Science.gov

Sample records for marine photosynthetic bacterium

  1. Development of a gene cloning system for the hydrogen-producing marine photosynthetic bacterium Rhodopseudomonas sp.

    PubMed Central

    Matsunaga, T; Matsunaga, N; Tsubaki, K; Tanaka, T

    1986-01-01

    Seventy-six strains of marine photosynthetic bacteria were analyzed by agarose gel electrophoresis for plasmid DNA content. Among these strains, 12 carried two to four different plasmids with sizes ranging from 3.1 to 11.0 megadaltons. The marine photosynthetic bacterium Rhodopseudomonas sp. NKPB002106 had two plasmids, pRD06S and pRD06L. The smaller plasmid, pRD06S, had a molecular weight of 3.8 megadaltons and was cut at a single site by restriction endonucleases SalI, SmaI, PstI, XhoI, and BglII. Moreover, the marine photosynthetic bacterium Rhodopseudomonas sp. NKPB002106 containing plasmid pRD06 had a satisfactory growth rate (doubling time, 7.5 h), a hydrogen-producing rate of 0.96 mumol/mg (dry weight) of cells per h, and nitrogen fixation capability. Plasmid pRD06S, however, had neither drug resistance nor heavy-metal resistance, and its copy number was less than 10. Therefore, a recombinant plasmid consisting of pRD06S and Escherichia coli cloning vector pUC13 was constructed and cloned in E. coli. The recombinant plasmid was transformed into Rhodopseudomonas sp. NKPB002106. As a result, Rhodopseudomonas sp. NKPB002106 developed ampicillin resistance. Thus, a shuttle vector for gene transfer was constructed for marine photosynthetic bacteria. PMID:3020006

  2. Production of polyhydroxybutyrate by the marine photosynthetic bacterium Rhodovulum sulfidophilum P5

    NASA Astrophysics Data System (ADS)

    Cai, Jinling; Wei, Ying; Zhao, Yupeng; Pan, Guanghua; Wang, Guangce

    2012-07-01

    The effects of different NaCl concentrations, nitrogen sources, carbon sources, and carbon to nitrogen molar ratios on biomass accumulation and polyhydroxybutyrate (PHB) production were studied in batch cultures of the marine photosynthetic bacterium Rhodovulum sulfidophilum P5 under aerobic-dark conditions. The results show that the accumulation of PHB in strain P5 is a growth-associated process. Strain P5 had maximum biomass and PHB accumulation at 2%-3% NaCl, suggesting that the bacterium can maintain growth and potentially produce PHB at natural seawater salinity. In the nitrogen source test, the maximum biomass accumulation (8.10±0.09 g/L) and PHB production (1.11±0.13 g/L and 14.62%±2.2 of the cell dry weight) were observed when peptone and ammonium chloride were used as the sole nitrogen source. NH{4/+}-N was better for PHB production than other nitrogen sources. In the carbon source test, the maximum biomass concentration (7.65±0.05 g/L) was obtained with malic acid as the sole carbon source, whereas the maximum yield of PHB (5.03±0.18 g/L and 66.93%±1.69% of the cell dry weight) was obtained with sodium pyruvate as the sole carbon source. In the carbon to nitrogen ratios test, sodium pyruvate and ammonium chloride were selected as the carbon and nitrogen sources, respectively. The best carbon to nitrogen molar ratio for biomass accumulation (8.77±0.58 g/L) and PHB production (6.07±0.25 g/L and 69.25%±2.05% of the cell dry weight) was 25. The results provide valuable data on the production of PHB by R. sulfidophilum P5 and further studies are on-going for best cell growth and PHB yield.

  3. Triazine herbicide resistance in the photosynthetic bacterium Rhodopseudomonas sphaeroides

    SciTech Connect

    Brown, A.E.; Gilbert, C.W.; Guy, R.; Arntzen, C.J.

    1984-10-01

    The photoaffinity herbicide azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-s-triazine) selectively labels the L subunit of the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Herbicide-resistant mutants retain the L subunit and have altered binding properties for methylthio- and chloro-substituted triazines as well as altered equilibrium constants for electron transfer between primary and secondary electron acceptors. We suggest that a subtle alteration in the L subunit is responsible for herbicide resistance and that the L subunit is the functional analog of the 32-kDa Q/sub B/ protein of chloroplast membranes. 42 references, 6 figures, 1 table.

  4. PHOTOSYNTHETIC EFFICIENCY OF MARINE PLANTS

    PubMed Central

    Yocum, C. S.; Blinks, L. R.

    1954-01-01

    Multicellular marine plants were collected from their natural habitats and the quantum efficiency of their photosynthesis was determined in the laboratory in five narrow wave length bands in the visible spectrum. The results along with estimates of the relative absorption by the various plastid pigments show a fairly uniform efficiency of 0.08 molecules O2 per absorbed quantum for (a) chlorophyll of one flowering plant, green algae, and brown algae, (b) fucoxanthol and other carotenoids of brown algae, and (c) the phycobilin pigments phycocyanin and phycoerythrin of red algae. The carotenoids of green algae are sometimes less efficient while those of red algae are largely or entirely inactive. Chlorophyll a of red algae is about one-half as efficient (φo2 = 0.04) as either the phycobilins, or the chlorophyll of most other plants. These results as well as those of high intensity and of fluorescence experiments are consistent with a mechanism in which about half the chlorophyll is inactive while the other half is fully active and is an intermediate in phycoerythrin- and phycocyanin-sensitized photosynthesis. PMID:13192311

  5. Photosynthetic carbon metabolism of a marine grass.

    PubMed

    Benedict, C R; Scott, J R

    1976-06-01

    The delta(13)C value of a tropical marine grass Thalassia testudinum is -9.04 per thousand. This value is similar to the delta(13)C value of terrestrial tropical grasses. The delta(13)C values of the organic acid fraction, the amino acid fraction, the sugar fraction, malic acid, and glucose are: -11.2 per thousand, -13.1 per thousand, -10.1 per thousand, -11.1 per thousand, and -11.5 per thousand, respectively. The delta(13)C values of malic acid and glucose of Thalassia are similar to the delta(13)C values of these intermediates in sorghum leaves and attest to the presence of the photosynthetic C(4)-dicarboxylic acid pathway in this marine grass. The inorganic HCO(3) (-) for the growth of the grass fluctuates between -6.7 to -2.7 per thousand during the day. If CO(2) fixation in Thalassia is catalyzed by phosphoenolpyruvate carboxylase (which would result in a -3 per thousand fractionation between HCO(3) (-) and malic acid), the predicted delta(13)C value for Thalassia would be -9.7 to -5.7 per thousand. This range is close to the observed range of -12.6 to -7.8 per thousand for Thalassia and agree with the operation of the C(4)-dicarboxylic acid pathway in this plant. The early products of the fixation of HCO(3) (-) in the leaf sections are malic acid and aspartic acid which are similar to the early products of CO(2) fixation in C(4) terrestrial plants.Electron microscopy of the leaves of Thalassia reveal thick walled epidermal cells exceedingly rich in mitochondria and C(3)-type chloroplasts. The mesophyll cells have many different shapes and surround air lacunae which contain O(2) and CO(2). The mesophyll cells are highly vacuolated and the parietal cytoplasm contains an occasional chloroplast. This chloroplast contains grana but the lamellar system is not as developed as the system in epidermal chloroplasts. Extensive phloem tissue is present but the xylem elements are reduced in this aquatic grass. The vascular tissue is not surrounded by bundle sheath cells

  6. Pangenome Evolution in the Marine Bacterium Alteromonas

    PubMed Central

    López-Pérez, Mario; Rodriguez-Valera, Francisco

    2016-01-01

    We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7–83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9–5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed. PMID:27189983

  7. Pangenome Evolution in the Marine Bacterium Alteromonas.

    PubMed

    López-Pérez, Mario; Rodriguez-Valera, Francisco

    2016-01-01

    We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7-83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9-5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed. PMID:27189983

  8. Microcalorimetric Measurements of Glucose Metabolism by Marine Bacterium Vibrio alginolyticus

    PubMed Central

    Gordon, Andrew S.; Millero, Frank J.; Gerchakov, Sol M.

    1982-01-01

    Microcalorimetric measurements of heat production from glucose by Vibrio alginolyticus were made to assess the viability of calorimetry as a technique for studying the metabolism of marine bacteria at organic nutrient concentrations found in marine waters. The results show that the metabolism of glucose by this bacterium can be measured by calorimetry at submicromolar concentrations. A linear correlation between glucose concentration and total heat production was observed over a concentration range of 8 mM to 0.35 μM. It is suggested that these data indicate a constant efficiency of metabolism for this bacterium over the wide range of glucose concentrations studied. PMID:16346131

  9. Nobel lecture. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis.

    PubMed Central

    Deisenhofer, J; Michel, H

    1989-01-01

    In our lectures we first describe the history and methods of membrane protein crystallization, before we show how the structure of the photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis was solved. Then the structure of this membrane protein complex is correlated with its function as a light-driven electron pump across the photosynthetic membrane. Finally we draw conclusions on the structure of the photosystem II reaction centre from plants and discuss the aspects of membrane protein structure. Sections 1 (crystallization), 4 (conclusions on the structure of photosystem II reaction centre and evolutionary aspects) and 5 (aspects of membrane protein structure) were presented and written by H.M., Sections 2 (determination of the structure) and 3 (structure and function) by J.D. We have arranged the paper in this way in order to facilitate continuous reading. Images PMID:2676514

  10. Marine transducing bacteriophage attacking a luminous bacterium.

    PubMed

    Keynan, A; Nealson, K; Sideropoulos, H; Hastings, J W

    1974-08-01

    The isolation and partial characterization of a marine bacteriophage attacking a strain of luminous bacteria is described, including some physical, biological, and genetic properties. It is a DNA phage of density of 1.52 with a long flexible tail and an apparently icosohedral head. With respect to stability in suspension, it has a rather specific requirement for the sodium ion in high concentration; it is further stabilized by the addition of calcium and magnesium ions. These same ions are likewise all required for both good plating efficiency and plaque uniformity. Although it goes through a typical lytic growth cycle (about 45 min), with a burst size of 100, and no stable lysogens have been isolated, it is nevertheless a transducing phage specifically for the tryptophan region, transducing several, but not all, independently isolated Trp(-) auxotrophs to protrophy. No other auxotrophs of a variety of amino acids were transduced by this phage to prototrophy. Phage infection does not change the normal expression of the luminescent system, and light remains at near normal levels until cell lysis occurs. PMID:16789143

  11. Cytochromes c biogenesis in a photosynthetic bacterium requires a periplasmic thioredoxin-like protein.

    PubMed Central

    Beckman, D L; Kranz, R G

    1993-01-01

    Rhodobacter capsulatus is a Gram-negative photosynthetic bacterium that requires c-type cytochromes for photosynthetic electron transport. Our studies demonstrate that the gene helX is required for the biogenesis of c-type cytochromes in R. capsulatus. A helX chromosomal deletion mutant cannot grow photosynthetically, due to a deficiency of all c-type cytochromes. The predicted amino acid sequence of the helX gene product (176 residues) is related to that of thioredoxin and shares active-site homology with protein disulfide isomerase. Cytochrome c2-alkaline phosphatase gene fusions are used to show that HelX is not required for the transcription, translation, or secretion of apocytochrome c2. HelX-alkaline phosphatase and HelX-beta-galactosidase gene fusions are used to demonstrate that HelX is a periplasmic protein, which is consistent with the presence of a typical signal sequence in HelX. Based on these results, we propose HelX functions as a periplasmic disulfide oxidoreductase that is essential for cytochromes c biogenesis. This role is in accordance with the observation that both heme and the cysteines of apocytochromes c (Cys-Xaa-Yaa-Cys-His) must be in the reduced state for covalent linkage between the two moieties to occur. PMID:8384715

  12. The terminal oxidase in the marine bacterium Pseudomonas nautica 617.

    PubMed

    Simpson, H; Denis, M; Malatesta, F

    1997-06-01

    The molecular properties of a novel membrane quinol oxidase from the marine bacterium Pseudomonas nautica 617 are presented. The protein contains 2b hemes/mole which may be distinguished by EPR spectroscopy but not by optical spectroscopy and electrochemistry. Respiration, though being cyanide insensitive, is not inhibited by carbon monoxide and oxygen reduction is carried out only half-way with production of hydrogen peroxide. The terminal oxidase represents, therefore, a unique example in the large family of terminal oxidases known up to date. PMID:9337488

  13. Decoherence dynamics of coherent electronic excited states in the photosynthetic purple bacterium Rhodobacter sphaeroides

    NASA Astrophysics Data System (ADS)

    Liang, Xian-Ting; Zhang, Wei-Min; Zhuo, Yi-Zhong

    2010-01-01

    In this paper, we present a theoretical description to the quantum coherence and decoherence phenomena of energy transfer in photosynthesis observed in a recent experiment [Science 316, 1462 (2007)]. As a successive two-color laser pulses with selected frequencies cast on a sample of the photosynthetic purple bacterium Rb. sphaeroides two resonant excitations of electrons in chromophores can be generated. However, this effective two-level subsystem will interact with its protein environment and decoherence is inevitable. We describe this subsystem coupled with its environment as a dynamical spin-boson model. The non-Markovian decoherence dynamics is described using a quasiadiabatic propagator path integral (QUAPI) approach. With the photon-induced effective time-dependent level splitting energy and level flip coupling coefficient between the two excited states and the environment-induced non-Markovian decoherence dynamics, our theoretical result is in good agreement with the experimental data.

  14. Purification and characterization of the alternative nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum.

    PubMed Central

    Davis, R; Lehman, L; Petrovich, R; Shah, V K; Roberts, G P; Ludden, P W

    1996-01-01

    The alternative nitrogenase from a nifH mutant of the photosynthetic bacterium Rhodospirillum rubrum has been purified and characterized. The dinitrogenase protein (ANF1) contains three subunits in an apparent alpha2beta2gamma2 structure and contains Fe but no Mo or V. A factor capable of activating apo-dinitrogenase (lacking the FeMo cofactor) from Azotobacter vinelandii was extracted from the alternative dinitrogenase protein with N-methylformamide. The electron paramagnetic resonance (EPR) signal of the dinitrogenase protein is not characteristic of the EPR signals of molybdenum- or vanadium-containing dinitrogenases. The alternative dinitrogenase reductase (ANF2) was purified as an alpha2 dimer containing an Fe4S4 cluster and exhibited an EPR spectrum characteristic of dinitrogenase reductases. The enzyme complex reduces protons to H2 very well but reduces N2 to ammonium poorly. Acetylene is reduced to a mixture of ethylene and ethane. PMID:8631723

  15. Native Mass Spectrometry Characterizes the Photosynthetic Reaction Center Complex from the Purple Bacterium Rhodobacter sphaeroides

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Harrington, Lucas B.; Lu, Yue; Prado, Mindy; Saer, Rafael; Rempel, Don; Blankenship, Robert E.; Gross, Michael L.

    2016-08-01

    Native mass spectrometry (MS) is an emerging approach to study protein complexes in their near-native states and to elucidate their stoichiometry and topology. Here, we report a native MS study of the membrane-embedded reaction center (RC) protein complex from the purple photosynthetic bacterium Rhodobacter sphaeroides. The membrane-embedded RC protein complex is stabilized by detergent micelles in aqueous solution, directly introduced into a mass spectrometer by nano-electrospray (nESI), and freed of detergents and dissociated in the gas phase by collisional activation. As the collision energy is increased, the chlorophyll pigments are gradually released from the RC complex, suggesting that native MS introduces a near-native structure that continues to bind pigments. Two bacteriochlorophyll a pigments remain tightly bound to the RC protein at the highest collision energy. The order of pigment release and their resistance to release by gas-phase activation indicates the strength of pigment interaction in the RC complex. This investigation sets the stage for future native MS studies of membrane-embedded photosynthetic pigment-protein and related complexes.

  16. A cambialistic superoxide dismutase in the thermophilic photosynthetic bacterium Chloroflexus aurantiacus.

    PubMed

    Lancaster, Vanessa L; LoBrutto, Russell; Selvaraj, Fabiyola M; Blankenship, Robert E

    2004-06-01

    Superoxide dismutase from the thermophilic anoxygenic photosynthetic bacterium Chloroflexus aurantiacus was cloned, purified, and characterized. This protein is in the manganese- and iron-containing family of superoxide dismutases and is able to use both manganese and iron catalytically. This appears to be the only soluble superoxide dismutase in C. aurantiacus. Iron and manganese cofactors were identified by using electron paramagnetic resonance spectroscopy and were quantified by atomic absorption spectroscopy. By metal enrichment of growth media and by performing metal fidelity studies, the enzyme was found to be most efficient with manganese incorporated, yet up to 30% of the activity was retained with iron. Assimilation of iron or manganese ions into superoxide dismutase was also found to be affected by the growth conditions. This enzyme was also found to be remarkably thermostable and was resistant to H2O2 at concentrations up to 80 mM. Reactive oxygen defense mechanisms have not been previously characterized in the organisms belonging to the phylum Chloroflexi. These systems are of interest in C. aurantiacus since this bacterium lives in a hyperoxic environment and is subject to high UV radiation fluxes. PMID:15150226

  17. The Protective Roles of the Antioxidant Enzymes Superoxide Dismutase and Catalase in the Green Photosynthetic Bacterium Chloroflexus Aurantiacus

    NASA Technical Reports Server (NTRS)

    Blankenship, Robert E.; Rothschild, Lynn (Technical Monitor)

    2004-01-01

    The purpose of this study was to examine the biochemical response of the green thermophilic photosynthetic bacterium Chloroflexus aurantiacus to oxidative stress. Lab experiments focused primarily on characterizing the antioxidant enzyme superoxide dismutase and the response of this organism to oxidative stress. Experiments in the field at the hotsprings in Yellowstone National Park focused on the changes in the level of these enzymes during the day in response to oxidants and to the different types of ultraviolet radiation.

  18. Rhodobase, a meta-analytical tool for reconstructing gene regulatory networks in a model photosynthetic bacterium.

    PubMed

    Moskvin, Oleg V; Bolotin, Dmitry; Wang, Andrew; Ivanov, Pavel S; Gomelsky, Mark

    2011-02-01

    We present Rhodobase, a web-based meta-analytical tool for analysis of transcriptional regulation in a model anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides. The gene association meta-analysis is based on the pooled data from 100 of R. sphaeroides whole-genome DNA microarrays. Gene-centric regulatory networks were visualized using the StarNet approach (Jupiter, D.C., VanBuren, V., 2008. A visual data mining tool that facilitates reconstruction of transcription regulatory networks. PLoS ONE 3, e1717) with several modifications. We developed a means to identify and visualize operons and superoperons. We designed a framework for the cross-genome search for transcription factor binding sites that takes into account high GC-content and oligonucleotide usage profile characteristic of the R. sphaeroides genome. To facilitate reconstruction of directional relationships between co-regulated genes, we screened upstream sequences (-400 to +20bp from start codons) of all genes for putative binding sites of bacterial transcription factors using a self-optimizing search method developed here. To test performance of the meta-analysis tools and transcription factor site predictions, we reconstructed selected nodes of the R. sphaeroides transcription factor-centric regulatory matrix. The test revealed regulatory relationships that correlate well with the experimentally derived data. The database of transcriptional profile correlations, the network visualization engine and the optimized search engine for transcription factor binding sites analysis are available at http://rhodobase.org. PMID:21070832

  19. Characterisation of the LH2 spectral variants produced by the photosynthetic purple sulphur bacterium Allochromatium vinosum.

    PubMed

    Carey, Anne-Marie; Hacking, Kirsty; Picken, Nichola; Honkanen, Suvi; Kelly, Sharon; Niedzwiedzki, Dariusz M; Blankenship, Robert E; Shimizu, Yuuki; Wang-Otomo, Zheng-Yu; Cogdell, Richard J

    2014-11-01

    This study systematically investigated the different types of LH2 produced by Allochromatium (Alc.) vinosum, a photosynthetic purple sulphur bacterium, in response to variations in growth conditions. Three different spectral forms of LH2 were isolated and purified, the B800-820, B800-840 and B800-850 LH2 types, all of which exhibit an unusual split 800 peak in their low temperature absorption spectra. However, it is likely that more forms are also present. Relatively more B800-820 and B800-840 are produced under low light conditions, while relatively more B800-850 is produced under high light conditions. Polypeptide compositions of the three different LH2 types were determined by a combination of HPLC and TOF/MS. The B800-820, B800-840 and B800-850 LH2 types all have a heterogeneous polypeptide composition, containing multiple types of both α and β polypeptides, and differ in their precise polypeptide composition. They all have a mixed carotenoid composition, containing carotenoids of the spirilloxanthin series. In all cases the most abundant carotenoid is rhodopin; however, there is a shift towards carotenoids with a higher conjugation number in LH2 complexes produced under low light conditions. CD spectroscopy, together with the polypeptide analysis, demonstrates that these Alc. vinosum LH2 complexes are more closely related to the LH2 complex from Phs. molischianum than they are to the LH2 complexes from Rps. acidophila. PMID:25111749

  20. High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum.

    PubMed

    Wang, Guo-Shu; Grammel, Hartmut; Abou-Aisha, Khaled; Sägesser, Rudolf; Ghosh, Robin

    2012-10-01

    The biosynthesis of the major carotenoid spirilloxanthin by the purple nonsulfur bacterium Rhodospirillum rubrum is thought to occur via a linear pathway proceeding through phytoene and, later, lycopene as intermediates. This assumption is based solely on early chemical evidence (B. H. Davies, Biochem. J. 116:93-99, 1970). In most purple bacteria, the desaturation of phytoene, catalyzed by the enzyme phytoene desaturase (CrtI), leads to neurosporene, involving only three dehydrogenation steps and not four as in the case of lycopene. We show here that the chromosomal insertion of a kanamycin resistance cassette into the crtC-crtD region of the partial carotenoid gene cluster, whose gene products are responsible for the downstream processing of lycopene, leads to the accumulation of the latter as the major carotenoid. We provide spectroscopic and biochemical evidence that in vivo, lycopene is incorporated into the light-harvesting complex 1 as efficiently as the methoxylated carotenoids spirilloxanthin (in the wild type) and 3,4,3',4'-tetrahydrospirilloxanthin (in a crtD mutant), both under semiaerobic, chemoheterotrophic, and photosynthetic, anaerobic conditions. Quantitative growth experiments conducted in dark, semiaerobic conditions, using a growth medium for high cell density and high intracellular membrane levels, which are suitable for the conventional industrial production in the absence of light, yielded lycopene at up to 2 mg/g (dry weight) of cells or up to 15 mg/liter of culture. These values are comparable to those of many previously described Escherichia coli strains engineered for lycopene production. This study provides the first genetic proof that the R. rubrum CrtI produces lycopene exclusively as an end product. PMID:22865070

  1. High-Level Production of the Industrial Product Lycopene by the Photosynthetic Bacterium Rhodospirillum rubrum

    PubMed Central

    Wang, Guo-Shu; Grammel, Hartmut; Abou-Aisha, Khaled; Sägesser, Rudolf

    2012-01-01

    The biosynthesis of the major carotenoid spirilloxanthin by the purple nonsulfur bacterium Rhodospirillum rubrum is thought to occur via a linear pathway proceeding through phytoene and, later, lycopene as intermediates. This assumption is based solely on early chemical evidence (B. H. Davies, Biochem. J. 116:93–99, 1970). In most purple bacteria, the desaturation of phytoene, catalyzed by the enzyme phytoene desaturase (CrtI), leads to neurosporene, involving only three dehydrogenation steps and not four as in the case of lycopene. We show here that the chromosomal insertion of a kanamycin resistance cassette into the crtC-crtD region of the partial carotenoid gene cluster, whose gene products are responsible for the downstream processing of lycopene, leads to the accumulation of the latter as the major carotenoid. We provide spectroscopic and biochemical evidence that in vivo, lycopene is incorporated into the light-harvesting complex 1 as efficiently as the methoxylated carotenoids spirilloxanthin (in the wild type) and 3,4,3′,4′-tetrahydrospirilloxanthin (in a crtD mutant), both under semiaerobic, chemoheterotrophic, and photosynthetic, anaerobic conditions. Quantitative growth experiments conducted in dark, semiaerobic conditions, using a growth medium for high cell density and high intracellular membrane levels, which are suitable for the conventional industrial production in the absence of light, yielded lycopene at up to 2 mg/g (dry weight) of cells or up to 15 mg/liter of culture. These values are comparable to those of many previously described Escherichia coli strains engineered for lycopene production. This study provides the first genetic proof that the R. rubrum CrtI produces lycopene exclusively as an end product. PMID:22865070

  2. Induction and anisotropy of fluorescence of reaction center from photosynthetic bacterium Rhodobacter sphaeroides.

    PubMed

    Sipka, Gábor; Maróti, Péter

    2016-01-01

    Submillisecond dark-light changes of the yield (induction) and anisotropy of fluorescence under laser diode excitation were measured in the photosynthetic reaction center of the purple bacterium Rhodobacter sphaeroides. Narrow band (1-2 nm) laser diodes emitting at 808 and 865 nm were used to selectively excite the accessory bacteriochlorophyll (B, 800 nm) or the upper excitonic state of the bacteriochlorophyll dimer (P-, 810 nm) and the lower excitonic state of the dimer (P+, 865 nm), respectively. The fluorescence spectrum of the wild type showed two bands centered at 850 nm (B) and 910 nm (P-). While the monotonous decay of the fluorescence yield at 910 nm tracked the light-induced oxidation of the dimer, the kinetics of the fluorescence yield at 850 nm showed an initial rise before a decrease. The anisotropy of the fluorescence excited at 865 nm (P-) was very close to the limiting value (0.4) across the whole spectral range. The excitation of both B and P- at 808 nm resulted in wavelength-dependent depolarization of the fluorescence from 0.35 to 0.24 in the wild type and from 0.30 to 0.24 in the reaction center of triple mutant (L131LH-M160LH-M197FH). The additivity law of the anisotropies of the fluorescence species accounts for the wavelength dependence of the anisotropy. The measured fluorescence yields and anisotropies are interpreted in terms of very fast energy transfer from (1)B* to (1)P- (either directly or indirectly by internal conversion from (1)P+) and to the oxidized dimer. PMID:25698106

  3. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium.

    PubMed

    Zheng, Haiyan; Liu, Ying; Sun, Guangdong; Gao, Xiyan; Zhang, Qingling; Liu, Zhipei

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium, strain S1-1, was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system. Strain S1-1 was preliminarily identified as Psychrobacter sp. based on the analysis of its 16S rRNA gene sequence, which showed 100% sequence similarity to that of Psychrobacter sp. TSBY-70. Strain S1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite, and the total nitrogen removal rates could reach to 46.48% and 31.89%, respectively. The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low level accumulation of nitrite, suggesting that the aerobic denitrification process of strain S1-1 occurred mainly in this phase. The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1. Finally, factors affecting the growth of strain S1-1 and its aerobic denitrifying ability were also investigated. Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source, C/N ratio15, salinity 10 g/L NaCl, incubation temperature 20 degrees C and initial pH 6.5. PMID:22432315

  4. A global perspective on marine photosynthetic picoeukaryote community structure

    PubMed Central

    Kirkham, Amy R; Lepère, Cécile; Jardillier, Ludwig E; Not, Fabrice; Bouman, Heather; Mead, Andrew; Scanlan, David J

    2013-01-01

    A central goal in ecology is to understand the factors affecting the temporal dynamics and spatial distribution of microorganisms and the underlying processes causing differences in community structure and composition. However, little is known in this respect for photosynthetic picoeukaryotes (PPEs), algae that are now recognised as major players in marine CO2 fixation. Here, we analysed dot blot hybridisation and cloning–sequencing data, using the plastid-encoded 16S rRNA gene, from seven research cruises that encompassed all four ocean biomes. We provide insights into global abundance, α- and β-diversity distribution and the environmental factors shaping PPE community structure and composition. At the class level, the most commonly encountered PPEs were Prymnesiophyceae and Chrysophyceae. These taxa displayed complementary distribution patterns, with peak abundances of Prymnesiophyceae and Chrysophyceae in waters of high (25:1) or low (12:1) nitrogen:phosphorus (N:P) ratio, respectively. Significant differences in phylogenetic composition of PPEs were demonstrated for higher taxonomic levels between ocean basins, using Unifrac analyses of clone library sequence data. Differences in composition were generally greater between basins (interbasins) than within a basin (intrabasin). These differences were primarily linked to taxonomic variation in the composition of Prymnesiophyceae and Prasinophyceae whereas Chrysophyceae were phylogenetically similar in all libraries. These data provide better knowledge of PPE community structure across the world ocean and are crucial in assessing their evolution and contribution to CO2 fixation, especially in the context of global climate change. PMID:23364354

  5. Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes

    PubMed Central

    Tomasch, Jürgen; Gohl, Regina; Bunk, Boyke; Diez, Maria Suarez; Wagner-Döbler, Irene

    2011-01-01

    Bacterial aerobic anoxygenic photosynthesis (AAP) is an important mechanism of energy generation in aquatic habitats, accounting for up to 5% of the surface ocean's photosynthetic electron transport. We used Dinoroseobacter shibae, a representative of the globally abundant marine Roseobacter clade, as a model organism to study the transcriptional response of a photoheterotrophic bacterium to changing light regimes. Continuous cultivation of D. shibae in a chemostat in combination with time series microarray analysis was used in order to identify gene-regulatory patterns after switching from dark to light and vice versa. The change from heterotrophic growth in the dark to photoheterotrophic growth in the light was accompanied by a strong but transient activation of a broad stress response to the formation of singlet oxygen, an immediate downregulation of photosynthesis-related genes, fine-tuning of the expression of ETC components, as well as upregulation of the transcriptional and translational apparatus. Furthermore, our data suggest that D. shibae might use the 3-hydroxypropionate cycle for CO2 fixation. Analysis of the transcriptome dynamics after switching from light to dark showed relatively small changes and a delayed activation of photosynthesis gene expression, indicating that, except for light other signals must be involved in their regulation. Providing the first analysis of AAP on the level of transcriptome dynamics, our data allow the formulation of testable hypotheses on the cellular processes affected by AAP and the mechanisms involved in light- and stress-related gene regulation. PMID:21654848

  6. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum

    NASA Technical Reports Server (NTRS)

    Fry, B.; Gest, H.; Hayes, J. M.

    1985-01-01

    The purple photosynthetic bacterium Chromatium vinosum, strain D, catalyzes several oxidations of reduced sulfur compounds under anaerobic conditions in the light: e.g., sulfide --> sulfur --> sulfate, sulfite --> sulfate, and thiosulfate --> sulfur + sulfate. Here it is shown that no sulfur isotope effect is associated with the last of these processes; isotopic compositions of the sulfur and sulfate produced can differ, however, if the sulfane and sulfonate positions within the thiosulfate have different isotopic compositions. In the second process, an observed change from an inverse to a normal isotope effect during oxidation of sulfite may indicate the operation of 2 enzymatic pathways. In contrast to heterotrophic anaerobic reduction of oxidized sulfur compounds, anaerobic oxidations of inorganic sulfur compounds by photosynthetic bacteria are characterized by relatively small isotope effects.

  7. Photosynthetic inhibition and oxidative stress to the toxic Phaeocystis globosa caused by a diketopiperazine isolated from products of algicidal bacterium metabolism.

    PubMed

    Tan, Shuo; Hu, Xiaoli; Yin, Pinghe; Zhao, Ling

    2016-05-01

    Algicidal bacteria have been turned out to be available for inhibiting Phaeocystis globosa which frequently caused harmful algal blooms and threatened to economic development and ecological balance. A marine bacterium Bacillus sp. Ts-12 exhibited significant algicidal activity against P. globosa by indirect attack. In present study, an algicidal compound was isolated by silica gel column, Sephadex G-15 column and HPLC, further identified as hexahydropyrrolo[1,2-a]pyrazine-1,4-dione, cyclo-(Pro-Gly), by GC-MS and (1)H-NMR. Cyclo-(Pro-Gly) significantly increased the level of reactive oxygen species (ROS) within P. globosa cells, further activating the enzymatic and non-enzymatic antioxidant systems, including superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and ascorbic acid (AsA). The increase in methane dicarboxylic aldehyde (MDA) content showed that the surplus ROS induced lipid peroxidation on membrane system. Transmission electron microscope (TEM) and flow cytometry (FCM) analysis revealed that cyclo-(Pro-Gly) caused reduction of Chl-a content, destruction of cell membrane integrity, chloroplasts and nuclear structure. Real-time PCR assay showed that the transcriptions of photosynthesis related genes (psbA, psbD, rbcL) were significantly inhibited. This study indicated that cyclo-(Pro-Gly) from marine Bacillus sp. Ts-12 exerted photosynthetic inhibition and oxidative stress to P. globosa and eventually led to the algal cells lysis. This algicidal compound might be potential bio-agent for controlling P. globosa red tide. PMID:27095455

  8. Identification, isolation, and sequence of the reaction center protein genes of the photosynthetic purple bacterium Rhodopseudomonas capsulata

    SciTech Connect

    Hearst, J.E.

    1984-07-01

    Reaction centers in photosynthetic membranes are the centers to which electronic excitation due to light absorption is transferred. This excitation brings about a charge separation between a bacteriochlorophyll molecule and two quinone molecules which ultimately leads to the formation of a hydroquinone. The reduced hydroquinone is then utilized to produce a proton gradient across the membrane and ultimately to produce ATP. We have focused our interest on the structure of the reaction center in the photosynthetic purple bacterium, Rhodopseudomonas capsulata, with the intention of establishing a detailed understanding of these first chemical steps in the natural fixation of sunlight. The methods used to identify and isolate the genes for the three reaction center subunits, L, M, and H, in Rps. capsulata are outlined. These genes have then been sequenced, and the sequences analyzed in detail for their similarity with sequences of comparable proteins from more advanced photosynthetic bacteria such as Anabena, from algae such as Euglena and Chlamydomonas, and from higher plants such as amaranthus, soybean, tobacco and spinach. Homology was found which has been tentatively interpreted to be in the region of quinone binding in all of these reaction centers. There is growing optimism that there will be substantial structural similarity between the reaction centers of the purple bacteria and those of photosystem II in higher plants. This conclusion is important because the x-ray crystal structures of several of the purple bacteria reaction center complexes are presently being worked on and will ultimately be solved.

  9. Ammonificins C and D, Hydroxyethylamine Chromene Derivatives from a Cultured Marine Hydrothermal Vent Bacterium, Thermovibrio ammonificans

    PubMed Central

    Andrianasolo, Eric H.; Haramaty, Liti; Rosario-Passapera, Richard; Vetriani, Costantino; Falkowski, Paul; White, Eileen; Lutz, Richard

    2012-01-01

    Chemical and biological investigation of the cultured marine hydrothermal vent bacterium, Thermovibrio ammonifican led to the isolation of two hydroxyethylamine chromene derivatives, ammonificins C and D. Their structures were elucidated using combination of NMR and mass spectrometry. Absolute stereochemistry was ascertained by comparison of experimental and calculated CD spectra. Biological evaluation and assessment were determined using the patented ApopScreen cell-based screen for apoptosis-induction. Ammonificins C and D induce apoptosis in micromolar concentrations. To our knowledge, this finding is the first report of chemical compounds that induce apoptosis from the cultured deep-sea marine organism, hydrothermal vent bacterium, Thermovibrio ammonificans. PMID:23170085

  10. Korormicin, a novel antibiotic specifically active against marine gram-negative bacteria, produced by a marine bacterium.

    PubMed

    Yoshikawa, K; Takadera, T; Adachi, K; Nishijima, M; Sano, H

    1997-11-01

    A novel antibiotic named korormicin was isolated from the marine bacterium, Pseudoalteromonas sp. F-420. This strain was isolated from the surface of a macro alga Halimeda sp. collected from Palau (the Republic of Belau). The planar structure of korormicin was determined by the result of 2D NMR studies and mass spectral data. Korormicin had specific inhibitory activity against marine Gram-negative bacteria, but was inactive against terrestrial microorganisms. PMID:9592569

  11. Breakdown of food waste by anaerobic fermentation and non-oxygen producing photosynthesis using a photosynthetic bacterium.

    PubMed

    Mekjinda, N; Ritchie, R J

    2015-01-01

    Large volumes of food waste are produced by restaurants, hotels, etc generating problems in its collection, processing and disposal. Disposal as garbage increases the organic matter in landfills and leachates. The photosynthetic bacterium Rhodopseudomonas palustris (CGA 009) easily broke down food waste. R. palustris produces H2 under anaerobic conditions and digests a very wide range of organic compounds. R. palustris reduced BOD by ≈70% and COD by ≈33%, starch, ammonia, nitrate, was removed but had little effect on reducing sugar or the total phosphorus, lipid, protein, total solid in a 7-day incubation. R. palustris produced a maximum of 80ml H2/g COD/day. A two-stage anaerobic digestion using yeast as the first stage, followed by a R. palustris digestion was tested but production of H2 was low. PMID:25465509

  12. PSEUDOMONAS NATRIEGENS, A MARINE BACTERIUM WITH A GENERATION TIME OF LESS THAN 10 MINUTES

    PubMed Central

    Eagon, R. G.

    1962-01-01

    Eagon, R. G. (University of Georgia, Athens). Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes. J. Bacteriol. 83:736–737. 1962.—Pseudomonas natriegens, a marine microorganism, was demonstrated to have a generation time of 9.8 min. This is the shortest generation time reported to date. Optimal growth occurred at 37 C in brain heart infusion broth supplemented with 1.5% sea salt. PMID:13888946

  13. Prochlorococcus, a Marine Photosynthetic Prokaryote of Global Significance

    PubMed Central

    Partensky, F.; Hess, W. R.; Vaulot, D.

    1999-01-01

    The minute photosynthetic prokaryote Prochlorococcus, which was discovered about 10 years ago, has proven exceptional from several standpoints. Its tiny size (0.5 to 0.7 μm in diameter) makes it the smallest known photosynthetic organism. Its ubiquity within the 40°S to 40°N latitudinal band of oceans and its occurrence at high density from the surface down to depths of 200 m make it presumably the most abundant photosynthetic organism on Earth. Prochlorococcus typically divides once a day in the subsurface layer of oligotrophic areas, where it dominates the photosynthetic biomass. It also possesses a remarkable pigment complement which includes divinyl derivatives of chlorophyll a (Chl a) and Chl b, the so-called Chl a2 and Chl b2, and, in some strains, small amounts of a new type of phycoerythrin. Phylogenetically, Prochlorococcus has also proven fascinating. Recent studies suggest that it evolved from an ancestral cyanobacterium by reducing its cell and genome sizes and by recruiting a protein originally synthesized under conditions of iron depletion to build a reduced antenna system as a replacement for large phycobilisomes. Environmental constraints clearly played a predominant role in Prochlorococcus evolution. Its tiny size is an advantage for its adaptation to nutrient-deprived environments. Furthermore, genetically distinct ecotypes, with different antenna systems and ecophysiological characteristics, are present at depth and in surface waters. This vertical species variation has allowed Prochlorococcus to adapt to the natural light gradient occurring in the upper layer of oceans. The present review critically assesses the basic knowledge acquired about Prochlorococcus both in the ocean and in the laboratory. PMID:10066832

  14. Five New Amicoumacins Isolated from a Marine-Derived Bacterium Bacillus subtilis

    PubMed Central

    Li, Yongxin; Xu, Ying; Liu, Lingli; Han, Zhuang; Lai, Pok Yui; Guo, Xiangrong; Zhang, Xixiang; Lin, Wenhan; Qian, Pei-Yuan

    2012-01-01

    Four novel amicoumacins, namely lipoamicoumacins A–D (1–4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. PMID:22412803

  15. Isolation, characterization, and amino acid sequences of auracyanins, blue copper proteins from the green photosynthetic bacterium Chloroflexus aurantiacus

    NASA Technical Reports Server (NTRS)

    McManus, J. D.; Brune, D. C.; Han, J.; Sanders-Loehr, J.; Meyer, T. E.; Cusanovich, M. A.; Tollin, G.; Blankenship, R. E.

    1992-01-01

    Three small blue copper proteins designated auracyanin A, auracyanin B-1, and auracyanin B-2 have been isolated from the thermophilic green gliding photosynthetic bacterium Chloroflexus aurantiacus. All three auracyanins are peripheral membrane proteins. Auracyanin A was described previously (Trost, J. T., McManus, J. D., Freeman, J. C., Ramakrishna, B. L., and Blankenship, R. E. (1988) Biochemistry 27, 7858-7863) and is not glycosylated. The two B forms are glycoproteins and have almost identical properties to each other, but are distinct from the A form. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis apparent monomer molecular masses are 14 (A), 18 (B-2), and 22 (B-1) kDa. The amino acid sequences of the B forms are presented. All three proteins have similar absorbance, circular dichroism, and resonance Raman spectra, but the electron spin resonance signals are quite different. Laser flash photolysis kinetic analysis of the reactions of the three forms of auracyanin with lumiflavin and flavin mononucleotide semiquinones indicates that the site of electron transfer is negatively charged and has an accessibility similar to that found in other blue copper proteins. Copper analysis indicates that all three proteins contain 1 mol of copper per mol of protein. All three auracyanins exhibit a midpoint redox potential of +240 mV. Light-induced absorbance changes and electron spin resonance signals suggest that auracyanin A may play a role in photosynthetic electron transfer. Kinetic data indicate that all three proteins can donate electrons to cytochrome c-554, the electron donor to the photosynthetic reaction center.

  16. Auracyanin A from the thermophilic green gliding photosynthetic bacterium Chloroflexus aurantiacus represents an unusual class of small blue copper proteins.

    PubMed Central

    Van Driessche, G.; Hu, W.; Van de Werken, G.; Selvaraj, F.; McManus, J. D.; Blankenship, R. E.; Van Beeumen, J. J.

    1999-01-01

    The amino acid sequence of the small copper protein auracyanin A isolated from the thermophilic photosynthetic green bacterium Chloroflexus aurantiacus has been determined to be a polypeptide of 139 residues. His58, Cys123, His128, and Met132 are spaced in a way to be expected if they are the evolutionary conserved metal ligands as in the known small copper proteins plastocyanin and azurin. Secondary structure prediction also indicates that auracyanin has a general beta-barrel structure similar to that of azurin from Pseudomonas aeruginosa and plastocyanin from poplar leaves. However, auracyanin appears to have sequence characteristics of both small copper protein sequence classes. The overall similarity with a consensus sequence of azurin is roughly the same as that with a consensus sequence of plastocyanin, namely 30.5%. We suggest that auracyanin A, together with the B forms, is the first example of a new class of small copper proteins that may be descendants of an ancestral sequence to both the azurin proteins occurring in prokaryotic nonphotosynthetic bacteria and the plastocyanin proteins occurring in both prokaryotic cyanobacteria and eukaryotic algae and plants. The N-terminal sequence region 1-18 of auracyanin is remarkably rich in glycine and hydroxy amino acids, and required mass spectrometric analysis to be determined. The nature of the blocking group X is not yet known, although its mass has been determined to be 220 Da. The auracyanins are the first small blue copper proteins found and studied in anoxygenic photosynthetic bacteria and are likely to mediate electron transfer between the cytochrome bc1 complex and the photosynthetic reaction center. PMID:10338005

  17. Novel Epibiotic Thiothrix Bacterium on a Marine Amphipod

    PubMed Central

    Gillan, David C.; Dubilier, Nicole

    2004-01-01

    Comparative analysis of the 16S rRNA gene and fluorescent in situ hybridization (FISH) was used to identify epibiotic filamentous bacteria living on the marine amphipod crustacean Urothoe poseidonis. The epibionts belong to the gamma proteobacteria and represent a novel marine phylotype within the genus Thiothrix. FISH and denaturing gradient gel electrophoresis revealed that the Thiothrix filaments are present on the majority of the amphipods examined. PMID:15184190

  18. Denitrification by a marine bacterium Pseudomonas nautica strain 617.

    PubMed

    Bonin, P; Gilewicz, M; Bertrand, J C

    1987-01-01

    A bacterial strain was isolated from a marine sediment highly contaminated by hydrocarbons. From taxonomic tests, it was identified as Pseudomonas nautica. This marine strain was able to grow on nitrate, nitrite and nitrous oxide as an electron acceptor. The terminal product from the denitrification was dinitrogen. Thus, P. nautica was a denitrifier. The kinetics of each step of denitrification was examined in resting cell suspensions. The relative rates of nitrate and nitrite reduction and of nitrite reduction and nitrous oxide production explain, respectively, the presence of accumulated nitrite and that of compound intermediate between nitrite and nitrous oxide. PMID:3620203

  19. Light-enhanced bioaccumulation of molybdenum by nitrogen-deprived recombinant anoxygenic photosynthetic bacterium Rhodopseudomonas palustris.

    PubMed

    Naito, Taki; Sachuronggui; Ueki, Masayoshi; Maeda, Isamu

    2016-01-01

    As molybdenum (Mo) is an indispensable metal for plant nitrogen metabolisms, accumulation of dissolved Mo into bacterial cells may connect to the development of bacterial fertilizers that promote plant growth. In order to enhance Mo bioaccumulation, nitrogen removal and light illumination were examined in anoxygenic photosynthetic bacteria (APB) because APB possess Mo nitrogenase whose synthesis is strictly regulated by ammonium ion concentration. In addition, an APB, Rhodopseudomonas palustris, transformed with a gene encoding Mo-responsive transcriptional regulator ModE was constructed. Mo content was most markedly enhanced by the removal of ammonium ion from medium and light illumination while their effects on other metal contents were limited. Increases in contents of trace metals including Mo by the genetic modification were observed. Thus, these results demonstrated an effective way to enrich Mo in the bacterial cells by the culture conditions and genetic modification. PMID:26376718

  20. Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum

    SciTech Connect

    Niedzwiedzki, Dariusz; Kobayashi, Masayuki; Blankenship, R. E.

    2011-01-13

    Light-harvesting complex 2 from the anoxygenic phototrophic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption, fluorescence and flash photolysis spectroscopy. Steady-state absorption and fluorescence measurements show that carotenoids play a negligible role as supportive energy donors and transfer excitation to bacteriochlorophyll-a with low energy transfer efficiency of ~30%. HPLC analysis determined that the dominant carotenoids in the complex are rhodopin and spirilloxanthin. Carotenoid excited triplet state formation upon direct (carotenoid) or indirect (bacteriochlorophyll-a Q{sub x} band) excitation shows that carotenoid triplets are mostly localized on spirilloxanthin. In addition, no triplet excitation transfer between carotenoids was observed. Such specific carotenoid composition and spectroscopic results strongly suggest that this organism optimized carotenoid composition in the light-harvesting complex 2 in order to maximize photoprotective capabilities of carotenoids but subsequently drastically suppressed their supporting role in light-harvesting process.

  1. Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria

    PubMed Central

    Higuchi-Takeuchi, Mieko; Morisaki, Kumiko; Toyooka, Kiminori; Numata, Keiji

    2016-01-01

    Polyhydroxyalkanoate (PHA) is a biopolyester/bioplastic that is produced by a variety of microorganisms to store carbon and increase reducing redox potential. Photosynthetic bacteria convert carbon dioxide into organic compounds using light energy and are known to accumulate PHA. We analyzed PHAs synthesized by 3 purple sulfur bacteria and 9 purple non-sulfur bacteria strains. These 12 purple bacteria were cultured in nitrogen-limited medium containing acetate and/or sodium bicarbonate as carbon sources. PHA production in the purple sulfur bacteria was induced by nitrogen-limited conditions. Purple non-sulfur bacteria accumulated PHA even under normal growth conditions, and PHA production in 3 strains was enhanced by nitrogen-limited conditions. Gel permeation chromatography analysis revealed that 5 photosynthetic purple bacteria synthesized high-molecular-weight PHAs, which are useful for industrial applications. Quantitative reverse transcription polymerase chain reaction analysis revealed that mRNA levels of phaC and PhaZ genes were low under nitrogen-limited conditions, resulting in production of high-molecular-weight PHAs. We conclude that all 12 tested strains are able to synthesize PHA to some degree, and we identify 5 photosynthetic purple bacteria that accumulate high-molecular-weight PHA molecules. Furthermore, the photosynthetic purple bacteria synthesized PHA when they were cultured in seawater supplemented with acetate. The photosynthetic purple bacteria strains characterized in this study should be useful as host microorganisms for large-scale PHA production utilizing abundant marine resources and carbon dioxide. PMID:27513570

  2. Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria.

    PubMed

    Higuchi-Takeuchi, Mieko; Morisaki, Kumiko; Toyooka, Kiminori; Numata, Keiji

    2016-01-01

    Polyhydroxyalkanoate (PHA) is a biopolyester/bioplastic that is produced by a variety of microorganisms to store carbon and increase reducing redox potential. Photosynthetic bacteria convert carbon dioxide into organic compounds using light energy and are known to accumulate PHA. We analyzed PHAs synthesized by 3 purple sulfur bacteria and 9 purple non-sulfur bacteria strains. These 12 purple bacteria were cultured in nitrogen-limited medium containing acetate and/or sodium bicarbonate as carbon sources. PHA production in the purple sulfur bacteria was induced by nitrogen-limited conditions. Purple non-sulfur bacteria accumulated PHA even under normal growth conditions, and PHA production in 3 strains was enhanced by nitrogen-limited conditions. Gel permeation chromatography analysis revealed that 5 photosynthetic purple bacteria synthesized high-molecular-weight PHAs, which are useful for industrial applications. Quantitative reverse transcription polymerase chain reaction analysis revealed that mRNA levels of phaC and PhaZ genes were low under nitrogen-limited conditions, resulting in production of high-molecular-weight PHAs. We conclude that all 12 tested strains are able to synthesize PHA to some degree, and we identify 5 photosynthetic purple bacteria that accumulate high-molecular-weight PHA molecules. Furthermore, the photosynthetic purple bacteria synthesized PHA when they were cultured in seawater supplemented with acetate. The photosynthetic purple bacteria strains characterized in this study should be useful as host microorganisms for large-scale PHA production utilizing abundant marine resources and carbon dioxide. PMID:27513570

  3. Cadherin Domains in the Polysaccharide-Degrading Marine Bacterium Saccharophagus degradans 2-40 Are Carbohydrate-Binding Modules▿

    PubMed Central

    Fraiberg, Milana; Borovok, Ilya; Bayer, Edward A.; Weiner, Ronald M.; Lamed, Raphael

    2011-01-01

    The complex polysaccharide-degrading marine bacterium Saccharophagus degradans strain 2-40 produces putative proteins that contain numerous cadherin and cadherin-like domains involved in intercellular contact interactions. The current study reveals that both domain types exhibit reversible calcium-dependent binding to different complex polysaccharides which serve as growth substrates for the bacterium. PMID:21036994

  4. Pathways of energy flow through the light-harvesting antenna of the photosynthetic purple bacterium rhodobacter sphaeroides

    PubMed Central

    Zhang, Fu Geng; van Grondelle, Rienk; Sundström, Villy

    1992-01-01

    Using low intensity picosecond absorption spectroscopy with independently tunable excitation and probing infrared pulses, we have studied the pathways of energy transport through the light-harvesting antenna pigments of the photosynthetic purple bacterium Rhodobacter sphaeroides. From the observed excited-state rise time of the red-most pigment B896 as a function of excitation wavelength it is concluded that the B850 pigment of LH2 is spectrally heterogeneous. For excitations originating in the B850 pigment this results in a fast channel (9 ps) that is mainly excited in the peak of the B850 absorption band, and a slow channel (35 ps) that is predominantly excited at ∼840 nm. Upon excitation of B800, more than 90% of the excitations follow the fast path. From the observed kinetics it is concluded that the majority of the LH2 → LH1 energy transfer takes place within at most a few picoseconds. The rate-limiting step in the whole energy transfer sequence appears to be the B896 → reaction center transfer. The origin of the B850 heterogeneity and the slow 35-ps component is at the moment unclear. Possibly it represents a highly extended form of LH2 in which transfer to LH1 takes a relatively long time, due to a large number of transfer steps. PMID:19431825

  5. Inhibitor-complexed Structures of the Cytochrome bc[subscript 1] from the Photosynthetic Bacterium Rhodobacter sphaeroides

    SciTech Connect

    Esser, Lothar; Elberry, Maria; Zhou, Fei; Yu, Chang-An; Yu, Linda; Xia, Di

    2008-06-30

    The cytochrome bc{sub 1} complex (bc{sub 1}) is a major contributor to the proton motive force across the membrane by coupling electron transfer to proton translocation. The crystal structures of wild type and mutant bc{sub 1} complexes from the photosynthetic purple bacterium Rhodobacter sphaeroides (Rsbc{sub 1}), stabilized with the quinol oxidation (Q{sub P}) site inhibitor stigmatellin alone or in combination with the quinone reduction (Q{sub N}) site inhibitor antimycin, were determined. The high quality electron density permitted assignments of a new metal-binding site to the cytochrome c1 subunit and a number of lipid and detergent molecules. Structural differences between Rsbc{sub 1} and its mitochondrial counterparts are mostly extra membranous and provide a basis for understanding the function of the predominantly longer sequences in the bacterial subunits. Functional implications for the bc{sub 1} complex are derived from analyses of 10 independent molecules in various crystal forms and from comparisons with mitochondrial complexes.

  6. Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosynthetic bacterium Rhodopseudomonas viridis

    PubMed Central

    Breton, J.; Martin, J.-L.; Migus, A.; Antonetti, A.; Orszag, A.

    1986-01-01

    Reaction centers from the photosynthetic bacterium Rhodopseudomonas viridis have been excited within the near-infrared absorption bands of the dimeric primary donor (P), of the “accessory” bacteriochlorophylls (B), and of the bacteriopheophytins (H) by using laser pulses of 150-fsec duration. The transfer of excitation energy between H, B, and P occurs in slightly less than 100 fsec and leads to the ultrafast formation of an excited state of P. This state is characterized by a broad absorption spectrum and exhibits stimulated emission. It decays in 2.8 ± 0.2 psec with the simultaneous oxidation of the primary donor and reduction of the bacteriopheophytin acceptor, which have been monitored at 545, 675, 815, 830, and 1310 nm. Although a transient bleaching relaxing in 400 ± 100 fsec is specifically observed upon excitation and observation in the 830-nm absorption band, we have found no indication that an accessory bacteriochlorophyll is involved as a resolvable intermediary acceptor in the primary electron transfer process. PMID:16593728

  7. Isolation and Characterization of a Purple Non-Sulfur Photosynthetic Bacterium Rhodopseudomonas faecalis Strain A from Swine Sewage Wastewater.

    PubMed

    Wei, Hongyi; Okunishi, Suguru; Yoshikawa, Takeshi; Kamei, Yuto; Maeda, Hiroto

    2016-01-01

    A purple non-sulfur photosynthetic bacterium (PNSB), PSB Strain A was isolated from swine sewage wastewater. Phylogenetic analysis revealed that PSB Strain A was most closely related to Rhodopseudomonas faecalis. Growth of the isolate under anaerobic-light conditions with a variety of carbon sources was investigated. Both PSB Strain A and the standard strain showed good growth with acetic acid, propionic acid, and n-butyric acid at a concentration of 20 mM. At the high concentration of 200 mM, PSB Strain A showed better growth in pyruvate, acetate, propionate, succinate and malate. By applying PSB Strain A to treat swine sewage wastewater, the concentration of VFAs, which were acetic acid and propionic acid, decreased from 158.0 mM to 120.2±2.9 mM, and 14.9 mM to 9.3±0.9 mM, respectively, after 216-h incubation. After 330-h incubation, the concentrations of TOC and ammonia nitrogen dropped from 4508.0 mg/L to 3104.0±451.5 mg/L, and 629.7 mg/L to 424.1±7.4 mg/L, respectively. The isolated PSB Strain A showed almost the same efficiency compared with the standard strain on the removal of VFAs and TOC. The results suggest the possibility of using the isolated strain to treat swine sewage wastewater. PMID:27009507

  8. Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus.

    PubMed

    Borghese, Roberto; Brucale, Marco; Fortunato, Gianuario; Lanzi, Massimiliano; Mezzi, Alessio; Valle, Francesco; Cavallini, Massimiliano; Zannoni, Davide

    2016-05-15

    The toxic oxyanion tellurite (TeO3(2-)) is acquired by cells of Rhodobacter capsulatus grown anaerobically in the light, via acetate permease ActP2 and then reduced to Te(0) in the cytoplasm as needle-like black precipitates. Interestingly, photosynthetic cultures of R. capsulatus can also generate Te(0) nanoprecipitates (TeNPs) outside the cells upon addition of the redox mediator lawsone (2-hydroxy-1,4-naphtoquinone). TeNPs generation kinetics were monitored to define the optimal conditions to produce TeNPs as a function of various carbon sources and lawsone concentration. We report that growing cultures over a 10 days period with daily additions of 1mM tellurite led to the accumulation in the growth medium of TeNPs with dimensions from 200 up to 600-700 nm in length as determined by atomic force microscopy (AFM). This result suggests that nucleation of TeNPs takes place over the entire cell growth period although the addition of new tellurium Te(0) to pre-formed TeNPs is the main strategy used by R. capsulatus to generate TeNPs outside the cells. Finally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) analysis of TeNPs indicate they are coated with an organic material which keeps the particles in solution in aqueous solvents. PMID:26894294

  9. Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin

    PubMed Central

    Svitil, A. L.; Chadhain, S.; Moore, J. A.; Kirchman, D. L.

    1997-01-01

    Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), probably because of the more open structure of (beta)-chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products. PMID:16535505

  10. Role of Rhodobacter sp. Strain PS9, a Purple Non-Sulfur Photosynthetic Bacterium Isolated from an Anaerobic Swine Waste Lagoon, in Odor Remediation

    PubMed Central

    Do, Young S.; Schmidt, Thomas M.; Zahn, James A.; Boyd, Eric S.; de la Mora, Arlene; DiSpirito, Alan A.

    2003-01-01

    Temporal pigmentation changes resulting from the development of a purple color in anaerobic swine waste lagoons were investigated during a 4-year period. The major purple photosynthetic bacterium responsible for these color changes and the corresponding reductions in odor was isolated from nine photosynthetic lagoons. By using morphological, physiological, and phylogenetic characterization methods we identified the predominant photosynthetic bacterium as a new strain of Rhodobacter, designated Rhodobacter sp. strain PS9. Rhodobacter sp. strain PS9 is capable of photoorganotrophic growth on a variety of organic compounds, including all of the characteristic volatile organic compounds (VOC) responsible for the odor associated with swine production facilities (J. A. Zahn, A. A. DiSpirito, Y. S. Do, B. E. Brooks, E. E. Copper, and J. L. Hatfield, J. Environ. Qual. 30:624-634, 2001). The seasonal variations in airborne VOC emitted from waste lagoons showed that there was a 80 to 93% decrease in the concentration of VOC during a photosynthetic bloom. During the height of a bloom, the Rhodobacter sp. strain PS9 population accounted for 10% of the total community and up to 27% of the eubacterial community based on 16S ribosomal DNA signals. Additional observations based on seasonal variations in meteorological, biological, and chemical parameters suggested that the photosynthetic blooms of Rhodobacter sp. strain PS9 were correlated with lagoon water temperature and with the concentrations of sulfate and phosphate. In addition, the photosynthetic blooms of Rhodobacter sp. strain PS9 were inversely correlated with the concentrations of protein and fluoride. PMID:12620863

  11. Characterization of a marine origin aerobic nitrifying-denitrifying bacterium.

    PubMed

    Zheng, Hai-Yan; Liu, Ying; Gao, Xi-Yan; Ai, Guo-Min; Miao, Li-Li; Liu, Zhi-Pei

    2012-07-01

    The bacterial strain F6 was isolated from a biological aerated filter that is used for purifying recirculating water in a marine aquaculture system and was identified as Marinobacter sp. based on the analysis of its 16S rRNA gene sequence. Strain F6 showed efficient aerobic denitrifying ability. One hundred percent of nitrates and 73.10% of nitrites were removed, and the total nitrogen (TN) removal rates reached 50.08% and 33.03% under a high nitrate and nitrite concentration in the medium, respectively. N(2)O and (15)N(2), as revealed by GC-MS and GC-IRMS, were the products of aerobic denitrification. Factors affecting the growth and aerobic denitrifying performance of strain F6 were investigated. The results showed that the optimum aerobic denitrification conditions for strain F6 were the presence of sodium succinate as a carbon source, a C/N ratio of 15, salinity ranging from 32-35 g/L of NaCl, incubation temperature of 30°C, an initial pH of 7.5, and rotation speed of 150 rpm [dissolved oxygen (DO) 6.75 mg/L]. In addition, strain F6 was confirmed to be a heterotrophic nitrifier through its NO(2)(-) generation and 25.96% TN removal when NH(4)(+) was used as the sole N source. Therefore, strain F6, the first reported member of genus Marinobacter with aerobic heterotrophic nitrifying-denitrifying ability, is an excellent candidate for facilitating simultaneous nitrification and denitrification (SND) in industry and aquaculture wastewater. PMID:22578593

  12. The mannitol utilization system of the marine bacterium Zobellia galactanivorans.

    PubMed

    Groisillier, Agnès; Labourel, Aurore; Michel, Gurvan; Tonon, Thierry

    2015-03-01

    Mannitol is a polyol that occurs in a wide range of living organisms, where it fulfills different physiological roles. In particular, mannitol can account for as much as 20 to 30% of the dry weight of brown algae and is likely to be an important source of carbon for marine heterotrophic bacteria. Zobellia galactanivorans (Flavobacteriia) is a model for the study of pathways involved in the degradation of seaweed carbohydrates. Annotation of its genome revealed the presence of genes potentially involved in mannitol catabolism, and we describe here the biochemical characterization of a recombinant mannitol-2-dehydrogenase (M2DH) and a fructokinase (FK). Among the observations, the M2DH of Z. galactanivorans was active as a monomer, did not require metal ions for catalysis, and featured a narrow substrate specificity. The FK characterized was active on fructose and mannose in the presence of a monocation, preferentially K(+). Furthermore, the genes coding for these two proteins were adjacent in the genome and were located directly downstream of three loci likely to encode an ATP binding cassette (ABC) transporter complex, suggesting organization into an operon. Gene expression analysis supported this hypothesis and showed the induction of these five genes after culture of Z. galactanivorans in the presence of mannitol as the sole source of carbon. This operon for mannitol catabolism was identified in only 6 genomes of Flavobacteriaceae among the 76 publicly available at the time of the analysis. It is not conserved in all Bacteroidetes; some species contain a predicted mannitol permease instead of a putative ABC transporter complex upstream of M2DH and FK ortholog genes. PMID:25548051

  13. The Mannitol Utilization System of the Marine Bacterium Zobellia galactanivorans

    PubMed Central

    Groisillier, Agnès; Labourel, Aurore; Michel, Gurvan

    2014-01-01

    Mannitol is a polyol that occurs in a wide range of living organisms, where it fulfills different physiological roles. In particular, mannitol can account for as much as 20 to 30% of the dry weight of brown algae and is likely to be an important source of carbon for marine heterotrophic bacteria. Zobellia galactanivorans (Flavobacteriia) is a model for the study of pathways involved in the degradation of seaweed carbohydrates. Annotation of its genome revealed the presence of genes potentially involved in mannitol catabolism, and we describe here the biochemical characterization of a recombinant mannitol-2-dehydrogenase (M2DH) and a fructokinase (FK). Among the observations, the M2DH of Z. galactanivorans was active as a monomer, did not require metal ions for catalysis, and featured a narrow substrate specificity. The FK characterized was active on fructose and mannose in the presence of a monocation, preferentially K+. Furthermore, the genes coding for these two proteins were adjacent in the genome and were located directly downstream of three loci likely to encode an ATP binding cassette (ABC) transporter complex, suggesting organization into an operon. Gene expression analysis supported this hypothesis and showed the induction of these five genes after culture of Z. galactanivorans in the presence of mannitol as the sole source of carbon. This operon for mannitol catabolism was identified in only 6 genomes of Flavobacteriaceae among the 76 publicly available at the time of the analysis. It is not conserved in all Bacteroidetes; some species contain a predicted mannitol permease instead of a putative ABC transporter complex upstream of M2DH and FK ortholog genes. PMID:25548051

  14. Delineating ecotypes of marine photosynthetic picoeukaryotes in the wild

    NASA Astrophysics Data System (ADS)

    Limardo, A. J.; Sudek, S.; Rii, Y. M.; Church, M. J.; Wei, C. L.; Armbrust, E. V.; Worden, A. Z.

    2015-12-01

    Extremely small eukaryotic green algae are abundant primary producers found in diverse marine habitats. Over the last decade several studies have revealed extensive diversity within the "pico-prasinophytes" (≤2 µm diameter) that was previously unrecognized due to a lack of distinguishing morphological features. Using whole genome and marker gene analyses, distinct species have since been recognized within the Micromonas and Ostreococcus genera. Relatively little is known about environmental factors driving distributions of these species, but for Ostreococcus, laboratory studies suggested that differentiation reflects high- and low-light adapted ecotypes. Subsequent field studies indicated that Ostreococcus Clade OI and Clade OII rarely co-occur but partition according to distinct habitats - representing 'mesotrophic' and 'oligotrophic' ecotypes, respectively. Unlike Micromonas and Ostreococcus, Bathycoccus was presumed to be a single cosmopolitan species because identical 18S rRNA gene sequences are observed in cultured isolates and in environmental surveys. However, analysis of a targeted metagenome from a Bathycoccus population in the tropical Atlantic led to the hypothesis that Bathycoccus also harbors distinct ecotypes. Here, we have developed qPCR assays to enumerate the two Bathycoccus types which can be discriminated based on the internal transcribed spacer (ITS). Statistical analysis of qPCR and environmental data from >200 North Pacific Ocean samples shows that the two Bathycoccus clades are only somewhat analogous to oligotrophic and mesotrophic Ostreococcus clades. The two Bathycoccus clades co-occurred more than twice as often as the Ostreococcus clades. Additionally, while Bathycoccus BII and oligotrophic Ostreococcus OII were found at warm temperatures up to 26°C, BII extended into colder waters than OII. Similarly, Bathycoccus BI extended into warmer waters than mesotrophic Ostreococcus OI. Currently, we are analyzing metatranscriptomes to

  15. The structure of ferricytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H

    PubMed Central

    Harvilla, Paul B.; Wolcott, Holly N.

    2014-01-01

    Approximately 40% of all proteins are metalloproteins, and approximately 80% of Earth’s ecosystems are at temperatures ≤ 5 °C, including 90% of the global ocean. Thus, an essential aspect of marine metallobiochemistry is an understanding of the structure, dynamics, and mechanisms of cold adaptation of metalloproteins from marine microorganisms. Here, the molecular structure of the electron-transfer protein cytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H has been determined by X-ray crystallography (PDB: 4O1W). The structure is highly superimposable with that of the homologous cytochrome from the mesophile Marinobacter hydrocarbonoclasticus. Based on structural analysis and comparison of psychrophilic, psychrotolerant, and mesophilic sequences, a methionine-based ligand-substitution mechanism for psychrophilic protein stabilization is proposed. PMID:24727932

  16. The structure of ferricytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H.

    PubMed

    Harvilla, Paul B; Wolcott, Holly N; Magyar, John S

    2014-06-01

    Approximately 40% of all proteins are metalloproteins, and approximately 80% of Earth's ecosystems are at temperatures ≤5 °C, including 90% of the global ocean. Thus, an essential aspect of marine metallobiochemistry is an understanding of the structure, dynamics, and mechanisms of cold adaptation of metalloproteins from marine microorganisms. Here, the molecular structure of the electron-transfer protein cytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H has been determined by X-ray crystallography (PDB: ). The structure is highly superimposable with that of the homologous cytochrome from the mesophile Marinobacter hydrocarbonoclasticus. Based on structural analysis and comparison of psychrophilic, psychrotolerant, and mesophilic sequences, a methionine-based ligand-substitution mechanism for psychrophilic protein stabilization is proposed. PMID:24727932

  17. Production and Consumption of Hydrogen in Hot Spring Microbial Mats Dominated by a Filamentous Anoxygenic Photosynthetic Bacterium

    PubMed Central

    Otaki, Hiroyo; Everroad, R. Craig; Matsuura, Katsumi; Haruta, Shin

    2012-01-01

    Microbial mats containing the filamentous anoxygenic photosynthetic bacterium Chloroflexus aggregans develop at Nakabusa hot spring in Japan. Under anaerobic conditions in these mats, interspecies interaction between sulfate-reducing bacteria as sulfide producers and C. aggregans as a sulfide consumer has been proposed to constitute a sulfur cycle; however, the electron donor utilized for microbial sulfide production at Nakabusa remains to be identified. In order to determine this electron donor and its source, ex situ experimental incubation of mats was explored. In the presence of molybdate, which inhibits biological sulfate reduction, hydrogen gas was released from mat samples, indicating that this hydrogen is normally consumed as an electron donor by sulfate-reducing bacteria. Hydrogen production decreased under illumination, indicating that C. aggregans also functions as a hydrogen consumer. Small amounts of hydrogen may have also been consumed for sulfur reduction. Clone library analysis of 16S rRNA genes amplified from the mats indicated the existence of several species of hydrogen-producing fermentative bacteria. Among them, the most dominant fermenter, Fervidobacterium sp., was successfully isolated. This isolate produced hydrogen through the fermentation of organic carbon. Dispersion of microbial cells in the mats resulted in hydrogen production without the addition of molybdate, suggesting that simultaneous production and consumption of hydrogen in the mats requires dense packing of cells. We propose a cyclic electron flow within the microbial mats, i.e., electron flow occurs through three elements: S (elemental sulfur, sulfide, sulfate), C (carbon dioxide, organic carbon) and H (di-hydrogen, protons). PMID:22446313

  18. Complete Genome Sequence of a Marine Bacterium, Pseudomonas pseudoalcaligenes Strain S1, with High Mercury Resistance and Bioaccumulation Capacity.

    PubMed

    Liu, Bing; Bian, Chao; Huang, Huiwei; Yin, Zhiwei; Shi, Qiong; Deng, Xu

    2016-01-01

    Pseudomonas pseudoalcaligenes S1, a marine bacterium, exhibited strong resistance to a high concentration of Hg(2+) and remarkable Hg(2+) bioaccumulation capacity. Here, we report the 6.9-Mb genome sequence of P. pseudoalcaligenes S1, which may help clarify its phylogenetic status and provide further understanding of the mechanisms of mercury bioremediation in a marine environment. PMID:27198018

  19. Exploration of the antioxidant system and photosynthetic system of a marine algicidal Bacillus and its effect on four harmful algal bloom species.

    PubMed

    Hou, Shaoling; Shu, Wanjiao; Tan, Shuo; Zhao, Ling; Yin, Pinghe

    2016-01-01

    A novel marine bacterium, strain B1, initially showed 96.4% algicidal activity against Phaeocystis globosa. Under this situation, 3 other harmful algal species (Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense) were chosen to study the algicidal effects of strain B1, and the algicidal activities were 91.4%, 90.7%, and 90.6%, respectively. To explore the algicidal mechanism of strain B1 on these 4 harmful algal species, the characteristics of the antioxidant system and photosynthetic system were studied. Sensitivity to strain B1 supernatant, enzyme activity, and gene expression varied with algal species, while the algicidal patterns were similar. Strain B1 supernatant increased malondialdehyde contents; decreased chlorophyll a contents; changed total antioxidant and superoxide dismutase activity; and restrained psbA, psbD, and rbcL genes expression, which eventually resulted in the algal cells death. The algicidal procedure was observed using field emission scanning electron microscopy, which indicated that algal cells were lysed and cellular substances were released. These findings suggested that the antioxidant and photosynthetic system of these 4 algal species was destroyed under strain B1 supernatant stress. This is the first report to explore and compare the mechanism of a marine Bacillus against harmful algal bloom species of covered 4 phyla. PMID:26634608

  20. Isolation and biological characteristics of aerobic marine magnetotactic bacterium YSC-1

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Pan, Hongmiao; Yue, Haidong; Song, Tao; Zhao, Yong; Chen, Guanjun; Wu, Longfei; Xiao, Tian

    2006-12-01

    Magnetotactic bacteria have become a hot spot of research in microbiology attracting intensive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fastidious bacteria. The objective of this study aims at isolating new marine magnetic bacteria and better comprehension of magnetotactic bacteria. In this study, an aerobic magnetotactic bacterium YSC-1 was isolated from sediments in the Yellow Sea Cold Water Mass (YSCWM). In TEM, magnetic cells have one or several circular magnetosomes in diameter of 100nm, and consist of Fe and Co shown on energy dispersive X-ray spectrum. The biological and physiological characteristics of this bacterium were also described. The colour of YSC-1 colony is white in small rod. The gram stain is negative. Results showed that Strain YSC-1 differs from microaerophile magnetotactic bacteria MS-1 and WD-1 in biology.

  1. N-Acyl Dehydrotyrosines, Tyrosinase Inhibitors from the Marine Bacterium Thalassotalea sp. PP2-459.

    PubMed

    Deering, Robert W; Chen, Jianwei; Sun, Jiadong; Ma, Hang; Dubert, Javier; Barja, Juan L; Seeram, Navindra P; Wang, Hong; Rowley, David C

    2016-02-26

    Thalassotalic acids A-C and thalassotalamides A and B are new N-acyl dehydrotyrosine derivatives produced by Thalassotalea sp. PP2-459, a Gram-negative bacterium isolated from a marine bivalve aquaculture facility. The structures were elucidated via a combination of spectroscopic analyses emphasizing two-dimensional NMR and high-resolution mass spectrometric data. Thalassotalic acid A (1) displays in vitro inhibition of the enzyme tyrosinase with an IC50 value (130 μM) that compares favorably to the commercially used control compounds kojic acid (46 μM) and arbutin (100 μM). These are the first natural products reported from a bacterium belonging to the genus Thalassotalea. PMID:26824128

  2. Transcriptional Control of Expression of Genes for Photosynthetic Reaction Center and Light-Harvesting Proteins in the Purple Bacterium Rhodovulum sulfidophilum

    PubMed Central

    Masuda, Shinji; Nagashima, Kenji V. P.; Shimada, Keizo; Matsuura, Katsumi

    2000-01-01

    The purple photosynthetic bacterium Rhodovulum sulfidophilum synthesizes photosynthetic apparatus even under highly aerated conditions in the dark. To understand the oxygen-independent expression of photosynthetic genes, the expression of the puf operon coding for the light-harvesting 1 and reaction center proteins was analyzed. Northern blot hybridization analysis showed that puf mRNA synthesis was not significantly repressed by oxygen in this bacterium. High-resolution 5′ mapping of the puf mRNA transcriptional initiation sites and DNA sequence analysis of the puf upstream regulatory region indicated that there are three possible promoters for the puf operon expression, two of which have a high degree of sequence similarity with those of Rhodobacter capsulatus, which shows a high level of oxygen repression of photosystem synthesis. Deletion analysis showed that the third promoter is oxygen independent, but the activity of this promoter was not enough to explain the aerobic level of mRNA. The posttranscriptional puf mRNA degradation is not significantly influenced by oxygen in R. sulfidophilum. From these results, we conclude that puf operon expression in R. sulfidophilum is weakly repressed by oxygen, perhaps as a result of the following: (i) there are three promoters for puf operon transcription, at least one of which is oxygen independent; (ii) readthrough transcripts which may not be affected by oxygen may be significant in maintaining the puf mRNA levels; and (iii) the puf mRNA is fairly stable even under aerobic conditions. PMID:10781546

  3. An Updated genome annotation for the model marine bacterium Ruegeria pomeroyi DSS-3

    PubMed Central

    2014-01-01

    When the genome of Ruegeria pomeroyi DSS-3 was published in 2004, it represented the first sequence from a heterotrophic marine bacterium. Over the last ten years, the strain has become a valuable model for understanding the cycling of sulfur and carbon in the ocean. To ensure that this genome remains useful, we have updated 69 genes to incorporate functional annotations based on new experimental data, and improved the identification of 120 protein-coding regions based on proteomic and transcriptomic data. We review the progress made in understanding the biology of R. pomeroyi DSS-3 and list the changes made to the genome. PMID:25780504

  4. Bisucaberin B, a linear hydroxamate class siderophore from the marine bacterium Tenacibaculum mesophilum.

    PubMed

    Fujita, Masaki J; Nakano, Koji; Sakai, Ryuichi

    2013-01-01

    A siderophore, named bisucaberin B, was isolated from Tenacibaculum mesophilum bacteria separated from a marine sponge collected in the Republic of Palau. Using spectroscopic and chemical methods, the structure of bisucaberin B (1) was clearly determined to be a linear dimeric hydroxamate class siderophore. Although compound 1 is an open form of the known macrocyclic dimer bisucaberin (2), and was previously described as a bacterial degradation product of desferrioxamine B (4), the present report is the first description of the de novo biosynthesis of 1. To the best of our knowledge, compound 1 is the first chemically characterized siderophore isolated from a bacterium belonging to the phylum Bacteroidetes. PMID:23549298

  5. CsmA Protein is Associated with BChl a in the Baseplate Subantenna of Chlorosomes of the Photosynthetic Green Filamentous Bacterium Oscillochloris trichoides belonging to the Family Oscillochloridaceae

    PubMed Central

    Zobova, Anastasiya; Taisova, Alexandra; Lukashev, Eugeny; Fedorova, Nataliya; Baratova, Ludmila; Fetisova, Zoya

    2011-01-01

    The baseplate subantenna in chlorosomes of green anoxygenic photosynthetic bacteria, belonging to the families Chloroflexaceae and Chlorobiaceae, is known to represent a complex of bacteriochlorophyll (BChl) a with the ~6 kDa CsmA proteins. Earlier, we showed the existence of a similar BChl a subantenna in chlorosomes of the photosynthetic green bacterium Oscillochloris trichoides, member of Oscillochloridaceae, the third family of green photosynthetic bacteria. However, this BChl a subantenna was not visually identified in absorption spectra of isolated Osc. trichoides chlorosomes in contrast to those of Chloroflexaceae and Chlorobiaceae. In this work, using room and low-temperature absorbance and fluorescence spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of alkaline-treated and untreated chlorosomes of Osc. trichoides, we showed that the baseplate BChl a subantenna does exist in Oscillochloridaceae chlorosomes as a complex of BChl a with the 5.7 kDa CsmA protein. The present results support the idea that the baseplate subantenna, representing a complex of BChl a with a ~6 kDa CsmA protein, is a universal interface between the BChl c subantenna of chlorosomes and the nearest light-harvesting BChl a subantenna in all three known families of green anoxygenic photosynthetic bacteria. PMID:21941538

  6. Biosynthesis of unnatural bacteriochlorophyll c derivatives esterified with α,ω-diols in the green sulfur photosynthetic bacterium Chlorobaculum tepidum.

