tessellation Stratified sample design. We present the first quantitative estimates of habitat type and sessile biological communities on the shelf of the Flinders reserve, the former based on three MBES analysis techniques. We contrast the quality of information that both survey approaches offer in combination with the three MBES analysis methods. The GRTS approach enables design based estimates of habitat types and sessile communities and also identifies potential biodiversity hotspots in the northwest corner of the reserve's IUCN zone IV, and in locations close to shelf incising canyon heads. Design based estimates of habitats, however, vary substantially depending on the MBES analysis technique, highlighting the challenging nature of the reserve's low profile reefs, and improvements that are needed when acquiring MBES data for small GRTS locations. We conclude that the two survey approaches are complementary and both have their place in a successful and flexible monitoring strategy; the emphasis on one method over the other should be considered on a case by case basis, taking into account the survey objectives and limitations imposed by the type of vessel, time available, size and location of the region where knowledge is required. PMID:26496507

  7. Mapping Habitats and Developing Baselines in Offshore Marine Reserves with Little Prior Knowledge: A Critical Evaluation of a New Approach

    PubMed Central

    Lawrence, Emma; Hayes, Keith R.; Lucieer, Vanessa L.; Nichol, Scott L.; Dambacher, Jeffrey M.; Hill, Nicole A.; Barrett, Neville; Kool, Johnathan; Siwabessy, Justy

    2015-01-01

    The recently declared Australian Commonwealth Marine Reserve (CMR) Network covers a total of 3.1 million km2 of continental shelf, slope, and abyssal habitat. Managing and conserving the biodiversity values within this network requires knowledge of the physical and biological assets that lie within its boundaries. Unfortunately very little is known about the habitats and biological assemblages of the continental shelf within the network, where diversity is richest and anthropogenic pressures are greatest. Effective management of the CMR estate into the future requires this knowledge gap to be filled efficiently and quantitatively. The challenge is particularly great for the shelf as multibeam echosounder (MBES) mapping, a key tool for identifying and quantifying habitat distribution, is time consuming in shallow depths, so full coverage mapping of the CMR shelf assets is unrealistic in the medium-term. Here we report on the results of a study undertaken in the Flinders Commonwealth Marine Reserve (southeast Australia) designed to test the benefits of two approaches to characterising shelf habitats: (i) MBES mapping of a continuous (~30 km2) area selected on the basis of its potential to include a range of seabed habitats that are potentially representative of the wider area, versus; (ii) a novel approach that uses targeted mapping of a greater number of smaller, but spatially balanced, locations using a Generalized Random Tessellation Stratified sample design. We present the first quantitative estimates of habitat type and sessile biological communities on the shelf of the Flinders reserve, the former based on three MBES analysis techniques. We contrast the quality of information that both survey approaches offer in combination with the three MBES analysis methods. The GRTS approach enables design based estimates of habitat types and sessile communities and also identifies potential biodiversity hotspots in the northwest corner of the reserve’s IUCN zone IV, and in locations close to shelf incising canyon heads. Design based estimates of habitats, however, vary substantially depending on the MBES analysis technique, highlighting the challenging nature of the reserve’s low profile reefs, and improvements that are needed when acquiring MBES data for small GRTS locations. We conclude that the two survey approaches are complementary and both have their place in a successful and flexible monitoring strategy; the emphasis on one method over the other should be considered on a case by case basis, taking into account the survey objectives and limitations imposed by the type of vessel, time available, size and location of the region where knowledge is required. PMID:26496507

  8. MARINE GEOPHYSICS New global marine gravity model

    E-print Network

    Sandwell, David T.

    MARINE GEOPHYSICS New global marine gravity model from CryoSat-2 and Jason-1 reveals buried a global marine gravity model that is two times more accurate than previous models. We found an extinct marine gravity models derived from satel- lite altimetry had sufficient accuracy and coverage to map all

  9. Effects of Nanosized Lithium Carbonate Particles on the Functional Activity of Macrophages During Development of Hepatocarcinoma 29.

    PubMed

    Konenkov, V I; Borodin, Yu I; Makarova, O P; Bgatova, N P; Rachkovskaya, L N

    2015-08-01

    The functional activity of macrophages in response to injection of nanosized lithium carbonate particles after initiation of hepatocarcinoma 29 in male CBA mice was evaluated by the production of NO, arginase activity, and absorption of zymosan granules. In intact animals, NO production by peritoneal macrophages increased by 4 times and arginase activity 3.1 times in response to a single injection of nanosized particles into the hip muscle. The level of NO production by macrophages remained high after 4 and 5 injections, while arginase activity returned to normal. The level of phagocytic peritoneal macrophages increased by 1.4 times after 5 injections of the particles. The level of NO production by macrophages gradually increased in animals with hepatocarcinoma developing in the hip muscle: by 1.6 times on day 3, 3.2 times on day 7, and by 2.6 times on day 13 in comparison with the corresponding parameters in intact animals. The increase of NO production by peritoneal macrophages after tumor process initiation was not paralleled by changes in arginase activity and absorption of zymosan granules. The results indicated that injection of nanosized lithium carbonate particles after inoculation of hepatocarcinoma 29 cells in the right hip muscle tissue was inessential for the function of peritoneal macrophages by the studied parameters. PMID:26388569

  10. Developing new optical imaging techniques for single particle and molecule tracking in live cells

    SciTech Connect

    Sun, Wei

    2010-12-15

    Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian cells. New rotational information was obtained: (1) during endocytosis, cargoes lost their rotation freedom at the late stage of internalization; (2) cargoes performed train-like motion when they were transported along the microtubule network by motor proteins inside live cells; (3) During the pause stage of fast axonal transport, cargoes were still bound to the microtubule tracks by motor proteins. Total internal reflection fluorescence microscopy (TIRFM) is another non-invasive and far-field optical imaging technique. Because of its near-field illumination mechanism, TIRFM has better axial resolution than epi-fluorescence microscopy and confocal microscopy. In this work, an auto-calibrated, prism type, angle-scanning TIRFM instrument was built. The incident angle can range from subcritical angles to nearly 90{sup o}, with an angle interval less than 0.2{sup o}. The angle precision of the new instrument was demonstrated through the finding of the surface plasmon resonance (SPR) angle of metal film coated glass slide. The new instrument improved significantly the precision in determining the axial position. As a result, the best obtained axial resolution was {approx} 8 nm, which is better than current existing instruments similar in function. The instrument was further modified to function as a pseudo TIRF microscope. The illumination depth can be controlled by changing the incident angle of the excitation laser beam or adjusting the horizontal position of the illumination laser spot on the prism top surface. With the new technique, i.e., variable-illumination-depth pseudo TIRF microscopy, the whole cell body from bottom to top was scanned.

  11. Dining Dovekies Demand, "When, Where and What's for Dinner?" The Impact of Seasonal Changes in Snow Melt and the Development of the Arctic Marine Food Web on Seabirds.

    NASA Astrophysics Data System (ADS)

    Karnovsky, N. J.; Harding, A.; Welcker, J.; Brown, Z. W.; Kitaysky, A.; Kwasniewski, S.; Walkusz, W.; Gremillet, D.

    2011-12-01

    The Atlantic sector of the Arctic is undergoing widespread climate change with increases in air and sea temperatures which impact the timing of ice retreat, snow melt and the development of the marine food web. Dovekies (Alle alle) are small seabirds that migrate to the Atlantic Sector of the Arctic to feed in ice free waters that have abundant lipid-rich zooplankton. In the Greenland Sea, the dovekies are largely dependent on the advection of Calanus copepods into the area. We hypothesized that dovekies breeding adjacent to water masses which bring smaller, less energy-rich prey into the region (Calanus finmarchicus), work harder to find food and have higher stress levels. We tested this hypothesis by attaching time-depth recorders to provisioning dovekies at three colonies adjacent to different water masses (the West Spistbergen Current, the East Greenland Current, and the Sorkapp Current). We determined the length of time dovekies at different colonies spent at-sea collecting food for themselves and their chicks. We measured circulating corticosteroid hormone levels in their blood to assess stress levels. We collected chick meals to determine the energetic content of prey fed chicks at the different colonies. We found that dovekies are sensitive to the quality of prey available to them. Dovekies exposed to less profitable prey made longer foraging trips and worked harder while at-sea to collect prey for themselves and their chicks. Furthermore, over the past 50 years, dovekies breeding along the western shores of Spitsbergen have initiated breeding earlier in spring as their nest sites have become snow-free at earlier dates. We evaluate the impact of earlier breeding and the timing of the development of the marine food web within different currents which advect and/or support Calanus copepods into the Greenland Sea. Future possible declines in dovekies may impact terrestrial food webs which are highly influenced by the annual input of nitrogen rich guano on the tundra adjacent to dovekie breeding colonies.

  12. Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels (I-NERI Annual Report)

    SciTech Connect

    Petti, David Andrew; Maki, John Thomas; Languille, Alain; Martin, Philippe; Ballinger, Ronald

    2002-11-01

    The objective of this INERI project is to develop improved fuel behavior models for gas reactor coated particle fuels and to develop improved coated-particle fuel designs that can be used reliably at very high burnups and potentially in fast gas-cooled reactors. Thermomechanical, thermophysical, and physiochemical material properties data were compiled by both the US and the French and preliminary assessments conducted. Comparison between U.S. and European data revealed many similarities and a few important differences. In all cases, the data needed for accurate fuel performance modeling of coated particle fuel at high burnup were lacking. The development of the INEEL fuel performance model, PARFUME, continued from earlier efforts. The statistical model being used to simulate the detailed finite element calculations is being upgraded and improved to allow for changes in fuel design attributes (e.g. thickness of layers, dimensions of kernel) as well as changes in important material properties to increase the flexibility of the code. In addition, modeling of other potentially important failure modes such as debonding and asphericity was started. A paper on the status of the model was presented at the HTR-2002 meeting in Petten, Netherlands in April 2002, and a paper on the statistical method was submitted to the Journal of Nuclear Material in September 2002. Benchmarking of the model against Japanese and an older DRAGON irradiation are planned. Preliminary calculations of the stresses in a coated particle have been calculated by the CEA using the ATLAS finite element model. This model and the material properties and constitutive relationships will be incorporated into a more general software platform termed Pleiades. Pleiades will be able to analyze different fuel forms at different scales (from particle to fuel body) and also handle the statistical variability in coated particle fuel. Diffusion couple experiments to study Ag and Pd transport through SiC were conducted. Analysis and characterization of the samples continues. Two active transport mechanisms are proposed: diffusion in SiC and release through SiC cracks or another, as yet undetermined, path. Silver concentration profiles determined by XPS analysis suggest diffusion within the SiC layer, most likely dominated by grain boundary diffusion. However, diffusion coefficients calculated from mass loss measurements suggest a much faster release path, postulated as small cracks or flaws that provide open paths with little resistance to silver migration. Work is ongoing to identify and characterize this path. Work on Pd behavior has begun and will continue next year.

  13. Programmably structured plasma waveguide for development of table-top photon and particle sources

    SciTech Connect

    Hung, T.-S.; Ho, Y.-C.; Wong, S.-J.; Chen, S.-Y.; Chang, Y.-L.; Chu, H.-H.; Lin, J.-Y.; Wang, J.

    2012-06-15

    Programmable fabrication of longitudinal spatial structures in an optically preformed plasma waveguide in a gas jet was achieved, by using laser machining with a liquid-crystal spatial light modulator as the pattern mask. Fabrication of periodic structures with a minimal period of 200 {mu}m and density-ramp structures with a minimal slope length of 100 {mu}m was attained. The technique is useful for the optimization of various laser-plasma-based photon and particle sources.

  14. Development of improved LACV-30 propeller blade coatings for protection against sand and rain erosion and marine environment corrosion

    NASA Astrophysics Data System (ADS)

    Malone, G. A.

    1983-05-01

    An investigation was conducted of candidate systems offering potential erosion and corrsion protection when applied as coatings to Aluminum 7075 alloy propeller blades used to propel air cushioned vehicles operating in severe environments such as offshore and marine beach logistics missions. Blade lifespans are significantly abbreviated by erosion from sand and water impingement. This work focused on special hard anodized and hard nickel electroplated coatings as candidate protective systems with sand/rain erosion testing to evaluate their merits. Results indicated that anodized coatings did not provide suitable erosion protection to Aluminum 7075 in sand/rain environments, even with dry film lubricant supplemental films. Electroplated hard nickel coatings, Vickers hardnesses in the range of 380 to 440, appeared better for combined sand/rain erosion resistance based on comparisons with prior work. Dilute phosphoric anodizing the aluminum substrates led to excellent bonds and improved corrosion resistance when subsequently plated with ductile nickel from a low pH bath, followed by hard nickel electroplate. Electrodeposited sacrificial corrosion coatings degraded the overall coating bond integrity.

  15. Integrated conservation and development: evaluating a community-based marine protected area project for equality of socioeconomic impacts.

    PubMed

    Gurney, Georgina G; Pressey, Robert L; Cinner, Joshua E; Pollnac, Richard; Campbell, Stuart J

    2015-11-01

    Despite the prevalence of protected areas, evidence of their impacts on people is weak and remains hotly contested in conservation policy. A key question in this debate is whether socioeconomic impacts vary according to social subgroup. Given that social inequity can create conflict and impede poverty reduction, understanding how protected areas differentially affect people is critical to designing them to achieve social and biological goals. Understanding heterogeneous responses to protected areas can improve targeting of management activities and help elucidate the pathways through which impacts of protected areas occur. Here, we assessed whether the socioeconomic impacts of marine protected areas (MPAs)-designed to achieve goals for both conservation and poverty alleviation-differed according to age, gender or religion in associated villages in North Sulawesi, Indonesia. Using data from pre-, mid- and post-implementation of the MPAs for control and project villages, we found little empirical evidence that impacts on five key socioeconomic indicators related to poverty differed according to social subgroup. We found suggestive empirical evidence that the effect of the MPAs on environmental knowledge differed by age and religion; over the medium and long terms, younger people and Muslims showed greater improvements compared with older people and Christians, respectively. PMID:26460130

  16. Exploring marine resources for bioactive compounds.

    PubMed

    Kiuru, Paula; D?Auria, M Valeria; Muller, Christian D; Tammela, Päivi; Vuorela, Heikki; Yli-Kauhaluoma, Jari

    2014-09-01

    Biodiversity in the seas is only partly explored, although marine organisms are excellent sources for many industrial products. Through close co-operation between industrial and academic partners, it is possible to successfully collect, isolate and classify marine organisms, such as bacteria, fungi, micro- and macroalgae, cyanobacteria, and marine invertebrates from the oceans and seas globally. Extracts and purified compounds of these organisms can be studied for several therapeutically and industrially significant biological activities, including anticancer, anti-inflammatory, antiviral, antibacterial, and anticoagulant activities by applying a wide variety of screening tools, as well as for ion channel/receptor modulation and plant growth regulation. Chromatographic isolation of bioactive compounds will be followed by structural determination. Sustainable cultivation methods for promising organisms and biotechnological processes for selected compounds can be developed, as well as biosensors for monitoring the target compounds. The (semi)synthetic modification of marine-based bioactive compounds produces their new derivatives, structural analogs and mimetics that could serve as hit or lead compounds and be used to expand compound libraries based on marine natural products. The research innovations can be targeted for industrial product development in order to improve the growth and productivity of marine biotechnology. Marine research aims at a better understanding of environmentally conscious sourcing of marine biotechnology products and increased public awareness of marine biodiversity. Marine research is expected to offer novel marine-based lead compounds for industries and strengthen their product portfolios related to pharmaceutical, nutraceutical, cosmetic, agrochemical, food processing, material and biosensor applications. PMID:25203732

  17. Simultaneous 3D measurement of the translation and rotation of finite size particles and the flow field in a fully developed turbulent water flow

    NASA Astrophysics Data System (ADS)

    Gibert, Mathieu; Klein, Simon; Bodenschatz, Eberhard

    2012-11-01

    We report a novel experimental technique that measures simultaneously in three dimensions the trajectories, the translation, and the rotation of finite size inertial particles together with the turbulent flow. The flow field is analyzed by tracking the temporal evolution of small fluorescent tracer particles. The inertial particles consist of a super-absorbent polymer that renders them index and density matched with water and thus invisible. The particles are marked by inserting at various locations tracer particles into the polymer. Translation and rotation, as well as the flow field around the particle are recovered dynamically from the analysis of the marker and tracer particle trajectories. We apply this technique to study the dynamics of inertial particles much larger in size (Rp / ? ~ 100) than the Kolmogorov length scale ? in a von Kármán swirling water flow (R? ~ 400). We show, using the mixed (particle/fluid) Eulerian second order velocity structure function, that the interaction zone between the particle and the flow develops in a spherical shell of width 2Rp around the particle of radius Rp. This we interpret as an indication of a wake induced by the particle. (http://arxiv.org/abs/1205.2181) This work was funded generously by the Max Planck Society and the Marie Curie Fellowship, Program PEOPLE - Call FP7-PEOPLE-IEF-2008 Proposal No 237521. Support from COST Action MP0806 is kindly acknowledged.

  18. Marine Cloud Brightening

    SciTech Connect

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  19. Research, design and development activities on high power pulsed rf/microwave systems and test facilities for particle accelerators

    SciTech Connect

    Shrivastava, Purushottam; Wanmode, Y.D.; Baxy, D.; Rajput, V.; Mohania, P.; Mahawar, A.; Acharya, M.; Mulchandani, J.; Singh, H.G.

    2011-07-01

    Several high power S Band microwave systems in the peak power range from 2 MW to 6.5 MW and mean power upto 25 kW along with associated waveguide components, pulse power technology were developed in house at RRCAT. These systems have been used extensively in the development of particle accelerators in the country. Several test facilities were developed in house and supplied to tube R and D labs for development, conditioning and evaluation of microwave tubes indigenously under collaborative efforts. RRCAT has also taken up establishing high power test facilities for advanced accelerators. For such used design and development of 45 MW peak power S Band test facility as well as energy doubler scheme is underway. A 1.3 MW pulsed test stand at 352.2 MHz was also successfully designed and developed to qualify devices, subsystems and components developed in-house. The present paper will describe the research, design and development efforts towards the high power pulsed RF/Microwave systems, test facilities and components. The results and performance of these developments are reported. (author)

  20. Is marine biodiversity at risk

    SciTech Connect

    Culotta, E.

    1994-02-18

    Evidence is beginning to accumulate that human development of coastlines and overfishing may be having deleterious effects on marine biodiversity. Although some biologists doubt marine extinctions, the possibility is being taken seriously by scientific organizations, who have been sponsoring conferences and workshops on the changing diversity of the oceans. Four federal agencies (NSF, NOAA, the Office of Naval Research, and DOE) have banded together to sponsor a National Research Council initiative to chart a research agenda.

  1. Development and application of tools for Monte Carlo based simulations in a particle beam radiotherapy facility.

    PubMed

    Tessonnier, T; Mairani, A; Cappucci, F; Mirandola, A; Vilches Freixas, G; Molinelli, S; Donetti, M; Ciocca, M

    2014-01-01

    The integration of Monte Carlo (MC) transport codes into a particle therapy facility could be more easily achieved thanks to dedicated software tools. MC approach has been applied to several purposes at CNAO (Centro Nazionale di Adroterapia Oncologica), such as database generation for the treatment planning system, quality assurance calculations and biologically related simulations. In this paper we describe another application of the MC code and its tools by analyzing the impact of the dose delivery and range uncertainties on patient dose distributions. PMID:23352574

  2. Particle astrophysics

    NASA Technical Reports Server (NTRS)

    Sadoulet, Bernard; Cronin, James; Aprile, Elena; Barish, Barry C.; Beier, Eugene W.; Brandenberger, Robert; Cabrera, Blas; Caldwell, David; Cassiday, George; Cline, David B.

    1991-01-01

    The following scientific areas are reviewed: (1) cosmology and particle physics (particle physics and the early universe, dark matter, and other relics); (2) stellar physics and particles (solar neutrinos, supernovae, and unconventional particle physics); (3) high energy gamma ray and neutrino astronomy; (4) cosmic rays (space and ground observations). Highest scientific priorities for the next decade include implementation of the current program, new initiatives, and longer-term programs. Essential technological developments, such as cryogenic detectors of particles, new solar neutrino techniques, and new extensive air shower detectors, are discussed. Also a certain number of institutional issues (the funding of particle astrophysics, recommended funding mechanisms, recommended facilities, international collaborations, and education and technology) which will become critical in the coming decade are presented.

  3. Particle therapy

    SciTech Connect

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  4. ANALYSIS AND MODELING OF TARGET SITE DOSE OF HETEROGENEOUS AMBIENT PARTICLES: DEVELOPMENT OF COMPREHENSIVE MATHEMATICAL MODELS FOR RESPIRATORY DEPOSITION OF INHALED PARTICLES

    EPA Science Inventory

    Ambient PM is composed of various particles with different sizes and chemical components. Although health effects of PM appear to be different for different size particles, it is not clear what size fractions are more potent in causing health effects or if such a distinction is c...

  5. Development of an expert system for automatic mesh generation for S(N) particle transport method in parallel environment

    NASA Astrophysics Data System (ADS)

    Patchimpattapong, Apisit

    This dissertation develops an expert system for generating an effective spatial mesh distribution for the discrete ordinates particle transport method in a parallel environment. This expert system consists of two main parts: (1) an algorithm for generating an effective mesh distribution in a serial environment, and (2) an algorithm for inference of an effective domain decomposition strategy for parallel computing. The mesh generation algorithm consists of four steps: creation of a geometric model as partitioned into coarse meshes, determination of an approximate flux shape, selection of appropriate differencing schemes, and generation of an effective fine mesh distribution. A geometric model was created using AutoCAD. A parallel code PENFC (Parallel Environment Neutral-Particle First Collision) has been developed to calculate an uncollided flux in a 3-D Cartesian geometry. The appropriate differencing schemes were selected based on the uncollided flux distribution using a least squares methodology. A menu-driven serial code PENXMSH has been developed to generate an effective spatial mesh distribution that preserves problem geometry and physics. The domain decomposition selection process involves evaluation of the four factors that affect parallel performance, which include number of processors and memory available per processor, load balance, granularity, and degree-of-coupling among processors. These factors are used to derive a parallel-performance-index that provides expected performance of a parallel algorithm depending on computing environment and resources. A large index indicates a high granularity algorithm with relatively low coupling among processors. This expert system has been successfully tested within the PENTRAN (Parallel Environment Neutral-Particle Transport) code system for simulating real-life shielding problems: the VENUS-3 experimental facility and the BWR core shroud.