    PubMed

    Nishimori, Risato; Mizoguchi, Tadashi; Tamiaki, Hitoshi; Kashimura, Shigenori; Saga, Yoshitaka

    2011-09-13

    Unnatural bacteriochlorophyll (BChl) c derivatives possessing a hydroxy group at the terminus of a hydrocarbon chain at the 17-propionate were biosynthesized in the green sulfur photosynthetic bacterium Chlorobaculum tepidum. Addition of exogenous 1,8-octanediol, 1,12-dodecanediol, and 1,16-hexadecanediol in acetone to liquid cultures resulted in accumulation of BChl c monoesterified with the corresponding diols. The relative ratios of the novel BChl c derivatives esterified with 1,8-, 1,12-, and 1,16-diols to totally producing BChl c were 8.2, 50.2, and 57.6% in the cells grown with additive α,ω-diols at concentrations of 1.5, 0.06, and 0.06 mM, respectively, at the final concentration. The homologue composition of BChl c derivatives esterified with these α,ω-diols was similar to that of original, coexisting BChl c esterified with farnesol (BChl c(F)), suggesting that esterification of α,ω-diols occurred at the last step of the BChl c biosynthetic pathway by BChl c synthase, BchK, in the same manner as in BChl c(F). Chlorosomes, which were isolated from cells grown in the presence of exogenous α,ω-diols, contained a ratio and a composition of BChl c derivatives esterified with the diols similar to those in the whole cells, indicating that these BChl c derivatives were actually present in chlorosomes. Q(y) absorption bands of C. tepidum cells containing the novel BChl c derivatives were shifted to a shorter wavelength, although their bandwidths were analogous to those of cells obtained by normal cultivation. Circular dichroism spectra of cells that had BChl c derivatives esterified with α,ω-diols exhibited S-shaped signals in the Q(y) region, whose polarities were the reverse of those of cells grown in the normal medium and by supplementation with neat acetone as a control experiment. These spectral features of C. tepidum possessing BChl c derivatives esterified with α,ω-diols imply that the novel BChl c derivatives possessing a hydroxy group at the

  7. Paulinella longichromatophora sp. nov., a New Marine Photosynthetic Testate Amoeba Containing a Chromatophore.

    PubMed

    Kim, Sunju; Park, Myung Gil

    2016-02-01

    The freshwater testate filose amoeba Paulinella chromatophora is the sole species in the genus to have plastids, usually termed "chromatophores", of a Synechococcus/Prochlorococcus-like cyanobacterial origin. Here, we report a new marine phototrophic species, Paulinella longichromatophora sp. nov., using light and electron microscopy and molecular data. This new species contains two blue-green U-shaped chromatophores reaching up to 40 μm in total length. Further, the new Paulinella species is characterized by having five oral scales surrounding the pseudostomal aperture. All trees generated using three nuclear rDNA datasets (18S rDNA, 28S rDNA, and the concatenated 18S + 28S rDNA) demonstrated that three photosynthetic Paulinella species (two freshwater species, P. chromatophora and Paulinella strain FK01, and one marine species, P. longichromatophora) congruently formed a monophyletic group with strong support (≥ 90% of ML and ≥ 0.90 of PP), but their relationship to each other within the clade remained unresolved in all trees. P. longichromatophora, nevertheless, clustered consistently together with Paulinella strain FK01 with very low support, but the clade received strong support in plastid phylogenies. Phylogenetic analyses inferred from plastid-encoded 16S rDNA and a concatenated dataset of plastid 16S+23S rDNA demonstrated that chromatophores of all photosynthetic Paulinella species were monophyletic. The monophyletic group fell within a cyanobacteria clade having a close relationship to an α-cyanobacterial clade containing Prochlorococcus and Synechococcus species with very robust support (100% of ML and 1.0 of PP). Additionally, phylogenetic analyses of nuclear 18S rDNA and plastid 16S rDNA suggested divergent evolution within the photosynthetic Paulinella population after a single acquisition of the chromatophore. After the single acquisition of the chromatophore, ancestral photosynthetic Paulinella appears to have diverged into at least two

  8. Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium, Saccharophagus degradans Strain 2-40T

    PubMed Central

    Weiner, Ronald M.; Taylor, Larry E.; Henrissat, Bernard; Hauser, Loren; Land, Miriam; Coutinho, Pedro M.; Rancurel, Corinne; Saunders, Elizabeth H.; Longmire, Atkinson G.; Zhang, Haitao; Bayer, Edward A.; Gilbert, Harry J.; Larimer, Frank; Zhulin, Igor B.; Ekborg, Nathan A.; Lamed, Raphael; Richardson, Paul M.; Borovok, Ilya; Hutcheson, Steven

    2008-01-01

    The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40) is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment. PMID:18516288

  9. Death-specific protein in a marine diatom regulates photosynthetic responses to iron and light availability.

    PubMed

    Thamatrakoln, Kimberlee; Bailleul, Benjamin; Brown, Christopher M; Gorbunov, Maxim Y; Kustka, Adam B; Frada, Miguel; Joliot, Pierre A; Falkowski, Paul G; Bidle, Kay D

    2013-12-10

    Diatoms, unicellular phytoplankton that account for ∼40% of marine primary productivity, often dominate coastal and open-ocean upwelling zones. Limitation of growth and productivity by iron at low light is attributed to an elevated cellular Fe requirement for the synthesis of Fe-rich photosynthetic proteins. In the dynamic coastal environment, Fe concentrations and daily surface irradiance levels can vary by two to three orders of magnitude on short spatial and temporal scales. Although genome-wide studies are beginning to provide insight into the molecular mechanisms used by diatoms to rapidly respond to such fluxes, their functional role in mediating the Fe stress response remains uncharacterized. Here, we show, using reverse genetics, that a death-specific protein (DSP; previously named for its apparent association with cell death) in the coastal diatom Thalassiosira pseudonana (TpDSP1) localizes to the plastid and enhances growth during acute Fe limitation at subsaturating light by increasing the photosynthetic efficiency of carbon fixation. Clone lines overexpressing TpDSP1 had a lower quantum requirement for growth, increased levels of photosynthetic and carbon fixation proteins, and increased cyclic electron flow around photosystem I. Cyclic electron flow is an ATP-producing pathway essential in higher plants and chlorophytes with a heretofore unappreciated role in diatoms. However, cells under replete conditions were characterized as having markedly reduced growth and photosynthetic rates at saturating light, thereby constraining the benefits afforded by overexpression. Widespread distribution of DSP-like sequences in environmental metagenomic and metatranscriptomic datasets highlights the presence and relevance of this protein in natural phytoplankton populations in diverse oceanic regimes. PMID:24277817

  10. Death-specific protein in a marine diatom regulates photosynthetic responses to iron and light availability

    PubMed Central

    Thamatrakoln, Kimberlee; Bailleul, Benjamin; Brown, Christopher M.; Gorbunov, Maxim Y.; Kustka, Adam B.; Frada, Miguel; Joliot, Pierre A.; Falkowski, Paul G.; Bidle, Kay D.

    2013-01-01

    Diatoms, unicellular phytoplankton that account for ∼40% of marine primary productivity, often dominate coastal and open-ocean upwelling zones. Limitation of growth and productivity by iron at low light is attributed to an elevated cellular Fe requirement for the synthesis of Fe-rich photosynthetic proteins. In the dynamic coastal environment, Fe concentrations and daily surface irradiance levels can vary by two to three orders of magnitude on short spatial and temporal scales. Although genome-wide studies are beginning to provide insight into the molecular mechanisms used by diatoms to rapidly respond to such fluxes, their functional role in mediating the Fe stress response remains uncharacterized. Here, we show, using reverse genetics, that a death-specific protein (DSP; previously named for its apparent association with cell death) in the coastal diatom Thalassiosira pseudonana (TpDSP1) localizes to the plastid and enhances growth during acute Fe limitation at subsaturating light by increasing the photosynthetic efficiency of carbon fixation. Clone lines overexpressing TpDSP1 had a lower quantum requirement for growth, increased levels of photosynthetic and carbon fixation proteins, and increased cyclic electron flow around photosystem I. Cyclic electron flow is an ATP-producing pathway essential in higher plants and chlorophytes with a heretofore unappreciated role in diatoms. However, cells under replete conditions were characterized as having markedly reduced growth and photosynthetic rates at saturating light, thereby constraining the benefits afforded by overexpression. Widespread distribution of DSP-like sequences in environmental metagenomic and metatranscriptomic datasets highlights the presence and relevance of this protein in natural phytoplankton populations in diverse oceanic regimes. PMID:24277817

  11. Enrichment and physiological characterization of a novel Nitrospira-like bacterium obtained from a marine sponge.

    PubMed

    Off, Sandra; Alawi, Mashal; Spieck, Eva

    2010-07-01

    Members of the nitrite-oxidizing genus Nitrospira are most likely responsible for the second step of nitrification, the conversion of nitrite (NO(2)(-)) to nitrate (NO(3)(-)), within various sponges. We succeeded in obtaining an enrichment culture of Nitrospira derived from the mesohyl of the marine sponge Aplysina aerophoba using a traditional cultivation approach. Electron microscopy gave first evidence of the shape and ultrastructure of this novel marine Nitrospira-like bacterium (culture Aa01). We characterized these bacteria physiologically with regard to optimal incubation conditions, especially the temperature and substrate range in comparison to other Nitrospira cultures. Best growth was obtained at temperatures between 28 degrees C and 30 degrees C in mineral medium with 70% North Sea water and a substrate concentration of 0.5 mM nitrite under microaerophilic conditions. The Nitrospira culture Aa01 is very sensitive against nitrite, because concentrations higher than 1.5 mM resulted in a complete inhibition of growth. Sequence analyses of the 16S rRNA gene revealed that the novel Nitrospira-like bacterium is separated from the sponge-specific subcluster and falls together with an environmental clone from Mediterranean sediments (98.6% similarity). The next taxonomically described species Nitrospira marina is only distantly related, with 94.6% sequence similarity, and therefore the culture Aa01 represents a novel species of nitrite-oxidizing bacteria. PMID:20511427

  12. Microfabrication of patterns of adherent marine bacterium Phaeobacter inhibens using soft lithography and scanning probe lithography.

    PubMed

    Zhao, Chuan; Burchardt, Malte; Brinkhoff, Thorsten; Beardsley, Christine; Simon, Meinhard; Wittstock, Gunther

    2010-06-01

    Two lithographic approaches have been explored for the microfabrication of cellular patterns based on the attachment of marine bacterium Phaeobacter inhibens strain T5. Strain T5 produces a new antibiotic that makes this bacterium potentially interesting for the pharmaceutical market and as a probiotic organism in aquacultures and in controlling biofouling. The microcontact printing (microCP) method is based on the micropatterning of self-assembled monolayers (SAMs) terminated with adhesive end groups such as CH(3) and COOH and nonadhesive groups (e.g., short oligomers of ethylene glycol (OEG)) to form micropatterned substrates for the adhesion of strain T5. The scanning probe lithographic method is based on the surface modification of OEG SAM by using a microelectrode, the probe of a scanning electrochemical microscope (SECM). Oxidizing agents (e.g., Br(2)) were electrogenerated in situ at the microelectrodes from Br(-) in aqueous solution to remove OEG SAMs locally, which allows the subsequent adsorption of bacteria. Various micropatterns of bacteria could be formed in situ on the substrate without a prefabricated template. The fabricated cellular patterns may be applied to a variety of marine biological studies that require the analysis of biofilm formation, cell-cell and cell-surface interactions, and cell-based biosensors and bioelectronics. PMID:20397716

  13. Data supporting functional diversity of the marine bacterium Cobetia amphilecti KMM 296.

    PubMed

    Balabanova, Larissa; Nedashkovskaya, Olga; Podvolotskaya, Anna; Slepchenko, Lubov; Golotin, Vasily; Belik, Alexey; Shevchenko, Ludmila; Son, Oksana; Rasskazov, Valery

    2016-09-01

    Data is presented in support of functionality of hyper-diverse protein families encoded by the Cobetia amphilecti KMM 296 (formerly Cobetia marina KMM 296) genome ("The genome of the marine bacterium Cobetia marina KMM 296 isolated from the mussel Crenomytilus grayanus (Dunker, 1853)" [1]) providing its nutritional versatility, adaptability and biocontrol that could be the basis of the marine bacterium evolutionary and application potential. Presented data include the information of growth and biofilm-forming properties of the food-associated isolates of Pseudomonas, Bacillus, Listeria, Salmonella and Staphylococcus under the conditions of their co-culturing with C. amphilecti KMM 296 to confirm its high inter-species communication and anti-microbial activity. Also included are the experiments on the crude petroleum consumption by C. amphilecti KMM 296 as the sole source of carbon in the presence of sulfate or nitrate to ensure its bioremediation capacity. The multifunctional C. amphilecti KMM 296 genome is a promising source for the beneficial psychrophilic enzymes and essential secondary metabolites. PMID:27508225

  14. Isolation and Characterization of Strain MMB-1 (CECT 4803), a Novel Melanogenic Marine Bacterium.

    PubMed

    Solano, F; Garcia, E; Perez, D; Sanchez-Amat, A

    1997-09-01

    A novel marine melanogenic bacterium, strain MMB-1, was isolated from the Mediterranean Sea. The taxonomic characterization of this strain indicated that it belongs to the genus Alteromonas. Under in vivo conditions, L-tyrosine was the specific monophenolic precursor for melanin synthesis. This bacterium contained all types of activities associated with polyphenol oxidases (PPOs), cresolase (EC 1.18.14.1), catecholase (EC 1.10.3.1), and laccase (EC 1.10.3.2). These activities were due to the presence of two different PPOs. The first one showed all the enzymatic activities, but it was not involved in melanogenesis in vivo, since amelanogenic mutant strains obtained by nitrosoguanidine treatment contained levels of this PPO similar to that of the wild-type MMB-1 strain. The second PPO showed cresolase and catecholase activities but no laccase, and it was involved in melanogenesis, since this enzyme was lost in amelanogenic mutant strains. This PPO was strongly activated by sodium dodecyl sulfate below the critical micelle concentration, and it is a tyrosinase-like enzyme showing a lag period in its tyrosine hydroxylase activity that could be avoided by small amounts of L-dopa. This is the first report of a bacterium that contains two PPOs and also the first report of a pluripotent PPO showing all types of oxidase activities. The bacterium and the pluripotent PPO may be useful models for exploring the roles of PPOs in cellular physiology, aside from melanin formation. On the other hand, the high oxidizing capacity of the PPO for a wide range of substrates could make possible its application in phenolic biotransformations, food processing, or the cosmetic industry, where fungal and plant PPOs are being used. PMID:16535688

  15. Isolation and Characterization of Strain MMB-1 (CECT 4803), a Novel Melanogenic Marine Bacterium

    PubMed Central

    Solano, F.; Garcia, E.; Perez, De; Sanchez-Amat, A.

    1997-01-01

    A novel marine melanogenic bacterium, strain MMB-1, was isolated from the Mediterranean Sea. The taxonomic characterization of this strain indicated that it belongs to the genus Alteromonas. Under in vivo conditions, L-tyrosine was the specific monophenolic precursor for melanin synthesis. This bacterium contained all types of activities associated with polyphenol oxidases (PPOs), cresolase (EC 1.18.14.1), catecholase (EC 1.10.3.1), and laccase (EC 1.10.3.2). These activities were due to the presence of two different PPOs. The first one showed all the enzymatic activities, but it was not involved in melanogenesis in vivo, since amelanogenic mutant strains obtained by nitrosoguanidine treatment contained levels of this PPO similar to that of the wild-type MMB-1 strain. The second PPO showed cresolase and catecholase activities but no laccase, and it was involved in melanogenesis, since this enzyme was lost in amelanogenic mutant strains. This PPO was strongly activated by sodium dodecyl sulfate below the critical micelle concentration, and it is a tyrosinase-like enzyme showing a lag period in its tyrosine hydroxylase activity that could be avoided by small amounts of L-dopa. This is the first report of a bacterium that contains two PPOs and also the first report of a pluripotent PPO showing all types of oxidase activities. The bacterium and the pluripotent PPO may be useful models for exploring the roles of PPOs in cellular physiology, aside from melanin formation. On the other hand, the high oxidizing capacity of the PPO for a wide range of substrates could make possible its application in phenolic biotransformations, food processing, or the cosmetic industry, where fungal and plant PPOs are being used. PMID:16535688

  16. In situ associations between marine photosynthetic picoeukaryotes and potential parasites - a role for fungi?

    PubMed

    Lepère, Cécile; Ostrowski, Martin; Hartmann, Manuela; Zubkov, Mikhail V; Scanlan, David J

    2016-08-01

    Photosynthetic picoeukaryotes (PPEs) are important components of the marine picophytoplankton community playing a critical role in CO2 fixation but also as bacterivores, particularly in the oligotrophic gyres. Despite an increased interest in these organisms and an improved understanding of the genetic diversity of this group, we still know little of the environmental factors controlling the abundance of these organisms. Here, we investigated the quantitative importance of eukaryotic parasites in the free-living fraction as well as in associations with PPEs along a transect in the South Atlantic. Using tyramide signal amplification-fluorescence in situ hybridization (TSA-FISH), we provide quantitative evidence of the occurrence of free-living fungi in open ocean marine systems, while the Perkinsozoa and Syndiniales parasites were not abundant in these waters. Using flow cytometric cell sorting of different PPE populations followed by a dual-labelled TSA-FISH approach, we also demonstrate fungal associations, potentially parasitic, occurring with both pico-Prymnesiophyceae and pico-Chrysophyceae. These data highlight the necessity for further work investigating the specific role of marine fungi as parasites of phytoplankton to improve understanding of carbon flow in marine ecosystems. PMID:26420747

  17. Fabivirga thermotolerans gen. nov., sp. nov., a novel marine bacterium isolated from culture broth of a marine cyanobacterium.

    PubMed

    Tang, M; Chen, C; Li, J; Xiang, W; Wu, H; Wu, J; Dai, S; Wu, H; Li, T; Wang, G

    2016-02-01

    A Gram-stain-negative, red, non-spore-forming, strictly aerobic bacterium, designated strain A4T, was isolated from culture broth of a marine cyanobacterium. Cells were flexible rods with gliding motility. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain A4T formed a coherent cluster with members of the genera Roseivirga and Fabibacter, and represents a distinct lineage in the family Flammeovirgaceae. Thermotolerance and a distinctive cellular fatty acid profile could readily distinguish this isolate from any bacteria of the genera Roseivirga and Fabibacter with a validly published name. On the basis of the phenotypic, chemotaxonomic and phylogenetic characteristics, strain A4T is suggested to represent a novel species in a novel genus, for which the name Fabivirga thermotolerans gen. nov., sp. nov. is proposed. The type strain is A4T ( = KCTC 42507T = CGMCC 1.15111T). PMID:26652750

  18. Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium, Saccharophagus degradans strain 2-40

    SciTech Connect

    Weiner, Ronald M; TaylorII, Larry E; Henrissat, Bernard; Hauser, Loren John; Land, Miriam L; Coutinho, Pedro M; Rancurel, Corinne; Saunders, Elizabeth H; Longmire, Atkinson G; Zhang, Haitao; Bayer, Ed; Gilbert, Harry J; Larimer, Frank W; Zhulin, Igor B; Ekborg, Nathan A.; Lamed, Raphael; Richardson, P M; Borovok, Ilya; Hutcheson, Steven

    2008-05-01

    The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40) is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides (CP). We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 CP. Not only is this an extraordinary range of catabolic capability, but many of the enzymes contain domains and features - some unusual, others unique - that are believed to facilitate depolymerization of CP. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well characterized in the marine environment.

  19. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora

    PubMed Central

    Genicot, Sabine M.; Groisillier, Agnès; Rogniaux, Hélène; Meslet-Cladière, Laurence; Barbeyron, Tristan; Helbert, William

    2014-01-01

    Carrageenans are sulfated polysaccharides extracted from the cell wall of some marine red algae. These polysaccharides are widely used as gelling, stabilizing, and viscosifying agents in the food and pharmaceutical industries. Since the rheological properties of these polysaccharides depend on their sulfate content, we screened several isolated marine bacteria for carrageenan specific sulfatase activity, in the aim of developing enzymatic bioconversion of carrageenans. As a result of the screening, an iota-carrageenan sulfatase was detected in the cell-free lysate of the marine bacterium Pseudoalteromonas carrageenovora strain PscT. It was purified through Phenyl Sepharose and Diethylaminoethyl Sepharose chromatography. The pure enzyme, Psc ι-CgsA, was characterized. It had a molecular weight of 115.9 kDaltons and exhibited an optimal activity/stability at pH ~8.3 and at 40 ± 5°C. It was inactivated by phenylmethylsulfonyl fluoride but not by ethylene diamine tetraacetic acid. Psc ι-CgsA specifically catalyzes the hydrolysis of the 4-S sulfate of iota-carrageenan. The purified enzyme could transform iota-carrageenan into hybrid iota-/alpha- or pure alpha-carrageenan under controlled conditions. The gene encoding Psc ι-CgsA, a protein of 1038 amino acids, was cloned into Escherichia coli, and the sequence analysis revealed that Psc ι-CgsA has more than 90% sequence identity with a putative uncharacterized protein Q3IKL4 from the marine strain Pseudoalteromonas haloplanktis TAC 125, but besides this did not share any homology to characterized sulfatases. Phylogenetic studies show that P. carrageenovora sulfatase thus represents the first characterized member of a new sulfatase family, with a C-terminal domain having strong similarity with the superfamily of amidohydrolases, highlighting the still unexplored diversity of marine polysaccharide modifying enzymes. PMID:25207269

  20. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora

    NASA Astrophysics Data System (ADS)

    Genicot, Sabine; Groisillier, Agnès; Rogniaux, Hélène; Meslet-Cladière, Laurence; Barbeyron, Tristan; Helbert, William

    2014-08-01

    Carrageenans are sulfated polysaccharides extracted from the cell wall of some marine red algae. These polysaccharides are widely used as gelling, stabilizing, and viscosifying agents in the food and pharmaceutical industries. Since the rheological properties of these polysaccharides depend on their sulfate content, we screened several isolated marine bacteria for carrageenan specific sulfatase activity, in the aim of developing enzymatic bioconversion of carrageenans. As a result of the screening, an iota-carrageenan sulfatase was detected in the cell-free lysate of the marine bacterium Pseudoalteromonas carrageenovora strain PscT. It was purified through Phenyl Sepharose and Diethylaminoethyl Sepharose chromatography. The pure enzyme, Psc ?-CgsA, was characterized. It had a molecular weight of 115.9 kDaltons and exhibited an optimal activity/stability at pH ~8.3 and at 40°C ± 5°C. It was inactivated by phenylmethylsulfonyl fluoride but not by ethylene diamine tetraacetic acid. Psc ?-CgsA specifically catalyzes the hydrolysis of the 4-S sulfate of iota-carrageenan. The purified enzyme could transform iota-carrageenan into hybrid iota-/alpha- or pure alpha-carrageenan under controlled conditions. The gene encoding Psc ?-CgsA, a protein of 1038 amino acids, was cloned into Escherichia coli, and the sequence analysis revealed that Psc ?-CgsA has more than 90% sequence identity with a putative uncharacterized protein Q3IKL4 from the marine strain Pseudoalteromonas haloplanktis TAC 125, but besides this did not share any homology to characterized sulfatases. Phylogenetic studies show that P. carrageenovora sulfatase thus represents the first characterized member of a new sulfatase family, with a C-terminal domain having strong similarity with the superfamily of amidohydrolases, highlighting the still unexplored diversity of marine polysaccharide modifying enzymes.

  1. Evidence for quorum sensing and differential metabolite production by a marine bacterium in response to DMSP

    PubMed Central

    Johnson, Winifred M; Kido Soule, Melissa C; Kujawinski, Elizabeth B

    2016-01-01

    Microbes, the foundation of the marine foodweb, do not function in isolation, but rather rely on molecular level interactions among species to thrive. Although certain types of interactions between autotrophic and heterotrophic microorganisms have been well documented, the role of specific organic molecules in regulating inter-species relationships and supporting growth are only beginning to be understood. Here, we examine one such interaction by characterizing the metabolic response of a heterotrophic marine bacterium, Ruegeria pomeroyi DSS-3, to growth on dimethylsulfoniopropionate (DMSP), an abundant organosulfur metabolite produced by phytoplankton. When cultivated on DMSP, R. pomeroyi synthesized a quorum-sensing molecule, N-(3-oxotetradecanoyl)-l-homoserine lactone, at significantly higher levels than during growth on propionate. Concomitant with the production of a quorum-sensing molecule, we observed differential production of intra- and extracellular metabolites including glutamine, vitamin B2 and biosynthetic intermediates of cyclic amino acids. Our metabolomics data indicate that R. pomeroyi changes regulation of its biochemical pathways in a manner that is adaptive for a cooperative lifestyle in the presence of DMSP, in anticipation of phytoplankton-derived nutrients and higher microbial density. This behavior is likely to occur on sinking marine particles, indicating that this response may impact the fate of organic matter. PMID:26882264

  2. Evidence for quorum sensing and differential metabolite production by a marine bacterium in response to DMSP.

    PubMed

    Johnson, Winifred M; Kido Soule, Melissa C; Kujawinski, Elizabeth B

    2016-09-01

    Microbes, the foundation of the marine foodweb, do not function in isolation, but rather rely on molecular level interactions among species to thrive. Although certain types of interactions between autotrophic and heterotrophic microorganisms have been well documented, the role of specific organic molecules in regulating inter-species relationships and supporting growth are only beginning to be understood. Here, we examine one such interaction by characterizing the metabolic response of a heterotrophic marine bacterium, Ruegeria pomeroyi DSS-3, to growth on dimethylsulfoniopropionate (DMSP), an abundant organosulfur metabolite produced by phytoplankton. When cultivated on DMSP, R. pomeroyi synthesized a quorum-sensing molecule, N-(3-oxotetradecanoyl)-l-homoserine lactone, at significantly higher levels than during growth on propionate. Concomitant with the production of a quorum-sensing molecule, we observed differential production of intra- and extracellular metabolites including glutamine, vitamin B2 and biosynthetic intermediates of cyclic amino acids. Our metabolomics data indicate that R. pomeroyi changes regulation of its biochemical pathways in a manner that is adaptive for a cooperative lifestyle in the presence of DMSP, in anticipation of phytoplankton-derived nutrients and higher microbial density. This behavior is likely to occur on sinking marine particles, indicating that this response may impact the fate of organic matter. PMID:26882264

  3. Thymidine uptake, thymidine incorporation, and thymidine kinase activity in marine bacterium isolates

    SciTech Connect

    Jeffrey, W.H.; Paul, J.H. )

    1990-05-01

    One assumption made in bacterial production estimates from ({sup 3}H)thymidine incorporation is that all heterotrophic bacteria can incorporate exogenous thymidine into DNA. Heterotrophic marine bacterium isolates from Tampa Bay, Fla., Chesapeake Bay, Md., and a coral surface microlayer were examined for thymidine uptake (transport), thymidine incorporation, the presence of thymidine kinase genes, and thymidine kinase enzyme activity. Of the 41 isolates tested, 37 were capable of thymidine incorporation into DNA. The four organisms that could not incorporate thymidine also transported the thymidine poorly and lacked thymidine kinase activity. Attempts to detect thymidine kinase genes in the marine isolates by molecular probing with gene probes made from Escherichia coli and herpes simplex virus thymidine kinase genes proved unsuccessful. To determine if the inability to incorporate thymidine was due to the lack of thymidine kinase, one organism, Vibro sp. strain DI9, was transformed with a plasmid (pGQ3) that contained an E. coli thymidine kinase gene. Although enzyme assays indicated high levels of thymidine kinase activity in transformants, these cells still failed to incorporate exogenous thymidine into DNA or to transport thymidine into cells. These results indicate that the inability of certain marine bacteria to incorporate thymidine may not be solely due to the lack of thymidine kinase activity but may also be due to the absence of thymidine transport systems.

  4. NH4+ transport system of a psychrophilic marine bacterium, Vibrio sp. strain ABE-1.

    PubMed

    Chou, M; Matsunaga, T; Takada, Y; Fukunaga, N

    1999-05-01

    NH4(+) transport system of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 (Vibrio ABE-1) was examined by measuring the uptake of [14C]methylammonium ion (14CH3NH3+) into the intact cells. 14CH3NH3+ uptake was detected in cells grown in medium containing glutamate as the sole nitrogen source, but not in those grown in medium containing NH4Cl instead of glutamate. Vibrio ABE-1 did not utilize CH3NH3+ as a carbon or nitrogen source. NH4Cl and nonradiolabeled CH3NH3+ completely inhibited 14CH3NH3+ uptake. These results indicate that 14CH3NH3+ uptake in this bacterium is mediated via an NH4+ transport system and not by a specific carrier for CH3NH3+. The respiratory substrate succinate was required to drive 14CH3NH3+ uptake and the uptake was completely inhibited by KCN, indicating that the uptake was energy dependent. The electrochemical potentials of H+ and/or Na+ across membranes were suggested to be the driving forces for the transport system because the ionophores carbonylcyanide m-chlorophenylhydrazone and monensin strongly inhibited uptake activities at pH 6.5 and 8.5, respectively. Furthermore, KCl activated 14CH3NH3+ uptake. The 14CH3NH3+ uptake activity of Vibrio ABE-1 was markedly high at temperatures between 0 degrees and 15 degrees C, and the apparent Km value for CH3NH3+ of the uptake did not change significantly over the temperature range from 0 degrees to 25 degrees C. Thus, the NH4+ transport system of this bacterium was highly active at low temperatures. PMID:10356994

  5. Draft Genome Sequence of Bacillus plakortidis P203T (DSM 19153), an Alkali- and Salt-Tolerant Marine Bacterium

    PubMed Central

    Wang, Jie-ping; Liu, Guo-hong; Ge, Ci-bin; Xiao, Rong-feng; Zheng, Xue-fang; Shi, Huai

    2016-01-01

    Bacillus plakortidis P203T is a Gram-positive, spore-forming, and alkali- and salt-tolerant marine bacterium. Here, we report the 3.97-Mb draft genome sequence of B. plakortidis P203T, which will promote its fundamental research and provide useful information for genomic taxonomy and phylogenomics of Bacillus-like bacteria. PMID:26847896

  6. Draft Genome of Shewanella frigidimarina Ag06-30, a Marine Bacterium Isolated from Potter Peninsula, King George Island, Antarctica

    PubMed Central

    Parmeciano Di Noto, Gisela; Vázquez, Susana C.; MacCormack, Walter P.; Iriarte, Andrés

    2016-01-01

    We present the draft genome of Shewanella frigidimarina Ag06-30, a marine bacterium from King George Island, Antarctica, which encodes the carbapenemase SFP-1. The assembly contains 4,799,218 bp (G+C content 41.24%). This strain harbors several mobile genetic elements that provide insight into lateral gene transfer and bacterial plasticity and evolution. PMID:27151790

  7. Draft Genome of Shewanella frigidimarina Ag06-30, a Marine Bacterium Isolated from Potter Peninsula, King George Island, Antarctica.

    PubMed

    Parmeciano Di Noto, Gisela; Vázquez, Susana C; MacCormack, Walter P; Iriarte, Andrés; Quiroga, Cecilia

    2016-01-01

    We present the draft genome of Shewanella frigidimarina Ag06-30, a marine bacterium from King George Island, Antarctica, which encodes the carbapenemase SFP-1. The assembly contains 4,799,218 bp (G+C content 41.24%). This strain harbors several mobile genetic elements that provide insight into lateral gene transfer and bacterial plasticity and evolution. PMID:27151790

  8. Characterization of acetonitrile-tolerant marine bacterium Exiguobacterium sp. SBH81 and its tolerance mechanism.

    PubMed

    Kongpol, Ajiraporn; Kato, Junichi; Tajima, Takahisa; Vangnai, Alisa S

    2012-01-01

    A Gram-positive marine bacterium, Exiguobacterium sp. SBH81, was isolated as a hydrophilic organic-solvent tolerant bacterium, and exhibited high tolerance to various types of toxic hydrophilic organic solvents, including acetonitrile, at relatively high concentrations (up to 6% [v/v]) under the growing conditions. Investigation of its tolerance mechanisms illustrated that it does not rely on solvent inactivation processes or modification of cell surface characteristics, but rather, increase of the cell size lowers solvent partitioning into cells and the extrusion of solvents through the efflux system. A test using efflux pump inhibitors suggested that secondary transporters, i.e. resistance nodulation cell division (RND) and the multidrug and toxic compound extrusion (MATE) family, are involved in acetonitrile tolerance in this strain. In addition, its acetonitrile tolerance ability could be stably and significantly enhanced by repetitive growth in the presence of toxic acetonitrile. The marked acetonitrile tolerance of Exiguobacterium sp. SBH81 indicates its potential use as a host for biotechnological fermentation processes as well as bioremediation. PMID:21971080

  9. Marinobacter hydrocarbonoclasticus NY-4, a novel denitrifying, moderately halophilic marine bacterium.

    PubMed

    Li, Rongpeng; Zi, Xiaoli; Wang, Xinfeng; Zhang, Xia; Gao, Haofeng; Hu, Nan

    2013-01-01

    The isolation and characterization of a novel halophilic denitrifying marine bacterium is described. The halophilic bacterium, designated as NY-4, was isolated from soil in Yancheng City, China, and identified as Marinobacter hydrocarbonoclasticus by 16S rRNA gene sequence phylogenetic analysis. This organism can grow in NaCl concentrations ranging from 20 to 120 g/L. Optimum growth occurs at 80 g/L NaCl and pH 8.0. The organism can grow on a broad range of carbon sources and demonstrated efficient denitrifying ability (94.2% of nitrate removal and 80.9% of total nitrogen removal in 48 h). During denitrification by NY-4, no NO2 (-)-N was accumulated, N2 was the only gaseous product and no harmful N2O was produced. Because of its rapid denitrification ability, broad carbon use range and ability to grow under high salinity and pH conditions, NY-4 holds promise for the treatment of saline waste waters. PMID:25538872

  10. Marine bacterium strain screening and pyrethroid insecticide-degrading efficiency analysis

    NASA Astrophysics Data System (ADS)

    Sun, Aili; Liu, Jinghua; Shi, Xizhi; Li, Dexiang; Chen, Jiong; Tang, Daojun

    2014-09-01

    A pyrethroid insecticide-degrading bacterium, strain HS-24, was isolated from an offshore seawater environment. The strain, which can degrade cypermethrin (CYP) and deltamethrin (DEL), was identified as Methylophaga sp. The optimal culture and degradation conditions for CYP and DEL by strain HS-24 is pH 7 at 28°C. Under optimum culture conditions, strain HS-24 exhibited a broad degradation concentration range of 100, 200, 400, 600, and 800 mg/L for CYP and DEL. The metabolic intermediates were analyzed by NMR, which provided strong evidence that CYP and DEL removal occurred mainly because of a biological process. The toxicity of the degradation products of strain HS-24 was studied simultaneously by measuring the light output of the luminescence bacterium. This demonstrated that the biodegradation ability of strain HS-24 significantly decreased the toxicity of CYP- and DEL-contaminated aquaculture seawater. Finally, the findings of this paper indicate that strain HS-24 is thus revealed as a biological agent for the remediation of marine aquatic environments.

  11. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans.

    PubMed

    Rivas, Amable J; Lemos, Manuel L; Osorio, Carlos R

    2013-01-01

    Photobacterium damselae subsp. damselae (formerly Vibrio damsela) is a pathogen of a variety of marine animals including fish, crustaceans, molluscs, and cetaceans. In humans, it can cause opportunistic infections that may evolve into necrotizing fasciitis with fatal outcome. Although the genetic basis of virulence in this bacterium is not completely elucidated, recent findings demonstrate that the phospholipase-D Dly (damselysin) and the pore-forming toxins HlyApl and HlyAch play a main role in virulence for homeotherms and poikilotherms. The acquisition of the virulence plasmid pPHDD1 that encodes Dly and HlyApl has likely constituted a main driving force in the evolution of a highly hemolytic lineage within the subspecies. Interestingly, strains that naturally lack pPHDD1 show a strong pathogenic potential for a variety of fish species, indicating the existence of yet uncharacterized virulence factors. Future and deep analysis of the complete genome sequence of Photobacterium damselae subsp. damselae will surely provide a clearer picture of the virulence factors employed by this bacterium to cause disease in such a varied range of hosts. PMID:24093021

  12. Acetylcholinesterase-Inhibiting Activity of Pyrrole Derivatives from a Novel Marine Gliding Bacterium, Rapidithrix thailandica

    PubMed Central

    Sangnoi, Yutthapong; Sakulkeo, Oraphan; Yuenyongsawad, Supreeya; Kanjana-opas, Akkharawit; Ingkaninan, Kornkanok; Plubrukarn, Anuchit; Suwanborirux, Khanit

    2008-01-01

    Acetylcholinesterase-inhibiting activity of marinoquinoline A (1), a new pyrroloquinoline from a novel species of a marine gliding bacterium Rapidithrix thailandica, was assessed (IC50 4.9 μM). Two related pyrrole derivatives, 3-(2′-aminophenyl)-pyrrole (3) and 2,2-dimethyl-pyrrolo-1,2-dihydroquinoline (4), were also isolated from two other strains of R. thailandica. The isolation of 3 from a natural source is reported here for the first time. Compound 4 was proposed to be an isolation artifact derived from 3. The two isolated compounds were virtually inactive in the acetylcholinesterase-inhibitory assay (enzyme inhibition < 30% at 0.1 g L−1). PMID:19172195

  13. The nucleotide sequence of Beneckea harveyi 5S rRNA. [bioluminescent marine bacterium

    NASA Technical Reports Server (NTRS)

    Luehrsen, K. R.; Fox, G. E.

    1981-01-01

    The primary sequence of the 5S ribosomal RNA isolated from the free-living bioluminescent marine bacterium Beneckea harveyi is reported and discussed in regard to indications of phylogenetic relationships with the bacteria Escherichia coli and Photobacterium phosphoreum. Sequences were determined for oligonucleotide products generated by digestion with ribonuclease T1, pancreatic ribonuclease and ribonuclease T2. The presence of heterogeneity is indicated for two sites. The B. harveyi sequence can be arranged into the same four helix secondary structures as E. coli and other prokaryotic 5S rRNAs. Examination of the 5S-RNS sequences of the three bacteria indicates that B. harveyi and P. phosphoreum are specifically related and share a common ancestor which diverged from an ancestor of E. coli at a somewhat earlier time, consistent with previous studies.

  14. Antagonistic Effect of Monovalent Cations in Maintenance of Cellular Integrity of a Marine Bacterium1

    PubMed Central

    De Voe, Irving W.; Oginsky, Evelyn L.

    1969-01-01

    The susceptibility of a marine bacterium, designated isolate c-A1, to lysis in distilled water and in salt solutions has been found to be a function of Na+ concentration. Optical densities of cells pre-exposed to 0.05 m MgCl2 were maintained in 1.0 m KCl, whereas those of cells pre-exposed to 1.0 m NaCl were not maintained at any KCl concentration tested. Cells transferred from MgCl2 to low concentrations of NaCl underwent more extensive lysis than did those transferred to distilled water. The degree of disruption of cells transferred to distilled water from mixtures of 0.05 m MgCl2 and NaCl (0 to 1.0 m) was dependent on the concentration of NaCl; similar results were obtained with LiCl, but not with KCl. In electron micrographs of thin sections, c-A1 cell envelopes consisted of two double-track layers which fractured and peeled apart on lysis after pre-exposure to NaCl-MgCl2 mixtures. Envelope eruptions or “hernias” occurred only in lysed cells pre-exposed to NaCl alone. No evidence for a functional lytic enzyme was found. Comparative studies on a terrestrial pseudomonad with a multilayered envelope indicated that preexposure to NaCl did not enhance the susceptibility of this cell to lysis in distilled water. The lytic susceptibility of the marine bacterium is considered to be the consequence of competition between specific monovalent cations and Mg++ for electrostatic interactions with components of the cell envelope of this organism. Images PMID:5788707

  15. Antagonistic effect of monovalent cations in maintenance of cellular integrity of a marine bacterium.

    PubMed

    De Voe, I W; Oginsky, E L

    1969-06-01

    The susceptibility of a marine bacterium, designated isolate c-A1, to lysis in distilled water and in salt solutions has been found to be a function of Na(+) concentration. Optical densities of cells pre-exposed to 0.05 m MgCl(2) were maintained in 1.0 m KCl, whereas those of cells pre-exposed to 1.0 m NaCl were not maintained at any KCl concentration tested. Cells transferred from MgCl(2) to low concentrations of NaCl underwent more extensive lysis than did those transferred to distilled water. The degree of disruption of cells transferred to distilled water from mixtures of 0.05 m MgCl(2) and NaCl (0 to 1.0 m) was dependent on the concentration of NaCl; similar results were obtained with LiCl, but not with KCl. In electron micrographs of thin sections, c-A1 cell envelopes consisted of two double-track layers which fractured and peeled apart on lysis after pre-exposure to NaCl-MgCl(2) mixtures. Envelope eruptions or "hernias" occurred only in lysed cells pre-exposed to NaCl alone. No evidence for a functional lytic enzyme was found. Comparative studies on a terrestrial pseudomonad with a multilayered envelope indicated that preexposure to NaCl did not enhance the susceptibility of this cell to lysis in distilled water. The lytic susceptibility of the marine bacterium is considered to be the consequence of competition between specific monovalent cations and Mg(++) for electrostatic interactions with components of the cell envelope of this organism. PMID:5788707

  16. A Novel Eliminase from a Marine Bacterium That Degrades Hyaluronan and Chondroitin Sulfate*

    PubMed Central

    Han, Wenjun; Wang, Wenshuang; Zhao, Mei; Sugahara, Kazuyuki; Li, Fuchuan

    2014-01-01

    Lyases cleave glycosaminoglycans (GAGs) in an eliminative mechanism and are important tools for the structural analysis and oligosaccharide preparation of GAGs. Various GAG lyases have been identified from terrestrial but not marine organisms even though marine animals are rich in GAGs with unique structures and functions. Herein we isolated a novel GAG lyase for the first time from the marine bacterium Vibrio sp. FC509 and then recombinantly expressed and characterized it. It showed strong lyase activity toward hyaluronan (HA) and chondroitin sulfate (CS) and was designated as HA and CS lyase (HCLase). It exhibited the highest activities to both substrates at pH 8.0 and 0.5 m NaCl at 30 °C. Its activity toward HA was less sensitive to pH than its CS lyase activity. As with most other marine enzymes, HCLase is a halophilic enzyme and very stable at temperatures from 0 to 40 °C for up to 24 h, but its activity is independent of divalent metal ions. The specific activity of HCLase against HA and CS reached a markedly high level of hundreds of thousands units/mg of protein under optimum conditions. The HCLase-resistant tetrasaccharide Δ4,5HexUAα1-3GalNAc(6-O-sulfate)β1-4GlcUA(2-O-sulfate)β1-3GalNAc(6-O-sulfate) was isolated from CS-D, the structure of which indicated that HCLase could not cleave the galactosaminidic linkage bound to 2-O-sulfated d-glucuronic acid (GlcUA) in CS chains. Site-directed mutagenesis indicated that HCLase may work via a catalytic mechanism in which Tyr-His acts as the Brønsted base and acid. Thus, the identification of HCLase provides a useful tool for HA- and CS-related research and applications. PMID:25122756

  17. Could narrow marine embayments prevent sea-glacier invasion, and protect photosynthetic life during a Snowball Earth?

    NASA Astrophysics Data System (ADS)

    Campbell, Adam J.

    During the Snowball Earth events of the Neoproterozoic, the Earth's oceans may have been completely covered in ice. This ice would have been thick enough to prohibit the transmission of light to the liquid water underneath the entirely frozen surface of the ocean. However, photosynthetic eukaryotes are thought to have survived during these events. This is the first work to throughly attempt to reconcile how photosynthetic eukaryotes survived on a planet with a completely frozen ocean surface. Narrow marine embayments like the modern-day Red Sea, would restrict the inflow of sea glaciers. These embayments, if located in regions of net sublimation, would restrict sea-glacier invasion and could provide refuge for these organisms at the end of their channels. This work demonstrates that under a set of climate conditions and channel geometries, narrow marine embayments allow for incomplete sea-glacier invasion, a necessary condition for marine embayments to provide refugia.

  18. Genome sequence of Enterobacter sp. ST3, a quorum sensing bacterium associated with marine dinoflagellate

    PubMed Central

    Zhou, Jin; Lao, Yong-Min; Ma, Zhi-Ping; Cai, Zhong-Hua

    2016-01-01

    Phycosphere environment is a typical marine niche, harbor diverse populations of microorganisms, which are thought to play a critical role in algae host and influence mutualistic and competitive interactions. Understanding quorum sensing-based acyl-homoserine lactone (AHL) language may shed light on the interaction between algal-associated microbial communities in the native environment. In this work, we isolated an epidermal bacterium (was tentatively named Enterobacter sp. ST3, and deposited in SOA China, the number is MCCC1K02277-ST3) from the marine dinoflagellate Scrippsiella trochoidea, and found it has the ability to produce short-chain AHL signal. In order to better understand its communication information at molecular level, the genomic map was investigated. The genome size was determined to be 4.81 Mb with a G + C content of 55.59%, comprising 6 scaffolds of 75 contigs containing 4647 protein-coding genes. The functional proteins were predicted, and 3534 proteins were assigned to COG functional categories. An AHL-relating gene, LuxR, was found in upstream position at contig 1. This genome data may provide clues to increase understanding of the chemical characterization and ecological behavior of strain ST3 in the phycosphere microenvironment. PMID:26981407

  19. Complete Cellulase System in the Marine Bacterium Saccharophagus degradans Strain 2-40T

    PubMed Central

    Taylor, Larry E.; Henrissat, Bernard; Coutinho, Pedro M.; Ekborg, Nathan A.; Hutcheson, Steven W.; Weiner, Ronald M.

    2006-01-01

    Saccharophagus degradans strain 2-40 is a representative of an emerging group of marine complex polysaccharide (CP)-degrading bacteria. It is unique in its metabolic versatility, being able to degrade at least 10 distinct CPs from diverse algal, plant and invertebrate sources. The S. degradans genome has been sequenced to completion, and more than 180 open reading frames have been identified that encode carbohydrases. Over half of these are likely to act on plant cell wall polymers. In fact, there appears to be a full array of enzymes that degrade and metabolize plant cell walls. Genomic and proteomic analyses reveal 13 cellulose depolymerases complemented by seven accessory enzymes, including two cellodextrinases, three cellobiases, a cellodextrin phosphorylase, and a cellobiose phosphorylase. Most of these enzymes exhibit modular architecture, and some contain novel combinations of catalytic and/or substrate binding modules. This is exemplified by endoglucanase Cel5A, which has three internal family 6 carbohydrate binding modules (CBM6) and two catalytic modules from family five of glycosyl hydrolases (GH5) and by Cel6A, a nonreducing-end cellobiohydrolase from family GH6 with tandem CBM2s. This is the first report of a complete and functional cellulase system in a marine bacterium with a sequenced genome. PMID:16707677

  20. Against the rules: a marine bacterium, Loktanella rosea, possesses a unique lipopolysaccharide.

    PubMed

    Ieranò, Teresa; Silipo, Alba; Nazarenko, Evgeny L; Gorshkova, Raisa P; Ivanova, Elena P; Garozzo, Domenico; Sturiale, Luisa; Lanzetta, Rosa; Parrilli, Michelangelo; Molinaro, Antonio

    2010-05-01

    Bacteria are an inimitable source of new glyco-structures potentially useful in medicinal and environmental chemistry. Lipopolysaccharides (LPS; endotoxins) are the major components of the outer membrane of Gram-negative bacteria; being exposed toward the external environment they can undergo structural changes and thus, they often possess peculiar chemical features that allow them to thrive in harsh chemical and physical environments. Marine bacteria have evolved and adapted over millions of years in order to succeed in different environments, finding a niche for their survival characterized by severe physical or chemical parameters. The present work focuses on the structural investigation of the LPS from Loktanella rosea, a marine Gram-negative bacterium. Through chemical analysis, 2D nuclear magnetic resonance and matrix-assisted laser desorption ionization mass spectrometry investigations, a unique LPS carbohydrate backbone has been defined. The lipid A skeleton consists of a trisaccharide backbone lacking the typical phosphate groups and is characterized by two beta-glucosamines and an alpha-galacturonic acid. The core region is built up of three ulosonic acids, with two 3-deoxy-d-manno-oct-2-ulopyranosonic acid residues, one of which is carrying a neuraminic acid. This carbohydrate structure is an exceptional variation from the typical architectural skeleton of endotoxins which consequently implies a very different biosynthesis. PMID:20093711

  1. Structural and conformational study of the O-polysaccharide produced by the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris strain BisA53.

    PubMed

    Silipo, Alba; Di Lorenzo, Flaviana; De Felice, Antonia; Vanacore, Adele; De Castro, Cristina; Gully, Djamel; Lanzetta, Rosa; Parrilli, Michelangelo; Giraud, Eric; Molinaro, Antonio

    2014-12-19

    Rhodopseudomonas palustris is a purple photosynthetic bacterium characterized by a versatile nature and a remarkable ability to adapt to various environments. In this work, we focused our attention to its membrane characteristics and defined the structural and conformational features of the O-chain polysaccharide of LPS isolated from R. palustris strain BisA53. This strain produces a polymer with a trisaccharide repeating unit characterized by d-rhamnose, 3-deoxy-d-lyxo-2-heptulosaric acid (Dha), and a novel C-branched monosaccharide, a 4-amino-4,6-dideoxy-3-C-methyl-2-O-methyl-α-l-glucopyranose whose absolute configuration has been determined by a combination of 2D NMR spectroscopy and molecular mechanic and dynamic simulation. PMID:25263905

  2. Hydrogen production by photosynthetic microorganisms

    SciTech Connect

    Akano, T.; Fukatsu, K.; Miyasaka, H. |

    1996-12-31

    Hydrogen is a clean energy alternative to the fossil fuels, the main source of greenhouse gas emissions. We developed a stable system for the conversion of solar energy into hydrogen using photosynthetic microorganisms. Our system consists of the following three stages: (1) Photosynthetic starch accumulation in green microalgae (400 L x2); (2) Dark anaerobic fermentation of the algal starch biomass to produce hydrogen and organic compounds (155 L x2); and (3) Further conversion of the organic compounds to produce hydrogen using photosynthetic bacteria (three types of reactors, parallel plate, raceway, and tubular). We constructed a test plant of this process at Nankoh power plant of Kansai Electric Power Company in Osaka, Japan, and carried out a series of tests using CO{sub 2} obtained from a chemical absorption pilot-plant. The photobiological hydrogen production process used a combination of a marine alga, Chlamydomonas sp. MGA 161 and marine photosynthetic bacterium, Rhodopseudomonas sp. W-1S. The dark anaerobic fermentation of algal starch biomass was also investigated. Sustained and stable starch accumulation, starch degradation in the algal cell, and hydrogen production from algal fermentation and photosynthetic bacteria in the light were demonstrated during several experiments. 3 refs., 12 figs., 1 tab.

  3. Effect of algal extract on H2 production by a photosynthetic bacterium Rhodobium marinum A-501: analysis of stimulating effect using a kinetic model.

    PubMed

    Kawaguchi, Hideo; Nagase, Hiroyasu; Hashimoto, Kyoko; Kimata, Shiho; Doi, Mikio; Hirata, Kazumasa; Miyamoto, Kazuhisa

    2002-01-01

    We have established a system for hydrogen (H2) production from algal starch via lactic acid using a mixed culture of a lactic acid bacterium, Lactobacillus amylovorus, and a photosynthetic bacterium, Rhodobium marinum A-501. We found that the H2 production from lactate was stimulated in the presence of algal extract, which was obtained from algal biomass homogenate used as a substrate in the system by removing settleable solids including starch. To analyze the stimulating effect of algal extract on H2 production, we developed a kinetic model for H2 production by R. marinum A-501. The model revealed that approximately 20% of lactate was consumed for cell mass production, and the remaining portion was a source of reducing power to drive hydrogen production or other cellular processes. In the presence of algal extract, the model indicated that the conversion efficiency from lactate to the reducing power increased from 0.56 to 0.80 and nitrogenase activity increased up to twofold, resulting in the increase in yield of hydrogen from lactate from 29% to 48%. These results suggest that algal extract can attenuate the limitation process in lactate catabolism by which the supplementation of reducing power to drive H2 production was suppressed. PMID:16233271

  4. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    USGS Publications Warehouse

    Sparks, N.H.C.; Mann, S.; Bazylinski, D.A.; Lovley, D.R.; Jannasch, H.W.; Frankel, R.B.

    1990-01-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo??ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 ?? 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of {110} faces which are capped and truncated by {111} end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization. ?? 1990.

  5. Stereochemical course of hydrolytic reaction catalyzed by alpha-galactosidase from cold adaptable marine bacterium of genus Pseudoalteromonas

    NASA Astrophysics Data System (ADS)

    Bakunina, Irina; Balabanova, Larissa; Golotin, Vasiliy; Slepchenko, Lyubov; Isakov, Vladimir; Rasskazov, Valeriy

    2014-10-01

    The recombinant α-galactosidase of the marine bacterium (α-PsGal) was synthesized with the use of the plasmid 40Gal, consisting of plasmid pET-40b (+) (Novagen) and the gene corresponding to the open reading frame of the mature α-galactosidase of marine bacterium Pseudoalteromonas sp. KMM 701, transformed into the E. coli Rosetta(DE3) cells. In order to understand the mechanism of action, the stereochemistry of hydrolysis of 4-nitrophenyl α-D-galactopyranoside (4-NPGP) by α-PsGal was measured by 1H NMR spectroscopy. The kinetics of formation of α- and β-anomer of galactose showed that α-anomer initially formed and accumulated, and then an appreciable amount of β-anomer appeared as a result of mutarotation. The data clearly show that the enzymatic hydrolysis of 4-NPGP proceeds with the retention of anomeric configuration, probably, due to a double displacement mechanism of reaction.

  6. Draft Genome Sequence of Providencia sneebia Strain ST1, a Quorum Sensing Bacterium Associated with Marine Microalgae

    PubMed Central

    Zhou, Jin; Lao, Yong-Min; Cai, Zhong-Hua

    2016-01-01

    Providencia sneebia strain ST1 is a symbiotic bacterium (belonging to phylum gammaproteobacteria) with marine microalgae. This bacterium exhibits the ability to produce N-Acyl homoserine lactone signal molecule. To date, no genome that originates from marine Providencia spp. has been reported. In this study, we present the genome sequence of this strain. It has a genome size of 4.89 M, with 19 contigs and an average G+C of 51.97%. The function of 4,631 proteins was predicted, and 3,652 proteins were assigned to COG functional categories. Among them, 407 genes are involved in carbohydrate metabolism, 306 genes participate in nitrogen utilization and energy conversion, and 185 genes related to signal transduction process. Thus, this strain plays an active role in the biogeochemical cycle in algal life history. The whole-genome of this isolate and annotation will help enhance understanding of bacterial ecological behavior in the phycosphere. PMID:27026792

  7. Purification and Characterization of a Fucoidanase (FNase S) from a Marine Bacterium Sphingomonas paucimobilis PF-1

    PubMed Central

    Kim, Woo Jung; Park, Joo Woong; Park, Jae Kweon; Choi, Doo Jin; Park, Yong Il

    2015-01-01

    The Search for enzyme activities that efficiently degrade marine polysaccharides is becoming an increasingly important area for both structural analysis and production of lower-molecular weight oligosaccharides. In this study, an endo-acting fucoidanase that degrades Miyeokgui fucoidan (MF), a sulfated galactofucan isolated from the sporophyll (called Miyeokgui in Korean) of Undaria pinnatifida, into smaller-sized galactofuco-oligosaccharides (1000–4000 Da) was purified from a marine bacterium, Sphingomonas paucimobilis PF-1, by ammonium sulfate precipitation, diethylaminoethyl (DEAE)-Sepharose column chromatography, and chromatofocusing. The specific activity of this enzyme was approximately 112-fold higher than that of the crude enzyme, and its molecular weight was approximately 130 kDa (FNase S), as determined by native gel electrophoresis and 130 (S1), 70 (S2) and 60 (S3) kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH and temperature of FNase S were pH 6.0–7.0 and 40–45 °C, respectively. FNase S activity was enhanced by Mn2+ and Na+ (115.7% and 131.2%), but it was inhibited by Ca2+, K+, Ba2+, Cu2+ (96%, 83.7%, 84.3%, and 89.3%, respectively), each at 1 mM. The Km, Vmax and Kcat values of FNase S on MF were 1.7 mM, 0.62 mg·min−1, and 0.38·S−1, respectively. This enzyme could be a valuable tool for the structural analysis of fucoidans and production of bioactive fuco-oligosaccharides. PMID:26193285

  8. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium

    PubMed Central

    Lei, Xueqian; Li, Dong; Li, Yi; Chen, Zhangran; Chen, Yao; Cai, Guanjing; Yang, Xujun; Zheng, Wei; Zheng, Tianling

    2015-01-01

    Harmful algal blooms occur throughout the world, threatening human health, and destroying marine ecosystems. Alexandrium tamarense is a globally distributed and notoriously toxic dinoflagellate that is responsible for most paralytic shellfish poisoning incidents. The culture supernatant of the marine algicidal bacterium BS02 showed potent algicidal effects on A. tamarense ATGD98-006. In this study, we investigated the effects of this supernatant on A. tamarense at physiological and biochemical levels to elucidate the mechanism involved in the inhibition of algal growth by the supernatant of the strain BS02. Reactive oxygen species (ROS) levels increased following exposure to the BS02 supernatant, indicating that the algal cells had suffered from oxidative damage. The levels of cellular pigments, including chlorophyll a and carotenoids, were significantly decreased, which indicated that the accumulation of ROS destroyed pigment synthesis. The decline of the maximum photochemical quantum yield (Fv/Fm) and relative electron transport rate (rETR) suggested that the photosynthesis systems of algal cells were attacked by the BS02 supernatant. To eliminate the ROS, the activities of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), increased significantly within a short period of time. Real-time PCR revealed changes in the transcript abundances of two target photosynthesis-related genes (psbA and psbD) and two target respiration-related genes (cob and cox). The transcription of the respiration-related genes was significantly inhibited by the treatments, which indicated that the respiratory system was disturbed. Our results demonstrate that the BS02 supernatant can affect the photosynthesis process and might block the PS II electron transport chain, leading to the production of excessive ROS. The increased ROS can further destroy membrane integrity and pigments, ultimately inducing algal cell death. PMID:25667582

  9. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium.

    PubMed

    Lei, Xueqian; Li, Dong; Li, Yi; Chen, Zhangran; Chen, Yao; Cai, Guanjing; Yang, Xujun; Zheng, Wei; Zheng, Tianling

    2015-01-01

    Harmful algal blooms occur throughout the world, threatening human health, and destroying marine ecosystems. Alexandrium tamarense is a globally distributed and notoriously toxic dinoflagellate that is responsible for most paralytic shellfish poisoning incidents. The culture supernatant of the marine algicidal bacterium BS02 showed potent algicidal effects on A. tamarense ATGD98-006. In this study, we investigated the effects of this supernatant on A. tamarense at physiological and biochemical levels to elucidate the mechanism involved in the inhibition of algal growth by the supernatant of the strain BS02. Reactive oxygen species (ROS) levels increased following exposure to the BS02 supernatant, indicating that the algal cells had suffered from oxidative damage. The levels of cellular pigments, including chlorophyll a and carotenoids, were significantly decreased, which indicated that the accumulation of ROS destroyed pigment synthesis. The decline of the maximum photochemical quantum yield (Fv/Fm) and relative electron transport rate (rETR) suggested that the photosynthesis systems of algal cells were attacked by the BS02 supernatant. To eliminate the ROS, the activities of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), increased significantly within a short period of time. Real-time PCR revealed changes in the transcript abundances of two target photosynthesis-related genes (psbA and psbD) and two target respiration-related genes (cob and cox). The transcription of the respiration-related genes was significantly inhibited by the treatments, which indicated that the respiratory system was disturbed. Our results demonstrate that the BS02 supernatant can affect the photosynthesis process and might block the PS II electron transport chain, leading to the production of excessive ROS. The increased ROS can further destroy membrane integrity and pigments, ultimately inducing algal cell death. PMID:25667582

  10. Tenacibactins A-D, hydroxamate siderophores from a marine-derived bacterium, Tenacibaculum sp. A4K-17.

    PubMed

    Jang, Jae-Hyuk; Kanoh, Kaneo; Adachi, Kyoko; Matsuda, Satoru; Shizuri, Yoshikazu

    2007-04-01

    Four new hydroxamate siderophores, tenacibactins A-D (1-4), were isolated from a culture broth of the marine-derived bacterium Tenacibaculum sp. A4K-17. The structures of these tenacibactins were determined by NMR analyses and ESIMS/MS experiments. The iron-binding (chelating) activity of 1-4 was evaluated by the chrome azurol sulfonate (CAS) assay. PMID:17319723

  11. Three Alginate Lyases from Marine Bacterium Pseudomonas fluorescens HZJ216: Purification and Characterization

    SciTech Connect

    Liyan, Li; Jiang, Xiaolu; Wang, Peng; Guan, Huashi; Guo, Hong

    2010-01-01

    Three alginate lyases (A, B, and C) from an alginate-degrading marine bacterium strain HZJ216 isolated from brown seaweed in the Yellow Sea of China and identified preliminarily as Pseudomonas fluorescens are purified, and their biochemical properties are described. Molecular masses of the three enzymes are determined by SDS-PAGE to be 60.25, 36, and 23 kDa with isoelectric points of 4, 4.36, and 4.59, respectively. Investigations of these enzymes at different pH and temperatures show that they are most active at pH 7.0 and 35 C. Alginate lyases A and B are stable in the pH range of 5.0 9.0, while alginate lyase C is stable in the pH range of 5.0 7.0. Among the metal ions tested, additions of Na+, K+, and Mg2+ ions can enhance the enzyme activities while Fe2+, Fe3+, Ba2+, and Zn2+ ions show inhibitory effects. The substrate specificity results demonstrate that alginate lyase C has the specificity for G block while alginate lyases A and B have the activities for both M and G blocks. It is the first report about extracellular alginate lyases with high alginate-degrading activity from P. fluorescens.

  12. Recombinant α-NAcetylgalactosaminidase from Marine Bacterium-Modifying A Erythrocyte Antigens

    PubMed Central

    Balabanova, L. A.; Golotin, V. A.; Bakunina, I. Y.; Slepchenko, L. V.; Isakov, V. V.; Podvolotskaya, A. B.; Rasskazov, V. A.

    2015-01-01

    A plasmid based on pET-40b was constructed to synthesize recombinant α-N-acetylgalactosaminidase of the marine bacterium Arenibacter latericius KMM 426T (α-AlNaGal) in Escherichia coli cells. The yield of α-Al- NaGal attains 10 mg/ml with activity of 49.7 ± 1.3 U at 16°C, concentration of inductor 2 mM, and cultivation for 12 h. Techniques such as anion exchange, metal affinity and gel filtration chromatography to purify α-AlNaGal were applied. α-AlNaGal is a homodimer with a molecular weight of 164 kDa. This enzyme is stable at up to 50°C with a temperature range optimum activity of 20–37°C. Furthermore, its activity is independent of the presence of metal ions in the incubation medium. 1H NMR spectroscopy revealed that α-AlNaGal catalyzes the hydrolysis of the O-glycosidic bond with retention of anomeric stereochemistry and possesses a mechanism of action identical to that of other glycoside hydrolases of the 109 family. α-AlNaGal reduces the serological activity of A erythrocytes at pH 7.3. This property of α-AlNaGal can potentially be used for enzymatic conversion of A and AB erythrocytes to blood group O erythrocytes. PMID:25927009

  13. Recombinant α-NAcetylgalactosaminidase from Marine Bacterium-Modifying A Erythrocyte Antigens.

    PubMed

    Balabanova, L A; Golotin, V A; Bakunina, I Y; Slepchenko, L V; Isakov, V V; Podvolotskaya, A B; Rasskazov, V A

    2015-01-01

    A plasmid based on pET-40b was constructed to synthesize recombinant α-N-acetylgalactosaminidase of the marine bacterium Arenibacter latericius KMM 426T (α-AlNaGal) in Escherichia coli cells. The yield of α-Al- NaGal attains 10 mg/ml with activity of 49.7 ± 1.3 U at 16°C, concentration of inductor 2 mM, and cultivation for 12 h. Techniques such as anion exchange, metal affinity and gel filtration chromatography to purify α-AlNaGal were applied. α-AlNaGal is a homodimer with a molecular weight of 164 kDa. This enzyme is stable at up to 50°C with a temperature range optimum activity of 20-37°C. Furthermore, its activity is independent of the presence of metal ions in the incubation medium. 1H NMR spectroscopy revealed that α-AlNaGal catalyzes the hydrolysis of the O-glycosidic bond with retention of anomeric stereochemistry and possesses a mechanism of action identical to that of other glycoside hydrolases of the 109 family. α-AlNaGal reduces the serological activity of A erythrocytes at pH 7.3. This property of α-AlNaGal can potentially be used for enzymatic conversion of A and AB erythrocytes to blood group O erythrocytes. PMID:25927009

  14. Effects of Inorganic Particles on Metabolism by a Periphytic Marine Bacterium

    PubMed Central

    Gordon, Andrew S.; Gerchakov, Sol M.; Millero, Frank J.

    1983-01-01

    Measurements were made of adsorption of a periphytic marine bacterium, glucose, and glutamic acid to inorganic particles in seawater and defined bacterial growth medium. Measurements of the metabolism of bacteria were made in the presence and absence of particles by microcalorimetry and radiorespirometry. It was found that hydroxyapatite adsorbs glutamic acid, but not glucose, from the experimental medium. It was also found that hydroxyapatite adsorbs essentially all of the bacteria from the medium when the bacterial concentration is approximately 6 × 105 bacteria per ml. If the bacterial concentration is approximately 6 × 107, then only a small fraction of cells become attached. It was therefore possible to select bacterial concentrations and organic nutrients so that bacterial attachment, organic nutrient adsorption, or both would occur in different experiments. In this experimental system the metabolism by attached and nonattached bacteria of adsorbing and nonadsorbing organic nutrients was measured. The results show that bacterial activity in this model system was not enhanced by the particles, regardless of whether the bacteria, the organic nutrient, or both were associated with the surface. In fact, the respiratory activity of the attached bacteria was diminished in comparison with that of free bacteria. PMID:16346191

  15. Cloning, expression, purification and application of a novel chitinase from a thermophilic marine bacterium Paenibacillus barengoltzii.

    PubMed

    Yang, Shaoqing; Fu, Xing; Yan, Qiaojuan; Guo, Yu; Liu, Zhuqing; Jiang, Zhengqiang

    2016-02-01

    A novel chitinase gene (PbChi70) from a marine bacterium Paenicibacillus barengoltzii was cloned and functionally expressed in Escherichia coli. The recombinant enzyme (PbChi70) was purified to homogeneity with a recovery yield of 51.9%. The molecular mass of purified enzyme was estimated to be 70.0 kDa by SDS-PAGE. PbChi70 displayed maximal activity at pH 5.5 and 55 °C, respectively. It exhibited strict substrate specificity for colloidal chitin, glycol chitin, powdery chitin, and N-acetyl chitooligosaccharides with degrees of polymerization above three. The enzyme exhibited an endo-type cleavage pattern and hydrolyzed colloidal chitin to yield mainly (GlcNAc)2. Furthermore, colloidal chitin was hydrolyzed by PbChi70 to produce 21.6 mg mL(-1) (GlcNAc)2 with the highest conversion yield of 89.5% (w/w). (GlcNAc)2 was further separated by an active charcoal column with a purity of 99% and a final yield of 61%. The unique enzymatic properties of the chitinase may make it a good candidate for (GlcNAc)2 production. PMID:26304445

  16. Colwellia asteriadis sp. nov., a marine bacterium isolated from the starfish Asterias amurensis.

    PubMed

    Choi, Eun Ju; Kwon, Hak Cheol; Koh, Hye Yeon; Kim, Young Sug; Yang, Hyun Ok

    2010-08-01

    A marine bacterial strain, KMD 002T, was isolated from an Amur starfish, Asterias amurensis, collected in the East Sea of Korea. Strain KMD 002T was a Gram-negative, beige-pigmented, rod-shaped bacterium. The strain was capable of growth at relatively low temperatures (4-25 degrees C) and over a broad pH range (pH 4.0-10.0). The major fatty acids were C16:1omega7c and/or iso-C15:0 2-OH and C16:0 and the predominant isoprenoid quinone was Q-8. The DNA G+C content of strain KMD 002T was 40.3 mol%. Phylogenetic analysis using 16S rRNA gene sequences revealed that strain KMD 002T belonged to the genus Colwellia. However, various phenotypic properties as well as low 16S rRNA gene sequence similarities to members of the genus Colwellia (94.1-96.7%) suggested that strain KMD 002T is a representative of a novel species, for which the name Colwellia asteriadis sp. nov. is proposed. The type strain is KMD 002T (=KCCM 90077T =JCM 15608T). PMID:19801395

  17. Regulation of iron transport related genes by boron in the marine bacterium Marinobacter algicola DG893.

    PubMed

    Romano, Ariel; Trimble, Lyndsay; Hobusch, Ashtian R; Schroeder, Kristine J; Amin, Shady A; Hartnett, Andrej D; Barker, Ryan A; Crumbliss, Alvin L; Carrano, Carl J

    2013-08-01

    While there has been extensive interest in the use of boron isotope ratios as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the high (0.4 mM) concentration and the depth-independent (conservative or non-nutrient-like) concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the modern ocean. Here we report that boron affects the expression of a number of protein and genes in the "algal-associated" Gram-negative marine bacterium Marinobacter algicola DG893. Most intriguingly, a number of these proteins and genes are related to iron uptake. In a recent separate publication we have shown that boron regulates one such iron transport related protein, i.e. the periplasmic iron binding protein FbpA via a direct interaction of the metalloid with this protein. Here we show that a number of other iron uptake related genes are also affected by boron but in the opposite way i.e. they are up-regulated. We propose that the differential effect of boron on FbpA expression relative to other iron transport related genes is a result of an interaction between boron and the global iron regulatory protein Fur. PMID:23775459

  18. Evidence for the subcellular localization and specificity of chlordane inhibition in the marine bacterium Aeromonas proteolytica.

    PubMed Central

    Nakas, J P; Litchfield, C D

    1979-01-01

    Sublethal levels (10 to 100 micrograms/ml) of the chlorinated insecticide chlordane (1,2,4,5,6,7,8,8-octachloro-3a,4,7,7a-tetrahydro-4,7-methanoindan) were introduced into the growth medium of the marine bacterium, Aeromonas proteolytica. Chlordane inhibited the synthesis of an extracellular endopeptidase by almost 40% but exhibited no such inhibition of the extracellular aminopeptidase also produced during the growth cycle. Studied with 14C-labeled chlordane demonstrated that the insecticide was not biologically degraded under the test conditions used and that up to 75% of the recoverable chlordane was cell associated within 48 h. Studied with uniformly labeled L[14C]valine and [2-14C]uracil established that neither the transport nor the incorporation of these protein and ribonucleic acid precursors was inhibited by chlordane. Separation of the membrane fractions using isopycnic centrifugation localized 14C-labeled chlordane in the cytoplasmic membrane. Also, chlordane inhibited the membrane-bound adenosine 5'-triphosphatase while the soluble (released) form of this enzyme remained unaffected. These data indicate that chlordane resides in the cytoplasmic membrane and may cause specific alterations in membrane-associated activities. PMID:156517

  19. Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium

    USGS Publications Warehouse

    Visscher, P.T.; Taylor, B.F.

    1993-01-01

    A pure culture of a bacterium was obtained from a marine microbial mat by using an anoxic medium containing dimethyl sulfide (DMS) and nitrate. The isolate grew aerobically or anaerobically as a denitrifier on alkyl sulfides, including DMS, dimethyl disulfide, diethyl sulfide (DES), ethyl methyl sulfide, dipropyl sulfide, dibutyl sulfide, and dibutyl disulfide. Cells grown on an alkyl sulfide or disulfide also oxidized the corresponding thiols, namely, methanethiol, ethanethiol, propanethiol, or butanethiol. Alkyl sulfides were metabolized by induced or derepressed cells with oxygen, nitrate, or nitrite as electron acceptor. Cells grown on DMS immediately metabolized DMS, but there was a lag before DES was consumed; with DES-grown cells, DES was immediately used but DMS was used only after a lag. Chloramphenicol prevented the eventual use of DES by DMS-grown cells and DMS use by DES-grown cells, respectively, indicating separate enzymes for the metabolism of methyl and ethyl groups. Growth was rapid on formate, acetate, propionate, and butyrate but slow on methanol. The organism also grew chemolithotrophically on thiosulfate with a decrease in pH; growth required carbonate in the medium. Growth on sulfide was also carbonate dependent but slow. The isolate was identified as a Thiobacillus sp. and designated strain ASN-1. It may have utility for removing alkyl sulfides, and also nitrate, nitrite, and sulfide, from wastewaters.

  20. A cold-adapted, solvent and salt tolerant esterase from marine bacterium Psychrobacter pacificensis.

    PubMed

    Wu, Gaobing; Zhang, Xiangnan; Wei, Lu; Wu, Guojie; Kumar, Ashok; Mao, Tao; Liu, Ziduo

    2015-11-01

    Lipolytic enzymes with unique physico-chemical characteristics are gaining more attention for their immense industrial importance. In this study, a novel lipolytic enzyme (Est11) was cloned from the genomic library of a marine bacterium Psychrobacter pacificensis. The enzyme was expressed in Escherichia coli and purified to homogeneity with molecular mass of 32.9kDa. The recombinant Est11 was able to hydrolyze short chain esters (C2-C8) and displayed an optimum activity against butyrate ester (C4). The optimal temperature and pH were 25°C and 7.5, respectively. Est11 retained more than 70% of its original activity at 10°C, suggesting that it was a cold-active esterase. The enzyme was highly active and stable at high concentration of NaCl (5M). Further, incubation with ethanol, isopropanol, propanediol, DMSO, acetonitrile, and glycerol rendered remarkable positive effects on Est11 activity. Typically, even at the concentration of 30% (v/v), ethanol, DMSO, and propanediol increased Est11 activity by 1.3, 2.0, and 2.4-folds, respectively. This new robust enzyme with remarkable properties like cold-adaptability, exceptional tolerance to salt and organic solvents provides us a promising candidate to meet the needs of some harsh industrial processes. PMID:26231332

  1. Purification and characterization of catalase from marine bacterium Acinetobacter sp. YS0810.

    PubMed

    Fu, Xinhua; Wang, Wei; Hao, Jianhua; Zhu, Xianglin; Sun, Mi

    2014-01-01

    The catalase from marine bacterium Acinetobacter sp. YS0810 (YS0810CAT) was purified and characterized. Consecutive steps were used to achieve the purified enzyme as follows: ethanol precipitation, DEAE Sepharose ion exchange, Superdex 200 gel filtration, and Resource Q ion exchange. The active enzyme consisted of four identical subunits of 57.256 kDa. It showed a Soret peak at 405 nm, indicating the presence of iron protoporphyrin IX. The catalase was not apparently reduced by sodium dithionite but was inhibited by 3-amino-1,2,4-triazole, hydroxylamine hydrochloride, and sodium azide. Peroxidase-like activity was not found with the substrate o-phenylenediamine. So the catalase was determined to be a monofunctional catalase. N-terminal amino acid of the catalase analysis gave the sequence SQDPKKCPVTHLTTE, which showed high degree of homology with those of known catalases from bacteria. The analysis of amino acid sequence of the purified catalase by matrix-assisted laser desorption ionization time-of-flight mass spectrometry showed that it was a new catalase, in spite of its high homology with those of known catalases from other bacteria. The catalase showed high alkali stability and thermostability. PMID:25045672

  2. A polysaccharide-degrading marine bacterium Flammeovirga sp. MY04 and its extracellular agarase system

    NASA Astrophysics Data System (ADS)

    Han, Wenjun; Gu, Jingyan; Yan, Qiujie; Li, Jungang; Wu, Zhihong; Gu, Qianqun; Li, Yuezhong

    2012-09-01

    Bacteria of the genus Flammeovirga can digest complex polysaccharides (CPs), but no details have been reported regarding the CP depolymerases of these bacteria. MY04, an agarolytic marine bacterium isolated from coastal sediments, has been identified as a new member of the genus Flammeovirga. The MY04 strain is able to utilize multiple CPs as a sole carbon source and grows well on agarose, mannan, or xylan. This strain produces high concentrations of extracellular proteins (490 mg L-1 ± 18.2 mg L-1 liquid culture) that exhibit efficient and extensive degradation activities on various polysaccharides, especially agarose. These proteins have an activity of 310 U mg-1 ± 9.6 U mg-1 proteins. The extracellular agarase system (EAS) in the crude extracellular enzymes contains at least four agarose depolymerases, which are with molecular masses of approximately 30-70 kDa. The EAS is stable at a wide range of pH values (6.0-11.0), temperatures (0-50°C), and sodium chloride (NaCl) concentrations (0-0.9 mol L-1). Two major degradation products generated from agarose by the EAS are identified to be neoagarotetraose and neoagarohexaose, suggesting that β-agarases are the major constituents of the MY04 EAS. These results suggest that the Flammeovirga strain MY04 and its polysaccharide-degradation system hold great promise in industrial applications.