  6. Formulation and development of bicontinuous nanostructured liquid crystalline particles of efavirenz.

    PubMed

    Avachat, Amelia M; Parpani, Shreekrishna S

    2015-02-01

    Efavirenz is a lipophilic non-nucleoside reverse transcriptase inhibitor used in the first-line pediatric therapeutic cocktail. Due to its high lipophilicity (logP = 5.4) and poor aqueous solubility (intrinsic water solubility = 8.3 ?g/mL) efavirenz has low bioavailability. A 30 mg/mL solution in a medium-chain triglyceride vehicle is the only pediatric formulation available with an oral bioavailability 20% lower than the solid form. The current work was aimed at formulating and characterizing liquid crystal nanoparticles for oral delivery of efavirenz to improve oral bioavailability, provide sustained release, minimize side effects and drug resistance. Formulation of cubosomes was done by two methods; sonication and spray drying. Sonication gave highest entrapment efficiency and least particle size. Further, monoolein was substituted with phytantriol as monoolein gets degraded in the presence of lipase when administered orally with consequent loss of liquid crystalline structure. It was confirmed that there was no difference in particle size, entrapment efficiency and nature of product formed by using monoolein or phytantriol. The best formulation was found to be F9, having particle size 104.19 ± 0.21 nm and entrapment efficiency 91.40 ± 0.10%. In vitro release at the end of 12h was found to be 56.45% and zeta potential to be -23.14 mV which stabilized the cubic phase dispersions. It was further characterized for TEM, small angle X-ray scattering (SAXS), DSC and stability studies. SAXS revealed Pn3m space group, indicating a diamond cubic phase which was further confirmed by TEM. Pharmacokinetics of EFV was studied in male Wistar rats. EFV-loaded cubosome dispersions exhibited 1.93 and 1.62-fold increase in peak plasma concentration (Cmax) and 1.48 and 1.42-fold increase in AUC in comparison to that of a suspension prepared with the contents of EFV capsules suspended in 1.5% carboxymethylcellulose PBS solution (pH 5.0), and an EFV solution in medium-chain triglyceride respectively. Thus, stable cubosomes of efavirenz with increased bioavailability providing sustained release effect could be prepared successfully using phytantriol and poloxamer 407. PMID:25543986

  7. PROGRAM TO DEVELOP ENGINEERING DATA FOR FABRIC FILTRATION WITH INTEGRAL PARTICLE CHARGING AND COLLECTION IN A COMBINED ELECTRIC AND FLOW FIELD

    EPA Science Inventory

    The paper discusses an EPA program to develop engineering data for the application of electrostatics to fabric filtration in the form of integral particle charging and collection in a combined electric and flow field, which causes particle deposition to be dominated by electrosta...

  8. Development of a new rectangular NaI(Tl) scintillator and spectroscopy of low-energy charged particles

    SciTech Connect

    Nakamura, Hidehito; Kitamura, Hisashi; Hazama, Ryuta

    2010-01-15

    Standard NaI(Tl) scintillators have only one optical window and are housed in airtight protective enclosures to protect against hygroscopicity from moisture in the air. For these reasons, NaI(Tl) scintillators are unsuitable for the collection of scintillation photons or for the detection of low-energy (<1 MeV) charged particles. To overcome these disadvantages, a rectangular NaI(Tl) scintillator has been newly developed. In this paper, we estimate the photon response of this new scintillator. The energy resolution was {Delta}E (Full Width at Half Maximum)=7.5{+-}0.2% for 662 keV gamma rays from a {sup 137}Cs standard source. The number of photoelectrons was 3,686 for the photoelectric peak. Good energy resolution and photon collection were therefore confirmed for this specialized form of NaI(Tl) scintillator. The ability of this scintillator to detect low-energy particles was confirmed by successful measurement of low-energy charged particles (250-700 keV region) from a {sup 137}Cs thin film radioisotope source.

  9. Marine Conservation Resource overexploitation

    E-print Network

    Marine Conservation · Overview · Resource overexploitation % Impacts on target spp % Impacts on non'target spp, % Impacts on community/ecosystem % Marine protected areas Friday: · Global climate change · Invasive species · Solutions · Study Guide: Monday !" April · Discussion: Wednesday# !$ April % Marine

  10. Development of a scintillation-fiber detector for real-time particle tracking

    NASA Astrophysics Data System (ADS)

    Lo Presti, D.; Bonanno, D. L.; Longhitano, F.; Pugliatti, C.; Russo, G. V.; Aiello, S.; Cirrone, G. A. P.; Giordano, V.; Leonora, E.; Randazzo, N.; Romano, F.; Russo, M.; Sipala, V.; Stancampiano, C.; Reito, S.

    2013-04-01

    The prototype of the OFFSET (Optical Fiber Folded Scintillating Extended Tracker) tracker is presented. It exploits a novel system for particle tracking, designed to achieve real-time imaging, large detection areas, and a high spatial resolution especially suitable for use in medical diagnostics. The main results regarding the system architecture have been used as a demonstration of the technique which has been patented by the Istituto Nazionale di Fisica Nucleare (INFN). The prototype of this tracker, presented in this paper, has a 20 × 20 cm2 sensitive area, consisting of two crossed ribbons of 500 micron square scintillating fibers. The track position information is extracted in real time in an innovative way, using a reduced number of read-out channels to obtain very large detection area with moderate enough costs and complexity. The performance of the tracker was investigated using beta sources, cosmic rays, and a 62 MeV proton beam.

  11. Development of CMC hydrogels loaded with silver nano-particles for medical applications.

    PubMed

    Hebeish, Ali; Hashem, M; El-Hady, M M Abd; Sharaf, S

    2013-01-30

    Innovative CMC-based hydrogels with great potentials for usage in medical area were principally synthesized as per two strategies .The first involved reaction of epichlorohydrin in alkaline medium containing silver nitrate to yield silver nano-particles (AgNPs)-loaded CMC hydrogel. While CMC acted as stabilizing for AgNPs, trisodium citrate was added to the reaction medium to assist CMC in establishing reduction of Ag(+) to AgNPs. The second strategy entailed preparation of CMC hydrogel which assists the in situ preparation of AgNPs under the same conditions. In both strategies, factors affecting the characterization of AgNPs-loaded CMC hydrogels were studied. Analysis and characterization of the so obtained hydrogels were performed through monitoring swelling behavior, FTIR spectroscopy, SEM, EDX, UV-vis spectrophotometer and TEM. Antimicrobial activity of the hydrogels was examined and mechanisms involved in their synthesis were reported. PMID:23218313

  12. Developments in accelerators and instrumentation relevant to imaging with charged particles and positron emitters

    SciTech Connect

    Alonso, J.R.

    1980-11-01

    In past years particle accelerators have become increasingly important tools for the advancement of medical science. From the pace of advancing technology and current directions in medical research, it is clear that this relationship between accelerators and medicine will only grow stronger in future years. In view of this importance, this relationship is investigated in some detail, with an eye not so much towards the medical uses of the beams produced, but more towards the technology associated with these accelerators and the criteria which make for successful incorporation of these machines into the clinical environment. In order to lay the necessary groundwork, the different kinds of accelerators found in medical use today are reviewed briefly discussing salient points of each.

  13. Assessing the short- and long-term effects of land development on watershed erosion and sediment delivery to marine ecosystems of the U.S. Virgin Islands

    NASA Astrophysics Data System (ADS)

    Ramos-Scharron, C. E.; Gray, S. C.; Sears, W.; Brooks, G.; Larson, R. A.

    2014-12-01

    Throughout history, significant portions of the native vegetation of many Caribbean islands were replaced by cropland. Even though most islands eventually underwent reforestation, sediment yields and deposition rates appear to be higher now than throughout the past millennia, and this suggests that coral reef systems are experiencing an unprecedented level of sediment-related stress. Given the present-day emphasis on erosion control projects to restore coral reefs of the US Caribbean, it is of utmost importance to develop a quantitative understanding of the effects of both land development and watershed restoration activities on sediment delivery at various spatio-temporal scales. Efforts to measure contemporary erosion, sediment delivery and deposition rates have been conducted on the island of St. John-USVI since 2009. Sediment yields under natural conditions from the small (<10 km2) watersheds in this dry sub-tropical setting are between 1 and 10 Mg km-2 yr-1. Current sediment yields are 2 - 50 times higher than background depending on unpaved road network abundance and characteristics. Our efforts indicate that a watershed restoration program implemented in 2010-2011 within the 13-km2 Coral Bay watershed resulted in the reduction of annual sediment delivery rates from 445 Mg yr-1 to 327 Mg yr-1. Marine sedimentation rates of terrigenous materials based on sediment trap data were 6 - 24 times greater below developed watersheds relative to undeveloped catchments and were consistent with spatial comparisons of modeled sediment yields. At sites located within reef systems, total and silt deposition rates during sampling periods with major storms exceeded rates shown to harm corals more frequently in developed areas. Terrigenous sedimentation rates during periods with equivalent storms were reduced following watershed restoration. These results suggest that targeted watershed restoration may be effective in reducing sedimentation where land development and sediments are considered a major threat to coral reefs.

  14. Nutraceutical and pharmacological implications of marine carbohydrates.

    PubMed

    Pallela, Ramjee

    2014-01-01

    Current day's research has been focusing much on the potential pharmacological or nutraceutical agents of selective health benefits with less toxicity. As a consequence of increased demand of nutritional supplements of great medicinal values, development of therapeutic agents from natural sources, in particular, marine environment are being considered much important. A diverse array of marine natural products containing medicinally useful nutritional substances, i.e., marine nutraceuticals have been focused to the benefit of mankind. Carbohydrates, by being constituted in considerable amount of many marine organisms display several nutraceutical and pharmaceutical behavior to defend from various diseases. Moreover, the carbohydrates from algae as well as from shellfish wastes, like chitosan and its derivatives, showed tremendous applications in biology and biomedicine. In the current chapter, several of marine carbohydrates from various marine flora and fauna have been covered with their applications and prospects in the development of nutraceuticals and pharmaceuticals. PMID:25300547

  15. Communicating marine reserve science to diverse audiences

    PubMed Central

    Grorud-Colvert, Kirsten; Lester, Sarah E.; Airamé, Satie; Neeley, Elizabeth; Gaines, Steven D.

    2010-01-01

    As human impacts cause ecosystem-wide changes in the oceans, the need to protect and restore marine resources has led to increasing calls for and establishment of marine reserves. Scientific information about marine reserves has multiplied over the last decade, providing useful knowledge about this tool for resource users, managers, policy makers, and the general public. This information must be conveyed to nonscientists in a nontechnical, credible, and neutral format, but most scientists are not trained to communicate in this style or to develop effective strategies for sharing their scientific knowledge. Here, we present a case study from California, in which communicating scientific information during the process to establish marine reserves in the Channel Islands and along the California mainland coast expanded into an international communication effort. We discuss how to develop a strategy for communicating marine reserve science to diverse audiences and highlight the influence that effective science communication can have in discussions about marine management. PMID:20427745

  16. Formation, reactivity, and aging of ferric oxide particles formed from Fe(II) and Fe(III) sources: Implications for iron bioavailability in the marine environment

    NASA Astrophysics Data System (ADS)

    Bligh, Mark W.; Waite, T. David

    2011-12-01

    Freshly formed amorphous ferric oxides (AFO) in the water column are potentially highly reactive, but with reactivity declining rapidly with age, and have the capacity to partake in reactions with dissolved species and to be a significant source of bioavailable iron. However, the controls on reactivity in aggregated oxides are not well understood. Additionally, the mechanism by which early rapid aging occurs is not clear. Aging is typically considered in terms of changes in crystallinity as the structure of an iron oxide becomes more stable and ordered with time thus leading to declining reactivity. However, there has been recognition of the role that aggregation can play in determining reactivity, although it has received limited attention. Here, we have formed AFO in seawater in the laboratory from either an Fe(II) or Fe(III) source to produce either AFO(II) or AFO(III). The changes in reactivity of these two oxides following formation was measured using both ligand-promoted dissolution (LPD) and reductive dissolution (RD). The structure of the two oxides was examined using light scattering and X-ray adsorption techniques. The dissolution rate of AFO(III) was greater than that of AFO(II), as measured by both dissolution techniques, and could be attributed to both the less ordered molecular structure and smaller primary particle size of AFO(III). From EXAFS analysis shortly (90 min) following formation, AFO(II) and AFO(III) were shown to have the same structure as aged lepidocrocite and ferrihydrite respectively. Both oxides displayed a rapid decrease in dissolution rate over the first hours following formation in a pattern that was very similar when normalised. The early establishment and little subsequent change of crystal structure for both oxides undermined the hypothesis that increasing crystallinity was responsible for early rapid aging. Also, an aging model describing this proposed process could only be fitted to the data with kinetic parameters that were inconsistent with such a mechanism. The similar aging patterns and existence of diffusion limited cluster aggregation (DLCA) suggested that loss of Fe centre accessibility due to aggregation is the likely cause of early rapid aging of AFO. A simple model describing the loss of surface area during the aggregate growth, measured using dynamic light scattering (DLS), produced aging patterns that matched the reactivity loss of AFO(III) measured using RD but not LPD. The difference between the two measures of dissolution rate could not be explained, but indicated that different measures of reactivity respond differentially to various parameters controlling reactivity. Analysis of aggregate structure using aggregation kinetics and static light scattering (SLS) suggested that restructuring during aggregation was occurring at an aggregate level for AFO(III), but only minimally so for AFO(II). While our investigations support the contention that aggregation is responsible for early rapid aging, the role of aggregate structure is remains unclear.