  3. Copper-induced production of copper-binding supernatant proteins by the marine bacterium Vibrio alginolyticus

    SciTech Connect

    Harwood-Sears, V.; Gordon, A.S. )

    1990-05-01

    Growth of the marine bacterium Vibrio alginolyticus is temporarily inhibited by micromolar levels of copper. During the copper-induced lag phase, supernatant compounds and detoxify copper are produced. In this study two copper-inducible supernatant proteins having molecular masses of ca. 21 and 19 kilodaltons (CuBP1 and CuPB2) were identified; these proteins were, respectively, 25 and 46 times amplified in supernatants of copper-challenged cultures compared with controls. Experiments in which chloramphenicol was added to cultures indicated that there was de novo synthesis of these proteins in response to copper. When supernatants were separated by gel permeation chromatography, CuBP1 and CuPB2 coeluted with a copper-induced peak in copper-binding activity. CuBP1 and CuBP2 from whole supernatants were concentrated and partially purified by using a copper-charged immobilized metal ion affinity chromatography column, confirming the affinity of these proteins for copper. A comparison of cell pellets and supernatants demonstrated that CuBP1 was more concentrated in supernatants than in cells. Our data are consistent with a model for a novel mechanism of copper detoxification in which excretion of copper-binding protein is induced by copper.

  4. Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium.

    PubMed Central

    Visscher, P T; Taylor, B F

    1993-01-01

    A pure culture of a bacterium was obtained from a marine microbial mat by using an anoxic medium containing dimethyl sulfide (DMS) and nitrate. The isolate grew aerobically or anaerobically as a denitrifier on alkyl sulfides, including DMS, dimethyl disulfide, diethyl sulfide (DES), ethyl methyl sulfide, dipropyl sulfide, dibutyl sulfide, and dibutyl disulfide. Cells grown on an alkyl sulfide or disulfide also oxidized the corresponding thiols, namely, methanethiol, ethanethiol, propanethiol, or butanethiol. Alkyl sulfides were metabolized by induced or derepressed cells with oxygen, nitrate, or nitrite as electron acceptor. Cells grown on DMS immediately metabolized DMS, but there was a lag before DES was consumed; with DES-grown cells, DES was immediately used but DMS was used only after a lag. Chloramphenicol prevented the eventual use of DES by DMS-grown cells and DMS use by DES-grown cells, respectively, indicating separate enzymes for the metabolism of methyl and ethyl groups. Growth was rapid on formate, acetate, propionate, and butyrate but slow on methanol. The organism also grew chemolithotrophically on thiosulfate with a decrease in pH; growth required carbonate in the medium. Growth on sulfide was also carbonate dependent but slow. The isolate was identified as a Thiobacillus sp. and designated strain ASN-1. It may have utility for removing alkyl sulfides, and also nitrate, nitrite, and sulfide, from wastewaters. PMID:8285707

  5. Iridescence of a Marine Bacterium and Classification of Prokaryotic Structural Colors

    PubMed Central

    Vukusic, Peter; Luke, Stephen

    2012-01-01

    Iridescence is a property of structural color that is occasionally encountered in higher eukaryotes but that has been poorly documented in the prokaryotic kingdom. In the present work, we describe a marine bacterium, identified as Cellulophaga lytica, isolated from the surface of an anemone, that exhibits bright green iridescent colonies under direct epi-illumination. This phenomenon has not previously been investigated in detail. In this study, color changes of C. lytica colonies were observed at various angles of direct illumination or observation. Its iridescent green appearance was dominant on various growth media. Red and violet colors were also discerned on colony edges. Remarkable C. lytica bacterial iridescence was revealed and characterized using high-resolution optical spectrometry. In addition to this, by culturing other bacterial strains to which various forms of faintly iridescent traits have previously been attributed, we identify four principal appearance characteristics of structural color in prokaryotes. A new general classification of bacterial iridescence is therefore proposed in this study. Furthermore, a specific separate class is described for iridescent C. lytica strains because they exhibit what is so far a unique intense glitter-like iridescence in reflection. C. lytica is the first prokaryote discovered to produce the same sort of intense iridescence under direct illumination as that associated with higher eukaryotes, like some insects and birds. Due to the nature of bacterial biology, cultivation, and ubiquity, this discovery may be of significant interest for both ecological and nanoscience endeavors. PMID:22267664

  6. Affinity purification of metalloprotease from marine bacterium using immobilized metal affinity chromatography.

    PubMed

    Li, Shangyong; Wang, Linna; Yang, Juan; Bao, Jing; Liu, Junzhong; Lin, Shengxiang; Hao, Jianhua; Sun, Mi

    2016-06-01

    In this study, an efficient affinity purification protocol for an alkaline metalloprotease from marine bacterium was developed using immobilized metal affinity chromatography. After screening and optimization of the affinity ligands and spacer arm lengths, Cu-iminmodiacetic acid was chosen as the optimal affinity ligand, which was coupled to Sepharose 6B via a 14-atom spacer arm. The absorption analysis of this medium revealed a desorption constant Kd of 21.5 μg/mL and a theoretical maximum absorption Qmax of 24.9 mg/g. Thanks to this affinity medium, the enzyme could be purified by only one affinity purification step with a purity of approximately 95% pure when analyzed by high-performance liquid chromatography and reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis. The recovery of the protease activity reached 74.6%, which is much higher than the value obtained by traditional protocols (8.9%). These results contribute to the industrial purifications and contribute a significant reference for the purification of other metalloproteases. PMID:27058973

  7. A new κ-carrageenase CgkS from marine bacterium Shewanella sp. Kz7

    NASA Astrophysics Data System (ADS)

    Wang, Linna; Li, Shangyong; Zhang, Shilong; Li, Jiejing; Yu, Wengong; Gong, Qianhong

    2015-08-01

    A new κ-carrageenase gene cgkS was cloned from marine bacterium Shewanella sp. Kz7 by using degenerate and site-finding PCR. The gene was comprised of an open reading frame of 1224 bp, encoding 407 amino acid residues, with a signal peptide of 24 residues. Based on the deduced amino acid sequence, the κ-carrageenase CgkS was classified into the Glycoside Hydrolase family 16. The cgkS gene was expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity with a specific activity of 716.8 U mg-1 and a yield of 69%. Recombinant CgkS was most active at 45°C and pH 8.0. It was stable at pH 6.0-9.0 and below 30°C. The enzyme did not require NaCl for activity, although its activity was enhanced by NaCl. CgkS degraded κ-carrageenan in an endo-fashion releasing tetrasaccharides and disaccharides as main hydrolysis products.

  8. Assignment of photosynthetic parameters in estimation of marine phytoplankton production from remote sensing of ocean colour

    NASA Astrophysics Data System (ADS)

    Forget, Marie-Helene

    2007-12-01

    Photosynthesis (primary production) is the fundamental process by which solar photons are transformed into organic matter that is the source of energy for the entire food web. The first chapter of this thesis reviews the concepts that underpin models of marine primary production as well as the relevant parameters and their variation according to phytoplankton functional type. The application of the models to compute primary production from remotely-sensed images of ocean colour is then reviewed. The different approaches for assignment of the photosynthetic parameters in the model are presented and the advantages and disadvantages of each one of them are discussed. Particular emphasis is given to understanding the variability in photosynthesis-irradiance ( P -- E) parameters, which is the focus of the thesis. In Chapter 2 and 4, new measurements of P -- E are presented for two ecologically-different regions of the North Atlantic: the tropical Caribbean waters and the temperate North-West Atlantic. The issues that have to be addressed for regional computations of primary production are examined, and results are presented for primary production in the two regions using remotely-sensed data on ocean colour. Chapter 3 presents a new method for extraction of the photosynthesis-response parameters from profiles of in situ phytoplankton production. The procedure, previously proposed but hitherto untested, is here implemented in various aquatic systems and a protocol is established for its use. The major conclusions and recommendations for future work are presented in the fifth and final chapter.

  9. Physiological and biochemical response of the photosynthetic apparatus of two marine diatoms to Fe stress

    SciTech Connect

    McKay, R.M.L.; LaRoche, J.; Geider, R.J.

    1997-06-01

    Flavodoxin is a small electron-transfer protein capable of replacing ferredoxin during periods of Fe deficiency. When evaluating the suitability of flavodoxin as a diagnostic indicator for Fe limitation of phytoplankton growth, we examined its expression in two marine diatoms we cultured using trace-metal-buffered medium. Thalassiosira weissflogii and Phaeodactylum tricornutum were cultured in ethylenediaminetetraacetic acid-buffered Sargasso Sea water containing from 10 to 1000 nm added Fe. Trace-metal-buffered cultures of each diatom maintained high growth rates across the entire range of Fe additions. Similarly, declines in chlorophyll/cell and in the ratio of photosystem II variable-to-maximum fluorescence were negligible (P. tricornutum) to moderate (T. weissflogii, 54% decline in chlorophyll/cell and 22% decrease in variable-to-maximum fluorescence). Moreover, only minor variations in photosynthetic parameters were observed across the range of additions. In contrast, flavodoxin was expressed to high levels in low-Fe cultures. Despite the inverse relationship between flavodoxin expression and Fe content of the medium, its expression was seemingly independent of any of the indicators of cell physiology that were assayed. It appears that flavodoxin is expressed as an early-stage response to Fe stress and that its accumulation need not be intimately connected to limitations imposed by Fe on the growth rate of these diatoms.

  10. Physiological and Biochemical Response of the Photosynthetic Apparatus of Two Marine Diatoms to Fe Stress.

    PubMed Central

    McKay, R. M. L.; Geider, R. J.; LaRoche, J.

    1997-01-01

    Flavodoxin is a small electron-transfer protein capable of replacing ferredoxin during periods of Fe deficiency. When evaluating the suitability of flavodoxin as a diagnostic indicator for Fe limitation of phytoplankton growth, we examined its expression in two marine diatoms we cultured using trace-metal-buffered medium. Thalassio-sira weissflogii and Phaeodactylum tricornutum were cultured in ethylenediaminetetraacetic acid-buffered Sargasso Sea water containing from 10 to 1000 nM added Fe. Trace-metal-buffered cultures of each diatom maintained high growth rates across the entire range of Fe additions. Similarly, declines in chlorophyll/cell and in the ratio of photosystem II variable-to-maximum fluorescence were negligible (P. tricornutum) to moderate (T. weissflogii; 54% decline in chlorophyll/cell and 22% decrease in variable-to-maximum fluorescence). Moreover, only minor variations in photosynthetic parameters were observed across the range of additions. In contrast, flavodoxin was expressed to high levels in low-Fe cultures. Despite the inverse relationship between flavodoxin expression and Fe content of the medium, its expression was seemingly independent of any of the indicators of cell physiology that were assayed. It appears that flavodoxin is expressed as an early-stage response to Fe stress and that its accumulation need not be intimately connected to limitations imposed by Fe on the growth rate of these diatoms. PMID:12223732

  11. A light-dependent mechanism for massive accumulation of manganese in the photosynthetic bacterium Synechocystis sp. PCC 6803.

    PubMed

    Keren, Nir; Kidd, Matthew J; Penner-Hahn, James E; Pakrasi, Himadri B

    2002-12-17

    Manganese is an essential micronutrient for many organisms. Because of its unique role in the water oxidizing activity of photosystem II, manganese is required for photosynthetic growth in plants and cyanobacteria. Here we report on the mechanism of manganese uptake in the cyanobacterium Synechocystis sp. PCC 6803. Cells grown in 9 microM manganese-containing medium accumulate up to 1 x 10(8) manganese atoms/cell, bound to the outer membrane (pool A). This pool could be released by EDTA treatment. Accumulation of manganese in pool A was energized by photosynthetic electron flow. Moreover, collapsing the membrane potential resulted in the immediate release of this manganese pool. The manganese in this pool is mainly Mn(II) in a six-coordinate distorted environment. A distinctly different pool of manganese, pool B ( approximately 1.5 x 10(6) atoms/cell), could not be extracted by EDTA. Transport into pool B was light-independent and could be detected only under limiting manganese concentrations (1 nM). Evidently, manganese uptake in Synechocystis 6803 cells occurs in two steps. First, manganese accumulates in the outer membrane (pool A) in a membrane potential-dependent process. Next, manganese is transported through the inner membrane into pool B. We propose that pool A serves as a store that allows the cells to overcome transient limitations in manganese in the environment. PMID:12475258

  12. Biomass Yield Efficiency of the Marine Anammox Bacterium, “Candidatus Scalindua sp.,” is Affected by Salinity

    PubMed Central

    Awata, Takanori; Kindaichi, Tomonori; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2015-01-01

    The growth rate and biomass yield efficiency of anaerobic ammonium oxidation (anammox) bacteria are markedly lower than those of most other autotrophic bacteria. Among the anammox bacterial genera, the growth rate and biomass yield of the marine anammox bacterium “Candidatus Scalindua sp.” is still lower than those of other anammox bacteria enriched from freshwater environments. The activity and growth of marine anammox bacteria are generally considered to be affected by the presence of salinity and organic compounds. Therefore, in the present study, the effects of salinity and volatile fatty acids (VFAs) on the anammox activity, inorganic carbon uptake, and biomass yield efficiency of “Ca. Scalindua sp.” enriched from the marine sediments of Hiroshima Bay, Japan, were investigated in batch experiments. Differences in VFA concentrations (0–10 mM) were observed under varying salinities (0.5%–4%). Anammox activity was high at 0.5%–3.5% salinity, but was 30% lower at 4% salinity. In addition, carbon uptake was higher at 1.5%–3.5% salinity. The results of the present study clearly demonstrated that the biomass yield efficiency of the marine anammox bacterium “Ca. Scalindua sp.” was significantly affected by salinity. On the other hand, the presence of VFAs up to 10 mM did not affect anammox activity, carbon uptake, or biomass yield efficiency. PMID:25740428

  13. Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum

    SciTech Connect

    Niedzwiedzki, Dariusz M.; Fuciman, Marcel; Kobayashi, Masayuki; Frank, Harry A.; Blankenship, Robert E.

    2011-10-08

    The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex. The studies show that the dominant Cars rhodopin (N = 11) and spirilloxanthin (N = 13) do not play a significant role as supportive energy donors for BChl a. This is related with their photophysical properties regulated by long π-electron conjugation. On the other hand, such properties favor some of the Cars, particularly spirilloxanthin (N = 13) to play the role of the direct quencher of the excited singlet state of BChl.

  14. Biochemical and Structural Characterization of the Complex Agarolytic Enzyme System from the Marine Bacterium Zobellia galactanivorans*

    PubMed Central

    Hehemann, Jan-Hendrik; Correc, Gaëlle; Thomas, François; Bernard, Thomas; Barbeyron, Tristan; Jam, Murielle; Helbert, William; Michel, Gurvan; Czjzek, Mirjam

    2012-01-01

    Zobellia galactanivorans is an emerging model bacterium for the bioconversion of algal biomass. Notably, this marine Bacteroidetes possesses a complex agarolytic system comprising four β-agarases and five β-porphyranases, all belonging to the glycoside hydrolase family 16. Although β-agarases are specific for the neutral agarobiose moieties, the recently discovered β-porphyranases degrade the sulfated polymers found in various quantities in natural agars. Here, we report the biochemical and structural comparison of five β-porphyranases and β-agarases from Z. galactanivorans. The respective degradation patterns of two β-porphyranases and three β-agarases are analyzed by their action on defined hybrid oligosaccharides. In light of the high resolution crystal structures, the biochemical results allowed a detailed mapping of substrate specificities along the active site groove of the enzymes. Although PorA displays a strict requirement for C6-sulfate in the −2- and +1-binding subsites, PorB tolerates the presence of 3–6-anhydro-l-galactose in subsite −2. Both enzymes do not accept methylation of the galactose unit in the −1 subsite. The β-agarase AgaD requires at least four consecutive agarose units (DP8) and is highly intolerant to modifications, whereas for AgaB oligosaccharides containing C6-sulfate groups at the −4, +1, and +3 positions are still degraded. Together with a transcriptional analysis of the expression of these enzymes, the structural and biochemical results allow proposition of a model scheme for the agarolytic system of Z. galactanivorans. PMID:22778272

  15. Purification and characterization of the oxidase from the marine bacterium Pseudomonas nautica 617.

    PubMed

    Arnaud, S; Malatesta, F; Guigliarelli, B; Gayda, J P; Bertrand, P; Miraglio, R; Denis, M

    1991-06-01

    The aerobic respiratory system of the hydrocarbonoclastic marine bacterium Pseudomonas nautica 617 ends with a single terminal oxidase. It is a heme-containing membranous protein which has been demonstrated only to reduce molecular oxygen to hydrogen peroxide [Denis, M., Arnaud S. & Malatesta, F. (1989) FEBS Lett. 247, 475-479]. The purification of this oxidase was achieved in a single step through by DEAE-Trisacryl chromatography. SDS/PAGE showed the presence of four subunits. The pI was found to be 4.45 and a Mr of 130,000 was determined by gel filtration. The amino acid composition of the purified terminal oxidase has been determined. About 52% of the residues are hydrophobic, strengthening the membranous nature of this bacterial oxidase. Room temperature optical spectra are typical of heme b with a 560-nm band for the reduced form in the alpha range. The prosthetic group is made of two hemes b, one high-spin (S = 5/2, gl = 5.9, g parallel approximately 2.0), the other low-spin (S = 1/2, gz = 2.94, gy = 2.27). No other metal centre was detected by EPR. The two hemes remained unresolved in optical spectra, even at low temperature, and throughout redox titration. They behaved potentiometrically like a one-electron, single redox couple, with Em = 87 +/- 10 mV at pH 7.2 and 293 K. The purified oxidase did not oxidize ferrocytochrome c, but displayed quinol oxidase activity both with the native quinone (2419 nmol O2.min-1.mg protein-1 and commercially available coenzyme (101.74 nmol O2.min-1.mg protein-1). Exposure of the reduced enzyme to CO induced the collapse of alpha and beta bands as occurred during reoxidation. In contrast, NaCN and NaN3 fully inhibited the oxidase activity. Results are discussed with respect to other purified quinol oxidases. PMID:1645655

  16. Desulfoluna spongiiphila sp. nov., a dehalogenating bacterium in the Desulfobacteraceae from the marine sponge Aplysina aerophoba.

    PubMed

    Ahn, Young-Beom; Kerkhof, Lee J; Häggblom, Max M

    2009-09-01

    A reductively dehalogenating, strictly anaerobic, sulfate-reducing bacterium, designated strain AA1T, was isolated from the marine sponge Aplysina aerophoba collected in the Mediterranean Sea and was characterized phenotypically and phylogenetically. Cells of strain AA1T were Gram-negative, short, curved rods. Growth of strain AA1T was observed between 20 and 37 degrees C (optimally at 28 degrees C) at pH 7-8. NaCl was required for growth; optimum growth occurred in the presence of 25 g NaCl l(-1). Growth occurred with lactate, propionate, pyruvate, succinate, benzoate, glucose and sodium citrate as electron donors and carbon sources and either sulfate or 2-bromophenol as electron acceptors, but not with acetate or butyrate. Strain AA1T was able to dehalogenate several different bromophenols, and 2- and 3-iodophenol, but not monochlorinated or fluorinated phenols. Lactate, pyruvate, fumarate and malate were not utilized without an electron acceptor. The G+C content of the genomic DNA was 58.5 mol%. The predominant cellular fatty acids were C14:0, iso-C14:0, C14:0 3-OH, anteiso-C15:0, C16:0, C16:1omega7c and C18:1omega7c. Phylogenetic analysis based on 16S rRNA gene sequence comparisons placed the novel strain within the class Deltaproteobacteria. Strain AA1T was related most closely to the type strains of Desulfoluna butyratoxydans (96% 16S rRNA gene sequence similarity), Desulfofrigus oceanense (95%) and Desulfofrigus fragile (95%). Based on its phenotypic, physiological and phylogenetic characteristics, strain AA1T is considered to represent a novel species of the genus Desulfoluna, for which the name Desulfoluna spongiiphila sp. nov. is proposed. The type strain is AA1T (=DSM 17682T=ATCC BAA-1256T). PMID:19605712

  17. Antibiofilm Activity of an Exopolysaccharide from Marine Bacterium Vibrio sp. QY101

    PubMed Central

    Han, Feng; Duan, Gaofei; Lu, Xinzhi; Gu, Yuchao; Yu, Wengong

    2011-01-01

    Bacterial exopolysaccharides have always been suggested to play crucial roles in the bacterial initial adhesion and the development of complex architecture in the later stages of bacterial biofilm formation. However, Escherichia coli group II capsular polysaccharide was characterized to exert broad-spectrum biofilm inhibition activity. In this study, we firstly reported that a bacterial exopolysaccharide (A101) not only inhibits biofilm formation of many bacteria but also disrupts established biofilm of some strains. A101 with an average molecular weight of up to 546 KDa, was isolated and purified from the culture supernatant of the marine bacterium Vibrio sp. QY101 by ethanol precipitation, iron-exchange chromatography and gel filtration chromatography. High performance liquid chromatography traces of the hydrolyzed polysaccharides showed that A101 is primarily consisted of galacturonic acid, glucuronic acid, rhamnose and glucosamine. A101 was demonstrated to inhibit biofilm formation by a wide range of Gram-negative and Gram-positive bacteria without antibacterial activity. Furthermore, A101 displayed a significant disruption on the established biofilm produced by Pseudomonas aeruginosa, but not by Staphylococcus aureus. Importantly, A101 increased the aminoglycosides antibiotics' capability of killing P. aeruginosa biofilm. Cell primary attachment to surfaces and intercellular aggregates assays suggested that A101 inhibited cell aggregates of both P. aeruginosa and S. aureus, while the cell-surface interactions inhibition only occurred in S. aureus, and the pre-formed cell aggregates dispersion induced by A101 only occurred in P. aeruginosa. Taken together, these data identify the antibiofilm activity of A101, which may make it potential in the design of new therapeutic strategies for bacterial biofilm-associated infections and limiting biofilm formation on medical indwelling devices. The found of A101 antibiofilm activity may also promote a new recognition

  18. DMSP: tetrahydrofolate methyltransferase from the marine sulfate-reducing bacterium strain WN

    NASA Astrophysics Data System (ADS)

    Jansen, M.; Hansen, T. A.

    2000-08-01

    Dimethylsulfoniopropionate (DMSP), an important compatible solute of many marine algae, can be metabolised by bacteria via cleavage to dimethylsulfide and acrylate or via an initial demethylation. This is the first report on the purification of an enzyme that specifically catalyses the demethylation of DMSP. The enzyme was isolated from the sulfate-reducing bacterium strain WN, which grows on DMSP and demethylates it to methylthiopropionate. DMSP:tetrahydrofolate (THF) methyltransferase from strain WN was purified 76-fold [to a specific activity of 40.5 μmol min -1 (mg protein) -1]. SDS polyacrylamide gel electrophoresis showed two bands of approximately 10 and 35 kDa; in particular the 35 kDa polypeptide became significantly enriched during the purification. Storage of the purified fraction at -20°C under nitrogen resulted in a 99% loss of activity in two days. The activity could be partially restored by addition of 200 μM cyanocobalamin, hydroxocobalamin or coenzyme B 12. ATP did not have any positive effect on activity. Reduction of the assay mixture by titanium(III)nitrilotriacetic acid slightly stimulated the activity. Gel filtration chromatography revealed a native molecular mass between 45 and 60 kDa for the DMSP:THF methyltransferase. The enzyme was most active at 35°C and pH 7.8. Glycine betaine, which can be considered an N-containing structural analogue of DMSP, did not serve as a methyl donor for DMSP:THF methyltransferase. Various sulfur-containing DMSP-analogues were tested but only methylethylsulfoniopropionate served as methyl donor. None of these compounds inhibited methyl transfer from DMSP to THF. Strain WN did not grow on any of the sulfur-containing DMSP-analogues.

  19. Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina.

    PubMed

    Golotin, Vasily; Balabanova, Larissa; Likhatskaya, Galina; Rasskazov, Valery

    2015-04-01

    The psychrophilic marine bacterium, Cobetia marina, recovered from the mantle tissue of the marine mussel, Crenomytilus grayanus, which contained a gene encoding alkaline phosphatase (AP) with apparent biotechnology advantages. The enzyme was found to be more efficient than its counterparts and showed k cat value 10- to 100-fold higher than those of all known commercial APs. The enzyme did not require the presence of exogenous divalent cations and dimeric state of its molecule for activity. The recombinant enzyme (CmAP) production and purification were optimized with a final recovery of 2 mg of the homogenous protein from 1 L of the transgenic Escherichia coli Rosetta(DE3)/Pho40 cells culture. CmAP displayed a half-life of 16 min at 45 °C and 27 min at 40 °C in the presence of 2 mM EDTA, thus suggesting its relative thermostability in comparison with the known cold-adapted analogues. A high concentration of EDTA in the incubation mixture did not appreciably inhibit CmAP. The enzyme was stable in a wide range of pH (6.0-11.0). CmAP exhibited its highest activity at the reaction temperature of 40-50 °C and pH 9.5-10.3. The structural features of CmAP could be the reason for the increase in its stability and catalytic turnover. We have modeled the CmAP 3D structure on the base of the high-quality experimental structure of the close homologue Vibrio sp. AP (VAP) and mutated essential residues predicted to break Mg(2+) bonds in CmAP. It seems probable that the intrinsically tight binding of catalytic and structural metal ions together with the flexibility of intermolecular and intramolecular links in CmAP could be attributed to the adapted mutualistic lifestyle in oceanic waters. PMID:25260971

  20. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    PubMed

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS. PMID:26826831

  1. Structure analysis and comparative characterization of the cytochrome c' and flavocytochrome c from thermophilic purple photosynthetic bacterium Thermochromatium tepidum.

    PubMed

    Hirano, Yu; Kimura, Yukihiro; Suzuki, Hideaki; Miki, Kunio; Wang, Zheng-Yu

    2012-08-21

    The thermodynamic and spectroscopic properties of two soluble electron transport proteins, cytochrome (Cyt) c' and flavocytochrome c, isolated from thermophilic purple sulfur bacterium Thermochromatium (Tch.) tepidum were examined and compared with those of the corresponding proteins from a closely related mesophilic bacterium Allochromatium (Alc.) vinosum. These proteins share sequence identities of 82% for the cytochromes c' and 86% for the flavocytochromes c. Crystal structures of the two proteins have been determined at high resolutions. Differential scanning calorimetry and denaturing experiments show that both proteins from Tch. tepidum are thermally and structurally much more stable than their mesophilic counterparts. The denaturation temperature of Tch. tepidum Cyt c' was 22 °C higher than that of Alc. vinosum Cyt c', and the midpoints of denaturation using guanidine hydrochloride were 2.0 and 1.2 M for the Tch. tepidum and Alc. vinosum flavocytochromes c, respectively. The enhanced stabilities can be interpreted on the basis of the structural and sequence information obtained in this study: increased number of hydrogen bonds formed between main chain nitrogen and oxygen atoms, more compact structures and reduced number of glycine residues. Many residues with large side chains in Alc. vinosum Cyt c' are substituted by alanines in Tch. tepidum Cyt c'. Both proteins from Tch. tepidum exhibit high structural similarities to their counterparts from Alc. vinosum, and the different residues between the corresponding proteins are mainly located on the surface and exposed to the solvent. Water molecules are found in the heme vicinity of Tch. tepidum Cyt c' and form hydrogen bonds with the heme ligand and C-terminal charged residues. Similar bound waters are also found in the vicinity of one heme group in the diheme subunit of Tch. tepidum flavocytochrome c. Electron density map of the Tch. tepidum flavocytochrome c clearly revealed the presence of disulfur atoms

  2. Excitation energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus: A specific effect of 1-hexanol on the optical properties of baseplate and energy transfer processes.

    PubMed

    Mimuro, M; Nishimura, Y; Yamazaki, I; Kobayashi, M; Wang, Z Y; Nozawa, T; Shimada, K; Matsuura, K

    1996-05-01

    The effect of 1-hexanol on spectral properties and the processes of energy transfer of the green gliding photosynthetic bacterium Chloroflexus aurantiacus was investigated with reference to the baseplate region. On addition of 1-hexanol to a cell suspension in a concentration of one-fourth saturation, a specific change in the baseplate region was induced: that is, a bleach of the 793-nm component, and an increase in absorption of the 813-nm component. This result was also confirmed by fluorescence spectra of whole cells and isolated chlorosomes. The processes of energy transfer were affected in the overall transfer efficiency but not kinetically, indicating that 1-hexanol suppressed the flux of energy flow from the baseplate to the B806-866 complexes in the cytoplasmic membranes. The fluorescence excitation spectrum suggests a specific site of interaction between bacteriochlorophyll (BChl) c with a maximum at 771 nm in the rod elements and BChl a with a maximum at 793 nm in the baseplate, which is a funnel for a fast transfer of energy to the B806-866 complexes in the membranes. The absorption spectrum of chlorosomes was resolved to components consistently on the basis, including circular dichroism and magnetic circular dichroism spectra; besides two major BChl c forms, bands corresponding to tetramer, dimer, and monomer were also discernible, which are supposed to be intermediary components for a higher order structure. A tentative model for the antenna system of C. aurantiacus is proposed. PMID:24271307

  3. Photosynthetic and molecular responses of the marine diatom Thalassiosira pseudonana to triphenyltin exposure.

    PubMed

    Yi, Andy Xianliang; Leung, Priscilla T Y; Leung, Kenneth M Y

    2014-09-01

    This study aimed to investigate the responses of the marine diatom Thalassiosira pseudonana upon waterborne exposure to triphenyltin chloride (TPTCl) through determining their photosynthetic response, growth performance, and expressions of genes and proteins. Based on the growth inhibition test, the 96-h IC50 (i.e., median inhibition concentration) was found to be 1.09 μg/L (95% confidence interval (CI): 0.89-1.34 μg/L). According to photosynthetic parameters, the 96-h EC50s (i.e., median effect concentrations) were estimated at 1.54 μg/L (95% CI: 1.40-1.69 μg/L) and 1.51 μg/L (95% CI: 1.44-1.58 μg/L) for the maximum quantum yield of photosystem II (PSII) photochemistry (ΦPo) and the effective quantum yield of photochemical energy conversion in PSII (Φ2), respectively. Non-photochemical quenching in the algae was increased at low concentrations of TPTCl (0.5-1.0 μg/L) but it decreased gradually when the TPTCl concentration further increased from 1.0 to 2.5 μg/L. Results of gene expressions showed that lipid metabolism related genes were not influenced by TPTCl at 0.5 or 1.0 μg/L, while silica shell formation genes were down-regulated at 0.5 μg/L. Photosynthesis related genes were up-regulated at 0.5 μg/L TPTCl but were down-regulated at 1.0 μg/L TPTCl. Proteomics analysis revealed that relatively less proteins could be detected after exposure to 1.0 μg/L TPTCl (only about 50-60 spots) compared with that observed in the 0.5μg/L TPTCl treatment and two control groups (each with about 290-300 protein spots). At 0.5 μg/L TPTCl, five proteins were differentially expressed when compared with the seawater control and solvent control, and most of these proteins are involved in defence function to protect the biological systems from reactive oxygen species that generated by TPTCl. These proteins include oxygen-evolving enhancer protein 1 precursor, fucoxanthin chlorophyll a/c protein - LI818 clade, and mitochondrial manganese superoxide dismutase, which can

  4. Aerobic and anaerobic metabolism of 6,10,14-trimethylpentadecan-2-one by a denitrifying bacterium isolated from marine sediments.

    PubMed Central

    Rontani, J F; Gilewicz, M J; Michotey, V D; Zheng, T L; Bonin, P C; Bertrand, J C

    1997-01-01

    This report describes the metabolism of 6,10,14-trimethylpentadecan-2-one by a denitrifying bacterium (Marinobacter sp. strain CAB) isolated from marine sediments. Under aerobic and denitrifying conditions, this strain efficiently degraded this ubiquitous isoprenoid ketone. Several bacterial metabolites, 4,8,12-trimethyl-tridecan-1-ol, 4,8,12-trimethyltridecanal, 4,8,12-trimethyltridecanoic acid, Z-3,7-dimethylocten-2-oic acid, Z-3,7,11-trimethyldodecen-2-oic acid, and 6,10,14-trimethylpentadecan-2-ol, were formally identified, and different pathways were proposed to explain the formation of such isoprenoid compounds. PMID:9023941

  5. Photoinhibition of Phaeocystis globosa resulting from oxidative stress induced by a marine algicidal bacterium Bacillus sp. LP-10

    PubMed Central

    Guan, Chengwei; Guo, Xiaoyun; Li, Yi; Zhang, Huajun; Lei, Xueqian; Cai, Guanjing; Guo, Jiajia; Yu, Zhiming; Zheng, Tianling

    2015-01-01

    Harmful algal blooms caused by Phaeocystis globosa have resulted in staggering losses to coastal countries because of their world-wide distribution. Bacteria have been studied for years to control the blooms of harmful alga, however, the action mechanism of them against harmful algal cells is still not well defined. Here, a previously isolated algicidal bacterium Bacillus sp. LP-10 was used to elucidate the potential mechanism involved in the dysfunction of P. globosa algal cells at physiological and molecular levels. Our results showed Bacillus sp. LP-10 induced an obvious rise of reactive oxygen species (ROS), which was supposed to be major reason for algal cell death. Meanwhile, the results revealed a significant decrease of photosynthetic physiological indexes and apparent down-regulated of photosynthesis-related genes (psbA and rbcS) and protein (PSII reaction center protein D1), after treated by Bacillus sp. LP-10 filtrates, suggesting photoinhibition occurred in the algal cells. Furthermore, our results indicated that light played important roles in the algal cell death. Our work demonstrated that the major lethal reason of P. globosa cells treated by the algicidal bacterium was the photoinhibition resulted from oxidative stress induced by Bacillus sp. LP-10. PMID:26601700

  6. Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep-sea fishes.

    PubMed

    Ast, Jennifer C; Cleenwerck, Ilse; Engelbeen, Katrien; Urbanczyk, Henryk; Thompson, Fabiano L; De Vos, Paul; Dunlap, Paul V

    2007-09-01

    Six representatives of a luminous bacterium commonly found in association with deep, cold-dwelling marine fishes were isolated from the light organs and skin of different fish species. These bacteria were Gram-negative, catalase-positive, and weakly oxidase-positive or oxidase-negative. Morphologically, cells of these strains were coccoid or coccoid-rods, occurring singly or in pairs, and motile by means of polar flagellation. After growth on seawater-based agar medium at 22 degrees C for 18 h, colonies were small, round and white, with an intense cerulean blue luminescence. Analysis of 16S rRNA gene sequence similarity placed these bacteria in the genus Photobacterium. Phylogenetic analysis based on seven housekeeping gene sequences (16S rRNA gene, gapA, gyrB, pyrH, recA, rpoA and rpoD), seven gene sequences of the lux operon (luxC, luxD, luxA, luxB, luxF, luxE and luxG) and four gene sequences of the rib operon (ribE, ribB, ribH and ribA), resolved the six strains as members of the genus Photobacterium and as a clade distinct from other species of Photobacterium. These strains were most closely related to Photobacterium phosphoreum and Photobacterium iliopiscarium. DNA-DNA hybridization values between the designated type strain, Photobacterium kishitanii pjapo.1.1(T), and P. phosphoreum LMG 4233(T), P. iliopiscarium LMG 19543(T) and Photobacterium indicum LMG 22857(T) were 51, 43 and 19 %, respectively. In AFLP analysis, the six strains clustered together, forming a group distinct from other analysed species. The fatty acid C(17 : 0) cyclo was present in these bacteria, but not in P. phosphoreum, P. iliopiscarium or P. indicum. A combination of biochemical tests (arginine dihydrolase and lysine decarboxylase) differentiates these strains from P. phosphoreum and P. indicum. The DNA G+C content of P. kishitanii pjapo.1.1(T) is 40.2 %, and the genome size is approximately 4.2 Mbp, in the form of two circular chromosomes. These strains represent a novel species, for

  7. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    PubMed

    Wahidullah, Solimabi; Naik, Deepak N; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3-8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment. PMID:24391802

  8. Fermentation Products of Solvent Tolerant Marine Bacterium Moraxella spp. MB1 and Its Biotechnological Applications in Salicylic Acid Bioconversion

    PubMed Central

    Wahidullah, Solimabi; Naik, Deepak N.; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3–8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9–12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment. PMID:24391802

  9. Introduction of perfluoroalkyl chain into the esterifying moiety of bacteriochlorophyll c in the green sulfur photosynthetic bacterium Chlorobaculum tepidum by pigment biosynthesis.

    PubMed

    Saga, Yoshitaka; Yamashita, Hayato; Hirota, Keiya

    2016-09-15

    The green sulfur photosynthetic bacterium Chlorobaculum (Cba.) tepidum was grown in liquid cultures containing perfluoro-1-decanol, 1H,1H,2H,2H-heptadecafluoro-1-decanol [CF3(CF2)7(CH2)2OH] or 1H,1H-nonadecafluoro-1-decanol [CF3(CF2)8CH2OH], to introduce rigid and fluorophilic chains into the esterifying moiety of light-harvesting bacteriochlorophyll (BChl) c. Exogenous 1H,1H,2H,2H-heptadecafluoro-1-decanol was successfully attached to the 17(2)-carboxy group of bacteriochlorophyllide (BChlide) c in vivo: the relative ratio of the unnatural BChl c esterified with this perfluoroalcohol over the total BChl c was 10.3%. Heat treatment of the liquid medium containing 1H,1H,2H,2H-heptadecafluoro-1-decanol with β-cyclodextrin before inoculation increased the relative ratio of the BChl c derivative esterified with this alcohol in the total BChl c in Cba. tepidum. In a while, 1H,1H-nonadecafluoro-1-decanol was not attached to BChlide c in Cba. tepidum, which was grown by its supplementation. These results suggest that the rigidity close to the hydroxy group of the esterifying alcohol is not suitable for the recognition by the BChl c synthase called BchK in Cba. tepidum. The unnatural BChl c esterified with 1H,1H,2H,2H-heptadecafluoro-1-decanol participated in BChl c self-aggregates in chlorosomes. PMID:27427396

  10. Porticoccus hydrocarbonoclasticus sp. nov., an aromatic hydrocarbon-degrading bacterium identified in laboratory cultures of marine phytoplankton.

    PubMed

    Gutierrez, Tony; Nichols, Peter D; Whitman, William B; Aitken, Michael D

    2012-02-01

    A marine bacterium, designated strain MCTG13d, was isolated from a laboratory culture of the dinoflagellate Lingulodinium polyedrum CCAP1121/2 by enrichment with polycyclic aromatic hydrocarbons (PAHs) as the sole carbon source. Based on 16S rRNA gene sequence comparisons, the strain was most closely related to Porticoccus litoralis IMCC2115(T) (96.5%) and to members of the genera Microbulbifer (91.4 to 93.7%) and Marinimicrobium (90.4 to 92.0%). Phylogenetic trees showed that the strain clustered in a distinct phyletic line in the class Gammaproteobacteria for which P. litoralis is presently the sole cultured representative. The strain was strictly aerobic, rod shaped, Gram negative, and halophilic. Notably, it was able to utilize hydrocarbons as sole sources of carbon and energy, whereas sugars did not serve as growth substrates. The predominant isoprenoid quinone of strain MCTG13d was Q-8, and the dominant fatty acids were C(16:1ω7c), C(18:1ω7c), and C(16:0). DNA G+C content for the isolate was 54.9 ± 0.42 mol%. Quantitative PCR primers targeting the 16S rRNA gene of this strain showed that this organism was common in other laboratory cultures of marine phytoplankton. On the basis of phenotypic and genotypic characteristics, strain MCTG13d represents a novel species of Porticoccus, for which the name Porticoccus hydrocarbonoclasticus sp. nov. is proposed. The discovery of this highly specialized hydrocarbon-degrading bacterium living in association with marine phytoplankton suggests that phytoplankton represent a previously unrecognized biotope of novel bacterial taxa that degrade hydrocarbons in the ocean. PMID:22139001

  11. Porticoccus hydrocarbonoclasticus sp. nov., an Aromatic Hydrocarbon-Degrading Bacterium Identified in Laboratory Cultures of Marine Phytoplankton

    PubMed Central

    Nichols, Peter D.; Whitman, William B.; Aitken, Michael D.

    2012-01-01

    A marine bacterium, designated strain MCTG13d, was isolated from a laboratory culture of the dinoflagellate Lingulodinium polyedrum CCAP1121/2 by enrichment with polycyclic aromatic hydrocarbons (PAHs) as the sole carbon source. Based on 16S rRNA gene sequence comparisons, the strain was most closely related to Porticoccus litoralis IMCC2115T (96.5%) and to members of the genera Microbulbifer (91.4 to 93.7%) and Marinimicrobium (90.4 to 92.0%). Phylogenetic trees showed that the strain clustered in a distinct phyletic line in the class Gammaproteobacteria for which P. litoralis is presently the sole cultured representative. The strain was strictly aerobic, rod shaped, Gram negative, and halophilic. Notably, it was able to utilize hydrocarbons as sole sources of carbon and energy, whereas sugars did not serve as growth substrates. The predominant isoprenoid quinone of strain MCTG13d was Q-8, and the dominant fatty acids were C16:1ω7c, C18:1ω7c, and C16:0. DNA G+C content for the isolate was 54.9 ± 0.42 mol%. Quantitative PCR primers targeting the 16S rRNA gene of this strain showed that this organism was common in other laboratory cultures of marine phytoplankton. On the basis of phenotypic and genotypic characteristics, strain MCTG13d represents a novel species of Porticoccus, for which the name Porticoccus hydrocarbonoclasticus sp. nov. is proposed. The discovery of this highly specialized hydrocarbon-degrading bacterium living in association with marine phytoplankton suggests that phytoplankton represent a previously unrecognized biotope of novel bacterial taxa that degrade hydrocarbons in the ocean. PMID:22139001

  12. Genome Sequence of Vibrio sp. Strain EJY3, an Agarolytic Marine Bacterium Metabolizing 3,6-Anhydro-l-Galactose as a Sole Carbon Source

    PubMed Central

    Roh, Hanseong; Yun, Eun Ju; Lee, Saeyoung; Ko, Hyeok-Jin; Kim, Sujin; Kim, Byung-Yong; Song, Heesang; Lim, Kwang-il

    2012-01-01

    The metabolic fate of 3,6-anhydro-l-galactose (l-AHG) is unknown in the global marine carbon cycle. Vibrio sp. strain EJY3 is an agarolytic marine bacterium that can utilize l-AHG as a sole carbon source. To elucidate the metabolic pathways of l-AHG, we have sequenced the complete genome of Vibrio sp. strain EJY3. PMID:22535948

  13. Yields, photosynthetic efficiencies, and proximate chemical composition of dense cultures of marine microalgae. A subcontract report

    SciTech Connect

    Thomas, W.H.; Seibert, D.L.R.; Alden, M.; Eldridge, P.; Neori, A.

    1983-07-01

    The yields, photosynthetic efficiencies, and proximate composition of several microalgae were compared in dense cultures grown at light intensities up to 70% sunlight. Yields ranged from 3.4 to 21.7 g dry weight/m/sup 2/ day. The highest yield was obtained with Phaeodactylum; the lowest in Botryococcus cultures. The same species had the highest and lowest efficiencies of utilization of photosynthetically active radiation. In nitrogen-sufficient cells of all but one species, most of the dry weight consisted of protein. Lipid content of all species was 20 to 29%, and carbohydrate content 11 to 23%. Lipid content increased somewhat in N-deficient Phaeodactylum and Isochrysis cells, but decreased in deficient Monallanthus cells. Because the overall dry weight yield was reduced by deficiency, lipid yields did not increase. However, since the carbohydrate content increased to about 65% in N-deficient Dunaliella and Tetraselmis cells, the carbohydrate yield increased. In Phaeodactylum the optimum light intensity was about 40% of full sunlight. Most experimets with this alga included a CUSO/sub 4/ filter to decrease infrared irradiance. When this filter was removed, the yield increased because more red light in the photosynthetically active spectral range was included. These results should prove useful to workers attempting to maximize yields and efficiencies, but additional studies are needed. 69 references, 27 figures, 18 tables.

  14. Azide anions inhibit GH-18 endochitinase and GH-20 Exo β-N-acetylglucosaminidase from the marine bacterium Vibrio harveyi.

    PubMed

    Sirimontree, Paknisa; Fukamizo, Tamo; Suginta, Wipa

    2016-02-01

    Vibrio harveyi is a bioluminescent marine bacterium that utilizes chitin as its sole source of energy. In the course of chitin degradation, the bacterium primarily secretes an endochitinase A (VhChiA) to hydrolyze chitin, generating chitooligosaccharide fragments that are readily transported into the cell and broken down to GlcNAc monomers by an exo β-N-acetylglucosaminidase (VhGlcNAcase). Here we report that sodium salts, especially sodium azide, inhibit two classes of these chitin-degrading enzymes (VhChiA and VhGlcNAcase) with distinct modes of action. Kinetic analysis of the enzymatic hydrolysis of pNP-glycoside substrates reveals that sodium azide inhibition of VhChiA has a mixed-type mode, but that it inhibits VhGlcNAcase competitively. We propose that azide anions inhibit chitinase activity by acting as strong nucleophiles that attack Cγ of the catalytic Glu or Cβ of the neighbouring Asp residues. Azide anions may bind not only to the catalytic centre, but also to the other subsites in the substrate-binding cleft of VhChiA. In contrast, azide anions may merely occupy the small-binding pocket of VhGlcNAcase, thereby blocking the accessibility of its active site by short-chain substrates. PMID:26330565

  15. Role of Chitin-Binding Proteins in the Specific Attachment of the Marine Bacterium Vibrio harveyi to Chitin

    PubMed Central

    Montgomery, Michael T.; Kirchman, David L.

    1993-01-01

    We examined the mechanism of attachment of the marine bacterium Vibrio harveyi to chitin. Wheat germ agglutinin and chitinase bind to chitin and competitively inhibited the attachment of V. harveyi to chitin, but not to cellulose. Bovine serum albumin and cellulase do not bind to chitin and had no effect on bacterial attachment to chitin. These data suggest that this bacterium recognizes specific attachment sites on the chitin particle. The level of attachment of a chitinase-overproducing mutant of V. harveyi to chitin was about twice as much as that of the uninduced wild type. Detergent-extracted cell membranes inhibited attachment and contained a 53-kDa peptide that was overproduced by the chitinase-overproducing mutant. Three peptides (40, 53, and 150 kDa) were recovered from chitin which had been exposed to membrane extracts. Polyclonal antibodies raised against extracellular chitinase cross-reacted with the 53- and 150-kDa chitin-binding peptides and inhibited attachment, probably by sterically hindering interactions between the chitin-binding peptides and chitin. The 53- and 150-kDa chitin-binding peptides did not have chitinase activity. These results suggest that chitin-binding peptides, especially the 53-kDa chitin-binding peptide and chitinase and perhaps the 150-kDa peptide, mediate the specific attachment of V. harveyi to chitin. Images PMID:16348865

  16. Structure and anticancer activity of sulfated O-polysaccharide from marine bacterium Cobetia litoralis KMM 3880(T).

    PubMed

    Kokoulin, Maxim S; Kuzmich, Alexandra S; Kalinovsky, Anatoly I; Tomshich, Svetlana V; Romanenko, Lyudmila A; Mikhailov, Valery V; Komandrova, Nadezhda A

    2016-12-10

    We presented the structure of the polysaccharide moiety and anticancer activity in vitro of the sulfated lipopolysaccharide isolated from the marine bacterium Cobetia litoralis KMM 3880(T). The structure of O-polysaccharide was investigated by chemical methods along with (1)H and (13)C NMR spectroscopy. The O-polysaccharide was built up of branched trisaccharide repeating units consist of D-glucose (D-Glcр), D-mannose (D-Manр) and sulfated 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo5S): →7-β-Kdoр4Ac5S-(2→4)-[β-d-Glcp-(1→2)-]-β-d-Manр6Ac-1→. We demonstrated that the lipopolysaccharide and О-deacetylated O-polysaccharide from Cobetia litoralis KMM 3880(T) inhibited a colony formation of human melanoma SK-MEL-28 and colorectal carcinoma HTC-116 cells. PMID:27577896

  17. Mechanistic Insight into Trimethylamine N-Oxide Recognition by the Marine Bacterium Ruegeria pomeroyi DSS-3

    PubMed Central

    Li, Chun-Yang; Chen, Xiu-Lan; Shao, Xuan; Wei, Tian-Di; Wang, Peng; Xie, Bin-Bin; Qin, Qi-Long; Zhang, Xi-Ying; Su, Hai-Nan; Song, Xiao-Yan; Shi, Mei; Zhou, Bai-Cheng

    2015-01-01

    ABSTRACT Trimethylamine N-oxide (TMAO) is an important nitrogen source for marine bacteria. TMAO can also be metabolized by marine bacteria into volatile methylated amines, the precursors of the greenhouse gas nitrous oxide. However, it was not known how TMAO is recognized and imported by bacteria. Ruegeria pomeroyi DSS-3, a marine Roseobacter, has an ATP-binding cassette transporter, TmoXWV, specific for TMAO. TmoX is the substrate-binding protein of the TmoXWV transporter. In this study, the substrate specificity of TmoX of R. pomeroyi DSS-3 was characterized. We further determined the structure of the TmoX/TMAO complex and studied the TMAO-binding mechanism of TmoX by biochemical, structural, and mutational analyses. A Ca2+ ion chelated by an extended loop in TmoX was shown to be important for maintaining the stability of TmoX. Molecular dynamics simulations indicate that TmoX can alternate between “open” and “closed” states for binding TMAO. In the substrate-binding pocket, four tryptophan residues interact with the quaternary amine of TMAO by cation-π interactions, and Glu131 forms a hydrogen bond with the polar oxygen atom of TMAO. The π-π stacking interactions between the side chains of Phe and Trp are also essential for TMAO binding. Sequence analysis suggests that the TMAO-binding mechanism of TmoX may have universal significance in marine bacteria, especially in the marine Roseobacter clade. This study sheds light on how marine microorganisms utilize TMAO. IMPORTANCE Trimethylamine N-oxide (TMAO) is an important nitrogen source for marine bacteria. The products of TMAO metabolized by bacteria are part of the precursors of the greenhouse gas nitrous oxide. It is unclear how TMAO is recognized and imported by bacteria. TmoX is the substrate-binding protein of a TMAO-specific transporter. Here, the substrate specificity of TmoX of Ruegeria pomeroyi DSS-3 was characterized. The TMAO-binding mechanism of TmoX was studied by biochemical, structural

  18. Complete genome of a coastal marine bacterium Muricauda lutaonensis KCTC 22339(T).

    PubMed

    Oh, Jeongsu; Choe, Hanna; Kim, Byung Kwon; Kim, Kyung Mo

    2015-10-01

    Muricauda lutaonensis KCTC 22339(T) is a yellow-pigmented, gram-negative, rod-shaped bacterium that was isolated from a coastal hot spring of a volcanic island in the Pacific Ocean, off the eastern coast of Taiwan. We here report the complete genome of M. lutaonensis KCTC 22339(T), which consists of 3,274,259bp with the G+C content of 44.97%. The completion of the M. lutaonensis genome sequence is expected to provide a valuable resource for understanding the secondary metabolic pathways related to bacterial pigmentation. PMID:25986927

  19. Global characterization of the photosynthetic glycerolipids from a marine diatom Stephanodiscus sp. by ultra performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight mass spectrometry.

    PubMed

    Xu, Jilin; Chen, Deying; Yan, Xiaojun; Chen, Juanjuan; Zhou, Chengxu

    2010-03-17

    The photosynthetic glycerolipids composition of algae is crucial for structural and physiological aspects. In this work, a comprehensive characterization of the photosynthetic glycerolipids of the diatom Stephanodiscus sp. was carried out by ultra performance liquid chromatography-electrospray ionization-quadrupole-time of flight mass spectrometry (UPLC-ESI-Q-TOF MS). By use of the MS(E) data collection mode, the Q-TOF instrument offered a very viable alternative to triple quadrupoles for precursor ion scanning of photosynthetic glycerolipids and had the advantage of high efficiency, selectivity, sensitivity and mass accuracy. Characteristic fragment ions were utilized to identify the structures and acyl compositions of photosynthetic glycerolipids. Comparing the abundance of fragment ions, it was possible to determine the position of the sn-glycerol-bound fatty acyl chains. As a result, four classes of photosynthetic glycerolipid in the extract of Stephanodiscus sp. were unambiguously identified, including 16 monogalactosyldiacylglycerols (MGDGs), 9 digalactosyldiacylglycerols (DGDGs), 23 sulfoquinovosyldiacylglycerols (SQDGs) and 8 phosphatidylglycerols (PGs). As far as our knowledge, this is the first report on global identification of photosynthetic glycerolipids, including lipid classes, fatty acyl composition within lipids and the location of fatty acids in lipids (sn-1 vs. sn-2), in the extract of marine microalgae by UPLC-ESI-Q-TOF MS directly. PMID:20172098

  20. Living in a coastal lagoon environment: photosynthetic and biochemical mechanisms of key marine macroalgae.

    PubMed

    García-Sánchez, Marta; Korbee, Nathalie; Pérez-Ruzafa, Isabel María; Marcos, Concepción; Figueroa, Félix L; Pérez-Ruzafa, Angel

    2014-10-01

    The physiological status of Cystoseira compressa, Padina pavonica and Palisada tenerrima was studied by in vivo chlorophyll fluorescence, pigment content, stoichiometry (C:N), accumulation of UV photoprotectors and antioxidant activity; comparing their photosynthetic response in a coastal lagoon (Mar Menor) and in Mediterranean coastal waters. In general, the specimens reached their highest ETRmax in spring in the Lagoon, but in summer in the Mediterranean, coinciding with their maximum biomass peak. The species exhibited a dynamic photoinhibition. Except C. compressa, they showed a lower decrease in Fv/Fm and higher recovery rates in the Mediterranean populations when exposed to high irradiance. The higher salinity and temperature of the lagoon could impair the photoprotection mechanisms. The acclimation to lagoon environments is species-specific and involves complex regulatory mechanisms. The results underline the importance of N in repair, avoidance, quenching and scavenging mechanisms. In general, Lagoon specimens showed higher pigment concentration. Although xanthophylls play important photo-protective and antioxidant roles, the observed trend is more likely to be explained by the higher temperatures reached in the lagoon compared to Mediterranean. Therefore the studied photosynthetic and biochemical mechanisms can be effective not only for high irradiance, but also for higher temperatures in a climate change scenario, but are highly dependent on nutrient availability. PMID:25164017

  1. Respiration and respiratory enzyme activity in aerobic and anaerobic cultures of the marine denitrifying bacterium, Pseudomonas perfectomarinus

    NASA Astrophysics Data System (ADS)

    Packard, T. T.; Garfield, P. C.; Martinez, R.

    1983-03-01

    Oxygen consumption, nitrate reduction, respiratory electron transport activity, and nitrate reductase activity were measured in aerobic and anaerobic cultures of the marine bacterium, Pseudomonas perfectomarinus. The respiratory electron transport activity was closely correlated with oxygen consumption ( r = 0.98) in aerobic cultures and nearly as well correlated with nitrate reductase activity ( r = 0.91) and nitrate reduction ( r = 0.85) in anaerobic cultures. It was also well correlated with biomass in both aerobic ( r = 0.99) and anaerobic ( r = 0.94) cultures supporting the use of tetrazolium reduction as an index of living biomass. Time courses of nitrate and nitrate in the anaerobic cultures demonstrated that at nitrate concentrations above 1 mM, denitrification proceeds stepwise. Time courses of pH in anaerobic cultures revealed a rise from 7 to 8.5 during nitrite reduction indicating net proton utilization. This proton utilization is predicted by the stoichiometry of denitrification. Although the experiments were not under 'simulated in situ' conditions, the results are relevant to studies of denitrification, to bacterial ATP production, and to the respiratory activity of marine plankton in the ocean.

  2. Spongiimicrobium salis gen. nov., sp. nov., a bacterium of the family Flavobacteriaceae isolated from a marine sponge.

    PubMed

    Yoon, Jaewoo; Adachi, Kyoko; Kasai, Hiroaki

    2016-09-01

    A Gram-stain-negative, strictly aerobic, pale-yellow pigmented, rod-shaped, chemoheterotrophic bacterium, designated A6F-11(T), was isolated from a marine sponge collected in Japan. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the novel marine strain was affiliated with the family Flavobacteriaceae of the phylum Bacteroidetes and that it shared the highest (92.9 %) sequence similarity with Arenibacter palladensis LMG 21972(T). The strain could be differentiated phenotypically from related members of the family Flavobacteriaceae. The major fatty acids of strain A6F-11(T) were iso-C15:1 G, iso-C15:0, C16:1 ω6c and/or C16:1 ω7c and iso-C17:0 3-OH. The polar lipid profile consisted of phosphatidylglycerol, two unidentified aminolipids and two unidentified lipids. The DNA G+C content was 34.7 mol%, and the major respiratory quinone was menaquinone 6 (MK-6). From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel taxon in the family Flavobacteriaceae, for which the name Spongiimicrobium salis gen. nov., sp. nov. is proposed. The type strain of S. salis gen. nov., sp. nov. is A6F-11(T) (= KCTC 42753(T) = NBRC 111401(T)). PMID:27125652

  3. Pyruvatibacter mobilis gen. nov., sp. nov., a marine bacterium from the culture broth of Picochlorum sp. 122.

    PubMed

    Wang, Guanghua; Tang, Mingxing; Wu, Hualian; Dai, Shikun; Li, Tao; Chen, Chenghao; He, Hui; Fan, Jiewei; Xiang, Wenzhou; Li, Xiang

    2016-01-01

    A Gram-stain-negative, aerobic bacterium, designated strain GYP-11T, was isolated from the culture broth of a marine microalga, Picochloruma sp. 122. Cells were dimorphic rods; free living cells were motile by means of a single polar flagellum, and star-shaped-aggregate-forming cells were attached with stalks and non-motile. Sodium pyruvate or Tween 20 was required for growth on marine agar 2216.16S rRNA gene sequence analysis revealed that this isolate shared 94.07 % similarity with its closest type strain, Parvibaculum hydrocarboniclasticum EPR92T. Phylogenetic analyses indicated that strain GYP-11T represents a distinct lineage in a robust clade consisting of strain GYP-11T, alphaproteobacterium GMD21A06 and Candidatus Phaeomarinobacter ectocarpi Ec32. This clade was close to the genera Parvibaculum and Tepidicaulis in the order Rhizobiales. Chemotaxonomic and physiological characteristics, including cellular fatty acids and carbon source profiles, also readily distinguished strain GYP-11T from all established genera and species. Thus, it is concluded that strain GYP-11T represents a novel species of a new genus in the order Rhizobiales, for which the name Pyruvatibacter mobilis gen. nov., sp. nov. is proposed. The type strain of Pyruvatibacter mobilis is GYP-11T ( = CGMCC 1.15125T = KCTC 42509T). PMID:26476620

  4. Complete Genome Sequence of the Proteorhodopsin-Containing Marine Bacterium Sediminicola sp. YIK13

    PubMed Central

    Kwon, Yong Min

    2016-01-01

    Sediminicola sp. YIK13 is a marine flavobacterium, isolated from tidal flat sediment. Here, we present the first complete genome sequence of this genus, which consists of 3,569,807 bp with 39.4% GC content. This strain contains proteorhodopsin, as well as retinal biosynthesis genes, allowing it to utilize sunlight as an energy source. PMID:26823585

  5. Complete Genome Sequence of the Bioluminescent Marine Bacterium Vibrio harveyi ATCC 33843 (392 [MAV]).

    PubMed

    Wang, Zheng; Hervey, W Judson; Kim, Seongwon; Lin, Baochuan; Vora, Gary J

    2015-01-01

    Vibrio harveyi is a Gram-negative marine γ-proteobacterium that is known to be a formidable pathogen of aquatic animals and is a model organism for the study of bacterial bioluminescence and quorum sensing. In this report, we describe the complete genome sequence of the most studied strain of this species: V. harveyi ATCC 33843 (392 [MAV]). PMID:25635019

  6. Complete Genome Sequence of the Bioluminescent Marine Bacterium Vibrio harveyi ATCC 33843 (392 [MAV])

    PubMed Central

    Wang, Zheng; Hervey, W. Judson; Kim, Seongwon; Lin, Baochuan

    2015-01-01

    Vibrio harveyi is a Gram-negative marine γ-proteobacterium that is known to be a formidable pathogen of aquatic animals and is a model organism for the study of bacterial bioluminescence and quorum sensing. In this report, we describe the complete genome sequence of the most studied strain of this species: V. harveyi ATCC 33843 (392 [MAV]). PMID:25635019

  7. Complete Genome Sequence of the Proteorhodopsin-Containing Marine Bacterium Sediminicola sp. YIK13.

    PubMed

    Kwon, Yong Min; Kim, Sang-Jin

    2016-01-01

    Sediminicola sp. YIK13 is a marine flavobacterium, isolated from tidal flat sediment. Here, we present the first complete genome sequence of this genus, which consists of 3,569,807 bp with 39.4% GC content. This strain contains proteorhodopsin, as well as retinal biosynthesis genes, allowing it to utilize sunlight as an energy source. PMID:26823585

  8. Thermally Induced Leakage from Vibrio marinus, an Obligately Psychrophilic Marine Bacterium1

    PubMed Central

    Haight, Roger D.; Morita, Richard Y.

    1966-01-01

    Haight, Rodger D. (Oregon State University, Corvallis), and Richard Y. Morita. Thermally induced leakage from Vibrio marinus, an obligately psychrophilic bacterium. J. Bacteriol. 92:1388–1393. 1966.—Leakage of various cellular components into the surrounding menstruum occurred when Vibrio marinus was subjected to temperatures above 20 C (organism's maximal growth temperature). These materials, listed in decreasing rates of leakage, were identified as protein, deoxyribonucleic acid, ribonucleic acid, and amino acids. The amount of polar amino acids increased as the time and temperature of heat treatment were increased, whereas the nonpolar amino acids decreased. The ribonucleic acid in the supernatant fluid resulting from heat treatment was both polymeric and nonpolymeric. Leakage of cellular components may be one of the reasons that V. marinus MP-1 loses viability when exposed to temperatures above its maximal temperature for growth. PMID:5924270

  9. Genome sequence of the marine bacterium Corynebacterium maris type strain Coryn-1(T) (= DSM 45190(T)).

    PubMed

    Schaffert, Lena; Albersmeier, Andreas; Bednarz, Hanna; Niehaus, Karsten; Kalinowski, Jörn; Rückert, Christian

    2013-07-30

    Corynebacterium maris Coryn-1(T) Ben-Dov et al. 2009 is a member of the genus Corynebacterium which contains Gram-positive, non-spore forming bacteria with a high G+C content. C. maris was isolated from the mucus of the Scleractinian coral Fungia granulosa and belongs to the aerobic and non-haemolytic corynebacteria. It displays tolerance to salts (up to 10%) and is related to the soil bacterium Corynebacterium halotolerans. As this is a type strain in a subgroup of Corynebacterium without complete genome sequences, this project, describing the 2.78 Mbp long chromosome and the 45.97 kbp plasmid pCmaris1, with their 2,584 protein-coding and 67 RNA genes, will aid the G enomic E ncyclopedia of Bacteria and Archaea project. PMID:24501635

  10. A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms.

    PubMed

    Seghal Kiran, George; Nishanth Lipton, Anuj; Kennedy, Jonathan; Dobson, Alan D W; Selvin, Joseph

    2014-01-01

    A halotolerant thermostable lipase was purified and characterized from the marine bacterium Oceanobacillus sp. PUMB02. This lipase displayed a high degree of stability over a wide range of conditions including pH, salinity, and temperature. It was optimally active at 30 °C and pH 8.0 respectively and was stable at higher temperatures (50-70 °C) and alkaline pH. The molecular mass of the lipase was approximately 31 kDa based on SDS-PAGE and MALDI-ToF fingerprint analysis. Conditions for enhanced production of lipase by Oceanobacillus sp. PUMB02 were attained in response surface method-guided optimization with factors such as olive oil, sucrose, potassium chromate, and NaCl being evaluated, resulting in levels of 58.84 U/ml being achieved. The biofilm disruption potential of the PUMB02 lipase was evaluated and compared with a marine sponge metagenome derived halotolerant lipase Lpc53E1. Good biofilm disruption activity was observed with both lipases against potential food pathogens such as Bacillus cereus MTCC1272, Listeria sp. MTCC1143, Serratia sp. MTCC4822, Escherichia coli MTCC443, Pseudomonas fluorescens MTCC1748, and Vibrio parahemolyticus MTCC459. Phase contrast microscopy, scanning electron microscopy, and confocal laser scanning microscopy showed very effective disruption of pathogenic biofilms. This study reveals that marine derived hydrolytic enzymes such as lipases may have potential utility in inhibiting biofilm formation in a food processing environment and is the first report of the potential application of lipases from the genus Oceanobacillus in biofilm disruption strategies. PMID:25482232

  11. A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms

    PubMed Central

    Seghal Kiran, George; Nishanth Lipton, Anuj; Kennedy, Jonathan; Dobson, Alan DW; Selvin, Joseph

    2014-01-01

    A halotolerant thermostable lipase was purified and characterized from the marine bacterium Oceanobacillus sp. PUMB02. This lipase displayed a high degree of stability over a wide range of conditions including pH, salinity, and temperature. It was optimally active at 30 °C and pH 8.0 respectively and was stable at higher temperatures (50–70 °C) and alkaline pH. The molecular mass of the lipase was approximately 31 kDa based on SDS-PAGE and MALDI-ToF fingerprint analysis. Conditions for enhanced production of lipase by Oceanobacillus sp. PUMB02 were attained in response surface method-guided optimization with factors such as olive oil, sucrose, potassium chromate, and NaCl being evaluated, resulting in levels of 58.84 U/ml being achieved. The biofilm disruption potential of the PUMB02 lipase was evaluated and compared with a marine sponge metagenome derived halotolerant lipase Lpc53E1. Good biofilm disruption activity was observed with both lipases against potential food pathogens such as Bacillus cereus MTCC1272, Listeria sp. MTCC1143, Serratia sp. MTCC4822, Escherichia coli MTCC443, Pseudomonas fluorescens MTCC1748, and Vibrio parahemolyticus MTCC459. Phase contrast microscopy, scanning electron microscopy, and confocal laser scanning microscopy showed very effective disruption of pathogenic biofilms. This study reveals that marine derived hydrolytic enzymes such as lipases may have potential utility in inhibiting biofilm formation in a food processing environment and is the first report of the potential application of lipases from the genus Oceanobacillus in biofilm disruption strategies. PMID:25482232

  12. Excited state coherent dynamics in light-harvesting complexes from photosynthetic marine algae

    NASA Astrophysics Data System (ADS)

    Richards, G. H.; Wilk, K. E.; Curmi, P. M. G.; Quiney, H. M.; Davis, J. A.

    2012-08-01

    We explore coherence dynamics in light-harvesting complexes and their interactions with other electronic states and vibrational modes. This is achieved by utilizing a two-colour four-wave mixing spectroscopy to excite and analyse a specific coherence pathway in the phycocyanin-645 (PC645) light-harvesting complex. We observe the dephasing rate increase as a function of temperature and oscillations in the signal intensity as a function of waiting time which reveals coherent excitation of pathways not directly resonant with the laser pulses. This coherent excitation of non-resonant electronic states implies strong coupling to phonon modes, which is necessary if coherent energy transfer between non-resonant states is to play any role in photosynthetic energy transfer.

  13. Genome Sequence of the Agar-Degrading Marine Bacterium Alteromonadaceae sp. Strain G7

    PubMed Central

    Kwak, Min-Jung; Song, Ju Yeon; Kim, Byung Kwon; Chi, Won-Jae; Kwon, Soon-Kyeong; Choi, Soobeom; Chang, Yong-Keun

    2012-01-01

    Here, we present the high-quality draft genome sequence of the agar-degrading marine gammaproteobacterium Alteromonadaceae sp. strain G7, which was isolated from coastal seawater to be utilized as a bioresource for production of agar-derived biofuels. The 3.91-Mb genome contains a number of genes encoding algal polysaccharide-degrading enzymes such as agarases and sulfatases. PMID:23209220

  14. Homologues of insecticidal toxin complex genes within a genomic island in the marine bacterium Vibrio parahaemolyticus.

    PubMed

    Tang, Kathy F J; Lightner, Donald V

    2014-10-01

    Three insecticidal toxin complex (tc)-like genes were identified in Vibrio parahaemolyticus 13-028/A3, which can cause acute hepatopancreatic necrosis disease in penaeid shrimp. The three genes are a tcdA-like gene (7710 bp), predicted to code for a 284-kDa protein; a tcdB-like gene (4272 bp), predicted to code for a 158-kDa protein; and a tccC3-like gene (2916 bp), predicted to encode a 107-kDa protein. All three predicted proteins contain conserved domains that are characteristic of their respective Tc proteins. By RT-PCR, all three tc-like genes were found to be expressed in this bacterium. Through genome walking and the use of PCR to join contigs surrounding these three genes, a genomic island (87 712 bp, named tc-GIvp) was found on chromosome II localized next to the tRNA Gly. The GC content of this island, which is not found in other Vibrio species, is 40%. The tc-GIvp is characterized to have 60 ORFs encoding regulatory or virulence factors. These include a type 6 secretion protein VgrG, EAL domain-containing proteins, fimbriae subunits and assembly proteins, invasin-like proteins, peptidoglycan-binding proteins, and Tc proteins. The tc-GIvp also contains 21 transposase genes, suggesting that it was acquired through horizontal transfer from other organisms. PMID:25272969

  15. Iron(III) coordination chemistry of alterobactin A: a siderophore from the marine bacterium Alteromonas luteoviolacea.

    PubMed

    Holt, Pamela D; Reid, Richard R; Lewis, Brent L; Luther, George W; Butler, Alison

    2005-10-17

    Alterobactin A is a siderophore produced by the oceanic bacterium Alteromonas luteoviolacea. The thermodynamic stability constant of the ferric alterobactin A (Alt-A) complex was estimated from electrochemical measurements on the basis of a previously reported linear relationship between the reduction potentials and the pH-independent stability constants for known iron(III) complexes. The reduction potential of the ferric alterobactin A complex determined by square wave voltammetry is -0.972 V vs SCE and reversible, corresponding to a thermodynamic stability constant of 10(51+/-2). Potentiometric titration of Fe(III)-Alt-A shows the release of six protons on complexation of Fe(III) to Alt-A. The 1H NMR resonances of the Ga(III)-Alt-A complex show that the C-4, C-5, and C-6 catecholate protons and the C(alpha) and C(beta) protons of both beta-hydroxyaspartate moieties are shifted downfield relative to the free ligand, which along with the potentiometric titration data is consistent with a complex in which Fe(III) is coordinated by both catecholate oxygen atoms and both oxygen atoms of each beta-hydroxyaspartate. The UV-vis spectrum of Fe(III)-Alt-A is invariant over the pH range 4-9, indicating the coordination does not change over a wide pH range. In addition, in the absence of a coordinated metal ion, the serine ester of Alt-A hydrolyzes forming Alt-B. PMID:16212394

  16. Extracellular haem peroxidases mediate Mn(II) oxidation in a marine Roseobacter bacterium via superoxide production.

    PubMed

    Andeer, Peter F; Learman, Deric R; McIlvin, Matt; Dunn, James A; Hansel, Colleen M

    2015-10-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants in environmental systems. A number of biotic and abiotic pathways induce the oxidation of Mn(II) to Mn oxides. Here, we use a combination of proteomic analyses and activity assays, to identify the enzyme(s) responsible for extracellular superoxide-mediated Mn oxide formation by a bacterium within the ubiquitous Roseobacter clade. We show that animal haem peroxidases (AHPs) located on the outer membrane and within the secretome are responsible for Mn(II) oxidation. These novel peroxidases have previously been implicated in direct Mn(II) oxidation by phylogenetically diverse bacteria. Yet, we show that in this Roseobacter species, AHPs mediate Mn(II) oxidation not through a direct reaction but by producing superoxide and likely also by degrading hydrogen peroxide. These findings point to a eukaryotic-like oscillatory oxidative-peroxidative enzymatic cycle by these AHPs that leads to Mn oxide formation by this organism. AHP expression appears unaffected by Mn(II), yet the large energetic investment required to produce and secrete these enzymes points to an as yet unknown physiological function. These findings are further evidence that bacterial peroxidases and secreted enzymes, in general, are unappreciated controls on the cycling of metals and reactive oxygen species (ROS), and by extension carbon, in natural systems. PMID:25923595

  17. Pseudomonas glareae sp. nov., a marine sediment-derived bacterium with antagonistic activity.

    PubMed

    Romanenko, Lyudmila A; Tanaka, Naoto; Svetashev, Vassilii I; Mikhailov, Valery V

    2015-06-01

    An aerobic, Gram-negative, motile, rod-shaped bacterium designated KMM 9500(T) was isolated from a sediment sample collected from the Sea of Japan seashore. Comparative 16S rRNA gene sequence analysis affiliated strain KMM 9500(T) to the genus Pseudomonas as a distinct subline clustered with Pseudomonas marincola KMM 3042(T) and Pseudomonas segetis KCTC 12331(T) sharing the highest similarities of 98 and 97.9 %, respectively. Strain KMM 9500(T) was characterized by mainly possessing ubiquinone Q-9, and by the predominance of C18:1 ω7c, C16:1 ω7c, and C16:0 followed by C12:0 in its fatty acid profile. Polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unknown aminophospholipid, and unknown phospholipids. Strain KMM 9500(T) was found to inhibit growth of Gram-negative and Gram-positive indicatory microorganisms. Based on the phylogenetic analysis and distinctive phenotypic characteristics, strain 9500(T) is concluded to represent a novel species of the genus Pseudomonas, for which the name Pseudomonas glareae sp. nov. is proposed. The type strain of the species is strain KMM 9500(T) (=NRIC 0939(T)). PMID:25787010

  18. Photosynthetic water splitting

    SciTech Connect

    Greenbaum, E.

    1981-01-01

    The photosynthetic unit of hydrogen evolution, the turnover time of photosynthetic hydrogen production, and hydrogenic photosynthesis are discussed in the section on previous work. Recent results are given on simultaneous photoproduction of hydrogen and oxygen, kinetic studies, microscopic marine algae-seaweeds, and oxygen profiles.

  19. Vertical distribution of major photosynthetic picoeukaryotic groups in stratified marine waters.

    PubMed

    Cabello, Ana M; Latasa, Mikel; Forn, Irene; Morán, Xosé Anxelu G; Massana, Ramon

    2016-05-01

    Photosynthetic picoeukaryotes (PPEs) are fundamental contributors to oceanic primary production and form diverse communities dominated by prymnesiophytes, chlorophytes, pelagophytes and chrysophytes. Here, we studied the vertical distribution of these major groups in two offshore regions of the northern Iberian Peninsula during summer stratification. We performed a fine-scale vertical sampling (every ∼2 m) across the DCM and used fluorescence in situ hybridization (FISH) to determine the PPE composition and to explore the possible segregation of target groups in the light, nutrient and temperature gradients. Chlorophytes, pelagophytes and prymnesiophytes, in this order of abundance, accounted for the total PPEs recorded by flow cytometry in the Avilés canyon, and for more than half in the Galicia Bank, whereas chrysophytes were undetected. Among the three detected groups, often the prymnesiophytes were dominant in biomass. In general, all groups were present throughout the water column with abundance peaks around the DCM, but their distributions differed: pelagophytes were located deeper than the other two groups, chlorophytes presented two peaks and prymnesiophytes exhibited surface abundances comparable to those at the DCM. This study offers first indications that the vertical distribution of different PPE groups is heterogeneous within the DCM. PMID:26971724

  20. Potent Inhibitors of Pro-Inflammatory Cytokine Production Produced by a Marine-Derived Bacterium

    PubMed Central

    Strangman, Wendy K.; Kwon, Hak Cheol; Broide, David; Jensen, Paul R.; Fenical, William

    2009-01-01

    Cytokines produced through the Antigen Presenting Cell (APC)–T-cell interaction play a key role in the activation of the allergic asthmatic response. Evaluating small molecules that inhibit the production of these pro-inflammatory proteins is therefore important for the discovery of novel chemical structures with potential anti-asthma activity. We adapted a mouse splenocyte cytokine assay to screen a library of 2,500 marine microbial extracts for their ability to inhibit TH2 cytokine release and identified potent activity in a marine-derived strain CNQ431, identified as a Streptomyces species. Bioactivity guided fractionation of the organic extract of this strain led to the isolation of ten new 9-membered bis-lactones, splenocins A-J (1–10). The new compounds display potent biological activities, comparable to that of the corticosteroid dexamethasone, with IC50 values from 2–50 nanomolar in the splenocyte cytokine assay. This study provides the foundation for the optimization of these potent anti-inflammatory compounds for development in the treatment of asthma. PMID:19323483

  1. Novel bioactive metabolites from a marine derived bacterium Nocardia sp. ALAA 2000.

    PubMed

    El-Gendy, Mervat M A; Hawas, Usama W; Jaspars, Marcel

    2008-06-01

    Extracts of the Egyptian marine actinomycete, Nocardia sp. ALAA 2000, were found to be highly bioactive. It was isolated from the marine red alga Laurenica spectabilis collected off the Ras-Gharib coast of the Red Sea, Egypt. According to detailed identification studies, the strain was classified as a member of the genus Nocardia. The cultivation and chemical analysis of this species yielded four structurally related compounds namely, chrysophanol 8-methyl ether (1), asphodelin; 4,7'-bichrysophanol (2) and justicidin B (3), in addition to a novel bioactive compound ayamycin; 1,1-dichloro-4-ethyl-5-(4-nitro-phenyl)-hexan-2-one (4) which is unique in contain both chlorination and a rarely observed nitro group. The compounds were isolated by a series of chromatographic steps and their structures of 1approximately 3 secured by detailed spectroscopic analysis of the MS and NMR data whereas that of 4 was elucidated by single crystal X-ray diffraction studies. These compounds displayed different potent antimicrobial activity against both Gram-positive and Gram-negative bacteria as well as fungi with MIC ranging from 0.1 to 10 microg/ml. PMID:18667786

  2. Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707

    SciTech Connect

    Klots, Martin G.; Arp, D J; Chain, Patrick S; El-Sheikh, Amal F.; Hauser, Loren John; Hommes, Norman G.; Larimer, Frank W; Malfatti, Stephanie; Norton, Jeanette M.; Poret-Peterson, Amisha T.; Vergez, Lisa; Ward, Bess B.

    2006-01-01

    The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H+-dependent F0F1 type, one Na+-dependent V type).

  3. Alkalimicrobium pacificum gen. nov., sp. nov., a marine bacterium in the family Rhodobacteraceae.

    PubMed

    Zhang, Gaiyun; Yang, Yanliu; Wang, Shuang; Sun, Zhilei; Jiao, Kailin

    2015-08-01

    A Gram-stain-negative, aerobic, non-motile, rod-shaped bacterium, designated strain F15T, was isolated from a deep-sea sediment of the western Pacific Ocean. The temperature, pH and NaCl ranges for growth were 4-50 °C, pH 6-11 and 0-10 % (w/v), respectively. Strain F15T showed the highest 16S rRNA gene sequence similarity to Sagittula stellata E-37T (96.4%), followed by Ponticoccus litoralis CL-GR66T (96.4%), Antarctobacter heliothermus EL-219T (96.3%) and Thalassococcus lentus YCS-24T (96.0%). Phylogenetic analysis based on 16S rRNA gene sequence data showed that strain F15T formed a lineage within the family Rhodobacteraceae of the class Alphaproteobacteria. The polar lipid profile of strain F15T comprised significant amounts of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified glycolipid and one unidentified phospholipid. The predominant cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c, 40.2%), anteiso-C15 : 0 (30.4%) and anteiso-C17 : 0 (9.7%). The genomic DNA G+C content of strain F15T was 60.2 mol% and the major respiratory quinone was Q-10. On the basis of phenotypic, phylogenetic and chemotaxonomic data, strain F15T is considered to represent a novel species of a new genus within the family Rhodobacteraceae, for which the name Alkalimicrobium pacificum gen. nov., sp. nov. is proposed. The type strain is F15T ( = LMG 28107T = JCM 19851T = CGMCC 1.12763T = MCCC 1A09948T). PMID:25908713

  4. The Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC19707

    SciTech Connect

    Klotz, M G; Arp, D J; Chain, P S; El-Sheikh, A F; Hauser, L J; Hommes, N G; Larimer, F W; Malfatti, S A; Norton, J M; Poret-Peterson, A T; Vergez, L M; Ward, B B

    2006-08-03

    The Gammaproteobacterium, Nitrosococcus oceani (ATCC 19707), is a Gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; 50.4% G+C) and a plasmid (40,420 bp) that contain 3052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. In contrast to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance and the ability to assimilate carbon via gluconeogenesis. One set of genes for type I RuBisCO was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H{sup +}-dependent F{sub 0}F{sub 1}-type, one Na{sup +}-dependent V-type).

  5. Shewanella algicola sp. nov., a marine bacterium isolated from brown algae.

    PubMed

    Kim, Ji-Young; Yoo, Han-Su; Lee, Dong-Heon; Park, So-Hyun; Kim, Young-Ju; Oh, Duck-Chul

    2016-06-01

    A Gram-stain-negative, aerobic, rod-shaped bacterium motile by means of a single polar flagella, strain ST-6T, was isolated from a brown alga (Sargassum thunbergii) collected in Jeju, Republic of Korea. Strain ST-6T was psychrotolerant, growing at 4-30 °C (optimum 20 °C). Phylogenetic analysis based on 16S rRNA and gyrB gene sequences revealed that strain ST-6T belonged to a distinct lineage in the genus Shewanella. Strain ST-6T was related most closely to Shewanella basaltis J83T, S. gaetbuli TF-27T, S. arctica IT12T, S. vesiculosa M7T and S. aestuarii SC18T, showing 96-97 % and 85-70 % 16S rRNA and gyrB gene sequences similarities, respectively. DNA-DNA relatedness values between strain ST-6T and the type strains of two species of the genus Shewanella were <22.6 %. The major cellular fatty acids (>5 %) were summed feature 3 (comprising C16:1ω7c and/ or iso-C15:0 2-OH), C16:0, iso-C13:0 and C17:1ω8c. The DNA G+C content of strain ST-6Twas 42.4 mol%, and the predominant isoprenoid quinones were menaquinone MK-7 and ubiquinones Q-7 and Q-8. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain ST-6T is considered to represent a novel species of the genus Shewanella, for which the name Shewanella algicola sp. nov. is proposed. The type strain is ST-6T (= KCTC 23253T = JCM 31091T). PMID:26962005

  6. Zooshikella marina sp. nov. a cycloprodigiosin- and prodigiosin-producing marine bacterium isolated from beach sand.

    PubMed

    Ramaprasad, E V V; Bharti, Dave; Sasikala, Ch; Ramana, Ch V

    2015-12-01

    A red-pigmented bacterium producing a metallic green sheen, designated strain JC333T, was isolated from a sand sample collected from Shivrajpur-Kachigad beach, Gujarat, India. Phylogenetic analyses based on the 16S rRNA gene sequence of strain JC333T showed highest sequence similarity to Zooshikella ganghwensis JC2044T (99.24 %) and less than 91.94 % similarity with other members of the class Gammaproteobacteria. DNA-DNA hybridizations between JC333T and Z. ganghwensis JC2044T showed low relatedness values of 19 ± 1.3 % (reciprocal 21 ± 2.2 %). The major respiratory quinone was ubiquinone-9 (Q9) and the polar lipid profile was composed of the major components diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminophospholipid and an unidentified lipid. The presence of C16 : 1ω7c/C16 : 1ω6c, C16 : 0, C18 : 1ω7c and C12 : 0 as major fatty acids supported the affiliation of strain JC333T to the genus Zooshikella. Prodigiosin, cycloprodigiosin and eight other prodigiosin analogues were the pigments of JC333T. Characterization based on 16S rRNA gene sequence analysis, physiological parameters, pigment analysis, ubiquinone, and polar lipid and fatty acid compositions revealed that JC333T represents a novel species of the genus Zooshikella, for which the name Zooshikella marina sp. nov. is proposed. The type strain is JC333T ( = KCTC 42659T = LMG 28823T). PMID:26409875

  7. Biogeography and Photosynthetic Biomass of Arctic Marine Pico-Eukaroytes during Summer of the Record Sea Ice Minimum 2012.

    PubMed

    Metfies, Katja; von Appen, Wilken-Jon; Kilias, Estelle; Nicolaus, Anja; Nöthig, Eva-Maria

    2016-01-01

    Information on recent photosynthetic biomass distribution and biogeography of Arctic marine pico-eukaryotes (0.2-3 μm) is needed to better understand consequences of environmental change for Arctic marine ecosystems. We analysed pico-eukaryote biomass and community composition in Fram Strait and large parts of the Central Arctic Ocean (Nansen Basin, Amundsen Basin) using chlorophyll a (Chl a) measurements, automated ribosomal intergenic spacer analysis (ARISA) and 454-pyrosequencing. Samples were collected during summer 2012, the year with the most recent record sea ice minimum. Chl a concentrations were highest in eastern Fram Strait and pico-plankton accounted for 60-90% of Chl a biomass during the observation period. ARISA-patterns and 454-pyrosequencing revealed that pico-eukaryote distribution is closely related to water mass distribution in the euphotic zone of the Arctic Ocean. Phaeocystaceae, Micromonas sp., Dinophyceae and Syndiniales constitute a high proportion of sequence reads, while sequence abundance of autotrophic Phaeocystaceae and mixotrophic Micromonas sp. was inversely correlated. Highest sequence abundances of Phaeocystaceae were observed in the warm Atlantic Waters in Fram Strait, while Micromonas sp. dominated the abundant biosphere in the arctic halocline. Our results are of particular interest considering existing hypotheses that environmental conditions in Nansen Basin might become more similar to the current conditions in Fram Strait. We propose that in response, biodiversity and biomass of pico-eukaryotes in Nansen Basin could resemble those currently observed in Fram Strait in the future. This would significantly alter biogeochemical cycles in a large part of the Central Arctic Ocean. PMID:26895333

  8. Biogeography and Photosynthetic Biomass of Arctic Marine Pico-Eukaroytes during Summer of the Record Sea Ice Minimum 2012

    PubMed Central

    Metfies, Katja; von Appen, Wilken-Jon; Kilias, Estelle; Nicolaus, Anja; Nöthig, Eva-Maria

    2016-01-01

    Information on recent photosynthetic biomass distribution and biogeography of Arctic marine pico-eukaryotes (0.2–3 μm) is needed to better understand consequences of environmental change for Arctic marine ecosystems. We analysed pico-eukaryote biomass and community composition in Fram Strait and large parts of the Central Arctic Ocean (Nansen Basin, Amundsen Basin) using chlorophyll a (Chl a) measurements, automated ribosomal intergenic spacer analysis (ARISA) and 454-pyrosequencing. Samples were collected during summer 2012, the year with the most recent record sea ice minimum. Chl a concentrations were highest in eastern Fram Strait and pico-plankton accounted for 60–90% of Chl a biomass during the observation period. ARISA-patterns and 454-pyrosequencing revealed that pico-eukaryote distribution is closely related to water mass distribution in the euphotic zone of the Arctic Ocean. Phaeocystaceae, Micromonas sp., Dinophyceae and Syndiniales constitute a high proportion of sequence reads, while sequence abundance of autotrophic Phaeocystaceae and mixotrophic Micromonas sp. was inversely correlated. Highest sequence abundances of Phaeocystaceae were observed in the warm Atlantic Waters in Fram Strait, while Micromonas sp. dominated the abundant biosphere in the arctic halocline. Our results are of particular interest considering existing hypotheses that environmental conditions in Nansen Basin might become more similar to the current conditions in Fram Strait. We propose that in response, biodiversity and biomass of pico-eukaryotes in Nansen Basin could resemble those currently observed in Fram Strait in the future. This would significantly alter biogeochemical cycles in a large part of the Central Arctic Ocean. PMID:26895333

  9. Genome Sequence of Polycyclovorans algicola Strain TG408, an Obligate Polycyclic Aromatic Hydrocarbon-Degrading Bacterium Associated with Marine Eukaryotic Phytoplankton.

    PubMed

    Gutierrez, Tony; Thompson, Haydn F; Angelova, Angelina; Whitman, William B; Huntemann, Marcel; Copeland, Alex; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Palaniappan, Krishnaveni; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Andersen, Evan; Pati, Amrita; Stamatis, Dimitrios; Reddy, T B K; Ngan, Chew Yee; Chovatia, Mansi; Daum, Chris; Shapiro, Nicole; Cantor, Michael N; Woyke, Tanja

    2015-01-01

    Polycyclovorans algicola strain TG408 is a recently discovered bacterium associated with marine eukaryotic phytoplankton and exhibits the ability to utilize polycyclic aromatic hydrocarbons (PAHs) almost exclusively as sole sources of carbon and energy. Here, we present the genome sequence of this strain, which is 3,653,213 bp, with 3,477 genes and an average G+C content of 63.8%. PMID:25814607

  10. Genome Sequence of Porticoccus hydrocarbonoclasticus Strain MCTG13d, an Obligate Polycyclic Aromatic Hydrocarbon-Degrading Bacterium Associated with Marine Eukaryotic Phytoplankton.

    PubMed

    Gutierrez, Tony; Whitman, William B; Huntemann, Marcel; Copeland, Alex; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Pillay, Manoj; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Andersen, Evan; Pati, Amrita; Stamatis, Dimitrios; Reddy, T B K; Ngan, Chew Yee; Chovatia, Mansi; Daum, Chris; Shapiro, Nicole; Cantor, Michael N; Woyke, Tanja

    2015-01-01

    Porticoccus hydrocarbonoclasticus strain MCTG13d is a recently discovered bacterium that is associated with marine eukaryotic phytoplankton and that almost exclusively utilizes polycyclic aromatic hydrocarbons (PAHs) as the sole source of carbon and energy. Here, we present the genome sequence of this strain, which is 2,474,654 bp with 2,385 genes and has an average G+C content of 53.1%. PMID:26089431

  11. Genome Sequence of Polycyclovorans algicola Strain TG408, an Obligate Polycyclic Aromatic Hydrocarbon-Degrading Bacterium Associated with Marine Eukaryotic Phytoplankton

    PubMed Central

    Thompson, Haydn F.; Angelova, Angelina; Whitman, William B.; Huntemann, Marcel; Copeland, Alex; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Palaniappan, Krishnaveni; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Andersen, Evan; Pati, Amrita; Stamatis, Dimitrios; Reddy, T. B. K.; Ngan, Chew Yee; Chovatia, Mansi; Daum, Chris; Shapiro, Nicole; Cantor, Michael N.; Woyke, Tanja

    2015-01-01

    Polycyclovorans algicola strain TG408 is a recently discovered bacterium associated with marine eukaryotic phytoplankton and exhibits the ability to utilize polycyclic aromatic hydrocarbons (PAHs) almost exclusively as sole sources of carbon and energy. Here, we present the genome sequence of this strain, which is 3,653,213 bp, with 3,477 genes and an average G+C content of 63.8%. PMID:25814607

  12. Enhancing production of a 24-membered ring macrolide compound by a marine bacterium using response surface methodology*

    PubMed Central

    Chen, Hua; Wu, Mian-bin; Chen, Zheng-jie; Wang, Ming-lu; Lin, Jian-ping; Yang, Li-rong

    2013-01-01

    A 24-membered ring macrolide compound, macrolactin A has potential applications in pharmaceuticals for its anti-infectious and antiviral activity. In this study, macrolactin A was produced by a marine bacterium, which was identified as Bacillus subtilis by 16S ribosomal RNA (rRNA) sequence analysis. Electrospray ionization mass spectrometry (ESI/MS) and nuclear magnetic resonance (NMR) spectroscopy analyses were used to characterize this compound. To improve the production, response surface methodology (RSM) involving Box-Behnken design (BBD) was employed. Faeces bombycis, the main by-product in sericulture, was used as a nitrogen source in fermentation. The interactions between three significant factors, F. bombycis, soluble starch, and (NH4)2SO4 were investigated. A quadratic model was constructed to fit the production and the factors. Optimum medium composition was obtained by analysis of the model. When cultivated in the optimum medium, the production of macrolactin A was increased to 851 mg/L, 2.7 times as compared to the original. This study is also useful to find another way in utilizing F. bombycis. PMID:23549852

  13. Characterization of a novel thiosulfate dehydrogenase from a marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH.

    PubMed

    Sharmin, Sultana; Yoshino, Eriko; Kanao, Tadayoshi; Kamimura, Kazuo

    2016-01-01

    A marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH, was isolated to develop a bioleaching process for NaCl-containing sulfide minerals. Because the sulfur moiety of sulfide minerals is metabolized to sulfate via thiosulfate as an intermediate, we purified and characterized the thiosulfate dehydrogenase (TSD) from strain SH. The enzyme had an apparent molecular mass of 44 kDa and was purified 71-fold from the solubilized membrane fraction. Tetrathionate was the product of the TSD-oxidized thiosulfate and ferricyanide or ubiquinone was the electron acceptor. Maximum enzyme activity was observed at pH 4.0, 40 °C, and 200 mM NaCl. To our knowledge, this is the first report of NaCl-stimulated TSD activity. TSD was structurally different from the previously reported thiosulfate-oxidizing enzymes. In addition, TSD activity was strongly inhibited by 2-heptyl-4-hydroxy-quinoline N-oxide, suggesting that the TSD is a novel thiosulfate:quinone reductase. PMID:26393925

  14. Purification and Characterization of a New κ-Carrageenase from the Marine Bacterium Vibrio sp. NJ-2.

    PubMed

    Zhu, Benwei; Ning, Limin

    2016-02-01

    The carrageenan-degrading marine bacterium Vibrio sp. strain NJ-2 was isolated from rotten red algae, and κ-carrageenase with high activity was purified from the culture supernatant. The purified enzyme with molecular mass of 33 kDa showed the maximal activity of 937 U/mg at 40°C and pH 8.0. It maintained 80% of total activity below 40°C and between pH 6.0 and 10.0. The kinetics experiment showed the Km and Vmax values were 2.54 mg/ml and 138.89 mmol/min/mg, respectively. The thin layer chromatography and ESI-MS analysis of hydrolysates indicated that the enzyme can endolytically depolymerize the kappa-carrageenan into oligosaccharides with degrees of depolymerization of 2-8. Owing to its high activity, it could be a valuable tool to produce κ-carrageenan oligosaccharides with various biological activities. PMID:26528532

  15. Isolation and identification of a bacterium from marine shrimp digestive tract: A new degrader of starch and protein

    NASA Astrophysics Data System (ADS)

    Li, Jiqiu; Tan, Beiping; Mai, Kangsen

    2011-09-01

    It is a practical approach to select candidate probiotic bacterial stains on the basis of their special traits. Production of digestive enzyme was used as a trait to select a candidate probiotic bacterial strain in this study. In order to select a bacterium with the ability to degrade both starch and protein, an ideal bacterial strain STE was isolated from marine shrimp ( Litopenaeus vannamei) intestines by using multiple selective media. The selected isolate STE was identified on the basis of its morphological, physiological, and biochemical characteristics as well as molecular analyses. Results of degradation experiments confirmed the ability of the selected isolate to degrade both starch and casein. The isolate STE was aerobic, Gram-negative, rod-shaped, motile and non-spore-forming, and had catalase and oxidase activities but no glucose fermentation activity. Among the tested carbon/nitrogen sources, only Tween40, alanyl-glycine, aspartyl-glycine, and glycyl-l-glutamic acid were utilized by the isolate STE. Results of homology comparison analyses of the 16S rDNA sequences showed that the isolate STE had a high similarity to several Pseudoalteromonas species and, in the phylogenetic tree, grouped with P. ruthenica with maximum bootstrap support (100%). In conclusion, the isolate STE was characterized as a novel strain belonging to the genus Pseudoalteromonas. This study provides a further example of a probiotic bacterial strain with specific characteristics isolated from the host gastrointestinal tract.

  16. Cloning and characterization of two thermo- and salt-tolerant oligoalginate lyases from marine bacterium Halomonas sp.

    PubMed

    Yang, Xuemei; Li, Shangyong; Wu, Ying; Yu, Wengong; Han, Feng

    2016-05-01

    Two new alginate lyase genes, oalY1 and oalY2, have been cloned from the newly isolated marine bacterium Halomonas sp. QY114 and expressed in Escherichia coli The deduced alginate lyases, OalY1 and OalY2, belonged to polysaccharide lyase (PL) family 17 and showed less than 45% amino acid identity with all of the characterized oligoalginate lyases. OalY1 and OalY2 exhibited the highest activities at 45°C and 50°C, respectively. Both of them showed more than 50% of the highest activity at 60°C, and 20% at 80°C. In addition, they were salt-dependent and salt-tolerant since both of them showed the highest activity in the presence of 0.5 M NaCl and preserved 63% and 68% of activity in the presence of 3 M NaCl. Significantly, OalY1 and OalY2 could degrade both polyM and polyG blocks into alginate monosaccharides in an exo-lytic type, indicating that they are bifunctional alginate lyases. In conclusion, our study indicated that OalY1 and OalY2 are good candidates for alginate saccharification application, and the salt-tolerance may present an exciting new concept for biofuel production from native brown seaweeds. PMID:27030725

  17. Horizontal transfer of chromosomal DNA between the marine bacterium Vibrio furnissii and Escherichia coli revealed by sequence analysis.

    PubMed

    Charbit, A; Autret, N

    1998-01-01

    Previous in silico analysis of the 67.4-76.0 minutes region of the Escherichia coli genome led to the identification of a gene cluster (named aga) comprising five genes encoding homologs of the mannose transporter of E. coli, a member of the sugar-specific phosphoenolypyruvate/sugar phosphotransferase system (PTS). In the present work, we compared the aga gene cluster of E. coli, which has been considered to be involved in N-acetylgalactosamine or N-acetylmannosamine transport and metabolism, to the region comprising the recently identified mannose transporter of the marine bacterium Vibrio furnissii. Our analysis revealed that the proteins encoded by three genes (agaV, agaW, and agaA), located in the proximal portion of the aga gene cluster, shared striking similarities with the proteins encoded by the manX (IIBMan), manY (IICMan), and manD (a putative deacetylase) genes of V. furnissii, respectively (70%-82.3% identity among the three pairs of proteins). Moreover, we found that the two following aga genes (agaS and agaY) were homologous to the sequences flanking the mannose operon of V. furnissii. These observations strongly support the idea of a horizontal transfer of the chromosomally encoded man operon of V. furnissii into the E. coli genome. PMID:9697096

  18. Reduction of carbon monoxide to formaldehyde by the terminal oxidase of the marine bacterium Pseudomonas nautica strain 617.

    PubMed

    Arnaud, S; Malatesta, F; Denis, M

    1992-01-27

    When exposed to CO, the aerobic respiratory system of the marine bacterium Pseudomonas nautica strain 617, previously reduced with dithionite, undergoes reoxidation. When dealing with the purified oxidase (dithionite reduced) exposure of the enzyme to CO induces its reoxidation (collapse of its alpha band). Under our experimental conditions, this form of the oxidase could not be reduced again by dithionite. Addition of formaldehyde to the native oxidized enzyme resulted in full inhibition of the oxidase reduction by dithionite, presumably due to complex formation. We hypothesized a reduction of CO into formaldehyde and a locking of the active site by the reaction product. By using flash photolysis, it was possible to turn over the enzyme, accumulate the reaction product and identify it as formaldehyde. When using the membrane-bound enzyme, formaldehyde accumulated without the help of flash photolysis. This unusual reduction of CO to formaldehyde could be related to the previously reported uncommon features of the P. nautica oxidase, in particular O2 reduction into H2O2 as end product [(1989) FEBS Lett. 247, 475-479]. PMID:1537399

  19. Experimental Identification of Small Non-Coding RNAs in the Model Marine Bacterium Ruegeria pomeroyi DSS-3

    PubMed Central

    Rivers, Adam R.; Burns, Andrew S.; Chan, Leong-Keat; Moran, Mary Ann

    2016-01-01

    In oligotrophic ocean waters where bacteria are often subjected to chronic nutrient limitation, community transcriptome sequencing has pointed to the presence of highly abundant small RNAs (sRNAs). The role of sRNAs in regulating response to nutrient stress was investigated in a model heterotrophic marine bacterium Ruegeria pomeroyi grown in continuous culture under carbon (C) and nitrogen (N) limitation. RNAseq analysis identified 99 putative sRNAs. Sixty-nine were cis-encoded and located antisense to a presumed target gene. Thirty were trans-encoded and initial target prediction was performed computationally. The most prevalent functional roles of genes anti-sense to the cis-sRNAs were transport, cell-cell interactions, signal transduction, and transcriptional regulation. Most sRNAs were transcribed equally under both C and N limitation, and may be involved in a general stress response. However, 14 were regulated differentially between the C and N treatments and may respond to specific nutrient limitations. A network analysis of the predicted target genes of the R. pomeroyi cis-sRNAs indicated that they average fewer connections than typical protein-encoding genes, and appear to be more important in peripheral or niche-defining functions encoded in the pan genome. PMID:27065955

  20. Characterization of the biochemical properties of recombinant Xyn10C from a marine bacterium, Saccharophagus degradans 2-40.

    PubMed

    Ko, Ja Kyong; Ko, Hyeokjin; Kim, Kyoung Heon; Choi, In-Geol

    2016-04-01

    Endo-1,4-β-xylanases are mostly classified into glycoside hydrolase (GH) family 10 or 11. In this study, we examined the catalytic functions of a recombinant endo-1,4-β-xylanase belonging to GH10 (Xyn10C) from a marine bacterium, Saccharophagus degradans 2-40. Optimal activity of this enzyme was evident at 30 °C and pH 7.0, but activity remained even at low temperatures, indicating its adaptation to cold. With respect to other xylanases known to be active in cold temperatures, Xyn10C is unique in that it showed maximal activity in the presence of 2 M of NaCl. The action patterns of recombinant Xyn10C on xylans from hardwood and softwood differed in part, but the enzyme hydrolyzed polysaccharidic substrates primarily to xylobiose and xylotriose through xylo-oligosaccharides, releasing a small amount of xylose. The K m and V max values on birchwood xylan were 10.4 mg mL(-1) and 253 µmol mg(-1) min(-1), respectively. The efficient catalytic function of Xyn10C on short-length xylo-oligosaccharide chains was similar to the typical function of other known GH10 xylanases. PMID:26809714

  1. Ieodoglucomide C and Ieodoglycolipid, New Glycolipids from a Marine-Derived Bacterium Bacillus licheniformis 09IDYM23.

    PubMed

    Tareq, Fakir Shahidullah; Lee, Hyi-Seung; Lee, Yeon-Ju; Lee, Jong Seok; Shin, Hee Jae

    2015-05-01

    Chemical examination of the ethyl acetate extract from the fermentation broth of the marine-derived bacterium Bacillus licheniformis resulted in the isolation of two new glycolipids, ieodoglucomide C (1) and ieodoglycolipid (2). The structural characterization of 1 and 2 was achieved by extensive spectroscopic evidence, including 2D NMR experiments. A combination of chemical derivatization techniques followed by NMR studies, LC-MS data analysis and a literature review was deployed for the establishment of the stereo-configurations of 1 and 2. Compounds 1 and 2 exhibited good antibiotic properties against Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Salmonella typhi, Escherichia coli and Pseudomonas aeruginosa with MICs ranging from 0.01 to 0.05 μM. Furthermore, the antifungal activity of 1 and 2 was evaluated against plant pathogenic fungi Aspergillus niger, Rhizoctonia solani, Botrytis cinerea and Colletotrichum acutatum as well as the human pathogen Candida albicans. Compounds 1 and 2 inhibited the mycelial growth of these pathogens with MIC values of 0.03-0.05 μM, revealing that these compounds are good candidates for the development of new fungicides. PMID:25893812

  2. Pseudoalteromonas bacteriolytica sp. nov., a marine bacterium that is the causative agent of red spot disease of Laminaria japonica.

    PubMed

    Sawabe, T; Makino, H; Tatsumi, M; Nakano, K; Tajima, K; Iqbal, M M; Yumoto, I; Ezura, Y; Christen, R

    1998-07-01

    An aerobic, polarly flagellated marine bacterium that produces a prodigiosin-like pigment was isolated from the red-spotted culture beds of Laminaria japonica. Five isolates had unique bacteriolytic activity for both Gram-positive and -negative bacteria, which had never been observed among Alteromonas or related species. The isolates were identified as the causative agent of red spot disease of L. japonica seeds. The phenotypic features of the isolates were similar to these of Pseudoalteromonas rubra ATCC 29570T, but they could be differentiated using 10 traits (growth at 37 degrees C, requirement for organic growth factors, bacteriolytic activity, utilization of sucrose, N-acetylglucosamine, fumarate, succinate, D-galactose, L-proline and acetate). The G+C content of DNAs from the isolates was 44-46 mol%. The isolates constitute a new species, distinct from the other Alteromonas and Pseudoalteromonas species, as shown by DNA-DNA hybridization experiments and phylogenetic clustering of 16S rRNA gene sequences, for which the name Pseudoalteromonas bacteriolytica sp. nov. (type strain = IAM 14595T) is proposed. A set of phenotypic features which differentiate this new species from closely related Pseudoalteromonas and Alteromonas species is provided. PMID:9734030

  3. Production of cold-adapted amylase by marine bacterium Wangia sp. C52: optimization, modeling, and partial characterization.

    PubMed

    Liu, Jianguo; Zhang, Zhiqiang; Liu, Zhiqiang; Zhu, Hu; Dang, Hongyue; Lu, Jianren; Cui, Zhanfeng

    2011-10-01

    The aim of this work was to optimize the fermentation parameters in the shake-flask culture of marine bacterium Wangia sp. C52 to increase cold-adapted amylase production using two statistical experimental methods including Plackett-Burman design, which was applied to find the key ingredients for the best medium composition, and response surface methodology, which was used to determine the optimal concentrations of these components. The results showed starch, tryptone, and initial pH had significant effects on the cold-adapted amylase production. A central composite design was then employed to further optimize these three factors. The experimental results indicated that the optimized composition of medium was 6.38 g  L(-1) starch, 33.84 g  L(-1) tryptone, 3.00 g  L(-1) yeast extract, 30 g  L(-1) NaCl, 0.60 g  L(-1) MgSO(4) and 0.56 g  L(-1) CaCl(2). The optimized cultivation conditions for amylase production were pH 7.18, a temperature of 20°C, and a shaking speed of 180 rpm. Under the proposed optimized conditions, the amylase experimental yield (676.63 U  mL(-1)) closely matched the yield (685.60 U  mL(-1)) predicted by the statistical model. The optimization of the medium contributed to tenfold higher amylase production than that of the control in shake-flask experiments. PMID:21365455

  4. Tepidicaulis marinus gen. nov., sp. nov., a marine bacterium that reduces nitrate to nitrous oxide under strictly microaerobic conditions.

    PubMed

    Takeuchi, Mio; Yamagishi, Takao; Kamagata, Yoichi; Oshima, Kenshiro; Hattori, Masahira; Katayama, Taiki; Hanada, Satoshi; Tamaki, Hideyuki; Marumo, Katsumi; Maeda, Hiroto; Nedachi, Munetomo; Iwasaki, Wataru; Suwa, Yuichi; Sakata, Susumu

    2015-06-01

    A moderately thermophilic, aerobic, stalked bacterium (strain MA2T) was isolated from marine sediments in Kagoshima Bay, Japan. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain MA2T was most closely related to the genera Rhodobium,Parvibaculum, and Rhodoligotrophos (92-93 % similarity) within the class Alphaproteobacteria. Strain MA2T was a Gram-stain-negative and stalked dimorphic bacteria. The temperature range for growth was 16-48 °C (optimum growth at 42 °C). This strain required yeast extract and NaCl (>1 %, w/v) for growth, tolerated up to 11 % (w/v) NaCl, and was capable of utilizing various carbon sources. The major cellular fatty acid and major respiratory quinone were C18 : 1ω7c and ubiquinone-10, respectively. The DNA G+C content was 60.7 mol%. Strain MA2T performed denitrification and produced N2O from nitrate under strictly microaerobic conditions. Strain MA2T possessed periplasmic nitrate reductase (Nap) genes but not membrane-bound nitrate reductase (Nar) genes. On the basis of this morphological, physiological, biochemical and genetic information a novel genus and species, Tepidicaulis marinus gen. nov., sp. nov., are proposed, with MA2T ( = NBRC 109643T = DSM 27167T) as the type strain of the species. PMID:25740933

  5. A novel bifunctional hybrid with marine bacterium alkaline phosphatase and Far Eastern holothurian mannan-binding lectin activities.

    PubMed

    Balabanova, Larissa; Golotin, Vasily; Kovalchuk, Svetlana; Bulgakov, Alexander; Likhatskaya, Galina; Son, Oksana; Rasskazov, Valery

    2014-01-01

    A fusion between the genes encoding the marine bacterium Cobetia marina alkaline phosphatase (CmAP) and Far Eastern holothurian Apostichopus japonicus mannan-binding C-type lectin (MBL-AJ) was performed. Expression of the fusion gene in E. coli cells resulted in yield of soluble recombinant chimeric protein CmAP/MBL-AJ with the high alkaline phosphatase activity and specificity of the lectin MBL-AJ. The bifunctional hybrid CmAP/MBL-AJ was produced as a dimer with the molecular mass of 200 kDa. The CmAP/MBL-AJ dimer model showed the two-subunit lectin part that is associated with two molecules of alkaline phosphatase functioning independently from each other. The highly active CmAP label genetically linked to MBL-AJ has advantaged the lectin-binding assay in its sensitivity and time. The double substitution A156N/F159K in the lectin domain of CmAP/MBL-AJ has enhanced its lectin activity by 25 ± 5%. The bifunctional hybrid holothurian's lectin could be promising tool for developing non-invasive methods for biological markers assessment, particularly for improving the MBL-AJ-based method for early detection of a malignant condition in cervical specimens. PMID:25397876

  6. A Novel Bifunctional Hybrid with Marine Bacterium Alkaline Phosphatase and Far Eastern Holothurian Mannan-Binding Lectin Activities

    PubMed Central

    Balabanova, Larissa; Golotin, Vasily; Kovalchuk, Svetlana; Bulgakov, Alexander; Likhatskaya, Galina; Son, Oksana; Rasskazov, Valery

    2014-01-01

    A fusion between the genes encoding the marine bacterium Cobetia marina alkaline phosphatase (CmAP) and Far Eastern holothurian Apostichopus japonicus mannan-binding C-type lectin (MBL-AJ) was performed. Expression of the fusion gene in E. coli cells resulted in yield of soluble recombinant chimeric protein CmAP/MBL-AJ with the high alkaline phosphatase activity and specificity of the lectin MBL-AJ. The bifunctional hybrid CmAP/MBL-AJ was produced as a dimer with the molecular mass of 200 kDa. The CmAP/MBL-AJ dimer model showed the two-subunit lectin part that is associated with two molecules of alkaline phosphatase functioning independently from each other. The highly active CmAP label genetically linked to MBL-AJ has advantaged the lectin-binding assay in its sensitivity and time. The double substitution A156N/F159K in the lectin domain of CmAP/MBL-AJ has enhanced its lectin activity by 25±5%. The bifunctional hybrid holothurian's lectin could be promising tool for developing non-invasive methods for biological markers assessment, particularly for improving the MBL-AJ-based method for early detection of a malignant condition in cervical specimens. PMID:25397876

  7. Feifantangia zhejiangensis gen. nov., sp. nov., a marine bacterium isolated from seawater of the East China Sea.

    PubMed

    Zheng, Gang; Chen, Zuo-Guo; Jiang, Ri-Jin; Yang, Zhi-Jian

    2015-12-01

    A marine bacterium, NMD7(T), was isolated from seawater of the East China Sea. The cells were found to be aerobic, Gram-stain negative, non-motile rods. Growth of strain NMD7(T) could be observed in the medium without Na(+). Flexirubin-type pigments were observed to be produced. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NMD7(T) is an authentic member of the Cytophaga-Flavobacterium-Bacteroides phylum, forming a monophyletic clade as retrieved in neighbor-joining, maximum-likelihood and maximum-parsimony phylogenetic trees, and is closely related to Formosa spongicola A2(T) (96.0 %). The predominant respiratory quinone was determined to be MK-6. Major cellular fatty acids were identified as iso-C15:0, iso-C15:1 G and iso-C17:0 3-OH. The main polar lipids were found to consist of phosphatidylethanolamine, one aminophospholipid, three aminolipids and five unidentified lipids. Based on phenotypic, chemotaxonomic and phylogenetic characteristics, it is proposed that strain NMD7(T) be classified as representing a new genus, Feifantangia gen. nov. and a new species, Feifantangia zhejiangensis sp. nov. The type strain is NMD7(T) (=KCTC 42445T =MCCC 1K00458T). PMID:26410371

  8. Analysis of the Expression and Activity of Nitric Oxide Synthase from Marine Photosynthetic Microorganisms.

    PubMed

    Foresi, Noelia; Correa-Aragunde, Natalia; Santolini, Jerome; Lamattina, Lorenzo

    2016-01-01

    Nitric oxide (NO) functions as a signaling molecule in many biological processes in species belonging to all kingdoms of life. In animal cells, NO is synthesized primarily by NO synthase (NOS), an enzyme that catalyze the NADPH-dependent oxidation of L-arginine to NO and L-citrulline. Three NOS isoforms have been identified, the constitutive neuronal NOS (nNOS) and endothelial NOS (eNOS) and one inducible (iNOS). Plant NO synthesis is complex and is a matter of ongoing investigation and debate. Despite evidence of an Arg-dependent pathway for NO synthesis in plants, no plant NOS homologs to animal forms have been identified to date. In plants, there is also evidence for a nitrate-dependent mechanism of NO synthesis, catalyzed by cytosolic nitrate reductase. The existence of a NOS enzyme in the plant kingdom, from the tiny single-celled green alga Ostreococcus tauri was reported in 2010. O. tauri shares a common ancestor with higher plants and is considered to be part of an early diverging class within the green plant lineage.In this chapter we describe detailed protocols to study the expression and characterization of the enzymatic activity of NOS from O. tauri. The most used methods for the characterization of a canonical NOS are the analysis of spectral properties of the oxyferrous complex in the heme domain, the oxyhemoglobin (oxyHb) and citrulline assays and the NADPH oxidation for in vitro analysis of its activity or the use of fluorescent probes and Griess assay for in vivo NO determination. We further discuss the advantages and drawbacks of each method. Finally, we remark factors associated to the measurement of NOS activity in photosynthetic organisms that can generate misunderstandings in the interpretation of results. PMID:27094418

  9. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol.

    PubMed

    Sun, Jing; Todd, Jonathan D; Thrash, J Cameron; Qian, Yanping; Qian, Michael C; Temperton, Ben; Guo, Jiazhen; Fowler, Emily K; Aldrich, Joshua T; Nicora, Carrie D; Lipton, Mary S; Smith, Richard D; De Leenheer, Patrick; Payne, Samuel H; Johnston, Andrew W B; Davie-Martin, Cleo L; Halsey, Kimberly H; Giovannoni, Stephen J

    2016-01-01

    Marine phytoplankton produce ∼10(9) tonnes of dimethylsulfoniopropionate (DMSP) per year(1,2), an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide(3,4). SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemo-organotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell's unusual requirement for reduced sulfur(5,6). Here, we report that Pelagibacter HTCC1062 produces the gas methanethiol, and that a second DMSP catabolic pathway, mediated by a cupin-like DMSP lyase, DddK, simultaneously shunts as much as 59% of DMSP uptake to dimethyl sulfide production. We propose a model in which the allocation of DMSP between these pathways is kinetically controlled to release increasing amounts of dimethyl sulfide as the supply of DMSP exceeds cellular sulfur demands for biosynthesis. PMID:27573103

  10. Characterization of the dihemic cytochrome c549 from the marine denitrifying bacterium Pseudomonas nautica 617.

    PubMed

    Saraiva, L M; Besson, S; Fauque, G; Moura, I

    1994-03-30

    A dihemic ferricytochrome c549 (21 kDa) was purified and characterized from cells of the marine denitrifier Pseudomonas nautica strain 617. Several spectroscopic techniques, including UV-visible, NMR and EPR spectroscopies were applied to the characterization of this cytochrome. The visible and the 1H-NMR spectra show that both hemes have histidine-methionine as axial ligands. The dihemic cytochrome c549 has mid-point redox potentials of +230 mV and +250 mV, at pH 7.6 and its NH2-terminal sequence presents a high degree of similarity with those of cytochromes c4. The EPR studies allowed the determination of the orientation between the two axial ligands, indicating an axial ligand field for one of the hemes of cytochrome c549 and a rhombic symmetry for the other heme. PMID:8147872

  11. Ecology, inhibitory activity, and morphogenesis of a marine antagonistic bacterium belonging to the Roseobacter clade.

    PubMed

    Bruhn, Jesper Bartholin; Nielsen, Kristian Fog; Hjelm, Mette; Hansen, Michael; Bresciani, José; Schulz, Stefan; Gram, Lone

    2005-11-01

    Roseobacter strain 27-4 has been isolated from a turbot larval rearing unit and is capable of reducing mortality in turbot egg yolk sac larvae. Here, we demonstrate that the supernatant of Roseobacter 27-4 is lethal to the larval pathogens Vibrio anguillarum and Vibrio splendidus in a buffer system and inhibited their growth in marine broth. Liquid chromatography (LC) with both UV spectral detection and high-resolution mass spectrometry (HR-MS) identified the known antibacterial compound thiotropocin or its closely related precursor tropodithietic acid in the bioactive fractions. Antibacterial activity correlated with the appearance of a brownish pigment and was only formed in marine broth under static growth conditions. A thick biofilm of multicellular star-shaped aggregated cells formed at the air-liquid interface under static growth conditions. Here, the bioactive compound was the base peak in the LC-UV chromatograms of the extracts where it constituted 15% of the total peak area. Aerated conditions results in 10-fold-higher cell yield, however, cultures were nonpigmented, did not produce antibacterial activity, and grew as single cells. Production of antibacterial compounds may be quorum regulated, and we identified the acylated homoserine lactone (3-hydroxy-decanoyl homoserine lactone) from cultures of Roseobacter 27-4 using LC-HR-MS. The signal molecule was primarily detected in stagnant cultures. Roseobacter 27-4 grew between 10 and 30 degrees C but died rapidly at 37 degrees C. Also, the antibacterial compounds was sensitive to heat and was inactivated at 37 degrees C in less than 2 days and at 25 degrees C in 8 days. Using Roseobacter 27-4 as a probiotic culture will require that is be established in stagnant or adhered conditions and, due to the temperature sensitivity of the active compound, constant production must be ensured. PMID:16269767

  12. Toxic Effect of a Marine Bacterium on Aquatic Organisms and Its Algicidal Substances against Phaeocystis globosa

    PubMed Central

    Yang, Qiuchan; Chen, Lina; Hu, Xiaoli; Zhao, Ling; Yin, Pinghe; Li, Qiang

    2015-01-01

    Harmful algal blooms have caused enormous damage to the marine ecosystem and the coastal economy in China. In this paper, a bacterial strain B1, which had strong algicidal activity against Phaeocystis globosa, was isolated from the coastal waters of Zhuhai in China. The strain B1 was identified as Bacillus sp. on the basis of 16S rDNA gene sequence and morphological characteristics. To evaluate the ecological safety of the algicidal substances produced by strain B1, their toxic effects on marine organisms were tested. Results showed that there were no adverse effects observed in the growth of Chlorella vulgaris, Chaetoceros muelleri, and Isochrystis galbana after exposure to the algicidal substances at a concentration of 1.0% (v/v) for 96 h. The 48h LC50 values for Brachionus plicatilis, Moina mongolica Daday and Paralichthys olivaceus were 5.7, 9.0 and 12.1% (v/v), respectively. Subsequently, the algicidal substances from strain B1 culture were isolated and purified by silica gel column, Sephadex G-15 column and high-performance liquid chromatography. Based on quadrupole time-of-flight mass spectrometry and PeakView Software, the purified substances were identified as prolyl-methionine and hypoxanthine. Algicidal mechanism indicated that prolyl-methionine and hypoxanthine inhibited the growth of P. globosa by disrupting the antioxidant systems. In the acute toxicity assessment using M. mongolica, 24h LC50 values of prolyl-methionine and hypoxanthine were 7.0 and 13.8 g/L, respectively. The active substances produced by strain B1 can be considered as ecologically and environmentally biological agents for controlling harmful algal blooms. PMID:25646807

  13. Antibiofilm Activity of the Marine Bacterium Pseudoalteromonas sp. Strain 3J6▿

    PubMed Central

    Dheilly, Alexandra; Soum-Soutéra, Emmanuelle; Klein, Géraldine L.; Bazire, Alexis; Compère, Chantal; Haras, Dominique; Dufour, Alain

    2010-01-01

    Biofilm formation results in medical threats or economic losses and is therefore a major concern in a variety of domains. In two-species biofilms of marine bacteria grown under dynamic conditions, Pseudoalteromonas sp. strain 3J6 formed mixed biofilms with Bacillus sp. strain 4J6 but was largely predominant over Paracoccus sp. strain 4M6 and Vibrio sp. strain D01. The supernatant of Pseudoalteromonas sp. 3J6 liquid culture (SN3J6) was devoid of antibacterial activity against free-living Paracoccus sp. 4M6 and Vibrio sp. D01 cells, but it impaired their ability to grow as single-species biofilms and led to higher percentages of nonviable cells in 48-h biofilms. Antibiofilm molecules of SN3J6 were able to coat the glass surfaces used to grow biofilms and reduced bacterial attachment about 2-fold, which might partly explain the biofilm formation defect but not the loss of cell viability. SN3J6 had a wide spectrum of activity since it affected all Gram-negative marine strains tested except other Pseudoalteromonas strains. Biofilm biovolumes of the sensitive strains were reduced 3- to 530-fold, and the percentages of nonviable cells were increased 3- to 225-fold. Interestingly, SN3J6 also impaired biofilm formation by three strains belonging to the human-pathogenic species Pseudomonas aeruginosa, Salmonella enterica, and Escherichia coli. Such an antibiofilm activity is original and opens up a variety of applications for Pseudoalteromonas sp. 3J6 and/or its active exoproducts in biofilm prevention strategies. PMID:20363799

  14. Molecular Uptake of Chitooligosaccharides through Chitoporin from the Marine Bacterium Vibrio harveyi

    PubMed Central

    Suginta, Wipa; Chumjan, Watcharin; Mahendran, Kozhinjampara R.; Janning, Petra; Schulte, Albert; Winterhalter, Mathias

    2013-01-01

    Background Chitin is the most abundant biopolymer in marine ecosystems. However, there is no accumulation of chitin in the ocean-floor sediments, since marine bacteria Vibrios are mainly responsible for a rapid turnover of chitin biomaterials. The catabolic pathway of chitin by Vibrios is a multi-step process that involves chitin attachment and degradation, followed by chitooligosaccharide uptake across the bacterial membranes, and catabolism of the transport products to fructose-6-phosphate, acetate and NH3. Principal Findings This study reports the isolation of the gene corresponding to an outer membrane chitoporin from the genome of Vibrio harveyi. This porin, expressed in E. coli, (so called VhChiP) was found to be a SDS-resistant, heat-sensitive trimer. Immunoblotting using anti-ChiP polyclonal antibody confirmed the expression of the recombinant ChiP, as well as endogenous expression of the native protein in the V. harveyi cells. The specific function of VhChiP was investigated using planar lipid membrane reconstitution technique. VhChiP nicely inserted into artificial membranes and formed stable, trimeric channels with average single conductance of 1.8±0.13 nS. Single channel recordings at microsecond-time resolution resolved translocation of chitooligosaccharides, with the greatest rate being observed for chitohexaose. Liposome swelling assays showed no permeation of other oligosaccharides, including maltose, sucrose, maltopentaose, maltohexaose and raffinose, indicating that VhChiP is a highly-specific channel for chitooligosaccharides. Conclusion/Significance We provide the first evidence that chitoporin from V. harveyi is a chitooligosaccharide specific channel. The results obtained from this study help to establish the fundamental role of VhChiP in the chitin catabolic cascade as the molecular gateway that Vibrios employ for chitooligosaccharide uptake for energy production. PMID:23383078

  15. Polycyclovorans algicola gen. nov., sp. nov., an aromatic-hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton.

    PubMed

    Gutierrez, Tony; Green, David H; Nichols, Peter D; Whitman, William B; Semple, Kirk T; Aitken, Michael D

    2013-01-01

    A strictly aerobic, halotolerant, rod-shaped bacterium, designated strain TG408, was isolated from a laboratory culture of the marine diatom Skeletonema costatum (CCAP1077/1C) by enrichment with polycyclic aromatic hydrocarbons (PAHs) as the sole carbon source. 16S rRNA gene sequence analysis placed this organism within the order Xanthomonadales of the class Gammaproteobacteria. Its closest relatives included representatives of the Hydrocarboniphaga-Nevskia-Sinobacter clade (<92% sequence similarity) in the family Sinobacteraceae. The strain exhibited a narrow nutritional spectrum, preferring to utilize aliphatic and aromatic hydrocarbon compounds and small organic acids. Notably, it displayed versatility in degrading two- and three-ring PAHs. Moreover, catechol 2,3-dioxygenase activity was detected in lysates, indicating that this strain utilizes the meta-cleavage pathway for aromatic compound degradation. Cells produced surface blebs and contained a single polar flagellum. The predominant isoprenoid quinone of strain TG408 was Q-8, and the dominant fatty acids were C(16:0), C(16:1) ω7c, and C(18:1) ω7c. The G+C content of the isolate's DNA was 64.3 mol% ± 0.34 mol%. On the basis of distinct phenotypic and genotypic characteristics, strain TG408 represents a novel genus and species in the class Gammaproteobacteria for which the name Polycyclovorans algicola gen. nov., sp. nov., is proposed. Quantitative PCR primers targeting the 16S rRNA gene of this strain were developed and used to show that this organism is found associated with other species of marine phytoplankton. Phytoplankton may be a natural biotope in the ocean where new species of hydrocarbon-degrading bacteria await discovery and which contribute significantly to natural remediation processes. PMID:23087039

  16. Polycyclovorans algicola gen. nov., sp. nov., an Aromatic-Hydrocarbon-Degrading Marine Bacterium Found Associated with Laboratory Cultures of Marine Phytoplankton

    PubMed Central

    Green, David H.; Nichols, Peter D.; Whitman, William B.; Semple, Kirk T.; Aitken, Michael D.

    2013-01-01

    A strictly aerobic, halotolerant, rod-shaped bacterium, designated strain TG408, was isolated from a laboratory culture of the marine diatom Skeletonema costatum (CCAP1077/1C) by enrichment with polycyclic aromatic hydrocarbons (PAHs) as the sole carbon source. 16S rRNA gene sequence analysis placed this organism within the order Xanthomonadales of the class Gammaproteobacteria. Its closest relatives included representatives of the Hydrocarboniphaga-Nevskia-Sinobacter clade (<92% sequence similarity) in the family Sinobacteraceae. The strain exhibited a narrow nutritional spectrum, preferring to utilize aliphatic and aromatic hydrocarbon compounds and small organic acids. Notably, it displayed versatility in degrading two- and three-ring PAHs. Moreover, catechol 2,3-dioxygenase activity was detected in lysates, indicating that this strain utilizes the meta-cleavage pathway for aromatic compound degradation. Cells produced surface blebs and contained a single polar flagellum. The predominant isoprenoid quinone of strain TG408 was Q-8, and the dominant fatty acids were C16:0, C16:1 ω7c, and C18:1 ω7c. The G+C content of the isolate's DNA was 64.3 mol% ± 0.34 mol%. On the basis of distinct phenotypic and genotypic characteristics, strain TG408 represents a novel genus and species in the class Gammaproteobacteria for which the name Polycyclovorans algicola gen. nov., sp. nov., is proposed. Quantitative PCR primers targeting the 16S rRNA gene of this strain were developed and used to show that this organism is found associated with other species of marine phytoplankton. Phytoplankton may be a natural biotope in the ocean where new species of hydrocarbon-degrading bacteria await discovery and which contribute significantly to natural remediation processes. PMID:23087039

  17. Determination of the number of detergent molecules associated with the reaction center protein isolated from the photosynthetic bacterium Rhodopseudomonas viridis. Effects of the amphiphilic molecule 1,2,3-heptanetriol.

    PubMed

    Gast, P; Hemelrijk, P; Hoff, A J

    1994-01-01

    Detergent-free reaction center (RC) proteins from the photosynthetic bacterium Rhodopseudomonas viridis were obtained using Bio-Beads SM-2. With these RCs, the amount of detergent molecules associated with the protein was measured by determining the detergent concentration at which re-solubilization occurred as a function of the RC concentration. For N,N-dimethyl dodecylamine-N-oxide (LDAO), Triton X-100 and beta-octylglucoside 260 +/- 30,105 +/- 10 and 360 +/- 100 detergent molecules were necessary to dissolve the protein, respectively. With this technique we have studied the effect of the amphiphilic molecule 1,2,3-heptanetriol, which is essential in the crystallization process of these RCs. Addition of 5% 1,2,3-heptanetriol reduces the value for LDAO to 120 +/- 20 LDAO/RC, supporting the notion that crystallization of the RCs is promoted by increasing the number of protein-protein contacts. PMID:8276109

  18. Shimia sagamensis sp. nov., a marine bacterium isolated from cold-seep sediment.

    PubMed

    Nogi, Yuichi; Mori, Kozue; Uchida, Hiromi; Hatada, Yuji

    2015-09-01

    A novel marine bacterial strain designated JAMH 011(T) was isolated from the cold-seep sediment in Sagami Bay, Japan. Cells were Gram-stain-negative, rod-shaped, non-spore-forming, aerobic chemo-organotrophs and motile by means of a single polar flagellum. Growth occurred at temperatures below 31 °C, with the optimum at 25 °C. The major respiratory quinone was Q-10. The predominant fatty acid was C18 : 1ω7c. On the basis of 16S rRNA gene sequence analysis, the isolated strain was closely affiliated with members of the genus Shimia in the class Alphaproteobacteria, and the 16S rRNA gene sequence similarity of the novel isolate with the type strain of the closest related species, Shimia haliotis WM35(T), was 98.1%. The DNA G+C content of the novel strain was 57.3 mol%. The hybridization values for DNA-DNA relatedness between strain JAMH 011(T) and reference strains belonging to the genus Shimia were less than 9.4 ± 0.7%. Based on differences in taxonomic characteristics, the isolated strain represents a novel species of the genus Shimia, for which the name Shimia sagamensis sp. nov. is proposed. The type strain is JAMH 011(T) ( = JCM 30583(T) = DSM 29734(T)). PMID:25977284

  19. Structural properties of the tubular appendage spinae from marine bacterium Roseobacter sp. strain YSCB

    PubMed Central

    Bernadac, A.; Wu, L.-F.; Santini, C.-L.; Vidaud, C.; Sturgis, J. N.; Menguy, N.; Bergam, P.; Nicoletti, C.; Xiao, T.

    2012-01-01

    Spinae are tubular surface appendages broadly found in Gram-negative bacteria. Little is known about their architecture, function or origin. Here, we report structural characterization of the spinae from marine bacteria Roseobacter sp. YSCB. Electron cryo-tomography revealed that a single filament winds into a hollow flared base with progressive change to a cylinder. Proteinase K unwound the spinae into proteolysis-resistant filaments. Thermal treatment ripped the spinae into ribbons that were melted with prolonged heating. Circular dichroism spectroscopy revealed a dominant beta-structure of the spinae. Differential scanning calorimetry analyses showed three endothermic transformations at 50–85°C, 98°C and 123°C, respectively. The heating almost completely disintegrated the spinae, abolished the 98°C transition and destroyed the beta-structure. Infrared spectroscopy identified the amide I spectrum maximum at a position similar to that of amyloid fibrils. Therefore, the spinae distinguish from other bacterial appendages, e.g. flagella and stalks, in both the structure and mechanism of assembly. PMID:23230515

  20. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition

    PubMed Central

    Ankrah, Nana Yaw D; May, Amanda L; Middleton, Jesse L; Jones, Daniel R; Hadden, Mary K; Gooding, Jessica R; LeCleir, Gary R; Wilhelm, Steven W; Campagna, Shawn R; Buchan, Alison

    2014-01-01

    Viruses contribute to the mortality of marine microbes, consequentially altering biological species composition and system biogeochemistry. Although it is well established that host cells provide metabolic resources for virus replication, the extent to which infection reshapes host metabolism at a global level and the effect of this alteration on the cellular material released following viral lysis is less understood. To address this knowledge gap, the growth dynamics, metabolism and extracellular lysate of roseophage-infected Sulfitobacter sp. 2047 was studied using a variety of techniques, including liquid chromatography–tandem mass spectrometry (LC-MS/MS)-based metabolomics. Quantitative estimates of the total amount of carbon and nitrogen sequestered into particulate biomass indicate that phage infection redirects ∼75% of nutrients into virions. Intracellular concentrations for 82 metabolites were measured at seven time points over the infection cycle. By the end of this period, 71% of the detected metabolites were significantly elevated in infected populations, and stable isotope-based flux measurements showed that these cells had elevated metabolic activity. In contrast to simple hypothetical models that assume that extracellular compounds increase because of lysis, a profile of metabolites from infected cultures showed that >70% of the 56 quantified compounds had decreased concentrations in the lysate relative to uninfected controls, suggesting that these small, labile nutrients were being utilized by surviving cells. These results indicate that virus-infected cells are physiologically distinct from their uninfected counterparts, which has implications for microbial community ecology and biogeochemistry. PMID:24304672

  1. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium

    NASA Astrophysics Data System (ADS)

    Frame, C. H.; Casciotti, K. L.

    2010-09-01

    Nitrous oxide (N2O) is a trace gas that contributes to the greenhouse effect and stratospheric ozone depletion. The N2O yield from nitrification (moles N2O-N produced per mole ammonium-N consumed) has been used to estimate marine N2O production rates from measured nitrification rates and global estimates of oceanic export production. However, the N2O yield from nitrification is not constant. Previous culture-based measurements indicate that N2O yield increases as oxygen (O2) concentration decreases and as nitrite (NO2-) concentration increases. Here, we have measured yields of N2O from cultures of the marine β-proteobacterium Nitrosomonas marina C-113a as they grew on low-ammonium (50 μM) media. These yields, which were typically between 4 × 10-4 and 7 × 10-4 for cultures with cell densities between 2 × 102 and 2.1 × 104 cells ml-1, were lower than previous reports for ammonia-oxidizing bacteria. The observed impact of O2 concentration on yield was also smaller than previously reported under all conditions except at high starting cell densities (1.5 × 106 cells ml-1), where 160-fold higher yields were observed at 0.5% O2 (5.1 μM dissolved O2) compared with 20% O2 (203 μM dissolved O2). At lower cell densities (2 × 102 and 2.1 × 104 cells ml-1), cultures grown under 0.5% O2 had yields that were only 1.25- to 1.73-fold higher than cultures grown under 20% O2. Thus, previously reported many-fold increases in N2O yield with dropping O2 could be reproduced only at cell densities that far exceeded those of ammonia oxidizers in the ocean. The presence of excess NO2- (up to 1 mM) in the growth medium also increased N2O yields by an average of 70% to 87% depending on O2 concentration. We made stable isotopic measurements on N2O from these cultures to identify the biochemical mechanisms behind variations in N2O yield. Based on measurements of δ15Nbulk, site preference (SP = δ15Nα-δ15Nβ), and δ18O of N2O (δ18O-N2O), we estimate that nitrifier

  2. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium

    NASA Astrophysics Data System (ADS)

    Frame, C. H.; Casciotti, K. L.

    2010-04-01

    Nitrous oxide (N2O) is a trace gas that contributes to greenhouse warming of the atmosphere and stratospheric ozone depletion. The N2O yield from nitrification (moles N2O-N produced/mole ammonium-N consumed) has been used to estimate marine N2O production rates from measured nitrification rates and global estimates of oceanic export production. However, the N2O yield from nitrification is not constant. Previous culture-based measurements indicate that N2O yield increases as oxygen (O2) concentration decreases and as nitrite (NO2-) concentration increases. These results were obtained in substrate-rich conditions and may not reflect N2O production in the ocean. Here, we have measured yields of N2O from cultures of the marine β-proteobacterium Nitrosomonas marina C-113a as they grew on low-ammonium (50 μM) media. These yields were lower than previous reports, between 4×10-4 and 7×10-4 (moles N/mole N). The observed impact of O2 concentration on yield was also smaller than previously reported under all conditions except at high starting cell densities (1.5×10

  3. Algibacter psychrophilus sp. nov., a psychrophilic bacterium isolated from marine sediment.

    PubMed

    Jung, You-Jung; Lee, Yung Mi; Baek, Kiwoon; Hwang, Chung Yeon; Cho, Yirang; Hong, Soon Gyu; Kim, Ji Hee; Lee, Hong Kum

    2015-06-01

    A Gram-stain-negative, aerobic, yellow-pigmented, flexirubin-negative, rod-shaped, non-motile and psychrophilic bacterial strain, PAMC 27237T, was isolated from marine sediment of the Ross Sea, Antarctica. Strain PAMC 27237T grew at 0-20 °C (optimally at 17 °C), at pH 5.0-9.5 (optimally at pH 7.0) and in the presence of 0-3.5 % (w/v) NaCl (optimally at 1.5-2.5 %). The major fatty acids (≥5 %) were iso-C17 : 0 3-OH, C17 : 0 2-OH, anteiso-C15 : 0, summed feature 3 (C16 : 1ω6c/C16 : 1ω7c), iso-C15 : 0 3-OH, anteiso-C17 : 1ω9c, anteiso-C15 : 1 A, iso-C16 : 0 3-OH and iso-C15 : 1 G. The major polar lipids were phosphatidylethanolamine, two unidentified aminolipids, four unidentified lipids and a glycolipid. The major respiratory quinone was MK-6. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain PAMC 27237T belongs to the genus Algibacter, showing high similarities with the type strains of Algibacter agarivorans (97.2 %), Algibacter agarilyticus (97.0 %) and Algibacter mikhailovii (96.4 %). Average nucleotide identity values between strain PAMC 27237T and the type strains of A. agarivorans and A. agarilyticuswere 83.1 and 84.2 %, respectively, and mean genome-to-genome distances were 22.4-24.2 %, indicating that strain PAMC 27237T is clearly distinguished from the most closely related species of the genus Algibacter. The genomic DNA G+C content calculated from genome sequences was 33.5 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data presented, strain PAMC 27237T is considered to represent a novel species of the genus Algibacter, for which the name Algibacter psychrophilus sp. nov. is proposed. The type strain is PAMC 27237T ( = KCTC 42130T = JCM 30370T). PMID:25740931

  4. Quantitative measurement of the growth rate of the PHA-producing photosynthetic bacterium Rhodocyclus gelatinous CBS-2[PolyHydroxyAlkanoate

    SciTech Connect

    Wolfrum, E.J.; Weaver, P.F.

    1999-07-01

    Researchers at the National Renewable Energy Laboratory (NREL) have been investigating the use of model photosynthetic microorganisms that use sunlight and two-carbon organic substrates (e.g., ethanol, acetate) to produce biodegradable polyhydroxyalkanoate (PHA) copolymers as carbon storage compounds. Use of these biological PHAs in single-use plastics applications, followed by their post-consumer composting or anaerobic digestion, could impact petroleum consumption as well as the overloading of landfills. The large-scale production of PHA polymers by photosynthetic bacteria will require large-scale reactor systems utilizing either sunlight or artificial illumination. The first step in the scale-up process is to quantify the microbial growth rates and the PHA production rates as a function of reaction conditions such as nutrient concentration, temperature, and light quality and intensity.

  5. Characterization of the metabolic pathway and catabolic gene expression in biphenyl degrading marine bacterium Pseudomonas aeruginosa JP-11.

    PubMed

    Chakraborty, Jaya; Das, Surajit

    2016-02-01

    Metabolic pathway of biphenyl assimilation and the catabolic gene expression in a marine bacterium Pseudomonas aeruginosa JP-11, isolated from the coastal sediments of Odisha, India have been studied. This strain utilized 98.86% ± 2.29% of biphenyl within 72 h when supplied as the sole source of carbon, however, preferential utilization of glucose was observed over catechol and biphenyl when grown in a complex medium. Combination of chromatographic and spectrophotometric techniques confirmed the catechol pathway and identified 2-Hydroxy-6-oxo-6-phenylhexa-2, 4-dienoate as the intermediate metabolic product. Assimilation of biphenyl was initiated by its dioxygenation, forming cis-2, 3-dihydro-2, 3-dihydroxybiphenyl subsequently transformed to 2-hydroxy-6-oxo-6-phenylhexa-2, 4-dienoate. In the lower pathway, cis-1, 6-dihydroxy-2, 4-cyclohexadiene-1-carboxylic acid was detected which formed catechol before entering into the Krebs cycle. Detection of key enzyme catechol-1, 2-dioxygenase in the cell-free extract of P. aeruginosa JP-11 supported the proposed degradation pathway. The primary enzyme for biphenyl assimilation, biphenyl dioxygenase encoded by bphA gene was found in the genome of the isolate. On increasing biphenyl stress (50, 100, 150 and 200 mg L(-1)), bphA gene showed a significant (P < 0.01) up-regulation upto 43.5 folds. Production of biosurfactant was confirmed and the rhamnolipid synthesizing gene rhlAB was amplified. This gene also showed a significant (P < 0.01) up-regulation upto 258 folds on increasing biphenyl stress. PMID:26519802

  6. Lutibacter litoralis gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from tidal flat sediment.

    PubMed

    Choi, Dong H; Cho, Byung C

    2006-04-01

    A rod-shaped marine bacterium, designated strain CL-TF09T, isolated from a tidal flat in Ganghwa, Korea, was characterized based on its physiological and biochemical features, fatty acid profile and phylogenetic position. 16S rRNA gene sequence analysis revealed a clear affiliation with the family Flavobacteriaceae. Strain CL-TF09T showed the closest phylogenetic relationship with the genera Tenacibaculum and Polaribacter; sequence similarities between CL-TF09T and the type strains of Tenacibaculum and Polaribacter species ranged from 90.7 to 91.8 %. Cells of strain CL-TF09T were non-motile and grew on solid media as yellow colonies. The strain grew in the presence of 1-5 % sea salts, within a temperature range of 5-30 degrees C and at pH 7-8. The strain had iso-C(15 : 0) 3-OH (17.4 %), iso-C(15 : 0) (16.7 %), anteiso-C(15 : 0) (15.1 %) and iso-C(16 : 0) 3-OH (13.4 %) as predominant fatty acids. The DNA G+C content was 33.9 mol%. Based on the physiological, fatty acid composition and phylogenetic data presented, strain CL-TF09T is considered to represent a novel genus and species of the family Flavobacteriaceae, for which the name Lutibacter litoralis gen. nov., sp. nov. is proposed. The type strain is CL-TF09T (=KCCM 42118T = JCM 13034T). PMID:16585692

  7. Photobacterium panuliri sp. nov., an alkalitolerant marine bacterium isolated from eggs of spiny lobster, Panulirus penicillatus from Andaman Sea.

    PubMed

    Deep, Kamal; Poddar, Abhijit; Das, Subrata K

    2014-11-01

    A facultative anaerobe, alkalitolerant, gram-negative marine bacterium strain LBS5(T), was isolated from eggs carried on the pleopods of female spiny lobster (Panulirus penicillatus) in Andaman Sea from a depth of 3.5 m. Heterotrophic growth was observed at 15-38 °C and pH 5.5-11. Optimum growth occurred at 28 °C and pH 7.5. It can grow in the presence of 0.5-7 % NaCl (w/v), and the optimal NaCl required for growth was 2-4 %. 16S rRNA gene sequence analysis revealed the strain LBS5(T) belongs to the genus Photobacterium and showed 99.6 % similarity with P. aquae AE6(T), 98.2 % with P. aphoticum M46(T), 97 % with P. rosenbergii CC1(T), 96.9 % with P. lutimaris DF-42(T), and 96.6 % with P. halotolerans MACL01(T). The DNA-DNA similarities between strains LBS5(T) with other closely related strains were well below 70 %. The DNA G + C content was 50.52 (±0.9) mol%. The major fatty acids were C16:1w7c/w6c, C18:1w6c/w7c, C16:0, C15:0 iso, C16:0 10-methyl/17:1 iso w9c, C17:0 iso. Polar lipids included a phosphatidylglycerol, a diphosphatidylglycerol, a phosphatidylethanolamine, and one unidentified lipid. Based on the polyphasic evidences, strain LBS5(T) represents a novel species of the genus Photobacterium for which Photobacterium panuliri sp. nov. is proposed. The type strain is LBS5(T) (=DSM 27646(T) = LMG 27617(T) = JCM 19199(T)). PMID:24962598

  8. Vibrio oceanisediminis sp. nov., a nitrogen-fixing bacterium isolated from an artificial oil-spill marine sediment.

    PubMed

    Kang, Sang Rim; Srinivasan, Sathiyaraj; Lee, Sang-Seob

    2015-10-01

    A Gram-staining-negative, halophilic, facultatively anaerobic, motile, rod-shaped and nitrogen-fixing bacterium, designated strain S37T, was isolated from an artificial oil-spill sediment sample from the coast of Taean, South Korea. Cells grew at 10-37 °C and pH 5.0-9.0, with optimal growth at 28 °C and pH 6.0-8.0. Growth was observed with 1-9 % (w/v) NaCl in marine broth, with optimal growth with 3-5 % NaCl, but no growth was observed in the absence of NaCl. According to the results of 16S rRNA gene sequence analysis, strain S37T represents a member of the genus Vibrio of the class Gammaproteobacteria and forms a clade with Vibrio plantisponsor MSSRF60T (97.38 %), Vibrio diazotrophicus ATCC 33466T (97.31 %), Vibrio aestuarianus ATCC 35048T (97.07 %) Vibrio areninigrae J74T (96.76 %) and Vibrio hispanicus LMG 13240T (96.76 %). The major fatty acids were C16 : 0, C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c. The DNA G+C content was 41.9 %. The DNA-DNA hybridization analysis results showed a 30.2 % association value with the closely related type strain V. plantisponsor DSM 21026T. On the basis of phenotypic and chemotaxonomic characteristics, strain S37T represents a novel species of the genus Vibrio, for which the name Vibrio oceanisediminis sp. nov., is proposed with the type strain S37T ( = KEMB 2255-005T = JCM 30409T). PMID:26296768

  9. Molecular characterization of a homolog of the ferric-uptake regulator, Fur, from the marine bacterium Marinobacter algicola DG893.

    PubMed

    Barker, Ryan A; Tisnado, Jerrell; Lambert, Lisa A; Gärdes, Astrid; Carrano, Mary W; Carrano, Paul N; Gillian, Christopher; Carrano, Carl J

    2015-02-01

    Full length recombinant iron regulatory protein, Fur, has been isolated and characterized from the algal-associated marine bacterium Marinobacter algicola DG893. Under nondenaturing conditions the Fur protein behaves on size exclusion chromatography as a dimer while it is monomeric under SDS PAGE conditions. ICP-MS and fluorescence quenching experiments show that Mb-Fur binds a single metal ion (Zn, Mn, or Co) per monomer. Electrophoretic mobility shift assays were used to probe the interaction of Mb-Fur with the purported Fur box in the promoter region upstream of the vibrioferrin biosynthetic operon. Interaction of Mb-Fur with a 100 bp DNA fragment containing the Fur box in the presence of 10 µM Mn, Co or Zn(II) resulted in decreased migration of DNA on a 7.5% polyacrylamide gel. In the absence of the Fur protein or the metal, no interaction is seen. The presence of EDTA in the binding, loading or running buffers also abolished all activity demonstrating the importance of the metal in formation of the promoter-repressor complex. Based on a high degree of similarity between Mb-Fur and its homolog from Pseudomonas aeruginosa (PA) whose X-ray structure is known we developed a structural model for the former which suggested that only one of the several metal binding sites found in other Fur's would be functional. This is consistent with the single metal binding stoichiometry we observed. Since the purported metal binding site was one that has been described as "structural" rather than "functional" in PA and yet the monometallic Mb-Fur retains DNA Fur box binding ability it reopens the question of which site is which, or if different species have adapted the sites for different purposes. PMID:25528647

  10. Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-protein, from marine dinoflagellates.

    PubMed

    Song, P S; Koka, P; Prézelin, B B; Haxo, F T

    1976-10-01

    The photosynthetic light-harvesting complex, peridinin-chlorophyll a-protein, was isolated from several marine dinoflagellates including Glenodinium sp. by Sephadex and ion-exchange chromatography. The carotenoid (peridinin)-chlorophyll a ratio in the complex is estimated to be 4:1. The fluorescence excitation spectrum of the complex indicates that energy absorbed by the carotenoid is transferred to the chlorophyll a molecule with 100% efficiency. Fluorescence lifetime measurements indicate that the energy transfer is much faster than fluorescence emission from chlorophyll a. The four peridinin molecules within the complex appear to form two allowed exciton bands which split the main absorption band of the carotenoid into two circular dichronic bands (with negative ellipticity band at 538 nm and positive band at 463 nm in the case of peridinin-chlorophyl a-protein complex from Glenodinium sp.). The fluorescence polarization of chlorophyll a in the complex at 200 K is about 0.1 in both circular dichroic excitation bands of the carotenoid chromophore. From these circular dichroic and fluorescence polarization data, a possible molecular arrangement of the four peridinin and chlorophyll molecules has been deduced for the complex. The structure of the complex deduced is also consistent with the magnitude of the exciton spliting (ca. greater than 3000 cm-1) at the intermolecular distance in the dimer pair of peridinin (ca. 12 A). This structural feature accounts for the efficient light-harvesting process of dinoflagellates as the exciton interaction lengthens the lifetime of peridinin (radiative) and the complex topology increases the energy transfer probability. The complex is, therefore, a useful molecular model for elucidating the mechanism and efficiency of solar energy conversion in vivo as well as in vitro. PMID:987799

  11. Quantitative Analysis of Carbon Flow into Photosynthetic Products Functioning as Carbon Storage in the Marine Coccolithophore, Emiliania huxleyi.

    PubMed

    Tsuji, Yoshinori; Yamazaki, Masatoshi; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2015-08-01

    The bloom-forming coccolithophore Emiliania huxleyi (Haptophyta) is a dominant marine phytoplankton, cells of which are covered with calcareous plates (coccoliths). E. huxleyi produces unique lipids of C37-C40 long-chain ketones (alkenones) with two to four trans-unsaturated bonds, β-glucan (but not α-glucan) and acid polysaccharide (AP) associated with the morphogenesis of CaCO3 crystals in coccoliths. Despite such unique features, there is no detailed information on the patterns of carbon allocation into these compounds. Therefore, we performed quantitative estimation of carbon flow into various macromolecular products by conducting (14)C-radiotracer experiments using NaH(14)CO3 as a substrate. Photosynthetic (14)C incorporation into low molecular-mass compounds (LMC), extracellular AP, alkenones, and total lipids except alkenones was estimated to be 35, 13, 17, and 25 % of total (14)C fixation in logarithmic growth phase cells and 33, 19, 18, and 18 % in stationary growth phase cells, respectively. However, less than 1 % of (14)C was incorporated into β-glucan in both cells. (14)C-mannitol occupied ca. 5 % of total fixed (14)C as the most dominant LMC product. Levels of all (14)C compounds decreased in the dark. Therefore, alkenones and LMC (including mannitol), but not β-glucan, function in carbon/energy storage in E. huxleyi, irrespective of the growth phase. Compared with other algae, the low carbon flux into β-glucan is a unique feature of carbon metabolism in E. huxelyi. PMID:25874681

  12. Identification of the Antibacterial Compound Produced by the Marine Epiphytic Bacterium Pseudovibrio sp. D323 and Related Sponge-Associated Bacteria

    PubMed Central

    Penesyan, Anahit; Tebben, Jan; Lee, Matthew; Thomas, Torsten; Kjelleberg, Staffan; Harder, Tilmann; Egan, Suhelen

    2011-01-01

    Surface-associated marine bacteria often produce secondary metabolites with antagonistic activities. In this study, tropodithietic acid (TDA) was identified to be responsible for the antibacterial activity of the marine epiphytic bacterium Pseudovibrio sp. D323 and related strains. Phenol was also produced by these bacteria but was not directly related to the antibacterial activity. TDA was shown to effectively inhibit a range of marine bacteria from various phylogenetic groups. However TDA-producers themselves were resistant and are likely to possess resistance mechanism preventing autoinhibition. We propose that TDA in isolate D323 and related eukaryote-associated bacteria plays a role in defending the host organism against unwanted microbial colonisation and, possibly, bacterial pathogens. PMID:21892353

  13. Genome sequence of the pink–pigmented marine bacterium Loktanella hongkongensis type strain (UST950701–009PT), a representative of the Roseobacter group

    SciTech Connect

    Lau, Stanley CK; Riedel, Thomas; Fiebig, Anne; Han, James; Huntemann, Marcel; Petersen, Jörn; Ivanova, Natalia N.; Markowitz, Victor; Woyke, Tanja; Göker, Markus; Kyrpides, Nikos C.; Klenk, Hans-Peter; Qian, Pei-Yuan

    2015-08-11

    Loktanella hongkongensis UST950701-009PT is a Gram-negative, non-motile and rod-shaped bacterium isolated from a marine biofilm in the subtropical seawater of Hong Kong. When growing as a monospecies biofilm on polystyrene surfaces, this bacterium is able to induce larval settlement and metamorphosis of a ubiquitous polychaete tubeworm Hydroides elegans. The inductive cues are low-molecular weight compounds bound to the exopolymeric matrix of the bacterial cells. In the present study we describe the features of L. hongkongensis strain DSM 17492T together with its genome sequence and annotation and novel aspects of its phenotype. The 3,198,444 bp long genome sequence encodes 3104 protein-coding genes and 57 RNA genes. Lastly, the two unambiguously identified extrachromosomal replicons contain replication modules of the RepB and the Rhodobacteraceae-specific DnaA-like type, respectively.