  17. Marine Peptides: Bioactivities and Applications

    PubMed Central

    Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho

    2015-01-01

    Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products. PMID:26132844

  18. 76 FR 20257 - Taking and Importing Marine Mammals; U.S. Navy's Research, Development, Test, and Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ...must identify, develop, and procure defense systems by continually integrating test and evaluation...is critical in determining that a defense system performs as expected and whether these systems are operationally effective, suitable,...

  19. Assessing the state of knowledge of utility-scale wind energy development and operation on non-volant terrestrial and marine wildlife

    USGS Publications Warehouse

    Lovich, Jeffrey E.; Ennen, Joshua R.

    2013-01-01

    A great deal has been published in the scientific literature regarding the effects of wind energy development and operation on volant (flying) wildlife including birds and bats, although knowledge of how to mitigate negative impacts is still imperfect. We reviewed the peer-reviewed scientific literature for information on the known and potential effects of utility-scale wind energy development and operation (USWEDO) on terrestrial and marine non-volant wildlife and found that very little has been published on the topic. Following a similar review for solar energy we identified known and potential effects due to construction and eventual decommissioning of wind energy facilities. Many of the effects are similar and include direct mortality, environmental impacts of destruction and modification of habitat including impacts of roads, and offsite impacts related to construction material acquisition, processing and transportation. Known and potential effects due to operation and maintenance of facilities include habitat fragmentation and barriers to gene flow, as well as effects due to noise, vibration and shadow flicker, electromagnetic field generation, macro- and micro-climate change, predator attraction, and increased fire risk. The scarcity of before-after-control-impact studies hinders the ability to rigorously quantify the effects of USWEDO on non-volant wildlife. We conclude that more empirical data are currently needed to fully assess the impact of USWEDO on non-volant wildlife.

  20. Measurements and determination of the marine coarse aerosol fluxes in near marine boundary layer.

    NASA Astrophysics Data System (ADS)

    Markuszewski, Piotr; Petelski, Tomasz; Zielinski, Tymon; Strzalkowska, Agata; Pakszys, Paulina; Makuch, Przemyslaw; Kowalczyk, Jakub

    2014-05-01

    Studies of production and transport of aerosol over the sea are very important for many areas of knowledge. Marine aerosols emitted from the sea surface help to clean the boundary layer from other aerosol particles. The emitted droplets do not dry out in the highly humid surface layer air and because of their sizes most of them are deposited quickly at the sea surface. Therefore, marine aerosols have many features of rain i.e. the deposition in the marine boundary layer in high wind events is controlled not only by the "dry" processes but also by the "wet" scavenging. During a number of cruises conducted on board of r/v Oceania between 2008 and 2012 we collected much data which were further used to calculate sea salt source function over the Baltic Sea. Measurements were carried out using a gradient method. For this method we used a Laser Particle Counter (PMS model CSASP-100_HV) placed on one of the masts of the boat. Measurements were performed at five different levels above the sea level: 8, 11, 14, 17 and 20 meters. The vertical aerosol concentration gradient was obtained from a minimum of 4 measurement series. Thus each result consists of a 1 hour series with the average sampling time at each elevation equaling to 8 minutes. Based on the averaged vertical concentration, and using the Monin Obukhov theory, profiles of vertical sea spray fluxes in the near water layer were calculated. Using the results from those experiments the sea spray emission fluxes have been calculated for all particles of sizes at ranges from 0.5 ?m to 8 ?m, as well as for particles of sizes from fifteen channels of 0.5 ?m width. Using these fluxes we calculated the Sea Salt Generation Function (SSGF) over the Baltic Sea. This function provides information on the emission of particles of different sizes, depending on environmental parameters. The emission of sea spray depends on the magnitude of energy lost by the wind waves in the process of their collapse. The support for this study was provided by the POLAND-AOD network and the project Satellite Monitoring of the Baltic Sea Environment - SatBa?tyk founded by European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09.

  1. 78 FR 57133 - Marine Mammals; File No. 14514

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ...NMFS jurisdiction for research on disease including viral pathogens and brevetoxin studies; development of a marine mammal histology database and atlas and marine mammal cell lines; and comparative morphology studies. The permit authorizes receipt,...

  2. PM: RESEARCH METHODS FOR PM TOXIC COMPOUNDS - PARTICLE METHODS EVALUATION AND DEVELOPMENT

    EPA Science Inventory

    The Federal Reference Method (FRM) for Particulate Matter (PM) developed by EPA's National Exposure Research Laboratory (NERL) forms the backbone of the EPA's national monitoring strategy. It is the measurement that defines attainment of the National Ambient Air Quality Standard...

  3. USGS Western Coastal and Marine Geology Team

    USGS Publications Warehouse

    Johnson, Sam; Gibbons, Helen

    2007-01-01

    The Western Coastal and Marine Geology Team of the U.S. Geological Survey (USGS) studies the coasts of the western United States, including Alaska and Hawai‘i. Team scientists conduct research, monitor processes, and develop information about coastal and marine geologic hazards, environmental conditions, habitats, and energy and mineral resources. This information helps managers at all levels of government and in the private sector make informed decisions about the use and protection of national coastal and marine resources.

  4. FABRIC FILTRATION WITH INTEGRAL PARTICLE CHARGING AND COLLECTION IN A COMBINED ELECTRIC AND FLOW FIELD. PART 2. DEVELOPMENT AND VERIFICATION OF THE MATHEMATICAL ENGINEERING DESIGN MODEL

    EPA Science Inventory

    The paper discusses the development of a mathematical engineering design model to predict the nonuniform deposition of particulate matter and the relative pressure drop, compared to conventional filtration, of fabric filtration with integral particle charging and collection. For ...

  5. Development and testing of an ion probe for tightly-bunched particle beams

    SciTech Connect

    Ngo, M.; Pasour, J.

    1996-06-01

    Many high-energy physics experiments require a high-quality and well-diagnosed charged-particle beam (CPB). Precise knowledge of beam size, position, and charge distribution is often crucial to the success of the experiment. It is also important in many applications that the diagnostic used to determine the beam parameters be nonintercepting and nonperturbing. This requirement rules out many diagnostics, such as wire scanners, thin foils which produce Cerenkov or transition radiation, and even some rf cavity diagnostics. Particularly difficult to diagnose are tightly-focused (r{sub b} << 1 mm), short-duration (psec) beams, such as those in state-of-the-art or next-generation particle colliders. In this paper we describe an ion probe that is capable of penetrating the space-charge field of densely bunched CPBs without perturbation, thereby enabling the measurement of the microstructure of the bunch. This diagnostic probe uses a finely-focused stream of ions to interact with the CPB. Related techniques have been discussed in the literature. In fact, the present work evolved from an electron deflection diagnostic for CPBs that we previously described. A similar electron probe was tested even earlier at TRIUMF and in the Former Soviet Union. Electron probes have also been used to measure plasma sheaths and potentials and the neutralization of heavy ion beams. Also, Mendel has used an ion beam (22 keV He{sup +}) to probe rapidly varying fields in plasmas. The probe ions are injected across the beam tube and into the path of the high-energy CPB. The ions are deflected by the CPB, and the direction and magnitude of the deflection are directly related to the spatial and temporal charge distribution of the CPB. Easily-resolved deflections can be produced by microbunches having total charge on the order of a nCoul and pulse durations of a few psec. The deflected ions are monitored with a suitable detector, in this case a microchannel plate capable of detecting single ions.

  6. Marine pollution: an overview

    NASA Astrophysics Data System (ADS)

    Valentukevi?ien?, Marina; Brannvall, Evelina

    2008-01-01

    This overview of marine pollution follows the methodology as proposed below. Firstly, well-known databases (Science Direct, GeoRef, SpringerLINK, etc.) on technological research were studied. All collected references were divided into 27 sections following the key words associated with marine pollution, oil spills, alien species migration, etc. The most commercially promising research and development (R & D) activities seem to be market-oriented sections: detection of oil spills at sea, containment and recovery of floating oil at sea, detection of oil spills on land, disposal of oil and debris on land, alien species migration prevention from ballast water and underwater hull cleaning in water, NOx and SOx emissions, pollutions from ship-building and repair, and biogeochemical modelling. Great market demands for commercially patented innovations are very attractive for initiating new R & D projects.

  7. Development of a High Irradiance LED Configuration for Small Field of View Motion Estimation of Fertilizer Particles.

    PubMed

    Cool, Simon; Pieters, Jan G; Mertens, Koen C; Mora, Sergio; Cointault, Frédéric; Dubois, Julien; van de Gucht, Tim; Vangeyte, Jürgen

    2015-01-01

    Better characterization of the fertilizer spreading process, especially the fertilizer pattern distribution on the ground, requires an accurate measurement of individual particle properties and dynamics. Both 2D and 3D high speed imaging techniques have been developed for this purpose. To maximize the accuracy of the predictions, a specific illumination level is required. This paper describes the development of a high irradiance LED system for high speed motion estimation of fertilizer particles. A spectral sensitivity factor was used to select the optimal LED in relation to the used camera from a range of commercially available high power LEDs. A multiple objective genetic algorithm was used to find the optimal configuration of LEDs resulting in the most homogeneous irradiance in the target area. Simulations were carried out for different lenses and number of LEDs. The chosen configuration resulted in an average irradiance level of 452 W/m² with coefficient of variation less than 2%. The algorithm proved superior and more flexible to other approaches reported in the literature and can be used for various other applications. PMID:26569261

  8. 76 FR 6119 - Nomination of Existing Marine Protected Areas to the National System of Marine Protected Areas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ...National Marine Fisheries Service in consultation with the Mid Atlantic Fishery...Tribal and local governments and stakeholders to develop an effective and well...Marine Fisheries Service, in consultation with the Mid Atlantic...

  9. Development of a new contactless dielectrophoresis system for active particle manipulation using movable liquid electrodes.