  14. Genome sequence of the pink–pigmented marine bacterium Loktanella hongkongensis type strain (UST950701–009PT), a representative of the Roseobacter group

    DOE PAGESBeta

    Lau, Stanley CK; Riedel, Thomas; Fiebig, Anne; Han, James; Huntemann, Marcel; Petersen, Jörn; Ivanova, Natalia N.; Markowitz, Victor; Woyke, Tanja; Göker, Markus; et al

    2015-08-11

    Loktanella hongkongensis UST950701-009PT is a Gram-negative, non-motile and rod-shaped bacterium isolated from a marine biofilm in the subtropical seawater of Hong Kong. When growing as a monospecies biofilm on polystyrene surfaces, this bacterium is able to induce larval settlement and metamorphosis of a ubiquitous polychaete tubeworm Hydroides elegans. The inductive cues are low-molecular weight compounds bound to the exopolymeric matrix of the bacterial cells. In the present study we describe the features of L. hongkongensis strain DSM 17492T together with its genome sequence and annotation and novel aspects of its phenotype. The 3,198,444 bp long genome sequence encodes 3104 protein-codingmore » genes and 57 RNA genes. Lastly, the two unambiguously identified extrachromosomal replicons contain replication modules of the RepB and the Rhodobacteraceae-specific DnaA-like type, respectively.« less

  15. A novel algicide: evidence of the effect of a fatty acid compound from the marine bacterium, Vibrio sp. BS02 on the harmful dinoflagellate, Alexandrium tamarense.

    PubMed

    Li, Dong; Zhang, Huajun; Fu, Lijun; An, Xinli; Zhang, Bangzhou; Li, Yi; Chen, Zhangran; Zheng, Wei; Yi, Lin; Zheng, Tianling

    2014-01-01

    Alexandrium tamarense is a notorious bloom-forming dinoflagellate, which adversely impacts water quality and human health. In this study we present a new algicide against A. tamarense, which was isolated from the marine bacterium Vibrio sp. BS02. MALDI-TOF-MS, NMR and algicidal activity analysis reveal that this compound corresponds to palmitoleic acid, which shows algicidal activity against A. tamarense with an EC50 of 40 μg/mL. The effects of palmitoleic acid on the growth of other algal species were also studied. The results indicate that palmitoleic acid has potential for selective control of the Harmful algal blooms (HABs). Over extended periods of contact, transmission electron microscopy shows severe ultrastructural damage to the algae at 40 μg/mL concentrations of palmitoleic acid. All of these results indicate potential for controlling HABs by using the special algicidal bacterium and its active agent. PMID:24626054

  16. Genome sequence of the pink-pigmented marine bacterium Loktanella hongkongensis type strain (UST950701-009P(T)), a representative of the Roseobacter group.

    PubMed

    Lau, Stanley Ck; Riedel, Thomas; Fiebig, Anne; Han, James; Huntemann, Marcel; Petersen, Jörn; Ivanova, Natalia N; Markowitz, Victor; Woyke, Tanja; Göker, Markus; Kyrpides, Nikos C; Klenk, Hans-Peter; Qian, Pei-Yuan

    2015-01-01

    Loktanella hongkongensis UST950701-009P(T) is a Gram-negative, non-motile and rod-shaped bacterium isolated from a marine biofilm in the subtropical seawater of Hong Kong. When growing as a monospecies biofilm on polystyrene surfaces, this bacterium is able to induce larval settlement and metamorphosis of a ubiquitous polychaete tubeworm Hydroides elegans. The inductive cues are low-molecular weight compounds bound to the exopolymeric matrix of the bacterial cells. In the present study we describe the features of L. hongkongensis strain DSM 17492(T) together with its genome sequence and annotation and novel aspects of its phenotype. The 3,198,444 bp long genome sequence encodes 3104 protein-coding genes and 57 RNA genes. The two unambiguously identified extrachromosomal replicons contain replication modules of the RepB and the Rhodobacteraceae-specific DnaA-like type, respectively. PMID:26380639

  17. Synchrotron Small-Angle X-Ray Scattering Investigation on Integral Membrane Protein Light-Harvesting Complex LH2 from Photosynthetic Bacterium Rhodopseudomonas Acidophila

    NASA Astrophysics Data System (ADS)

    Du, Lu-Chao; Weng, Yu-Xiang; Hong, Xin-Guo; Xian, Ding-Chang; Kobayashi, Katsumi

    2006-07-01

    Structures of membrane protein in solution are different from that in crystal phase. We present the primary results of small angle x-ray scattering (SAXS) resolved topological structures of a light harvesting antenna membrane protein complex LH2 from photosynthetic bacteria Rhodopseudomonas acidophila in detergent solution for the first time. Our results show that the elliptical shape of the LH2 complex in solution clearly deviates from its circular structure in crystal phase determined by x-ray diffraction. This result provides an insight into the structure and function interplay in LH2.

  18. A Novel Type II NAD+-Specific Isocitrate Dehydrogenase from the Marine Bacterium Congregibacter litoralis KT71

    PubMed Central

    Wu, Ming-Cai; Tian, Chang-Qing; Cheng, Hong-Mei; Xu, Lei; Wang, Peng; Zhu, Guo-Ping

    2015-01-01

    In most living organisms, isocitrate dehydrogenases (IDHs) convert isocitrate into ɑ-ketoglutarate (ɑ-KG). Phylogenetic analyses divide the IDH protein family into two subgroups: types I and II. Based on cofactor usage, IDHs are either NAD+-specific (NAD-IDH) or NADP+-specific (NADP-IDH); NADP-IDH evolved from NAD-IDH. Type I IDHs include NAD-IDHs and NADP-IDHs; however, no type II NAD-IDHs have been reported to date. This study reports a novel type II NAD-IDH from the marine bacterium Congregibacter litoralis KT71 (ClIDH, GenBank accession no. EAQ96042). His-tagged recombinant ClIDH was produced in Escherichia coli and purified; the recombinant enzyme was NAD+-specific and showed no detectable activity with NADP+. The Km values of the enzyme for NAD+ were 262.6±7.4 μM or 309.1±11.2 μM with Mg2+ or Mn2+ as the divalent cation, respectively. The coenzyme specificity of a ClIDH Asp487Arg/Leu488His mutant was altered, and the preference of the mutant for NADP+ was approximately 24-fold higher than that for NAD+, suggesting that ClIDH is an NAD+-specific ancestral enzyme in the type II IDH subgroup. Gel filtration and analytical ultracentrifugation analyses revealed the homohexameric structure of ClIDH, which is the first IDH hexamer discovered thus far. A 163-amino acid segment of CIIDH is essential to maintain its polymerization structure and activity, as a truncated version lacking this region forms a non-functional monomer. ClIDH was dependent on divalent cations, the most effective being Mn2+. The maximal activity of purified recombinant ClIDH was achieved at 35°C and pH 7.5, and a heat inactivation experiment showed that a 20-min incubation at 33°C caused a 50% loss of ClIDH activity. The discovery of a NAD+-specific, type II IDH fills a gap in the current classification of IDHs, and sheds light on the evolution of type II IDHs. PMID:25942017

  19. System Responses to Equal Doses of Photosynthetically Usable Radiation of Blue, Green, and Red Light in the Marine Diatom Phaeodactylum tricornutum

    PubMed Central

    Valle, Kristin Collier; Nymark, Marianne; Aamot, Inga; Hancke, Kasper; Winge, Per; Andresen, Kjersti; Johnsen, Geir; Brembu, Tore; Bones, Atle M.

    2014-01-01

    Due to the selective attenuation of solar light and the absorption properties of seawater and seawater constituents, free-floating photosynthetic organisms have to cope with rapid and unpredictable changes in both intensity and spectral quality. We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions. PMID:25470731

  20. System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum.

    PubMed

    Valle, Kristin Collier; Nymark, Marianne; Aamot, Inga; Hancke, Kasper; Winge, Per; Andresen, Kjersti; Johnsen, Geir; Brembu, Tore; Bones, Atle M

    2014-01-01

    Due to the selective attenuation of solar light and the absorption properties of seawater and seawater constituents, free-floating photosynthetic organisms have to cope with rapid and unpredictable changes in both intensity and spectral quality. We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions. PMID:25470731

  1. Inhibitory activity of an extract from a marine bacterium Halomonas sp. HSB07 against the red-tide microalga Gymnodinium sp. (Pyrrophyta)

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Li, Fuchao; Liu, Ling; Jiang, Peng; Liu, Zhaopu

    2013-11-01

    In recent years, red tides occurred frequently in coastal areas worldwide. Various methods based on the use of clay, copper sulfate, and bacteria have been successful in controlling red tides to some extent. As a new defensive agent, marine microorganisms are important sources of compounds with potent inhibitory bioactivities against red-tide microalgae, such as Gymnodinium sp. (Pyrrophyta). In this study, we isolated a marine bacterium, HSB07, from seawater collected from Hongsha Bay, Sanya, South China Sea. Based on its 16S rRNA gene sequence and biochemical characteristics, the isolated strain HSB07 was identified as a member of the genus Halomonas. A crude ethyl acetate extract of strain HSB07 showed moderate inhibition activity against Gymnodinium sp. in a bioactive prescreening experiment. The extract was further separated into fractions A, B, and C by silica gel column chromatography. Fractions B and C showed strong inhibition activities against Gymnodinium. This is the first report of inhibitory activity of secondary metabolites of a Halomonas bacterium against a red-tide-causing microalga.

  2. Exciton interactions in reaction centers of the photosynthetic bacterium Rhodopseudomonas viridis probed by optical triplet-minus-singlet polarization spectroscopy at 1.2 K monitored through absorbance-detected magnetic resonance.

    PubMed

    Lous, E J; Hoff, A J

    1987-09-01

    Linear dichroic triplet-minus-singlet [LD-(T - S)] spectra of isolated reaction centers of the photosynthetic bacterium Rhodopseudomonas viridis have been measured at 1.2 K with the linear dichroic absorbance-detected magnetic resonance (LD-ADMR) technique for two mutually perpendicular directions of the preferred axis. The LD-(T - S) spectra have been calibrated with respect to the corresponding (T - S) spectra as a function of applied microwave power and quantitatively interpreted using the formalism of photoselection. The transition moment of the optical transition at 1007 nm makes angles of 72 degrees +/- 5 degrees and 15 degrees +/- 5 degrees with the triplet x and y spin axes, respectively. The experimental spectra have been simulated employing exciton theory and using the atomic coordinates of the resolved crystal structure of the reaction center. The spectral interpretation yields the angles between the transition moments of the various absorption bands of the (T - S) spectra and the triplet axes, and between the moments themselves, with the triplet state of the primary donor (3)P localized on the P-bacteriochlorophyll b in the "active" (L) chain. PMID:16578814

  3. Influence of Cd2+ on the spin state of non-heme iron and on protein local motions in reactions centers from purple photosynthetic bacterium Rhodospirilium rubrum

    NASA Astrophysics Data System (ADS)

    Lipińska, M.; Orzechowska, A.; Fiedor, J.; Chumakov, A. I.; Ślȩzak, T.; Zając, M.; Matlak, K.; Korecki, J.; Hałas, A.; Strzałka, K.; Fiedor, L.; Burda, K.

    2010-03-01

    Non-heme Fe is a conservative component of the Q-type photosynthetic reaction centers but its function remains unknown. Applying Mössbauer spectroscopy we show that in Rhodospirillum rubrum the non-heme Fe exists mostly in a ferrous low spin state. The binding of Cd2+ ions in the vicinity of the quinone-Fe complex changes the high spin state of the non-heme Fe into a low spin one characterized by hyperfine parameters similar to those obtained for the non-heme Fe low spin state in untreated reaction centers, as confirmed by Mössbauer measurements. The nuclear inelastic scattering of synchrotron radiation experiments show that the contribution of vibrations at low energies, between 3-15 meV, activated at 240 K are damped in the bacterial reaction centers treated with CdCl2. No influence of Cd2+ ions is observed on the soft vibrational states at 60 K. These results suggest that binding of cadmium cations within the reaction centers may enhance decoupling of the non-heme Fe from the surrounding protein matrix at temperatures higher than 200 K, what can explain the slowing down of electron transfer between the QA and QB quinones by Cd2+.

  4. Relaxation dynamics of the LH2 complex from a photosynthetic purple bacterium Thiorhodospira sibirica studied by the near-IR femtosecond pump-probe method

    SciTech Connect

    Razjivin, A P; Pishchal'nikov, R Yu; Kozlovskii, V S; Kompanets, V O; Chekalin, Sergei V; Moskalenko, A A; Makhneva, Z K

    2005-01-31

    Photoinduced changes in the absorption spectrum of the LH2 (B800-830-850) complex from a Thiorhodospira sibirica (Trs. sibirica) bacterium are studied by the pump-probe method. The complex has the anomalous absorption spectrum exhibiting three bands in the near-IR region at 793, 826.5, and 846.5 nm. At room temperature, the excitation energy transfer from the B800, B830, and B859 bands was detected with the time constants {tau}{sub 1{approx}}0.5 ps, {tau}{sub 2{approx}}2.5 ps, and {tau}{sub 3} of the order of a few hundreds of picoseconds, respectively. A rapid energy transfer from the B830 band compared to energy transfer from the B850 band ({tau}{sub 2}||{tau}{sub 3}) suggests that all the three bands belong to the same complex (i.e., that the LH2 complex from Trs. sibirica is homogeneous). A slower energy transfer (by three - five times) from the B830 band of the LH2 complex from Trs. sibirica compared to energy transfer from the B800 band of the LH2 complexes (B800-850 and especially B800-820) from other purple bacteria suggests that the electronic structures of ensembles of bacteriochlorophyll molecules in these complexes are substantially different. (laser applications and other topics in quantum electronics)

  5. Carotenoid-to-Bacteriochlorophyll Energy Transfer in the LH1-RC Core Complex of a Bacteriochlorophyll b Containing Purple Photosynthetic Bacterium Blastochloris viridis.

    PubMed

    Magdaong, Nikki Cecil M; Niedzwiedzki, Dariusz M; Goodson, Carrie; Blankenship, Robert E

    2016-06-16

    Carotenoid-to-bacteriochlorophyll energy transfer has been widely investigated in bacteriochlorophyll (BChl) a-containing light harvesting complexes. Blastochloris viridis utilizes BChl b, whose absorption spectrum is more red-shifted than that of BChl a. This has implications on the efficiency and pathways of carotenoid-to-BChl energy transfer in this organism. The carotenoids that comprise the light-harvesting reaction center core complex (LH1-RC) of B. viridis are 1,2-dihydroneurosporene and 1,2-dihydrolycopene, which are derivatives of carotenoids found in the light harvesting complexes of several BChl a-containing purple photosynthetic bacteria. Steady-state and ultrafast time-resolved optical spectroscopic measurements were performed on the LH1-RC complex of B. viridis at room and cryogenic temperatures. The overall efficiency of carotenoid-to-bacteriochlorophyll energy transfer obtained from steady-state absorption and fluorescence measurements were determined to be ∼27% and ∼36% for 1,2-dihydroneurosporene and 1,2-dihydrolycopene, respectively. These results were combined with global fitting and target analyses of the transient absorption data to elucidate the energetic pathways by which the carotenoids decay and transfer excitation energy to BChl b. 1,2-Dihydrolycopene transfers energy to BChl b via the S2 → Qx channel with kET2 = (500 fs)(-1) while 1,2-dihydroneurosporene transfers energy via S1→ Qy (kET1 = (84 ps)(-1)) and S2 → Qx (kET2 = (2.2 ps)(-1)) channels. PMID:27218197

  6. Influence of nitrogen substrates and substrate C:N ratios on the nitrogen isotopic composition of amino acids from the marine bacterium Vibrio harveyi

    NASA Astrophysics Data System (ADS)

    Maki, K.; Ohkouchi, N.; Chikaraishi, Y.; Fukuda, H.; Miyajima, T.; Nagata, T.

    2014-09-01

    Nitrogen (N) isotopic compositions of individual hydrolysable amino acids (δ15NAAs) in N pools have been increasingly used for trophic position assessment and evaluation of sources and transformation processes of organic matter in marine environments. However, there are limited data about variability in δ15NAAs patterns and how this variability influences marine bacteria, an important mediator of trophic transfer and organic matter transformation. We explored whether marine bacterial δ15NAAs profiles change depending on the type and C:N ratio of the substrate. The δ15NAAs profile of a marine bacterium, Vibrio harveyi, was examined using medium containing either glutamate, alanine or ammonium as the N source [substrate C:N ratios (range, 3 to 20) were adjusted with glucose]. The data were interpreted as a reflection of isotope fractionations associated with de novo synthesis of amino acids by bacteria. Principal component analysis (PCA) using the δ15N offset values normalized to glutamate + glutamine δ15N revealed that δ15NAAs profiles differed depending on the N source and C:N ratio of the substrate. High variability in the δ15N offset of alanine and valine largely explained this bacterial δ15NAAs profile variability. PCA was also conducted using bacterial and phytoplankton (cyanobacteria and eukaryotic algae) δ15NAAs profile data reported previously. The results revealed that bacterial δ15NAAs patterns were distinct from those of phytoplankton. Therefore, the δ15NAAs profile is a useful indicator of biochemical responses of bacteria to changes in substrate conditions, serving as a potentially useful method for identifying organic matter sources in marine environments.

  7. Isolation of a phenol-utilizing marine bacterium from Durban Harbour (South Africa) and its preliminary characterization as Marinobacter sp. KM2.

    PubMed

    Moxley, Karis; Schmidt, Stefan

    2012-01-01

    Many aromatic hydrocarbons assigned to the so-called high production volume chemicals (HPVCs) are frequently encountered constituents of wastewaters that end up in the sea. Although the pollutant-degrading capabilities of freshwater bacteria are well known, the catabolism of pollutants by marine bacteria has received limited attention. A marine bacterium with the ability to aerobically utilize phenol - an HPVC and common aromatic pollutant - as its sole source of carbon and energy, was isolated from water samples from Durban Harbour, South Africa. The isolate, designated strain KM2, was assigned to the genus Marinobacter based on a variety of phenotypic properties and by analysis of the 16S rRNA gene sequence. The isolate displays an absolute growth requirement for NaCl which cannot be offset by replacement of NaCl with other salts. In addition to 4-methylphenol and 3,4-dimethylphenol, it utilizes a range of aliphatic hydrocarbons such as butan-1-ol and hexadecane under aerobic conditions. The transient formation of an intermediate exhibiting the UV-Vis spectral characteristics for 2-hydroxymuconic semialdehyde in cultures growing on phenol suggests that the isolate catabolizes this compound via the meta cleavage pathway. These results indicate that members of the genus Marinobacter might participate in the elimination of aromatic pollutants in South African marine environments. PMID:22339030

  8. A putative siderophore-interacting protein from the marine bacterium Shewanella frigidimarina NCIMB 400: cloning, expression, purification, crystallization and X-ray diffraction analysis

    PubMed Central

    Trindade, Inês B.; Fonseca, Bruno M.; Matias, Pedro M.; Louro, Ricardo O.; Moe, Elin

    2016-01-01

    Siderophore-binding proteins (SIPs) perform a key role in iron acquisition in multiple organisms. In the genome of the marine bacterium Shewanella frigidimarina NCIMB 400, the gene tagged as SFRI_RS12295 encodes a protein from this family. Here, the cloning, expression, purification and crystallization of this protein are reported, together with its preliminary X-ray crystallographic analysis to 1.35 Å resolution. The SIP crystals belonged to the monoclinic space group P21, with unit-cell parameters a = 48.04, b = 78.31, c = 67.71 Å, α = 90, β = 99.94, γ = 90°, and are predicted to contain two molecules per asymmetric unit. Structure determination by molecular replacement and the use of previously determined ∼2 Å resolution SIP structures with ∼30% sequence identity as templates are ongoing. PMID:27599855

  9. A putative siderophore-interacting protein from the marine bacterium Shewanella frigidimarina NCIMB 400: cloning, expression, purification, crystallization and X-ray diffraction analysis.

    PubMed

    Trindade, Inês B; Fonseca, Bruno M; Matias, Pedro M; Louro, Ricardo O; Moe, Elin

    2016-09-01

    Siderophore-binding proteins (SIPs) perform a key role in iron acquisition in multiple organisms. In the genome of the marine bacterium Shewanella frigidimarina NCIMB 400, the gene tagged as SFRI_RS12295 encodes a protein from this family. Here, the cloning, expression, purification and crystallization of this protein are reported, together with its preliminary X-ray crystallographic analysis to 1.35 Å resolution. The SIP crystals belonged to the monoclinic space group P21, with unit-cell parameters a = 48.04, b = 78.31, c = 67.71 Å, α = 90, β = 99.94, γ = 90°, and are predicted to contain two molecules per asymmetric unit. Structure determination by molecular replacement and the use of previously determined ∼2 Å resolution SIP structures with ∼30% sequence identity as templates are ongoing. PMID:27599855

  10. GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum.

    PubMed

    Zhang, Yaoping; Pohlmann, Edward L; Roberts, Gary P

    2005-02-01

    GlnD is a bifunctional uridylyltransferase/uridylyl-removing enzyme and is thought to be the primary sensor of nitrogen status in the cell. It plays an important role in nitrogen assimilation and metabolism by reversibly regulating the modification of P(II) proteins, which in turn regulate a variety of other proteins. We report here the characterization of glnD mutants from the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum and the analysis of the roles of GlnD in the regulation of nitrogen fixation. Unlike glnD mutations in Azotobacter vinelandii and some other bacteria, glnD deletion mutations are not lethal in R. rubrum. Such mutants grew well in minimal medium with glutamate as the sole nitrogen source, although they grew slowly with ammonium as the sole nitrogen source (MN medium) and were unable to fix N(2). The slow growth in MN medium is apparently due to low glutamine synthetase activity, because a DeltaglnD strain with an altered glutamine synthetase that cannot be adenylylated can grow well in MN medium. Various mutation and complementation studies were used to show that the critical uridylyltransferase activity of GlnD is localized to the N-terminal region. Mutants with intermediate levels of uridylyltransferase activity are differentially defective in nif gene expression, the posttranslational regulation of nitrogenase, and NtrB/NtrC function, indicating the complexity of the physiological role of GlnD. These results have implications for the interpretation of results obtained with GlnD in many other organisms. PMID:15687189

  11. Photosynthetic response to temperature of marine phytoplankton along a latitudinal gradient (16°N to 74°N)

    NASA Astrophysics Data System (ADS)

    Li, W. K. W.

    1985-11-01

    Photosynthesis-temperature relationships for natural phytoplankton assemblages were established by measuring the uptake of H 14CO 3 in freshly collected seawater samples incubated for 2 h across a shipboard laboratory temperature gradient. The minimum, optimum and maximum temperatures for photosynthesis, as well as the extent of photosynthetic change per unit temperature change in the suboptimal range, all decreased from low to high latitude. The empirical mathematical model of RATKOWSKYet al. (1983, Journal of Bacteriology, 154, 1222-1226) provided a good fit to the data.

  12. Thermal alteration of organic matter in recent marine sediments. 1: Pigments. [photosynthetic pigments from Tanner Basin off Southern California

    NASA Technical Reports Server (NTRS)

    Ikan, R.; Aizenshtat, Z.; Baedecker, M. J.; Kaplan, I. R.

    1974-01-01

    Sediment from Tanner Basin, the outer continental shelf off Southern California, was analyzed for photosynthetic pigments and their derivatives, namely carotenes and chlorins. Samples of the sediment were also exposed to raised temperatures (65, 100, 150 C) for various periods of time (1 week, 1 month, 2 months). Analysis of the heat-treated sediment revealed the presence of alpha-ionene and 2,6-dimethylnapthalene, thermal degradation products of Betacarotente. Chlorins were converted to nickel porphyrins of both DPEP and etio series. Possible mechanisms of these transformations are presented.

  13. Genome sequence of Fulvimarina pelagi HTCC2506T, a Mn(II)-oxidizing alphaproteobacterium possessing an aerobic anoxygenic photosynthetic gene cluster and Xanthorhodopsin.

    PubMed

    Kang, Ilnam; Oh, Hyun-Myung; Lim, Seung-Il; Ferriera, Steve; Giovannoni, Stephen J; Cho, Jang-Cheon

    2010-09-01

    Fulvimarina pelagi is a Mn(II)-oxidizing marine heterotrophic bacterium in the order Rhizobiales. Here we announce the draft genome sequence of F. pelagi HTCC2506(T), which was isolated from the Sargasso Sea by using dilution-to-extinction culturing. The genome sequence contained a xanthorhodopsin gene as well as a photosynthetic gene cluster, which suggests the coexistence of two different phototrophic mechanisms in a single microorganism. PMID:20639329

  14. A novel compound from the marine bacterium Bacillus pumilus S6-15 inhibits biofilm formation in gram-positive and gram-negative species.

    PubMed

    Nithya, Chari; Devi, Muthu Gokila; Karutha Pandian, Shunmugiah

    2011-05-01

    Biofilm formation is a critical problem in nosocomial infections and in the aquaculture industries and biofilms show high resistance to antibiotics. The aim of the present study was to reveal a novel anti-biofilm compound from marine bacteria against antibiotic resistant gram-positive and gram-negative biofilms. The bacterial extract (50 μg ml(-1)) of S6-01 (Bacillus indicus = MTCC 5559) showed 80-90% biofilm inhibition against Escherichia coli, Shigella flexneri, Proteus mirabilis and S6-15 (Bacillus pumilus = MTCC 5560) showed 80-95% biofilm inhibition against all the 10 tested organisms. Furthermore, they also reduced the hydrophobicity index and extracellular polymeric substances (EPS) production. Structural elucidation of the active principle in S6-15 using GC-MS, (1)H NMR, and (13)C NMR spectral data revealed it to be 4-phenylbutanoic acid. This is the first report of 4-phenylbutanoic acid as a natural product. The purified compound (10-15 μg ml(-1)) showed potential activity against a wide range of biofilms. This study for the first time, reports a novel anti-biofilm compound from a marine bacterium with wide application in medicine and the aquaculture industry. PMID:21614700

  15. Characterization of Fe (III)-reducing enrichment culture and isolation of Fe (III)-reducing bacterium Enterobacter sp. L6 from marine sediment.

    PubMed

    Liu, Hongyan; Wang, Hongyu

    2016-07-01

    To enrich the Fe (III)-reducing bacteria, sludge from marine sediment was inoculated into the medium using Fe (OH)3 as the sole electron acceptor. Efficiency of Fe (III) reduction and composition of Fe (III)-reducing enrichment culture were analyzed. The results indicated that the Fe (III)-reducing enrichment culture with the dominant bacteria relating to Clostridium and Enterobacter sp. had high Fe (III) reduction of (2.73 ± 0.13) mmol/L-Fe (II). A new Fe (III)-reducing bacterium was isolated from the Fe (III)-reducing enrichment culture and identified as Enterobacter sp. L6 by 16S rRNA gene sequence analysis. The Fe (III)-reducing ability of strain L6 under different culture conditions was investigated. The results indicated that strain L6 had high Fe (III)-reducing activity using glucose and pyruvate as carbon sources. Strain L6 could reduce Fe (III) at the range of NaCl concentrations tested and had the highest Fe (III) reduction of (4.63 ± 0.27) mmol/L Fe (II) at the NaCl concentration of 4 g/L. This strain L6 could reduce Fe (III) with unique properties in adaptability to salt variation, which indicated that it can be used as a model organism to study Fe (III)-reducing activity isolated from marine environment. PMID:26896316

  16. Draft Genome Sequence of a Novel Marine Bacterium, Paraglaciecola sp. Strain S66, with Hydrolytic Activity against Seaweed Polysaccharides.

    PubMed

    Schultz-Johansen, Mikkel; Glaring, Mikkel A; Bech, Pernille K; Stougaard, Peter

    2016-01-01

    A novel agarolytic gammaproteobacterium, ITALIC! Paraglaciecolasp. S66, was isolated from marine samples of eelgrass ( ITALIC! Zosterasp.) and sequenced. The draft genome contains a large number of enzyme-encoding genes with predicted function against several complex polysaccharides found in the cell walls of algae. PMID:27103729

  17. Draft Genome Sequence of a Selenite- and Tellurite-Reducing Marine Bacterium, Lysinibacillus sp. Strain ZYM-1

    PubMed Central

    Zhao, Yonghe; Dong, Yuxuan; Zhang, Yiwen; Che, Lin; Pan, Haixia

    2016-01-01

    Lysinibacillus sp. ZYM-1, a Gram-positive strain isolated from marine sediments, reduces selenite and tellurite efficiently. Meanwhile, it also exhibits high resistance to Zn2+ and Mn2+. Here, we report the draft genome sequence of strain ZYM-1, which contains genes related to selenite and tellurite reduction and also metal resistance. PMID:26769938

  18. Draft Genome Sequence of a Novel Marine Bacterium, Paraglaciecola sp. Strain S66, with Hydrolytic Activity against Seaweed Polysaccharides

    PubMed Central

    Schultz-Johansen, Mikkel; Glaring, Mikkel A.; Bech, Pernille K.

    2016-01-01

    A novel agarolytic gammaproteobacterium, Paraglaciecola sp. S66, was isolated from marine samples of eelgrass (Zostera sp.) and sequenced. The draft genome contains a large number of enzyme-encoding genes with predicted function against several complex polysaccharides found in the cell walls of algae. PMID:27103729

  19. Antimicrobial gageomacrolactins characterized from the fermentation of the marine-derived bacterium Bacillus subtilis under optimum growth conditions.

    PubMed

    Tareq, Fakir Shahidullah; Kim, Ji Hye; Lee, Min Ah; Lee, Hyi-Seung; Lee, Jong-Seok; Lee, Yeon-Ju; Shin, Hee Jae

    2013-04-10

    Marine bacteria are a potential source of structurally diversified bioactive secondary metabolites that are not found in terrestrial sources. In our continuous effort to search for new antimicrobial agents from marine-derived bacteria, we isolated bacterial strain 109GGC020 from a marine sediment sample collected from Gageocho, Republic of Korea. The strain was identified as Bacillus subtilis based on a 16s rRNA sequence analysis. After a 7-day fermentation of the B. subtilis strain under optimum growth conditions three new and four known secondary metabolites were discovered using chromatographic procedures, and their biological activities were evaluated against both bacteria and crop-devastating fungi. The discovered metabolites were confirmed by extensive 2D NMR and high-resolution ESI-MS data analyses to have the structures of new macrolactin derivatives gageomacrolactins 1-3 and known macrolactins A (4), B (5), F (6), and W (7). The stereoconfigurations of 1-3 were assigned based on coupling constant values, chemical derivatization studies, and a literature review. The coupling constants were very crucial to determine the relative geometries of olefins in 1-3 because of overlap of the ¹H NMR signals. The NMR data of these compounds were recorded in different solvents to overcome this problem and obtain accurate coupling constant values. The new macrolactin derivatives 1-3 displayed good antibiotic properties against both Gram-positive (S. aureus, B. subtilis, and B. cereus) and Gram-negative (E. coli, S. typhi, and P. aeruginosa) bacteria with minimum inhibitory concentration (MIC) values of 0.02-0.05 μM. Additionally, the antifungal activities of 1-7 were evaluated against pathogenic fungi and found to inhibit mycelial growth of A. niger, B. cinerea, C. acutatum, C. albicans, and R. solani with MIC values of 0.04-0.3 μM, demonstrating that these compounds were good fungicides. PMID:23488669

  20. A unique capsular polysaccharide structure from the psychrophilic marine bacterium Colwellia psychrerythraea 34H that mimics antifreeze (glyco)proteins.

    PubMed

    Carillo, Sara; Casillo, Angela; Pieretti, Giuseppina; Parrilli, Ermenegilda; Sannino, Filomena; Bayer-Giraldi, Maddalena; Cosconati, Sandro; Novellino, Ettore; Ewert, Marcela; Deming, Jody W; Lanzetta, Rosa; Marino, Gennaro; Parrilli, Michelangelo; Randazzo, Antonio; Tutino, Maria L; Corsaro, M Michela

    2015-01-14

    The low temperatures of polar regions and high-altitude environments, especially icy habitats, present challenges for many microorganisms. Their ability to live under subfreezing conditions implies the production of compounds conferring cryotolerance. Colwellia psychrerythraea 34H, a γ-proteobacterium isolated from subzero Arctic marine sediments, provides a model for the study of life in cold environments. We report here the identification and detailed molecular primary and secondary structures of capsular polysaccharide from C. psychrerythraea 34H cells. The polymer was isolated in the water layer when cells were extracted by phenol/water and characterized by one- and two-dimensional NMR spectroscopy together with chemical analysis. Molecular mechanics and dynamics calculations were also performed. The polysaccharide consists of a tetrasaccharidic repeating unit containing two amino sugars and two uronic acids bearing threonine as substituent. The structural features of this unique polysaccharide resemble those present in antifreeze proteins and glycoproteins. These results suggest a possible correlation between the capsule structure and the ability of C. psychrerythraea to colonize subfreezing marine environments. PMID:25525681

  1. A thermophilic, hydrogenogenic and carboxydotrophic bacterium, Calderihabitans maritimus gen. nov., sp. nov., from a marine sediment core of an undersea caldera.

    PubMed

    Yoneda, Yasuko; Yoshida, Takashi; Yasuda, Hisato; Imada, Chiaki; Sako, Yoshihiko

    2013-10-01

    A hydrogenogenic, carboxydotrophic marine bacterium, strain KKC1(T), was isolated from a sediment core sample taken from a submerged marine caldera. Cells were non-motile, Gram-stain-negative, 1.0-3.0 µm straight rods, often observed with round endospores. Strain KKC1(T) grew at 55-68 °C, pH 5.2-9.2 and 0.8-14 % (w/v) salinity. Optimum growth occurred at 65 °C, pH 7.0-7.5 and 2.46 % salinity with a doubling time of 3.7 h. The isolate grew chemolithotrophically, producing H2 from carbon monoxide (CO) oxidation with reduction of various electron acceptors, e.g. sulfite, thiosulfate, fumarate, ferric iron and AQDS (9,10-anthraquinone 2,6-disulfonate). KKC1(T) grew heterotrophically on pyruvate, lactate, fumarate, glucose, fructose and mannose with thiosulfate as an electron acceptor. When grown mixotrophically on CO and pyruvate, C16 : 0 constituted almost half of the total cellular fatty acids. The DNA G+C content was 50.6 mol%. The 16S rRNA gene sequence of KKC1(T) was most closely related to those of members of the genus Moorella with similarity ranging from 91 to 89 %. Based on physiological and phylogenetic novelty, we propose the isolate as a representative of a new genus and novel species with the name Calderihabitans maritimus gen. nov., sp. nov.; the type strain of the type species is KKC1(T) ( = DSM 26464(T) = NBRC 109353(T)). PMID:23606483

  2. Cloning, Overexpression, and Characterization of Halostable, Solvent-Tolerant Novel β-Endoglucanase from a Marine Bacterium Photobacterium panuliri LBS5(T) (DSM 27646(T)).

    PubMed

    Deep, Kamal; Poddar, Abhijit; Das, Subrata K

    2016-02-01

    A 1329 nucleotide long endoglucanase gene was amplified from marine bacterium Photobacterium panuliri strain LBS5(T).The enzyme sequence was novel as protein-based similarity search revealed that it shared maximum similarity of 99% with hypothetical protein of P. aquae and 40% with endoglucanase of P. marinum AK15. The gene was cloned, overexpressed in Escherichia coli BL21 (DE3), and purified up to homogeneity using Ni-NTA affinity chromatography. The purified enzyme, designated as Cel8, was monomeric and has a molecular mass of 53 kDa. The enzyme was halostable and exhibited optimal carboxymethyl cellulase (CMCase) activity and stability at 2 M NaCl. Optimal activity was obtained at 40 °C and at pH 4. The enzyme exhibited remarkable stability in different organic solvents (50%, v/v), and activity increased nearly 1.5-fold in presence of butanol, isopropanol, petroleum ether, benzene, acetone, and n-hexane. It was active in Ca(2+), Ba(2+), and Ni(2+) and inhibited by Co(2+), Cd(2+), Zn(2+), Cu(2+), and Hg(2+). Under normal physiological conditions, the enzyme has 25% helix, 30% sheets, and 56% irregularities, whereas salt leads to helix to sheet transition in enzyme. Three-dimensional reconstruction analysis revealed that the enzyme has (α/β)8 structure and a TIM barrel fold-like structure at the central groove of enzyme. This is the first evidenced report on halostable, organic solvent tolerant cellulase in the marine bacterial genus Photobacterium. PMID:26494136

  3. Croceicoccus naphthovorans sp. nov., a polycyclic aromatic hydrocarbons-degrading and acylhomoserine-lactone-producing bacterium isolated from marine biofilm, and emended description of the genus Croceicoccus.

    PubMed

    Huang, Yili; Zeng, Yanhua; Feng, Hao; Wu, Yuehong; Xu, Xuewei

    2015-05-01

    A polycyclic aromatic hydrocarbons-degrading and acylhomoserine-lactone-producing marine bacterium, designated strain PQ-2(T), was isolated from marine biofilm collected from a boat shell at a harbour of Zhoushan island in Zhejiang Province, PR China. Strain PQ-2(T) is Gram-stain-negative, yellow-pigmented, non-motile and short rod-shaped. Optimal growth of strain PQ-2(T) was observed at 32 °C, at pH 7.0 and in 2% (w/v) NaCl. The 16S rRNA gene sequence of strain PQ-2(T) showed highest similarity to Croceicoccus marinus E4A9(T) (96.3%) followed by Novosphingobium malaysiense MUSC 273(T) (95.6%) and Altererythrobacter marinus H32(T) (95.6%). Phylogenetic analysis with all species of the family Erythrobacteraceae with validly published names revealed that strain PQ-2(T) formed a phyletic line with Croceicoccus marinus E4A9(T) that was distinct from other members of the family Erythrobacteraceae . The sole respiratory quinone was ubiquinone 10 (Q-10). The predominant fatty acids were C18 : 1ω7c, C17 : 1ω6c and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The genomic DNA G+C content was 61.7 mol%. In the polar lipid profile, phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, one unidentified phospholipid and one sphingoglycolipid were the major compounds; and another sphingoglycolipid was present in a minor amount. Based on the genotypic and phenotypic data, strain PQ-2(T) represents a novel species of the genus Croceicoccus , for which the name Croceicoccus naphthovorans sp. nov. is proposed. The type strain is PQ-2(T) ( =CGMCC 1.12805(T) =NBRC 110381(T)). In addition, emended descriptions for the genus Croceicoccus and the species C. marinus are given. PMID:25713040

  4. Laboratory Simulation of an Iron(II)-rich Precambrian Marine Upwelling System to Explore the Growth of Photosynthetic Bacteria.

    PubMed

    Maisch, Markus; Wu, Wenfang; Kappler, Andreas; Swanner, Elizabeth D

    2016-01-01

    A conventional concept for the deposition of some Precambrian Banded Iron Formations (BIF) proceeds on the assumption that ferrous iron [Fe(II)] upwelling from hydrothermal sources in the Precambrian ocean was oxidized by molecular oxygen [O2] produced by cyanobacteria. The oldest BIFs, deposited prior to the Great Oxidation Event (GOE) at about 2.4 billion years (Gy) ago, could have formed by direct oxidation of Fe(II) by anoxygenic photoferrotrophs under anoxic conditions. As a method for testing the geochemical and mineralogical patterns that develop under different biological scenarios, we designed a 40 cm long vertical flow-through column to simulate an anoxic Fe(II)-rich marine upwelling system representative of an ancient ocean on a lab scale. The cylinder was packed with a porous glass bead matrix to stabilize the geochemical gradients, and liquid samples for iron quantification could be taken throughout the water column. Dissolved oxygen was detected non-invasively via optodes from the outside. Results from biotic experiments that involved upwelling fluxes of Fe(II) from the bottom, a distinct light gradient from top, and cyanobacteria present in the water column, show clear evidence for the formation of Fe(III) mineral precipitates and development of a chemocline between Fe(II) and O2. This column allows us to test hypotheses for the formation of the BIFs by culturing cyanobacteria (and in the future photoferrotrophs) under simulated marine Precambrian conditions. Furthermore we hypothesize that our column concept allows for the simulation of various chemical and physical environments - including shallow marine or lacustrine sediments. PMID:27500924

  5. Photosynthetic Carbon Isotope Fractionation of the Marine Dinoflagellate Alexandrium tamarense: A Chemostat Investigation of Taxonomic and Physiological Controls on the Stable Carbon Isotope Record

    NASA Astrophysics Data System (ADS)

    Wilkes, E.; Carter, S. J.; Pearson, A.

    2015-12-01

    Interpretations of stable carbon isotope excursions in the sedimentary record are strengthened by laboratory culture studies investigating the photosynthetic carbon isotope fractionation (ɛp) of marine phytoplankton taxa with long geological records. These studies are essential for understanding organic matter δ13C signals in terms of environmental changes (e.g., atmospheric pCO2 and nutrient availability) or taxonomic changes (e.g., algal species succession and community composition). Dinoflagellates are among the most widespread and ecologically dominant primary producers in modern oceans and throughout the Mesozoic and Cenozoic. Compared to more recently evolved phytoplankton taxa, however, dinoflagellate carbon isotope fractionation has received relatively little mechanistic study. Several dilute batch culture experiments with dinoflagellates have investigated ɛp as a function of CO2 availability, but the influences of changing growth rates, nutrient limitation, pH, and irradiance require further systematic exploration. We investigated stable carbon isotope fractionation in the marine dinoflagellate Alexandrium tamarense under nitrate-limited conditions in a chemostat culture system in which full DIC system parameters, including the concentration and δ13C value of CO2, were determined. Growth rates were varied between experiments, and cells were grown under continuous light. Previously reported ɛp values for seven dinoflagellate species including A. tamarense ranged from approximately -1 to 14‰ in nutrient-replete batch culture studies ([CO2] = 0-50 µmol kg-1). In contrast, in chemostat conditions we measured ɛp values on the order of 20‰ ([CO2] = 20-30 µmol kg-1). These experiments provide an initial step toward understanding the physiological controls on ɛp in dinoflagellates and illuminating the role of algal taxonomy in shaping the Phanerozoic stable carbon isotope record.

  6. Optimization of culture conditions and medium composition for the marine algicidal bacterium Alteromonas sp. DH46 by uniform design

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Zheng, Wei; Tian, Yun; Wang, Guizhong; Zheng, Tianling

    2013-09-01

    Harmful algal blooms (HABs) have led to extensive ecological and environmental issues and huge economic losses. Various HAB control techniques have been developed, and biological methods have been paid more attention. Algicidal bacteria is a general designation for bacteria which inhibit algal growth in a direct or indirect manner, and kill or damage the algal cells. A metabolite which is strongly toxic to the dinoflagellate Alexandrium tamarense was produced by strain DH46 of the alga-lysing bacterium Alteromonas sp. The culture conditions were optimized using a single-factor test method. Factors including carbon source, nitrogen source, temperature, initial pH value, rotational speed and salinity were studied. The results showed that the cultivation of the bacteria at 28°C and 180 r min-1 with initial pH 7 and 30 salt contcentration favored both the cell growth and the lysing effect of strain DH46. The optimal medium composition for strain DH46 was determined by means of uniform design experimentation, and the most important components influencing the cell density were tryptone, yeast extract, soluble starch, NaNO3 and MgSO4. When the following culture medium was used (tryptone 14.0g, yeast extract 1.63g, soluble starch 5.0 g, NaNO3 1.6 g, MgSO4 2.3 g in 1L), the largest bacterial dry weight (7.36 g L-1) was obtained, which was an enhancement of 107% compared to the initial medium; and the algal lysis rate was as high as 98.4% which increased nearly 10% after optimization.

  7. Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons.

    PubMed

    Golyshin, Peter N; Chernikova, Tatiana N; Abraham, Wolf-Rainer; Lünsdorf, Heinrich; Timmis, Kenneth N; Yakimov, Michail M

    2002-05-01

    A bacterial isolate, ME102T, was obtained from an n-hexadecane enrichment culture of seawater/sediment samples collected in the harbour of Messina (Italy). This gram-negative, aerobic, motile, rod-shaped bacterium used a narrow spectrum of organic compounds, including aliphatic hydrocarbons, alkanoates and alkanoles, as carbon and energy sources. None of the sugars, organic acids or amino acids tested was used. During cultivation on n-alkanes as the sole source of carbon and energy, the cells formed a biofilm on the surface of the alkane droplets. Large-scale (sometimes >50% of the cell mass) intracellular accumulation of alkanoates occurred in cells adsorbed on the alkane surface and under nitrogen-limiting conditions. 16S rRNA gene sequence analysis showed that this isolate represents a distinct lineage in the gamma-Proteobacteria and has about 91% sequence identity to members of Marinobacter and Alcanivorax, the closest genera. Four different types of polar lipid could be detected, phosphatidyl glycerol, phosphatidyl ethylamine, phosphatidyl dimethylethylamine and lipids belonging to an unknown type of phospholipid (m/z between 861 and 879). The principal fatty acids in the polar lipid fatty acid profile were 16:0 and 16:1. The putative gene encoding the key enzyme of alkane catabolism, alkane hydroxylase (AlkB), has been cloned. The protein sequence of the putative AlkB of the isolate ME102T was related to the AlkB of Pseudomonas oleovorans and Alcanivorax borkumensis, showing about 60% sequence identity. On the basis of physiological studies and taking into account the distant phylogenetic position of isolate ME102T relative to previously described organisms, a novel genus and species is proposed, Oleiphilus messinensis gen. nov., sp. nov., within a new family, Oleiphilaceae fam. nov. Strain ME102T (= DSM 13489T = LMG 20357T) is the type and only strain of O. messinensis. PMID:12054256

  8. Physiological and Genetic Description of Dissimilatory Perchlorate Reduction by the Novel Marine Bacterium Arcobacter sp. Strain CAB

    PubMed Central

    Carlström, Charlotte I.; Wang, Ouwei; Melnyk, Ryan A.; Bauer, Stefan; Lee, Joyce; Engelbrektson, Anna; Coates, John D.

    2013-01-01

    ABSTRACT A novel dissimilatory perchlorate-reducing bacterium (DPRB), Arcobacter sp. strain CAB, was isolated from a marina in Berkeley, CA. Phylogenetically, this halophile was most closely related to Arcobacter defluvii strain SW30-2 and Arcobacter ellisii. With acetate as the electron donor, strain CAB completely reduced perchlorate (ClO4−) or chlorate (ClO3−) [collectively designated (per)chlorate] to innocuous chloride (Cl−), likely using the perchlorate reductase (Pcr) and chlorite dismutase (Cld) enzymes. When grown with perchlorate, optimum growth was observed at 25 to 30°C, pH 7, and 3% NaCl. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) preparations were dominated by free-swimming straight rods with 1 to 2 polar flagella per cell. Strain CAB utilized a variety of organic acids, fructose, and hydrogen as electron donors coupled to (per)chlorate reduction. Further, under anoxic growth conditions strain CAB utilized the biogenic oxygen produced as a result of chlorite dismutation to oxidize catechol via the meta-cleavage pathway of aerobic catechol degradation and the catechol 2,3-dioxygenase enzyme. In addition to (per)chlorate, oxygen and nitrate were alternatively used as electron acceptors. The 3.48-Mb draft genome encoded a distinct perchlorate reduction island (PRI) containing several transposases. The genome lacks the pcrC gene, which was previously thought to be essential for (per)chlorate reduction, and appears to use an unrelated Arcobacter c-type cytochrome to perform the same function. PMID:23695836

  9. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton

    PubMed Central

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T.; Tortell, Philippe D.

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETRRCII, mol e- mol RCII-1 s-1) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal – oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETRRCII: CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements. PMID:26171963

  10. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton.

    PubMed

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T; Tortell, Philippe D

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETR(RCII), mol e- mol RCII(-1) s(-1)) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal--oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETR(RCII): CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements. PMID:26171963

  11. Biochemical characterization and structural analysis of a new cold-active and salt-tolerant esterase from the marine bacterium Thalassospira sp.

    PubMed

    De Santi, Concetta; Leiros, Hanna-Kirsti S; Di Scala, Alessia; de Pascale, Donatella; Altermark, Bjørn; Willassen, Nils-Peder

    2016-05-01

    A gene encoding an esterase, ThaEst2349, was identified in the marine psychrophilic bacterium Thalassospira sp. GB04J01. The gene was cloned and overexpressed in E. coli as a His-tagged fusion protein. The recombinant enzyme showed optimal activity at 45 °C and the thermal stability displayed a retention of 75 % relative activity at 40 °C after 2 h. The optimal pH was 8.5 but the enzyme kept more than 75 % of its maximal activity between pH 8.0 and 9.5. ThaEst2349 also showed remarkable tolerance towards high concentrations of salt and it was active against short-chain p-nitrophenyl esters, displaying optimal activity with the acetate. The enzyme was tested for tolerance of organic solvents and the results are suggesting that it could function as an interesting candidate for biotechnological applications. The crystal structure of ThaEst2349 was determined to 1.69 Å revealing an asymmetric unit containing two chains, which also is the biological unit. The structure has a characteristic cap domain and a catalytic triad comprising Ser158, His285 and Asp255. To explain the cold-active nature of the enzyme, we compared it against thermophilic counterparts. Our hypothesis is that a high methionine content, less hydrogen bonds and less ion pairs render the enzyme more flexible at low temperatures. PMID:27016194

  12. Chitoporin from the Marine Bacterium Vibrio harveyi: PROBING THE ESSENTIAL ROLES OF TRP136 AT THE SURFACE OF THE CONSTRICTION ZONE.

    PubMed

    Chumjan, Watcharin; Winterhalter, Mathias; Schulte, Albert; Benz, Roland; Suginta, Wipa

    2015-07-31

    VhChiP is a sugar-specific porin present in the outer membrane of the marine bacterium Vibrio harveyi. VhChiP is responsible for the uptake of chitin oligosaccharides, with particular selectivity for chitohexaose. In this study, we employed electrophysiological and biochemical approaches to demonstrate that Trp(136), located at the mouth of the VhChiP pore, plays an essential role in controlling the channel's ion conductivity, chitin affinity, and permeability. Kinetic analysis of sugar translocation obtained from single channel recordings indicated that the Trp(136) mutations W136A, W136D, W136R, and W136F considerably reduce the binding affinity of the protein channel for its best substrate, chitohexaose. Liposome swelling assays confirmed that the Trp(136) mutations decreased the rate of bulk chitohexaose permeation through the VhChiP channel. Notably, all of the mutants show increases in the off-rate for chitohexaose of up to 20-fold compared with that of the native channel. Furthermore, the cation/anion permeability ratio Pc/Pa is decreased in the W136R mutant and increased in the W136D mutant. This demonstrates that the negatively charged surface at the interior of the protein lumen preferentially attracts cationic species, leading to the cation selectivity of this trimeric channel. PMID:26082491

  13. Indirect Oxidation of Co(II) in the Presence of the Marine Mn(II)-Oxidizing Bacterium Bacillus Sp. Strain SG-1

    SciTech Connect

    Murray, K.J.; Webb, S.M.; Bargar, J.R.; Tebo, B.M.; /Scripps Inst. Oceanography /SLAC, SSRL /Oregon Health Sci. U.

    2009-04-29

    Cobalt(II) oxidation in aquatic environments has been shown to be linked to Mn(II) oxidation, a process primarily mediated by bacteria. This work examines the oxidation of Co(II) by the spore-forming marine Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1, which enzymatically catalyzes the formation of reactive nanoparticulate Mn(IV) oxides. Preparations of these spores were incubated with radiotracers and various amounts of Co(II) and Mn(II), and the rates of Mn(II) and Co(II) oxidation were measured. Inhibition of Mn(II) oxidation by Co(II) and inhibition of Co(II) oxidation by Mn(II) were both found to be competitive. However, from both radiotracer experiments and X-ray spectroscopic measurements, no Co(II) oxidation occurred in the complete absence of Mn(II), suggesting that the Co(II) oxidation observed in these cultures is indirect and that a previous report of enzymatic Co(II) oxidation may have been due to very low levels of contaminating Mn. Our results indicate that the mechanism by which SG-1 oxidizes Co(II) is through the production of the reactive nanoparticulate Mn oxide.

  14. Biochemical and Structural Characterization of a Five-domain GH115 α-Glucuronidase from the Marine Bacterium Saccharophagus degradans 2-40T.

    PubMed

    Wang, Weijun; Yan, Ruoyu; Nocek, Boguslaw P; Vuong, Thu V; Di Leo, Rosa; Xu, Xiaohui; Cui, Hong; Gatenholm, Paul; Toriz, Guillermo; Tenkanen, Maija; Savchenko, Alexei; Master, Emma R

    2016-07-01

    Glucuronic acid (GlcAp) and/or methylglucuronic acid (MeGlcAp) decorate the major forms of xylan in hardwood and coniferous softwoods as well as many cereal grains. Accordingly, the complete utilization of glucuronoxylans or conversion to sugar precursors requires the action of main chain xylanases as well as α-glucuronidases that release the α- (1→2)-linked (Me)GlcAp side groups. Herein, a family GH115 enzymefrom the marine bacterium Saccharophagus degradans 2-40(T), SdeAgu115A, demonstrated activity toward glucuronoxylan and oligomers thereof with preference toward MeGlcAp linked to internal xylopyranosyl residues. Unique biochemical characteristics of NaCl activation were also observed. The crystal structure of SdeAgu115A revealed a five-domain architecture, with an additional insertion C(+) domain that had significant impact on the domain arrangement of SdeAgu115A monomer and its dimerization. The participation of domain C(+) in substrate binding was supported by reduced substrate inhibition upon introducing W773A, W689A, and F696A substitutions within this domain. In addition to Asp-335, the catalytic essentiality of Glu-216 was revealed by site-specific mutagenesis. A primary sequence analysis suggested that the SdeAgu115A architecture is shared by more than half of GH115 members, thus defining a distinct archetype for GH115 enzymes. PMID:27129264

  15. Spectroscopic Characterization and Mechanistic Investigation of P-Methyl Transfer by a Radical SAM Enzyme from the Marine Bacterium Shewanella denitrificans OS217

    PubMed Central

    Allen, Kylie D.; Wang, Susan C

    2014-01-01

    Natural products containing carbon-phosphorus bonds elicit important bioactivity in many organisms. L-phosphinothricin contains the only known naturally-occurring carbon-phosphorus-carbon bond linkage. In actinomycetes, the cobalamin-dependent radical S-adenosyl-L-methionine (SAM) methyltransferase PhpK catalyzes the formation of the second C-P bond to generate the complete C-P-C linkage in phosphinothricin. Here we use electron paramagnetic resonance and nuclear magnetic resonance spectroscopies to characterize and demonstrate the activity of a cobalamin-dependent radical SAM methyltransferase denoted SD_1168 from Shewanella denitrificans OS217, a marine bacterium that has not been reported to synthesize phosphinothricin. Recombinant, refolded, and reconstituted SD_1168 binds a four-iron, four-sulfur cluster that interacts with SAM and cobalamin. In the presence of SAM, a reductant, and methylcobalamin, SD_1168 surprisingly catalyzes the P-methylation of N-acetyl-demethylphosphinothricin and demethylphosphinothricin to produce N-acetyl-phosphinothricin and phosphinothricin, respectively. In addition, this enzyme is active in the absence of methylcobalamin if the strong reductant titanium (III) citrate and hydroxocobalamin are provided. When incubated with [methyl-13C] cobalamin and titanium citrate, both [methyl-13C] and unlabeled N-acetylphosphinothricin are produced. Our results suggest that SD_1168 catalyzes P-methylation using radical SAM-dependent chemistry with cobalamin as a coenzyme. In light of recent genomic information, the discovery of this P-methyltransferase suggests that S. denitrificans produces a phosphinate natural product. PMID:25224746

  16. Assessment of Bioflocculant Production by Bacillus sp. Gilbert, a Marine Bacterium Isolated from the Bottom Sediment of Algoa Bay

    PubMed Central

    Nontembiso, Piyo; Sekelwa, Cosa; Leonard, Mabinya V.; Anthony, Okoh I.

    2011-01-01

    The bioflocculant-producing potentials of a marine bacteria isolated from the bottom sediment of Algoa Bay was investigated using standard methods. The 16S rDNA sequence analysis revealed 98% similarity to that of Bacillus sp. HXG-C1 and the nucleotide sequence was deposited in GenBank as Bacillus sp. Gilbert with accession number HQ537128. Bioflocculant was optimally produced when sucrose (72% flocculating activity) and ammonium chloride (91% flocculating activity) were used as sole sources of carbon and nitrogen, respectively; an initial pH 6.2 of the production medium; and Mg2+ as cation. Chemical analysis of the purified bioflocculant revealed the compound to be a polysaccharide. PMID:21822413

  17. In vitro quenching of fish pathogen Edwardsiella tarda AHL production using marine bacterium Tenacibaculum sp. strain 20J cell extracts.

    PubMed

    Romero, Manuel; Muras, Andrea; Mayer, Celia; Buján, Noemí; Magariños, Beatriz; Otero, Ana

    2014-04-01

    Quorum quenching (QQ) has become an interesting alternative for solving the problem of bacterial antibiotic resistance, especially in the aquaculture industry, since many species of fish-pathogenic bacteria control their virulence factors through quorum sensing (QS) systems mediated by N-acylhomoserine lactones (AHLs). In a screening for bacterial strains with QQ activity in different marine environments, Tenacibaculum sp. strain 20J was identified and selected for its high degradation activity against a wide range of AHLs. In this study, the QQ activity of live cells and crude cell extracts (CCEs) of strain 20J was characterized and the possibilities of the use of CCEs of this strain to quench the production of AHLs in cultures of the fish pathogen Edwardsiella tarda ACC35.1 was explored. E. tarda ACC35.1 produces N-hexanoyl-L-homoserine lactone (C6-HSL) and N-oxohexanoyl-L-homoserine lactone (OC6-HSL). This differs from profiles registered for other E. tarda strains and indicates an important intra-specific variability in AHL production in this species. The CCEs of strain 20J presented a wide-spectrum QQ activity and, unlike Bacillus thuringiensis serovar Berliner ATCC10792 CCEs, were effective in eliminating the AHLs produced in E. tarda ACC35.1 cultures. The fast and wide-spectrum AHL-degradation activity shown by this member of the Cytophaga-Flexibacter-Bacteroidetes group consolidates this strain as a promising candidate for the control of AHL-based QS pathogens, especially in the marine fish farming industry. PMID:24695235

  18. Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae.

    PubMed

    Salunke, Bipinchandra K; Sawant, Shailesh S; Lee, Sang-Ill; Kim, Beom Soo

    2015-07-01

    Microorganisms are one of the most attractive and simple sources for the synthesis of different types of metal nanoparticles. The synthesis of manganese dioxide nanoparticles (MnO2 NPs) by microorganisms from reducing potassium permanganate was investigated for the first time in the present study. The microbial supernatants of the bacterium Saccharophagus degradans ATCC 43961 (Sde 2-40) and of the yeast Saccharomyces cerevisiae showed positive reactions to the synthesis of MnO2 NPs by displaying a change of color in the permanganate solution from purple to yellow. KMnO4-specific peaks also disappeared and MnO2-specific peaks emerged at an absorption maximum of 365 nm in UV-visible spectrophotometry. The washed Sde 2-40 cells did not show any ability to synthesize MnO2 NPs. The medium and medium constituents of Sde 2-40 showed similar positive reactions as supernatants, which indicate the role of the Sde 2-40 medium constituents in the synthesis of MnO2 NPs. This suggests that microorganisms without nanoparticle synthesis ability can be misreported for their abilities to synthesize nanoparticles. S. cerevisiae washed cells showed an ability to synthesize MnO2 NPs. The strategies of keeping yeast cells in tea bags and dialysis membranes showed positive tests for the synthesis of MnO2 NPs. A Fourier transform-infrared spectroscopy study suggested roles for the proteins, alcoholic compounds, and cell walls of S. cerevisiae cells in the synthesis of MnO2 NPs. Electron-dispersive X-ray spectroscopy analyses confirmed the presence of Mn and O in the sample. X-ray photoelectron spectroscopy revealed characteristic binding energies for MnO2 NPs. Transmission electron microscopy micrographs revealed the presence of uniformly dispersed hexagonal- and spherical-shaped particles with an average size of 34.4 nm. The synthesis approach using yeast is possible by a simple reaction at low temperature without any need for catalysts, templates, or expensive and precise equipment

  19. Spongiiferula fulva gen. nov., sp. nov., a Bacterium of the Family Flavobacteriaceae Isolated from a Marine Sponge.

    PubMed

    Yoon, Jaewoo; Adachi, Kyoko; Kasai, Hiroaki

    2016-07-01

    A Gram stain-negative, strictly aerobic, brown-pigmented, non-motile, rod-shaped, chemoheterotrophic bacterial strain-designated A6F-119(T) was isolated from a marine sponge (Rhabdastrella sp.). Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the new strain represented a member of the family Flavobacteriaceae of the phylum Bacteroidetes and that it showed highest sequence similarity (93 %) to Tenacibaculum maritimum NBRC 15946(T). The strain could be differentiated phenotypically from the recognized members of the family Flavobacteriaceae. The DNA G + C content of strain A6F-119(T) was determined to be 30.8 mol%; MK-6 was identified as the major menaquinone; and the presence of iso-C15:0, iso-C17:0 3-OH, and C16:1 ω7c and/or C16:1 ω6c as the major (>10 %) cellular fatty acids. A polar lipid profile was present consisting of phosphatidylethanolamine, an unidentified aminolipid, and three unidentified lipids. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel genus for which the name Spongiiferula fulva gen. nov., sp. nov. is proposed. The type strain of S. fulva is A6F-119(T) (= KCTC 42752(T) = NBRC 111402(T)). PMID:26960291

  20. Transcriptional and translational regulatory responses to iron limitation in the globally distributed marine bacterium Candidatus Pelagibacter ubique

    SciTech Connect

    Smith, Daniel P.; Kitner, J. B.; Norbeck, Angela D.; Clauss, Therese RW; Lipton, Mary S.; Schwalbach, M. S.; Steindler, L.; Nicora, Carrie D.; Smith, Richard D.; Giovannoni, Stephen J.

    2010-05-05

    Abstract Background: Iron is recognized as an important micronutrient that limits microbial plankton productivity over vast regions of the oceans. We investigated the gene expression responses of Candidatus Pelagibacter ubique cultures to iron limitation in natural seawater media supplemented with a siderophore to chelate iron. Methodology/Principal Findings: Microarray data indicated transcription of the periplasmic iron binding protein sfuC increased by 16-fold, and iron transporter subunits, iron-sulfur center assembly genes, and the putative ferroxidase rubrerythrin transcripts increased to a lesser extent. Quantitative peptide mass spectrometry revealed that sfuC protein abundance increased 27-fold, despite an average decrease of 59% across the global proteome. Two RNA-binding proteins, CspE and CspL, correlated well with iron availability, suggesting that they may contribute to the observed differences between the transcriptome and proteome. Conclusions/Significance: We propose sfuC as a marker gene for indicating iron limitation in marine metatranscriptomic and metaproteomic ecological surveys. The marked proteome reduction was not directly correlated to changes in the transcriptome, implicating post-transcriptional regulatory mechanisms as modulators of protein expression. We propose a model in which the RNA-binding activity of cspE and cspL selectively enables protein synthesis of the iron acquisition protein sfuC during transient growth-limiting episodes of iron scarcity.

  1. Biosorption and Biomineralization of U(VI) by the Marine Bacterium Idiomarina loihiensis MAH1: Effect of Background Electrolyte and pH

    PubMed Central

    Morcillo, Fernando; González-Muñoz, María T.; Reitz, Thomas; Romero-González, María E.; Arias, José M.; Merroun, Mohamed L.

    2014-01-01

    The main goal of this study is to compare the effects of pH, uranium concentration, and background electrolyte (seawater and NaClO4 solution) on the speciation of uranium(VI) associated with the marine bacterium Idiomarina loihiensis MAH1. This was done at the molecular level using a multidisciplinary approach combining X-ray Absorption Spectroscopy (XAS), Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS), and High Resolution Transmission Electron Microscopy (HRTEM). We showed that the U(VI)/bacterium interaction mechanism is highly dependent upon pH but also the nature of the used background electrolyte played a role. At neutral conditions and a U concentration ranging from 5·10−4 to 10−5 M (environmentally relevant concentrations), XAS analysis revealed that uranyl phosphate mineral phases, structurally resembling meta-autunite [Ca(UO2)2(PO4)2 2–6H2O] are precipitated at the cell surfaces of the strain MAH1. The formation of this mineral phase is independent of the background solution but U(VI) luminescence lifetime analyses demonstrated that the U(VI) speciation in seawater samples is more intricate, i.e., different complexes were formed under natural conditions. At acidic conditions, pH 2, 3 and 4.3 ([U] = 5·10−4 M, background electrolyte  = 0.1 M NaClO4), the removal of U from solution was due to biosorption to Extracellular Polysaccharides (EPS) and cell wall components as evident from TEM analysis. The LIII-edge XAS and TRLFS studies showed that the biosorption process observed is dependent of pH. The bacterial cell forms a complex with U through organic phosphate groups at pH 2 and via phosphate and carboxyl groups at pH 3 and 4.3, respectively. The differences in the complexes formed between uranium and bacteria on seawater compared to NaClO4 solution demonstrates that the actinide/microbe interactions are influenced by the three studied factors, i.e., the pH, the uranium concentration and the chemical composition of the

  2. Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium.

    PubMed Central

    Asai, Y; Kojima, S; Kato, H; Nishioka, N; Kawagishi, I; Homma, M

    1997-01-01

    The polar flagellum of Vibrio alginolyticus rotates remarkably fast (up to 1,700 revolutions per second) by using a motor driven by sodium ions. Two genes, motX and motY, for the sodium-driven flagellar motor have been identified in marine bacteria, Vibrio parahaemolyticus and V. alginolyticus. They have no similarity to the genes for proton-driven motors, motA and motB, whose products constitute a proton channel. MotX was proposed to be a component of a sodium channel. Here we identified additional sodium motor genes, pomA and pomB, in V. alginolyticus. Unexpectedly, PomA and PomB have similarities to MotA and MotB, respectively, especially in the predicted transmembrane regions. These results suggest that PomA and PomB may be sodium-conducting channel components of the sodium-driven motor and that the motor part consists of the products of at least four genes, pomA, pomB, motX, and motY. Furthermore, swimming speed was controlled by the expression level of the pomA gene, suggesting that newly synthesized PomA proteins, which are components of a force-generating unit, were successively integrated into the defective motor complexes. These findings imply that Na+-driven flagellar motors may have similar structure and function as proton-driven motors, but with some interesting differences as well, and it is possible to compare and study the coupling mechanisms of the sodium and proton ion flux for the force generation. PMID:9260952

  3. [Desulfovibrio hontreensis sp. nov., a Sulfate-Reducing Bacterium Isolated from Marine Biofoulings at the South Vietnam Coastal Area].

    PubMed

    Tarasov, A L; Osipov, G A; Borzenkov, I A

    2015-01-01

    A Desulfovibrio strain physiologically similar to and phylogeneticall related to "D. caledoniensis" SEBR 7250, D. portus MSL79, and D. dechloracetivorans ATCC 700912 (96.9, 95.9, and 95.8% similarity of the 16S rRNA gen sequences, respectively) was isolated from marine biofouling in the coastal zone of the South China Sae (Nha Trang, South Vietnam). The cells of strain ME were gram-negative motile vibrios (0.4-0.6 x 1.3-2 μm) with a single flagellum. The strain grew at 20 to 39 degrees C (growth optimum at 34-37 degrees C), pH 5.8 to 8.5 (pH optimum at 6.8-7.5), and salinity from 0.08 to 1.1 M Na+ (optimum at 0.2-0.3 M Na+). In the presence of sulfate, the strain grew autotrophically with hydrogen or on lactate, formate, pyruvate, fumarate, and malate. Weak growth occurred on succinate, glycerol, and fructose. In the absence of sulfate, the strain was able to ferment pyruvate, malate (weakly), but not lactate. Sulfate, sulfite, thiosulfate, elemental sulfur, and dimethyl sulfoxide were used as electron acceptors. Vitamins and yeast extract were not required for growth. The G+C content was 52.4 mol %. Predominant fatty acids were C18:0 (13.9%), C16:0 (9.6%), iso-C16:0 (9.5%), C18: 1w7 (8.8%), anteiso-C15:0 (8.1%), and iso-C 17:1 (7.2%). The fatty acid composition was close to that of D. dechloracetivorans BO and has some similarity to that of D. portus. Based on its genotypic and phenotypic characteristics, strain ME maybe considered as a new species, for which the name Desulfovibrio hontrensis sp. nov. is proposed. PMID:27169246

  4. Transposon Mutagenesis Identified Chromosomal and Plasmid Genes Essential for Adaptation of the Marine Bacterium Dinoroseobacter shibae to Anaerobic Conditions

    PubMed Central

    Ebert, Matthias; Laaß, Sebastian; Burghartz, Melanie; Petersen, Jörn; Koßmehl, Sebastian; Wöhlbrand, Lars; Rabus, Ralf; Wittmann, Christoph; Jahn, Dieter

    2013-01-01

    Anaerobic growth and survival are integral parts of the life cycle of many marine bacteria. To identify genes essential for the anoxic life of Dinoroseobacter shibae, a transposon library was screened for strains impaired in anaerobic denitrifying growth. Transposon insertions in 35 chromosomal and 18 plasmid genes were detected. The essential contribution of plasmid genes to anaerobic growth was confirmed with plasmid-cured D. shibae strains. A combined transcriptome and proteome approach identified oxygen tension-regulated genes. Transposon insertion sites of a total of 1,527 mutants without an anaerobic growth phenotype were determined to identify anaerobically induced but not essential genes. A surprisingly small overlap of only three genes (napA, phaA, and the Na+/Pi antiporter gene Dshi_0543) between anaerobically essential and induced genes was found. Interestingly, transposon mutations in genes involved in dissimilatory and assimilatory nitrate reduction (napA, nasA) and corresponding cofactor biosynthesis (genomic moaB, moeB, and dsbC and plasmid-carried dsbD and ccmH) were found to cause anaerobic growth defects. In contrast, mutation of anaerobically induced genes encoding proteins required for the later denitrification steps (nirS, nirJ, nosD), dimethyl sulfoxide reduction (dmsA1), and fermentation (pdhB1, arcA, aceE, pta, acs) did not result in decreased anaerobic growth under the conditions tested. Additional essential components (ferredoxin, cccA) of the anaerobic electron transfer chain and central metabolism (pdhB) were identified. Another surprise was the importance of sodium gradient-dependent membrane processes and genomic rearrangements via viruses, transposons, and insertion sequence elements for anaerobic growth. These processes and the observed contributions of cell envelope restructuring (lysM, mipA, fadK), C4-dicarboxylate transport (dctM1, dctM3), and protease functions to anaerobic growth require further investigation to unravel the

  5. Bacillus mesophilus sp. nov., an alginate-degrading bacterium isolated from a soil sample collected from an abandoned marine solar saltern.

    PubMed

    Zhou, Yan-Xia; Liu, Guo-Hong; Liu, Bo; Chen, Guan-Jun; Du, Zong-Jun

    2016-07-01

    A novel Gram-stain positive, endospore-forming bacterium, designated SA4(T), was isolated from a soil sample collected from an abandoned marine solar saltern at Wendeng, Shandong Province, PR China. Cells were observed to be rod shaped, alginase positive, catalase positive and motile. The strain was found to grow at temperatures ranging from 15 to 40 °C (optimum 35 °C), and pH 5.0-11.0 (optimum pH 8.0) with 0-7.0 % (w/v) NaCl concentration (optimum NaCl 3.0 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SA4(T) belongs to the genus Bacillus and exhibits 16S rRNA gene sequence similarities of 96.6, 96.5, 96.3 and 96.2 % with Bacillus horikoshii DSM 8719(T), Bacillus acidicola 105-2(T), Bacillus shackletonii LMG 18435(T) and Bacillus pocheonensis Gsoil 420(T), respectively. The menaquinone was identified as MK-7 and the major polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids detected were anteiso-C15:0 (22.3 %), iso-C15:0 (22.6 %), iso-C16:0 (14.8 %) and iso-C14:0 (14.7 %). The DNA G+C content was determined to be 42.4 mol %. Phenotypic, chemotaxonomic and genotypic properties clearly indicated that isolate SA4(T) represents a novel species within the genus Bacillus, for which the name Bacillus mesophius sp. nov. is proposed. The type strain is SA4(T) (=DSM 101000(T)=CCTCC AB 2015209(T)). PMID:27084709

  6. Vibrio panuliri sp. nov., a marine bacterium isolated from spiny lobster, Panulirus penicillatus and transfer of Vibrio ponticus from Scophthalmi clade to the newly proposed Ponticus clade.

    PubMed

    Kumari, Prabla; Poddar, Abhijit; Schumann, Peter; Das, Subrata K

    2014-12-01

    A novel marine bacterium, strain LBS2(T) was isolated from eggs carried on pleopods of the spiny lobster collected from Andaman Sea. Heterotrophic growth occurred at 1-7% NaCl. 16S rRNA gene sequence similarity revealed the strain LBS2(T) belonged to the genus Vibrio and showed above 97% similarity with eight type strains of the genus Vibrio. Multilocus analysis based on ftsZ, gapA, gyrB, mreB, pyrH recA, rpoA, and topA revealed LBS2(T) formed a separate cluster with Vibrio ponticus DSM 16217(T) with 89.8% multilocus gene sequence similarity. However, strain LBS2(T) is distantly related with other members of the Scophthalmi clade in terms of 16S rRNA signatures, phenotypic variations and multilocus gene sequence similarity, for which we propose LBS2(T) belongs to a new clade i.e. Ponticus clade with V. ponticus DSM 16217(T) as the representative type strain of the clade. DNA-DNA homologies between strain LBS2(T) and closely related strains were well below 70%. DNA G + C content was 45.3 mol%. On the basis of our polyphasic study, strain LBS2(T) represents a novel species of the genus Vibrio, for which the name Vibrio panuliri sp. nov. is proposed. The type strain is LBS2(T) (= JCM 19500(T) = DSM 27724(T) = LMG 27902(T)). PMID:25445014

  7. The endo-β-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: two paralogue enzymes with different molecular organizations and catalytic behaviours

    PubMed Central

    2004-01-01

    Two β-agarase genes, agaA and agaB, were functionally cloned from the marine bacterium Zobellia galactanivorans. The agaA and agaB genes encode proteins of 539 and 353 amino acids respectively, with theoretical masses of 60 and 40 kDa. These two β-agarases feature homologous catalytic domains belonging to family GH-16. However, AgaA displays a modular architecture, consisting of the catalytic domain (AgaAc) and two C-terminal domains of unknown function which are processed during secretion of the enzyme. In contrast, AgaB is composed of the catalytic module and a signal peptide similar to the N-terminal signature of prokaryotic lipoproteins, suggesting that this protein is anchored in the cytoplasmic membrane. Gel filtration and electrospray MS experiments demonstrate that AgaB is a dimer in solution, while AgaAc is a monomeric protein. AgaAc and AgaB were overexpressed in Escherichia coli and purified to homogeneity. Both enzymes cleave the β-(1→4) linkages of agarose in a random manner and with retention of the anomeric configuration. Although they behave similarly towards liquid agarose, AgaAc is more efficient than AgaB in the degradation of agarose gels. Given these organizational and catalytic differences, we propose that, reminiscent of the agarolytic system of Pseudoalteromonas atlantica, AgaA is specialized in the initial attack on solid-phase agarose, while AgaB is involved with the degradation of agarose fragments. PMID:15456406

  8. Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai Trough.