    PubMed

    Gwon, Hyuk Rok; Chang, Suk Tai; Choi, Chang Kyoung; Jung, Jung-Yeul; Kim, Jong-Min; Lee, Seong Hyuk

    2014-07-01

    This study presents a new DEP manipulation technique using a movable liquid electrode, which allows manipulation of particles by actively controlling the locations of electrodes and applying on-off electric input signals. This DEP system consists of mercury as a movable liquid electrode, indium tin oxide (ITO)-coated glass, SU-8-based microchannels for electrode passages, and a PDMS medium chamber. A simple squeezing method was introduced to build a thin PDMS layer at the bottom of the medium chamber to create a contactless DEP system. To determine the operating conditions, the DEP force and the friction force were analytically compared for a single cell. In addition, an appropriate frequency range for effective DEP manipulation was chosen based on an estimation of the Clausius-Mossotti factor and the effective complex permittivity of the yeast cell using the concentric shell model. With this system, we demonstrated the active manipulation of yeast cells, and measured the collection efficiency and the dielectrophoretic velocity of cells for different AC electric field strengths and applied frequencies. The experimental results showed that the maximum collection efficiency reached was approximately 90%, and the dielectrophoretic velocity increased with increasing frequency and attained the maximum value of 10.85 ± 0.95 ?m/s at 100 kHz, above which it decreased. PMID:24737601

  10. The development of a containment vessel and Dewar for the particle astrophysics magnet facility (ASTROMAG)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The ASTROMAG facility is the heart of a large charged particle detection and resolution system. ASTROMAG utilizes a superconducting magnet consisting of a large superconducting magnet coil with a stored magnetic energy of approximately 15 MJ. The active coil will have a mass of 1200 kg. This magnet will be cooled by a cryostat using a liquid helium Dewar for storage. The cryostat will have a series of gas-cooled shields with an external guard vacuum shield and an internal Dewar. The magnet and cryostat will be designed for shuttle or Delta launch and will be designed to withstand the internal pressure of expanded helium under full quench conditions when venting is prevented. The external guard vacuum shell is required to maintain a vacuum for Earth based testing and for cold launch of the cryostat and magnet. The magnet is designed to operate at 4.4 K with a peak field of 7.0 tesla. The superconducting material within the magnet is niobium titanium in a conductive matrix.

  11. M3FT-15OR0202237: Submit Report on Results From Initial Coating Layer Development For UN TRISO Particles

    SciTech Connect

    Jolly, Brian C.; Lindemer, Terrence; Terrani, Kurt A.

    2015-02-01

    In support of fully ceramic matrix (FCM) fuel development, coating development work has begun at the Oak Ridge National Laboratory (ORNL) to produce tri-isotropic (TRISO) coated fuel particles with UN kernels. The nitride kernels are used to increase heavy metal density in these SiC-matrix fuel pellets with details described elsewhere. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO2 and UCx) kernels. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions were required to maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels.

  12. Experimental study of the space-time development of the particle production process in hadron-nucleon collisions, using massive target nucleus as a detector

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    Experimental study of the space-time development of the particle production process in hadronic collisions at its initial stage was performed. Massive target nuclei have been used as fine detectors of properties of the particle production process development within time intervals smaller than 10 to the 22nd power s and spatial distances smaller than 10 to the 12th power cm. In hadron-nucleon collisions, in particular in nucleon-nucleon collisions, the particle production process goes through intermediate objects in 2 yields 2 type endoergic reactions. The objects decay into commonly observed resonances and paricles.

  13. Development of Polymer Cholesteric Liquid Crystal Flake Technology for Electro-Optic Devices and Particle Displays

    SciTech Connect

    Kosc, T.Z.; Marshall, K.L.; Trajkovska-Petkoska, A.; Coon, C.J.; Hasman, K.; Babcock, G.V.; Howe, R.; Leitch, M.; Jacobs, S.J.

    2007-04-05

    Liquid crystals have had a large presence in the display industry for several decades, and they continue to remain at the forefront of development as the industry delves into flexible displays and electronic paper. Among the emerging technologies trying to answer this call are polymer cholesteric liquid crystal (PCLC) flakes.

  14. Integrated development facility for the calibration of low-energy charged particle flight instrumentation

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Reynolds, J. M.

    1986-01-01

    The design of a low-energy ion facility for development and calibration of thermal ion instrumentation is examined. A directly heated cathode provides the electrons used to produce ions by impact ionization and an applied magnetic field increases the path length followed by the electrons. The electrostatic and variable geometry magnetic mirror configuration in the ion source is studied. The procedures for the charge neutralization of the beam and the configuration and function of the 1.4-m drift tube are analyzed. A microcomputer is utilized to control and monitor the beam energy and composition, and the mass- and angle-dependent response of the instrument under testing. The facility produces a high-quality ion beam with an adjustable range of energies up to 150 eV; the angular divergence and uniformity of the beam is obtained from two independent retarding potential analyzers. The procedures for calibrating the instrument being developed are described.

  15. Latest Development in Superconducting RF Structures for beta=1 Particle Acceleration

    SciTech Connect

    Peter Kneisel

    2006-06-26

    Superconducting RF technology is since nearly a decade routinely applied to different kinds of accelerating devices: linear accelerators, storage rings, synchrotron light sources and FEL's. With the technology recommendation for the International Linear Collider (ILC) a year ago, new emphasis has been placed on improving the performance of accelerating cavities both in Q-value and in accelerating gradients with the goal to achieve performance levels close to the fundamental limits given by the material parameters of the choice material, niobium. This paper will summarize the challenges to SRF technology and will review the latest developments in superconducting structure design. Additionally, it will give an overview of the newest results and will report on the developments in alternative materials and technologies.

  16. Development of a Cox-Thompson inverse scattering method to charged particles

    E-print Network

    Tamas Palmai; Barnabas Apagyi; Werner Scheid

    2011-11-25

    A Cox-Thompson fixed-energy quantum inverse scattering method is developed further to treat long-range Coulomb interaction. Depending on the reference potentials chosen, two methods have been formulated which produce inverse potentials with singular or finite value at the origin. Based on the quality of reproduction of input experimental phase shifts, it is guessed that the p-alpha interaction possesses an interesting repulsive hard core.

  17. Development of a new methodology for particle transport calculations utilizing pointwise-continuous nuclear data

    NASA Astrophysics Data System (ADS)

    Asgari, Mehdi

    1998-11-01

    The purpose of this study is to develop a new method to compute a continuous-energy representation of the neutron flux spectrum using the one-dimensional discrete ordinates method. The technique provides a rigorous calculational tool for applications that require a detailed description of the fine-structure variation in the space-dependent neutron energy spectrum over some energy ranges. This technique uses the combination of multigroup (MG) and rigorous pointwise (PW) solutions to the steady state Boltzmann transport equation in the calculations. Also utilized in this methodology are two new methods called ``sub-moment'' expansion and ``cumulative integral'' operator to accurately evaluate the Legendre moments of the elastic scatter and the integral terms associated with the down scatter source at each point in the PW range. A comprehensive computer program called CENTRM has been developed based on this technique to provide problem specific angular fluxes and flux moments. One primary use of these detailed fluxes is in processing problem- dependent MG cross sections. The obtained MG cross sections are used in other MG calculations for reactor physics and criticality safety applications. This computer program is to function as one of the primary components in a comprehensive nuclear reactor analysis code system being developed by Oak Ridge National Laboratory for U.S. Nuclear Regulatory Commission.

  18. Annual report of the Marine Mammal Commission, Calendar Year 1984. Report to Congress

    SciTech Connect

    Not Available

    1985-01-31

    Contents include: reauthorization and amendment of the Marine Mammal Protection Act; research and studies program; international aspects of marine mammal protection and conservation; marine mammal/fishery interactions; incidental take of marine mammals in the course of commercial fishing operations; species of special concern; marine mammal management in Alaska; Outer Continental Shelf oil, gas, and hard minerals development; marine mammal maintenance standards and regulations; permit process.

  19. New developments in the experimental data for charged particle production of medical radioisotopes

    E-print Network

    Ditrói, F; Takács, S; Hermanne, A

    2015-01-01

    The goal of the present work is to give a review of developments achieved experimentally in the field of nuclear data for medically important radioisotopes in the last three years. The availability and precision of production related nuclear data is continuously improved mainly experimentally. This review emphasizes a couple of larger fields: the Mo/Tc generator problem and the generator isotopes in general, heavy alpha-emitters and the rare-earth elements. Other results in the field of medical radioisotope production are also listed.

  20. New developments in the experimental data for charged particle production of medical radioisotopes

    E-print Network

    F. Ditrói; F. Tárkányi; S. Takács; A. Hermanne

    2015-03-03

    The goal of the present work is to give a review of developments achieved experimentally in the field of nuclear data for medically important radioisotopes in the last three years. The availability and precision of production related nuclear data is continuously improved mainly experimentally. This review emphasizes a couple of larger fields: the Mo/Tc generator problem and the generator isotopes in general, heavy alpha-emitters and the rare-earth elements. Other results in the field of medical radioisotope production are also listed.

  1. Development and application of a high speed digital data acquisition technique to study steam bubble collapse using particle image velocimetry

    SciTech Connect

    Schmidl, W.D.

    1992-08-01

    The use of a Particle Image Velocimetry (PIV) method, which uses digital cameras for data acquisition, for studying high speed fluid flows is usually limited by the digital camera's frame acquisition rate. The velocity of the fluid under study has to be limited to insure that the tracer seeds suspended in the fluid remain in the camera's focal plane for at least two consecutive images. However, the use of digital cameras for data acquisition is desirable to simplify and expedite the data analysis process. A technique was developed which will measure fluid velocities with PIV techniques using two successive digital images and two different framing rates simultaneously. The first part of the method will measure changes which occur to the flow field at the relatively slow framing rate of 53.8 ms. The second part will measure changes to the same flow field at the relatively fast framing rate of 100 to 320 [mu]s. The effectiveness of this technique was tested by studying the collapse of steam bubbles in a subcooled tank of water, a relatively high speed phenomena. The tracer particles were recorded and velocity vectors for the fluid were obtained far from the steam bubble collapse.

  2. Development and application of a high speed digital data acquisition technique to study steam bubble collapse using particle image velocimetry

    SciTech Connect

    Schmidl, W.D.

    1992-08-01

    The use of a Particle Image Velocimetry (PIV) method, which uses digital cameras for data acquisition, for studying high speed fluid flows is usually limited by the digital camera`s frame acquisition rate. The velocity of the fluid under study has to be limited to insure that the tracer seeds suspended in the fluid remain in the camera`s focal plane for at least two consecutive images. However, the use of digital cameras for data acquisition is desirable to simplify and expedite the data analysis process. A technique was developed which will measure fluid velocities with PIV techniques using two successive digital images and two different framing rates simultaneously. The first part of the method will measure changes which occur to the flow field at the relatively slow framing rate of 53.8 ms. The second part will measure changes to the same flow field at the relatively fast framing rate of 100 to 320 {mu}s. The effectiveness of this technique was tested by studying the collapse of steam bubbles in a subcooled tank of water, a relatively high speed phenomena. The tracer particles were recorded and velocity vectors for the fluid were obtained far from the steam bubble collapse.

  3. Small Engines and Outboard Marine Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of small engine and outboard marine mechanics programs. Based on a survey of Alaskan small engines and marine mechanics employers, it includes all competencies a student should acquire in such a mechanics program. The handbook stresses the importance of understanding the…

  4. MARINE MINERAL RESOURCES - AN UPDATE AND INTRODUCTION.

    USGS Publications Warehouse

    Cruickshank, Michael J.; Siapno, William

    1985-01-01

    This article briefly traces the status of marine minerals development, and it describes papers presented in this special issue on the subject. Subjects covered include types of deposits, marine mining in Canada, Manganese nodules, metalliferous sulfides as seabed minerals, metallurgical processes for reducing sulfide minerals, U. S. phosphate industry, construction materials and placers, and industry problems.

  5. Marine Occupations in the Texas Coastal Zone.

    ERIC Educational Resources Information Center

    McKinnerney, Beryl; Clark, Donald L.