    PubMed

    Toffin, Laurent; Zink, Klaus; Kato, Chiaki; Pignet, Patricia; Bidault, Adeline; Bienvenu, Nadège; Birrien, Jean-Louis; Prieur, Daniel

    2005-01-01

    A piezotolerant, mesophilic, marine lactic acid bacterium (strain LT20T) was isolated from a deep sub-seafloor sediment core collected at Nankai Trough, off the coast of Japan. Cells were Gram-positive, rod-shaped, non-sporulating and non-motile. The NaCl concentration range for growth was 0-120 g l(-1), with the optimum at 10-20 g l(-1). The temperature range for growth at pH 7.0 was 4-50 degrees C, with the optimum at 37-40 degrees C. The optimum pH for growth was 7.0-8.0. The optimum pressure for growth was 0.1 MPa with tolerance up to 30 MPa. The main cellular phospholipids were phosphatidylglycerols (25 %), diphosphatidylglycerols (34 %) and a group of compounds tentatively identified as ammonium-containing phosphatidylserines (32 %); phosphatidylethanolamines (9 %) were minor components. The fatty acid composition was dominated by side chains of 16 : 0, 14 : 0 and 16 : 1. The G+C content of the genomic DNA was 42 mol%. On the basis of 16S rRNA gene sequence analysis and the secondary structure of the V6 region, this organism was found to belong to the genus Marinilactibacillus and was closely related to Marinilactibacillus psychrotolerans M13-2(T) (99 %), Marinilactibacillus sp. strain MJYP.25.24 (99 %) and Alkalibacterium olivapovliticus strain ww2-SN4C (97 %). Despite the high similarity between their 16S rRNA gene sequences (99 %), the DNA-DNA hybridization levels were less than 20 %. On the basis of physiological and genetic characteristics, it is proposed that this organism be classified as a novel species, Marinilactibacillus piezotolerans sp. nov. The type strain is LT20T (=DSM 16108T=JCM 12337T). PMID:15653899

  9. Changing CO2 and the evolution of terrestrial and marine photosynthetic organisms during the terrestrialization process in the Palaeozoic.

    NASA Astrophysics Data System (ADS)

    Vecoli, M.; Strother, P. K.; Servais, T.

    2009-04-01

    sequestration of Corg in organic matter trapped in plant biomass, litter, soils, and buried in sediments, adding up to the better known effect of increased weathering due to the evolution of deep rooting systems during late Devonian time onwards. In this study, we also examined the potential perturbations to the phytoplankton of the mid-Palaeozoic marine realm as CO2(aq) declined and as POM and DOM delivery to the shallow shelf increased nutrient flux to the oceans. We used the fossil record of acritarchs as a proxy for the large phytoplankton of the Palaeozoic. Our data show that the standing diversity of acritarchs (genus-level taxon richness) is highly correlated with the decline in Palaeozoic pCO2 as modelled by Berner and Kothavala (2001); the two curves show the same trends, the acritarch diversity curve being offset, on average, by a -10 my time lag. We propose that the gradual (and not catastrophic as previously assumed) decline in acritarch diversity observed during late Silurian - late Devonian times was causally linked to the decline in dissolved CO2 in the oceans and the associated increase in oceanic pH, which were in turn caused by the falling pCO2 in the atmosphere. These observations appear to link the decline of the acritarchs to the rise of the terrestrial biota through the effect of terrestrialization on pCO2.

  10. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35

    PubMed Central

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control. PMID:26441921

  11. Photosynthetic Pigments in Diatoms.

    PubMed

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-09-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries. PMID:26389924

  12. Photosynthetic Pigments in Diatoms

    PubMed Central

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-01-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries. PMID:26389924

  13. Isolation of Rhp-PSP, a member of YER057c/YjgF/UK114 protein family with antiviral properties, from the photosynthetic bacterium Rhodopseudomonas palustris strain JSC-3b

    PubMed Central

    Su, Pin; Feng, Tuizi; Zhou, Xuguo; Zhang, Songbai; Zhang, Yu; Cheng, Ju’e; Luo, Yuanhua; Peng, Jing; Zhang, Zhuo; Lu, Xiangyang; Zhang, Deyong; Liu, Yong

    2015-01-01

    Rhodopseudomonas palustris strain JSC-3b isolated from a water canal adjacent to a vegetable field produces a protein that was purified by bioactivity-guided fractionation based on ammonium sulfate precipitation, ion-exchange absorption and size exclusion. The protein was further identified as an endoribonuclease L-PSP (Liver-Perchloric acid-soluble protein) by shotgun mass spectrometry analysis and gene identification, and it is member of YER057c/YjgF/UK114 protein family. Herein, this protein is designated Rhp-PSP. Rhp-PSP exhibited significant inhibitory activities against tobacco mosaic virus (TMV) in vivo and in vitro. To our knowledge, this represents the first report on the antiviral activity of a protein of the YER057c/YjgF/UK114 family and also the first antiviral protein isolated from R. palustris. Our research provides insight into the potential of photosynthetic bacterial resources in biological control of plant virus diseases and sustainable agriculture. PMID:26530252

  14. Anticancer potential of pyrrole (1, 2, a) pyrazine 1, 4, dione, hexahydro 3-(2-methyl propyl) (PPDHMP) extracted from a new marine bacterium, Staphylococcus sp. strain MB30.

    PubMed

    Lalitha, P; Veena, V; Vidhyapriya, P; Lakshmi, Pragna; Krishna, R; Sakthivel, N

    2016-05-01

    Marine bacterium, strain MB30 isolated from the deep sea sediment of Bay of Bengal, India, exhibited antimicrobial activity against human pathogenic bacteria. Based on the 16S rRNA sequence homology and subsequent phylogenetic tree analysis, the strain MB30 was identified as Staphylococcus sp. The bioactive metabolite produced by the strain MB30 was purified through silica gel column chromatography and preparative HPLC. Purified metabolite was further characterized by FT-IR, LC-MS and NMR analyses. On the basis of spectroscopic data, the metabolite was identified as pyrrole (1, 2, a) pyrazine 1, 4, dione, hexahydro 3-(2-methyl propyl) (PPDHMP). The PPDHMP exhibited in vitro anticancer potential against lung (A549) and cervical (HeLa) cancer cells in a dose-dependent manner with the IC50 concentration of 19.94 ± 1.23 and 16.73 ± 1.78 μg ml(-1) respectively. The acridine orange (AO)/ethidium bromide (EB) and 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining of the IC50 concentration of PPDHMP-treated cancer cells exhibited an array of morphological changes such as nuclear condensation, cell shrinkage and formation of apoptotic bodies. The PPDHMP-treated cancer cells induced the progressive accumulation of fragmented DNA in a time-dependent manner. Based on the flow cytometric analysis, it has become evident that the compound was also effective in arresting the cell cycle at G1 phase. Further, the Western blotting analysis confirmed the down-regulation of cyclin-D1, cyclin dependent kinase (CDK-2), anti-apoptotic Bcl-2 family proteins (Bcl-2 and Bcl-xL), activation of caspase-9 and 3 with the cleavage of PARP. The PPDHMP-treated cancer cells also showed the inhibition of migration and invasive capacity of cancer cells. In the present investigation, for the first time, we have reported the extraction, purification and characterization of an anticancer metabolite, PPDHMP from a new marine bacterium, Staphylococcus sp. strain MB30. PMID:26852140

  15. Fed-batch cultivation of the marine bacterium Sulfitobacter pontiacus using immobilized substrate and purification of sulfite oxidase by application of membrane adsorber technology.

    PubMed

    Muffler, Kai; Ulber, Roland

    2008-03-01

    Sulfitobacter pontiacus, a gram-negative heterotrophic bacterium isolated from the Black Sea is well known to produce a soluble AMP-independent sulfite oxidase (sulfite: acceptor oxidoreductase) of high activity. Such an enzyme can be of great help in establishing biosensor systems for detection of sulfite in food and beverages considering the high sensitivity of biosensors and the increasing demand for such biosensor devices. For obtaining efficient amounts of the enzyme, an induction of its biosynthesis by supplementing sufficient concentrations of sodium sulfite to the fermentation broth is required. Owing to the fact that a high initial concentration of sodium sulfite decreases dramatically the enzyme expression, different fed-batch strategies can be applied to circumvent such inhibition or repression of the enzyme respectively. By the use of sulfite species immobilized in polyvinyl alcohol gels, an approach to the controlled and continuous feeding of sulfite to the cultivation media could be established to diminish inhibitory concentrations. Furthermore, the purification of the enzyme is described by using membrane adsorber technology. PMID:17705251

  16. Isolation of an algicide from a marine bacterium and its effects against the toxic dinoflagellate Alexandrium catenella and other harmful algal bloom species.

    PubMed

    Kim, Yun Sook; Son, Hong-Joo; Jeong, Seong-Yun

    2015-08-01

    The aim of this study was to isolate and identify bacteria demonstrating an algicidal effect against Alexandrium catenella and to determine the activity and range of any algicide discovered. The morphological and biochemical attributes of an algicidal bacterium, isolate YS-3, and analysis of its 16S rRNA gene sequence revealed it to be a member of the genus Brachybacterium. This organism, designated Brachybacterium sp. YS-3, showed the greatest effect against A. catenella cells of all bacteria isolated, and is assumed to produce secondary metabolites. When 10% solutions of culture filtrates from this strain were applied to A. catenella cultures, over 90% of cells were killed within 9 h. Bioassay-guided isolation of the algicide involved led to the purification and identification of an active compound. Based on physicochemical and spectroscopic data, including nuclear magnetic resonance and mass analyses, this compound was identified as 1-acetyl-β-carboline. This algicide showed significant activity against A. catenella and a wide range of harmful algal bloom (HAB)-forming species. Taken together, our results suggest that Brachybacterium sp. YS-3 and its algicide represent promising candidates for use in HAB control. PMID:26224453

  17. Analysis of defence systems and a conjugative IncP-1 plasmid in the marine polyaromatic hydrocarbons-degrading bacterium Cycloclasticus sp. 78-ME.

    PubMed

    Yakimov, Michail M; Crisafi, Francesca; Messina, Enzo; Smedile, Francesco; Lopatina, Anna; Denaro, Renata; Pieper, Dietmar H; Golyshin, Peter N; Giuliano, Laura

    2016-08-01

    Marine prokaryotes have evolved a broad repertoire of defence systems to protect their genomes from lateral gene transfer including innate or acquired immune systems and infection-induced programmed cell suicide and dormancy. Here we report on the analysis of multiple defence systems present in the genome of the strain Cycloclasticus sp. 78-ME isolated from petroleum deposits of the tanker 'Amoco Milford Haven'. Cycloclasticus are ubiquitous bacteria globally important in polyaromatic hydrocarbons degradation in marine environments. Two 'defence islands' were identified in 78-ME genome: the first harbouring CRISPR-Cas with toxin-antitoxin system, while the second was composed by an array of genes for toxin-antitoxin and restriction-modification proteins. Among all identified spacers of CRISPR-Cas system only seven spacers match sequences of phages and plasmids. Furthermore, a conjugative plasmid p7ME01, which belongs to a new IncP-1θ ancestral archetype without any accessory mobile elements was found in 78-ME. Our results provide the context to the co-occurrence of diverse defence mechanisms in the genome of Cycloclasticus sp. 78-ME, which protect the genome of this highly specialized PAH-degrader. This study contributes to the further understanding of complex networks established in petroleum-based microbial communities. PMID:27345842

  18. The marine bacterium Marinobacter hydrocarbonoclasticus SP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles.

    PubMed

    Mounier, Julie; Camus, Arantxa; Mitteau, Isabelle; Vaysse, Pierre-Joseph; Goulas, Philippe; Grimaud, Régis; Sivadon, Pierre

    2014-12-01

    Hydrophobic organic compounds (mainly lipids and hydrocarbons) represent a significant part of the organic matter in marine waters, and their degradation has an important impact in the carbon fluxes within oceans. However, because they are nearly insoluble in the water phase, their degradation by microorganisms occurs at the interface with water and thus requires specific adaptations such as biofilm formation. We show that Marinobacter hydrocarbonoclasticus SP17 develops biofilms, referred to as oleolytic biofilms, on a large variety of hydrophobic substrates, including hydrocarbons, fatty alcohols, fatty acids, triglycerides, and wax esters. Microarray analysis revealed that biofilm growth on n-hexadecane or triolein involved distinct genetic responses, together with a core of common genes that might concern general mechanisms of biofilm formation. Biofilm growth on triolein modulated the expression of hundreds of genes in comparison with n-hexadecane. The processes related to primary metabolism and genetic information processing were downregulated. Most of the genes that were overexpressed on triolein had unknown functions. Surprisingly, their genome localization was restricted to a few regions identified as putative genomic islands or mobile elements. These results are discussed with regard to the adaptive responses triggered by M. hydrocarbonoclasticus SP17 to occupy a specific niche in marine ecosystems. PMID:25318592

  19. Flavimarina pacifica gen. nov., sp. nov., a new marine bacterium of the family Flavobacteriaceae, and emended descriptions of the genus Leeuwenhoekiella, Leeuwenhoekiella aequorea and Leeuwenhoekiella marinoflava.

    PubMed

    Nedashkovskaya, Olga I; Kukhlevskiy, Andrey D; Zhukova, Natalia V; Kim, Seung Bum

    2014-09-01

    A facultatively anaerobic, Gram-stain negative, rod-shaped and yellow pigmented bacterium, designated strain IDSW-73(T), was isolated from a seawater sample and subjected to a polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the novel strain formed a distinct phyletic line in the family Flavobacteriaceae and is most closely related to the members of the genus Leeuwenhoekiella, with 16S rRNA gene sequence similarity of 91.4-92.6 %. Strain IDSW-73(T) was found to be able to grow with 0-12 % NaCl and at 4-33 °C; and was able to hydrolyse gelatin, starch and Tweens 20, 40 and 80. The DNA G+C content was determined to be 42.2 mol%. The predominant cellular fatty acids were identified as branched-chain saturated and unsaturated and straight-chain unsaturated fatty acids such as iso-C15:0, iso-C15:1, iso-C17:1 ω9c, C15:1 ω6c, iso-C15:0 3-OH, iso-C17:0 3-OH and summed feature 3 (as defined by MIDI), comprising iso-C15:0 2-OH and/or C16:1 ω7c. The polar lipids found were phosphatidylethanolamine, two unknown aminolipids and one unknown lipid. The major respiratory quinone was identified as MK-6. The significant molecular distinctiveness between the novel isolate and its nearest neighbours were strongly supported by notable differences in physiological and biochemical tests. Therefore, strain IDSW-73(T) is considered to represent a novel genus and species within the family Flavobacteriaceae, for which the name Flavimarina pacifica gen. nov., sp. nov. is proposed. The type strain is IDSW-73(T) (=KCTC 32466(T) = KMM 6759(T)). Emended descriptions of the recognized species of the genus Leeuwenhoekiella are also proposed. PMID:24929933

  20. N-Terminal-oriented Proteogenomics of the Marine Bacterium Roseobacter Denitrificans Och114 using N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) Labeling and Diagonal Chromatography*

    PubMed Central

    Bland, Céline; Hartmann, Erica M.; Christie-Oleza, Joseph A.; Fernandez, Bernard; Armengaud, Jean

    2014-01-01

    Given the ease of whole genome sequencing with next-generation sequencers, structural and functional gene annotation is now purely based on automated prediction. However, errors in gene structure are frequent, the correct determination of start codons being one of the main concerns. Here, we combine protein N termini derivatization using (N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP Ac-OSu) as a labeling reagent with the COmbined FRActional DIagonal Chromatography (COFRADIC) sorting method to enrich labeled N-terminal peptides for mass spectrometry detection. Protein digestion was performed in parallel with three proteases to obtain a reliable automatic validation of protein N termini. The analysis of these N-terminal enriched fractions by high-resolution tandem mass spectrometry allowed the annotation refinement of 534 proteins of the model marine bacterium Roseobacter denitrificans OCh114. This study is especially efficient regarding mass spectrometry analytical time. From the 534 validated N termini, 480 confirmed existing gene annotations, 41 highlighted erroneous start codon annotations, five revealed totally new mis-annotated genes; the mass spectrometry data also suggested the existence of multiple start sites for eight different genes, a result that challenges the current view of protein translation initiation. Finally, we identified several proteins for which classical genome homology-driven annotation was inconsistent, questioning the validity of automatic annotation pipelines and emphasizing the need for complementary proteomic data. All data have been deposited to the ProteomeXchange with identifier PXD000337. PMID:24536027

  1. Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound-degrading, sulfate-reducing bacterium.

    PubMed

    Wöhlbrand, Lars; Jacob, Jacob H; Kube, Michael; Mussmann, Marc; Jarling, René; Beck, Alfred; Amann, Rudolf; Wilkes, Heinz; Reinhardt, Richard; Rabus, Ralf

    2013-05-01

    Among the dominant deltaproteobacterial sulfate-reducing bacteria (SRB), members of the genus Desulfobacula are not only present in (hydrocarbon-rich) marine sediments, but occur also frequently in the anoxic water bodies encountered in marine upwelling areas. Here, we present the 5.2 Mbp genome of Desulfobacula toluolica Tol2, which is the first of an aromatic compound-degrading, marine SRB. The genome has apparently been shaped by viral attacks (e.g. CRISPRs) and its high plasticity is reflected by 163 detected genes related to transposases and integrases, a total of 494 paralogous genes and 24 group II introns. Prediction of the catabolic network of strain Tol2 was refined by differential proteome and metabolite analysis of substrate-adapted cells. Toluene and p-cresol are degraded by separate suites of specific enzymes for initial arylsuccinate formation via addition to fumarate (p-cresol-specific enzyme HbsA represents a new phylogenetic branch) as well as for subsequent modified β-oxidation of arylsuccinates to the central intermediate benzoyl-CoA. Proteogenomic evidence suggests specific electron transfer (EtfAB) and membrane proteins to channel electrons from dehydrogenation of both arylsuccinates directly to the membrane redox pool. In contrast to the known anaerobic degradation pathways in other bacteria, strain Tol2 deaminates phenylalanine non-oxidatively to cinnamate by phenylalanine ammonia-lyase and subsequently forms phenylacetate (both metabolites identified in (13) C-labelling experiments). Benzoate degradation involves CoA activation, reductive dearomatization by a class II benzoyl-CoA reductase and hydrolytic ring cleavage as found in the obligate anaerobe Geobacter metallireducens GS-15. The catabolic sub-proteomes displayed high substrate specificity, reflecting the genomically predicted complex and fine-tuned regulatory network of strain Tol2. Despite the genetic equipment for a TCA cycle, proteomic evidence supports complete oxidation of

  2. A marine inducible prophage vB_CibM-P1 isolated from the aerobic anoxygenic phototrophic bacterium Citromicrobium bathyomarinum JL354

    NASA Astrophysics Data System (ADS)

    Zheng, Qiang; Zhang, Rui; Xu, Yongle; , Richard Allen White, III; Wang, Yu; Luo, Tingwei; Jiao, Nianzhi

    2014-11-01

    A prophage vB_CibM-P1 was induced by mitomycin C from the epipelagic strain Citromicrobium bathyomarinum JL354, a member of the alpha-IV subcluster of marine aerobic anoxygenic phototrophic bacteria (AAPB). The induced bacteriophage vB_CibM-P1 had Myoviridae-like morphology and polyhedral heads (approximately capsid 60-100 nm) with tail fibers. The vB_CibM-P1 genome is ~38 kb in size, with 66.0% GC content. The genome contains 58 proposed open reading frames that are involved in integration, DNA packaging, morphogenesis and bacterial lysis. VB_CibM-P1 is a temperate phage that can be directly induced in hosts. In response to mitomycin C induction, virus-like particles can increase to 7 × 109 per ml, while host cells decrease an order of magnitude. The vB_CibM-P1 bacteriophage is the first inducible prophage from AAPB.

  3. Leuconostoc gasicomitatum is the dominating lactic acid bacterium in retail modified-atmosphere-packaged marinated broiler meat strips on sell-by-day.

    PubMed

    Susiluoto, Tuija; Korkeala, Hannu; Björkroth, K Johanna

    2003-01-15

    Lactic acid bacteria (LAB) in retail, modified-atmosphere-packaged (MAP), marinated broiler meat strips on sell-by-day were mainly identified as Leuconostoc gasicomitatum. A total of 32 packages, three to five packages of seven differently marinated broiler meat products, were studied at the end of the producer-defined shelf life (at 6 degrees C, 7-9 days depending on the manufacturer). Prior to the microbiological analyses, appearance and smell of the product was checked and pH measured. Bacteria were cultured on MRS and Tomato Juice Agar (TJA), Rogosa SL agar (SLA), Plate Count Agar (PCA) and Streptomycin Thallium Acetate Agar (STAA) for the enumeration of LAB, lactobacilli, total bacterial count and Brochothrix thermosphacta, respectively. The average CFU/g of the 32 packages was 2.3 x 10(8) on PCA. The highest bacterial average, 3.1 x 10(8), was recovered on TJA, the corresponding CFU/g averages on MRS and SLA being 2.3 x 10(8) and 1.3 x 10(8), respectively. Despite the high LAB numbers detected, radical spoilage changes such as unpleasant odor, slime production and formation of gas were not seen. B. thermosphacta did not form a significant part of the bacterial population since none of the levels exceeded the spoilage threshold level of 10(5) CFU/g reported in previous studies for this organism. In order to characterize the dominating LAB population, as many as 85, 85 and 88 colonies from MRS, TJA and SLA, respectively, were randomly picked and cultured pure. LAB were identified to species level using a 16 and 23S rDNA HindIiI RFLP (ribotyping) database. Fifty-six of the 170 isolates picked from the non-selective LAB media (MRS and TJA) were identified as L. gasicomitatum, followed by Carnobacterium divergens (41 isolates), Lactobacillus sakei and Lactobacillus curvatus subsp. melibiosus (31 isolates) and L. curvatus subsp. curvatus (20 isolates) species. SLA proved not to be completely selective for lactobacilli because the growth of Leuconostoc spp. was not

  4. Gageopeptins A and B, new inhibitors of zoospore motility of the phytopathogen Phytophthora capsici from a marine-derived bacterium Bacillus sp. 109GGC020.

    PubMed

    Tareq, Fakir Shahidullah; Hasan, Choudhury M; Lee, Hyi-Seung; Lee, Yeon-Ju; Lee, Jong Seok; Surovy, Musrat Zahan; Islam, Md Tofazzal; Shin, Hee Jae

    2015-08-15

    The motility of zoospores is critical in the disease cycles of the peronosporomycetes that cause devastating diseases in plants, fishes, vertebrates, and microbes. In the course of screening for secondary metabolites regulating the motility of zoospores of Phytophthora capsici, we discovered two new inhibitors from the ethyl acetate extract of the fermentation broth of a marine-derived strain Bacillus sp. 109GGC020. The structures of these novel metabolites were elucidated as new cyclic lipopeptides and named gageopeptins A (1) and B (2) by spectroscopic analyses including high resolution MS and extensive 1D and 2D NMR. The stereoconfigurations of 1 and 2 were assigned based on the chemical derivatization studies and reviews of the literature data. Although compounds 1 and 2 impaired the motility of zoospores of P. capsici in dose- and time-dependent manners, compound 1 (IC50 = 1 μg/ml) was an approximately 400-fold stronger motility inhibitor than 2 (IC50 = 400 μg/ml). Interestingly, the zoospores halted by compound 1 were subsequently lysed at higher concentrations (IC50 = 50 μg/ml). Compounds 1 and 2 were also tested against some bacteria and fungi by broth dilution assay, and exhibited moderate antibacterial and good antifungal activities. PMID:26071635

  5. Modulation of violacein production and phenotypes associated with biofilm by exogenous quorum sensing N-acylhomoserine lactones in the marine bacterium Pseudoalteromonas ulvae TC14.

    PubMed

    Mireille Ayé, Armande; Bonnin-Jusserand, Maryse; Brian-Jaisson, Florence; Ortalo-Magné, Annick; Culioli, Gérald; Koffi Nevry, Rose; Rabah, Nadia; Blache, Yves; Molmeret, Maëlle

    2015-10-01

    Various phenotypes ranging from biofilm formation to pigment production have been shown to be regulated by quorum sensing (QS) in many bacteria. However, studies of the regulation of pigments produced by marine bacteria in saline conditions and of biofilm-associated phenotypes are scarcer. This study focuses on the demonstration of the existence of a QS communication system involving N-acylhomoserine lactones (AHLs) in the Mediterranean Sea strain Pseudoalteromonas ulvae TC14. We have investigated whether TC14 produces the violacein pigment, and whether intrinsic or exogenous AHLs could influence its production and modulate biofilm-associated phenotypes. Here, we demonstrate that the purple pigment produced by TC14 is violacein. The study shows that in planktonic conditions, TC14 produces more pigment in the medium in which it grows less. Using different approaches, the results also show that TC14 does not produce intrinsic AHLs in our conditions. When exogenous AHLs are added in planktonic conditions, the production of violacein is upregulated by C6-, C12-, 3-oxo-C8 and 3-oxo-C12-HSLs (homoserine lactones), and downregulated by 3-oxo-C6-HSL. In sessile conditions, 3-oxo-C8-HSL upregulates the production of violacein. The study of the biofilm-associated phenotypes shows that oxo-derived-HSLs decrease adhesion, swimming and biofilm formation. While 3-oxo-C8 and 3-oxo-C12-HSLs decrease both swimming and adhesion, 3-oxo-C6-HSLs decrease not only violacein production in planktonic conditions but also swimming, adhesion and more subtly biofilm formation. Therefore, TC14 may possess a functional LuxR-type QS receptor capable of sensing extrinsic AHLs, which controls violacein production, motility, adhesion and biofilm formation. PMID:26318530

  6. Substrate Recognition and Hydrolysis by a Family 50 exo-β-Agarase, Aga50D, from the Marine Bacterium Saccharophagus degradans*

    PubMed Central

    Pluvinage, Benjamin; Hehemann, Jan-Hendrik; Boraston, Alisdair B.

    2013-01-01

    The bacteria that metabolize agarose use multiple enzymes of complementary specificities to hydrolyze the glycosidic linkages in agarose, a linear polymer comprising the repeating disaccharide subunit of neoagarobiose (3,6-anhydro-l-galactose-α-(1,3)-d-galactose) that are β-(1,4)-linked. Here we present the crystal structure of a glycoside hydrolase family 50 exo-β-agarase, Aga50D, from the marine microbe Saccharophagus degradans. This enzyme catalyzes a critical step in the metabolism of agarose by S. degradans through cleaving agarose oligomers into neoagarobiose products that can be further processed into monomers. The crystal structure of Aga50D to 1.9 Å resolution reveals a (β/α)8-barrel fold that is elaborated with a β-sandwich domain and extensive loops. The structures of catalytically inactivated Aga50D in complex with non-hydrolyzed neoagarotetraose (2.05 Å resolution) and neoagarooctaose (2.30 Å resolution) provide views of Michaelis complexes for a β-agarase. In these structures, the d-galactose residue in the −1 subsite is distorted into a 1S3 skew boat conformation. The relative positioning of the putative catalytic residues are most consistent with a retaining catalytic mechanism. Additionally, the neoagarooctaose complex showed that this extended substrate made substantial interactions with the β-sandwich domain, which resembles a carbohydrate-binding module, thus creating additional plus (+) subsites and funneling the polymeric substrate through the tunnel-shaped active site. A synthesis of these results in combination with an additional neoagarobiose product complex suggests a potential exo-processive mode of action of Aga50D on the agarose double helix. PMID:23921382

  7. Discovery and Characterization of a Distinctive Exo-1,3/1,4-β-Glucanase from the Marine Bacterium Pseudoalteromonas sp. Strain BB1▿ †

    PubMed Central

    Nakatani, Yoshio; Lamont, Iain L.; Cutfield, John F.

    2010-01-01

    Marine bacteria residing on local red, green, and brown seaweeds were screened for exo-1,3-β-glucanase (ExoP) activity. Of the 90 bacterial species isolated from 32 seaweeds, only one, a Pseudoalteromonas sp., was found to display such activity. It was isolated from a Durvillaea sp., a brown kelp known to contain significant amounts of the storage polysaccharide laminarin (1,3-β-d-glucan with some 1,6-β branching). Four chromatographic steps were utilized to purify the enzyme (ExoP). Chymotryptic digestion provided peptide sequences for primer design and subsequent gene cloning. The exoP gene coded for 840 amino acids and was located just 50 bp downstream from a putative lichenase (endo-1,3-1,4-β-glucanase) gene, suggesting possible cotranscription of these genes. Sequence comparisons revealed ExoP to be clustered within a group of bacterial glycosidases with high similarity to a group of glycoside hydrolase (GH3) plant enzymes, of which the barley exo-1,3/1,4-β-glucanase (ExoI) is the best characterized. The major difference between the bacterial and plant proteins is an extra 200- to 220-amino-acid extension at the C terminus of the former. This additional sequence does not correlate with any known functional domain, but ExoP was not active against laminarin when this region was removed. Production of recombinant ExoP allowed substrate specificity studies to be performed. The enzyme was found to possess similar levels of exoglucanase activity against both 1,4-β linkages and 1,3-β linkages, and so ExoP is designated an exo-1,3/1,4-β-exoglucanase, the first such bacterial enzyme to be characterized. This broader specificity could allow the enzyme to assist in digesting both cell wall cellulose and cytoplasmic laminarin. PMID:20729316

  8. Substrate recognition and hydrolysis by a family 50 exo-β-agarase, Aga50D, from the marine bacterium Saccharophagus degradans.

    PubMed

    Pluvinage, Benjamin; Hehemann, Jan-Hendrik; Boraston, Alisdair B

    2013-09-27

    The bacteria that metabolize agarose use multiple enzymes of complementary specificities to hydrolyze the glycosidic linkages in agarose, a linear polymer comprising the repeating disaccharide subunit of neoagarobiose (3,6-anhydro-l-galactose-α-(1,3)-d-galactose) that are β-(1,4)-linked. Here we present the crystal structure of a glycoside hydrolase family 50 exo-β-agarase, Aga50D, from the marine microbe Saccharophagus degradans. This enzyme catalyzes a critical step in the metabolism of agarose by S. degradans through cleaving agarose oligomers into neoagarobiose products that can be further processed into monomers. The crystal structure of Aga50D to 1.9 Å resolution reveals a (β/α)8-barrel fold that is elaborated with a β-sandwich domain and extensive loops. The structures of catalytically inactivated Aga50D in complex with non-hydrolyzed neoagarotetraose (2.05 Å resolution) and neoagarooctaose (2.30 Å resolution) provide views of Michaelis complexes for a β-agarase. In these structures, the d-galactose residue in the -1 subsite is distorted into a (1)S3 skew boat conformation. The relative positioning of the putative catalytic residues are most consistent with a retaining catalytic mechanism. Additionally, the neoagarooctaose complex showed that this extended substrate made substantial interactions with the β-sandwich domain, which resembles a carbohydrate-binding module, thus creating additional plus (+) subsites and funneling the polymeric substrate through the tunnel-shaped active site. A synthesis of these results in combination with an additional neoagarobiose product complex suggests a potential exo-processive mode of action of Aga50D on the agarose double helix. PMID:23921382

  9. Carbon monoxide metabolism by the photosynthetic bacterium Rhodospirillum rubrum

    SciTech Connect

    Ludden, P.W.; Roberts, G.P.

    1991-01-01

    Research continued on carbon monoxide metabolism by Rhodospirillum rubrum. In the past year, progress was made in: (1) the identification and isolation of the physiological electron carrier from monoxide dehydrogenase (CODH) to hydrogenase in R. rubrum; (2) the isolation, sequencing and mutagenesis of the genes encoding the components of the CO oxidation system in R. rubrum, (3) the purification and characterization of the CO-induced hydrogenase activity of R. rubrum; (4) the spectroscopic investigation of the cobalt-substituted form of the enzyme.

  10. Aii20J, a wide-spectrum thermostable N-acylhomoserine lactonase from the marine bacterium Tenacibaculum sp. 20J, can quench AHL-mediated acid resistance in Escherichia coli.

    PubMed

    Mayer, C; Romero, M; Muras, A; Otero, A

    2015-11-01

    Acyl homoserine lactones (AHLs) are produced by many Gram-negative bacteria to coordinate gene expression in cellular density dependent mechanisms known as quorum sensing (QS). Since the disruption of the communication systems significantly reduces virulence, the inhibition of quorumsensing processes or quorum quenching (QQ) represents an interesting anti-pathogenic strategy to control bacterial infections. Escherichia coli does not produce AHLs but possesses an orphan AHL receptor, SdiA, which is thought to be able to sense the QS signals produced by other bacteria and controls important traits as the expression of glutamate-dependent acid resistance mechanism, therefore constituting a putative target for QQ. A novel AHL-lactonase, named Aii20J, has been identified, cloned and over expressed from the marine bacterium Tenacibaculum sp. strain 20 J presenting a wide-spectrum QQ activity. The enzyme, belonging to the metallo-β-lactamase family, shares less than 31 % identity with the lactonase AiiA from Bacillus spp. Aii20J presents a much higher specific activity than the Bacillus enzyme, maintains its activity after incubation at 100 ºC for 10 minutes, is resistant to protease K and α-chymotrypsin, and is unaffected by wide ranges of pH. The addition of Aii20J (20 μg/mL) to cultures of E. coli K-12 to which OC6-HSL was added resulted in a significant reduction in cell viability in comparison with the acidresistant cultures derived from the presence of the signal. Results confirm the interaction between AHLs and SdiA in E. coli for the expression of virulence-related genes and reveal the potential use of Aii20J as anti-virulence strategy against important bacterial pathogens and in other biotechnological applications. PMID:26092757

  11. Oxygen dynamics in photosynthetic membranes.

    NASA Astrophysics Data System (ADS)

    Savikhin, Sergei; Kihara, Shigeharu

    2008-03-01

    Production of oxygen by oxygenic photosynthetic organisms is expected to raise oxygen concentration within their photosynthetic membranes above normal aerobic values. These raised levels of oxygen may affect function of many proteins within photosynthetic cells. However, experiments on proteins in vitro are usually performed in aerobic (or anaerobic) conditions since the oxygen content of a membrane is not known. Using theory of diffusion and measured oxygen production rates we estimated the excess levels of oxygen in functioning photosynthetic cells. We show that for an individual photosynthetic cell suspended in water oxygen level is essentially the same as that for a non-photosynthetic sell. These data suggest that oxygen protection mechanisms may have evolved after the development of oxygenic photosynthesis in primitive bacteria and was driven by the overall rise of oxygen concentration in the atmosphere. Substantially higher levels of oxygen are estimated to occur in closely packed colonies of photosynthetic bacteria and in green leafs.

  12. Phosphofructokinase Activities in Photosynthetic Organisms 1

    PubMed Central

    Carnal, Nancy Wieland; Black, Clanton C.

    1983-01-01

    A pyrophosphate-dependent phosphofructokinase (PPi-PFK) activity is detectable in extracts of a wide variety of primitive and advanced plants, the Charalean algae, and in the photosynthetic bacterium, Rhodospirillum rubrum. Angiosperms with extractable PPi-PFK activities 4- to 70-fold higher than the respective ATP-PFK activities tend to be succulent and to exhibit CAM. Even though PPi-PFK activity is not detected in crude extracts of some well known CAM plants, e.g. plants in the Crassulaceae, gel filtration of the extract and/or inclusion of the PPi-PFK activator, fructose 2,6-bisphosphate, in the assay reveals that a PPi-PFK activity is present in these species. Fructose 2,6-bisphosphate likewise activates PPi-PFK activities in extracts of C3 and C4 plants. C3 and C4 plant PPi-PFK activities are roughly equivalent to ATP-PFK activities in the same species. PPi-PFK activity is also detected in some bryophytes, lower vascular plants, ferns, and gymnosperms. The Charophytes, advanced algae presumed to be similar to species ancestral to vascular plants, exhibit at least 4-fold higher PPi-PFK than ATP-PFK activities. R. rubrum also exhibits a much higher PPi-PFK activity than ATP-PFK activity. These data indicate that PPi-PFK may serve as an alternate enzyme to ATP-PFK in glycolysis in a wide range of photosynthetic organisms. PMID:16662776

  13. Structure-function studies of the photosynthetic reaction center using herbicides that compete for the quinone binding site

    SciTech Connect

    Bylina, E.J.

    1995-12-31

    Certain classes of herbicides act as competitive inhibitors of the photosynthetic reaction center. Genetic engineering techniques can be used to generate photosynthetic reaction centers which contain altered quinone binding sites. A genetic system for rapidly screening herbicides developed in the photosynthetic bacterium Rhodobacter capsulatus has been used to examine the effect of different s-triazine herbicides on the growth of bacteria containing reaction centers with altered quinone binding sites. Structural insights into herbicide binding have been obtained by determining the level of resistance or sensitivity to structurally related herbicides in these modified reaction centers.

  14. The Photosynthetic Cycle

    DOE R&D Accomplishments Database

    Calvin, Melvin

    1955-03-21

    A cyclic sequence of transformations, including the carboxylation of RuDP (ribulose diphosphate) and its re-formation, has been deduced as the route for the creation of reduced carbon compounds in photosynthetic organisms. With the demonstration of RuDP as substrate for the carboxylation in a cell-free system, each of the reactions has now been carried out independently in vitro. Further purification of this last enzyme system has confirmed the deduction that the carboxylation of RuDP leads directly to the two molecules of PGA (phosphoglyceric acid) involving an internal dismutation and suggesting the name "carboxydismutase" for the enzyme. As a consequence of this knowledge of each of the steps in the photosynthetic CO{sub 2} reduction cycle, it is possible to define the reagent requirements to maintain it. The net requirement for the reduction of one molecule of CO{sub 2} is four equivalents of [H]and three molecules of ATP (adenine triphosphate). These must ultimately be supplied by the photochemical reaction. Some possible ways in which this may be accomplished are discussed.

  15. Complete Genome Sequence of the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus aurantiacus

    SciTech Connect

    Tang, Kuo-Hsiang; Barry, Kerrie; Chertkov, Olga; Dalin, Eileen; Han, Cliff; Hauser, Loren John; Honchak, Barbara M; Karbach, Lauren E; Land, Miriam L; Lapidus, Alla L.; Larimer, Frank W; Mikhailova, Natalia; Pitluck, Sam; Pierson, Beverly K

    2011-01-01

    Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria.

  16. Prebiotic photosynthetic reactions.

    PubMed

    Chittenden, G J; Schwartz, A W

    1981-01-01

    Historically, numerous attempts have been made to mimic - by means of inorganic model reactions - the photosynthetic fixation of CO2 by green plants. The literature in this field is strewn with claims and counter-claims. Two factors have led us to reexamine this subject: firstly; doubts concerning the highly reducing model for the atmosphere of the primitive Earth and secondly; recent results which demonstrate that photoreductive fixation is feasable on a suitable catalytic surface, for both CO2 and N2. The latter observation is of particular interest due to the well-known susceptibility of NH3 to photolytic destruction. Our review of the literature leads us to suggest that similar processes would have been plausible for the primitive Earth and could have been prebiotic precursors to an early development of CO2-fixing autotrophs. PMID:6791723

  17. Identification of Associations between Bacterioplankton and Photosynthetic Picoeukaryotes in Coastal Waters

    PubMed Central

    Farnelid, Hanna M.; Turk-Kubo, Kendra A.; Zehr, Jonathan P.

    2016-01-01

    Photosynthetic picoeukaryotes are significant contributors to marine primary productivity. Associations between marine bacterioplankton and picoeukaryotes frequently occur and can have large biogeochemical impacts. We used flow cytometry to sort cells from seawater to identify non-eukaryotic phylotypes that are associated with photosynthetic picoeukaryotes. Samples were collected at the Santa Cruz wharf on Monterey Bay, CA, USA during summer and fall, 2014. The phylogeny of associated microbes was assessed through 16S rRNA gene amplicon clone and Illumina MiSeq libraries. The most frequently detected bacterioplankton phyla within the photosynthetic picoeukaryote sorts were Proteobacteria (Alphaproteobacteria and Gammaproteobacteria) and Bacteroidetes. Intriguingly, the presence of free-living bacterial genera in the photosynthetic picoeukaryote sorts could suggest that some of the photosynthetic picoeukaryotes were mixotrophs. However, the occurrence of bacterial sequences, which were not prevalent in the corresponding bulk seawater samples, indicates that there was also a selection for specific OTUs in association with photosynthetic picoeukaryotes suggesting specific functional associations. The results show that diverse bacterial phylotypes are found in association with photosynthetic picoeukaryotes. Taxonomic identification of these associations is a prerequisite for further characterizing and to elucidate their metabolic pathways and ecological functions. PMID:27148165

  18. A new isolation method for labyrinthulids using a bacterium, Psychrobacter phenylpyruvicus.

    PubMed

    Yokochi, T; Nakahara, T; Higashihara, T; Yamaoka, M; Kurane, R

    2001-01-01

    A new isolation method for labyrinthulids, marine microbes with spindle-shaped vegetative cells and gliding movement, is presented. The method for isolating labyrinthulids has been found to be more difficult and less reproducible than that for thraustochytrids, classified in the same order. So far serum seawater agar fortified with antibiotics has been proposed to be the best for isolation of labyrinthulids. The method presented here involves placing plant samples on an agar medium on which a marine bacterium, Psychrobacter phenylpyruvicus, has been grown. The new method, which utilizes fallen mangrove leaves as source material, was more than twice as effective as isolation agar medium without the bacterium. The increased effectiveness appears to derive partly from the bacterial colonies' delaying extension of fungal mycelium. The bacterium was more effective for the isolation of labyrinthulids than either the bacterium Shewanella sp. or the yeast Rhodotorula rubra. PMID:14961392

  19. Studies on Hydrogen Production by Photosynthetic Bacteria after Anaerobic Fermentation of Starch by a Hyperthermophile, Pyrococcus furiosus

    NASA Astrophysics Data System (ADS)

    Sugitate, Toshihiro; Fukatsu, Makoto; Ishimi, Katsuhiro; Kohno, Hideki; Wakayama, Tatsuki; Nakamura, Yoshihiro; Miyake, Jun; Asada, Yasuo

    In order to establish the sequential hydrogen production from waste starch using a hyperthermophile, Pyrococcus furiosus, and a photosynthetic bacterium, basic studies were done. P. furiosus produced hydrogen and acetate by anaerobic fermentation at 90°C. A photosynthetic bacterium, Rhodobacter sphaeroides RV, was able to produce hydrogen from acetate under anaerobic and light conditions at 30°C. However, Rb. sphaeroides RV was not able to produce hydrogen from acetate in the presence of sodium chloride that was essential for the growth and hydrogen production of P. furiosus although it produced hydrogen from lactate at a reduced rate with 1% sodium chloride. A newly isolated strain, CST-8, from natural environment was, however, able to produce hydrogen from acetate, especially with 3 mM L-alanine and in the presence of 1% sodium chloride. The sequential hydrogen production with P. furiosus and salt-tolerant photosynthetic bacteria could be probable at least in the laboratory experiment scale.

  20. Polarized pump--probe spectroscopy of electronic excitation transport in photosynthetic antennas

    SciTech Connect

    Struve, W.S. )

    1990-08-01

    Polarized pump--probe spectroscopy was performed with 1.5--2 psec resolution on the bacteriochlorophyll a protein antenna complex from the green sulfur bacterium Prosthecochloris aestuarii and on native and enriched photosystem I particles from spinach. The resulting photobleaching profiles reflect the details of singlet electronic-excitation transport in these photosynthetic antennas, in which the pigments are complexed by proteins into clusters of five or more chromophores.

  1. Nanoscale Optoelectronic Photosynthetic Devices

    NASA Astrophysics Data System (ADS)

    Greenbaum, Elias; Lee, Ida; Guillorn, Michael; Lee, James W.; Simpson, Michael L.

    2001-03-01

    This presentation provides an overview and recent progress in the Oak Ridge National Laboratory research program in molecular electronics and green plant photosynthesis. The photosynthetic reaction center is a nanoscale molecular diode and photovoltaic device. The key thrust of our research program is the construction of molecular electronic devices from these nanoscale structures. Progress in this multidisciplinary research program has been demonstrated by direct electrical contact of emergent electrons with the Photosystem I (PS I) reaction center by nanoparticle precipitation. Demonstration of stable diode properties of isolated reaction centers combined with the ability to orient PS I by self-assembly on a planar surface, makes this structure a good building block for 2-D and potentially 3-D devices. Metallization of isolated PS I does not alter their fundamental photophysical properties and they can be bonded to metal surfaces. We report here the first measurement of photovoltage from single PS I reaction centers. Working at the Cornell University National Nanofabrication Facility, we have constructed sets of dissimilar metal electrodes separated by distances as small as 6 nm. We plan to use these structures to make electrical contact to both ends of oriented PSI reaction centers and thereby realize biomolecular logic circuits. Potential applications of PSI reaction centers for optoelectronic applications as well as molecular logic device construction will be discussed.

  2. Novel Alginate Lyase (Aly5) from a Polysaccharide-Degrading Marine Bacterium, Flammeovirga sp. Strain MY04: Effects of Module Truncation on Biochemical Characteristics, Alginate Degradation Patterns, and Oligosaccharide-Yielding Properties

    PubMed Central

    Han, Wenjun; Gu, Jingyan; Cheng, Yuanyuan; Liu, Huihui; Li, Yuezhong

    2015-01-01

    Alginate lyases are important tools for oligosaccharide preparation, medical treatment, and energy bioconversion. Numerous alginate lyases have been elucidated. However, relatively little is known about their substrate degradation patterns and product-yielding properties, which is a limit to wider enzymatic applications and further enzyme improvements. Herein, we report the characterization and module truncation of Aly5, the first alginate lyase obtained from the polysaccharide-degrading bacterium Flammeovirga. Aly5 is a 566-amino-acid protein and belongs to a novel branch of the polysaccharide lyase 7 (PL7) superfamily. The protein rAly5 is an endolytic enzyme of alginate and associated oligosaccharides. It prefers guluronate (G) to mannuronate (M). Its smallest substrate is an unsaturated pentasaccharide, and its minimum product is an unsaturated disaccharide. The final alginate digests contain unsaturated oligosaccharides that generally range from disaccharides to heptasaccharides, with the tetrasaccharide fraction constituting the highest mass concentration. The disaccharide products are identified as ΔG units. While interestingly, the tri- and tetrasaccharide fractions each contain higher proportions of ΔG to ΔM ends, the larger final products contain only ΔM ends, which constitute a novel oligosaccharide-yielding property of guluronate lyases. The deletion of the noncatalytic region of Aly5 does not alter its M/G preference but significantly decreases the enzymatic activity and enzyme stability. Notably, the truncated protein accumulates large final oligosaccharide products but yields fewer small final products than Aly5, which are codetermined by its M/G preference to and size enlargement of degradable oligosaccharides. This study provides novel enzymatic properties and catalytic mechanisms of a guluronate lyase for potential uses and improvements. PMID:26519393

  3. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum 'Verrucomicrobia'.

    PubMed

    Choo, Yoe-Jin; Lee, Kiyoung; Song, Jaeho; Cho, Jang-Cheon

    2007-03-01

    A Gram-negative, chemoheterotrophic, facultatively anaerobic coccus, designated IMCC1545(T), was isolated from the digestive tract of a marine clamworm, Periserrula leucophryna, inhabiting a tidal flat of the Yellow Sea. Cells of strain IMCC1545(T) are non-motile, dividing by binary fission. The predominant fatty acids are anteiso-C(15 : 0) and C(18 : 0). The respiratory quinone is menaquinone-7 and the DNA G+C content is 52.1 mol%. Phylogenetic analyses based on 16S rRNA gene sequences using three treeing algorithms revealed that the strain formed a novel genus-level lineage within the phylum 'Verrucomicrobia'. The most closely related named organisms to strain IMCC1545(T) are 'Fucophilus fucoidanolyticus' SI-1234 (86.5 % 16S rRNA gene sequence similarity), Alterococcus agarolyticus ADT3(T) (81.8 %) and Opitutus terrae PB90-1(T) (80.3 %), which belong to subdivision 4 of the 'Verrucomicrobia'. Subdivision 4 of the 'Verrucomicrobia' (here named Opitutae classis nov.) was divided into two clades, a clade containing strain IMCC1545(T) and a clade containing Opitutus terrae. From the taxonomic data obtained in this study, it is proposed that the new marine isolate be placed into a novel genus and species named Puniceicoccus vermicola gen. nov., sp. nov. (the type strain of Puniceicoccus vermicola is IMCC1545(T)=KCCM 42343(T)=NBRC 101964(T)) within Puniceicoccaceae fam. nov and Puniceicoccales ord. nov in the class Opitutae. The family Opitutaceae fam. nov. and order Opitutales ord. nov. are also formally proposed. PMID:17329779

  4. Photooxidative Damage in Photosynthetic Activities of Chromatium vinosum 1

    PubMed Central

    Asami, Sumio; Akazawa, Takashi

    1978-01-01

    The capacity of photosynthetic CO2 fixation in the anaerobic purple-sulfur bacterium, Chromatium vinosum is markedly impaired by strong illumination (9 × 104 lux) in the presence of 100% O2. In the absence of HCO3−, decline in activity occurred gradually, with about 40% of the initial activity remaining after a 1-hour incubation. The addition of 50 millimolar HCO3− to the incubation medium resulted in a measurable delay (about 30 minutes) of the inactivation process. Ribulose-1,5-bisphosphate carboxylase activity and light-dependent O2 uptake (electron flow) or crude extracts prepared after pretreatment of the bacterial cells with O2 and light were not affected but the photophosphorylation capacity of either bacterial cells or chromatophores was drastically reduced. The inhibition of photophos-phorylation in the chromatophore preparations was significantly reduced by the addition of either an O2− scavenger, Tiron, or an 1O2 scavenger, α-tocopherol. These results suggest that the active O2 species, O2− or 1O2, might take part in the observed inactivation. The pretreatment of the bacteria with O2 and light inhibited CO2 assimilation through the Calvin-Benson cycle, while relatively stimulating the formation of aspartate and glutamate. It also inhibited the conversion of glycolate to glycine, resulting in a sustained extracellular excretion of glycolate. The inactivation of photosynthetic CO2 fixation by intact cells was enhanced by low temperature, KCN, or methylviologen addition during the pretreatment with O2 and light. The mechanism(s) of O2-dependent photoinactivation of photosynthetic activities in Chromatium are discussed in relation to the possible role of photorespiration as a means of producing CO2 in the photosynthetic system. PMID:16660651

  5. Photosynthetic water splitting

    NASA Astrophysics Data System (ADS)

    Greenbaum, E.

    It has been demonstrated that eukaryotic green algae (as represented by Chlamydomonas) are inherently rugged algae with respect to the biophotolysis of water. There also exists a potential for selecting subpropulations of wild-type algae with enhanced properties for hydrogen and oxygen production. Second, hydrogenase activity in macroscopic marine algae does not conform to the conventional dogma of the catalog of reactions that this enzyme is supposed to catalyze. A kinetic argument has been presented which suggests that, with respect to light activated reactions, hydrogenase in these organisms operates primarily in a hydrogen uptake mode. Third, the light saturation curves for the simultaneous photoproduction of hydrogen and oxygen do not have the same analytical shape. It is suggested that a Photosystem I-like hydrogen producing light reaction may be present in anaerobically adapted Scenedesmus which is uncoupled from the Z scheme.

  6. Arsenic biomethylation by photosynthetic organisms

    PubMed Central

    Ye, Jun; Rensing, Christopher; Rosen, Barry P.; Zhu, Yong-Guan

    2013-01-01

    Arsenic (As) is a ubiquitous element that is widespread in the environment and causes numerous health problems. Biomethylation of As has implications for its mobility and toxicity. Photosynthetic organisms may play a significant role in As geochemical cycling by methylating it to different As species, but little is known about the mechanisms of methylation. Methylated As species have been found in many photosynthetic organisms, and several arsenite S-adenosylmethionine (SAM) methyltransferases have been characterized in cyanobacteria and algae. However, higher plants may not have the ability to methylate As. Instead, methylated arsenicals in plants probably originate from microorganisms in soils and the rhizosphere. Here, we propose possible approaches for developing ‘smart’ photosynthetic organisms with an enhanced and sensitive biomethylation capacity for bioremediation and safer food. PMID:22257759

  7. Single Bacterium Detection Using Sers

    NASA Astrophysics Data System (ADS)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  8. Characterization of the quinones in purple sulfur bacterium Thermochromatium tepidum.

    PubMed

    Kimura, Yuuka; Kawakami, Tomoaki; Yu, Long-Jiang; Yoshimura, Miku; Kobayashi, Masayuki; Wang-Otomo, Zheng-Yu

    2015-07-01

    Quinone distributions in the thermophilic purple sulfur bacterium Thermochromatium tepidum have been investigated at different levels of the photosynthetic apparatus. Here we show that, on average, the intracytoplasmic membrane contains 18 ubiquinones (UQ) and 4 menaquinones (MQ) per reaction center (RC). About one-third of the quinones are retained in the light-harvesting-reaction center core complex (LH1-RC) with a similar ratio of UQ to MQ. The numbers of quinones essentially remains unchanged during crystallization of the LH1-RC. There are 1-2 UQ and 1 MQ associated with the RC-only complex in the purified solution sample. Our results suggest that a large proportion of the quinones are confined to the core complex and at least five UQs remain invisible in the current LH1-RC crystal structure. PMID:26048701

  9. Pseudomaricurvus alcaniphilus sp. nov., a marine bacterium isolated from tidal flat sediment and emended descriptions of the genus Pseudomaricurvus, Pseudomaricurvus alkylphenolicus Iwaki et al. 2014 and Maricurvus nonylphenolicus Iwaki et al. 2012.

    PubMed

    Seo, Hyun-Seok; Yang, Sung-Hyun; Oh, Ji Hye; Lee, Jung-Hyun; Kwon, Kae Kyoung

    2015-10-01

    A novel Gram-reaction-negative, rod-shaped, aerobic and motile strain, designated MEBiC06469T, was isolated from tidal flat sediment of the Taean province, South Korea. Strain MEBiC06469T produced ivory-coloured colonies on marine agar 2216 medium and could degrade carboxymethyl-cellulose. On the basis of 16S rRNA gene sequence similarity, the closest relative was Pseudomaricurvus alkylphenolicus KU41GT with 96.5 % similarity. The isolate was catalase-positive but oxidase-negative. Growth was observed at 16-38 °C (optimum, 32 °C), at pH 6.0-9.0 (optimum, pH 7.5) and in the presence of 0.0-8.0 % (w/v) NaCl (optimum, 1.5 %). The only isoprenoid quinone was Q-8.The dominant fatty acids were summed feature 3 (comprised of C15 : 0 2-OH and/or C16 : 1ω7c; 20.4 %) and C17 : 1ω8c (30.9 %), summed feature 8 (comprised of C18 : 1ω7c and/or C18 : 1ω6c; 9.5 %), C16 : 0 (9.0 %), C15 : 1ω8c (5.3 %), and C11 : 0 3-OH (5.2 %). Based on these phenotypic properties and phylogenetic data, strain MEBiC06469T should be classified as a novel species within the genus Pseudomaricurvus for which the name Pseudomaricurvus alcaniphilus sp. nov. is proposed. The type strain is MEBiC06469T ( = KCCM 42976T = JCM 18313T). Emended descriptions of the genus Pseudomaricurvus, Pseudomaricurvus alkylphenolicusIwaki et al. 2014, and Maricurvus nonylphenolicusIwaki et al. 2012 are also provided. PMID:26297504

  10. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation

    PubMed Central

    Oka, Hisaki

    2016-01-01

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature. PMID:27173144

  11. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation.

    PubMed

    Oka, Hisaki

    2016-01-01

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature. PMID:27173144

  12. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation

    NASA Astrophysics Data System (ADS)

    Oka, Hisaki

    2016-05-01

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature.

  13. Photosynthetic reaction centers in bacteria

    SciTech Connect

    Norris, J.R. Univ. of Chicago, IL ); Schiffer, M. )

    1990-07-30

    The photochemistry of photosynthesis begins in complexes called reaction centers. These have become model systems to study the fundamental process by which plants and bacteria convert and store solar energy as chemical free energy. In green plants, photosynthesis occurs in two systems, each of which contains a different reaction center, working in series. In one, known as photosystem 1, oxidized nicotinamide adenine dinucleotide phosphate (NADP[sup +]) is reduced to NADPH for use in a series of dark reactions called the Calvin cycle, named for Nobel Laureate Melvin Calvin, by which carbon dioxide is converted into useful fuels such as carbohydrates and sugars. In the other half of the photosynthetic machinery of green plants, called photosystem 2, water is oxidized to produce molecular oxygen. A different form of photosynthesis occurs in photosynthetic bacteria, which typically live at the bottom of ponds and feed on organic debris. Two main types of photosynthetic bacteria exist: purple and green. Neither type liberates oxygen from water. Instead, the bacteria feed on organic media or inorganic materials, such as sulfides, which are easier to reduce or oxidize than carbon dioxide or water. Perhaps in consequence, their photosynthetic machinery is simpler than that of green, oxygen-evolving plants and their primary photochemistry is better understood.

  14. Spectral measurements of photosynthetic efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The photosynthetic efficiency of plants was examined for plants in two very different canopies, a USDA cornfield having an instrumented flux tower in Beltsville, MD, USA and a coniferous forest in British Columbia, Canada, included in the tower network of the Canadian Carbon Program. Basic field st...

  15. Draft Genome Sequence of Jeotgalibacillus soli DSM 23228, a Bacterium Isolated from Alkaline Sandy Soil

    PubMed Central

    Chan, Kok-Gan; Yaakop, Amira Suriaty; Chan, Chia Sing; Ee, Robson; Tan, Wen-Si; Gan, Han Ming

    2015-01-01

    Jeotgalibacillus soli, a bacterium capable of degrading N-acyl homoserine lactone, was isolated from a soil sample in Portugal. J. soli constitutes the only Jeotgalibacillus species isolated from a non-marine source. Here, the draft genome, several interesting glycosyl hydrolases, and its putative N-acyl homoserine lactonases are presented. PMID:25999554

  16. SANS Investigation of the Photosynthetic Machinery of Chloroflexus aurantiacus

    PubMed Central

    Tang, Kuo-Hsiang; Urban, Volker S.; Wen, Jianzhong; Xin, Yueyong; Blankenship, Robert E.

    2010-01-01

    Green photosynthetic bacteria harvest light and perform photosynthesis in low-light environments, and contain specialized antenna complexes to adapt to this condition. We performed small-angle neutron scattering (SANS) studies to obtain structural information about the photosynthetic apparatus, including the peripheral light-harvesting chlorosome complex, the integral membrane light-harvesting B808-866 complex, and the reaction center (RC) in the thermophilic green phototrophic bacterium Chloroflexus aurantiacus. Using contrast variation in SANS measurements, we found that the B808-866 complex is wrapped around the RC in Cfx. aurantiacus, and the overall size and conformation of the B808-866 complex of Cfx. aurantiacus is roughly comparable to the LH1 antenna complex of the purple bacteria. A similar size of the isolated B808-866 complex was suggested by dynamic light scattering measurements, and a smaller size of the RC of Cfx. aurantiacus compared to the RC of the purple bacteria was observed. Further, our SANS measurements indicate that the chlorosome is a lipid body with a rod-like shape, and that the self-assembly of bacteriochlorophylls, the major component of the chlorosome, is lipid-like. Finally, two populations of chlorosome particles are suggested in our SANS measurements. PMID:20959079

  17. SANS Investigation of the Photosynthetic Machinery of Chloroflexus Aurantiacus

    SciTech Connect

    Tang, Kuo-Hsiang; Urban, Volker S; Jianzhong, Wen; Yueyong, Xin; Blankenship, Robert E

    2010-01-01

    Green photosynthetic bacteria harvest light and perform photosynthesis in low light environments, and contain specialized antenna complexes to adapt to this condition. In this report, we present studies using small-angle neutron scattering (SANS) to elucidate structural information about the photosynthetic apparatus, including the peripheral light harvesting chlorosome complex, the integral membrane light-harvesting B808-866 complex and the reaction center (RC) in the thermophilic green phototrophic bacterium Chloroflexus aurantiacus. Using contract variation in SANS measurments, our studies suggest that the B808-866 comples is wrapped around the RC in Cfx. aurantiacus, and the overall size and conformation for the B808-866 complex of Cfx. aurantiacus is roughly comparable to the LH1 antenna complex of the purple bacteria. A similar size for the isolated B808-866 complex is also suggested via dynamic light scattering measurements. Alos, a smaller size of the RC of Cfx. aurantiacus that the RC of the purple bacteria is observed. Further, our SANS measurements indicate that the chlorosome is a lipid body with rod-like shape, and that the self-assembly of bacteriochlorophylls, the major component of the chlorosome, is lipid-like. Finally, two populations of chlorosome particles are suggested in our SANS measurements.

  18. Phytochromes in photosynthetically competent plants

    SciTech Connect

    Pratt, L.H.

    1990-07-01

    Plants utilize light as a source of information in photomorphogenesis and of free energy in photosynthesis, two processes that are interrelated in that the former serves to increase the efficiency with which plants can perform the latter. Only one pigment involved in photomorphogenesis has been identified unequivocally, namely phytochrome. The thrust of this proposal is to investigate this pigment and its mode(s) of action in photosynthetically competent plants. Our long term objective is to characterize phytochrome and its functions in photosynthetically competent plants from molecular, biochemical and cellular perspectives. It is anticipated that others will continue to contribute indirectly to these efforts at the physiological level. The ultimate goal will be to develop this information from a comparative perspective in order to learn whether the different phytochromes have significantly different physicochemical properties, whether they fulfill independent functions and if so what these different functions are, and how each of the different phytochromes acts at primary molecular and cellular levels.

  19. The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation

    SciTech Connect

    Benning, C.; Somerville, C.R. ); Beatty, J.T. ); Prince, R.C. )

    1993-02-15

    All photosynthetic organisms, with the exception of several species of photosynthetic bacteria, are thought to contain the sulfolipid 6-sulfo-[alpha]-D-quinovosyldiacylglycerol. The association of this lipid with photosynthetic membranes has led to the assumption that it plays some role in photosynthesis. Stable null mutants of the photosynthetic bacterium Rhodobacter sphaeroides completely lacking sulfolipid were obtained by disruption of the sqdB gene. The ratios of the various components of the photosynthetic electron transport chain, as well as the electron transfer rates during cyclic electron transport, were not altered in the mutants, when grown under optimal conditions. Growth rates of wild type and mutants were identical under a variety of growth conditions, with the exception of phosphate limitation, which resulted in reduced growth of the mutants. Phosphate limitation of the wild type a used a significant reduction in the amount of all phospholipids and an increased amount of sulfolipid. By contrast, the sulfolipid-deficient mutant had reduced levels of phosphatidylcholine and phosphatidylethanolamine but maintained a normal level of phosphatidylglycerol. In addition, two unidentified lipids lacking phosphorus accumulated in the membranes of both wild-type and mutant strains under phosphate limitation. We conclude that sulfolipid plays no significant unique role in photoheterotrophic growth or photosynthetic electron transport in R. sphaeroides but may function as a surrogate for phospholipids, particularly phosphatidylglycerol, under phosphate-limiting conditions. 34 refs., 5 figs., 1 tab.

  20. Bioprospecting Marine Plankton

    PubMed Central

    Abida, Heni; Ruchaud, Sandrine; Rios, Laurent; Humeau, Anne; Probert, Ian; De Vargas, Colomban; Bach, Stéphane; Bowler, Chris

    2013-01-01

    The ocean dominates the surface of our planet and plays a major role in regulating the biosphere. For example, the microscopic photosynthetic organisms living within provide 50% of the oxygen we breathe, and much of our food and mineral resources are extracted from the ocean. In a time of ecological crisis and major changes in our society, it is essential to turn our attention towards the sea to find additional solutions for a sustainable future. Remarkably, while we are overexploiting many marine resources, particularly the fisheries, the planktonic compartment composed of zooplankton, phytoplankton, bacteria and viruses, represents 95% of marine biomass and yet the extent of its diversity remains largely unknown and underexploited. Consequently, the potential of plankton as a bioresource for humanity is largely untapped. Due to their diverse evolutionary backgrounds, planktonic organisms offer immense opportunities: new resources for medicine, cosmetics and food, renewable energy, and long-term solutions to mitigate climate change. Research programs aiming to exploit culture collections of marine micro-organisms as well as to prospect the huge resources of marine planktonic biodiversity in the oceans are now underway, and several bioactive extracts and purified compounds have already been identified. This review will survey and assess the current state-of-the-art and will propose methodologies to better exploit the potential of marine plankton for drug discovery and for dermocosmetics. PMID:24240981

  1. Bioprospecting marine plankton.

    PubMed

    Abida, Heni; Ruchaud, Sandrine; Rios, Laurent; Humeau, Anne; Probert, Ian; De Vargas, Colomban; Bach, Stéphane; Bowler, Chris

    2013-11-01

    The ocean dominates the surface of our planet and plays a major role in regulating the biosphere. For example, the microscopic photosynthetic organisms living within provide 50% of the oxygen we breathe, and much of our food and mineral resources are extracted from the ocean. In a time of ecological crisis and major changes in our society, it is essential to turn our attention towards the sea to find additional solutions for a sustainable future. Remarkably, while we are overexploiting many marine resources, particularly the fisheries, the planktonic compartment composed of zooplankton, phytoplankton, bacteria and viruses, represents 95% of marine biomass and yet the extent of its diversity remains largely unknown and underexploited. Consequently, the potential of plankton as a bioresource for humanity is largely untapped. Due to their diverse evolutionary backgrounds, planktonic organisms offer immense opportunities: new resources for medicine, cosmetics and food, renewable energy, and long-term solutions to mitigate climate change. Research programs aiming to exploit culture collections of marine micro-organisms as well as to prospect the huge resources of marine planktonic biodiversity in the oceans are now underway, and several bioactive extracts and purified compounds have already been identified. This review will survey and assess the current state-of-the-art and will propose methodologies to better exploit the potential of marine plankton for drug discovery and for dermocosmetics. PMID:24240981

  2. The genome of the intracellular bacterium of the coastal bivalve, Solemya velum: A blueprint for thriving in and out of symbiosis

    SciTech Connect

    Dmytrenko, Oleg; Russell, Shelbi L.; Loo, Wesley T.; Fontanez, Kristina M.; Liao, Li; Roeselers, Guus; Sharma, Raghav; Stewart, Frank J.; Newton, Irene L. G.; Woyke, Tanja; Wu, Dongying; Lang, Jenna Morgan; Eisen, Jonathan A.; Cavanaugh, Colleen M.

    2014-09-25

    Background: Symbioses between chemoautotrophic bacteria and marine invertebrates are rare examples of living systems that are virtually independent of photosynthetic primary production. These associations have evolved multiple times in marine habitats, such as deep-sea hydrothermal vents and reducing sediments, characterized by steep gradients of oxygen and reduced chemicals. Due to difficulties associated with maintaining these symbioses in the laboratory and culturing the symbiotic bacteria, studies of chemosynthetic symbioses rely heavily on culture independent methods. The symbiosis between the coastal bivalve, Solemya velum, and its intracellular symbiont is a model for chemosynthetic symbioses given its accessibility in intertidal environments and the ability to maintain it under laboratory conditions. To better understand this symbiosis, the genome of the S. velum endosymbiont was sequenced. Results: Relative to the genomes of obligate symbiotic bacteria, which commonly undergo erosion and reduction, the S. velum symbiont genome was large (2.86 Mb), GC-rich (50.4percent), and contained a large number (78) of mobile genetic elements. Comparative genomics identified sets of genes specific to the chemosynthetic lifestyle and necessary to sustain the symbiosis. In addition, a number of inferred metabolic pathways and cellular processes, including heterotrophy, branched electron transport, and motility, suggested that besides the ability to function as an endosymbiont, the bacterium may have the capacity to live outside the host. Conclusions: The physiological dexterity indicated by the genome substantially improves our understanding of the genetic and metabolic capabilities of the S. velum symbiont and the breadth of niches the partners may inhabit during their lifecycle

  3. Coherent Control Protocol for Separating Energy-Transfer Pathways in Photosynthetic Complexes by Chiral Multidimensional Signals†

    PubMed Central

    Abramavicius, Darius; Mukamel, Shaul

    2013-01-01

    Adaptive optimizations performed using a genetic algorithm are employed to construct optimal laser pulse configurations that separate spectroscopic features associated with the two main energy-transfer pathways in the third-order nonlinear optical response simulated for the Fenna–Matthews–Olson (FMO) photosynthetic complex from the green sulfur bacterium Chlorobium tepidum. Superpositions of chirality-induced tensor components in both collinear and noncollinear pulse configurations are analyzed. The optimal signals obtained by manipulating the ratios of various 2D spectral peaks reveal detailed information about the excitation dynamics. PMID:21495702

  4. Isolation, characterization, and primary structure of rubredoxin from the photosynthetic bacterium, Heliobacillus mobilis

    NASA Technical Reports Server (NTRS)

    Lee, W. Y.; Brune, D. C.; LoBrutto, R.; Blankenship, R. E.

    1995-01-01

    Rubredoxin is a small nonheme iron protein that serves as an electron carrier in bacterial systems. Rubredoxin has now been isolated and characterized from the strictly anaerobic phototroph, Heliobacillus mobilis. THe molecular mass (5671.3 Da from the amino acid sequence) was confirmed and partial formylation of the N-terminal methionyl residue was established by matrix-assisted laser desorption mass spectroscopy. The complete 52-amino-acid sequence was determined by a combination of N-terminal sequencing by Edman degradation and C-terminal sequencing by a novel method using carboxypeptidase treatment in conjunction with amino acid analysis and laser desorption time of flight mass spectrometry. The molar absorption coefficient of Hc. mobilis rubredoxin at 490 nm is 6.9 mM-1 cm-1 and the midpoint redox potential at pH 8.0 is -46 mV. The EPR spectrum of the oxidized form shows resonances at g = 9.66 and 4.30 due to a high-spin ferric iron. The amino acid sequence is homologous to those of rubredoxins from other species, in particular, the gram-positive bacteria, and the phototrophic green sulfur bacteria, and the evolutionary implications of this are discussed.

  5. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris

    SciTech Connect

    Larimer, Frank W; Chain, Patrick S. G.; Hauser, Loren John; Lamerdin, Jane; Malfatti, Stephanie; Do, Long; Land, Miriam L; Pelletier, Dale A; Beatty, Thomas; Lang, Andrew S.; Tabita, F Robert; Gibson, Janet L.; Hanson, Thomas E.; Bobst, Cedric; Torres y Torres, Janelle L.; Peres, Caroline; Harrison, Faith H.; Gibson, Jane; Harwood, Caroline S

    2004-01-01

    Rhodopseudomonas palustris is among the most metabolically versatile bacteria known. It uses light, inorganic compounds, or organic compounds, for energy. It acquires carbon from many types of green plant-derived compounds or by carbon dioxide fixation, and it fixes nitrogen. Here we describe the genome sequence of R. palustris, which consists of a 5,459,213-base-pair (bp) circular chromosome with 4,836 predicted genes and a plasmid of 8,427 bp. The sequence reveals genes that confer a remarkably large number of options within a given type of metabolism, including three nitrogenases, five benzene ring cleavage pathways and four light harvesting 2 systems. R. palustris encodes 63 signal transduction histidine kinases and 79 response regulator receiver domains. Almost 15% of the genome is devoted to transport. This genome sequence is a starting point to use R. palustris as a model to explore how organisms integrate metabolic modules in response to environmental perturbations.

  6. Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium.

    PubMed

    Fixen, Kathryn R; Zheng, Yanning; Harris, Derek F; Shaw, Sudipta; Yang, Zhi-Yong; Dean, Dennis R; Seefeldt, Lance C; Harwood, Caroline S

    2016-09-01

    Nitrogenase is an ATP-requiring enzyme capable of carrying out multielectron reductions of inert molecules. A purified remodeled nitrogenase containing two amino acid substitutions near the site of its FeMo cofactor was recently described as having the capacity to reduce carbon dioxide (CO2) to methane (CH4). Here, we developed the anoxygenic phototroph, Rhodopseudomonas palustris, as a biocatalyst capable of light-driven CO2 reduction to CH4 in vivo using this remodeled nitrogenase. Conversion of CO2 to CH4 by R. palustris required constitutive expression of nitrogenase, which was achieved by using a variant of the transcription factor NifA that is able to activate expression of nitrogenase under all growth conditions. Also, light was required for generation of ATP by cyclic photophosphorylation. CH4 production by R. palustris could be controlled by manipulating the distribution of electrons and energy available to nitrogenase. This work shows the feasibility of using microbes to generate hydrocarbons from CO2 in one enzymatic step using light energy. PMID:27551090

  7. Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium

    PubMed Central

    2010-01-01

    Background Synechocystis sp. PCC6803 is a cyanobacterium considered as a candidate photo-biological production platform - an attractive cell factory capable of using CO2 and light as carbon and energy source, respectively. In order to enable efficient use of metabolic potential of Synechocystis sp. PCC6803, it is of importance to develop tools for uncovering stoichiometric and regulatory principles in the Synechocystis metabolic network. Results We report the most comprehensive metabolic model of Synechocystis sp. PCC6803 available, iSyn669, which includes 882 reactions, associated with 669 genes, and 790 metabolites. The model includes a detailed biomass equation which encompasses elementary building blocks that are needed for cell growth, as well as a detailed stoichiometric representation of photosynthesis. We demonstrate applicability of iSyn669 for stoichiometric analysis by simulating three physiologically relevant growth conditions of Synechocystis sp. PCC6803, and through in silico metabolic engineering simulations that allowed identification of a set of gene knock-out candidates towards enhanced succinate production. Gene essentiality and hydrogen production potential have also been assessed. Furthermore, iSyn669 was used as a transcriptomic data integration scaffold and thereby we found metabolic hot-spots around which gene regulation is dominant during light-shifting growth regimes. Conclusions iSyn669 provides a platform for facilitating the development of cyanobacteria as microbial cell factories. PMID:21083885

  8. Membrane Sequestration of PII Proteins and Nitrogenase Regulation in the Photosynthetic Bacterium Rhodobacter capsulatus▿

    PubMed Central

    Tremblay, Pier-Luc; Drepper, Thomas; Masepohl, Bernd; Hallenbeck, Patrick C.

    2007-01-01

    Both Rhodobacter capsulatus PII homologs GlnB and GlnK were found to be necessary for the proper regulation of nitrogenase activity and modification in response to an ammonium shock. As previously reported for several other bacteria, ammonium addition triggered the AmtB-dependent association of GlnK with the R. capsulatus membrane. Native polyacrylamide gel electrophoresis analysis indicates that the modification/demodification of one PII homolog is aberrant in the absence of the other. In a glnK mutant, more GlnB was found to be membrane associated under these conditions. In a glnB mutant, GlnK fails to be significantly sequestered by AmtB, even though it appears to be fully deuridylylated. Additionally, the ammonium-induced enhanced sequestration by AmtB of the unmodifiable GlnK variant GlnK-Y51F follows the wild-type GlnK pattern with a high level in the cytoplasm without the addition of ammonium and an increased level in the membrane fraction after ammonium treatment. These results suggest that factors other than PII modification are driving its association with AmtB in the membrane in R. capsulatus. PMID:17586647

  9. Regulation of synthesis of pyruvate carboxylase in the photosynthetic bacterium Rhodobacter capsulatus.

    PubMed Central

    Yakunin, A F; Hallenbeck, P C

    1997-01-01

    The synthesis of pyruvate carboxylase (PC) was studied by using quantitative immunoblot analysis with an antibody raised against PC purified from Rhodobacter capsulatus and was found to vary 20-fold depending on the growth conditions. The PC content was high in cells grown on pyruvate or on carbon substrates metabolized via pyruvate (lactate, D-malate, glucose, or fructose) and low in cells grown on tricarboxylic acid (TCA) cycle intermediates or substrates metabolized without intermediate formation of pyruvate (acetate or glutamate). Under dark aerobic growth conditions with lactate as a carbon source, the PC content was approximately twofold higher than that found under light anaerobic growth conditions. The results of incubation experiments demonstrate that PC synthesis is induced by pyruvate and repressed by TCA cycle intermediates, with negative control dominating over positive control. The content of PC in R. capsulatus cells was also directly related to the growth rate in continuous cultures. The analysis of intracellular levels of pyruvate and TCA cycle intermediates in cells grown under different conditions demonstrated that the content of PC is directly proportional to the ratio between pyruvate and C4 dicarboxylates. These results suggest that the regulation of PC synthesis by oxygen and its direct correlation with growth rate may reflect effects on the balance of intracellular pyruvate and C4 dicarboxylates. Thus, this important enzyme is potentially regulated both allosterically and at the level of synthesis. PMID:9045800

  10. Cloning and Expression of Poly(hydroxyalkanoate) Synthase Genes from Photosynthetic bacterium Allochromatium vinosum ATCC 35206

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly(hydroxyalkanoate) (PHA) synthases catalyze the polymerization of beta-hydroxy fatty acids to form PHA biopolyesters. These enzymes are grouped into four classes (classes I to IV) based on their subunit composition and substrate specificity. Since PHA biopolymers are naturally synthesized by b...

  11. The Photosynthetic Apparatus and Its Regulation in the Aerobic Gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov

    PubMed Central

    Spring, Stefan; Lünsdorf, Heinrich; Fuchs, Bernhard M.; Tindall, Brian J.

    2009-01-01

    Background There is accumulating evidence that in some marine environments aerobic bacteriochlorophyll a-producing bacteria represent a significant part of the microbial population. The interaction of photosynthesis and carbon metabolism in these interesting bacteria is still largely unknown and requires further investigation in order to estimate their contribution to the marine carbon cycle. Methodology/Principal Findings Here, we analyzed the structure, composition and regulation of the photosynthetic apparatus in the obligately aerobic marine gammaproteobacterium KT71T. Photoheterotrophically grown cells were characterized by a poorly developed lamellar intracytoplasmic membrane system, a type 1 light-harvesting antenna complex and a photosynthetic reaction center associated with a tetraheme cytochrome c. The only photosynthetic pigments produced were bacteriochlorophyll a and spirilloxanthin. Under semiaerobic conditions KT71T cells expressing a photosynthetic apparatus showed a light-dependent increase of growth yield in the range of 1.3–2.5 fold. The expression level of the photosynthetic apparatus depended largely on the utilized substrate, the intermediary carbon metabolism and oxygen tension. In addition, pigment synthesis was strongly influenced by light, with blue light exerting the most significant effect, implicating that proteins containing a BLUF domain may be involved in regulation of the photosynthetic apparatus. Several phenotypic traits in KT71T could be identified that correlated with the assumed redox state of growing cells and thus could be used to monitor the cellular redox state under various incubation conditions. Conclusions/Significance In a hypothetical model that explains the regulation of the photosynthetic apparatus in strain KT71T we propose that the expression of photosynthesis genes depends on the cellular redox state and is maximal under conditions that allow a balanced membrane redox state. So far, bacteria capable of an

  12. Structure and Excitation Transfer Pathways in the Chlorophyll-Carotenoid Aggregate of the Photosynthetic Unit of Purple Bacteria

    NASA Astrophysics Data System (ADS)

    Schulten, Klaus

    1998-03-01

    The absorption of light by light harvesting complexes and transfer of electronic excitation to the photosynthetic reaction center (RC) has been investigated on the basis of an atomic level model of the so-called photosynthetic unit of the photosynthetic bacterium Rb. sphaeroides. The photosynthetic unit combines in the intracytoplasmic membrane a nanometric (20-100 nm) assembly of three protein complexes: (i) the photosynthetic reaction center, (ii) a ring-shaped light harvesting complex LH-I, and (iii) multiple copies of a similar complex, LH-II. The unit has been modeled using the known structure of LH-II of Rs. molischianum. The lecture describes in detail the organization of chromophores involved in primary light absorption and excitation transfer: a hierarchy of ring-shaped chlorophyl aggregates with attached carotenoids. A quantum-mechanical description of the entire light harvesting process is developed employing electron structure calculations of individual and aggregated chlorophylls and carotenoids and associated effective Hamiltonian descriptions. The transfer times calculated, ranging between 100 fs and 100 ps for various processes, are found in close agreement with measured transfer rates. The results suggest that excitons are the key carriers of the excitation transfered. The photoprotection of chlorophylls by chlorophylls through triplet excitation transfer is also described.

  13. The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle

    SciTech Connect

    Welsh, Eric A.; Liberton, Michelle L.; Stockel, Jana; Loh, Thomas; Elvitigala, Thanura R.; Wang, Chunyan; Wollam, Aye; Fulton, Robert S.; Clifton, Sandra W.; Jacobs, Jon M.; Aurora, Rajeev; Ghosh, Bijoy K.; Sherman, Louis A.; Smith, Richard D.; Wilson, Richard K.; Pakrasi, Himadri B.

    2008-09-30

    Cyanobacteria are oxygenic photosynthetic bacteria that have significant roles in global biological carbon sequestration and oxygen production. They occupy a diverse range of habitats, from open ocean, to hot springs, deserts, and arctic waters. Cyanobacteria are known as the progenitors of the chloroplasts of plants and algae, and are the simplest known organisms to exhibit circadian behavior4. Cyanothece sp. ATCC 51142 is a unicellular marine cyanobacterium capable of N2-fixation, a process that is biochemically incompatible with oxygenic photosynthesis. To resolve this problem, Cyanothece performs photosynthesis during the day and nitrogen fixation at night, thus temporally separating these processes in the same cell. The genome of Cyanothece 51142 was completely sequenced and found to contain a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of such a linear element in a photosynthetic bacterium. Annotation of the Cyanothece genome was aided by the use of highthroughput proteomics data, enabling the reclassification of 25% of the proteins with no informative sequence homology. Phylogenetic analysis suggests that nitrogen fixation is an ancient process that arose early in evolution and has subsequently been lost in many cyanobacterial strains. In cyanobacterial cells, the circadian clock influences numerous processes, including carbohydrate synthesis, nitrogen fixation, photosynthesis, respiration, and the cell division cycle. During a diurnal period, Cyanothece cells actively accumulate and degrade different storage inclusion bodies for the products of photosynthesis and N2-fixation. This ability to utilize metabolic compartmentalization and energy storage makes Cyanothece an ideal system for bioenergy research, as well as studies of how a unicellular organism balances multiple, often incompatible, processes in the same cell.

  14. Draft Genome Sequence of Uncultured SAR324 Bacterium lautmerah10, Binned from a Red Sea Metagenome

    PubMed Central

    Thompson, Luke R.

    2016-01-01

    A draft genome of SAR324 bacterium lautmerah10 was assembled from a metagenome of a surface water sample from the Red Sea, Saudi Arabia. The genome is more complete and has a higher G+C content than that of previously sequenced SAR324 representatives. Its genomic information shows a versatile metabolism that confers an advantage to SAR324, which is reflected in its distribution throughout different depths of the marine water column. PMID:26868398

  15. Iron Utilization in Marine Cyanobacteria and Eukaryotic Algae

    PubMed Central

    Morrissey, Joe; Bowler, Chris

    2011-01-01

    Iron is essential for aerobic organisms. Additionally, photosynthetic organisms must maintain the iron-rich photosynthetic electron transport chain, which likely evolved in the iron-replete Proterozoic ocean. The subsequent rise in oxygen since those times has drastically decreased the levels of bioavailable iron, indicating that adaptations have been made to maintain sufficient cellular iron levels in the midst of scarcity. In combination with physiological studies, the recent sequencing of marine microorganism genomes and transcriptomes has begun to reveal the mechanisms of iron acquisition and utilization that allow marine microalgae to persist in iron limited environments. PMID:22408637

  16. Regulation of Carotenoid Biosynthesis in Photosynthetic Organs.

    PubMed

    Llorente, Briardo

    2016-01-01

    A substantial proportion of the dazzling diversity of colors displayed by living organisms throughout the tree of life is determined by the presence of carotenoids, which most often provide distinctive yellow, orange and red hues. These metabolites play fundamental roles in nature that extend far beyond their importance as pigments. In photosynthetic lineages, carotenoids are essential to sustain life, since they have been exploited to maximize light harvesting and protect the photosynthetic machinery from photooxidative stress. Consequently, photosynthetic organisms have evolved several mechanisms that adjust the carotenoid metabolism to efficiently cope with constantly fluctuating light environments. This chapter will focus on the current knowledge concerning the regulation of the carotenoid biosynthetic pathway in leaves, which are the primary photosynthetic organs of most land plants. PMID:27485221

  17. Hybrid system of semiconductor and photosynthetic protein.

    PubMed

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-08-29

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. PMID:25091409

  18. Photosynthetic electron transfer from reaction center pigment-protein complex in silica nanopores.

    PubMed

    Oda, Ippei; Iwaki, Masayo; Fujita, Daiju; Tsutsui, Yasutaka; Ishizaka, Souji; Dewa, Makiko; Nango, Mamoru; Kajino, Tsutomu; Fukushima, Yoshiaki; Itoh, Shigeru

    2010-08-17

    A photosynthetic reaction center (RC) pigment-protein complex purified from a thermophilic purple photosynthetic bacterium, Thermochromatium tepidum, was adsorbed to a folded-sheet silica mesoporous material (FSM). The RC has a molecular structure with a 7.0 x 5.0 x 13 nm diameter. The amount of RC adsorbed to the FSM compound with an average internal pore diameter of 7.9 nm (FSM(7.9)) was high at 0.29 gRC/gFSM, while that to the FSM(2.7) (2.7 nm diameter) was low at 0.02 gRC/gFSM, suggesting the specific binding of the RC into the 7.9 nm pores of FSM(7.9). An N(2)-adsorption isotherm study indicated the incorporation of the RC into the 7.9 nm pores. The RC inside FSM(7.9) showed absorption spectra in the visible and infrared regions similar to those of the RC in solution, indicating almost no structural changes induced by the adsorption. The RC-FSM(7.9) conjugate showed the high photochemical activity with the increased thermal stability up to 50 degrees C in the measurements by laser spectroscopy. The conjugates rapidly provided electrons to a dye in the outer medium or showed electric current on the ITO electrode upon the illumination. The RC-FSM conjugate will be useful for the construction of artificial photosynthetic systems and new photodevices. PMID:20695584

  19. How to harvest solar energy with the photosynthetic reaction center

    NASA Astrophysics Data System (ADS)

    Balaeff, Alexander; Reyes, Justin

    Photosynthetic reaction center (PRC) is a protein complex that performs a key step in photosynthesis: the electron-hole separation driven by photon absorbtion. The PRC has a great promise for applications in solar energy harvesting and photosensing. Such applications, however, are hampered by the difficulty in extracting the photogenerated electric charge from the PRC. To that end, it was proposed to attach the PRC to a molecular wire through which the charge could be collected. In order to find the attachment point for the wire that would maximize the rate of charge outflow from the PRC, we performed a computational study of the PRC from the R. virdis bacterium. An ensemble of PRC structures generated by a molecular dynamics simulation was used to calculate the rate of charge transport from the site of initial charge separation to several trial sites on the protein surface. The Pathways model was used to calculate the charge transfer rate in each step of the network of heme co-factors through which the charge transport was presumed to proceed. A simple kinetic model was then used to determine the overall rate of the multistep charge transport. The calculations revealed several candidate sites for the molecular wire attachment, recommended for experimental verification.

  20. Parameters of photosynthetic energy partitioning.

    PubMed

    Lazár, Dušan

    2015-03-01

    Almost every laboratory dealing with plant physiology, photosynthesis research, remote sensing, and plant phenotyping possesses a fluorometer to measure a kind of chlorophyll (Chl) fluorescence induction (FLI). When the slow Chl FLI is measured with addition of saturating pulses and far-red illumination, the so-called quenching analysis followed by the so-called relaxation analysis in darkness can be realized. These measurements then serve for evaluation of the so-called energy partitioning, that is, calculation of quantum yields of photochemical and of different types of non-photochemical processes. Several theories have been suggested for photosynthetic energy partitioning. The current work aims to summarize all the existing theories, namely their equations for the quantum yields, their meaning and their assumptions. In the framework of these theories it is also found here that the well-known NPQ parameter ( [Formula: see text] ; Bilger and Björkman, 1990) equals the ratio of the quantum yield of regulatory light-induced non-photochemical quenching to the quantum yield of constitutive non-regulatory non-photochemical quenching (ΦNPQ/Φf,D). A similar relationship is also found here for the PQ parameter (ΦP/Φf,D). PMID:25569797

  1. Process for photosynthetically splitting water

    SciTech Connect

    Greenbaum, E.

    1982-01-28

    In one form of the invention, hydrogen is produced by providing a reactor containing a body of water. The water contains photolytic material, i.e., photoactive material containing a hydrogen-catalyst. The interior of the reactor is isolated from atmosphere and includes a volume for receiving gases evolved from the body of water. The photolytic material is exposed to light to effect photosynthetic splitting of the water into gaseous hydrogen and oxygen. The gas-receiving volume is continuously evacuated by pumping to promote evolution of gaseous hydrogen and oxygen into that volume and to withdraw them therefrom. In another form of the invention, separation of the hydrogen and oxygen is effected by selectively diffusing the hydrogen through a heated semipermeable membrane in a separation zone while maintaining across the zone a magnetic field gradient biasing the oxygen away from the membrane. In a third form of the invention, the withdrawn gas is contacted with a membrane blocking flow of water vapor to the region for effecting recovery of the hydrogen. In a fourth embodiment, the invention comprises a process for selectively recovering hydrogen from a gas mixture comprising hydrogen and oxygen. The process is conducted in a separation zone and comprises contacting the mixture with a semipermeable membrane effecting selective diffusion of hydrogen while maintaining across the zone a magnetic field gradient effecting movement of oxygen in a direction away from the membrane.

  2. Photosynthetic reaction center complexes from heliobacteria

    NASA Technical Reports Server (NTRS)

    Trost, J. T.; Vermaas, W. F. J.; Blankenship, R. E.

    1991-01-01

    Photosynthetic reaction centers are pigment-protein complexes that are responsible for the transduction of light energy into chemical energy. Considerable evidence indicates that photosynthetic organisms were present very early in the evolution of life on Earth. The goal of this project is to understand the early evolutionary development of photosynthesis by examining the properties of reaction centers isolated from certain contemporary organisms that appear to contain the simplest photosynthetic reaction centers. The major focus is on the family of newly discovered strictly anaerobic photosynthetic organisms that are grouped with the gram-positive phylum of bacteria. The properties of these reactions centers suggest that they may be the descendants of an ancestor that also gave rise to Photosystem 1 found in oxygen-evolving photosynthetic organisms. Photoactive reaction center-core antenna complexes were isolated from the photosynthetic bacteria, Heliobacillus mobilis and Heliobacterium gestii, by extraction of membranes with Deriphat 160C followed by differential centrifugation and sucrose density gradient centrifugation. Other aspects of this investigation are briefly discussed.

  3. In situ study on photosynthetic characteristics of phytoplankton in the Yellow Sea and East China Sea in summer 2013

    NASA Astrophysics Data System (ADS)

    Li, Junlei; Sun, Xiaoxia; Zheng, Shan

    2016-08-01

    In situ studies on photosynthetic characteristics of phytoplankton were important for the analysis of changes in community structure and for the prediction and control of algal blooms, but such studies of phytoplankton in offshore China were few. In this study, the detailed distribution of photosynthetic characteristics of phytoplankton in the summer of 2013 in the Yellow Sea and East China Sea was measured using Phyto-PAM (Pulse Amplitude Modulation). The phytoplankton community structure and the environmental parameters were also investigated to estimate the relationship between the distribution of the photochemical competence of phytoplankton and ecological factors. The total average Fv/Fm (the potential maximum quantum yield) value of phytoplankton in the Yellow Sea and East China Sea in summer 2013 was less than 0.5, reflecting that the photosynthetic activity of phytoplankton was relatively low. Fv/Fm of phytoplankton in summer was significantly positively associated with nitrate content (NO2-), which reflects relationship between metabolism and photosynthesis of phytoplankton: accompanied by NO2- metabolism, photosynthesis and photosynthetic capacity may be enhanced simultaneously, so the Fv/Fm value would increase with the NO2- released by phytoplankton. Through the in situ study on photosynthetic characteristics of phytoplankton in the Yellow Sea and East China Sea, we come to the conclusion that photosynthetic characteristics and activity of phytoplankton are influenced by its biological characteristics and surrounding ecological factors, such as irradiance, nutrients and phytoplankton community. Meanwhile, the thermally stratified structure and the movement of water masses, such as the Yangtze River diluted water, the Yellow Sea cold water mass and other different water system, also have an important impact on phytoplankton photosynthetic activity and characteristics. Greater understanding of the detailed photosynthetic characteristics of phytoplankton

  4. Photophysiology of kleptoplasts: photosynthetic use of light by chloroplasts living in animal cells

    PubMed Central

    Serôdio, João; Cruz, Sónia; Cartaxana, Paulo; Calado, Ricardo

    2014-01-01

    Kleptoplasty is a remarkable type of photosynthetic association, resulting from the maintenance of functional chloroplasts—the ‘kleptoplasts’—in the tissues of a non-photosynthetic host. It represents a biologically unique condition for chloroplast and photosynthesis functioning, occurring in different phylogenetic lineages, namely dinoflagellates, ciliates, foraminiferans and, most interestingly, a single taxon of metazoans, the sacoglossan sea slugs. In the case of sea slugs, chloroplasts from macroalgae are often maintained as intracellular organelles in cells of these marine gastropods, structurally intact and photosynthetically competent for extended periods of time. Kleptoplasty has long attracted interest owing to the longevity of functional kleptoplasts in the absence of the original algal nucleus and the limited number of proteins encoded by the chloroplast genome. This review updates the state-of-the-art on kleptoplast photophysiology, focusing on the comparative analysis of the responses to light of the chloroplasts when in their original, macroalgal cells, and when sequestered in animal cells and functioning as kleptoplasts. It covers fundamental but ecologically relevant aspects of kleptoplast light responses, such as the occurrence of photoacclimation in hospite, operation of photoprotective processes and susceptibility to photoinhibition. Emphasis is given to host-mediated processes unique to kleptoplastic associations, reviewing current hypotheses on behavioural photoprotection and host-mediated enhancement of photosynthetic performance, and identifying current gaps in sacoglossan kleptoplast photophysiology research. PMID:24591722

  5. Marine pollution

    SciTech Connect

    Albaiges, J. )

    1989-01-01

    This book covers the following topics: Transport of marine pollutants; Transformation of pollutants in the marine environment; Biological effects of marine pollutants; Sources and transport of oil pollutants in the Persian Gulf; Trace metals and hydrocarbons in Syrian coastal waters; and Techniques for analysis of trace pollutants.

  6. Oxygen concentration inside a functioning photosynthetic cell.

    PubMed

    Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei

    2014-05-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. PMID:24806920

  7. Regulation of Photosynthetic Electron Transport and Photoinhibition

    PubMed Central

    Roach, Thomas; Krieger-Liszkay, Anja Krieger

    2014-01-01

    Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms. PMID:24678670

  8. Feasibility of a photosynthetic artificial lung.

    PubMed

    Basu-Dutt, S; Fandino, M R; Salley, S O; Thompson, I M; Whittlesey, G C; Klein, M D

    1997-01-01

    The success of extracorporeal membrane oxygenation (ECMO) for the treatment of acute respiratory failure has led to consideration of the development of a more portable, and perhaps even implantable, artificial lung. The authors suggest a bioregenerative life support system that includes a photo-synthetic organism that can remove CO2 and produce O2 in the presence of an energy source. To build a model of such a photosynthetic artificial lung, the photosynthetic capability of a high temperature strain of the algae Chlorella pyrenoidosa was maximized at a cell density of 25 million cells/ml to serve as the O2 producer and CO2 remover. The "patient" in this model was comprised of 1 L of medium or 350 ml of blood, interfaced with the photosynthetic system across a gas transfer membrane. The experiments demonstrated the ability of the plant cells to supply O2 and remove CO2 from the "patient" with a maximum rate of 0.55 mmoles/L/hr under the most favorable measured operating conditions. The projected rate of 1.0 mmoles/L/hr required for physiologic applications is not totally ab absurd idea, with a slightly modified set-up. Modifications may be in the form of regulating the photosynthetic pathway or genetically engineering a hybrid strain with enhanced O2 producing and suppressed photoinhibition capacity. PMID:9242940

  9. LIGHT UTILIZATION AND PHOTOINHIBITION OF PHOTOSYNTHESIS IN MARINE PHYTOPLANKTON

    EPA Science Inventory

    Based on the record of the oldest identifiable fossils, the first oxygenic photosynthetic organisms appeared about 2 x 10 9 years ago in the form of marine single-celled, planktonic prokaryotes (Riding, 1992; Sarmiento and Bender, 1994) (planktonic was derived from the Greek plan...

  10. Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus

    PubMed Central

    2011-01-01

    Background Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria. Methods The complete genomic sequence of Cfl. aurantiacus has been determined, analyzed and compared to the genomes of other photosynthetic bacteria. Results Abundant genomic evidence suggests that there have been numerous gene adaptations/replacements in Cfl. aurantiacus to facilitate life under both anaerobic and aerobic conditions, including duplicate genes and gene clusters for the alternative complex III (ACIII), auracyanin and NADH:quinone oxidoreductase; and several aerobic/anaerobic enzyme pairs in central carbon metabolism and tetrapyrroles and nucleic acids biosynthesis. Overall, genomic information is consistent with a high tolerance for oxygen that has been reported in the growth of Cfl. aurantiacus. Genes for the chimeric photosystem, photosynthetic electron transport chain, the 3-hydroxypropionate autotrophic carbon fixation cycle, CO2-anaplerotic pathways, glyoxylate cycle, and sulfur reduction pathway are present. The central carbon metabolism and sulfur assimilation pathways in Cfl. aurantiacus are discussed. Some features of the Cfl. aurantiacus genome are compared with those of the Roseiflexus castenholzii genome. Roseiflexus castenholzii is a recently characterized FAP bacterium and phylogenetically closely related to Cfl. aurantiacus. According to

  11. THE C2 OXIDATIVE PHOTOSYNTHETIC CARBON CYCLE.

    PubMed

    Tolbert, N. E.

    1997-06-01

    The C2 oxidative photosynthetic carbon cycle plus the C3 reductive photosynthetic carbon cycle coexist. Both are initiated by Rubisco, use about equal amounts of energy, must regenerate RuBP, and result in exchanges of CO2 and O2 to establish rates of net photosynthesis, CO2 and O2 compensation points, and the ratio of CO2 and O2 in the atmosphere. These concepts evolved from research on O2 inhibition, glycolate metabolism, leaf peroxisomes, photorespiration, 18O2/16O2 exchange, CO2 concentrating processes, and a requirement for the oxygenase activity of Rubisco. Nearly 80 years of research on these topics are unified under the one process of photosynthetic carbon metabolism and its self-regulation. PMID:15012254

  12. BOREAS TE-10 Photosynthetic Response Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Middleton, Elizabeth; Sullivan, Joseph

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-10 (Terrestrial Ecology) team collected several data sets in support of its efforts to characterize and interpret information on the gas exchange, reflectance, transmittance, chlorophyll content, carbon content, hydrogen content, nitrogen content, and photosynthetic response of boreal vegetation. This data set contains measurements of quantitative parameters and leaf photosynthetic response to increases in light conducted in the SSA during the growing seasons of 1994 and 1996 using an oxygen electrode system. Leaf photosynthetic responses were not collected in 1996. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  13. Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control

    PubMed Central

    Schöttler, Mark A.; Tóth, Szilvia Z.

    2014-01-01

    The composition of the photosynthetic apparatus of higher plants is dynamically adjusted to long-term changes in environmental conditions such as growth light intensity and light quality, and to changing metabolic demands for ATP and NADPH imposed by stresses and leaf aging. By changing photosynthetic complex stoichiometry, a long-term imbalance between the photosynthetic production of ATP and NADPH and their metabolic consumption is avoided, and cytotoxic side reactions are minimized. Otherwise, an excess capacity of the light reactions, relative to the demands of primary metabolism, could result in a disturbance of cellular redox homeostasis and an increased production of reactive oxygen species, leading to the destruction of the photosynthetic apparatus and the initiation of cell death programs. In this review, changes of the abundances of the different constituents of the photosynthetic apparatus in response to environmental conditions and during leaf ontogenesis are summarized. The contributions of the different photosynthetic complexes to photosynthetic flux control and the regulation of electron transport are discussed. PMID:24860580

  14. Design criteria for optimal photosynthetic energy conversion

    NASA Astrophysics Data System (ADS)

    Fingerhut, Benjamin P.; Zinth, Wolfgang; de Vivie-Riedle, Regina

    2008-12-01

    Photochemical solar energy conversion is considered as an alternative of clean energy. For future light converting nano-machines photosynthetic reaction centers are used as prototypes optimized during evolution. We introduce a reaction scheme for global optimization and simulate the ultrafast charge separation in photochemical energy conversion. Multiple molecular charge carriers are involved in this process and are linked by Marcus-type electron transfer. In combination with evolutionary algorithms, we unravel the biological strategies for high quantum efficiency in photosynthetic reaction centers and extend these concepts to the design of artificial photochemical devices for energy conversion.

  15. Enhanced practical photosynthetic CO2 mitigation

    DOEpatents

    Bayless, David J.; Vis-Chiasson, Morgan L.; Kremer, Gregory G.

    2003-12-23

    This process is unique in photosynthetic carbon sequestration. An on-site biological sequestration system directly decreases the concentration of carbon-containing compounds in the emissions of fossil generation units. In this process, photosynthetic microbes are attached to a growth surface arranged in a containment chamber that is lit by solar photons. A harvesting system ensures maximum organism growth and rate of CO.sub.2 uptake. Soluble carbon and nitrogen concentrations delivered to the cyanobacteria are enhanced, further increasing growth rate and carbon utilization.

  16. A novel strategy for the construction of genomic mutants of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125.

    PubMed

    Giuliani, Maria; Parrilli, Ermenegilda; Pezzella, Cinzia; Rippa, Valentina; Duilio, Angela; Marino, Gennaro; Tutino, Maria Luisa

    2012-01-01

    The sequencing and the annotation of the marine Antarctic Pseudoalteromonas haloplanktis TAC125 genome has paved the way to investigate on the molecular mechanisms involved in adaptation to cold conditions. The growing interest in this unique bacterium prompted the developing of several genetic tools for studying it at the molecular level. To allow a deeper understanding of the PhTAC125 physiology a genetic system for the reverse genetics in this bacterium was developed. In the present work, we describe a practical technique for allelic exchange and/or gene inactivation by in-frame deletion and the use of a counterselectable marker in P. haloplanktis. The construction of suitable non-replicating plasmid and methods used to carry out a two-step integration-segregation strategy in this bacterium are reported in detail.Furthermore two examples, in which the developed methodology was applied to find out gene function or to construct genetically engineered bacterial strains, were described. PMID:22160901

  17. Marine biology

    SciTech Connect

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  18. Light-harvesting bio-nanomaterial using porous silicon and photosynthetic reaction center

    PubMed Central

    2012-01-01

    Porous silicon microcavity (PSiMc) structures were used to immobilize the photosynthetic reaction center (RC) purified from the purple bacterium Rhodobacter sphaeroides R-26. Two different binding methods were compared by specular reflectance measurements. Structural characterization of PSiMc was performed by scanning electron microscopy and atomic force microscopy. The activity of the immobilized RC was checked by measuring the visible absorption spectra of the externally added electron donor, mammalian cytochrome c. PSi/RC complex was found to oxidize the cytochrome c after every saturating Xe flash, indicating the accessibility of specific surface binding sites on the immobilized RC, for the external electron donor. This new type of bio-nanomaterial is considered as an excellent model for new generation applications of silicon-based electronics and biological redox systems. PMID:22804837

  19. Light-harvesting bio-nanomaterial using porous silicon and photosynthetic reaction center

    NASA Astrophysics Data System (ADS)

    Hajdu, Kata; Gergely, Csilla; Martin, Marta; Zimányi, László; Agarwal, Vivechana; Palestino, Gabriela; Hernádi, Klára; Németh, Zoltán; Nagy, László

    2012-07-01

    Porous silicon microcavity (PSiMc) structures were used to immobilize the photosynthetic reaction center (RC) purified from the purple bacterium Rhodobacter sphaeroides R-26. Two different binding methods were compared by specular reflectance measurements. Structural characterization of PSiMc was performed by scanning electron microscopy and atomic force microscopy. The activity of the immobilized RC was checked by measuring the visible absorption spectra of the externally added electron donor, mammalian cytochrome c. PSi/RC complex was found to oxidize the cytochrome c after every saturating Xe flash, indicating the accessibility of specific surface binding sites on the immobilized RC, for the external electron donor. This new type of bio-nanomaterial is considered as an excellent model for new generation applications of silicon-based electronics and biological redox systems.

  20. Investigation of Stability of Photosynthetic Reaction Center and Quantum Dot Hybrid Films.

    PubMed

    Lukashev, E P; Knox, P P; Oleinikov, I P; Seifullina, N Kh; Grishanova, N P

    2016-01-01

    The efficiency of interaction (efficiency of energy transfer) between various quantum dots (QDs) and photosynthetic reaction centers (RCs) from the purple bacterium Rhodobacter sphaeroides and conditions of long-term stability of functioning of such hybrid complexes in film preparations were investigated. It was found that dry films containing RCs and QDs and maintained at atmospheric humidity are capable to keep their functional activity for at least some months as judging by results of measurement of their spectral characteristics, efficiency of energy transfer from QDs to RCs, and RC electron-transport activity. Addition of trehalose to the films giving them still greater stability is especially expressed for films maintained at low humidity. These stable hybrid film structures are promising for further biotechnological studies for developing new phototransformation devices. PMID:26885583

  1. Longitudinal photosynthetic gradient in crust lichens' thalli.

    PubMed

    Wu, Li; Zhang, Gaoke; Lan, Shubin; Zhang, Delu; Hu, Chunxiang

    2014-05-01

    In order to evaluate the self-shading protection for inner photobionts, the photosynthetic activities of three crust lichens were detected using Microscope-Imaging-PAM. The false color images showed that longitudinal photosynthetic gradient was found in both the green algal lichen Placidium sp. and the cyanolichen Peltula sp. In longitudinal direction, all the four chlorophyll fluorescence parameters Fv/Fm, Yield, qP, and rETR gradually decreased with depth in the thalli of both of these two lichens. In Placidium sp., qN values decreased with depth, whereas an opposite trend was found in Peltula sp. However, no such photosynthetic heterogeneity was found in the thalli of Collema sp. in longitudinal direction. Microscope observation showed that photobiont cells are compactly arranged in Placidium sp. and Peltula sp. while loosely distributed in Collema sp. It was considered that the longitudinal photosynthetic heterogeneity was ascribed to the result of gradual decrease of incidence caused by the compact arrangement of photobiont cells in the thalli. The results indicate a good protection from the self-shading for the inner photobionts against high radiation in crust lichens. PMID:24477924

  2. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2004-07-15

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project for the period ending 06/30/2004. The major accomplishment was the modification of the header and harvesting work, with a system designed to distribute algae at startup, sustain operations and harvest in one unit.

  3. Hydrogen metabolism of photosynthetic bacteria and algae

    SciTech Connect

    Kumazawa, S.; Mitsui, A.

    1982-01-01

    The metabolism, metabolic pathways and biochemistry of hydrogen in photosynthetic bacteria and algae are reviewed. Detailed information on the occurrence and measurement of hydrogenase activity is presented. Hydrogen production rates for different species of algae and bacteria are presented. 173 references, 1 figure, 7 tables.

  4. Diverse Arrangement of Photosynthetic Gene Clusters in Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Zheng, Qiang; Zhang, Rui; Koblížek, Michal; Boldareva, Ekaterina N.; Yurkov, Vladimir; Yan, Shi; Jiao, Nianzhi

    2011-01-01

    Background Aerobic anoxygenic photototrophic (AAP) bacteria represent an important group of marine microorganisms inhabiting the euphotic zone of the ocean. They harvest light using bacteriochlorophyll (BChl) a and are thought to be important players in carbon cycling in the ocean. Methodology/Principal Findings Aerobic anoxygenic phototrophic (AAP) bacteria represent an important part of marine microbial communities. Their photosynthetic apparatus is encoded by a number of genes organized in a so-called photosynthetic gene cluster (PGC). In this study, the organization of PGCs was analyzed in ten AAP species belonging to the orders Rhodobacterales, Sphingomonadales and the NOR5/OM60 clade. Sphingomonadales contained comparatively smaller PGCs with an approximately size of 39 kb whereas the average size of PGCs in Rhodobacterales and NOR5/OM60 clade was about 45 kb. The distribution of four arrangements, based on the permutation and combination of the two conserved regions bchFNBHLM-LhaA-puhABC and crtF-bchCXYZ, does not correspond to the phylogenetic affiliation of individual AAP bacterial species. While PGCs of all analyzed species contained the same set of genes for bacteriochlorophyll synthesis and assembly of photosynthetic centers, they differed largely in the carotenoid biosynthetic genes. Spheroidenone, spirilloxanthin, and zeaxanthin biosynthetic pathways were found in each clade respectively. All of the carotenoid biosynthetic genes were found in the PGCs of Rhodobacterales, however Sphingomonadales and NOR5/OM60 strains contained some of the carotenoid biosynthetic pathway genes outside of the PGC. Conclusions/Significance Our investigations shed light on the evolution and functional implications in PGCs of marine aerobic anoxygenic phototrophs, and support the notion that AAP are a heterogenous physiological group phylogenetically scattered among Proteobacteria. PMID:21949847

  5. A Monogalactosyldiacylglycerol Synthase Found in the Green Sulfur Bacterium Chlorobaculum tepidum Reveals Important Roles for Galactolipids in Photosynthesis[W

    PubMed Central

    Masuda, Shinji; Harada, Jiro; Yokono, Makio; Yuzawa, Yuichi; Shimojima, Mie; Murofushi, Kazuhiro; Tanaka, Hironori; Masuda, Hanako; Murakawa, Masato; Haraguchi, Tsuyoshi; Kondo, Maki; Nishimura, Mikio; Yuasa, Hideya; Noguchi, Masato; Oh-oka, Hirozo; Tanaka, Ayumi; Tamiaki, Hitoshi; Ohta, Hiroyuki

    2011-01-01

    Monogalactosyldiacylglycerol (MGDG), which is conserved in almost all photosynthetic organisms, is the most abundant natural polar lipid on Earth. In plants, MGDG is highly accumulated in the chloroplast membranes and is an important bulk constituent of thylakoid membranes. However, precise functions of MGDG in photosynthesis have not been well understood. Here, we report a novel MGDG synthase from the green sulfur bacterium Chlorobaculum tepidum. This enzyme, MgdA, catalyzes MGDG synthesis using UDP-Gal as a substrate. The gene encoding MgdA was essential for this bacterium; only heterozygous mgdA mutants could be isolated. An mgdA knockdown mutation affected in vivo assembly of bacteriochlorophyll c aggregates, suggesting the involvement of MGDG in the construction of the light-harvesting complex called chlorosome. These results indicate that MGDG biosynthesis has been independently established in each photosynthetic organism to perform photosynthesis under different environmental conditions. We complemented an Arabidopsis thaliana MGDG synthase mutant by heterologous expression of MgdA. The complemented plants showed almost normal levels of MGDG, although they also had abnormal morphological phenotypes, including reduced chlorophyll content, no apical dominance in shoot growth, atypical flower development, and infertility. These observations provide new insights regarding the importance of regulated MGDG synthesis in the physiology of higher plants. PMID:21764989

  6. Comparative analysis of plastid genomes of non-photosynthetic Ericaceae and their photosynthetic relatives

    PubMed Central

    Logacheva, Maria D.; Schelkunov, Mikhail I.; Shtratnikova, Victoria Y.; Matveeva, Maria V.; Penin, Aleksey A.

    2016-01-01

    Although plastid genomes of flowering plants are typically highly conserved regarding their size, gene content and order, there are some exceptions. Ericaceae, a large and diverse family of flowering plants, warrants special attention within the context of plastid genome evolution because it includes both non-photosynthetic and photosynthetic species with rearranged plastomes and putative losses of “essential” genes. We characterized plastid genomes of three species of Ericaceae, non-photosynthetic Monotropa uniflora and Hypopitys monotropa and photosynthetic Pyrola rotundifolia, using high-throughput sequencing. As expected for non-photosynthetic plants, M. uniflora and H. monotropa have small plastid genomes (46 kb and 35 kb, respectively) lacking genes related to photosynthesis, whereas P. rotundifolia has a larger genome (169 kb) with a gene set similar to other photosynthetic plants. The examined genomes contain an unusually high number of repeats and translocations. Comparative analysis of the expanded set of Ericaceae plastomes suggests that the genes clpP and accD that are present in the plastid genomes of almost all plants have not been lost in this family (as was previously thought) but rather persist in these genomes in unusual forms. Also we found a new gene in P. rotundifolia that emerged as a result of duplication of rps4 gene. PMID:27452401

  7. Regulation of photosynthetic carbon fixation on the ocean margins. Final report

    SciTech Connect

    Paul, J.H.

    1997-06-01

    The US Department of Energy is concerned with the fate of energy-related materials, including carbon dioxide, in the marine environment. Using laboratory studies, as well as field studies, an attempt was made to understand the molecular regulation of photosynthetic carbon reduction. The objectives were: to determine the mechanism of regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCase) in phytoplankton in response to changes in light fields; and to determine regulation of (RuBPCase) in response to light under nutrient deprivation.

  8. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico

    PubMed Central

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A.

    2015-01-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc. PMID:26583968

  9. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico.

    PubMed

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A; Setién, Alvaro Aguilar

    2015-12-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc. PMID:26583968

  10. Marine Biomedicine

    ERIC Educational Resources Information Center

    Bang, Frederik B.

    1977-01-01

    Describes early scientific research involving marine invertebrate pathologic processes that may have led to new insights into human disease. Discussed are inquiries of Metchnikoff, Loeb, and Cantacuzene (immunolgic responses in sea stars, horseshoe crabs, and marine worms, respectively). Describes current research stemming from these early…

  11. Marine Biology

    ERIC Educational Resources Information Center

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  12. Kinetic model of primary energy transfer and trapping in photosynthetic membranes

    PubMed Central

    Pullerits, Tõnu; Freiberg, Arvi

    1992-01-01

    The picosecond time-domain incoherent singlet excitation transfer and trapping kinetics in core antenna of photosynthetic bacteria are studied in case of low excitation intensities by numerical integration of the appropriate master equation in a wide temperature range of 4-300 K. The essential features of our two-dimensional-lattice model are as follows: Förster excitation transfer theory, spectral heterogeneity of both the light-harvesting antenna and the reaction center, treatment of temperature effects through temperature dependence of spectral bands, inclusion of inner structure of the trap, and transition dipole moment orientation. The fluorescence kinetics is analyzed in terms of distributions of various kinetic components, and the influence of different inhomogeneities (orientational, spectral) is studied. A reasonably good agreement between theoretical and experimental fluorescence decay kinetics for purple photosynthetic bacterium Rhodospirillum rubrum is achieved at high temperatures by assuming relatively large antenna spectral inhomogeneity: 20 nm at the whole bandwidth of 40 nm. The mean residence time in the antenna lattice site (it is assumed to be the aggregate of four bacteriochlorophyll a molecules bound to proteins) is estimated to be ∼12 ps. At 4 K only qualitative agreement between model and experiment is gained. The failure of quantitative fitting is perhaps due to the lack of knowledge about the real structure of antenna or local heating and cooling effects not taken into account. PMID:19431849

  13. Excited state dynamics in photosynthetic reaction center and light harvesting complex 1

    NASA Astrophysics Data System (ADS)

    Strümpfer, Johan; Schulten, Klaus

    2012-08-01

    Key to efficient harvesting of sunlight in photosynthesis is the first energy conversion process in which electronic excitation establishes a trans-membrane charge gradient. This conversion is accomplished by the photosynthetic reaction center (RC) that is, in case of the purple photosynthetic bacterium Rhodobacter sphaeroides studied here, surrounded by light harvesting complex 1 (LH1). The RC employs six pigment molecules to initiate the conversion: four bacteriochlorophylls and two bacteriopheophytins. The excited states of these pigments interact very strongly and are simultaneously influenced by the surrounding thermal protein environment. Likewise, LH1 employs 32 bacteriochlorophylls influenced in their excited state dynamics by strong interaction between the pigments and by interaction with the protein environment. Modeling the excited state dynamics in the RC as well as in LH1 requires theoretical methods, which account for both pigment-pigment interaction and pigment-environment interaction. In the present study we describe the excitation dynamics within a RC and excitation transfer between light harvesting complex 1 (LH1) and RC, employing the hierarchical equation of motion method. For this purpose a set of model parameters that reproduce RC as well as LH1 spectra and observed oscillatory excitation dynamics in the RC is suggested. We find that the environment has a significant effect on LH1-RC excitation transfer and that excitation transfers incoherently between LH1 and RC.

  14. Lasers-an effective artificial source of radiation for the cultivation of anoxygenic photosynthetic bacteria.

    PubMed

    Bertling, K; Hurse, T J; Kappler, U; Rakić, A D

    2006-06-01

    The laser diode (LD) is a unique light source that can efficiently produce all radiant energy within the narrow wavelength range used most effectively by a photosynthetic microorganism. We have investigated the use of a single type of LD for the cultivation of the well-studied anoxygenic photosynthetic bacterium, Rhodobacter capsulatus (Rb. capsulatus). An array of vertical-cavity surface-emitting lasers (VCSELs) was driven with a current of 25 mA, and delivered radiation at 860 nm with 0.4 nm linewidth. The emitted light was found to be a suitable source of radiant energy for the cultivation of Rb. capsulatus. The dependence of growth rate on incident irradiance was quantified. Despite the unusual nearly monochromatic light source used in these experiments, no significant changes in the pigment composition and in the distribution of bacteriochlorophyll between LHII and LHI-RC were detected in bacterial cells transferred from incandescent light to laser light. We were also able to show that to achieve a given growth rate in a light-limited culture, the VCSEL required only 30% of the electricity needed by an incandescent bulb, which is of great significance for the potential use of laser-devices in biotechnological applications and photobioreactor construction. PMID:16514675

  15. Lamellar Organization of Pigments in Chlorosomes, the Light Harvesting Complexes of Green Photosynthetic Bacteria

    PubMed Central

    Pšenčík, J.; Ikonen, T. P.; Laurinmäki, P.; Merckel, M. C.; Butcher, S. J.; Serimaa, R. E.; Tuma, R.

    2004-01-01

    Chlorosomes of green photosynthetic bacteria constitute the most efficient light harvesting complexes found in nature. In addition, the chlorosome is the only known photosynthetic system where the majority of pigments (BChl) is not organized in pigment-protein complexes but instead is assembled into aggregates. Because of the unusual organization, the chlorosome structure has not been resolved and only models, in which BChl pigments were organized into large rods, were proposed on the basis of freeze-fracture electron microscopy and spectroscopic constraints. We have obtained the first high-resolution images of chlorosomes from the green sulfur bacterium Chlorobium tepidum by cryoelectron microscopy. Cryoelectron microscopy images revealed dense striations ∼20 Å apart. X-ray scattering from chlorosomes exhibited a feature with the same ∼20 Å spacing. No evidence for the rod models was obtained. The observed spacing and tilt-series cryoelectron microscopy projections are compatible with a lamellar model, in which BChl molecules aggregate into semicrystalline lateral arrays. The diffraction data further indicate that arrays are built from BChl dimers. The arrays form undulating lamellae, which, in turn, are held together by interdigitated esterifying alcohol tails, carotenoids, and lipids. The lamellar model is consistent with earlier spectroscopic data and provides insight into chlorosome self-assembly. PMID:15298919

  16. Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria.

    PubMed

    Psencík, J; Ikonen, T P; Laurinmäki, P; Merckel, M C; Butcher, S J; Serimaa, R E; Tuma, R

    2004-08-01

    Chlorosomes of green photosynthetic bacteria constitute the most efficient light harvesting complexes found in nature. In addition, the chlorosome is the only known photosynthetic system where the majority of pigments (BChl) is not organized in pigment-protein complexes but instead is assembled into aggregates. Because of the unusual organization, the chlorosome structure has not been resolved and only models, in which BChl pigments were organized into large rods, were proposed on the basis of freeze-fracture electron microscopy and spectroscopic constraints. We have obtained the first high-resolution images of chlorosomes from the green sulfur bacterium Chlorobium tepidum by cryoelectron microscopy. Cryoelectron microscopy images revealed dense striations approximately 20 A apart. X-ray scattering from chlorosomes exhibited a feature with the same approximately 20 A spacing. No evidence for the rod models was obtained. The observed spacing and tilt-series cryoelectron microscopy projections are compatible with a lamellar model, in which BChl molecules aggregate into semicrystalline lateral arrays. The diffraction data further indicate that arrays are built from BChl dimers. The arrays form undulating lamellae, which, in turn, are held together by interdigitated esterifying alcohol tails, carotenoids, and lipids. The lamellar model is consistent with earlier spectroscopic data and provides insight into chlorosome self-assembly. PMID:15298919

  17. Developing Research Capabilities in Energy Biosciences: Design principles of photosynthetic biofuel production.

    SciTech Connect

    Donald D. Brown; David Savage

    2012-06-30

    The current fossil fuel-based energy infrastructure is not sustainable. Solar radiation is a plausible alternative, but realizing it as such will require significant technological advances in the ability to harvest light energy and convert it into suitable fuels. The biological system of photosynthesis can carry out these reactions, and in principle could be engineered using the tools of synthetic biology. One desirable implementation would be to rewire the reactions of a photosynthetic bacterium to direct the energy harvested from solar radiation into the synthesis of the biofuel H2. Proposed here is a series of experiments to lay the basic science groundwork for such an attempt. The goal is to elucidate the transcriptional network of photosynthesis using a novel driver-reporter screen, evolve more robust hydrogenases for improved catalysis, and to test the ability of the photosynthetic machinery to directly produce H2 in vivo. The results of these experiments will have broad implications for the understanding of photosynthesis, enzyme function, and the engineering of biological systems for sustainable energy production. The ultimate impact could be a fundamental transformation of the world's energy economy.

  18. Spiral tubular bioreactors for hydrogen production by photosynthetic microorganisms. Design and operation

    SciTech Connect

    Markov, S.A.; Weaver, P.F.; Seibert, M.

    1997-12-31

    Spiral tubular bioreactors were constructed out of transparent PVC tubing for H{sub 2} production applications. Both a cyanobacterial Anabaena variabilis mutant that lacks uptake hydrogenase activity and the photo-synthetic bacterium Rhodobacter sp. CBS were tested in the bioreactors. Continuous H{sub 2} photoproduction at an average rate of 19 mL {center_dot} min{sup -2} {center_dot} h{sup -1} was observed using the A. variabilis mutant under an air atmosphere (without argon sparging or application of a partial vacuum). The cyanobacterial photobioreactor was run continuously for over one month with an average efficiency of light energy conversion to H{sub 2} of 1.4%. Another H{sub 2}-producing approach employed a unique type of activity found in a strain of photosynthetic bacteria that shifts CO (and H{sub 2}O) into H{sub 2} (and CO{sub 2}) in darkness. Continuous dark H{sub 2} production by Rhodobacter sp. CBS from CO (in anticipation of using synthesis gas as the future substrate) at rates up to 140 mL {center_dot} g cdw{sup -1} {center_dot} h{sup -1} was observed in a bubble-train bioreactor for more than 10 d. 14 refs., 4 figs.

  19. Mapping photosynthetically available radiation at the sea surface using GOCI

    NASA Astrophysics Data System (ADS)

    Choi, Jongkuk; Kim, Jihye; Yang, Hyun; Moon, Jeong-Eon; Frouin, Robert

    2016-04-01

    Photosynthetically available radiation (PAR) controls the composition of marine ecosystem by affecting the growth of phytoplankton, thus estimating PAR at the ocean surface accurately is important to understand the marine ecological environment. Although many studies have been attempted to estimate PAR employing ocean colour satellite data since 2003, previous studies using data from the polar orbit systems had spatial and temporal limitations to estimate accurate daily PAR. Here, we estimate daily PAR from Geostationary Ocean Colour Imager (GOCI) which collects data eight times a day at an hour interval in daytime and compare it with in-situ measurement and MODIS-based daily PAR. The algorithm we developed in this study, employed GOCI visible bands (centred at (412, 443, 490, 555, 660, 680 nm) which belongs to the range of PAR by calculating albedo at the layer of clouds and the sea surface to estimate daily PAR. The resultant value was validated by comparing the in-situ measurements acquired from an ocean research station, Socheongcho between February and May 2015, which showed a similar pattern with somewhat GOCI-base PAR's overestimations. The comparison with the results from MODIS, a polar orbit system showed that a good agreement with each other was illustrated at clear sky conditions, while MODIS showed some over- or underestimations at cloudy conditions with irregular patterns. This study shows that GOCI can estimate effectively the daily PAR with its advantages of acquiring data more frequently than other polar orbit ocean colour satellites by reducing the uncertainties induced by insufficient images to map the daily PAR at ocean surface.

  20. STRUCTURAL ANALYSIS OF ALTERNATIVE COMPLEX III IN THE PHOTOSYNTHETIC ELECTRON TRANSFER CHAIN OF CHLOROFLEXUS AURANTIACUS

    PubMed Central

    Gao, Xinliu; Xin, Yueyong; Bell, Patrick D.; Wen, Jianzhong; Blankenship, Robert E.

    2010-01-01

    The green photosynthetic bacterium Chloroflexus aurantiacus, which belongs to the phylum of filamentous anoxygenic phototrophs, does not contain a cytochrome bc or bf type complex as is found in all other known groups of phototrophs. This suggests that a functional replacement exists to link the reaction center photochemistry to cyclic electron transfer as well as respiration. Earlier work identified a potential substitute of the cytochrome bc complex, now named alternative complex III (ACIII), which has been purified, identified and characterized from C. aurantiacus. ACIII functions as a menaquinol:auracyanin oxidoreductase in the photosynthetic electron transfer chain, and a related but distinct complex functions in respiratory electron flow to a terminal oxidase. In this work, we focus on elucidating the structure of the photosynthetic ACIII. We found that AC III is an integral-membrane protein complex of around 300 kDa that consists of 8 subunits of 7 different types. Among them, there are 4 metalloprotein subunits, including a 113 kDa iron-sulfur cluster-containing polypeptide, a 25 kDa penta-heme c-containing subunit and two 20 kDa mono-heme c-containing subunits in the form of a homodimer. A variety of analytical techniques were employed in determining the ACIII substructure, including HPLC combined with ESI-MS, metal analysis, potentiometric titration and intensity analysis of heme-staining SDS-PAGE. A preliminary structural model of the ACIII complex is proposed based on the analytical data and chemical cross-linking in tandem with mass analysis using MALDI-TOF, as well as transmembrane and transit peptide analysis. PMID:20614874

  1. Thioredoxin Is Involved in Oxygen-Regulated Formation of the Photosynthetic Apparatus of Rhodobacter sphaeroides

    PubMed Central

    Pasternak, Cecile; Haberzettl, Kerstin; Klug, Gabriele

    1999-01-01

    Thioredoxin, a redox active protein, has been previously demonstrated to be essential for growth of the anoxygenic photosynthetic bacterium Rhodobacter sphaeroides. In the present study, the involvement of thioredoxin in the formation of the photosynthetic apparatus of R. sphaeroides WS8 was investigated by construction and analysis of a mutant strain disrupted for the chromosomal trxA copy and carrying a plasmid-borne copy of trxA under the control of the hybrid ptrc promoter inducible by IPTG (isopropyl-β-d-thiogalactopyranoside). This strain was viable in the absence of IPTG but was affected in pigmentation. When shifted from high to low oxygen tension conditions, the trxA mutant showed a reduced bacteriochlorophyll content in comparison to that of the wild type. Although thioredoxin is able to regulate aminolevulinic acid (ALA) synthase (the first enzyme of the tetrapyrrole biosynthetic pathway) activity by a dithiol-disulfide exchange, our mutant strain exhibited a level of ALA synthase activity identical to that of the wild type, suggesting that thioredoxin is involved in other steps to regulate the synthesis of the photosynthetic apparatus. Accordingly, we showed that the trxA mutation affects the oxygen-regulated expression of the puf operon encoding the pigment-binding proteins of the light-harvesting and reaction center complexes. Upon transition from aerobic to semiaerobic growth conditions, the maximal puf mRNA level was found to be 40 to 50% lower in the mutant strain than in the wild type. The stability of the puf transcripts was identical in both strains grown under low oxygen tension, indicating that the role of thioredoxin in regulating puf expression occurs at the transcriptional level. PMID:9864318

  2. Adaptation of the Photosynthetic Apparatus to Irradiance in Dunaliella tertiolecta1

    PubMed Central

    Sukenik, Assaf; Bennett, John; Mortain-Bertrand, Anne; Falkowski, Paul G.

    1990-01-01

    The time course of adaptation from a high to a low photon flux density was studied in the marine chlorophyte Dunaliella tertiolecta. A one-step transition from 700 to 70 micromole quanta per square meter per second resulted in a reduction of doubling rate from 1.1 to 0.4 per day within 24 hours, followed by a slower accumulation of photosynthetic pigments, light harvesting antenna complexes, Photosystem II reaction centers and structural lipids that constitute the thylakoid membranes. Photoregulated changes in the biochemical composition of the thylakoid proteins and lipids were functionally accompanied by decreases in the minimal photosynthetic quantum requirement and photosynthetic capacity, and an increase in the minimal turnover time for in vivo electron transport from water to CO2. Analysis of de novo synthesis of thylakoid membranes and proteins indicates that a high light to low light transition leads to a transient in carbon metabolism away from lipid biosynthesis toward the synthesis of the light harvesting antenna protein complexes, accompanied by a slower restoration rate of reaction centers and thylakoid membranes. This pattern of sequential synthesis of light harvesting complexes followed by reaction centers and membranes, appears to optimize light harvesting capabilities as cells adapt to low photon flux densities. Images Figure 2 Figure 7 Figure 8 PMID:16667402

  3. BOREAS TE-9 NSA Photosynthetic Response Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves. This data set describes: (1) the response of leaf and shoot-level photosynthesis to ambient and intercellular CO2 concentration, temperature, and incident photosynthetically active radiation (PAR) for black spruce, jack pine, and aspen during the three intensive field campaigns (IFCs) in 1994 in the Northern Study Area (NSA); (2) the response of stomatal conductance to vapor pressure difference throughout the growing season of 1994; and (3) a range of shoot water potentials (controlled in the laboratory) for black spruce and jack pine. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  4. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2004-10-13

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project for the period ending 09/30/2004. The primary effort of this quarter was focused on mass transfer of carbon dioxide into the water film to study the potential effects on the photosynthetic organisms that depend on the carbon. Testing of the carbon dioxide scrubbing capability (mass transfer capability) of flowing water film appears to be relatively high and largely unaffected by transport of the gas through the bioreactor. The implications are that the transfer of carbon dioxide into the film is nearly at maximum and that it is sufficient to sustain photosynthesis at whatever rate the organisms can sustain. This finding is key to assuming that the process is an energy (photon) limited reaction and not a nutrient limited reaction.

  5. Photosynthetic hydrogen and oxygen production - Kinetic studies

    NASA Astrophysics Data System (ADS)

    Greenbaum, E.

    1982-01-01

    The simultaneous photoproduction of hydrogen and oxygen was measured in a study of the steady-state turnover times of two biological systems, by driving them into the steady state with repetitive, single-turnover flash illumination. The systems were: (1) in vitro, isolated chloroplasts, ferredoxin and hydrogenase; and (2) the anaerobically-adapted green alga Chlamydomonas reinhardtii. It is found that the turnover times for production of both oxygen and hydrogen in photosynthetic water splitting are in milliseconds, and either equal to, or less than, the turnover time for carbon dioxide reduction in intact algal cells. There is therefore mutual compatibility between hydrogen and oxygen turnover times, and partial compatibility with the excitation rate of the photosynthetic reaction centers under solar irradiation conditions.

  6. Mutation of bacterium Vibrio gazogenes for selective preparation of colorants.

    PubMed

    Alihosseini, Farzaneh; Lango, Jozsef; Ju, Kou-San; Hammock, Bruce D; Sun, Gang

    2010-01-01

    A novel marine bacterium strain effectively produced prodiginine type pigments. These colorants could dye wool, silk and synthetic fabrics such as polyester and polyacrylic and also show antibacterial properties against Escherichia coli and Staphylococcus aureus bacteria on the dyed products. Methyl nitrosoguanidine was used as a mutation agent to increase the genetic diversity and the production yield of the bacteria of the family of Vibrio gazogenes. The analysis of the mutated samples showed that two new main colorants as well as three previously found ones were produced. Liquid chromatography electro spray ionization mass spectrometry (LC-ESI-MS) and nuclear magnetic resonance (NMR) spectroscopic techniques were used to elucidate the structures of the newly produced colorants. Mass measurements revealed that the colorants C1, C2, C3, C4 have molecular masses of 321, 323, 351, and 295 Da. One unstable colorant C5 with molecular mass of 309 Da was detected as well. The mutated bacteria strains increased the yield of pigment production by about 81% and produced prodigiosin in 97% purity. The antibiotic activities of pure colorants are discussed as well. Based on their bio-activity and excellent dyeing capabilities, these colorants could be employed in cosmetic and textile industries. PMID:19902486

  7. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2005-01-13

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project during the ending 12/31/2004. Specific results and accomplishments for the program include review of pilot scale testing and design of a new bioreactor. Testing confirmed that algae can be grown in a sustainable fashion in the pilot bioreactor, even with intermittent availability of sunlight. The pilot-scale tests indicated that algal growth rate followed photon delivery during productivity testing.

  8. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2003-04-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 1/2/2003 through 4/01/2003. As indicated in the list of accomplishments below we are progressing with long-term model scale bioreactor tests and are completing final preparations for pilot scale bioreactor testing. Specific results and accomplishments for the first quarter of 2003 are included.

  9. Coral bleaching independent of photosynthetic activity.

    PubMed

    Tolleter, Dimitri; Seneca, François O; DeNofrio, Jan C; Krediet, Cory J; Palumbi, Stephen R; Pringle, John R; Grossman, Arthur R

    2013-09-23

    The global decline of reef-building corals is due in part to the loss of algal symbionts, or "bleaching," during the increasingly frequent periods of high seawater temperatures. During bleaching, endosymbiotic dinoflagellate algae (Symbiodinium spp.) either are lost from the animal tissue or lose their photosynthetic pigments, resulting in host mortality if the Symbiodinium populations fail to recover. The >1,000 studies of the causes of heat-induced bleaching have focused overwhelmingly on the consequences of damage to algal photosynthetic processes, and the prevailing model for bleaching invokes a light-dependent generation of toxic reactive oxygen species (ROS) by heat-damaged chloroplasts as the primary trigger. However, the precise mechanisms of bleaching remain unknown, and there is evidence for involvement of multiple cellular processes. In this study, we asked the simple question of whether bleaching can be triggered by heat in the dark, in the absence of photosynthetically derived ROS. We used both the sea anemone model system Aiptasia and several species of reef-building corals to demonstrate that symbiont loss can occur rapidly during heat stress in complete darkness. Furthermore, we observed damage to the photosynthetic apparatus under these conditions in both Aiptasia endosymbionts and cultured Symbiodinium. These results do not directly contradict the view that light-stimulated ROS production is important in bleaching, but they do show that there must be another pathway leading to bleaching. Elucidation of this pathway should help to clarify bleaching mechanisms under the more usual conditions of heat stress in the light. PMID:24012312

  10. Organ preservation using a photosynthetic solution

    PubMed Central

    2012-01-01

    Background Organs harvested from a body lapsing into circulatory deficit are exposed to low O2/high CO2, and reach a critical point where original functionality after transplantation is unlikely. The present study evaluates the effect of respiratory assistance using Chlorella photosynthesis on preservation of the rat pancreas from the viewpoint of donation after cardiac death (DCD). Methods Gas was exchanged through the peritoneum of rats under controlled ventilation with or without Chlorella photosynthetic respiratory assistance. A gas permeable pouch containing Chlorella in solution was placed in the peritoneum and then the space between the pouch and the peritoneum was filled with an emulsified perfluorocarbon gas carrier. Rat DCD pancreases procured 3 h after cardiac arrest were preserved for 30 min in a cold or mildly hypothermic environment or in a mildly hypothermic environment with photosynthetic respiratory support. The pancreases were then heterotopically transplanted into rats with STZ-induced diabetes. Results Levels of blood oxygen (PaO2) and carbon dioxide (PaCO2) increased and significantly decreased, respectively, in rats with mechanically reduced ventilation and rats given intraperitoneal photosynthetic respiratory support when compared with those without such support. Transplantation with DCD pancreases that had been stored under photosynthetic respiratory support resulted in the survival of all rats, which is impossible to achieve using pancreases that have been maintained statically in cold storage. Conclusion Respiratory assistance using photosynthesis helps to improve not only blood gas status in the event of respiratory insufficiency, but also graft recovery after pancreas transplantation with a DCD pancreas that has been damaged by prolonged warm ischemia. PMID:23369195

  11. Genomic Analysis of Melioribacter roseus, Facultatively Anaerobic Organotrophic Bacterium Representing a Novel Deep Lineage within Bacteriodetes/Chlorobi Group

    PubMed Central

    Kadnikov, Vitaly V.; Mardanov, Andrey V.; Podosokorskaya, Olga A.; Gavrilov, Sergey N.; Kublanov, Ilya V.; Beletsky, Alexey V.; Bonch-Osmolovskaya, Elizaveta A.; Ravin, Nikolai V.

    2013-01-01

    Melioribacter roseus is a moderately thermophilic facultatively anaerobic organotrophic bacterium representing a novel deep branch within Bacteriodetes/Chlorobi group. To better understand the metabolic capabilities and possible ecological functions of M. roseus and get insights into the evolutionary history of this bacterial lineage, we sequenced the genome of the type strain P3M-2T. A total of 2838 open reading frames was predicted from its 3.30 Mb genome. The whole proteome analysis supported phylum-level classification of M. roseus since most of the predicted proteins had closest matches in Bacteriodetes, Proteobacteria, Chlorobi, Firmicutes and deeply-branching bacterium Caldithrix abyssi, rather than in one particular phylum. Consistent with the ability of the bacterium to grow on complex carbohydrates, the genome analysis revealed more than one hundred glycoside hydrolases, glycoside transferases, polysaccharide lyases and carbohydrate esterases. The reconstructed central metabolism revealed pathways enabling the fermentation of complex organic substrates, as well as their complete oxidation through aerobic and anaerobic respiration. Genes encoding the photosynthetic and nitrogen-fixation machinery of green sulfur bacteria, as well as key enzymes of autotrophic carbon fixation pathways, were not identified. The M. roseus genome supports its affiliation to a novel phylum Ignavibateriae, representing the first step on the evolutionary pathway from heterotrophic ancestors of Bacteriodetes/Chlorobi group towards anaerobic photoautotrophic Chlorobi. PMID:23301019

  12. Nanomechanical properties of the sea-water bacterium Paracoccus seriniphilus--a scanning force microscopy approach.

    PubMed

    Davoudi, Neda; Müller-Renno, Christine; Ziegler, Christiane; Raid, Indek; Seewig, Jörg; Schlegel, Christin; Muffler, Kai; Ulber, Roland

    2015-01-01

    The measurement of force-distance curves on a single bacterium provides a unique opportunity to detect properties such as the turgor pressure under various environmental conditions. Marine bacteria are very interesting candidates for the production of pharmaceuticals, but are only little studied so far. Therefore, the elastic behavior of Paracoccus seriniphilus, an enzyme producing marine organism, is presented in this study. After a careful evaluation of the optimal measurement conditions, the spring constant and the turgor pressure are determined as a function of ionic strength and pH. Whereas the ionic strength changes the turgor pressure passively, the results give a hint that the change to acidic pH increases the turgor pressure by an active mechanism. Furthermore, it could be shown, that P. seriniphilus has adhesive protrusions outside its cell wall. PMID:25708634

  13. Tectonics and the photosynthetic habitable zone (Invited)

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.

    2009-12-01

    The traditional habitable zone lies between an inner stellar radius where the surface of the planet becomes too hot for liquid water carbon-based life and on outer radius, where the surface freezes. It is effectively the zone where photosynthesis is feasible. The concept extends to putative life on objects with liquid methane at the surface, like Titan. As a practical matter, photosynthesis leaves detectable biosignatures in the geological record; black shale on the Earth indicates that sulfide and probably FeO based photosynthesis existed by 3.8 Ga. The hard crustal rocks and the mantle sequester numerous photosynthetic biosignatures. Photosynthesis can produce detectable free oxygen with ozone in the atmosphere of extrasolar planets. In contrast, there is no outer limit for subsurface life in large silicate objects. Pre-photosynthetic niches are dependable but meager and not very detectable at great antiquity or great distance, with global productivity less than 1e-3 of the photosynthetic ones. Photosynthetic organisms have bountiful energy that modifies their surface environment and even tectonics. For example, metamorphic rocks formed at the expense of thick black shale are highly radioactive and hence self-fluxing. Active tectonics with volcanism and metamorphism prevents volatiles from being sequestered in the subsurface as on Mars. A heat-pipe object, like a larger Io, differs from the Earth in that the volatiles return to the deep interior distributed within massive volcanic deposits rather than concentrated in the shallow oceanic crust. One the Earth, the return of water to the surface by arc volcanoes controls its mantle abundance at the transition between behaving as a trace element and behaving as a major element that affects melting. The ocean accumulates the water that the mantle and crust do not take. The Earth has the “right” amount of water that erosion/deposition and tectonics both tend to maintain near sea level surfaces. The mantle contains

  14. Influence of the Quantity and Quality of Light on Photosynthetic Periodicity in Coral Endosymbiotic Algae

    PubMed Central

    Sorek, Michal; Levy, Oren

    2012-01-01

    Symbiotic corals, which are benthic organisms intimately linked with their environment, have evolved many ways to deal with fluctuations in the local marine environment. One possible coping mechanism is the endogenous circadian clock, which is characterized as free running, maintaining a ∼24 h periodicity of circuits under constant stimuli or in the absence of external cues. The quantity and quality of light were found to be the most influential factors governing the endogenous clock for plants and algae. Unicellular dinoflagellate algae are among the best examples of organisms that exhibit circadian clocks using light as the dominant signal. This study is the first to examine the effects of light intensity and quality on the rhythmicity of photosynthesis in the symbiotic dinoflagellate Symbiodinium sp., both as a free-living organism and in symbiosis with the coral Stylophora pistillata. Oxygen production measurements in Symbiodinium cultures exhibited rhythmicity with a periodicity of approximately 24 h under constant high light (LL), whereas under medium and low light, the cycle time increased. Exposing Symbiodinium cultures and corals to spectral light revealed different effects of blue and red light on the photosynthetic rhythm, specifically shortening or increasing the cycle time respectively. These findings suggest that the photosynthetic rhythm is entrained by different light cues, which are wired to an endogenous circadian clock. Furthermore, we provide evidence that mRNA expression was higher under blue light for two potential cryptochrome genes and higher under red light for a phytochrome gene isolated from Symbiodinium. These results offer the first evidence of the impact of the intensity and quality of light on the photosynthetic rhythm in algal cells living freely or as part of a symbiotic association. Our results indicate the presence of a circadian oscillator in Symbiodinium governing the photosynthetic apparatus through a light-induced signaling

  15. An immunological approach to detect phosphate stress in populations and single cells of photosynthetic picoplankton.

    PubMed Central

    Scanlan, D J; Silman, N J; Donald, K M; Wilson, W H; Carr, N G; Joint, I; Mann, N H

    1997-01-01

    In the marine cyanobacterium Synechococcus sp. strain WH7803, PstS is a 32-kDa cell wall-associated phosphate-binding protein specifically synthesized under conditions of restricted inorganic phosphate (P1) availability (D. J. Scanlan, N. H. Mann, and N. G. Carr, Mol. Microbiol. 10:181-191, 1993). We have assessed its use as a potential diagnostic marker for the P status of photosynthetic picoplankton. Expression of PstS in Synechococcus sp. strain WH7803 was observed when the P1 concentration fell below 50 nM, demonstrating that the protein is induced at concentrations of P1 typical of oligotrophic conditions. PstS expression could be specifically detected by use of standard Western blotting (immunoblotting) techniques in natural mesocosm samples under conditions in which the N/P ratio was artificially manipulated to force P depletion. In addition, we have developed an immunofluorescence assay that can detect PstS expression in single Synechococcus cells both in laboratory cultures and natural samples. We show that antibodies raised against PstS cross-react with P-depleted Prochlorococcus cells, extending the use of these antibodies to both major groups of prokaryotic photosynthetic picoplankton. Furthermore, DNA sequencing of a Prochlorococcus pstS homolog demonstrated high amino acid sequence identity (77%) with the marine Synechococcus sp. strain WH7803 protein, including those residues in Escherichia coli PstS known to be directly involved in phosphate binding. PMID:9172363

  16. Characterisation of antioxidants in photosynthetic and non-photosynthetic leaf tissues of variegated Pelargonium zonale plants.

    PubMed

    Vidović, M; Morina, F; Milić-Komić, S; Vuleta, A; Zechmann, B; Prokić, Lj; Veljović Jovanović, S

    2016-07-01

    Hydrogen peroxide is an important signalling molecule, involved in regulation of numerous metabolic processes in plants. The most important sources of H2 O2 in photosynthetically active cells are chloroplasts and peroxisomes. Here we employed variegated Pelargonium zonale to characterise and compare enzymatic and non-enzymatic components of the antioxidative system in autotrophic and heterotrophic leaf tissues at (sub)cellular level under optimal growth conditions. The results revealed that both leaf tissues had specific strategies to regulate H2 O2 levels. In photosynthetic cells, the redox regulatory system was based on ascorbate, and on the activities of thylakoid-bound ascorbate peroxidase (tAPX) and catalase. In this leaf tissue, ascorbate was predominantly localised in the nucleus, peroxisomes, plastids and mitochondria. On the other hand, non-photosynthetic cells contained higher glutathione content, mostly located in mitochondria. The enzymatic antioxidative system in non-photosynthetic cells relied on the ascorbate-glutathione cycle and both Mn and Cu/Zn superoxide dismutase. Interestingly, higher content of ascorbate and glutathione, and higher activities of APX in the cytosol of non-photosynthetic leaf cells compared to the photosynthetic ones, suggest the importance of this compartment in H2 O2 regulation. Together, these results imply different regulation of processes linked with H2 O2 signalling at subcellular level. Thus, we propose green-white variegated leaves as an excellent system for examination of redox signal transduction and redox communication between two cell types, autotrophic and heterotrophic, within the same organ. PMID:26712503

  17. Ecological Genomics of Marine Picocyanobacteria†

    PubMed Central

    Scanlan, D. J.; Ostrowski, M.; Mazard, S.; Dufresne, A.; Garczarek, L.; Hess, W. R.; Post, A. F.; Hagemann, M.; Paulsen, I.; Partensky, F.

    2009-01-01

    Summary: Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45°N to 40°S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level. PMID:19487728

  18. Marine Viruses that infect Eukaryotic Microalgae.

    PubMed

    Kimura, Kei; Tomaru, Yuji

    2015-01-01

    Marine microalgae, in general, explain large amount of the primary productions on the planet. Their huge biomass through photosynthetic activities is significant to understand the global geochemical cycles. Many researchers are, therefore, focused on studies of marine microalgae, i.e. phytoplankton. Since the first report of high abundance of viruses in the sea at late 1980's, the marine viruses have recognized as an important decreasing factor of its host populations. They seem to be composed of diverse viruses infectious to different organism groups; most of them are considered to be phages infectious to prokaryotes, and viruses infecting microalgae might be ranked in second level. Over the last quarter of a century, the knowledge on marine microalgal viruses has been accumulated in many aspects. Until today, ca. 40 species of marine microalgal viruses have been discovered, including dsDNA, ssDNA, dsRNA and ssRNA viruses. Their features are unique and comprise new ideas and discoveries, indicating that the marine microalgal virus research is still an intriguing unexplored field. In this review, we summarize their basic biology and ecology, and discuss how and what we should research in this area for further progress. PMID:26923956

  19. Marine Ecomechanics

    NASA Astrophysics Data System (ADS)

    Denny, Mark W.; Gaylord, Brian

    2010-01-01

    The emerging field of marine ecomechanics provides an explicit physical framework for exploring interactions among marine organisms and between these organisms and their environments. It exhibits particular utility through its construction of predictive, mechanistic models, a number of which address responses to changing climatic conditions. Examples include predictions of (a) the change in relative abundance of corals as a function of colony morphology, ocean acidity, and storm intensity; (b) the rate of disturbance and patch formation in beds of mussels, a competitive dominant on many intertidal shores; (c) the dispersal and recruitment patterns of giant kelps, an important nearshore foundation species; (d) the effects of turbulence on external fertilization, a widespread method of reproduction in the sea; and (e) the long-term incidence of extreme ecological events. These diverse examples emphasize the breadth of marine ecomechanics. Indeed, its principles can be applied to any ecological system.

  20. A method for estimation of permittivity in photosynthetic membranes and the effect of permittivity on the photosynthetic quantum yield

    NASA Astrophysics Data System (ADS)

    Borisov, A. Yu.

    2013-02-01

    A new method for estimation of the internal permittivity of photosynthetic membranes is based on joint analysis of the optical data with high spectral resolution and precise X-ray data. The permittivity of the bacteriochlorophyll-containing membranes of purple bacteria ranges from 1.62 to 1.75. The relatively low permittivity of photosynthetic organisms provides a significant increase in the efficiency of energy migration from multiple antenna chlorophylls to reaction centers and photosynthetic efficiency in general.

  1. Electrostatics of photosynthetic reaction centers in membranes.

    PubMed

    Pennisi, Cristian P; Greenbaum, Elias; Yoshida, Ken

    2006-01-01

    Photosynthetic reaction centers are integral membrane complexes. They have potential application as molecular photovoltaic structures and have been used in diverse technological applications. A three-dimensional electrostatic model of the photosystem I reaction center (PSI) embedded in a lipid membrane is presented. The potential is obtained by solving the Poisson-Boltzmann equation with the finite element method (FEM). Simulations showing the potential distribution in a vesicle containing PSI reaction centers under different conditions are presented. The results of the simulations are compared with previous findings and a possible application of PSI to provide light activation of voltage-gated ion channels is discussed. PMID:17946611

  2. Culturing photosynthetic bacteria through surface plasmon resonance

    SciTech Connect

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David

    2012-12-17

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 {mu}m thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  3. Temperature response of Antarctic cryptoendolithic photosynthetic microorganisms

    NASA Technical Reports Server (NTRS)

    Ocampo-Friedmann, R.; Meyer, M. A.; Chen, M.; Friedmann, E. I.

    1988-01-01

    Growth responses to temperatures between 12.5 [degrees] C and 25 degrees C were determined for five photosynthetic microorganisms isolated from the Ross Desert cryptoendolithic community. Among eukaryotic algae, two strains of Trebouxia sp. have an upper temperature limit of 20 degrees C, and two strains of Hemichloris antarctica of 25 degrees C. The cyanobacterium Chroococcidiopsis sp., in contrast, grows at temperatures above 25 degrees C. These and earlier studies suggest that the eukaryotic algae of the Antarctic cryptoendolithic community have an upper temperature limit near 25 degrees C.

  4. Microbial community in microbial fuel cell (MFC) medium and effluent enriched with purple photosynthetic bacterium (Rhodopseudomonas sp.)

    PubMed Central

    2014-01-01

    High power densities have been obtained from MFC reactors having a purple color characteristic of Rhodopseudomonas. We investigated the microbial community structure and population in developed purple MFC medium (DPMM) and MFC effluent (DPME) using 16S rRNA pyrosequencing. In DPMM, dominant bacteria were Comamonas (44.6%), Rhodopseudomonas (19.5%) and Pseudomonas (17.2%). The bacterial community of DPME mainly consisted of bacteria related to Rhodopseudomonas (72.2%). Hydrogen oxidizing bacteria were identified in both purple-colored samples: Hydrogenophaga and Sphaerochaeta in the DPMM, and Arcobacter, unclassified Ignavibacteriaceae, Acinetobacter, Desulfovibrio and Wolinella in the DPME. The methanogenic community of both purple-colored samples was dominated by hydrogenotrophic methanogens including Methanobacterium, Methanobrevibacter and Methanocorpusculum with significantly lower numbers of Methanosarcina. These results suggeste that hydrogen is actively produced by Rhodopseudomonas that leads to the dominance of hydrogen consuming microorganisms in both purple-colored samples. The syntrophic relationship between Rhodopseudomonas and hydrogenotrophic microbes might be important for producing high power density in the acetate-fed MFC under light conditions. PMID:24949257

  5. Carbon monoxide metabolism by the photosynthetic bacterium Rhodospirillum rubrum. Progress report, November 15, 1990--November 15, 1991

    SciTech Connect

    Ludden, P.W.; Roberts, G.P.

    1991-12-31

    Research continued on carbon monoxide metabolism by Rhodospirillum rubrum. In the past year, progress was made in: (1) the identification and isolation of the physiological electron carrier from monoxide dehydrogenase (CODH) to hydrogenase in R. rubrum; (2) the isolation, sequencing and mutagenesis of the genes encoding the components of the CO oxidation system in R. rubrum, (3) the purification and characterization of the CO-induced hydrogenase activity of R. rubrum; (4) the spectroscopic investigation of the cobalt-substituted form of the enzyme.

  6. The Marine Resources Experiment Program (MAREX)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Satellite Ocean Color Science Working Group was established to consider the scientific utility of repeated satellite measurements of ocean color, especially for measuring global ocean chlorophyll and for studying the fate of global primary productivity in the sea. Results of the group's deliberations are presented. The scientific requirements are given for ocean color data from a CZCS follow on sensor in order to address global primary productivity, fishery, and carbon storage problems. Some specific experiments, called the marine resource experiment and designed to determine critical nutrient fluxes, photosynthetic rates, and primary productivity and biomass, are outlined.