    Marine career information is provided, intended for use by high school students, counselors, teachers, and curriculum developers. Material was gathered from a review of occupational publications, including extended use of the "Dictionary of Occupational Titles" (D.O.T.), and from interviews of persons employed in marine occupations in Texas.…

  6. Marine Science Activities for Visually Impaired.

    ERIC Educational Resources Information Center

    Schatz, Dennis; And Others

    These marine education materials are based on the approach that students learn best when given a multisensory experience. The activities are intended to develop such experiences for the visually impaired child. Activities are intended to supplement an upper-elementary science curriculum or be the basis of a unit on marine biology. The guide is…

  7. Development and applications of Ray's fluid thioglycollate media for detection and manipulation of Perkinsus spp. pathogens of marine molluscs.

    PubMed

    Dungan, Christopher F; Bushek, David

    2015-10-01

    During the early 1950s, Sammy M. Ray discovered that his high-salt modification of fluid thioglycollate sterility test medium caused dramatic in vitro enlargement of Perkinsus marinus (=Dermocystidium marinum) cells that coincidentally infected several experimentally cultured oyster gill tissue explants. Subsequent testing confirmed that the enlarged cells among some oyster tissues incubated in Ray's fluid thioglycollate medium (RFTM) were those of that newly described oyster pathogen. Non-proliferative in vitro enlargement, cell wall thickening, and subsequent blue-black iodine-staining of hypertrophied trophozoites (=hypnospores=prezoosporangia) following incubation in RFTM are unique characteristics of confirmed members of the protistan genus Perkinsus. A number of in vitro assays and manipulations with RFTM have been developed for selective detection and enumeration of Perkinsus sp. cells in tissues of infected molluscs, and in environmental samples. RFTM-enlarged Perkinsus sp. cells from tissues of infected molluscs also serve as useful inocula for initiating in vitro isolate cultures, and cells of several Perkinsus spp. from both in vitro cultures and infected mollusc tissues may be induced to zoosporulate by brief incubations in RFTM. DNAs from RFTM-enlarged Perkinsus sp. cells provide useful templates for PCR amplifications, and for sequencing and other assays to differentiate and identify the detected Perkinsus species. We review the history and components of fluid thioglycollate and RFTM media, and the characteristics of numerous RFTM-based diagnostic assays that have been developed and used worldwide since 1952 for detection and identification of Perkinsus spp. in host mollusc tissues and environmental samples. We also review applications of RFTM for in vitro manipulations and purifications of Perkinsus sp. pathogen cells. PMID:26003823

  8. Development of submicron particle size classification and collection techniques for nuclear facility off-gas streams. [Diffusion battery and electrofluidized bed

    SciTech Connect

    Hohorst, F.A.; Fernandez, S.J.

    1981-02-01

    High efficiency particulate air (HEPA) filters are an essential part of nuclear facility off-gas cleanup systems. However, HEPA-rated sampling filters are not the most appropriate samplers for the particle penetrating off-gas cleanup systems. Previous work at the Idaho Chemical Processing Plant (ICPP) estimated perhaps 5% of the radioactivity that challenged sampling filters penetrated them in the form of submicron particles - typically less than 0.2 microns. Accordingly, to evaluate these penetrating aerosols more fully, a suitable robust monitoring system for size differentiation and measurement of submicron particles was developed. A literature survey revealed that the diffusion battery was the best choice for particle size classification and that the electrofluidized bed was the best method for particle collection in ICPP off-gas streams. This report describes the laboratory study and in-plant demonstration of these two techniques.

  9. Start-to-end Beam Optics Development and Multi-particle Tracking for the ILC Positron Source

    SciTech Connect

    Zhou, F.a Batygin, Y.; Nosochkov, Y.; Sheppard, J.C.; Woodley, M.D.; /SLAC

    2007-01-25

    Undulator-based positron source is adopted as the ILC baseline design. Complete optics to transport the positron beam having large angular divergence and large energy spread from an immersed thin Ti target to the entrance of the 5 GeV damping ring injection line is developed. Start-to-end multi-particle tracking through the beamline is performed including the optical matching device, capture system, transport system, superconducting booster linac, spin rotators, and energy compressor. It shows that 49.8% of the positrons from the target are captured within the damping ring 6-D acceptance--A{sub x} + A{sub y} {le} 0.09 m and {Delta}E x {Delta}z ({+-} 25 MeV) x ({+-} 3.46cm)--at the entrance of the damping ring injection line. The field and alignment errors and orbit correction are analyzed.

  10. Development of a high-speed UV particle image velocimetry technique and application for measurements in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Fajardo, Claudia; Sick, Volker

    2009-01-01

    A flexible, high-frame rate particle image velocimetry technique that can be applied to operating internal combustion engines in highly luminous combustion situations was developed. Two high-repetition rate diode-pumped Nd:YAG lasers operated at 355 nm and a CMOS camera were used to devise a system that allowed measurements of velocity fields near the spark plug in a firing engine at a rate of 6 kHz for 500 consecutive cycles. The 6 kHz acquisition rate enables recording one velocity field every other crank angle at 2,000 RPM engine speed. Sample results such as individual and average flow fields and kinetic energy evolutions are presented.

  11. Efficient management of marine resources in conflict: an empirical study of marine sand mining, Korea.

    PubMed

    Kim, Tae-Goun

    2009-10-01

    This article develops a dynamic model of efficient use of exhaustible marine sand resources in the context of marine mining externalities. The classical Hotelling extraction model is applied to sand mining in Ongjin, Korea and extended to include the estimated marginal external costs that mining imposes on marine fisheries. The socially efficient sand extraction plan is compared with the extraction paths suggested by scientific research. If marginal environmental costs are correctly estimated, the developed efficient extraction plan considering the resource rent may increase the social welfare and reduce the conflicts among the marine sand resource users. The empirical results are interpreted with an emphasis on guidelines for coastal resource management policy. PMID:19692167

  12. Development of a chronic sublethal bioassay for evaluating contaminated sediment with the marine polychaete worm Nereis (Neanthes) arenaceodentata

    SciTech Connect

    Dillon, T.M.; Moore, D.W.; Gibson, A.B. )

    1993-03-01

    Development of a chronic sublethal sediment bioassay with the polychaete Nereis (Neanthes) arenaceodentata is described. The sublethal test end point was estimated individual somatic growth rate. The test was initiated with two-to three-week-old post-emergent juvenile worms and continued for 28 d. The potential bias due to selected nontreatment factors on polychaete survival and growth was evaluated. For example, grain size has no significant effect, whereas the number of worms placed in each exposure vessel was critical. Direct transfer from 30[per thousand] seawater to salinites [<=] 15[per thousand] had a highly significant and adverse effect on survival and growth. Both survival and growth of juvenile worms may be adversely affected if test conditions involve exposures to [>=] 0.7 mg/L un-ionized ammonia or [>=] 5 mg/L hydrogen sulfide. Survival of juvenile worms to concentrations of the reference toxicant, cadmium chloride, approximating the 96-h LC50 (5 mg/L) was used as a quality control measure. Results are expressed in control chart format analogous to methods used in analytical chemistry.

  13. Marine Transportation Implications of the Last Arctic Sea Ice Refuge

    NASA Astrophysics Data System (ADS)

    Brigham, L. W.

    2010-12-01

    Marine access is increasing throughout the Arctic Ocean and the 'Last Arctic Sea Ice Refuge' may have implications for governance and marine use in the region. Arctic marine transportation is increasing due to natural resource developemnt, increasing Arctic marine tourism, expanded Arctic marine research, and a general linkage of the Arctic to the gloabl economy. The Arctic Council recognized these changes with the release of the Arctic Marine Shipping Assessment of 2009. This key study (AMSA)can be viewed as a baseline assessment (using the 2004 AMSA database), a strategic guide for a host of stakeholders and actors, and as a policy document of the Arctic Council. The outcomes of AMSA of direct relevance to the Ice Refuge are within AMSA's 17 recommendations provided under three themes: Enhancing Arctic Marine Safety, Protecting Arctic People and the Environment, and Building the Arctic Marine Infrastructure. Selected recommendations of importance to the Ice Refuge include: a mandatory polar navigation code; identifying areas of heightened ecological and cultural significance; potential designation of special Arctic marine areas; enhancing the tracking and monitoring of Arctic marine traffic; improving circumpolar environmental response capacity; developing an Arctic search and rescue agreement; and, assessing the effects of marine transportation on marine mammals. A review will be made of the AMSA outcomes and how they can influence the governance, marine use, and future protection of this unique Arctic marine environment.

  14. Supersonic flow of chemically reacting gas-particle mixtures. Volume 1: A theoretical analysis and development of the numerical solution

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.

    1976-01-01

    A numerical solution for chemically reacting supersonic gas-particle flows in rocket nozzles and exhaust plumes was described. The gas-particle flow solution is fully coupled in that the effects of particle drag and heat transfer between the gas and particle phases are treated. Gas and particles exchange momentum via the drag exerted on the gas by the particles. Energy is exchanged between the phases via heat transfer (convection and/or radiation). Thermochemistry calculations (chemical equilibrium, frozen or chemical kinetics) were shown to be uncoupled from the flow solution and, as such, can be solved separately. The solution to the set of governing equations is obtained by utilizing the method of characteristics. The equations cast in characteristic form are shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The particle distribution is represented in the numerical solution by a finite distribution of particle sizes.

  15. Scale-Dependent Fracture-Matrix Interactions and Their Impact on Radionuclide Transport: Development of efficient particle-tracking methods

    SciTech Connect

    Rajaram, Harihar; Brutz, Michael; Klein, Dylan R; Mallikamas, Wasin

    2014-09-18

    Matrix Diffusion and Adsorption within a rock matrix are important mechanisms for retarding transport of radionuclides in fractured rock. Due to computational limitations and difficulties in characterizing complex subsurface systems, diffusive exchange between a fracture network and surrounding rock matrix is often modeled using simplified conceptual representations. There is significant uncertainty in “effective” parameters used in these models, such as the “effective matrix diffusivity”. Often, these parameters are estimated by fitting sparse breakthrough data, and estimated values fall outside meaningful ranges, because simplified interpretive models do not consider complex three-dimensional flow. There is limited understanding of the relationship between the effective parameters and rock mass characteristics including network structure and matrix properties. There is also evidence for an apparent scale-dependence in “effective matrix diffusion” coefficients. These observations raise questions on whether fracture-matrix interaction parameters estimated from small-scale tracer tests can be used for predicting radionuclide fate and transport at the scale of DOE field sites. High-resolution three-dimensional Discrete-Fracture-Network-Matrix (DFNM) models based on well-defined local scale transport equations can help to address some of these questions. Due to tremendous advances in computational technology over the last 10 years, DFNM modeling in relatively large domains is now feasible. The overarching objective of our research is to use DFNM modeling to improve fundamental understanding of how effective parameters in conceptual models are related to fracture network structure and matrix properties. An advanced three-dimensional DFNM model is being developed, which combines upscaled particle-tracking algorithms for fracture-matrix interaction and a parallel fracture-network flow simulator. The particle-tracking algorithms allow complexity in flow fields at different scales, and track transport across fracture-matrix interfaces based on rigorous local approximations to the transport equations. This modeling approach can incorporate aperture variability, multi-scale preferential flow and matrix heterogeneity. We developed efficient particle-tracking methods for handling matrix diffusion and adsorption on fracture walls and demonstrated their efficiency for use within the context of large-scale complex fracture network models with variability in apertures across a network of fractures and within individual fractures.

  16. Particle Imaging Velocimetry Technique Development for Laboratory Measurement of Fracture Flow Inside a Pressure Vessel Using Neutron Imaging

    SciTech Connect

    Polsky, Yarom; Bingham, Philip R; Bilheux, Hassina Z; Carmichael, Justin R

    2015-01-01

    This paper will describe recent progress made in developing neutron imaging based particle imaging velocimetry techniques for visualizing and quantifying flow structure through a high pressure flow cell with high temperature capability (up to 350 degrees C). This experimental capability has great potential for improving the understanding of flow through fractured systems in applications such as enhanced geothermal systems (EGS). For example, flow structure measurement can be used to develop and validate single phase flow models used for simulation, experimentally identify critical transition regions and their dependence on fracture features such as surface roughness, and study multiphase fluid behavior within fractured systems. The developed method involves the controlled injection of a high contrast fluid into a water flow stream to produce droplets that can be tracked using neutron radiography. A description of the experimental setup will be provided along with an overview of the algorithms used to automatically track droplets and relate them to the velocity gradient in the flow stream. Experimental results will be reported along with volume of fluids based simulation techniques used to model observed flow.