  7. Carbohydrase Systems of Saccharophagus degradans Degrading Marine Complex Polysaccharides

    PubMed Central

    Hutcheson, Steven W.; Zhang, Haitao; Suvorov, Maxim

    2011-01-01

    Saccharophagus degradans 2–40 is a γ-subgroup proteobacterium capable of using many of the complex polysaccharides found in the marine environment for growth. To utilize these complex polysaccharides, this bacterium produces a plethora of carbohydrases dedicated to the processing of a carbohydrate class. Aiding in the identification of the contributing genes and enzymes is the known genome sequence for this bacterium. This review catalogs the genes and enzymes of the S. degradans genome that are likely to function in the systems for the utilization of agar, alginate, α- and β-glucans, chitin, mannans, pectins, and xylans and discusses the cell biology and genetics of each system as it functions to transfer carbon back to the bacterium. PMID:21731555

  8. Pharmaceutical, cosmeceutical, and traditional applications of marine carbohydrates.

    PubMed

    Ahmed, Abdul Bakrudeen Ali; Adel, Mohaddeseh; Karimi, Pegah; Peidayesh, Mahvash

    2014-01-01

    Marine carbohydrates are most important organic molecules made by photosynthetic organisms. It is very essential for humankind: the role in being an energy source for the organism and they are considered as an important dissolve organic compound (DOC) in marine environment's sediments. Carbohydrates found in different marine environments in different concentrations. Polysaccharides of carbohydrates play an important role in various fields such as pharmaceutical, food production, cosmeceutical, and so on. Marine organisms are good resources of nutrients, and they are rich carbohydrate in sulfated polysaccharide. Seaweeds (marine microalgae) are used in different pharmaceutical industries, especially in pharmaceutical compound production. Seaweeds have a significant amount of sulfated polysaccharides, which are used in cosmeceutical industry, besides based on the biological applications. Since then, traditional people, cosmetics products, and pharmaceutical applications consider many types of seaweed as an important organism used in food process. Sulfated polysaccharides containing seaweed have potential uses in the blood coagulation system, antiviral activity, antioxidant activity, anticancer activity, immunomodulating activity, antilipidepic activity, etc. Some species of marine organisms are rich in polysaccharides such as sulfated galactans. Various polysaccharides such as agar and alginates, which are extracted from marine organisms, have several applications in food production and cosmeceutical industries. Due to their high health benefits, compound-derived extracts of marine polysaccharides have various applications and traditional people were using them since long time ago. In the future, much attention is supposed to be paid to unraveling the structural, compositional, and sequential properties of marine carbohydrate as well. PMID:25300548

  9. Photoinduced Energy Transfer in Artificial Photosynthetic Systems

    NASA Astrophysics Data System (ADS)

    Imahori, H.; Umeyama, T.

    Artificial photosynthesis is a current topic of intensive investigations, both in order to understand the reactions that play a central role in natural photosynthesis as well as to develop highly efficient solar energy conversion systems and molecular optoelectronic devices [1-34]. Artificial photosynthesis is defined as a research field that attempts to mimic the natural process of photosynthesis. Therefore, the outline of natural photosynthesis is described briefly for the better understanding of artificial photosynthesis . Natural photosynthetic system is regarded as one of the most elaborate nanobiological machines [35,36]. It converts solar energy into electrochemical potential or chemical energy, which is prerequisite for the living organisms on the earth. The core function of photosynthesis is a cascade of photoinduced energy and electron transfer between donors and acceptors in the antenna complexes and the reaction center. For instance, in purple photosynthetic bacteria (Rhodopseudomonas acidophila and Rhodopseudomonas palustris) there are two different types of antenna complexes: a core light-harvesting antenna (LH1) and peripheral light-harvesting antenna (LH2) [37-39]. LH1 surrounds the reaction center where charge separation takes place.

  10. Non-photosynthetic pigments as potential biosignatures

    NASA Astrophysics Data System (ADS)

    Schwieterman, E. W.; Cockell, C. S.; Meadows, V. S.

    2014-03-01

    Photosynthetic organisms on Earth produce potentially detectable surface reflectance biosignatures due in part to the spectral location and strength of pigment absorption. However, life on Earth uses pigments for a multitude of purposes other than photosynthesis, including coping with extreme environments. Macroscopic environments exist on Earth where the surface reflectance is significantly altered by a nonphotosynthetic pigment, such as the case of hypersaline lakes and ponds (Oren et al. 1992). Here we explore the nature and potential detectability of non-photosynthetic pigments in disk-averaged planetary observations using a combination of laboratory measurements and archival reflectance spectra, along with simulated broadband photometry and spectra. The in vivo visible reflectance spectra of a cross section of pigmented microorganisms are presented to illustrate the spectral diversity of biologically produced pigments. Synthetic broadband colors are generated to show a significant spread in color space. A 1D radiative transfer model (Meadows & Crisp 1996; Crisp 1997) is used to approximate the spectra of scenarios where pigmented organisms are widespread on planets with Earth-like atmospheres. Broadband colors are revisited to show that colors due to surface reflectivity are not robust to the addition of scattering and absorption effects from the atmosphere. We consider a èbest case' plausible scenario for the detection of nonphotosynthetic pigments by using the Virtual Planetary Laboratory's 3D spectral Earth model (Robinson et al. 2011) to explore the detectability of the surface biosignature produced by pigmented halophiles that are widespread on an Earth-analog planet.

  11. Respiratory processes in non-photosynthetic plastids

    PubMed Central

    Renato, Marta; Boronat, Albert; Azcón-Bieto, Joaquín

    2015-01-01

    Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(P)H to oxygen. This respiratory chain involves the NAD(P)H dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX), and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids. PMID:26236317

  12. The making of a photosynthetic animal

    PubMed Central

    Rumpho, Mary E.; Pelletreau, Karen N.; Moustafa, Ahmed; Bhattacharya, Debashish

    2011-01-01

    Symbiotic animals containing green photobionts challenge the common perception that only plants are capable of capturing the sun's rays and converting them into biological energy through photoautotrophic CO2 fixation (photosynthesis). ‘Solar-powered’ sacoglossan molluscs, or sea slugs, have taken this type of symbiotic association one step further by solely harboring the photosynthetic organelle, the plastid (=chloroplast). One such sea slug, Elysia chlorotica, lives as a ‘plant’ when provided with only light and air as a result of acquiring plastids during feeding on its algal prey Vaucheria litorea. The captured plastids (kleptoplasts) are retained intracellularly in cells lining the digestive diverticula of the sea slug, a phenomenon sometimes referred to as kleptoplasty. Photosynthesis by the plastids provides E. chlorotica with energy and fixed carbon for its entire lifespan of ∼10 months. The plastids are not transmitted vertically (i.e. are absent in eggs) and do not undergo division in the sea slug. However, de novo protein synthesis continues, including plastid- and nuclear-encoded plastid-targeted proteins, despite the apparent absence of algal nuclei. Here we discuss current data and provide hypotheses to explain how long-term photosynthetic activity is maintained by the kleptoplasts. This fascinating ‘green animal’ provides a unique model to study the evolution of photosynthesis in a multicellular heterotrophic organism. PMID:21177950

  13. Micromachined microbial and photosynthetic fuel cells

    NASA Astrophysics Data System (ADS)

    Chiao, Mu; Lam, Kien B.; Lin, Liwei

    2006-12-01

    This paper presents two types of fuel cells: a miniature microbial fuel cell (µMFC) and a miniature photosynthetic electrochemical cell (µPEC). A bulk micromachining process is used to fabricate the fuel cells, and the prototype has an active proton exchange membrane area of 1 cm2. Two different micro-organisms are used as biocatalysts in the anode: (1) Saccharomyces cerevisiae (baker's yeast) is used to catalyze glucose and (2) Phylum Cyanophyta (blue-green algae) is used to produce electrons by a photosynthetic reaction under light. In the dark, the µPEC continues to generate power using the glucose produced under light. In the cathode, potassium ferricyanide is used to accept electrons and electric power is produced by the overall redox reactions. The bio-electrical responses of µMFCs and µPECs are characterized with the open-circuit potential measured at an average value of 300-500 mV. Under a 10 ohm load, the power density is measured as 2.3 nW cm-2 and 0.04 nW cm-2 for µMFCs and µPECs, respectively.

  14. Photosynthetic water splitting: 1987 annual report

    SciTech Connect

    Greenbaum, E.

    1988-01-01

    This document is an annual report of photosynthetic water splitting for the production of hydrogen and oxygen. Unicellular green algae are capable of evolving molecular hydrogen in the presence of carbon dioxide. Controlling factors that determine hydrogen evolution are either temperature or light intensity. Also, mutants of the green alga Chlamydomonas are capable of evolving hydrogen in the presence of carbon dioxide. The significance of these discoveries is that the presence of carbon dioxide (or bicarbonate) is a key factor in determining the activity of the Photosystem II water splitting complex. Second, a new advance in oxygen sensor technology has been made that, for the first time, allows the absolute measurement of photosynthetically evolved oxygen from a single colony of microalgae growing on a solidified agar medium. The key aspect of this electrochemical sensor is the utilization of ultra-pure potassium hydroxide as the electrolyte and a recognition of the role that electrolyte impurities play in contributing to base line noise. 9 refs., 8 figs., 2 tabs.

  15. Redox regulation of photosynthetic gene expression

    PubMed Central

    Queval, Guillaume; Foyer, Christine H.

    2012-01-01

    Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in low molecular weight antioxidant were therefore compared to determine how different antioxidant systems that process hydrogen peroxide influence transcripts encoding proteins targeted to the chloroplasts or mitochondria. Less than 10 per cent overlap was observed in the transcriptome patterns of leaves that are deficient in either photorespiratory (catalase (cat)2) or chloroplastic (thylakoid ascorbate peroxidase (tapx)) hydrogen peroxide processing. Transcripts encoding photosystem II (PSII) repair cycle components were lower in glutathione-deficient leaves, as were the thylakoid NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) dehydrogenases (NDH) mRNAs. Some thylakoid NDH mRNAs were also less abundant in tAPX-deficient and ascorbate-deficient leaves. Transcripts encoding the external and internal respiratory NDHs were increased by low glutathione and low ascorbate. Regulation of transcripts encoding specific components of the photosynthetic and respiratory electron transport chains by hydrogen peroxide, ascorbate and glutathione may serve to balance non-cyclic and cyclic electron flow pathways in relation to oxidant production and reductant availability. PMID:23148274

  16. Thermal responses of Symbiodinium photosynthetic carbon assimilation

    NASA Astrophysics Data System (ADS)

    Oakley, Clinton A.; Schmidt, Gregory W.; Hopkinson, Brian M.

    2014-06-01

    The symbiosis between hermatypic corals and their dinoflagellate endosymbionts, genus Symbiodinium, is based on carbon exchange. This symbiosis is disrupted by thermally induced coral bleaching, a stress response in which the coral host expels its algal symbionts as they become physiologically impaired. The disruption of the dissolved inorganic carbon (DIC) supply or the thermal inactivation of Rubisco have been proposed as sites of initial thermal damage that leads to the bleaching response. Symbiodinium possesses a highly unusual Form II ribulose bisphosphate carboxylase/oxygenase (Rubisco), which exhibits a lower CO2:O2 specificity and may be more thermally unstable than the Form I Rubiscos of other algae and land plants. Components of the CO2 concentrating mechanism (CCM), which supplies inorganic carbon for photosynthesis, may also be temperature sensitive. Here, we examine the ability of four cultured Symbiodinium strains to acquire and fix DIC across a temperature gradient. Surprisingly, the half-saturation constant of photosynthesis with respect to DIC concentration ( K P), an index of CCM function, declined with increasing temperature in three of the four strains, indicating a greater potential for photosynthetic carbon acquisition at elevated temperatures. In the fourth strain, there was no effect of temperature on K P. Finding no evidence for thermal inhibition of the CCM, we conclude that CCM components are not likely to be the primary sites of thermal damage. Reduced photosynthetic quantum yields, a hallmark of thermal bleaching, were observed at low DIC concentrations, leaving open the possibility that reduced inorganic carbon availability is involved in bleaching.

  17. The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter

    NASA Technical Reports Server (NTRS)

    Popp, B. N.; Takigiku, R.; Hayes, J. M.; Louda, J. W.; Baker, E. W.

    1989-01-01

    Carbon-isotopic compositions of geoporphyrins have been measured from marine sediments of Mesozoic and Cenozoic age in order to elucidate the timing and extent of depletion of 13C in marine primary producers. These results indicate that the difference in isotopic composition of coeval marine carbonates and marine primary photosynthate was approximately 5 to 7 permil greater during the Mesozoic and early Cenozoic than at present. In contrast to the isotopic record of marine primary producers, isotopic compositions of terrestrial organic materials have remained approximately constant for this same interval of time. This difference in the isotopic records of marine and terrestrial organic matter is considered in terms of the mechanisms controlling the isotopic fractionation associated with photosynthetic fixation of carbon. We show that the decreased isotopic fractionation between marine carbonates and organic matter from the Early to mid-Cenozoic may record variations in the abundance of atmospheric CO2.

  18. Marine Resources

    NASA Technical Reports Server (NTRS)

    Sherman, J. W., III

    1975-01-01

    The papers presented in the marine session may be broadly grouped into several classes: microwave region instruments compared to infrared and visible region sensors, satellite techniques compared to aircraft techniques, open ocean applications compared to coastal region applications, and basic research and understanding of ocean phenomena compared to research techniques that offer immediate applications.

  19. Marine Mammals.

    ERIC Educational Resources Information Center

    Meith, Nikki

    Marine mammals have not only fascinated and inspired human beings for thousands of years, but they also support a big business by providing flesh for sea-borne factories, sustaining Arctic lifestyles and traditions, and attracting tourists to ocean aquaria. While they are being harpooned, bludgeoned, shot, netted, and trained to jump through…

  20. Marine Trades.

    ERIC Educational Resources Information Center

    Abbott, Alan

    This curriculum guide provides materials for a competency-based course in marine trades at the secondary level. The curriculum design uses the curriculum infused model for the teaching of basic skills as part of vocational education and demonstrates the relationship of vocationally related skills to communication, mathematics, and science…

  1. Diversity of nitrogen assimilation pathways among microbial photosynthetic eukaryotes.

    PubMed

    Terrado, Ramon; Monier, Adam; Edgar, Robyn; Lovejoy, Connie

    2015-06-01

    In an effort to better understand the diversity of genes coding for nitrogen (N) uptake and assimilation pathways among microalgae, we analyzed the transcriptomes of five phylogenetically diverse single celled algae originally isolated from the same high arctic marine region. The five photosynthetic flagellates (a pelagophyte, dictyochophyte, chrysoph-yte, cryptophyte and haptophyte) were grown on standard media and media with only urea or nitrate as a nitrogen source; cells were harvested during late exponential growth. Based on homolog protein sequences, transcriptomes of each alga were interrogated to retrieve genes potentially associated with nitrogen uptake and utilization pathways. We further investigated the phylogeny of poorly characterized genes and gene families that were identified. While the phylogeny of the active urea transporter (DUR3) was taxonomically coherent, those for the urea transporter superfamily, putative nitrilases and amidases indicated complex evolutionary histories, and preliminary evidence for horizontal gene transfers. All five algae expressed genes for ammonium assimilation and all but the chrysophyte expressed genes involved in nitrate utilization and the urea cycle. Among the four algae with nitrate transporter transcripts, we detected lower expression levels in three of these (the dictyochophyte, pelagophyte, and cryptophyte) grown in the urea only medium compared with cultures from the nitrate only media. The diversity of N pathway genes in the five algae, and their ability to grow using urea as a nitrogen source, suggest that these flagellates are able to use a variety of organic nitrogen sources, which would be an advantage in an inorganic nitrogen - limited environment, such as the Arctic Ocean. PMID:26986665

  2. Determination of photosynthetic parameters in two seawater-tolerant vegetables

    NASA Astrophysics Data System (ADS)

    Qiu, Nianwei; Zhou, Feng; Liu, Qian; Zhao, Wenqian

    2016-03-01

    It is difficult to determine the photosynthetic parameters of non-flat leaves/green stems using photosynthetic instruments, due to the unusual morphology of both organs, especially for Suaeda salsa and Salicornia bigelovii as two seawater-tolerant vegetables. To solve the problem, we developed a simple, practical, and effective method to measure and calculate the photosynthetic parameters (such as P N, g s, E) based on unit fresh mass, instead of leaf area. The light/CO2/temperature response curves of the plants can also be measured by this method. This new method is more effective, stable, and reliable than conventional methods for plants with non-flat leaves. In addition, the relative notes on measurements and calculation of photosynthetic parameters were discussed in this paper. This method solves technical difficulties in photosynthetic parameter determination of the two seawater-tolerant vegetables and similar plants.

  3. Ratoon stunting disease of sugarcane: isolation of the causal bacterium.

    PubMed

    Davis, M J; Gillaspie, A G; Harris, R W; Lawson, R H

    1980-12-19

    A small coryneform bacterium was consistently isolated from sugarcane with ratoon stunting disease and shown to be the causal agent. A similar bacterium was isolated from Bermuda grass. Both strains multiplied in sugarcane and Bermuda grass, but the Bermuda grass strain did not incite the symptoms of ratoon stunting disease in sugarcane. Shoot growth in Bermuda grass was retarded by both strains. PMID:17817853

  4. Synthetic Antenna Functioning As Light Harvester in the Whole Visible Region for Enhanced Hybrid Photosynthetic Reaction Centers.

    PubMed

    Hassan Omar, Omar; la Gatta, Simona; Tangorra, Rocco Roberto; Milano, Francesco; Ragni, Roberta; Operamolla, Alessandra; Argazzi, Roberto; Chiorboli, Claudio; Agostiano, Angela; Trotta, Massimo; Farinola, Gianluca M

    2016-07-20

    The photosynthetic reaction center (RC) from the Rhodobacter sphaeroides bacterium has been covalently bioconjugated with a NIR-emitting fluorophore (AE800) whose synthesis was specifically tailored to act as artificial antenna harvesting light in the entire visible region. AE800 has a broad absorption spectrum with peaks centered in the absorption gaps of the RC and its emission overlaps the most intense RC absorption bands, ensuring a consistent increase of the protein optical cross section. The covalent hybrid AE800-RC is stable and fully functional. The energy collected by the artificial antenna is transferred to the protein via FRET mechanism, and the hybrid system outperforms by a noteworthy 30% the overall photochemical activity of the native protein under the entire range of visible light. This improvement in the optical characteristic of the photoenzyme demonstrates the effectiveness of the bioconjugation approach as a suitable route to new biohybrid materials for energy conversion, photocatalysis, and biosensing. PMID:27245093

  5. Marine Education: Progress and Promise.

    ERIC Educational Resources Information Center

    Fortner, Rosanne; Wildman, Terry M.

    1980-01-01

    Examined are the scope and status of precollege marine education, including history of marine education, present interdisciplinary marine education, informal approaches to marine education, marine awareness studies, and some implications of marine education. (Author/DS)

  6. Agrobacterium tumefaciens is a diazotrophic bacterium

    SciTech Connect

    Kanvinde, L.; Sastry, G.R.K. )

    1990-07-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate {sup 15}N supplied as {sup 15}N{sub 2}. As with most other well-characterized diazotrophic bacteria, the presence of NH{sub 4}{sup +} in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship.

  7. The chemical formula of a magnetotactic bacterium.

    PubMed

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life. PMID:22170293

  8. Marine Jet

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The marine turbine pump pictured is the Jacuzzi 12YJ, a jet propulsion system for pleasure or commercial boating. Its development was aided by a NASA computer program made available by the Computer Software Management and Information Center (COSMIC) at the University of Georgia. The manufacturer, Jacuzzi Brothers, Incorporated, Little Rock, Arkansas, used COSMIC'S Computer Program for Predicting Turbopump Inducer Loading, which enabled substantial savings in development time and money through reduction of repetitive testing.

  9. Mapping the spectral variability in photosynthetic and non-photosynthetic vegetation, soils, and shade using AVIRIS

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Smith, Milton O.; Sabol, Donald E.; Adams, John B.; Ustin, Susan L.

    1992-01-01

    The primary objective of this research was to map as many spectrally distinct types of green vegetation (GV), non-photosynthetic vegetation (NPV), shade, and soil (endmembers) in an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene as is warranted by the spectral variability of the data. Once determined, a secondary objective was to interpret these endmembers and their abundances spatially and spectrally in an ecological context.

  10. Photosynthetic Machineries in Nano-Systems

    PubMed Central

    Nagy, László; Magyar, Melinda; Szabó, Tibor; Hajdu, Kata; Giotta, Livia; Dorogi, Márta; Milano, Francesco

    2014-01-01

    Photosynthetic reaction centres are membrane-spanning proteins, found in several classes of autotroph organisms, where a photoinduced charge separation and stabilization takes place with a quantum efficiency close to unity. The protein remains stable and fully functional also when extracted and purified in detergents thereby biotechnological applications are possible, for example, assembling it in nano-structures or in optoelectronic systems. Several types of bionanocomposite materials have been assembled by using reaction centres and different carrier matrices for different purposes in the field of light energy conversion (e.g., photovoltaics) or biosensing (e.g., for specific detection of pesticides). In this review we will summarize the current status of knowledge, the kinds of applications available and the difficulties to be overcome in the different applications. We will also show possible research directions for the close future in this specific field. PMID:24678673

  11. Structural basis of photosynthetic water-splitting

    SciTech Connect

    Shen, Jian-Ren; Kawakami, Keisuke; Kamiya, Nobuo

    2013-12-10

    Photosynthetic water-splitting takes place in photosystem II (PSII), a membrane protein complex consisting of 20 subunits with an overall molecular mass of 350 kDa. The light-induced water-splitting reaction catalyzed by PSII not only converts light energy into biologically useful chemical energy, but also provides us with oxygen indispensible for sustaining oxygenic life on the earth. We have solved the structure of PSII at a 1.9 Å resolution, from which, the detailed structure of the Mn{sub 4}CaO{sub 5}-cluster, the catalytic center for water-splitting, became clear. Based on the structure of PSII at the atomic resolution, possible mechanism of light-induced water-splitting was discussed.

  12. Exopolysaccharides Play a Role in the Swarming of the Benthic Bacterium Pseudoalteromonas sp. SM9913

    PubMed Central

    Liu, Ang; Mi, Zi-Hao; Zheng, Xiao-Yu; Yu, Yang; Su, Hai-Nan; Chen, Xiu-Lan; Xie, Bin-Bin; Zhou, Bai-Cheng; Zhang, Yu-Zhong; Qin, Qi-Long

    2016-01-01

    Most marine bacteria secrete exopolysaccharide (EPS), which is important for bacterial survival in the marine environment. However, it is still unclear whether the self-secreted EPS is involved in marine bacterial motility. Here we studied the role of EPS in the lateral flagella-driven swarming motility of benthic bacterium Pseudoalteromonas sp. SM9913 (SM9913) by a comparison of wild SM9913 and ΔepsT, an EPS synthesis defective mutant. Reduction of EPS production in ΔepsT did not affect the growth rate or the swimming motility, but significantly decreased the swarming motility on a swarming plate, suggesting that the EPS may play a role in SM9913 swarming. However, the expression and assembly of lateral flagella in ΔepsT were not affected. Instead, ΔepsT had a different swarming behavior from wild SM9913. The swarming of ΔepsT did not have an obvious rapid swarming period, and its rate became much lower than that of wild SM9913 after 35 h incubation. An addition of surfactin or SM9913 EPS on the surface of the swarming plate could rescue the swarming level. These results indicate that the self-secreted EPS is required for the swarming of SM9913. This study widens our understanding of the function of the EPS of benthic bacteria. PMID:27092127

  13. Blue-light-regulated transcription factor, Aureochrome, in photosynthetic stramenopiles.

    PubMed

    Takahashi, Fumio

    2016-03-01

    During the course of evolution through various endosymbiotic processes, diverse photosynthetic eukaryotes acquired blue light (BL) responses that do not use photosynthetic pathways. Photosynthetic stramenopiles, which have red algae-derived chloroplasts through secondary symbiosis, are principal primary producers in aquatic environments, and play important roles in ecosystems and aquaculture. Through secondary symbiosis, these taxa acquired BL responses, such as phototropism, chloroplast photo-relocation movement, and photomorphogenesis similar to those which green plants acquired through primary symbiosis. Photosynthetic stramenopile BL receptors were undefined until the discovery in 2007, of a new type of BL receptor, the aureochrome (AUREO), from the photosynthetic stramenopile alga, Vaucheria. AUREO has a bZIP domain and a LOV domain, and thus BL-responsive transcription factor. AUREO orthologs are only conserved in photosynthetic stramenopiles, such as brown algae, diatoms, and red tide algae. Here, a brief review is presented of the role of AUREOs as photoreceptors for these diverse BL responses and their biochemical properties in photosynthetic stramenopiles. PMID:26781435

  14. Adaptation to quantum flux by the emerson photosynthetic unit.

    PubMed

    Sheridan, R P

    1972-09-01

    The size of the Emerson photosynthetic unit was measured in Chlorella pyrenoidosa strain no. 252 grown at light intensities between 50 and 1000 foot candles. The Emerson photosynthetic unit changed from a minimum size of 1970 molecules chlorophyll a + b/O(2) per flash in cells grown at 1000 foot candles to a maximum size of 3150 molecules chlorophyll a + b/O(2) per flash for cells grown at 50 foot candles. The size changes were interpreted as a partial adaptation where the trapping center antenna responded to changes in incident light intensity. Light-induced changes in chlorophyll content and size of the Emerson photosynthetic unit were directly related.Two strains of Chlorella pyrenoidosa adapted by growth to 500 foot candles were then illuminated at the reduced light intensity of 50 foot candles. Emerson photosynthetic unit size (Emerson strain) increased from 2110 molecules Chlorophyll a + b/O(2) per flash at time zero to a maximum size of 3160 after 65 hours at 50 foot candles. The Emerson photosynthetic unit size for strain 252 transferred from 500 to 50 foot candles was 2260 at zero hours and 3650 after 50 hours at 50 foot candles. Emerson photosynthetic unit sizes for similar cultures which remained at 500 foot candles were almost constant in size. Oxygen yield per flash per cell was nearly constant whereas Emerson photosynthetic unit size increased in cells moved to the reduced incident light intensity. PMID:16658173

  15. Adaptation to Quantum Flux by the Emerson Photosynthetic Unit 1

    PubMed Central

    Sheridan, R. P.

    1972-01-01

    The size of the Emerson photosynthetic unit was measured in Chlorella pyrenoidosa strain no. 252 grown at light intensities between 50 and 1000 foot candles. The Emerson photosynthetic unit changed from a minimum size of 1970 molecules chlorophyll a + b/O2 per flash in cells grown at 1000 foot candles to a maximum size of 3150 molecules chlorophyll a + b/O2 per flash for cells grown at 50 foot candles. The size changes were interpreted as a partial adaptation where the trapping center antenna responded to changes in incident light intensity. Light-induced changes in chlorophyll content and size of the Emerson photosynthetic unit were directly related. Two strains of Chlorella pyrenoidosa adapted by growth to 500 foot candles were then illuminated at the reduced light intensity of 50 foot candles. Emerson photosynthetic unit size (Emerson strain) increased from 2110 molecules Chlorophyll a + b/O2 per flash at time zero to a maximum size of 3160 after 65 hours at 50 foot candles. The Emerson photosynthetic unit size for strain 252 transferred from 500 to 50 foot candles was 2260 at zero hours and 3650 after 50 hours at 50 foot candles. Emerson photosynthetic unit sizes for similar cultures which remained at 500 foot candles were almost constant in size. Oxygen yield per flash per cell was nearly constant whereas Emerson photosynthetic unit size increased in cells moved to the reduced incident light intensity. PMID:16658173

  16. Carbon Gain and Photosynthetic Response of Chrysanthemum to Photosynthetic Photon Flux Density Cycles 1

    PubMed Central

    Stoop, Johan M. H.; Willits, Dan H.; Peet, Mary M.; Nelson, Paul V.

    1991-01-01

    Most models of carbon gain as a function of photosynthetic irradiance assume an instantaneous response to increases and decreases in irradiance. High- and low-light-grown plants differ, however, in the time required to adjust to increases and decreases in irradiance. In this study the response to a series of increases and decreases in irradiance was observed in Chrysanthemum × morifolium Ramat. “Fiesta” and compared with calculated values assuming an instantaneous response. There were significant differences between high- and low-light-grown plants in their photosynthetic response to four sequential photosynthetic photon flux density (PPFD) cycles consisting of 5-minute exposures to 200 and 400 micromoles per square meter per second (μmol m−2s−1). The CO2 assimilation rate of high-light-grown plants at the cycle peak increased throughout the PPFD sequence, but the rate of increase was similar to the increase in CO2 assimilation rate observed under continuous high-light conditions. Low-light leaves showed more variability in their response to light cycles with no significant increase in CO2 assimilation rate at the cycle peak during sequential cycles. Carbon gain and deviations from actual values (percentage carbon gain over- or underestimation) based on assumptions of instantaneous response were compared under continuous and cyclic light conditions. The percentage carbon gain overestimation depended on the PPFD step size and growth light level of the leaf. When leaves were exposed to a large PPFD increase, the carbon gain was overestimated by 16 to 26%. The photosynthetic response to 100 μmol m−2 s−1 PPFD increases and decreases was rapid, and the small overestimation of the predicted carbon gain, observed during photosynthetic induction, was almost entirely negated by the carbon gain underestimation observed after a decrease. If the PPFD cycle was 200 or 400 μmol m−2 s−1, high- and low-light leaves showed a carbon gain overestimation of 25

  17. Thiocapsa imhoffii, sp. nov., an alkaliphilic purple sulfur bacterium of the family Chromatiaceae from Soap Lake, Washington (USA).

    PubMed

    Asao, Marie; Takaichi, Shinichi; Madigan, Michael T

    2007-12-01

    An alkaliphilic purple sulfur bacterium, strain SC5, was isolated from Soap Lake, a soda lake located in east central Washington state (USA). Cells of strain SC5 were gram-negative, non-motile, and non-gas vesiculate cocci, often observed in pairs or tetrads. In the presence of sulfide, elemental sulfur was deposited internally. Liquid cultures were pink to rose red in color. Cells contained bacteriochlorophyll a and spirilloxanthin as major photosynthetic pigments. Internal photosynthetic membranes were of the vesicular type. Optimal growth of strain SC5 occurred in the absence of NaCl (range 0-4%), pH 8.5 (range pH 7.5-9.5), and 32 degrees C. Photoheterotrophic growth occurred in the presence of sulfide or thiosulfate with only a limited number of organic carbon sources. Growth factors were not required, and cells could fix N2. Dark, microaerobic growth occurred in the presence of both an organic carbon source and thiosulfate. Sulfide and thiosulfate served as electron donors for photoautotrophy, which required elevated levels of CO2. Phylogenetic analysis placed strain SC5 basal to the clade of the genus Thiocapsa in the family Chromatiaceae with a 96.7% sequence similarity to its closest relative, Thiocapsa roseopersicina strain 1711T (DSM217T). The unique assemblage of physiological and phylogenetic properties of strain SC5 defines it as a new species of the genus Thiocapsa, and we describe strain SC5 herein as Tca. imhoffii, sp. nov. PMID:17661016

  18. Primary endosymbiosis and the evolution of light and oxygen sensing in photosynthetic eukaryotes

    PubMed Central

    Rockwell, Nathan C.; Lagarias, J. Clark; Bhattacharya, Debashish

    2015-01-01

    The origin of the photosynthetic organelle in eukaryotes, the plastid, changed forever the evolutionary trajectory of life on our planet. Plastids are highly specialized compartments derived from a putative single cyanobacterial primary endosymbiosis that occurred in the common ancestor of the supergroup Archaeplastida that comprises the Viridiplantae (green algae and plants), red algae, and glaucophyte algae. These lineages include critical primary producers of freshwater and terrestrial ecosystems, progenitors of which provided plastids through secondary endosymbiosis to other algae such as diatoms and dinoflagellates that are critical to marine ecosystems. Despite its broad importance and the success of algal and plant lineages, the phagotrophic origin of the plastid imposed an interesting challenge on the predatory eukaryotic ancestor of the Archaeplastida. By engulfing an oxygenic photosynthetic cell, the host lineage imposed an oxidative stress upon itself in the presence of light. Adaptations to meet this challenge were thus likely to have occurred early on during the transition from a predatory phagotroph to an obligate phototroph (or mixotroph). Modern algae have recently been shown to employ linear tetrapyrroles (bilins) to respond to oxidative stress under high light. Here we explore the early events in plastid evolution and the possible ancient roles of bilins in responding to light and oxygen. PMID:25729749

  19. Mechanism of Photosynthetic Carbon Dioxide Uptake by the Red Macroalga, Chondrus crispus

    PubMed Central

    Smith, Ronald G.; Bidwell, R.G.S.

    1989-01-01

    The aim of this study was to determine how Chondrus crispus, a marine red macroalga, acquires the inorganic carbon (Ci) it utilizes for photosynthetic carbon fixation. Analyses of Ci uptake were done using silicone oil centrifugation (using multicellular fragments of thallus), infrared gas analysis, and gas chromatography. Inhibitors of carbonic anhydrase (CA), the band 3 anion exchange protein and Na+/K+ exchange were used in the study. It was found that: (a) C. crispus does not accumulate Ci internally above the concentration attainable by diffusion; (b) the initial Ci fixtion rate of C. crispus fragments saturates at approximately 3 to 4 millimolar Ci; (c) CA is involved in carbon uptake; its involvement is greatest at high HCO3− and low CO2 concentration, suggesting its participation in the dehydration of HCO3− to CO2; (d) C. crispus has an intermediate Ci compensation point; and (e) no evidence of any active or facilitated mechanism for the transport of HCO3− was detected. These data support the view that photosynthetic Ci uptake does not involve active transport. Rather, CO2, derived from HCO3− catalyzed by external CA, passively diffuses across the plasma membrane of C. crispus. Intracellular CA also enhances the fixation of carbon in C. crispus. PMID:16666552

  20. Hydrogen and oxygen production by photosynthetic water splitting: Energy and quantum conversion efficiencies

    SciTech Connect

    Greenbaum, E.

    1985-01-01

    Absolute energy and quantum conversion efficiencies based on incident radiation have been measured for five species of green algae. Experiments have been performed with broadband illumination and monochromatic illumination. Maximum efficiencies were obtained in the linear low-intensity portion of the light saturation curve. At these intensities, equivalent solar energy conversion efficiencies of 2-3% were obtained with Chlamydomonas reinhardtil 137C(+). Although this efficiency decreased to less than 0.01% at equivalent incident solar irradiances above 100 w/m)sup)2)), a knowledge of the structure of photosynthetic units and the turnover time of photosynthesis suggest a procedure to overcome this limitation. Using monochromatic illumination at 700 nm, quantum efficiencies were computed from measured energy conversion efficiencies. The maximum measured quantum efficiency for photobiological hydrogen production was 6.3% in the marine species Chlamydomonas D. This value is about 25% of the maximum theoretical value of the quantum efficiency of photobiological hydrogen production. 19 refs., 6 figs.

  1. Heavy Metal Coprecipitation with Hydrozincite [Zn5(CO3)2(OH)6] from Mine Waters Caused by Photosynthetic Microorganisms

    PubMed Central

    Podda, Francesca; Zuddas, Paola; Minacci, Andrea; Pepi, Milva; Baldi, Franco

    2000-01-01

    An iron-poor stream of nearly neutral pH polluted by mine tailings has been investigated for a natural phenomenon responsible for the polishing of heavy metals in mine wastewaters. A white mineralized mat, which was determined to be hydrozincite [Zn5(CO3)2(OH)6] by X-ray diffraction analysis, was observed in the stream sediments mainly in spring. The precipitate shows a total organic matter residue of 10% dry weight and contains high concentrations of Pb, Cd, Ni, Cu, and other metals. Scanning electron microscopy analysis suggests that hydrozincite is mainly of biological origin. Dormant photosynthetic microorganisms have been retrieved from 1-year-old dry hydrozincite. The autofluorescent microorganisms were imaged by a scanning confocal laser microscope. A photosynthetic filamentous bacterium, classified as Scytonema sp. strain ING-1, was found associated with microalga Chlorella sp. strain SA1. This microbial community is responsible for the natural polishing of heavy metals in the water stream by coprecipitation with hydrozincite. PMID:11055969

  2. Quorum sensing influences growth and photosynthetic membrane production in high-cell-density cultivations of Rhodospirillum rubrum

    PubMed Central

    2013-01-01

    Background The facultative anoxygenic photosynthetic bacterium Rhodospirillum rubrum exhibits versatile metabolic activity allowing the adaptation to rapidly changing growth conditions in its natural habitat, the microaerobic and anoxic zones of stagnant waters. The microaerobic growth mode is of special interest as it allows the high-level expression of photosynthetic membranes when grown on succinate and fructose in the dark, which could significantly simplify the industrial production of compounds associated with PM formation. However, recently we showed that PM synthesis is no longer inducible when R. rubrum cultures are grown to high cell densities under aerobic conditions. In addition a reduction of the growth rate and the continued accumulation of precursor molecules for bacteriochlorophyll synthesis were observed under high cell densities conditions. Results In the present work, we demonstrate that the cell density-dependent effects are reversible if the culture supernatant is replaced by fresh medium. We identified six N-acylhomoserine lactones and show that four of them are produced in varying amounts according to the growth phase and the applied growth conditions. Further, we demonstrate that N-acylhomoserine lactones and tetrapyrrole compounds released into the growth medium affect the growth rate and PM expression in high cell density cultures. Conclusions In summary, we provide evidence that R. rubrum possesses a Lux-type quorum sensing system which influences the biosynthesis of PM and the growth rate and is thus likely to be involved in the phenotypes of high cell density cultures and the rapid adaptation to changing environmental conditions. PMID:23927486

  3. Rapid redox signal transmission by "Cable Bacteria" beneath a photosynthetic biofilm.

    PubMed

    Malkin, S Y; Meysman, F J R

    2015-02-01

    Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These "cable bacteria" are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthetic algal biofilm. In a first experiment, we investigated sediment that hosted both cable bacteria and a photosynthetic biofilm and tested the effect of an imposed diel light-dark cycle by continuously monitoring sulfide at depth. Changes in photosynthesis at the sediment surface had an immediate and repeatable effect on sulfide concentrations at depth, indicating that cable bacteria can rapidly transmit a geochemical effect to centimeters of depth in response to changing conditions at the sediment surface. We also observed a secondary response of the free sulfide at depth manifest on the time scale of hours, suggesting that cable bacteria adjust to a moving oxygen front with a regulatory or a behavioral response, such as motility. Finally, we show that on the time scale of days, the presence of an oxygenic biofilm results in a deeper and more acidic suboxic zone, indicating that a greater oxygen supply can enable cable bacteria to harvest a greater quantity of electrons from marine sediments. Rapid acclimation strategies and highly efficient electron harvesting are likely key advantages of cable bacteria, enabling their success in high sulfide generating coastal sediments. PMID:25416774

  4. Rapid Redox Signal Transmission by “Cable Bacteria” beneath a Photosynthetic Biofilm

    PubMed Central

    Meysman, F. J. R.

    2014-01-01

    Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These “cable bacteria” are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthetic algal biofilm. In a first experiment, we investigated sediment that hosted both cable bacteria and a photosynthetic biofilm and tested the effect of an imposed diel light-dark cycle by continuously monitoring sulfide at depth. Changes in photosynthesis at the sediment surface had an immediate and repeatable effect on sulfide concentrations at depth, indicating that cable bacteria can rapidly transmit a geochemical effect to centimeters of depth in response to changing conditions at the sediment surface. We also observed a secondary response of the free sulfide at depth manifest on the time scale of hours, suggesting that cable bacteria adjust to a moving oxygen front with a regulatory or a behavioral response, such as motility. Finally, we show that on the time scale of days, the presence of an oxygenic biofilm results in a deeper and more acidic suboxic zone, indicating that a greater oxygen supply can enable cable bacteria to harvest a greater quantity of electrons from marine sediments. Rapid acclimation strategies and highly efficient electron harvesting are likely key advantages of cable bacteria, enabling their success in high sulfide generating coastal sediments. PMID:25416774

  5. Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis (GBO3).

    PubMed

    Freitas, Mônica A; Medeiros, Flavio H V; Carvalho, Samuel P; Guilherme, Luiz R G; Teixeira, William D; Zhang, Huiming; Paré, Paul W

    2015-01-01

    Cassava (Manihot esculenta), a major staple food in the developing world, provides a basic carbohydrate diet for over half a billion people living in the tropics. Despite the iron abundance in most soils, cassava provides insufficient iron for humans as the edible roots contain 3-12 times less iron than other traditional food crops such as wheat, maize, and rice. With the recent identification that the beneficial soil bacterium Bacillus subtilis (strain GB03) activates iron acquisition machinery to increase metal ion assimilation in Arabidopsis, the question arises as to whether this plant-growth promoting rhizobacterium also augments iron assimilation to increase endogenous iron levels in cassava. Biochemical analyses reveal that shoot-propagated cassava with GB03-inoculation exhibit elevated iron accumulation after 140 days of plant growth as determined by X-ray microanalysis and total foliar iron analysis. Growth promotion and increased photosynthetic efficiency were also observed for greenhouse-grown plants with GB03-exposure. These results demonstrate the potential of microbes to increase iron accumulation in an important agricultural crop and is consistent with idea that microbial signaling can regulate plant photosynthesis. PMID:26300897

  6. Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis (GBO3)

    PubMed Central

    Freitas, Mônica A.; Medeiros, Flavio H. V.; Carvalho, Samuel P.; Guilherme, Luiz R. G.; Teixeira, William D.; Zhang, Huiming; Paré, Paul W.

    2015-01-01

    Cassava (Manihot esculenta), a major staple food in the developing world, provides a basic carbohydrate diet for over half a billion people living in the tropics. Despite the iron abundance in most soils, cassava provides insufficient iron for humans as the edible roots contain 3–12 times less iron than other traditional food crops such as wheat, maize, and rice. With the recent identification that the beneficial soil bacterium Bacillus subtilis (strain GB03) activates iron acquisition machinery to increase metal ion assimilation in Arabidopsis, the question arises as to whether this plant-growth promoting rhizobacterium also augments iron assimilation to increase endogenous iron levels in cassava. Biochemical analyses reveal that shoot-propagated cassava with GB03-inoculation exhibit elevated iron accumulation after 140 days of plant growth as determined by X-ray microanalysis and total foliar iron analysis. Growth promotion and increased photosynthetic efficiency were also observed for greenhouse-grown plants with GB03-exposure. These results demonstrate the potential of microbes to increase iron accumulation in an important agricultural crop and is consistent with idea that microbial signaling can regulate plant photosynthesis. PMID:26300897

  7. Growth, photosynthetic efficiency, and biochemical composition of Tetraselmis suecica F&M-M33 grown with LEDs of different colors.

    PubMed

    Abiusi, Fabian; Sampietro, Giacomo; Marturano, Giovanni; Biondi, Natascia; Rodolfi, Liliana; D'Ottavio, Massimo; Tredici, Mario R

    2014-05-01

    The effect of light quality on cell size and cell cycle, growth rate, productivity, photosynthetic efficiency and biomass composition of the marine prasinophyte Tetraselmis suecica F&M-M33 grown in 2-L flat panel photobioreactors illuminated with light emitting diodes (LEDs) of different colors was investigated. Biomass productivity and photosynthetic efficiency were comparable between white and red light, while under blue and green light productivity decreased to less than half and photosynthetic efficiency to about one third. Differences in cell size and number correlated with the cell cycle phase. Under red light cells were smaller and more motile. Chlorophyll content was strongly reduced with red and enhanced with blue light, while carotenoids and gross biomass composition were not affected by light quality. The eicosapentaenoic acid content increased under red light. Red light can substitute white light without affecting productivity of T. suecica F&M-M33, leading to smaller and more motile cells and increased eicosapentaenoic acid content. Red LEDs can thus be profitably used for the production of this microalga for aquaculture. PMID:23904253

  8. Hydrogen Biogeochemistry in Anaerobic and Photosynthetic Ecosystems

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    culture studies. Our recent work has extended the study of hydrogen to cyanobacterial mat communities. The large amounts of reducing power generated during photosynthetic activity carry the potential to contribute a swamping term to the H2 economy of the anaerobic microbial populations within the mat - and thereby to alter the population structure and biogeochemical function of the mat as a whole. In hypersaline microbial mats, we observe a distinct diel cycle in H2 production and a substantial corresponding flux. On an early Earth dominated by microbial mats, this transmission of photosynthetic reducing power may have carried important implications for both biospheric and atmospheric evolution.

  9. Marine Lubricants

    NASA Astrophysics Data System (ADS)

    Carter, B. H.; Green, D.

    Marine diesel engines are classified by speed, either large (medium speed) or very large (slow speed) with high efficiencies and burning low-quality fuel. Slow-speed engines, up to 200 rpm, are two-stroke with separate combustion chamber and sump connected by a crosshead, with trunk and system oil lubricants for each. Medium-speed diesels, 300-1500 rpm, are of conventional automotive design with one lubricant. Slow-speed engines use heavy fuel oil of much lower quality than conventional diesel with problems of deposit cleanliness, acidity production and oxidation. Lubricants are mainly SAE 30/40/50 monogrades using paraffinic basestocks. The main types of additives are detergents/dispersants, antioxidants, corrosion inhibitors, anti-wear/load-carrying/ep, pour-point depressants and anti-foam compounds. There are no simple systems for classifying marine lubricants, as for automotive, because of the wide range of engine design, ratings and service applications they serve. There are no standard tests; lubricant suppliers use their own tests or the Bolnes 3DNL, with final proof from field tests. Frequent lubricant analyses safeguard engines and require standard sampling procedures before determination of density, viscosity, flash point, insolubles, base number, water and wear metal content.

  10. Towards autotrophic tissue engineering: Photosynthetic gene therapy for regeneration.

    PubMed

    Chávez, Myra Noemi; Schenck, Thilo Ludwig; Hopfner, Ursula; Centeno-Cerdas, Carolina; Somlai-Schweiger, Ian; Schwarz, Christian; Machens, Hans-Günther; Heikenwalder, Mathias; Bono, María Rosa; Allende, Miguel L; Nickelsen, Jörg; Egaña, José Tomás

    2016-01-01

    The use of artificial tissues in regenerative medicine is limited due to hypoxia. As a strategy to overcome this drawback, we have shown that photosynthetic biomaterials can produce and provide oxygen independently of blood perfusion by generating chimeric animal-plant tissues during dermal regeneration. In this work, we demonstrate the safety and efficacy of photosynthetic biomaterials in vivo after engraftment in a fully immunocompetent mouse skin defect model. Further, we show that it is also possible to genetically engineer such photosynthetic scaffolds to deliver other key molecules in addition to oxygen. As a proof-of-concept, biomaterials were loaded with gene modified microalgae expressing the angiogenic recombinant protein VEGF. Survival of the algae, growth factor delivery and regenerative potential were evaluated in vitro and in vivo. This work proposes the use of photosynthetic gene therapy in regenerative medicine and provides scientific evidence for the use of engineered microalgae as an alternative to deliver recombinant molecules for gene therapy. PMID:26474040

  11. Cultivar variation in cotton photosynthetic performance under different temperature regimes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (Gossypium hirsutum L.) yields are impacted by overall photosynthetic production. Factors that influence crop photosynthesis are the plants genetic makeup and the environmental conditions. This study investigated cultivar variation in photosynthesis when plants were grown in the field under...

  12. Energy transfer in real and artificial photosynthetic systems

    SciTech Connect

    Hunt, J.E.; Katz, J.J.; Hindman, J.C.

    1984-01-01

    A comparative study of the fluorescence emitted by three photosynthetic organisms (chlorella, tribonema, and anacystis) and the fluorescence of some model systems selected for study by criteria described below are reported. Light emission has been studied as a function of excitation wavelength and of temperature. Low temperature fluorescence studies on photosynthetic organisms and chloroplast preparations provide the chief experimental support for the existence of a PSII in green plants, and fluorescence at low temperatures has been used as the principal source of information on energy flow between the photosynthetic pigments. The nature and functional aspects of PSII and the course of energy transfer in the photosynthetic apparatus are highly pertinent to the oxygen evolution in green plant photosynthesis.

  13. Characterizations of intracellular arsenic in a bacterium

    NASA Astrophysics Data System (ADS)

    Wolfe-Simon, F.; Yannone, S. M.; Tainer, J. A.

    2011-12-01

    Life requires a key set of chemical elements to sustain growth. Yet, a growing body of literature suggests that microbes can alter their nutritional requirements based on the availability of these chemical elements. Under limiting conditions for one element microbes have been shown to utilize a variety of other elements to serve similar functions often (but not always) in similar molecular structures. Well-characterized elemental exchanges include manganese for iron, tungsten for molybdenum and sulfur for phosphorus or oxygen. These exchanges can be found in a wide variety of biomolecules ranging from protein to lipids and DNA. Recent evidence suggested that arsenic, as arsenate or As(V), was taken up and incorporated into the cellular material of the bacterium GFAJ-1. The evidence was interpreted to support As(V) acting in an analogous role to phosphate. We will therefore discuss our ongoing efforts to characterize intracellular arsenate and how it may partition among the cellular fractions of the microbial isolate GFAJ-1 when exposed to As(V) in the presence of various levels of phosphate. Under high As(V) conditions, cells express a dramatically different proteome than when grown given only phosphate. Ongoing studies on the diversity and potential role of proteins and metabolites produced in the presence of As(V) will be reported. These investigations promise to inform the role and additional metabolic potential for As in biology. Arsenic assimilation into biomolecules contributes to the expanding set of chemical elements utilized by microbes in unusual environmental niches.

  14. Microelectrode Studies of Interstitial Water Chemistry and Photosynthetic Activity in a Hot Spring Microbial Mat

    PubMed Central

    Revsbech, Niels P.; Ward, David M.

    1984-01-01

    Microelectrodes were used to measure oxygen, pH, and oxygenic photosynthetic activity in a hot spring microbial mat (Octopus Spring, Yellowstone National Park), where the cyanobacterium Synechococcus lividus and the filamentous bacterium Chloroflexus aurantiacus are the only known phototrophs. The data showed very high biological activities in the topmost layers of the microbial mat, resulting in extreme values for oxygen and pH. At a 1-mm depth at a 55°C site, oxygen and pH reached 900 μM and 9.4, respectively, just after solar noon, whereas anoxic conditions with a pH of 7.2 were measured before sunrise. Although diurnal changes between these extremes occurred over hours during a diurnal cycle, microbial activity was great enough to give the same response in 1 to 2 min after artificial shading. Oxygenic photosynthesis was confined to a 0.5- to 1.1-mm layer at sites with temperatures at or above about 50°C, with maximum activities in the 55 to 60°C region. The data suggest that S. lividus is the dominant primary producer of the mat. PMID:16346607

  15. Chemosensory and photosensory perception in purple photosynthetic bacteria utilize common signal transduction components.

    PubMed Central

    Jiang, Z Y; Gest, H; Bauer, C E

    1997-01-01

    The chemotaxis gene cluster from the photosynthetic bacterium Rhodospirillum centenum contains five open reading frames (ORFs) that have significant sequence homology to chemotaxis genes from other bacteria. To elucidate the functions of each ORF, we have made various mutations in the gene cluster and analyzed their phenotypic defects. Deletion of the entire che operon (delta che), as well as nonpolar disruptions of cheAY, cheW, and cheR, resulted in a smooth-swimming phenotype, whereas disruption of cheB resulted in a locked tumbly phenotype. Each of these mutants was defective in chemotactic response. Interestingly, disruption of cheY resulted in a slight increase in the frequency of tumbling/reversal with no obvious defects in chemotactic response. In contrast to observations with Escherichia coli and several other bacteria, we found that all of the che mutant cells were capable of differentiating into hyperflagellated swarmer cells when plated on a solid agar surface. When viewed microscopically, the smooth-swimming che mutants exhibited active surface motility but were unable to respond to a step-down in light intensity. Both positive and negative phototactic responses were abolished in all che mutants, including the cheY mutant. These results indicate that eubacterial photosensory perception is mediated by light-generated signals that are transmitted through the chemotaxis signal transduction cascade. PMID:9294427

  16. Delayed fluorescence from the photosynthetic reaction center measured by electronic gating of the photomultiplier.

    PubMed

    Filus, Z; Laczkó, G; Wraight, C A; Maróti, P

    The decay of the delayed fluorescence (920 nm) of reaction centers from the photosynthetic bacterium Rhodobacter sphaeroides R26 in the P(+)Q(A)(-) charge-separated state (P and Q(A) are the primary donor and quinone, respectively) has been monitored in a wide (100 ns to 100 ms) time range. The photomultiplier (Hamamatsu R3310-03) was protected from the intense prompt fluorescence by application of gating potential pulses (-280 V) to the first, third, and fifth dynodes during the laser pulse. The gain of the photomultiplier dropped transiently by a factor of 1 x 10(6). The delayed fluorescence showed a smooth but nonexponential decay from 100 ns to 1 ms that was explained by the relaxation of the average free energy between P* and P(+)Q(A)(-) changing from -580 to -910 meV. This relaxation is due to the slow protein response to charge separation and can be described by a Kohlrausch relaxation function with time constant of 65 micros and a stretching exponent of alpha = 0.45. PMID:15137102

  17. Microaerophilic growth and induction of the photosynthetic reaction center in Rhodopseudomonas viridis

    SciTech Connect

    Lang, F.S.; Oesterhelt, D.

    1989-05-01

    Rhodopseudomonas viridis was grown in liquid culture at 30 degrees C anaerobically in light (generation time, 13 h) and under microaerophilic growth conditions in the dark (generation time, 24 h). The bacterium could be cloned at the same temperature anaerobically in light (1 week) and aerobically in the dark (3 to 4 weeks) if oxygen was limited to 0.1%. Oxygen could not be replaced by dimethyl sulfoxide, potassium nitrate, or sodium nitrite as a terminal electron acceptor. No growth was observed anaerobically in darkness or in the light when air was present. A variety of additional carbon sources were used to supplement the standard succinate medium, but enhanced stationary-phase cell density was observed only with glucose. Conditions for induction of the photosynthetic reaction center upon the change from microaerophilic to phototrophic growth conditions were investigated and optimized for a mutant functionally defective in phototrophic growth. R. viridis consumed about 20-fold its cell volume of oxygen per hour during respiration. The MICs of ampicillin, kanamycin, streptomycin, tetracycline, 1-methyl-3-nitro-1-nitrosoguanidine, and terbutryn were determined.

  18. An x-ray absorption study of the iron site in bacterial photosynthetic reaction centers.

    PubMed Central

    Bunker, G; Stern, E A; Blankenship, R E; Parson, W W

    1982-01-01

    Measurements were made of the extended x-ray absorption fine structure (EXAFS) of the iron site in photosynthetic reaction centers from the bacterium Rhodopseudomonas sphaeroides. Forms with two quinones, two quinones with added o-phenanthroline, and one quinone were studied. Only the two forms containing two quinones maintained their integrity and were analyzed. The spectra show directly that the added o-phenanthroline does not chelate the iron atom. Further analysis indicates that the iron is octahedrally coordinated by nitrogen and/or oxygen atoms located at various distances, with the average value of about 2.14 A. The analysis suggests that most of the ligands are nitrogens and that three of the nitrogen ligands belong to histidine rings. This interpretation accounts for several unusual features of the EXAFS spectrum. We speculate that the quinones are bound to the histidine rings in some manner. Qualitative features of the absorption edge spectra also are discussed and are related to the Fe-ligand distance. PMID:6977382

  19. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711.

    PubMed

    Shoemaker, William R; Muscarella, Mario E; Lennon, Jay T

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments. PMID:26089434

  20. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711

    PubMed Central

    Shoemaker, William R.; Muscarella, Mario E.

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments. PMID:26089434

  1. Detection of Salmonella bacterium in drinking water using microring resonator.

    PubMed

    Bahadoran, Mahdi; Noorden, Ahmad Fakhrurrazi Ahmad; Mohajer, Faeze Sadat; Abd Mubin, Mohamad Helmi; Chaudhary, Kashif; Jalil, Muhammad Arif; Ali, Jalil; Yupapin, Preecha

    2016-01-01

    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU. PMID:25133457

  2. Photosynthetic light harvesting: excitons and coherence

    PubMed Central

    Fassioli, Francesca; Dinshaw, Rayomond; Arpin, Paul C.; Scholes, Gregory D.

    2014-01-01

    Photosynthesis begins with light harvesting, where specialized pigment–protein complexes transform sunlight into electronic excitations delivered to reaction centres to initiate charge separation. There is evidence that quantum coherence between electronic excited states plays a role in energy transfer. In this review, we discuss how quantum coherence manifests in photosynthetic light harvesting and its implications. We begin by examining the concept of an exciton, an excited electronic state delocalized over several spatially separated molecules, which is the most widely available signature of quantum coherence in light harvesting. We then discuss recent results concerning the possibility that quantum coherence between electronically excited states of donors and acceptors may give rise to a quantum coherent evolution of excitations, modifying the traditional incoherent picture of energy transfer. Key to this (partially) coherent energy transfer appears to be the structure of the environment, in particular the participation of non-equilibrium vibrational modes. We discuss the open questions and controversies regarding quantum coherent energy transfer and how these can be addressed using new experimental techniques. PMID:24352671

  3. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-01-16

    This is the first quarterly report of the project Enhanced Practical Photosynthetic CO{sub 2} Mitigation. The official project start date, 10/02/2000, was delayed until 10/31/2000 due to an intellectual property dispute that was resolved. However, the delay forced a subsequent delay in subcontracting with Montana State University, which then delayed obtaining a sampling permit from Yellowstone National Park. However, even with these delays, the project moved forward with some success. Accomplishments for this quarter include: Culturing of thermophilic organisms from Yellowstone; Testing of mesophilic organisms in extreme CO{sub 2} conditions; Construction of a second test bed for additional testing; Purchase of a total carbon analyzer dedicated to the project; Construction of a lighting container for Oak Ridge National Laboratory optical fiber testing; Modified lighting of existing test box to provide more uniform distribution; Testing of growth surface adhesion and properties; Experimentation on water-jet harvesting techniques; and Literature review underway regarding uses of biomass after harvesting. Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  4. Photosynthetically active sunlight at high southern latitudes.

    PubMed

    Frederick, John E; Liao, Yixiang

    2005-01-01

    A network of scanning spectroradiometers has acquired a multiyear database of visible solar irradiance, covering wavelengths from 400 to 600 nm, at four sites in the high-latitude Southern Hemisphere, from 55 degrees S to 90 degrees S. Monthly irradiations computed from the hourly measurements reveal the character of the seasonal cycle and illustrate the role of cloudiness as functions of latitude. Near summer solstice, the combined influences of solar elevation and the duration of daylight would produce a monthly irradiation with little latitude dependence under clear skies. However, the attenuation associated with local cloudiness varies geographically, with the greatest effect at the most northern locations, Ushuaia, Argentina and Palmer Station on the Antarctic Peninsula. Near summer solstice, the South Pole experiences the largest monthly irradiation of the sites studied, where relatively clear skies contribute to this result. Scaling factors derived from radiative-transfer calculations combined with the measured 400-600 nm irradiances allow estimating irradiances integrated over the wavelength band 400-700 nm. This produces a climatology of photosynthetically active radiation for each month of the year at each site. PMID:15689179

  5. Renewable hydrogen production by photosynthetic water splitting

    SciTech Connect

    Greenbaum, E.; Lee, J.W.

    1998-06-01

    This mission-oriented research project is focused on the production of renewable hydrogen. The authors have demonstrated that certain unicellular green algae are capable of sustained simultaneous photoproduction of hydrogen and oxygen by light-activated photosynthetic water splitting. It is the goal of this project to develop a practical chemical engineering system for the development of an economic process that can be used to produce renewable hydrogen. There are several fundamental problems that need to be solved before the application of this scientific knowledge can be applied to the development a practical process: (I) maximizing net thermodynamic conversion efficiency of light energy into hydrogen energy, (2) development of oxygen-sensitive hydrogenase-containing mutants, and (3) development of bioreactors that can be used in a real-world chemical engineering process. The authors are addressing each of these problems here at ORNL and in collaboration with their research colleagues at the National Renewable Energy Laboratory, the University of California, Berkeley, and the University of Hawaii. This year the authors have focused on item 1 above. In particular, they have focused on the question of how many light reactions are required to split water to molecular hydrogen and oxygen.

  6. Dynamic Environmental Photosynthetic Imaging Reveals Emergent Phenotypes.

    PubMed

    Cruz, Jeffrey A; Savage, Linda J; Zegarac, Robert; Hall, Christopher C; Satoh-Cruz, Mio; Davis, Geoffry A; Kovac, William Kent; Chen, Jin; Kramer, David M

    2016-06-22

    Understanding and improving the productivity and robustness of plant photosynthesis requires high-throughput phenotyping under environmental conditions that are relevant to the field. Here we demonstrate the dynamic environmental photosynthesis imager (DEPI), an experimental platform for integrated, continuous, and high-throughput measurements of photosynthetic parameters during plant growth under reproducible yet dynamic environmental conditions. Using parallel imagers obviates the need to move plants or sensors, reducing artifacts and allowing simultaneous measurement on large numbers of plants. As a result, DEPI can reveal phenotypes that are not evident under standard laboratory conditions but emerge under progressively more dynamic illumination. We show examples in mutants of Arabidopsis of such "emergent phenotypes" that are highly transient and heterogeneous, appearing in different leaves under different conditions and depending in complex ways on both environmental conditions and plant developmental age. These emergent phenotypes appear to be caused by a range of phenomena, suggesting that such previously unseen processes are critical for plant responses to dynamic environments. PMID:27336966

  7. Photocurrent of a single photosynthetic protein

    NASA Astrophysics Data System (ADS)

    Gerster, Daniel; Reichert, Joachim; Bi, Hai; Barth, Johannes V.; Kaniber, Simone M.; Holleitner, Alexander W.; Visoly-Fisher, Iris; Sergani, Shlomi; Carmeli, Itai

    2012-10-01

    Photosynthesis is used by plants, algae and bacteria to convert solar energy into stable chemical energy. The initial stages of this process--where light is absorbed and energy and electrons are transferred--are mediated by reaction centres composed of chlorophyll and carotenoid complexes. It has been previously shown that single small molecules can be used as functional components in electric and optoelectronic circuits, but it has proved difficult to control and probe individual molecules for photovoltaic and photoelectrochemical applications. Here, we show that the photocurrent generated by a single photosynthetic protein--photosystem I--can be measured using a scanning near-field optical microscope set-up. One side of the protein is anchored to a gold surface that acts as an electrode, and the other is contacted by a gold-covered glass tip. The tip functions as both counter electrode and light source. A photocurrent of ~10 pA is recorded from the covalently bound single-protein junctions, which is in agreement with the internal electron transfer times of photosystem I.

  8. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-07-25

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/03/2001 through 7/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Note that this version of the quarterly technical report is a revision to add the reports from subcontractors Montana State and Oak Ridge National Laboratories The significant accomplishments for this quarter include: Development of an experimental plan and initiation of experiments to create a calibration curve that correlates algal chlorophyll levels with carbon levels (to simplify future experimental procedures); Completion of debugging of the slug flow reactor system, and development of a plan for testing the pressure drop of the slug flow reactor; Design and development of a new bioreactor screen design which integrates the nutrient delivery drip system and the harvesting system; Development of an experimental setup for testing the new integrated drip system/harvesting system; Completion of model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on Nostoc 86-3 growth rates; Completion of the construction of a larger model-scale bioreactor to improve and expand testing capabilities and initiation of tests; Substantial progress on construction of a pilot-scale bioreactor; and Preliminary economic analysis of photobioreactor deployment. Plans for next quarter's work are included in the conclusions. A preliminary economic analysis is included as an appendix.

  9. Supramolecular structures modeling photosynthetic reaction center function

    SciTech Connect

    Wasielewski, M.R.; Gaines, G.L. III; Gosztola, D.; Niemczyk, M.P.; Svec, W.A.

    1992-08-20

    Work in our laboratory has focused on the influence of solvent motion on the rates and energetics of photochemical charge separation in glassy solids. The efficiencies of many nonadiabatic electron transfer reactions involving photochemical electron donors with relatively low excited state energies, such as porphyrins and chlorophylls, are poor in the solid state. Recent work has shown that placing a porphyrin-acceptor system in a glassy solid at low temperature significantly raises the energy of ks ion-pair state. This destabilization can be as much as 0.8 eV relative to the ion pair state energy in a polar liquid. This contrasts sharply with photosynthetic reaction centers, which maintain medium-independent electron transfer rates with relatively small free energies of charge separation. Using this information we have set out to design photochemical systems that produce long-lived radical ion pairs in glassy solids with high quantum efficiency. These systems maintain their efficiency when placed in other glassy matrices, such as polymers. An important consequence of this effort is the design of molecules that minimize the electronic interaction between the oxidized donor and reduced acceptor. This minimization can be attained by careful design of the spacer groups linking the donor and acceptor and by using more than a single electron transfer step to increase the distance between the separated charges as is done in natural photosynthesis.

  10. Multiantenna artificial photosynthetic reaction center complex.

    PubMed

    Terazono, Yuichi; Kodis, Gerdenis; Liddell, Paul A; Garg, Vikas; Moore, Thomas A; Moore, Ana L; Gust, Devens

    2009-05-21

    In order to ensure efficient utilization of the solar spectrum, photosynthetic organisms use a variety of antenna chromophores to absorb light and transfer excitation to a reaction center, where photoinduced charge separation occurs. Reported here is a synthetic molecular heptad that features two bis(phenylethynyl)anthracene and two borondipyrromethene antennas linked to a hexaphenylbenzene core that also bears two zinc porphyrins. A fullerene electron acceptor self-assembles to both porhyrins via dative bonds. Excitation energy is transferred very efficiently from all four antennas to the porphyrins. Singlet-singlet energy transfer occurs both directly and by a stepwise funnel-like pathway wherein excitation moves down a thermodynamic gradient. The porphyrin excited states donate an electron to the fullerene with a time constant of 3 ps to generate a charge-separated state with a lifetime of 230 ps. The overall quantum yield is close to unity. In the absence of the fullerene, the porphyrin excited singlet state donates an electron to a borondipyrromethene on a slower time scale. This molecule demonstrates that by incorporating antennas, it is possible for a molecular system to harvest efficiently light throughout the visible from ultraviolet wavelengths out to approximately 650 nm. PMID:19438278

  11. Regulation of the photosynthetic apparatus under fluctuating growth light.

    PubMed

    Tikkanen, Mikko; Grieco, Michele; Nurmi, Markus; Rantala, Marjaana; Suorsa, Marjaana; Aro, Eva-Mari

    2012-12-19

    Safe and efficient conversion of solar energy to metabolic energy by plants is based on tightly inter-regulated transfer of excitation energy, electrons and protons in the photosynthetic machinery according to the availability of light energy, as well as the needs and restrictions of metabolism itself. Plants have mechanisms to enhance the capture of energy when light is limited for growth and development. Also, when energy is in excess, the photosynthetic machinery slows down the electron transfer reactions in order to prevent the production of reactive oxygen species and the consequent damage of the photosynthetic machinery. In this opinion paper, we present a partially hypothetical scheme describing how the photosynthetic machinery controls the flow of energy and electrons in order to enable the maintenance of photosynthetic activity in nature under continual fluctuations in white light intensity. We discuss the roles of light-harvesting II protein phosphorylation, thermal dissipation of excess energy and the control of electron transfer by cytochrome b(6)f, and the role of dynamically regulated turnover of photosystem II in the maintenance of the photosynthetic machinery. We present a new hypothesis suggesting that most of the regulation in the thylakoid membrane occurs in order to prevent oxidative damage of photosystem I. PMID:23148275

  12. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    PubMed Central

    He, Haibing; Yang, Ru; Jia, Biao; Chen, Lin; Fan, Hua; Cui, Jing; Yang, Dong; Li, Menglong; Ma, Fu-Yu

    2014-01-01

    Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM), furrow irrigation with nonmulching (FIN), and drip irrigation with plastic mulching (DI). Compared with the conventional flooding (CF) treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN), lower maximum quantum yield (Fv/Fm), and lower effective quantum yield of PSII photochemistry (ΦPSII). And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC). Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA) were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation. PMID:24741364

  13. Electrochemical and optical studies of model photosynthetic systems

    SciTech Connect

    Not Available

    1992-01-15

    The objective of this research is to obtain a better understanding of the relationship between the structural organization of photosynthetic pigments and their spectroscopic and electrochemical properties. Defined model systems were studied first. These included the least ordered (solutions) through the most highly ordered (Langmuir-Blodgett (LB) monolayers and self-assembled monolayers) systems containing BChl, BPheo, and UQ. Molecules other than the photosynthetic pigments and quinones were also examined, including chromophores (i.e. surface active cyanine dyes and phtahlocyanines) an redox active compounds (methyl viologen (MV) and surfactant ferrocenes), in order to develop the techniques needed to study the photosynthetic components. Because the chlorophylls are photosensitive and labile, it was easier first to develop procedures using stable species. Three different techniques were used to characterize these model systems. These included electrochemical techniques for determining the standard oxidation and reduction potentials of the photosynthetic components as well as methods for determining the heterogeneous electron transfer rate constants for BChl and BPheo at metal electrodes (Pt and Au). Resonance Raman (RR) and surface enhanced resonance Raman (SERR) spectroscopy were used to determine the spectra of the photosynthetic pigments and model compounds. SERRS was also used to study several types of photosynthetic preparations.

  14. Regulation of the photosynthetic apparatus under fluctuating growth light

    PubMed Central

    Tikkanen, Mikko; Grieco, Michele; Nurmi, Markus; Rantala, Marjaana; Suorsa, Marjaana; Aro, Eva-Mari

    2012-01-01

    Safe and efficient conversion of solar energy to metabolic energy by plants is based on tightly inter-regulated transfer of excitation energy, electrons and protons in the photosynthetic machinery according to the availability of light energy, as well as the needs and restrictions of metabolism itself. Plants have mechanisms to enhance the capture of energy when light is limited for growth and development. Also, when energy is in excess, the photosynthetic machinery slows down the electron transfer reactions in order to prevent the production of reactive oxygen species and the consequent damage of the photosynthetic machinery. In this opinion paper, we present a partially hypothetical scheme describing how the photosynthetic machinery controls the flow of energy and electrons in order to enable the maintenance of photosynthetic activity in nature under continual fluctuations in white light intensity. We discuss the roles of light-harvesting II protein phosphorylation, thermal dissipation of excess energy and the control of electron transfer by cytochrome b6f, and the role of dynamically regulated turnover of photosystem II in the maintenance of the photosynthetic machinery. We present a new hypothesis suggesting that most of the regulation in the thylakoid membrane occurs in order to prevent oxidative damage of photosystem I. PMID:23148275

  15. Hydraulic basis for the evolution of photosynthetic productivity.

    PubMed

    Scoffoni, Christine; Chatelet, David S; Pasquet-Kok, Jessica; Rawls, Michael; Donoghue, Michael J; Edwards, Erika J; Sack, Lawren

    2016-01-01

    Clarifying the evolution and mechanisms for photosynthetic productivity is a key to both improving crops and understanding plant evolution and habitat distributions. Current theory recognizes a role for the hydraulics of water transport as a potential determinant of photosynthetic productivity based on comparative data across disparate species. However, there has never been rigorous support for the maintenance of this relationship during an evolutionary radiation. We tested this theory for 30 species of Viburnum, diverse in leaf shape and photosynthetic anatomy, grown in a common garden. We found strong support for a fundamental requirement for leaf hydraulic capacity (Kleaf) in determining photosynthetic capacity (Amax), as these traits diversified across this lineage in tight coordination, with their proportionality modulated by the climate experienced in the species' range. Variation in Kleaf arose from differences in venation architecture that influenced xylem and especially outside-xylem flow pathways. These findings substantiate an evolutionary basis for the coordination of hydraulic and photosynthetic physiology across species, and their co-dependence on climate, establishing a fundamental role for water transport in the evolution of the photosynthetic rate. PMID:27255836

  16. Enhancement of Survival and Electricity Production in an Engineered Bacterium by Light-Driven Proton Pumping▿ †

    PubMed Central

    Johnson, Ethan T.; Baron, Daniel B.; Naranjo, Belén; Bond, Daniel R.; Schmidt-Dannert, Claudia; Gralnick, Jeffrey A.

    2010-01-01

    Microorganisms can use complex photosystems or light-dependent proton pumps to generate membrane potential and/or reduce electron carriers to support growth. The discovery that proteorhodopsin is a light-dependent proton pump that can be expressed readily in recombinant bacteria enables development of new strategies to probe microbial physiology and to engineer microbes with new light-driven properties. Here, we describe functional expression of proteorhodopsin and light-induced changes in membrane potential in the bacterium Shewanella oneidensis strain MR-1. We report that there were significant increases in electrical current generation during illumination of electrochemical chambers containing S. oneidensis expressing proteorhodopsin. We present evidence that an engineered strain is able to consume lactate at an increased rate when it is illuminated, which is consistent with the hypothesis that proteorhodopsin activity enhances lactate uptake by increasing the proton motive force. Our results demonstrate that there is coupling of a light-driven process to electricity generation in a nonphotosynthetic engineered bacterium. Expression of proteorhodopsin also preserved the viability of the bacterium under nutrient-limited conditions, providing evidence that fulfillment of basic energy needs of organisms may explain the widespread distribution of proteorhodopsin in marine environments. PMID:20453141

  17. Spectropolarimetry of Photosynthetic Pigments as Global Surface Biosignatures

    NASA Astrophysics Data System (ADS)

    Sparks, W. B.; Parenteau, M. N.; Blankenship, R. E.; Germer, T. A.; Meadows, V. S.; Telesco, C. M.

    2015-12-01

    Photosynthesis is an ancient metabolic process on the early Earth. The most primitive phototrophs used reductants such as H2, H2S, and Fe(II) and were widespread in marine, intertidal, and likely continental habitats. These anoxygenic phototrophs were the key primary producers for the first ~1 billion years before the evolution of oxygenic photosynthesis at 2.7 Ga. The potential clearly exists for this type of primitive photosynthesis to operate on habitable exoplanets. Anoxygenic phototrophs are not known to emit gases that are uniquely biogenic in origin, so we focus on surface pigments signatures as having the strongest promise to offer identifiable biosignatures for a pre-oxygenic habitable exoplanet. Following our earlier work that showed photosynthetic cyanobacteria yield a polarization signature potentially useful in remote sensing, here we seek to characterize the remotely detectable polarization biosignatures associated with anoxygenic phototrophs. The six major pigments of anoxygenic phototrophs (bacteriochlorophylls [Bchls]) absorb in the near-infrared (NIR) from ~705 - 1040 nm. The lower symmetry of the pigment structure relative to chlorophylls shifts the energy absorption bands to longer wavelengths. As a result, Bchls are well suited to absorbing the relatively higher flux of red and NIR radiation of M dwarf stars, the most abundant type of star in the Galaxy, as well as the plentiful flux of typical main sequence stars. Homochirality is a powerful biosignature, and because of the optical activity of biological molecules, it can, in principle, be remotely observed on macroscopic scales using circular polarization spectroscopy. Bchls and Chls are optically active molecules with several chiral centers, strongly interacting with the incident light. We measured the reflectance and transmission full Stokes polarization spectra of pure cultures of anoxygenic phototrophs and environmental samples of microbial mats, and found strong correlations between

  18. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    SciTech Connect

    Dees, C.; Ringleberg, D.; Scott, T.C.; Phelps, T.

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  19. Regulation of Photosynthetic Carbon Metabolism in Cucumber by Light Intensity and Photosynthetic Period 1

    PubMed Central

    Robbins, N. Suzanne; Pharr, David M.

    1987-01-01

    The effects of photosynthetic periods and light intensity on cucumber (Cucumis sativus L.) carbon exchange rates and photoassimilate partitioning were determined in relation to the activities of galactinol synthase and sucrose-phosphate synthase. Carbon assimilation and partitioning appeared to be controlled by different mechanisms. Carbon exchange rates were influenced by total photon flux density, but were nearly constant over the entire photoperiod for given photoperiod lengths. Length of the photosynthetic periods did influence photoassimilate partitioning. Assimilate export rate was decreased by more than 60% during the latter part of the short photoperiod treatment. This decrease in export rate was associated with a sharp increase in leaf starch acccumulation rate. Results were consistent with the hypothesis that starch accumulation occurs at the expense of export under short photoperiods. Galactinol synthase activities did not appear to influence the partitioning of photoassimilates between starch and transport carbohydrates. Sucrose phosphate synthase activities correlated highly with sugar formation rates (sucrose, raffinose, stachyose + assimilate export rate, r = 0.93, α = 0.007). Cucumber leaf sucrose phosphate synthase fluctuated diurnally in a similar pattern to that observed in vegetative soybean plants. PMID:16665742

  20. Differential Allocation to Photosynthetic and Non-Photosynthetic Nitrogen Fractions among Native and Invasive Species

    PubMed Central

    Funk, Jennifer L.; Glenwinkel, Lori A.; Sack, Lawren

    2013-01-01

    Invasive species are expected to cluster on the “high-return” end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids. PMID:23700483