  17. Marine Electromagnetic Studies of Seafloor Resources and Tectonics

    E-print Network

    Key, Kerry

    Marine Electromagnetic Studies of Seafloor Resources and Tectonics Kerry Key Received: 3 December been a period of rapid growth for marine electromagnetic (EM) methods, predominantly due. This growth is illustrated by a database of marine EM publications spanning from the early developments

  18. Marine and Estuarine Ecology. Man and the Gulf of Mexico.

    ERIC Educational Resources Information Center

    Irby, Bobby N.; And Others

    "Man and the Gulf of Mexico (MGM)" is a marine science curriculum developed to meet the marine science needs of tenth through twelfth grade students in Mississippi and Alabama schools. This MGM unit, which focuses on marine and estuarine ecology, is divided into six sections. The first section contains unit objectives, discussions of the estuarine…

  19. Marine Habitats. Man and the Gulf of Mexico Series.

    ERIC Educational Resources Information Center

    Irby, Bobby N.; And Others

    "Man and the Gulf of Mexico (MGM)" is a marine science curriculum developed to meet the marine science needs of tenth through twelfth grade students in Mississippi and Alabama schools. This MGM unit, which focuses on marine habitats, contains an introduction (with unit objectives and brief introductory comments) followed by five sections, each…

  20. MARINE ECOLOGY PROGRESS SERIES Mar Ecol Prog Ser

    E-print Network

    Thomas, Len

    MARINE ECOLOGY PROGRESS SERIES Mar Ecol Prog Ser Vol. 453: 227­240, 2012 doi: 10.3354/meps09636 Published May 7 INTRODUCTION Many anthropogenic activities in the marine envi- ronment, for example fisheries, human recreation, marine renewable energy development, mineral ex- traction, transport

  1. Development and beyond: Strategy for long-term maintenance of an online laser diffraction particle size method in a spray drying manufacturing process.

    PubMed

    Medendorp, Joseph; Bric, John; Connelly, Greg; Tolton, Kelly; Warman, Martin

    2015-08-10

    The purpose of this manuscript is to present the intended use and long-term maintenance strategy of an online laser diffraction particle size method used for process control in a spray drying process. A Malvern Insitec was used for online particle size measurements and a Malvern Mastersizer was used for offline particle size measurements. The two methods were developed in parallel with the Mastersizer serving as the reference method. Despite extensive method development across a range of particle sizes, the two instruments demonstrated different sensitivities to material and process changes over the product lifecycle. This paper will describe the procedure used to ensure consistent alignment of the two methods, thus allowing for continued use of online real-time laser diffraction as a surrogate for the offline system over the product lifecycle. PMID:25958139

  2. Development of the nano-dust analyzer (NDA) for detection and compositional analysis of nanometer-size dust particles originating in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    O'Brien, L.; Auer, S.; Gemer, A.; Grün, E.; Horanyi, M.; Juhasz, A.; Kempf, S.; Malaspina, D.; Mocker, A.; Moebius, E.; Srama, R.; Sternovsky, Z.

    2014-03-01

    A linear time-of-flight mass spectrometer is developed for the detection and chemical analysis of nanometer-sized particles originating near the Sun. Nano-dust particles are thought to be produced by mutual collisions between interplanetary dust particles slowly spiraling toward the Sun and are accelerated outward to high velocities by interaction with the solar wind plasma. The WAVES instruments on the two STEREO spacecraft reported the detection, strong temporal variation, and potentially high flux of these particles. Here we report on the optimization and the results from the detailed characterization of the instrument's performance using submicrometer sized dust particles accelerated to 8-60 km/s. The Nano Dust Analyzer (NDA) concept is derived from previously developed detectors. It has a 200 cm2 effective target area and a mass resolution of approximately m/?m = 50. The NDA instrument is designed to reliably detect and analyze nanometer-sized dust particles while being pointed close to the Sun's direction, from where they are expected to arrive. Measurements by such an instrument will determine the size-dependent flux of the nano-dust particles and its variations, it will characterize the composition of the nano-dust and, ultimately, it may determine their source. The flight version of the NDA instrument is estimated to be <5 kg and requires <10 W for operation.

  3. Development of the nano-dust analyzer (NDA) for detection and compositional analysis of nanometer-size dust particles originating in the inner heliosphere.

    PubMed

    O'Brien, L; Auer, S; Gemer, A; Grün, E; Horanyi, M; Juhasz, A; Kempf, S; Malaspina, D; Mocker, A; Moebius, E; Srama, R; Sternovsky, Z

    2014-03-01

    A linear time-of-flight mass spectrometer is developed for the detection and chemical analysis of nanometer-sized particles originating near the Sun. Nano-dust particles are thought to be produced by mutual collisions between interplanetary dust particles slowly spiraling toward the Sun and are accelerated outward to high velocities by interaction with the solar wind plasma. The WAVES instruments on the two STEREO spacecraft reported the detection, strong temporal variation, and potentially high flux of these particles. Here we report on the optimization and the results from the detailed characterization of the instrument's performance using submicrometer sized dust particles accelerated to 8-60 km/s. The Nano Dust Analyzer (NDA) concept is derived from previously developed detectors. It has a 200 cm(2) effective target area and a mass resolution of approximately m/?m = 50. The NDA instrument is designed to reliably detect and analyze nanometer-sized dust particles while being pointed close to the Sun's direction, from where they are expected to arrive. Measurements by such an instrument will determine the size-dependent flux of the nano-dust particles and its variations, it will characterize the composition of the nano-dust and, ultimately, it may determine their source. The flight version of the NDA instrument is estimated to be <5 kg and requires <10 W for operation. PMID:24689626

  4. Downscaling the marine modelling effort: Development, application and assessment of a 3D ecosystem model implemented in a small coastal area

    NASA Astrophysics Data System (ADS)

    Kolovoyiannis, V. N.; Tsirtsis, G. E.

    2013-07-01

    The present study deals with the development, application and evaluation of a modelling tool, implemented along with a field sampling program, in a limited coastal area in the Northeast Aegean. The aim was to study, understand and quantify physical circulation and water column ecological processes in a high resolution simulation of a past annual cycle. The marine ecosystem model consists of a three dimensional hydrodynamic component suitable for coastal areas (Princeton Ocean Model) coupled to a simple ecological model of five variables, namely, phytoplankton, nitrate, ammonia, phosphate and dissolved organic carbon concentrations. The ecological parameters (e.g. half saturation constants and maximum uptake rates for nutrients) were calibrated using a specially developed automated procedure. Model errors were evaluated using qualitative, graphic techniques and were quantified with a number of goodness-of-fit measures. Regarding physical variables, the goodness-of-fit of model to field data varied from fairly to quite good. Indicatively, the cost function, expressed as mean value per sampling station, ranged from 0.15 to 0.23 for temperature and 0.81 to 3.70 for current speed. The annual cycle of phytoplankton biomass was simulated with sufficient accuracy (e.g. mean cost function ranging from 0.49 to 2.67), partly attributed to the adequate reproduction of the dynamics of growth limiting nutrients, nitrate, ammonia and the main limiting nutrient, phosphate, whose mean cost function ranged from 0.97 to 1.88. Model results and field data provided insight to physical processes such as the development of a wind-driven, coastal jet type of surface alongshore flow with a subsurface countercurrent flowing towards opposite direction and the formation of rotational flows in the embayments of the coastline when the offshore coastal current speed approaches values of about 0.1 m/s. The percentage of field measurements where the N:P ratio was found over 16:1 varied between stations from 57 to 65%, demonstrating the importance of phosphate as a limiting nutrient for phytoplankton growth. The model also successfully reproduced phytoplankton gradients, e.g. those developed almost all year round between the most eutrophic areas (city harbour with mean chlorophyll-a concentration of 1.08 ?g/L and decreasing biomass by over 40 mg C/m3 from surface to the bottom layer) and the oligotrophic open waters (mean chlorophyll-a concentration of 0.14 ?g/L).

  5. What did we learn about ocean particle dynamics in the GEOSECS-JGOFS era?

    NASA Astrophysics Data System (ADS)

    Jeandel, Catherine; Rutgers van der Loeff, Michiel; Lam, Phoebe J.; Roy-Barman, Matthieu; Sherrell, Robert M.; Kretschmer, Sven; German, Chris; Dehairs, Frank

    2015-04-01

    Particles determine the residence time of many dissolved elements in seawater. Although a substantial number of field studies were conducted in the framework of major oceanographic programs as GEOSECS and JGOFS, knowledge about particle dynamics is still scarce. Moreover, the particulate trace metal behavior remains largely unknown. The GEOSECS sampling strategy during the 1970s focused on large sections across oceanic basins, where particles were collected by membrane filtration after Niskin bottle sampling, biasing the sampling toward the small particle pool. Late in this period, the first in situ pumps allowing large volume sampling were also developed. During the 1990s, JGOFS focused on the quantification of the "exported carbon flux" and its seasonal variability in representative biogeochemical provinces of the ocean, mostly using sediment trap deployments. Although scarce and discrete in time and space, these pioneering studies allowed an understanding of the basic fate of marine particles. This understanding improved considerably, especially when the analysis of oceanic tracers such as natural radionuclides allowed the first quantification of processes such as dissolved-particle exchange and particle settling velocities. Because the GEOTRACES program emphasizes the importance of collecting, characterizing and analyzing marine particles, this paper reflects our present understanding of the sources, fate and sinks of oceanic particles at the early stages of the program.

  6. Infrared studies of temperature-dependent phase transitions in ammonium sulfate aerosol and the development of a visible light scattering technique to measure atmospheric particle compositions

    NASA Astrophysics Data System (ADS)

    Onasch, Timothy Bruce

    1999-10-01

    Sulfate containing particles exist globally throughout the atmosphere and impact its chemistry and radiative properties. Under the low temperature conditions found in the upper troposphere and lower stratosphere, sulfate particles act as nuclei for cirrus clouds and facilitate heterogeneous reactions which affect ozone chemistry. Both of these processes are dependent upon the chemical composition and phase of the background aerosol, and thus the behavior of these particles at low temperatures. This thesis represents two approaches undertaken to investigate the composition and phase of atmospheric aerosols. First, a flow tube system has been developed to study the low temperature behavior of atmospherically relevant particles within a controlled laboratory environment. Second, a visible light scattering technique has been developed to characterize the physical properties of particles in situ from an aircraft platform. The relative humidities of temperature-dependent phase transitions in ammonium sulfate aerosols were measured within a flow tube system. A chilled-mirror hygrometer measured the relative humidity and Fourier transform infrared spectroscopy was utilized to probe the phase of the particles and to characterize their microphysical properties. The relative humidity of deliquescence changed from 80% to 82% over the temperature range from 294.8 K to 258.0 K, in agreement with thermodynamic theory. The efflorescence relative humidity of submicron ammonium sulfate particles increased slightly from 32% to 39% as the temperature decreased from 294.8 K to 234.3 K. The latter result suggests that salt particles may exist as metastable solution droplets under low relative humidity conditions for significant time periods in the upper troposphere. To measure particle refractive indices in situ, a visible light scattering technique based on NCAR's Multiangle Aerosol Spectrometer Probe (MASP) was developed. The MASP was calibrated with monodisperse particles having known sizes and refractive indices and data processing methods based on particle ensembles were developed. Currently, the MASP can determine the refractive index of an ensemble of particles to within 4% error. The limiting factor was determined to be the detection limit of the backward detector. An investigation of lower stratospheric aerosol observations indicated that the background aerosols were predominantly sulfuric acid and water with compositions predicted by theory.

  7. Development of low density silica aerogel as a capture medium for hyper-velocity particles

    SciTech Connect

    Hrubesh, L.W.; Poco, J.F.

    1990-12-01

    The authors successfully demonstrated the production of monolithic bricks of transparent silica aerogel (2.5 cm X 4.5 cm X 16 cm) with densities as low as 0.003 g/cm{sup 3}. They have characterized the microstructure of these new ultra-low density aerogels, and determined that they are polymeric-like having crosslinked chains of silica as compared with the colloidal-like silica formed with the conventional sol-gel approach. They have determined that the new ultra-low density aerogels have a higher compressive modulus than would be expected from an extrapolation from the higher density aerogels, and they are typically 15% more transmissive than conventional aerogels for the wavelength range from 350nm to 800nm. The authors have developed a new method of casting regular shaped aerogels using silicone rubber molds. This new method eliminates irregular surfaces, for example the raised surface caused by a meniscus, in prior methods. Flat, and nearly parallel sides are obtained with the new method. They delivered 26 tiles of aerogels for the EURECA experiment. The nominal density of each tile was about 0.06 g/cm{sup 3}. Twenty of the tiles had dimensions of approximately 1.8in X 1.8in X 0.2in, with flat sides. The remaining six tiles had dimensions of approximately 1.8in X 3.5in X 0.2in. All tiles were shipped from LLNL to the University of Washington before September 30, 1990. 5 figs.

  8. European Marine Infrastructures: perspectives for Marine and Earth Sciences

    NASA Astrophysics Data System (ADS)

    Favali, P.; Beranzoli, L.; Egerton, P.; Le Traon, P. Y.; Los, W.

    2009-04-01

    The European Commission (EC) is supporting a variety of Research Infrastructures in many different scientific fields: Social Sciences and Humanities, Environmental Sciences, Energy, Biological and Medical Sciences, Physical Sciences and Engineering and e-Infrastructures. All these infrastructures are included in the new report of the "European Roadmap for Research Infrastructures" published in late 2008 by ESFRI (European Strategy Forum on Research Infrastructures, http://cordis.europa.eu/esfri/). In particular, some research infrastructures for the Environmental Sciences specifically addressed to the marine environment are presented: • EMSO (European Multidisciplinary Seafloor Observatory). The development of this underwater network is being supported by several other EC initiatives, ESONET-NoE (European Seas Network), coordinated by IFREMER (http://www.esonet-emso.org/esonet-noe/). • ERICON AURORA BOREALIS (European Research Icebreaker Consortium, http://www.eri-aurora-borealis.eu/). • EURO-ARGO (Global Ocean Observing Infrastructure, http://www.euro-argo.eu/). • LIFEWATCH (E-science and technology infrastructure for biodiversity data and observatories, http://www.lifewatch.eu/). In particular through its scientific marine networks: EUR-OCEANS (European Network of Excellence for Ocean Ecosystems Analysis, http://www.eur-oceans.eu/); MARBEF-NoE (MARine Biodiversity and Ecosystem Functioning, http://www.marbef.org/ and Marine Genomics (http://www.marine-genomics-europe.org/). Possible profitable links with new research infrastructures recently included in the roadmap, such as EPOS (European Plate Observing System) and SIAEOS (Svalbard Integrated Arctic Earth Observing System) are also pointed out. The marine EC infrastructures presented constitute the fundamental tools to support the Earth Sciences, both terrestrial and marine.

  9. Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels -- Final Report under the International Nuclear Energy Research Initiative (I-NERI)

    SciTech Connect

    David Petti; Philippe Martin; Mayeul Phélip; Ronald Ballinger; Petti does not have NT account

    2004-12-01

    The objective of this INERI project was to develop improved fuel behavior models for gas reactor coated-particle fuels and to explore improved coated-particle fuel designs that could be used reliably at very high burnups and potentially in gas-cooled fast reactors. Project participants included the Idaho National Engineering Laboratory (INEEL), Centre Étude Atomique (CEA), and the Massachusetts Institute of Technology (MIT). To accomplish the project objectives, work was organized into five tasks.

  10. Alaska marine ice atlas

    SciTech Connect

    LaBelle, J.C.; Wise, J.L.; Voelker, R.P.; Schulze, R.H.; Wohl, G.M.

    1982-01-01

    A comprehensive Atlas of Alaska marine ice is presented. It includes information on pack and landfast sea ice and calving tidewater glacier ice. It also gives information on ice and related environmental conditions collected over several years time and indicates the normal and extreme conditions that might be expected in Alaska coastal waters. Much of the information on ice conditions in Alaska coastal waters has emanated from research activities in outer continental shelf regions under assessment for oil and gas exploration and development potential. (DMC)

  11. Vertical profiling of marine aerosol, dust and their mixtures utilizing the synergy of sunphotometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Tsekeri, Alexandra; Amiridis, Vassilis; Lopatin, Anton; Marinou, Eleni; Engelman, Ronny; Baars, Holger; Wandinger, Ulla; Ansmann, Albert; Solomos, Stavros; Dubovik, Oleg; Schüttemeyer, Dirk

    2015-04-01

    Current and future lidar products from space missions (CALIPSO, ADM-Aeolus, EarthCARE) aim to improve our understanding of atmospheric dynamics and aerosol/cloud interactions on global scale. However, the lidar instruments onboard these three missions (CALIOP, ALADIN, ATLID) are different systems, operating at different wavelengths and providing different sets of measured parameters. In order to spectrally homogenize the datasets, aerosol/cloud-type-dependent spectral conversion factors are needed to be applied to all lidar-related properties (extinction, backscatter and depolarization), based on the aerosol/cloud classification of the space-borne observations. The well-established European Aerosol Research Lidar Network (EARLINET) offers the unique opportunity to support such an effort. However, EARLINET database suffers from lack of information for specific aerosol types such as marine and mixed dust/marine cases. Unfortunately, these types are not observed in EARLINET's core stations, since the stations are mostly located at continental sites and are influenced by urban pollution. Moreover, the lidar systems near the coastlines suffer from the inability to measure at the first few hundred meters (500-1000 m) due to their technical design, which results in an incomplete laser/telescope overlap region. Towards the study of marine and marine-dust aerosol mixtures we organized the experimental campaign of "Characterization of Aerosol mixtures of Dust And Marine origin" (CHARADMexp), on June 20 to July 10, at Finokalia, Grete, Greece. Our aim was to derive optical, microphysical and chemical properties of the marine component and its mixtures with dust, employing sophisticated instrumentation installed on the site of Finokalia ACTRIS station, where only marine and dust particles are present 95% of the time. Specifically, aerosol characterization was established by the "Generalized Aerosol Retrieval from Radiometer and Lidar Combined data" (GARRLiC), a technique that combines ground-based lidar and sunphotometer measurements, developed in the frame of ACTRIS. Our results for cases of marine-only, dust-only and mixtures of marine and dust retrievals provide an evaluation of the algorithm capabilities for marine environments, producing vertical profiles of physical and optical properties of marine and dust particles.

  12. Diffusion-limited retention of porous particles at density interfaces

    E-print Network

    Kindler, Kolja

    Downward carbon flux in the ocean is largely governed by particle settling. Most marine particles settle at low Reynolds numbers and are highly porous, yet the fluid dynamics of this regime have remained unexplored. We ...

  13. Involvement of quorum sensing genes in biofilm development and degradation of polycyclic aromatic hydrocarbons by a marine bacterium Pseudomonas aeruginosa N6P6.

    PubMed

    Mangwani, Neelam; Kumari, Supriya; Das, Surajit

    2015-12-01

    Biofilm-forming and acyl homoserine lactone (AHL) synthase-positive Pseudomonas aeruginosa N6P6 was isolated from seawater after selective enrichment with two polycyclic aromatic hydrocarbons (PAHs), viz. phenanthrene and pyrene. AHL synthesis was detected qualitatively using bioreporter strains. This marine bacterium putatively synthesized N-(3-oxododecanoyl)-L-homoserine lactone and N-butyryl-L-homoserine lactone, which were identified by TLC, GC-MS, and HPLC. Two quorum sensing (QS) genes coding for AHL synthase, i.e., lasI and rhlI, were identified in the bacterium. lasI and rhlI gene expression was studied during biofilm mode of growth at different phases using quantitative real-time PCR (qRT-PCR). The expression of lasI increased with increase in biofilm growth. In contrast, the expression of rhlI decreased during log phase of biofilm growth. The changes in lasI/rhlI expression level had significant effects (P < 0.05) on biofilm architecture and subsequent PAH degradation rate. Degradation of phenanthrene and pyrene by P. aeruginosa N6P6 was affected by biofilm growth and lasI expression. The respective phenanthrene degradation for 15, 24, 48, and 72 h old biofilm after 7 days was 21.5, 54.2, 85.6, and 85.7 %. However, the corresponding pyrene degradation was 15, 18.28, 47.56, and 46.48 %, respectively, after 7 days. A significant positive correlation (P < 0.05) was observed between lasI expression and PAHs degradation. However, in the presence of tannic acid, a QS inhibitor (QSI), PAHs degradation, biofilm formation, and pyocyanin production reduced significantly which confirmed the pivotal role of QS in biodegradation of PAHs. The findings suggest that AHLs play a pivotal role during biofilm development and subsequent bioremediation of PAHs. PMID:26245683

  14. Development and testing of instrumentation for ship-based UAV measurements of ocean surface processes and the marine atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Reineman, B. D.; Lenain, L.; Statom, N.; Melville, W. K.

    2012-12-01

    We have developed instrumentation packages for unmanned aerial vehicles (UAVs) to measure ocean surface processes along with momentum fluxes and latent, sensible, and radiative heat fluxes in the marine atmospheric boundary layer (MABL). The packages have been flown over land on BAE Manta C1s and over water on Boeing-Insitu ScanEagles. The low altitude required for accurate surface flux measurements (< 30 m) is below the typical safety limit of manned research aircraft; however, with advances in laser altimeters, small-aircraft flight control, and real-time kinematic differential GPS, low-altitude flight is now within the capability of small UAV platforms. Fast-response turbulence, hygrometer, and temperature probes permit turbulent flux measurements, and short- and long-wave radiometers allow the determination of net radiation, surface temperature, and albedo. Onboard laser altimetry and high-resolution visible and infrared video permit observations of surface waves and fine-scale (O(10) cm) ocean surface temperature structure. Flight tests of payloads aboard ScanEagle UAVs were conducted in April 2012 at the Naval Surface Warfare Center Dahlgren Division (Dahlgren, VA), where measurements of water vapor, heat, and momentum fluxes were made from low-altitude (31-m) UAV flights over water (Potomac River). ScanEagles are capable of ship-based launch and recovery, which can extend the reach of research vessels and enable scientific measurements out to ranges of O(10-100) km and altitudes up to 5 km. UAV-based atmospheric and surface observations can complement observations of surface and subsurface phenomena made from a research vessel and avoid the well-known problems of vessel interference in MABL measurements. We present a description of the instrumentation, summarize results from flight tests, and discuss potential applications of these UAVs for ship-based MABL studies.

  15. MARINER 10 SPACE PROBE UNDERGOES ENCAPSULATION

    NASA Technical Reports Server (NTRS)

    1973-01-01

    After complete check out, technicians prepare to encapsulate Mariner 10, the spacecraft that will be launched toward the planets Venus and Mercury in early November. The Mariner 10 project includ